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14.1 Chromatic Number

Recall that a k-vertex-colouring, or simply a k-colouring, of a graph G = (V,E)
is a mapping c : V → S, where S is a set of k colours; thus, a k-colouring is an
assignment of k colours to the vertices of G. Usually, the set S of colours is taken
to be {1, 2, . . . , k}. A colouring c is proper if no two adjacent vertices are assigned
the same colour. Only loopless graphs admit proper colourings.

Alternatively, a k-colouring may be viewed as a partition {V1, V2, . . . , Vk} of V ,
where Vi denotes the (possibly empty) set of vertices assigned colour i. The sets
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Vi are called the colour classes of the colouring. A proper k-colouring is then a
k-colouring in which each colour class is a stable set. In this chapter, we are only
concerned with proper colourings. It is convenient, therefore, to refer to a proper
colouring as a ‘colouring’ and to a proper k-colouring as a ‘k-colouring’.

A graph is k-colourable if it has a k-colouring. Thus a graph is 1-colourable
if and only if it is empty, and 2-colourable if and only if it is bipartite. Clearly,
a loopless graph is k-colourable if and only if its underlying simple graph is k-
colourable. Therefore, in discussing vertex colourings, we restrict our attention to
simple graphs.

The minimum k for which a graph G is k-colourable is called its chromatic
number, and denoted χ(G). If χ(G) = k, the graph G is said to be k-chromatic.
The triangle, and indeed all odd cycles, are easily seen to be 3-colourable. On
the other hand, they are not 2-colourable because they are not bipartite. They
therefore have chromatic number three: they are 3-chromatic. A 4-chromatic graph
known as the Hajós graph is shown in Figure 14.1. The complete graph Kn has
chromatic number n because no two vertices can receive the same colour. More
generally, every graph G satisfies the inequality

χ ≥ n

α
(14.1)

because each colour class is a stable set, and therefore has at most α vertices.

Fig. 14.1. The Hajós graph: a 4-chromatic graph

Colouring problems arise naturally in many practical situations where it is
required to partition a set of objects into groups in such a way that the members
of each group are mutually compatible according to some criterion. We give two
examples of such problems. Others will no doubt occur to the reader.

Example 14.1 Examination Scheduling

The students at a certain university have annual examinations in all the courses
they take. Naturally, examinations in different courses cannot be held concurrently
if the courses have students in common. How can all the examinations be organized
in as few parallel sessions as possible? To find such a schedule, consider the graph
G whose vertex set is the set of all courses, two courses being joined by an edge
if they give rise to a conflict. Clearly, stable sets of G correspond to conflict-free
groups of courses. Thus the required minimum number of parallel sessions is the
chromatic number of G.
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Example 14.2 Chemical Storage

A company manufactures n chemicals C1, C2, . . . , Cn. Certain pairs of these chem-
icals are incompatible and would cause explosions if brought into contact with each
other. As a precautionary measure, the company wishes to divide its warehouse
into compartments, and store incompatible chemicals in different compartments.
What is the least number of compartments into which the warehouse should be
partitioned? We obtain a graph G on the vertex set {v1, v2, . . . , vn} by joining two
vertices vi and vj if and only if the chemicals Ci and Cj are incompatible. It is easy
to see that the least number of compartments into which the warehouse should be
partitioned is equal to the chromatic number of G.

If H is a subgraph of G and G is k-colourable, then so is H. Thus χ(G) ≥ χ(H).
In particular, if G contains a copy of the complete graph Kr, then χ(G) ≥ r.
Therefore, for any graph G,

χ ≥ ω (14.2)

The odd cycles of length five or more, for which ω = 2 and χ = 3, show that this
bound for the chromatic number is not sharp. More surprisingly, as we show in
Section 14.3, there exist graphs with arbitrarily high girth and chromatic number.

A Greedy Colouring Heuristic

Because a graph is 2-colourable if and only if it is bipartite, there is a polynomial-
time algorithm (for instance, using breadth-first search) for deciding whether a
given graph is 2-colourable. In sharp contrast, the problem of 3-colourability is
already NP-complete. It follows that the problem of finding the chromatic number
of a graph is NP-hard. In practical situations, one must therefore be content with
efficient heuristic procedures which perform reasonably well. The most natural
approach is to colour the vertices in a greedy fashion, as follows.

Heuristic 14.3 The Greedy Colouring Heuristic

Input: a graph G
Output: a colouring of G
1. Arrange the vertices of G in a linear order: v1, v2, . . . , vn.
2. Colour the vertices one by one in this order, assigning to vi the smallest

positive integer not yet assigned to one of its already-coloured neighbours.

It should be stressed that the number of colours used by this greedy colouring
heuristic depends very much on the particular ordering chosen for the vertices. For
example, if Kn,n is a complete bipartite graph with parts X := {x1, x2, . . . , xn}
and Y := {y1, y2, . . . , yn}, then the bipartite graph G[X,Y ] obtained from this
graph by deleting the perfect matching {xiyi : 1 ≤ i ≤ n} would require n
colours if the vertices were listed in the order x1, y1, x2, y2, . . . , xn, yn. On the
other hand, only two colours would be needed if the vertices were presented in
the order {x1, x2, . . . , xn, y1, y2, . . . , yn}; indeed there is always an ordering which
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yields an optimal colouring (Exercise 14.1.9). The problem is that it is hard to
know in advance which orderings will produce optimal colourings.

Nevertheless, the number of colours used by the greedy heuristic is never greater
than ∆ + 1, regardless of the order in which the vertices are presented. When a
vertex v is about to be coloured, the number of its neighbours already coloured is
clearly no greater than its degree d(v), and this is no greater than the maximum
degree, ∆. Thus one of the colours 1, 2, . . . ,∆ + 1 will certainly be available for v.
We conclude that, for any graph G,

χ ≤ ∆ + 1 (14.3)

In other words, every k-chromatic graph has a vertex of degree at least k − 1.
In fact, every k-chromatic graph has at least k vertices of degree at least k − 1
(Exercise 14.1.3b).

The bound (14.3) on the chromatic number gives essentially no information on
how many vertices of each colour there are in a (∆ + 1)-colouring. A far-reaching
strengthening of inequality (14.3) was obtained by Hajnal and Szemerédi (1970),
who showed that every graph G admits a balanced (∆ + 1)-colouring, that is, one
in which the numbers of vertices of each colour differ by at most one. A shorter
proof of this theorem was found by Kierstead and Kostochka (2006).

Brooks’ Theorem

Although the bound (14.3) on the chromatic number is best possible, being at-
tained by odd cycles and complete graphs, Brooks (1941) showed that these are
the only connected graphs for which equality holds.

Our proof of Brooks’ Theorem is similar in spirit to one given by Lovász
(1975b), but makes essential use of DFS-trees. In particular, we appeal to a result
of Chartrand and Kronk (1968), who showed that cycles, complete graphs, and
complete bipartite graphs whose parts are of equal size are the only graphs with
the property that every DFS-tree is a Hamilton path rooted at one of its ends (see
Exercise 6.1.10).

Theorem 14.4 Brooks’ Theorem

If G is a connected graph, and is neither an odd cycle nor a complete graph, then
χ ≤ ∆.

Proof Suppose first that G is not regular. Let x be a vertex of degree δ and
let T be a search tree of G rooted at x. We colour the vertices with the colours
1, 2, . . . ,∆ according to the greedy heuristic, selecting at each step a leaf of the
subtree of T induced by the vertices not yet coloured, assigning to it the smallest
available colour, and ending with the root x of T . When a vertex v different from
x is about to be coloured, it is adjacent in T to at least one uncoloured vertex,
and so is adjacent in G to at most d(v) − 1 ≤ ∆ − 1 coloured vertices. It is
therefore assigned one of the colours 1, 2, . . . ,∆. Finally, when x is coloured, it,
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too, is assigned one of the colours 1, 2, . . . ,∆, because d(x) = δ ≤ ∆ − 1. The
greedy heuristic therefore produces a ∆-colouring of G.

Suppose now that G is regular. If G has a cut vertex x, then G = G1 ∪ G2,
where G1 and G2 are connected and G1 ∩ G2 = {x}. Because the degree of x in
Gi is less than ∆(G), neither subgraph Gi is regular, so χ(Gi) ≤ ∆(Gi) = ∆(G),
i = 1, 2, and χ(G) = max{χ(G1), χ(G2)} ≤ ∆(G) (Exercise 14.1.2). We may
assume, therefore, that G is 2-connected.

If every depth-first search tree of G is a Hamilton path rooted at one of its
ends, then G is a cycle, a complete graph, or a complete bipartite graph Kn,n

(Exercise 6.1.10). Since, by hypothesis, G is neither an odd cycle nor a complete
graph, χ(G) = 2 ≤ ∆(G).

Suppose, then, that T is a depth-first search tree of G, but not a path. Let x be
a vertex of T with at least two children, y and z. Because G is 2-connected, both
G− y and G− z are connected. Thus y and z are either leaves of T or have proper
descendants which are joined to ancestors of x. It follows that G′ := G− {y, z} is
connected. Consider a search tree T ′ with root x in G′. By colouring y and z with
colour 1, and then the vertices of T ′ by the greedy heuristic as above, ending with
the root x, we obtain a ∆-colouring of G. �

Colourings of Digraphs

A (proper) vertex colouring of a digraph D is simply a vertex colouring of its
underlying graph G, and its chromatic number χ(D) is defined to be the chro-
matic number χ(G) of G. Why, then, consider colourings of digraphs? It turns out
that the chromatic number of a digraph provides interesting information about
its subdigraphs. The following theorem of Gallai (1968a) and Roy (1967) tells us
that digraphs with high chromatic number always have long directed paths. It can
be viewed as a common generalization of a theorem about chains in posets (see
Exercise 2.1.23) and Rédei’s Theorem on directed Hamilton paths in tournaments
(Theorem 2.3).

Theorem 14.5 The Gallai–Roy Theorem

Every digraph D contains a directed path with χ vertices.

Proof Let k be the number of vertices in a longest directed path of D. Consider
a maximal acyclic subdigraph D′ of D. Because D′ is a subdigraph of D, each
directed path in D′ has at most k vertices. We k-colour D by assigning to vertex
v the colour c(v), where c(v) is the number of vertices of a longest directed path
in D′ starting at v. Let us show that this colouring is proper.

Consider any arc (u, v) of D. If (u, v) is an arc of D′, let vPw be a longest
directed v-path in D′. Then u /∈ V (P ), otherwise vPuv would be a directed cycle
in D′. Thus uvPw is a directed u-path in D′, implying that c(u) > c(v).

If (u, v) is not an arc of D′, then D′ + (u, v) contains a directed cycle, because
the subdigraph D′ is maximally acyclic, so D′ contains a directed (v, u)-path P . Let
Q be a longest directed u-path in D′. Because D′ is acyclic, V (P ) ∩ V (Q) = {u}.



362 14 Vertex Colourings

Thus PQ is a directed v-path in D′, implying that c(v) > c(u). In both cases,
c(u) �= c(v). �

Exercises

14.1.1 Chvátal Graph

The Chvátal graph, shown in Figure 14.2, is a 4-regular graph of girth four on
twelve vertices. Show that this graph is 4-chromatic. (V. Chvátal)

Fig. 14.2. The Chvátal graph: a 4-chromatic 4-regular graph of girth four

�14.1.2 Show that χ(G) = max{χ(B) : B a block of G}.

�14.1.3

a) In a k-colouring of a k-chromatic graph, show that there is a vertex of each
colour which is adjacent to vertices of every other colour.

b) Deduce that every k-chromatic graph has at least k vertices of degree at least
k − 1.

14.1.4 Show that χ(G) ≤ k1k2 if and only if G = G1 + G2, where χ(Gi) ≤ ki,
i = 1, 2. (S.A. Burr)

14.1.5 k-Degenerate Graph

A graph is k-degenerate if it can be reduced to K1 by repeatedly deleting vertices
of degree at most k.

a) Show that a graph is k-degenerate if and only if every subgraph has a vertex
of degree at most k.

b) Characterize the 1-degenerate graphs.
c) Show that every k-degenerate graph is (k + 1)-colourable.
d) Using Exercise 14.1.4, deduce that the union of a k-degenerate graph and an

-degenerate graph is (k + 1)( + 1)-colourable.
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14.1.6 Establish the following bounds on the chromatic number of the Kneser
graph KGm,n.

n

m
≤ χ(KGm,n) ≤ n− 2m + 2

(Lovász (1978) proved the conjecture of Kneser (1955) that the upper bound is
sharp; see, also, Bárány (1978) and Greene (2002).)

14.1.7 Show that, for any graph G, χ ≥ n2/(n2 − 2m).

14.1.8 Let G be a graph in which any two odd cycles intersect. Show that:

a) χ ≤ 5,
b) if χ = 5, then G contains a copy of K5.

14.1.9 Given any graph G, show that there is an ordering of its vertices such that
the greedy heuristic, applied to that ordering, yields a colouring with χ colours.

14.1.10 Let G have degree sequence (d1, d2, . . . , dn), where d1 ≥ d2 ≥ · · · ≥ dn.

a) Using a greedy heuristic, show that χ ≤ max{min {di + 1, i} : 1 ≤ i ≤ n}.
b) Deduce that χ ≤ �(2m)1/2	. (D.J.A. Welsh and M.B. Powell)

14.1.11

a) Show that χ(G)χ(G) ≥ n.
b) Using Exercise 14.1.10, deduce that 2

√
n ≤ χ(G) + χ(G) ≤ n + 1.

(E.A. Nordhaus and J.W. Gaddum)

14.1.12 Let k be a positive integer, and let G be a graph which contains no cycle
of length 1 (mod k). Show that G is k-colourable. (Zs. Tuza)

14.1.13 Catlin Graph

The composition G[H] was defined in Exercise 12.3.9.

a) Show that χ(G[H]) ≤ χ(G)χ(H), for any two graphs G and H.
b) The graph C5[K3] shown in Figure 14.3 is known as the Catlin graph. Show

that χ(C5[K3]) < χ(C5)χ(K3). (P. Catlin)

14.1.14 Let G be the graph C5[Kn].

a) Show that χ = � 5n
2 	.

b) Deduce that χ = �(ω + ∆ + 1)/2	. (A. Kostochka)

�14.1.15

a) Show that every graph G has an orientation each of whose induced subdigraphs
has a kernel.

b) Consider any such orientation D. Show that G is (∆+(D) + 1)-colourable.
c) Deduce inequality (14.3).



364 14 Vertex Colourings

Fig. 14.3. The Catlin graph C5[K3]

14.1.16 The Erdős–Szekeres Theorem

a) Let D be a digraph with χ ≥ kl + 1, and let f be a real-valued function
defined on V . Show that D contains either a directed path (u0, u1, . . . , uk)
with f(u0) ≤ f(u1) ≤ · · · ≤ f(uk) or a directed path (v0, v1, . . . , vl) with
f(v0) > f(v1) > · · · > f(vl). (V. Chvátal and J. Komlós)

b) Deduce that any sequence of kl+1 distinct integers contains either an increas-
ing subsequence of k + 1 terms or a decreasing sequence of l + 1 terms.

(P. Erdős and G. Szekeres)

14.1.17 Let G be an undirected graph. Show that

χ(G) = min {λ(D) : D an orientation of G}

where λ(D) denotes the number of vertices in a longest directed path of D.

14.1.18 Weak Product

The weak product of graphs G and H is the graph G×H with vertex set V (G)×
V (H) and edge set {((u, u′), (v, v′)) : (u, v) ∈ E(G), (u′, v′) ∈ E(H)}. Show that,
for any two graphs G and H, χ(G×H) ≤ min {χ(G), χ(H)}. (S. Hedetniemi)

14.1.19 Chromatic Number of a Hypergraph

The chromatic number χ(H) of a hypergraph H := (V,F) is the least number of
colours needed to colour its vertices so that no edge of cardinality more than one
is monochromatic. (This is one of several ways of defining the chromatic number
of a hypergraph; it is often referred to as the weak chromatic number.) Determine
the chromatic number of:

a) the Fano hypergraph (Figure 1.15a),
b) the Desargues hypergraph (Figure 1.15b).
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14.1.20

a) Show that the Hajós graph (Figure 14.1) is a unit-distance graph.
(P. O’Donnell has shown that there exists a 4-chromatic unit-distance graph
of arbitrary girth.)

b) Let G be a unit-distance graph. Show that χ ≤ 7 by considering a plane
hexagonal lattice and finding a suitable 7-face colouring of it.

—————

—————

14.1.21 Show that:

a) if χ(G) = 2k, then G has a bipartite subgraph with at least mk/(2k−1) edges,
b) if χ(G) = 2k+1, then G has a bipartite subgraph with at least m(k+1)/(2k+1)

edges. (L.D. Andersen, D. Grant and N. Linial)

14.1.22 Let G := (V,E) be a graph, and let f(G) be the number of proper k-
colourings of G. By applying the inequality of Exercise 13.2.3, show that

kn
(
1− m

k

)
≤ f(G) ≤ kn

(

1− m

k + m− 1

)

14.1.23 Let G be a 5-regular graph on 4k vertices, the union of a Hamilton cycle
C and k disjoint copies G1, G2, . . . , Gk of K4. Let F and F ′ be the two 1-factors
of G contained in C, and let Fi be a 1-factor of Gi, 1 ≤ i ≤ k. By combining a
2-vertex colouring of F ∪i Fi with a 2-vertex colouring of F ′ ∪i F ′

i , where F ′
i is an

appropriately chosen 1-factor of Gi, 1 ≤ i ≤ k, deduce that χ(G) = 4.
(N. Alon)

14.1.24 Let G be a 3-chromatic graph on n vertices. Show how to find, in poly-
nomial time, a proper colouring of G using no more than 3

√
n colours.

(A. Wigderson)

(Blum and Karger (1997) have described a polynomial-time algorithm for colouring
a 3-chromatic graph on n vertices using O(n3/14) colours.)

14.1.25 Let G be a simple connected claw-free graph with α ≥ 3.

a) Show that ∆ ≤ 4(ω − 1) by induction on n, proceeding as follows.
� If G is separable, apply induction.
� If G is 2-connected, let x be a vertex of degree ∆ and set X := N(x)∪{x}.

Show that α(G[X]) = 2. Deduce that Y := V \X �= ∅.
� If α(G− v) ≥ 3 for some v ∈ Y , apply induction.
� If α(G− v) = 2 for all v ∈ Y , show that Y consists either of a single vertex

or of two nonadjacent vertices.
� Show that, in the former case, N(x) is the union of four cliques, and in the

latter case, the union of two cliques.
� Conclude.

b) Deduce that χ ≤ 4(ω − 1). (M. Chudnovsky and P.D. Seymour)
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(Chudnovsky and Seymour have in fact shown that χ ≤ 2ω.)

14.1.26

a) Show that every digraph D contains a spanning branching forest F in which
the sets of vertices at each level are stable sets of D (the vertices at level zero
being the roots of the components of F ).

b) Deduce the Gallai–Roy Theorem (14.5).
c) A (k, l)-path is an oriented path of length k + l obtained by identifying the

terminal vertices of a directed path of length k and a directed path of length
l. Let D be a digraph and let k and l be positive integers such that k + l = χ.
Deduce from (a) that D contains either a (k, l − 1)-path or a (k − 1, l)-path.

(A. El-Sahili and M. Kouider)

14.1.27 Let k be a positive integer. Show that every infinite k-chromatic graph
contains a finite k-chromatic subgraph. (N.G. de Bruijn and P. Erdős)

14.2 Critical Graphs

When dealing with colourings, it is helpful to study the properties of a special
class of graphs called colour-critical graphs. We say that a graph G is colour-
critical if χ(H) < χ(G) for every proper subgraph H of G. Such graphs were first
investigated by Dirac (1951). Here, for simplicity, we abbreviate the term ‘colour-
critical’ to ‘critical’. A k-critical graph is one that is k-chromatic and critical.
Note that a minimal k-chromatic subgraph of a k-chromatic graph is k-critical, so
every k-chromatic graph has a k-critical subgraph. The Grötzsch graph, a 4-critical
graph discovered independently by Grötzsch (1958/1959) and, independently by
Mycielski (1955), is shown in Figure 14.4 (see Exercise 14.3.1).

Fig. 14.4. The Grötzsch graph: a 4-critical graph

Theorem 14.6 If G is k-critical, then δ ≥ k − 1.
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Proof By contradiction. Let G be a k-critical graph with δ < k − 1, and let v
be a vertex of degree δ in G. Because G is k-critical, G − v is (k − 1)-colourable.
Let {V1, V2, . . . , Vk−1} be a (k − 1)-colouring of G − v. The vertex v is adjacent
to δ < k − 1 vertices. It therefore must be nonadjacent in G to every vertex in
some Vj . But then {V1, V2, . . . , Vj ∪ {v}, . . . , Vk−1} is a (k − 1)-colouring of G, a
contradiction. Thus δ ≥ k − 1. �

Theorem 14.6 implies that every k-chromatic graph has at least k vertices of
degree at least k − 1, as noted already in Section 14.1.

Let S be a vertex cut of a connected graph G, and let the components of G−S
have vertex sets V1, V2, . . . , Vt. Recall that the subgraphs Gi := G[Vi ∪ S] are the
S-components of G. We say that colourings of G1, G2, . . . , Gt agree on S if, for
every v ∈ S, vertex v is assigned the same colour in each of the colourings.

Theorem 14.7 No critical graph has a clique cut.

Proof By contradiction. Let G be a k-critical graph. Suppose that G has a clique
cut S. Denote the S-components of G by G1, G2, . . . , Gt. Because G is k-critical,
each Gi is (k − 1)-colourable. Furthermore, because S is a clique, the vertices of
S receive distinct colours in any (k − 1)-colouring of Gi. It follows that there are
(k − 1)-colourings of G1, G2, . . . , Gt which agree on S. These colourings may be
combined to yield a (k − 1)-colouring of G, a contradiction. �

Corollary 14.8 Every critical graph is nonseparable. �

By Theorem 14.7, if a k-critical graph has a 2-vertex cut {u, v}, then u and v
cannot be adjacent. We say that a {u, v}-component Gi of G is of type 1 if every
(k − 1)-colouring of Gi assigns the same colour to u and v, and of type 2 if every
(k − 1)-colouring of Gi assigns distinct colours to u and v. Figure 14.5 depicts
the {u, v}-components of the Hajós graph with respect to a 2-vertex cut {u, v}.
Observe that there are just two {u, v}-components, one of each type. Dirac (1953)
showed that this is always so in critical graphs.

(a) (b)

uuu

vvv
Type 1 Type 2

Fig. 14.5. (a) A 2-vertex cut {u, v} of the Hajós graph, (b) its two {u, v}-components
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Theorem 14.9 Let G be a k-critical graph with a 2-vertex cut {u, v}, and let e be
a new edge joining u and v. Then:

1. G = G1 ∪G2, where Gi is a {u, v}-component of G of type i, i = 1, 2,
2. both H1 := G1 + e and H2 := G2 / {u, v} are k-critical.

Proof
1. Because G is critical, each {u, v}-component of G is (k−1)-colourable. Now there
cannot exist (k − 1)-colourings of these {u, v}-components all of which agree on
{u, v}, as such colourings would together yield a (k− 1)-colouring of G. Therefore
there are two {u, v}-components G1 and G2 such that no (k − 1)-colouring of G1

agrees with any (k−1)-colouring of G2. Clearly one, say G1, must be of type 1, and
the other, G2, of type 2. Because G1 and G2 are of different types, the subgraph
G1∪G2 of G is not (k−1)-colourable. The graph G being critical, we deduce that
G = G1 ∪G2.
2. Because G1 is of type 1, H1 is k-chromatic. We prove that H1 is critical by
showing that, for every edge f of H1, the subgraph H1 \ f is (k − 1)-colourable.
This is clearly so if f = e, since in this case H1 \ e = G1. Let f be some other
edge of H1. In any (k− 1)-colouring of G \ f , the vertices u and v receive different
colours, because G2 is a subgraph of G \ f . The restriction of such a colouring
to the vertices of G1 is a (k − 1)-colouring of H1 \ f . Thus H1 is k-critical. An
analogous argument shows that H2 is k-critical. �

Exercises

14.2.1 Show that χ(G) ≤ 1 + max {δ(F ) : F ⊆ G}.

14.2.2 Show that the only 1-critical graph is K1, the only 2-critical graph is K2,
and the only 3-critical graphs are the odd cycles of length three or more.

14.2.3 Show that the Chvátal graph (Figure 14.2) is 4-critical.

14.2.4 Let G be the 4-regular graph derived from the cartesian product of a trian-
gle x1x2x3x1 and a path y1y2y3y4y5 by identifying the vertices (x1, y1) and (x1, y5),
(x2, y1) and (x3, y5), and (x3, y1) and (x2, y5). Show that G is 4-critical.

(T. Gallai)

14.2.5 Let G = CG (Zn, S) be a circulant, where n ≡ 1 (mod 3), |S| = k, 1 ∈ S,
and i ≡ 2 (mod 3) for all i ∈ S, i �= 1. Show that G is a 4-critical k-regular k-conn-
ected graph. (L.S. Melnikov)

14.2.6 Uniquely Colourable Graph

A k-chromatic graph G is uniquely k-colourable, or simply uniquely colourable, if
any two k-colourings of G induce the same partition of V .

a) Determine the uniquely 2-colourable graphs.
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b) Generalize Theorem 14.7 by showing that no vertex cut of a critical graph
induces a uniquely colourable subgraph.

14.2.7

a) Show that if u and v are two vertices of a critical graph G, then N(u) �⊆ N(v).
b) Deduce that no k-critical graph has exactly k + 1 vertices.

14.2.8 Show that:

a) χ(G1 ∨G2) = χ(G1) + χ(G2),
b) G1 ∨G2 is critical if and only if both G1 and G2 are critical.

14.2.9 Hajós Join

Let G1 and G2 be disjoint graphs, and let e1 := u1v1 and e2 := u2v2 be edges of
G1 and G2, respectively. The graph obtained from G1 and G2 by identifying u1

and u2, deleting e1 and e2, and adding a new edge v1v2 is called a Hajós join of
G1 and G2. Show that the Hajós join of two graphs is k-critical if and only if both
graphs are k-critical. (G. Hajós)

14.2.10 For n = 4 and all n ≥ 6, construct a 4-critical graph on n vertices.

14.2.11 Schrijver Graph

Let S := {1, 2, . . . , n}. The Schrijver graph SGm,n is the subgraph of the Kneser
graph KGm,n induced by the m-subsets of S which contain no two consecutive
elements in the cyclic order (1, 2, . . . , n, 1).

a) Draw the Schrijver graph SG3,8.
b) Show that this graph is 4-chromatic, whereas every vertex-deleted subgraph

of it is 3-chromatic.

(Schrijver (1978) has shown that SGm,n is (n−2m+2)-chromatic, and that every
vertex-deleted subgraph of it is (n− 2m + 1)-chromatic.)

14.2.12

a) Let G be a k-critical graph with a 2-vertex cut {u, v}. Show that d(u)+d(v) ≥
3k − 5.

b) Deduce Brooks’ Theorem (14.4) for graphs with 2-vertex cuts.

14.2.13 Show that Brooks’ Theorem (14.4) is equivalent to the following state-
ment: if G is k-critical (k ≥ 4) and not complete, then 2m ≥ (k − 1)n + 1.
(Dirac (1957) sharpened this bound to 2m ≥ (k − 1)n + (k − 3).)

14.2.14 A hypergraph H is k-critical if χ(H) = k, but χ(H ′) < k for every proper
subhypergraph H ′ of H. Show that:

a) the only 2-critical hypergraph is K2,
b) the Fano hypergraph (depicted in Figure 1.15a) is 3-critical.
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14.2.15 Let H := (V,F) be a 3-critical hypergraph, where V := {v1, v2, . . . , vn}
and F := {F1, F2, . . . , Fm}, and let M be the incidence matrix of H.

a) Suppose that the rows of M are linearly dependent, so that there are real
numbers λi, 1 ≤ i ≤ n, not all zero, such that

∑
{λi : vi ∈ Fj} = 0, 1 ≤ j ≤ m.

Set Z := {i : λi = 0}, P := {i : λi > 0}, and N := {i : λi < 0}. Show that:
i) H ′ := H[Z] has a 2-colouring {R,B},
ii) H has the 2-colouring {R ∪ P,B ∪N}.

b) Deduce that the rows of M are linearly independent.
c) Conclude that |F| ≥ |V |. (P.D. Seymour)

—————

—————

14.2.16 Let G be a k-chromatic graph which has a colouring in which each colour is
assigned to at least two vertices. Show that G has a k-colouring with this property.

(T. Gallai)

14.2.17

a) By appealing to Theorem 2.5, show that a bipartite graph with average degree
2k or more contains a path of length 2k + 1. (A. Gyarfás and J. Lehel)

b) Using Exercise 14.1.21, deduce that every digraph D contains an antidirected
path of length at least χ/4.

14.2.18 An antidirected cycle in a digraph is a cycle of even length whose edges
alternate in direction.

a) Find a tournament on five vertices which contains no antidirected cycle.
b) Show that every 8-chromatic digraph contains an antidirected cycle.

(D. Grant, F. Jaeger, and C. Payan)

14.3 Girth and Chromatic Number

As we noted in the previous section, a graph which contains a large clique necessar-
ily has a high chromatic number. On the other hand, and somewhat surprisingly,
there exist triangle-free graphs with arbitrarily high chromatic number. Recursive
constructions of such graphs were first described by (Blanche) Descartes (see Un-
gar and Descartes (1954) and Exercise 14.3.3). Later, Erdős (1961a) applied the
probabilistic method to demonstrate the existence of graphs with arbitrarily high
girth and chromatic number.

Theorem 14.10 For each positive integer k, there exists a graph with girth at least
k and chromatic number at least k.

Proof Consider G ∈ Gn,p, and set t := �2p−1 log n	. By Theorem 13.6, almost
surely α(G) ≤ t. Let X be the number of cycles of G of length less than k. By
linearity of expectation (13.4),
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E(X) =
k−1∑

i=3

(n)i

2i
pi <

k−1∑

i=0

(np)i =
(np)k − 1
np− 1

where (n)i denotes the falling factorial n(n−1) · · · (n− i+1). Markov’s Inequality
(13.4) now yields:

P (X > n/2) <
E(X)
n/2

<
2((np)k − 1)
n(np− 1)

Therefore, if p := n−(k−1)/k,

P (X > n/2) <
2(n− 1)

n(n1/k − 1)
→ 0 as n→∞

in other words, G almost surely has no more than n/2 cycles of length less than k.
It follows that, for n sufficiently large, there exists a graph G on n vertices with

stability number at most t and no more than n/2 cycles of length less than k. By
deleting one vertex of G from each cycle of length less than k, we obtain a graph
G′ on at least n/2 vertices with girth at least k and stability number at most t.
By inequality (14.1),

χ(G′) ≥ v(G′)
α(G′)

≥ n

2t
∼ n1/k

8 log n

It suffices, now, to choose n large enough to guarantee that χ(G′) ≥ k. �

Mycielski’s Construction

Note that the above proof is nonconstructive: it merely asserts the existence of
graphs with arbitrarily high girth and chromatic number. Recursive constructions
of such graphs were given by Lovász (1968a) and also by Nešetřil and Rödl (1979).
We describe here a simpler construction of triangle-free k-chromatic graphs, due
to Mycielski (1955).

Theorem 14.11 For any positive integer k, there exists a triangle-free k-chromatic
graph.

Proof For k = 1 and k = 2, the graphs K1 and K2 have the required property. We
proceed by induction on k. Suppose that we have already constructed a triangle-
free graph Gk with chromatic number k ≥ 2. Let the vertices of Gk be v1, v2, . . . , vn.
Form the graph Gk+1 from Gk as follows: add n + 1 new vertices u1, u2, . . . , un, v,
and then, for 1 ≤ i ≤ n, join ui to the neighbours of vi in Gk, and also to v.
For example, if G2 := K2, then G3 is the 5-cycle and G4 the Grötzsch graph (see
Figure 14.6).

The graph Gk+1 certainly has no triangles. For, because u1, u2, . . . , un is a
stable set in Gk+1, no triangle can contain more than one ui; and if uivjvkui
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G3 G4

v

u1

u2

u3u4

u5

v1v1

v2v2

v3v3 v4v4

v5v5

Fig. 14.6. Mycielski’s construction

were a triangle in Gk+1, then vivjvkvi would be a triangle in Gk, contrary to our
assumption.

We now show that Gk+1 is (k + 1)-chromatic. Note, first, that Gk+1 is (k + 1)-
colourable, because any k-colouring of Gk can be extended to a (k + 1)-colouring
of Gk+1 by assigning the colour of vi to ui, 1 ≤ i ≤ n, and then assigning a new
colour to v. Therefore, it remains to show that Gk+1 is not k-colourable.

Suppose that Gk+1 has a k-colouring. This colouring, when restricted to
{v1, v2, . . . , vn}, is a k-colouring of the k-chromatic graph Gk. By Exercise 14.1.3,
for each colour j, there exists a vertex vi of colour j which is adjacent in Gk to
vertices of every other colour. Because ui has precisely the same neighbours in
Gk as vi, the vertex ui must also have colour j. Therefore, each of the k colours
appears on at least one of the vertices ui. But no colour is now available for the
vertex v, a contradiction. We infer that Gk+1 is indeed (k + 1)-chromatic, and the
theorem follows by induction. �

Other examples of triangle-free graphs with arbitrarily high chromatic number
are the shift graphs (see Exercise 14.3.2).

Exercises

—————

—————

14.3.1 Let G2 := K2, and let Gk be the graph obtained from Gk−1 by Mycielski’s
construction, k ≥ 3. Show that Gk is a k-critical graph on 3 · 2k−2 − 1 vertices.

14.3.2 Shift Graph

The shift graph SGn is the graph whose vertex set is the set of 2-subsets of
{1, 2, . . . , n}, there being an edge joining two pairs {i, j} and {k, l}, where i < j
and k < l, if and only if j = k. Show that SGn is a triangle-free graph of chromatic
number �log2 n	. (P. Erdős and A. Hajnal)
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14.3.3 Let G be a k-chromatic graph on n vertices with girth at least six, where
k ≥ 2. Form a new graph H as follows.

� Take
(
kn
n

)
disjoint copies of G and a set S of kn new vertices, and set up a

one-to-one correspondence between the copies of G and the n-element subsets
of S.

� For each copy of G, pair up its vertices with the members of the corresponding
n-element subset of S and join each pair by an edge.

Show that H has chromatic number at least k + 1 and girth at least six.
(B. Descartes)

14.4 Perfect Graphs

Inequality (14.2), which states that χ ≥ ω, leads one to ask which graphs G satisfy
it with equality. One soon realizes, however, that this question as it stands is
not particularly interesting, because if H is any k-colourable graph and G is the
disjoint union of H and Kk, then χ(G) = ω(G) = k. Berge (1963) noted that
such artificial examples may be avoided by insisting that inequality (14.2) hold
not only for G but also for all of its induced subgraphs. He called such graphs
G ‘perfect’, and observed that the graphs satisfying this property include many
basic families of graphs, such as bipartite graphs, line graphs of bipartite graphs,
chordal graphs, and comparability graphs. He also noted that well-known min–max
theorems concerning these seemingly disparate families of graphs simply amount
to saying that they are perfect.

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G;
otherwise, it is imperfect. An imperfect graph is minimally imperfect if each of its
proper induced subgraphs is perfect. The triangular prism and the octahedron are
examples of perfect graphs (Exercise 14.4.1), whereas the odd cycles of length five
or more, as well as their complements, are minimally imperfect (Exercise 14.4.2).
The cycle C7 and its complement C7 are shown in Figure 14.7.

11

22

33

44 55

66

77

(a) (b)

Fig. 14.7. The minimally imperfect graphs (a) C7, and (b) C7
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Being 2-colourable, bipartite graphs are clearly perfect. The fact that their line
graphs are perfect is a consequence of a theorem concerning edge colourings of
bipartite graphs (see Exercise 17.1.17). By Theorem 9.20, every chordal graph has
a simplicial decomposition, and this property can be used to show that chordal
graphs are perfect (Exercise 14.4.3). Comparability graphs are perfect too. That
this is so may be deduced from a basic property of partially ordered sets (see
Exercise 14.4.4).

The Perfect Graph Theorem

Berge (1963) observed that all the perfect graphs in the above classes also have
perfect complements. For example, the König–Rado Theorem (8.30) implies that
the complement of a bipartite graph is perfect, and Dilworth’s Theorem (19.5)
implies that the complement of a comparability graph is perfect. Based on this
empirical evidence, Berge (1963) conjectured that a graph is perfect if and only if
its complement is perfect. This conjecture was verified by Lovász (1972b), resulting
in what is now known as the Perfect Graph Theorem.

Theorem 14.12 The Perfect Graph Theorem

A graph is perfect if and only if its complement is perfect. �

Shortly thereafter, A. Hajnal (see Lovász (1972a)) proposed the following beau-
tiful characterization of perfect graphs. This, too, was confirmed by Lovász (1972a).

Theorem 14.13 A graph G is perfect if and only if every induced subgraph H of
G satisfies the inequality

v(H) ≤ α(H)ω(H)

Observe that the above inequality is invariant under complementation, because
v(H) = v(H), α(H) = ω(H), and ω(H) = α(H). Theorem 14.13 thus implies the
Perfect Graph Theorem (14.12).

The proof that we present of Theorem 14.13 is due to Gasparian (1996). It
relies on an elementary rank argument (the proof technique of Linear Independence
discussed in Section 2.4). We need the following property of minimally imperfect
graphs.

Proposition 14.14 Let S be a stable set in a minimally imperfect graph G. Then
ω(G− S) = ω(G).

Proof We have the following string of inequalities (Exercise 14.4.5).

ω(G− S) ≤ ω(G) ≤ χ(G)− 1 ≤ χ(G− S) = ω(G− S)

Because the left and right members are the same, equality holds throughout. In
particular, ω(G− S) = ω(G). �

We can now establish a result on the structure of minimally imperfect graphs.
This plays a key role in the proof of Theorem 14.13.
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Lemma 14.15 Let G be a minimally imperfect graph with stability number α and
clique number ω. Then G contains αω + 1 stable sets S0, S1, . . . , Sαω and αω + 1
cliques C0, C1, . . . , Cαω such that:

� each vertex of G belongs to precisely α of the stable sets Si,
� each clique Ci has ω vertices,
� Ci ∩ Si = ∅, for 0 ≤ i ≤ αω,
� |Ci ∩ Sj | = 1, for 0 ≤ i < j ≤ αω.

Proof Let S0 be a stable set of α vertices of G, and let v ∈ S0. The graph G− v
is perfect because G is minimally imperfect. Thus χ(G − v) = ω(G − v) ≤ ω(G).
This means that for any v ∈ S0, the set V \ {v} can be partitioned into a family
Sv of ω stable sets. Denoting {∪Sv : v ∈ S0} by {S1, S2, . . . , Sαω}, it can be seen
that {S0, S1, . . . , Sαω} is a family of αω + 1 stable sets of G satisfying the first
property above.

By Proposition 14.14, ω(G− Si) = ω(G), 0 ≤ i ≤ αω. Therefore there exists a
maximum clique Ci of G that is disjoint from Si. Because each of the ω vertices
in Ci lies in α of the stable sets Sj , 0 ≤ i ≤ αω, and because no two vertices of Ci

can belong to a common stable set, |Ci ∩ Sj | = 1, for 0 ≤ i < j ≤ αω. �
Let us illustrate Lemma 14.15 by taking G to be the minimally imperfect

graph C7, labelled as shown in Figure 14.7b. Here α = 2 and ω = 3. Applying
the procedure described in the proof of the lemma, we obtain the following seven
stable sets and seven cliques.

S0 = 12, S1 = 23, S2 = 45, S3 = 67, S4 = 34, S5 = 56, S6 = 17
C0 = 357, C1 = 146, C2 = 136, C3 = 135, C4 = 257, C5 = 247, C6 = 246

(where we write 12 for the set {1, 2}, and so on.) The incidence matrices S and C
of these families are shown in Figure 14.8.

S :

S0 S1 S2 S3 S4 S5 S6

1 1 0 0 0 0 0 1
2 1 1 0 0 0 0 0
3 0 1 0 0 1 0 0
4 0 0 1 0 1 0 0
5 0 0 1 0 0 1 0
6 0 0 0 1 0 1 0
7 0 0 0 1 0 0 1

C :

C0 C1 C2 C3 C4 C5 C6

1 0 1 1 1 0 0 0
2 0 0 0 0 1 1 1
3 1 0 1 1 0 0 0
4 0 1 0 0 0 1 1
5 1 0 0 1 1 0 0
6 0 1 1 0 0 0 1
7 1 0 0 0 1 1 0

Fig. 14.8. Incidence matrices of families of stable sets and cliques of C7

We are now ready to prove Theorem 14.13.

Proof Suppose that G is perfect, and let H be an induced subgraph of G. Because
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G is perfect, H is ω(H)-colourable, implying that v(H) ≤ α(H)ω(H). We prove the
converse by showing that if G is minimally imperfect, then v(G) ≥ α(G)ω(G) + 1.

Consider the families {Si : 0 ≤ i ≤ αω} and {Ci : 0 ≤ i ≤ αω} of stable sets
and cliques described in Lemma 14.15. Let S and C be the n× (αω + 1) incidence
matrices of these families. It follows from Lemma 14.15 that StC = J − I, where
J is the square matrix of order αω + 1 all of whose entries are 1 and I is the
identity matrix of order αω + 1. Now J − I is a nonsingular matrix (with inverse
(1/αω)J− I). Its rank is thus equal to its order, αω + 1. Hence both S and C are
also of rank αω + 1. But these matrices have n rows, so n ≥ αω + 1. �

Two consequences of the Perfect Graph Theorem are (Exercise 14.4.6):

Corollary 14.16 A graph G is perfect if and only if, for any induced subgraph H
of G, the maximum number of vertices in a stable set of H is equal to the minimum
number of cliques required to cover all the vertices of H. �

Corollary 14.17 The Shannon capacity of a perfect graph G is equal to its stability
number: Θ(G) = α(G). �

Corollary 14.17 prompts the problem of determining the Shannon capacities
of the minimally imperfect graphs. Of these, only Θ(C5) is known (see Exer-
cise 12.1.14). It would be interesting to determine Θ(C7).

The Strong Perfect Graph Theorem

If a graph is perfect, then so are all of its induced subgraphs. This means that one
can characterize perfect graphs by describing all minimally imperfect graphs. We
have remarked that the odd cycles of length five or more are minimally imperfect,
as are their complements. Berge (1963) proposed the conjecture that these are
the only minimally imperfect graphs; equivalently, that a graph is perfect if and
only if it contains no odd cycle of length at least five, or its complement, as an
induced subgraph. He named this conjecture, whose truth would imply the Perfect
Graph Theorem, the Strong Perfect Graph Conjecture. Some forty years later, it
was proved by Chudnovsky et al. (2006).

Theorem 14.18 The Strong Perfect Graph Theorem

A graph is perfect if and only if it contains no odd cycle of length at least five, or
its complement, as an induced subgraph. �

This theorem was a major achievement, as much effort had been expended over
the years on attempts to settle the Strong Perfect Graph Conjecture. Furthermore,
a polynomial-time recognition algorithm for perfect graphs was developed shortly
thereafter by Chudnovsky et al. (2005).

Perfect graphs play an important role in combinatorial optimization and poly-
hedral combinatorics. Schrijver (2003) dedicates three chapters of his scholarly
treatise to this widely studied area. The survey article by Chudnovsky et al. (2003)
includes an excellent account of some of the recent developments in the subject.
The original motivations for the study of perfect graphs, and its early history, are
described by Berge (1996, 1997).
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Exercises

14.4.1 Show that the triangular prism and the octahedron are perfect graphs.

14.4.2 For each k ≥ 2, show that both C2k+1 and C2k+1 are minimally imperfect
graphs.

14.4.3

a) Let G be a chordal graph and (X1,X2, . . . , Xk) a simplicial decomposition of
G. Show that χ = max {|Xi| : 1 ≤ i ≤ k}.

b) Deduce that every chordal graph is perfect.

14.4.4 Using the result stated in Exercise 2.1.23, show that every comparability
graph is perfect.

�14.4.5 Verify the three inequalities in the proof of Proposition 14.14.

14.4.6 Prove Corollaries 14.16 and 14.17.

—————

—————

14.4.7 Without appealing to the Strong Perfect Graph Theorem, show that every
minimally imperfect graph G satisfies the relation n = αω + 1.

14.4.8 Deduce from Theorem 14.13 that the problem of recognizing perfect graphs
belongs to co-NP. (K. Cameron; V. Chvátal)

14.5 List Colourings

In most practical colouring problems, there are restrictions on the colours that
may be assigned to certain vertices. For example, in the chemical storage problem
of Example 14.2, radioactive substances might require special storage facilities.
Thus in the corresponding graph there is a list of colours (appropriate storage
compartments) associated with each vertex (chemical). In an admissible colouring
(assignment of compartments to chemicals), the colour of a vertex must be chosen
from its list. This leads to the notion of list colouring.

Let G be a graph and let L be a function which assigns to each vertex v of G a
set L(v) of positive integers, called the list of v. A colouring c : V → N such that
c(v) ∈ L(v) for all v ∈ V is called a list colouring of G with respect to L, or an L-
colouring, and we say that G is L-colourable. Observe that if L(v) = {1, 2, . . . , k}
for all v ∈ V , an L-colouring is simply a k-colouring. For instance, if G is a
bipartite graph and L(v) = {1, 2} for all vertices v, then G has the L-colouring
which assigns colour 1 to all vertices in one part and colour 2 to all vertices in the
other part. Observe, also, that assigning a list of length one to a vertex amounts
to precolouring the vertex with that colour.
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{1, 2}

{1, 2}

{1, 3}

{1, 3}

{2, 3}

{2, 3}

Fig. 14.9. A bipartite graph whose list chromatic number is three

List Chromatic Number

At first glance, one might believe that a k-chromatic graph in which each list L(v)
is of length at least k necessarily has an L-colouring. However, this is not so. It can
be checked that the bipartite graph shown in Figure 14.9 has no list colouring with
respect to the indicated lists. On the other hand, if arbitrary lists of length three
are assigned to the vertices of this graph, it will have a compatible list colouring
(Exercise 14.5.1).

A graph G is said to be k-list-colourable if it has a list colouring whenever all
the lists have length k. Every graph G is clearly n-list-colourable. The smallest
value of k for which G is k-list-colourable is called the list chromatic number of
G, denoted χL(G). For example, the list chromatic number of the graph shown in
Figure 14.9 is equal to three, whereas its chromatic number is two. (More generally,
there exist 2-chromatic graphs whose list chromatic number is arbitrarily large, see
Exercise 14.5.5.)

Bounds on the list chromatic numbers of certain graphs can be found by means
of kernels. This might seem odd at first, because the kernel (introduced in Sec-
tion 12.1) is a notion concerning directed graphs, whereas the list chromatic num-
ber is one concerning undirected graphs. The following theorem (a strengthening
of Exercise 14.1.15) provides a link between kernels and list colourings.

Theorem 14.19 Let G be a graph, and let D be an orientation of G each of whose
induced subdigraphs has a kernel. For v ∈ V , let L(v) be an arbitrary list of at least
d+

D(v) + 1 colours. Then G admits an L-colouring.

Proof By induction on n, the statement being trivial for n = 1. Let V1 be the
set of vertices of D whose lists include colour 1. (We may assume that V1 �= ∅ by
renaming colours if necessary.) By assumption, D[V1] has a kernel S1. Colour the
vertices of S1 with colour 1, and set G′ := G − S1, D′ := D − S1 and L′(v) :=
L(v) \ {1}, v ∈ V (D′). For any vertex v of D′ whose list did not contain colour 1,

|L′(v)| = |L(v)| ≥ d+
D(v) + 1 ≥ d+

D′(v) + 1

and for any vertex v of D′ whose list did contain colour 1,

|L′(v)| = |L(v)| − 1 ≥ d+
D(v) ≥ d+

D′(v) + 1
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The last inequality holds because, in D, the vertex v dominates some vertex of
the kernel S1, so its outdegree in D′ is smaller than in D. By induction, G′ has an
L′-colouring. When combined with the colouring of S1, this yields an L-colouring
of G. �

As a simple illustration of Theorem 14.19, consider the case where D is
an acyclic orientation of G. Because every acyclic digraph has a kernel (Ex-
ercise 12.1.10b), D satisfies the hypothesis of the theorem. Clearly, d+

D(v) ≤
∆+(D) ≤ ∆(G). Theorem 14.19 therefore tells us that G has a list colouring
whenever each list is comprised of ∆ + 1 colours.

A similar approach can be applied to list colourings of interval graphs. Woodall
(2001) showed that every interval graph G has an acyclic orientation D with ∆+ ≤
ω − 1 (Exercise 14.5.10). Appealing to Theorem 14.19 yields the following result.

Corollary 14.20 Every interval graph G has list chromatic number ω. �

Exercises

�14.5.1 Show that the list chromatic number of the graph shown in Figure 14.9 is
equal to three.

14.5.2

a) Show that χL(K3,3) = 3.
b) Using the Fano plane, obtain an assignment of lists to the vertices of K7,7

which shows that χL(K7,7) > 3.

14.5.3 Generalize Brooks’ Theorem (14.4) by proving that if G is a connected
graph, and is neither an odd cycle nor a complete graph, then G is ∆-list-colour-
able. (P. Erdős, A.L. Rubin, and H. Taylor; V.G. Vizing)

14.5.4 Show that Km,n is k-list-colourable for all k ≥ min{m,n}+ 1.

�14.5.5 Show that χL(Kn,nn) = n + 1. (N. Alon and M. Tarsi)

14.5.6 By choosing as lists the edges of the non-2-colourable hypergraph whose
existence was established in Exercise 13.2.15, show that χL(Kn,n) ≥ cn log2 n,
where cn ∼ 1.

14.5.7 Let S be a set of cardinality 2k − 1, where k ≥ 1. Consider the complete
bipartite graph Kn,n, where n =

(
2k−1

k

)
, in which the lists attached to the vertices

in each part are the k-subsets of S. Show that Kn,n has no list colouring with this
assignment of lists. (P. Erdős, A.L. Rubin, and H. Taylor)

—————

—————

14.5.8 A theta graph TGk,l,m is a graph obtained by joining two vertices by three
internally disjoint paths of lengths k, l, and m. Show that:
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a) TG2,2,2k is 2-list-colourable for all k ≥ 1,
b) a connected simple graph is 2-list-colourable if and only if the subgraph ob-

tained by recursively deleting vertices of degree one is an isolated vertex, an
even cycle, or a theta graph TG2,2,2k, where k ≥ 1.

(P. Erdős, A.L. Rubin, and H. Taylor)

14.5.9 Let G = (V,E) be a simple graph. For v ∈ V , let L(v) be a list of k or
more colours. Suppose that, for each vertex v and each colour in L(v), no more
than k/2e neighbours of v have that same colour in their lists (where e is the base
of natural logarithms). By applying the Local Lemma (Theorem 13.12), show that
G has a list colouring with respect to L. (B.A. Reed)

�14.5.10 Let G be an interval graph.

a) Show that G has an acyclic orientation D with ∆+ = ω − 1.
b) Deduce that χL = χ = ω. (D.R. Woodall)

14.6 The Adjacency Polynomial

We have already seen how linear algebraic techniques can be used to prove results in
graph theory, for instance by means of rank arguments (see the inset in Chapter 2)
or by studying the eigenvalues of the adjacency matrix of the graph (see the inset
in Chapter 3). In this section, we develop yet another algebraic tool, this time
related to polynomials, and apply it to obtain results on list colouring. To this
end, we define a natural polynomial associated with a graph, indeed so natural
that it is often referred to as the graph polynomial.

Let G be a graph with vertex set V := {v1, v2, . . . , vn}. Set x := (x1, x2, . . . , xn).
The adjacency polynomial of G is the multivariate polynomial

A(G,x) :=
∏

i<j

{(xi − xj) : vivj ∈ E}

Upon expanding A(G,x) we obtain 2m monomials (some of which might cancel
out). Each of these monomials is obtained by selecting exactly one variable from
every factor xi − xj , and thus corresponds to an orientation of G: we orient the
edge vivj of G in such a way that the vertex corresponding to the chosen variable
is designated to be the tail of the resulting arc.

For example, if G is the graph shown in Figure 14.10, its adjacency polynomial
is given by

A(G,x) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x3 − x4) (14.4)

There are 25 = 32 terms in the expansion of this expression before cancellation,
whereas after cancellation only 24 terms remain:
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−− +G
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Fig. 14.10. A labelled graph G and the three orientations corresponding to the term
x2

1x2x3x4 of its adjacency polynomial
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The graph G has the three orientations with outdegree sequence (2, 1, 1, 1) shown
in Figure 14.10. These orientations are precisely the ones which correspond to the
monomial x2

1x2x3x4. Observe that the coefficient of this term in A(G,x) is −1.
This is because two of the three terms in the expansion of the product (14.4) have
a negative sign, whereas the remaining one has a positive sign.

As a second example, consider the complete graph Kn. We have

A(Kn,x) =
∏

1≤i<j≤n

(xi − xj) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xn−1
1 xn−1

2 . . . xn−1
n

xn−2
1 xn−2

2 . . . xn−2
n

· · . . . ·
· · . . . ·

x1 x2 . . . xn

1 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

The number of monomials in the expansion of this Vandermonde determinant is n!
(Exercise 14.6.1) which is much smaller (due to cancellation of terms) than 2(

n
2),

the number of monomials in the expansion of the adjacency polynomial.
In order to express the adjacency polynomial of a graph in terms of its orienta-

tions, we need a little notation. In the expansion of A(G,x), each monomial occurs
with a given sign. We associate this same sign with the corresponding orientation
D of G by defining

σ(D) :=
∏
{σ(e) : a ∈ A(D)}

where

σ(a) :=
{

+1 if a = (vi, vj) with i < j
−1 if a = (vi, vj) with i > j

For example, the three orientations of the graph G in Figure 14.10 have the signs
indicated.
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Now let d := (d1, d2, . . . , dn) be a sequence of nonnegative integers whose sum
is m. We define the weight of d by

w(d) :=
∑

σ(D)

where the sum is taken over all orientations D of G whose outdegree sequence is
d. Setting

xd :=
n∏

i=1

xdi
i

we can now express the adjacency polynomial as:

A(G,x) =
∑

d

w(d)xd

In order to understand the relevance of the latter expression to list colourings,
we need an algebraic tool developed by Alon (1999) and known as the Combina-
torial Nullstellensatz, by analogy with a celebrated theorem of D. Hilbert.

Proof Technique: The Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz is based on the following proposition, a
generalization to n variables of the fact that a polynomial of degree d in one
variable has at most d distinct roots.
Proposition 14.21 Let f be a nonzero polynomial over a field F in the vari-
ables x = (x1, x2, . . . , xn), of degree di in xi, 1 ≤ i ≤ n. Let Li be a set of
di + 1 elements of F , 1 ≤ i ≤ n. Then there exists t ∈ L1 × L2 × · · · × Ln

such that f(t) �= 0.

Proof As noted above, the case n = 1 simply expresses the fact that a
polynomial of degree d in one variable has at most d distinct roots. We proceed
by induction on n, where n ≥ 2.
We first express f as a polynomial in xn whose coefficients fj are polynomials
in the variables x1, x2, . . . , xn−1:

f =
dn∑

j=0

fjx
j
n

Because f is nonzero by hypothesis, fj is nonzero for some j, 0 ≤ j ≤ dn. By
induction, there exist ti ∈ Li, 1 ≤ i ≤ n−1, such that fj(t1, t2, . . . , tn−1) �= 0.
Therefore the polynomial

∑dn

j=0 fj(t1, t2, . . . , tn−1)xj
n is nonzero. Applying the

case n = 1 to this polynomial, we deduce that f(t1, t2, . . . , tn) �= 0 for some
tn ∈ Ln. �



14.6 The Adjacency Polynomial 383

The Combinatorial Nullstellensatz (continued)

Theorem 14.22 The Combinatorial Nullstellensatz

Let f be a polynomial over a field F in the variables x = (x1, x2, . . . , xn).
Suppose that the total degree of f is

∑n
1=1 di and that the coefficient in f of

∏n
i=1 xdi

i is nonzero. Let Li be a set of di + 1 elements of F , 1 ≤ i ≤ n. Then
there exists t ∈ L1 × L2 × · · · × Ln such that f(t) �= 0.

Proof For 1 ≤ i ≤ n, set

fi :=
∏

t∈Li

(xi − t)

Then fi is a polynomial of degree |Li| = di + 1, with leading term xdi+1
i , so

we may write fi = gi +xdi+1
i , where gi is a polynomial in xi of degree at most

di. By repeatedly substituting −gi for xdi+1
i in the polynomial f , we obtain a

new polynomial in which the degree of xi does not exceed di. Performing this
substitution operation for all i, 1 ≤ i ≤ n, results in a polynomial g of degree
at most di in xi, 1 ≤ i ≤ n.
Moreover, because fi(t) = 0 for all t ∈ Li, we have tdi+1 = −gi(t) for all
t ∈ Li, 1 ≤ i ≤ n. It follows that

g(t) = f(t) for all t ∈ L1 × L2 × · · · × Ln

Observe that every monomial of g is of total degree strictly less than
∑n

1=1 di,
apart from the monomial

∏n
i=1 xdi

i , which is unchanged. Thus g is nonzero.
By Proposition 14.21, applied to g, there exists t ∈ L1 × L2 × · · · × Ln such
that g(t) �= 0. This implies that f(t) �= 0. �

Corollary 14.23 Let G be a graph, and let D be an orientation of G without
directed odd cycles. Then G is (d + 1)-list-colourable, where d is the outdegree
sequence of D.

Proof Every orientation of G with outdegree sequence d has the same sign
as D (Exercise 14.6.2a). Therefore w(d) �= 0. The result follows on applying
Theorem 14.22 with f(x) = A(G,x). �

Corollary 14.24 If G has an odd number of orientations D with outdegree
sequence d, then G is (d + 1)-list-colourable.

Proof In this case w(d) is also odd, thus nonzero. �
Further applications of the Combinatorial Nullstellensatz are given in the
exercises which follow.



384 14 Vertex Colourings

Exercises

14.6.1 Show that the number of monomials in the expansion of the Vandermonde
determinant of order n is n!

14.6.2

a) Let G be a graph, and let D be an orientation of G with outdegree sequence
d.

i) If D′ is an orientation of G with outdegree sequence d, show that σ(D′) =
σ(D) if and only if |A(D) \A(D′)| is even.

ii) Deduce that if D has no directed odd cycles, then all orientations of G
with outdegree sequence d have the same sign.

b) For a graph G, denote by G(d) the graph whose vertices are the orientations of
G with outdegree sequence d, two such orientations D and D′ being adjacent
in G(d) if and only if A(D) \ A(D′) is the arc set of a directed cycle. Denote
by B(d) the spanning subgraph of G(d) whose edges correspond to directed
odd cycles. Show that:

i) G(d) is connected,
ii) B(d) is bipartite.

14.6.3 Let T be a transitive tournament on n vertices with outdegree sequence
d := (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn.

a) Express the number of directed triangles of T in terms of n and d.
b) Deduce that if G = Kn and d �= (0, 1, 2, . . . , n − 1), then the bipartite graph

B(d) (defined in Exercise 14.6.2) has parts of equal size.
c) Deduce that (0, 1, 2, . . . , n− 1) is the only sequence d such that w(d) �= 0.

14.6.4 Let G(x, y) be a graph, where N(x) \ {y} = N(y) \ {x}, and let D be
an orientation of G with d+(x) = d+(y). Show that w(d) = 0, where d is the
outdegree sequence of D. (S. Ceroi)

14.6.5 The Fleischner–Stiebitz Theorem

Let G be a 4-regular graph on 3k vertices, the union of a cycle of length 3k and k
pairwise disjoint triangles.

a) Show that the number of eulerian orientations of G with a given sign is even.
b) Fleischner and Stiebitz (1992) have shown (by induction on n) that the total

number of eulerian orientations of G is congruent to 2 (mod 4). Deduce that
G is 3-list-colourable and thus 3-colourable.

(H. Fleischner and M. Stiebitz)

(Sachs (1993) has shown that the number of 3-colourings of G is odd.)

14.6.6

a) For a graph G, as in Exercise 21.4.5, define d∗(G) := max{d(F ) : F ⊆ G},
the maximum of the average degrees of the subgraphs of G. Show that every
bipartite graph G is (�d∗/2	+ 1)-list-colourable.
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b) Deduce that every planar bipartite graph is 3-list-colourable.
c) Find a planar bipartite graph whose list chromatic number is three.

(N. Alon and M. Tarsi)

—————

—————

14.6.7 The Cauchy–Davenport Theorem

Let A and B be nonempty subsets of Zp, where p is a prime. Define the sum A+B
of A and B by A + B := {a + b : a ∈ A, b ∈ B}.
a) If |A|+ |B| > p, show that A + B = Zp.
b) Suppose that |A|+ |B| ≤ p and also that |A+B| ≤ |A|+ |B|−2. Let C be a set

of |A|+ |B| − 2 elements of Zp that contains A + B. Consider the polynomial
f(x, y) :=

∏
c∈C(x + y − c). Show that:

i) f(a, b) = 0 for all a ∈ A and all b ∈ B,
ii) the coefficient of x|A|−1y|B|−1 in f(x, y) is nonzero.

c) By applying the Combinatorial Nullstellensatz, deduce the Cauchy–Davenport
Theorem: if A and B are nonempty subsets of Zp, where p is a prime, then
either A + B = Zp or |A + B| ≥ |A|+ |B| − 1.

(N. Alon, M.B. Nathanson, and I.Z. Rusza)

14.6.8 Let G = (V,E) be a loopless graph with average degree greater than 2p−2
and maximum degree at most 2p − 1, where p is a prime. Show that G has a
p-regular subgraph by proceeding as follows.

Consider the polynomial f over Zp in the variables x = (xe : e ∈ E) defined by

f(x) :=
∏

v∈V

⎛

⎝1−
(
∑

e∈E

mvexe

)p−1
⎞

⎠−
∏

e∈E

(1− xe)

a) Show that:
i) the degree of f is e(G),
ii) the coefficient of

∏
e∈E xe in f is nonzero.

b) Deduce from the Combinatorial Nullstellensatz that f(c) �= 0 for some vector
c = (ce : e ∈ E) ∈ {0, 1}E .

c) Show that c �= 0 and Mc = 0.
d) By considering the spanning subgraph of G with edge set {e ∈ E : ce = 1},

deduce that G has a p-regular subgraph.
e) Deduce, in particular, that every 4-regular loopless graph with one additional

link contains a 3-regular subgraph.
(N. Alon, S. Friedland, and G. Kalai)

(Tashkinov (1984) proved that every 4-regular simple graph contains a 3-
regular subgraph.)
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14.7 The Chromatic Polynomial

We have seen how the adjacency polyomial provides insight into the complex topic
of graph colouring. Here, we discuss another polynomial related to graph colouring,
the chromatic polynomial. In this final section, we permit loops and parallel edges.

In the study of colourings, some insight can be gained by considering not only
the existence of k-colourings but the number of such colourings; this approach was
developed by Birkhoff (1912/13) as a possible means of attacking the Four-Colour
Conjecture.

We denote the number of distinct k-colourings c : V → {1, 2, . . . , k} of a graph
G by C(G, k). Thus C(G, k) > 0 if and only if G is k-colourable. In particular, if
G has a loop then C(G, k) = 0. Two colourings are to be regarded as distinct if
some vertex is assigned different colours in the two colourings; in other words, if
{V1, V2, . . . , Vk} and {V ′

1 , V ′
2 , . . . , V ′

k} are two k-colourings, then {V1, V2, . . . , Vk} =
{V ′

1 , V ′
2 , . . . , V ′

k} if and only if Vi = V ′
i for 1 ≤ i ≤ k. A triangle, for example, has

six distinct 3-colourings.
If G is empty, then each vertex can be independently assigned any one of the

k available colours, so C(G, k) = kn. On the other hand, if G is complete, then
there are k choices of colour for the first vertex, k− 1 choices for the second, k− 2
for the third, and so on. Thus, in this case, C(G, k) = k(k − 1) · · · (k − n + 1).

There is a simple recursion formula for C(G, k), namely:

C(G, k) = C(G \ e, k)− C(G/e, k) (14.5)

where e is any link of G. Formula (14.5) bears a close resemblance to the recursion
formula for t(G), the number of spanning trees of G (Proposition 4.9). We leave
its proof as an exercise (14.7.1). The formula gives rise to the following theorem.

Theorem 14.25 For any loopless graph G, there exists a polynomial P (G, x) such
that P (G, k) = C(G, k) for all nonnegative integers k. Moreover, if G is simple
and e is any edge of G, then P (G, x) satisfies the recursion formula:

P (G, x) = P (G \ e, x)− P (G/e, x) (14.6)

The polynomial P (G, x) is of degree n, with integer coefficients which alternate in
sign, leading term xn, and constant term zero.

Proof By induction on m. If m = 0, then C(G, k) = kn, and the polynomial
P (G, x) = xn satisfies the conditions of the theorem trivially.

Suppose that the theorem holds for all graphs with fewer than m edges, where
m ≥ 1, and let G be a loopless graph with m edges. If G is not simple, define
P (G, x) := P (H,x), where H is the underlying simple graph of G. By induction,
H satisfies the conditions of the theorem, so G does also. If G is simple, let e be an
edge of G. Both G \ e and G/e have m− 1 edges and are loopless. By induction,
there exist polynomials P (G \ e, x) and P (G/e, x) such that, for all nonnegative
integers k,
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P (G \ e, k) = C(G \ e, k) and P (G/e, k) = C(G/e, k) (14.7)

Furthermore, there are nonnegative integers a1, a2, . . . , an−1 and b1, b2, . . . , bn−1

such that:

P (G\e, x) =
n−1∑

i=1

(−1)n−iaix
i+xn and P (G/e, x) =

n−1∑

i=1

(−1)n−i−1bix
i (14.8)

Define P (G, x) := P (G \ e, x) − P (G/e, x), so that the desired recursion (14.6)
holds. Applying (14.6), (14.7), and (14.5), we have:

P (G, k) = P (G \ e, k)− P (G/e, k) = C(G \ e, k)− C(G/e, k) = C(G, k)

and applying (14.6) and (14.8) yields

P (G, x) = P (G \ e, x)− P (G/e, x) =
n−1∑

i=1

(−1)n−i(ai + bi)xi + xn

Thus P (G, x) satisfies the stated conditions. �
The polynomial P (G, x) is called the chromatic polynomial of G. Formula (14.6)

provides a means of calculating chromatic polynomials recursively. It can be used
in either of two ways:

i) by repeatedly applying the recursion P (G, x) = P (G \ e, x) − P (G/e, x),
thereby expressing P (G, x) as an integer linear combination of chromatic poly-
nomials of empty graphs,

ii) by repeatedly applying the recursion P (G \ e, x) = P (G, x) + P (G/e, x),
thereby expressing P (G, x) as an integer linear combination of chromatic poly-
nomials of complete graphs.

Method (i) is more suited to graphs with few edges, whereas (ii) can be applied
more efficiently to graphs with many edges (see Exercise 14.7.2).

The calculation of chromatic polynomials can sometimes be facilitated by the
use of a number of formulae relating the chromatic polynomial of a graph to
the chromatic polynomials of certain subgraphs (see Exercises 14.7.6a, 14.7.7, and
14.7.8). However, no polynomial-time algorithm is known for finding the chromatic
polynomial of a graph. (Such an algorithm would clearly provide a polynomial-time
algorithm for computing the chromatic number.)

Although many properties of chromatic polynomials have been found, no one
has yet discovered which polynomials are chromatic. It has been conjectured by
Read (1968) that the sequence of coefficients in any chromatic polynomial must
first rise in absolute value and then fall; in other words, that no coefficient may
be flanked by two coefficients having greater absolute value. But even if true, this
property together with the properties listed in Theorem 14.25 would not be enough
to characterize chromatic polynomials. For example, the polynomial x4−3x3+3x2
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satisfies all of these properties but is not the chromatic polynomial of any graph
(Exercise 14.7.3b).

By definition, the value of the chromatic polynomial P (G, x) at a positive
integer k is the number of k-colourings of G. Surprisingly, evaluations of the poly-
nomial at certain other special values of x also have interesting interpretations.
For example, it was shown by Stanley (1973) that (−1)nP (G,−1) is the number
of acyclic orientations of G (Exercise 14.7.11).

Roots of chromatic polynomials, or chromatic roots, exhibit a rather curious be-
haviour. Using the recursion (14.6), one can show that 0 is the only real chromatic
root less than 1 (Exercise 14.7.9); note that 0 is a chromatic root of every graph
and 1 is a chromatic root of every nonempty loopless graph. Jackson (1993b) ex-
tended these observations by proving that no chromatic polynomial can have a root
in the interval (1, 32/27]. Furthermore, Thomassen (1997c) showed that the only
real intervals that are free of chromatic roots are (−∞, 0), (0, 1), and (1, 32/27].
Thomassen (2000) also established an unexpected link between chromatic roots
and Hamilton paths.

In the context of plane triangulations, the values of P (G, x) at the Beraha
numbers Bk := 2 + 2 cos(2π/k), k ≥ 1, are remarkably small, suggesting that the
polynomial might have roots close to these numbers (see Tutte (1970)).

For a survey of this intriguing topic, we refer the reader to Read and Tutte
(1988).

Exercises

�14.7.1 Prove the recursion formula (14.5).

14.7.2

a) Calculate the chromatic polynomial of the 3-star K1,3 by using the recursion
P (G, x) = P (G\e, x)−P (G/e, x) to express it as an integer linear combination
of chromatic polynomials of empty graphs.

b) Calculate the chromatic polynomial of the 4-cycle C4 by using the recursion
P (G\e, x) = P (G, x)+P (G/e, x) to express it as an integer linear combination
of chromatic polynomials of complete graphs.

14.7.3

a) Show that if G is simple, then the coefficient of xn−1 in P (G, x) is −m.
b) Deduce that no graph has chromatic polynomial x4 − 3x3 + 3x2.

14.7.4 Show that:

a) if G is a tree, then P (G, x) = x(x− 1)n−1,
b) if G is connected and P (G, x) = x(x− 1)n−1, then G is a tree.

14.7.5 Show that if G is a cycle of length n, then P (G, x) = (x−1)n+(−1)n(x−1).
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14.7.6

a) Show that P (G ∨K1, x) = xP (G, x− 1).
b) Using (a) and Exercise 14.7.5, show that if G is a wheel with n spokes, then

P (G, x) = x(x− 2)n + (−1)nx(x− 2).

14.7.7

a) Show that if G and H are disjoint, then P (G ∪H,x) = P (G, x)P (H,x).
b) Deduce that the chromatic polynomial of a graph is equal to the product of

the chromatic polynomials of its components.

14.7.8 If G∩H is complete, show that P (G∪H,x)P (G∩H,x) = P (G, x)P (H,x).

14.7.9 Show that zero is the only real root of P (G, x) smaller than one.

—————

—————

14.7.10 Show that no real root of P (G, x) can exceed n. (L. Lovász)

�14.7.11 Show that the number of acyclic orientations of a graph G is equal to
(−1)nP (G,−1). (R.P. Stanley)

�14.7.12 Let G be a graph. For a subset S of E, denote by c(S) the number of
components of the spanning subgraph of G with edge set S. Show that P (G, x) =∑

S⊆E(−1)|S|xc(S). (H. Whitney)

14.8 Related Reading

Fractional Colourings

A vertex colouring {V1, V2, . . . , Vk} of a graph G = (V,E) can be viewed as ex-
pressing the incidence vector 1 := (1, 1, . . . , 1) of V as the sum of the incidence
vectors of the stable sets V1, V2, . . . , Vk. This suggests the following relaxation of
the notion of vertex colouring.

A fractional colouring of a graph G = (V,E) is an expression of 1 as a non-
negative rational linear combination of incidence vectors of stable sets of G. The
least sum of the coefficients in such an expression is called the fractional chromatic
number of G, denoted χ∗(G). Thus

χ∗ := min
{∑

λS :
∑

λSfS = 1
}

where the sums are taken over all stable sets S of G. The fractional chromatic
number is clearly a lower bound on the chromatic number. However, it is still
NP-hard to compute this parameter.

By applying linear programming duality and using the fact that the stable
sets of a graph G are the cliques of its complement G, it can be shown that
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χ∗(G) = α∗∗(G). Thus χ∗(G) is an upper bound for the Shannon capacity of G
(see (12.2)).

The fractional chromatic number is linked to list colourings in a simple way. A
graph G is (k, l)-list-colourable if, from arbitrary lists L(v) of k colours, sets C(v)
of l colours can be chosen so that C(u)∩C(v) = ∅ whenever uv ∈ E. It was shown
by Alon et al. (1997) that χ∗ = inf {k/l : G is (k, l)-list-colourable}.

Further properties of the fractional chromatic number can be found in Schein-
erman and Ullman (1997) and Schrijver (2003).

Homomorphisms and Circular Colourings

A homomorphism of a graph G into another graph H is a mapping f : V (G) →
V (H) such that f(u)f(v) ∈ E(H) for all uv ∈ E(G). When H is the complete
graph Kk, a homomorphism from G into H is simply a k-colouring of G. Thus
the concept of a homomorphism may be regarded as a generalization of the notion
of vertex colouring studied in this chapter. Many intriguing unsolved problems
arise when one considers homomorphisms of graphs into graphs which are not
necessarily complete (see Hell and Nešetřil (2004)). One particularly interesting
instance is described below.

Let k and d be two positive integers such that k ≥ 2d. A (k, d)-colouring of a
graph G is a function f : V → {1, 2, . . . , k} such that d ≤ |f(u)− f(v)| ≤ k− d for
all uv ∈ E. Thus a (k, 1)-colouring of a graph is simply a proper k-colouring, and
a (k, d)-colouring is a homomorphism from the graph into Cd−1

k , the complement
of the (d− 1)st power of a k-cycle. Vince (1988) (see also Bondy and Hell (1990))
showed that, for any graph G, min{k/d: G has a (k, d)-colouring} exists. This
minimum, denoted by χc(G), is known as the circular chromatic number of G.
(The name of this parameter derives from an alternative definition, due to X.
Zhu, in which the vertices are associated with arcs of a circle, adjacent vertices
corresponding to disjoint arcs.) One can easily show that χ(G) − 1 < χc(G) ≤
χ(G), so χ(G) = �χc(G)	. However, there are graphs whose chromatic numbers
are the same but whose circular chromatic numbers are different. For example,
χc(K3) = 3 whereas χc(C5) = 5/2. One challenging unsolved problem in this
area is to characterize the graphs for which these two parameters are equal. This
question remains unsolved even for planar graphs. The comprehensive survey by
Zhu (2001) contains many other intriguing problems.




