
Integration and Complexity Management within the Mechatronics Product
Development

Michael Abramovici, Fahmi Bellalouna
Dept. of IT in Mechanical Engineering, Ruhr University Bochum, Bochum, Germany

Abstract
Mechatronic products are the result of combining the engineering disciplines mechanics, electrics, electronics
and IT. This requires coordinated trans-sectoral cooperation from the people developing the product as well
as from the organisational unit. However, the systematic development of mechatronic systems has special
demands to a multidisciplinary and holistic development process. Therefore implementing appropriate
methods and tools is decisive for an effective product development. This article deals with the approach of
integrating discipline-specific processes, applications and partial data models according to the SOA principle,
based on the experience of developing PLM methods in the automotive industry.

Keywords:
Mechatronics; Product Lifecycle Management (PLM); Service Oriented Architecture (SOA)

1 INITIAL SITUATION
Complex mechatronic products that originate by combining
and integrating solution principles from the engineering
disciplines mechanics, electrical and IT, have automatically
increased the complexity of development methods and
processes as well as the resulting product data.
Many companies are being faced with more and more
problems in view of this trend. These problems are making it
difficult to cope with the development of mechatronic products
regarding increasing quality, reducing development costs and
time.

1.1 Process-Based Problems
The particularity of mechatronic systems is that their sub-
systems are based on various technical solution principles -
mechanics, electrical engineering and IT - which are
combined together. Product innovations are obtained through
this synergetic interaction [2] and therefore the development
processes are so important to be able to realise such
systems with multidisciplinary specifications.
However, in most companies established processes show
large deficiencies regarding handling multidisciplinary
development processes. The mechatronic product
development in the involved disciplines is still carried out
separately and in a rather isolated fashion, according to
established, specific development methods [3]. The results
are that:

It is not possible to regard the product as an integrated
mechatronic system.
Coordinating and synchronising the different domain-
specific development processes, activities, tasks and
results across all fields is not sufficiently supported.
The complex coherences and interactions between the
disciplines are only considered in a later development
phase.

Comprehensive integration, configuration, change and
release management across all disciplines is little or
barely supported.

1.2 Data-Based Problems
Tools for developing mechatronic systems have over the
years developed to domain-specific and isolated computer-
based tools e.g. CAx, EES (Electrical/Electronic Engineering
Solutions), CASE, PLM. These create large amounts of
product data and product structures, that are only available in
incompatible formats to one another. Today, for example,
CAx data is stored and administrated in MPDM (Mechanical
PDM) systems, EES data in EPDM (Electrical PDM) systems
and CASE data in CVS (Concurrent Versions System)
systems. These all have their own specific data models and
structures that, in general, are incompatible with one another.
This diversity of product data, data models and data formats,
as well as product structures, has lead to huge problems in
developing mechatronic systems:

The interdisciplinary and functional relations between the
various components and systems cannot be shown,
understood, constructed as needed.
The behaviour of the interdisciplinary components,
systems and functions that are dependant upon one
another cannot be displayed and analysed sufficiently.
Interdisciplinary and coordinated changes on product
data, that build on another is hardly supported.
No adequate interdisciplinary integration of product data.
It is hardly possible to interdisciplinarily release product
data as well as functions, systems and components.
Interdisciplinary product data configuration is hardly
possible.

1.3 IT-Based Problems
PLM systems - PDM, configuration management and change
management- are the hub for all IT tools and processes within

113

14th CIRP Conference on Life Cycle Engineering

the development of mechatronic products because they
supply a number of functions and data models for managing
product data and for controlling and integrating development
processes and activities.
Field-specific and isolated PLM island application systems
have evolved in many companies over the years. These do
not allow or support managing or integrating development
processes along all disciplines. The classic PLM landscape,
that is most commonly found in companies, consists of three
different heterogeneous, incompatible and independently
operating PLM platforms for the particular mechanics,
electronics and IT areas. The consequence is that the tool
and system support when developing products in mechatronic
aspects – combining and integrating solution principles for the
engineering disciplines mechanics, hydraulics, electrics,
electronics, software and hardware – are inadequate, hardly
available.

2 INTEGRATION REQUIREMENTS
Mechatronics has the potential of being successful in creating
future products thanks to the close collaboration of
mechanical-, electrical engineering and IT. It also has
particular requirements for the development process:
mechatronic products are characterised by high complexity
and they integrate components from various disciplines
(heterogeneity) [4].
Integration approaches and mechanisms in process, data and
application system levels within the development of
mechatronic systems are very necessary in view of this
situation to be able to control inter- and multidisciplinary
development processes.
The requirements regarding processes, data and IT
architecture are illustrated in the following to be able to
master the complexity and integration management within the
development of mechatronic systems.

2.1 Process Based Requirements
The development of mechatronic products requires a holistic
view of the product as an integrated mechatronic complete
system. This requires multidisciplinary cooperation and
coordination between involved disciplines, to realise an
optimised whole solution. [4]
A multidisciplinary and holistic development approach model
is needed to be able to work in a multidisciplinary fashion
between the various domains and for them to agree on the
conditions concerning time, costs and quality. This must fulfil
the following requirements:

The established development processes and activities –
already existing sub-processes specified by the company
philosophy e.g. mechanic, Electric/Electronic and
software development processes – are not to be excluded
but should be incorporated in the multidisciplinary
development process, with as few alterations as possible.
[5]
It should force integrating all departments at the
beginning of the development project. [5]
The overall system specification, description and
definition of solutions in the earlier development stages is
to be supported. Consequently the dominance of few
departments can be avoided.

This development approach should contribute to
minimising the development risk, by coordinating the
domains at an early stage and thus securing their
complex connections.

2.2 Data Based Requirements
Viewing the product as an integrated complete mechatronic
system not only makes it necessary to synchronise between
involved departments, but also between the specific
disciplines’ partial data models and along the entire
development process. Therefore a multidisciplinary and
abstract integration data model has to be developed to
master the complex coherences in the development of
mechatronic systems.
The data model acts as an integration platform for the
development of mechatronic systems. Therefore the
following criteria need to be fulfilled:

The data model must allow comprehensive, neutral and
abstract mapping of the product functions, their
dependencies and their behaviour regarding the
mechanical, electrical and IT aspects. The details for the
individual disciplines’ system designs are to be derived
from this model. This data model is to act as an
integration model, to merge the disciplines’ own
development results.
The data model has to link all domain specific data
models e.g. mechanical, electrical/electronic and IT data
models with one another, whereby the comprehensive
interdisciplinary coherences are to be mapped on the
meta-model level. Here the systems’ complex and
interdisciplinary interdependencies between one another
can be displayed and visualised more transparently and
with less organisational effort.
The data model must allow internal changes or further
developments within the discipline specific data models,
without adjusting other areas data models.
The data model has to support implementing
comprehensive versioning, configuration, change and
release management, that allow integrating the various
specific development results to a functioning entire
system.

2.3 IT Based Requirements

The integration of discipline-specific IT landscapes plays a
key role, in order for the above mentioned requirements for
the process and data landscape to be satisfied. The
comprehensive development methodology requires a
comprehensive federative data model, but also a
comprehensive IT integration platform. Which must fulfil the
following requirements:

Integrating the specific IT integration platforms
The federative integration platform has to link up the already
existing and established domain-specific IT integration
platforms, which in general are specific PDM systems e.g.
mechanical PDM, electrical PDM, CVS [5]. A comprehensive
IT integration platform is to be developed, that enables
comprehensive controlling, coordination and cooperation of
mechatronic systems’ development processes. This platform
has to enable comprehensive systematic versioning,
configuration, change and release management.

Protecting existing IT investments

114

Lately, many investments have been made in the divers
development departments for building up own IT systems and
these are already very valuable, so that it is out of the
question to entirely replace these IT applications. In addition,
such IT systems contain many years of company knowledge
and experience that are indispensable for the companies.
Therefore the federative IT integration platforms cannot
replace the available domain-specific IT integration platforms,
but rather build on these.

Flexibility
Mechatronic products and the corresponding technologies
are very short-lived, which leads to high change dynamics in
the development environment of such products. Companies
often have to carry out changes in the process landscape or
introduce new technologies and IT applications or shut down
old IT systems at short notice in view of this situation. This
often involves adapting the entire IT environment e.g.
adapting the system interfaces. It is therefore important that
the federative IT integration platform does not interfere with
the change dynamics in the departments, but allows these
with as little effort as possible. The comprehensive IT
integration platform needs to be very flexible to satisfy this
challenge. This in turn leads to increasing the innovative
ability and agility of the company in terms of being able to
react quickly according to market requirements and therefore
increasing the competitiveness.
The domain specific IT integration platforms have to be
integrated according to the principle of loose coupling in the
comprehensive IT integration platform, to reach this flexibility
in a federative IT integration platform. Unnecessary
dependencies and tight couplings between IT components,
that lead to a rigid IT architecture, can be avoided in this
manner.

3 CONCEPT FOR THE INTEGRATION OF DOMAIN-
SPECIFIC MANAGEMENT PLATFORMS

The three main, classical fields – mechanics, electrical
engineering and IT – that have grown historically in
companies, are usually involved in developing mechatronic
systems. This organisational structure is mirrored in the IT
architecture, which has lead to the development of three main
domain-specific integration platforms that link the domains’
specific computer-based tools with one another: CAx tools in
mechanics, EES tools in electrical engineering, CASE tools in
IT, as well as the sub-processes in the individual domains.
Lately product data management (PDM) systems have
established themselves in the mechanical and
electrotechnical development areas and concurrent version
systems (CVS) in IT development. These systems enable
integrating the various computer-based tools, managing,
organising and steering their created data with the aid of
versioning, configurating and release methods and functions
[7].
A concept for integrating the above mentioned integration
platforms in terms of eliminating the deficits mentioned at the
beginning and managing the challenges that arise in
mechatronics is described in the following. This concept
comprises a generic integration architecture model and a
federative data model.
The generic integration architecture model was designed
according to the service orientated architecture (SOA)

principle. This is a layer architecture that encapsulates the
various applications’ functions in a service layer as services,
which can be used within the process integration, thus the
various application systems are loosely coupled. This not
only helps to increase the technical connectivity of
heterogeneous applications and reduces the diversity of
interface technologies, but also permits enhancing and
optimising the existing IT, data and process landscapes.
Mechatronic products are a synergy of components, which
generally come from the areas mechanics (including
hydraulics and pneumatics), electrical engineering and IT. As
the electrotechnical components (hardware components) and
the IT components (software components) are closely
connected and dependant upon one another, it is necessary
to describe their functions together (E/E function description)
and to later integrate them together (E/E integration). This
leads to a two-step function description in the product
development – an whole entire and an E/E function
description – as well as two-step integration – whole and E/E
system integration. Whole system and E/E system
integration platforms need to be developed to be able to
manage this approach (Figure 1).

E/E -System
Integration-

Platform

EPDM cvs

Service

MPDM

Complete system
Integration-

Platform

Service

EES CASE

CAx

E/E environment Software environment

mechanics environment

3.1 Generic Integration Architecture Model
An integration model standardises the integration of existing
domain-specific application systems and establishes a cross

Figure 1: Concept for the integration
domain-specific Integration Platforms.

115

platform integration infrastructure. The aim is to allow a
holistic view of the system and thus to establish the basic
prerequisite for product development including various
disciplines.
The integration model builds on the available specific
application landscapes and comprises five layers the
application, service, workflow, integration platform and
comprehensive process layers (Figure 2).

Application layer
The application layer contains domain-specific application
systems that automatically treat, manage and steer
information and data in the individual fields. Such
applications are to be seen as resources, which provide their
own data and functions in encapsulated form using suitable
interfaces.

Service layer
Standardised services, which are implemented in the
application layer underneath, are offered in the service layer.
This decouples the applications and achieves high flexibility
in the entire IT landscape.
Services can be split into two separate classes, atomic
services and composite services. The first are services that
encapsulate the application functions as adapters and make
them available for the service layer. Such services are
designed bottom-up. The definition of composite services, on
the contrary, comes from the business process requirements.
Such services support carrying out process activities and
sub-processes. Hence composite services are put together
from other composite and atomic services [8].

Workflow layer
Development activities and tasks covering various domains
generally need functions for various applications. This
requires adequately controlling and coordinating the
cooperation between the participating applications, in order to
achieve the continuity when processing business activities
concerning various applications and to avoid the break of
information along the development processes [8].
Workflows that assemble, coordinate and steer activities
covering various applications are defined on the workflow
layer. The individual activities in turn use the composite
services on the lower service layer to carry out the required
process tasks.

Integration platform layer
All necessary functions and data that enable product
development incorporating various domains are provided in
the integration platform layer. The functions in this layer are
defined by the domain-spanning business processes’
requirements and normally make up numerous activities,
which make up workflows on the lower workflow layer.
The integration platform layer counts on a multidisciplinary
federative data model that makes the communication
between the integration platform and the specific applications
on the metadata level, as well as a whole system description,
possible. The metadata model is a model that abstracts all
necessary specific metadata and maps these
homogeneously.

Comprehensive process layer

Multidisciplinary process cycles are defined and mapped on
the process layer. A number of multidisciplinary tasks, that
are to be carried out in a set operation sequence and where
required, supported by applications, are merged to one
process unit. Functionalities and data, which are provided by
the integration platform layer, are used to carry out these
process tasks.

3.2 Meta model for the Generic Integration Architecture
A meta-model was designed using the UML modelling
language to describe the elements of the generic integration
model and its connections. The following classes are
intended for this and their ties are shown in figure 3:

The Integration Platform class describes an application
that supports domain-specific processes coordination and
cooperation in the development of mechatronic products.
The integration platform disposes of numerous functions
to take care of process tasks spanning various domains
and applications. Here information objects are created,
edited, steered, managed or deleted.
The Information Object class describes all metadata
that is needed for linking the discipline-specific partial
data models. It makes continuous data processing along
all processes possible. This class is described in detail by
means of the federative data model (see subsection 3.3).
A spanning-application function can define one or more
activities, which are described in one or more self-
contained performance units that are realised in one or
more domain-specific applications. The Activity class is
used here to represent all required activities to describe
functions spanning applications.

comprehensive
Process

In
te

gr
at

io
n

P
la

tfo
rm

W
or

kf
lo

w

S
er

vi
ce Composit

Atomic

DB

Application 1

DB

Application 2

DB

A
pp

lic
at

io
n

Figure 2: Generic Integration Architecture Model.

Application 3

Meta Data

116

The Workflow class is used to describe all workflows,
which synchronise and steer automatically carried out
activities. The aim is to carry out domain-spanning
process tasks that include various domains.
One or more Composite-Services are used to carry out
activities. This behaviour is described using the
association between the Activity class and the
Composite-Service class. A composite-Service can also
use the services of one or more other Composite-
Services, but it is required to use the services from at
least one Atomic-Service.
Every domain-specific application function is abstracted
and presented on the service layer using an Atomic-
Service. This is displayed through the association
between the Atomic-Service class and the Application
class. The Atomic-Service class abstractly describes
domain-specific application functions as well as an
interface that allows accessing the domain-specific
applications.
The Service class is an abstract class that is a
generalisation of the Atomic- and the Composite-Service
classes. This class serves the purpose of describing the
common behaviour and attributes of the two service-
types.
Services communicate among one another and their
environment (i.e. applications and activities) by sending
and receiving messages that contain data and
information concerning the execution of process tasks.
This form of communication is mapped in the Message
class.
The Application class presents all domain-specific
application systems that offer several functionalities to
create, process and manage data objects. Therefore
domain-specific applications are responsible for the
technical implementation of Atomic-Services by providing
data and functionalities.

Application

Function Information-
Object

1 1

achieve access to

treat
1…* 1…*

Atomic-Service

1

1…*

provide

Activity

use

1

1

Workflow
control

1 1…*

1…*

Function

define
1

1…*

Information-
Object

treat

1

Integration Platform

achieve

1

1…*

access to

1…*

Composite-Service

1…*

Service

use

1…* 1

*

use

Message

Communicate via

1…*

1…*

1…*

1…*

Legend:
1 : exactly one
1…* : one or more
* : zero or more

1…*

Figure 3: Meta Model for the generic integration architecture

3.3 Federative Date Model
The federative data model is introduced in this section. It
allows top-down product structure and description covering
various domains, as well as linking discipline-specific partial
data models on the meta level. The therefore required
classes and their ties are described in the following (Figure
4):

The Item class depicts all kinds of elements from a
mechatronic product that represent an object from the
development process. Objects in this class are (sub-)
systems, (main) functions, (sub-)modules, and
components (mechanical, pneumatic, hydraulic,
electrotechnical, IT).
The Item class is further classified using the
Classification class, to be able to distinguish between
the item objects, i.e. if a function, system, module or
component is concerned.

117

An object from the Item class can have one or more
variants that are depicts in the Variant class. Variants
describe specific object adjustments that differ in
complexity and in the technical development and
production.
An object from the Variant class can be versioned using
the Item_Version class. This makes it possible to
discribe a product’s specification or its instance at a
certain point in time. A clear validity for a new object
version can be determined and displayed using the
association between the Item_Version class and the
Effectivity class.
Objects from the Item_Version class are assigned to one
or more domains (e.g. mechanics, hydraulics,
pneumatics, electrics, electronics, IT) using the Context
class. In this way different domain-specific views can be
generated for certain tasks and users.
Relationships between the objects from the
Item_Version class are described in the association
class, Relationship. These classes help to define
product, system, function and component structures
across all disciplines.

Item Classification1…* 1
has

Item_Version

1

1…*

has

1

*

contain

context
1…* 1…*

has

effectivity
1

1…*
has

Variant
1…*

1
has

Relationship

Legend:
1 : exactly one
1…* : one or more
* : zero or more

Figure 4: Federative Data Model

4 SUMMARY
The described and discussed problems in this work give an
overview of the difficulties and challenges faced by many
companies when developing mechatronic products.
Mechatronics offers many fascinating possibilities and large
success potentials, but at the same time has special
requirements not only concerning the development process
but also the IT-landscape and information handling [9].
The development of mechatronic products within time,
financial and qualitative constraints makes a holistic view of
the product as a mechatronic system indispensable. This
leads to applications and partial data models needing to
cooperate and be coordinated between the domain-specific
processes that are concerned with the product development.
The concept presented in this article offers a generic
architecture, which makes the synergetic cooperation of all
disciplines, including processes, applications and data
possible. A meta-model was developed for the generic

integration architecture that supports flexible and loose
coupling of the domain-specific applications. A federative
data model was also developed that allows continuous
product structures and descriptions and therefore contributes
to linking the domain-specific partial data models on the meta
level.
The advantage of this concept is that it is based on already
existing and established domain-specific processes,
application systems and partial data models. This preserves
long standing and valuable company investments in the
process, IT and data landscapes. In future, special fields can
conserve their internal authority, through the principle of loose
coupling, so that they can continue to further develop their
internal processes, applications and data models
autonomously, without being influenced by other fields. This
leads to companies being able to introduce new products,
technologies and innovations quickly and economically.
This concept is currently being implemented within the scope
of internal work at the Chair of IT in Mechanical Engineering
at the Ruhr-University Bochum, where the PDM-System
Teamcenter Engineering and the web service technology
based on the .net framework is being used.

5 REFERENCES
[1] Ebbesmeyer, P., Gausemeier, J.; Kallmeyer, F., 2001,

Produktinnovation, Hanser Fachbuch München.
[2] Kleiner, S., 2003, Föderatives Informationsmodell zur

Systemintegration für die Entwicklung mechatronischer
Produkte, Dissertation TU Darmstadt, Shaker.

[3] Asklund, U., Dahlqvist, A.P., Crnkovic, I., 2003,
Implementing and Integrating Product Data
Management and Sofware Configuration Management.
Artech House Computing Library, 17-31.

[4] Entwicklungsmethodik für mechatronische Systeme,
VDI 2206, Beuth Berlin.

[5] Stuetzel, B., Russ, M., 2005, Orientierungshilfe im
mechatronischen Entwicklungsprozess – das 3-
Ebenen- Vorgehensmodell, atp, 47 ; 46-50.

[7] El-Khoury, J., Redell, O., Törngern, M., 2005, A Tool
Integration Platform for Multi-Disciplinary Development,
31st Euromicro Conference on Software Engineering
and Advanced Applications.

[8] Schemm, J., Heutschi, R., Vogel, T., 2006,
Serviceorientierte Architekturen: Einordnung im
Business Engineering, University St. Gallen.

[9] Möhringer, S., 2004, Entwicklungsmethodik für
mechatronische systeme, Heinz Nixdorf Institut
Paderborn.

118

