
Chapter 4
Quantum Universality, Computability, &
Complexity

“[. . .] Turing’s theory is not entirely mathematical [. . .]. It makes hidden assumptions about
physics which are not quite true. Turing and other physicists who constructed universal
models for classical computation tried hard not to make any assumptions about the un-
derlying physics [. . .]. But their intuition did not encompass quantum theory, and their
imaginary paper did not exhibit quantum coherence.”
– David Deutsch1

Once while visiting Stephen Hawking in Cambridge, England, Stephen asked
me what I was working on. At the time I was a research scientist at Xerox PARC
developing what later became called the theory of computational phase transitions,
which is a view of computation inspired by statistical physics that I will describe
in Chap. 7. However, since the term “computational phase transition” was generally
unknown at that time, I replied by saying I was working on “computational complex-
ity theory”. I distinctly recall an expression of disdain sweep across Stephen’s face,
and the conversation quickly switching to something else. In retrospect, Stephen’s
pained expression turned out to be prophetic for many subsequent conversations I
have had with other physicists. It appears physicists are not generally enamored with
computational complexity theory!

Why is this? In part, I believe it is a cultural difference. I have found that physi-
cists tend to embrace simplified approximate models that encourage comprehension,
whereas computer scientists tend to prefer detailed exact models about which strong
theorems can be proved. Neither style is right nor wrong—just different. Moreover,
physicists have an uncanny knack for picking terminology that is vivid, and allur-
ing, e.g., “Big Bang”, “dark matter”, “black hole”, “twin-paradox”, “strange attrac-
tor” etc., whereas theoretical computer science is replete with the most über-geeky
nomenclature imaginable as exemplified by the byzantine names of computational
complexity classes. My complaint is not so much about the archaic names theo-
retical computer scientists have chosen, but the ad hoc ways in which the system
of names has been expanded. Had we done the same with organic chemistry key

1Source: in David Deutsch, “Quantum Computation,” Physics World, June (1992) pp. 57–61.
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insights and generalizations might have been missed. Had we picked a more sys-
tematic naming convention that aids comprehension of the concepts underpinning
the complexity classes and how they differ from one another, then perhaps greater
insights, or more useful classes, might have been discovered. The current nomen-
clature does not, in my opinion, assist comprehension of the underlying complexity
class distinctions and their interrelationships.

Despite these differences, both fields have revealed extremely counter-intuitive,
intriguing, and profound results. In this chapter, we highlight some of these amazing
results from theoretical computer science and ask whether or not they still hold true
in the quantum domain.

First, there is the question of complexity: Can a quantum computer perform the
same tasks as a classical computer, but in significantly fewer steps? Second, there is
the question of computability; Can a quantum computer perform computations that a
classical computer cannot? And finally there is the question of universality; Is there
a specialized quantum computer that can simulate any other quantum computer, and
classical computer, efficiently? A difference between the capabilities of a quantum
computer and those of a classical computer on any one of these criteria would be
significant.

4.1 Models of Computation

To answer questions about complexity, universality, and computability, one must
have a model of computation in mind. In the 1930’s three superficially different
models of computation were invented by Alan Turing, Emil Post, Kurt Gödel and
Alonzo Church.

4.1.1 The Inspiration Behind Turing’s Model of Computation:
The Entscheidungsproblem

In 1900, Hilbert gave an address at the International Congress of Mathematics held
in Paris concerning what he believed to be the 23 most challenging mathematical
problems of his day. The last problem on his list asked whether there was a mechan-
ical procedure by which the truth or falsity of any mathematical conjecture could
be decided. In German, the word for “decision” is “entscheidung,” so Hilbert’s 23rd
problem became known as the “Entscheidungsproblem”. Turing’s abstract model
of computation grew out of his attempt to answer the Entscheidungsproblem.

Hilbert’s motivation for asking this question arose from the trend towards ab-
straction in mathematics. Throughout the 19th century, mathematics was largely a
practical matter, concerned with making statements about real-world objects. In the
late 1800s mathematicians began to invent, and then reason about, imaginary ob-
jects to which they ascribed properties that were not necessarily compatible with
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“common sense.” Thus the truth or falsity of statements made about such imaginary
objects could not be determined by appealing to the real world. In an attempt to put
mathematical reasoning on secure logical foundations, Hilbert advocated a “formal-
ist” approach to proofs. To a formalist, symbols cease to have any meaning other
than that implied by their relationships to one another. No inference is permitted un-
less there is an explicit rule that sanctions it, and no information about the meaning
of any symbol enters into a proof from outside itself. Thus the very philosophy of
mathematics that Hilbert advocated seemed very machine-like, and hence Hilbert
proposed the Entscheidungsproblem.

Turing heard about Hilbert’s Entscheidungsproblem during a course of lectures,
given by Max Newman, which he attended at Cambridge University. In his lecture
Newman had described the Entscheidungsproblem as asking whether there was be a
“mechanical” means of deciding the truth or falsity of a mathematical proposition.
Although Newman probably meant “mechanical” figuratively, Turing interpreted it
literally. Turing wondered whether a machine could exist that would be able to de-
cide the truth or falsity of any mathematical proposition. Thus, in order to address
the Entscheidungsproblem, Turing realized that he needed to model the process in
which a human mathematician engages when attempting to prove some mathemati-
cal conjecture.

Mathematical reasoning is an enigmatic activity. We do not really know what
goes on inside a mathematician’s head, but we can examine the result of his thought
processes in the form of the notes he creates whilst developing a proof. Mathe-
matical reasoning consists of combining axioms (statements taken to be true with-
out proof) with rules of logical inference, to infer consequents, which themselves
become additional nuggets of information upon which further inferences may be
drawn. So the reasoning process builds on itself and will result in valid conclusions
provided the starting axioms are correct and the rules of inference are valid.

Turing abstracted the process followed by the mathematician into four principal
ingredients: a set of transformation rules that allowed one mathematical statement
to be transformed into another; a method for recording each step in the proof, an
ability to go back and forth over the proof to combine earlier inferences with later
ones, and a mechanism for deciding which rule to apply at any given moment. This
is the essence of the proof process (at least its visible part). Next, Turing sought to
simplify these steps in such a way that a machine could be made to imitate them.
Mathematical statements are built up out of a mixture of ordinary letters, numbers,
parentheses, operators (e.g., plus, “+” and times “×”) and special mathematical
symbols (e.g., ∀,∃,¬,∧,∨). Turing realized that the symbols themselves were of
no particular significance. All that mattered was that they were used consistently
and that their number was finite. Moreover, once you know you are dealing with
a finite alphabet, you can place each symbol in one-to-one correspondence with a
unique pattern of any two symbols (such as 0 and 1). Hence, rather than deal with
a rich array of esoteric symbols, Turing realized that a machine only needed to be
able to read and write two kinds of symbol, 0 and 1, say, with blank spaces or some
other convention to identify the boundaries between the distinct symbols. Similarly,
the fact that the scratch pad on which the mathematician writes intermediate results
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is two-dimensional is of no particular importance. You could imagine attaching the
beginning of one line of a proof to end of the previous line, making one long con-
tinuous strip of paper. So, for simplicity, Turing assumed that the proof could be
written out on a long strip of paper or a “tape.” Moreover, rather than allowing
freeform handwriting, it would clearly be easier for a machine to deal with a tape
marked off into a sequence of identical cells and only permitting one symbol to be
written inside each cell, or the cell to be left blank.

Finally, the process of the mathematician going back and forth over previous
conclusions in order to draw new ones could be captured by imagining that there
is a “read/write” head going back and forth along the tape. When a mathematician
views an earlier result it is usually in some context. A mathematician might read a set
of symbols, write something, but come back to read those same symbols again later,
and write something else. Thus, the context in which a set of symbols is read can
affect the subsequent actions. Turing captured this idea by defining the “head” of his
Turing machine to be in certain “states,” corresponding to particular contexts. The
combination of the symbol being read under the head and the state of the machine
determined what symbol to write on the tape, which direction to move the head, and
which state to enter next.

This is clearly a crude model of the proof process. Nevertheless it turned out to be
surprisingly powerful. No matter what embellishments people dreamed up, Turing
could always argue that they merely were refinements to some existing part of the
model rather than being fundamentally new features. Consequently the Turing ma-
chine model was indeed the essence of the proof process. By putting the aforemen-
tioned mechanistic analogues of human behavior into a mathematical form, Turing
was led to the idea of a “deterministic Turing machine”.

4.1.2 Deterministic Turing Machines

The most influential model of computation was invented by Alan Turing in
1936 [501]. A Turing machine is an idealized mathematical model of a computer
that can be used to understand the limits of what computers can do [237]. It is
not meant to be a practical design for any actual machine but rather a simplified
abstraction that, nevertheless, captures the essential features of any real computer.
A Turing machine’s usefulness stems from being sufficiently simple to allow mathe-
maticians to prove theorems about its computational capabilities and yet sufficiently
complex to accommodate any actual classical digital computer, no matter how it is
implemented in the physical world.

A deterministic Turing machine is illustrated in Fig. 4.1. Its components are in-
spired by Turing’s abstract view mathematical reasoning. A deterministic Turing
machine consists of an infinitely long tape that is marked off into a sequence of
cells on which may be written a 0 or a 1, and a read/write head that can move back
and forth along the tape scanning the contents of each cell. The head can exist in
one of a finite set of internal “states” and contains a set of instructions (constituting



4.1 Models of Computation 205

Fig. 4.1 A deterministic Turing machine

the “program”) that specifies, given the current internal state, how the state must
change given the bit (i.e., the binary digit 0 or 1) currently being read under the
head, whether that bit should be changed, and in which direction the head should
then be advanced.

The tape is initially set up in some standardized state such as all cells containing
0 except for a few that hold the program and any initial data. Thereafter the tape
serves as the scratch pad on which all intermediate results and the final answer (if
any) are written.

Despite its simplicity, the Turing Machine model has proven to be remarkably
durable. In the 70-odd years since its inception, computer technology has advanced
considerably. Nevertheless, the Turing machine model remains as applicable today
as it was back in 1936. Although we are apt to think of multimillion dollar su-
percomputers as being more powerful than humble desktop machines, the Turing
machine model proves otherwise. Given enough time and memory capacity there
is not a single computation that a supercomputer can perform that a personal com-
puter cannot also perform. In the strict theoretical sense, they are equivalent. Thus
the Turing machine is the foundational upon which much of current computer sci-
ence rests. It has enabled computer scientists to prove many theorems that bound
the capabilities of computing machinery.

More recently, however, a new idea has emerged that adds a slight twist to the
deterministic Turing machine. Deterministic Turing machines, which follow rigid
pre-defined rules, are susceptible to systematic biases that can cause them to take
a very long time to solve certain problems. These are the problems for which the
particular set of deterministic rules happen to make the Turing machine examine
almost all the potential solutions before discover an actual solution. For example,
if an adversary knew the rules by which a give DTM operated they could devise
a problem that was guarantee to tax the machine to its maximum before finding a
true solution. To avoid such pitfalls, a new type of Turing machine was invented
that employs randomness, this is called a probabilistic, or non-deterministic, Turing
machine.

4.1.3 Probabilistic Turing Machines

An alternative model of classical computation is to equip a deterministic Turing
machine with the ability to make a random choice, such as flipping a coin. The
result is a probabilistic Turing machine. Surprisingly, many problems that take a
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long time to solve on a deterministic Turing machine (DTM) can often be solved
very quickly on a probabilistic Turing machine (PTM).

In the probabilistic model of computation there are often tradeoffs between the
time it takes to return an answer to a computation and the probability that the answer
returned is correct. For example, suppose you wanted to plan a round the world trip
that visited 100 cities, but you wanted to minimize the distance you have to travel
between cities and you only wanted to visit each city once. The problem of com-
puting the optimal (shortest path) route for your trip is extremely demanding com-
putationally. However, if you were prepared to accept a route that was guaranteed
to be only a little bit longer than the optimal route, and could in fact be the opti-
mal route, then this problem is very easy to solve computationally. For example, the
Euclidean TSP is known to be an NP-Complete problem [377], which means that,
to the best knowledge of computer scientists at the present time, the computational
cost of finding the optimal tour scales exponentially with the number of cities to be
visited, N , making the problem intractable for sufficiently large N . Nevertheless,
there is a randomized algorithm that can find a tour to within O(1 + 1/c) of the
optimal tour (for any constant c) in a time that scales only as O(N(log(N))O(c))

[20], which is worse than linear but better than exponential scaling. Thus, random-
ization can be a powerful tool for rendering intractable problems tractable provided
we are content with finding a good approximation to the optimal or exact solu-
tion.

An alternative tradeoff, if you require a correct answer, is to allow uncertainty in
the length of time the probabilistic algorithm must run before it returns an answer.
Consequently, a new issue enters the computational theory, namely, the correctness
of an answer and its relationship to the running time of an algorithm.

Whereas a deterministic Turing Machine, in a certain state, reading a certain
symbol, has precisely one successor state available to it, the probabilistic Turing
machine has multiple legitimate successor states available, as shown in Fig. 4.2.
The choice of which state is the one ultimately explored is determined by the
outcome of a random choice (possibly with a bias in favor of some states over
others). In all other respects the PTM is just like a DTM. Despite the superfi-
cial difference between PTMs and DTMs, computer scientists have proved that
anything computable by a probabilistic Turing machine can also be computed
by a deterministic Turing machine, although in such cases the probabilistic ma-
chine is often more efficient [198]. The basic reason for the success of proba-
bilistic approach is that a probabilistic algorithm can be thought of as swapping
between a collection of deterministic algorithms. Whereas it is fairly easy to de-
sign a problem so that it will mislead a particular deterministic algorithm, it is
much harder to do so for a probabilistic algorithm because it keeps on changing
its “identity.” Indeed the latest algorithms for solving hard computational prob-
lems now interleave deterministic, with probabilistic steps. The exact proportions
of each strategy can have a huge impact on the overall efficiency of problem solv-
ing.
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Fig. 4.2 In a probabilistic classical Turing machine there are multiple possible successor states,
only one of which is actually selected and pursued at any one time

4.1.4 The Alternative Gödel, Church, and Post Models

Kurt Gödel invented a very different model of computation than that formulated
by Turing. Gödel identified the tasks that a computer can perform with a class of
recursive functions, i.e., functions that refer to themselves. For example, the function
fib(x) = fib(x − 1) + fib(x − 2) such that fib(1) = fib(2) = 1 defines a recursive
function that generates the Fibonnaci sequence, i.e., as x takes on integer values x =
1,2,3,4,5,6, . . . , then f (x) generates the Fibonnaci numbers 1,1,2,3,5,8, . . . .
The function fib(·) is defined in terms of itself, and is therefore a recursive function.

Yet another model of computation was formulated by Alonzo Church. Church
equated the tasks that a computer can perform with the so-called λ-definable func-
tions (which you will have encountered if you have ever used the LISP program-
ming language). This viewed computation as a nesting of function evaluations. The
simplicity of the λ-calculus made it possible to prove various properties of compu-
tations.

Hence both Gödel’s and Church’s formulations of computation viewed it as an
elaborate mathematical function evaluation in which simpler functions were com-
posed to make more elaborate ones.

Emil Post anticipated many of the results of Gödel, Turing, and Church but chose
not publish them. His “finite combinatory processes—Formulation I” [397] is sim-
ilar in spirit to the idea of a Turing machine. Post did not ever speak overtly of
computing machines, but he did invent (independently of Turing) the idea of a hu-
man worker moving along a two way infinite “workspace” of boxes each of which
could be marked or unmarked, and following a set of directions: a conditional jump,
“Stop”, move left, move right, mark box or unmark box.
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4.1.5 Equivalence of the Models of Computation

Thus, Turing identified the tasks a computer can perform with the class of func-
tions computable by a hypothetical computing device called a Turing Machine. This
viewed computation a rather imperative or “procedural” style. Slightly later Emil
Post also formalized computation in a similar machine model, which he asserted
was “logically equivalent to recursiveness”. Kurt Gödel equated computation with
recursive functions and Alonzo Church with λ-definable functions.

Although, superficially, the models of computation advanced by Turing, Gödel,
Church, and Post look different, it turns out that they are equivalent to one another.
This was something of a surprise as there was no reason to expect their equivalence
a priori.

Moreover, any one of the models alone might be open to the criticism that it
provided an incomplete account of computation. But the fact that three radically
different views of computation all turned out to be equivalent was a clear indication
that the most important aspects of computation had been characterized correctly.

4.2 Universality

In the 1930s computer science was a rather fledgling field. People dabbled with
building computers but very few machines actually existed. Those that did had been
tailor-made for specific applications. However, the concept of a Turing machine
raised new possibilities. Turing realized that one could encode the transformation
rules of any particular Turing machine, T say, as some pattern of 0s and 1s on
the tape that is fed into some special Turing machine, called U . U had the effect
of reading in the pattern specifying the transformation rules for T and thereafter
treated any further input bits exactly as T would have done. Thus U was a universal
mimic of T and hence was called the Universal Turing Machine. Thus, one Turing
machine could mimic the behavior of another.

4.2.1 The Strong Church-Turing Thesis

The ability to prove that all the competing models of classical computation were
equivalent led Church to propose the following principle, which has subsequently
become known as the Church-Turing thesis [450]:

Strong Church-Turing Thesis Any process that is effective or algorithmic in na-
ture defines a mathematical function belonging to a specific well-defined class,
known variously as the recursive, the λ-definable, or the Turing computable func-
tions. Of, in Turing’s words, every function which would naturally be regarded as
computable can be computed by the universal Turing machine.
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Thus a model of computation is deemed universal, with respect to a family of
alternative models of computation, if it can compute any function computable by
those other models either directly or via emulation.

4.2.2 Quantum Challenge to the Strong Church-Turing Thesis

Notwithstanding these successes, in the early 1980s a few maverick scientists began
to question the correctness of the classical models of computation. The determin-
istic Turing machine and probabilistic Turing machine models are certainly fine as
mathematical abstractions but are they consistent with known physics? This ques-
tion was irrelevant in Turing’s era because computers operated at a scale well above
that of quantum systems. However, as miniaturization progresses, it is reasonable,
in fact, necessary, to re-consider the foundations of computer science in the light of
our improved understanding of the microscopic world.

Unfortunately, we now know that although these models were intended to be
mathematical abstractions of computation that were free of physical assumptions,
they do, in fact, harbor implicit assumptions about the physical phenomena available
to a computer. These assumptions appear to be perfectly valid in the world we see
around us, but they cease to be valid on sufficiently small scales.

We now know that the Turing Machine model contains a fatal flaw. In spite of
Turing’s best efforts, some remnants of classical physics, such as the assumption
that a bit must be either a 0 or a 1, crept into the Turing machine models. The ob-
vious advances in technology, such as more memory, more instructions per second,
greater energy efficiency have all been merely quantitative in nature. The underly-
ing foundations of computer science have not changed. Similarly, although certainly
having a huge social impact, apparent revolutions, such as the explosion of the In-
ternet, have merely provided new conduits for information to be exchanged. They
have not altered the fundamental capabilities of computers in any way whatsoever.
However, as computers become smaller, eventually their behavior must be described
using the physics appropriate for small scales, that is, quantum physics.

The apparent discrepancy between Feynman’s observation that classical comput-
ers cannot simulate quantum system efficiently and the Church-Turing thesis means
that the Strong Church-Turing Thesis may be flawed for there is no known way to
simulate quantum physics efficiently on any kind of classical Turing machine. This
realization led David Deutsch in 1985 to propose reformulating the Church-Turing
thesis in physical terms. Thus Deutsch prefers:

Deutsch’s Thesis Every finitely realizable physical system can be perfectly simu-
lated by a universal model computing machine operating by finite means.

This can only be made compatible with Feynman’s observation on the efficiency
of simulating quantum systems by basing the universal model computing machine
on quantum mechanics itself. This insight was the inspiration that allowed David
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Deustch to prove that it was possible to devise a “Universal Quantum Turing Ma-
chine”, i.e., a quantum Turing machine that could simulate any other quantum Tur-
ing machine. The efficiency of Deustch’s Universal Quantum Turing Machine has
since been improved upon by several other scientists.

We don’t yet know how history with rate the relative contributions of various
scientists to the field of quantum computing. Curiously though, if you search for
“quantum computing” at www.wikiquote.com you will discover “David Deutsch,
Relevance: 4.2%; Richard Feynman, Relevance: 2.2% and (my personal favorite)
God, Relevance: 0.9%”. I have to say that I think wikiquote has it about right! I cer-
tainly concur with the relative ratings of Deutsch’s and Feynman’s contributions,
but I will leave it to each author (one living, one dead) to argue with the Almighty
Himself, the merits of their ranking with respect to God.

4.2.3 Quantum Turing Machines

The first quantum mechanical description of a Turing machine was given by Paul
Benioff in 1980 [43]. Benioff was building on earlier work carried out by Charles
Bennett who had shown that a reversible Turing machine was a theoretical possibil-
ity [44].

A reversible Turing machine is a special version of a deterministic Turing ma-
chine that never erases any information. This is important because physicists had
shown that, in principle, all of the energy expended in performing a computation
can be recovered provided that the computer does not throw any information away.
The notion of “throwing information away” means that the output from each step of
the machine must contain within it enough information that the step can be undone
without ambiguity. Thus, if you think of a reversible Turing machine as a dynamical
system, then given knowledge of its state at any one moment would allow you to
predict its state at all future and all past times. No information was ever lost and the
entire computation could be run forwards or backwards.

This fact struck a chord with Benioff, for he realized that any isolated quan-
tum system had a dynamical evolution that was reversible in exactly this sense.
Thus it ought to be possible to devise a quantum system whose evolution over time
mimicked the actions of a classical reversible Turing machine. This is exactly what
Benioff did. Unfortunately, Benioff’s machine is not a true quantum computer. Al-
though between computational steps the machine exists in an intrinsically quantum
state (in fact a “superposition,” of computational basis states, at the end of each step
the “tape” of the machine was always back in one of its classical states: a sequence
of classical bits. Thus, Benioff’s design could do no more than a classical reversible
Turing machine.

The possibility that quantum mechanical effects might offer something genuinely
new was first hinted at by Richard Feynman of Caltech in 1982, when he showed that
no classical Turing machine could simulate certain quantum phenomena without
incurring an unacceptably large slowdown but that a “universal quantum simulator”

http://www.wikiquote.com
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could do so. Unfortunately, Feynman did not provide a design for such a simulator,
so his idea had little immediate impact. Nor did he did not prove, conclusively, that a
universal quantum simulator was possible. However, indeed it is. The question was
answered in the affirmative by Seth Lloyd in 1996 [321].

The key step in making it possible to study the computational power of quan-
tum computers came in 1985, when David Deutsch of Oxford University, described
the first true quantum Turing machine (QTM) [136]. A QTM is a Turing machine
whose read, write, and shift operations are accomplished by quantum mechanical
interactions and whose “tape” can exist in states that are highly nonclassical. In par-
ticular, whereas a conventional classical Turing machine can only encode a 0, 1,
or blank in each cell of the tape, the QTM can exist in a blend, or “superposition”
of 0 and 1 simultaneously. Thus the QTM has the potential for encoding many in-
puts to a problem simultaneously on the same tape, and performing a calculation
on all the inputs in the time it takes to do just one of the calculations classically.
This results in a superposition of all the classical results and, with the appropri-
ate measurement, you can extract information about certain joint properties of all
these classical results. This technique is called “quantum parallelism.” We saw an
example of quantum parallelism when we solved Deutsch’s problem in Chap. 1.

Moreover, the superposition state representing the tape of the QTM can corre-
spond to an entanglement of several classical bit string configurations. Entanglement
means that the quantum state of the entire tape is well-defined but the state of the
individual qubits is not. For example, a 3-qubit tape in the state 1√

2
(|010〉 + |101〉)

represents an entanglement of the two configurations |010〉 and |101〉. It is entangled
in the sense that it you were to measure any one of these qubits, the quantum state
of the other two qubits would become definite instantaneously. Thus, if you read out
the bit values from a part of the tape of the QTM when it is in an entangled state,
your actions will have a side effect on the state of the other (unmeasured) qubits.
In fact it is the existence of such “entangled” qubits that is the fundamental reason
QTMs are different from classical deterministic and probabilistic TMs.

A graphical representation of a QTM is shown in Fig. 4.3. There is a single
physical tape running from left to right in the figure. However, this single tape is
drawn as if it were several tapes in parallel to convey the idea that the single quantum
tape can hold a superposition of many different bit strings simultaneously.

As we saw in Chap. 1, each qubit in a QTM, when considered is perfect isola-
tion from other qubits, can be visualized as a small arrow contained in a sphere.
“Straight up” represents the (classical) binary value 0 and “straight down” repre-
sents the (classical) binary value 1. When the arrow is at any other orientation, the
angle the arrow makes with the horizontal axis is a measure of the ratio of 0-ness
to 1-ness in the qubit. Likewise, the angle through which the arrow is rotated about
the vertical axis is a measure of the “phase”. Thus, drawing qubits as arrows con-
tained in spheres we can depict a typical superposition state of Deutsch’s quantum
Turing machine as shown in Fig. 4.3. The possible successor states of the tape are
indicated by edges between different possible tape configurations.

Quantum Turing machines (QTMs) are best thought of as quantum mechanical
generalizations of probabilistic Turing machines (PTMs). In a PTM, if you initialize
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Fig. 4.3 In the quantum Turing machine, each cell on the tape can hold a qubit. In this figure there
is one physical tape but it is drawn as multiple tapes corresponding to a different bit pattern for
each component of the net superposition state

the tape in some starting configuration and run the machine without inspecting its
state for t steps, then its final state will be uncertain and can only be described using
a probability distribution over all the possible states accessible in t steps.

Likewise, in a QTM if you start the machine off in some initial configuration, and
allow it to evolve for t steps, then its state will be described by a superposition of
all states reachable in t steps. The key difference is that in a classical PTM only one
particular computational trajectory is followed, but in the QTM all computational
trajectories are followed and the resulting superposition is the sum over all possible
states reachable in t steps. This makes the calculation of the net probability of a
particular computational outcome different for a PTM than a QTM.

In the PTM if a particular answer can be reached independently, in more than
one way, the net probability of that answer is given by the sum of each probability
that leads to that answer. However, in the QTM if a given answer can be reached in
more than one way the net probability of obtaining that answer is given by summing
the amplitudes of all trajectories that lead to that answer and then computing their
absolute value squared to obtain the corresponding probabilities.

If the quantum state of the QTM in Fig. 4.3 is the superposition c0|00000〉 +
c1|00001〉 + c2|00010〉 + · · · + c31|11111〉 the coefficients c0, c1, . . . , c31 are the
amplitudes, and probability of finding the tape of the QTM in the bit configuration
|00010〉, say, when you read each of the bits is equal to |c2|2. If an event occurs with
a probability of 0 this means that there is a 0% chance, i.e., utter impossibility, of that
event occurring. Conversely, if an event occurs with a probability of 1 this means
that there is a 100% chance, i.e., absolutely certainty, that the event will occur.

Whereas classical probabilities are real numbers between zero and one, “ampli-
tudes” are complex numbers (i.e. numbers of the form x + iy where x and y are
real numbers). When you add two probabilities you always get a bigger or equal
probability. However, when you add two complex amplitudes together they do not
always result in a number that has a bigger absolute value. Some pairs of amplitudes
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tend to cancel each other out resulting in a net reduction in the probability of seeing
a particular outcome. Other pairs of amplitudes tend to reinforce one another and
thereby enhance the probability of a particular outcome. This is the phenomenon of
quantum interference.

Quantum interference is a very important mechanism in quantum computing.
Typically, when designing a quantum computer to solve a hard computational prob-
lem, you have to devise a method (in the form of a quantum algorithm) to evolve
a superposition of all the valid inputs to the problem into a superposition of all the
valid solutions to that problem. If you can do so, when you read the final state of your
memory register you will be guaranteed to obtain one of the valid solutions. Under-
standing how to achieve your desired evolution invariably entails arranging for the
computational pathways that lead to non-solutions to interfere destructively with
one another and hence cancel out, and arranging for the computational pathways
that lead to solutions to interfere constructively and hence reinforce one another.

Armed with this model of an abstract quantum Turing machine, several re-
searchers have been able to prove theorems about the capabilities of quantum com-
puters [58]. This effort has focused primarily on universality (whether one machine
can simulate all others efficiently), computability (what problems the machines can
do), and complexity (how the memory, time and communication resources scale
with problem size). Let us take a look at each of these concepts and compare the
perspective given to us by classical computing and quantum computing.

4.3 Computability

Computability theory is concerned with which computational tasks, for a particular
model of computation, can and cannot be accomplished within a finite length of
time. If there is no algorithm, with respect to a particular model of computation, that
can guarantee to find an answer to a given problem in a finite amount of time, that
answer is said to be uncomputable with respect to that model of computation. One
of the great breakthroughs in classical computer science was the recognition that
all of the candidate models for computers, Turing machines, recursive functions,
and λ-definable functions were equivalent in terms of what they could and could
not compute. It is natural to wonder whether this equivalence extends to quantum
computation too.

If you ask a young child what a computer can do you might be told, “They let
me learn letters and numbers and play games.” Ask a teenager and you might hear,
“They let me surf the Web and meet online in chat rooms with my friends.” Ask
an adult and you might discover, “They’re great for email, word processing and
keeping track of my finances.” What is remarkable is that the toddler, the teenager,
the parent might all be talking about the same machine! By running the appropriate
software it seems we can make the computer perform almost any task.

The possibility of one machine simulating another gave a theoretical justification
for pursuing the idea of a programmable computer. In 1982, Richard Feynman ob-
served that it did not appear possible for a Turing machine to simulate certain quan-
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tum physical processes without incurring an exponential slowdown [181]. Here is
an example.

Suppose you want to use a classical computer to simulate a quantum computer.
Let’s assume that the quantum computer is to contain n qubits and that each qubit is
initially in a superposition state, c0|0〉+ c1|1〉. Each such superposition is described
by two complex numbers, c0 and c1, so we need a total of 2n complex numbers to
describe the initial state of all n qubits when they are in this product state form.

Now what happens if we want to simulate a joint operation on all n qubits? Well,
you’ll find that the cost of the simulation skyrockets. Once we perform a joint op-
eration on all n qubits, i.e., once we evolve them under the action of some quantum
algorithm, they will most likely become entangled with one another. Whereas the
initial state that we started with could be factored into a product of a state for each
qubit, an entangled state cannot be factored in this manner. In fact, to even write
down an arbitrary entangled state of n qubits requires 2n complex numbers. Thus,
as a classical computer must keep track of all these complex numbers explicitly,
the cost of a classical simulation of a quantum system requires a huge amount of
memory and computer time.

What about a quantum computer? Could a quantum computer simulate any quan-
tum system efficiently? There is a good chance that it could because the quantum
computer would have access to exactly the same physical phenomena as the system
it is simulating. This result poses something of a problem for traditional (classical)
computer science.

4.3.1 Does Quantum Computability Offer Anything New?

Is it possible to make more pointed statements about computability and quantum
computers?

The first work in this area appeared in David Deutsch’s original paper on quan-
tum Turing machines [136]. Deutsch argued that quantum computers could compute
certain outputs, such as true random numbers, that are not computable by any de-
terministic Turing machine. Classical deterministic Turing machines can only com-
pute functions, that is, mathematical procedures that return a single, reproducible,
answer. However, there are certain computational tasks that cannot be performed
by evaluating any function. For example, there is no function that generates a true
random number. Consequently, a Turing machine can only feign the generation of
random numbers.

In the same paper, Deutsch introduced the idea of quantum parallelism. Quan-
tum parallelism refers to the process of evaluating a function once on a blend or
“superposition” of all possible inputs to the function to produce a superposition of
outputs. Thus all the outputs are computed in the time taken to evaluate just one
output classically. Unfortunately, you cannot obtain all of these outputs explicitly
because a measurement of the final superposed state would yield only one output.
Nevertheless, it is possible to obtain certain joint properties of all of the outputs.



4.3 Computability 215

In 1991 Richard Jozsa gave a mathematical characterization of the class of func-
tions (i.e., joint properties) that were computable by quantum parallelism [261]. He
discovered that if f is some function that takes integer arguments in the range 1 to
m and returns a binary value, and if the joint property function J that defines some
collective attribute of all the outputs of f , takes m binary values and returns a single
binary value, then only a fraction (22m − 2m+1)/(22m

) of all possible joint property
functions are computable by quantum parallelism.

Thus quantum parallelism alone is not going to be sufficient to solve all the joint
property questions we might wish to ask. Of course, you could always make a QTM
simulate a classical TM and compute a particular joint property in that way. Al-
though this is feasible, it is not desirable, because the resulting computation would
be no more efficient on the quantum computer than on the classical machine. How-
ever, the ability of a QTM to simulate a TM means that the class of functions com-
putable on QTMs exactly matches the class of functions computable on classical
TMs.

4.3.2 Decidability: Resolution of the Entscheidungsproblem

It was, you will recall, a particular question regarding computability that was the
impetus behind the Turing machine idea. Hilbert’s Entscheidungsproblem had asked
whether there was a mechanical procedure for deciding the truth or falsity of any
mathematical conjecture, and the Turing machine model was invented to prove that
there was no such procedure.

To construct this proof, Turing used a technique called reductio ad absurdum, in
which you begin by assuming the truth of the opposite of what you want to prove
and then derive a logical contradiction. The fact that your one assumption coupled
with purely logical reasoning leads to a contradiction proves that the assumption
must be faulty. In this case the assumption is that there is a procedure for deciding
the truth or falsity of any mathematical proposition and so showing that this leads
to a contradiction allows you to infer that there is, in fact, no such procedure.

The proof goes as follows: if there were such a procedure, and it were truly me-
chanical, it could be executed by some Turing machine with an appropriate table of
instructions. But a “table of instructions” could always be converted into some finite
sequence of 1s and 0s. Consequently, such tables can be placed in an order, which
meant that the things these tables represented (i.e., the Turing machines) could also
be placed in an order.

Similarly, the statement of any mathematical proposition could also be converted
into a finite sequence of 1s and 0s; so they too could be placed in an order. Hence
Turing conceived of building a table whose vertical axis enumerated every possible
Turing machine and whose horizontal axis, every possible input to a Turing ma-
chine.

But how would a machine convey its decision on the veracity of a particular input,
that is, a particular mathematical proposition? You could simply have the machine
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Table 4.1 Turing’s Table. The i-th row is the sequence of outputs of the i-th Turing machine
acting on inputs 0, 1, 2, 3, . . .

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ . . .

1 0 0 0 0 0 0 0 . . .

2 1 2 1 ⊗ 3 0 ⊗ . . .

3 2 0 0 1 5 7 ⊗ . . .

4 3 ⊗ 1 8 1 6 9 . . .

5 7 1 ⊗ ⊗ 5 0 0 . . .

6 ⊗ 2 4 1 7 3 4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

Table 4.2 Turing’s Table after diagonal slash

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 0 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 . . .

2 1 2 1 0 3 0 0 . . .

3 2 0 0 1 5 7 0 . . .

4 3 0 1 8 1 6 9 . . .

5 7 1 0 0 5 0 0 . . .

6 0 2 4 1 7 3 4 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

print out the result and halt. Hence the Entscheidungsproblem could be couched as
the problem of deciding whether the i-th Turing machine acting on the j -th input
would ever halt. Thus Hilbert’s Entscheidungsproblem had been refashioned into
Turing’s Halting Problem.

Turing wanted to prove that there was no procedure by which the truth or falsity
of a mathematical proposition could be decided; thus his proof begins by assuming
the opposite, namely, that there is such a procedure. Under this assumption, Turing
constructed a table whose (i, j)-th entry was the output of the i-th Turing machine
on the j -th input, if and only if the machine halted on that input, or else some special
symbol, such as ⊗, signifying that the corresponding Turing machine did not halt
on that input. Such a table would resemble that shown in Table 4.1.

Next Turing replaced each symbol ⊗ with the bit “0”. The result is shown in
Table 4.2: Now because the rows enumerate all possible Turing machines and the
columns enumerate all possible inputs (or, equivalently, mathematical propositions)
all possible sequences of outputs, that is, all computable sequences of 1s and 0s,
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Table 4.3 Turing’s Table with 1 added to each element on the diagonal slash

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 1 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 . . .

2 1 2 2 0 3 0 0 . . .

3 2 0 0 2 5 7 0 . . .

4 3 0 1 8 2 6 9 . . .

5 7 1 0 0 5 1 0 . . .

6 0 2 4 1 7 3 5 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

must be contained somewhere in this table. However, since any particular output
is merely some sequence of 1s and 0s it is possible to change each one in some
systematic way, for example by flipping one of the bits in the sequence. Consider
incrementing each element on a diagonal slash through the table as shown in Ta-
ble 4.3. The sequence of outputs along the diagonal differs in the i-th position from
the sequence generated by the i-th Turing machine acting on the i-th input. Hence
this sequence cannot appear in any of the rows in the table. However, by construc-
tion, the infinite table is supposed to contain all computable sequences and yet here
is a sequence that we can clearly compute and yet cannot appear in any one row!
Hence Turing established a contradiction and the assumption underpinning the ar-
gument must be wrong. That assumption was “there exists a procedure that can
decide whether a given Turing machine acting on a given input will halt.” As Tur-
ing showed that the Halting problem was equivalent to the Entscheidungsproblem,
the impossibility of determining whether a given Turing machine will halt before
running it shows that the Entscheidungsproblem must be answered in the negative
too. In other words, there is no procedure for deciding the truth or falsity of all
mathematical conjectures.

4.3.3 Proof Versus Truth: Gödel’s Incompleteness Theorem

In 1936 Kurt Gödel proved two important theorems that illustrated the limitations
of formal systems. A formal system L is called “consistent” if you can never prove
both a proposition P and its negation ¬P within the system. Gödel showed that
“Any sufficiently strong formal system of arithmetic is incomplete if it is consistent.”
In other words there are sentences P and ¬P such that neither P nor ¬P is prov-
able using the rules of the formal system L. As P and ¬P express contradictory
sentences, one of them must be true. So there must be true statements of the formal
system L that can never be proved. Hence Gödel showed that truth and theoremhood
(or provability) are distinct concepts.
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In a second theorem, Gödel showed that the simple consistency of L cannot be
proved in L. Thus a formal system might be harboring deep-seated contradictions.

The results of Turing and Gödel are startling. They reveal that our commonsense
intuitions regarding logical and mathematical theorem proving are not reliable. They
are no less startling than the phenomena of entanglement, non-locality, etc in quan-
tum physics.

In the 1980s some scientists began to think about the possible connections be-
tween physics and computability [320]. To do so, we must distinguish between
Nature, which does what it does, and physics, which provides models of Nature
expressed in mathematical form. The fact that physics is a mathematical science
means that it is ultimately a formal system. Asher Peres and Wojciech Zurek have
articulated three reasonable desiderata of a physical theory [390], namely, deter-
minism, verifiability, and universality (i.e., the theory can describe anything). They
conclude that:

“Although quantum theory is universal, it is not closed. Anything can be de-
scribed by it, but something must remain unanalyzed. This may not be a flaw of
quantum theory: It is likely to emerge as a logical necessity in any theory which is
self-referential, as it attempts to describe its own means of verification.”

“In this sense it is analogous to Gödel’s undecidability theorem of formal num-
ber theory: the consistency of the system of axioms cannot be verified because there
are mathematical statements which can neither be proved nor disproved by the use
of the formal rules of the theory, although their truth may be verified by metamath-
ematical reasoning.”

In a later paper Peres points out a “logico-physical paradox” [385]. He shows
that it is possible to set up three quantum observables such that two of the observ-
ables have to obey the Heisenberg Uncertainty Principle. This Principle, says that
certain pairs of observables, such as the position and momentum of a particle, cannot
be measured simultaneously. Measuring one such observable necessarily disturbs
the complementary observable, so you can never measure both observable together.
Nevertheless, Peres arranges things so that he can use the rules of quantum mechan-
ics to predict, with certainty, the value of both these variables individually. Hence
we arrive at an example system that we can say things about but which we can never
determine experimentally (a physical analogue of Gödel’s undecidability theorem).

4.3.4 Proving Versus Providing Proof

Many decades have now passed since Turing first dreamt of his machine and in
fact today there are a number of programs around that actually perform as artifi-
cial mathematicians in exactly the sense Turing anticipated. Current interest in them
stems not only from a wish to build machines that can perform mathematical rea-
soning but also more general kinds of logical inference such as medical diagnosis,
dialog management, and even legal reasoning. Typically, these programs consist of
three distinct components: a reservoir of knowledge about some topic (in the form
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of axioms and rules of inference), an inference engine (which provides instructions
on how to pick which rule to apply next), and a specific conjecture to be proved.

In one of the earliest examples, SHRDLU, a one-armed robot, was given a com-
mand in English which was converted into its logical equivalent and then used to
create a program to orchestrate the motion of the robot arm [542]. So the robot gave
the appearance of understanding a command in plain English simply by following
rules for manipulating symbols. Nowadays such capabilities are commonplace. For
example, many cell phones can understand a limited repertoire of verbal commands
to dial telephone numbers, and some companies use automated query-answering
systems to field routine customer enquiries.

In a more sophisticated example, the British Nationality Act was encoded in
first-order logic and a theorem prover used to uncover logical inconsistencies in the
legislation [447]. Similarly, the form of certain legal arguments can be represented
in logic which can then be used to find precedents by revealing analogies between
the current case and past examples. So although most people would think themselves
far removed from the issue of “theorem proving,” they could be in for a surprise if
the tax authorities decided to play these games with the tax laws!

Today’s artificial mathematicians are far less ingenious than their human counter-
parts. On the other hand, they are infinitely more patient and diligent. These qual-
ities can sometimes allow artificial mathematicians to churn through proofs upon
which no human would have dared embark. Take, for example, the case of map
coloring. Cartographers conjectured that they could color any planar map with just
four different colors so that no two adjacent regions had the same color. However,
this conjecture resisted all attempts to construct a proof for many years. In 1976 the
problem was finally solved with the help of an artificial mathematician. The “proof,”
however, was somewhat unusual in that it ran to some 200 pages [541]. For a human
to even check it, let alone generate it, would be a mammoth undertaking. Table 4.4
shows a summary of some notable milestones in mathematical proof by humans and
machines.

Despite differences in the “naturalness” of the proofs they find, artificial mathe-
maticians are nevertheless similar to real mathematicians in one important respect:
their output is an explicit sequence of reasoning steps (i.e., a proof) that, if fol-
lowed meticulously, would convince a skeptic that the information in the premises
combined with the rules of logical inference would be sufficient to deduce the con-
clusion. Once such a chain were found the theorem would have been proved. The
important point is that the proof chain is a tangible object that can be inspected
at leisure. Surprisingly, this is not necessarily the case with a QTM. In principle,
a QTM could be used to create some proof that relied upon quantum mechanical
interference among all the computations going on in superposition. Upon interro-
gating the QTM for an answer you might be told, “Your conjecture is true,” but
there would be no way to exhibit all the computations that had gone on in order to
arrive at the conclusion. Thus, for a QTM, the ability to prove something and the
ability to provide the proof trace are quite distinct concepts. Worse still, if you tried
to peek inside the QTM as it was working, to glean some information about the state
of the proof at that time, you would invariably disrupt the future course of the proof.
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Table 4.4 Some impressive mathematical proofs created by humans and machines. In some cases
simple proofs of long-standing mathematical conjectures have only recently been discovered. In
other cases, the shortest known proofs are extremely long, and arguably too complex to be grasped
by any single human

Mathematician Proof feat Notable features

Daniel Gorenstein Classification of finite
simple groups

Created by human. 15,000
pages long

Kenneth Appel and
Wolfgang Haken

Proved the Four Color
Theorem

Created by computer.
Reduced all planar maps to
combinations of 1,936
special cases and then
exhaustively checked each
case using ad hoc programs.
Human mathematicians
dislike this proof on the
grounds that these ad hoc
checking programs may
contains bugs and the proof
is too hard to verify by hand

Andrew Wiles Proved Fermat’s Last
Theorem

Created by human. 200
pages long. Only 0.1% of all
mathematicians are
competent to judge its
veracity

Laszlo Babai and colleagues Invented probabilistic proof
checking

Able to verify that a complex
proof is “probably correct”
by replicating any error in
the proof in many places in
the proof, thereby
amplifying the chances of
the error being detected

Thomas Hales Proved Kepler’s conjecture
on the densest way to pack
spheres again using ad hoc
programs to check a large
number of test cases

In reaction to complaints by
mathematicians, this proof is
now being re-done using
automated theorem provers
instead of ad hoc checking
programs since automated
theorem provers, which have
been tested extensively, have
a higher assurance of being
correct

Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena

On August 6, 2002 they
proved primality testing can
done deterministically in
polynomial time

Created by humans. Took
centuries to find this proof
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4.4 Complexity

Complexity theory is concerned with how the inherent cost required to solve a com-
putational problem scales up as larger instances of the problem are considered. It is
possible to define many different resources by which the difficulty of performing a
computation can be assessed. These include the time needed to perform the com-
putation, the number of elementary steps, the amount of memory used, the number
of calls to an oracle or black-box function, and the number of communicative acts.
These lead to the notions of computational, query, and communication complexity.
Specifically,

• Computational complexity measures the number of steps (which is proportional
to time) or the minimum amount of memory required (which is proportional to
space) needed to solve the problem.

• Query complexity measures the number of times a certain sub-routine must be
called, or “queried”, in order to solve the problem.

• Communication complexity measures the volume of data that must be sent back
and forth between parties collaborating to solve the problem.

Thus, whereas computability is concerned with which computational tasks comput-
ers can and cannot do, complexity is concerned with the efficiency with which they
can do them. Efficiency is an important consideration for real-world computing. The
fact that a computer can solve a particular kind of problem, in principle, does not
guarantee that it can solve it in practice. If the running time of the computer is too
long, or the memory requirements too great, then an apparently feasible computa-
tion can still lay beyond the reach of any practicable computer.

Computer scientists have developed a taxonomy for describing the complexity
of various algorithms running on different kinds of computers. The most common
measures of efficiency employ the rate of growth of the time or memory needed
to solve a problem as the size of the problem increases. Of course “size” is an
ambiguous term. Loosely speaking, the “size” of a problem is taken to be the number
of bits needed to state the problem to the computer. For example, if an algorithm is
being used to factor a large integer N , the “size” of the integer being factored would
be roughly log2 N .

The traditional computational complexity distinction between tractable and in-
tractable problems depends on whether the asymptotic scaling of the algorithm
grows polynomially, i.e., O(nk), or exponentially, i.e., O(kn) with the problem
size n.

These notions or tractability and intractability are somewhat imperfect because
asymptotic scaling results are unattainable mathematical ideals in a finite Universe.
Nor do they take into account the practically interesting range of sizes of problem
instances. For example, airline scheduling is an NP-Complete problem. In the worst
case, the time needed to find the optimal schedule scales exponentially in the number
of aircraft to be scheduled. But the number of jetliners with which we are ever
likely to have to deal, in practice, is bounded. So if someone invented a scheduling
algorithm that scaled as O(n100) (where n is the number of jetliners) then, even
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though it is polynomial it might not be practically better than an exponential time
scheduling algorithm for realistic problems.

The reason complexity classifications are based on the rates of growth of running
times and memory requirements, rather than absolute running times and memory re-
quirements, is to factor out the variations in performance experienced by different
makes of computers with different amounts of RAM, swap space, and processor
speeds. Using a growth rate-based classification, the complexity of a particular al-
gorithm becomes an intrinsic measure of the difficulty of the problem the algorithm
addresses.

Although complexity measures are independent of the precise make and con-
figuration of computer, they are related to a particular mathematical model of the
computer such as a deterministic Turing machine or a probabilistic Turing machine.
It is now known, for example, that many problems that are intractable with respect to
a deterministic Turing machine can be solved efficiently, or at least can sometimes
have their solutions approximated efficiently, with high probability on a probabilis-
tic Turing machine. The Euclidean Traveling Salesman Problem (Euclidean-TSP),
e.g., consists of finding a path having minimum Euclidean distance between a set of
points in a plane such that the path visits each point exactly once before returning
to its starting point. Euclidean-TSP is known to be NP-Complete [377], and there-
fore rapidly becomes intractable as the number of points to be visited, N → ∞.
Nevertheless, in [20], Arora exhibits a randomized algorithm that can find a tour
to within a factor of O(1 + 1/c) of the optimal tour (for any constant c) in a time
that scales only as O(N(log(N))O(c)). This is worse than linear scaling but much
better than exponential scaling. Other examples include random walk algorithms for
approximating the permanent of a matrix with non-zero entries [255], finding sat-
isfying assignments to a Boolean expression (k-SAT with k > 2) [439], estimating
the volume of a convex body [162], and estimating graph connectivity [364]. Clas-
sical random walks also underpin many standard methods in computational physics,
such as Monte Carlo simulations. Thus, randomization can be a powerful tool for
rendering intractable problems tractable provided we are content with finding a good
approximation to a global optimum or exact solution.

There are many criteria by which you could assess how efficiently a given algo-
rithm solves a given type of problem. For the better part of the century, computer
scientists focused on worst-case complexity analyses. These have the advantage
that, if you can find an efficient algorithm for solving some problem, in the worst
case, then you can be sure that you have an efficient algorithm for any instance of
such a type of problem.

Worst case analyses can be somewhat misleading however. Recently some com-
puter scientists have developed average case complexity analyses. Moreover, it is
possible to understand the finer grain structure of complexity classes and locate re-
gions of especially hard and especially easy problems within a supposedly “hard”
class [101, 537, 539]. Nevertheless, one of the key questions is whether some algo-
rithm runs in polynomial time or exponential time.
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Fig. 4.4 A comparison of
polynomial versus
exponential growth rates.
Exponential growth will
always exceed polynomial
growth eventually, regardless
of the order of the polynomial

4.4.1 Polynomial Versus Exponential Growth

Computer scientists have developed a rigorous way of quantifying the difficulty of
a given type of problem. The classification is based on the mathematical form of the
function that describes how the computational cost incurred in solving the problem
scales up as larger problems are considered. The most important quantitative dis-
tinction is between polynomially growing costs (which are deemed tractable) and
exponentially growing costs (which are deemed intractable). Exponential growth
will always exceed polynomial growth eventually, regardless of the order of the
polynomial. For example, Fig. 4.4 compares the growth of the exponential function
exp(L) with the growth of the polynomials L2,L3 and L4. As you can see, eventu-
ally, whatever the degree of the polynomial in L, the exponential becomes larger.

A good pair of example problems that illustrate the radical difference between
polynomial and exponential growth are multiplication versus factoring. It is rela-
tively easy to multiply two large numbers together to obtain their product, but it
is extremely difficult to do the opposite; namely, to find the factors of a composite
number:

1459 × 83873 → 122370707 (easy) (4.1)

122370707 → 1459 × 83873 (hard) (4.2)

If, in binary notation, the numbers being multiplied have L bits, then multiplica-
tion can be done in a time proportional to L2, a polynomial in L.

For factoring, the best known classical algorithms are the Multiple Polynomial
Quadratic Sieve [460] for numbers involving roughly 100 to 150 decimal dig-
its, and the Number Field Sieve [309] for numbers involving more than roughly
110 decimal digits. The running time of these algorithms grows subexponentially
(but superpolynomially) in L, the number of bits needed to specify the num-
ber to be factored N . The best factoring algorithms require a time of the order

O(exp(L
1
3 (logL)2/3)) which grows subexponentially (but superpolynomially) in L,

the number of bits needed to specify the number being factored.
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Table 4.5 Progress in factoring large composite integers. One MIP-Year is the computational
effort of a machine running at one million instructions per second for one year

Number Number of decimal digits First factored MIPS years

Typical 20 1964 0.001

Typical 45 1974 0.01

Typical 71 1984 0.1

RSA-100 100 1991

RSA-110 110 1992

RSA-120 120 1993 825

RSA-129 129 1994 5000

RSA-130 130 1996 750

RSA-140 140 1999 2000

RSA-150 150 2004

RSA-155 155 1999 8000

Richard Crandall charted the progress in factoring feats from the 1970s to the
1990s [118]. In Table 4.5 we extend his data to more modern times. In the early
1960s computers and algorithms were only good enough to factor numbers with 20
decimal digits, but by 1999 that number had risen to a 155 decimal digit numbers,
but only after a Herculean effort. Many of the numbers used in these tests were is-
sued as grand challenge factoring problems by RSA Data Securities, Inc., and hence
bear their name. Curiously, RSA-155 was factored prior to RSA-150 (a smaller
number). The most famous of these factoring challenge problems is RSA-129.

As we show later in the book, the presumed difficulty of factoring large inte-
gers is the basis for the security of so-called public key cryptosystems that are in
widespread use today. When one of these systems was invented the authors laid
down a challenge prize for anyone who could factor the following 129 digit number
(called RSA-129) :

RSA-129 = 1143816257578888676692357799761466120102182

. . .9672124236256256184293570693524573389783059

. . .7123563958705058989075147599290026879543541 (4.3)

But in 1994 a team of computer scientists using a network of workstations succeed-
ing in factoring RSA-129 = p × q where the factors p are q are given by:

p = 34905295108476509491478496199038981334177646384933878
. . .43990820577

q = 32769132993266709549961988190834461413177642967992942
. . .539798288533

(4.4)

Extrapolating the observed trend in factoring suggests that it would take millions
of MIP-Years to factor a 200-digit number using conventional computer hardware.
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However, it might be possible to do much better than this using special purposes
factoring engines as we discuss in Chap. 13.

Although, the traditional computational complexity distinction between tractable
and intractable problems depends on whether the asymptotic scaling of the algo-
rithm grows polynomially, i.e., O(nk), or exponentially, i.e., O(kn) with the prob-
lem size n, strictly speaking, this distinction is imperfect since it does not take into
account the finiteness of the Universe. Asymptotic results are unattainable mathe-
matical ideals in a finite Universe. Nor do they take into account the practically in-
teresting range of sizes of problem instances. For example, airline scheduling is an
NP-Complete problem. In the worst case, the time needed to find the optimal sched-
ule scales exponentially in the number of aircraft to be scheduled. But the number
of jetliners with which we are ever likely to have to deal, in practice, is bounded. So
if someone invented a scheduling algorithm that scaled as O(n100) (where n is the
number of jetliners) then, even though it is polynomial it might not be practically
better than an exponential time scheduling algorithm for realistic problems.

4.4.2 Big O, Θ and Ω Notation

Complexity theory involves making precise statements about the scaling behav-
ior of algorithms in the asymptotic limit. This is usually described by comparing
the growth rate of the algorithm to that of a simple mathematical function in the
limit that the size of the computational problem goes to infinity. The most common
asymptotic scaling relationships, together with their standard notations, are summa-
rized in Table 4.6.

For example, consider the three functions f (x) =
√

x
2 , g(x) = 3

x
sinx + logx,

and h(x) = log 3x
4 . Their graphs are shown in Fig. 4.5. For small values of x, g(x)

can be greater than or less than f (x), and likewise greater than or less than h(x).
However, asymptotically, i.e., “eventually”, g(x) is bounded above by f (x) and
therefore g(x) = O(f (x)). Similarly, asymptotically, g(x) is bounded below by

h(x) and so g(x) = Ω(h(x)). However, as the limit limx→∞ | 3
x

sinx+logx

log 3x
4

− 1| = 0,

we also have g(x) equals h(x) asymptotically, i.e., g(x) ∼ h(x) asymptotically.
We can use the aforementioned notation to characterize the asymptotic behaviors

of some well-known algorithms. Table 4.7 shows the asymptotic running times of
some famous algorithms.

4.4.3 Classical Complexity Zoo

Knowing the exact functional forms for the rates of growth of the number of com-
putational steps for various algorithms allows computer scientists to classify com-
putational problems based on difficulty. The most useful distinctions are based on
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Table 4.6 Notation used to characterize the asymptotic scaling behavior of algorithms

Notation Meaning Formal definition

f (x) = O(g(x)) f (x) is bounded above by g(x)

asymptotically
As x → ∞,∃k s.t. |f (x)| ≤ kg(x)

f (x) = o(g(x)) f (x) is dominated by g(x)

asymptotically
As x → ∞,∀k s.t. |f (x)| ≤ kg(x)

f (x) = Ω(g(x)) f (x) is bounded below by g(x)

asymptotically
As x → ∞,∃k s.t. |f (x)| ≥ kg(x)

f (x) = ω(g(x)) f (x) dominates g(x)

asymptotically
As x → ∞,∀k s.t. |f (x)| ≥ kg(x)

f (x) = Θ(g(x)) f (x) is bounded above and below
by g(x) asymptotically

As x → ∞,∃k1, k2 s.t.
k1g(x) ≤ |f (x)| ≥ k2g(x)

f (x) ∼ g(x) f (x) equals g(x) asymptotically As n → ∞,∀k s.t.
|f (x)/g(x) − 1| ≤ k

Fig. 4.5 Graphs of

f (x) =
√

x
2 ,

g(x) = 3
x

sinx + logx, and

h(x) = log 3x
4 . As x becomes

larger the relative dominance
of the functions becomes
clear

classes of problems that either can or cannot be solved in polynomial time, in the
worst case. Problems that can be solved in polynomial time are usually deemed
“tractable” and are lumped together into the class P. Problems that cannot be solved
in polynomial time are usually deemed “intractable” and may be in one of several
classes. Of course it is possible that the order of the polynomial is large making a
supposedly “tractable” problem rather difficult in practice. Fortunately, such large
polynomial growth rates do not arise that often, and the polynomial/exponential dis-
tinction is a pretty good indicator of difficulty. In Table 4.8 we list some classical
complexity classes.

The known inclusion relationships between the more important of these com-
plexity classes are shown in Fig. 4.6.
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Table 4.8 Some classical complexity classes and example problems within those classes

Classical
complexity class

Intuitive meaning Examples

P or PTIME Polynomial-Time: the running time
of the algorithm is, in the worst
case, a polynomial in the size of the
input. All problems in P are
tractable

Multiplication, linear
programming [276], and primality
testing (a relatively new addition to
this class) [5, 6]. Computing the
determinant of a matrix. Deciding if
a graph has a perfect matching

ZPP Zero-Error Probabilistic
Polynomial-Time: Can be solved,
with certainty, by PTMs in average
case polynomial time

Randomized Quicksort

BPP Bounded-Error Probabilistic
Polynomial Time: Decisions
problems solvable in polynomial
time by PTMs with probability
> 2/3. Probability of success can
be made arbitrarily close to 1 by
iterating the algorithm a certain
number of times

Decision version of Min-Cut [198]

NP Nondeterministic Polynomial time:
The class of decision problems with
the property that if you could
magically “guess” a correct
solution you could verify this fact
in polynomial time

Factoring composite integers: a
purported solution can be verified
by multiplying the claimed factors
and comparing the result to the
number being factored. At the
present time it is unknown whether
or not P = NP but it appears
unlikely

NP-Complete Subset of problems in NP that can
be mapped into one another in
polynomial time. If just one of the
problems in this class is shown to
be tractable, then they must all be
tractable. Not all problems in NP
are NP-Complete

Examples include Scheduling,
Satisfiability, Traveling Salesman
Problem, 3-Coloring, Subset-Sum,
Hamiltonian Cycle, Maximum
Clique [115]

NP-Hard The optimization version of
NP-Complete problems, wherein
one not only wants to decide if a
solution exists but to actually one

Determining the solutions to a SAT
problem

# P Counting version of an NP-Hard
problem

Determining the number of
satisfying assignments to a SAT
problem [507]

# P-Complete Sharp P Complete Computing the permanent of an
n × n 0-1 matrix {aij }, i.e.,∑

σ

∏n
i=1 ai,σ (i) where σ ranges

over all permutations of
1,2,3, . . . , n. The number of
perfect matchings in a graph
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Fig. 4.6 Some known
inclusion relationships
between classical complexity
classes. The most important
classes shown are P—class of
problems that can be solved
in polynomial time, and
NP—the class of problems
whose solution can be
verified in polynomial time.
Of these a special subset—the
NP-Complete problems—are
at least as hard as any other
problem in NP

4.4.4 Quantum Complexity Zoo

The introduction of quantum considerations turns out to have profound implications
for the foundations of computer science and information theory. Decades of old
theory must now be taken from the library shelves, dusted off and checked for an
implicit reliance upon classical bits and classical physics. By exploiting entirely new
kinds of physical phenomena, such as superposition, interference, entanglement,
non-determinism and non-clonability, we can suddenly catch a glimpse of a new
theoretical landscape before us. This shift from classical to quantum is a qualitative
change not merely a quantitative change such as the trends we saw in Chap. 1. It is
something entirely new.

Just as there are classical complexity classes, so too are there quantum complex-
ity classes (see Fig. 4.7). As quantum Turing machines are quantum mechanical
generalizations of probabilistic Turing machines, the quantum complexity classes
resemble the probabilistic complexity classes. There is a tradeoff between the cer-
tainty of your answer being correct versus the certainty of the answer being available
within a certain time bound. In particular, the classical classes P, ZPP, and BPP be-
come the quantum classes QP, ZQP, and BQP. These mean, respectively, that a
problem can be solved with certainty in worst-case polynomial time, with certainty
in average-case polynomial time, and with probability greater than 2/3 in worst-
case polynomial time, by a quantum Turing machine.

Statements about the relative power of one type of computer over another can
be couched in the form of subset relationships among complexity classes. Thus QP
is the class of problems that can be solved, with certainty, in polynomial time, on a
quantum computer, and P is the set of problems that can be solved, with certainty, in
polynomial time on a classical computer. As the class QP contains the class P (see
Table 4.9) this means that there are more problems that can be solved efficiently by
a quantum computer than by any classical computer. Similar relationships are now
known for some of the other complexity classes too, but there are still many open
questions remaining.
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Fig. 4.7 Some known inclusion relationships between classical and quantum complexity classes.
Classes correspond to circular and oval shapes and containment is shown by shape inclusion. The
most important classes shown are QP—the class of problems that can be solved with certainty
by a quantum computer in worst-case polynomial time; ZQP—the class of problems that can be
solved with certainty by a quantum computer in average-case polynomial time; and BQP—the
class of problems that can be solved with probability greater than 2/3 by a quantum computer in
worst-case polynomial time

The study of quantum complexity classes began with David Deutsch in his orig-
inal paper on quantum Turing machines (QTMs). The development of the field is
summarized in Table 4.10.

In Deutsch’s original paper he presented the idea of quantum parallelism. Quan-
tum parallelism allows you to compute an exponential number of function evalua-
tions in the time it takes to do just one function evaluation classically. Unfortunately,
the laws of quantum mechanics make it impossible to extract more than one of these
answers explicitly. The problem is that although you can indeed calculate all the
function values for all possible inputs at once, when you read off the final answer
from the tape, you will only obtain one of the many outputs. Worse still, in the pro-
cess, the information about all the other outputs is lost irretrievably. So the net effect
is that you are no better off than had you used a classical Turing machine. So, as
far as function evaluation goes, the quantum computer is no better than a classical
computer.

Deutsch realized that you could calculate certain joint properties of all of the
answers without having to reveal any one answer explicitly. (We explained how
this works in Chap. 1). The example Deutsch gave concerned computing the XOR
(exclusive-or) of two outputs. Suppose there is a function f that can receive one
of two inputs, 0 or 1, and that we are interested in computing the XOR of both
function values, i.e., f (0) ⊕ f (1) (where ⊕ here means “XOR”). The result could,
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Table 4.9 Some quantum complexity classes and their relationships to classical complexity
classes

Quantum class Class of computational problems that
can. . .

Relationship to classical complexity
classes (if known)

QP Quantum Polynomial-Time: . . . be
solved, with certainty, in worst-case
polynomial time by a quantum
computer. All problems in QP are
tractable

P ⊂ QP (The quantum computer can
solve more problems in worst case
polynomial time than the classical
computer)

ZQP Zero-Error Quantum
Polynomial-Time: . . . can be solved,
with zero error probability, in
expected polynomial time by a
quantum computer

ZPP ⊂ ZQP

BQP Bounded-Error Quantum Polynomial
Time: . . . be solved in worst-case
polynomial time by a quantum
computer with probability > 2

3 (thus
the probability of error is bounded;
hence the B in BQP)

BPP ⊆ BQP ⊆ PSPACE (i.e., the
possibility of the equality means it is
not known whether QTMs are more
powerful than PTMs.) BQP is the
class of problems that are easy for a
quantum computer, e.g., factoring
composite integers, computing
discrete logarithms, sampling from a
Fourier transform, estimating
eigenvalues, and solving Pell’s
equation [225, 458]

for example, be a decision as to whether to make some stock investment tomorrow
based on today’s closing prices. Now suppose that, classically, it takes 24 hours to
evaluate each f . Thus if we are stuck with a single classical computer, we would
never be able to compute the XOR operation in time to make the investment the next
day. On the other hand, using quantum parallelism, Deutsch showed that half the
time we would get no answer at all, and half the time we would get the guaranteed
correct value of f (0)⊕f (1). Thus the quantum computer would give useful advice
half the time and never give wrong advice.

Richard Jozsa refined Deutsch’s ideas about quantum parallelism by showing
that many functions—for example, SAT (the propositional satisfiability problem)—
cannot be computed by quantum parallelism at all [261]. Nevertheless, the question
about the utility of quantum parallelism for tackling computational tasks that were
not function calculations remained open.

In 1992 Deutsch and Jozsa exhibited a problem, that was not equivalent to a
function evaluation, for which a quantum Turning machine (QTM) was exponen-
tially faster than a classical deterministic Turing Machine (DTM). The problem was
rather contrived, and consisted of finding a true statement in a list of two statements.
It was possible that both statements were true, in which case either statement would
be acceptable as the answer. This potential multiplicity of solutions meant that the
problem could not be reformulated as a function evaluation. The upshot was that
the QTM could solve the problem in a “polynomial in the logarithm of the prob-
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Table 4.10 Historical development of quantum complexity theory

Year Advance in quantum complexity theory

Benioff (1980) Shows how to use quantum mechanics to implement a Turing Machine
(TM)

Feynman (1982) Shows that TMs cannot simulate quantum mechanics without
exponential slowdown

Deutsch (1985) Proposes first universal QTM and the method of quantum parallelism.
Proves that QTMs are in the same complexity with respect to function
evaluation as TMs. Remarks that some computational tasks (e.g,
random number generation) do not require function evaluation,
Exhibits a contrived decision problem that can be solved faster on a
QTM than on a TM

Jozsa (1991) Describes classes of functions that can and cannot be computed
efficiently by quantum parallelism

Deutsch & Jozsa
(1992)

Exhibit a contrived problem that the QTM solves with certainty in
poly-log time, but that requires linear time on a DTM. Thus, the QTM
is exponentially faster than the DTM. Unfortunately, the problem is
also easy for a PTM so this is not a complete victory over classical
machines

Berthiaume &
Brassard (1992)

Prove P ⊂ QP (strict inclusion). The first definitive complexity
separation between classical and quantum computers

Bernstein &
Vazirani (1993)

Describe a universal QTM that can simulate any other QTM efficiently
(Deutsch’s QTM could simulate other QTMs, but only with an
exponential slowdown)

Yao (1993) Shows that complexity theory for quantum circuits matches that of
QTMs. This legitimizes the study of quantum circuits (which are
simpler to design and analyze than QTMs)

Berthiaume &
Brassard (1994)

Prove that randomness alone is not what gives QTMs the edge over
TMs. Prove that there is a decision problem that is solved in
polynomial time by a QTM, but requires exponential time, in the worst
case, on a DTM and PTM. First time anyone showed a QTM to beat a
PTM. Prove there is a decision problem that is solved in exponential
time on a QTM but which requires double exponential times on a DTM
on all but a few instances

Simon (1994) Lays foundational work for Shor’s algorithm

Shor (1994) Discovers a polynomial-time quantum algorithm for factoring large
composite integers. This is the first significant problem for which a
quantum computer is shown to outperform any type of classical
computer. Factoring is related to breaking codes in widespread use
today

Grover (1996) Discovers a quantum algorithm for finding a single item in an unsorted
database in square root of the time it would take on a classical
computer. if the search takes N steps classically, it takes (π/4)

√
N

quantum-mechanically

lem size” time (poly-log time), but that the DTM required linear time. Thus the
QTM was exponentially faster than the DTM. The result was only a partial success,
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however, as a probabilistic Turing machine (PTM) could solve it as efficiently as
could the QTM. But this did show that a quantum computer at least could beat a
deterministic classical computer.

So now the race was on to find a problem for which the QTM beat a DTM and
a PTM. Ethan Bernstein and Umesh Vazirani analyzed the computational power of
a QTM and found a problem that did beat both a DTM and a PTM [57]. Given any
Boolean function on n-bits Bernstein and Vazirani showed how to sample from the
Fourier spectrum of the function in polynomial time on a QTM. It was not known if
this were possible on a PTM. This was the first result that hinted that QTMs might
be more powerful than PTMs.

The superiority of the QTM was finally clinched by André Berthiaume and Gilles
Brassard who constructed an “oracle” relative to which there was a decision problem
that could be solved with certainty in worst-case polynomial time on the quantum
computer, yet cannot be solved classically in probabilistic expected polynomial time
(if errors are not tolerated). Moreover, they also showed that there is a decision prob-
lem that can be solved in exponential time on the quantum computer, that requires
double exponential time on all but finitely many instances on any classical deter-
ministic computer. This result was proof that a quantum computer could beat both a
deterministic and probabilistic classical computer but it was still not headline news
because the problems for which the quantum computer was better were all rather
contrived.

The situation changed when, in 1994, Peter Shor, building on work by Dan Si-
mon, devised polynomial-time algorithms for factoring composite integers and com-
puting discrete logarithms. The latter two problems are believed to be intractable
for any classical computer, deterministic or probabilistic. But more important, the
factoring problem is intimately connected with the ability to break the RSA cryp-
tosystem that is in widespread use today. Thus if a quantum computer could break
RSA, then a great deal of sensitive information would suddenly become vulnerable,
at least in principle. Whether it is vulnerable in practice depends, of course, on the
feasibility of designs for actual quantum computers.

4.5 What Are Possible “Killer-Aps” for Quantum Computers?

The discovery of Shor’s and Grover’s algorithms led many people to expect other
quantum algorithms would quickly be found. However, this was not the case. It turns
out to be quite hard to find new quantum algorithms. So where exactly should we
be looking? Currently, there are two broad classes of quantum algorithms. There are
those, such as Shor’s algorithm, that exhibit exponential improvements over what is
possible classically and those, such as Grover’s algorithm, that exhibit polynomial
speedups over what is possible classically. Shor’s algorithm is arguably the more in-
teresting case since exponential speedups are game-changing. It is natural to wonder
whether the other computational problems that lie in the same complexity class as
the problems tackled by Shor’s algorithm might be amenable to a similar speedup.
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The most likely candidate opportunities are therefore computational problems
(like factoring and discrete log) that are believed to be in the NP-Intermediate class.
These are problems that are certainly in NP but neither in P nor NP-Complete.
Some examples of presumed NP-Intermediate problems collected by Miklos San-
tha are as follows [429]:

GRAPH-ISOMORPHISM Given two graphs G1 = (V ,E1), and G2 = (V ,E2),
is there a mapping between vertices, f : V → V , such that {u,v} ∈ E1 ⇔
{f (u), f (v)} ∈ E2?

HIDDEN-SUBGROUP Let G be a finite group, and let γ : G → X (X a finite
set), such that γ is constant and distinct on cosets of a subgroup H of G. Find a
generating set for H .

PIGEONHOLE SUBSET-SUM Given a set of positive integers s1, s2, . . . , sn ∈ N

such that
∑n

i=1 si < 2n, are there two subsets of indices, I1 �= I2 ⊆ {1,2, . . . , n} that
sum to the same value, i.e.,

∑
i∈I1

si = ∑
j∈I2

sj ?

With sufficient research, it is conceivable any of the NP-Intermediate problems
might be re-classified at some point. Nevertheless, today, the NP-Intermediate
problems are the best prospects for being amenable to an exponential speedup using
some as-yet-to-be-discovered quantum algorithm. So far, exponentially faster quan-
tum algorithms have been found for solving the Hidden Subgroup Problem over
abelian groups [72, 283, 362, 458] and some non-abelian groups [30, 192]. However,
extending these results to other non-abelian groups has proven to be challenging and
only limited progress has been made [324]. Researchers are especially interested in
extending these results to two families of non-abelian groups—permutation groups
and dihedral groups—because doing so will lead immediately to efficient solutions
for GRAPH ISOMORPHISM [262] and the SHORTEST LATTICE VECTOR
problems [416], which would make quantum computing considerably more inter-
esting.

While progress is therefore being made the exact boundary where quantum algo-
rithms can be found that outperform classical counterparts by an exponential factor
is still ill-defined.

4.6 Summary

The most important concept of this chapter is the idea that, as computers are phys-
ical objects, their capabilities are constrained exclusively by the laws of physics
and not pure mathematics. Yet the current (classical) theory of computation had
several independent roots, all based on mathematical idealizations of the computa-
tional process. The fact that these mathematically idealized models turned out to be
equivalent to one another led most classical computer scientists to believe that the
key elements of computation had been captured correctly, and that it was largely a
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matter of taste as to which model of computation to use when assessing the limits
of computation.

However, it turns out that the classical models of computation all harbor implicit
assumptions about the physical phenomena available to the computer. As Feynman
and Deutsch pointed out, models of computation that allow for the exploitation of
quantum physical effects are qualitatively different from, and potentially more pow-
erful than, those that do not. Which quantum effects really matter the most is still
not entirely understood, but the phenomenon of entanglement appears to play a sig-
nificant role.

In this chapter we surveyed issues of complexity, computability, and universality
in the quantum and classical domains. Although there is no function a quantum
computer can compute that a classical computer cannot also compute, given enough
time and memory, there are computational tasks, such as generating true random
numbers and teleporting information, that quantum computers can do but which
classical ones cannot.

A question of some practical importance is to determine the class of computa-
tional problems that quantum computers can solve faster than classical ones. To
this end, quantum computer scientists have determined the scaling of the “cost”
(in terms of space, time, or communications) of certain quantum algorithms (such
as factoring integers, and unstructured search, in comparison to that of their best
classical counterparts. Some quantum algorithms, such as Shor’s algorithm for fac-
toring composite integers and computing discrete logarithms, Hallgren’s algorithm
for solving Pell’s equation, and eigenvalue estimation, show exponential speedups,
whereas others, such as Grover’s algorithm for unstructured search, show only poly-
nomial speedups [55]. The greatest challenge to quantum computer scientists is to
systematically expand the repertoire of problems exhibiting exponential speedups.
Good candidates for problems that might admit such speedups are the other prob-
lems in the same complexity class as FACTORING and DISCRETE-LOG, i.e.,
NP-Intermediate. However, to date, no one has succeeded in showing exponen-
tial speedups on these other NP-Intermediate problems in their most general
form. Other problems admit only a polynomial speedup (e.g., SEARCHING-A-
SORTED-LIST) or no speedup whatsoever (e.g., PARITY). So far, no quantum
algorithm has been found that can speedup the solution of an NP-Complete or NP-
Hard problem by an exponential factor, and most quantum computer scientists are
highly skeptical any such algorithm exists.

4.7 Exercises

4.1 Stirling’s approximation for the factorial function is n! = Θ(
√

2πn(n
e
)n) (for

integer values of n). Does this mean that n! grows at a faster, slower, or equal rate
to

√
2πn(n

e
)n? Plot a graph of the ratio of the left and right hand sides of Stirling’s

formula for n = 1,2, . . . ,20. How does the percentage error in the approximation
change with increasing values of n?
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4.2 Prove, using non-numeric methods,

(a) The base of natural logarithms, e, and π satisfy eπ > πe

(b) The golden ratio φ = (1 + √
5)/2 is less than π2/6. [Hint: π2

6 = ∑∞
n=1

1
n2 ]

4.3 Classify the following particular claims involving O(·) notation as correct or
incorrect, and if incorrect, give a corrected version:

(a) O(n3 + n5) = O(n3) + O(n5)

(b) O(n2 × logn) = O(n2) × O(logn)

(c) 0.0001n3 + 1000n2.99 + 17 = O(n3)

(d) 4n4 + 3n3.2 + 13n2.1 = O(n7.2)

(e) logn10 = O(logn)

(f) (logn)10 = O(n2.1)

(g) 3 log10 n2 + 10 log2 log2 n10 = O(loge n)

4.4 Classify the following generic claims regarding O(·) notation as correct or in-
correct, and if incorrect, give a corrected version:

(a) If f (n) = O(g(n)) then kf (n) = O(g(n)) for any k

(b) If f (n) = O(g(n)) and h(n) = O(g′(n)) then f (n) + h(n) = O(g(n) + g′(n))

(c) If f (n) = O(g(n)) and h(n) = O(g′(n)) then f (n)h(n) = O(g(n)g′(n))

(d) If f (n) = O(g(n)) and g(n) = O(h(n)) then f (n) = O(h(n))

(e) If f (n) is a polynomial of degree d , then f (n) = O(nd)

(f) If lognk = O(logn) for k > 0
(g) If (logn)k = O(nj ) for k > 0 and j > 0

4.5 What can be said about the expression 3n4 + 5n2.5 + 14 logn1.2 in terms of

(a) O(·) notation
(b) Θ(·) notation
(c) Ω(·) notation

4.6 Complexity analyses often involve summing series over finitely many terms.
Evaluate the following sums in closed form:

(a)
∑n

i=1 i2

(b)
∑n

i=1 i3

(c)
∑n

i=1 ik

(d)
∑n

i=1 2i

(e)
∑n

i=1 ki

(f)
∑n

i=1 i3ei where e ≈ 2.71828

4.7 The following question is aimed at stimulating discussion. It is often said that
physicists are searching for a unified theory of physics—an ultimate theory that will
explain everything that can be explained. Do you think a unified theory of physics
will be expressed mathematically? Will it be a computable axiomatic system pow-
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erful enough to describe the arithmetic of the natural numbers? If so, in light of
Gödel’s Incompleteness theorem, do you think a unified theory of physics is pos-
sible? Or will certain truths of the theory be forever beyond proof? That is, if the
unified theory of physics is consistent must it be incomplete? And can the con-
sistency of the axioms of the unified theory of physics be proven within the the-
ory?
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