
Chapter 14
Quantum Error Correction

“I wish to God these calculations had been executed by steam!”
– Charles Babbage1

The descriptions of quantum algorithms and quantum information processing
protocols given in the foregoing chapters all assume a correct design, precise imple-
mentation, and perfect operation of our quantum computing device. But real quan-
tum hardware, and real quantum computations run on it, are unlikely to be manu-
factured exactly to their specifications, and unlikely to perform flawlessly. Compo-
nents of real quantum computers can only be manufactured and assembled to within
some finite tolerances. Pulses can only be shaped and timed to within certain lim-
its. Voltages, currents, fluxes, and inter-qubit couplings cannot be turned on and off
instantaneously, etc. Moreover, the fundamental paradox of quantum computation
is that at one instant we desire our qubits to be isolated perfectly from their envi-
ronment, but at another, we want them to interact strongly with some “external”
measuring apparatus. Turning such environmental interactions wholly on and off at
will is challenging. Thus, real quantum computers will be beset with errors causing
their computations to go awry.

A similar situation holds in classical computing, of course. But in that case
we can identify and correct bit-errors using various classical error-correction tech-
niques. We are helped profoundly in this regard by the ability classical physics gives
us to look at the instantaneous state of a classical computation, assess its correct-
ness, and then make the necessary adjustments. In the quantum realm we do not
have this luxury, because we cannot read the state of a quantum memory register in
the midst of a quantum computation without necessarily, and irreversibly, perturbing
the future course of the computation. Thus it is not at all obvious, a priori, whether
the techniques developed for correcting errors in classical computers are useful for
correcting errors in quantum computers. In fact, shortly after Shor’s algorithm was
first published several highly respected physicists expressed skepticism about the
feasibly of an error-correction method for quantum computers [227, 300, 301, 502].

1Source: Computer History Museum, http://www.computerhistory.org/babbage/history/.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_14, © Springer-Verlag London Limited 2011

567

http://www.computerhistory.org/babbage/history/
http://dx.doi.org/10.1007/978-1-84628-887-6_14

568 14 Quantum Error Correction

14.1 How Errors Arise in Quantum Computing

In the idealized models of quantum computers that we studied in Chaps. 1–3, the
qubits representing the computational state of the computer were assumed to be
perfectly isolated from their environment. In other words, from the moment the
quantum computer is prepared in some initial state to start the computation off, to
the moment it is measured to extract an answer, the logical qubits of ideal quantum
computers are supposed to evolve unitarily in accordance with Schrödinger’s equa-
tion. Unfortunately, such an idealization is unattainable. Any real quantum system
couples to its environment over time. In the process, information leaks out of the
logical state of the qubits in the quantum memory register. If you did not model the
effect of the environment explicitly, it would appear as if the logical qubits were no
longer evolving unitarily in accordance with Schrödinger’s equation. Indeed, this
coupling between a quantum system and its environment, and the resulting loss of
coherence, is what prevents quantum effects from being evident at the macroscopic
level [202].

Even with our best efforts keeping a quantum memory register isolated from its
environment is difficult. For one thing, a quantum memory register has to be built
out of something so there must be some supporting infrastructure, or “scaffolding,”
in the vicinity of the computationally active qubits. There is, therefore, a chance that
the particles within the scaffolding will couple to the computational elements. In ad-
dition, there can be a coupling between the memory register and an ambient thermal
heat bath. Also, incoming stray particles such as cosmic rays or gas molecules can
interact with the memory register. In fact, there are many physical processes that
can perturb the state of a quantum memory register. Broadly speaking, these physi-
cal processes fall under the headings of dissipation and decoherence.

14.1.1 Dissipation-Induced Bit Flip Errors

Dissipation is a process by which a qubit loses energy to its environment. Thus, for
example, if an excited state is used to represent a |1〉 and a lower energy state is
used to represent a |0〉, a qubit might transition, spontaneously, from the |1〉 state to
the |0〉 state emitting a photon in the process. In computational terms, a bit in the
quantum memory register would have “flipped” spontaneously.

Dissipation causes a bit to flip and this operation is described by the action of the
Pauli X matrix. We assume that the qubit starts off in an arbitrary superposed state
given by

|ψ〉 = a|0〉 + b|1〉 (14.1)

such that |a|2 + |b|2 = 1.
The affect of σx on the state of a qubit is:

σx(a|0〉 + b|1〉) =
(

0 1
1 0

)
·
(

a

b

)
=

(
b

a

)
= b|0〉 + a|1〉 (14.2)

14.1 How Errors Arise in Quantum Computing 569

This time the action of the operator has caused the bits to flip. That is, σx causes the
transformation a|0〉+ b|1〉 → b|0〉+ a|1〉. So let us call such an operation a “bit flip
error.”

14.1.2 Decoherence-Induced Phase Shift Errors

Decoherence, on the other hand, is more insidious. Rather than an overt bit flip, stray
interactions between the qubits and the environment cause the quantum memory
register and the environment to become entangled with one another. As a result,
the initially pure state of our ideal quantum memory register becomes progressively
more mixed over time. This mixing alters the relative phases of the computational
basis eigenstates of the memory register. As a result, the interference effects, needed
in any true quantum computation, become distorted and the quantum computation
no longer proceeds as it should.

An overly simplified, but intuitive, model for the impact of such decoherence
on a quantum memory register is as follows. Suppose that initially, i.e., at a time
t = 0, a single qubit in a quantum memory register starts out in the pure state |ψ〉 =
a|0〉 + b|1〉. As a density matrix such a state may also be written as:

ρ(0) = |ψ〉〈ψ | =
(

a

b

)
· (a∗ b∗) =

(|a|2 ab∗
a∗b |b|2

)
(14.3)

where the asterisk denotes taking the complex conjugate. After merely “storing”
such a qubit in a realistic, i.e., weakly noisy, environment for a time t , its density
matrix will become:

ρ(t) =
(

|a|2 e−t/τ ab∗

e−t/τ a∗b |b|2
)

(14.4)

where τ , called the “decoherence time,” sets the characteristic time-scale of the
decoherence process, i.e., the time it takes for the off-diagonal elements of ρ to
decay appreciably. In the long time limit, τ → ∞, the density matrix becomes a
mixture of the two possible measurement outcomes for this qubit, namely:

ρ(∞) =
(|a|2 0

0 |b|2
)

(14.5)

It is as if the environment has “measured” the qubit.
Similarly, applying σz to the qubit results in the following transformation:

σz(a|0〉 + b|1〉) =
(

1 0
0 −1

)
·
(

a

b

)
=

(
a

−b

)
= a|0〉 − b|1〉 (14.6)

That is, σz causes the “correct” state to evolve according to the rule a|0〉 + b|1〉 →
a|0〉 − b|1〉, which has changed the phase of the qubit. Consequently, we call such
an operation a “phase shift error.”

570 14 Quantum Error Correction

The action of the identity matrix on a state is to leave the state unchanged. So
that must represent the “no error” possibility.

That only leaves us to consider what happens when we apply σy to the state of
the qubit:

σy(a|0〉 + b|1〉) =
(

0 −i

i 0

)
·
(

a

b

)
=

(−ib

ia

)
= −ib|0〉 + ia|1〉 (14.7)

This operation corresponds to both a phase shift and a bit flip. That is, σy causes the
transformation a|0〉 + b|1〉 → −ib|0〉 + ia|1〉. Thus, any error in a single qubit can
be described by the action of a linear combination of the operators σx,σy, σz, and 1
(the identity operator).

14.1.3 Natural Decoherence Times of Physical Systems

Usually, decoherence occurs on a faster timescale than dissipation. The time it takes
a memory register to decohere depends, principally, upon what kind of quantum
systems it is made from, the size of the register, the temperature of the thermal
environment, and the rate of collisions with ambient gas molecules.

A crude estimate of decoherence times in various settings can be obtained from
the Heisenberg Uncertainty Principle, in energy and time,

�t ≈ �

�E
= �

kBT
(14.8)

where kB is Boltzmann’s constant (approximately 1.38 × 10−23 Joules K−1) and
T is the absolute temperature of the environment. In this estimate we have taken
the uncertainty in the energy to be of the order of the energy of a typical particle
at the ambient temperature. At room temperature, this gives a typical decoherence
time of about 10−14 seconds. At lower temperatures, systems take longer to deco-
here. For example, at the temperature of liquid helium, it takes about 100 times as
long for a system to decohere as it does at room temperature. Consequently, the
simplest way to try to combat decoherence is to operate the computer at a lower
temperature. Table 14.1 summarizes some characteristic decoherence times, under
various physical scenarios. These estimates were derived using a more sophisticated
analysis [257].

Once we have chilled our quantum computer and sealed it in as good a vacuum
as we can, what else can we do to slow down decoherence? Well, we could try build-
ing the quantum memory register out of different types of quantum systems. Certain
quantum systems are much more resilient to decoherence than others. David Di-
Vincenzo has collected statistics on the intrinsic decoherence properties of various
materials [146]. The data are shown in Table 14.2. They reveal that trapped ions, for
example, can potentially sustain a large number of computational steps before the
succumb to decoherence. Step counts reported in Table 14.2 suggest that it might

14.1 How Errors Arise in Quantum Computing 571

Table 14.1 Approximate decoherence times (in seconds) for various sized systems in different
thermal and gaseous environments [257]

System size (cm) Cosmic background
radiation

Room temp.
(300 K)

Sunlight Vacuum Air

10−3 10−7 10−14 10−16 10−18 10−35

10−5 1015 10−3 10−8 10−10 10−23

10−6 1024 105 10−2 10−6 10−19

Table 14.2 The maximum number of computational steps that can be accomplished without losing
coherence for various quantum systems

Quantum system Time per gate operation Coherence time Max. no. of coherent steps

Mössbauer nucleus 10−19 10−10 109

GaAs electrons 10−13 10−10 103

Gold electrons 10−14 10−8 106

Trapped indium ions 10−14 10−1 1013

Optical microcavity 10−14 10−5 109

Electron spin 10−7 10−3 104

Electron quantum dot 10−6 10−3 103

Nuclear spin 10−3 104 107

be possible to build a quantum memory register that can support a significant num-
ber of computational steps. Nevertheless, decoherence looks like it will preclude
quantum computation beyond a certain number of steps. This poses a severe prob-
lem for anyone wanting to build a universal quantum computer. Ideally, we would
like a quantum computer that could, in principle, maintain coherent quantum com-
putations indefinitely. Thus, if can not prevent decoherence, we need to think about
ways of undoing its affects. Thus there needs to be a way of doing quantum error
correction. But to understand how to correct errors, we need to understand how er-
rors will perturb the quantum states we wish to protect. So what we need next is a
mathematical model of the effects of errors on quantum computations.

14.1.4 What Makes Quantum Error Correction so Hard?

With classical computers, it is possible to measure the state of the physical system
used to encode a bit without disrupting the bit. Thus, if a voltage were used to
represent a classical bit, you could, in principle, detect a slight drop from its nominal
value and then give the voltage a nudge to restore it to its correct level.

Secondly, once a full bit-error has occurred, the nature of the error is far more
limited in the classical domain than the quantum domain. In particular, the principal
types of errors that can afflict a classical bit are either a bit flip, i.e., 0 → 1 or

572 14 Quantum Error Correction

1 → 0, or, especially in the case of communication channels, the loss of a bit or the
insertion of spurious bit. These types of errors are discrete and flagrant. There is no
subtle “drift” in a bit value—it is either correct or flipped, and present or absent.
Contrast this with the kinds of errors that can afflict qubits.

Qubits, however, do not have to be in states that are wholly |0〉 or wholly |1〉,
but can be in superpositions of |0〉 and |1〉, e.g., α|0〉 + β|1〉, where the values of
the amplitudes span a continuum of values. Thus, qubit states can “drift” off their
intended values rather than suffer only gross errors (as do classical bits). This makes
the errors that can afflict a qubit potentially far more subtle and insidious that the
errors that can afflict a classical bit. Thus, in addition to a qubit bit flip α|0〉 +
β|1〉 → α|1〉 + β|0〉, it is also possible to have qubit phase shifts α|0〉 + β|1〉 →
α|0〉 + βeiφ |1〉 in which, even though the amplitudes remain the same magnitudes,
errors can creep into the relative phase between the |0〉 and |1〉 components causing
error states such as α|0〉 + βeiφ |1〉. Such corruption of the relative phase between
the |0〉 and |1〉 components can mess up subsequent interference effects that all
quantum algorithms rely upon. This particular, failure mode does not exist in the
case of a classical computer.

Thirdly, in classical computing, we can make copies of bits we want to pro-
tect, replicate computations done on them, and use majority votes of the results to
help eliminate errors. This ability to have redundant information is a great asset in
error-correcting classical information. In quantum computing, however, the quan-
tum no-cloning theorem precludes the possibility of copying an unknown quantum
state. This makes it much more difficult to see how one could exploit redundancy in
quantum computations for error correction purposes.

The aforementioned differences between classical and quantum information
from the perspective of its intrinsic ability to be error-corrected are summarized
in Table 14.3.

Table 14.3 Intrinsic differences between classical information and quantum information that
make quantum error correction more difficult than classical error correction

Feature Classical Quantum

Information Discrete encoding (0 or 1) Continuous encoding (α|0〉 + β|1〉)
Bit Errors 0 � 1 α|0〉 + β|1〉 → α|1〉 + β|0〉
Phase Errors Phase errors cannot occur for

classical bits
α|0〉 + β|1〉 → α|0〉 + βeiφ |1〉

Compound Errors Compound bit and phase errors
cannot occur for classical bits

α|0〉 + β|1〉 → α|1〉 + βeiφ |0〉

Redundancy Can be used Cannot be used once the quantum
computation is underway because the
no-cloning theorem precludes copying
an unknown quantum state

Monitoring Can read memory register during
computation to ascertain nature
of error

Cannot read memory register during
computation to ascertain nature of
error

14.2 Quantum Error Reduction by Symmetrization 573

Fortunately, we now know that there is a solution to our dilemma. The answer lies
in quantum error correction. The trick, as John Preskill of Caltech likes to say, is “to
use entanglement to fight entanglement”. That is, by creating a specially designed
entanglement between a quantum state we want to protect and that of other qubits,
we can recognize when our protected state has gone bad and fix it, without damaging
the delicate quantum correlations within our protected state. In this chapter we will
review some approaches to quantum error correction and explain how entanglement
is both the problem, and solution.

14.2 Quantum Error Reduction by Symmetrization

Classical computers can be made more reliable through the use of redundancy. In-
stead of a single computer being used to perform a given computation, several com-
puters are used to perform the same computation simultaneously. If the computers
are all running the same deterministic algorithm, they should all produce identical
results at each stage of the computation. However, if an error occurs in one of the
computers, its computational state will begin to diverge from that of the others. If
you periodically poll all the computers and reset their computational states to the
majority opinion, you will typically be able to correct errors that arose in a few of
the computers since the last poll was taken. This type of majority voting scheme is
currently used in the Space Shuttle to improve the reliability of the on-board deci-
sion making.

For majority voting to be effective, however, a number of assumptions must hold.
First, the individual chances of any one computer obtaining the “correct” result must
be greater than 50%. If this were not true then the majority opinion is more likely
to be wrong than it is to be right. Secondly, the replicated computations must be
independent of one another so that the errors incurred by the different computers
are uncorrelated. This can be difficult to achieve in practice if all the computers
use the same type of hardware and run the same program. Finally, replicating the
computation an odd number of times (i.e., 2N − 1) guarantees a majority opinion
always exists. The more replicated computations you use, the better your chances of
fixing potential errors. In fact, if there are 2N − 1 computers (for N = 1,2,3, . . .)
and the individual probability of each computer obtaining the correct answer is p >

0.5 then the probability that the majority opinion is correct is given by:

Pr(Majority Correct) =
2N−1∑
i=N

(
2N − 1

i

)
pi(1 − p)2N−1−i (14.9)

Although unsophisticated, this scheme is actually used today on the Space Shuttle
and Boeing 777.

Figure 14.1 shows how the probability of the majority vote being correct in-
creases as the probability of success of the individual computations increases for
various numbers of replicated computations.

574 14 Quantum Error Correction

Fig. 14.1 Probability that the
majority vote is correct based
on the probability of a single
independent computation
being correct. The dashed
line is the case of a single
computation without
replication; the lightest curve
is for the same computation
repeated on three computers;
and the darkest curve is for
the same computation
repeated on 13 computers.
When the individual success
probability exceeds 0.5 it
pays to repeat computations
and adopt the majority
decision

Unfortunately, in quantum computation we cannot use such a majority voting
scheme. This is because at the intermediate stages of typical quantum computations
the quantum memory registers will be in superpositions of possible bit string config-
urations weighted non-uniformly by different probability amplitudes. If we were to
readout the memory register during the course of the quantum computation we could
project the state of the register into an eigenstate of the memory register thereby de-
stroying the delicate superposition and in fact de-railing the quantum computation.
So if we attempted to use naive majority voting within quantum computation, we
would unfortunately destroy the computation.

14.2.1 The Symmetrization Trick

There is, however, a more cunning way to use something akin to majority voting
within quantum computation. This is called the method of error reduction via sym-
metrization [35]. The idea is that although we have no idea whatsoever what the
instantaneous state of some quantum computation might be, we do know that if
we had R replicas of the same quantum computation, that the joint state of all R

quantum computations would be the tensor product of the individual quantum com-
putations, i.e.,

|Ψ (t)〉ideal = |ψ(t)〉 ⊗ |ψ(t)〉 ⊗ · · · ⊗ |ψ(t)〉 (14.10)

This is because, so long as no observations are made, the quantum evolution of
an isolated quantum system is governed by Schrödinger’s equation, which is a de-

14.2 Quantum Error Reduction by Symmetrization 575

terministic differential equation. Hence, if no errors afflicted any of the quantum
computations then the joint state ought to have a tensor product structure.

In reality, however, each quantum computation might experience some error at
random and uncorrelated from the errors afflicting the sister quantum computations.
If this happens, the actual joint state of the R quantum computations would be some-
thing like:

|Ψ (t)〉actual = |ψ1(t)〉 ⊗ |ψ2(t)〉 ⊗ · · · ⊗ |ψR(t)〉 (14.11)

Quantum error correction by symmetrization works by intermittently projecting
the joint state of the R quantum computers into the symmetric subspace S Y M. The
correct part of the quantum computation is always guaranteed to lie within S Y M,
so by projecting the joint state into S Y M we only knock out parts of the joint
state that must be buggy, and thereby boost the proportion of the correct state within
S Y M. Unfortunately, there are other symmetric states that can lie within S Y M too
which are not part of the true state. Nevertheless, provided we project into S Y M
often enough and provided we use enough replicas, R, of our computation these
other types of errors can be suppressed to any desired level.

Quantum Error Reduction via Symmetrization

1. Initialize R identical independent quantum computers to be in the same starting
state running the same quantum algorithm. If there are no errors then, at any
instant, the joint state of these R quantum computers would be a state of the
form |ψ〉|ψ〉 · · · |ψ〉, which is invariant under any permutation of the computers.
However, due to independent small errors, the joint state will actually be of the
form |ψ1〉|ψ2〉 · · · |ψR〉 where the individual component states (corresponding to
the R independent quantum computations) will be slightly different from one
another.

2. To suppress the accumulate errors, initialize O(log2 R!) ≈ O(R log2 R) ancillae
in state |0〉.

3. Place the ancillae in an equally weighted superposition of the integers (i.e., bit
strings) in the range 0 to R! − 1, i.e., perform the transformation:

U |0〉 → 1√
R!

R!−1∑
i=0

|i〉 (14.12)

4. Apply the i-th permutation to the states of the R individual quantum computers
conditioned on the value |i〉 stored in the ancillae. That is, apply the conditional
transformation:

|i〉|ψ1〉|ψ2〉 · · · |ψR〉 → |i〉|ψσi
(1)〉|ψσi

(2)〉 · · · |ψσi
(R)〉 (14.13)

thereby creating the entangled state:
∑

i

|i〉|ψσi(1)〉|ψσi(2)〉 · · · |ψσi(R)〉 (14.14)

576 14 Quantum Error Correction

5. Apply the inverse computation U −1 to that applied in step 3 above. As the for-
ward U operation mapped |0〉 into equally weighted superposition of the R! pos-
sible integers (representing the possible indices of the permutations of R objects),
then the inverse operation does exactly the reverse. Thus the state we obtain can
be written as: ∑

i

|i〉|Ei〉 (14.15)

in which the |E0〉 component (i.e., the state of the rest of the register when the
ancillae is in state |0〉 represents the desired (i.e., symmetrized) state, and the
other components are error states.

6. Measure the ancillae qubits in the computational basis. If they are all found to be
in state |0〉 then |Ψ 〉 has been successfully projected into the symmetric subspace
S Y M.

14.2.2 Quantum Circuit for Symmetrization

Projection into the symmetric subspace can be accomplished using a quantum cir-
cuit like that shown in Fig. 14.2, which is specialized to the case of three replicated
computations. The key insight is realize that you can build up permutations of quan-
tum states recursively. Specifically, consider a set of k+1 elements e1, e2, . . . , ek+1.
How can we construct all permutations of this set? Well suppose we already have
a permutation, eσ(1), eσ(2), . . . , eσ(k) of the first k elements, e1, e2, . . . , ek of the

Fig. 14.2 Quantum circuit for error correction via symmetrization. In this example, we sym-
metrize the state of three replicas of a 1-qubit quantum computation. Provided that, when mea-
sured, the ancillae are all found in state |0〉, the overlap between the joint correct state and the
joint symmetrized state, 〈Ψcorrect|US Y M|Ψbuggy〉, will be higher than the overlap between the joint
correct state and the joint unsymmetrized state, 〈Ψcorrect|Ψbuggy〉

14.2 Quantum Error Reduction by Symmetrization 577

set. We can then join ek+1 to the end of this permutation, creating the permuta-
tion eσ(1), eσ(2), . . . , eσ(k), ek+1. The remaining permutations can be constructed by
systematically swapping ek+1 with each of the eσ(i) in turn. This suggests the struc-
ture of a quantum circuit sufficient to generate all possible permutations of k + 1
quantum states. These represent k + 1 independent realizations of some quantum
computation.

In other words, once we have a symmetrized version of the state |ψ1〉|ψ2〉 · · · |ψk〉,
we can easily symmetrize the state |ψ1〉|ψ2〉 · · · |ψk〉|ψk+1〉 by adjoining state |ψk+1
and applying a sequence of controlled SWAP operations. As you mat recall from
Chap. 2, controlled-SWAP is synonymous with a FREDKIN gate.

Uk =
⎡
⎣ 1⊙

j=k−1

12j−1 ⊗ 1√
k − j + 1

×

⎛
⎜⎜⎝

√−j + k + 1 0 0 0
0 1

√
k − j 0

0 −√
k − j 1 0

0 0 0
√−j + k + 1

⎞
⎟⎟⎠ ⊗ 12k−(j+1)

⎤
⎥⎥⎦

· 1√
k + 1

(
1 −√

k√
k 1

)
⊗ 12k−1 (14.16)

14.2.3 Example: Quantum Error Reduction via Symmetrization

Suppose we have three replicas of the same quantum computation, such that the
correct state should be:

|Ψcorrect〉 = |ψ〉|ψ〉|ψ〉 (14.17)

where

|ψ〉 = 1

2
|0〉 −

√
3

2
i|1〉 (14.18)

Imagine that the independent computations have each drifted slightly off the cor-
rect states |ψ〉 so that what we actually have is:

|Ψbuggy〉 = |ψ1〉|ψ2〉|ψ3〉 (14.19)

where

|ψ1〉 =
∥∥∥∥1

2
|0〉 −

√
3.5

2
i|1〉

∥∥∥∥
|ψ2〉 =

∥∥∥∥ 1

2.5
|0〉 −

√
3

2
i|1〉

∥∥∥∥ (14.20)

|ψ3〉 =
∥∥∥∥ 1

1.5
|0〉 −

√
2.5

2
i|1〉

∥∥∥∥

578 14 Quantum Error Correction

where the symbol ‖ ‖ indicates the re-normalized version of the state. We expressed
the perturbed states as shown to make it easier to see that they are only slight adrift
of their ideal values.

Thus the overall correct state is:

|Ψcorrect〉 = |ψ〉|ψ〉|ψ〉

≈
(

0.125|000〉 − 0.216506i|001〉 − 0.216506i|010〉 − 0.375|011〉−
0.216506i|100〉 − 0.375|101〉 − 0.375|110〉 + 0.649519i|111〉

)

(14.21)
whereas the actual (buggy) state we have is:

|Ψbuggy〉 = |ψ1〉|ψ2〉|ψ3〉
≈

(
0.127427|000〉 − 0.15111i|001〉 − 0.275888i|010〉 − 0.327163|011〉
0.238395i|100〉 − 0.282701|101〉 − 0.51614|110〉 + 0.612066i|111〉

)

(14.22)
Hence, the overlap between the correct state and the buggy state is:

〈Ψcorrect|Ψbuggy〉 ≈ 0.979791 (14.23)

Now let us see what happens when we attempt to re-symmetrize the buggy state. By
how much does the error reduce? To construct the error symmetrization operator we
need the following gates:

U1 =
⎛
⎝

1√
2

− 1√
2

1√
2

1√
2

⎞
⎠

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

0 −
√

2
3 0

1√
3

1√
6

1√
6

− 1√
3

1√
3

− 1√
6

1√
6

1√
3

0
√

2
3 0 1√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14.24)

Then, the full error symmetrization operator is constructed from:

US Y M3 = (U−1
2 ⊗ U−1

1 ⊗ 18) · FREDKIN1,5,6;6 · FREDKIN2,4,6;6
· FREDKIN3,4,5;6 · (U2 ⊗ U1 ⊗ 18) (14.25)

where the subscript 3 on S Y M indicates the operator is specialized to symmetriz-
ing a triple repetition of the quantum computation, and FREDKINi,j,k;� means a
Fredkin gate inserted in � qubits with control on qubit i, and the SWAP it performs
between qubits j and k.

So now let us re-symmetrize the buggy state. That is we compute:

US Y M3 |Ψbuggy〉 = 0.129651|000〉 − 0.232026 i|001〉 − 0.246828 i|010〉

14.3 Principles of Quantum Error Correcting Codes (QECCs) 579

− 0.42901|011〉 − 0.198151 i|100〉 − 0.342299|101〉
− 0.374345|110〉 + 0.622747 i|111〉 (14.26)

Hence, the overlap between the correct state and the buggy state after re-symmetriz-
ation is:

〈Ψcorrect|US Y M3 |Ψbuggy〉 ≈ 0.996889 (14.27)

which is higher than it was before re-symmetrization. Hence, error correction by
symmetrization has succeeded in reducing the error, even without knowing what the
error was!

This idea of coupling two systems, so that measuring the state of one system
projects the state of the other into a specific subspace, can be used to perform error
correction. This technique is most appropriate for correcting several qubits that are
slightly wrong rather than correcting a single qubit that is terribly wrong [388].

Quantum error reduction by symmetrization is most suited to correcting small
independent errors (such as random phase drifts rather than bit flips) and is more
successful the more frequently it is repeated. However, certain error processes, such
as spontaneous emission, can result in sudden large errors, such as bit flips. These
kinds of errors require a different error-correction strategy based on the idea of error-
correcting codes.

14.3 Principles of Quantum Error Correcting Codes (QECCs)

Classical error correcting codes are used routinely to immunize classical computa-
tions and communications from errors such as accidental bit flips. The key idea is
to use classical codewords, i.e., carefully chosen bit strings, to encode each logical
bit we want to protect, in such a manner that a subsequent error, or perhaps multiple
errors, in a codeword can be detected and corrected. Quantum error correcting codes
(QECCs) extend this basic idea to the quantum domain but require several modifi-
cations to allow the codes to handle quantum, rather than classical, information.

14.3.1 Classical Error Correcting Codes

The simplest classical error correcting code maps the logical bits 0 and 1 into a
pair of carefully chosen bitstrings, i.e., codewords, chosen so as to be maximally
distinguishable from one another. Once so encoded, if a bit-flip occurs within a
codeword, causing it to become corrupted, the error can be readily identified and
then corrected by replacing the corrupted codeword with the “closest” legal code-
word to it. Typically, the distance metric used to assess “closeness” is the Hamming
distance between bit strings. This is defined so that, if x and y are two bit strings,
their Hamming distance is the number of places in which x and y differ.

580 14 Quantum Error Correction

Of course, far more sophisticated classical error-correcting codes can be devised
by elaborating on this basic idea, e.g., by finding ways to encode tuples of logical
bits (which one can think of as classical “symbols”) as longer tuples of physical bits
(the codewords) such that multiple bit-flips, bit drops, or bit insertions, within the
codewords are detectable and correctable to the closest legal symbols. NASA did
much of the pioneering work in error-correcting codes, motivated by the needs of
spacecraft to communicate reliably with Earth over exceedingly large distances and
extremely noisy channels. But the field has now blossomed into a rich assortment
of techniques that are used routinely in terrestrial telecommunications and data stor-
age. Not surprisingly, the field of error-correcting codes has deep roots in Shannon
information theory discussed in Chap. 11.

14.3.2 Issues Unique to Quantum Error Correcting Codes

Unfortunately, error correcting codes cannot be used in quite the same way in the
quantum context as they are used in classical context. The problem is that, even if
we have mapped the qubits into quantum codewords, we still cannot read a poten-
tially corrupted quantum codeword directly at any intermediate step of a quantum
computation in an attempt to detect an error. To do so, would cause the superposi-
tion to collapse in some unpredictable way, thereby erasing whatever remnants of
correct information lay buried in the corrupted encoded state. In fact, such measure-
ments would be likely to make the error worse rather than better. In the early years
of quantum computing, this apparent prohibition on reading the corrupted encoded
state to extract an error-syndrome led some researchers to speculate that quantum
error-correcting codes could not exist [227, 300, 301, 502]. This cast severe doubt
on the feasibility of quantum computers, because it seemed as though they would
require absolute perfection in fabrication, initialization, operation, and readout—
which are not likely, in practice, to be achievable. Thus, the apparent impossibility
of quantum error-correcting codes seemed like a major obstacle to the development
of quantum computing, because other quantum error correction schemes, such as
error-correction via symmetrization, were insufficient to correct all the types of er-
rors that were likely to arise in real quantum computing hardware.

The situation changed in 1995, however, when Peter Shor published the first ac-
count of a viable quantum error correcting code [456]. Shor’s idea was to encode
each logical qubit whose state we wanted to protect within a specially crafted entan-
gled state of several qubits. The encoding scheme was such that any error afflicting
one of these entangled qubits thereafter could be identified by making measurements
on a subset of the qubits to obtain what was called an “error syndrome”. Once the
error syndrome was known, the error that afflicted the logical state we were trying to
protect could be reversed by applying an appropriate sequence of unitary gates (i.e.,
error recovery operations) that were different depending on whichever error syn-
drome had been obtained. All subsequent quantum codes have followed this basic
pattern.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 581

In the following sections we describe the theory of quantum error correcting
codes. We will start by specifying the error model as we have to know what kinds
of errors can afflict our logical qubits in order to devise codes to detect and correct
such errors. We then outline the properties any quantum error correcting code needs
to possess to enable it to protect quantum information that is, by its very nature,
unreadable without corruption. Finally, we will look at error diagnosis and recovery.

14.3.3 Modeling Errors in Terms of Error Operators

We can think of an “error” as change in the state of our logical qubit that is caused
because it is not as well isolated from its environment as it is supposed to be. In
this case, instead of the quantum mechanical evolution being the desired unitary
evolution on the qubit alone, we obtain instead an undesired unitary evolution on
the joint state of the qubit and its environment. If we then considered the state of the
qubit alone, it would no longer be pure but rather now mixed. Thus, we model the
error by imagining that our qubit has accidentally become part of a larger quantum
system.

If we adopt this perspective, we can develop a mathematical model of how dif-
ferent types of errors will affect the state of our qubit. Let us imagine that the qubit
starts off in state |ψ〉 = α|0〉 + β|1〉 and the environment starts off in state |E〉. As
the qubit and its environment are assumed to start off independently of one another
their initial joint state is a product state of the form:

|Ψ 〉 = |ψ〉 ⊗ |E〉 = (α|0〉 + β|1〉) ⊗ |E〉 (14.28)

Under a general unitary evolution, U , the |0〉|E〉 and |1〉|E〉 components would,
ignoring normalization, evolve according to:

U(|0〉 ⊗ |E〉) = |0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉
U(|1〉 ⊗ |E〉) = |0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉

(14.29)

where |E00〉, |E01〉, |E10〉, and |E11〉 do not have to be orthogonal to one another.
Thus, a qubit in state |ψ〉 = α|0〉 + β|1〉 evolves as:

U |ψ〉|E〉 = U((α|0〉 + β|1〉)|E〉)
= α(|0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉) + β(|0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉) (14.30)

We can re-write the right hand side of (14.30) in terms of distinct states for the qubit.
The resulting form indicates that the state of the environment is correlated with the

582 14 Quantum Error Correction

state of the qubit. In fact, the two are entangled.

U |ψ〉|E〉 = α(|0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉) + β(|0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉)

= (α|0〉 + β|1〉) ⊗ |E00〉 + |E11〉
2

(no error)

+ (α|0〉 − β|1〉) ⊗ |E00〉 − |E11〉
2

(phase flip)

+ (α|1〉 + β|0〉) ⊗ |E01〉 + |E10〉
2

(bit flip)

+ (α|1〉 − β|0〉) ⊗ |E01〉 − |E10〉
2

(joint phase flip & bit flip)

(14.31)

Loosely speaking,2 this allows us to interpret the undesired unitary evolution of the
joint state of the qubit and its environment as if one of four possible events have
afflicted the qubit: no-error occurred (in which case α|0〉 + β|1〉 → α|0〉 + β|1〉),
a phase-flip error occurred (in which case α|0〉 + β|1〉 → α|0〉 − β|1〉), a bit-flip
error occurred (in which case α|0〉 + β|1〉 → α|1〉 + β|0〉), or simultaneous phase
flip and bit flip errors occurred (in which case α|0〉 + β|1〉 → α|1〉 − β|0〉 up to an
unimportant overall phase).

The alert reader will recognize these four error modes as being describable by
the action of one of the Pauli matrices, 1, X, Y , and Z, on the error-free qubit state
|ψ〉 = α|0〉 + β|1〉. Recognizing that a Pauli Y operation is Y = X · Z up to an
overall phase factor, we can write:

α|0〉 + β|1〉 1−→ α|0〉 + β|1〉 (no error) (14.32)

α|0〉 + β|1〉 X−→ α|0〉 − β|1〉 (phase flip error) (14.33)

α|0〉 + β|1〉 Z−→ α|1〉 + β|0〉 (bit flip error) (14.34)

α|0〉 + β|1〉 X·Z−→ α|1〉 − β|0〉 (simultaneous phase flip & bit flip error) (14.35)

where X · Z = −iY . Thus, essentially, the error afflicting the qubit can be thought
of as an “unwanted” evolution of the qubit under the action of one of the four Pauli
matrices. These correspond to no-error (1), a bit-flip error (X), a phase-flip error
(Z), and a joint bit-flip and phase-flip error (Y = iX · Z). In retrospect, this is not
surprising perhaps, because the Pauli matrices form a basis for all 2 × 2 matrices.

That is, any matrix
(

a b

c d

)
can be factored as:

(
a b

c d

)
= a + d

2
1 + b + c

2
X + i(b − c)

2
Y + a − d

2
Z (14.36)

2We say “loosely speaking” because we can only really adopt this interpretation when the states of
the environment are orthogonal to one another.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 583

We can extend the aforementioned error model to multiple qubits by assuming
the various error types afflict each qubit independently. Thus, the operators describ-
ing all possible independent errors that might afflict n-qubits are precisely those of
the Pauli group Pn—the group consisting of all direct products of the Pauli opera-
tors 1, X, X ·Z, and Z having overall phase ±1 or ±i. Thus, if we were interested in
encoding, say, one qubit into an entangled state of five qubits, there would (ignoring
overall phase) be 45 = 1024 distinct error operators formed from the direct product
of a single qubit error operator, 1, X, Z, X · Z, for each qubit in all possible ways.
However, if we only wanted to guarantee the ability to correct up t errors amongst
any of these five qubits, then we need only consider a sub-group of these Pauli op-
erators that contained at most t Pauli terms (treating X · Z as one “Pauli” term as
X · Z = −iY).

The error operators that make up the Pauli group possess certain properties that
will be of use to us later:

• The eigenvalues of Eα ∈ Pn are ±1 or ±i.
• Squaring an error operator is the identity up to a real phase factor of ±1, i.e.,

∀Eα ∈ Pn : E 2
α = ±1

• The group is closed under the dot product of its elements, i.e., ∀Eα, Eβ ∈ Pn :
Eα · Eβ ∈ Pn

• Pairs of error operators either commute or anti-commute, i.e., ∀Eα, Eβ ∈ Pn :
[Eα, Eβ] = 0 (commute) or {Eα, Eβ} = 0 (anti-commute)

Later we will specialize our interest to sub-groups of these operators, e.g., the sub-
group of error operators that contain at most one Pauli error per operator.

14.3.4 Protecting Quantum Information via Encoding

Next we turn to the question of how to encode the logical state we want to protect
within a larger Hilbert space so that any errors that subsequently afflict our encoded
state can be guaranteed to be detectable and correctable.

The trick, as John Preskill says, is “to use entanglement to fight entanglement”.
The key idea is to entangle, in a special way, a logical qubit we want to protect with
n ancillae qubits such that a subsequent measurement, in the computational basis,
of just the n ancillae qubits will project the (now specially entangled) (n + 1)-qubit
state into a different orthogonal subspace depending on which type of error (“bit-
flip”, “phase-flip” “joint bit-flip and phase-flip”, or “no-error”) has afflicted which
of the n + 1 qubits. The set of quantum states that span this encoding space are
called the “quantum codewords”, {|ψi〉}. The rationale for doing this is that, if the
right set of measurements on n of the (n + 1) qubits can project the (n + 1)-qubit
state into a different orthogonal subspace depending on what error occurred, we can
use the outcome of these measurements to serve as a so-called “error-syndrome”,
which diagnoses what error occurred. Once, the error has become known, it then
becomes easy to correct it by applying the appropriate unitary operator.

584 14 Quantum Error Correction

To ensure our quantum codewords will behave in the way need them to, they
must be designed with the type of error we want them to protect against in mind.
In fact, a little thought allows us to stipulate a criterion that the quantum codewords
will have to meet in order to guarantee that we can always detect an error [270].

Quantum Codewords: Criterion for Errors to Be Detectable For an error Eα ∈
E that afflicts a quantum codeword to be detectable then, for every pair of valid
quantum codewords |ψi〉 and |ψj 〉 that span the encoding space, we require:

〈ψj |Eα|ψi〉 = cαδij (14.37)

When this criterion is met, it will guarantee that an error-afflicted codeword, Eα|ψi〉,
will be distinguishable from all the valid codewords, |ψj 〉.

The aforementioned criterion tells us a property our codewords will need to pos-
sess to be able to detect errors. But what property must they possess to also be able
to correct errors? Well, what do we need to ensure to guarantee we can correct any
error? We have to be certain that we won’t confuse one error with another when act-
ing on different quantum codewords. Rather, the error syndrome has to be unique for
each of the different types of errors acting on the different possible quantum code-
words. This basic strategy is the foundation of all quantum error correcting codes
(QECCs).

Thus, to ensure our codewords will be useful for correcting errors, in addition
to detecting them, we therefore need them to satisfy the following correctability
criterion.

Quantum Codewords: Criterion for Errors to Be Correctable For an error
Eα ∈ E that afflicts a quantum codeword to be correctable, it needs to be distin-
guishable from all errors afflicting all other codewords. That is, if |ψi〉 and |ψj 〉 are
any pair of valid codewords, we require:

〈ψj |E †
β Eα|ψi〉 = cαβδij ∀Eα, Eβ ∈ E (14.38)

When this criterion is met, we can guarantee that an error Eα ∈ E afflicting one
codeword is distinguishable from an error Eβ ∈ E afflicting a different codeword. In
this case we would have 〈ψi |E †

β Eα|ψj 〉 = 0. Furthermore, the criterion also guaran-
tees that when different error operators afflict the same codeword, as described by
〈ψi |E †

β Eα|ψi〉, that the result is independent of the codeword. This means that nei-
ther the environment nor the decoding operation learns anything about the encoded
state during error detection and correction. This is an essential requirement to be
sure the error detection and correction procedures do not cause more damage to the
state we are trying to protect.

Thus, it should be apparent that the family of errors that we want to be able to de-
tect and correct, and the number of qubits into which we encode each logical qubit
we want to protect, will influence the options available to us for picking quantum

14.3 Principles of Quantum Error Correcting Codes (QECCs) 585

codewords that meet the detectability and correctability criteria. As we show be-
low, quantum codewords having the desired properties can be constructed, and we
will give examples of 9-qubit, 7-qubit, and 5-qubit coding schemes that are able to
correct a single Pauli error, 1, X, Z, X · Z, afflicting any of their qubits.

14.3.5 Digitizing and Diagnosing Errors by Measuring Error
Syndromes

A striking aspect of such quantum error-correcting codes, is that the act of measur-
ing the ancillae qubits to obtain the error-syndrome can be viewed as determining
which error has afflicted which qubit. Prior to such measurements, which error (if
any) has occurred is undetermined. In fact, pre-measurement, the state may contain
a superposition of possible errors any of which are still possible outcomes. How-
ever, by making the error-syndrome measurements a particular error is determined.
Forcing such an error decision is a rational thing to do, because the error then be-
comes known, and a large known error is entirely correctable, whereas a small un-
known one is not. So the cleverness of quantum error-correcting codes is that they
exploit the superposition-destroying nature of quantum measurements to render an
unknown error known, and entanglement to link the measured error-syndrome to
the error-type afflicting the logical qubit.

14.3.6 Reversing Errors via Inverse Error Operators

Once the error becomes known, as a result of measuring the error syndrome, it can
be corrected by applying the inverse of the appropriate Pauli error operator.

14.3.7 Abstract View of Quantum Error Correcting Codes

The general approach to quantum error correcting codes outlined above, can be ab-
stracted into a theory based on the properties of operators and sub-spaces. Stepping
back a moment, the general idea is to encode a logical qubit whose state we want to
protect within a set of n-qubits, i.e., within a 2n-dimensional Hilbert space, such that
there is a special sub-space C , called the codespace, that is spanned by a set of quan-
tum states, span({|ψi〉}), i.e. the quantum codewords. The codewords are carefully
chosen so that we can guarantee, for a given set of error operators, E , that the error
detectability and error correctability criteria are met. That is, every error operator
Eα ∈ E takes a codeword into a state that is orthogonal to all other codewords, and
the errors induced by one error operator can be distinguished from those induced by
another. Thus every error is uniquely identifiable and hence correctable.

586 14 Quantum Error Correction

14.3.7.1 Minimal Distance of a Code

Our primary concern is how many errors a given code can correct? We approach
this by determining the distance of the code.

Let us start with the error operators. These are all direct products of 1-qubit
Pauli matrices and the identity matrix. Define the weight of such an operator to be
the number non-identity operators in its direct product representation. We can then
define the minimum distance of a code to be equal to the smallest weight of any
operator Eγ ∈ E such that the error correctability criterion (14.38) is violated.

What does this imply about the relationship between the distance of a code and
how many errors it can correct? Well, for a QECC to be useful, it has to be able
to distinguish between how different errors affect different codewords. So in the
correctability criterion we use the operator E †

β Eα . But if error operators Eα and Eβ

are in the group E , then so is the operator Eγ = E †
β Eα . If we are working with a sub-

group of error operators such that each operator contains at most t Pauli matrices,
then the operator E †

β Eα could have weight up to 2t . To guarantee correctability we
therefore require the minimum distance d to exceed this potential weight, i.e., d ≥
2t + 1. This implies that our code can only be guaranteed to correct up to at most
t = � d−1

2 � general errors, i.e., bit-flips, phase-flips, or joint bit-flips and phase flips.

14.3.7.2 (n,K,d) Quantum Error Correcting Code

Thus, the principal characteristics of a quantum code are the number of qubits used
in the encoding, n, the dimension of the codespace, K , and the minimum distances
of the code d , which is related to the maximum number of errors the code can be
guaranteed to correct, tmax, via tmax = � d−1

2 �. Quantum error correcting codes are
therefore often described using the notation (n,K,d). An (n,K,d) code can detect

up to (d − 1) errors, and correct up to � (d−1)
2 � general 1-qubit errors. The smallest

quantum error correcting code able to correct a single general error is a (5,2,3)
code. In this case, n = 5, K = 2, d = 3 and so tmax = � d−1

2 � = 1.

14.3.7.3 Additive (Stabilizer) Code Versus Non-additive Code

Within the class of quantum codes, the most important distinction is between the
additive codes and the non-additive ones. If the codespace of a quantum error
correcting code is specified by the joint +1 eigenspace of an Abelian sub-group
of local Pauli operators (i.e., operators writable as a direct product of Pauli ma-
trices that all commute with one another), then the code is said to be an “addi-
tive” or “stabilizer” code. That is if the errors are specified as an Abelian sub-
group of the Pauli group, and have the property that on the codewords {|ψi〉} that
∀Eα ∈ E ∈ Pn : Eα|ψi〉 = +1|ψi〉, then the code is an additive or stabilizer code.

If the aforementioned condition on the codespace does not hold, the code is “non-
additive”.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 587

Table 14.4 Notation often used to describe classical and quantum error-correcting codes

Notation Name Meaning

(n,K,d) Classical code An n-bit classical code having a K-dimensional
codespace and distance d

(n,K,d) Quantum code An n-qubit quantum code having a K-dimensional
codespace and distance d. This class includes additive
and non-additive quantum codes. The latter have the
potential to be more efficient than additive codes. Note
that the codespace dimension of a non-additive code
need not be a power of two

[n, k, d] Quantum stabilizer code An additive (stabilizer) n-qubit quantum code having a
2k-dimensional codespace and distance d. This class of
quantum codes includes the 9-qubit Shor, 7-qubit
Steane, and 5-qubit Laflamme codes. The codespace
dimension of an additive code is always a power of two

The notation (n,K,d) is used to describe both additive and non-additive quan-
tum codes. However, the codespace dimension of additive codes is always a power
of two, i.e., K = 2k for some k, whereas this is not necessarily so for a non-additive
code. The additive (stabilizer) codes are often described in terms of a special nota-
tion [n, k, d] (where k = log2 K). Thus, whereas we can speak of an additive code
protecting k qubits within n-qubit quantum codewords, we cannot really say this for
a non-additive code since log2 K is not necessarily an integer. However, the greater
complexity of non-additive codes is offset by their potential to be more efficient than
additive codes. Table 14.4 summarizes the notation we just discussed.

Quantum codes have other characteristics that can be of interest including
whether they are pure or impure, degenerate or non-degenerate, and perfect or im-
perfect.

14.3.7.4 Pure Versus Impure Code

If distinct elements of E produce orthogonal results, the code is said to be pure.
Otherwise it is impure.

14.3.7.5 Degenerate Versus Non-degenerate Code

If linearly independent correctable errors acting on the codespace are guaranteed to
yield linearly independent states, the code is said to be non-degenerate. Thus, a non-
degenerate code assigns a unique linearly independent error-syndrome to each pos-
sible error. Most known quantum error correcting codes are non-degenerate additive
(stabilizer) codes. If a additive (stabilizer) code is also a pure code, it is guaranteed
to be non-degenerate, but the converse need not be true.

588 14 Quantum Error Correction

Conversely, if linearly independent correctable errors acting on the codeword
space can produce linearly dependent states, the code is said to be degenerate. De-
generate codes are interesting because they have the potential to be much more
efficient than non-degenerate codes.

Theorems placing bounds on non-degenerate quantum codes do not necessarily
apply to degenerate codes. Therefore, before applying a theorem, verify that the
theorem holds for the type of code with which you are working.

14.3.7.6 Perfect Versus Imperfect Code

If every error syndrome corresponds to a correctable error, the code is said to be
perfect otherwise it is imperfect.

Having re-considered quantum correcting codes in the abstract let us now turn
to a concrete example of the optimal additive quantum code able to correct a single
general error.

14.4 Optimal Quantum Error Correcting Code

A natural question to ask is how good a quantum error correcting code can be? That
is what are the tradeoffs between the number of qubits used in the codeword, the
number of qubits the code protects, and the number of general errors that such a
code can correct? The following simple argument suggests a [5,1,3] code is the
smallest code able to correct a single general error.

14.4.1 Laflamme-Miquel-Paz-Zurek’s 5-Qubit Code

Imagine a code that encodes one logical qubit into n qubits and we wish to protect
against a single error on any one of these n qubits. If we assume that errors are
sufficiently rare that at most one error can afflict one of the n qubits, then each
qubit can undergo one of three types of error so there are 3n ways the error can
be introduced. Add to this the possibility that none of the qubits have an error, we
obtain a total of (3n+1) possible error “diagnoses”. If we are to distinguish between
the possible (3n+ 1) error diagnoses by making measurements on n− 1 qubits, i.e.,
the ancillae, then these can index 2n−1 different states, and so the code has to satisfy
(3n + 1) ≤ 2n−1. The smallest integer satisfying this condition is n = 5. Hence, the
smallest code sufficient to correct a single general error must be at least a 5-qubit
code. Such a 5-qubit code was constructed by Raymond Laflamme, Cesar Miquel,
Pablo Paz, and Wojciech Zurek [297] in 1996.

14.4.2 Error Operators for the 5-Qubit Code

In the Laflamme-Miquel-Paz-Zurek 5-qubit code we wish to be able to correct a
general error amongst the five qubits in the encoded state. Hence, the only error

14.4 Optimal Quantum Error Correcting Code 589

operators we need consider are:

ENone = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EB5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X

EBP5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X · Z
EP5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ Z

EB4 = 1 ⊗ 1 ⊗ 1 ⊗ X ⊗ 1

EBP4 = 1 ⊗ 1 ⊗ 1 ⊗ X · Z ⊗ 1

EP4 = 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ 1

EB3 = 1 ⊗ 1 ⊗ X ⊗ 1 ⊗ 1

EBP3 = 1 ⊗ 1 ⊗ X · Z ⊗ 1 ⊗ 1

EP3 = 1 ⊗ 1 ⊗ Z ⊗ 1 ⊗ 1

EB2 = 1 ⊗ X ⊗ 1 ⊗ 1 ⊗ 1

EBP2 = 1 ⊗ X · Z ⊗ 1 ⊗ 1 ⊗ 1

EP2 = 1 ⊗ Z ⊗ 1 ⊗ 1 ⊗ 1

EB1 = X ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EBP1 = X · Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EP1 = Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

(14.39)

which includes, you notice, the possibility of there being no errors at all, i.e., ENone.

14.4.3 Encoding Scheme for the 5-Qubit Code

In the Laflamme-Miquel-Paz-Zurek code a single logical qubit is encoded in a 5-
qubit entangled state of the form:

|0〉L = 1

2
√

2

(|00000〉 + |00110〉 + |01001〉 − |01111〉
+ |10011〉 + |10101〉 + |11010〉 − |11100〉)

|1〉L = 1

2
√

2

(|11111〉 + |11001〉 + |10110〉 − |10000〉
− |01100〉 − |01010〉 − |00101〉 + |00011〉)

(14.40)

A general state of a qubit we want to protect, |ψ〉 = α|0〉 + β|1〉, is mapped into
an entangled state of the form |ψ〉L = α|0〉L + β|1〉L. Subsequently, if a single bit-
flip, phase-flip, or joint bit-flip and phase-flip afflicts any of these five qubits, there
is sufficient information in their entanglement to be able to determine, from the
measured error syndrome, the operation that must be performed on the unmeasured
qubit to restore it to its original state |ψ〉 = α|0〉 + β|1〉.

590 14 Quantum Error Correction

Figure 14.3 shows a quantum circuit for creating the entangled encoded state
used in the Laflamme-Miquel-Paz-Zurek quantum error-correcting code.This circuit
entangles a single qubit in an arbitrary state |ψ〉 with four ancillae qubits, each
initially in state |0〉, to create the encoded state |ψ〉L = α|0〉L + β|1〉L, having basis
vectors |0〉L and |1〉L as in (14.40), and single qubit gates L and L† defined by:

L = 1√
2

(
1 −1
1 1

)

L† = 1√
2

(
1 1

−1 1

) (14.41)

After such an encoding, the 5-qubit state may then be afflicted with a single
bit-flip, phase-flip, or joint bit-flip and phase-flip in the region marked “ERROR”
in Fig. 14.4. This would correspond to an error being introduced while an encoded
qubit was being stored in a quantum memory. For example, if a single bit-flip occurs

Fig. 14.3 Quantum circuit for encoding unknown quantum state |ψ〉 amongst the amplitudes of
a 5-qubit entangled state such that any subsequent bit flip, phase shift or joint bit flip/phase shift
error can be detected and corrected

Fig. 14.4 Quantum circuit implementing the Laflamme-Miquel-Paz-Zurek 5-qubit quantum error
correcting code. The left hand size of the circuit encodes a single logical qubit in an entangled
5-qubit state. In the encoded form, the state is protected against a single bit-flip, phase-flip, or
joint bit-flip and phase-flip acting on any of the five qubits. To diagnose and correct the error,
the encoded state must be decoded and the error syndrome measured. Depending on the outcome,
|a〉|b〉|c〉|d〉, a unitary operator Uabcd is applied to the top qubit which rotates it into the original
state of the logical qubit and hence the error is undone

14.4 Optimal Quantum Error Correcting Code 591

on the third qubit of the encoded state |ψ〉L, the state would change according to:

|ψ〉L EB3−→ −β|01111〉 + α|11111〉 (14.42)

Likewise, if a single phase-flip occurs on the fourth qubit of the encoded state |ψ〉L,
the state would change according to:

|ψ〉L EP4−→ α|01110〉 − β|11110〉 (14.43)

Similar state changes are induced by a bit-flip, a phase-flip, or a joint bit-flip and
phase-flip on any of the qubits in the encoded state |ψ〉L.

Now that we know how an error changes the encoded state, we next need to
figure out how to diagnose what error has occurred and determine the appropriate
corrective action to undo that error and restore the logical qubit to its pristine state
|ψ〉 = α|0〉 + β|1〉. To do this, we will use the part of the circuit in Fig. 14.4 to the
right of the region marked “ERROR”.

14.4.4 Error Syndromes & Corrective Actions for the 5-Qubit Code

To diagnose what single error has afflicted the 5-qubit encoded state, we run the
buggy encoded state through the decoding circuit shown in Fig. 14.5. This is just
the encoding circuit run in the reverse direction. The decoding operation pro-
duces an output entangled state that can be factored as a superposition of the
form

∑1
a=0

∑1
b=0

∑1
c=0

∑1
d=0 αabcd |ϕabcd〉|abcd〉 where |abcd〉 is a 4-bit com-

putational basis vector, and the |ϕabcd〉 states are unitary rotations of state |ψ〉 =
α|0〉 + β|1〉. We can, given knowledge of the encoding-decoding circuitry and the
error-modes, build a lookup table that gives the required rotation to map each |ϕ〉
back into |ψ〉. Such rotation are shown in Table 14.5. Thus, by measuring the four
ancillae qubits, in the computational basis, in the output from the decoding circuit
we can project out a specific state |ϕabcd〉 state, and use Table 14.5 to determine
the corrective action needed to recover the correct state (|ψ〉 = α|0〉 + β|1〉) of the
logical qubit.

Fig. 14.5 Quantum circuit for decoding a (potentially corrupted) entangled state and measuring
its error syndrome to reveal whether or not an error had occurred, and if so, what action to apply
to the top qubit to undo the error

592 14 Quantum Error Correction

Table 14.5 To protect an unknown quantum state |ψ〉 while in storage in a quantum memory
register, we entangle |ψ〉 with four ancilla qubits each prepared initially in the state |0〉, using the
left hand side of the quantum circuit shown in Fig. 14.4. Once encoded, the state can be corrupted
by a single bit-flip, a single phase-flip or a single phase-flip followed by a bit-flip on any of the five
qubits. However, when we want to retrieve our protected state, we decode the entangled state by
running it through the right hand side of the circuit shown in Fig. 14.4 and then “measure the error
syndrome”, i.e., read the bit values of the four ancilla qubits. Based on the observed values we can
then look up corrective action to apply to the top qubit to restore it to its pristine (yet unknown)
state. In the table an error BPi means a phase flip followed by a bit flip on the i-th qubit

Error type State produced
|ψ〉|a〉|b〉|c〉|d〉

Error
syndrome

Corrective
action
Uabcd

Result

None −β|01011〉+α|11011〉 {1,0,1,1} Z · X (α|0〉 + β|1〉)|1011〉
B1 β|01000〉 + α|11000〉 {1,0,0,0} X (α|0〉 + β|1〉)|1000〉
B2 −β|00010〉+α|10010〉 {0,0,1,0} Z · X (α|0〉 + β|1〉)|0010〉
B3 −β|01111〉+α|11111〉 {1,1,1,1} Z · X (α|0〉 + β|1〉)|1111〉
B4 −β|01001〉+α|11001〉 {1,0,0,1} Z · X (α|0〉 + β|1〉)|1001〉
B5 −β|01010〉+α|11010〉 {1,0,1,0} Z · X (α|0〉 + β|1〉)|1010〉
P1 α|00110〉 − β|10110〉 {0,1,1,0} Z (α|0〉 + β|1〉)|0110〉
P2 β|01101〉 + α|11101〉 {1,1,0,1} X (α|0〉 + β|1〉)|1101〉
P3 β|00011〉 + α|10011〉 {0,0,1,1} X (α|0〉 + β|1〉)|0011〉
P4 α|01110〉 − β|11110〉 {1,1,1,0} Z (α|0〉 + β|1〉)|1110〉
P5 α|00000〉 − β|10000〉 {0,0,0,0} Z (α|0〉 + β|1〉)|0000〉
BP1 −α|00101〉−β|10101〉 {0,1,0,1} Z · X · Z · X (α|0〉 + β|1〉)|0101〉
BP2 β|00100〉 + α|10100〉 {0,1,0,0} X (α|0〉 + β|1〉)|0100〉
BP3 β|00111〉 + α|10111〉 {0,1,1,1} X (α|0〉 + β|1〉)|0111〉
BP4 α|01100〉 − β|11100〉 {1,1,0,0} Z (α|0〉 + β|1〉)|1100〉
BP5 α|00001〉 − β|10001〉 {0,0,0,1} Z (α|0〉 + β|1〉)|0001〉

14.4.5 Example: Correcting a Bit-Flip

Suppose the logical qubit we wish to protect is in state |ψ〉 = α|0〉+β|1〉. To protect
this qubit against error we augment |ψ〉 state with four ancillae qubits each prepared
in state |0〉 to give us the input state:

|Ψin〉 = α|00000〉 + β|10000〉 (14.44)

Encoding this state using the Laflamme-Miquel-Paz-Zurek 5-qubit encoding circuit
gives us the state:

|Ψmiddle〉 = 1

2
√

2

(
α|00000〉 + β|00011〉 − β|00101〉 + α|00110〉

+ α|01001〉 − β|01010〉 − β|01100〉 − α|01111〉
− β|10000〉 + α|10011〉 + α|10101〉 + β|10110〉
+ β|11001〉 + α|11010〉 − α|11100〉 + β|11111〉) (14.45)

14.5 Other Additive Quantum Error Correcting Codes 593

This is an entangled state that can now protect our logical qubit from error. For
example, imagine introducing a bit-flip error on the third qubit in this state creating
the buggy state:

|Ψbuggy〉 = 1

2
√

2

(
α|00100〉 + β|00111〉 − β|00001〉 + α|00010〉

+ α|01101〉 − β|01110〉 − β|01000〉 − α|01011〉
− β|10100〉 + α|10111〉 + α|10001〉 + β|10010〉
+ β|11101〉 + α|11110〉 − α|11000〉 + β|11011〉) (14.46)

Decoding the buggy state using the Laflamme-Miquel-Paz-Zurek decoding circuit
gives us the state:

|Ψout〉 = −β|01111〉 + α|11111〉 (14.47)

Reading ancillae state |abcd〉 then gives the error syndrome is 1111. Using the
lookup table, Table 14.5, the appropriate corrective action to apply to the top (un-
measured qubit) should be Z ·X. Applying this operation, we see that we do indeed
restore the top qubit to its error free state |ψ〉 = α|0〉 + β|1〉.

Quantum error correcting codes are therefore feasible even though we are unable
to read the encoded data directly without necessarily perturbing the state being read.
The proof of the feasibility of QECCs was one of the most important discoveries in
the development of quantum computing because their existence means that it is not
necessary to fabricate, initialize, and run quantum computers perfectly in order to
obtain correct results.

14.5 Other Additive Quantum Error Correcting Codes

The 5-qubit was not the first quantum error correcting code discovered that was able
to correct for a single general error amongst the encoded qubits. In fact, two other
codes pre-date it, but both require more qubits to encode the data being protected.

14.5.1 Shor’s 9-Qubit Code

The first quantum error-correcting code (QECC) was devised by Peter Shor in 1995
[456]. It encodes each logical qubit in nine physical qubits in such manner that a
single bit-flip, phase-flip, or joint bit-flip and phase flip, afflicting any of these nine
qubits can be identified, and undone by performing an appropriate unitary operation
which differs depending on the outcome of the ancilla measurements.

The encoding step in the 9-qubit code involves mapping each logical qubit to
encoded form according to:

|0〉L = 1

2
√

2
(|000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉)

|1〉L = 1

2
√

2
(|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉)

(14.48)

594 14 Quantum Error Correction

Once in this form the encoded data is protected against a single error in any qubit
amongst any of the nine qubits.

14.5.2 Steane’s 7-Qubit Code

In 1996 Andrew Steane improved upon Peter Shor’s 9-qubit code with a 7-qubit
code [477, 478]. The encoding step in the 7-qubit code involves mapping each log-
ical qubit to encoded form according to:

|0〉L = 1

2
√

2

(|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉)

|1〉L = 1

2
√

2

(|1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+ |1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)

(14.49)

Once in this form the encoded data is protected against a single error in any qubit
amongst any of the seven qubits.

14.6 Stabilizer Formalism for Quantum Error Correcting Codes

The foregoing quantum error correcting codes were either constructed based on
analogies with pre-existing classical codes, or discovered via extensive computer
searches. As a result, each code was created in a somewhat makeshift fashion and
few, if any, general design principles for quantum codes were learned. One could
easily get the impression, therefore, that quantum error correcting codes are discov-
ered serendipitously rather than being constructed systematically to meet desired
criteria. Furthermore, one could also get the impression, from our description of the
5-qubit Laflamme-Miquel-Paz-Zurek code, that error correction requires that we pe-
riodically map the encoded (and therefore protected qubit) back to its (unprotected)
logical basis at which times the qubit is exposed to uncorrectable errors. Neither of
these impressions is correct.

In 1996 Daniel Gottesman invented a unified way to think about an important
sub-class of QECCs that allows them to be constructed in a more systematic fash-
ion and to perform error correction entirely within the encoded basis so we never
re-expose the protected quantum information during the error correction procedure.
The 9-qubit Shor, 7-qubit Steane, and 5-qubit Laflamme-Miquel-Paz-Zurek codes
as special cases of Gottesman’s formalism, which later became known as the “stabi-
lizer formalism” [207, 208]. Using the stabilizer formalism it becomes straightfor-
ward to design QECCs to protect against a given set of errors, and to find quantum
circuits that will perform the required error diagnosis and recovery operations while
staying entirely within the encoded (and therefore protected) basis.

Rather than discuss the stabilizer formalism in the abstract, we will use it to
re-analyze the 5-qubit Laflamme-Miquel-Paz-Zurek code, which is the best QECC
capable of correcting a single bit-flip, phase-flip, or joint bit-flip and phase-flip af-
flicting any one of five qubits.

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 595

14.6.1 Group Theory for Stabilizer Codes

As the stabilizer formalism relies upon ideas from group theory, we will begin with
a brief summary of the key ideas of group theory.

A “group”, G , is a collection of objects, g1, g2, . . . ∈ G , together with a multipli-
cation operation “·”, which possess the following properties:

Group Theory

• Closure: the group is closed under “·”, i.e., if gi, gj ∈ G then gi · gj ∈ G .
• Associativity: i.e., (gi · gj) · gk = gi · (gj · gk).
• Existence of Identity: the group contains an identity element, i.e., ∃e ∈ G such

that ∀gi ∈ G, e · gi = gi .
• Existence of Inverse: each member of the group has an inverse, i.e., ∀gi ∈ G ,

∃g−1
i ∈ G s.t. gi · g−1

i = e.

In the context of quantum error correcting codes, the following types of groups
and concepts are the most important.

Types of Groups

• Pauli group: the group consisting of tensor products of the Pauli matrices, 1, X,
Y , Z, with an overall phase of ±1 or ±i.

• Finite group: a group G is finite if the number of elements in it is finite, i.e.,
the group contains only the elements g1, g2, . . . , gn ∈ G for some finite positive
integer n.

• Abelian group: a group is “Abelian” iff ∀gi, gj ∈ G, gi · gj = gj · gi .
• Sub-group: S is a sub-group of G iff the elements s1, s2, . . . ∈ S are a subset of

the elements of g1, g2, . . . ∈ G , and obey the rules for a group in their own right
under the same group multiplication operator as that of G .

The final concept we shall need is that of a “group generator”. The generator,
{g1, g2, . . . , g�}, of a group G is the smallest subset of elements of G sufficient to
generate every member of G under the multiplication operation for G . That is we
can obtain any element of G from products of the elements in {g1, g2, . . . , g�} with
repetitions allowed.

We can now describe the basic machinery of the stabilizer formalism using these
group-theoretic concepts.

14.6.2 The Stabilizer

A “stabilizer” S = {S1, S2, . . . , SK } is a carefully chosen group of tensor products
of the Pauli operators, Si ∈ {1,X,Z}⊗n whose elements are required have a simul-
taneous eigenvalue of +1. That is, for some family of states |ψ〉L the stabilizer S is

596 14 Quantum Error Correction

a group of tensor products of Pauli operators such that:

S1|ψ〉L = +1|ψ〉L
S2|ψ〉L = +1|ψ〉L

...

SK |ψ〉L = +1 |ψ〉L

(14.50)

Furthermore, it is known from pure mathematics that a group of operators can only
share a simultaneous eigenvalue when the operators commute with one another.
This means that the stabilizer group has to be a finite Abelian sub-group of the Pauli
group. That is, for the operators in a valid stabilizer, Si · Sj = Sj · Si .

14.6.3 Example: A Stabilizer for the 5-Qubit Code

There are many sets of tensor products that we could pick as stabilizers, and different
choices would induce different quantum error correcting codes. If we focus on the
case of QECCs that involve just five physical qubits, then all the relevant stabilizers
must involve only five Pauli matrices. But remember, we don’t accept just any old
set of tensor products. We are specifically looking for sets of tensor products that
form an Abelian sub-group.

Of the many alternatives available to us, suppose we had picked the following set
of tensor products of Pauli, 1, X, and Z, matrices as our stabilizer:

S1 = X ⊗ X ⊗ Z ⊗ X ⊗ 1

S2 = X ⊗ Z ⊗ X ⊗ 1 ⊗ X

S3 = Z ⊗ 1 ⊗ X ⊗ X ⊗ Z

S4 = Z ⊗ X ⊗ 1 ⊗ Z ⊗ X

S5 = 1 ⊗ Z ⊗ Z ⊗ Z ⊗ Z

S6 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

This set of tensor products satisfies all the criteria for a group given above. More-
over, the group is Abelian because all its elements commute with one another. How-
ever, we can whittle this group down a little further and work just with its generators,
i.e. a minimal set of group elements sufficient to generate all members of the group
via their products, with repetitions allowed. In particular, we can immediately see
that we do not need the element S6 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 because the square of any
element of the stabilizer is S6. For example, in particular we have:

S1 · S1 = (X ⊗ X ⊗ Z ⊗ X ⊗ 1)2 = (1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1) = S6

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 597

Likewise, we can drop any one of the remaining five group elements from this sub-
group too. For example, we do not need (say) S5 = 1 ⊗ Z ⊗ Z ⊗ Z ⊗ Z because:

S1 · S2 · S3 · S4 = (X ⊗ X ⊗ Z ⊗ X ⊗ 1) · (X ⊗ Z ⊗ X ⊗ 1 ⊗ X)

· (Z ⊗ 1 ⊗ X ⊗ X ⊗ Z) · (Z ⊗ X ⊗ 1 ⊗ Z ⊗ X)

= (1 ⊗ Z ⊗ Z ⊗ Z ⊗ Z) = S5 (14.51)

Thus, to define the stabilizer, we need only work with the generators of the associ-
ated Abelian sub-group, namely the tensor products 〈S1, S2, S3, S4〉 where:

S1 = X ⊗ X ⊗ Z ⊗ X ⊗ 1

S2 = X ⊗ Z ⊗ X ⊗ 1 ⊗ X

S3 = Z ⊗ 1 ⊗ X ⊗ X ⊗ Z

S4 = Z ⊗ X ⊗ 1 ⊗ Z ⊗ X

With these definitions, the tensor products in the generator {S1, S2, S3, S4} is an
Abelian sub-group of the Pauli group and therefore meets all the criteria needed to
be a stabilizer.

14.6.4 Using a Stabilizer to Find the Codewords It Stabilizes

Given a choice of stabilizer S = {S1, S2, . . . , SK } we can find the family of states
|ψ〉L it stabilizes quite easily. As the Sj are all hermitian, we can characterize the
states we seek as the +1 simultaneous eigenstates of the operators {S1, S2, S3, S4}.
These are the states spanned by the encoded basis vectors |0〉L and |1〉L that corre-
spond to the simultaneous +1 eigenstates of every element of the stabilizer, when
the inputs are |00000〉 and |11111〉 respectively.

In the case of the 5-qubit Laflamme-Miquel-Paz-Zurek code the stabilizer has
four elements {S1, S2, S3, S4}. We can measure the eigenvalue of each of these op-
erators individually using the circuit shown in Fig. 14.6. The encoded basis state
|0〉L is the output when the eigenvalues are all measured to be +1 (indicated by
finding the output in state |0〉) when the input state is |00000〉.

Likewise, the encoded basis state |1〉L is the output from the circuit in Fig. 14.7
when the eigenvalues are all measured to be +1 (again, indicated by finding the
output in state |0〉) when the input state is |11111〉.

Hence, the codespace that is invariant with respect to this stabilizer {S1, S2,

S3, S4} is the set of states spanned by:

|0〉L = 1

2
√

2

(|00000〉 + |00110〉 + |01001〉 − |01111〉
+ |10011〉 + |10101〉 + |11010〉 − |11100〉)

|1〉L = 1

2
√

2

(|11111〉 + |11001〉 + |10110〉 − |10000〉
− |01100〉 − |01010〉 − |00101〉 + |00011〉)

(14.52)

598 14 Quantum Error Correction

Fig. 14.6 Quantum circuit
for using the generators,
{S1, S2, S3, S4}, of a
stabilizer sub-group S to find
the corresponding logical 0
codeword, i.e., |0〉L. The
logical 0 has the property that
Sj |0〉L = +1|0〉L for all
Sj ∈ S and is therefore a +1
eigenstate of the stabilizer
sub-group S . As in the
eigenvalue estimation
algorithm, when the
measurement outcomes made
on the ancillae are all 0000
the state on the remaining
unmeasured five qubits will
be projected into a
simultaneous eigenstate of
the operators S1, S2, S3, and
S4 with eigenvalue +1

Fig. 14.7 Quantum circuit
for using the generators,
{S1, S2, S3, S4}, of a
stabilizer sub-group S to find
the corresponding logical 1
codeword, i.e., |1〉L. The
logical 1 has the property that
Sj |1〉L = +1|1〉L for all
Sj ∈ S and is therefore a +1
eigenstate of the stabilizer
sub-group S . As in the
eigenvalue estimation
algorithm, when the
measurement outcomes made
on the ancillae are all 0000
the state on the remaining
unmeasured five qubits will
be projected into a
simultaneous eigenstate of
the operators S1, S2, S3, and
S4 with eigenvalue +1

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 599

These “happen to be” exactly the logical qubits we used on our 5-qubit Laflamme-
Miquel-Paz-Zurek code! This means that any state of the form:

|ψ〉L = α|0〉L + β|1〉L (14.53)

such that |α|2 + |β|2 = 1 is stabilized by our stabilizer {S1, S2, S3, S4}.

14.6.5 How the Stabilizer is Related to the Error Operators

So far in our discussion I have treated a stabilizer as nothing more than an arbitrary
Abelian sub-group of the Pauli group, and I “happened to pick” a stabilizer whose
codewords matched those of Sam Braunstein and John Smolin’s version of the pre-
existing 5-qubit Laflamme-Miquel-Paz-Zurek code [79, 297]. This was intended to
make the connection between stabilizer codes and the 5-qubit code explicit. But,
clearly, this is cheating—as I had foreknowledge of the codewords sought, and
I worked backwards to find a stabilizer that produced those codewords! It would
be more honest to start with the error operators we want a quantum error correcting
code to correct, and use the error operators to derive a stabilizer code able to protect
against them. This is the purpose of this section.

In the case of the 5-qubit Laflamme-Miquel-Paz-Zurek code, our intention is to
encode a single logical qubit within an entangled 5-qubit state so that the encoded
qubit is protected against a single bit-flip, phase-flip, or joint bit-flip and phase flip
on any of these five qubits. In this case, the family of error operators we need to
protect against is, as we explained earlier, given by:

ENone = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EB5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X

EBP5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X · Z
EP5 = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ Z

EB4 = 1 ⊗ 1 ⊗ 1 ⊗ X ⊗ 1

EBP4 = 1 ⊗ 1 ⊗ 1 ⊗ X · Z ⊗ 1

EP4 = 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ 1

EB3 = 1 ⊗ 1 ⊗ X ⊗ 1 ⊗ 1

EBP3 = 1 ⊗ 1 ⊗ X · Z ⊗ 1 ⊗ 1

EP3 = 1 ⊗ 1 ⊗ Z ⊗ 1 ⊗ 1

EB2 = 1 ⊗ X ⊗ 1 ⊗ 1 ⊗ 1

EBP2 = 1 ⊗ X · Z ⊗ 1 ⊗ 1 ⊗ 1

EP2 = 1 ⊗ Z ⊗ 1 ⊗ 1 ⊗ 1

EB1 = X ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EBP1 = X · Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

EP1 = Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

(14.54)

600 14 Quantum Error Correction

which includes the possibility of there being no errors at all, i.e., ENone.
Intuitively, it seems reasonable to expect that our error diagnosis and recovery

operations must somehow be related to these error operators. This intuition is indeed
correct. The connection is made by way of the stabilizer. Specifically, we want to
pick a stabilizer such that every error operator we want to protect against, Eα ∈ E ,
anti-commutes with at least one element of the stabilizer, Si ∈ S .

The motivation for this requirement is the following. If an error operator Eα ∈ E
commutes with an element of the stabilizer Si ∈ S , we have Si · Eα = Eα · Si and so:

Si · Eα|ψ〉L = Eα · Si |ψ〉L = +1 Eα|ψ〉L (14.55)

and thus has the eigenvalue +1. This means that when we measure the eigenvalue
of the operator Si whether the input state is pristine, i.e., |ψ〉L or error-afflicted, i.e.,
Eα|ψ〉L, the eigenvalue will be +1 either way. So a good input and a corrupted input
will not be distinguishable.

However, if an error operator Eα ∈ E anti-commutes with an element of the sta-
bilizer Si ∈ S , we have Si · Eα = −1 Eα · Si and so:

Si · Eα|ψ〉L = − Eα · Si |ψ〉L = −1 Eα|ψ〉L (14.56)

and thus has the eigenvalue −1. In this case, the presence of an error is signalled by
the fact that the eigenvalue of the operator Si has become −1.

Hence by measuring the eigenvalue of each element of the stabilizer we
can detect whether or not an error has occurred. Moreover, the pattern of anti-
commutativity over all the elements in the stabilizer is unique to each different type
of error. This allows the pattern of eigenvalues to be used as an error syndrome that
diagnoses what error occurred unambiguously.

14.6.6 Example: Stabilizers and Error Operators for the 5-Qubit
Code

Let us make this concrete in the case of the 5-qubit Laflamme-Miquel-Paz-Zurek
code. In this case the error operators we want to protect against are those de-
fined in (14.54). As we are interested in a 5-qubit code, the potential stabilizer ele-
ments are therefore all tensor products of any five Pauli matrices taken from the set
{1,X,Z}⊗5. There are 243 distinct possibilities, namely:

11111 1111X 1111Z 111X1 111XX 111XZ 111Z1 111ZX 111ZZ
11X11 11X1X 11X1Z 11XX1 11XXX 11XXZ 11XZ1 11XZX 11XZZ
11Z11 11Z1X 11Z1Z 11ZX1 11ZXX 11ZXZ 11ZZ1 11ZZX 11ZZZ
1X111 1X11X 1X11Z 1X1X1 1X1XX 1X1XZ 1X1Z1 1X1ZX 1X1ZZ
1XX11 1XX1X 1XX1Z 1XXX1 1XXXX 1XXXZ 1XXZ1 1XXZX 1XXZZ

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 601

1XZ11 1XZ1X 1XZ1Z 1XZX1 1XZXX 1XZXZ 1XZZ1 1XZZX 1XZZZ
1Z111 1Z11X 1Z11Z 1Z1X1 1Z1XX 1Z1XZ 1Z1Z1 1Z1ZX 1Z1ZZ
1ZX11 1ZX1X 1ZX1Z 1ZXX1 1ZXXX 1ZXXZ 1ZXZ1 1ZXZX 1ZXZZ
1ZZ11 1ZZ1X 1ZZ1Z 1ZZX1 1ZZXX 1ZZXZ 1ZZZ1 1ZZZX 1ZZZZ
X1111 X111X X111Z X11X1 X11XX X11XZ X11Z1 X11ZX X11ZZ
X1X11 X1X1X X1X1Z X1XX1 X1XXX X1XXZ X1XZ1 X1XZX X1XZZ
X1Z11 X1Z1X X1Z1Z X1ZX1 X1ZXX X1ZXZ X1ZZ1 X1ZZX X1ZZZ
XX111 XX11X XX11Z XX1X1 XX1XX XX1XZ XX1Z1 XX1ZX XX1ZZ
XXX11 XXX1X XXX1Z XXXX1 XXXXX XXXXZ XXXZ1 XXXZX XXXZZ
XXZ11 XXZ1X XXZ1Z XXZX1 XXZXX XXZXZ XXZZ1 XXZZX XXZZZ
XZ111 XZ11X XZ11Z XZ1X1 XZ1XX XZ1XZ XZ1Z1 XZ1ZX XZ1ZZ
XZX11 XZX1X XZX1Z XZXX1 XZXXX XZXXZ XZXZ1 XZXZX XZXZZ
XZZ11 XZZ1X XZZ1Z XZZX1 XZZXX XZZXZ XZZZ1 XZZZX XZZZZ
Z1111 Z111X Z111Z Z11X1 Z11XX Z11XZ Z11Z1 Z11ZX Z11ZZ
Z1X11 Z1X1X Z1X1Z Z1XX1 Z1XXX Z1XXZ Z1XZ1 Z1XZX Z1XZZ
Z1Z11 Z1Z1X Z1Z1Z Z1ZX1 Z1ZXX Z1ZXZ Z1ZZ1 Z1ZZX Z1ZZZ
ZX111 ZX11X ZX11Z ZX1X1 ZX1XX ZX1XZ ZX1Z1 ZX1ZX ZX1ZZ
ZXX11 ZXX1X ZXX1Z ZXXX1 ZXXXX ZXXXZ ZXXZ1 ZXXZX ZXXZZ
ZXZ11 ZXZ1X ZXZ1Z ZXZX1 ZXZXX ZXZXZ ZXZZ1 ZXZZX ZXZZZ
ZZ111 ZZ11X ZZ11Z ZZ1X1 ZZ1XX ZZ1XZ ZZ1Z1 ZZ1ZX ZZ1ZZ
ZZX11 ZZX1X ZZX1Z ZZXX1 ZZXXX ZZXXZ ZZXZ1 ZZXZX ZZXZZ
ZZZ11 ZZZ1X ZZZ1Z ZZZX1 ZZZXX ZZZXZ ZZZZ1 ZZZZX ZZZZZ

Next we determine which of these potential stabilizer elements anti-commute
with each error operator Eα ∈ E . Two operators anti-commute when {A,B} =
A · B + B · A = 0. Error operators that anti-commute with any element of the stabi-
lizer, correspond to errors that are detectable by the corresponding stabilizer code.
However, to be correctable, each error operator needs to have a different pattern of
anti-commutativity with the elements of the stabilizer. We can find the patterns of
anti-commutativity by computer search very easily. The result will look something
like:

ENone = 11111 anti-commutes with F1 = {}
EB5 = 1111X anti-commutes with F2 = {1111Z,111XZ,111ZZ,11X1Z, . . .}

EBP5 = 1111(XZ) anti-commutes with F3 = {1111X,1111Z,111XX,111XZ, . . .}
EP5 = 1111Z anti-commutes with F4 = {1111X,111XX,111ZX,11X1X, . . .}

...

EP1 = Z1111 anti-commutes with F15 = {X1111,X111X,X111Z,X11X1, . . .}
(14.57)

This gives us sets of tensor products of Pauli operators, {F1,F2, . . . ,F15}, that anti-
commute with the different error operators. The required stabilizer will then be a
minimum hitting set of the sets {F1,F2, . . . ,F15}. By minimum hitting set we mean
that the desired stabilizer {S1, S2, S3, S4} is the smallest set that intersects with
at least one element in every set F1,F2, . . . ,F15. Given the results of a computer

602 14 Quantum Error Correction

search shown in (14.57) a minimal hitting set is S is found to require only four
tensor products, {S1, S2, S3, S4}, where:

S1 = X ⊗ X ⊗ Z ⊗ X ⊗ 1

S2 = X ⊗ Z ⊗ X ⊗ 1 ⊗ X

S3 = Z ⊗ 1 ⊗ X ⊗ X ⊗ Z

S4 = Z ⊗ X ⊗ 1 ⊗ Z ⊗ X

which coincides with the stabilizer we picked to generate codewords that match
those used in the 5-qubit Laflamme-Miquel-Paz-Zurek code.

The pattern of anti-commutativity between each error operator Eα ∈ E and the
elements of the stabilizer, Si ∈ S , is shown in Table 14.6. In the table a check mark
signifies Eα and Si anti-commute whereas a cross signifies they do not. As you can
see, each error operator anti-commutes with at least one element of the stabilizer.
Moreover, the pattern of anti-commutativity is unique to each error operator. We can
exploit this property to associate each error type with a different error syndrome.

So to sum up, we can either pick a stabilizer as a random finite Abelian sub-group
of the Pauli group and then see whatever errors it protects against. Alternatively,
we can fix the set of errors we want to protect against and use them to induce an

Table 14.6 Two operators anti-commute when {A,B} = A · B + B · A = 0. Each error operator,
ENone, EB5, EBP5, . . . etc., describing a single error amongst five qubits, anti-commutes with at
least one element of the stabilizer {S1, S2, S3, S4}. Furthermore, the pattern of anti-commutativity
is unique to each operator. This property can be exploited to associate each type of error with a
unique error syndrome

Error type Error operator {Eα, S1} = 0? {Eα, S2} = 0? {Eα, S3} = 0? {Eα, S4} = 0?

ENone 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 × × × ×
EB5 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X × × � ×
EBP5 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ X · Z × � � �
EP5 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ Z × � × �
EB4 1 ⊗ 1 ⊗ 1 ⊗ X ⊗ 1 × × × �
EBP4 1 ⊗ 1 ⊗ 1 ⊗ X · Z ⊗ 1 � × � �
EP4 1 ⊗ 1 ⊗ 1 ⊗ Z ⊗ 1 � × � ×
EB3 1 ⊗ 1 ⊗ X ⊗ 1 ⊗ 1 � × × ×
EBP3 1 ⊗ 1 ⊗ X · Z ⊗ 1 ⊗ 1 � � � ×
EP3 1 ⊗ 1 ⊗ Z ⊗ 1 ⊗ 1 × � � ×
EB2 1 ⊗ X ⊗ 1 ⊗ 1 ⊗ 1 × � × ×
EBP2 1 ⊗ X · Z ⊗ 1 ⊗ 1 ⊗ 1 � � × �
EP2 1 ⊗ Z ⊗ 1 ⊗ 1 ⊗ 1 � × × �
EB1 X ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 × × � �
EBP1 X · Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 � � � �
EP1 Z ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 � � × ×

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 603

acceptable stabilizer as the solution to a minimum hitting set problem. Given the
stabilizer, the quantum codewords it stabilizes, and the errors it protects against, can
be obtained automatically.

Next we see how the stabilizer formalism also simplifies the search for the re-
quired encoding and decoding circuits, and allows us to perform error correction
while staying entirely within the encoded basis.

14.6.7 Stabilizer-Based Error Correction: The Encoding Step

To protect a qubit |ψ〉 = α|0〉 + β|1〉 we encode it into the state |ψ〉L = α|0〉L +
β|1〉L using the Laflamme-Miquel-Paz-Zurek encoding circuit shown in Fig. 14.3.
Once in encoded form the logical qubit is protected against a single error amongst
any of the five qubits.

14.6.8 Stabilizer-Based Error Correction: Introduction of the
Error

We model the introduction of an error on our encoded state as the application of one
of the error operators, Eα ∈ E , our stabilizer is know to correct.

14.6.9 Stabilizer-Based Error Correction: Error Diagnosis &
Recovery

We use the same quantum circuit to perform the actual error correction as we use to
find the encoded basis states |0〉L and |1〉L. As illustrated in Fig. 14.8, we imagine
that we have an encoded state entering the circuit, which has been afflicted with an
unknown error, Eα ∈ E , where:

E = {ENone, EB5, EP5, EBP5, EB4, EP4, EBP4, EB3, EP3, EBP3, EB2, EP2, EBP2, EB1,

EP1, EBP1} (14.58)

which includes the possibly no error whatsoever. The circuit essentially measures
the eigenvalue of each element of the stabilizer, {S1, S2, S3, S4} with respect to
the incoming state Eα|ψ〉L. If the stabilizer element commutes with the (unknown)
error operator, the eigenvalue will be +1. But if the error-operator anti-commutes
with the element of the stabilizer, the eigenvalue will be −1. Thus, the pattern of
anti-commutativity can therefore be used as an error syndrome a b c d , which can
diagnose that the error afflicting |ψ〉L is Eα and hence the appropriate corrective
action needed to restore the state is E −1

α .

604 14 Quantum Error Correction

Fig. 14.8 Quantum circuit for error recovery based on the stabilizer formalism. An error-afflicted
encoded state, Eα |ψ〉L, enters the circuit. At this point we have no idea what error has occurred,
i.e., we do not know Eα . To discover the identity of Eα , we measure the eigenvalue of each element
of the stabilizer with respect to the state fed into the circuit. If the error-afflicted state commutes
with the element of the stabilizer, the eigenvalue is +1. If, on the other hand, the error-afflicted
state anti-commutes with the element of the stabilizer, the eigenvalue is −1. Hence, the pattern of
anti-commutativity revealed in the results a b c d , provides sufficient information diagnose what
error occurred. That is, after these measurements we now know Eα . It is then straightforward to
predict the error-restoration operation, E −1

α , needed to restore the encoded qubit to its pristine,
and still encoded, state |ψ〉L. Note that during this error-diagnosis and error-correction process
the single logical qubit remains in its encoded basis throughout. Hence, the stabilizer formalism is
especially good because we never need to re-expose the logical qubit in an unprotected form at any
time

Notice that, whereas in the original Laflamme-Miquel-Paz-Zurek scheme we pe-
riodically decoded the encoded state back to a single logical qubit, and thereby
exposed it to an uncorrectable error, in the stabilizer formalism once the state has
been encoded it is never re-exposed as a single logical qubit. Rather, in the stabi-
lizer formalism, the whole error-correction procedure takes place within the encoded
subspace. This is a very smart thing to do because it avoids having to periodically
re-expose the logical qubit in order to error correct it.

14.6.10 Stabilizers for Other Codes

An [n, k, d] quantum code (with square parentheses and a lowercase letter k) is a
special notation for quantum stabilizer codes. Such as code uses n physical qubits

14.7 Bounds on Quantum Error Correcting Codes 605

to encode k < n logical qubits within a K = 2k-dimensional codespace and has
minimum distance d . Hence, the number of 1-qubit changes needed to get from
one codeword to another is at least d , which means that the code can correct up to
t = � d−1

2 � single qubit errors.
The 9-qubit Shor, the 7-qubit Steane, and the 5-qubit Laflamme-Miquel-Paz-

Zurek codes are respectively [9,1,3], [7,1,3], and [5,1,3] stabilizer codes, which
can each correct at most t = �(3 − 1)/2� = 1 error within their respective blocks of
9, 7, and 5 physical qubits.

A stabilizer for Shor’s 9-qubit code is [141]:

S1 = ZZ1111111

S2 = Z1Z111111

S3 = 111ZZ1111

S4 = 111Z1Z111

S5 = 111111ZZ1

S6 = 111111Z1Z

S7 = XXXXXX111

S8 = XXX111XXX

(14.59)

and one for Steane’s 7-qubit code is [141]:

S1 = 111XXXX

S2 = X1X1X1X

S3 = 1XX11XX

S4 = 111ZZZZ

S5 = Z1Z1Z1Z

S6 = 1ZZ11ZZ

(14.60)

Notice that the stabilizers for the Shor and Steane codes have only X’s or only
Z’s within their respective stabilizer elements, making them so-called Calderbank-
Shor-Steane (“CSS”) codes. By comparison, the 5-qubit code is also a stabilizer
code but it is not a CSS code because some of its stabilizer elements mix Z’s and
X’s together.

14.7 Bounds on Quantum Error Correcting Codes

One can gain an intuition for the tradeoffs between the number of physical qubits
(n), the number of logical qubits (k), and the maximum number of correctable er-
rors t = � d−1

2 � by finding those tuples of values of n, k, and d that simultaneously
satisfy three important bounds on quantum codes: the quantum Hamming, Gilbert-
Varshamov and Singleton bounds.

606 14 Quantum Error Correction

14.7.1 Quantum Hamming Bound

The quantum Hamming bound was discovered by Artur Ekert and Chiara Macchi-
avello [168]. It places an upper bound on the number of codewords we can have in a
quantum code if the code has to be guaranteed to be able to encode k logical qubits
in n physical qubits and protect against up to t single qubit errors.

The bound is obtained via a counting argument on the number of buggy states
in comparison to the number of states we can fit in a Hilbert space of dimension
2n. The argument goes as follows. If a code is to correct up to t errors, then each
codeword must be able to tolerate up to t errors and yet still be distinct from every
other codeword and every other potentially corrupted codeword. We can therefore
imagine each codeword as being surrounded by a “cloud” of buggy states that have
anywhere from zero to t errors in them. All these states need to be distinct from the
other buggy states in similar clouds around all the other codewords. All these buggy
codewords have to fit within our Hilbert space of n qubits.

Making this argument more quantitative, consider a single codeword of length
n qubits. We can introduce i errors to this codeword by picking a particular subset
of i out of n qubits, and assign single qubit errors to those qubits in all possible

ways. There are
(

n

i

)
ways to pick a particular subset of i qubit locations, and there

are three types of error (X, Z, and (X · Z)) possible per location. Hence, there are

3i
(

n

i

)
states describing i errors to our codeword. But we want to protect against up

to t errors. Therefore, we can think of each codeword as being surrounded by a cloud

of
∑t

i=0 3i
(

n

i

)
“buggy” codewords. There are a total of 2k such codewords. And the

union of all these clouds of states needs to fit within the dimension of our n-qubit
Hilbert space. Hence, we arrive at the quantum Hamming bound which places an
upper bound on the number of codewords (2k) or equivalently the number of logical
qubits (k), that we can have in a quantum code that uses n physical qubits. Hence,
for a non-degenerate [n, k, d] code we must have:

2k
t∑

i=0

3i

(
n

i

)
≤ 2n (14.61)

where t = � d−1
2 �. Note that this bound gives a necessary condition for the existence

of a quantum code and is really no more than a generalization of the argument we
gave in Sect. 14.4.1 to deduce the allowed relationships between n, k and d for the
5-qubit Laflamme-Miquel-Paz-Zurek code.

14.7.2 Quantum Singleton Bound

The quantum Singleton bound was discovered by Raymond Laflamme and Manny
Knill [292]. This states that if a pure or impure [n, k, d] code exists then:

n − k ≥ 4�(d − 1)/2� (14.62)

14.7 Bounds on Quantum Error Correcting Codes 607

The quantum Singleton bound for pure codes was strengthened, slightly, by Calder-
bank, Rains, Shor, and Sloane [95] to:

n − k ≥ 2(d − 1) (14.63)

This reduces to the Laflamme and Knill formula when d is odd, but is slightly
stronger when d is even. It is also a necessary condition for the existence of a quan-
tum code.

14.7.3 Quantum Gilbert-Varshamov Bound

The quantum Gilbert-Varshamov bound was discovered by Artur Ekert and Chiara
Macchiavello [168]. It states that for an [n, k, d] code:

2k

2t∑
i=0

3i

(
n

i

)
≥ 2n (14.64)

where the number of errors that can be corrected, t , is given by t = � d−1
2 �. This

bound gives a sufficient condition on the existence of a code but it is not necessary.
The bound states that the number of codewords times the number of buggy code-
words reachable in up to 2t errors must not be smaller than the dimension of the
Hilbert space for n physical qubits.

14.7.4 Predicting Upper and Lower Bounds on Additive Codes

The quantum Hamming, Singleton, and Gilbert-Varshamov bounds can be used to
find upper and lower bounds on the minimum distance d of feasible quantum codes.
This in turn bounds the maximum possible number of errors such codes can cor-
rect, t , because we have t = � d−1

2 �. Note that the quantum Hamming and Singleton
bounds gives us an upper bound on d , whereas the quantum Gilbert-Varshamov
bound gives us a (loose) lower bound on d . Nevertheless, the bounds are tight
enough that we can use them to gain a rough intuition for the tradeoffs between
the number of physical qubits, the number of logical qubits, the minimum distance
and hence the maximum number of correctable errors.

Table 14.7 shows the approximate upper and lower bounds on the minimal dis-
tance d in any [n, k, d] pure quantum error-correcting code as constrained by the
quantum Hamming, quantum Singleton and quantum Gilbert-Varshamov bounds.
The lower bounds are obtained from the quantum Gilbert-Varshamov inequal-
ity (14.64) and the upper bound is obtained from the lesser of the quantum Hamming
(14.61) and quantum Singleton bound for pure codes (14.63). In Table 14.7 when
a range of values is given these are lower and upper bounds on d . As the quan-
tum Hamming and quantum Singleton bound provide a necessary condition on d ,

608 14 Quantum Error Correction

Ta
bl

e
14

.7
A

pp
ro

xi
m

at
e

bo
un

ds
on

th
e

hi
gh

es
ta

ch
ie

va
bl

e
m

in
im

al
di

st
an

ce
d

fo
ra

ny
pu

re
[n

,
k
,
d
]

qu
an

tu
m

er
ro

r-
co

rr
ec

tin
g

co
de

.T
he

up
pe

rb
ou

nd
is

ob
ta

in
ed

by
fin

di
ng

th
e

sm
al

le
st

va
lu

e
of

di
st

an
ce

d
,f

or
gi

ve
n

va
lu

es
of

n
an

d
k

,a
bl

e
sa

tis
fy

th
e

qu
an

tu
m

H
am

m
in

g
bo

un
d

(1
4.

61
)

an
d

th
e

qu
an

tu
m

Si
ng

le
to

n
bo

un
d

(f
or

pu
re

co
de

s)
(1

4.
63

)
si

m
ul

ta
ne

ou
sl

y.
T

he
se

pr
ov

id
e

a
ne

ce
ss

ar
y

up
pe

r
bo

un
d

on
d

fo
r

th
e

ex
is

te
nc

e
of

an
[n

,
k
,
d
]

co
de

.H
en

ce
th

e
st

at
ed

up
pe

r
bo

un
d

on
d

is
a

ha
rd

co
ns

tr
ai

nt
.T

he
lo

w
er

bo
un

d
is

ob
ta

in
ed

by
fin

di
ng

th
e

la
rg

es
tv

al
ue

of
d

,f
or

gi
ve

n
va

lu
es

of
n

an
d

k
,a

bl
e

sa
tis

fy
th

e
qu

an
tu

m
G

ilb
er

t-
V

ar
sh

am
ov

bo
un

d.
T

he
la

tte
r

bo
un

d
is

su
ffi

ci
en

tt
o

gu
ar

an
te

e
th

e
ex

is
te

nc
e

of
an

[n
,
k
,
d
]

co
de

bu
ti

ti
s

no
tn

ec
es

sa
ry

.H
en

ce
,t

he
lo

w
er

bo
un

d
gi

ve
n

is
lo

os
e

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

3
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

4
3

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

5
3

3
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

6
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

7
3–

4
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
3–

4
3–

4
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
5

3–
4

3–
4

3–
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

10
5–

6
5

3–
4

3–
4

3–
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

11
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0

12
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

13
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0

14
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

15
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0

16
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

17
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0

18
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

19
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0

20
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

14.7 Bounds on Quantum Error Correcting Codes 609

Ta
bl

e
14

.7
(C

on
tin

ue
d)

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

21
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0

22
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1
1

0

23
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1
1

24
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1

25
7–

12
7–

12
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

26
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2

27
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

28
7–

12
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2

29
9–

14
7–

12
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

30
9–

14
9–

14
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4

610 14 Quantum Error Correction

Fig. 14.9 Plot of the
approximate upper bounds on
minimal distance d of an
[n, k, d] quantum error
correcting code for
1 ≤ n ≤ 30 and 0 ≤ k ≤ 28.
The data correspond to the
upper bounds given in
Table 14.7, which come from
finding the largest value of d ,
for given values of n and k,
such that the quantum
Hamming bound, and
quantum Singleton bound are
satisfied simultaneously. This
is a necessary condition on
the existence of the
corresponding [n, k, d] code,
so this upper bound on the
minimal distance cannot be
beaten

Fig. 14.10 Plot of the
approximate (very loose)
lower bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1 ≤ n ≤ 30 and
0 ≤ k ≤ 28. The data
correspond to the lower
bounds given in Table 14.7,
which come from finding the
smallest value of d , for given
values of n and k, such that
the quantum
Gilbert-Varshamov bound is
satisfied. This is only a
sufficient condition on the
existence of the
corresponding [n, k, d] code,
so this lower bound on the
minimal distance can be
beaten

whereas the quantum Gilbert-Varshamov bound provides a sufficient condition on d ,
the Hamming and Singleton bounds take precedence on upper bounding d .

The upper and lower bound data on predicted minimum distance in Table 14.7 is
visualized in Figs. 14.9 and 14.10.

14.8 Non-additive (Non-stabilizer) Quantum Codes 611

14.7.5 Tightest Proven Upper and Lower Bounds on Additive
Codes

It is naturally to ask whether it is possible that more efficient codes could exist,
i.e., codes that can correct more than one error per block. Indeed they can, but the
complexity of the quantum circuits needed to implement them grows rapidly.

Using far more sophisticated methods, one can obtain tighter upper bounds, as
well as proper lower bounds, on the highest achievable minimal distance d of any
[n, k, d] quantum error-correcting code (see Table 14.8). Comparing Table 14.8 with
(the much more easily obtained) Table 14.7 shows the estimated bounds on d from
necessary and sufficient conditions are pretty good.

Plots of the tightest proven upper and lower bounds on minimum distance are
shown in Figs. 14.11 and 14.12.

14.8 Non-additive (Non-stabilizer) Quantum Codes

The original 9-qubit Shor, 7-qubit Steane, and the 5-qubit Laflamme-Miquel-Paz-
Zurek codes were all additive (stabilizer) codes. However, it is possible to have
codes that possess a fundamentally different structure than the stabilizer codes.
These so-called “non-additive” codes may be harder to find, but they are potentially
more efficient than the stabilizer codes.

The first non-additive quantum error correcting code, that was provably better
than an additive (stabilizer) code was the (5,6,2) code discovered using numerical
techniques by E.M. Rains, R.H. Hardin, P.W. Shor, and N.J.A. Sloane in 1997 [407].
This generalizes to a family of codes of the form (2n + 1,3 × 22n−3,2). Thomas
Beth and Markus Grassl showed that the (5,6,2) code could be obtained from
union of additive codes [212]. That is, if C1 and C2 are respectively (n,K1, d1) and
(n,K2, d2) quantum codes, the union of these codes is an (n,K1 +K2,min(d1, d2))
quantum code such that the set of errors the new code can correct is the intersection
of the sets of errors the old codes could correct. Note that, whereas the dimension
for the codespace of an additive code is always a power of two, the dimension of the
codespace of a non-additive code built from the union of two additive codes need
not be a power of two.

The first non-additive code found that can outperform the optimal [5,1,3]
(Laflamme-Miquel-Paz-Zurek) stabilizer code was the (9,12,3) non-additive code
found by Sixia Yu, Qing Chen, C. Lai, and C. Oh [554].

14.9 Fault-Tolerant Quantum Error Correcting Codes

The discussions of quantum error correcting codes given in the preceding sections
have made implicit assumptions about where and when errors occur. For example,

612 14 Quantum Error Correction

Ta
bl

e
14

.8
K

no
w

n
bo

un
ds

on
th

e
hi

gh
es

ta
ch

ie
va

bl
e

m
in

im
al

di
st

an
ce

d
fo

r
an

y
[n

,
k
,
d
]

qu
an

tu
m

er
ro

r-
co

rr
ec

tin
g

co
de

[2
11

]

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

3
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

4
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

5
3

3
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

6
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

7
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
4

3
3

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

9
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

10
4

4
4

3
3

2
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

11
5

5
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0

12
6

5
4

4
4

3
3

2
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0

13
5

5
4

4
4

3–
4

3
3

2
2

2
1

1
1

0
0

0
0

0
0

0
0

0
0

14
6

5
5

4–
5

4
4

4
3

3
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

15
6

5
5

5
4

4
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0

16
6

6
6

5
5

4–
5

4
4

3
3

3
2

2
2

2
1

1
0

0
0

0
0

0
0

17
7

7
6

5–
6

5
4–

5
4–

5
4

4
4

3
3

2
2

2
1

1
1

0
0

0
0

0
0

18
8

7
6

5–
6

5–
6

5
5

4
4

4
3

3
2

2
2

2
2

1
1

0
0

0
0

0

19
7

7
6

5–
6

5–
6

5–
6

5
4–

5
4

4
3–

4
3

3
2

2
2

2
1

1
1

0
0

0
0

20
8

7
6–

7
6–

7
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

2
1

1
0

0
0

14.9 Fault-Tolerant Quantum Error Correcting Codes 613

Ta
bl

e
14

.8
(C

on
tin

ue
d)

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

21
8

7
6–

7
6–

7
6–

7
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

3
2

2
2

1
1

1
0

0

22
8

7–
8

6–
8

6–
7

6–
7

6–
7

5–
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

2
1

1
0

23
8–

9
7–

9
7–

8
6–

8
6–

7
6–

7
5–

7
5–

6
5–

6
4–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2
1

1
1

24
8–

10
8–

9
7–

8
7–

8
6–

8
6–

7
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2
2

1

25
8–

9
9

7–
8

7–
8

7–
8

7–
8

6–
7

5–
7

5–
7

5–
6

5–
6

4–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

1

26
8–

10
9

8–
9

8–
9

8
7–

8
6–

8
6–

8
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2

27
9–

10
9

9
9

8–
9

7–
8

6–
8

6–
8

6–
8

6–
7

5–
7

5–
6

5–
6

5
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

28
10

10
10

9
8–

9
7–

9
6–

8
6–

8
6–

8
6–

8
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4

4
4

3–
4

3
3

2
2

29
11

11
10

9–
10

8–
9

7–
9

7–
9

6–
8

6–
8

6–
8

6–
7

5–
7

5–
6

5–
6

5–
6

4–
5

4–
5

4
4

4
3–

4
3

3
2

30
12

11
10

9–
10

8–
10

8–
9

7–
9

7–
9

7–
8

6–
8

6–
8

6–
7

6–
7

5–
6

5–
6

5–
6

5
4–

5
4

4
4

3–
4

3
3

614 14 Quantum Error Correction

Fig. 14.11 Plot of the known
upper bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1 ≤ n ≤ 30 and
0 ≤ k ≤ 28. The data
correspond to the upper
bounds given in Table 14.8,
which come from Markus
Grassl’s curated database of
code parameters [211]

Fig. 14.12 Plot of the known
lower bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1 ≤ n ≤ 30 and
0 ≤ k ≤ 28. The data
correspond to the lower
bounds given in Table 14.8,
which come from Markus
Grassl’s curated database of
code parameters [211]

in the original formulation of the 5-qubit quantum error-correcting code, given in
Sect. 14.4, error correction required us to map the encoded (protected) logical qubit
back to its unprotected form periodically. Once error-free, the logical qubit would be

14.9 Fault-Tolerant Quantum Error Correcting Codes 615

re-encoded to protect it again. If the error occurs when the qubit is back in its logical
(unprotected) state the logical qubit will be vulnerable to irreversible corruption. For
this strategy to work, we must implicitly assume that no errors can arise while the
qubit is re-exposed in the unencoded basis. If this assumption holds, we will be able
to store the state of a logical qubit indefinitely without error. Unfortunately, such an
assumption is clearly unjustified by the physics of the situation. There is no good
reason to expect errors should only afflict encoded qubits. However, by using the
stabilizer formulation of the 5-qubit code, you will remember that error correction
can be performed entirely within the encoded basis, never needing to re-expose
the logical qubit to potential uncorrectable errors. Nevertheless, this is still not yet
a complete solution, because we don’t just want to protect quantum information
when in storage, but also during quantum computation itself. This means that we
need perform gate operations directly on the encoded data.

The second assumption we need to question is where do the errors occur? So
far, we have implicitly assumed that the gates implementing the error correction
operations are perfect. But what happens if they are imperfect? Can we error correct
a quantum computation using imperfect quantum gates?

These concerns prompted further research into quantum error correcting codes
that revealed how to them work even when the underlying error correction hardware
is itself imperfect. The result is so-called fault-tolerant quantum error correction
[209, 270, 400, 457].

A quantum circuit is deemed “fault-tolerant” when it can be made to output the
correct result even though errors arise during its operation. John Preskill of the Cal-
ifornia Institute of Technology has identified five principles of quantum circuit de-
sign, distilled from Peter Shor’s original paper on fault-tolerant quantum computa-
tion [457], which will make for fault-tolerant quantum circuits [399].

1. Don’t use the same ancilla qubit twice. The intuition behind this principle is
that if an ancilla qubit becomes corrupted, we want to limit the damage it can do
by limiting the number of other gate operations that rely on the same ancilla. Thus,
examples of good and bad quantum circuit structures that use ancillae are shown in
Fig. 14.13. Error propagation in quantum circuits is much more problematic than in
classical circuits because in controlled quantum gates errors can propagate in both
directions, i.e., from control qubits to targets (as happens classically) and from target

Fig. 14.13 The first principle
of fault-tolerant quantum
computing: “do not use the
same ancilla twice.” This
suppresses correlated error
propagation from bad ancillae

616 14 Quantum Error Correction

Fig. 14.14 The second principle of fault-tolerant quantum computing: “Copy the errors not the
data.” The ancillae measurements must not extract any information about the logical state of the
qubits being protected, only the errors that have afflicted them

qubits to controls (which does not happen classically). So quantum controlled gates
are especially susceptible to the spread of error.

2. Error syndrome measurements should reveal the error but not the data. We
need to be careful to prepare the ancilla qubit in such a way that when we measure
the ancilla to obtain an error-syndrome we do not learn anything about the state
we seek to protect, but only an error that may have afflicted it. This requires us to
prepare the ancilla in a special entangled state prior to linking it to the state we wish
to protect. A diagram of this is shown in Fig. 14.14.

3. Verify when encoding a known quantum state. The potential for corruption
is greatest when qubits are exposed in their raw state before they been protected
using some quantum error-correcting encoding. However, whenever we do know
the complete description of the quantum state with which we are dealing, and we
do know the operation we intend to perform on it, we have an opportunity to verify
that we synthesized the correct state before using it further. This situation can arise,
e.g, when we start off with some ancillae qubits in a known state, and we entangle
them in some prescribed way. In such circumstances it is worth taking the time to
verify the entangled state is correct before making use of it in subsequent quantum
computations. For example, if our intent is to encode three physical qubits |0〉|0〉|0〉
into some encoded block of three qubits, which we will call |0̄〉, we might perform
a test to convince ourselves that we synthesized the block |0̄〉 correctly before using
it in subsequent quantum computations. This idea is illustrated in Fig. 14.15.

4. Repeat operations. Figure 14.15 also illustrates a fourth principle of fault-
tolerant quantum computation. Just because we have verified the encoding of a state
once does not mean necessarily that it is correct as our error syndrome measure-
ment could be faulty. It would be just as disastrous to correct an error, or non-error,
in the wrong way as it would to miss an error in the first place. However, by re-
peating measurements, we can increase our confidence that the error syndrome is
actually what we think it is. Thus, repeating quantum measurements to a good habit
as illustrated in Fig. 14.15.

14.9 Fault-Tolerant Quantum Error Correcting Codes 617

Fig. 14.15 The third
principle of fault-tolerant
quantum computing: “Verify
when encoding a known
quantum state.” A known
state should be verified
(perhaps repeatedly) before
being deemed fit for use

5. Stay in the encoded basis. The 9-qubit, 7-qubit and 5-qubit quantum codes we
described above are, as presented thus far, geared towards error-correcting qubits
while they are inactive, i.e., merely stored in memory. However, typically, we want
to do more than merely store qubits—we want to compute with them. That is, we
anticipate needing to apply quantum logic gates in order to perform a purposeful
quantum computation. However, the theory of quantum error correcting codes out-
lined above, does not describe how to perform quantum gates on the encoded qubits.
Instead, when one wants to perform a quantum gate, one would need to map the en-
coded qubits back to the logical basis, apply the quantum gate, and then re-encode
the result back into the encoded basis. Such a strategy is at least cumbersome, and
worse, periodically exposes the qubits to corruption as the quantum gates are being
applied. To circumvent this problem Wojciech Zurek and Raymond Laflamme, and
Peter Shor independently devised a schemes for performing quantum gate opera-
tions on the encoded qubits directly, without removing them from the safety of the
encoded basis [457, 566].

Obeying these five principles of fault-tolerant quantum circuit design will help to
ensure that a quantum computer will operate reliably.

14.9.1 Concatenated Codes and the Threshold Theorem

So far, we have seen that quantum error codes are possible in principle, and codes
that can correct up an arbitrary number of errors exist. Moreover, we have seen it
is possible to use such codes in an intelligent way by employing a fault-tolerant
architecture. Unfortunately, there is still a problem. Although it is indeed possible
to devise more complex quantum codes that can correct up to t errors in a block, the
complexity of the quantum circuits needed to implement such codes rises rapidly.
In fact, before long, we have to use so many gates that the probability of making an
error within the error correcting circuitry becomes higher than the probability of the
original error. So merely increasing the code complexity to correct for more errors
per block is not necessarily the best way to improve reliability.

618 14 Quantum Error Correction

Julia Kempe has provided the following intuitive analysis of the tradeoffs be-
tween how many errors a quantum error correcting code can correct and the com-
plexity of its required quantum circuitry [270]. If the original probability of failure
per gate operation or per measurement is ε then in the t -error resilient code the
failure rate would change to εt+1, which is good. But the price we pay is that the
number of gates needed in the error correction circuitry grows too, typically as some
polynomial in t , ta , with a > 1. So overall, the probability of having t + 1 errors
occur before error correction has completed grows as (taε)t+1. This expression is

minimized when t = cε− 1
a , for some constant c, and the value of the failure prob-

ability is then pfail ≥ exp(−caε− 1
a). If we repeat t -error resilient error correction

N times, the failure probability will therefore become Npfail = N exp(−caε− 1
a) =

exp(−ca(logN)ε− 1
a). For this overall failure probability to be much less than 1, we

will therefore need ε to scale as 1/(logN)a . In other words, the longer the com-
putation, the smaller ε needs to be. Unfortunately, this is not practical. Instead we
need an error correction scheme that allows the error probability per gate operation
to be held constant whilst allowing longer and longer computations are performed
reliably.

An alternative way to improve the reliability is to concatenate the simpler quan-
tum codes we know about [7, 11]. The idea is that each logical qubit is encoded in n

physical qubits (to make a “level-1” encoding), and each of these n physical qubits
are themselves encoded in n other physical qubits (to make a “level-2” encoding),
and so on. The number of levels of concatenation can be chosen so as to achieve
any desired probability in the correctness of the final result. Figure 14.16 shows a
schematic illustrating the basic idea.

It is fairly involved to calculate the exact effects of concatenation on the overall
reliability of the circuit, although people have done so for different physical schemes
and quantum computer architectures [31, 291, 350, 479, 484, 486]. In part, this is

Fig. 14.16 Schematic view of concatenated coding: each qubit is encoded in several qubits, which
are each encoded in several qubits, which are each encoded in several qubits, etc.

14.9 Fault-Tolerant Quantum Error Correcting Codes 619

because the details of the calculation depend upon many factors such as the ac-
tual code used, the error model assumed, the degree to which fault-tolerant design
principles have been followed, the architectural assumptions made, and the extent
to which opportunities for gate-parallelism have been exploited. However, a simple
back-of-the-envelope argument is sufficient to convey the main idea, that the use of
concatenation is beneficial provided the error probability per qubit per gate is less
than a certain threshold.

Think of it this way. Suppose we are using a code that encodes each logical qubit
in n physical qubits. The quantum error-correcting codes we looked at earlier can
correct a single arbitrary error (bit-flip, phase-flip, or joint bit-flip and phase-flip)
in a coding block. So for the logical qubit to be in error at the end of some error-
correcting cycle we will have had to have had two or more errors introduced into
a block. If the probability of an error per qubit per gate operation is p, then (since
all the 1-qubit errors are fixable), by using the code the error probability becomes
plevel−1

fail = cp2 where c counts the number of ways pairs of errors can be inserted
amongst the physical qubits in a coding block.

Now concatenate this process. For each physical qubit in the coding block, imag-
ine using the same code to encode it into n more physical qubits. Now n2 phys-
ical qubits are involved in encoding one logical qubit. What will it take for our
logical qubit to be in error now? Let us call this the level-2 encoding. We have
plevel−2

fail = c(plevel−1
fail)2 = c3p4.

Repeating concatenation steps in this fashion we can write down the error prob-
ability as a function of the number of levels of concatenation as follows:

plevel−1
fail = cp2

plevel−2
fail = c(plevel−1

fail)2 = c3p4

plevel−3
fail = c(plevel−2

fail)2 = c7p8

...

plevel−k
fail = c(p

level−(k−1)
fail)2 = c2k

p2k

c

(14.65)

Thus, successive levels of concatenation will tend to suppress the error in the logical
qubit provided c p < 1, where p is the probability of error per physical qubit per gate
operation. Hence, there is a threshold in error probability of:

p < pthreshold ≡ 1

c
(14.66)

in which case the error will be reduced with successive levels of concatenation.
Hence, provided this error probability per qubit per gate threshold is met, it will be
possible to implement quantum computations of arbitrary length to arbitrary accu-
racy. That is, one can quantum compute forever without error!

But what is the overhead in gate count we have to pay to achieve k levels of con-
catenation? Again following Julia Kempe’s intuitive argument [270], if the circuit

620 14 Quantum Error Correction

we wish to implement has N gates when done without error correction, and we de-
sire a final success probability of order 1 − p, then in such a circuit each gate has
to have a failure probability of less than or equal to p/N because errors compound.
Hence, if we concatenate k times we will require:

plevel-k
fail = c2k

p2k

c
= pthreshold

(
p

pthreshold

)2k

≤ p

N
(14.67)

which implies

2k ≤ log(Nεth/p)

log(εth/ε)
(14.68)

So after k levels of concatenation, each gate turns into Gk gates where:

Gk = 2
k logG≤(

log(Nεth/p)

log(εth/ε)
)logG = poly(logN) (14.69)

and so its final size will be N poly(logN), which is only polylogarithmically larger.
Opinions as to actual values of this error threshold have varied widely over the

years. Initially, error rates per gate of around 10−4–10−7 were thought necessary,
but the threshold has steadily been climbing [31, 291, 350, 400, 479, 484, 486]. The
truth is, although we have talked about the threshold, in reality it is not unique: one
can obtain different thresholds if one specializes the theory to different quantum
computer architectures. Such considerations take into account the specific char-
acteristics of different physical embodiments of quantum information processing
wherein some error mechanisms are more prevalent than others. If one does this,
one can obtain different assessments of the error rate per gate operation needed to
sustain quantum computations of arbitrary length. Some recent studies suggest in
certain architectures and schemes, the threshold could be as high as 3% [291].

14.10 Errors as Allies: Noise-Assisted Quantum Computing

We end this chapter with an observation. The prevailing opinion of quantum com-
puter scientists is that quantum error correction is essential to achieving a useful
quantum computer. However, is this necessarily true? For certain computations,
such as factoring composite integers, where we seek an exact solution that is ei-
ther plainly right or plainly wrong, we are indeed obliged to imbue our quantum
computations with the ability to either avoid errors (e.g., using decoherence-free
or topological encodings we shall describe in Chap. 15) or undo errors (e.g., using
quantum error correcting codes). But there are many other computations in which
we seek not a right or wrong answer, but instead, a “pretty good” answer. For ex-
ample, in a maximum satisfiability problem, an ideal solution is one that satisfies
the greatest number of constraints. However, in practice, we might be content with a
solution that comes close to this ideal but not quite. In this case, the pragmatic mea-
sure of whether a quantum computer is better than a classical computer, is whether

14.11 Summary 621

it finds an equally good, i.e., equally sub-optimal, solution in less time, or whether
it finds a better, albeit still sub-optimal, solution in the same time as required by a
classical computer. Given the relative importance and ubiquity of such problems in
comparison to integer factorization, a greater degree of investigation is warranted.

Moreover, surprisingly, there are a handful of results that suggest that noise, dis-
sipation and decoherence can sometimes be an ally of quantum computation! For
example, noise can be harnessed productively in entangled state preparation [342,
551], to effect quantum gate operations [39–41], and to enhance quantum transport
in networks including, e.g., the light harvesting structures in plants [105, 359, 394,
413, 414]. It seems worthwhile to pursue such avenues to determine whether there is
a strategy for quantum computation that makes noise a friend rather than an enemy.

14.11 Summary

There is an inherent contradiction amongst the ideal requirements for a quantum
computing device. On the one hand the machine needs to be well isolated from the
external world to permit it to evolve unitarily while executing some desired quantum
computation. On the other hand, the machine needs to be strongly coupled to the ex-
ternal world to allow us to initialize it in an arbitrary starting state, or command it to
perform a particular sequence of unitary gate operations. Switching the interaction
with the external world on and off cleanly is extremely challenging experimentally.
Hence errors are likely to arise in real quantum computing hardware.

In this chapter we have looked at several approaches to dealing with errors in
quantum computations. We found that it is not as easy to detect an error in a quantum
computation as it is in a classical computation because errors may exist along a
continuum of possibilities and our ability and we are not even allowed to read a
corrupted state directly, because such direct observations would make matters worse
rather than better.

In the early days of quantum computing it was felt that such obstacles appeared
to preclude the possibility of error correcting codes for quantum information. How-
ever, it turns out that quantum error correcting codes are possible. The trick is to
entangle the qubit whose state we want to protect (the logical qubit) with several
other physical qubits (i.e., ancillae) in such a manner that subsequent measurements
on the ancillae qubits will reveal what error has afflicted the encoded data, and
hence the corrective action needed to restore the logical qubit to its correct state.
Crucially, these measurements on the ancillae only reveal information about the er-
ror and nothing about the state we wish to protect. Once the error is known it can be
undone using the appropriate inverse unitary operation.

Various families of quantum codes are now known. We can estimate the tradeoffs
different codes make regarding the number of logical qubits protected, the number
of physical qubits into which they are encoded, and the maximum number of er-
rors that can be corrected by way of the quantum Hamming, Singleton and Gilbert-
Varsharmov bounds. Sometimes tighter bounds have now been determined for many
codes using more sophisticated methods. A database of known results is maintained

622 14 Quantum Error Correction

by Markus Grassl. The best code able to protect a logical qubit against a single bit-
flip, phase-flip, or joint bit flip and phase flip, is the Laflamme-Miquel-Paz-Zurek
5-qubit code. This code saturates the quantum Hamming bound and is optimal. We
gave complete circuits for the encoding and decoding stages of the 5-qubit code. We
also showed the codewords used for less efficient codes that were discovered before
the 5-qubit code.

In our original formulation of the 5-qubit code, the encoded qubit had to be
mapped back to the unencoded (logical) basis periodically in order for he the error
correction to be performed. This exposes the logical qubit to uncorrectable errors
while it is back in the unencoded basis. We described how the stabilizer formalism
can combat this by performing error correction while staying entirely within the
encoded basis.

An obvious issue with quantum error correction is that the error-correcting cir-
cuitry may itself introduce more errors. For quantum error correction to be truly
viable, we need to be able to use imperfect error correction to achieve perfect com-
putation. Fortunately, through a combination of fault-tolerant circuit design prin-
ciples, and the use of concatenated coding, we showed that coding schemes can
be devised that, in principle, permit error-correctable quantum computations of ar-
bitrary length. We showed that to achieve such concatenated coding schemes the
error probability per qubit per gate operation needs to be below a critical threshold.
This threshold is sensitive to the error model, architecture, and physical embodiment
used. However, schemes now exist that suggest error rates as high as 3% might be
tolerable.

Two relatively new directions for handling errors in quantum computing are the
use of noise sources as an ally in quantum computation, and the use of decoherence-
free subspaces and topological quantum effects to make quantum hardware that is
immune to errors. We shall examine such topics in the next chapter in the context of
alternative models of quantum computation.

14.12 Exercises

14.1 Prove that any 2×2 matrix can be written as a weighted sum of Pauli matrices
according to:

(
a b

c d

)
= a + d

2
1 + b + c

2
X + i (b − c)

2
Y + a − d

2
Z (14.70)

See Sect. 2.4.1.1 for a definition of the Pauli matrices.

14.2 Write down the operators that describe the following errors afflicting a 5-qubit
state.

(a) A bit-flip on the first qubit.
(b) A phase-flip and the fifth qubit.

14.12 Exercises 623

(c) A joint bit-flip and phase-flip and the third qubit.
(d) A bit flip on the second qubit and phase-flip on the fourth qubit.

14.3 Consider a single logical qubit in a state |ψ〉 = α|0〉 + β|1〉 that interacts
with an environment describable using just two qubits—a simplification indeed.
Equation (14.31) says that the joint state of the qubit and its environment evolve as
follows:

U |ψ〉|E〉 = (α|0〉 + β|1〉) ⊗ |E00〉 + |E11〉
2

(no error)

+ (α|0〉 − β|1〉) ⊗ |E00〉 − |E11〉
2

(phase flip)

+ (α|1〉 + β|0〉) ⊗ |E01〉 + |E10〉
2

(bit flip)

+ (α|1〉 − β|0〉) ⊗ |E01〉 − |E10〉
2

(joint phase flip & bit flip)

Assuming the states |E00〉, |E01〉, |E10〉, and |E11〉 are orthonormal:

(a) Prove that the states of the environment |E00〉+|E11〉
2 , |E00〉−|E11〉

2 , |E01〉+|E10〉
2 , and

|E01〉−|E10〉
2 are orthonormal. What is the significance of this in terms of error

detection?
(b) Prove that the three qubit state U |ψ〉|E〉 is entangled? What is the significance

of this in terms of error determination?

14.4 The quantum circuit that encodes a single logical qubit in state |ψ〉 = α|0〉 +
β|1〉 within a 5-qubit entangled state according to Braunstein and Smolin’s version
of the Laflamme-Miquel-Paz-Zurek code is show in Fig. 14.3.

(a) Use the encoding circuit together with the fact that L = 1√
2

(1 −1
1 1

)
to compute

the unitary matrix corresponding to the Laflamme-Miquel-Paz-Zurek encoding
circuit.

(b) Verify that the circuit acting on input |ψ〉|0000〉 produces the state |ψ〉L =
α|0〉L + β|1〉L where the quantum codewords |0〉L and |1〉L are as given
by (14.40).

(c) Write down the state that results from a joint bit-flip and phase-flip on the fourth
qubit in the encoded state.

(d) Compute the unitary matrix corresponding to the Laflamme-Miquel-Paz-Zurek
decoding circuit. Note, this is the inverse of the encoding circuit.

(e) Use the decoding matrix of part (d) to error-correct the error-afflicted state of
part (c). What is the resulting state?

14.5 The quantum circuit that encodes a single logical qubit in state |ψ〉 = α|0〉 +
β|1〉 within a 5-qubit entangled state according to Braunstein and Smolin’s version
of the Laflamme-Miquel-Paz-Zurek code is show in Fig. 14.3. This circuit protects

624 14 Quantum Error Correction

against a single general error afflicting any of the five qubits in the encoded state.
However, to know a single general error has occurred we have to measure the error
syndrome. Prior to such measurements no error has yet occurred. Hence, so long
as we are not looking, multiple single qubit errors can afflict our state, but which
one is actually realized only becomes definite after we measure the error syndrome!
This is one of the amazing facts of quantum mechanics. This exercise will help you
appreciate this subtlety of quantum error correction:

(a) Determine the unitary matrix for Braunstein and Smolin’s version of the
Laflamme-Miquel-Paz-Zurek code.

(b) Use the unitary matrix of part (a) to compute the encoded form of the state
|ψ〉 = α|0〉 + β|1〉, i.e., |ψ〉L.

(c) Define two representative single qubit error operators as follows: Let EB1 be the
operator representing a bit-flip on the first qubit in the encoded state, and let
EP3 be the operator representing a phase shift on the third qubit in the encoded
state. Compute the state that results when both errors afflict the encoded qubit
equally.

(d) How many errors have afflicted the encoded qubit at this point? [Think carefully
before you answer].

(e) Now run the buggy state through the Laflamme-Miquel-Paz-Zurek decoding
circuit. What are the possible values for the error syndrome you can obtain?

(f) How does the measurement of the error syndrome affect the state of the unmea-
sured (top) qubit?

(g) Is it fair to say that the Laflamme-Miquel-Paz-Zurek code can correct multiple
errors? [Think carefully before you answer].

14.6 In the Laflamme-Miquel-Paz-Zurek 5-qubit code we allow joint bit flip and
phase flip errors to afflict a given qubit. However, does it make a difference whether
the bit flip or phase flip occurs first? To investigate this, answer the following ques-
tions:

(a) Show that a bit flip followed by a phase flip yields a strictly different result from
a phase flip followed by a bit flip.

(b) Show, however, that the error syndrome corresponding to a bit flip followed by
a phase flip on qubit i is the same as the error syndrome corresponding to a
phase flip followed by a bit flip on qubit i.

(c) Even though the error syndromes are the same, are the corrective actions needed
to restore the buggy qubit to its original state, the same? If not, does this means
that we cannot really error correct the qubit because we cannot distinguish be-
tween a bit flip followed by a phase flip from a phase flip followed by a bit
flip?

(d) Is there any measurement you could do that would tell you whether you had
restored a qubit to its original state |ψ〉 or whether you had restored it to −|ψ〉?

14.12 Exercises 625

14.7 Prove that the asymptotic form for the quantum Hamming bound (14.61) is
given by:

k

n
≤

(
1 − t

n
log2 3 − H

(
t

n

))
(14.71)

where H is the entropy H(x) = −x log2 x − (1 − x) log2(1 − x).

14.8 Prove that the asymptotic form for the quantum Gilbert-Varshamov bound
(14.64) is given by:

k

n
≥

(
1 − 2t

n
log2 3 − H

(
2t

n

))
(14.72)

where H is the entropy H(x) = −x log2 x − (1 − x) log2(1 − x).

14.9 Which of the following [n, k, d] codes are ruled out by the quantum Hamming,
quantum Gilbert-Varshamov, or quantum Singleton bounds?

(a) A [5,2,3] code
(b) A [7,2,3] code
(c) A [10,1,5] code
(d) A [10,5,3] code
(e) A [19,1,7] code
(f) A [20,1,11] code

14.1 Problem What is the “minimum length”, i.e., minimum value of n, of a k = 1
quantum error-correcting code that corrects t = 1,2,3,4,5,6,7,8,9 errors?

	Quantum Error Correction
	How Errors Arise in Quantum Computing
	Dissipation-Induced Bit Flip Errors
	Decoherence-Induced Phase Shift Errors
	Natural Decoherence Times of Physical Systems
	What Makes Quantum Error Correction so Hard?

	Quantum Error Reduction by Symmetrization
	The Symmetrization Trick
	Quantum Circuit for Symmetrization
	Example: Quantum Error Reduction via Symmetrization

	Principles of Quantum Error Correcting Codes (QECCs)
	Classical Error Correcting Codes
	Issues Unique to Quantum Error Correcting Codes
	Modeling Errors in Terms of Error Operators
	Protecting Quantum Information via Encoding
	Digitizing and Diagnosing Errors by Measuring Error Syndromes
	Reversing Errors via Inverse Error Operators
	Abstract View of Quantum Error Correcting Codes
	Minimal Distance of a Code
	n, K, d Quantum Error Correcting Code
	Additive (Stabilizer) Code Versus Non-additive Code
	Pure Versus Impure Code
	Degenerate Versus Non-degenerate Code
	Perfect Versus Imperfect Code

	Optimal Quantum Error Correcting Code
	Laflamme-Miquel-Paz-Zurek's 5-Qubit Code
	Error Operators for the 5-Qubit Code
	Encoding Scheme for the 5-Qubit Code
	Error Syndromes & Corrective Actions for the 5-Qubit Code
	Example: Correcting a Bit-Flip

	Other Additive Quantum Error Correcting Codes
	Shor's 9-Qubit Code
	Steane's 7-Qubit Code

	Stabilizer Formalism for Quantum Error Correcting Codes
	Group Theory for Stabilizer Codes
	The Stabilizer
	Example: A Stabilizer for the 5-Qubit Code
	Using a Stabilizer to Find the Codewords It Stabilizes
	How the Stabilizer is Related to the Error Operators
	Example: Stabilizers and Error Operators for the 5-Qubit Code
	Stabilizer-Based Error Correction: The Encoding Step
	Stabilizer-Based Error Correction: Introduction of the Error
	Stabilizer-Based Error Correction: Error Diagnosis & Recovery
	Stabilizers for Other Codes

	Bounds on Quantum Error Correcting Codes
	Quantum Hamming Bound
	Quantum Singleton Bound
	Quantum Gilbert-Varshamov Bound
	Predicting Upper and Lower Bounds on Additive Codes
	Tightest Proven Upper and Lower Bounds on Additive Codes

	Non-additive (Non-stabilizer) Quantum Codes
	Fault-Tolerant Quantum Error Correcting Codes
	Concatenated Codes and the Threshold Theorem

	Errors as Allies: Noise-Assisted Quantum Computing
	Summary
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

