
Chapter 11
Quantum Information

“One could caricature quantum information processing as the science of turning quantum
conundrums into potentially useful applications.”
– Nicolas Gisin1

Classical information theory, invented by Claude Shannon in 1948, addresses two
main issues: the degree to which a classical message (i.e., a sequence of symbols)
can be compressed, and the maximum rate at which reliable communications can be
sustained over a noisy communications channel. The quantitative statement regard-
ing the maximum compressibility of a symbol sequence is enshrined in Shannon’s
“Noiseless Source Coding Theorem”, and the quantitative statement regarding the
maximum rate of reliable communications, for a given noise level in the channel,
is enshrined in Shannon’s “Noisy Channel Coding Theorem”. Together, these theo-
rems laid the foundations for several multi-billion dollar industries such as telecom-
munications, cellular phone networks, internet, and disk drives. In fact, we make
use of information theory everyday but barely give it any thought whatsoever.

Since information theory was invented, engineers have refined communications
and data storage devices constantly so that they use fewer physical resources to
encode more information. This has enabled dramatic increases in the storage ca-
pacity of computer memories, significant reductions in the power consumption of
communications devices, and large increases in the rate at which information can
be exchanged. Indeed, codes are now known that operate surprisingly close to the
limits implied by Shannon’s theorems.

In this chapter we consider how information theory needs to be modified once we
use the quantum states of simple systems (such as photons) to encode symbols. We
might expect that some modification is necessary because, e.g., whereas symbols
encoded in the states of classical physical systems are guaranteed to be distinguish-
able, the same cannot be said for symbols encoded in the states of quantum systems
(e.g., if they are non-orthogonal). But, in fact, the reasons for modification runs
much deeper than this: Some elementary information processing operations, such

1Source: in “Quantum Cryptography” Reviews of Modern Physics, Volume 74, January (2002).
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as copying data, which are permitted on classical information are impossible when
attempted on quantum information. Conversely, other operations, such as teleporta-
tion, which are impossible when using classical information, can be achieved using
quantum information.

As in the case of computer science, this shift in the foundations of the field turns
out to have profound consequences. In particular, it leads to new (quantum) versions
of both the noiseless coding theorem and the noisy channel coding theorem. As
you shall see, quantum information theory forces us to revise our most cherished
assumptions regarding how information should behave.

11.1 What is Classical Information?

“It might even be fair to observe that the concept that information is fundamental is very
old knowledge of humanity, witness for example the beginning of the gospel according to
John: “In the beginning was the Word” ”
– Anton Zeilinger2

Most people have an intuitive understanding of what they mean by “informa-
tion”. It’s the stuff they read in newspapers, copy off blackboards, or absorb while
watching CNN etc. However, when pressed to give a more precise definition, I find
that most people equate “information” with the knowledge imparted during some
communicative act, i.e., what they know now that they didn’t know before. This
implicitly connects “information” with the meaning of a communication, i.e., its
qualitative aspects.

A problem with this position, is that it makes the “information” contained within
a message highly subjective, hard to quantify, and context dependent. For example,
the “information” two people may attach to a CNN report would then depend on
what they knew beforehand. It is tricky to make any mathematical headway with
such a subjective basis for a notion of “information”. So the commonsense view
of “information” as the knowledge imparted during some communicative act is not
very useful in a practical sense.

In 1948 Claude Shannon hit upon an alternative view of what we should mean
by “information”. He suggested the information within a message was simply the
minimum number of 0s and 1s needed to transmit it. In Shannon’s own words [14]:

“The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem. The significant aspect is
that the actual message is one selected from a set of possible messages. The system
must be designed to operate for each possible selection, not just the one which will
actually be chosen since this is unknown at the time of design.”

2Source: [560].
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Shannon’s insight was as ingenious as it was dehumanizing! By equating “in-
formation” with the minimal resources needed to represent a message, rather than
its knowledge content per se, it became possible to derive laws describing how the
amount of information would change under various operations, such as compress-
ing messages or sending them through noisy communications channels. In turn, such
understanding led to breakthroughs in data compression, encryption, and telecom-
munications.

Yet the cost is severe. Shannon’s perspective strips all humanity from the notion
of information. In Shannon’s theory a love letter might have the same information
content as a bus schedule, since his notion of information only addresses its quan-
titative aspects not its qualitative aspects. “Information” became something sterile,
lifeless, and devoid of passion or creativity. Nevertheless, the operational utility of
regarding information as the minimum number of 0s and 1s needed to encode some
message is currently the best handle we have on quantifying the elusive and abstract
notion of “information”.

11.1.1 Classical Sources: The Shannon Entropy

We can think of a source of classical information as a device that produces a stream
of classical symbols, such as lowercase letters, uppercase letters, numbers, and
punctuation marks. After large numbers of such symbols have been produced we
can determine their probability distribution. In principle, all sorts of subtle correla-
tions amongst the symbols are possible. For example, in English the symbol “q” is
followed, invariably, by the symbol “u” as in the words such “quantum”, “quest”,
“quibble”, and “quoff ”. Nevertheless, as each distinct symbol can be encoded as
a corresponding binary string, we can equally think of a source of classical infor-
mation as a device that produces sequences of bits, i.e., 0s and 1s. Consequently,
correlations amongst the symbols would then appear as correlations amongst sub-
sequences of bits. However, correlations at the level of individual bits would tend to
be diluted out.

How one sets up the mapping between symbols and bit strings makes a differ-
ence. For example, the frequencies with which different letters arise in written En-
glish are different (see Fig. 11.1) with “e” being the most common letter. Similarly,
one could treat whole words as “symbols” and plot their frequency of occurrence
too. Such statistical insights into the structure of natural languages have permit-
ted modern marvels such as smarter internet search engines (which exploit word
correlations to infer context and relevance) and statistical machine translation tools
(which can teach themselves to translate documents by being “trained” to infer the
mathematical correlations between the words and phrases found in matching pairs
of human-translations of large corpora of documents). When one makes the sensible
choice of using shorter bit strings to encode more frequent symbols in a language,
one finds that although we can model a source of the language as a stream of inde-
pendent, identically distributed, bits in which 0 occurs with probability p0 = p and
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Fig. 11.1 Letter frequency distribution in English

1 occurs with probability p1 = 1 − p, that for real languages there is an asymme-
try between p0 and p1. Ultimately, this asymmetry is what allows us to compress
messages.

Specifically, if 0 occurs with probability p0 = p and 1 occurs with probability
p1 = 1 − p, a “typical” n-bit message will have roughly np 0s and n(1 − p) 1s.
Hence, the number of “typical” bit strings is therefore:

(
n

np

)
= n!

(np)!(n − np)! (11.1)

Using Stirling’s formula N ! ≈ NNe−N
√

2πN for N � 1 we have loge N ! ≈
N loge N − N and so:

loge

(
n

np

)
≈ n loge n − n − (np loge np − np

+ (n − np) loge(n − np) − (n − np))

= n(−p loge p − (1 − p) loge(1 − p))

= 1

log2 e
n(−p log2 p − (1 − p) log2(1 − p))

≈ nH({p,1 − p}) (11.2)

where {pi} is the set of positive real numbers defining the probability with which
each possible symbol appears in the message. In the case of bit string messages there
are only two symbols, i = 0 and i = 1, and so the probabilities are simply p0 and
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p1 = 1 − p0. The function H({p0,p1}) = −∑1
i=0 pi log2 pi is called the Shannon

entropy. For symbols that are just single bits we have H({pi}) ≡ H({p0,p1}) ≡
H({p,1 − p}).

The choice of which base to use for the logarithm is somewhat arbitrary as differ-
ent choices only serve to re-scale the measure of information (or entropy) by a con-
stant factor. If we choose to use base 2, our scale has a certain natural feel to it. Using
base 2 logarithms, if p0 = p1 = 1

2 , an n-bit classical message would be completely
random (and hence incompressible) and would convey exactly nH({ 1

2 , 1
2 }) = n bits

of information. At the other extreme, a string of n identical bits, such as n 0s (and
hence devoid of any useful information), would convey nH({1,0}) = 0 bits of infor-
mation. So by choosing base 2, we arrive at a fairly intuitive scale for information.

11.1.2 Maximal Compression (Source Coding Theorem)

“Source coding” refers to the data compression problem. That is, given a source
producing a sequence of symbols in accordance with some a priori probability dis-
tribution, by what factor can we compress a typical message from this source with-
out corrupting it? If no information whatsoever is lost, the compression is said to be
“lossless”. But in many cases we are content with a “lossy” compression provided
the losses do not rise to a level we perceive as significant.

We can approach this question with the help of Shannon information theory.
Suppose we model the source as emitting a sequence of independent, identically
distributed, bits in which 0 occurs with probability p0 and 1 occurs with probability
p1 = 1 − p0. Then most n-bit messages generated by such a source will be close to
the “typical” messages. That is, they will have close to np0 0’s and n(1 − p0) 1’s.
Therefore, we need only worry about how sending “typical” messages. So rather
than there being O(2n) messages to worry about, we only really need to figure out
how to handle O(2nH({p0,p1})) typical messages. All we need to do is to assign a
unique positive integer to each typical message, and send that integer, which re-
quires only nH({p0,p1}) bits, rather than the message, which requires n bits. As
n → inf almost all message will be close to typical. For example, if p0 = 0.3 and
p1 = 0.7, then a “typical” 20-bit message would have six 0’s and fourteen 1’s, and
instead of there being 220 ≈ 1,000,000 possible messages to send there would be
only 2nH({0.3,0.7}) ≈ 200,000) typical messages to send.

The notion of the entropy of a source that emits one of two possible symbols,
i.e., a binary source, can be generalized readily to one that emits one of d possible
symbols, x1, x2, . . . , xd . Assuming symbol xi appears with probability pi , a typical
message of length n � 1 symbols from such a source will have roughly np1 occur-
rences of x1, np2 occurrences of x2, etc. Hence the number of such typical messages
is given by the number of ways np1 x1’s, np2 x2’s, etc. can be placed within a string
of length n symbols, which is just the multinomial formula:

n!∏d
i=1(npi)!

(11.3)
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such that 0 ≤ pi ≤ 1 and
∑d

i=1 pi = 1. We can write this approximately as an expo-
nential function of a modified entropy function

n!∏
i (npi)! ≈ 2nH({p1,p2,...,pd }) (11.4)

if we define

H({p1,p2, . . . , pd}) = −
d∑

i=1

pi log2 pi (11.5)

Such a generalization to the case of alphabets having d-symbols gives the Source
Coding Theorem:

Source Coding Theorem If n independent, identically distributed, random vari-
ables taken from a finite d-symbol alphabet each with entropy H({p1,p2, . . . , pd})
are compressed into no fewer than nH({p1,p2, . . . , pd}) bits then there is negli-
gible risk of information loss, but compression beyond this limit makes some loss
almost certain.

For natural languages this notion of source coding is appropriate. But in other
fields, e.g., mathematics and computer science, strings of letters and symbols arise
that although outwardly complex if viewed as a symbol sequence, are actually much
simpler if one understands the underlying generator. In such cases algorithmic in-
formation theory is a better tool for understanding their compressibility. In partic-
ular, Kolmogorov complexity is the shortest program needed to reproduce some
sequence. So the Kolmogorov complexity of a truly random sequence is the se-
quence itself as a random sequence is, be definition, incompressible. In contrast,
the sequence of (say) Fibonacci numbers, in which each successive number is the
sum of the last two numbers, i.e., 1,1,2,3,5,8,13,21,34, . . . can be describe more
compactly via the recursive formula f (n) : f (n) = f (n − 1) + f (n − 2) for n ≥
3 ∧ f (1) = f (2) = 1. This is dramatically shorter than writing out the sequence
itself.

11.1.3 Reliable Transmission (Channel Coding Theorem)

Besides compression, another aspect of information theory is to ask how reliably
information may be conveyed over a noisy communications channel. A typical com-
munications channel adds noise to any signal sent through it causing errors in the
data received. Attempts to correct such errors are prone to errors themselves. It is
not obvious a priori, therefore, that a noisy communications channel can be used
to transmit messages without error. Remarkably, in 1948 Claude Shannon proved
a theorem that showed, regardless of how noisy a given channel may be, that it
is always possible to communicate information over such a channel almost error
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free up to a certain maximum rate set by the Channel Coding theorem. The method
for doing so relies upon the use of error correcting codes, but the Channel Coding
theorem does not tell us how to find these good codes, only that they exist. Never-
theless, since the advent of the Channel Coding theorem many excellent codes have
been discovered, driven in large part by the needs of deep Space communications
for supporting reliable communications during NASA Space missions. In particular,
Turbo Codes, and Low Density Parity-Check Codes now come close to saturating
the limit set by Shannon’s Channel Coding theorem.

To state the theorem quantitatively we need a few key ideas. First the notion of
a discrete channel is one consisting of an input alphabet X and an output alphabet
Y and a probability transition matrix p(Y |X), which specifies the probability of re-
ceiving symbol Y ∈ Y given that symbol X ∈ X was sent. When this probability
distribution only depends on the last input to the channel, the channel is said to be
“memoryless”. We can also define the marginal probabilities of seeing the different
symbols as p(x = X) =∑y p(x, y) and p(y = Y) =∑x p(x, y), where p(x, y) is
the joint probability of seeing x = X and y = Y . From these we construct the mu-
tual information I (X : Y) =∑x∈X

∑
y∈Y p(x, y) log p(x,y)

p(x)p(y)
, which is a measure

of how much the two variables depend on each another. Then the channel capacity,
C, of a discrete memoryless channel, can be defined to be the mutual information
maximized over all probability distributions, i.e.,

C = max
p(X)

I (X : Y) (11.6)

The relationship between entropy, conditional entropy, joint entropy, and mutual
information is shown in Fig. 11.2. Formally, the Channel Coding theorem then es-
tablishes the maximum rate at which reliable communications can be supported
given the characteristics of the channel.

Fig. 11.2 Graphical
illustration of the relationship
between entropy (H(X),
H(Y)), conditional entropy
(H(X|Y ) and H(Y |X)), joint
entropy (H(X,Y )) and
mutual information
(I (X : Y )). Formally we have
I (X : Y ) = H(X) + H(Y) −
H(X|Y ) or, equivalently,
I (X : Y ) = H(X) −
H(X|Y ) = H(Y) − H(Y |X).
Furthermore,
I (X : Y ) = I (Y : X) and
I (X : X) = H(X). Mutual
information is a way to
quantify the degree to which
two variables depend on each
other
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Channel Coding Theorem For any upper bound on the acceptable block error
rate, ε > 0, and for any rate R < C (where C = maxp(X) I (X;Y) is the channel
capacity), there is an encoding/decoding protocol that can guarantee that the prob-
ability of block error is less than ε for a sufficiently long code. Moreover, for any
rate R > C, i.e., if the communications rate attempted exceeds the channel capacity,
errors are inevitable.

A proof the Channel Coding theorem is given in Chapter 8 of Cover & Thomas’s
“Elements of Information Theory” [117].

11.1.4 Unstated Assumptions Regarding Classical Information

“Information is physical.”
– Rolf Landauer

Just as the inventors of classical computer science had attempted to construct a
theory of computation that was independent of how computers were implemented,
so too did Shannon attempt to construct a theory of information that was supposed
to be independent of how symbols were implemented. By building information the-
ory on such a mathematical ideal, Shannon was able to make heroic advances in
modeling data compression and communications channels and hence designing su-
perior telecommunications systems. However, accepting this mathematical ideal as
reality, causes people to assume (implicitly perhaps) that information has certain
eminently reasonable properties. Back in 1948 and for most of the time since then,
these assumptions have in fact been so obvious that no-one has ever really ques-
tioned them—until now. For example, thinking of information as the mathematical
ideal of a stream of symbols invites the following presumptions:

• Information consists of a stream of distinguishable symbols
• Information can be compressed to no more than the Shannon bound
• Information does not change upon being read
• Information can be read in part without it affecting the unread parts
• Information can be copied exactly deterministically
• Information can be negated trivially by flipping every bit value

Indeed, the remarkable advances in communications systems since 1948 bear wit-
ness to how effective Shannon’s theory has been, and how solidly these assumptions
have been upheld.

Yet when we reduce the scale of the systems encoding information to individual
quantum systems, then the nature of information itself begins to change. Under the
right circumstances every one of the aforementioned plausible statements about in-
formation can be made false. The fundamental reason for this, as Richard Feynman
put it, is that “Nature isn’t classical dammit!”. Indeed it is not. Our preconceptions
of the properties that information should possess are intimately tied to the (more
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implicit) assumptions for how such information is implemented. Just as computa-
tion should be seen as a physical process that depends in an essential way on the
physical systems being used to enact computations, so it is for quantum information
systems too.

11.2 What is Quantum Information?

The concept of quantum information is derived quite readily from that of classical
information. Whereas classical information is a sequence of bits quantum informa-
tion is a sequence of qubits. Entirely new types of phenomena are possible with
quantum information that have no counterparts in classical information. For exam-
ple, the successive qubits in a quantum message need not, and generally are not,
orthogonal to one another, nor are they necessarily unentangled from one another.
Thus a typical quantum memory register holds within it quantum information rather
than classical information. As such it will typically hold information in an entan-
gled superposition state, and the strengths of the correlations between bit values can
exceed that which is possible classically.

11.2.1 Pure States cf. Mixed States

So far we have been mostly concerned with situations in which we have complete
knowledge of the state of some n-qubit quantum memory register. That is, there is
no uncertainty whatsoever regarding its state. It exists in some superposition of the
possible bit string configurations of n bits, weighted by various amplitudes corre-
sponding (via their modulus squared) to the probabilities of obtaining that particular
bit string configuration if the memory register were to be read in the computational
basis. In other words, the n-qubit register is in a state of the form:

|ψ〉 = c0|00 . . .0〉 + c1|00 . . .1〉 + · · · + c2n−1|11 . . .1〉 (11.7)

such that
∑2n−1

i=0 |ci |2 = 1. Such a quantum state is said to be a pure state.
There are, however, situations in which we have only incomplete knowledge

about some quantum state. Such states are called mixed states, as they correspond
to weighted mixtures of different pure states.

11.2.2 Mixed States from Partial Knowledge: The Density
Operator

One way mixed states can arise is when we only have probabilistic knowledge
regarding the composition of a quantum state. Suppose, for example, that we
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only known that a quantum system is in one of the (not necessarily orthogonal)
states |ψ1〉, |ψ2〉, . . . , |ψN 〉 with probabilities p1,p2, . . . , pN respectively such that∑N

i=1 pi = 1. We are therefore a little uncertain of what the state actually is. How
are we to characterize the quantum state of such a system?

One way we might learn something about the state is to make some sort of mea-
surement on it. If we performed a measurement, described by the observable O, on
this system, the result we would expect to obtain would be the weighted average of
the results we would obtain if the system was in each of the states |ψ1〉, |ψ2〉, . . . ,
or |ψN 〉, namely:

〈O〉 =
N∑

i=1

pi〈ψi |O|ψi〉 (11.8)

which after some manipulations (see problem 11.12) can be re-written as:

N∑
i=1

pi〈ψi |O|ψi〉 = tr

((
N∑

i=1

pi |ψi〉〈ψi |
)

· O
)

= tr(ρ · O) (11.9)

where “tr(·)” is the sum of the diagonal elements (i.e. the “trace”) of its argument
(which is a matrix), and ρ =∑N

i=1 pi |ψi〉〈ψi | (which is also a matrix). Notice that ρ

contains information only about the statistical mixture of pure states that contribute
to the state, and O contains information only about the observable being measured.
Hence, ρ must be a complete characterization of the mixed state.

Density Operator If a quantum system exists in the state |ψ1〉 with probability
p1, |ψ2〉 with probability p2, . . . , |ψN 〉 with probability pN , where in general
〈ψi |ψj 〉 = 1 for i = j , then the best description of its state is given by the density
operator:

ρ =
N∑

i=1

pi |ψi〉〈ψi | (11.10)

11.2.2.1 Density Operator for a Mixed State

Although you can use density operators to describe pure states, the main motivation
for introducing them is to be able to represent mixed states, i.e., statistical mixtures
of pure states. This allows us to model circumstances in which we only have partial
knowledge regarding the state. Specifically, if a quantum system exists in the state
|ψ1〉 with probability p1, |ψ2〉 with probability p2, . . . , |ψN 〉 with probability pN ,
where in general 〈ψi |ψj 〉 = 1 for i = j , then the best description of its state is given
by the density operator:

ρ =
N∑

i=1

pi |ψi〉〈ψi | (11.11)
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where
∑

i=1 pN = 1. Here the component states need not be orthogonal with respect
to one another, i.e., in general 〈ψi |ψj 〉 = 0 for i = j .

Many people are puzzled about the distinction between a mixed state and a
superposition state, so it is worth stating this explicitly. A superposition state
is a completely known pure state consisting of a weighted sum of eigenstates,
|ψ〉 =∑i ci |i〉, which are all orthogonal with respect to one another, i.e., 〈i|j 〉 = 0
for all i = j . In principle, given knowledge of a superposition state, |ψ〉, one
could build a measuring device that always yielded the same predictable result
each time you used it to measure state |ψ〉. For example, if we had a single qubit
in the superposition state 1√

2
(|0〉 + |1〉) we could rotate a measuring device that

measures in the {|0〉, |1〉} basis by 45° and then it would be measuring in the
{|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)} basis, and always yield the result |+〉.

In contrast, a mixed state ρ =∑j pj |φj 〉〈φj | is an incompletely known state
in which the component pure states (described by density operators |φj 〉〈φj |) need
not be, and generally are not, orthogonal to one another. The fact that the state
is incompletely known means that you can never be sure whether you really are
dealing with a |φ1〉, or a |φ2〉, etc. Consequently, even if you know ρ, you cannot
pick a measurement basis for a mixed state that is always guaranteed to yield the
same predictable outcome.

The following example illustrates how to calculate the density operator of a
mixed state that is a combination of three non-orthogonal pure states, |ψ1〉, |ψ2〉,
and |ψ3〉, with probabilities p1 = 1

3 ,p2 = 2
5 and p3 = 4

15 respectively where:

|ψ1〉 = |0〉 (11.12)

|ψ2〉 = 1√
2
(|0〉 − |1〉) (11.13)

|ψ3〉 = 1

2
|0〉 + i

√
3

2
|1〉) (11.14)

The corresponding density operator is:

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + p3|ψ3〉〈ψ3|

= 1

3

(
1 0
0 0

)
+ 2

5

(
1
2 − 1

2

− 1
2

1
2

)
+ 4

15

(
1
4 −i

√
3

4

i
√

3
4

3
4

)

=
⎛
⎝

3
5 − 1

5 − i 1
5
√

3

− 1
5 + i 1

5
√

3
2
5

⎞
⎠ (11.15)

Note that tr(ρ) = 1 (as for a pure state), but since

ρ2 = ρ · ρ =
⎛
⎝

31
75 − 1

5 − i 1
5
√

3

− 1
5 + i 1

5
√

3
16
75

⎞
⎠ ,
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tr(ρ2) = 47
75 < 1. Seeing tr(ρ2) < 1 is sufficient to conclude that ρ is a mixed state.

This criterion holds true whatever of the dimensions of ρ.

11.2.2.2 Density Operator for a Pure State

Although we don’t have to, we can certainly express a pure state in terms of its den-
sity operator. As the state is pure we have complete knowledge about it. Hence the
ensemble contains exactly one kind of state, namely |ψ〉, and so the probability of
this state being in the ensemble is 1 and all others are 0. Hence the density operator
corresponding to pure state |ψ〉 = a|0〉 + b|1〉 is:

ρpure = |ψ〉〈ψ | (11.16)

with no summation. By expanding out the implied bras and kets, we can compute
the density matrix explicitly as:

ρpure = |ψ〉〈ψ | =
(

a

b

)
· (a∗ b∗) =

( |a|2 ab∗
ba∗ |b|2

)
(11.17)

where 〈ψ | ≡ (a∗ b∗) is the bra vector associated with the ket |ψ〉 ≡ ( a
b

)
. It is

obtained by computing the conjugate transpose of the column vector associated
with |ψ〉.

Notice that the sum of the diagonal elements of the density operator is unity, i.e.,
tr(ρpure) = 1. However, as ρ = |ψ〉〈ψ | is actually a pure state (written in density
operator formalism) it also happens to be true that tr(ρ2) = 1 too. Specifically we
have,

ρ2 =
(

|a|4 + |a|2|b|2 ab∗(|a|2 + |b|2)
ba∗(|a|2 + |b|2) |b|4 + |a|2|b|2

)

=
(

|a|2(|a|2|b|2) ab∗(|a|2 + |b|2)
ba∗(|a|2 + |b|2) |b|2(|a|2|b|2)

)

=
( |a|2 ab∗

ba∗ |b|2
)

= ρ (11.18)

Hence, ρ2 = ρ and so tr(ρ2) = |a|2 + |b|2 = 1 when ρ is a 1-qubit pure state.
The foregoing results carry over to multi-qubit pure states too. Thus, the density

operator associated with a 2-qubit pure state |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉
is:

ρ = |ψ〉〈ψ | =

⎛
⎜⎜⎝

a

b

c

d

⎞
⎟⎟⎠ · (a∗ b∗ c∗ d∗ )=

⎛
⎜⎜⎝

|a|2 ab∗ ac∗ ac∗
ba∗ |b|2 bc∗ bd∗
ca∗ cb∗ |c|2 cd∗
da∗ db∗ dc∗ |d|2

⎞
⎟⎟⎠ (11.19)
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and so on. As you will show in problem ***** for this 2-qubit pure state it is also
true that ρ2 = ρ and tr(ρ2) = (|a|2 +|b|2 +|c|2 +|d|2)2 = 1 (the latter factorization
is a hint).

It turns out, whatever the dimensions of ρ, that ρ2 = ρ and tr(ρ2) = 1 if and only
if ρ is the density operator corresponding to a pure state. If the state described by ρ

is not pure, but is instead mixed, then ρ2 = ρ and tr(ρ2) < 1. These properties can
be used to decide whether a given state is pure or mixed.

11.2.2.3 The Bloch Ball

In Chap. 1 we introduced the Bloch sphere as a way of visualizing single qubit
pure states. In this picture, the pure states are always points on the surface of the
Bloch sphere. Since all pure states that differ only by an overall phase factor are
indistinguishable, this overall phase factor is not depicted in the Bloch sphere rep-
resentation. One might wonder where single qubit mixed states would reside in this
Bloch sphere picture?

The answer is that single qubit mixed states correspond to points inside the Bloch
sphere, a region we shall henceforth call the Bloch ball. After a little algebra, we
find that the (x, y, z) coordinates within the Bloch ball corresponding to the mixed
state ρ are given by [164]:

x = 〈0|ρ|1〉 + 〈1|ρ|0〉
y = i〈0|ρ|1〉 − i〈1|ρ|0〉 (11.20)

z = 〈0|ρ|0〉 − 〈1|ρ|1〉
with the North Pole corresponding to pure state |0〉, and the South Pole to pure state
|1〉. Hence, a superposition state such as |+〉 = 1√

2
(|0〉 + |1〉) will have coordinate

(x, y, z) = (1,0,0) etc. The maximally mixed state is a point, as shown in Fig. 11.3,
at the center of the Bloch ball with coordinates (x, y, z) = (0,0,0). Non-maximally
mixed states lie between the center of the Bloch ball and its surface.

Fig. 11.3 The Bloch Ball can
be used to visualize mixed
states of a single qubit, which
reside on the interior of the
Bloch sphere
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11.2.2.4 Properties of Density Operators

The quantum mechanical equations based on state vectors, which we have thus far
used to describe the evolution and measurement of pure states can be re-expressed
in the language of density operators. However, the density operator versions apply
to the evolution and measurement of both pure and mixed states. Consequently, they
are more useful, especially when we are dealing with quantum systems for which
we have only incomplete knowledge.

• The sum of the diagonal elements of ρ is always 1, i.e., tr(ρ(t)) = 1
• The expected value of an observable 〈A〉 = tr(ρA)

• The time evolution of a density operation obeys i�
dρ
dt

= [H, ρ]
• The density operator is Hermitian ρ† = ρ

• If ρ corresponds to a pure state ρ2 = ρ

• If ρ corresponds to a pure state tr(ρ2) = 1
• If ρ corresponds to a pure state the eigenvalues of ρ are either 0 or 1 only
• If ρ corresponds to a mixed state 1

d
≤ tr(ρ2) < 1 where d is the dimension of ρ

• A measure of the similarity between two density matrices is given by the fidelity

F (ρ1, ρ2) = [tr(
√

ρ
1/2
1 ρ2ρ

1/2
1 )
]2

In Table 11.1 we compare and contrast formulae for performing similar opera-
tions on pure states and mixed states. Note that the formulae for mixed states en-
compass pure states too as a special case, namely, when the density operator takes
the form ρ = |ψ〉〈ψ |.

11.2.2.5 Non-unique Interpretation of Density Operators

The decomposition of a given density operator into a weighted sum of pure states is
non-unique. Any decomposition that synthesizes the density operator is as legitimate
as any other. This means that there is no unique mixed state to which each density
operator corresponds. Moreover, as the expectation value of an observable, O, is
computed from tr(ρO), then all these different mixed states (having the same ρ)

Table 11.1 Analogous quantum mechanical formulae for n-qubit pure and mixed states. Note that
the mixed state formulae can also be used to describe pure states but not vice versa

Characteristic Pure state description Mixed state description

State |ψ〉 =∑2n−1
j=0 cj |j〉 ρ =∑k pk |φk〉〈φk | where |φk〉 is an

arbitrary n-qubit pure state and∑
k pk = 1

State evolution i�
∂|ψ〉
∂t

= H|ψ〉 i�
∂ρ
∂t

= [H, ρ]
Component evolution

∂cj

∂t
= − i

�

∑2n−1
�=0 Hj�c�

∂ρjk

∂t
= − i

�

∑2n

�=1[Hj�ρ�k − ρj�H�k]
Expected value of observable 〈O〉 = 〈ψ |O|ψ〉 〈O〉 = tr(ρO)
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would produce identical statistical distributions of measurement outcomes what-
ever observable is used! So there is no experiment we can do that will distinguish
between these different mixed states. Operationally, they are all equivalent.

To illustrate the non-uniqueness of the mixed state associated with a given density

operator consider the following. Let |ψA〉 = 1
2 |0〉+

√
3

2 |1〉 and |ψB〉 = 2
3 |0〉+

√
5

3 |1〉.
Then ρ, the density operator corresponding to a mixed state that is 1

3 |ψA〉 and 2
3|ψB〉 can be written as:

ρ = 1

3
|ψA〉〈ψA| + 2

3
|ψB〉〈ψB |

=
(

0.37962962962962965 0.47560689729737526
0.47560689729737526 0.6203703703703703

)
(11.21)

However, ρ can be obtained equally well from states |φA〉 = a|+〉 +√1 − |a|2 |−〉
and |φB〉 = b|+〉 +√1 − |b|2 |−〉 where |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 −

|1〉) as:

ρ = c|φA〉〈φA| + (1 − c)|φB〉〈φB |

=
(

0.37962962962962965 0.47560689729737526
0.47560689729737526 0.6203703703703703

)
(11.22)

provided a = −0.875949, b = −0.994988, and c = 0.064635. So the question
whether ρ is “really” a mixture of the states |ψA〉 and |ψB〉 or a mixture of the
states |φA〉 and |φB〉 is unanswerable. Each decomposition is as valid as the other.

11.2.3 Mixed States from Partial Ignorance: The Partial Trace

In Sect. 11.2.1 we introduced the concept of the partial trace operation. There we
explained what it was (i.e., the act of ignoring or discarding a subset of the qubits
of a multi-partite quantum state) but we did explain how to compute it. That is the
subject of this section.

The basic idea is that we start off with the quantum mechanical description of
a multi-qubit state, and we ask how our description must change if we ignore part
of that state. The easiest way to think about this is to partition the set of qubits into
two sets A and B and consider a multi-qubit system having density operator ρAB .
In general, ρAB , will not be a product state, i.e., in general Here the subscript AB

signifies that we can arbitrarily
The (i, i′)-th element of the reduced density operator, ρA obtained by tracing

over the second set of qubits B from the state ρAB is given by:

〈iA|ρA|i′A〉 = trB(ρAB) =
dB−1∑
jB=0

〈iA|〈jB |ρAB |i′A〉|jB〉 (11.23)
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where |iA〉 and |i′A〉 are eigenstates of A subsystem, and |jB〉 are eigenstates of the
subsystem B (which is a dB dimensional subspace). Notice that, in the summa-
tion, the same eigenstate index jB is used either side of the ρAB and the summa-
tion is computed over all values for this index. Hence, the reduced density operator
ρA is obtained by computing each of its possible matrix elements in accordance
with (11.23).

Likewise, the (j, j ′)-th element of the reduced density operator, ρB is obtained
by tracing over the first set of qubits A from the state ρAB . We have:

〈jB |ρB |j ′
B〉 = trA(ρAB) =

dA−1∑
iA=0

〈iA|〈jB |ρAB |iA〉|j ′
B〉 (11.24)

where |jB〉 and |j ′
B〉 are eigenstates of the B subsystem, and |iA〉 are eigenstates of

the subsystem A (which is a dA dimensional subspace). Notice that, in the summa-
tion, the same eigenstate index iA is used either side of the ρAB and the summa-
tion is computed over all values for this index. Hence, the reduced density operator
ρB is obtained by computing each of its possible matrix elements in accordance
with (11.24).

11.2.3.1 Example: Computing the Partial Trace

For example, consider a pair of non-orthogonal quantum states |ψABC〉 and |ϕABC〉
defined as follows:

|ψABC〉 = 1

2
|000〉 +

√
3

2
|111〉 (11.25)

|ϕABC〉 = 1

2
|000〉 + 1

2
|010〉 + 1

2
|011〉 + 1

2
|111〉 (11.26)

and imagine these are the components of the density operator weighted to be one
third |ψABC〉 and two thirds |ϕABC〉. Thus we have:

ρABC = 1

3
|ψABC〉〈ψABC | + 2

3
|ϕABC〉〈ϕABC |

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 1

6
1
6 0 0 0 1

6 + 1
4
√

3
0 0 0 0 0 0 0 0
1
6 0 1

6
1
6 0 0 0 1

6
1
6 0 1

6
1
6 0 0 0 1

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
6 + 1

4
√

3
0 1

6
1
6 0 0 0 5

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.27)



11.2 What is Quantum Information? 419

Tracing over any one of the qubits we obtain the three reduced density matrices
ρBC , ρAC , and ρAB :

ρBC = trA(ρABC) =

⎛
⎜⎜⎜⎝

1
4 0 1

6
1
6

0 0 0 0
1
6 0 1

6
1
6

1
6 0 1

6
7
12

⎞
⎟⎟⎟⎠ (11.28)

ρAC = trB(ρABC) =

⎛
⎜⎜⎜⎝

5
12

1
6 0 1

6
1
6

1
6 0 1

6

0 0 0 0
1
6

1
6 0 5

12

⎞
⎟⎟⎟⎠ (11.29)

ρAB = trC(ρABC) =

⎛
⎜⎜⎜⎝

1
4

1
6 0 0

1
6

1
3 0 1

6

0 0 0 0
0 1

6 0 5
12

⎞
⎟⎟⎟⎠ (11.30)

Likewise, tracing over any two of the three qubits we obtain the three reduced den-
sity matrices ρA, ρB , and ρC :

ρA = trBC(ρABC) =
(

7
12

1
6

1
6

5
12

)
(11.31)

ρB = trAC(ρABC) =
(

1
4

1
6

1
6

3
4

)
(11.32)

ρC = trAB(ρABC) =
(

5
12

1
6

1
6

7
12

)
(11.33)

Thus, the partial trace operation provides the procedure for calculating the quantum
state of part of a composite quantum system. In general, if the starting state is en-
tangled and pure (say) the restriction of this state to some subset of its qubits, i.e.,
its partial trace, will, in general, be a mixed state described mathematically by a
reduced density operator.

11.2.4 Mixed States as Parts of Larger Pure States: “Purifications”

The foregoing interpretation of the partial trace operation invites the question of
whether there is a procedure for going in the opposite direction? That is, starting
with a mixed state, which we can think of as the reduced density operator of some
larger pure state, is there a procedure for finding this larger pure state? The answer
is that there is such a procedure. It is called a state purification operation, and it
works as follows:
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Purification of a Mixed State Let ρA =∑i pi |ψi〉〈ψi | be a n-qubit mixed state
defined on a Hilbert space HA of dimension d = 2n. Our goal is to find a pure state
|Ψ 〉AB , defined on a Hilbert space HA ⊗ HB such that trB(|Ψ 〉AB〈Ψ |AB) = ρA.
Such a |Ψ 〉AB is a purification of the mixed state ρA.

1. Rewrite the mixed state ρA as:

ρA =
N∑

i=1

pi |ψi〉〈ψi | =
d∑

j=1

λj |φj 〉〈φj | (11.34)

where {λj } are the eigenvalues of ρA and {|φj 〉} are the eigenvectors of ρA.
Note that there are d eigenvalues and eigenvectors, whereas there are N states
contributing to the original definition of ρA.

2. Pick out just the first N eigenvalues and eigenvectors from the basis {|φj 〉}. Then
construct the pure state |Ψ 〉AB defined as:

|ΨAB〉 =
N∑

i=1

√
pi |ψi〉|φi〉 (11.35)

3. The given |Ψ 〉AB is a purification of ρA since trB(|Ψ 〉AB〈Ψ |AB) = ρA.

11.2.5 Quantifying Mixedness

How do we quantify the degree of mixedness in a state given its description in terms
of a density operator? Clearly, our measure of “mixedness” must range from zero
(for pure states) to some maximum value (for maximally mixed states). But what
measure should we use? In this section we look at some ways to quantify the degree
of mixedness of a quantum state.

11.2.5.1 Linear Entropy as a Measure of Mixedness

The first measure of mixedness is related to its deviation from a pure state. In partic-
ular, we saw in Sect. 11.2.2.2 that if a state with density matrix ρ is pure ρ2 = ρ and
therefore tr(ρ2) = tr(ρ) = 1, whereas if it is mixed, 1

d
≤ tr(ρ2) < 1 where d is the

dimension of ρ. Hence the deviation of tr(ρ2) from 1 can be used as a measure for
the mixedness of ρ. This gives us our first measure of mixedness called the linear
entropy of ρ, which is especially easy to calculate:

SL(ρ) = d

d − 1
(1 − tr(ρ2)) (11.36)

where d is the dimension of ρ. Hence, 0 ≤ SL(ρ) ≤ 1: the linear entropy SL(ρ) = 0
whenever ρ is a pure state, and SL(ρ) = 1 whenever ρ is a maximally mixed state.
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11.2.5.2 von Neumann Entropy as a Measure of Mixedness

A second measure of mixedness is the von Neumann entropy, SV (ρ), which is the
proper quantum generalization of the Shannon entropy.

To remind you, in classical information theory, the Shannon entropy of a classi-
cal source that outputs d distinguishable symbols with corresponding probabilities
p1,p2, . . . , pd is given by H({pi}) = −∑d

i=1 pi log2 pi where
∑n

i=1 pi = 1. This
ranges from 0 in the case when all the symbols are the same, to log2 d in the case
when all the d symbols are equiprobable, and therefore maximally random. One can
therefore think of the Shannon entropy as quantifying the degree of randomness in
the symbols streaming from a classical source.

What is the analog of Shannon entropy in the quantum context? We can think
of a quantum source as outputting d not necessarily orthogonal quantum states
|ψ1〉, |ψ2〉, . . . , |ψd〉 with corresponding probabilities p1,p2, . . . , pd . Such a source
is characterized by the density operator ρ given by:

ρ =
d∑

i=1

pi |ψi〉〈ψi | (11.37)

where
∑d

i=1 pi = 1.
However, a given density operator can be decomposed into a sum of component

states in many different ways, which are all equivalent to one another. In particular,
even if the states |ψi〉 are non-orthogonal, we can always diagonalize ρ by finding a
unitary matrix, U , such that Uρ U† is a diagonal matrix. Thus, any density operator
ρ can also be written as:

ρ =
d∑

i=1

pi |ψi〉〈ψi | =
∑
j

λj |λj 〉〈λj | (11.38)

When so diagonalized, the eigenvalues of ρ, i.e., the λj appearing along the main
diagonal, are positive real numbers that sum to one, and correspond to the prob-
abilities with which we will see the corresponding eigenvectors of ρ, i.e., |λj 〉, if
ρ were measured in its eigenbasis. As these eigenvectors |λj 〉 are orthogonal to
one another they are distinguishable and we can therefore regard them as classi-
cal symbols. Therefore, when viewed in the diagonal basis, we would expect the
quantum entropy of the quantum source to coincide with the Shannon entropy of
the analogous classical source, i.e., one emitting the “classical” (i.e., perfectly dis-
tinguishable) symbols, or equivalently orthonormal states |λj 〉, with corresponding
probabilities λj . This allows us to define the entropy of the quantum source (which
may or may not output distinguishable symbols) in terms of the Shannon entropy
of a corresponding fictitious classical source (which outputs only distinguishable
symbols). In particular, we have:

SV (ρ) = −
∑
j

λj log2 λj = H({λj }) (11.39)
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where we take 0 log2 0 = 0. Using purely mathematical arguments (i.e. no new
physics insights), we can rewrite (11.39) as:

SV (ρ) = −tr(ρ log2 ρ) (11.40)

This is the von Neumann entropy of the quantum source described by density oper-
ator ρ.

It is apparent from its definition that the von Neumann entropy is bounded as
follows:

0 ≤ SV (ρ) ≤ log2 d (11.41)

with the von Neumann entropy being 0 for a pure state ρ = |ψ〉〈ψ |, and log2 d for a
maximally mixed state ρ = 1

d
1, where 1 is the identity matrix. Thus, the numerical

value of the von Neumann entropy is a measure of the mixedness of the state.

11.3 Entanglement

“No self is of itself alone.”
– Erwin Schrödinger

“Entanglement” describes a correlation between different parts of a quantum
system that exceeds anything that is possible classically. It will appear when sub-
systems interact in such a way that the resulting state of the whole system cannot
be expressed as the direct product of states for its parts. When a quantum system is
in such an entangled state, actions performed on one sub-system will have a side-
effect on another sub-system even though that sub-system is not acted upon directly.
Moreover, provided the sub-systems are separated in such a way that neither is mea-
sured, such entanglement will persist regardless of how far apart the sub-systems
become. This leads to highly counterintuitive phenomena, which Einstein dubbed
“spooky action at a distance”, which we will have more to say about in Chap. 12.

All the known quantum algorithms that display an exponential speedup over their
classical counterparts exploit such entanglement-induced side effects in one way or
another. In addition, some tasks that are impossible by classical standards, such as
teleporting a quantum state, depend upon entanglement in an essential way. Hence,
entanglement deserves to be called a “quintessential” quantum phenomenon that
plays a major role in making quantum computing more powerful than classical
computing, and in enabling quantum information tasks that are impossible in the
classical context.

11.3.1 Separable States Versus Entangled States

Formally, the distinction between whether a state is entangled or not entangled rests
upon whether its quantum state is separable or not. Therefore, let us examine this
question in more mathematical terms.
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Suppose we have two independent quantum systems with Hilbert spaces HA

and HB of dimensions dA and dB respectively. There is some complete orthonor-
mal basis for HA consisting of dA eigenstates, called {|jA〉} say, and some com-
plete orthonormal basis for HB consisting of dB eigenstates, {|kB〉} say. In other
words, any pure state in HA can be expressed as |ψA〉 = a0|0〉A + a1|1〉A + · · · +
adA−1|dA − 1〉A. Likewise, any pure state in HB can be expressed as |ψB〉 =
b0|0〉B + b1|1〉B + · · · + bdB−1|dB − 1〉B . And the Hilbert space of the composite
system is just the tensor product of the constituent Hilbert spaces H = HA ⊗ HB .

Separable State If a pure (mixed) state, |ψ(AB)〉 (ρ(AB)), of a composite quantum
system defined on a Hilbert space HA ⊗ HB can be written as |ψ(AB)〉 = |ψ(A)〉 ⊗
|ψ(B)〉 (ρ(AB) =∑i piρ

(A)
i ⊗ ρ

(B)
i ), then |ψ(AB)〉 (ρ(AB)) is said to be a separable

state.

The linear entropy SL(ρ), can also be useful in deciding whether a given den-
sity operator ρ corresponds to a separable or entangled state. Specifically, it has
been proven that if the linear entropy exceeds a certain threshold, i.e., if SL(ρ) ≥
d(d − 2)/(d − 1)2, then any such ρ is separable [567].

Entangled State If a state, |ψ(AB)〉 (ρ(AB)), of a composite quantum system de-
fined on a Hilbert space HA ⊗ HB is not a separable state it is an entangled state.
Note that a state can be entangled and pure, or entangled and mixed, simultaneously.

As an example, consider the state 1√
2
(|01〉 − |10〉). Is this state separable or en-

tangled? Well, if it were separable it could be written in the form |ψA〉 ⊗ |ψB〉
where |ψA〉 = a0|0〉 + a1|1〉 and |ψB〉 = b0|0〉 + b1|1〉. Thus, equating amplitudes
and solving we have:

|ψA〉 ⊗ |ψB〉 = a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉
= 1√

2
|01〉 − 1√

2
|10〉 (11.42)

which implies we need to find a solution to the simultaneous equations a0b0 = 0,
a0b1 = 1√

2
, a1b0 = − 1√

2
, a1b1 = 0. Unfortunately, these equations admit no such

solution and hence the state 1√
2
(|01〉 − |10〉) is not separable. Hence it is entangled.

11.3.2 Signalling Entanglement via Entanglement Witnesses

Given a purported entangled state, ρ, how can we verify that ρ is, in fact, entangled?
One approach is to synthesize several instances of the state ρ via identical prepa-

ration procedures and then perform quantum state tomography to reconstruct the
density operator for ρ. This is, in one sense, the preferred option since we would
obtain complete information about ρ—at least to within experimental error.
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However, in general, quantum state tomography is an extraordinarily costly pro-
cedure. An n-qubit state is described by a 2n × 2n dimensional density operator.
If we are to determine each element of this density operator empirically, we would
need to perform O(22n) different experiments! Thus full quantum state tomography
becomes quite impractical for quantum systems having more than a mere handful
of qubits.

This difficulty spawned the invention of entanglement witnesses [166]. Entangle-
ment witnesses are tools for detecting entanglement that avoid having to perform a
complete quantum state tomographic reconstruction of ρ.

The basic idea is to construct an observable operator, W , whose expectation value
serves as a “witness” to whether the given state is entangled. If the expectation value
of the witness observable W when the system is in state ρ, i.e., tr(Wρ) = 〈W 〉, is
less than some threshold, this provides sufficient evidence that ρ is an entangled
state.

Although the fully theory of entanglement witnesses requires an understanding of
the superoperator formalism of quantum mechanics, entanglement witnesses need
not be that exotic.

11.3.2.1 Example: Entanglement Witness

For example, consider the one-dimensional “Heisenberg chain”. This consists of a
one-dimensional loop of spins coupled together in accordance with the Hamiltonian:

H =
N∑

i=1

(Bσ i
z + Jσ i · σ i+1) (11.43)

where B is the external magnetic field, and a J < 0 or J > 0 are, respectively,
a ferromagnetic or anti-ferromagnetic coupling between the spins. The symbol
σ i

z stands for an the Pauli-Z operator that acts on the i-th qubit, and the vectors
σ i ≡ (σ i

x, σ
i
y, σ

i
z ). The one-dimensional chain of spins is made periodic by choos-

ing σN+1 = σ 1.
In the absence of an external magnetic field, i.e., with B = 0, the expectation

value for the energy, 〈H〉 = tr(ρH), can be an entanglement witness. Specifically,
suppose we have chain consisting of two spins, i.e., N = 2. In this case, if the input
state is separable, i.e., ρAB = ρA ⊗ ρB , then it is possible to show that the expecta-
tion value of the energy is guaranteed to be bounded between −2J ≤ 〈H〉 ≤ +2J .

However, if the state ρAB is entangled, ρAB = ρA ⊗ ρB , we find that there are
entangled states for which 〈H〉 < −2J . Thus, by measuring expectation value of the
energy, 〈H〉, we can sometimes decide if the state is entangled. Hence, 〈H〉 serves
as an entanglement witness.
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11.3.3 Signalling Entanglement via the Peres-Horodecki Criterion

An alternative to relying on entanglement witnesses to decide if a state is entangled,
is to use the Peres-Horodecki criterion [239, 387]. This criterion uses an operation
on a density matrix known as the partial transpose.

Definition: Partial Transpose Let ρ be a bi-partite density operator expressed in
the form:

ρ =
∑

i,j,k,�

ρij ;k�|eA
i ⊗ eB

j 〉〈eA
k ⊗ eB

� | (11.44)

where {|eA
i 〉} is an eigenbasis for sub-space A and {|eB

j 〉} is an eigenbasis for sub-

space B . Then the partial transpose ρTB of the density operator ρ is:

ρTB =
∑

i,j,k,�

ρi�;kj |eA
i ⊗ eB

j 〉〈eA
k ⊗ eB

� | (11.45)

Note that, as implied by the definition, the partial transpose depends on the basis
chosen but the eigenvalues of the partial transposed matrix do not. However, most
practical applications of the partial transpose only need to make use of the eigenval-
ues of the partial transpose matrix.

The partial transpose is important within a test for entanglement known as the Peres-
Horodecki criterion [239, 387].

Peres-Horodecki Criterion: a Necessary and Sufficient Test for Entanglement
If a bi-partite state is entangled, its partial transpose always has one or more negative
eigenvalues, but if it is separable its partial transpose has no negative eigenvalues.

Thus, given a density operator ρ we can decide whether or not it is entangled by
examining the signs of the eigenvalues of its partial transpose.

Note that we can define an analogous partial transpose over the “A” space as
follows:

ρTA =
∑

i,j,k,�

ρk j ;i �|eA
i ⊗ eB

j 〉〈eA
k ⊗ eB

� | (11.46)

Even though the partial transpose ρTA will usually be a different matrix from the
partial transpose ρTB their eigenvalues will be the same. In applications of the partial
transpose it is usually the eigenvalues of the partial transpose that we need rather
than the partial transpose itself. If this is the case, whether we use ρTA or ρTB is
immaterial as their eigenvalues are the same.
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For example, let us compute ρTA and ρTB for a general 2-qubit density matrix
defined by:

ρ =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠ (11.47)

Computing the partial transposes we obtain:

ρTA =

⎛
⎜⎜⎝

ρ11 ρ12 ρ31 ρ32
ρ21 ρ22 ρ41 ρ42
ρ13 ρ14 ρ33 ρ34
ρ23 ρ24 ρ43 ρ44

⎞
⎟⎟⎠

ρTB =

⎛
⎜⎜⎝

ρ11 ρ21 ρ13 ρ23
ρ12 ρ22 ρ14 ρ24
ρ31 ρ41 ρ33 ρ43
ρ32 ρ42 ρ34 ρ44

⎞
⎟⎟⎠

(11.48)

However, the characteristic polynomials of ρTA and ρTB are identical, and so the
eigenvalues of these matrices must be the same.

Case 1: a Separable Pure State

Let us look at some simple examples. Consider first the case of an unentangled pure
state. In this case we have:

|ψAB〉 =
(

1

2
|0〉 +
√

3

4
|1〉
)

⊗
(

1

3
|0〉 +
√

8

9
|1〉
)

(11.49)

ρAB = |ψAB〉〈ψAB | =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
36

1
9
√

2
1

12
√

3
1

3
√

6
1

9
√

2
2
9

1
3
√

6
2

3
√

3
1

12
√

3
1

3
√

6
1
12

1
3
√

2
1

3
√

6
2

3
√

3
1

3
√

2
2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.50)

ρ
TB

AB =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
36

1
9
√

2
1

12
√

3
1

3
√

6
1

9
√

2
2
9

1
3
√

6
2

3
√

3
1

12
√

3
1

3
√

6
1
12

1
3
√

2
1

3
√

6
2

3
√

3
1

3
√

2
2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.51)

Eigenvalues(ρTB

AB) = {1,0,0,0} (11.52)
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As all of the eigenvalues of the partial transpose of ρ
TB

AB are positive this guarantees,
by the Peres-Horodecki criterion, that ρAB is separable.

Case 2: an Entangled Pure State

Now let’s look what happens when we have an entangled pure state such as |ψAB〉 =
( 1

2 |01〉 −
√

3
4 |10〉):

|ψAB〉 =
(

1

2
|01〉 −
√

3

4
|10〉
)

(11.53)

ρAB = |ψAB〉〈ψAB | =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1
4 −

√
3

4 0

0 −
√

3
4

3
4 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ (11.54)

ρ
TB

AB =

⎛
⎜⎜⎜⎜⎝

0 0 0 −
√

3
4

0 1
4 0 0

0 0 3
4 0

−
√

3
4 0 0 0

⎞
⎟⎟⎟⎟⎠ (11.55)

Eigenvalues(ρTB

AB) =
{

3

4
,−

√
3

4
,

√
3

4
,

1

4

}
(11.56)

As one of the eigenvalues of the partial transpose of ρ
TB

AB is negative, this guarantees
by the Peres-Horodecki criterion, that ρAB is entangled.

Case 3: a Separable Mixed State

The Peres-Horodecki criterion is not limited to deciding whether only pure states are
entangled or separable. It also applies to mixed states. For example, the mixed state
ρAB = 1

3ρA ⊗ ρB + 2
3ρ′

A ⊗ ρ′
B is, by construction, separable. The Peres-Horodecki

criterion gives us:

ρA =
(

1
2 0

0 1
2

)
(11.57)

ρB =
(

2
3 − i

3
i
3

1
3

)
(11.58)

ρ′
A =
(

1
2

1
2

1
2

1
2

)
(11.59)
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ρ′
B =
⎛
⎝ 1

8
i
√

3
8

− i
√

3
8

7
8

⎞
⎠ (11.60)

ρAB = 1

3
ρA ⊗ ρB + 2

3
ρ′

A ⊗ ρ′
B

=

⎛
⎜⎜⎜⎜⎜⎜⎝

11
72 − i

18 + i

8
√

3
1
24

i

8
√

3
i

18 − i

8
√

3
25
72 − i

8
√

3
7
24

1
24

i

8
√

3
11
72 − i

18 + i

8
√

3

− i

8
√

3
7
24

i
18 − i

8
√

3
25
72

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.61)

ρ
TB

AB =

⎛
⎜⎜⎜⎜⎜⎜⎝

11
72

i
18 − i

8
√

3
1
24 − i

8
√

3

− i
18 + i

8
√

3
25
72

i

8
√

3
7
24

1
24 − i

8
√

3
11
72

i
18 − i

8
√

3
i

8
√

3
7
24 − i

18 + i

8
√

3
25
72

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.62)

Eigenvalues(ρTB

AB) =
{

1

36

(
15 +
√

95 − 12
√

3

)
,

1

36

(
15 −
√

95 − 12
√

3

)
,

1

36

(
3 + √

5
)
,

1

36

(
3 − √

5
)}

(11.63)

As all of the eigenvalues of the partial transpose of ρ
TB

AB are positive this guarantees,

by the Peres-Horodecki criterion, that ρAB is separable.

Case 4: an Entangled Mixed State

Finally we consider what happens when the state is entangled and mixed.

|β00〉 = 1√
2
(|00〉 + |11〉) (11.64)

|β11〉 = 1√
2
(|01〉 − |10〉) (11.65)

ρAB = 1

3
|β00〉〈β00| + 2

3
|β11〉〈β11| =

⎛
⎜⎜⎜⎜⎝

1
6 0 0 1

6

0 1
3 − 1

3 0

0 − 1
3

1
3 0

1
6 0 0 1

6

⎞
⎟⎟⎟⎟⎠ (11.66)
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ρ
TB

AB =

⎛
⎜⎜⎜⎜⎝

1
6 0 0 − 1

3

0 1
3

1
6 0

0 1
6

1
3 0

− 1
3 0 0 1

6

⎞
⎟⎟⎟⎟⎠ (11.67)

Eigenvalues(ρTB

AB) =
{

1

2
,

1

2
,−1

6
,

1

6

}
(11.68)

As one of the eigenvalues of the partial transpose of ρ
TB

AB is negative, this guarantees
by the Peres-Horodecki criterion, that ρAB is entangled.

11.3.4 Quantifying Entanglement

Rather than merely witnessing of detecting the presence or absence or entanglement,
we would prefer to be able to quantify the degree of entanglement in a quantum state.
Such quantitative methods are necessary if we to have any hope of understanding
entanglement properly and how it changes under various physical operations.

Although there is only one effective measure of entanglement in 2-qubit
systems—the “tangle”, which we used in Sect. 2.8 to quantify the entangling power
of a 2-qubit quantum gate—once we go to three or more qubits the situation be-
comes extraordinarily complicated. Even at three qubits we start to encounter coun-
terintuitive results such as the possibility of having 3-qubit states that possess 3-way
entanglement but for which there is no 2-way entanglement amongst every pair of
constituent qubits when considered in isolation!

At present we are stuck with having to wrestle with the notion of entanglement,
and having to live with several different and inequivalent ways of quantifying how
much entanglement there is in a multi-qubit state. These measures are called entan-
glement monotones and all share certain desirable properties.

11.3.4.1 Entanglement Monotones

“All science is either physics or stamp collecting.”
– Ernest Rutherford

“Entanglement monotones” are quantitative measures of entanglement of a quan-
tum state, ρ, that increase, monotonically, with the degree or entanglement in the
state. Such measures, some of which are summarized in Table 11.2, allow us to
compare and contrast the amount of entanglement in different states and hence, to
begin to develop a classification for entangled states. We start by stipulating general
properties any reasonable measure of entanglement, E(ρ), must possess and then
outline some functions that meet these criteria.
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Table 11.2 Entanglement monotones

Measure Explanation

Entanglement of formation
EF (ρAB) = min{pi ,|ψi 〉}

∑
i piS(ρ

(A)
i )

Quantifies the amount of entanglement needed to
synthesize ρ. In essence, it measures how many
maximally entangled pairs are needed to synthesize ρ.
The minimization is computed over all possible
decompositions of ρAB into sums of pure states
making EF very costly to compute

Entanglement of distillation
ED(ρAB) = lim

n→∞m/n

Quantifies the number of Bell states that can be
distilled from ρ per copy of ρ using the optimal
purification procedure. Here m is the maximum
number of Bell states that can be distilled from n

preparations of the state ρ. ED is also difficult to
calculate in practice

Relative entropy of entanglement
ER(ρ) = min

σ∈D
tr(ρ logρ − ρ logσ)

Quantifies the distance of the entangled state ρ from
the nearest separable state in the set of all separable
density operators D. ER is relatively easy to compute
and happens to exactly equal EF for pure states of
2-qubit systems

Negativity
EN(ρ) = 2 max(0,−∑i λ

negative
i (ρTB ))

Quantifies the entanglement in a state as the degree to
which the positive partial transpose separability
criterion is violated. If a state is not entangled, the
partial transpose of its density operator, ρTB , is also a
valid density operator, i.e., a positive semi-definite
matrix. However, if a state is entangled, the partial
transpose of its density operator is not positive
semi-definite because it has at least one negative
eigenvalue. Hence, negativity quantifies entanglement
as the degree to which the positive partial transpose
separability criterion is violated. For 2-qubit pure
states the negativity equals the concurrence. In the
formula for negativity where λ

negative
i (ρTB ) is the i-th

negative eigenvalue of the partial transpose of ρ

1. For any entanglement measure E(ρ) we require 0 ≤ E(ρ) ≤ 1 with E(ρ) = 0
if and only if ρ is not entangled, and E(ρ) = 1 at least when ρ is the density
operator of any maximally entangled state, such as one of the Bell states.

2. The entanglement measure should be immune to local operations, i.e. E(ρ) =
E((UA ⊗ UB)ρ(UA ⊗ UB)†).

3. The entanglement measure of the full density operator, i.e., E(ρ) = E(
∑

i piρi)

cannot be greater than the weighted sum of the entanglement measures of its
parts, i.e., E(ρ) = E(

∑
i piρi) ≤∑i piE(ρi).

Given the aforemention desiderata, the following candidates have been identified
as acceptable measures of entanglement.

For the case of 2-qubits the different measures of entanglement turn out to be
equivalent, and it is therefore simplest to work with the tangle (see Sect. 2.8.1).
However, this equivalence does not hold for larger numbers of qubits.
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11.3.5 Maximally Entangled Pure States

The most famous maximally entangled pure states are the 2-qubit Bell states:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(11.69)

The structure of the Bell states invite generalizations in two ways: Either we can
extend the pattern we see in the |β00〉 state, and conceive of a two-component su-
perposition having one state with all 0’s and the other with all 1’s, or we can extend
the pattern we see in the |β01〉 state, and conceive of an n-component superposition
having a single 1 each in each component at each possible qubit position. This leads
to two fundamentally different kinds of maximally entangled states called GHZ and
W states respectively. GHZ and W states are defined as follows:

|GHZ〉 = 1√
2
(|000〉 + |111〉)

|GHZ〉 = 1√
2
(|0000〉 + |1111〉)

...

|GHZ〉 = 1√
2
(|00 . . .0〉 + |11 . . .1〉)

(11.70)

and

|W〉 = 1√
3
(|001〉 + |010〉 + |100〉)

|W〉 = 1√
4
(|0001〉 + |0010〉 + |0100〉 + |1000〉)

...

|W〉 = 1√
n
(|0 . . .01〉 + |0 . . .10〉 + · · · + |1 . . .00〉)

(11.71)

These two kinds of states are maximally entangled and pure, but are nevertheless
fundamentally inequivalent! That is, we cannot inter-convert from GHZ states to W
states, or vice versa, using any unitary transformation [253].
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Moreover, GHZ and W states behave quite differently under the partial trace
operation. For example, tracing over the last qubit in a 3-qubit GHZ state, we obtain:

tr3(|GHZ〉〈GHZ|) =

⎛
⎜⎜⎝

1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

⎞
⎟⎟⎠= 1

2
(|00〉〈00| + |11〉〈11|) (11.72)

which has no residual 2-qubit entanglement. However, tracing over the last qubit in
a 3-qubit W state results in a state that does have residual 2-qubit entanglement:

tr3(|W〉〈W|) =

⎛
⎜⎜⎝

1
3 0 0 0
0 1

3
1
3 0

0 1
3

1
3 0

0 0 0 0

⎞
⎟⎟⎠

= 1

3

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠+ 2

3

⎛
⎜⎜⎝

0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎠

= 1

3
|00〉〈00| + 2

3

( |01〉 + |10〉√
2

)( 〈01| + 〈10|√
2

)
(11.73)

The indicated factorization of the reduced density matrix can be interpreted as in-
cluding a component in 1√

2
(|01〉 + |10〉), which is one of the Bell states.

11.3.6 Maximally Entangled Mixed States

How does the concept of a maximally entangled state generalize to the case of mixed
states? In what sense can a mixed state be said to be maximally entangled?

A superficially reasonable definition of a maximally entangled mixed state is a
state that, for a given level of mixedness, attains the highest possible value for en-
tanglement. Unfortunately, it turns out that such a definition is problematic without
further qualification. This is because, by the above definition, the identity of the
mixed states that are deemed maximally entangled will change depending on the
measures one chooses with which to quantify the degree of mixedness and quantify
the degree of entanglement in the state! This problem appears to be fundamental and
unavoidable [525]. Nevertheless, once one pins down the measures for mixedness
and entanglement, certain mixed states do pop out as special. These are “frontier”
states in a scatter plots of where mixed states lie in an entanglement-mixedness
plane.

Given the practical utility of maximally entangled pure states in ideal (i.e., noise-
free) quantum information processing, it is possible these maximally entangled
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mixed states would find similar application in more noisy quantum information pro-
cessing, as they possess the maximum amount of entanglement possible for a given
degree of mixedness.

Bill Munro and collaborators have identified a class of mixed states that deserve
to be called maximally entangled as they lie on the frontier in the tangle (entangle-
ment measure) versus linear-entropy (mixedness measure) plane. The structure of
the density matrices corresponding to these maximally entangled mixed states is:

ρmax-ent-mixed =

⎛
⎜⎜⎜⎝

1
3 0 0 r

2

0 1
3 0 0

0 0 0 0
r
2 0 0 1

3

⎞
⎟⎟⎟⎠ 0 ≤ r ≤ 2

3

⎛
⎜⎜⎝

r
2 0 0 r

2

0 1 − r 0 0
0 0 0 0
r
2 0 0 r

2

⎞
⎟⎟⎠ 2

3 ≤ r ≤ 1

(11.74)

For a given value of the linear entropy (mixedness) these density matrices give the
highest value of concurrence (entanglement). As tangle and entropy of formation are
also both monotonic functions of concurrence, such density matrices also saturate
the maximum possible degree of entanglement by these measures too.

11.3.7 The Schmidt Decomposition of a Pure Entangled State

Although we cannot write an entangled state of two quantum systems as the direct
product of a state for each system we can, however, write it as a sum of such states.
That is, if A is dA-dimensional Hilbert space, and if B is dB -dimensional Hilbert
space, then for any entangled pure state |ψAB〉 in the Hilbert space of dimension
dA × dB , we can always find amplitudes such that:

|ψAB〉 =
dA−1∑
j=0

dB−1∑
k=0

ajk|jA〉 ⊗ |kB〉 (11.75)

where |jA〉 is a complete eigenbasis (i.e., set of orthonormal eigenvectors) for space
A and |kB〉 is a complete eigenbasis for space B . Notice, in particular, that to de-
scribe the state |ψAB〉 it is necessary to use a double sum over indices j and k.

The Schmidt decomposition, by contrast, allows us to re-express |ψAB〉 as a sum
over a single index. And, moreover, the number of terms in this single sum is the
lesser of dA and dB . This is rather counter-intuitive to most people when they first
see this. Nevertheless, it is formally correct and allows you to interpret a given state
in an interesting new way.

So how does the Schmidt decomposition work? Well it is actually rather simple.
Everything hinges on using the singular value decomposition of a matrix built from
the amplitudes that appear in the double sum description of |ψAB〉.



434 11 Quantum Information

Schmidt Decomposition of a Pure State Given a (generally) entangled pure state
of a composite quantum system, |ψAB〉, which can be thought of as composed of
an nA-qubit sub-system and an nB -qubit sub-system, we can compute the Schmidt
decomposition of |ψAB〉 as follows:

1. Sub-system A is in a dA = 2nA dimensional Hilbert space. Likewise, sub-system
B is in a dB = 2nB dimensional Hilbert space. Let an eigenbasis for A be
{|jA〉}dA−1

j=0 and let an eigenbasis for B be {|kB〉}dB−1
k=0 .

2. Given the decomposition of |ψAB〉 in terms of the eigenbases {|jA〉}dA−1
j=0 and

{|kB〉}dB−1
k=0 as:

|ψAB〉 =
dA−1∑
j=0

dB−1∑
k=0

ajk|jA〉 ⊗ |kB〉 (11.76)

Re-group the amplitudes ajk into a dA × dB dimensional array, and call this
{ajk}. That is, take the linear sequence of amplitudes ajk and make a matrix by
starting a new row after every dB amplitudes.

3. Now compute the singular value decomposition (SVD) of the matrix {ajk} you
just obtained. Specifically, we can write:

SVD({ajk}) = U · Σ · V = {uji} · {σii} · {vik} (11.77)

where U = {uji} is a dA × min(dA, dB) dimensional unitary matrix, V =
{vik} is a min(dA, dB) × dB dimensional unitary matrix, and Σ = {σii} is a
min(dA, dB) × min(dA, dB) diagonal matrix whose elements are the singular
values of the matrix {ajk}.

4. Now create new eigenbases as follows:

{|iA〉}min(dA−1,dB−1)
i=0 :=

dA−1∑
j=0

Uj+1,i+1|jA〉 (11.78)

and

{|iB〉}min(dA−1,dB−1)
i=0 :=

dB−1∑
k=0

Vi+1,k+1|kB〉 (11.79)

5. Pick out the subset of the singular values:

{λi}min(dA−1,dB−1)
i=0 := {σii}min(dA−1,dB−1)

i=0 (11.80)

6. Then the (generally entangled) pure state |ψAB〉 that is describable as the double
sum in (11.75) is equally well describable as the single sum:

|ψAB〉 =
min(dA−1,dB−1)∑

i=0

λi |iA〉|iB〉 (11.81)

which is the Schmidt decomposition of |ψAB〉.
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11.3.7.1 Example: Schmidt Decomposition

We illustrate the procedure for constructing the Schmidt decomposition using a sim-
ple 3-qubit pure state |ψAB〉. Here, we assume that A is a dA = 2 dimensional sub-
space and B is as dB = 4 dimensional sub-space. To begin, we start with the state
|ψAB〉 which we have defined to be:

|ψAB〉 = (−0.1661 − 0.17i)|0A〉|00B〉 − (0.2982 + 0.0497i)|0A〉|01B〉
+ (0.3471 + 0.3943i)|0A〉|10B〉 − (0.2667 + 0.432i)|0A〉|11B〉
− (0.0293 + 0.2317i)|1A〉|00B〉 + (0.1217 + 0.2168i)|1A〉|01B〉
+ (0.2162 − 0.1238i)|1A〉|10B〉 − (0.183 + 0.3263i)|1A〉|11B〉 (11.82)

Here we see the eigenbasis for A is {|jA〉} ≡ {|0A〉, |1A〉} and that of B is {|kB〉} ≡
{|00B〉, |01B〉, |10B〉, |11B〉}. Next we re-group the sequence of amplitudes appear-
ing in (11.82) to form a new matrix {ajk}. As dB = 4 we start a new row of this
matrix after every 4 (i.e., dB ) elements. This gives us the matrix:

{ajk} =
( −0.1661 − 0.17i −0.2982 − 0.0497i 0.3471 + 0.3943i −0.2667 − 0.432i

−0.0293 − 0.2317i 0.1217 + 0.2168i 0.2162 − 0.1238i −0.183 − 0.3263i

)

(11.83)
Next we compute the singular value decomposition SVD({ajk}) to give:

SVD({ajk}) = U · Σ · V (11.84)

where

U =
(

0.8876 −0.4606
0.3806 − 0.2594i 0.7334 − 0.4999i

)

Σ =
(

0.9031 0
0 0.4295

)
(11.85)

V =
(−0.109 − 0.2732i −0.3041 + 0.0775i 0.4678 + 0.3975i −0.2455 − 0.6147i

0.3978 − 0.2475i 0.2754 + 0.5651i 0.1409 − 0.3826i 0.3533 − 0.3069i

)

From the SVD we then construct the new bases, {|iA〉} and {|iB〉} (we use an overbar
symbol to distinguish these bases from the earlier ones):

|0̄A〉 := 0.8876|0A〉 + (0.3806 − 0.2594i)|1A〉 (11.86)

|1̄A〉 := −0.4606|0A〉 + (0.7334 − 0.4999i)|1A〉 (11.87)

Likewise,

|0̄B〉 := (−0.109 − 0.2732i)|00B〉 − (0.3041 − 0.0775i)|01B〉
+ (0.4678 + 0.3975i)|10B〉 − (0.2455 + 0.6147i)|11B〉 (11.88)

|1̄B〉 := (0.3978 − 0.2475i)|00B〉 + (0.2754 + 0.5651i)|01B〉〉
+ (0.1409 − 0.3826i)|10B + (0.3533 − 0.3069i)|11B〉 (11.89)



436 11 Quantum Information

where here “|0̄B〉” and “|0̄B〉” represent 2-qubit states. Notice that we only need
min(dA, dB) eigenvectors for each basis even though the dimensions of sub-space
A is (in this example) less than that of sub-space B .

Finally, we pick out the Schmidt coefficients from the singular values to give:

λ0 = 0.9031 (11.90)

λ1 = 0.4295 (11.91)

Hence our Schmidt decomposition is predicted to be:

|ψAB〉 = λ0|0̄A〉|0̄B〉 + λ1|1̄A〉|1̄B〉 (11.92)

11.3.8 Entanglement Distillation

In most applications of quantum communications and distributed quantum comput-
ing it is necessary to establish noise-free maximally entangled pairs of particles,
such as pure Bell states, between the ends of a quantum communications channel.
Invariably, when one sends quantum particles down real channels those particles
will be affected by noise sources in the channel. Thus, what starts off as pure max-
imally entangled states will not end up as pure maximally entangled states by the
time they reach the ends of the channel. This usually causes a failure of the protocol
for which the sharing of maximal entanglement was necessary.

The solution is to perform “entanglement distillation” whereby a few maximally
entangled bi-partite pure states are obtained from a larger number of non-maximally
entangled bi-partite states. Convention has it that if the original states are pure, the
process is called “entanglement concentration”, whereas if they are mixed the pro-
cess is called “entanglement purification”. Either way the principle is the same—
one sacrifices some of the non-maximally entangled states in order to distill out a
smaller number of maximally entangled ones. There has now been a great deal of
research invested in entanglement distillation reflecting its importance as a quantum
information processing primitive.

11.3.8.1 Distilling Entanglement from Pure States: Entanglement
Concentration

In entanglement concentration we distill out several maximally entangled bi-partite
pure states (e.g., states of the form 1√

2
(|00〉 + |11〉)) from a larger number of non-

maximally entangled bi-partite pure states (e.g. states of the form α|00〉+β|11〉 with
|α| = |β|). Thus, entanglement concentration can also be thought of as a kind of
error correction wherein several “buggy” Bell states are distilled into fewer perfect
Bell states.

Entanglement concentration was first proposed by Charles Bennett, Herbert
Bernstein, Sandu Popescu, and Benjamin Schumacher [51], but their scheme was
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later improved upon by Phillip Kaye and Michele Mosca [268] and it is the latter
version we describe here.

Suppose Alice and Bob share an entangled pair of qubits in the state:

|Ψ 〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉 (11.93)

where
∑3

i=0 |ai |2 = 1. Using the Schmidt decomposition of Sect. 11.3.7, such a
state can always be re-expressed in the form

|Ψ 〉 = α|ψ0〉|φ0〉 + β|ψ1〉|φ1〉 (11.94)

for positive reals α and β , a {|ψ0〉, |ψ1〉}-basis for Alice and a {|φ0〉, |φ1〉}-basis
for Bob. Alice and Bob could simply agree by convention to call their bases

{|ψ0〉, |ψ1〉} ≡ {|A0〉, |A1〉} and {|φ0〉, |φ1〉} ≡ {|B0〉, |B1〉}. Thus, whatever the entangled
state Alice and Bob share, we can think of it as a “buggy” Bell state:

|Ψ 〉 = α|A0〉|B0〉 + β|A1〉|B1〉 (11.95)

where the over set letters indicate whether we are talking about Alice’s qubit or
Bob’s. If |α| = |β| we would be dealing with a maximally entangled state. But in
general this is not the case. Yet it is the maximally entangled states we need routinely
in quantum information protocols. So the question arises how do we distill out a few
maximally entangled Bell states from a greater number of non-maximally entangled
ones?

Let us imagine we begin with n of these buggy Bell pairs. Thus, our starting state

can be written as |Ψ 〉 = (α|A0〉|B0〉 + β|A1〉|B1〉)⊗n. Expanding the definition gives us
a state in which Alice’s and Bob’s qubits are scrambled together. For example, if
n = 2, |Ψ 〉 is equal to:

|Ψ 〉 = (α|A0〉|B0〉 + β|A1〉|B1〉)⊗2

= α2|AB

00〉|AB

00〉 + αβ|AB

00〉|AB

11〉 + αβ|AB

11〉|AB

00〉 + β2|AB

11〉|AB

11〉 (11.96)

However, it is apparent that a simple bit-permutation applied to the qubits will allow
us to group Alice and Bob’s qubits separately. After this permutation of qubits we
can see |Ψ 〉 is equivalent to:

|Ψ 〉 = α2|AA

00〉|BB

00〉 + αβ|AA

01〉|BB

01〉 + αβ|AA

10〉|BB

10〉 + β2|AA

11〉|BB

11〉 (11.97)

Generalizing, the state we obtain with n non-maximally entangled states is:

|Ψ 〉 =
n∑

j=0

αn−j βj

( ∑
HammingWeight(x)=j

|AA ···A
x 〉|BB ···B

x 〉
)

(11.98)



438 11 Quantum Information

Fig. 11.4 Quantum circuit for measuring the Hamming weight of string of qubits. The quantum
state whose Hamming weight we want is in the upper register, and a set of n ancillae qubits is in
the lower register. Each qubit that is set to |1〉 in the upper register adds 1 to the Hamming weight
via a controlled-add-one gate. However, each qubit set to |0〉 adds nothing to the Hamming weight.
By initializing the ancillae qubits to |00 . . .0〉 we accumulate the Hamming weight in the lower
register. If the upper register is a superposition state that has eigenstates of different Hamming
weights (as we intend it to be) the act of measuring the Hamming weight projects the state of the
upper register into a superposition of only those eigenstates consistent with the observed Hamming
weight

Now suppose Alice measures the Hamming weight of |Ψ 〉, i.e., she deter-
mines how many of her qubits are in state |1〉. By the structure of the state
|Ψ 〉 Bob would be guaranteed to obtain the same result if he were to mea-
sure the Hamming weight of his qubits. To measure the Hamming weight, Al-
ice can use a quantum circuit like that shown in Fig. 11.4. This circuit con-
sists of two registers: an upper n-qubit register holding the superposition |Ψ 〉 and
a lower n-qubit register holding n ancillae prepared initially in state |00 . . .0〉.
These registers are connected via a cascade of controlled-add-one gates. If the
i-th qubit in the upper register is set to |1〉 it adds 1 to the Hamming weight
and 0 otherwise. Via the linearity of quantum mechanics, the circuit produces
a superposition of Hamming weights in the lower register. When the Hamming
weight in the lower register is measured the upper register is projected into a
state whose component eigenstates then have the Hamming weight that was mea-
sured in the lower register. Thus, if Alice and Bob each measure the Ham-
ming weight to be |j 〉 they will project the upper register into a state of the
form:
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1√(n
j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉 (11.99)

which is a superposition of
(

n

j

)
bit strings.

Next define a function that maps each of these bits strings (arranged in lexico-

graphic order) into a unique integer from 0 to
(

n

j

)− 1. Specifically, we have:

f (00 . . .0011 . . .1︸ ︷︷ ︸
j

) → (0)10 = 00 . . .0

f (00 . . .0101 . . .1︸ ︷︷ ︸
j−1

) → (1)10 = 00 . . .1

...

f (11 . . .1︸ ︷︷ ︸
j

00 . . .0) → ((nj
)− 1
)

10

(11.100)

For example, if there are n = 6 qubits with Hamming weight 4, the mapping f

would be:

f (0,0,1,1,1,1) → f (15) → 0

f (0,1,0,1,1,1) → f (23) → 1

f (0,1,1,0,1,1) → f (27) → 2

f (0,1,1,1,0,1) → f (29) → 3

f (0,1,1,1,1,0) → f (30) → 4

f (1,0,0,1,1,1) → f (39) → 5

f (1,0,1,0,1,1) → f (43) → 6

f (1,0,1,1,0,1) → f (45) → 7

f (1,0,1,1,1,0) → f (46) → 8

f (1,1,0,0,1,1) → f (51) → 9

f (1,1,0,1,0,1) → f (53) → 10

f (1,1,0,1,1,0) → f (54) → 11

f (1,1,1,0,0,1) → f (57) → 12

f (1,1,1,0,1,0) → f (58) → 13

f (1,1,1,1,0,0) → f (60) → 14

(11.101)

We further extend f in any way that keeps it reversible and hence implementable as
a permutation matrix, i.e. we extend the definition of f so that it maps each of the
other bit strings (which do not have Hamming weight j ) to unique indices too.
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If we define r = ⌈ log2

(
n

j

)⌉
we can write:

1√(
n

j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉

f−→ 1√(
n

j

)
∑

HammingWeight(x)=j

|AA···A
f (x) 〉|BB···B

f (x) 〉

= 1√(
n

j

)

(
n

j

)
−1∑

y=0

|AA···A
0︸︷︷︸

n−r

〉|AA···A
y︸︷︷︸
r

〉|BB···B
0 〉|BB···B

y 〉 (11.102)

If
(

n

j

)= 2r , ignoring the first n − r qubits in each register then gives:

1√
2r

2r−1∑
y=0

|AA···A
y 〉|BB···B

y 〉 (11.103)

which as before can, under a permutation of the qubits, be recognized as r pristine
Bell state pairs, and the entanglement in |Ψ 〉 has been concentrated.

Of course, in general
(

n

j

) = 2r . In this case, one can still distill out some perfect

Bell state pairs, but their number is not certain a priori. See [268] for details.
Thus, to sum up, the entanglement concentration procedure can be described as

follows:

Entanglement Concentration

1. Alice and Bob start off with n copies of a non-maximally entangled state |Ψ 〉 =
(α|00〉 + β|11〉)⊗n with α = β , and they each hold one member of each non-
maximally entangled pair.

2. Next Alice and Bob perform a qubit-permutation sufficient to group all Alice’s
qubits together and all Bob’s qubits together, creating a state of the form

|Ψ 〉 =
n∑

j=0

αn−j βj

( ∑
HammingWeight(x)=j

|AA ···A
x 〉|BB ···B

x 〉
)

(11.104)

3. Alice and Bob each measure the Hamming weight of their set of particles, i.e.,
they each determine how many of their qubits are in state |1〉. Given the structure
of the state, their results will always agree. If they each determine the Hamming
weight is |j〉, this measurement operation has the effect of projecting Alice and
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Bob’s joint state into the form

1√(
n

j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉 (11.105)

where the labels “A” and “B” specify whether the qubits are in Alice’s posses-
sion or Bob’s possession.

4. Alice and Bob each apply the transformation f to the state obtained in the last

step. In the simplest case when
(

n

j

)= 2r ignoring the first n − r qubits gives the

state 1√
2r

∑2r−1
y=0 |AA···A

y 〉|BB···B
y 〉.

5. By inverting the qubit permutation performed at step (2) above, this state be-
comes that of r perfect Bell pairs.

6. The procedure can extended to deal with the case
(

n

j

) = 2r , and a quantum circuit

can be defined which allows the number of perfect Bell pairs distilled out to be

measured (see [268]). The expected number of pairs obtainable when
(

n

j

) = 2r

is at least
∑n

j=0 |α2|n−j (1 − |α2|)j (n
j

)(⌊
log2
(

n

j

)⌋− 1
)
.

Entanglement concentration is of practical importance in many quantum commu-
nications protocols as well as in distributed quantum computing (see Sect. 15.2). It
can be extended to the case of distilling bi-partite maximally entangled pure states
from non-maximally entangled mixed states, and is then known as entanglement
purification [53, 54, 139]. This is distinct from the concept of the purification of a
mixed state discussed in Sect. 11.2.4 whereby a mixed state, ρB , is re-cast as the
partial trace of a pure state, |ψAB〉, in a higher dimensional Hilbert space, i.e., state
purification finds the |ψAB〉 such that ρB = trA(|ψAB〉〈ψAB |). By contrast, in en-
tanglement purification we distill out a set of maximally entangled bi-partite pure
states from a larger number of non-maximally entangled bi-partite mixed states.

11.3.9 Entanglement Swapping

Thus far, the schemes we have looked at for creating entanglement have all worked
by causing pairs of initially unentangled qubits to interact directly and then separat-
ing them spatially. However, it is also possible to entangle two particles that have
never interacted directly. The trick is to start with two maximally entangled pairs of
particles, and to arrange for one member of each pair to be measured in a Bell basis
using a device known as a “Bell State Analyzer” (BSA). This sounds fancy, and
experimentally it is challenging to build one, but theoretically speaking it requires
nothing more than the Bell state synthesizer circuit run in reverse followed by single
qubit measurements in the computational basis. The net effect is that we can swap
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Fig. 11.5 Entanglement swapping provides a means to entangle two parties that have never in-
teracted with one another directly. Alice and Bob each prepare a maximally entangled pair of
particles. They each retain one of these particles and pass the other to Cerys. Cerys performs a
complete Bell state analysis on the two particles she received, which results in classifying them
as being in one of the four Bell states |β00〉, |β01〉, |β10〉, |β11〉. Thereafter, the two particles that
remain in Alice and Bob’s possession will be maximally entangled in some Bell state the identity
of which depends on result of the Bell state analysis. Entanglement swapping is a key ingredient
of quantum repeaters, distributed quantum computing, and heralded entangled photon sources

initial entanglement between particles 1 and 2 and initial entanglement between par-
ticles 3 and 4 into entanglement between particles 1 and 4, even though particles 1
and 4 never interacted directly. The procedure that does this is therefore called en-
tanglement swapping and was originally conceived of by Marek Zukowski, Anton
Zeilinger, Michael Horne, and Artur Ekert in 1993 [565]. The scheme is illustrated
in Fig. 11.5.

Entanglement swapping works as follows: Alice and Bob each prepare match-
ing maximally entangled pairs of particles. For example, they may each prepare
their own Bell singlet pair |β11〉 = 1√

2
(|01〉 − |10〉). Such states can be prepared

by feeding a |11〉 state into a Bell state synthesizer circuit, which consists of a sin-
gle Walsh-Hadamard gate followed by a CNOT gate. Let us say that Alice starts
off in possession of qubits 1 and 2, and Bob starts off in possession of qubits 3
and 4. Using these particle labels as subscripts to avoid ambiguity, the input to the
entanglement swapping circuit is therefore the state |11〉12 ⊗ |11〉34 = |1111〉1234.
Upon applying the double Bell state synthesizer circuits as show in Fig. 11.5, the
following transformation occurs:

|Ψ 〉1234 = (CNOT ⊗ CNOT) · (H ⊗ 1 ⊗ H ⊗ 1)|11〉12|11〉34

=
(

1√
2
(|01〉12 − |10〉12)

)
⊗
(

1√
2
(|01〉34 − |10〉34)

)
(11.106)

However, |ψ〉1234 can also be re-expressed in the Bell basis by imagining the qubits
to be permuted as follows. Swap qubits 2 and 4 (to take the qubit ordering 1234 into
1432) and then swap qubits 3 and 2 (to take the qubit ordering 1432 into 1423). An
operator sufficient to perform qubit permutation is (14 ⊗ SWAP) · (12 ⊗ SWAP ⊗
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12) · (14 ⊗ SWAP) · (12 ⊗ SWAP ⊗ 12). In the “1423” basis, we can write |ψ〉1234
as the equivalent |ψ〉1423 where:

|ψ1423〉 = 1

2
(−|β00〉14|β00〉23 + |β01〉14|β01〉23 + |β10〉14|β10〉23 − |β11〉14|β11〉23)

(11.107)

Hence, in this Bell basis representation, we can see immediately that if we perform
a complete Bell state analysis of qubits 2 and 3 (i.e., if we figure out which Bell
state they are in), then qubits 1 and 4 will then be projected into the identical Bell
state (up to an overall phase factor), even though qubits 1 and 4 had, at no time,
interacted directly.

To perform a complete Bell-basis measurement we need only invert the operation
that synthesizes the Bell states starting from the computational basis states and then
measure the result in the computational basis. In terms of a quantum circuit such an
inversion is achieved by reversing the order of the gates and using the inverse (or,
since they are unitary, the conjugate transpose) of each gate operator. Therefore, as
the Bell state synthesizer is the operator, CNOT · (H ⊗ 1), the complete Bell state
analyzer is the operator (H ⊗ 1)† · CNOT† = (H ⊗ 1) · CNOT (as shown in the
dashed box in Fig. 11.5). So defined, the Bell state analyzer accepts a Bell state
and returns |00〉, |01〉, |10〉, or |11〉, according to whether the input Bell state was
|β00〉, |β01〉, |β10〉, or |β11〉. A complete Bell state analyzer has been demonstrated
experimentally by Yoon-Ho Kim, Sergei Kulik, and Yanhua Shih in 2001 [278].

Entanglement swapping is a very useful trick in quantum information science. It
is a crucial building block in quantum repeaters (used to extend the range of quan-
tum key distribution in optical fibers) [103, 160, 295, 428], in distributed quantum
computing [552], and as a means to have a heralded source of entangled photon
pairs [565].

11.3.10 Entanglement in “Warm” Bulk Matter

One of the most exciting developments in our understanding of entanglement in
recent years has come from the realization that entanglement can persist in macro-
scopic amounts of matter at room temperature. This came as a complete surprise.
Just a few years ago creating and sustaining entangled states of even a handful of
quantum particles required exquisitely delicate experiments, and ideal laboratory
conditions. Indeed, great suspicion fell on anyone suggesting that entanglement
might play a role in the brain and biological structures mainly on the grounds that
they were too warm and noisy to sustain such effects. However, old-school thinking
about entanglement should no longer be taken as conclusive.

We now know that entanglement can be found in macroscopic systems [19], even
relatively warm ones [513], and in fact plays an essential role in determining how
such matter behaves, such as the anomalously low magnetic susceptibility of cer-
tain magnetic systems [85]. This is quite extraordinary. Such developments are very



444 11 Quantum Information

exciting because they could mark the beginning in an entirely new direction for
materials science and solid state physics. Who knows what miracle materials await
discovery if entanglement can persist and play a role in shaping their properties at
temperatures well above absolute zero.

Similarly, other studies have provided evidence for the existence of quantum ef-
fects in certain biological structures. For example, quantum transport is believed
to occur in the Fenna-Matthews-Olson (FMO) light harvesting complex of purple
bacteria [172, 306]. At low temperatures the excitons created after photon absorp-
tion are found to propagate through the FMO complex coherently, and in fact, their
transport is enhanced by the presence of a small amount of noise, perhaps allow-
ing the phenomenon to persist up to biologically relevant temperatures. Likewise,
it has been hypothesized that magnetoreception in birds works by interconverting
singlet/triplet excited states of the cryptochrome protein [256]. And a recent model
of olfaction replaces the standard shape-based theory with the notion that phonon-
assisted tunneling is used to sense the vibrational spectra of odorant molecules
[500]. All these results are intriguing and may point to more sophisticated ways
of harnessing quantum effects in structures that are at relatively high temperatures.

11.4 Compressing Quantum Information

In classical information theory we describe messages as sequences of symbols
drawn from some finite alphabet, such that each symbol may appear with a different
probability. The obvious quantum analog of this is to treat a source of quantum in-
formation as a device that generates a sequence of quantum states, each potentially
with some different probability. Thus, quantum states that are known only as some
statistical mixture of pure states arise naturally when we extend information theory
into the quantum realm.

Whereas Shannon information theory regards a classical source as a device that
generates a sequence of classical symbols (i.e., distinguishable states) picked from
a finite alphabet according to different probabilities, quantum information theory
regards a quantum source as a device that generates a sequence of quantum symbols
(i.e., not necessarily distinguishable states) picked from a finite alphabet according
to different probabilities. Thus, we find ourselves having to model quantum states
that are only specified in exactly the statistical sense mentioned above. Hence, the
introduction of density operators is absolutely necessary.

If the quantum states used for the alphabet of symbols are all orthogonal to one
another then, in principle, we can measure them without disturbing them, and hence
to all intents and purposes they are essentially just classical symbols in disguise.
Hence, we would could characterize such a source in terms of its Shannon entropy.
In particular, if a source produces a stream of orthogonal (i.e., unambiguously dis-
tinguishable) states in which the i-th state occurs with probability pi the source is
characterized by its Shannon entropy H({pi}) = −∑i pi log2 pi .

The situation becomes more interesting if we assume that the quantum states
encoding the symbols are not necessarily all orthogonal to one another.
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11.4.1 Quantum Sources: The von Neumann Entropy

Let us imagine we have a device for outputting one of d not necessarily orthog-
onal quantum states at random. In particular, let the device output state |ψi〉 with
corresponding probability pi . The density operator for such a source would be:

ρ =
d∑

i=1

pi |ψi〉〈ψi | (11.108)

and we can characterize its entropy using the techniques introduced in Sect. 11.2.5.2.
There we saw that the entropy of a quantum source can be related to the Shannon
entropy of a corresponding fictitious classical source. Specifically, the von Neumann
entropy of a quantum source having density operator ρ is defined via its representa-
tion in a diagonal basis as:

SV (ρ) = −
∑

i

λi log2 λi = −tr(ρ log2 ρ) (11.109)

As expected, the von Neumann entropy so-defined then equals to the Shannon en-
tropy when the quantum states emitted by the source are unambiguously distinguish-
able.

The von Neumann entropy has many interesting uses and properties. For ex-
ample, if ρ is a pure state, SV (ρ) = 0. Hence, the von Neumann entropy can be
used to decide whether or not a given density operator corresponds to that of a pure
state. In addition, the von Neumann entropy of a state does not change under uni-
tary evolution, i.e., SV (ρ) = SV (Uρ U†), because the von Neumann entropy only
depends upon the eigenvalues and these are not changed under unitary evolution.
These and other important properties of the von Neumann entropy are summarized
in Table 11.3

In analogy to the Shannon noiseless coding theorem wherein the n bit classical
messages from a classical source with Shannon entropy H({pi}) can be compressed
into at most nH({pi}) classical bits, n qubit quantum messages from a quantum
source with von Neumann entropy SV (ρ) can be compressed into at most nSV (ρ)

qubits. However, this tells us nothing about how to accomplish the compression.
That is the domain of quantum data compression.

11.4.2 Schumacher-Jozsa Quantum Data Compression

Suppose Alice chooses real numbers α and β such that α2 + β2 = 1, and creates a
quantum message consisting of sequences of the states |ψ+〉 and |ψ−〉 defined as:

|ψ+〉 = α|0〉 + β|1〉 (11.110)

|ψ−〉 = α|0〉 − β|1〉 (11.111)
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Table 11.3 Properties of the von Neumann entropy

Property Formula Condition

Purity SV (ρ) = 0 If ρ is a pure state, i.e., ρ = |ψ〉〈ψ |
Invariance SV (ρ) = SV (Uρ U†) If U is a unitary transformation

Maximum SV (ρ) ≤ log2 k If ρ has k non-zero eigenvalues. Equality
holds when all the non-zero eigenvalues are
equal

Concavity SV (
∑

i piρi) ≥∑i piSV (ρi) Provided pi ≥ 0 and
∑

i pi = 1. This result
shows that the less we know about how a
state is prepared the greater its von Neumann
entropy

Boundedness SV (ρ) ≤ H({pi}) For an ensemble of quantum states |ψi〉
occurring with probabilities pi , and having
density operator ρ =∑i pi |ψi〉 its von
Neumann entropy is never greater than the
Shannon entropy of the corresponding
classical ensemble. Equality holds when all
the quantum states are orthogonal and hence
unambiguously distinguishable

Subadditivity SV (ρAB) ≤ SV (ρA) + SV (ρB) Equality holds when ρAB = ρA ⊗ ρB . That is,
the von Neumann entropies of independent
systems add, but will be lowered if they are
correlated

Strong
subadditivity

SV (ρABC) + SV (ρB)

≤ SV (ρAB) + SV (ρBC)

For two systems AB and BC having a
common subsystem B the sum of the von
Neumann entropies of their union and
intersection is less than the sum of their von
Neumann entropies

Araki-Lieb
inequality

SV (ρAB) ≥ |SV (ρA) − SV (ρB)| A bipartite state ρAB can be completely
known (zero entropy) even though its parts
are not, such as when SV (ρA) = SV (ρB) = 0

The overlap 〈ψ+|ψ−〉 = 2α2 − 1 is non-zero, and hence |ψ+〉 and |ψ−〉 are non-
orthogonal, for most values of α. This means that the quantum “symbols” in Alice’s
message are not entirely distinguishable for most choices of α. There is the potential,
therefore, for some added redundancy in messages encoded using (non-orthogonal)
quantum symbols that is not present in messages encoded using (orthogonal) clas-
sical symbols. Ultimately, this is what allows quantum messages to be compressed
beyond the Shannon bound.

If the two states, |ψ+〉 and |ψ−〉, appear with equal probability, the von Neumann
entropy of Alice’s source is:

S(ρ) = −α2 log2 α2 − β2 log2 β2 (11.112)

Thus, if the states are orthogonal (which occurs when α2 = β2 = 1
2 ) the von Neu-

mann entropy of the source reduces to exactly the Shannon entropy.
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As shown by Mitsumori et al. [356] we can compress our quantum message in
blocks of three qubits at a time.

|BL〉 = |ψL1〉 ⊗ |ψL2〉 ⊗ |ψL3〉 (11.113)

L = (L1,L2,L3) and Li ∈ {+,−}.
Index L corresponds to one of eight possible configurations for the 3-qubit block,

namely |ψ+〉|ψ+〉|ψ+〉, |ψ+〉|ψ+〉|ψ−〉, |ψ+〉|ψ−〉|ψ+〉, . . . , |ψ−〉|ψ−〉|ψ−〉.
Alice applies the “compressor” operation, U , which is defined via its action on

computational basis states as follows:

U :=

|000〉 → |000〉
|001〉 → |001〉
|010〉 → |010〉
|011〉 → |100〉
|100〉 → |011〉
|101〉 → |101〉
|110〉 → |110〉
|111〉 → |111〉

The state of a block of three qubits after this compressor has been applied is as
follows:

U |BL〉 = α2
√

1 + 2β2|0〉|μL〉 + β2
√

1 + 2α2|νL〉 (11.115)

where

|μL〉 = 1

1 + 2β2
(α|00〉 + β1|11〉 + β2|10〉 + β3|01〉) (11.116)

|νL〉 = 1

β2
√

1 + 2α2
[α(β1β2|10〉 + β1β3|01〉 + β2β3|00〉) + β1β2β3|11〉]

(11.117)

where βi = Liβ which will either be +β or −β .
Next Alice measures the first qubit of the compressed state in the computational

basis, to obtain the value |0〉 or |1〉 [356]. What happens next depends on whether
Alice wants to pursue a “Discard-on-Fail” (see Fig. 11.6) or an “Augment-on-Fail”
(see Fig. 11.7) quantum data compression protocol. Let us take a look at each of
these protocols in turn.

11.4.3 “Discard-on-Fail” Quantum Data Compression Protocol

Discard-on-Fail Quantum Data Compression

1. Partition the data in blocks of three qubits at a time, apply the compressor, U , to
each block, i.e., |BL〉 → U |BL〉.
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Fig. 11.6 First quantum data compression protocol. Alice encodes a sequence of non-orthogonal
qubits in blocks of three qubits using the compressor U . She reads the first qubit obtaining the
result |0〉 or |1〉. If Alice obtains |0〉 she will have prepared the second and third qubits in the same
block in the state |μL〉, and she sends these qubits to Bob. Upon receipt, Bob augments these qubits
with a new first qubit prepared in state |0〉 and sends all three qubits through the decompressor U†.
The output triplet of qubits is now restored close to their original values even though only two
qubits (rather than three) passed through the channel between Alice and Bob. If, instead, when
Alice had measured the first qubit Alice she had found it in state |1〉 she would have regarded this
as a “failure” and would have sent nothing to Bob

2. Alice measures the first qubit in each block output from the compressor, and
obtains |0〉 or |1〉.

3. If Alice obtains |0〉 she retains the measured qubit and passes the remaining two
qubits, now in state ρ

(1)
L = |μL〉〈μL|, to Bob. This event occurs with probability

p = α4(1 + 2β2). If Alice obtains |1〉 she regards this as a “failure” and sends
nothing to Bob. This event, which Bob sees a data drop out in the stream from
Alice, occurs with probability 1 − p.

4. If Bob does receive qubits from Alice, he prepares a new qubit in the state |0〉〈0|
to create the state (|0〉〈0| ⊗ ρ

(1)
L ), and then feeds this expanded state into the

3-qubit decompressor, U†. This operation produces the state

Φ
(1)
L = U†(|0〉〈0| ⊗ ρ

(1)
L )U (11.118)

5. The result is that for each block, Bob either receives nothing from Alice or a pair
of qubits which he can expand and decompress. Hence, the fidelity of the overall
quantum data compression process is

F (1) =
∑

L

1

8
〈BL|Φ(1)

L |BL〉 = α8(1 + 2β2)2 (11.119)
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Fig. 11.7 Second quantum data compression protocol. Alice encodes a sequence of non-orthogo-
nal qubits in blocks of three qubits using the compressor U . She reads the first qubit obtaining the
result |0〉 or |1〉. If Alice obtains |0〉 she will have prepared the second and third qubits in the same
block in the state |μL〉, and she sends these qubits to Bob. If, however, Alice had obtained |1〉 when
she had measured the first qubit, she would have modified the state of the second and third qubits
before passing them to Bob. Upon receipt, Bob augments the qubits transmitted from Alice with a
new first qubit prepared in state |0〉 and sends all three qubits through the decompressor U†. The
output triplet of qubits is now restored close to their original values even though only two qubits
(rather than three) passed through the channel between Alice and Bob

11.4.4 “Augment-on-Fail” Quantum Data Compression Protocol

Augment-on-Fail Quantum Data Compression

1. Partition the data in blocks of three qubits at a time, apply the compressor, U , to
each block, i.e., |BL〉 → U |BL〉.

2. Alice measures the first qubit in each block output from the compressor, and
obtains 0〉 or |1〉.

3. If Alice obtains |0〉 she retains the measured qubit and passes the remaining two
qubits to Bob. If Alice obtains |1〉 she applies a unitary operation V to the two
unmeasured qubits and then sends them to Bob.

4. When Bob receives a pair of qubits from Alice, he prepares a new qubit in the
state |0〉 to create the state |0〉|μL〉, and then feeds this expanded state into the
3-qubit decompressor, U†.

5. The result is that for each block, Bob either receives nothing from Alice or a pair
of qubits which he can expand and decompress.

The fidelity of the “augment-on-fail” quantum data compression protocol ex-
ceeds that of the “discard-on-fail” quantum data compression protocol. However,
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the “augment-on-fail” protocol is more challenging to implement in physical hard-
ware due to the conditional correction that Alice must apply to the unmeasured
qubits in each block prior to their transmission to Bob.

11.4.5 Quantum Circuit for Schumacher-Jozsa Compressor

The final step in understanding quantum data compression is to construct explicit
quantum circuits for the compressor, U , and the decompressor, U†.

First, we can make our life easier by recognizing that once we know an efficient
quantum circuit for U we know an efficient quantum circuit for U† too. To see
this, consider a unitary matrix, U , which can be factored in terms of a dot product
of unitary matrices A and B i.e., U = A · B . This implies that the unitary matrix
U† can be factored as U† = U−1 = (A · B)−1 = B−1 · A−1 = B† · A†. Thus given
a quantum circuit for the compressor, U , we can obtain a quantum circuit for the
decompressor, U†, by inverting and reversing the gates in the quantum circuit for U .
Hence, we need only find a quantum circuit for just the compressor U .

In order to realize the truth table (i.e., basis transformation) we want U to have,
the matrix for U must take the form:

U :=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.120)

which is a permutation matrix, similar to that of a TOFFOLI gate:

TOFFOLI:=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.121)

except that the “NOT” part is shifted up the diagonal. This suggests that we can ob-
tain U from TOFFOLI by shifting the “NOT” part using the permutation matrix Q:
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Q :=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.122)

applied three times to TOFFOLI. Thus we obtain our first clue about how to con-
struct U from the factorization:

U = Q · Q · Q · TOFFOLI · Q† · Q† · Q† (11.123)

Next, we need to reduce TOFFOLI and Q to simpler forms. The TOFFOLI gate is
well-studied and we already know of an efficient quantum circuit for implementing
TOFFOLI using 1-qubit gates and CNOT gates (see Sect. 2.5.7. However, the Q

gate is a new (and pretty useful) gate in the toolbox of the quantum circuit designer.
So how do we factor Q into more familiar quantum gates?

The trick is to realize that for the general n-qubit case:

Q2n = QFT−1
2n · T2n · QFT2n (11.124)

where T2n is defined by:

T2n =
0⊗

k=n−1

(
1 0
0 exp(− 2πi

2n k)

)
(11.125)

Consequently, in our 3-qubit example case, Q3 reduces to:

Q3 = QFT−1 · T 3 · QFT (11.126)

Once, we recognize this basic structure further reductions become pretty easy to
spot:

U = Q3 · TOFFOLI · Q†3

= QFT−1 · T 3 · QFT · TOFFOLI · (QFT−1 · T 3 · QFT)−1

= QFT−1 · T 3 · QFT · TOFFOLI · QFT−1 · T †3 · QFT (11.127)

which can be further simplified by recognizing that T 3 = Z ⊗ Rz(
π
2 ) ⊗ Rz(− 3π

4 ).
Hence, we have succeeded in factorizing the compressor U in terms of TOFFOLI

and Q gates, which in turn can both be reduced explicitly to 1-qubit and CNOT
gates. Hence, our quantum circuit for the compressor, U , for the 3-qubit example
block-size used, is shown in Fig. 11.8.
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Fig. 11.8 Quantum circuit for the data compressor, U , used in the Schumacher-Jozsa quantum
data compression protocols. The example given is appropriate for a block size of three qubits. The
quantum circuit for the decompressor, U†, uses the inverse versions of the same gates applied in
reverse order

11.4.6 Is Exponential Compression Possible?

A final thought on information compression in the quantum context is worthwhile.
Let us compare the storage capacity of the Library of Congress to that a single
qubit. Imagine, for example, that we translate each book in the Library of Congress
into a bit string and concatenate them together. Then the entire Library, the entire
repository of humankind’s literary work product, is equivalent to some (very long)
binary string. Let us call this string, s say. Ok . . . perhaps such an important bit string
deserves a more grandiose letter. You’ve convinced me—let’s call it Σ instead.

Now let’s imagine affixing a period to the front of Σ to make .Σ . Having done
so “.Σ” can be regarded as a binary fraction 0.j1j2 . . . jn. This represents a real
number between 0 and 1 specifically 0 ≤ φ = j12−1 + j22−2 + · · · + jn2−n ≤ 1.
Thus, in principle, we could imagine creating a single qubit state of the form

|ψ〉Σ = |0〉 + exp(iφ)|1〉 (11.128)

and so this single qubit state contains (in some sense) the entire body of human
knowledge! So, on the face of it, it may appear possible to compress information into
a single qubit by an exponential factor. Unfortunately, this is not possible. To encode
all the bits needed to specify the complete contents of the Library of Congress would
require a physically unrealistic precision in setting the angle φ. Moreover, any single
attempt to perform a measurement on |ψ〉Σ , or any transformed version thereof,
will only reveal at most one bit of information. It is neither practically possible to
cram the Library or Congress into a single qubit, nor to extract more than one bit of
information from a single qubit state.



11.5 Superdense Coding 453

11.5 Superdense Coding

We know from Sect. 11.1.2 that if Alice wants to send Bob a classical message
over a classical communications channel, the maximum extent to which she can
compress her message is set by Shannon’s Source Coding Theorem. This states that,
if Alice wants negligible risk of information loss, a message comprising a string of
n bits in which symbol 0 occurs with probability p0, and symbol 1 occurs with
probability p1 = 1 − p0 cannot be compressed into less than nH({p0,p1}) bits,
where 0 ≤ H({p0,p1}) ≤ 1 is the Shannon entropy of the source. The question of
interest is whether Alice can compress her classical message beyond this Shannon
bound if she is able to send it over a quantum communications channel?

At first sight it seems impossible for Alice to do any better that what is allowed
by the Source Coding Theorem. Even if we allow Alice to use quantum states to
encode her classical bits, the fact that we require those quantum states to be unam-
biguously distinguishable, consistent with our commonsense view of what it means
to be a classical “symbol”, forces Alice to have to use orthogonal quantum states to
do the encoding. Thus, Alice could choose quantum state |0〉 to represent a classi-
cal bit 0, and quantum state |1〉 to represent classical bit 1. However, if Alice does
this, the resulting von Neumann entropy, SV (ρ) = −tr(ρ log2 ρ), of her “quantum”
source, described by density operator ρ = p0|0〉〈0| + p1|1〉〈1|, will be identical to
the Shannon entropy of her equivalent classical source, having a probability distri-
bution {p0,p1} = {p0,1 − p0} over the “symbols” 0 and 1. Hence, the maximum
compression that is allowed quantum mechanically, i.e., nSV (ρ) qubits per n qubit
message, will be identical to the maximum compression Alice can achieve classi-
cally, i.e., nH({p0,p1}) bits per n-bit message. It would seem, therefore, that Alice
can realize no benefit whatsoever from having access to a quantum channel over
which to send her classical message.

It turns out, however, that there is a way of using a quantum communications
channel to compress a stream of classical bits—at communications time—beyond
that allowed by Shannon’s Source Coding Theorem. The trick is to allow for the
possibility of creating, distributing and storing certain entangled qubits (or “ebits” as
they are called) over the quantum channel, prior to any “message” communications
taking place. Then, when a classical message of n-bits needs to be communicated, it
can be encoded in only n/2 qubits, sent over the quantum channel, and the measured
jointly with some of the previously shared ebits already at the destination end of the
channel in a such a ways as to re-constitute as the full classical message.

In fact, one could take a maximally compressed classical message, e.g., as given
by a turbo code or low density parity check code, and then further compress this
maximally compressed classical message into quantum message, at communica-
tions time, by an additional factor of two! As the result is, at communications time,
a quantum message needing only half as many qubits as the (perhaps already max-
imally compressed) classical message, this trick is called “superdense coding” and
is only possible using quantum information resources.

It is important to note that this scheme does not violate Shannon’s Source Cod-
ing Theorem because it requires certain quantum states to be created, distributed,
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and stored across the quantum communications channel prior to any actual classi-
cal message being sent. When one takes account of the communication resources
needed to distribute these shared prior states, and add it to the communications re-
sources required to transmit the quantum-encoding of the classical message itself,
the net efficiency is again identical to the Shannon bound. However, in many practi-
cal circumstances, it is possible to create, distribute, and store the ebits at leisure, so
that an urgent classical message can be transmitted at double density at some critical
communications time. That is the main benefit of superdense coding.

To understand how superdense coding works, we must first discuss the Bell states
and how it is possible to interconvert between them by acting on only one end of a
Bell state.

11.5.1 Bell States

The starting point for superdense coding is to begin with 2-qubit maximally entan-
gled states such as the Bell states.

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(11.129)

which can be summarized as:

|βxy〉 = 1√
2
(|0, y〉 + (−1)x |1,1 − y〉) (11.130)

Each of these Bell states can be synthesized from a different starting computa-
tional basis state in a quantum circuit consisting of a single Walsh-Hadamard gate
and a CNOT. Specifically, we have:

|βxy〉 = CNOT · (H ⊗ 1)|xy〉 (11.131)

where x and y can each be 0 or 1.
For superdense coding Alice is going to create Bell states in this manner, store

one member of each pair, and transmit the other member to Bob, which he also
indexes and stores. Provided neither qubit is measured the entanglement between
the qubits in each Bell state is preserved. This shared prior entanglement becomes
the resource upon which we will draw to achieve superdense coding of a subsequent
classical message.
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11.5.2 Interconversion Between Bell States by Local Actions

The Bell states have the curious property that they can be converted into one an-
other by performing single qubit operations on just one of the qubits in each Bell
pair. Moreover, this capability persists even if the two qubits in a Bell state become
separated spatially over an arbitrarily large distance, provided neither of them is
measured during the separation process.

To see this, suppose Alice and Bob each hold one member of a Bell state. The
single qubit operation Alice needs to perform on her qubit, in order to convert the
joint state into some other Bell state are as follows:

|β00〉 1⊗1−→ |β00〉
|β00〉 X⊗1−→ |β01〉
|β00〉 Z⊗1−→ |β10〉
|β00〉 Z·X⊗1−→ |β11〉

(11.132)

|β01〉 X⊗1−→ |β00〉
|β01〉 1⊗1−→ |β01〉
|β01〉 Z·X⊗1−→ |β10〉
|β01〉 Z⊗1−→ |β11〉

(11.133)

|β10〉 Z⊗1−→ |β00〉
|β10〉 X·Z⊗1−→ |β01〉
|β10〉 1⊗1−→ |β10〉
|β10〉 Z·X·Z⊗1−→ |β11〉

(11.134)

|β11〉 X·Z⊗1−→ |β00〉
|β11〉 Z⊗1−→ |β01〉
|β11〉 Z·X·Z⊗1−→ |β10〉
|β11〉 1⊗1−→ |β11〉

(11.135)

11.5.3 Superdense Coding Protocol

We now have all the pieces needed to understand superdense coding. The protocol
is surprisingly straight forward.
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Superdense Coding Suppose Alice wishes to send Bob a classical message com-
prising a string of bits. If Alice and Bob have a quantum channel, and quantum
memories available to them, they can halve the required number of communicative
acts needed at the time the message is sent, but exploiting entanglement resources
created, shared, and stored, at an earlier time. The superdense coding protocol works
as follows:

1. Before any information-bearing message is communicated, Alice creates several
pairs of entangled qubits (i.e., ebits), each in the state |β00〉, indexes and stores
one member of each pair and passes the other member of the same pair to Bob.

2. Upon receipt Bob indexes and stores each ebit he receives from Alice. The result
is that Alice and Bob come to possess matching members of pairs of entangled
qubits each in the state |β00〉 stored at matching index locations in some quantum
memory.

3. Subsequently, when Alice wants to send Bob a two bit classical message, pre-
sented as the quantum state |x〉|y〉, she performs one of four possible operations
on the next indexed ebit in her possession. By acting on her end of an entan-
gled pair of qubits, Alice is able to convert the joint state of the entangled pair
into any of the four Bell states. In particular, if |x〉|y〉 = |0〉|0〉 Alice applies 1
(the identity) to her ebit. If |x〉|y〉 = |0〉|1〉 she applies X (the Pauli-X gate) to
her ebit. If |x〉|y〉 = |1〉|0〉 she applies Z (the Pauli-Z gate) to her ebit. Finally,
if |x〉|y〉 = |1〉|1〉 she applies Z · X to her ebit. These operations transform the
entangled state (initially |β00〉) shared between Alice and Bob as follows:

|00〉|β00〉 1⊗1⊗1⊗1−→ |00〉|β00〉
|01〉|β00〉 1⊗1⊗X⊗1−→ |01〉|β01〉
|10〉|β00〉 1⊗1⊗Z⊗1−→ |10〉|β10〉
|11〉|β00〉 1⊗1⊗Z·X⊗1−→ |11〉|β11〉

(11.136)

4. Alice then sends her “treated” ebit to Bob over the quantum communications
channel.

5. Upon receipt, Bob performs a joint Bell state analysis on the ebit he receives from
Alice together with the correspondingly indexed ebit from his quantum memory.

6. The Bell state analysis allows Bob to determine unambiguously which Bell state
he has (|β00〉, |β01〉, |β10〉, or |β11〉) and hence what bit value pair Alice intended
to send. Thus, if Alice and Bob share prior entanglement, then to send a two-bit
message subsequently, Alice need only send a single “treated” ebit to Bob.

It is important to appreciate that superdense coding does not result in a net reduc-
tion in the communications resources needed to transmit n classical bits. However,
it does allow us to time-shift when channel capacity is available. In essence, su-
perdense coding can use an under-utilized channel at one time to share and store
successive members of EPR pairs so that, at a later time, a classical n bit message
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Fig. 11.9 Quantum circuit for superdense coding. Alice (using qubits 3 and 4 in the figure) pre-
pares maximally entangled pairs of qubits (called “ebits”), keeps one member of each pair, and
passes the other to Bob (qubit 4 in the figure). Subsequently, if Alice wants to send the bits xy

encoded in the quantum state |x〉|y〉, she performs conditional operations on her retained ebit. This
causes the entangled state shared between Alice and Bob to be set in the Bell state |βxy〉. Next
Alice transmits her “treated” ebit to Bob (qubit 3 in the figure). Upon receipt, Bob performs a
complete Bell state analysis which allows him to determine which Bell state qubits 3 and 4 are in.
This tells him what bit values Alive had intended to send. Thus, at communications time, Alice
need only send one qubit to achieve the effect of sending two classical bits. Overall, superdense
coding does not do any better than classical communications because of the communicative acts
needed to establish the shared prior entanglement. Nevertheless, it does allow channel capacity
available at one time to effectively be time-shifted to a later time

can be transmitted using the transmission of only n/2 qubits, consuming one EPR
pair per qubit transmitted. Thus, the extra factor of two compression of the classical
message can only be achieved for as long at the supply of EPR entangled particles
lasts. However, this added factor of two additional compression is even possible if
the classical message has already been maximally compressed (classically) using a
turbo code or low density parity check code.

A quantum circuit for superdense coding is shown in Fig. 11.9

11.6 Cloning Quantum Information

One of the most useful aspects of classical information is our ability to copy, or
“clone”, it reliably without any noticeable error. A photocopier, for example, can
reproduce sheets of papers that are almost indistinguishable from the original. Dig-
ital computer files can be copied with even higher fidelity, in fact, perfectly. The
ability to make perfect copies of classical data is also the curse of the entertainment
and software industries because it also allows bootleggers to make illicit copies of
digital music files, movies, and computer programs. As quantum information appli-
cations become more widespread it therefore behooves us to understand what can
and cannot be done in terms of copying quantum information.

11.6.1 Historical Roots and Importance of Quantum Cloning

“I was the referee who approved the publication of Nick Herbert’s FLASH paper, knowing
perfectly well that it was wrong. I explain why my decision was the correct one, [. . . ]”
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– Asher Peres [389]

The roots of quantum cloning can be traced back to a controversial paper written
by Nick Herbert in 1981 describing an idea for a superluminal communicator based
on the presumption that it is possible to make perfect copies (or clones) of an un-
known quantum state. In 2002 Asher Peres revealed that he and Gian Carlo Ghirardi
had been the “anonymous” reviewers of Herbert’s FLASH paper and that Ghirardi
had recommended its rejection on the grounds that the linear nature of quantum
mechanics meant that the supposed copying process could not exist. Peres likewise
realized the paper was flawed but nevertheless recommended its publication in the
hopes of stimulating others to find the flaw and thereby draw more attention to the
emerging field of quantum information theory.

It turned out Peres was correct. Soon after Herbert’s paper was published William
Wootters and Wojciech Zurek published a paper in Nature entitled “A Single Quan-
tum Cannot be Cloned”, which basically re-discovered Ghirardi’s argument oppos-
ing Herbert’s paper [547]. Around the same time Dennis Dieks published a paper
arguing that the claims of superluminal communications in Herbert’s paper were
also flawed [142]. Thus the publication of the FLASH paper, and the reaction to
it, went a long way towards stimulating more careful analyses of the properties of
quantum information.

Recently, a more pragmatic motivation for studying quantum cloning has arisen
from the need to understand how well an unscrupulous eavesdropper might be able
to tap a quantum communications channel, whilst remaining undetected. If exact
deterministic quantum cloning of unknown quantum states were possible (which
luckily it isn’t), then an eavesdropper would be able to tap a quantum channel, for-
ward perfect copies of the qubits to the intended recipient, and examine the copies
they made at leisure. Fortunately, as we will show below, such exact deterministic
quantum copying is physically impossible. Nevertheless, the practical question is
how well can an eavesdropper do? How much information from a quantum channel
can they extract without their presence being detected? With what fidelity can they
copy unknown quantum states? And if they cannot copy states deterministically, can
they do so probabilistically? These questions and others demonstrate the practical
need to understand what physics permits one to do in terms of cloning quantum
information.

11.6.2 Impossibility of Exact Deterministic Quantum Cloning

As in the classical case, an ideal universal quantum copy machine, or ideal universal
quantum “cloning” machine as it is sometimes called, would be able to make a
perfect copy of any quantum state it was handed. In particular, the action of an ideal
universal quantum cloning machine, Uclone, on an arbitrary pure state |ψ〉 would be
described as:

|ψ〉A|0〉B Uclone−→ |ψ〉A|ψ〉B (11.137)
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which we read as “particle A starts off in state |ψ〉, and particle B starts off in state
|0〉, and after cloning the state of particle A, i.e., |ψ〉, is replicated on particle B .”
This is more clearly seen to be a cloning procedure by suppressing the particle labels

as in |ψ〉|0〉 Uclone−→ |ψ〉|ψ〉.
Likewise, the ideal behavior of a quantum cloner when handed an arbitrary mixed

state, ρ, would be:

ρA ⊗ |0〉B〈0|B Uclone−→ ρA ⊗ ρB (11.138)

which we read as “particle A starts off in state ρ, and particle B starts off in state
|0〉〈0|, and after cloning the state of particle A, i.e., ρ, is replicated on particle B .”
As above, this is more clearly seen to be a cloning procedure by suppressing the

particle labels as in ρ ⊗ |0〉〈0| Uclone−→ ρ ⊗ ρ.
The question is, does Nature permit such an ideal exact deterministic quantum

cloning operation? To proceed, let us assume that Uclone is a perfect quantum cloning
machine, i.e., a unitary operation such that whatever quantum state is given as input,
two perfect copies of it are returned after Uclone has acted. In particular, Uclone will
clone (say) the computational basis states perfectly. Thus, we would have:

|0〉|0〉 Uclone−→ |0〉|0〉
|1〉|0〉 Uclone−→ |1〉|1〉

(11.139)

So far so good. But now let’s assume the same machine was handed the states
1√
2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉) instead, which are rotated with respect to the com-

putational basis states. In this case, a proper quantum cloning machine is required
to act as follows:

1√
2
(|0〉 + |1〉)|0〉 Uclone−→ 1√

2
(|0〉 + |1〉)| 1√

2
(|0〉 + |1〉)

1√
2
(|0〉 − |1〉)|0〉 Uclone−→ 1√

2
(|0〉 − |1〉) 1√

2
(|0〉 − |1〉)

(11.140)

But this not what our supposed quantum cloning machine Uclone does! If Uclone
clones the computational basis states ({|0〉, |1〉}) correctly then, by the linearity
of quantum mechanics, Uclone will transform the input states 1√

2
(|0〉 + |1〉) and

1√
2
(|0〉 − |1〉) as follows:

1√
2
(|0〉 + |1〉)|0〉 Uclone−→ 1√

2
(|00〉 + |11〉)

1√
2
(|0〉 − |1〉)|0〉 Uclone−→ 1√

2
(|00〉 − |11〉)

(11.141)

In neither case is the output a product state of clones of the input state. Hence,
if Uclone is a unitary procedure that clones computational basis states perfectly,
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then it is guaranteed to clone states non-orthogonal to these imperfectly, and vice
versa. This echoes the argument Ghirardi and Wootters and Zurek found against the
FLASH paper. Hence, Uclone cannot be an ideal universal quantum cloning machine
as we had supposed, and in fact the foregoing argument proves that ideal universal
quantum cloning is physically impossible using any unitary operation whatsoever!
Thus we arrive at the so-called “no-cloning” theorem for quantum information.

No Cloning Theorem There is no deterministic quantum procedure by which an
unknown pure quantum state can be cloned exactly.

11.6.3 Universal Approximate Quantum Cloning

Although the quantum no-cloning theorem proves that it is impossible to clone an
unknown quantum state perfectly deterministically it leaves open the possibility
of cloning an unknown quantum state approximately deterministically, or perfectly
non-deterministically. We will consider approximate deterministic cloning first.

If we are able to make an approximate clone, our main concerns are going to be
how good an approximation can we obtain; whether the quality of the approxima-
tion can be made independent of the state we are trying to clone; and whether the
resulting approximate clones can be used freely in subsequent quantum computa-
tions as proxies for the state that was cloned. The latter concern arises because if
the approximate clones are entangled, then is may not matter how good they are
individually, because using one of them could mess up the other one. This last point
is often neglected but is, in fact, crucial to the whom concept of the utility of the
clones.

These concerns were well appreciated by Vladimir Bužek and Mark Hillery. In
1996 they devised the first quantum cloning machine that produced high quality
clones, whose fidelities were input independent, and which were practical to use in
lieu of the original state in subsequent quantum computations [93]. Their elegant
scheme for cloning a single qubit can be described as follows.

Imagine a 3-qubit quantum memory register with the qubits labeled A, B , and C.
Qubit A is to hold the qubit whose state we wish to clone, and the outputs of qubits
B and C are to hold the approximate clones. The quantum cloning machine will be
unitary operation, Ũclone, able to perform at least the following transformation on
the computational basis states of qubit A, i.e., |0〉A and |1〉A, augmented with a pair
of ancillae prepared in the state |00〉BC :

|0〉A|0〉B |0〉C Ũclone−→
√

2

3
|000〉ABC + 1√

3
|1〉A
[

1√
2
(|01〉BC + |10〉BC)

]

|1〉A|0〉B |0〉C Ũclone−→
√

2

3
|111〉ABC + 1√

3
|0〉A
[

1√
2
(|01〉BC + |10〉BC)

] (11.142)

Now imagine what the approximate quantum cloning transformation, Ũclone,
does to an arbitrary superposition state on qubit A, i.e., |ψ〉A = α|0〉A + β|1〉A.
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A little algebra shows that Ũclone will transform a general superposition of qubit A

as:

|ΨABC〉 = Ũclone(α|0〉A + β|1〉A)|0〉B |0〉C

=
√

2

3
α|000〉 + β√

6
|001〉 + β√

6
|010〉 + α√

6
|101〉

+ α√
6
|110〉 +

√
2

3
β|111〉 (11.143)

where we have dropped the qubit labels in the final output state. We can write
|ΨABC〉 equivalently as the density operator:

ρABC = |ΨABC〉〈ΨABC |

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ∗ 1
3αβ∗ 0 0 1

3 |α|2 1
3 |α|2 2

3αβ∗
1
3βα∗ 1

6 |β|2 1
6 |β|2 0 0 1

6βα∗ 1
6βα∗ 1

3 |β|2
1
3βα∗ 1

6 |β|2 1
6 |β|2 0 0 1

6βα∗ 1
6βα∗ 1

3 |β|2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
3 |α|2 1

6αβ∗ 1
6αβ∗ 0 0 1

6 |α|2 1
6 |α|2 1

3αβ∗
1
3 |α|2 1

6αβ∗ 1
6αβ∗ 0 0 1

6 |α|2 1
6 |α|2 1

3αβ∗
2
3βα∗ 1

3 |β|2 1
3 |β|2 0 0 1

3βα∗ 1
3βα∗ 2

3 |β|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.144)

This density operator ρABC is therefore the output from our quantum cloning ma-
chine.

Next we determine the state of the clones individually by tracing out the un-
wanted qubits to obtain:

ρA = trBC(ρABC) =
(

2
3 |α|2 + 1

3 |β|2 1
3βα∗

1
3αβ∗ 1

3 |α|2 + 2
3 |β|2
)

(11.145)

ρB = trAC(ρABC) =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
)

= 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥| (11.146)

ρC = trAB(ρABC) =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
)

= 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥| (11.147)
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where |ψ⊥〉 = α∗|1〉 − β∗|0〉 is a state orthogonal to |ψ〉, which is the antipodal
point to |ψ〉 on the Bloch sphere. Thus, we see that the reduced density operators
for the clones contain the state being cloned plus some extra stuff we did not want.

To assess how close the clones are to the original state, we compute the fidelity of
the clones, i.e., ρB = ρC = 5

6 |ψ〉〈ψ |+ 1
6 |ψ⊥〉〈ψ⊥|, with respect to the original state,

i.e., ρideal = |ψ〉〈ψ |. The formula for the fidelity with which one density operator,
ρ, approximates another, σ , was given in Sect. 11.2.2.4 as:

F (ρ,σ ) =
[
tr
(√√

ρ σ
√

ρ
)]2

(11.148)

Plugging the relevant density operators into this formula for fidelity we have:

ρideal = |ψ〉〈ψ | = (α|0〉 + β|1〉)(α∗〈0| + β∗〈1|)

=
( |α|2 αβ∗

βα∗ |β|2
)

(11.149)

and

ρB = ρC =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
)

(11.150)

which gives F (ρideal, ρB) = F (ρideal, ρC) as:

F (ρideal, ρB) = [tr(√ρideal · ρB · √ρideal)
]2

= [tr(ρideal · ρB · ρideal)
]2

=
[

tr

(( |α|2 αβ∗
βα∗ |β|2

)
·
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
)

·
( |α|2 αβ∗

βα∗ |β|2
))]2

= 5

6
(11.151)

where we used the fact that, as ρideal is pure,
√

ρideal = ρideal. The same result holds
for the second clone ρC . In both cases the fidelity with which quantum cloning is
achieved is 5

6 . Moreover, as the fidelity we obtain is a numerical constant and does
involve α or β it must, therefore, be independent of the input state being cloned. So
our cloning transform is a state independent cloner. However, whereas the original
state was pure, the clones are mixed. We can understand how these two states are
related in terms of the Bloch sphere/Bloch ball picture of a qubit (see Sect. 11.2.2.3).
The pure state |ψ〉 is represented by a point on the surface of the Bloch sphere. If you
imagine a vector drawn from center of the Bloch sphere to the point representing
|ψ〉, then the clone is the mixed state obtained by shrinking the length of this vector
radially without changing its direction. This may help you to visualize the physical
meaning of an approximate quantum clone.
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Fig. 11.10 Quantum circuit for cloning an unknown quantum state |ψ〉A = α|0〉A + β|1〉A.
The clones appear in the output on qubits B and C. Their states are given by tracing out the
other two qubits. That is, ρB = trAC(|ψABC〉〈ψABC |), and ρC = trAB(|ψABC〉〈ψABC |). Note that
ρB = ρC = 5

6 |ψA〉〈ψA| + 1
6 |ψ⊥

A 〉〈ψ⊥
A |, showing that the fidelity of the copies with respect to the

original state is 5
6

11.6.4 Circuit for Quantum Cloning

A quantum circuit that accomplishes our desired cloning transformation

|ψ〉A|0〉B |0〉C Ũclone−→ |ΨABC〉 to shown in Fig. 11.10. Here the 1-qubit gate R(θ)

is defined to be:

R(θ) :=
(

cos θ − sin θ

sin θ cos θ

)
(11.152)

and the particular angles used are set at:

θ1 = π

8

θ2 = − arcsin

√
1

6
(3 − 2

√
2) (11.153)

θ3 = π

8

With these angle values, the quantum cloning circuit induces a (fixed) unitary trans-
formation described by the matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
3 0 − 1√

6
− 1√

6
0 0 0 0

0 0 0 0 1√
6

1√
6

0
√

2
3

0 0 0 0 1√
6

− 1√
6

√
2
3 0

0
√

2
3

1√
6

− 1√
6

0 0 0 0

0 0 0 0 0
√

2
3

1√
6

− 1√
6

1√
6

− 1√
6

√
2
3 0 0 0 0 0

1√
6

1√
6

0
√

2
3 0 0 0 0

0 0 0 0
√

2
3 0 − 1√

6
− 1√

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.154)
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As a check, it is easy to verify that this circuit transforms the basis states as follows:

Ũclone|000〉 =
√

2

3
|000〉 + 1√

6
|101〉 + 1√

6
|110〉

Ũclone|100〉 = 1√
6
|001〉 + 1√

6
|010〉 +

√
2

3
|111〉

(11.155)

and hence transforms a superposition state |ψ〉 = α|0〉 + β|1〉 as:

Ũclone|ψ〉|0〉|0〉 =
√

2

3
α|000〉 + β√

6
|001〉 + β√

6
|010〉 + α√

6
|101〉

+ α√
6
|110〉 +

√
2

3
β|111〉 (11.156)

which is exactly what is called for in (11.143).

11.6.5 Usability of the Quantum Clones

In an ideal universal cloning machine, the output clones would be perfect copies
of the unknown state |ψ〉, and they would be unentangled from each other and the
top qubit in the cloning circuit shown in Fig. 11.10. If these conditions hold, then
the clones would clearly be useful as they could serve as perfect proxies for the
state |ψ〉 in subsequent quantum computations. Unfortunately, the clones we ob-
tain are neither perfect copies of the original state nor are they unentangled from
each other and the top qubit of the cloning circuit. It is not immediately clear, there-
fore that cloning has achieved anything practically useful because, if the clones
are entangled, operations performed on one of them might mess up the other. Fur-
thermore, is a fidelity of 5

6 really high enough to allow us to compute expecta-
tion values of observables that will be close enough to the true values to be use-
ful? We will now address these issues by showing that although the clones are
indeed entangled, they are nevertheless usable in subsequent quantum computa-
tions.

In an ideal cloning machine, an input state of the form |ψ〉A|0〉B |0〉C to be
mapped into an output state of the form |?〉A|ψ〉B |ψ〉C . Here perfect clones ap-
pear on qubits B and C, and they are unentangled from each other and from
qubit A. Alas, we know from the no-cloning theorem, that quantum mechan-
ics does not allow such perfection. Nevertheless, we can produce approximate
clones on qubits B and C but these are no longer guaranteed to be unentangled
form each or unentangled from qubit A. If they are entangled then, potentially,
subsequent operations on one clone could perturb the other clone (not to men-
tion the ancilla). So we need to understand whether or not the clones are entan-
gled.
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11.6.5.1 Are the Clones Entangled?

First let us determine whether or not the clones are entangled with each other. That
is, we test whether the joint density operator of the clones, ρBC , is separable or
inseparable. To test this, we can use the Peres-Horodecki criterion of Sect. 11.3.3.
As you will recall this test is based on checking whether there is at least one negative
eigenvalue in the partial transpose of the density operator whose entanglement status
is sought—in our case ρBC .

Starting with ρABC = |ΨABC〉〈ΨABC | we obtain ρBC by tracing over qubit A

(the top qubit in the circuit shown in Fig. 11.10), to obtain:

ρBC = trA(ρABC) =

⎛
⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ∗ 1
3αβ∗ 0

1
3βα∗ 1

6
1
6

1
3αβ∗

1
3βα∗ 1

6
1
6

1
3αβ∗

0 1
3βα∗ 1

3βα∗ 2
3 |β|2

⎞
⎟⎟⎟⎟⎠ (11.157)

Then, we compute the partial transpose of ρBC taken over the space “B” i.e., the
space corresponding to the first of the two qubits in ρBC . This gives

ρ
TB

BC =

⎛
⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ∗ 1
3βα∗ 1

6
1
3βα∗ 1

6 0 1
3βα∗

1
3αβ∗ 0 1

6
1
3αβ∗

1
6

1
3αβ∗ 1

3βα∗ 2
3 |β|2

⎞
⎟⎟⎟⎟⎠ (11.158)

The eigenvalues of the partial transpose ρ
TB

BC can be obtained from the characteristic

polynomial3 of the partial transpose ρ
TB

BC , i.e., as the roots of:

det(ρTB

BC − λ1) = (6λ − 1)2(36λ2 − 24λ − 1)

1296
= 0 (11.159)

Amazingly, after simplifying det(ρTB

BC − λ1) by using the fact that |α|2 + |β|2 = 1
and |α| ≤ 1, the resulting characteristic polynomial does not contain any mention
of α and β! This means that the eigenvalues of ρ

TB

BC are independent of the state
being cloned, and are in fact equal to 1

6 , 1
6 , 1

6 (2 − √
5), and 1

6 (2 + √
5). As

√
5 > 2,

we see that the third eigenvalue is assuredly negative. Thus, by the Peres-Horodecki
criterion ρBC , which is the joint state of the clones, must be an entangled.4 Rats!

3The characteristic polynomial of a square matrix U is the left hand side of the equation
det(U − λ1) = 0 where 1 is the identity matrix. The roots of the characteristic polynomial are
the eigenvalues of the matrix U .
4N.B. If we had computed, instead, the partial transpose over the space “C” i.e., the space corre-
sponding to the second of the two qubits in ρBC , we would have obtained a different matrix for the
partial transpose, ρTC

BC , but its eigenvalues would have been the same as those of ρ
TB

BC , and therefore
one would have still been negative.
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11.6.5.2 How Entangled are the Clones?

Just how entangled are the clones? To quantify the degree to which the clones are
entangled we can compute the tangle of ρBC . Tangle, as a measure of entanglement
for pure states, was introduced in Sect. 2.8.1. However, it generalizes readily to the
case of mixed states. Define ρ̃ as the “spin-flipped” version of a density operator ρ:

ρ̃ = (Y ⊗ Y) · ρ · (Y ⊗ Y) (11.160)

then the tangle of ρ, tangle(ρ), is related to the eigenvalues of the operator ρ · ρ̃.
Specifically, if the four eigenvalues of ρ · ρ̃ are arranged in decreasing order so that
λ1 ≥ λ2 ≥ λ3 ≥ λ4, then:

tangle(ρ) = [max(
√

λ1 −√λ2 −√λ3 −√λ4,0)
]2 (11.161)

For the density operator, ρBC , the spin-flipped version is:

ρ̃BC = (Y ⊗ Y) · ρBC · (Y ⊗ Y)

=

⎛
⎜⎜⎜⎜⎝

2
3 |β|2 − 1

3αβ∗ − 1
3αβ∗ 0

− 1
3βα∗ 1

6
1
6 − 1

3αβ∗

− 1
3βα∗ 1

6
1
6 − 1

3αβ∗

0 − 1
3βα∗ − 1

3βα∗ 2
3 |α|2

⎞
⎟⎟⎟⎟⎠ (11.162)

and so the eigenvalues of ρBC · ρ̃BC are the roots of the corresponding characteristic
polynomial:

det(ρBC · ρ̃BC − λ1) = λ3
(

λ − 1

9

)
= 0 (11.163)

Amazingly again, after simplifying det(ρBC · ρ̃BC −λ1) by using the fact that |α|2 +
|β|2 = 1 and |α| ≤ 1, the resulting characteristic polynomial does not contain any
mention of α and β . This means that the eigenvalues of ρBC · ρ̃BC are independent
of the state being cloned, and are in fact equal to 0, 0, 0, and 1

9 . Thus, arranging the
eigenvalues in decreasing order so that λ1 = 1

9 , λ2 = λ3 = λ4 = 0, and taking square
roots, the tangle is then given by:

tangle(ρBC) = [max
(√

λ1 −√λ2 −√λ3 −√λ4,0
)]2

=
[

max

(√
1

9
− √

0 − √
0 − √

0,0

)]2
= 1

9
(11.164)

This is actually not that bad. A maximally entangled 2-qubit state has a tangle of 1,
so tangle(ρBC) = 1

9 is fairly small. So the clones are far from being maximally
entangled. However, the fact that the clones are entangled at all could spell trouble
because when one uses one of the clones, the operations performed on it, could
change the other clone. Hence, we might wonder whether we can use the two clones
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freely in subsequent quantum computations. Furthermore, the fidelity of the clones,
5
6 is noticeably less than 1. Is this good enough to learn anything trustworthy about
ρideal by subsequent observations on the clones ρB and ρC? This issues are resolved
in the next two sections.

11.6.5.3 Expectation Value of an Observable Based on Ideal State

To assess how useful the clones really are, we need to examine how the expectation
value of a general operator Ω , when the system is in a clone state ρB or ρC , differs
from the expectation value of the same operator when the system is in the original
state ρideal = |ψ〉〈ψ |.

The ideal state is just the original state |ψ〉 we are trying to clone. Thus we have:

ρideal = |ψ〉〈ψ | =
( |α|2 αβ∗

βα∗ |β|2
)

(11.165)

Without loss of generality, the general form for an arbitrary 1-qubit observable
operator, Ω , can be defined symbolically as:

Ω =
(

p z

z∗ q

)
(11.166)

where p and q are real numbers and z is (in general) a complex number. Any 1-qubit
observable operator has to adhere to this form to be hermitian.

Now we can compute the expectation value of the observable Ω when the system
is in state ρideal. Using the formula given in Table 11.1 for computing the expectation
value of an observable of a state defined by a density operator we have:

〈Ω〉 = tr(ρidealΩ) = (pα + zβ)α∗ + (qβ + αz∗)β∗ (11.167)

This result is therefore our “gold standard” against which the quality of our clones
can be judged.

11.6.5.4 Expectation Value of an Observable Based on a Clone

Now let us re-derive the expectation value 〈Ω〉 this time using our clones. We want
to tell two things. First, given that the clone is imperfect, what is the relationship
between an operator expectation value for a clone state compared to that of the ideal
state? Second, given that the clones are entangled, can we still use both clones in
determining expectation values or does the use of one of them, render the other
useless?

The state of each single clone is given by tracing over the other two qubits in the
output state |ΨABC〉〈ΨABC |. We calculated the reduce density matrices of the clones
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in (11.146) and (11.147). We found that:

ρB = trAC(ρABC) =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
)

ρC = trAB(ρABC) =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ∗

2
3βα∗ 1

6 |α|2 + 5
6 |β|2
) (11.168)

These reduced density matrices for the clones are telling. These are the states we
will appear to have regardless of what happens to the other clone. So provided we
can milk some useful information out of ρB and ρC we do not need to worry fur-
ther about the fact that the clones are actually entangled. So can we extract useful
information?

Well surprisingly, although the clones ρB and ρC are only approximations to
the ideal state ρideal we can, in principle, use them to obtain the exact expectation
values for any operator, Ω! This is remarkable. The trick is to write “1” in the form
“|α|2 + |β|2” to see that the following identity holds:

ρB = ρC = 2

3
ρideal +

( |α|2
6

+ |β|2
6

)
1 (11.169)

where 1 is the identity matrix. It then follows that:

〈Ω〉 = tr(ρideal · Ω) = 3

2

(
tr(ρB · Ω) − 1

6
tr(Ω)

)
(11.170)

Thus we can use the clones to obtain the exact value of any observable, even though
they are only approximations to the ideal clone, and even though they are entangled.
I find this really a most amazing result!

11.6.6 Universal Probabilistic Quantum Cloning

Recall that the no-cloning theorem proves the impossibility of cloning an unknown
state exactly deterministically. Yet it does not preclude the possibility of cloning
an unknown state approximately deterministically, or cloning one exactly non-
deterministically. In the preceding sections we showed that approximate determinis-
tic quantum cloning machines are feasible. These are quantum circuits that use only
unitary quantum gates to produce approximate clones that are described by reduced
density matrices corresponding to mixed states. So even if the input state is pure the
approximate clone is mixed.

In this section we show that the alternative strategy of exact albeit non-
deterministic cloning machines are also feasible. We call such devices “probabilistic
cloning machines” because they might not produce clones every time they run but
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when they do the fidelity of those clones is higher than what can be achieved deter-
ministically. The quantum circuits corresponding to probabilistic cloning machines
use measurements, in addition to unitary gates, to achieve the desired state trans-
formation. The success of the exact probabilistic cloning procedure is signalled by
obtaining a specific outcome for these measurements.

The first design for a probabilistic cloning machine is due to Lu-Ming Duan
and Guang-Can Guo [152]. They showed that if states are selected secretly from a
set {|ψ1〉, |ψ2〉, . . . , |ψn〉} they can be cloned exactly probabilistically if and only
if the {|ψi〉} are linearly independent. In other words, probabilistic cloning does
not work for arbitrary states—they must be linearly independent—but their precise
identity does not need to be known so long as the promise holds that they are linearly
independent. If this condition holds, then Duan and Guo showed that there exists as
unitary operation U and measurement M such that the following transformation is
possible:

|ψi〉|Σ〉 U&M−→ |ψi〉|ψi〉 (11.171)

Here the measurement M means that the transformation is non-unitary overall,
which is what allows it to appear to circumvent the no-cloning theorem.

To obtain such a transformation we need to design a unitary transformation and a
measurement that does the trick. We begin by imaging there are three sub-spaces to
our system A, B , and C. Sub-space A holds the state to be cloned. Sub-space B will
hold the clone. And sub-space C will hold ancillae states that we intend to measure.

We can begin by defining an orthonormal set of (n + 1) states of a so-called
measurement probe {|P0〉, |P1〉, . . . , |Pn〉}. These states can serve as an unambigu-
ous measurement basis provided 〈Pi |Pj 〉 = 0 for i = j and 〈Pi |Pi〉 = 1. Given such
basis states, and a state selected secretly from our linearly independent set {|ψi〉},
probabilistic cloning works by creating a unitary evolution of the form:

|ψi〉A|Σ〉B |P0〉C U−→ √
pi |ψi〉A|ψi〉B |P0〉C +

n∑
j=1

cij |Φj 〉AB |Pj 〉C (11.172)

followed by a measurement of sub-system C in the {|P1〉, |P2〉, . . . , |Pn〉} basis. In
this transformation |Φ1〉AB, |Φ2〉AB, . . . , |Φn〉AB are n normalized states of sub-
systems A and B combined, but they are not necessarily orthogonal. Given the struc-
ture of the state produced under the action of U on an input |ψi〉A|Σ〉B |P0〉C we
can see immediately that exact cloning will be achieved whenever the measurement
on sub-space C in the {|P0〉, |P1〉, . . . , |Pn〉}-basis yields the result |P0〉. Moreover,
this event will occur with probability pi , which we can think of as the “cloning
efficiency”.

The simplest case is when we want to clone one of only two linearly independent
states {|ψ1〉, |ψ2〉}. In this case Duan and Guo show that the cloning efficiencies p1
and p2 must satisfy the inequality:

1

2
(p1 + p2) ≤ 1

1 + 〈ψ1|ψ2〉 (11.173)
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This result can be generalized to bound all the probabilities p1,p2, . . . , pn based on
a certain matrix having to be positive semi-definite.

Optimal probabilistic cloning is closely related to the task of optimal unambigu-
ous quantum state discrimination [109, 248, 254, 386].

11.6.7 Broadcasting Quantum Information

Extending the notion of quantum cloning to mixed states requires a little thought,
because a complication arises that we do not have in the case of pure states. Given
that we don’t directly “see” the quantum state produced by cloning, but rather only
experience it through the statistical properties it displays, we might wonder whether
our goal is to clone a given mixed state literally, or merely produce clones that
replicate the statistical properties of the given mixed state? This distinction can be
best appreciated in terms of the two possible ways we could set up the notion of
cloning for mixed states. These are usually distinguished by contrasting them as
“cloning” versus “broadcasting”.

ρ ⊗ |Φ〉〈Φ| Cloner−→ ρ ⊗ ρ (11.174)

ρ ⊗ |Φ〉〈Φ| Broadcaster−→ ρAB : trA(ρAB) = ρ and trB(ρAB) = ρ (11.175)

The problem is that there are many density operators that can mimic the statistical
behavior of the true clones. Hence, merely obtaining output density operators that
display the same statistical properties as the true clones, is not entirely enough to
allow is to conclude we really have true clones.

11.7 Negating Quantum Information

“The process of optimal quantum cloning is closely connected to another impossible oper-
ation in quantum mechanics, the so-called universal NOT gate for qubits.”
– Nicolas Cerf [99]

An ideal classical NOT gate, NOT, is able to negate any bit it is handed even if
the bit value is unknown. That is, if b ∈ {0,1}, NOTb = 1 − b = ¬b regardless of
value of b.

Similarly, an ideal universal5 quantum NOT gate (if it existed) would be able to
negate any 1-qubit state it is handed. That is, for |ψ〉 = a|0〉 + b|1〉,

U ideal
NOT |ψ〉 = b∗|0〉 − a∗|1〉 ≡ |ψ⊥〉 (11.176)

5Here “universal” means “input state independent.”
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In terms of the Bloch sphere, |ψ⊥〉 is the antipodal point to |ψ〉 on the opposite side
of the Bloch sphere along a straight line through its center. Hence |ψ〉 and |ψ⊥〉 are
orthogonal quantum states, i.e., 〈ψ |ψ⊥〉 = 0.

Unfortunately, such an ideal universal quantum NOT operation requires that
U

(ideal)
NOT be described by an anti-unitary matrix, whereas deterministic quantum gates

are always described by unitary matrices. Hence it is impossible to achieve U
(ideal)
NOT

exactly deterministically as purely a rotation on the Bloch sphere. Nevertheless, as
in the case of quantum cloning, we can define a universal quantum NOT as the best
approximation to the ideal NOT operation on qubits.

11.7.1 Universal Quantum Negation Circuit

Surprisingly, as the alert reader will have noticed, the desired negated state |ψ⊥〉
happens to be produced as an “unwanted” side effect of using a universal quantum
cloning circuit! In (11.146) and (11.147) we see the negated state appears as the
“distortion” that prevents the clone for being exact. Specifically, we have:

ρB = 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥|

ρC = 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥|

(11.177)

However, although we did not show this earlier, the contribution of the negated state,
|ψ⊥〉, to the top qubit A, turns out to be even greater. We can see this by factoring
the reduced density operator ρA in terms of |ψ〉 and |ψ⊥〉 as follows:

ρA = trBC(ρABC) =
(

2
3 |α|2 + 1

3 |β|2 1
3βα∗

1
3αβ∗ 1

3 |α|2 + 2
3 |β|2
)

= Y ·
(

1

3
|ψ〉〈ψ | + 1

3
|ψ⊥〉〈ψ⊥|

)
· Y (11.178)

where

|ψ〉〈ψ | =
( |α|2 αβ∗

βα∗ |β|2
)

(11.179)

|ψ⊥〉〈ψ⊥| =
( |β|2 −αβ∗

−βα∗ |α|2
)

(11.180)

In fact, it turns out that the optimal universal negating circuit is exactly the same
as the optimal universal cloning circuit! The only difference, when we want to use
the cloning circuit as a negating circuit, is that we pay attention to a different output
qubit, namely the top qubit that contains ρA. Thus, a circuit for universal quantum
negation is shown in Fig. 11.11.
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Fig. 11.11 Quantum circuit for universal quantum negation. In an ideal universal quantum
negation circuit an unknown quantum state |ψ〉A = α|0〉A + β|1〉A would be transformed into
β∗|0〉A − α∗|1〉A. This is not possible deterministically using unitary gates. Instead the best we
can do is given by monitoring the output of the top qubit (A). The reduced density matrix of this
qubit, ρA = trBC(|ψABC〉〈ψABC |) gives the best approximation to the negated state. This shows
the fidelity of the negated state with respect to the ideal negated state is 1

6

11.7.2 Expectation Value of an Observable Based on the Negated
State

We can ask a similar question for universal negation that we asked for universal
cloning: is the negated state, ρA, close enough to the ideal negated state, |ψ⊥〉〈ψ⊥|,
to be on use in subsequent quantum computations?

Using (11.178) we can express the ideal negated state, ρUNOT
ideal = |ψ⊥〉〈ψ⊥|, in

terms of the original state and the output on the top qubit of the quantum cloning
(or equally, quantum “negating”) circuit:

ρUNOT
ideal = 3

2

(
Y · ρA · Y − 1

3
|ψ〉〈ψ |
)

(11.181)

where |ψ〉〈ψ | = ρCLONE
ideal . So for any observable operator Ω we would have:

〈Ω〉 = tr(ρUNOT
ideal · Ω) = 3

2

(
tr(Y · ρA · Y · Ω) − 1

3
tr(|ψ〉〈ψ | · Ω)

)
(11.182)

So we can obtain the exact expectation value of an operator on the true negated
state, by using the approximation to the negated state on qubit A in conjunction
with ρCLONE

ideal .

11.8 Summary

In Shannon’s view, information is equated to the representation of knowledge rather
than the content of the knowledge per se. This view of “information” is alien to
many people when they first encounter it. However, it turns out to be very useful
in practice because it allows us to make concrete predictions on such matters as the
degree to which an information bearing message can be compressed while ensuring
the original message is recoverable, and the amount of redundancy to build into a
communication to ensure it can be transmitted reliably through a noisy channel.
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In the quantum context, the notion of information is extended in the obvious
way by replacing classical streams of bits with quantum streams of qubits (possibly
in non-orthogonal states). We found that the probability distribution by which we
characterize a classical source is replaced by the density operator by which we char-
acterize a corresponding quantum source. We introduced a new kind of entropy, the
von Neumann entropy, which matches the Shannon entropy only when the quantum
states are orthogonal and hence unambiguously distinguishable (like classical sym-
bols). But when the quantum states are non-orthogonal, the von Neumann entropy
exceeds the Shannon entropy. This allows certain operations on quantum informa-
tion to exceed the bounds for corresponding operations on classical information.
For example, we can compress quantum messages comprising non-orthogonal states
over some probability distribution to a degree that is greater than that of classical
messages over symbols that occur with the same probability distribution. We gave
examples of two variants of such quantum compression protocols—discard-on-fail
and augment-on-fail. More interestingly, we also found that we can use quantum
information to compress a classical message by a factor of two beyond the Shan-
non bound at communication time provided we have already established and stored
matching pairs of entangled qubits between the two ends of the communications
channel. Thus, overall, Shannon’s bound is not exceed. However, at communication
time, we can temporarily appear to exceed the Shannon by a factor of two for as
long as the supply of matching entangled pairs remain.

Some operations that we take for granted on classical information are not so
easy with quantum information. For example, whereas we can copy classical in-
formation perfectly deterministically, we cannot do so for quantum information in
an unknown quantum state. Similarly, whereas we can negate classical information
perfectly deterministically, we cannot negate quantum information in an unknown
state. In both cases, however, we can find approximate quantum protocols that do
as well as Nature allows. Surprisingly, we can use the approximate clones and ap-
proximate negated states to obtain exact expectation values of observable operators
based on them. So in this sense, they are almost as useful as having perfect clones
and perfect negated states.

The main difference between quantum information and classical information is
the ability of the former to use non-orthogonal states to represent symbols, and
for those non-orthogonal states to be entangled. Neither of these options exists for
classical information, and this difference is the root of the dissimilarities between
quantum and classical information. We introduced the formalism of density oper-
ators to describe quantum sources. We showed how the partial trace was used to
describe a part of a composite quantum system. We highlighted the difference be-
tween pure and mixed states and focussed on the maximally entangled variants of
both kinds of quantum states. We introduced a measure of the degree of entangle-
ment in a quantum state via the tangle, and showed that deciding whether or not a
quantum was entangled could be answered using so-called entanglement witnesses
or the Peres-Horodecki criterion.
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11.9 Exercises

11.1 Calculate the density matrices for the following ensembles.

1. An ensemble of quantum states that are all 1
2 |0〉 −

√
3

2 |1〉.
2. An ensemble of quantum states that are all 1

3
√

3
|01〉 + 1

3

√
26
3 |10〉.

3. An ensemble of quantum states that are 1√
2
(|0〉−|1〉) with probability 0.3, 1

2 |0〉−
√

3
2 |1〉 with probability 0.4, and |0〉 with probability 0.3.

11.2 Compute the density operator for an ensemble that is 30% |ψ1〉 = 1√
3
|0〉 +√

2
3 |1〉 and 70% |ψ2〉 = 2

3 |0〉 +
√

5
3 |1〉, and write its elements as decimal numbers.

Now compute the density operators for the following ensembles:

1. An ensemble that is 50% |ψ1〉 = 0.680082|0〉 + 0.733136|1〉 and 50% |ψ2〉 =
0.599759|0〉 + 0.800181|1〉.

2. An ensemble that is 25% |ψ1〉 = 0.568532|0〉 + 0.822661|1〉 and 75% |ψ2〉 =
0.66363|0〉 + 0.748061|1〉.

What do you notice? Can you devise any experimental test to distinguish between
these ensembles? Justify your answer.

11.3 What test on a density operator, ρ, tells you whether the state is pure or mixed?
According to this test, does the density operator given by

ρ =

⎛
⎜⎜⎜⎝

1
9 0 − 2

9
2
9

0 0 0 0
− 2

9 0 4
9 − 4

9
2
9 0 − 4

9
4
9

⎞
⎟⎟⎟⎠

correspond to that of a pure state or a mixed state?

11.4 Under what conditions is a 2-qubit state said to be separable? Your definition
should cover both pure states and mixed states.

11.5 Under what conditions is a 2-qubit density operator said to be that of a pure
state?

11.6 Which of the following simultaneous conditions of a quantum state are possi-
ble? There may be more than one correct answer.

1. A state can be simultaneously pure and mixed.
2. A state can be simultaneously separable and entangled.
3. A state can be simultaneously entangled and mixed.
4. A state can simultaneously mixed and separable.
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5. A state can be simultaneously entangled and pure.

11.7 What is the linear entropy of the density operator, ρ, defined by:

ρ =

⎛
⎜⎜⎜⎜⎝

1
8 0 0 −

√
3

8

0 3
8

1
8 0

0 1
8

1
8 0

−
√

3
8 0 0 3

8

⎞
⎟⎟⎟⎟⎠ (11.183)

Is linear entropy a good measure of the mixedness or the entanglement within a
state? Explain your answer.

11.8 Exhibit a 2-qubit (i.e., 4×4) density operator having a linear entropy less than
8
9 which is entangled.

11.9 Exhibit a 2-qubit (i.e., 4×4) density operator having a linear entropy less than
8
9 which is separable.

11.10 What test based on the linear entropy of a density operator, ρ, tells you
whether the state is entangled or separable? According to this test, does the den-
sity operator given by

ρ =

⎛
⎜⎜⎝

0.375003 0.0403853 0.0634155 0.00682943
0.0403853 0.126466 0.00682943 0.0213862
0.0634155 0.00682943 0.372806 0.0401487
0.00682943 0.0213862 0.0401487 0.125725

⎞
⎟⎟⎠ (11.184)

correspond to an entangled state or a separable state?

11.11 What is the von Neumann entropy of a mixed state described by a density
operator ρ? Is the von Neumann entropy a good measure of the mixedness or en-
tanglement within a state? Calculate the von Neumann entropies of the following
density operators:

1. The maximally mixed state

ρ =

⎛
⎜⎜⎝

1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

⎞
⎟⎟⎠

2. The typical mixed state

ρ =

⎛
⎜⎜⎝

0.314815 −0.165635i 0 0.166667
0.165635i 0.372685 −0.165359 0

0 −0.165359 0.145833 0
0.166667 0 0 0.166667

⎞
⎟⎟⎠
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3. The maximally entangled mixed state

ρ =

⎛
⎜⎜⎝

1
3 0 0 1

10
0 1

3 0 0
0 0 0 0
1
10 0 0 1

3

⎞
⎟⎟⎠

11.12 Prove that the expectation value of an observable, O, for a quantum system
in state ρ, given by (11.8) can be re-expressed in trace form as given by (11.9). That
is, prove 〈O〉 =∑N

i=1 pi〈ψi |O|ψi〉 = tr(ρ · O) where O is an hermitian matrix, and
ρ is a density operator.

11.13 It is possible to inter-convert between Bell states by applying single qubit
operation to one member of a Bell state pair. What Bell state transformations do the
following 1-qubit gates bring about?

|β00〉 Ry(−π)⊗1−→ ???

|β01〉 Ph(π/2)·Ry(π)·Rz(π)⊗1−→ ???

|β10〉 Ph(π/2)·Ry(−π)·Rz(π)⊗1−→ ???

|β11〉 Ph(−π/2)·Rz(−π)⊗1−→ ???

11.14 Recall that the quantum No-Cloning theorem asserts that “An unknown quan-
tum state cannot be cloned”. Thus, it is supposed to be impossible to find a unitary
transformation that can accomplish the transformation |ψ〉|0〉 −→ |ψ〉|ψ〉 for |ψ〉
unknown. However, you see an article that challenges the veracity of the No-Cloning
theorem based on the following argument:

(a) A bit, by definition, can be only 0 or 1.
(b) If you are given a bit but not told its value, then the bit is, by definition, unknown

to you. So let’s call the bit value b, but leave the value unspecified.
(c) Conceptually, you could use the bit value b to control the settings of a device

such as a Pockels cell (see Chap. 13), that outputs a horizontally polarized pho-
ton if b = 0 and a vertically polarized photon if b = 1. Thus, without loss of
generality, we can convert our unknown bit to an unknown quantum state, which
we can represent as |b〉, without ever revealing the value of b.

(d) Now imagine augmenting the output from the Pockels cell, the unknown state
|b〉, with another photon in a known state |0〉 (horizontally polarized photon) and
push them through some optical apparatus that implements a CNOT gate, i.e.,
compute CNOT|b〉|0〉. Clearly, b has to be either 0 or 1 so the only two cases we
need to consider are CNOT|0〉|0〉 = |0〉|0〉 and CNOT|1〉|0〉 = |1〉|1〉.

(e) Either way, the unknown quantum state |b〉 has been successfully cloned!
(f) Therefore, the No-Cloning theorem must be wrong, because here we have suc-

cessfully cloned an unknown quantum state |b〉!
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What is wrong with this argument? Why does it not disprove the No-Cloning theo-
rem? Justify you answer by critiquing each step in the aforementioned argument.

11.15 Given the density matrix:

ρ =

⎛
⎜⎜⎜⎜⎜⎝

4
49 − 6

35
4
√

314
735 − 4i

21

− 6
35

9
25 − 2

√
314

175
2i
5

4
√

314
735 − 2

√
314

175
1256
11025 − 4i

√
314

315
4i
21 − 2i

5
4i

√
314

315
4
9

⎞
⎟⎟⎟⎟⎟⎠

(11.185)

prove that its two partial transposes, ρTA and ρTB , have the same set of eigenvalues.

11.16 What are the density matrices corresponding to the four pure Bell states,
|β00〉, |β01〉, |β10〉, or |β11〉 as defined in (11.69)? Are they the same or different?
Now compute the reduced density matrices obtained by tracing over each of the
qubits in each of these Bell states. Are these reduced density matrices the same or
different? If your results are different, use them to find a single qubit observable,

Ω = ( a c

c∗ b

)
, which is able to distinguish between the four Bell states. Alternatively,

if your results are the same, use them to prove no such observable exists.

11.17 One way to measure the similarity between a pair of density matrices, σ and
ρ, is via their fidelity:

F (σ,ρ) =
[

tr(
√√

σ · ρ · √σ)

]2
(11.186)

Show that if σ is the density matrix of an arbitrary single qubit pure state, i.e., if
σ = |ψ〉〈ψ | where ψ = a|0〉 + √1 − |a|2|1〉 (with |a| ≤ 1 and a ∈ C), and ρ =
p|0〉〈0|+ (1 −p)|1〉〈1| (with 0 ≤ p ≤ 1 and p ∈ R) then the fidelity F (σ,ρ) can be
written as:

F (σ,ρ) = 〈ψ |ρ|ψ〉 = 1 − p − (1 − 2p)|a|2 (11.187)

Notice that if p = 1
2 the fidelity is then independent of a. What is so special about

the state ρ = p|0〉〈0|+ (1 −p)|1〉〈1| when p = 1
2 ? Why should the fidelity between

ρ when p = 1
2 and any pure state be independent of the form of that pure state?

11.18 Consider the pair of entangled states |ψW〉 and |ψGHZ〉 defined on the three
qubits A, B , and C as follows:

|ψW〉 = 1√
3
(|001〉 + |010〉 + |100〉); ρW

ABC = |ψW〉〈ψW|

|ψGHZ〉 = 1√
2
(|000〉 + |111〉); ρGHZ

ABC = |ψGHZ〉〈ψGHZ|
(11.188)
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Prove the following:

(a) The states |ψW〉 and |ψGHZ〉 are orthogonal, i.e., 〈ψW|ψGHZ〉 = 0. What does
this tell you about the degree to which |ψW〉 is similar to |ψGHZ〉?

(b) |ψW〉 and |ψGHZ〉 are both entangled states.
(c) The 2-qubit sub-systems of |ψW〉 are identical, i.e. ignoring indices, we obtain

the same state whether we trace over the first, second, or third qubit:

ρW
BC = trA(|ψW〉〈ψW|) = ρW

AC = trB(|ψW〉〈ψW|) = ρW
AB = trC(|ψW〉〈ψW|)

(11.189)

(d) The 2-qubit sub-systems of |ψGHZ〉 are identical, i.e. ignoring indices, we obtain
the same state whether we trace over the first, second, or third qubit:

ρGHZ
BC = trA(|ψGHZ〉〈ψGHZ|) = ρGHZ

AC = trB(|ψGHZ〉〈ψGHZ|)
= ρGHZ

AB = trC(|ψGHZ〉〈ψGHZ|) (11.190)

(e) For any pair of indices {x, y} ⊂ {A,B,C}, the fidelity between the reduced
density matrices ρW

xy and ρGHZ
xy is 1

6 . That is, prove F (ρW
xy, ρ

GHZ
xy ) = 1

6 .
(f) The 1-qubit sub-systems of |ψW〉 are identical, i.e. ignoring indices, we obtain

the same state whether we trace over the second and third, first and third, or first
and second qubits:

ρW
A = trBC(|ψW〉〈ψW|) = ρW

B = trAC(|ψW〉〈ψW|) = ρW
C = trAB(|ψW〉〈ψW|)

(11.191)

(g) The 1-qubit sub-systems of |ψGHZ〉 are identical, i.e. ignoring indices, we obtain
the same state whether we trace over the second and third, first and third, or first
and second qubits:

ρGHZ
A = trBC(|ψGHZ〉〈ψGHZ|) = ρGHZ

B = trAC(|ψGHZ〉〈ψGHZ|) = ρGHZ
C

= trAB(|ψGHZ〉〈ψGHZ|) (11.192)

(h) For any index x ∈ {A,B,C}, the fidelity between the reduced density matrices
ρW

x and ρGHZ
x is 1

6 (3 + 2
√

2). That is prove, F (ρW
x , ρGHZ

x ) = 1
6 (3 + 2

√
2).

(i) What is the fidelity between the original pair of states |ψW〉 and |ψGHZ〉 in
comparison to the fidelities of its 2-qubit and 1-qubit sub-systems?

11.19 Consider the state |ψW〉 defined in (11.188). Use the Schmidt decomposition
to “automatically” discover the (trivial) factorization of |ψW〉 in the form:

|ψW〉 =
√

2

3
|0〉 ⊗
( |01〉 + |10〉√

2

)
+ 1√

3
|1〉|00〉 (11.193)
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11.20 Consider the 3-qubit state |ψABC〉 = 1√
2
(|ψW〉 + |ψGHZ〉) where |ψW〉 and

|ψGHZ〉 are defined as in (11.188). Suppose you wish to write |ψABC〉 in the form:

|ψABC〉 =
min(dA−1,dBC−1)∑

i=0

λi |iA〉|iBC〉 (11.194)

(single index summation) where A is a 2-dimensional subspace, and BC is a
4-dimensional subspace. Demonstrate how to apply the Schmidt decomposition to
find suitable values for the Schmidt coefficients (λi ) and the eigenvectors ({|iA〉}
and {|iBC〉}). Verify that your solution yields a Schmidt decomposition for |ψABC〉
of the form:

|ψABC〉 = λ1|1A〉|1BC〉 + λ2|2A〉|2BC〉 (11.195)

where:

λ1 =
√

1

2
+

√
7

12

λ2 = 1

2

√
1

3

(
6 − √

7
)

|1A〉 = −
√

1

2
+ 1

2
√

7
|0〉 −
√

1

14

(
7 − √

7
) |1〉

|2A〉 = −
√

1

14

(
7 − √

7
) |0〉 +
√

1

2
+ 1

2
√

7
|1〉

|1BC〉 = −
√

17

58
+ 43

58
√

7
|00〉 −
√

1

203

(
35 − √

7
) |01〉

−
√

1

203

(
35 − √

7
) |10〉 −

√
3

406

(
49 − 13

√
7
) |11〉

|2BC〉 =
√

1

406

(
119 − 43

√
7
) |00〉 −

√
5

29
+ 1

29
√

7
|01〉

−
√

5

29
+ 1

29
√

7
|10〉 +
√

3

406

(
49 + 13

√
7
) |11〉

(11.196)

11.21 Alice and Bob wish to perform a quantum mechanical experiment over a
distance of 400 km. The experiment requires that Alice and Bob have correspond-
ing members of maximally entangled pairs of particles. However, if they transmit
a particle over 100 km they can no longer guarantee its state is pristine. How, in
principle, can Alice and Bob establish the required entangled pairs of particles over
a distance of 400 km? Explain, by describing the sequence of state changes, how



480 11 Quantum Information

they could use this scheme to establish shared pairs of particles each in the state
β01 = 1√

2
(|01〉 + |10〉).

11.22 Suppose Alice and Bob have access to ideal quantum memories, i.e., they
are able to store quantum information without any loss of fidelity indefinitely. In
addition, assume Alice and Bob are connected by a fiber optic communications net-
work, which can support both quantum and classical communications but is shared
with other users. This network is idle for approximately 20% of the time, under-
utilized for 70% of the time and at peak congestion for 10% of the time. Explain
how Alice and Bob can exploit quantum information to boost their effective com-
munications capacity at times of peak congestion. At such times, by what factor can
they, in principle, increase their effective communications rate? Can this enhanced
communications rate be maintained indefinitely? Explain your answer.

11.23 The states that have the maximal possible amount of entanglement for a given
amount of mixedness (as measured by linear entropy) can be written in the form:

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1
3 0 0 r

2
0 1

3 0 0
0 0 0 0
r
2 0 0 1

3

⎞
⎟⎟⎠ 0 ≤ r ≤ 2

3

⎛
⎜⎜⎝

r
2 0 0 r

2
0 1 − r 0 0
0 0 0 0
r
2 0 0 r

2

⎞
⎟⎟⎠ 2

3 < r ≤ 1

(11.197)

Show when 0 ≤ r ≤ 2
3 that ρ can be factored in the form:

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + (1 − (p1 + p2))|ψ3〉〈ψ3| (11.198)

where

p1 = 1

12

(
4 − 9r2)

p2 = 1

3

|ψ1〉 = |00〉
|ψ2〉 = |01〉

|ψ3〉 = 3r√
4 + 9r2

|00〉 + 2√
4 + 9r2

|11〉

(11.199)

Likewise, show when 2
3 < r ≤ 1 that ρ can be factored in the form:

ρ = (1 − r)|ψ1〉〈ψ1| + r|ψ2〉〈ψ2| (11.200)
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where

|ψ1〉 = |01〉

|ψ2〉 = 1√
2
(|00〉 + |11〉)

(11.201)

11.24 We can always regard a mixed state as the reduced density matrix of a larger
pure state within some sub-system of interest. The procedure for finding such an
encompassing pure state is called “purification of a mixed state”, and was described
in this Chapter. Review the purification procedure and apply it to show that the state

|ψAB〉 =
(

1

4

√
7

6
− 1

4

√
3

2

)
|0000〉 +

(
1

4

√
7

6
+ 1

4

√
3

2

)
|0011〉 + 1√

3
|0101〉

− 1√
6
|1100〉 + 1√

6
|1111〉 (11.202)

is a purification of the mixed state

ρA =

⎛
⎜⎜⎝

1
3 0 0 1

4
0 1

3 0 0
0 0 0 0
1
4 0 0 1

3

⎞
⎟⎟⎠ (11.203)

Note that a state such as ρA has the maximum possible value of entanglement for
the degree of mixedness (as measured by linear entropy) in ρA. Verify that |ψAB〉 is
a purification of ρA by showing trB(|ψAB〉〈ψAB |) = ρA, where sub-space A corre-
sponds to the first and second qubits, and sub-space B corresponds to the third and
fourth qubits.

11.25 Show how to construct the purification:

|ψAB〉 = 1

2

√
3

2
|0001〉 + 1

2
√

2
|0100〉 + 1

2
√

2
|0111〉 + 1

2

√
3

2
|1101〉 (11.204)

of the mixed state:

ρA =

⎛
⎜⎜⎝

3
8 0 0 3

8
0 1

4 0 0
0 0 0 0
3
8 0 0 3

8

⎞
⎟⎟⎠ (11.205)

Note that a state such as ρA has the maximum possible value of entanglement for
the degree of mixedness (as measured by linear entropy) in ρA. Verify that |ψAB〉 is
a purification of ρA by showing trB(|ψAB〉〈ψAB |) = ρA.

11.26 Use the Peres-Horodecki criterion to decide whether each of the following
states is or is not entangled:
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1.

|ψ〉 = 1√
6

|00〉 + 1√
3

|01〉 + 1

4
|10〉 + 1

4

√
7 |11〉 (11.206)

2.

|ψ〉 = 1

5

√
3 |00〉 + 1

5

√
6 |01〉 + 4

5
√

3
|10〉 + 4

5

√
2

3
|11〉 (11.207)

3.

ρ =

⎛
⎜⎜⎝

5
14 0 0 5

14
0 2

7 0 0
0 0 0 0
5
14 0 0 5

14

⎞
⎟⎟⎠ (11.208)
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5.

ρ =

⎛
⎜⎜⎜⎜⎝

2
3 (1 − 2√

5
) 0 0 1

15

√
2(−5 + 2

√
5)

0 1√
5

− 1√
5

0

0 − 1√
5

1√
5

0
1
15

√
2(−5 + 2

√
5) 0 0 1

15 (5 − 2
√

5)

⎞
⎟⎟⎟⎟⎠ (11.210)

11.27 There are many possible entanglement monotones that can be used to quan-
tify the degree of entanglement within a quantum state. Two popular ones for 2-qubit
states are “negativity” and “concurrence” (which in turn is just the square root of the
tangle). Look up the definitions of negativity and concurrence (i.e., tangle) and then
answer the following questions:

1. Compute the negativity and concurrence for each of the quantum states listed in
Problem 11.26.

2. What do you notice about the values of negativity and concurrence when the
states are pure?

3. What do you notice about the values of negativity and concurrence when the
states are determined, e.g., by the Peres-Horodecki criterion, to be separable?
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