TEXTS IN COMPUTER SCIENCE

Explorations in
Quantum
Computing

Colin P. Williams

SECOND EDITION

@ Springer

Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For further volumes:
http://www.springer.com/series/3191

http://www.springer.com/series/3191

Colin P. Williams

Explorations in Quantum
Computing

Second edition

@ Springer

Dr. Colin P. Williams

California Institute of Technology
NASA Jet Propulsion Laboratory
Oak Grove Drive 4800

Pasadena, CA 91109-8099

USA

Colin.P.Williams @jpl.nasa.gov

Series Editors

David Gries

Department of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853-7501, USA

ISSN 1868-0941
ISBN 978-1-84628-886-9

Fred B. Schneider

Department of Computer Science
Upson Hall

Cornell University

Ithaca, NY 14853-7501, USA

e-ISSN 1868-095X
e-ISBN 978-1-84628-887-6

DOI 10.1007/978-1-84628-887-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010936191

1st edition: © Springer-Verlag New York, Inc. 1998

2nd edition: © Springer-Verlag London Limited 2011

© Springer-Verlag London Limited 2011

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: SPI, Puducherry, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:Colin.P.Williams@jpl.nasa.gov
http://www.springer.com
http://www.springer.com/mycopy

To my wife and children

Preface

In the decade since the publication of the first edition of “Explorations in Quantum
Computing” the field has blossomed into a rich and diverse body of knowledge, and
tremendous progress has been made on building functional quantum computer hard-
ware. Yet I find that a discussion of applications of quantum computers still remains
largely confined to Shor’s algorithm for factoring composite integers and Grover’s
algorithm for quantum search. As more and more books have been written on quan-
tum computing this standard presentation has been reinforced, thereby overlooking
less well known, but arguably more interesting, applications.

In this edition I have tried to survey the field of quantum computing from a fresh
perspective, showing how it can be applied to solve problems in a wide range of
technical areas including physics, computer science, mathematics, chemistry, simu-
lation, and finance. For sure, many of the newer quantum algorithms have their roots
in Shor’s algorithm or Grover’s algorithm, but I think it is important to appreciate
how the daughter algorithms have diverged from their parents. Moreover, there are
now several quantum transforms known, such as the quantum wavelet and quan-
tum cosine transforms, which show promising complexity properties and yet await
exploitation in practical quantum algorithms. The classical versions of these trans-
forms are of widespread utility in classical computing, especially signal and image
processing, and I am optimistic that some fresh attention might stimulate others to
find good uses for them.

The second edition is organized around four main parts. Part [addresses the ques-
tion “What is Quantum Computing?” It provides the mathematical framework and
physics concepts needed to understand quantum computing, and introduces the first
quantum trick—quantum parallelism—and its use within the Deutsch-Jozsa algo-
rithm. I assume the quantum circuit model but discuss several non-standard 2-qubit
gates, such as SWAP®, iSWAP, and Berkeley B, that lend themselves more easily
to implementation than does CNOT. In addition, I describe how to quantify the en-
tangling power of quantum gates, and several techniques for constructing quantum
circuits that achieve arbitrary n-qubit unitary, and non-unitary, operators including
numerical, algebraic, and re-use methods, as well as specialized tricks for construct-
ing optimal circuits for 2-qubit unitary operators.

vii

viii Preface

Part II addresses the question “What Can you Do With a Quantum Computer?”
I begin with Grover’s algorithm for quantum search, and applications thereof to
speeding up randomized algorithms and synthesizing arbitrary superpositions. I then
review Shor’s algorithm for factoring composite integers and computing discrete
logarithms, and show how to apply these to breaking the RSA and elliptic curve
public key cryptosystems. This is followed with a look at phase transition phenom-
ena in computation and how to apply the insights gleaned from these studies to char-
acterize the complexity of a nested quantum search I developed with Nicolas Cerf
and Lov Grover for solving NP-Complete problems. This is followed by chapters
on applications of quantum algorithms to quantum simulation, quantum chemistry
and mathematics. These three areas have the greatest potential for finding new and
important quantum algorithms for solving practical problems.

The second edition also includes a greatly expanded discussion of quantum in-
formation theory. In particular, in Part III “What Can you Do with Quantum In-
formation”, I look at the notion of pure versus mixed states, density operators, en-
tanglement, how to quantify it, the partial transpose (for signalling the presence of
entanglement), the partial trace (for characterizing part of a larger quantum sys-
tem), and Schmidt decompositions. I have gone beyond the standard presentations
on quantum teleportation and superdense coding, to include less well known but
potentially useful protocols such as quantum data compression, universal quantum
cloning and universal negation—all with complete quantum circuit descriptions.
I again emphasize applications of these protocols. In particular, I describe how quan-
tum teleportation has inspired an entirely new, and very promising, model of quan-
tum computation, and how approximate clones and approximate negated states can
be used to determine the exact expectation values of observables of ideal clones and
ideal negated states. I then describe the most mature of the quantum technologies—
quantum cryptography—and discuss the challenges in integrating quantum cryptog-
raphy with the commercial secure communications infrastructure. I survey the three
main quantum key distribution protocols—Bennett and Brassard’s BB84, Bennett’s
B92, and Ekert’s E91 protocols, and how they have been implemented in fiber and
free-space systems, and look at the prospects for extending the range of quantum
cryptography using quantum repeaters and Earth-to-Space channels.

Finally, the book concludes with Part IV “Towards Practical Quantum Comput-
ers” by examining some of the practical issues in designing scalable quantum com-
puters. However, I have elected to focus not on hardware per se, for which many
excellent texts already exist, but more on reliability and architectural issues. In par-
ticular, I describe several techniques for quantum error correction including error
reduction by symmetrization, quantum error correcting codes, the optimal 5-qubit
code, stabilizer codes, bounds on quantum codes, fault-tolerance and concatenated
quantum codes. I end the book by discussing the amazing array of alternative mod-
els of quantum computing beyond the quantum circuit model, showing how they are
inter-related, and how certain schemes lend themselves naturally to implementation
in particular types of quantum computer hardware.

The new edition also includes numerous end-of-chapter exercises. Many of these
were field tested on students I taught at Stanford University while teaching my “In-
troduction to Quantum Computing and Quantum Information Theory” course for

Preface ix

several years. In so doing, I learned first hand which concepts students found most
difficult. Moreover, in teaching these classes and elsewhere I have learned that quan-
tum physics appeals to many people who might not otherwise have much interest
in science. For example, Playboy Playmate Carmen Elektra has been quoted as say-
ing “I’m really into quantum physics. Some of my friends are into it, some of them
aren’t, so I'm trying to get them excited about discovering all these interesting things
about thoughts and the power of thoughts. It gives me chills thinking about it. It’s
fun?” [169]. Although some of my colleagues have mocked her for saying this, I
say bravo Carmen! Quantum physics is indeed an amazing branch of science, which
challenges our most foundational assumptions about the nature of reality. It’s a won-
derful thing when a scientific field can so electrify someone that they are compelled
to seek a deeper understanding. Certainly, experience in teaching to a very diverse
student body has encouraged me to explain things as simply as possible in a self-
contained volume. And I hope the reader benefits from my more inclusive style.
I can certainly say that Carmen Elektra’s interest in matters quantum has at least
given me a more arresting answer to the question “Who did you have in mind when
you wrote your book?” than is typical of most scholarly texts!

Finally, I would like to thank the people who have helped me make this sec-
ond edition a reality. First my family for putting up with the countless evenings
and weekends I was away from them. And to Wayne Wheeler and Simon Rees
of Springer-Verlag for their encouragement, and eternal patience, in seeing the
manuscript through to completion. They deserve a very big thank you! In addition, I
am indebted to the physicists and computer scientists who have developed the field
of quantum computing to what it is today. Many of these people are known to me
personally, but some only via their research papers. I hope I have done justice to
their research contributions in writing about them. Known personally to me or not,
they have all greatly enriched my life via their discoveries and insights.

Colin P. Williams

Contents

PartI What is Quantum Computing?

1 Imtroduction. 3
1.1 Trends in Computer Miniaturization 4
1.2 Implicit Assumptions in the Theory of Computation. 7
1.3 Quantization: From Bits to Qubits 8

1.3.1 Ket Vector Representation of a Qubit 9
1.3.2 Superposition States of a Single Qubit 9
1.3.3 Bloch Sphere Picture of aQubit 11
1.3.4 Reading the Bit Valueof aQubit 15
1.4 Multi-qubit Quantum Memory Registers 17
1.4.1 The Computational Basis 17
1.4.2 Direct Product for Forming Multi-qubit States 19
1.43 Interference Effects 20
1.4.4 Entanglement 21
1.5 Evolving a Quantum Memory Register: Schrodinger’s Equation . 23
1.5.1 Schrodinger’s Equation 24
1.5.2 Hamiltonians 24
1.5.3 Solution as a Unitary Evolution of the Initial State 25
1.5.4 Computational Interpretation 26
1.6 Extracting Answers from Quantum Computers 26
1.6.1 Observables in Quantum Mechanics 26
1.6.2 Observing in the Computational Basis 29
1.6.3 Alternative Bases 30
1.64 ChangeofBasis 32
1.6.5 Observing in an Arbitrary Basis 34
1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 35
1.7.1 The Problem: Is f(x) Constant or Balanced? 36
1.7.2 Embedding f(x) in a Quantum Black-Box Function . . . 37
1.7.3 Moving Function Values Between Kets and Phase Factors 38
1.7.4 Interference Reveals the Decision 39

1.7.5 Generalized Deutsch-Jozsa Problem 40

xii

1.8
1.9

Contents

Summary e e
Exercises

Quantum Gates

2.1

2.2

23

24

2.5

2.6
2.7

2.8

29

Classical LogicGates v
2.1.1 Boolean Functions and Combinational Logic
2.1.2 Trreversible Gates: ANDandOR
2.1.3 Universal Gates: NANDand NOR
2.1.4 Reversible Gates: NOT, SWAP, and CNOT
2.1.5 Universal Reversible Gates: FREDKIN and TOFFOLI . .
2.1.6 Reversible Gates Expressed as Permutation Matrices . . .
2.1.7 Will Future Classical Computers Be Reversible?
2.1.8 Cost of Simulating Irreversible Computations Reversibly
2.1.9 Ancillae in Reversible Computing
Universal Reversible Basis
2.2.1 Can All Boolean Circuits Be Simulated Reversibly? . . .
Quantum LogicGates
2.3.1 From Quantum Dynamics to Quantum Gates
2.3.2 Properties of Quantum Gates Arising from Unitarity . . .
1-Qubit Gates
24.1 Special 1-QubitGates,
2.4.2 Rotations About the x-, y-,and z-Axes
2.4.3 Arbitrary 1-Qubit Gates: The Pauli Decomposition
24.4 Decompositionof Ry Gate
Controlled Quantum Gates
2.5.1 Meaning of a “Controlled” Gate in the Quantum Context
2.5.2 Semi-Classical Controlled Gates
2.5.3 Multiply-Controlled Gates
254 Circuit for Controlled-U
2.5.5 Flipping the Control and Target Qubits
2.5.6 Control-on-|0) Quantum Gates
2.5.7 Circuit for Controlled-Controlled-U
Universal Quantum Gates
Special 2-QubitGates
2771 CSIGN, SWAP*,iSWAP, BerkeleyB
2.7.2 Interrelationships Between Types of 2-Qubit Gates
Entangling Power of Quantum Gates
2.8.1 “Tangle” as a Measure of the Entanglement Within
aState
2.8.2 “Entangling Power” as the Mean Tangle Generated
byaGate.
2.8.3 CNOT from any Maximally Entangling Gate
2.8.4 The Magic Basis and Its Effect on Entangling Power . . .
Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition
29.1 Entangling Power of an Arbitrary 2-Qubit Gate

Contents

2.9.2 Circuit for an Arbitrary Real 2-Qubit Gate
2.9.3 Circuit for an Arbitrary Complex 2-Qubit Gate

2.9.4 Circuit for an Arbitrary 2-Qubit Gate Using SWAP® . . .

210 Summary e

2.11

Exercises e

3 Quantum Circuits

3.1
32

33

34

35

3.6

3.7

Quantum Circuit Diagrams
Computing the Unitary Matrix for a Given Quantum Circuit
3.2.1 Composing Quantum Gates in Series: The Dot Product
3.2.2 Composing Quantum Gates in Parallel: The Direct
Product.o
3.2.3 Composing Quantum Gates Conditionally: The Direct
Sum ...
3.24 Measures of Quantum Circuit Complexity
Quantum Permutations
3.3.1 Qubit Reversal Permutation: Po»
3.3.2 Qubit Cyclic Left Shift Permutation: ITp»
3.3.3 Amplitude Downshift Permutation: Qo=
3.3.4 Quantum Permutations for Classical Microprocessor
Design?
Quantum Fourier Transform: QFT
34.1 Continuous Signals as Sums of Sines and Cosines
3.4.2 Discrete Signals as Samples of Continuous Signals
3.4.3 Discrete Signals as Superpositions
3.4.4 QFT of a Computational Basis State
345 QFTofaSuperposition
346 QFTMatrix
347 QFTCircuit
Quantum Wavelet Transform: QWT
3.5.1 Continuous Versus Discrete Wavelet Transforms
3.5.2 Determining the Values of the Wavelet Filter Coefficients

3.5.3 Factorization of Daubechies Dgt) Wavelet Kernel

3.5.4 Quantum Circuit for Dg,t) Wavelet Kernel
3.5.5 Quantum Circuit for the Wavelet Packet Algorithm
3.5.6 Quantum Circuit Wavelet Pyramidal Algorithm
Quantum Cosine Transform: QCT
3.6.1 Signals as Sums of CosinesOnly
3.6.2 Discrete Cosine Transform DCT-II and Its Relation
toDFT
3.6.3 QCTR, Transformation

364 QCTN Matrix

365 QCTN Circuit,
Circuits for a Arbitrary Unitary Matrices
3.7.1 Uses of Quantum Circuit Decompositions

Xiv

3.8

39

4 Quantum Universality, Computability, & Complexity
Models of Computation

4.1

4.2

4.3

4.4

4.5
4.6
4.7

Part 11

5 Performing Search with a Quantum Computer
The Unstructured Search Problem

5.1

Contents

3.7.2 Choice of Which Gate SettoUse

3.7.3 Circuit Complexity to Implement Arbitrary Unitary

Matrices e
374 AlgebraicMethod
3.7.5 Simplification via Rewrite Rules
3.7.6 Numerical Method
377 RewuseMethod., .
Probabilistic Non-unitary Quantum Circuits
3.8.1 Hamiltonian Built from Non-unitary Operator
3.8.2 Unitary Embedding of the Non-unitary Operator
3.8.3 Non-unitarily Transformed Density Matrix
3.8.4 Success Probability
3.8.5 Fidelity when Successful
Summary
3.10 Exercises

4.1.1 The Inspiration Behind Turing’s Model of Computation:

The Entscheidungsproblem
4.1.2 Deterministic Turing Machines
4.1.3 Probabilistic Turing Machines
4.1.4 The Alternative Godel, Church, and Post Models
4.1.5 Equivalence of the Models of Computation
Universality
4.2.1 The Strong Church-Turing Thesis
4.2.2 Quantum Challenge to the Strong Church-Turing Thesis .
4.2.3 Quantum Turing Machines
Computability
4.3.1 Does Quantum Computability Offer Anything New? . . .
4.3.2 Decidability: Resolution of the Entscheidungsproblem . .
4.3.3 Proof Versus Truth: Godel’s Incompleteness Theorem . .
4.3.4 Proving Versus Providing Proof
Complexity
44.1 Polynomial Versus Exponential Growth
442 BigO,®and 2 Notation
443 Classical Complexity Zoo
444 Quantum Complexity Zoo
What Are Possible “Killer-Aps” for Quantum Computers?
Summary e
Exercises

What Can You Do with a Quantum Computer?

Contents

5.1.1 MeaningoftheOracle

5.2 Classical Solution: Generate-and-Test
5.3 Quantum Solution: Grover’s Algorithm
5.4 How Does Grover’s Algorithm Work?
5.4.1 How Much Amplitude Amplification Is Needed
to Ensure Success?
5.4.2 An Exact Analysis of Amplitude Amplification
5.4.3 The Oracle in Amplitude Amplification
5.5 Quantum Search with Multiple Solutions
5.5.1 Amplitude Amplification in the Case of Multiple
Solutions
5.6 Can Grover’s Algorithm Be Beaten?
5.7 Some Applications of Quantum Search
5.7.1 Speeding Up Randomized Algorithms
5.7.2 Synthesizing Arbitrary Superpositions
5.8 Quantum Searching of Real Databases
5.9 Summary
510 ExXercises

6 Code Breaking with a Quantum Computer
6.1 Code-Making and Code-Breaking
6.1.1 Code-Breaking: The Enigma Code and Alan Turing . .
6.2 Public Key Cryptosystems
6.2.1 The RSA Public-Key Cryptosystem
6.2.2 Example of the RSA Cryptosystem

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly
6.3.1 The Continued Fraction Trick at the End of Shor’s
Algorithm
6.3.2 Example Trace of Shor’s Algorithm

6.4 Breaking Elliptic Curve Cryptosystems with a Quantum

Computer oo e e e
6.5 Breaking DES with a Quantum Computer
6.6 Summary
6.7 EXercises

7 Solving NP-Complete Problems with a Quantum Computer

7.1 Importance and Ubiquity of NP-Complete Problems
7.1.1 Worst Case Complexity of Solving NP-Complete

Problems

7.2 Physics-Inspired View of Computational Complexity

7.2.1 Phase Transition Phenomena in Physics

7.2.2 Phase Transition Phenomena in Mathematics

7.2.3 Computational Phase Transitions

7.2.4 Where Are the Really Hard Problems?

7.3 Quantum Algorithms for NP-Complete Problems

XV

243

244
245
247

248
249
250
251

252
254
255
255
256
260
261
262

263
264

. 265

267
267
271

. 272

XVvi

Contents

7.3.1 Quantum Solution Using Grover’s Algorithm 303
7.3.2 Structured Search Spaces: Trees and Lattices 304
7.4 Quantum Solution Using Nested Grover’s Algorithm 308
7.4.1 The Core Quantum Algorithm 308
7.4.2 Analysis of Quantum Structured Search 309
7.4.3 Quantum Circuit for Quantum Structured Search 312
7.4.4 Quantum Average-Case Complexity 312
7.5 Summary 316
7.6 Exercises oo 316
Quantum Simulation with a Quantum Computer 319
8.1 Classical Computer Simulations of Quantum Physics 320
8.1.1 Exact Simulation and the Problem of Memory 321
8.1.2 Exact Simulation and the Problem of Entanglement . . . 321
8.1.3 Approximate Simulation and the Problem of Fidelity . . 322
8.2 Quantum Computer Simulations of Quantum Physics 325
8.2.1 Feynman Conceives of a Universal Quantum Simulator . 326
8.2.2 Quantum Systems with Local Interactions 326
8.2.3 Lloyd-Zalka-Wiesner Quantum Simulation Algorithm . . 327
8.3 Extracting Results from Quantum Simulations Efficiently 328
8.3.1 Single Ancilla-Assisted Readout 328
8.3.2 Multi-Ancilla-Assisted Readout 330
8.3.3 Tomography Versus Spectroscopy 332
8.3.4 Evaluating Correlation Functions 333
8.4 Fermionic Simulations on Quantum Computers 334
8.4.1 Indistinguishability and Implications for Particle
Statistics L. 334
8.4.2 Symmetric Versus Anti-Symmetric State Vectors 335
843 Bosonsand Fermions 336
8.4.4 Bose-Einstein Statistics 337
8.4.5 Pauli Exclusion Principle and Fermi-Dirac Statistics . . . 337
8.4.6 Fermionic Simulations via the Jordan-Wigner
Transformation 339
8.4.7 Fermionic Simulations via Transformation
to Non-interacting Hamiltonians 341
85 Summary 344
8.6 Exercises 345
Quantum Chemistry with a Quantum Computer 349
9.1 Classical Computing Approach to Quantum Chemistry 349
9.1.1 Classical Eigenvalue Estimation via the Lanczos
Algorithm 351
9.2 Quantum Eigenvalue Estimation via Phase Estimation 352
9.2.1 The*“Phase”State 352
9.2.2 Binary Fraction Representation of the Phase Factor . . . 353
9.3 Quantum Phase Estimation 354

Contents

10

9.4 Eigenvalue Kick-Back for Synthesizing the Phase State

9.5 Quantum Eigenvalue Estimation Algorithms
9.5.1 Abrams-Lloyd Eigenvalue Estimation Algorithm
9.5.2 Kitaev Eigenvalue Estimation Algorithm
9.6 Quantum Chemistry Beyond Eigenvalue Estimation
9.7 Summary e
9.8 EXErcises

Mathematics on a Quantum Computer
10.1 Quantum Functional Analysis
10.1.1 Quantum Mean Estimation
10.1.2 Quantum Counting
10.2 Quantum Algebraic Number Theory
10.2.1 The Cattle Problem of Archimedes and Pell’s Equation
10.2.2 Why Solving Pell’s Equation IsHard
10.2.3 Solution by Finding the “Regulator”
10.2.4 The Regulator and Period Finding
10.2.5 Quantum Core of Hallgren’s Algorithm
10.2.6 Hallgren’s Quantum Algorithm for Solving Pell’s
Equation
10.2.7 What Is the Significance of Pell’s Equation?
10.3 Quantum Signal, Image, and Data Processing
10.3.1 Classical-to-Quantum Encoding
10.3.2 Quantum Image Processing: 2D Quantum Transforms . .
10.3.3 Quantum-to-Classical Readout
104 QuantumWalks
10.4.1 One-Dimensional Quantum Walks
10.4.2 Example: Biased Initial Coin State & Hadamard Coin . .
10.4.3 Example: Symmetric Initial Coin State & Hadamard
Coin
10.4.4 Example: Chiral Initial Coin State & Hadamard Coin
10.4.5 Example: Symmetric Initial Coin State &
Non-Hadamard Coin
10.4.6 Quantum Walks Can Spread Faster than Classical Walks .
10.5 Summary
10.6 EXercisesot

Part III' What Can You Do with Quantum Information?

11

Quantum Information
11.1 Whatis Classical Information?
11.1.1 Classical Sources: The Shannon Entropy
11.1.2 Maximal Compression (Source Coding Theorem)
11.1.3 Reliable Transmission (Channel Coding Theorem)
11.1.4 Unstated Assumptions Regarding Classical Information .

xviii

11.3

11.4

11.5

11.6

11.7

11.8
11.9

Contents

What is Quantum Information? 411
11.2.1 Pure States cf. Mixed States 411
11.2.2 Mixed States from Partial Knowledge: The Density

Operator o i 411

11.2.3 Mixed States from Partial Ignorance: The Partial Trace . 417
11.2.4 Mixed States as Parts of Larger Pure States:

“Purifications” oL 419
11.2.5 Quantifying Mixedness 420
Entanglement oo 422
11.3.1 Separable States Versus Entangled States 422

11.3.2 Signalling Entanglement via Entanglement Witnesses . . 423
11.3.3 Signalling Entanglement via the Peres-Horodecki

Criterion 425
11.3.4 Quantifying Entanglement. 429
11.3.5 Maximally Entangled Pure States 431
11.3.6 Maximally Entangled Mixed States 432
11.3.7 The Schmidt Decomposition of a Pure Entangled State . 433
11.3.8 Entanglement Distillation 436
11.3.9 Entanglement Swapping 441
11.3.10 Entanglement in “Warm” Bulk Matter 443
Compressing Quantum Information 444
11.4.1 Quantum Sources: The von Neumann Entropy 445
11.4.2 Schumacher-Jozsa Quantum Data Compression 445

11.4.3 “Discard-on-Fail” Quantum Data Compression Protocol . 447
11.4.4 “Augment-on-Fail” Quantum Data Compression

Protocol 449
11.4.5 Quantum Circuit for Schumacher-Jozsa Compressor . . . 450
11.4.6 Is Exponential Compression Possible? 452
Superdense Coding 453
11.5.1 BellStates 454
11.5.2 Interconversion Between Bell States by Local Actions . . 455
11.5.3 Superdense Coding Protocol 455
Cloning Quantum Information 457

11.6.1 Historical Roots and Importance of Quantum Cloning . . 457
11.6.2 Impossibility of Exact Deterministic Quantum Cloning . 458

11.6.3 Universal Approximate Quantum Cloning 460
11.6.4 Circuit for Quantum Cloning 463
11.6.5 Usability of the Quantum Clones 464
11.6.6 Universal Probabilistic Quantum Cloning 468
11.6.7 Broadcasting Quantum Information 470
Negating Quantum Information 470
11.7.1 Universal Quantum Negation Circuit 471
11.7.2 Expectation Value of an Observable Based on the

Negated State 472
Summary 472
EXercises 474

Contents

12 Quantum Teleportation

13

12.1

12.2

12.3

12.4

12.5
12.6
12.7
12.8

Uncertainty Principle and “Impossibility” of Teleportation
12.1.1 Heisenberg Uncertainty Principle
Principles of True Teleportation
12.2.1 Local Versus Non-local Interactions
12.2.2 Non-locality: Einstein’s “Spooky Action at a Distance”
12.2.3 Bell’'sInequality
Experimental Tests of Bell’s Inequality
12.3.1 Speed of Non-local Influences
Quantum Teleportation Protocol
12.4.1 Teleportation Does Not Imply Superluminal
Communication
Working Prototypes
Teleporting Larger Objects
Summary e e e
Exercises

Quantum Cryptography

13.1

13.2

13.3

13.4

13.5

Need for Stronger Cryptography
13.1.1 Satellite Communications Can Be Tapped
13.1.2 Fiber-Optic Communications Can Be Tapped
13.1.3 Growing Regulatory Pressures for Heightened Security
13.1.4 Archived Encrypted Messages Retroactively Vulnerable .
An Unbreakable Cryptosystem: The One Time Pad
13.2.1 Security of OTP: Loopholes if Used Improperly
13.2.2 Practicality of OTP: Problem of Key Distribution
Quantum Key Distribution
133.1 Conceptof QKD
13.3.2 Security Foundationsof QKD
13.3.3 OTP Made Practicalby QKD
13.3.4 Varietiesof QKD
Physics Behind Quantum Key Distribution
13.4.1 Photon Polarization
13.4.2 Single Photon Sources
13.4.3 Entangled Photon Sources
13.4.4 Creating Truly Random Bits
13.4.5 Encoding Keys in Polarized Photons
13.4.6 Measuring Photon Polarization with a Birefringent
Crystal
13.47 Measuring Photon Polarization with a Polarizing Filter
Bennett and Brassard’s BB84 QKD Scheme
13.5.1 The BB84 QKD Protocol
13.5.2 Example: BB84 QKD in the Absence of Eavesdropping .
13.5.3 Example: BB84 QKD in the Presence of Eavesdropping .
13.5.4 Spedalieri’s Orbital Angular Momentum Scheme
forBB84

Xix

XX

Contents

13.5.5 Generalization of BB84: Bruss’ 6-State Protocol
13.6 Bennett’s 2-State Protocol (B92)
13.6.1 The B92 QKD Protocol
13.6.2 Threat of “Discard-on-Fail” Unambiguous State
Discrimination L.
13.7 Ekert’s Entanglement-Based Protocol
13.7.1 The E91 Protocol
13.8 Error Reconciliation and Privacy Amplification
13.8.1 Error Reconciliation
13.8.2 Privacy Amplification
13.9 Implementations of Quantum Cryptography
13.9.1 Fiber-Optic Implementations of Quantum Cryptography .
13.9.2 Extending the Range of QKD with Quantum Repeaters
13.9.3 Earth-to-Space Quantum Cryptography
13.9.4 Hijacking Satellites
13.9.5 Commercial Quantum Cryptography Systems
13.10 Barriers to Widespread Adoption of Quantum Cryptography . . .
13.10.1 Will People Perceive a Need for Stronger

13.10.2 Will People Believe the Foundations of QKD Are
Solid?
13.10.3 Will People Trust the Warranties of Certification
Agencies?
13.10.4 Will Wide Area Quantum Cryptography Networks Be
Practical?
13.10.5 Will Key Generation Rate Be High Enough to Support

13.11 Summary e
13.12 EXercises v v v v i e e e e

Part IV Towards Practical Quantum Computers

14 Quantum Error Correction

14.1 How Errors Arise in Quantum Computing
14.1.1 Dissipation-Induced Bit Flip Errors
14.1.2 Decoherence-Induced Phase Shift Errors
14.1.3 Natural Decoherence Times of Physical Systems
14.1.4 What Makes Quantum Error Correction so Hard?

14.2 Quantum Error Reduction by Symmetrization
14.2.1 The Symmetrization Trick
14.2.2 Quantum Circuit for Symmetrization
14.2.3 Example: Quantum Error Reduction via Symmetrization .

14.3 Principles of Quantum Error Correcting Codes (QECCs)
14.3.1 Classical Error Correcting Codes

Contents XXi

14.3.2 Issues Unique to Quantum Error Correcting Codes 580
14.3.3 Modeling Errors in Terms of Error Operators 581
14.3.4 Protecting Quantum Information via Encoding 583
14.3.5 Digitizing and Diagnosing Errors by Measuring Error
Syndromes 585
14.3.6 Reversing Errors via Inverse Error Operators 585
14.3.7 Abstract View of Quantum Error Correcting Codes . . . 585
14.4 Optimal Quantum Error Correcting Code 588
14.4.1 Laflamme-Miquel-Paz-Zurek’s 5-Qubit Code 588
14.4.2 Error Operators for the 5-QubitCode 588
14.4.3 Encoding Scheme for the 5-Qubit Code 589
14.4.4 Error Syndromes & Corrective Actions for the 5-Qubit
Code 591
14.4.5 Example: Correcting aBit-Flip 592
14.5 Other Additive Quantum Error Correcting Codes 593
14.5.1 Shor’s9-QubitCode 593
14.5.2 Steane’s 7-QubitCode 594
14.6 Stabilizer Formalism for Quantum Error Correcting Codes 594
14.6.1 Group Theory for Stabilizer Codes 595
14.6.2 The Stabilizer 595
14.6.3 Example: A Stabilizer for the 5-Qubit Code 596
14.6.4 Using a Stabilizer to Find the Codewords It Stabilizes . . 597
14.6.5 How the Stabilizer is Related to the Error Operators . . . 599
14.6.6 Example: Stabilizers and Error Operators for the 5-Qubit
Code 600

14.6.7 Stabilizer-Based Error Correction: The Encoding Step . . 603
14.6.8 Stabilizer-Based Error Correction: Introduction of the

Error 603

14.6.9 Stabilizer-Based Error Correction: Error Diagnosis &
Recovery 603
14.6.10 Stabilizers for Other Codes 604
147 Bounds on Quantum Error Correcting Codes 605
14.7.1 Quantum Hamming Bound 606
14.7.2 Quantum Singleton Bound 606
14.7.3 Quantum Gilbert-Varshamov Bound 607

14.7.4 Predicting Upper and Lower Bounds on Additive Codes . 607
14.7.5 Tightest Proven Upper and Lower Bounds on Additive

Codes 611

14.8 Non-additive (Non-stabilizer) Quantum Codes 611
14.9 Fault-Tolerant Quantum Error Correcting Codes 611
14.9.1 Concatenated Codes and the Threshold Theorem 617

14.10 Errors as Allies: Noise-Assisted Quantum Computing 620
14.11 Summary 621

14.12 EXErcises o o i v i i e e 622

xxii Contents
15 Alternative Models of Quantum Computation 627
15.1 Design Principles for a Quantum Computer 627
15.2 Distributed Quantum Computer 628
15.3 Quantum Cellular Automata Model 630
15.4 Measurement I: Teleportation-Based Quantum Computer 633
15.5 Measurement II: One-Way Quantum Computer 640
15.6 Topological Quantum Computer 641
15.6.1 Topological Quantum Effects 642
15.6.2 Beyond Fermions and Bosons—Anyons 643
15.6.3 Abelian Versus Non-Abelian Anyons 644
15.6.4 Quantum Gates by Braiding Non-Abelian Anyons 644
15.6.5 Do Non-Abelian Anyons Exist? 649
15.7 Adiabatic Quantum Computing 649
15.8 Encoded Universality Using Only Spin-Spin Exchange
Interactions o 653
15.8.1 The Exchange Interaction 653
15.8.2 SWAP” via the Exchange Interaction 654
15.8.3 Problem: Although SWAP“ Is Easy 1-Qubits Gates Are
Hard 655
15.8.4 Solution: Use an Encoded Basis 655
1585 U U andUR oo 656
15.8.6 R; GatesinEncodedBasis 657
158.7 R, GatesinEncodedBasis 657
15.8.8 R, GatesinEncodedBasis 658
1589 CNOTinEncodedBasis. 658
15.9 Equivalences Between Alternative Models of Quantum
Computation 659
15.10 Summary 660
15.11 EXercises oo v v i it 660
References 663
Index 689

Part I
What is Quantum Computing?

Chapter 1
Introduction

“The theory of computation has traditionally been studied almost entirely in the abstract,
as a topic in pure mathematics. This is to miss the point of it. Computers are physical
objects, and computations are physical processes. What computers can or cannot compute
is determined by the laws of physics alone, and not by pure mathematics”

— David Deutsch!

Over the past 50 years there has been an astonishing miniaturization in computer
technology. Whereas a microprocessor in 1971 contained roughly 2,300 transistors,
a modern microprocessor of the same size contains in excess of one billion tran-
sistors. Throughout this evolution, even though there have been several changes in
how computer hardware is implemented, the same underlying mathematical model
of a computer has held sway. However, if current trends continue, by the year 2020
the basic components of a computer will be the size of individual atoms. At such
scales, the mathematical theory underpinning modern computer science will cease
to be valid. Instead, scientists are inventing a new theory, called “quantum com-
puting”, which is built upon the recognition that a computing device is a physical
system governed by physical laws, and at very small scales, the appropriate laws are
those of quantum mechanics—the most accurate model of reality that is currently
known.

There are two attitudes one could adopt regarding the necessity of incorporating
quantum mechanical effects into computing machinery. One response it to strive
to suppress the quantum effects and still preserve a semblance of classicality even
though the computational elements are very small. The other approach is to embrace
quantum effects and try to find clever ways to enhance and sustain them to achieve
old computational goals in new ways. Quantum computing attempts to pursue the
latter strategy by harnessing quintessentially quantum effects.

Remarkably, this new theory of quantum computer science predicts that quan-
tum computers will be able to perform certain computational tasks in phenomenally

!'Source: Opening words of Chap. 5, “Virtual Reality” of “The Fabric of Reality,” by David
Deutsch, the Penguin Press (1997), ISBN 0-7139-9061-9.

C.P. Williams, Explorations in Quantum Computing, 3
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_1, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-1-84628-887-6_1

4 1 Introduction

fewer steps than any conventional (“classical””) computer—including any supercom-
puter yet to be invented! This bold assertion is justified because the algorithms avail-
able to quantum computers can harness physical phenomena that are not available
to classical computers no matter how sophisticated they may be. As a result, quan-
tum computers can perform computations in fundamentally new ways that can, at
best, only be mimicked inefficiently by classical computers. Thus, quantum com-
puting represents a gualitative change in how computation is done, making it of
a different character than all previous advances in computer science. In particular,
quantum computers can perform truly unprecedented tasks such as teleporting in-
formation, breaking supposedly “unbreakable” codes, generating true random num-
bers, and communicating with messages that betray the presence of eavesdropping.
Similar counterintuitive capabilities are being discovered, routinely, making quan-
tum computing a very active and exciting field. While no one book can do justice
to the myriad of discoveries that have been made so far, I hope to give you a fresh
perspective on the capabilities of quantum computers, and to provide you with the
tools necessary to make your own foray into this exciting field.

1.1 Trends in Computer Miniaturization

“I like small gadgets, look at this tiny digital camera ... where is it?”
— Artur Ekert [17]

Computer technology has been driven to smaller and smaller scales because,
ultimately, the limiting factor on the speed of microprocessors is the speed with
which information can be moved around inside the device. By cramming the tran-
sistors closer together, and evolving to ever faster mechanisms for switching, one
can speed up the rate of computation. But there is a price to pay. As transistors are
packed closer together it becomes more challenging to remove the heat they dissi-
pate. So at any given stage of technological development there has always been an
optimal transistor density that trades off size for thermal management.

In 1965 Gordon Moore, a co-founder of Intel, noticed that the most economically
favorable transistor densities in integrated circuits seemed to have been doubling
roughly every 18 months. He predicted that this trend would continue well into the
future. Indeed, as evidenced by Table 1.1, it has, and Moore’s anticipated scaling
became known as the more official sounding “Moore’s Law”. However, it is not a
Law in the proper scientific sense as Nature does not enforce it. Rather, Moore’s
Law is merely an empirical observation of a scaling regularity in transistor size and
power dissipation that industry had achieved, and Gordon Moore extrapolated into
the future. However, there is uncertainty in the chip industry today regarding how
much longer Moore’s Law can be sustained.

Nevertheless, in the 40 years since Moore’s Law was invented, successive gen-
erations of Intel chips have adhered to it surprisingly. This is all the more surpris-
ing when one realizes how just how much the underlying transistor technology has
changed (see Fig. 1.1).

1.1 Trends in Computer Miniaturization 5

Table 1.1 Growth of the clock rate, and the number of transistors per chip in Intel processors from
1971 to 2007. Note that the transistor sizes reduced over the same time period, allowing the chips
to remain about the same size. In the table 1 u = 107 meter and 1 nm = 10~ meter

Intel microprocessor Year Speed # Transistors Manufacturing scale
4004 1971 108 kHz 2,300 10p
8008 1972 500-800 kHz 3,500 10p
8080 1974 2MHz 4,500 6u
8086 1978 5MHz 29,000 3u
8088 1979 5MHz 29,000 3u
286 1982 6 MHz 134,000 15u
386 1985 16 MHz 275,000 15un
486 1989 25 MHz 1,200,000 1y
Pentium 1993 66 MHz 3,100,000 0.8 n
Pentium Pro 1995 200 MHz 5,500,000 0.6 1L
Pentium II 1997 300 MHz 7,500,000 0.25un
Pentium II Xeon 1997 300 MHz 7,500,000 0.25pn
Pentium III 1999 500 MHz 9,500,000 0.18 n
Pentium I1I Xeon 1999 500 MHz 9,500,000 0.18 n
Pentium 4 2000 1.5 GHz 42,000,000 0.18 n
Xeon 2001 1.5GHz 42,000,000 0.18 u
Pentium M 2002 1.7 GHz 55,000,000 90 nm
Itanium 2 2002 1 GHz 220,000,000 0.13n
Pentium D 2005 3.2GHz 291,000,000 65 nm
Core 2 Duo 2006 2.93 GHz 291,000,000 65 nm
Core 2 Extreme 2006 2.93 GHz 291,000,000 65 nm
Dual-Core Xeon 2006 2.93 GHz 291,000,000 65 nm
Dual-Core Itanium 2 2006 1.66 GHz 1,720,000,000 90 nm
Quad-Core Xeon 2006 2.66 GHz 582,000,000 65 nm
Quad-Core Core 2 Extreme 2006 2.66 GHz 582,000,000 65 nm
Core 2 Quad 2007 2.66 GHz 582,000,000 65 nm
Quad-Core Xeon 2007 >3 GHz 820,000,000 45 nm
Dual-Core Xeon 2007 >3 GHz 820,000,000 45 nm
Quad-Core Core 2 Extreme 2007 >3 GHz 820,000,000 45 nm

Today, many industry insiders see Moore’s Law surviving for just two or three
more generations of microprocessors at best. In a valiant effort to sustain Moore’s
Law chip manufacturers are migrating to multi-core microprocessor architectures,
and exotic new semiconductor materials. Beyond these advances, a switch to nan-
otechnology may be necessary.

Whatever strategy industry adopts to maintain Moore’s Law it is clear that as
time goes on fewer and fewer atoms will be used to implement more and more bits.

6 1 Introduction

j j T j j j j T j j j j T j j " Dual Core Ttanium 2
10° ¢ -
Inte] Core 2 Qu
Intel Core 2 Duo / Dual Core Xeo
nte
Intel Itanium
S L -
10 Intel Pentium
& Intel Pentium 4;
]
Z 0k Intel Pentium 111/ Xco i
=z :
Z SR
&
RN
= 10° £ .
3]
o
g
z
10° 4
104 . -
Intel 8008
. Intel 4004
1970 1980 1990 2000
Year

Fig. 1.1 Historical scaling in the numbers of transistors per chip in successive generations of Intel
processors. The latest chips use multiple cores

Fig. 1.2 Historical scaling in 109
the number of atoms needed 1017 ¢
to implement one bit 1015 -

1013_
1011_
10°
107 - N

10° RN

103 + RN

A S .

No. Atoms per Bit

1960 1970 1980 1990 2000 2010 2020
Year

Figure 1.2 shows the scaling in the number of atoms needed to implement a bit as a
function of time. Extrapolating this trend shows we will be at the one atom per bit
level by about 2020. At the one-atom-per-bit level the appropriate physical model to
describe what is going on is that of quantum physics rather than classical physics.
Quantum physics is considerably different from classical physics. Facts that we
take as being “common sense” in our everyday (classical) world do not necessarily
hold in the quantum realm. For example, in the classical world we are accustomed
to thinking of particles (like grains of sand or dust) as having a definite location in
space and time. But in the quantum world particles do have a definite location in
space and time—in fact they can be in more than one place, or in more than one

1.2 Implicit Assumptions in the Theory of Computation 7

state, at the same time! More bizarre still, supposed “particles” can interact with
one another more in a manner that is more reminiscent of waves than solid objects.
Ultimately, as bits must be encoded in the states of physical systems, whether those
systems are quantum or classical can therefore affect their properties profoundly.

1.2 Implicit Assumptions in the Theory of Computation

“Nature isn’t classical damn it!”
— Richard Feynman

Bits, or “binary digits” lie at the heart of all modern digital equipment rang-
ing from computers to iPODs to high-definition television (HDTV). Contemporary
computers use voltage levels to encode bits. Old fashioned, mechanical, computers
use the position of gear teeth. The only requirement is that the physical system must
possess two clearly distinguishable configurations, or states, that are sufficiently sta-
ble so that they do not flip, spontaneously, from the state representing the bit O into
the state representing the bit 1 or vice versa.

Once we have the ability to store Os and 1s and to manipulate them in a controlled
manner we have the basis for making all digital devices. By now, we are all so
familiar with digital devices that, to the extent we even think about them at all, we
take the properties of the bits within them for granted. For example, I am sure you
will agree that the following operations on bits seem eminently reasonable: we can
read a bit to learn the value it has; we can copy, erase or negate a bit regardless of
whether it is a O or a 1; and we can read some of the bits inside a digital device
without changing the other bits that we did not read. In fact such properties seem so
obvious that we don’t even bother to question these assumptions.

However, in his 1959 address “There’s Plenty of Room at the Bottom™ physi-
cist Richard Feynman alluded to the tremendous opportunity available at the time
for further miniaturization of technology [182]. He also anticipated that very small
physical devices would be governed by quantum mechanics rather than classical
mechanics and, as such, would not necessarily behave the same their larger counter-
parts. For example, a robot on the quantum scale might pick up and not pick up an
object at the same time, and to carry it off left and right simultaneously. You would
never know which was the case until you performed an observation as to what he
robot had done. Once you did that, and made a permanent record of the result, its
behavior would become definite. That sounds crazy, but that is what quantum me-
chanics tells us can happen.

Likewise, bits are going to be recorded, ultimately, in the state of some physical
system. So as devices become miniaturized the sizes of the physical systems used
to encode those bits will become smaller. At some point their behavior will need
to be described by quantum physics rather than classical physics. At this point, our
common sense assumptions about how bits ought to behave, e.g., that we can read,
copy, erase, negate them without causing them to change in any way, cease to be

8 1 Introduction

Table 1.2 Assumptions about the properties of bit that are no longer necessarily true at the quan-
tum scale

Assumption Classically ~ Quantum mechanically

A bit always has a definite value True False. A bit need not have a definite value
until the moment after it is read

A bit can only be O or 1 True False. A bit can be in a superposition of 0
and 1 simultaneously

A bit can be copied without True False. A qubit in an unknown state cannot

affecting its value be copied without necessarily changing its
quantum state

A bit can be read without affecting True False. Reading a qubit that is initially in a

its value superposition will change the qubit

Reading one bit in the computer True False. If the bit being read is entangled

memory has no affect on any other with another qubit, reading one qubit will

(unread) bit in the memory affect the other

To compute the result of a True False

computation, you must run the

computer

valid. In fact, at the quantum scale you cannot necessarily read a bit without chang-
ing its value; you cannot necessarily copy, or negate it without perturbing it; you
may be unable to erase it; and sometimes when you read one bit your actions can
change the state of another bit with which you never interacted. Thus, bits encoded
in quantum-scale objects cease to behave like normal bits ought. Some of the differ-
ences between normal (classical) and bits encoded at the quantum scale are shown
in Table 1.2.

Thus, once computers becomes so small that we are then dealing with quantum
bits as opposed to classical bits, we open up a new repertoire of physical effects that
can be harnessed to achieve novel functionalities. As a result many new opportuni-
ties present themselves.

1.3 Quantization: From Bits to Qubits

Fortunately, quantum systems possess certain properties that lend themselves to en-
coding bits as physical states. When we measure the “spin” of an electron, for ex-
ample, we always find it to have one of two possible values. One value, called “spin
up” or |1), means that the spin was found to be parallel to the axis along which
the measurement was taken. The other possibility, “spin-down” or ||), means that
the spin was found to be anti-parallel to the axis along which the measurement was
taken. This intrinsic discreteness, a manifestation of quantization, allows the spin of
an electron to be considered as a natural binary digit or “bit”.

Such intrinsic “discreteness’” is not unique to spin-systems. Any 2-state quantum
system, such as the plane of polarization of a linearly polarized photon, the direction

1.3 Quantization: From Bits to Qubits 9

of rotation of a circularly polarized photon, or the discrete energy levels in an excited
atom, would work equally well. Whatever the exact physical embodiment chosen, if
a quantum system is used to represent a bit, we call the resulting system a quantum
bit, or just “qubit” for short.

1.3.1 Ket Vector Representation of a Qubit

As we are talking variously about (classical) bits and (their quantum counterparts)
qubits, we’d better find a way of distinguishing them. To do so, we adopt a notation
invented by British physicist extraordinaire Paul Dirac, which has since become
known as “Dirac-notation”.

In Dirac notation, when we are talking about a qubit (a quantum bit) in a physical
state that represents the bit value 0, we’ll write the qubit state using an angular-
looking bracket, |0), which is called a “ket” vector. Likewise, a qubit in a physical
state representing the bit value 1 will be written |1). What these notations mean
physically will depend upon the nature of the system encoding them. For example,
a |0) could refer to a polarized photon, or an excited state of an atom, or the direction
of circulation of a superconducting current etc. The notation speaks only to the
computational abstraction that we ascribe to a 2-state quantum system and doesn’t
give us any direct information about the underlying physical embodiment of the
system encoding that qubit.

Mathematically, kets are a shorthand notation for column vectors, with |0) and

|1) corresponding to:
1 0
0) = (O) = (1) (1.1)

You might ask “Why do we need to represent a single quantum bit as a two-element
column vector?” “Isn’t one binary digit enough to specify it completely?”” The an-
swer lies in the fact that quantum bits are not constrained to be wholly 0 or wholly 1
at a given instant. In quantum physics if a quantum system can be found to be in
one of a discrete set of states, which we’ll write as |0) or |1), then whenever it is
not being observed it may also exist in a superposition, or blend of those states
simultaneously, [{) = a|0) + b|1) such that lal®> + |b)> = 1.

1.3.2 Superposition States of a Single Qubit

Thus, whereas at any instant a classical bit can be either a 0 or a 1, a qubit can be a
superposition of both a |0) and a |1) simultaneously, i.e., a state such as:

[¥) =al0) + b|1) = (Z) (1.2)

10 1 Introduction

where a, and b are complex numbers® having the property |a|*> + |b|? = 1.

The coefficient “a” is called the amplitude of the |0) component and the co-
efficient “b” is called the amplitude of the |1) component. The requirement that
la|? + |b|*> = 1 is to ensure the qubit is properly normalized. Proper normalization
guarantees that when we do finally read a qubit, it will be found, with probability
la|? to be in state |0) or, with probability |b|? to be in state |1) and nothing else.
Thus the sums of the probabilities of the possible outcomes add up to one.

Dirac notation makes it easy to write down compact descriptions of quantum
states and operators. Some common examples are as follows:

Dirac Notation: Bras, Kets, Inner and Outer Products For every “ket” |y)
(which can be thought of as a shorthand notation for a column vector) there is a
corresponding “bra” (¥| (which can be though of as shorthand for a row vector).
The ket and the bra contain equivalent information about the quantum state in ques-
tion. Mathematically, they are the dual of one another, i.e.:

|w>=a|0>+b|1>=(§j>
(Wl =a*(0]+b*(1] = (@ b%)

(1.3)

Note that the amplitudes in the bra space are the complex conjugates of the ampli-
tudes in the ket space. That is, if z = x 4 iy is a complex number with real part x
and imaginary part y, then the complex conjugate of 7 is z* = x — iy.

What is the purpose of introducing bra vectors into the discussion if they don’t
contain any new information about the quantum state? It turns out that products
of bras and kets give us insight into the similarities between two quantum states.
Specifically, for a pair of qubits in states |) = a|0) 4+ b|1) and |¢) = c|0) + d|1)
we can define their inner product, (¥ |¢) as:

c

(¥lg) = (¥ (¢) = (a” b¥)- (d) =a*c+b*d (1.4)
[——

bra (c) ket

The inner product (yr|¢) is also called the overlap between (normalized) states |y)
and |¢) because it varies from zero for orthogonal states to one for identical normal-
ized states. We can verify this with a direct calculation: (Y |y) = (a* b*)- () =
a*a+b*b=lal>+|b®=1.

A second product we can define on states |) = a|0) +b|1) and |¢) = c|0) +d|1)
is their outer product |V) (¢|:

W1 = (¥ - () = (Z) (¢ dh = (Zﬁ: Zj:) (1.5)

2A complex number z = x + iy is a composite number consisting of two real numbers x and
¥, and a constant i = +/—1. x = Re(z) is called the “real” part of z, and y = Im(z) is called the

“imaginary” part of z. z* = x —iy denotes the complex conjugate of z, and |z| = \/x2 + y? denotes
the modulus of z.

1.3 Quantization: From Bits to Qubits 11

which is a matrix. The outer product provides a very nice way of describing the
structure of unitary operators, which as will see later, correspond to quantum logic
gates. For example, a NOT gate has a corresponding unitary matrix NOT = ((1) é)
In terms of outer products this can also be written as NOT = [0)(1| + |1)(0]|. The
outer product factorization of the NOT gate shows the transformation it performs
explicitly. Indeed, all quantum gates can be best understood as a sum of such outer
products.

1.3.3 Bloch Sphere Picture of a Qubit

An intuitive, albeit approximate, way to visualize the quantum state of a single qubit
is to picture it as a unit vector inside a bounding sphere, called the Bloch sphere (see
Fig. 1.3). The parameters defining the quantum state are related to the azimuth and

1

1

Fig. 1.3 Bloch sphere showing the computational basis states |0) and |1}, and a general qubit state
[) = cos(8/2)|0) + ¢/? sin(8/2)|1)

12 1 Introduction

elevation angles that determine where the tip of this vector touches the surface of
the Bloch sphere. In this picture, the North pole corresponds to the pure state |0)
and the South pole corresponds to the (orthogonal) pure state |1). All other points
on the surface of the Bloch sphere correspond to the superposition states of the
form a|0) + b|1) for all possible values of the complex numbers a and b such that
lal? + |b|> =1.

In particular, an arbitrary pure state of a single qubit |¢) = a|0) + b|1) such that
la|?> + |b|> = 1 can be written in terms of these azimuth and elevation angles as:

) :eiy<cosg|0) + ¢ sin§|1)) (1.6)

where y, 0, and ¢ are all real numbers. A pair of elevation and azimuth angles
(0, ¢) in the range 0 <6 < and 0 < ¢ <27 pick out a point on the Bloch sphere.
Qubit states corresponding to different values of y are indistinguishable and are all
represented by the same point on the Bloch sphere. y is said to be an overall phase
factor that is unobservable.

Students are often confused about the Bloch sphere for three main reasons: first
how come the azimuth and elevation angles are expressed in half-angles? Second,
how come orthogonal states are not at right angles on the Bloch sphere? Instead they
are 180° apart. Third how can it be that the y parameter has no observable effect?

How might we draw a picture that captures in an intuitive way the complete
character of a qubit in a superposition state such as a|0) + b|1)? The Bloch sphere
provides a way of visualizing the quantum mechanical state of a single qubit. “Wait
a minute!” you say. “Aren’t orthogonal states supposed to be at right angles? How
can the |0) state be the North pole and the |1) be the South Pole? They’re 180°
apart!”

Students are often confused by the Bloch sphere representation of a quantum
state because orthogonal states are not found to be at right angles on the Bloch
sphere. So it is worth a little detour to explain how the Bloch sphere is constructed.

Consider the general quantum state a|0) + b|1). Since a and b are complex num-
bers they can be written in either Cartesian or Polar coordinates as: a = x, + iy, =
rge'® and a = xp, + iyp = rpe!® with i = /=1 and the x’s, y’s, r’s, and ¢’s are
all real numbers. So, naively, it looks like we need to depict four real numbers
XasXbs Ya, Vb OF Fa, I'p, Pq, ¢p depending on whether we use the Cartesian or polar
representation of the complex numbers a and b. Not so!

Write the general state of a qubit a|0) + b|1) as r,e'?|0) 4 rpe'?|1). Since
an overall phase factor has no observable consequence (you’ll prove this as an ex-
ercise later), we can multiply by any global phase we please to obtain an equiv-
alent state. In particular, we could multiply by the phase factor e % to obtain
7410) + rpe’ @ =9a)|1). This allows us to represent the state of the qubit using three
real numbers r,, rp and ¢ = (¢p — P,). Switching back to Cartesian coordinates for
the amplitude of the | 1) component we can write this state as r,|0) + (x +iy)|1). Ap-
plying normalization we have |r,|* + |x +iy|? = 1 or equivalently r2 4+ x>+ y> = 1
which is the equation of a sphere in coordinates r,, x, and y. We can rename r, = z
for aesthetic reasons and it doesn’t change anything but now we have the equation

1.3 Quantization: From Bits to Qubits 13

of a sphere in coordinates x, y, and z. Ok so let’s switch from these Cartesian coor-
dinates to spherical coordinates. We have,

x = rsin(@) cos(¢) (1.7)
y = rsin(f) sin(¢) (1.8)
z =rcos(0) (1.9)

But given the constraint x> + y> 4+ z2> =r> =1, we see r = 1. So now the po-
sition on the surface of the sphere is specified using only fwo parameters, 6
and ¢. And the general qubit state can be written as z|0) + (x 4+ iy)|1) or equiv-
alently, since r = 1, cos(8)]0) + (sin(6) cos(¢) + i sin(f) sin(¢))|1), or equivalently
cos(6)]0) 4 ¢'? sin(9)|1) since cos(¢) + i sin(¢) = €!®. Given that a qubit must lie
between the extremes of being wholly [0) (which occurs when 6 = 0 and wholly
[1) (which occurs when 6 = 90 it appears all the qubit states are mapped out over
just a hemispherical region of the sphere defined by x> + y? 4 z2 = 1. If we want
all the possible qubit states to correspond to the points on the surface of a whole
sphere, we can simply map this hemisphere or points onto a sphere of points by
introducing a new angle 8’ = 26. Thus the general qubit state can now be written as
cos(%) 0) + €'¢ sin(%,) |1). Thus the complete set of qubit states is now mapped out
as 0’ runs from 0° to 180°. This final sphere is the Bloch sphere.

An immediate consequence of how the Bloch sphere is constructed is that orthog-
onal quantum states, i.e., states |1r) and | x) for which (| x) = 0, are represented by
antipodal points on the Bloch sphere (rather than being drawn at right angles which
is how we usually expect to see orthogonal vectors drawn in 3D space). This is the
reason why |0) lies at the North Pole and |1) lies at the South Pole of the Bloch
sphere. For a general pure state, represented as a point on the surface of the Bloch
sphere, the antipodal state is the one diametrically opposite it on the other side of
the Bloch sphere such that a straight line drawn between the original state and its
antipodal state would pass through the center of the Bloch sphere. The operation
that maps an unknown state to its antipodal state cannot be expressed as a rotation
on the Bloch sphere. Rather it is the sum of a rotation (in longitude through 180 de-
grees) and a reflection (in latitude with respect to the equatorial plane of the Bloch
sphere). This inability to express the operation purely as a rotation will turn out to
impact our ability to achieve it in a sequence of unitary quantum gates.

Figure 1.4 shows the Bloch sphere labeled with pure 1-qubit sta}es at the ex-

tremes of the x-, y-, and z-axes. These are, respectively, | /) = —2(|0) + (1)),

- L — = - L] = = L —i
IN) = 5500) = 1), [R) = |0) = 5 (10) +i[1)), |L) = [O) = 5(10) —i|1)),
|0), and |1). Notice that orthogonal states are indeed located at antipodal points on
the surface of the Bloch sphere.

1.3.3.1 Other Rotations Having Period 4r

When first encountering the Bloch sphere, students often find it hard to grasp why
a rotation of 2mr radians (i.e., 360°) would not restore an object back to its original

1 Introduction

10>

0

1 X

Fig. 1.4 Bloch sphere representation of the states |0), [1), | /) = %(IO) + (1), IN) =

50y = 1)), [R) = 0) = J5(10) + i[1)), and |L) = |©) = 5(0) = i|1)). Orthogonal pure

states are at antipodal points on the surface of the Bloch sphere

configuration. However, such a phenomenon can also be seen in the motions of
certain classical physical systems.

For example, extend your right hand straight out so your palm is face up. Keep-
ing your palm face up at all times, rotate your hand clockwise around a vertical axis
passing through the center of your palm until your hand returns to its original config-
uration. The basic contortions you need to do are as follows: starting with your right
hand extended straight out palm up, pull your arm inwards (keeping your palm flat),
twisting your wrist to the right and pushing your elbow to the left, continue twisting
your palm clockwise so your fingertips are pointing towards your right shoulder, and
swing your elbow around to the right and upwards, and push your arm out again.
Congratulations! Your palm has now been rotated through 27 radians (360°) and it
is indeed still face up, but your hand is not in its original configuration because your
elbow is now on top! To return your hand to its original configuration you need to
apply another full rotation of 360° to your palm. To do so, continue turning your
wrist to the right (still keeping your palm face up) so that your fingertips point to-
wards your tight armpit, swing you elbow around and downwards in a clockwise

1.3 Quantization: From Bits to Qubits 15

rotating arc, whilst twisting your wrist to the right. This will take your arm back
to its starting configuration. Thus, your hand requires a total rotation of 4 radians
(720°) to return it to its starting configuration. Resting a plate on your palm as you
do this ensures you keep your palm face up for fear of dropping the plate. This is
sometimes known as ‘“Feynman’s Plate Trick”.

A more surprising demonstration of the same symmetry property occurs in the
rotations of a flat belt that is fixed at one end and rotated at the other. This version if
called “Dirac’s Belt Trick” and it is always a hit at parties. Take off a long flat belt
strap. Have a friend hold the buckle end of the belt and hold the other end yourself.
Pull the belt taut so it is flat with the outer face of the belt (as it is normally worn)
pointing upwards. Tell your friend to keep hold their end of the belt tightly in a fixed
position. Ok now twist (i.e., rotate) your end of the belt through 27 radians (i.e.,
360°). Can you remove the kink you have imparted to the belt by passing the belt
under and over itself while keeping the orientation of the ends of the belt fixed (i.e.,
flat with the outer face of the belt pointing upwards)? After a little experimentation
you will conclude you cannot.

Let us make the problem even harder by applying an additional twist to your
end of the belt through another 27 radians (i.e., another 360°). Can you remove the
double kink by passing the belt under and over itself while keeping both ends flat
and pointed upwards? Surely if you could not remove one kink in this manner, you
would expect it would be even harder to remove two! Yet, remarkably, you can!
After a rotation of 4 radians (720°) applied to the end of the belt, the belt can be
restored to its original configuration by passing it under and over itself while keeping
the orientations of the two ends fixed in space! This seems to be more surprising to
most people than the plate trick. Yet both are examples of physical systems in which
rotations of 27 radians do not restore an object to its original state whereas rotations
of 4 radians do! Such examples show that the 47 periodicity of the Bloch sphere
has parallels in the classical world around us.

1.3.4 Reading the Bit Value of a Qubit

In the everyday classical world when we read, or measure, or observe, something
we don’t usually perturb it in the process. For example, when we read a newspaper
we don’t change the words on the page merely by reading them. Moreover, if ten
people read ten different copies of the same edition of the same paper they would
all see the same words. However, in the quantum world this is not what happens.

The states |0) and |1) correspond to the North and South poles of the Bloch
sphere respectively, and the axis passing through these points is the z-axis (see
Fig. 1.5). Thus the act of reading the bit value of a qubit amounts to determining
the alignment of its spin with respect to this z-axis. If the particle is aligned “spin-
up” it is in the state |0). If it is aligned “spin-down” it is in the state |1).

When a single qubit in state a|0) + b|1) is read (or “measured” or “observed”),
with respect to some axis through the center of the Bloch sphere, the probability of

1 Introduction

Pr(1) = (b))

X
1

Fig. 1.5 Measuring the bit value of a qubit initially in state a|0) + b|1) yields the answer O with
probability |a|? or 1 with probability 5|2, and projects the qubit into either state |0) or state |1)

respectively

finding it in state |0) or state |1) depends upon the values of @ and b, and on the
orientation of this axis. The most commonly used axis is that passing through the
North and South poles corresponding to the states |0) and |1). A measurement of a
qubit with respect to this axis is called a measurement “in the computational basis”
because the answer we get will be one of the bit values |0) or |1). The outcome we
obtain is, in general, not certain but depends on the amplitudes a and b. Specifically,
measuring the bit value of a|0) + b|1) in the computational basis will yield the
answer |0) with probability |a|?> and the answer |1) with probability |b|>. These two

probabilities sum to 1, i.e., |a|? + |b|> = 1.
[0 with probability |a|?
Read(al0) +bl1)) = {1 with probability [b]2 (1.10)

Thus, a single qubit quantum memory register exhibits the interesting property
that even though its contents may be definite, i.e., it may be precisely in the state

1.4 Multi-qubit Quantum Memory Registers 17

|Y) = al0) + b|1), the outcome we obtain from reading it is non-deterministic.
Sometimes we will find it in state |0) and sometimes we will find it in state |1).
However, the instant after the measurement is made, the state is known with cer-
tainty to be |0) or |1) consistent with result we obtained. Moreover, if we rapidly
and repeatedly keep measuring the same state we can suppress its evolution and

effectively freeze it in a fixed quantum state |i) rgd |0) rgd |0) rgd |0)--- or
[v) read [1) read [1) read [1)---. This is a variant of the so-called Quantum Zeno Ef-

fect.? But if we allow time to elapse between measurements the state will, in general,
evolve, or “drift off”, in accordance with Schrédinger’s equation.

1.4 Multi-qubit Quantum Memory Registers

So far we have only been dealing with single qubits, but a useful quantum computa-
tional device will need to have a multi-qubit quantum memory register. In general,
this is assumed to consist of a collection of n-qubits, which are assumed to be or-
dered, indexed and addressable so that selective operations can be applied to any
single qubit or any pair of qubits at will. If two qubits selected for an operation are
not physically adjacent, there is usually an operational sequence that achieves the
interaction between them as if they were. This detail is typically omitted from the
abstract model of the quantum memory as it is more an implementation issue than
anything fundamental to the computational model.

Just as a single qubit can be found in a superposition of the possible bit values
it may assume, i.e., |0) and |1), so too can a n-qubit register be found in a super-
position of all the 2" possible bit strings [00...0),]00...1),...,[11...1) it may
assume. However, the most interesting superposition states typically involve non-
uniform contributions of eigenstates.

1.4.1 The Computational Basis

When we describe the state of a multi-qubit quantum memory register as a super-
position of its possible bit-string configurations, we say the state is represented in
the computational basis. This is arguably the most natural basis for quantum com-
puting. For example, the most general form for a pure state of a 2-qubit quantum
memory register can be written as:

[¥) = c0l00) +¢1[01) + c2[10) 43| 11) (1.11)

3The Quantum Zeno Effect says that if you repeatedly measure (or observe) a quantum system,
you can suppress its quantum mechanical evolution. It is named after Zeno of Elea who devised a
paradox that aimed to prove if you continually observe an arrow in flight at any instant it would
appear motionless and hence it cannot be moving: “If everything when it occupies an equal space
is at rest, and if that which is in locomotion is always occupying such a space at any moment, the
flying arrow is therefore motionless.”—Aristotle, Physics VI:9, 239b5.

18 1 Introduction

where |c0|2 + |c1 |2 + |cz|2 + |C3|2 = 1. This implies we can think of the register
as containing many different bit string configurations at once, each with their own
amplitude. Similarly, the general state of a 3-qubit register can be written as:

1Y) = c0/000) + ¢1]001) + ¢2]010) + ¢3]011) + 4100} + c5]101)
+¢6|110) + c7]111) (1.12)

where [col? + [c1]* + [c2l? + [e31* + |cal® + |es|? + |cg|* + |e7]* = 1. Continuing
in this fashion, we see that the most general form for a pure state of an n-qubit
quantum memory register is:

2" —1
¥) = c0l00...0) +¢1100... 1) + - +en_g |11 1) = Y ¢li)
i=0

where 212:61 lci|> = 1 and |i) represents the “computational basis eigenstate”
whose bit values match those of the decimal number i expressed in base-2 notation,
padded on the left (if necessary) with “0” bits in order to make a full complement
of n bits. For example, the 5-qubit computational basis eigenstate corresponding to
|6) is |00110). This is because 6 in base-2 is “110” and then we pad on the left with
two “0” bits to make a total of 5 bits.

As for the case of single qubits, such ket vectors can always be regarded as a
short hand notation for a column vector. The size of these column vectors grow
exponentially with the number of qubits, making it computationally intractable to
simulate arbitrary quantum computations on classical computers. For example, a
100-qubit quantum memory register requires 2! 00 complex amplitudes to specify it
completely! In very few qubits, we run out of particle in the known Universe with
which to make a classical memory large enough to represent a quantum state.

In a multi-qubit quantum state it is not necessary (and for often not desirable)
for every amplitude to be non-zero. For example, if the quantum memory register
contains the output from some quantum computation, typically, many of the eigen-
states (corresponding) to non-solutions will be absent. For example, a particular
3-qubit quantum state, |) = a|001) + »|010) + ¢|100) does not contain any con-
tributions from the eigenstates |000), |011), [101), |[110), |111). The amplitude of
these omitted components is zero by implication. Hence, as a column vector, the
aforementioned 3-qubit state would actually be:

0 amplitude of |000) component
2 |001> 2
” |010) ”

W) = al001) + b|010) + c|100) = 011)

SO o0 O Q
—_
o
=}

(1.13)

1.4 Multi-qubit Quantum Memory Registers 19

1.4.2 Direct Product for Forming Multi-qubit States

Suppose we create a quantum memory register from a set of n independent qubits.
How the state of the n-qubit register is related to the states of the individual qubits?
The answer is provided by way of the direct product of the n individual quantum
states.

Definition Direct Product of Quantum States of qubit states. Let |¢) = Z?m 61 ajlj)

be an m-qubit pure state, and |) = Z,% o birlk) be an n-qubit pure state. The
quantum state of a memory register formed by considering |¢) and |y) together is
computed by taking their direct product, |¢) ® [) (sometimes called “tensor” or
“Kroenecker” product too):

| 2] Z? 2?
D@y =Y ajliy® Y bhilk)=| - :
j=0 k=0 aym_1 b2n,]
bO aob()
bl a0b1
ap : .
bz,; | apboyn 4
b :
b(l) alb()
|« : _ aib; (1.14)
by :
_2 ! aybon |
bo azm_lb()
aym_1 b.l aszlbl
by aym _1byn_y

For example, let |¢) = a|0) +b|1) and |¢) = c|0) +d|1). Then the direct product

wow=(e (%)= a(fcl)
0-)-[

=1 e =ac|00) + ad|01) + bc|10) + bd|11) (1.15)

bd

20 1 Introduction

Fig. 1.6 A particle t=5.0 t=35.0
impinging on a double slit 100 100
seen at four different times 80 80
t =5.0,35.0, 55.0 and 75.0.
Notice the interference 60 60
pattern beyond the double slit

\ A
(upper right quadrant of lower ~ 40 40 '
right frame). This, and several 20 . 20

other stunning animations of
quantum mechanical 0
interference effects, can be 0 20 40 60 80100 0 20 40 60 80100
found in [420]

t=55.0 t=75.0

100 100

80 80

60 J 60

N S

40 » 40

20 20

0

0
0 20 40 60 80100 0 20 40 60 80100

1.4.3 Interference Effects

One of the most striking differences between quantum memory registers and clas-
sical memory registers is the possibility of encountering “quantum interference”
effects in the quantum case that are absent in the classical case. In general terms,
quantum interference can occur whenever there is more than one way to obtain a
particular computational result. The different pathways can interfere constructively
to increase the net probability of that result, or they can interfere destructively to
reduce the probability of that result. For example, if a quantum mechanical particle
impinges on a double slit it will, as shown in Fig 1.6, pass through both slits and
self-interfere beyond the slit, resulting in an oscillatory pattern of probability am-
plitude for where the particle will be found. To understand this quantitatively, let’s
consider the probability of obtaining a particular computational result first by pre-
tending that our quantum register behaves like a classical probabilistic register and
then by treating it (correctly) as a true quantum memory register.

Let |j) and |k) be two eigenstates of an n-qubit quantum memory register that
hold two different bit strings corresponding to integers j and k respectively. These
states are orthogonal ({j|k) = 0) and normalized ({j|j) = (k|k) = 1). So long as it
is not being observed, it is possible for the quantum memory register to exist in a
superposition of any of its allowed eigenstates such as a superposition of |j) and |k),
ie., |¥) =cjlj) + cklk). If we observed this state in the computational basis we
would find it in state |j) with probability |c j|2 and in state |k) with probability
k2 =1— c; |2 (since these are the only two possibilities).

Thus, on the face of it, one might think that the quantum memory register holding
the state |) = c;|j) + cklk) behaves just the same as if it were a classical proba-

1.4 Multi-qubit Quantum Memory Registers 21

bilistic memory register that outputs state | j) with probability p; (= |c; |2) and state
|k) with probability pi (= |ck 12). But as we now show, this is not the case.

Specifically, let A be some observable that can act on an n-qubit register. Suppose
one of the eigenvalues of this observable is “a” when the corresponding state of the
memory register is |1,). In other words we have A|y,) = a|y,).

The question is, with what probability would be obtain the value “a” when we
measure the observable A when the quantum memory register is in state [{) =
¢jli) + celk)?

Well in the (erroneous) “classical” view, the register really holds either state |j)
or state |k) but we are ignorant about which is the case. The probability of getting
“a” if the register is in state |j) is Pj(a) = [(Vq| 72 Similarly, the probability of
getting “a” if the register is in state |k) is Px(a) = |(¥4|k)|*. As we are ignorant
about whether the register really holds state |j) or state |k) the probability with

[P

which we expect to see “a” is:
PELASSICAL (4) = P (@) p; + Pr(a) pr = Icj1* Pj(a) + |ck]? Pe(a)
= lc; P {Wal i) 1 + lekl*1(Yalk) (1.16)

So this is our prediction for the probability with which we see result “a” if our
memory register behaves “classically”.

In the case of the “quantum” interpretation of the register, however, we’re not
ignorant of anything! The register fruly exists in the superposition state |¢) =

[Pl

¢;jlj) + cklk), and the probability of getting “a” is therefore:

PUANTUM (4 (19 2 = [¢j (Wal) + ek (Va) |2

= le; P1(Wal NP + leeP[(Walk) > +2 Re(e e (Wal j) (alk)®)
(1.17)
Thus, in the quantum case there is an addition term contributing to the probability of
obtaining result “a”. This is the result of quantum interference between the different
computational pathways by which result “a” can be obtained.

1.4.4 Entanglement

“I would not call [entanglement] one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical lines of thought.”
— Erwin Schrodinger

Another way in which quantum memory registers can differ from classical mem-
ory registers is in their ability to exist in entangled states. This is a state of a compos-
ite quantum system that involves unusually strong correlations between parts of the
system. There is considerable debate at present about the nature of entanglement, es-
pecially in systems involving more than two particles, and whether entanglement is

22 1 Introduction

strictly necessary to obtain a complexity advantage over a classical computer. How-
ever, at this time it appears that entanglement is crucial to obtaining the exponential
speedups seen in some quantum algorithms.

So what is an entangled state exactly? In its simplest terms we can define an
entangled state as follows:

Definition: Entangled Pure State A multi-qubit pure state is entangled if and only
if it cannot be factored into the direct product of a definite state for each qubit
individually. Thus, a pair of qubits, A and B, are entangled if and only if their joint
state |{) 4p cannot be written as the product of a state for qubit A and a state for
qubit B, i.e., if and only if [{/)ap # |¥) 4 ®) p for any choice of states [) 4 and

[¥)B.

In a multi-qubit memory register if qubits are entangled then actions performed
on one subset of qubits can have an impact on another, “untouched”, subset of
qubits. For example, consider a 2-qubit memory register comprised of qubits A
and B, in state %UO)A ®10)p 4+ |1)4 ® |1)). If qubit A is measured in the com-

putational basis and found to be in state |1) then even though qubit B has not yet
been touched, its quantum state is now determined to be |1) too. Thus a measure-
ment of qubit A has had a side effect on the value of qubit B!

For notational compactness entangled state are more commonly written by drop-
ping the particle label (A, B, etc.) because this is implied by position, and by drop-
ping the ® product as this is implied by simply abutting ket vectors. So the afore-
mentioned entangled state could also be written as % (100) + |11))

Entanglement is a pervasive phenomenon in multi-qubit quantum memory reg-
isters, It is also the cornerstone of many quantum algorithms. For example, we can
prepare two entangled quantum registers, A and B say, such that register A contains
a set of indices running from 0 to 2" — 1 and register B contains a set of values of a
function who behavior depends upon the value of the index in register A. So the joint
state (ignoring the normalization factor) can be something like 212;61 i)alf@))B-
By measuring the value of the function (in register B) to be value “c” say, we can
project out the set of indices (in register A) consistent with the observed function
value, giving us a superposition of the form Z{i’:f(i’):c} li’yalc). That’s a neat trick
because in one shot we get all the index values (in register A) that give the same
value for the function (in register B).

1.4.4.1 Entanglement and Quantum States in Different Number Bases

One of the most interesting aspects of entanglement is how it is tied to our choice
of representation of numbers. Traditionally, we think of quantum computing using
the base-2 number system. Showing the number base as a subscript we have |019) =
102), [110) = [12), 1210} = 102), |310) = [112), ...

If the quantum gate, represented by the unitary matrix U, is to act on n qubits,
U will have dimensions of that are a power of two, specifically, 2" x 2". Likewise,

1.5 Evolving a Quantum Memory Register: Schrodinger’s Equation 23

the unitary matrix corresponding to a quantum gate that acts on qutrits (i.e., base 3
quantum computation), will have dimensions that are a power of three, i.e., 3" x 3".
Typically, most researchers use a base 2 (qubit) model of quantum computation.
This is partly out of habit, and partly because quantum gates that manipulate qubits
(and which therefore require 2-body interactions) are assumed to be simpler to build
than those that manipulate qutrits (and which therefore require 3-body interactions).
But in principle, one could use whatever base one wants.

Does the choice of base matter? Well, not from a computability perspective. Any
computation that can be done using qubits can also be done using qutrits. However,
it does raise some interesting issues when we consider the degree to which entangle-
ment is critical to quantum computation. For example, suppose you wanted to create
a superposition of two numbers “1” and “2” in some quantum memory register. Us-
ing qubits, such a superposition could be coded as % (J01) + |10)) (which is entan-

gled). However, using qutrits, the equivalent state could be encoded as % (1) +12))

(a plain, unentangled, superposition). So the choice of base affects the degree to
which entanglement is needed.

Some researchers misinterpreted the implications of this by proposing that quan-
tum computation can be implemented without entanglement. For example, suppose
we consider using a single atom (or perhaps artificial quantum dot) that has a huge
spectrum of energy levels available to it. We could imagine associating each energy
level with a different computational state: the ground state of the atom could be
“|0)”, the first excited state “|1)”, the second excited state “|2)” etc. We could then
regard a quantum computation as a sequence of operations that maps some initial
state of this atom (represented as an unentangled superposition of states) into a final
state (represented as an unentangled superposition of states). And it would seem as
though entanglement is unnecessary.

The problem with this approach is that it neglects a hidden exponential cost.
To do universal (i.e., arbitrary) quantum computation we need to be able to access
exponentially many different energy levels. However, as the total energy of the atom
is finite, this means we will need to “fit” exponentially many energy levels into
a finite energy interval. Hence, we will require exponentially increasing precision
in order to address a specific energy level. Hence, although in principle one could
perform quantum computation in higher bases, and perhaps lower the degree to
which entanglement is needed, in practice it is very hard to imagine doing away
with entanglement entirely.

1.5 Evolving a Quantum Memory Register: Schrodinger’s
Equation

So far we have been discussing the properties of individual quantum bits (such as
superposition), and those of multi-qubit quantum memory registers (such as super-
position, entanglement and interference). Our working assumption has been that the
instantaneous state of a quantum memory register, | (¢)), holds the instantaneous

24 1 Introduction

state of the quantum computation. But how does this state evolve with time, and
how can we control this evolution to enact a purposeful quantum computation?

1.5.1 Schrodinger’s Equation

Remarkably in 1929, long before anyone had ever thought of quantum computers,
physicist Erwin Schrodinger discovered an equation that describes how any isolated
quantum system evolves in time. Since a quantum memory register is nothing more
than an isolated quantum system, it too must be described by Schrodinger’s equa-
tion.

Schrodinger’s equation is a linear first order deterministic partial differential
equation that involves the instantaneous state of the quantum memory register
| (¢)), a time independent Hermitian matrix H, called the Hamiltonian (the observ-
able for the total energy of the system), and a constant 7 equal to Planck’s constant
divided by 2. The fact that Schrodinger’s equation is “linear” means that sums of
solution to the equation are also solutions to the equation, which is the fundamental
origin of the superposition principle. The fact that the Schrédinger equation is de-
terministic means that if you know its instantaneous state at any moment you can
predict its future and past states with certainty (provided the system is not observed).

Regardless of the precise details of the physical system, Schrodinger’s equation
always takes the form:

@)
at

As h is a constant, and |y (¢)) describes the instantaneous state of the quantum
memory register, the form of this equation implies that all of the details pertaining to
the particular physical system in question must be bundled into the operator H—the
Hamiltonian. So what does this Hamiltonian mean exactly?

="H|y (1)) (1.18)

1.5.2 Hamiltonians

In quantum mechanics observables are described by operators, which in turn can
be represented as Hermitian matrices. The allowed values for an observable are the
eigenvalues of its associated Hermitian matrix. The Hamiltonian, H is the observ-
able corresponding to the total energy of the system, and its eigenvalues are the
possible values one can obtain when one measures (or “observes”) the total energy
of the system. Depending on the physical situation such a Hamiltonian may be time
dependent or time independent.

The Hamiltonian H for a particular quantum physical system is built up from
knowledge of the elementary interactions available in the system, and it can be writ-

1.5 Evolving a Quantum Memory Register: Schrodinger’s Equation 25

ten in terms of operator products like those we encountered in Sect. 1.3.2. For ex-
ample, the Hydra superconducting quantum processor [423] has the Hamiltonian:

N N N
HO= hiZi+ Y JiZiZj+) MiDXi (1.19)
i=1 i=1

i<j=2

where Z; = azi and X; = 0; are the Paul-Z and Pauli-X matrices for qubit i, A; is
the bias applied to qubit i, A; () is the tunneling matrix element for qubit i, and J;;
is the coupling between qubits i and ;.

The fact that H is the observable for the total energy of the n-qubit system means
that H is a 2" x 2" dimensional Hermitian matrix such that there exist energy eigen-
states |v;), and energy eigenvalues E; such that H|v;) = E;|v;). The eigenvalues
E; are the only allowed values for the total energy of the system. Thus there is al-
ways some basis (the energy eigenbasis {|1;)}) in which H is a diagonal matrix,

H=>% Eilyi){¥il.

Eob 0 0 0
0 E, 0 0

H= (1.20)
0 0 . 0
0 0 0 Ew

However, the Hamiltonian if often stated with respect to some other basis, e.g.,
the computational basis, {|00...0),|00...1),...,]1...1)}. Hence, it is sometimes
necessary to change the basis used to describe states and operators in quantum com-
puting. We will come back to this issue and discuss it in detail in Sect. 1.6.4.

1.5.3 Solution as a Unitary Evolution of the Initial State

Once the Hamiltonian is known the Schrodinger equation can be solved. The sim-
plest case is that of a time-independent Hamiltonian. In this case the solution to the
Schrodinger equation is:

U(t) = exp(—iHt /h) (1.21)

This says that if you know the initial state of the system, |4 (0)), you can de-
termine its state at a later time, ¢, by acting on the initial state with the opera-
tor exp(—i’Ht/h). Or, in other words, the system is described by some Hamil-
tonian H and you let it “run” for a length of time ¢, then the result you get is
[V (1)) =U D) (0)) = exp(—iHt/h)[¥(0)).

The matrix U (t) is therefore the matrix exponential of —iHt h. If A is any ma-
trix, its matrix exponential is:

2 3 4 5
eA=1+A+A_+A_+A_+A_+... (1.22)
2! 3! 4! 5!

26 1 Introduction

As H is an Hermitian matrix, its matrix exponential exp(—iH¢/h) is a unitary
matrix. A unitary matrix has the property that its inverse is equal to its conjugate
transpose, i.e. U —1 = UT. Therefore, a unitary matrix is always invertible which
means that the evolution it describes is reversible, i.e., there is no loss of informa-
tion. Hence, the closest classical analog to quantum computing is classical reversible
computing, as it too preserves information about the computational history.

1.5.4 Computational Interpretation

A classical computer follows essentially a LOAD-RUN-READ cycle wherein one
loads data into the machine, runs a program using this data as input, and then reads
out the result. This becomes an analogous PREPARE-EVOLVE-MEASURE cy-
cle for a quantum computer. That is, one prepares a quantum state, evolves it on the
quantum computer, and measures the result.

Each aspect of the quantum computer’s operation offers new opportunities un-
available in the analogous phase of a classical computer’s operation. For example,
whereas in a classical computer you can only load one input at a time, in a quan-
tum computer you can prepare exponentially many inputs in the same amount of
time. The whereas a classical computer can only run a computation on one input,
a quantum computer can evolve a superposition of computations on all inputs in
the same time. Finally, whereas a classical computer can only read one output, we
can perform more sophisticated measurements of the output state from a quantum
computer to compute certain joint properties of all the answers to a particular com-
putational problem in the time it takes a classical computer to find just one of the
answers. This gives quantum computers the potential to be much faster than any
classical computer, even a state-of-the supercomputer.

1.6 Extracting Answers from Quantum Computers

The process of extracting answers from quantum computers can be more tricky than
one might imagine. In order to learn the result of a quantum computation we must
read the quantum memory register that contains it. Such an act is more properly
thought of as performing a measurement on a certain quantum state (i.e., the result
of the quantum computation) in a certain basis (typically, but not necessarily, the
computational basis).

1.6.1 Observables in Quantum Mechanics

A measurement of a quantum memory register couples the quantum computer to
the measuring device, temporarily, causing information from the quantum memory

1.6 Extracting Answers from Quantum Computers 27

register to be transferred to the measuring apparatus, whereupon it is converted to
classical information and amplified to a scale detectable by human senses. At this
point we say the observable has been “read” or “measured”. Therefore, the act of
reading a quantum memory register is more properly thought of as an experimental
determination of the value of some observable of the system.

In quantum mechanics, an observable for some property of an n-qubit system
is represented by a 2”7 x 2" dimensional Hermitian matrix, O say. The Hermitian
property means that O = O and so the eigenvalues of O are guaranteed to be real.
the significance of this is that quantum mechanics says that when the property asso-
ciated with observable O is measured that the answer we obtain has to be one of the
eigenvalues of O, and the state immediately after the measurement is the eigenvec-
tor that pairs with this eigenvalue. Thus, if {|1;)} are the family of eigenvectors of
O and {A;} are the corresponding family of eigenvalues, such that:

O} = Aili) (1.23)

then the only possible values we can ever obtain for the property associated with
observable O are one of the A;’s and, having obtained such a result, the state im-
mediately after this measurement will be |y;). Moreover, if we repeatedly prepared
and measured several preparations of the state |¢) then the average value we would
obtain would be:

(O) =(¥I0ly) (1.24)

where |¢) and O should be described with respect to the same basis.

Many students find this measurement formalism perplexing. Why should acts
of measurement be associated with matrices? And why should the values obtained
from acts of measurements be associated with eigenvalues? What motivates this
formalism?

The answer lies in our desire to have a mathematical way of describing acts
of measurement that reflects, faithfully, the phenomena experimentalists encounter
when they perform real measurements on quantum systems. As we shall see in the
next section, by associating observables with Hermitian matrices, and the allowed
values of observables with eigenvalues of those operators, we can conjure up a rel-
atively simple and concise mathematical model of the measurement process that
naturally has all the requisite properties.

1.6.1.1 Observables as Hermitian Operators

Let us start by summarizing the phenomena scientists encounter when they try to
make observations on quantum systems, as this will make the subsequent mathe-
matical account of observation that is used in quantum mechanics far more intuitive.
The first idea is that when we measure some property of a system we obtain a
real number for the answer. So measurement results need to be real numbers.
Secondly, for quantum-scale objects, the act of observing the system can change
its state. For example, to find the position of an electron you need to bounce light

28 1 Introduction

off it. The shorter the wavelength of the light used the more precisely you can deter-
mine position. But the shorter the wavelength of the light the greater the momentum
kick the light imparts to the electron as it scatters off it. Hence, a very precise mea-
surement of position necessarily induces a large uncertainty in momentum and vice
versa. So the second idea is that acts of observation can change the state.

Third, the measured values one obtains do not usually span a continuous range
of possibilities but instead may take on only certain discrete values. For example, if
we measure the spin of an electron it is always found to be aligned or anti-aligned
with the measurement axis. Even if you try to “cheat” by setting up an experiment
with the electron spinning at some known angle to the axis of measurement, when
you make the measurement the spin jumps into alignment or anti-alignment with
the measurement axis. These are the only two values allowed. So the third idea is
that measured values are discrete rather than continuous.

Fourth, the order in which we make a sequence of observations can affect the
outcome we obtain. So an experiment that measures property A first and then prop-
erty B does not always yield the same results, even statistically, as if we measured
property B first and then property A. So the fourth idea is that the order in which
we perform measurements can affect the outcome we obtain.

Fifth, when we measure certain pairs of observables, the more accurately we
can pin down one, the less accurately we can pin down the other. That is there is
a fundamental quantifiable limit to how accurately we can measure certain pairs of
observables. In particular, defining:

AO4=04—-(04)
AOp =0 —{0p) (1.25)

it can be shown that
AO4AOp > constant (1.26)

where the inequality is strict if the order in which observations are made makes
a difference. The mathematical machinery used in quantum mechanics to describe
acts of observation has to reflect the phenomena scientists encounter when they do
actual measurements.

It turns out that all these properties fall out naturally if we associate observables
with Hermitian operators. If an observable A is associated with an Hermitian oper-
ator 4, then:

1. Quantized values: the only allowed outcomes for the measurement are the eigen-
values of Oy.

2. Real values: as O4 is Hermitian its eigenvalues must be real.

3. Observation changes the state: if the system is in a superposition state just prior
to a measurement then upon obtaining the result A; the system will be projected
into the state |v;). This is the eigenstate of O4 such that O4|¥;) = A; ;).

4. Non-commuting Measurements: if we are interested in two observables A and B
represented by Hermitian matrices O 4 and Op then the order in which measure-
ments are made will make a difference whenever O4 - Op £ Op - O4.

1.6 Extracting Answers from Quantum Computers 29

5. Uncertainty principle: as we show in Chap. 12, for any pair of observables O 4
and Op there is a minimum uncertainty with which the .4 and B properties can
be measured simultaneously given by AO4AOp > %H[OA’ Ogl.

Hence, although the quantum mechanical account of observables appears quite
alien to most people when they first encounter it, remember that the reason it is set up
this way is simply to capture the empirically determined properties of measurements
and observations on quantum scale objects.

1.6.2 Observing in the Computational Basis

The most common kind of measurement that is made in quantum computing is to
measure a set of qubits “in the computational basis”. By this we mean that the spin
orientation of each qubit in the quantum memory register is measured along an axis
parallel to the z-axis of the Bloch sphere, which is the axis passing through its North
and South poles. When such a measurement is made, each qubit will be found to be
aligned or anti-aligned with the z-axis corresponding to being “spin-up” (i.e., in
state |0)) or “spin-down” (i.e., in state |1)) respectively. When such a measurement
is applied to each qubit in an r-qubit quantum memory register one will obtain one
of the 2" possible bit string configurations that the register can take on. The probably
of obtaining the different outcomes depends upon the amplitude with which each bit
string configuration appears in the superposition state of the register just prior to it
being measured.

Consider, for example, an n-qubit quantum memory register in the (normalized)
state 212161 ci|i). Here we use the shorthand notation that |i) really stands for a bit
string, i) = |iy—1in—2...i2i1i0), such that i = 2%y + 21i; +--- +2""1i,_;. The
outcome we obtain will depend on the amplitudes ¢; and on whether we measure
some or all of the qubits.

1.6.2.1 Complete Readout

If all the qubits are measured in the computational basis one will obtain the result |i)
with probability |c;|>. Consequently, if one of the amplitudes is zero, i.e., there exists
an index value i’ such that ¢;; = 0, there is no chance whatsoever of obtaining the
answer |;) from the measurement. Conversely, if one of the amplitudes is unity,
i.e., there exists an index value i” such that ¢;» = 1, then if the state is properly
normalized, the result of the measurement is guaranteed to be the corresponding
eigenstate, ;).
Consider a 3-qubit quantum memory register that initially is in the state

l¥) = ¢0l000) + ¢1]001) + ¢2]010) + ¢3]011) + c4]100) + ¢5]101)
+¢6l110) 4+ ¢7[111) (1.27)

30 1 Introduction

Table 1.3 Probabilities of

obtaining the eight distinct Qubit A Qubit B Qubit C Probability
triples of values when three
qubits are read in the 10) |0) |0) |col?
computational basis |0) |0) 1) leq|?

|0) 1) |0) leal?

|0) 1) 1) le3l?

1) |0) |0) lcal?

1) |0) 1) les|?

1) 1) |0) lco|?

1) 1) 1) le7|?

where 21.720 |ci|> = 1. For convenience imagine labeling the leftmost qubit A, the
middle qubit B, and the rightmost qubit C. When we do a complete measurement of
all the qubits in this memory register, we expect to find the result |i) with probability
lc;|2. That is we obtain the results shown in Table 1.3.

1.6.2.2 Partial Readout

Alternatively, suppose we measure only the middle qubit, B, and find it to be in
state “|1)”. Such a measurement projects the qubits into a form that constrains the
middle qubit to be |1), but leaves the other qubits indeterminate (since neither qubits
A nor C were measured). Moreover, the resulting state must still be properly nor-

malized. Hence, after the measurement, the state of the 3-qubit memory register is
¢21010)+¢3]011)+c6|110)4-c7]111)

VIealPHlesP+es P+ ler 2

1.6.3 Alternative Bases

We do not have to view the contents of a quantum memory register as being in
the computational basis however. A basis for an n-qubit quantum memory reg-
ister is any complete orthonormal set of eigenstates such any n-qubit state can
be written as a superposition of states taken from only this set. The computa-
tional basis states for a single qubit memory register are |0) and |1), and for an
n-qubit quantum memory register the tensor product of all combinations of these,
i.e. {|0),]1)}®" ={]00...0),]00...1),...,|11...1)}. However, many other bases
are possible, including those related to rotations of the single qubit computational
basis states and tensor products thereof, and entirely unusual choices such as entan-
gled multi-qubit states, e.g., the Bell basis. Table 1.4 shows some possible bases for
a rudimentary (2-qubit) quantum memory register. The first three bases are related
to rotations of the single computational basis states, but the fourth basis is a basis
consisting of purely 2-qubit states, which is nevertheless a proper basis for 2-qubit
states.

1.6 Extracting Answers from Quantum Computers 31

Table 1.4 Some examples of
different bases for 2-qubit
quantum memory register.
Note that the Bell basis is 6° Rotated
defined over entangled

2-qubit states. The other

Basis Eigenstates

0) = cos8|0) + sin6|1)
1) = cos0]0) — sin6|1)

bases showr.1 are unitary Diagonal /)= I(IO + 1))

transformations of the

computational basis states |0) IN) = f(|0> 1)

and b Chiral 10) = L5400 +i11))
|O) = f(\O) (1)

Bell |Boo) = J5(100) +111))

|Bor) = 7(|01) [10))
1Bio) = T(IOO) —[11)
1Bi1) = \%(IOl) —[10)

However, the proper way to think of this is that there is an observable, A say,
whose eigenvectors correspond to the possible n-bit computational eigenstates,
[00...0),]00...1),...,]11...1). To remind ourselves that these are eigenvectors
of observable .4 we’ll rename these eigenvectors |a;) and call them the “a”-basis.

However, we do not have to use the computational basis to represent a state.
Any complete orthonormal set of eigenvectors for an n-qubit state will do. In some
circumstances, it is convenient to re-represent a given state in a new basis that sim-
plifies some subsequent calculation. For example, suppose we are interested in cal-
culating the expected outcomes of an observable property of an n-qubit state other
than its bit values. Let us call the observable operator in which we are interested B
having eigenvectors |b;). Measuring observable B amounts to measuring the state
|) in the “b”-basis. The question is given a representation of a particular state [y)
in the “a”-basis, how would this same state be represented in the “b”-basis? Know-
ing this we can then calculate the expected outcome from measuring observable 5
of [1).

First we need to know how the eigenvectors in the two bases are related. In par-
ticular, imagine creating the operator, U, defined as follows:

U= bid{a (1.28)
k

An operator, U, of this form is unitary and induces the following mapping between
the “a”-basis and the “b”-basis:

|b1) = Ulay)

|b2) = Ulaz)
(1.29)

|bon) = Ulazn)

32 1 Introduction

“ ER)

Hence for each eigenvector in the
the “b”-basis.

-basis there is a corresponding eigenvector in

1.6.4 Change of Basis

A given quantum state is not wedded to any particular basis. The same state can be
interpreted as different superposition states of eigenstates from a completely differ-
ent basis. Once this is understood, it makes it easier to appreciate why we might
choose to observe a given state in a basis other than the computational basis.

Typically, in this book, we represent the states of a quantum memory register in
the computational basis. That is, we write an n-qubit pure state in the form:

¥) =Y ali) (1.30)

where |7) is the binary representation of integer i padded on the left with zeroes,
if necessary, to make a full complement of n bits, and ¢; is the complex amplitude
with which eigenstate |i) contributes to the superposition, such that) ; c; 12=1.
In the computational basis representation it is easy to calculate the probability of
measuring the quantum memory register to be in a certain bit-string configuration,

since configuration |i) will be found with probability |c; |2.
1.6.4.1 Change of Basis for a State
Thus a given state |{) can be written in either the “a”-basis or the “b”-basis. Specif-

ically, we have:
=Y aila) =Y _Bjlb;) (1.31)
i J
where the amplitudes o; and 8; are given by:

a; = {a;|Y) (1.32)
Bj =(bjl¥) (1.33)

Equation (1.29) tells us how to compute each “b”-basis vector |by) given its
corresponding “a”-basis vector, |ag), and U. So all we need to do now is to learn
how to compute 8;. We can rewrite 8; as follows:

Bj = (bjl¥) = @(me0w=2@mmw

—Z@wm%w ZWU% (1.34)

1.6 Extracting Answers from Quantum Computers 33

where we have used the facts that (3, |a;)({a;|) = 1, the identity operator, and
|bj) = Ulaj), which implies (b;| = (a; |UT. The last line of (1.34) is the usual form
for the dot product of a matrix (i.e., U) with a column vector (i.e., the column vec-
tor of amplitudes «;). Hence, the column vector of amplitudes B; representing the
state |v) in the {|b;)} (i.e.,“new”) basis is related to column vector of amplitudes c;
in the {|a;)} (i.e., “o0ld”) basis via the matrix equation:

|w)“b”-basis = UT|w>“a”—busis (135)

where U is the operator define by (1.28) and which induced the connection between
the bases given in (1.29).

Example: Linear versus Diagonal Polarization Bases Imagine a qubit encoded
in the linear polarization state of a photon. By this we mean if we think of light as
an oscillating electromagnetic wave, the plane in which the electric field component
of that wave is oscillating, i.e., the state of its linear polarization, encodes our qubit.
If the plane is “vertical” (with respect to some arbitrary axis in physical space) we
say the qubit is a logical 0 |$). Conversely, if the plane in which the electric field is
oscillating is “horizontal” (with respect to the same axis in physical space) we say
the qubit is a logical 1 |«>). Note, just to reinforce your understanding of the geom-
etry on the Bloch sphere, on the Bloch sphere the states representing vertical and
horizontal polarization (|0) = |¢) and |1) = |<>)) correspond to the North Pole and
South Pole respectively (i.e., at 180° separation). But in physical space the planes
representing vertical and horizontally polarized photons lie at 90° to one another.

Now let’s imagine switching to a polarization basis that it tilted at 45° with re-
spect to the original basis. The new basis kets are | /) = %(|0) + 1)) (correspond-
ing to a photon whose plane of polarization is tipped at +45° to the old plane of
polarization) and |N) = %00) — |1)) (corresponding to a photon whose plane of
polarization is tipped at —45° to the old plane of polarization). Thus following the
recipe given above, the unitary matrix that maps a state in the old basis to its equiv-
alent in the new basis is

U = L0+ N {1 = —=(0) + [1)(0] + —=(0) = D)1
s N 7 7

I
=E<i _}) (1.36)

1.6.4.2 Change of Basis for an Operator

Just as we can view quantum states in different bases, so too can we view quantum
operators in different bases. Consider some operator, O say, given initially in the

34 1 Introduction

“a”-basis. By inserting the identity operator twice we can write:

(bi|Olbe) = (by] <Z|am><am|> X (Z |am><am|) |be)
=Y (belam){am|Olan) (anlbe)
=D (U an) (an|Olan) a,|Ular)
=Y W OunUne (1.37)

This has the form of a “similarity transform”, which is encountered routinely in
linear algebra. That is, in matrix form, we can write:

O“b”»basis = UT : O“a”—basis U (138)

Thus, given an operator in the “a”-basis equation (1.38) shows how to transform it
into the “b”-basis.

1.6.5 Observing in an Arbitrary Basis

So far we have equated the act of observing a quantum memory register with the act
of reading its bit values, or equivalently, measuring its qubits in the computational
basis. However, a given quantum state does not have a unique interpretation: any
state—even the state of a quantum memory register—can be pictured as different
superposition states over different bases. Consequently, although most of the time
in quantum computing it seems natural to read a quantum memory register in the
computational basis, in some circumstances it might be more natural to read the
quantum memory register with respect to some other basis.

Consider what this means in the case of a single qubit. Although a qubit might
be defined initially with respect to the computational basis, i.e., as a state of the
form a|0) 4 b|1), where |0) is the North pole, and |1) the South pole, of the Bloch
sphere, this same state can be re-represented in infinitely many other ways simply
by changing which vectors we regard as the “basis” vectors.

Picture the state of a single qubit as a point on the surface of the Block sphere.
Define a vector whose origin lies at the center of the Bloch sphere and whose tip
touches this same point on the surface. Imagine keeping this vector in a fixed ori-
entation but rotating the Bloch sphere surrounding it. Although the vector has not
changed, the coordinates of its tip with respect to the x-, y-, and z-axes of the Bloch
sphere have changed, and so the state at the tip of the vector appears to have changed.
But however we rotate the axes around we can always pick an observation-axis
that is on a line from the qubit state, |1/) say (on the surface of the Bloch sphere),

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 35

1

Fig. 1.7 Measuring the state of a qubit initially in state a|0) 4+ b|1) along an axis passing through
states |) and 1) corresponds to measuring the qubit in the {|), |1)} basis

through the center of the Bloch sphere piercing the opposite side. The (antipodal)
point where this line pierces the Bloch sphere corresponds to the quantum state
|1), which is orthogonal to |1/). Thus the basis made from states {|y/), [¥1)} is
equally as good as the computational basis, {|0), |1)}, for describing single qubit
states. Thus, it is possible to measure our qubit in this alternate {|v), |I[/J‘)} basis

too. Such a measurement is illustrated in Fig. 1.7.

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm

Having introduced the main ideas of quantum computing we end this chapter by
describing our first quantum computation—deciding whether a given function has
a certain property using the Deutsch-Jozsa quantum algorithm. This computation

36 1 Introduction

cannot be solved as efficiently using any classical computer. It is not an especially
useful computation, mind you. In fact, it is rather contrived. Nevertheless it illus-
trates many of the key steps in a typical quantum computation.

1.7.1 The Problem: Is f (x) Constant or Balanced?

The problem, originally formulated by Cleve, Ekert, Macchiavello, and Mosca [112]
as a variant of one by Deutsch and Jozsa [138] is this: Let x be any n-bit binary
number and let f(x) be a function that returns a single binary output (i.e., 0 or 1)
for each value of x. Furthermore, we are promised that f(x) behaves in only one of
two possible ways: either f(x) returns the same value for all binary inputs (in which
case f(x) is said to be constant), else f(x) returns one bit value for half its inputs
and the other bit value for the other half of its inputs (in which case f(x) is said
to be balanced). Finally, we are not allowed to inspect the mathematical definition
of f(x). Instead, we imagine f(x) is given to us as a “black-box” function that
acts in such a way that, when given the input x, the black box responds with the
correct value for f(x). Our task is to decide, using the fewest calls to the black-
box, whether f(x) is constant or balanced. Note that the decision does require us to
exhibit the values of f(x). Rather it only concerns a property those values possess,
namely, whether they are all the same, or whether half have one bit value and half
the other.

Using our conventional (classical) thinking, the number of times we would seem
to need to call the black box is clear. There are a total of 2" possible bit string inputs
that can be made from » bits. Thus, we will need to check at least one more than half
of them, i.e., (% x 2"y +1=2""1 41, to be able to decide with certainty whether
f(x) is constant or balanced. Note that we don’t have to check all the 2" input bit
strings because we were promised that f(x) is either constant or balanced. Thus,
discovering f(x) is non-constant is enough to conclude it must be the other possi-
bility, namely, balanced. Even though we can avoid checking all inputs, classically,
as larger and larger decision problems are considered the number of elementary
calls to the black box would still seem to have to grow exponentially in the length
of the input bit string n. In contrast, as we shall show, using a quantum computer,
and a quantum implementation of the black-box that encodes f(x), we can decide
the question of whether f(x) is constant or balanced in just one call to the black-
box! This represents an exponential speedup in obtaining the decision—which is
amazing!

Let’s begin by looking at the simplest instance of such a decision problem when
the input bit string is just a single bit (i.e., when n = 1). In this case, the decision
problem can be stated as:

constant iff f£(0) = f(1)

decision(f) = {balanced iff £(0) £ (1) (1.39)

Using a classical computer we could decide the matter by first computing f(0) and
then computing f (1) and then comparing the results to determine whether f(0) =

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 37

f() or f(0) # f(1). This approach would require rwo calls to the black box to
make the decision regarding whether f(x) is constant or balanced.

A quantum computer can solve this problem differently using a technique called
quantum parallelism. To understand how quantum parallelism works we must first
figure out how to define the action of the black-box that encodes knowledge of the
function f(x) in a manner that is consistent with quantum mechanics.

1.7.2 Embedding f(x) in a Quantum Black-Box Function

On the face of it you might think that the black-box could be defined as performing
the mapping |x) — | f(x)) since, in the special (i.e., n = 1) case we are consider-
ing both x and f(x) are single bits. However, this won’t do because as we saw in
Sect. 1.5 quantum mechanical evolutions are described by unitary, and hence logi-
cally reversible, operations. For an operation to be logically reversible, each distinct
input ought to be mapped to a distinct output and vice versa. Unfortunately, de-
scribing the black-box as performing the mapping |x) — | f(x)) is not necessarily
logically reversible. If f(x) happens to be constant then both possible values for |x)
would be mapped into the same value for f (x). So if the operation performed by our
black-box is to be described quantum mechanically, the specification |x) — | f(x))
won’t do. Strike one!

Ok well how about introducing an extra register—one to hold the input and the
other to hold the output? The starting configuration could be |x)|0), with the second
register initialized to |0), which we can think of as analogous to a blank piece of
paper on which the correct answer for f(x) is to be written. In this case, our black-
box would perform the operation |x)|0) — |x)| f(x)). Since the input, |x), is now
recorded explicitly in the output we can always invert this mapping unambiguously,
whatever the value of f(x). Unfortunately, we’re still not done because for a map-
ping between bit strings to be unitary (as quantum mechanics requires) we need to
a complete mapping, i.e., a specification how each possible binary input is mapped
to a distinct output. Since, the specification of the black-box as performing the op-
eration [x)|0) — |x)|f(x)) only accounts for inputs that end in |0) it is missing half
the possible inputs that could be given to it. Hence, the specification is incomplete,
and therefore, won’t do either. Strike two!

Thus to ensure our description of the black-box is unitary we need to specify how
input states ending in |0) and states ending in |1) are to be mapped to outputs. Thus
the right way to define the black-box operation is as

1X)y) —> [x)|y @ f(x)). (1.40)

The y @ f(x) operation is the exclusive-OR operation, and is computed as shown in
Table 1.5. When y =0, y @ f(x) = f(x), so the definition |x)|y) — |x)|y & f(x))
includes the case |x)|0) — |x)| f(x)). But by defining the operation with the sec-
ond qubit allowed to be either |0) or |1) we ensure that our description of the ac-
tion of the black-box is a unitary (reversible) operation, which specifies a com-
plete mapping between all possible 2-qubit binary inputs and all possible 2-qubit

38 1 Introduction

Table 1.5 Truth table of the
exclusive-OR (@) operation. ~ * fx) yo® flx)
This is different from the

usual OR operation (V) in 0 0 0
that 1 v 1 =1 whereas 0 1 1
161=0 1 0 |

1 1 0

binary outputs, and hence is implementable quantum mechanically. The operation

N
[x)]y) f—c> |x)|y @ f(x)) is sometimes called an * f-controlled-NOT” operation
(f-c-N) since one way to think of it is that the value of f(x) controls whether or
not the value of y is negated.

1.7.3 Moving Function Values Between Kets and Phase Factors

Armed with our quantum black-box, which encapsulates the knowledge of f(x),
we are now ready to tackle the decision problem regarding whether f(x) is constant
or balanced.

If we restricted ourselves to inputting only quantum states corresponding to the
“classical” binary inputs |0)|0), |0)|1), |1)|0), and |1)|1), to our quantum black box
then our quantum method would confer no advantage over what we can do clas-
sically. The magic happens when we use quantum states corresponding to non-
classical inputs. Specifically, consider what happens under the action of the f-
controlled-NOT operation when the input is |x) ® %GO) —|1)). The transformation

effected is shown in (1.41)

1 -c- 1
) —=(l0) — 1) 75 Ix)—z(l0 ® f(x)) —11& f(x))) (1.41)

V2 V2

As we are only considering the simplest (n = 1) instance of the decision problem at
this time, the argument of f(x), i.e., x, can be only O or 1, and the value of f(x) is
also only O or 1. So we can write out a table showing how the values of x, f(x), and
the right hand side of (1.41) are related: Notice that the table also contains a fourth
column corresponding to the value of the expression (—1)/ ™) |x) % (]0) —|1)). Re-
markably, for all pairs of 2-bit binary inputs, the value returned by the expression
|x)%(|0 @ f(x))— |1 f(x))) is, as shown in Table 1.6, identical to the value re-

turned by the expression (=D ®x) %GO) — |1)). Hence—drum roll please—the

two expressions are equally good mathematical descriptions of the output quantum
state after the f-controlled-NOT operation has been applied. Thus, we could equally
well describe the transformation the f-controlled-NOT operation has achieved as:

1

lx)ﬁ

10y — 1) == (—1>f<x>|x>%(|0> — 1) (1.42)

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 39

Table 1.6 By considering the possible values of x, f(x) and the right hand side of (1.41) recognize
an equivalent way to write the equation

x f00) 510@ f(x) = 1@ [())) (=D 1x) J5(10) = 1))

0 0 10)(10) = 1)) 10)(10) = 11)) =10} (10) — 1))
0 ! 10)(11) = 10)) =10)(10) = 1) = 0)(I1) = 10))
! 0 I10) = 1) I10) = 1) = [1)(10) = 1)
! ! 1) —10) —11)30) — 1) = [1)(I1) —10)

Thus, with no physical action whatsoever taking place, we can simply re-interpret
what mathematical transformation we have achieved. This re-interpretation of the
output state allows us to regard the value of the function f(x) as being moved from
inside the ket (in (1.41)) to being in the phase factor (in (1.42)). This is very impor-
tant because we saw in Sect. 1.4.3 that quantum mechanical interference effects can
change the relative probabilities of various outcomes. What we will do next is en-
gineer these interference effects to enhance or suppress various possible outcomes
depending on whether f(x) is constant or balanced!

1.7.4 Interference Reveals the Decision

To achieve our desired interference effect we take the interpretation of the f =
controlled-NOT transformation defined in (1.42) and we specialize the input |x) to
1

be |x) = 7 (]0) +|1)). We can create this state by applying a Walsh-Hadamard gate

to just the first qubit prepared initially in the state |0}, i.e., H|0) = %(lO) + [1)).
With this specialization, the transformation we perform is therefore:

1
V2

1

0 1
10) +1 >)ﬁ

feN 1 1
0) — 1) — — (=D @10) + (=)D 1)) —=(|0) — |1
(10) — 1)) f2<() N0) + (= 1) |>)ﬁ(|>(ll4;))

Next we apply a Walsh-Hadamard gate to just the first qubit again. This results in
the transformation:
f-c-N

1 1 1 1
—(0)+11)—=(0) = 1)) =— — ((=DTD10) + (=)' D|1)) ® —(10) — |1
Z5 10+ —=10)=11) == — (=D V1) + =D/ V1n) &= >(1|4£

Summarizing all the steps in the Deutsch-Jozsa algorithm:

HoH |1 1
0)[1) — —(0) +|1)—=(|0) — |1
[0)[1) ﬁ(|) |>)ﬁ(|) (1))
foN 1 £(0) £ 1
— —((~1 0) + (-1 1 —(]0) — |1
ﬁ(() [0) + (=1) |>>®ﬁ(|> (1))

40 1 Introduction

0y - H | —H

1
W= H — =001
V2

Fig. 1.8 Quantum circuit implementing the Deutsch-Jozsa algorithm. The black-box func-
tion f(x) accepts a single bit x and returns O or 1. If the returned values are the same
f(x) is “constant”. Otherwise f(x) is “balanced”. The function f(x) is implemented by way
of the Deutsch-Jozsa oracle f-controlled-NOT (f-c-N). This implements the transformation
[x)|y) fﬁ;N [xX)y® f(x)) = (—l)f(")lx)ly) when |y) = \%(lO) — |1)). Using the Deutsch-Jozsa
algorithm we can decide whether f(x) is constant or balanced using a single call to the oracle

Hon [(1 ro) Lo 1r
= [<2< DO+ 2= i0)
+ (Lo Loy 1) & (10) — 1)) (1.45)
2 2 V2 '

Inspection of the amplitudes of the |0) and |1) components of the first qubit suggest
that if this qubit is read (in the computational basis) then if f(x) is constant, i.e., if
f(0) = f(1), then we will find the first qubit in state |0). Else if f(x) is balanced,
ie., f(0) # f(1), then we will find the first qubit in state |1). This means we can
determine whether f(x) is constant or balanced in just one call to the black-box
(when using quantum inputs) versus two calls to the black-box (if using classical
bit value inputs). The quantum circuit implementing the Deutsch-Jozsa algorithm
is shown in Fig. 1.8. This is interesting but not that dramatic. To determine what
scaling we’re actually seeing we need to consider the relative costs of the quantum
and classical methods as we scale up to larger problem instances.

1.7.5 Generalized Deutsch-Jozsa Problem

The aforementioned decision problem only pertains to a function f(x) that has a
single bit input and a single bit output. In this case we obtain a factor of two speedup
over the naive classical algorithm for the solving the same problem. How does this
speedup change if we allow f to accept an n-bit input instead of just a single bit
input?

To formalize the question, let x = x1x3 - - - X, be an n-bit binary string with binary
values x1, x2, ..., x,. Thus, x represents the bit string corresponding to any integer
in the range 0 to 2" — 1 inclusive. Let f(x) be a function that accepts and n-bit
input x and returns a single bit output, i.e., 0 or 1. We are promised that f(x) is one
of only two kinds of function, namely, “constant” or ’balanced”. An n-bit function
f(x) is “constant” if it returns the same bit value on all 2" possible inputs, and

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 41

“balanced” if it returns O on exactly half its possible inputs, and 1 on the other half
of inputs. Note that the promise is our guarantee that the only types of functions
under consideration are constant functions and balanced functions and no others.
With this promise in mind, our challenge is to decide whether f(x) is constant or
balanced using the fewest calls the oracle.

Classically, in the worst case, we will have to call the oracle a total of %2" +1=
2"=1 4 1 times. This is because we cannot know for sure that f(x) is constant until
we have evaluated f(x) on one more than half its possible inputs. At that point if
all the returned values are the same, the promise allows us to conclude that f(x)
is constant. However, if in the course of performing these 2"~! 4 1 evaluations we
find any two inputs that yield different values for the function, then the promise
allows us to conclude the given f (x) is balanced. So, given the promise, on average
deciding that f (x) is balanced is easier than deciding it is constant. But in the worst
case (when we are unlucky enough that even though f (x) is balanced the first 2"~
inputs we tried happened to be those for which f(x) returned the same value), we
need to test one more than half the values to be sure. Since the classical algorithm
needs 2"~! 4 1 calls to the oracle, the classical complexity is exponential in the
number of bits, n.

Can do better using a quantum algorithm? As you will see shortly, it turns out
that there is a quantum algorithm, the “Generalized Deutsch-Jozsa Algorithm”, for
solving this same decision problem that only needs to make a single call to the
oracle, regardless of n. This amounts to an exponential speedup over what is possi-
ble classically! This is an astonishing difference in complexity between a quantum
computer and a classical computer on the same problem. So even though the actual
problem solved is rather arcane and esoteric, nevertheless, it illustrates the enor-
mous potential of quantum computers to outperform classical computers on certain
computational problems.

The best way to see how the Generalized Deutsch-Jozsa algorithm works is to
start with the quantum circuit that implements it and to walk through the state trans-
formations it enacts. This will allow us to compute the mathematical form of the
final state that is synthesized by the circuit and hence determine how a measure-
ment made upon this final state can reveal the decision regarding whether f(x) is
constant or balanced.

The quantum circuit for the generalized Deutsch-Jozsa algorithm is shown in
Fig. 1.9 and the associated algorithm is as follows:

Generalized Deutsch-Jozsa Algorithm Given an oracle, or black-box quantum
function, f(x) that accepts an n-bit binary string input, X = x1x2 - - - X, and the
promise that f(x) is either constant or balanced, decide which is the case using the
fewest calls to the oracle.

1. Create an (n + 1)-qubit quantum register having n control qubits, each in state
|0), and one ancilla qubit in state |1).

42 1 Introduction

0+ H H HH A
[0)—4 H |— —H%

—f-c-N}-

[0y~ H | | H %

[+ H L qoy-11y
V2

Fig. 1.9 Quantum circuit implementing the Generalized Deutsch-Jozsa algorithm. The black-box
function f(x) accepts an n-bit input x and returns the single bit O or 1. We are promised that
f(x) is either “constant” (i.e., returns the same value on all its possible 2" inputs) or “balanced”
(i.e., returns O on half of its possible inputs and 1 on the other half of its possible inputs). The
function f(x) is implemented by way of the Generalized Deutsch-Jozsa oracle f-controlled-NOT

(f-c-N). This implements the transformation |x)|y) —C_N lx)y ® f (x) In turn, this is equiv-
alent to (— l)f(")lx)ly) when |y) is specialized to be the state |y) = f(\O) — |1)). Using the
Generalized Deutsch-Jozsa algorithm we can decide whether f(x) is constant or balanced using
a single call to the oracle. A classical computer would need to use —2" + 1 calls to the oracle
to arrive at the same decision. Hence, in this case, a quantum computer running the General-
ized Deutsch-Jozsa algorithm is exponentially more efficient than a classical computer. Hence, the
Generalized Deutsch-Jozsa algorithm, although not particularly useful as a practical algorithm, il-
lustrates the potential for enormous complexity advantages of quantum computers over classical
computers on certain problems

2. Apply a Walsh-Hadamard gate to each qubit. That is, perform the operation:

H®<n+1> 2]

[00...0)|1) Z |x) —(|O) — 1)) (1.46)

3. Then apply the Generalized Deutsch-Jozsa oracle.

- 1
L NﬁZ(D@ x)) 7510 =11 (1.47)

4. Apply a Walsh-Hadamard gate to the top n qubits.
2"—1

Z(D/OHOHS-- ®H>|x>7(|0>—|1>> (1.48)

Ho®n ®]1

/ 2’1

n

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 43

2 i |

= Z(e Z(D7) | S50 = 1) (149)
1 2m—12"—1 1

=5 | Z L0 | i -1 (1.50)

5. Measure the top n qubits in the computational basis. If the first n qubits are found
to be in state |0) = |00...0), f(x) is “constant”. If any other pattern of values is
obtained for the first n qubits, then f(x) is “balanced”.

The algorithm works as follows: in the first step we initialize n control qubits to
be in state |00...0) and we initialize a single ancilla qubit to be in state |1). Next
we apply our oracle, i.e., the f-controlled-NOT gate. This acts on n control bits
(which hold the value of the input “x”’) and one target qubit (which starts off in state
%(|0) — |1))). The transformation the oracle performs is:

f-c-N -
) ® ly) = X @y @ f(x) =D "Nx)ly) (1.51)
—_ =~
n qubits 1 qubit
Next we apply a Walsh-Hadamard gate to the top n qubits only. This is perhaps
the hardest part of the algorithm to understand because it is not immediately ob-

vious why H®"|x) = J27 Zi 51(1)*%|z). To see why this is true let’s start by
considering a simple 3-qubit instance of the problem.

(H®HQ®H)|x)=(H®H® H)|x1x2x3)
= H|x1) ® H|x2) ® H|x3)

1
=—((0)+ (—=D*"1) ® (]0) + (—D)*21
@(I)()I)) (10) + (=1)"2{1))

® (10) + (=D (1))

1
=75 (1000) -+ (—1)*3]001) + (—1)*2|010)

+ (=1)*?T3|011) + (= 1)*1]100)

+ (=DYBI101) 4+ (=DM 2 [110) 4+ (=112 H3111))

1
= Z Z(DRARENG 2)

@21—022—023—0
1 251

=—=) (=D"*z)

(1.52)

44 1 Introduction

where x - z = x121 + X222 + x323. The generalization to the case of H®"|x) (i.e., n
qubits) is obvious.

The last step of the algorithm is to measure the first n qubits in the computational
basis. We claim that if the n qubits are each found in state |0), then f(x) is constant.
Otherwise, f(x) is balanced.

To justify this claim, consider the amplitude of the |z) = |0) = |00...) com-
ponent of the final superposition created in step 4 of Generalized Deutsch Jozsa
Algorithm:

2"—12"—-1

1 o nErn | Lo — 1 1.53
zn§§(> (=™ la) | =100~ 11) (1.53)
This amplitude is:
1 2" —1
ay = > (=piw (1.54)
x=0

If f(x) is “constant”, i.e., always returns O or always returns 1 regardless of the
input x, then the amplitude ap = 1. Hence, the probability of finding the first n
qubits to be in state [0) = |00...0) is | £ 17=1,1ie., certainty! Conversely, if f(x)
is “balanced”, there will be exactly as many terms in the sum for a(that are —1
as there are that are +1. Hence ag, will be zero. Thus, if f(x) is “balanced” there
is no chance whatsoever of finding the first n qubits to be in state |0) = |00...0).
Thus, a final measurement of the first #n qubits reveals the decision as to whether
f(x) is “constant” or “balanced”, with only a single call to the oracle! Contrast this
with a classical computer that requires 2"~ + 1 calls to oracle. Hence, a quantum
computer is exponentially faster than a classical computer at deciding whether f (x)
is “constant” or “balanced”.

1.8 Summary

Quantum computing is forcing us to re-think the foundations of computer science.
Although theoretical computer science, being based on pure mathematics, is sup-
posed to be free of any assumptions regarding how a computer is implemented, in
fact it is not. It is flawed in assuming that the rules by which any computer operates
must be those of classical physics. Until recently this assumption was reasonable.
But as computer miniaturization is leading us inexorably to smaller and smaller
scales, we are close to the point at which we can no longer ignore the fact that the
laws of physics that most accurately describe what happens at those small scales is
quantum mechanics. And the rules of quantum mechanics are quite unlike the rules
that hold sway in the everyday world around us.

In this chapter we have introduced the basic mathematical formalism of quantum
computing, and have described several quantum effects that can be harnessed to con-
ceive of algorithms that cannot be run as efficiently on any classical computer. The

1.9 Exercises 45

most important quantum effects are superposition, interference, non-determinism,
and entanglement. Superposition allows a quantum computer to act upon an input
state representing an exponential number of different classical inputs simultane-
ously. Interference can cause the relative proportions of a superposition to change
making some outcomes more likely than others. Non-determinism means that we
cannot predict with certainty what answer we will get when we read a quantum
memory register that exists in a superposition state. However, we can calculate the
probabilities with which we expect to see the various possible outcomes. Finally,
entanglement is the most quintessentially quantum effect that allows strong correla-
tions to exist between different subsets of qubits such that measurements made (say)
on one subset of qubits can affect the likelihood of the outcomes of measurements
made on other subsets of qubits, even though they were not “touched” in any direct
way.

Whereas when a classical computer completes a computation we are restricted
to merely reading its output in the computational basis, in a quantum computer we
can choose the measurement basis so as to extract different types of information.
Not surprisingly, therefore, we found that a given quantum state can be represented
in different ways by using different bases, and we showed how to change from one
basis to another. Such basis transformations can reveal insight into the structure of
the superposition states or operators with which you are dealing.

We ended the chapter with an example of a simple quantum computation, a deci-
sion problem, that cannot be done as efficiently on a classical computer. The trick of
moving information between the arguments of ket vectors and phase factors is used
in many quantum algorithms, and is especially prevalent in algorithms that involve
the quantum Fourier transform (QFT).

1.9 Exercises

1.1 A single qubit in state |1/) = a|0) +b|1) is normalized iff |a|> + |b|> = 1. Which
of the following states of a single qubit are normalized?

Loy + 21y

— 110y — 1)

—310) + 311)

cos(6)|0) — sin(0)[1)

cosh(6)|0) + i sinh(6)[1)

€% cos(0)|0) — ¢’ sin(9)|1)

SNk w o=

1.2 An un-normalized quantum state, i.e., |) = a|0) + b|1) s.t. |a|> + |b|* # 1,
can be normalized by re-scaling the amplitudes according to:

a b
|0) + (1)
Vlal> 4 |b)? Vlial> + |b|?

Normalize the following un-normalized quantum states.

|¥) =al0) +b[1) —

46 1 Introduction

(a) 10) +€®|1)

(b) 310) — 3[1)

(c) 7]00) 4 101) + |00)

@ (10) +i[1) ® (|0) —i|1))

1.3 Compute the probability with which each of the following qubits is found in
the state |0) when measured in the computational basis. Be careful as the given state
may or may not be properly normalized as given.

1 Loy +)

2. —Ej0y — L)1)
3. 22100 + 1)
4

L 5loy =B

1.4 Let |0) = f(|0) + 1)) and |1) = \/_(IO) —|1)). Prove that the states |0) and
1) are orthogonal. Write the state a|0) 4+ b|1) in the {10, [1)} basis.

1.5 The memory register of a 3-qubit quantum computer evolves into the state
%|001) + */TEIOIO) + %IIOO). What is the probability of:

1. Finding the first qubit to be |1)?

2. Finding the second qubit to be |0)?

3. Finding the last two qubits to be [00)?

1.6 Which of the following states are entangled, and which are unentangled?
1

(@) 712“000) +2I111)) 1 X

(b) $25100) + §|01> 510+ 311

(©) §100) = 1=l01) + +¥2110) — f|11

(d) \/_(|001) + IOIO) +1100))

(©) J5(100) —i[10))

1.7 Prove that the quantum state |i) defined by:

6 4
— % 1000y — —*_j001) + ——1010 ,/ 011)
[¥) ml) «/_l +F|) — |

2 6 4 3
——1100) —/ —=[101) + —|110) — 4,/ —[111 1.55
271100 =/ 757!)+m|) gt 459

is properly normalized. Given the state |i), what is the probability, when you read
|¥) in the computational basis, of obtaining:

(a) the result [010)?

1.9 Exercises 47

(b) the result |001)?

(c) finding the first qubit to be in state |1)?

(d) finding the first and third qubits to both be in state |0)?
(e) finding the first and second qubits to be the same?

1.8 Consider a single qubit in state |y) = cos(%)hﬁ) + ei® sin(%)|1) such that 0 <
6 < and 0 < ¢ < 27. Prove that the state |)" at the antipodal point of the Bloch
sphere is orthogonal to |¢). The antipodal point is found by projecting a straight
line from the point on the surface of the Bloch sphere representing |y) through the
origin to intersect the surface of the Bloch sphere on the opposite side.

1.9 Prove that the expectation value of any observable A, (| A|y), for a quantum
system in state |) is no different from that obtained if the state where ¢'?|/) in-
stead. That is, prove the claim made in this chapter that overall phase factors have
no observable consequence.

1.10 Let £2 be an observable operator for a single qubit described as:
ab
2-(c)

(a) Which elements of £2 must be real numbers?
(b) Which elements of £2 can be complex numbers?
(c) Which two elements of §2 are related?

(d) What are the eigenvalues of £2?

(e) What is the expectation value (y¥|£2]v) when |¢) = «|0) + /1 — ||2|1)?

Answer the following questions:

1.11 A qubit in an arbitrary pure quantum state is described mathematically by the
state vector |) = eiy(cos(%)|0) + €i? sin(%)| 1)). Equivalently, as you will see in
Sect. 11.2.2 the same state can be described by the density operator p = |)(y|. On
how many free parameters does the state |1) depend? Compute the density operator
p corresponding to the state [¢). On how many free parameters does the density
operator p depend? Explain what role the parameter y plays in the density operator
representation of the state.

1.12 Look up the definition of the quantum Fourier transform (QFT) matrix defined

in Sect. 3.4.6. Prove that the 1-qubit Walsh-Hadamard gate, H = %(} _11) can be

thought of as a 1-qubit quantum Fourier transform.

1.13 Find the unitary matrix that changes a state represented in the {|+), |—)} basis

to one represented in the {|R), |L)} basis. You may assume |+) = Lz(|0) + (1)),

=) = 55(10) = [1), |R) = 55(10) +i[1)), and |L) = —(10) — i[1)).

48 1 Introduction
1.14 Find the unitary matrix that changes an arbitrary 2-qubit gate,

Uil ui2 U1z U4
Uy U2 U3 U4
U3y Uz U3z Uz
Ugqr U42 U43 U44

in the {|00), |01),|10), |11)} basis to one represented in the {|RR),|RL), |LR),
|LL)} basis. You may assume |R) = ﬁ(|0) +i|1)),and |L) = %QO) —i|1)), and
|[RL)=|R) ® |L) etc.

1.15 Consider a 2-qubit Hamiltonian having a block diagonal structure when ex-
pressed in the computational basis:

a e 0 0
e b 0 0

H= 00 ¢ g (1.56)
0 0 g* d

What are the eigenvalues and normalized eigenvectors of H?

1.16 Suppose we are promised that we are given either a known state |i{) or a
known state |¢) and we have to decide, by making some measurement, which is the
case. If |/) and |¢) are non-orthogonal quantum states there is no single measure-
ment that can distinguish between them 100% of the time. However, given knowl-
edge of the forms for |) and |¢) we can choose a measurement basis in which
to measure our mystery state that optimizes our chances of guessing correctly. For
example, consider the pair of quantum states defined by:

l¥) = 10)

(1.57)
lp) =a(0)|0) + B(©O)1)
where
«(0) = csch
~ VJcsch)2 + [cotd?
o ot (1.58)

VlescO]? + | cotf|?

The amplitudes of the |¢) state are certainly peculiar, having the form over the
interval 0 <6 < 2m shown in Fig. 1.10.

(a) Nevertheless, prove that |¢) is a properly normalized state.

(b) With what probability can we guess correctly if we measure the mystery state
in the computational, i.e., {|0), |1)}, basis?

(c) In what basis ought we to make the measurement to maximize our chances of
guessing correctly whether we were given |¢) and |p)?

1.9 Exercises 49

Fig. 1.10 Amplitudes of the 1.0 e e e—— 1.0 e

state |) = a|0) — B|1) where 050 E 0.5 \ |'\
o= ——2— and s 00 @ 00]

A/ escO|2+| cotd|?

= 7‘“’2‘9 = -0.5¢ E -0.5¢ \l \
$]
W lescOl2+cotd] ~1.0 e 210 Bttt s

012 56

3“
0
(d) What is the state |¢) at 0 = 7 ? Is there any ambiguity?

(e) What is the density operator corresponding to |¢), i.e., o = |@){@]|?

(f) What is the density operator p at & = 7w ? Is there any ambiguity? How do you
reconcile your answers to parts (d) and (f)?

Chapter 2
Quantum Gates

“When we get to the very, very small world—say circuits of seven atoms—we have a lot of
new things that would happen that represent completely new opportunities for design. Atoms
on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum
mechanics. So, as we go down and fiddle around with the atoms down there, we are working
with different laws, and we can expect to do different things. We can manufacture in different
ways. We can use, not just circuits, but some system involving the quantized energy levels,
or the interactions of quantized spins.”

— Richard P. Feynman'

Currently, the circuit model of a computer is the most useful abstraction of the
computing process and is widely used in the computer industry in the design and
construction of practical computing hardware. In the circuit model, computer scien-
tists regard any computation as being equivalent to the action of a circuit built out
of a handful of different types of Boolean logic gates acting on some binary (i.e., bit
string) input. Each logic gate transforms its input bits into one or more output bits
in some deterministic fashion according to the definition of the gate. By compos-
ing the gates in a graph such that the outputs from earlier gates feed into the inputs
of later gates, computer scientists can prove that any feasible computation can be
performed.

In this chapter we will look at the types of logic gates used within circuits and
how the notions of logic gates need to be modified in the quantum context.

ISource: Opening words of the “Atoms in a SmallWorld” section of Richard Feynman’s classic
talk “There’s Plenty of Room at the Bottom,” given on 29th December 1959 at the annual meeting
of the American Physical Society at the California Institute of Technology. The full transcript of
the talk is available at http://www.zyvex.com/nanotech/feynman.html.

C.P. Williams, Explorations in Quantum Computing, 51
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_2, © Springer-Verlag London Limited 2011

http://www.zyvex.com/nanotech/feynman.html
http://dx.doi.org/10.1007/978-1-84628-887-6_2

52 2 Quantum Gates

2.1 Classical Logic Gates

2.1.1 Boolean Functions and Combinational Logic

Logic is a sub-field of mathematics that is principally concerned with the validity
of arguments, i.e., determining the truth or falsity of propositions by a process of
reasoning from starting assumptions, called axioms, and by applying valid rules of
inference to them. Logic is not concerned with determining what is actually true
or false in the real world, since the real world is but one of infinitely many possi-
ble worlds we may choose to reason about. Rather logic provides the mathematical
framework upon which we may draw valid conclusions from given starting assump-
tions.

The concept of a logic gate arose from efforts to formalize the laws of thought.
George Boole (1815-1864) was a British mathematician who lived long before days
of transistors and electronic digital computers. Like Babbage and von Leibinitz
before him, Boole was interested in formalizing the process of mathematical rea-
soning. Before Boole, algebra had been thought about, primarily, as a vehicle for
performing numerical calculations. However, Boole foresaw a wider opportunity:
“[...] hitherto the expression of magnitude, or of operations upon magnitude, has
been the express object for which the symbols of Analysis [algebra] have been in-
vented, and for which their laws have been investigated, but this does not mean that
the interpretations of algebra can only be quantitative”.

Boole went on to provide an interpretation of algebraic expressions as statements
about classes of objects. The universe of all objects is a set, and symbols, such as A,
B, C, stands for subsets of objects from this set. Then the usual operations on sets,
such as intersection (A N B), union (A U B), and complement (A€) can be interpreted
as making statements about these subsets of objects as show in Fig. 2.1.

For example, suppose we consider a universe of people with various pizza pref-
erences. If A is the set people who like pepperoni, and B is the set of people who
like anchovies, then A N B is the set of people who like pepperoni and anchovies,

Fig. 2.1 Graphical
illustration of the union,
intersection and complement
operations on sets

2.1 Classical Logic Gates 53

AU B is the set of people who like pepperoni or anchovies or both, and A€ is the set
of people who do not like pepperoni etc. Algebraic expressions interpreted in this
way define what is called a Boolean algebra.

As you can see from the example, the interpretation of the sets that result from
the intersection, union, and complement operations are described in terms of the log-
ical connectives AND, OR, and NOT, indicating that there is a close parallel between
set operations and logical operations. For example, if one assumes there are only
two objects 1 = the set of all objects = TRUE and 0 = the empty set of objects =
& = FALSE, we can write algebraic expressions that correctly capture alternate
syntactic forms for logically equivalent statements. Hence, the logical assertion that
a statement and its negation is necessarily contradictory expressed as the logical
statement a A (—a) = 0 = FALSE (i.e., a AND (NOT a) is necessarily FALSE)
mirrors the algebraic statement that the intersection of a set and its complement
is necessarily empty, A N A° = &. This restriction of the variables to just 0 and 1
makes the Boolean algebra into a Boolean logic.

Once one has the thought of interpreting algebraic statements as logical state-
ments, one can easily define syntactically different forms having the same logical
meaning. These are mathematical formulae in which the symbols, a, b, c, ... stand
for logical propositions that can be either true or false, and the connectives are logi-
cal functions. Table 2.1 lists the so-called “De Morgan’s Laws” which give syntac-
tically equivalent versions of elementary logical propositions. By using these laws
we can systematically eliminate from any logical expression all instances of A or
all instances of V. This means that we can reduce very complicated logical propo-
sitions to forms one of two standard forms, i.e., either a disjunction of conjuncts
(i.e., Disjunctive Normal Form) or a conjunction of disjuncts (Conjunctive Normal
Form).

Thus, if we can create hardware implementations of some very simple elementary
gates, e.g., NOT, AND and OR, we can in principle combine those operations into
very complex circuits

2.1.2 Irreversible Gates: AND and OR

The logical connectives AND (A) and OR (V) capture, respectively, the notions of
logical conjunction and disjunction . That is, for a compound proposition of the form
a A b to be true both a and b must be true. Conversely, for a compound proposition
of the form a Vv b to be true it is sufficient for either a or b to be true individually.

Conventionally, a logic gate is thought of as a physical device that takes one or
more Boolean values (i.e., FALSE or TRUE) as inputs and returns a single Boolean
value as output. The Boolean values (FALSE and TRUE) are often used synony-
mously with the bit values 0 and 1 respectively. Logic gates are the key components
of modern computers. Any classical computation can always be decomposed into a
sequence of logic gates that act on only a few bits at a time. Hence logic gates lie at
the heart of all modern computers.

54 2 Quantum Gates

Table 2.1 Logically equivalent propositions. Note by using De Morgan’s laws any proposition
can be expressed using NOT and AND alone or using NOT and OR alone

Logically equivalent forms

an0=0 Zero of A

anl=a Identity of A
avO0=a Zero of vV

avl=1 Identity of Vv
ana=a Indempotence
ava=a Indempotence
an—a=0 Law of Contradiction
aVv-a=1 Tautology

——a=a Double Negation
anb=bAa Commutativity of A
avb=bva Commutativity of Vv
av(bvec)y=(@vb)Vc Associativity
an((bAc)=(@Anb)Ac Associativity
anbVvec)y=(@Anb)V(aAc) Distributivity
aVv(bAc)=(@Vvb)A(aVc) Distributivity
anN(aVvb)=a Absorption
av(anb)y=a Absorption
aVv(—anb)=avVvb Absorption
anN(—mavb)=aAb Absorption

—(a Ab) = (—a) Vv (—b) De Morgan’s Law
=(a Vv b) = (—a) A (—b) De Morgan’s Law

(anb)yv(@an—-b)y=a
a=— b=—aVvb
a =—> b=—(a A—b)

The best way to describe the action of a logic gate is in terms of its “truth table”.
In a truth table we write down all the possible logical values of the inputs together
with their corresponding outputs. For example, the truth table for the AND gate
is given in Table 2.2. The corresponding icon for the AND gate as seen in circuit
diagrams is shown in Fig. 2.2. The AND gate is logically irreversible, which means
that you cannot determine unique inputs for all outputs. Specifically, if the output
is 0 (i.e. FALSE), you cannot tell whether the input values where 00, 01, or 10. It
“erases” some information when it acts whenever the output from the AND gate
is 0.

Similarly, the truth table for the OR gate is shown in Table 2.3. The corresponding
circuit icon for the OR gate is shown in Fig. 2.3. The OR gate is also logically
irreversible because when its output is 1 (i.e., TRUE) it is impossible to say whether
the inputs were 01, 10, or 11. Hence, again the OR gate erases some information
when it acts whenever the output is a 1.

There is a variant of the OR gate, called exclusive-OR (often written “XOR” or
“@”) that turns out to be very useful. The XOR gate is like the OR gate except that

2.1 Classical Logic Gates

Table 2.2 Truth table of
AND

Fig. 2.2 Icon for the AND
gate—a logically irreversible
gate

Table 2.3 Truth table of OR

Fig. 2.3 Icon for the OR
gate—a logically irreversible
gate

Table 2.4 Truth table of
XOR (exclusive-OR)

AND:

OR:

XOR:

55
a b aAnb
0 0 0
0 1 0
1 0 0
1 1 1
a
alb
b_
a b avb
0 0 0
0 1 1
1 0 1
1 1 1
a
aVb
b
a b a®b
0 0 0
0 1 1
1 0 1
1 1 0

it returns O (i.e., FALSE) when both its inputs are 1 (i.e., TRUE). The truth table for
XOR is shown in Table 2.4. The corresponding circuit icon for XOR is shown in

Fig. 2.4.

2.1.3 Universal Gates: NAND and NOR

There is a special class of logic gates, called universal gates, any one of which is
alone sufficient to express any desired computation. The possibility of such uni-

56 2 Quantum Gates

Fig. 2.4 Icon for the XOR
gate—a logically irreversible a
gate a®b

Table 2.5 Truth table of

0 0 1
NAND: 0 1 1
1 0 1
1 1 0

Fig. 2.5 Icon for the NAND

gate—a universal gate for a

classical irreversible alb
computing p—

versal gates accounts, in part, for the remarkable miniaturization of modern com-
puters since computer designers need only focus on miniaturizing a single type of
gate. Nowadays, the logic gates that manipulate these values are implemented us-
ing transistors, but in future computers even smaller, and faster, devices are being
considered in an effort to maintain the pace of Moore’s Law.

You can see why such universal gates are possible from Table 2.1. The rules in the
table show that any Boolean function can be reduced to an expression involving only
—and A or only — and V. Hence, any Boolean function can be computed by means
of a circuit comprising NOT and AND gates, or NOT and OR gates. Nevertheless,
the construction of large scale logic circuits would be greatly streamlined if manu-
facturers only had to use a single type of gate. Such a gate is said to be “universal”
since from it circuits for any Boolean function can be derived. Restricting circuits to
using a single type of universal gate does not necessarily lead to the smallest circuit
for computing a desired Boolean function but it does allow chip manufacturers to
perfect the design and manufacturing process for the universal gate, which, in prac-
tice, tends to make it easier to improve yield, reliability, and boost speed. Today, the
microprocessor industry pursues this strategy by basing their circuits on the NAND
(“NOT AND”) gates. Mathematically, aNANDb = —(a A b), often written as a|b,
and is universal for classical irreversible computing. The truth table for the NAND
gate is shown in Table 2.5: The corresponding circuit icon for the NAND gate is
shown in Fig. 2.5.

To convince you that the NAND gate is truly universal, given that we already
know we can compute any Boolean function in a circuit comprising only NOT and
AND gates, it is sufficient to show we can obtain NOT from NAND gates and AND
from NAND gates. Table 2.6 shows how to obtain —a from a|a: Likewise, Table 2.7
shows we can obtain a A b from two a|b gates. Since we proved that any logical

2.1 Classical Logic Gates 57

Table 2.6 A NOT gate can

be obtained using a NAND a a ala —a

gate since a|a has precisely NOT in terms of NAND:

the same truth values as —a 0 0 1
0 0

Table 2.7 An AND gate can
be obtained using only
NAND gates since a A b has

precisely the same truth .
values as ((l |b) I ((l |b) AND in terms of NAND:

a b alb (alb)|(alb) anb

. = =)
- o = O
S = = =
- O o O
- o O O

proposition can be written in terms of only — and A, and that — and A can, in turn,
each be written in terms of | (NAND) we have proved that any logical proposition
can be written only in terms of | (NAND) gates. This is good news for chip man-
ufacturers because it means they need only perfect the implementation of just one
type of gate, the NAND gate, to be sure that they can build a circuit that can perform
any feasible computation.

There are other universal gates for classical irreversible computing including the
NOR gate (“NOT OR”) and the NMAJORITY gate (“NOT MAJORITY”). The
NMAIJORITY gate is a relatively new universal gate. It is especially interesting
because it is implementable in a new transistor design and leads to highly compact
circuits.

Unfortunately, logical irreversibility comes at a price. Fundamental physics dic-
tates that energy must be dissipated when information is erased, in the amount
kT In?2 per bit erased, where k is Boltzman’s constant (k = 1.3805 x 10~ JK 1)
and T is the absolute temperature (in degrees Kelvin). Thus, even if all other en-
ergy loss mechanisms were eliminated from any NAND based circuit, the circuit
would still dissipate energy when it operated due to the unavoidable energy losses
that occur when information is erased.

Today energy losses in NAND-based logic circuits due to logical irreversibility
are dwarfed by other loss mechanisms. However, as these other loss mechanisms
are tamed, someday the energy losses due solely to information erasure (in turn a
consequence of using irreversible logic gates) will become the significant contribu-
tion. At this point if nothing is done, further miniaturization of computer technology
will be impeded by the difficulty of removing this unwanted waste heat from deep
within the irreversible circuitry.

2.1.4 Reversible Gates: NOT, SWAP, and CNOT

One way chip manufacturers can suppress the unwanted heat produced as a side
effect of running irreversible logic gates is to modify their chip designs to use only

58 2 Quantum Gates

reversible logic gates. In a reversible logic gate there is always a unique input as-
sociated with a unique output and vice versa. So reversible gates never erase any
information when they act, and consequently, a computation based on reversible
logic can be run forward to obtain an answer, the answer copied, and then the whole
computation undone to recover all the energy expended apart from the small amount
used to copy the answer at the mid-way point.

The simplest example of a reversible logic gate is the NOT gate. NOT is a 1-
input/1-output gate that simply inverts the bit value it is handed. The truth table for
the NOT gate is shown in Table 2.8. The circuit icon for the NOT gate is shown
in Fig. 2.6. If one knows the output bit value, one can infer the input bit value
unambiguously and vice versa.

A slightly more complicated example, is the 2-input/2-output SWAP gate. SWAP
simply exchanges the bit values it is handed. Its truth table is shown in Table 2.9: The
circuit icon for the SWAP gate is shown in Fig. 2.7. In quantum computing a circuit
may not have any physical wires connecting the gates together. Instead a circuit
can be merely a visual specification of a sequence of gate operations with time
increasing from left to right in the circuit diagram as successive gates are applied.
Consequently, in quantum computing we sometimes use a different icon fora SWAP
gate (showing in Fig. 2.8, that is more suggestive that some operation (other than
crossing wires) needs to occur to achieve the effect of a SWAP operation.

A reversible gate of considerable importance in quantum computing is the 2-bit
controlled-NOT gate (CNOT). The truth table for CNOT is shown in Table 2.10. The
circuit icon for the CNOT gate is shown in Fig. 2.9. The effect of the “controlled”-
NOT gate is to flip the bit value of the second bit if and only if the first bit is set to 1.

Table 2.8 Truth table of
NOT a a

NOT:

Fig. 2.6 Icon for the XOR
gate—a 1-bit logically
reversible gate

Table 2.9 Truth table of
SWAP a b a b

SWAP:

==
_ o = O
— o = O
- = o O

2.1 Classical Logic Gates 59

Fig. 2.7 Icon for the SWAP a b
gate—a 2-bit logically

reversible gate. The icon

conveys the idea that to swap

two bits we simply cross the

wires on which those bits

reside b a

Fig. 2.8 Alternative icon for a SWAP gate that is more common in quantum circuit diagrams. The
reason for having a different icon for SWAP in quantum circuits compared to classical circuits is
that many implementations of quantum circuits do not have physical wires as such. Hence, it could
be misleading to depict a SWAP operation as a crossing of wires. Instead, a SWAP operation can
be achieved as the result of a sequence of applied fields

Table 2.10 Truth table of

CNOT a b a 4
0 0 0 0
CNOT: 0 1 0 1
1 0 1 1
1 1 1 0
Fig. 2.9 Icon for the CNOT .

gate—a 2-bit logically
reversible gate

1IN
NI

That is, the decision to negate or not negate the second bit is controlled by the value
of the first bit. Hence, the name “controlled-NOT”. Note that, as shown in Fig. 2.10,
the SWAP gate can be obtained from a sequence of three CNOT gates.

60

Fig. 2.10 A SWAP gate can
be obtained from three CNOT
gates

Table 2.11 Truth table of the
TOFFOLI gate, which is
universal for classical
reversible computing

Table 2.12 Truth table of the
FREDKIN gate, which is
universal for classical
reversible computing

2.1.5 Universal Reversible Gates: FREDKIN and TOFFOLI

TOFFOLI:

FREDKIN:

2 Quantum Gates

N
N N
a b c a’ b c
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
a b c a’ b el
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Just as there can be universal gates for classical irreversible computing, such as the
NAND gate (which has two inputs and one output), so too can there be universal
gates for classical reversible computing. However, the smallest gates that are both
reversible and universal require three inputs and three outputs. Two well-known
examples are the FREDKIN (controlled-SWAP) gate and the TOFFOLI (controlled-

CNOT) gate, whose truth tables are shown in Tables 2.11 and 2.12 respectively.

2.1 Classical Logic Gates 61

Fig. 2.11 Icon for the «—@— o

TOFFOLI gate also called the
controlled-controlled-NOT
gate. TOFFOLI is reversible
and universal

Fig. 2.12 Icon for the a L) a4
FREDKIN gate also called
the controlled-SWAP gate.
FREDKIN is reversible and
universal

2.1.5.1 TOFFOLI (a.k.a. “Controlled-Controlled-NOT”’)

The TOFFOLI gate is also called the controlled-controlled-NOT gate since it can be
understood as flipping the third input bit if, and only if, the first two input bits are
both 1. In other words, the values of the first two input bits control whether the third
input bit is flipped. The icon for the TOFFOLI gate is shown in Fig. 2.11.

2.1.5.2 FREDKIN (a.k.a. “Controlled-SWAP”*)

Another famous reversible gate is the FREDKIN (controlled-SWAP) gate. The truth
table for the FREDKIN gate is: The icon for the FREDKIN gate is shown in
Fig. 2.12. The FREDKIN gate can also be seen as a controlled-SWAP gate in that it
swaps the values of the second and third bits, if, and only if, the first bit is set to 1.

2.1.6 Reversible Gates Expressed as Permutation Matrices

Any n-bit reversible gate must specify how to map each distinct bit string input into
a distinct bit string output of the same length. Thus no two inputs are allowed to be

62 2 Quantum Gates

mapped to the same output and vice versa. This ensures the mapping is reversible.
Consequently, one can think of a reversible gate as encoding a specification for
how to permute the 2" possible bit strings inputs expressible in # bits. In the case
of the 2-bit SWAP gate, for example, the four possible input bit strings are 00,
01, 10, 11 and these are mapped, respectively, into 00 — 00, 01 — 10, 10 — 01,
1 — 11. In the case of CNOT gate, the inputs 00, 01, 10, and 11 are mapped into
00, 01, 11, and 10 respectively. Thus a natural way to represent an rn-bit reversible
gate is as an array whose rows and columns are indexed by the 2" possible bit
strings expressible in n bits. The (7, j)-th element of this array is defined to be 1
if, and only if, the input bit string corresponding to the i-th row is mapped to the
output bit string corresponding to the j-th column. The resulting array will contain
a single 1 in each row and column and zeroes everywhere else, and will therefore
be a permutation matrix. As arrays, the NOT, SWAP and CNOT gates would be
described as follows:

1 0 0O
0 1 0010
0 0 0 1
1 0 0O 2D
01 00
CNOT = 00 0 1
0 010
Likewise, the TOFFOLI gate could be represented as:
000 001 010 O11 100 101 110 111
000 1 0 0 o O o0 0 o
001 o 1 o o o0 o0 0 o0
010 o o 1 o0 O o0 0 O
TOFFOLI: 011 0 0 O 1 0O 0 0 0 (2.2)
100 o o o o 1 o0 0 o0
101 o o o o o0 1 0 O
110 o o o o o0 o0 0 1
111 o o0 o o o0 o0 1 o0
Similarly, the action of the FREDKIN gate could be represented as:
000 001 010 O11 100 101 110 111
000 1 0 o0 o o0 o0 0 O
001 0 1 o o o o o0 o
010 o o 1 O O o0 0 O
FREDKIN: 011 o o o 1 O o 0 o0 (2.3)
100 o o o o o0 o0 o0 1
101 o o0 o o o 1 0 O
110 o o0 o o o0 o0 1 O
111 0O o0 o0 o0 1 0 0 O

2.1 Classical Logic Gates 63

In fact, the matrices corresponding to classical reversible gates are always permu-
tation matrices, i.e., 0/1 matrices having a single 1 in each row and column, and
permutation matrices are also always unitary matrices.

To calculate the effect of a reversible gate, e.g., the FREDKIN or TOFFOLI gate,
on an input bit string, we simply prepare the column vector corresponding to that
bit string, and then perform the usual matrix vector product operation. For example,
since the FREDKIN and TOFFOLI gates act on three bits, we can imagine a column
vector consisting of 23 = 8 slots, one of which (the i-th say) contains a single 1, and
all the other elements are 0.

000 = , 001 = , 010 = 11l1=

S o oo oo~ O

eNoloNoNoloNel S

eoNeBoleoNel S =l=
— o oo oo oo

(2.4)

etc. We can calculate the effect of, e.g., the TOFFOLI gate on such an input by
vector-matrix multiplication.

TOFFOLI|110) = =|111) (2.5)

cNoloNoNoNeNe
[=NeNeloloNe R "
[eNeoNeBoNel =Xl
SO OO, OO O
S OO~ OO OO
[=Nel ool oNe]
—_— O OO OO oo
O = OO OO OO
=N NeloNoNoNeNe]
—_— O OO OO oo

2.1.7 Will Future Classical Computers Be Reversible?

The computer industry has done a truly remarkable job at squeezing more and more
computation out of fewer and fewer physical resources. For example, the energy per
logical operation has decreased pretty much exponentially since the inception of the
microchip, in lock step with a similar reduction in the size of transistors. As a result
a given volume of microprocessor has, over successive generations, been made to
perform exponentially more computation.

However, chip designers are now finding it harder to increase performance with-
out incurring the need to dissipate more energy per unit area of chip. You can sense
this quite directly if you spend any time working with a notebook computer on your
lap. After a while you will notice it becoming quite warm. This is because the mi-
croprocessor is dissipating heat as it runs. Indeed, modern chips can consume 100

64 2 Quantum Gates

Watts or more. Since it is impractical to allow them to dissipate more power than
this, this problem could ultimately stall Moore’s Law.

Today, power losses arise from the non-zero electrical resistance of the conduc-
tors used inside microprocessors and some leakage of current through materials that
are supposed to be insulators. This chip designers are working feverishly to lessen
such losses by using fewer and fewer electrons and avoiding large voltage swings,
which cuts down leakage. Once these stratagems have been played out to the max-
imum extent possible chip designers will have to consider various methods, such
as charge recovery, to recapture energy, much like a flywheel recaptures energy in
mechanical devices. Beyond this, what options remain to further reduce energy dis-
sipation during computation?

The answer could lie in the use of classical reversible gates, such as FREDKIN
and TOFFOLI gates that we discussed earlier. This is because, as Rolf Landauer
showed, energy need only be dissipated when information is erased, and the min-
imum amount that Nature demands is kpT In2 per bit erased, where kp is Blotz-
mann’s constant and 7 is the temperature in degrees Kelvin. At room temperature
(300 Kelvin) this is about 3 x 1072! Joules per bit erased. Therefore, if we were
to use reversible computing, the only energy that must be dissipated is related to
that required to initialize the computer, or to make a permanent record on an an-
swer, because these operations must take a memory register in one state, and reset
it, regardless of what that state was, in a fixed configuration. Hence this operation
is necessarily irreversible. But apart from that, in principle, it takes no energy to
compute!

2.1.8 Cost of Simulating Irreversible Computations Reversibly

Today, most computing hardware employs, at its lowest level, gates that are logically
irreversible. Logical irreversibility means that certain outputs from a logic gate are
consistent with more than one set of inputs, preventing one from inferring a unique
input for each output. For example, the logic gate AND(x, y) = z that maps two
input bits, x and y, into a single bit, z, is logically irreversible because an output
z =0 (false) could be accounted for by any of the three input pairs (x =0,y =0),
(x=0,y=1) and (x =1,y = 0). Hence, for this particular output, the input is
ambiguous and the operation is therefore logically irreversible.

It has long been known that such logical irreversibility has a thermodynamic
consequence, namely, that energy must be dissipated, in the amount kg7 log2 per
bit erased, whenever a logically irreversible operation is performed [299]. However,
the converse of this is also true. If we were to employ only logically reversible gates
inside our chips, then no net energy need be dissipated in performing those gate
operations. The only thermodynamic cost to computing would then be the cost of
creating the initial input, reading the output, and re-setting the computer.

For a computation to be logically reversibility each “step” of the computation
must be logically reversible. However, the exact meaning of a “step” changes de-

2.1 Classical Logic Gates 65

pending on the model of computation being used. For example, in the Turing ma-
chine model one step of computation is a transition of the finite control of the ma-
chine [44], which maps one “configuration” of the machine to another configuration.
Likewise, in the circuit model, a step of computation is the execution of one gate
of the circuit (see, e.g., [187, 494]). Thus, a reversible Turing machine is a ma-
chine mapping distinct input configurations to distinct output configurations, and
a reversible circuit is a circuit comprised of gates each mapping distinct input bit
patterns to distinct output bit patterns.

There are two important questions concerning reversible computing. The first is
the practical question of how to find the optimal reversible circuit implementing a
desired Boolean function [343, 451, 494]. This approach boils down to understand-
ing how to implement permutations by reversible circuits, and is mainly concerned
with generic functions.

The second question concerning reversible computing is to determine with what
efficiency a reversible computer can simulate an irreversible computation [44, 45,
88, 119, 302, 311, 312]. Most previous studies of this question have addressed it in
the context of the Turing machine model of computation. In this paper we present
a similar analysis in the context of the circuit model. In order to aid comparison we
first recap the insights gleaned from these Turning machine studies.

Initially it was believed that the only way to simulate an irreversible computation
on a reversible Turing machine was to keep all the intermediate calculations. Con-
sequently, the size of the memory (i.e., “space”) needed to perform the computation
reversibly was proportional to the time (i.e., number of steps) of the correspond-
ing irreversible computation. Bennett, however, [44] discovered that the history of
a reversible computation could be cleared in a reversible fashion, leaving only the
input and the output in memory, and recording the configuration of certain check-
points of the irreversible computation. This reduced the space needed to simulate
an irreversible computation reversibly but at the expense of increasing the time of
the reversible computation. Specifically, in [45] Bennett proposed a method which
uses time S 7'°¢3 and space Slog T, when the irreversible computation uses 7 time
and S space. In this case the space complexity of the simulation is S in the worst
case. Later it was shown that it is possible to have a reversible simulation in space
O (S) but at the cost of requiring the simulation to run in exponential time [302]. The
best tradeoff for reversible simulation of an irreversible computation was provided
by Li [312]. It uses time @)(THE/SE) and space @ (c(¢)S[1 +1og(T/S)]), for any
& > 0, where c(e) ~ g2l/¢. Similarly, in [119] it is shown that any nondeterministic
Turing machine running in space S can be simulated by a reversible machine using
space O(S?).

The foregoing studies of the efficiency with which a reversible computer can
simulate an irreversible computation were all based on the deterministic or non-
deterministic Turing machine models. As best we can tell there has been no similar
direct study in the literature based on the circuit model of computation. This is the
main contribution of our paper.

Toffoli and Fredkin [187, 494] performed some of the first systematic studies of
reversible circuits. Toffoli showed, for example, that the reversible basis consisting

66 2 Quantum Gates

of NOT, CNOT , and Toffoli gates (defined in Sect. 2.2) is universal for reversible
computation. More precisely, he showed that every permutation on {0, 1}"* can be
realized by means of a reversible circuit over the NOT-CNOT-TOFFOLI basis using
at most one ancilla bit.?

2.1.9 Ancillae in Reversible Computing

Ancillae are an essential ingredient in classical reversible computing. For example,
every circuit with more than 3 inputs over the NOT-CNOT-TOFFOLI basis realizes
an even permutation on the space of its inputs. Therefore, to realize an odd permuta-
tion on {0, 1}", we need at least one ancilla bit with fixed constant value in addition
to the n variable inputs. Toffoli has shown that one ancilla bit is, in fact, always
sufficient [451]. Another way to see ancillae are essential is to consider computing
a Boolean function f : {0, 1} — {0, 1} reversibly. Every reversible circuit on m
inputs, computing f, has exactly m outputs with one of them considered the value
of f.If m = n, i.e., there is no ancilla bit, then it is easy to see that every output
function must be a balanced Boolean function.? Therefore, if the function we want
to simulate is not balanced, we require m > n and there must therefore be at least
one ancilla bit.

In general, we use the model described in Fig. 2.13 to define how a reversible
circuit computes a function f : {0, 1}* — {0, 1}. In this model, it is required that
at the end of the computation all ancillae have their initial values, except one ancilla
bit, designated as the “answer” bit, that carries the value of the function.

As in the case of reversible Turing machines, we can trade space for time in
reversible circuit simulations of irreversible computations. But in the circuit picture
“space” (i.e., the amount of auxiliary memory) is measured in terms of the number
of ancillae required to perform the computation, and “time” is measured by the size,
i.e. total gate count, of the circuit. In some cases allowing more ancillae results in a
reversible circuit with smaller net size (i.e., fewer total gates).

x| —> — x

Xy — —» X,

0—p Revemible L e x)

Circuit
Ancillae 0 —» —»0

Fig. 2.13 Computing a
Boolean function using a 0 —» —0
reversible circuit

2What we call an “ancilla bit” is also referred to as a “storage bit” or a “garbage bit” in the literature.

3 A balanced function on {0, 1} returns a value “1” for 2"~! of its inputs and a value “0” for the
other 2"~! inputs.

2.2 Universal Reversible Basis 67

To the best of my knowledge, only Cleve [110, 111] has addressed the space-
time (ancillae-size) trade-off of simulation for the reversible circuits. He has shown
that any polynomial size formula can be simulated by a polynomial size reversible
circuit, which uses only 3 ancillae. If his method is applied to a circuit, then the
result is an exponential size reversible circuit with 3 ancillae.

In contrast, we provide two new methods for simulating general Boolean cir-
cuits. In the first method, we show that any irreversible computation having ¢ gates,
depth d, and width w, can be implemented in a reversible circuit having O (£2%)
gates, and at most (w + 1)logd + O(1) ancillae. The second method deals with the
simulation of branching programs. We prove that any branching program of depth
d and width w can be simulated by a reversible circuit of size <4 w 24 with 2w
ancillae.

2.2 Universal Reversible Basis

We consider reversible circuits over the NOT-CNOT-TOFFOLI basis. Table 2.13 de-
fines the action of these gates, and the Fig. 2.14 represents their standard icons. Note
that the TOFFOLI gate alone is universal for reversible computing so, in principle,
we do not need the NOT and CNOT gates. However, we allow them to simplify
the constructions. Figure 2.15 shows how these reversible gates can simulate the
classical (irreversible) standard gates, in some cases with ancillae.

Table 2.13 The action of

reversible gates NOT CNOT TOFFOLI

a a 4
ar—~>1®a > b|—
c

c®(a-b)
———
Fig. 2.14 The reversible
basis NOT CNOT TOFFOLI

68 2 Quantum Gates
Fig. 2.15 Reversible a—e—a a—Pp—e—P—a
simulation of classical gates

b—e—b b—p—e—FP—b a—e—a

0—P—anb 0—-P—4

AND gate OR gate FAN-OUT gate

aVb 0—~<p—a

Fx1,x0,x3,04) = (X1 Axz) V(2 V x3)) A ((x2 V x3) A (x3 A x4)) computed reversibly

:' 777777777777777777777777777777777777 I :' 777777777777777777777777777777777777 I
xXp — : 1 : X1

s B s
n—® ! 1 I x,

A — T
X — . — x
X4 ‘ \ X4
0 — — — 0

| I o I |
0 — % T &b — 0

s o s
0 — — — 0

: P ‘
0— & —— <5 — 0
0— e — 0
0 i i i i [(x1,X2,X3,X4)

U U!
—D—e—b—
where = (P —e—P
—b-

Fig. 2.16 Synthesis via reversible substitution

2.2.1 Can All Boolean Circuits Be Simulated Reversibly?

The constructions of Fig. 2.15 suggest a simple (naive) method for simulating any
Boolean (irreversible) circuit: simply replace each irreversible gate in the circuit
with its reversible counterpart. Figure 2.16 shows an example of this method.

However, this naive method is hardly efficient and we now present a better
scheme. Before we begin, we define some useful terminology. A synchronous cir-
cuit is one in which all paths from the inputs to any gate have the same length.
Synchronous circuits may have delay (identity) gates, and gates at level m get in-
puts from gates at level m — 1. Thus, without loss of generality, we can assume
that our desired irreversible circuit is synchronous. For a Boolean circuit, the size
is the total number of gates, the depth is the number of levels, and the width is the
maximum number of gates in any level.

2.3 Quantum Logic Gates 69

The following procedure shows how to create a reversible circuit that simulates
and irreversible circuit while making substantial savings in the number of ancillae
used.

o First simulate the gates in the first-half levels.

Keep the results of the gates in the level d /2 separately.
Clean up the ancillae bits.

Use them to simulate the gates in the second-half levels.
After computing the output, clean up the ancillae bits.
Clean up the result of the level d /2.

Note This method needs roughly half the number of ancillae used by the previous
(naive) method. Figure 2.16 shows the circuit of this procedure.

By applying the above procedure recursively, on a circuit of size ¢, depth d,
and width w we obtain the following recursive relations for S, the size, and A, the
number of the ancillae needed:

S(t) <65(t/2) + 0(1),
A(d) < A(d/2) +w + 1.

Solving these recursion relations leads to the following result.

Efficiency of Reversible Simulation Any irreversible computation (in the syn-
chronous form) having t gates, depth d, and width w, can be simulated by a re-
versible circuit having O (t>>%) gates, and at most (w + 1) logd + O(1) ancillae.

Thus, most of the irreversible computations going on inside your notebook com-
puter could, in principle, be implemented using reversible logic gates, which in turn
need no net energy to run apart from any operations that require erasure of infor-
mation, such as overwriting a memory register to make a copy of an answer! This
is surprise to many people because their perception is that computers are making
something new. But in reality, they don’t. They just take the known information
given as input and re-arrange it. The vast majority of the operations employed along
the way can be done reversibly, and hence, don’t generate any more information in
their output than they had in their input. There is no truly creative act as such. As
Pablo Picasso once said, “Computers are useless—they only give answers!”

2.3 Quantum Logic Gates

Now that we have looked at classical irreversible and classical reversible gates, we
have a better context in which to appreciate the benefits of quantum gates.

Just as any classical computation can be broken down into a sequence of classical
logic gates that act on only a few classical bits at a time, so too can any quantum
computation can be broken down into a sequence of quantum logic gates that act on

70 2 Quantum Gates

only a few qubits at a time. The main difference is that whereas classical logic gates
manipulate the classical bit values, 0 or 1, quantum gates can manipulate arbitrary
multi-partite quantum states including arbitrary superpositions of the computational
basis states, which are frequently also entangled. Thus the logic gates of quantum
computation are considerably more varied than the logic gates of classical compu-
tation.

2.3.1 From Quantum Dynamics to Quantum Gates

The physical phenomena used to achieve the desired manipulation of a quantum
state can be very varied. For example, if qubits are encoded in particles having
quantum mechanical spin, the logic is effected by spin-manipulation brought about
by varying an applied magnetic field at various orientations. Or if the qubit is en-
coded in an internal excitation state of an ion, the gate operation can be achieved
by varying the time a laser beam is allowed to irradiate the ion or by varying the
wavelength of that laser light.

As any quantum gate must be implemented physically as the quantum mechani-
cal evolution of an isolated quantum system, the transformation it achieves is gov-
erned by Schrodinger’s equation, ihd|vy) /ot = H|y), where H is the Hamiltonian,
specifying the physical fields and forces at work. Thus, the unitary matrices describ-
ing quantum gates are related to the physical processes by which they are achieved
via the equation U = exp(—i’Ht/h). Here H is the Hamiltonian which specifies the
interactions that are present in the physical system.

As we saw in Chap. 1, the quantum mechanical evolution induced by this
equation is unitary provided no measurements are made, and no unwanted stray
interactions occur with the environment. In this case, starting from some initial
state, | (0)), the quantum system will evolve, in time ¢, into the state [y (¢)) =
exp(—iHt/R)|Y¥(0)) = Uy (0)) where U is some unitary matrix. Thus the evolu-
tion, in time ¢, of an isolated quantum system is described by a unitary transfor-
mation of an initial state | (0)) to a final state |y (¢)) = Uy (0)). This means that
a quantum logic gate acting on an isolated quantum computer, will transform that
state unitarily up until the point at which an observation is made. Hence, quantum
logic gates are described, mathematically, by unitary matrices, and their action is
always logically reversible.

The parallels between classical reversible gates and quantum gate were not lost
the early quantum computer pioneers Richard Feynman and David Deutsch. They
recognized that since the matrices corresponding to reversible (classical) gates were
permutation matrices, they were also unitary matrices and hence could be inter-
preted as operators that evolved some initial quantum state representing the input
to a gate into some final quantum state representing its output in accordance with
Schrodinger’s equation. Thus, the closest classical analogs to quantum logic gates
are the classical reversible gates such as the NOT, SWAP, CNOT, TOFFOLI and
FREDKIN. However, whereas the repertoire of gates available in classical reversible

2.4 1-Qubit Gates 71

computing is limited to the unitary gates whose matrix representations correspond
to permutation matrices, in deterministic quantum computing any gate is allowed
whose matrix is unitary whether or not it is also a permutation matrix.

2.3.2 Properties of Quantum Gates Arising from Unitarity

The essential properties of quantum logic gates flow immediately from that fact that
they are described by unitary matrices. A matrix, U, is unitary if and only if its
inverse* equals its conjugate transpose, i.e., if and only if U~! = UT. If U is unitary
the following facts hold:

e U is unitary.

U~ is unitary.

The columns (rows) of U form an orthonormal set of vectors.
For a fixed column, 2,2:1 Ui |* = 1.

2’1
e For a fixed row, > 5_ Ui 1> =1.

o U =exp(i’H) where H is an hermitian matrix, i.e., H = HE.

L]

e U~! = UT (which is the criterion for determining unitarity).
e U'U=1

o |det(U)| =1.

[]

L]

The fact that, for any quantum gate U, U'U = 1 ensures that we can always undo
a quantum gate, i.e., that a quantum gate is logically reversible. Moreover, that fact
that for a fixed column leil |Ui; |2 = 1 and for a fixed row 23)1:1 |Ui; 1> =1 guar-
antee that if you start with a properly normalized quantum state and act upon it with
a quantum gate, then you will end up with a properly normalized quantum state.
Thus, there are no probability “leaks”. The fact that it is the magnitude |det(U)|
that is constrained to be unity means that the constraint on the determinant can be
satisfied with det(U) = %1 or %i. Thus the elements of a general unitary matrix are
generically allowed to be complex numbers.

2.4 1-Qubit Gates
2.4.1 Special 1-Qubit Gates

2.4.1.1 Pauli Spin Matrices

For single qubits, the “Pauli matrices” (1, X, Y, Z), which happen to be both hermi-
tian and unitary, are of special interest since any 1-qubit Hamiltonian can always be

4If A and B are two matrices B is the inverse of A when A.B = 1 where 1 is the identity matrix,
i.e., a matrix having only ones down the main diagonal.

72 2 Quantum Gates

written as a weighted sum of the Pauli matrices:

10 0 1 0 —i 10
1:(0 1)’ X:<1 0)’ Y:(i 0)’ ZZ(O —1) (2.6)

Some common forms for Hamiltonians that arise in practice are H = Z(D Z® (the
Ising interaction) and H = XV @ X + YD) @ ¥® (the XY interaction) and H =
2XD @ X? 4+ v @ y® where the parenthetical superscripts labels which of two
qubits the operator acts upon.

2.4.1.2 NOT Gate

The Pauli X matrix is synonymous with the classical (reversible) NOT gate, i.e.,

0 1
X =NOT = <1 0) 2.7)

Thus, it is not surprising that X negates the computational basis states |0) and |1),
correctly as these correspond to the classical bits, 0 and 1, respectively. Specifically,

we have:
W@) O-0 e
-G) Q-0 e

2.4.1.3 +/NOT Gate

One of the simplest 1-qubit non-classical gates one can imagine is a fractional power
the of NOT gate, such as +NOT:
) (2.10)

i 1
vwor= (0 1) = (% +
2
The +/NOT gate has the property that a repeated application of the gate, i.e., v NOT-
+/NOT, is equivalent to the NOT operation, but a single application results in a
quantum state that neither corresponds to the classical bit 0, or the classical bit 1.
So +/NOT it is the first truly non-classical gate we have encountered.

I

SENNTES
2= 12—
R~]~

1] 1
j0) =5 (5+§)|0>+(5——>|1>@|1> 2.11)

—

1 1
1) 9T (5—%>|0)+<2 >|1> 9T 0y 2.12)

2.4 1-Qubit Gates 73

2.4.1.4 Is Pauli X a NOT Gate for Qubits?

Although the Pauli X gate negates the computational basis states correctly, does it
also behave like a true “NOT” gate when acting on a qubit in an arbitrary quantum
state, i.e., a qubit state corresponding to a point on the Bloch sphere other than
the North or South poles? To answer this, we must first specify what we require
a quantum NOT gate to do, and then determine whether X acts in the appropriate
manner.

Since the NOT gate has the effect of mapping a state at the North pole of the
Bloch sphere into a state at the South pole and vice versa, it is natural to extend
the definition of a NOT gate to be the operation that maps a qubit, |{), lying at
any point on the surface of the Bloch sphere, into its antipodal state , [y/), on the
opposite side of the Bloch sphere as shown in Fig. 2.17. The antipodal point is that
obtained by projecting a straight line from the original state through the origin to
intersect the surface of the Bloch sphere on the opposite side. Mathematically, we
can assume that our arbitrary starting state |y) is given by:

[v) =cos<g)|0) +¢i? sin<§>|1) (2.13)
2 2 :

where 6 is the “latitude” and ¢ the “longitude” angles of |¢) on the Bloch sphere.
To obtain the antipodal point we move, just as we would on Earth, to the equivalent
latitude in the opposite hemisphere and shift the longitude by 180° (i.e., = radians).
Given the aforementioned definition of |1), the mathematical form of the antipodal
state, |1ﬁ), must therefore be:

ly) =cos(n EQ)IO) +ei(¢+n)sin<zr ;6>|1>

:cos<”_9>|o>—e"<¢>sm(”_9)|l>
2 2
0 ; 0
—anl 2 _ol® Z
_s1n<2>|0) e cos(2)|1) (2.14)

where we have used the identities cos(”—ge) = sin(%) and sin(%) = cos(%).

Having understood the relationship between the mathematical form of an arbi-
trary starting state, |1) to that of its true antipodal state, [¥1), we can now check
whether X |y) = |¢L), and hence, whether X qualifies as a true NOT gate for an
arbitrary qubit. By direct evaluation we have:

0 1 cos (%
Xl = <1 0> . (ei‘P sinz(

='? sin<€)|0> +cos<§)|l) (2.15)
2 2 :

74 2 Quantum Gates

0 - X = Ib
m = X — 10
aly+b|1)y — X — bl0O)+all)

Fig. 2.17 The affect of the Pauli X gate operation on the computational basis states and an ar-
bitrary pure state of a single qubit. The Pauli X gate “negates” the computational basis states
correctly, but not an arbitrary superposition state! So the Pauli X gate is not a universal NOT gate
for qubits. The universal NOT gate for qubits is discussed in Chap. 11

We are free to multiply by any overall phase factor we please since states that differ
only in global phase are indistinguishable. As the amplitude of the |0) component
of the true |1) state is sin(f/2), we multiply through (2.15) by e ¢ Hence, the
result of X|y) can be written as:

(0 —i¢ 0 1L
X|1ﬁ)=sm<§)|0)+e cos(§>|1);£|1p) (2.16)

This is not [1). Hence, it is clear that X |) does not negate an arbitrary single
qubit state |1) since the result we get is not |1ﬂL). Thus although, in classical com-
puting, we can legitimately call the gate whose matrix is ((1) é) the “NOT” gate, we
really ought not to use this name in the context of quantum computing.

We shall see in Chap. 11 that there is, in fact, no universal quantum NOT gate!
That is, there is no fixed quantum gate that correctly negates every qubit it is handed.

2.4.1.5 Hadamard Gate

One of the most useful single qubit gates, in fact perhaps the most useful one, is the
Hadamard gate, H. The Hadamard gate is defined by the matrix:

1 (1 1
H:E(l _1> 2.17)

It acts, as depicted in Fig. 2.18, so as to map computational basis states into super-
position states and vice versa:

1

H|0) = 0 1 2.18

0) ﬁ(IH-I)) (2.18)
1

H|l)=—(0) — |1 2.19

1) ﬁ(|> 1) (2.19)

2.4 1-Qubit Gates 75

Fig. 2.18 The icon for the
1-qubit Walsh-Hadamard 1

gate, H and its affect on |0) — H — —(10) + 1))
computational basis states V2

1
— — —(10) = 11))
[1) H o

1
4 HF —UO+I1))
0 4 H s

1
00 4+ H —0+])) 13
0y 1 H Nex

= W)
Jj=0

VT

o JHE 0+)
V2

Fig. 2.19 By applying n H gates independently to n qubits, all prepared initially in state |0),
we can create an n-qubit superposition whose component eigenstates are the binary representation
of all the integers in the range 0 to 2" — 1. Thus, a superposition containing exponentially many
terms can be prepared using only a polynomial number of operations. This trick is used in a great
many quantum algorithms to load a quantum memory register efficiently with an equally weighted
superposition of all the numbers it can contain

When the Hadamard gate H acts on a computational basis state |x) it transforms the
input according to H|x) = %(lO) + (=1D*[1)).

The Hadamard is one of the unsung heroes of quantum computing. It is a de-
ceptively simple looking gate but it harbors a remarkable property that, if you think
about it, turns out to be of vital importance to quantum computing. If you prepare n
qubits each in the state |0) and you apply to each qubit, in parallel, its own Hadamard
gate, then, as shown in Fig. 2.19, the state produced is an equal superposition of all
the integers in the range 0 to 2" — 1.

-
1
H|0)® HI0)® - ® H|0) = —= 1j) (2.20)
77 L
i=0

where |j) is the computational basis state indexed by the binary number that would
correspond to the number j in base-10 notation. For example, in a 7-qubit register
the state “|19)” corresponds to the computational basis state [0010011). The first
two bits (00) are padding to make the binary number 7 bits in length, and 10011,
(i.e., 10011 in base 2) corresponds to 1919 (i.e. 19 in base-10).

The utility of the Hadamard gate derives from that fact that by applying, in par-
allel, a separate Hadamard gate to each of n qubits, each initially in the state |0),

76 2 Quantum Gates

we can create an n-qubit superposition containing 2" component eigenstates. These
eigenstates represent all the possible bit strings one can write using n bits. The im-
portance of this capability is often overlooked. But, in reality, it is one of the most
important tricks of quantum computing as it gives is the ability to load exponentially
many indices into a quantum computer using only polynomially many operations.
Had Nature been unkind, and had we had to enter the different bit-strings individu-
ally, as we do in classical computing, then quantum computing would have had far
less potential for breakthroughs in computational complexity.

2.4.2 Rotations About the x-, y-, and z-Axes

Having seen a couple of examples of special quantum logic gates (i.e., v NOT
and H) we next turn to the question of what is the most general kind of quan-
tum gate for a single qubit. To address this, we must first introduce the family of
quantum gates that perform rotations about the three mutually perpendicular axes of
the Bloch sphere.

A single qubit pure state is represented by a point on the surface of the Bloch
sphere. The effect of a single qubit gate that acts in this state is to map it to some
other point on the Bloch sphere. The gates that rotate states around the x-, y-, and
z-axes are of special significance since we will be able to decompose an arbitrary
1-qubit quantum gate into sequences of such rotation gates.

First, let’s fix our reference frame with respect to which arbitrary single qubit
pure states is defined. We choose three mutually perpendicular axes, x-, y-, and z-,
or equivalently, three polar coordinates, a radius r (which is unity for all points on
the surface of the Bloch sphere) and two angles 6 (the latitude, measured monoton-
ically from the North pole to the South pole over the interval 0 <6 <) and ¢ the
longitude (measured monotonically as we rotate around the z-axis in a clockwise
fashion. So any point on the surface of the Bloch sphere can be specified using its
(x,y, z) coordinates or, equivalently, its (r, 8, ¢) coordinates. Right? Well actually
not quite right since a general qubit state also must specify an overall phase fac-
tor. But let’s ignore this for now. These two coordinate systems are related via the
equations:

x = rsin(@) cos(¢) (2.21)
y = rsin(f) sin(¢) (2.22)
z=rcos(0) (2.23)

So what are the quantum gates that rotate this state about the x-, y-, or z-axes? We
claim that these gates, illustrated in Figs. 2.20, 2.21, and 2.22, can be built from the
Pauli X, Y, Z, matrices, and the fourth Pauli matrix, 1, can be used to achieve a
global overall phase shift. Specifically, let’s define the following unitary matrices,
R:(0), Ry(0), R;(0), and Ph from Hamiltonians chosen to be, respectively, the four
Pauli matrices, X, Y, Z, and I (the identity matrix). That is, we have:

2.4 1-Qubit Gates 77

—

L

1

1

Fig. 2.20 An R,(0) gate maps a state |Y/) on the surface of the Bloch sphere to a new state,
R (0)|Y), represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |) through an angle % around the x-axis. Note that a rotation of 47 is needed to

return to the original state

Re(@) = exp(—iaX/2) = <_‘;°;le) _Ciosszléf)) (2.24)
2 2
Ry (@) = exp(—iarY/2) = (CS?;((E)) ;Z;‘Eg) (2.25)
2 2

e—ioz/Z 0
Reo) =exp(—iaZ/D =" = (2.26)

(10
Ph(8) =e (0 1) (2.27)

Consider the gate R, (). Let’s see how this gate transforms an arbitrary single qubit
state |y) = cos($)]0) + € sin($)|1).

78 2 Quantum Gates

1

Fig. 2.21 An R,(0) gate maps a state |1/) on the surface of the Bloch sphere to a new state,
Ry (6)]¥), represented by the point obtained by rotating a radius vector from the center of the

Bloch sphere to |) through an angle % around the y-axis. Note that a rotation of 47 is needed to
return to the original state

. 0 /2 i 0
= i/2 COS(§> |0) + ¢i%/261? Sin(z) 1) (2.28)

We are free to multiply this state by any overall phase factor we please since for any
quantum state |y), the states |x) and e'”|x) are indistinguishable. So let’s multiply
by an overall phase factor of exp(i«/2), which gives us the state:

R.(a)|y) = cos<§> |0) 4 ¢! @+ sin(g> (2.29)

2.4 1-Qubit Gates 79

1 X

Fig. 2.22 An R,(0) gate maps a state i) on the surface of the Bloch sphere to a new state,
R.(0)|Y¥), represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |¢) through an angle % around the z-axis. Note that a rotation of 47 is needed to
return to the original state

where = is to be read as “equal up to an unimportant arbitrary overall phase factor”.
Hence the action of the R, () gate on |y/) has been to advance the angle ¢ by « and
hence rotate the state about the z-axis through angle «. This is why we call R, («) a
z-rotation gate. We leave it to the exercises for you to prove that R, () and Ry (o)
rotate the state about the x- and y-axes respectively.

Rotations on the Bloch sphere do not conform to commonsense intuitions about
rotations that we have learned from our experience of the everyday world. In par-
ticular, usually, a rotation of 2 radians (i.e., 360 degrees) of a solid object about
any axis, restores that object to its initial orientation. However, this is not true of
rotations on the Bloch sphere! When we rotate a quantum state through 27 on the
Bloch sphere we don’t return it to its initial state. Instead we pick up a phase factor.
To see this, let’s compute the effect of rotating our arbitrary single qubit pure state,
|[1r) about the z-axis through 27 radians. We have:

80 2 Quantum Gates

1 Pullthe belt taut and keep both 5 - Impart two 360° twists to.one end.-
: ends horizagital ' 5 -

. g

3 Keeptng both ends horlzonta} Ioop
tﬁe belt over and arognm{self

Fig. 2.23 “Dirac’s Belt” uses a commonplace belt to illustrate that topology of a single qubit state
wherein a rotation of 47 (two full twists) is required to restore the belt to its starting configuration

e”im 0 cos (%)
Rz Gl = 0 7] \e?sin (g)
_[—eos(5) N _
=iy)= (2.30)

which has an extra overall phase of —1. To restore a state back to its original form
we need to rotate it through 4 on the Bloch sphere.

Have you ever encountered anything like this in your everyday world? You prob-
ably think not, but you’d be wrong! Find yourself a thick leather belt. Have a friend
hold one end flat and apply a rotation of 27 to the other end, i.e., one full twist (see
Fig. 2.23). Now try to loop the belt around itself without tilting either end. In so
doing, can you remove the twist? After some experimentation you should be con-
vinced that the twist is there to stay and there is no way to remove it and yet keep the
orientations of the ends of the belt fixed relative to one another. By analogy, a rota-
tion of 2 has not restored the belt to its initial (flat and twist free) state. Ok so let’s
try again. Have a friend hold one end flat and apply a rotation of 47 to the other end,
i.e., two full twists. Now try to loop the belt around itself without tilting either end.
After a little experimentation you should find, to the surprise of most people, that the
twist has gone! In other words, a rotation of 47r to one end of the belt has resulted
in a state that is equivalent to the original (flat and twist free) state of the belt.

2.4 1-Qubit Gates 81
2.4.2.1 NOT, +/NOT, and Hadamard from Rotation Gates

The NOT, +/NOT, and Hadamard gates can all be obtained via sequences of rotation
gates. For example,

NOT = R, () Ph(%) 2.31)
NOT = Ry (%) - R.(7) ~Ph<%) (2.32)
VNOT = Rx<%) ~Ph<%) (2.33)
VNOT = RZ<—%> : 1@(%) : RZ<%) .Ph<%> (2.34)
H=R,(7)- 1@(%) -Ph(%) (2.35)
H= Ry<%) - R.(7) -Ph(%) (2.36)

2.4.3 Arbitrary 1-Qubit Gates: The Pauli Decomposition

So far we have seen how specific 1-qubit gates can be decomposed into sequences of
rotation gates, i.e., Ry (-), Ry (), R;(-), and phase gates, i.e., Ph(-). Next we consider
how to decompose an arbitrary, maximally general, 1-qubit gate.

A maximally general 1-qubit gate will correspond to some 2 x 2 unitary matrix,
U. As U is unitary the magnitude of its determinant must be unity, i.e., | det(U)| = 1.
This equation can be satisfied by det(U) taking on any of the values +1, —1, +i, or
—i.If det(U) = +1 then U is said to be “special unitary”. If not, we can always write
U in the form U = ¢®V where V is a special unitary matrix, i.e., det(V) = +1. So
to find a circuit for the unitary matrix U it is sufficient to find a circuit for the special
unitary matrix V, because simply appending a phase shift gate Ph(5) to the circuit
for V will give a circuit for U. This is easily seen by realizing

ié
. . 0
U=e’5V=e’8<(1) (1))~V=<eo eia)'V=Ph(5)'V

As V is a 2 x 2 special unitary matrix its rows and columns are orthonormal and,
its elements, most generally, are complex numbers. Hence, V must have the form:

V= (Z _(Xﬁ) (2.37)

82 2 Quantum Gates

V =— R, (@) — Ry(b) — R.(c) —

Fig. 2.24 Any 1-qubit special unitary gate can be decomposed into a rotation about the z-axis, the
y-axis, and the z-axis

l

U ={R.(a) — R, (b) — R.(c) — Ph (d)

Fig. 2.25 Any 1-qubit unitary gate can be decomposed into a rotation about the z-axis, the y-axis,
the z-axis, followed by a phase shift

where « and § are arbitrary complex numbers that satisfy the determinant equation
det(V) = aa — B(—B) = |a|> + | B|> = 1. This equation can be satisfied by picking
o = €'t cos(8/2), and B = ¢'é sin(6/2). This means we can also write the matrix
for V as:

V= (; _&ﬂ) with & — ¢'* cos(6/2) and B — €'* sin(6/2)

i ik
=<e-’;c‘os(9/2) _e- 5111(0/2)) (2.38)
e'ssin(0/2) e '*cos(6/2)

But this matrix can also be obtained as the product of the three gates R;(a) - Ry (b) -
R (c) witha > —(u—§&),b—60,and c > —(u + §).

e_%’_% cos(%’) —ef

R.(@) - Ry(b)- R.(c) = T sin(3)
: ’ S\ %sin(é) e%+%cos(%)

e?2)

witha > —(u —&),b—> 6, andc — —(u + &)

(€ cos(0/2) —e ¥ sin(6/2) _y
~\effsin(0/2) e iFcos(H/2) |
(2.39)

Thus, any 1-qubit special unitary gate V can be decomposed into the form R;(a) -
Ry(b) - R;(c) as shown in Fig. 2.24. Hence, any 1-qubit unitary gate, U can be
decomposed into the form:

U=R;(a) Ryb)-R;(c) - Ph(d) (2.40)

as shown in Fig. 2.25.

2.5 Controlled Quantum Gates 83

2.4.4 Decomposition of R, Gate

Lest it seem peculiar that we can achieve an arbitrary 1-qubit gate without perform-
ing a rotation about the x-axis, we note that it is possible to express rotations about
the x-axis purely in terms of rotations about the y- and z-axes. Specifically, we have
the identities:

0)
Ry (0) = exp(=i6X/2) = (iC;)ijl((zg)) ;1: <(%2 >))

=R, (—7/2) - Ry(8) - R;(7w/2)
=R, (7/2) - R.(6) - Ry(—7/2) (2.41)

2.5 Controlled Quantum Gates

To perform non-trivial computations it is often necessary to change the opera-
tion applied to one set of qubits depending upon the values of some other set of
qubits. The gates that implement these “if-then-else” type operations are called con-
trolled gates. Some examples of controlled gates that appeared earlier in this chap-
ter are CNOT (controlled-NOT), FREDKIN (controlled-SWAP), and TOFFOLI
(controlled-controlled-NOT). The justification for calling these gates “controlled”
stems from their effect on the computational basis states. For example, CNOT trans-
forms the computational basis states such that the second qubit is negated if and only
if the first qubit is in state |1).

CNOT

100y 22" 100 (2.42)
01y X2 o1 (2.43)
110y 2411y (2.44)
11y 29 10) (2.45)

Hence, the value of the second qubit (called the “target” qubit) is controlled by the
first qubit (called the “control” qubit).

Likewise, under the action of the FREDKIN gate the second and third qubits are
swapped if and only if the first qubit is in state |1). So the FREDKIN gate performs
a controlled-SWAP operation.

FREDKIN

1000) "REZEIN 1000 (2.46)
1001) "RERXIN 01 (2.47)

1010) "RE2X™N 1610y (2.48)

84 2 Quantum Gates

FREDKIN

011) "REEN 011 (2.49)
1100) "RERXIN 100y (2.50)
1101y "REPEN 110y (2.51)
1110) "RERE™N 01y (2.52)
[y PREREIN (2.53)

It is also possible to have controlled gates with multiple control qubits and mul-
tiple target qubits. The action of the TOFFOLI gate is to negate the third qubit (i.e.,
the target qubit) if and only if the first two qubits (the control qubits) are in state
[11). Thus the TOFFOLI gate has two control qubits and one target qubit.

1000) "ZEEH 1000) (2.54)
1001) "2 1001y (2.55)
1010) "2 010) (2.56)
011y "M 011y (2.57)
1100) "ZEEOH 1100) (2.58)
101y "M 101y (2.59)
1110y "ZEM 11y (2.60)
11y TN 1) 2.61)

Now all this is very well, but aren’t CNOT, FREDKIN and TOFFOLI not just
classical reversible gates? Well yes they are! But in addition they are also quantum
gates because the transformations they perform (i.e., permutations of computational
basis states) also happen to be unitary. But indeed, controlled quantum gates can
be far more sophisticated than controlled classical gates. For example, the natural
quantum generalization of the controlled-NOT gate is the controlled-U gate:

1 0 O 0
01 O 0
controlled-U = 0 0 Uy Up (2.62)
0 0 Uy Ux
_ (U Upzy ; : :
where U = (U21 Uzz) is an arbitrary 1-qubit gate.

2.5 Controlled Quantum Gates 85

A®B

H)

Fig. 2.26 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top qubit is |0) or |1)

2.5.1 Meaning of a “Controlled” Gate in the Quantum Context

If we are using CNOT, FREDKIN or TOFFOLI gates within the context of classical
reversible computing their inputs are only ever classical bits. Hence, there is no
problem imagining reading each control bit to determine what action to perform on
the target bit. But if we use these gates in the context of quantum computing, where
they may be required to act on arbitrary superposition states, we ought to question
whether it continues to make sense to speak of “controlled” gates because, in the
quantum case, the act of reading the control qubit will, in general, perturb it.

The answer is that we do not need to read control bits during the application of
a controlled quantum gate! Instead if a controlled quantum gate acts on a superpo-
sition state all of the control actions are performed in parallel to a degree commen-
surate with the amplitude of the corresponding control qubit eigenstate within the
input superposition state.

For example, suppose A and B are a pair of unitary matrices corresponding to
arbitrary 1-qubit quantum gates. Then the gate defined by their direct sum:

A Ap O 0
A 0\ |Axy Axn O 0
0 B)_ 0 0 Bi1 Bip
0 0 By Bn»

A@B:((2.63)

performs a “controlled” operation in the following sense. If the first qubit is in state
|0) then the operation A is applied to the second qubit. Conversely, if the first qubit
is in state |1) then the operation B is applied to the second qubit. And if the control
qubit is some superposition of |0) and |1) then both control actions are performed
to some degree. The quantum circuit for such a gate is shown in Fig. 2.26. Don’t
believe me? Let’s work it out explicitly.

If the first qubit is in state |0) we can write the input as a state of the form
|0)(a|0) + b|1)), and if the first qubit is in state |1) we write the input as a state of

86 2 Quantum Gates

the form |1)(a|0) 4 b|1)). For the first case, when the gate acts we therefore obtain:

A11 A12 0 0 a
Ay Axp O 0 b
0 0 By Bn] |O
0 0 B>y B» 0

(A® B)(10) ® (al|0) +b[1))) =

aAj1 +bAp

| aAz +bAy
- 0
0

= (aA11 +bA12)]00) + (aAz1 +bA)|01)
=0) ® A(al0) + b|1)) (2.64)

Likewise, for the second case, when the gate acts on an input of the form |1) ®
(a|0) + b|1)) we obtain:

Al App O 0 0
Az Axn O 0 0
(A® B)(]1) ® (al0) +b|1))) = 0 0 By Bp a
0 0 By Bx» b
0
_ 0
~ | aBi1 +bB12
aBy +bBy
= (aB11 +bB12)|10) 4+ (@B + bB)|11)
= 1) ® B(al0) + b|1)) (2.65)

Putting these results together, when the 2-qubit controlled gate (A & B) acts on a
general 2-qubit superposition state |¢) = a|00) + b|01) 4 ¢|10) +d|11) the control
qubit is no longer purely |0) or purely |1). Nevertheless, the linearity of quantum
mechanics guarantees that the correct control actions are performed, in the correct
proportions, on the target qubit.

(A® B)[y) =0) ® A(al0) +b|1)) + |1) ® B(c|0) +d|1)) (2.66)

2.5.2 Semi-Classical Controlled Gates

Note that although we do not have to read the values of control qubits in order for
controlled actions to be imposed on target qubits, we may do so if we wish. Specifi-
cally, in the traditional model of quantum computation one prepares a quantum state,
evolves it unitarily through some quantum circuit, and then makes a final measure-
ment on the output qubits. The values of the control qubits contained within such a

2.5 Controlled Quantum Gates 87

Fig. 2.27 Semi-classical quantum gates. Measurements of a control qubit made after a controlled
gate can be moved before the gate and the subsequent controlled gate then be classically controlled.
Griffiths and Niu used this trick in their semi-classical QFT [213], and Brassard used it in his
quantum teleportation circuit [75]

quantum circuit are never read. However, we don’t have to operate quantum circuits
this way. If we want, we can move the final measurements on control qubits to earlier
parts of the quantum circuit, and use the resulting classical bits to determine which
gate operation to apply to the corresponding target qubits. Such a strategy will, of
course, change the final state produced by the quantum circuit on any particular
run, but it won’t change their statistical properties averaged over many repetitions.
Such intermediate measurements have been used to make a “semi-classical Fourier
transform” [213] and also within a quantum circuit for teleportation [75].

For example, as shown in Fig. 2.27 the control qubits of the controlled gates in
the quantum Fourier transform can be measured immediately after they have acted
and the resulting classical bit used to classically condition a subsequent controlled
gate operation. The ability to move some final measurements to earlier stages of a
quantum circuit and then condition subsequent gate operations on their (classical)
outcomes can be of practical value by lowering the engineering complexity required
to achieve practical quantum computational hardware.

2.5.3 Multiply-Controlled Gates

Controlled gates can be generalized to have multiple controls as shown in Fig. 2.28.
Here a different operation is performed on the third qubit depending on the state
of the top two qubits. Such multiply-controlled quantum gates are quite common
in practical quantum circuits. Note, however, that the number of distinct states of
the controls grows exponentially with the number of controls. So it becomes more
difficult to actually build multiply-controlled gates beyond just a few control qubits.

2.5.4 Circuit for Controlled-U

Regardless of when qubits are to be read, we should like to know how to decompose
these controlled gates into a simpler set of standard gates. Factoring a controlled gate

88 2 Quantum Gates

A0 0 O
0 B 0 O
00 C 0 =A®B®Co®D
0 0 0 D

Fig. 2.28 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top two qubits are |00), |01), |10), or |1)

asin A@B=(1QA)-(1® A" B) where 1 = ((1) (l)), we can see that the core
“controlled” component of the gate is really a gate of the form:

1 0 O 0
01 O 0

controlled-U = 00 Uy Up (2.67)
0 0 Uy Ux

where the U;; are the elements of an arbitrary 1-qubit gate U = A7l B.Wecall a
2-qubit gate of the form (]é 8) a controlled-U gate.

We can construct a quantum circuit for a 2-qubit controlled-U gate in terms of
CNOT gates and 1-qubit gates as follows. Let U be an arbitrary 1-qubit gate having
a single qubit (Pauli) decomposition of the form U = e"”RZ (b) - Ry(c) - R;(d). The
action of the controlled-U gate is to do nothing to the target qubit when the control
qubit is |0) and to apply U to the target qubit when the control qubit is [1). The
act of “doing nothing” is mathematically equivalent to applying the identity gate to
the target. So given the quantum circuit decomposition for computing U, what is a
quantum circuit that computes controlled-U ?

By (2.40) there exist angles a, b, ¢, and d such that:

U =e"“R,(b) - Ry(c) - R,(d) (2.68)

Given these angles, define matrices A, B, C as follows:

d—b
c d+b
C=R.(b)- Ry<§> 2.71)
A = diag(1, ¢'%) (2.72)

We claim that the circuit shown in Fig. 2.29 computes controlled-U. Here is how
it works. When the control qubit is in state |0) the A gate does change it because
A|0) = |0) (with no phase addition). The control qubits of the CNOT gates are

2.5 Controlled Quantum Gates 89

Fig. 2.29 A quantum circuit A
for a controlled-U gate, _

where U is an arbitrary -

1-qubit gate { A +—{ B+ cC %

therefore also |0) and so the CNOTs do not do anything to the target qubit. Hence,
the transformation to which the target qubit will be subject when the control qubit
in the circuit is |0) is C - B - A. Note that the order is reversed with respect to the left
to right sequence in the circuit diagram because, mathematically, if the A gate acts
first, then the B gate, and then the C gate, the matrices must be multiplied in the
order C - B - A since when this object acts in an input state |y) we want the grouping
tobe (C-(B-(Al|y)))) (gate A first then gate B then gate C). A little algebra shows
that the net effect of these three operations is the identity (as required).

d+b d—>b
crmtm (9 () £(42) ()6,)
(2.73)

Next we consider what happens when the control qubit is in state |1). In this case
the control qubit first picks up a phase factor since A|1) = ¢’%|1). The control qubits
of the CNOT gates will all be set to |1), and so they will apply a NOT gate (equiv-
alent to a Pauli-X gate) to the target qubit when the CNOT gate acts. Hence, the
transformation to which the target qubit will be subject when the control qubit
is |1) is ¢/“C - X - B - X - A. To simplify this expression we need to notice that
X -Ry(@)-X=Ry(—0)and X - R,(0) - X = R,(—0). Hence we obtain:

¢ c d+b
C'X'B'X'AZRZ(b)'Ry<§>'X'Ry<—§>~Rz<— !)
(%)
X-R[(=—=
A\ 2
cea ()l o (452
(%)
X R[(—=
2
= R.(b)- R},G) .X.Ry<—§> XX RZ(_#)
(%)
X -R.[——
2
c c b+d d—b
-ro-w(5) 5 (5) #(557) #(57)

= R:(b) - Ry(c) - R:(d) (2.74)

G

90 2 Quantum Gates

Fig. 2.30 A quantum circuit
for an upside down T - U

controlled-U gate, where U
U Jf

is an arbitrary 1-qubit gate
Hence the circuit for controlled-U performs as follows:

controlled-U |0)(a|0) + b|1)) =10) ® C - B - A(a|0) + b|1))
=10) ® (al0) + b[1))

controlled-U |1)(al0) + b|1)) =€'?[1) R C - X - B- X - A(a|0) +b|1)) (2.75)
=[1)®eC-X-B-X-A(al|0)+b|1))
=[1) ® U(al0) +b[1))

Thus U is applied to the target qubit if and only if the control qubit is set to |1).

2.5.5 Flipping the Control and Target Qubits

The control qubit does not have to be the topmost qubit in a quantum circuit. An
upside down controlled-U gate would be given by SWAP - controlled-U - SWAP as
shown in Fig. 2.30.

1 0 0 O
upside-down-controlled-U = SWAP - controlled-U - SWAP = 8 U(;] (1) U(;z
0 Uy 0 Uxp
(2.76)

The second qubit is now the control qubit and the first qubit the target qubit. The
result is the matrix corresponding to a 2-qubit controlled quantum gate inserted into
a circuit “upside down”.

2.5.6 Control-on-|0) Quantum Gates

Furthermore, in a controlled quantum gate the value that determines whether or not
a special action is performed does not have to be |1); it can be |0) (or any other state)
too. A 2-qubit quantum gate with the special action conditioned on the value of the

2.5 Controlled Quantum Gates 91

e O

U -+ U =

Fig. 2.31 A quantum circuit for a controlled quantum gate that acts when its control qubit is in
state |0) (as indicated by the open circle on the control qubit) rather than state |1)

first qubit being |0) instead of |1) is related to the usual controlled gate as follows:

1 0 O 0
0O 1 0 0
controlled[1]-U = 0 0 Uy Up 2.77)
0 0 Uy Up
controlled[0]-U = (NOT ® 1) - controlled[1]-U - (NOT ® 1,)
Un U;p 00
Uy Uxp 0 0
10 0O 1 0 (2.78)
0 0 0 1

as illustrated in Fig. 2.31.

2.5.7 Circuit for Controlled-Controlled-U

We can carry on in a similar fashion by, e.g., allowing multiple control qubits and/or
target qubits. For example, earlier we interpreted the TOFFOLI gate as a controlled-
controlled-NOT gate. Generalizing leads us to consider a controlled-controlled-U
gate, where U is an arbitrary 1-qubit gate.

As a matrix, the controlled-controlled-U gate has the form:

1 000 0 0 O 0
01 00 0O O 0
001 0O0O0 O 0
0001 O0O0 O 0
controlled-controlled-U = 0000710 0 0 2.79)
00 0 O0O0T1 O 0
00 0 00 0 Un Up
0000 0 0 Uy Uxp

We can decompose a controlled-controlled-U gate into a circuit built from only
CNOT gates and 1-qubit gates of the form shown in Fig. 2.32 (see [33]). Here V =
U'/2. The operation of this circuit can be understood by considering what it does to

92 2 Quantum Gates

Fig. 2.32 Quantum circuit ——
for the
controlled-controlled-U e

operation. Here V is any
quantum gate such that
Vi=U Ul v V'] s

the eight possible computational basis states of a three qubit system.

ctrl ctrl-U

1000) 1000) (2.80)
1001) =2 1001) 2.81)
1010) =Y 101y @ (VT - V|0)) = [010) (2.82)
011) =2 on @ (v Vi) = jo11) (2.83)
1100) =5 110y @ (Vv - VT10)) = |100) (2.84)
1101) =Y 110y @ (V - V1)) = 101) (2.85)
110) =5V 111y @ V20) = [11) @ U[0) (since VE=U) (2.86)
i Y iy @ vy = 1) @ U|L) (since V2=U) (2.87)

2.6 Universal Quantum Gates

A set of gates, S, is “universal” if any feasible computation can be achieved in a
circuit that uses solely gates from S. The most interesting universal sets of gates
are those containing a single gate. The NAND gate, the NOR gate, and the NMA-
JORITY gate, are all known, individually, to be universal for classical irreversible
computing. Similarly, the TOFFOLI and FREDKIN gates are each known to be
universal for classical reversible computing. Are there similar universal gates for
quantum computing? If so, how many qubits does the smallest universal quantum
gate have to have?

The fact that the closest classical gates to the quantum gates are the classical
reversible gates, and these need a minimum of three bits to be universal, might lead
you to expect that the smallest universal quantum gate will be a 3-qubit gate too.
Indeed, there is a 3-qubit gate that is universal for quantum computing. It is called a
DEUTSCH gate, and any feasible quantum computation can be achieved in a circuit
built only from DEUTSCH gates acting on various triplets of qubits [137]. This gate

2.6 Universal Quantum Gates 93

has the form:

1 000 0O 0 0

01 0 0 0O 0 0

001 0 00O 0 0
000100 0 0

DEUTSCH = 0000 1 0 0 0 (2.88)

000 0 01 0 0

0 00 0 0 O icos(@) sin(9)

0 0 0 0 0 O sin(@) icos(9)

where 6 is any constant angle such that 26/ is an irrational number. However,
circuits for an arbitrary 2" x 2" unitary matrix built from this gate are typically very
inefficient in gate count.

Surprisingly, however, Deutsch’s gate is not the smallest possibility. David Di-
Vincenzo and John Smolin showed that DEUTSCH’s gate could be built from only
2-qubit gates [149], and Adriano Barenco showed it could be obtained using only
just a single type of 2-qubit gate—the BARENCO gate [32], which has the form:

1 0 0 0
0 1 0 0

BARENCO=1, €% cos(0) —iel @9 sin(H) (2.89)
0 0 —ief@Pgin() e cos(9)

where ¢, « and 6 are fixed irrational multiples of 7 and each other.

Thus, quantum gates are very different from classical gates in terms of univer-
sality. Whereas in classical reversible computing there is no 2-bit gate that is both
reversible and universal, in quantum computing almost all 2-qubit gates are univer-
sal [80, 147]. This is quite remarkable. In particular, it means that certain classi-
cal reversible computations (which are described by permutation matrices and are,
therefore, unitary) can potentially be implemented more efficiently using quantum
gates than using only classical reversible gates. Ironically, it is conceivable that one
of the nearest term large scale applications of quantum gates will be in implemen-
tations of (perhaps spintronic-based) “classical” reversible computers for fast, low
power, reversible microprocessors.

The primary reason to study universal gates is to make the life of the experimen-
talist a little easier. If all quantum computations can be built from a single type of
gate, then an experimentalist need only focus on how to achieve that gate in order
to be guaranteed that any quantum computation is, in principle, attainable. Unfor-
tunately, in practice, it is quite hard to use the Barenco gate as a primitive gate
as it requires a 2-qubit Hamiltonian having three “tunable” parameters, ¢, @ and
0. However, luckily, the BARENCO gate is clearly a controlled-U gate and can
therefore be further decomposed, using the methods of Sect. 2.9, into a sequence
of 1-qubit gates and a single (fixed) 2-qubit gate such as CNOT. Hence, the set of
gates S = {Ry(a), Ry(B), R (y), Ph(§), CNOT} must be a universal set of gates for
quantum computing (and we can even drop one of the rotation gates if we wanted

94 2 Quantum Gates

Table 2.14 Families of gates that are universal for quantum computing

Universal gate family Meaning Noteworthy properties

{Rx, Ry, R;, Ph, CNOT} The union of the set of The most widely used set of
1-qubit gates and CNOT is gates in current quantum
universal circuits

BARENCO(¢, «, 6) A single type of 2-qubit gate The surprise here is that
is universal whereas in classical

reversible computing no 2-bit
classical reversible gate is
universal, in quantum
computing almost all 2-qubit
gates are universal

{H, S, T,CNOT} where Three fixed-angle 1-qubit The surprise here is that fixed

H= % (: 11) is the gates together with CNOT angle gates can form a

Walsh-Hadamard gate, universal set. In fact, the

§— ((1) 0) is the “phase gate”, Solvgy—Kltaev theoren.l [284]
i . implies that any 1-qubit gate

and T = (, explin /. 4)) is the can be approximated to

“m /8 gate” accuracy € using O(log€ 1/¢)

gates from the set
{H, S, T,CNOT} where c is
a positive constant

to). In fact, the set of all 1-qubit gates and CNOT is the most common set of gates
used in constructing practical quantum circuits. Other universal gate sets are known,
summarized in Table 2.14, that involve only fixed-angle gates. However, these do
not typically lead to efficient quantum circuits due to the need to repeat fixed angle
rotations many times to approximate a desired 1-qubit gate to adequate precision.
Moreover, even if a given set of gates is universal, and therefore in principle all that
is needed to achieve any quantum circuit, in practice, certain computations can be
done more efficiently if an “over-complete” family of universal gates is used.

2.7 Special 2-Qubit Gates

The decision to use the set of all 1-qubit gates and CNOT as the universal family
of gates, might not be the best choice depending on your type of quantum com-
puting hardware. Different types of quantum computing hardware are associated
with different Hamiltonians. So while a CNOT gate (say) may be easy to obtain in
one embodiment, it might not be easy in another. For this reason, the next sections
describe several different families of 1-qubit and 2-qubit gates that are more “natu-
ral” with respect to different types of quantum computing hardware. We give rules
for inter-changing between these types of 2-qubit gates so that experimentalists can
look at a quantum circuit expressed using one gate family and map it into another,
perhaps easier to attain, family.

2.7 Special 2-Qubit Gates 95

2.7.1 CSIGN, SWAP*, iSWAP, Berkeley B

The physical interactions available within different types of quantum computer
hardware can give rise to different “natural” 2-qubit gates such as iSWAP, SWAP?,
CSIGN etc. These are typically easier to achieve than CNOT in the particular phys-
ical embodiment, and if maximally entangling, provide no less efficient decomposi-
tions of arbitrary 2-qubit operations.

The four most common alternatives to CNOT are shown below:

1 0 0 O
01 0 O
CSIGN = oo 1 ol
0 0 0 -1
1 0 0 0
1 i 1 i
e _ |0 BOFE) 3= 0
0 L(1-em) L(14em) 0
0 0 0 1
(2.90)
1 0 0 O
. 0O 0 ¢ O
iISWAP = 0o i 0ol
0 0 0 1
cos(%) 0 0 isin(%)
B 0 cos(%) isin(%”) 0
0 isin(%’) cos(%’) 0
isin(%) 0 0 cos(¥)

Figure 2.33 shows the special icons for some of these gates and summarizes their
properties with respect to qubit reversal and their relationship to their own inverse.

2.7.1.1 CSIGN

CSIGN arises naturally in Linear Optical Quantum Computing (LOQC).

CSIGN = 2.91)

SO O~
[=Nel o)
S = O O

S OO

96 2 Quantum Gates

SWAP iISWAP SWAP?
N7 447 N7
(@
N7 4}“7 N7
Backwards SWAP Backwards iSWAP Backwards SWAP?
(@
N7 4}“7 N7
Inverse SWAP Inverse SWAP?
Inverse iSWAP

- - -

11 e

T

Fig. 2.33 Icons for the special quantum gates SWAP, iSWAP, and SWAP“. The first row shows
the basic gate icon. The second row emphasizes that, unlike CNOT, these gates do not have a
preferred “control” qubit and can be inserted “right way up” or “upside down” without it af-
fecting the operation the gate performs. However, whereas CNOT is its own inverse, the same
is not true for iISWAP (for which iISWAPT = iSWAP~! = iSWAP?) and SWAP* (for which
(SWAP*)T = (SWAP?)~! = SWAP™%)

2.7.1.2 iSWAP

iISWAP arises naturally in superconducting quantum computing via Hamiltonians
implementing the so-called XY model.

1000
. 00i0
iSWAP=| (0 (2.92)

0001

2.7.1.3 +/SWAP

SWAP arises naturally in spintronic quantum computing as that approach employs
the “exchange interaction”.

2.7 Special 2-Qubit Gates 97

+ o
I~ NI~
o

SWAP = (2.93)

o O [
WI— =

(@)
[T

S +
ol Rl

- o O O

2.7.1.4 SWAP*

SWAP* also arises naturally in spintronic quantum computing. The duration of the
exchange operation determines the exponent achieved in SWAP?.

1 0 0 0
0 1 1 4 ¢im@ L] _ pime 0
SWAP® = 2 ‘) 2l ‘) (2.94)
0 L(i-em) J(1+em) o
0 0 0 1
2.7.1.5 The Berkeley B Gate
Hamiltonianis H = §2X ® X + Y ®). Gate is U = exp(i’H).
B — ¢l F2X@X+Y®Y)
cos(%) 0 0 isin(g)
0 cos(32) isin(3F) 0
B 0 tsm(%’) cos(%") 0
lsm(%) 0 0 COS(%)
1++/2 0 0 i
_ 0 1 i(14++/2
2-+2 i() (2.95)
2 0 i(l+~2) 1
i 0 0 1++2

2.7.2 Interrelationships Between Types of 2-Qubit Gates

In experimental quantum computing one is faced with having to work with the phys-
ical interactions Nature provides. A priori, there is no reason to expect that the most
accessible and controllable physical interactions should happen to permit a quan-
tum mechanical evolution that can be interpreted as a CNOT gate. However, if one

98 2 Quantum Gates

looks at the Hamiltonians available in different types of physical systems one can
always find 2-qubit gates from which we can, in conjunction with 1-qubit gates,
build CNOT gates. In the following sections we give explicit constructions for how
to build CNOT gates out of the kinds of 2-body interactions that are commonly
available in real physical systems.

2.7.2.1 CNOT from CSIGN

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and CSIGN.

1 000 1 00 0
010 0| n 010 0 ™
000 1[=(=en(3)) 00 1 0] (nen(-5))
0010 000 —

(2.96)
An equivalent quantum circuit diagram is shown in Fig. 2.34.

2.7.2.2 CNOT from +SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and ~/SWAP.

100 0
01 0 0} _ T T b4
3 (e(e) ()
0010
10 0 0
1 j 1 i
0 3+3 2-3 0
1 j 1 i
0 3-7 2+3 0
0 0 0 1
— Ry(-1/2) z R,(x/2)
CNOT CSIGN

Fig. 2.34 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and CSIGN

2.7 Special 2-Qubit Gates 99

R.(7) R.(-m/2)

—R,(%/2) R.(—-m/2) R, (=7 /2) -
CNOT v SWAP v/ SWAP

Fig. 2.35 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates

and +/SWAP

+ o
[STES e
(e}

1
0
(R () ® 12) -

0
0
4
: (112 ®R, (3)) (2.97)

An equivalent quantum circuit diagram is shown in Fig. 2.35.

NI—= =

= D=
© +

B~ B~
- o O O

)

2.7.2.3 CNOT from iSWAP and one SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates, iSWAP, and

SWAP

1000 1000y (1000
010 0 7\ [0 0 i ol [0 010
0001:<12®R>'<_5>)'0i00 01 00
00 10 0001 \oo o1

(G (o) o

An equivalent quantum circuit diagram is shown in Fig. 2.36.

2.7.2.4 CNOT from Two iSWAPs

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and iSWAP.

(e (o5~ D)

- o O O
o = O O
S~ O O

0 0
i 0
0 0
0 1

SO O =
SO = O
S o o~

100 2 Quantum Gates

R,(n/2) X
R, (/2) R (-7 /2 4 R, (-7/2)
CNOT SWAP iSWAP

Fig. 2.36 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates,
iSWAP, and SWAP

— R, (-7 [2)R (7 /2)—

—Ph(n [4)— bR (-n 2} — PR, (-7 [2) R (7 /2)~
CNOT iISWAP iISWAP

Fig. 2.37 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and iISWAP

[=NeNelS
S =~ OO
SO = O
- o O O

b4
: (12 ® Ph(Z)) (2.99)

An equivalent quantum circuit diagram is shown in Fig. 2.37.

2.8 Entangling Power of Quantum Gates

A set of qubits is entangled if the operations performed on one subset of qubits af-
fect the complementary subset of qubits, even though those qubits are not operated
upon directly. For example, imagine partitioning a set of n qubits S into two subsets
A C S and B= S\ A. If operations performed on the qubits in .A affect the state of
the qubits in B then there is entanglement between the qubits in .A and those in 5. In
such a circumstance, the state of the system cannot be written as the direct product
of a state for the qubits in subset .A and a state for the qubits in the complemen-
tary subset B. Such entanglement is unmediated and undiminished by distance and
gives rise to so-called “non-local” effects which Einstein dubbed “spooky action at
a distance”.

The most striking difference between quantum logic gates and classical logic
gates lies in the fact that quantum logic gates can cause the qubits upon which they

2.8 Entangling Power of Quantum Gates 101

act to become more or less entangled, whereas classical gates cannot. In fact, the
entire notion of entanglement is absent in classical computing and classical gates can
neither entangle nor disentangle the bits upon which they act. Thus entanglement is
a quintessentially quantum resource that is only available to quantum computers.
Consequently, entanglement is believed to be essential in achieving the exponential
speedups seen in quantum algorithms without other computational resources, such
as space (memory), time and energy, ballooning exponentially.

Given the apparent importance of entanglement in quantum computing, it is natu-
ral to wonder whether all 2-qubit gates are equally good at generating entanglement
or whether some are better than others? A little thought should convince you that
some 2-qubit gates, such as those built as the direct product of two 1-qubit gates,
cannot generate any entanglement whatsoever. But other gates, such as CNOT, seem
able to map unentangled inputs into maximally entangled outputs. So clearly there
is some variability in the potential for 2-qubit gates to generate entanglement. To
make our study precise, however, we need a way to quantify the degree of entangle-
ment within a state, i.e., we need an entanglement measure, and we need to define
an ensemble of input states over which we would like to average this entanglement
measure. Intuitively, if we pick an ensemble of initially unentangled inputs, i.e.,
product states, then we ought to be able to characterize how effective a given gate is
at generating entanglement by seeing how entangled, on average, its outputs will be
given it received initially unentangled inputs. This is the essential idea between the
notion of the “entangling power” of a quantum gate. Intuitively, the more the output
is entangled, the greater the entangling power of the gate.

2.8.1 “Tangle” as a Measure of the Entanglement Within a State

It turns out that there are many ways one could characterize the degree of entan-
glement within a 2-qubit quantum state. Fortunately, in the case of 2-qubit states,
all the different entanglement measures turn out to be equivalent to one another.
However, no such equivalence is found for entanglement measures of n-qubit states
and attempts to find a unifying entanglement measure for n-qubit states have been
fraught with difficulties spawning a cottage industry of*‘entanglement monotones”
on which many Ph.D. theses have been written. For us, however, here we are con-
cerned only with the entangling power of 2-qubit gates, and so any of the equivalent
2-qubit entanglement measures will serve us equally well.

Specifically, the rangle provides a quantitative measure of the degree of entangle-
ment within a quantum state. Formally, the tangle is the square of the concurrence,
which for a 2-qubit pure state, |/), is given by:

Concurrence(|y)) = |<1/f|'(z>| (2.100)

where |1Z) is the spin-flipped version of |i/). This is defined as |17f) =Y RY)|y*),
where Y is the Pauli-Y matrix, and |4*) is |¢) with its amplitudes complex conju-
gated. Thus, if [y) = a|00) 4+ b|01) +¢|10) +d|11), then |yr*) = a™|00) + b*|01) +

102 2 Quantum Gates

¢*|10) + d*[11) and) = —d*|00) + c*|01) + b*|10) — a*|11). Hence, the con-
currence of a general 2-qubit state |y/) is given by:

Concurrence(a|00) + b|01) + ¢|10) + d[11)) = [2b*c* — 2a*d*| (2.101)

The “spin-flip” transformation maps the state of each component qubit into its or-
thogonal state. Hence the spin-flip transformation is not unitary and cannot, there-
fore, be performed deterministically by any isolated quantum system. So there can
be no such thing as a perfect spin-flip “gate” as such. (If there were it would be a
universal NOT gate.) Nevertheless, the spin-flip transformation is a perfectly legit-
imate mathematical specification of a transformation. One of the properties of the
spin-flip transformation is that, if the 2-qubit state |) happens to be a product state
(i.e., an unentangled state) its spin-flipped version, |J), will be orthogonal to [v).
Hence, the overlap (WJ) will be zero and hence the concurrence of state |y) will
be zero. So unentangled states have a concurrence of zero.

At the other extreme, under the spin-flip transformation maximally entangled
states, such as Bell states, remain invariant up to an unimportant overall phase. To
see this, the four Bell states are given by: Bell states

|Boo) = 5(100) + [11))
|Bo1) = f(I01> + [10))
|B1o) = f(IOO) 111))
|B11) = f(I01> —[10))

(2.102)

Under the spin-flip transformation these states transform, respectively, into:

spln flip —1Boo

spin-flip
— |foi

spin-flip

) —)

)) (2.103)
[Bio) — |B1o)

) —)

spm -flip

—1B11

Hence, the overlap between a maximally entangled state and its spin-flipped coun-
terpart is unity, which is the most it can be, implying that maximally entangled states
have a concurrence of one.

Thus the tangle, as defined above, provides a quantitative measure for the degree
of entanglement within a pure 2-qubit state. Generalizations of tangle to mixed states
and multi-partite states are discussed in Chap. 11.

2.8 Entangling Power of Quantum Gates 103

2.8.2 “Entangling Power” as the Mean Tangle Generated
by a Gate

Having quantified the degree of entanglement within a state, it becomes possible
to quantify the degree to which different gates generate entanglement when acting
upon initially unentangled inputs. Specifically we can define the entangling power
of a gate as follows [559]:

Entangling Power The entangling power of a 2-qubit gate U, EP(U), is the mean
tangle that U generates averaged over all input product state inputs sampled uni-
formly on the Bloch sphere.

Mathematically this is expressed as:

EP(U) = (E(U[¥1) ® [¥2)))jy).192) (2.104)

where E(-) is the tangle of any other 2-qubit entanglement measure such as the
linear entropy (as all the 2-qubit entanglement measures are equivalent to one an-
other), and |y1) and |y,) are single qubit states sampled uniformly on the Bloch
sphere.

Although formally correct, the definition of entangling power given in (2.104)
is not an easy thing to compute. However, since we have fixed the probability dis-
tribution over which the samples |11) and |i;) are to be taken to be the uniform
distribution on the surface of the Bloch sphere, we can build this assumption into
the definition of entangling power and derive a more explicit, and effectively com-
putable, formula for entangling power.

Let’s begin by writing the arbitrary pure states |1) and |y) as

0,
|1/f1)—cos()|0>+e'¢1 sm< >|1> (2.105)

[V2) —cos(e)|0) + €' sm(>|1) (2.106)

For state |1), 0 is the angle between the z-axis and the state vector, and ¢ is the
angle around the z-axis in the x—y plane. Hence, as we desire to compute an average
over the product of such states sampled uniformly over the Bloch sphere, we need
to weight the contributions depending on the values of #; and 6. Otherwise, the
samples would be biased towards product states in the vicinity of the poles. To see
this imagine that the density of states around the circumference of the Bloch sphere
in the x—y plane is N states in a distance 2w R, where R is the radius of the Bloch
sphere, so the density of states at the equator is N/(2wr R). As we ascend the z-
axis, to be unbiased, we still want to sample points around the circumference of a
plane parallel to the x—y plane at height z at the same density. Hence we require
n/(2rr) = N/(2mw R) which implies n/N = r/R = sin(61). Thus we must dilute
states by a factor of sin(f;) as we ascend the z-axis to maintain constant density.

104 2 Quantum Gates

Likewise for |y), giving an overall weighting function of sin(6;) sin(6,). Hence,
we have:

EP(U) = (EU|¥1) @ [¥2)) 1y, 1v2)

L1
= 2tr<(U QU)-2, U'eUh. 5 (L6 - SWAPI,M)) (2.107)

where 16 is the 16 x 16 identity matrix, and SWAP; ;.; is the operator that swaps
the i-th and j-th of k qubits.

1 2w p2w pm opm
2,= —2/ / / / sin(8)) sin(02) (1¥1) (Y11 ® |¥2) (Y2) 2 d62d01 d pod
16z=Jo Jo Jo Jo 2.108)

and the normalization factor 1/(167%) comes from the average of the weighting
function:

2w 2w pm o pw
f / f f sin(0;) sin(02)d62d0 1 dprdpy = 1672 (2.109)
0 0 0 JO

With these definitions, §2), evaluates to the matrix

§ 00 0 0O0O0O0OO0OO0O0OGO O 0 00
0 % 0 0 %£ 00 0 0 00O O 0 0 O
00 £ 0 0 0 0 0 &% 000 0 0 0 0
1 1 1 1
00 0 3 0 0 5 0 0 5% 0 0 5% 0 0 0
0 % 0 0 %£ 00 0 0 00O O 0 0 O
00 0 0 0§ 0 0 0 0O0O0 0 0 00
1 1 1 1
00 0 % 00 5% 0 0 % 0 0 5% 0 0 0
o 00 0 0 000 &% 0 0O0O0 0 £ 00
P~ lo o £ 0 0 0 0 0 £ 0 0 0 0 0 0 O
1 1 1 1
00 0 3 00 4% 0 0 % 0 0 5% 0 0 0
00 00 0O0OO O OO0 § 0 0 0 00
00 0 0 00O 0 0 0O0 & 0 0 & O
1 1 1 1
00 0 % 00 5% 0 0 % 0 0 5% 0 0 0
00 0 0 00 0 &£ 0 0O0UO0 0 £ 00
00 0 0 00OO 0 0 0O0 & 0 0 & O
00 00 00O OO O0O0O 0 0 0 3
(2.110)

2.8 Entangling Power of Quantum Gates 105

Table 2.15 Entangling power of some common 2-qubit gates. Here 1, @ U is a controlled gate
with U defined as U = Ry(a) - Ry(b) - R;(c) - Ph(d), and 1, @ V is a controlled gate with V
defined as V = R;(a) - Ry (b) - R;(c) - Ph(d). Notice that there can be no angle « that would make
the SWAP* a maximally entangling gate

U EP(U)
uv 0
CNOT z
iSWAP z
B %
SWAP 0
SWAP L
SWAP* é sin?(ra)
Ry (a) ® Ry (b) 51 —cos(a — b))
Ry (a) ® Ry (b) ﬁ(— cos(b) — cos(a)(cos(b) + 1)+ 3)
Ry (a) ® R (b) ﬁ(— cos(b) — cos(a)(cos(b) + 1) + 3)
Ry(a) ® Ry (b) ﬁ(— cos(b) — cos(a)(cos(b) + 1) + 3)
Ry(a) ® Ry (D) 51 —cos(a — b))
Ry(a) ® R;(b) ﬁ(— cos(b) — cos(a)(cos(b) + 1)+ 3)
R (a) ® Ry (b) 1= (—cos(b) — cos(a)(cos(b) + 1) + 3)
R;(a) ® Ry (b) ﬁ(— cos(b) — cos(a)(cos(b) + 1) + 3)
R (a) ® R;(b) %(1 —cos(a — b))
1L,eU % =+ % (sin(a) sin(b) sin(c) — cos(a) cos(b) — cos(c) cos(b) — cos(a) cos(c))
LoV L — & (cos(a +) cos(b) + cos(b) + cos(a + ¢))

Although it is non-obvious, an equivalent way to compute EP(U) is from the for-
mula:

5 1 .
EP(U) == — —[tr((U ® U)" - SWAP, 3.4 - (U ® U) - SWAP 3.4)

9 36
+ tr(((SWAPLQ;Q UQ® SWAP])Q;Q . U))+ . SWAP1’3;4
- (SWAP] 2.0 - U ® SWAP 2.2 - U) - SWAP; 3.4)] 2.111)

The entangling power of a gate ranges from 0 for non-entangling gates (such as
SWAP), to % for maximally entangling gates (such as CNOT, iSWAP, and Berke-
ley B). Other gates, such as +/ SWAP and more generally SWAP“, have intermediate
values of entangling power. Table 2.15 lists the entangling powers for some com-
mon types of 2-qubit gates. Typically, the entangling powers of parameterized gates,
such as SWAP* and R, (a) @ R, (b), varies with the parameter values used.

106 2 Quantum Gates

2.8.3 CNOT from any Maximally Entangling Gate

In experimental quantum computing, one often needs to find a way to obtain a
CNOT gate from whatever physically realizable 2-qubit interaction, is available.
It turns out that the ease with which a CNOT can be obtained from the physically
available 2-qubit gate, U is intimately connected to the entangling power of U. In
particular, if EP(U) = 9, i.e., maximal, but U is itself not a CNOT gate, then we
can always create a CNOT gate from just two calls to U via a decomposition of the
form:

CNOT=(A1®A4)-U-(H®1,)-U (2.112)

where H is the Hadamard gate and A and A, are 1-qubit gates.

This result is of practical importance to experimentalists since it may not always
possible to achieve a CNOT gate directly from whatever interaction Hamiltonian is
attainable within some physical context. Nevertheless, this result shows that once
it is understood how a maximally entangling operation can be achieved from the
available interaction Hamiltonians, then we can use it, in conjunction with 1-qubit
gates, to achieve a CNOT.

2.8.4 The Magic Basis and Its Effect on Entangling Power

As you might recall, a quantum gate with unitary matrix U in the computational
basis can be viewed as the matrix V - U - V7 in the “V -basis”. In the case of 2-qubit
gates there is a special basis, called the magic basis, that turns out to several have
remarkable properties [54, 232, 296].

The “magic basis” is a set of 2-qubit states that are phase shifted versions of the
Bell states. In particular, we have:

100) 245 | M1) = 1Boo) 2.113)
01) 24 | Ma) =ilB10) (2.114)
110) 24 | M3) =ilBor) (2.115)
11y 25 My = 1811) (2.116)

where |Boo), |Bo1), |B10), and |B11) are the Bell states defined by:

|Boo) = \/»(|00) +1[11))
[Bo1) = —=(|01) + [10))
o) =7 2.117)
|B10) = f(|00> —[11))
|B11) = f(|01) —[10))

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 107

Fig. 2.38 Quantum circuit

that implements the magic a5 C}
basis transformation. Here M =

S =Ph(%)- R;(%) and

H=27 Ry(~%) 15

Thus, the matrix, M, which maps the computational basis into the “magic” basis is:

M =M){00] + [M2)(01] 4 |M3)(10] + [M4)(11]

1 i 0 0
1o o i 1

=50 o i 5 (2.118)
1 =i 0 0

The reason this basis is called the “magic basis” is because it turns out that any
partially or maximally entangling 2-qubit gate, described by a purely real unitary
matrix, U, becomes an non-entangling gate in the “magic” basis. In other words, no
matter how entangling U may be, M - U - M is always a non-entangling gate, and
hence EP(M - U - MT) =0.

We can make use of this observation in order to find a circuit for any 2-qubit gate
described by a purely real unitary matrix, U, because either M - U - M= A ® B
(one kind of non-entangling circuit) or else is related to a single SWAP gate (another
non-entangling gate). And it is pretty easy to spot which is the case. Therefore, if
we know the simplest quantum circuit implementing the magic basis transformation,
we can then invert M - U - MT=AQ® B (or the similar one involving SWAP) to
find a circuit for U. Luckily, it is easy to find a quantum circuit for the magic basis
transformation. A simple quantum circuit that achieves the magic basis gate is show
in Fig. 2.38.

If that was not magical enough, we can also use the magic basis transformation
to relate a given purely real unitary, via a mathematical procedure involving M,
to gate that is guaranteed to be maximally entangling! Specifically, for any purely
real 4 x 4 unitary matrix, U, then, regardless of its entangling power, the entangling
power of the gate defined by M - U - M is maximal, i.e., %. Amazing!

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition

Given that qubit-qubit interactions are essential to performing non-trivial quantum
computations, it is important to understand how an arbitrary 2-qubit gate can be
decomposed into more elementary gates such as CNOTs and 1-qubit gates. A priori
it is not at all obvious how many CNOTs we will need. As we shall see the answer
depends on the structure of the 2-qubit gate in question, but in no case do we ever
need to use more than three CNOT gates [90, 452, 512, 517].

The key to finding a general circuit that can implement any 2-qubit gate is to use
the magic basis transformation in conjunction with a factorization of an arbitrary

108 2 Quantum Gates

E +

N
%%
N
%

N(a,b,c) =

. N -
A C NV D F

Fig. 2.39 Quantum circuit for the core entangling gate N(a,b,c). Here A = R (=%),
B=R;(5 —2c),C=Ry(2a— %), D=Ry(5 —2b), E=R;(5),and F = Ph(%)

2-qubit gate discovered by Krauss and Cirac. Krauss and Cirac found that any 4 x 4
unitary matrix can be factored into the form:

U= (Al ® A2) X ei(aX®X+bY®Y+CZ®Z) A (A3 ® A4) (2119)

where X, Y, and Z are the three Pauli matrices, and e =1 + M + %(M -M) +
%(M -M-M)+ %(M -M-M-M)+--- is the matrixexponential5 anda,b,c e R
[277, 296, 562]. Since we already know how to find quantum circuits for any 1-qubit
gate, we can always find decompositions for the A; whatever they may happen to
be. We also know that the 1-qubit gates cannot change the entangling power of the
core 2-qubit gate N (a, b, c). So all the action is really concentrated in the 2-qubit
gate N(a, b, ¢), which is equivalent to the following unitary matrix:

N(a,b,c)
e cos(a — b) 0 0 ie'“sin(a — b)
_ 0 e~Ccos(a+b) ie iCsin(a +b) 0
- 0 ie"sin(a +b) e cos(a+ b) 0
ie'®sin(a — b) 0 0 e'“cos(a — b)

(2.120)

A quantum circuit for N(a, b, ¢) is shown in Fig. 2.39. Algebraically, we have:
N(a,b,c)=(EQ® F) -CNOT21.2- (1 ® D) -CNOT; 2.2 - (B®C) -CNOTy ;.2 -
(1® A) where A= R, (—%), B=R.(5 —2¢),C =R,(2a - %), D = R\ (5 —2b),
E=R;(5),and F = Ph(%).

The matrix, U, corresponding to any 2-qubit quantum gate is always unitary,
and the magnitude of its determinant is always unity, i.e., |det(U)| = 1. However,
the ease with which we can implement U depends upon whether its elements are
real or complex and whether its determinant is +1 or one of the other possibilities,
consistent with [det(U)| = 1, namely —1, +i, or —i. We classify the possibilities as
follows:

1. U € SU2") implies U is a 2" x 2" dimensional special unitary matrix containing
real or complex elements and having a determinant |det(U)| = 1, i.e., det(U) =
+1 or 4.

SN.B. the leading “1” in the series expansion of the exponential function is replaced with the
identity matrix, 1.

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 109

2. U e U(2") implies U is a 2" x 2" dimensional unitary matrix containing real or
complex elements and having a determinant |det(U)| = 1, i.e., det(U) = £1 or
=+i.

3. U € SO(2") implies U is a 2" x 2" dimensional special unitary matrix containing
only real elements and having a determinant det(U) = +1.

4. U € O2") implies U is a 2" x 2" dimensional unitary matrix containing only
real elements and having a determinant det(U) = %1.

The number of CNOT gates needed to implement U depends upon which the
class into which U falls.

Using the upside down CNOT, we can write a circuit that implements the core
entangling gate N (a, b, c):

b4 b4
N(a,b,c) = (Rz<§> ®Ph<z))
1 0 0 O
0 0 0 1 b4
0010 '(12®R>’<5 _2b>)
01 0 O
1 0 0 O
01 0 O b4 T
0 010
1 0 0 O
0 0 0 1 b4
00 1 ol (]12 Q RZ(_E)) (2.121)
01 0 O

2.9.1 Entangling Power of an Arbitrary 2-Qubit Gate

An arbitrary 2-qubit gate, U, can be factored according to the Krauss-Cirac decom-
position as U = (A1 ® A2) - N(a, b, c) - (A3 ® A4), where the A are 1-qubit gates,
and N(a,b,c) =exp(i(aX @ X +bY ® Y + cZ ® Z)) is the core entangling oper-
ation. As the entangling power of any gate is not affected by 1-qubit operations, the
entangling power of an arbitrary 2-qubit gate must be determined entirely by the en-
tangling power of its core factor N (a, b, ¢). Using the formulae given earlier, we can
calculate the entangling power of N (a, b, ¢). In particular, one finds EP(N (a, b, c))
is given by:

EP(N(a,b,c)) = —% cos(4a) cos(4b) — % cos(4c) cos(4b)

1 1
BET cos(4a) cos(4c) + 3 (2.122)

110 2 Quantum Gates

- S /) H B H

Fig. 2.40 Quantum circuit sufficient to implement any 2-qubit gate U € SO(4). The unitary matrix
for such a gate is purely real and has a determinant of +1

Notice that this immediately gives us a way of proving that the greatest entan-
gling power of any 2-qubit gate is the largest value that EP(N (a, b, ¢)) can assume,
namely, %. The CNOT, iSWAP, and Berkeley B gates introduced earlier are all max-
imally entangling gates in this sense. However, the SWAP* gate is not a maximally
entangling gate.

2.9.2 Circuit for an Arbitrary Real 2-Qubit Gate

2.9.2.1 Case of U € SO(4)
If U € SO(4) then the elements of U are purely real numbers and det(U) = +1.

Theorem 2.1 In the magic basis, M, any purely real special unitary matrix U €
SO4), can be factored as the tensor product of two special unitary matrices, i.e.,
we always have M - U - MT = A ® B where A, B € SU(2).

A quantum circuit implementing the magic basis transformation (2.118) was
shown in Fig. 2.38. Therefore, every 2-qubit quantum gate in SO(4) can be real-
ized in a circuit consisting of 12 elementary 1-qubit gates and two CNOT gates (see
Fig. 2.40).

2.9.2.2 Caseof U € O(4)
If U € O(4) then the elements of U are purely real numbers and det(U) = +£1.

Theorem 2.2 In the magic basis, M, any purely real unitary matrix U € O(4) with
det(U) = —1, can be factored as the tensor product of two special unitary matrices,
i.e., we always have M -U - M = (A ® B) - SWAP - (1 ® Z) where A, B € U(2)
and Z is the Pauli-Z matrix.

Every 2-qubit quantum gate in O(4) with det(U) = —1 can be realized in a cir-
cuit consisting of 12 elementary gates, two CNOT gates, and one SWAP gate (see
Fig. 2.41). As you will show in Exercise 2.29 this circuit can be simplified further
to one involving at most three CNOT gates.

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 111

_ D Jany
S N N A

N

IV
9]
[

Jan Jan :

Fig. 2.41 Quantum circuit sufficient to implement any 2-qubit gate U € O(4). The unitary matrix
for such a gate is purely real and has a determinant of +1. Those gates having a determinant of
+1 can be implemented using at most two CNOT gates. Those having a determinant of —1 can be
implemented in a circuit of the form shown. In Exercise 2.29 you will simplify this circuit further
to show that an arbitrary 2-qubit gate U € O(4) requires at most three CNOT gates

4 A

Jan)

N D
o— B o 4T

4 A, c —p— b A, F

Fig. 2.42 Quantum circuit for an arbitrary 2-qubit gate, U. By the Kraus-Cirac decomposition
U can be written in the form (A; ® Az) - N(a, b, c) - (A3 ® As). As in the quantum circuit for
N(a,b,c), B=R.(5—2c),C=Ry(2a—7%), D = Ry(5 —2b). The leftmost and rightmost single
qubit gates needed to obtain N (a, b, ¢) can be absorbed into the single qubit gates A, Az, A3, A4

2.9.3 Circuit for an Arbitrary Complex 2-Qubit Gate

An arbitrary 2-qubit gate SWAP* and can therefore have elements whose values are
complex numbers. Every 2-qubit quantum gate in U(4) can be realized, up to an
overall global phase factor, in a circuit consisting of 15 elementary 1-qubit gates,
three CNOT gates (see Fig. 2.42).

2.9.4 Circuit for an Arbitrary 2-Qubit Gate Using SWAP*

Ponder for a moment whether you would expect the quantum circuit for an arbitrary
2-qubit using the CNOT U 1-qubit gates family to require more, less, or the same
number of 2-qubit gates than the equivalent circuits based on different a gate family
relying on a less than maximally entangling gate, such as SWAPY. Since a general
2-qubit gate needs three CNOTs (and CNOT is a maximally entangling gate) one
might expect that one needs more than three SWAP® gates to implement a general
2-qubit gate. Surprisingly, this is not the case! In fact, three SWAP® gates, hav-
ing three different values for the exponents, are sufficient. The proof is by explicit

112 2 Quantum Gates

construction of the central entangling gate of the Krauss-Cirac decomposition:

N(a,b,c)=(Ph(a+b—c)@1s) - <R1<%> ® R, (-%) : Ry(yr))

2(b—c)

- SWAP'™ 77" - (R (7) - R.(—7) ® Ry (7))

2(c—a)

-SWAP “(R() @ Ry(1r) - Rz (—1))

2(a+b) T T
. SWAP!— % -(RZ<E> ®RZ<E>> (2.123)

2.10 Summary

Quantum gates are not always to be thought of in the same way we picture classical
gates. In a conventional electronic circuits we are used to thinking of bits passing
through logic gates. In quantum circuits this notion may or may not be accurate
depending on how qubits are actually encoded within the physical system. If one
is using photons to encode qubits and optical elements (such as beam-splitters or
phase shifters) to perform gate operations, then the qubits are quite literally moving
through the quantum gates. However, if we are using say trapped ions to encode the
qubits, the logical state of the qubits is encoded within the internal excitation state of
the ions, and the ions are held more or less in place. This distinction illustrates that
a quantum gate is really nothing more than a deliberate manipulation of a quantum
state.

In this chapter we introduced the idea of a quantum gate, and contrasted
it with logically irreversible and logically reversible classical gates. Quantum
gates are, like classical reversible gates, logically reversible, but they differ
markedly on their universality properties. Whereas the smallest universal classi-
cal reversible gates have to use three bits, the smallest universal quantum gates
need only use two bits. As the classical reversible gates are also unitary, it is
conceivable that one of the first practical applications of quantum gates is in
non-standard (e.g., “spintronic”’) implementations of classical reversible comput-
ers.

We described some of the more popular quantum gates and why they are use-
ful, explained how these gates can be achieved via the natural evolution of certain
quantum systems, and discussed quantum analogs of controlled and universal gates.
Controlled gates are key to achieving non-trivial computations, and universal gates
are key to achieving practical hardware.

In the theory of classical computing you would interpret a controlled gate op-
eration as implying that you read (i.e., measure) the control bit and, depend-
ing on its value, perform the appropriate action on the target bits. However,
such explicit measurement operations on the control qubits are neither implied
nor necessary in quantum controlled gates. Instead, the controlled quantum gates

2.11 Exercises 113

apply all the control actions consistent with the quantum state of the control
qubits.

We showed that there are several 2-qubit gates that are as powerful as the
CNOT gate when used in conjunction with 1-qubit gates, and gave explicit in-
tercoversions between these types of gates. Such alternatives to CNOT gates
may be easier to achieve than CNOT in specific schemes for quantum com-
puting hardware. For example, iSWAP, SWAP®, and CSIGN are more natu-
rally suited to superconducting, spintronic, and optical quantum computers than
CNOT.

We introduced the “tangle” as a way of quantifying the entanglement within a
quantum state, and used it to define the “entangling power” of a quantum gate.
We also introduced the magic basis and demonstrated its effects on entangling
power.

We ended the chapter with exact minimal quantum circuits sufficient to imple-
ment an arbitrary 2-qubit gate and gave an analytic scheme for converting a given
unitary matrix into a minimal 2-qubit circuit.

2.11 Exercises

2.1 Which of the following matrices are unitary?

1 1
NG
1. ST
V2 V2
1 0 0
2 0 0 1
01 0
1 0 0 0
3 0O 0 0 O
’ 01 0 0
1 0 0 1
0O 0 ¢ O
07 0 O
4. i 0 0 O
0O 0 0 1

Which of those could describe quantum gates that act on qubits? Explain your an-
SWer.

2.2 What is the output state from the quantum circuit shown in Fig. 2.43.

114 2 Quantum Gates

2.3 How would a CNOT gate transform an entangled input state of the form |{) =
\/LE(|OO) + |11))? Are the qubits still entangled after the CNOT has been applied?

Explain your answer by making reference to the definition of an entangled state.

2.4 Show that X does not negate a general quantum state |) = cos(%)|0) +
exp(ig) sin(5)|1).

2.5 Given a qubit whose state is known to lie in the equatorial x—y plane in the
Bloch sphere is it possible to find a quantum gate that will always negate this qubit?
If so, exhibit such a gate. If not, explain why it is impossible.

2.6 The circuit for controlled-controlled-U that was given earlier in this chapter
assumed the existence of a controlled-V gate defined such that V2 = U with V
unitary. Prove, for any unitary matrix U, that such a V always exists, i.e. that there
exists a unitary matrix V such that V2 =U.

2.7 Decompose the Hadamard gate, H = %(} _11), in terms of Ry (6) and R, (¢)
gates.

2.8 The “magic” basis is defined by the matrix.. ..

2.9 Given real numbers x, y, and z and the Pauli matrices defined as

1 0 0 1 0 —i 1 0
o) =) =9 =6 S
(2.124)
prove the identity

XYY +z7) =cos(r)1 + Mi(xx+yY+ZZ) (2.125)
r

where r = /x2 4+ y2 + z2. You might find the following identities to be useful:
cos(@) = cosh(ie) and sin(B) = —isinh(if), and iy/x2+y2+72 =
s ———)

2.10 Prove any 2 x 2 hermitian matrix can be written as a sum of Pauli matrices.
This shows that any 1-qubit Hamiltonian can be expressed in terms of just Pauli
matrices.

0) 4 H

Fig. 2.43 This quantum

circuit applies a Hadamard

gate to the first qubit followed

by a CNOT gate to both 10}

qubits N

2.11 Exercises 115

2.11 Show that a state, |i/), is orthogonal to its antipodal state, |1p1-), i.e., show
(Ylyt) =0.

2.12 Prove that Ry () and Ry (o) rotate a general single qubit pure state about the
x- and y-axes respectively through angle «.

2.13 Show that the NOR gate defined by a NOR b = —(a V b) is, like the NAND
gate, also universal for classical irreversible computing. [Hint: Show that any logical
proposition can be written in terms of just — and V, and that both — and Vv can be
expressed using only NOR gates.]

2.14 One of the most fundamental tasks we might imagine a computer doing is to
decide whether two items in memory are the same and, if so, to output TRUE and,
if not, to output FALSE. If we imagine the items in memory are represented by bit
strings, our task becomes on of determining whether two bit strings are the same.
Show that you can accomplish this task in a circuit that uses only — and A gates.
That is, provide a Boolean circuit for the < (equivalence) relation in terms of just
—and A gates.

2.15 Quantum gates are supposed to be unitary and hence logically reversible. How
then, do you explain why, when you apply a Hadamard gate to state |0) and observe
what state you obtain, that some of the time you find the result to be |0) and some
of the time you find the result to be |1)? How can a Hadamard gate be logically
reversible if it is not producing a deterministic output. Where has our logic failed
us?

2.16 What measurement, or repeated measurements, might you make on a quantum
system in order to verify that the action of a box purported to enact a Hadamard
gate is functioning correctly. The Hadamard gate enacts the transformations |0) —
%QO) + 1)) and |1) — %QO) — |1))? How many measurements would you need
to make to have a 99% confidence in your answer?

2.17 The Hadamard gate, H = Lz (} _11) can be obtained, up to an overall global
phase factor, using one R, gate and one Ry gate, or using one R, gate and one R,
gate. Can you obtain a Hadamard gate, up to an overall global phase factor, using
just one R, gate and one R, gate? If so, exhibit the construction, else explain why

it is impossible.

2.18 The FREDKIN and TOFFOLI gates are not the only (3-bit)-to-(3-bit) univer-
sal gates for reversible computing. For example, consider the reversible gate having
the truth table given in Table 2.16 or, equivalently, the reversible gate represented
by the matrix:

116 2 Quantum Gates

NAND/NOR = (2.126)

— O OO OO OO
[=Nel el oNoNeNe]
=R NeloloNoNoNe]
[=NeNeBal S =Nl
SO O~ OO OO
S oo oo o —~O
[cNeoNeoBoNel Xl
[=NeNelelelolNollS

If the first bit in the input is set to 0, then the gate computes the NAND of the
second and third input bits. Conversely, if the first bit in the input is set to 1, the gate
computes the NOR of the second and third qubits.

Find (a) a classical reversible circuit and (b) a quantum circuit that implements
the NAND/NOR gate.

2.19 If U is a maximally entangling gate, show that a CNOT gate can always
be obtained from U via a decomposition of the form CNOT = (A] ® A3) - U -
(Ry(%) ®1)- U~ where A; and A, are single qubit gates.

2.20 Find the general form for a 2-qubit circuit, which uses only 1-qubit gates
and Berkeley B gates, that will implement an arbitrary 2-qubit gate, U. How many
Berkeley B gates are necessary? How does this compare to the number of CNOT
gates needed for an arbitrary 2-qubit gate?

uyp U2
uzy uz2
matrix for the multiply controlled-U gate shown in Fig. 2.44?

2.21 Given an arbitrary 1-qubit gate defined as U = () what is the unitary

2.22 What are the unitary matrices implied by the circuits shown in Fig. 2.45?

2.23 Determine the eigenvalues and normalized eigenvectors of the following op-
erators built from the Pauli matrices:

@ X+Y+2)

Table 2.16 Truth table of the

NAND/NOR gate, which is a Input bits Output bits
reversible gate containing the
NAND and NOR gates quite 000 111
explicitly 001 101
010 110
NAND/NOR: o011 011
100 100
101 001
110 010

111 000

2.11 Exercises 117

(b) X -Y+Y-2)
©1eX8Yez
(d) !@(X@X+Y®Y) (N B, this is a matrix exponential).

2.24 Construct the unitary matrix, U = e~"*/" of the quantum gate one would
obtain from the Hamiltonian, 7, at time ¢t = 1, assuming you are working in units
of A =1, for each of the following Hamiltonians:

@ H=a X®1,
b H=aX®X,
) H=a XQ@X+BYQ®Y,
d H=aXQY+BYRX,

where X, Y, 1 are Pauli matrices, and «, 8 € R.

2.25 Decompose the following 2 x 2 unitary matrices into sequences of Ry (a),
R.(B),and Ph(y) gates:

® 336 +V5 i =5)
a
—§(1+V5) =336+ V5)
N RNTR B
(b) 2 272 2 272
i
2 2.2 2 2.2

(<£(3+i\/§) %(1—1‘«/5))
C
11 —iv3) 13+iV3)

2.26 Assess the degree to which the following 2-qubit states are entangled by com-
puting their “tangle”, i.e., tangle(|v)) where:

+

Fig. 2.44 A single qubit gate
having an unusual pattern of

control qubits o

118 2 Quantum Gates

+

(b)
(@)

D
D
:
:

(d)
()

Fig. 2.45 Some 2-qubit gates involving “control-on-|0)” CNOT gates and reversed embeddings

(@) |v) = L}|00) + %|Ol) + %m). Is the state entangled?

(b) 1¥) = 52100} + 2=101) + §@|10> + g‘\@m). Is the state entangled?
©) |y) = %mw + zimwl) + 2%/5'10) + %ﬂlll). Is the state entangled?
@ |¢¥)= %|01) — ﬁllO). Is the state entangled?

e) |¥)= —e% |00) — % [10). Is the state entangled?

2.27 Consider the Bloch sphere with perpendicular axes x, y, and z. What 1-qubit
gates, up to overall phase factors, perform the following operations on the Bloch
sphere:

(a) Map the state at the North pole of the Bloch sphere to the state at the South
pole?

(b) Map the state at (x, y, z) = (0, 0, 1) to the state at (x, y,z) = (0, 1,0)?

(c) Map the state at (x, y, z) = (0, 0, 1) to the state at (x, y,z) = (%, %, 0)?

—(L L = (0. — ?
(d) Map the state at (x,y,z)_(O,ﬁ,ﬂ) tothestateat(x,y,z)_(0,1 1,0)?

(e) Map the state at (x, y, z) = (0,0, 1) to the state at (x, y,z) = (%, 7 %)?

2.11 Exercises 119

2.28 Compute the entangling power of the following 2-qubit quantum gates, and
determine which ones are maximal entanglers:

cos(%) 0 0 —sin(%)
sin(%) 0 0 cos(%)
0 cos(%) —sin(%) 0
0 sin(5) cos(% 0
7 0 0 0
N R T
0 (3-%)e 2 (3+5)e % 0
0 0 0 e
cos(%) 0 —sin(%) 0
© sin(%) 0 cos(%) 0
0 cos(%) 0 —sin(%)
0 sin(%) 0 cos(%)
e 0 00
@ |2 2 0, e
0 0 ie 2 0
0 ez 0 0
cos(%) —sin(%) 0 0
© 0 0 cos(f—g) sm(f—g)
© s1n(1”—8) cos(lﬂ—s) 0 0
0 0 —sin(%) cos(%)

2.29 In Fig. 2.41 we show a circuit sufficient to implement an arbitrary real unitary
U € O(4) that uses four CNOT gates. However, this circuit is not in its simplest
form. Prove the following circuit identities and use them to show an arbitrary purely
real unitary matrix having det(U) = —1 can be implemented in a circuit requiring
at most three CNOT gates:

(a) (1®Z)-CNOT3,1.2=CNOT,1.2- (1 Q@ R; () -Ph(%)) (i.e., prove the identity
illustrated in Fig. 2.46)

(b) CNOT 2.2-CNOT3 1.2 - CNOT] 2.2 -CNOT3 1.2 = CNOT3 1.2 - CNOT] 2.2 (i€.,
prove the circuit identity illustrated in Fig. 2.47)

(c) Hence, prove that any U € O(4) with det(U) = —1 can be implemented in a
quantum circuit requiring at most three CNOT gates.

120 2 Quantum Gates

T e
i 7 = Ph(ﬂ/Z)R;(ﬂ)i

Fig. 2.46 A circuit identity that allows a Z gate to be moved through the control qubit of a CNOT
gate

Fig. 2.47 A circuit identity that allows four CNOT gates to be contracted to two CNOT gates

2.30 Let M be the 2-qubit gate that maps the computational basis states |00), [01),
[10), and |11), into the “magic basis™:

100) 24 [M1) = 1Boo) (2.127)
01) 24 | Ma) =i 1B10) (2.128)
110) 24 | M3) =i 1) (2.129)
1) 24 M) = 1810) (2.130)

where |Boo), |Bo1), |B10), and |B11) are the Bell states defined by:

|Boo) = %(IOO} + [11))

|Bot) = —5(101) +110))
(2.131)

|B10) = 75(100) — [11))

1B11) = J5(101) —10)

(a) Verify that the matrix, M, which maps the computational basis into the magic
basis, is given by:

0
(2.132)

~ -~ O

-1

—-i 0 0

(b) Prove thatif U is a purely real unitary matrix then, regardless of the entangling
power of U, the entangling power of M - U - M is maximal, i.e., %.

2.11 Exercises 121

(c) Prove thatif U is a purely real unitary matrix then, regardless of the entangling

power of U, the entangling power of M - U - MT is zero.

(d) Check these claims by computing the entangling powers of U, M - U - M, and

MU - M for U given by:

Vi Vi1
2 2v2 2 242
T B TE
232 2 272 2
U=|22 \/? V2 \/? (2.133)

1 v2 1 vz
2,2 2 2,2 2

\/_g _ L \/_g __1
2 272 2 232

These remarkable properties explain why the vectors | M), |[M>), |[M3) and
| My) are called the “magic basis”.

2.31 The nice properties of the “magic basis”, M, do not, in general, carry over to
complex unitary matrices.

(a)

(b)

(©)

Experiment by generating a complex 4 x 4 unitary matrix, U, at random, and
compute det(V), |det(U)|, EP(U), EP(M - U - M), and EP(M - U - MT). Such
a matrix is most easily generated by guessing a quantum circuit containing a
few Ry, R;, Ph, and CNOT gates. After a few experiments you should convince
yourself that the nice properties of the magic basis do not hold, in general, for
complex unitaries.

Show that det(SWAP%) = (—1)%, rather than &1 as is the case for all real uni-
tary matrices. Based on this, would you expect EP(M - SWAP* - M) to be
maximal? Compute EP(M - SWAP¥ - M) to check your answer.

Given that det(iSWAP) = 1 (just like many real unitaries), would you expect
EP(M - iSWAP - M) to be non-entangling? Compute EP(M - iSWAP - M)
to check your answer.

2.32 Prove each of the following identities:

(a)
(b)

SWAP - SWAP - SWAP = SWAP
SWAP - iSWAP - SWAP = iSWAP

(c) SWAP - SWAP* - SWAP = SWAP*

(d)

SWAPT = SWAP

(e) iISWAP' =iSWAP3
(f) (SWAPY)T = SWAP™@

The first three identities show that it makes not difference which way around you in-
sert a SWAP, iISWAP, and SWAP? gate into a quantum circuit. The last two identities

show that, whereas SWAP and CNOT are their own inverses, iSWAP and SWAP*
are not.

122 2 Quantum Gates

2.33 Invent an icon for the Berkeley B gate. In choosing your icon, decide whether
you need to make it asymmetric so that you can distinguish between embedding the
gate one way around or upside down, or whether this is immaterial. Then express
the inverse of the Berkeley B gate in terms of itself and 1-qubit gates if necessary.

2.34 Invent an icon for the CSIGN gate. In choosing your icon, decide whether you
need to make it asymmetric so that you can distinguish between embedding the gate
one way around or upside down, or whether this is immaterial. Then express the
inverse of the CSIGN gate in terms of itself and 1-qubit gates if necessary. Is the
CSIGN gate a maximal entangling gate?

2.35 What matrix do you obtain when you raise the matrix representing the Berke-
ley B gate to the sixteenth power, i.e., B10?

Chapter 3
Quantum Circuits

[Quantum Computing] “. .. means you can try to answer questions you thought the Universe
was going to have to do without.”
— Bruce Knapp'

A quantum circuit provides a visual representation of how a complicated multi-
qubit quantum computation can be decomposed into a sequence of simpler, usually
1-qubit and 2-qubit, quantum gates. In general, a given unitary matrix, which spec-
ifies some desired quantum computation, will admit many different, but equivalent,
decompositions depending on the set of primitive quantum gates used, and the skill
of the quantum circuit designer in composing those gates in an intelligent way. In
this chapter we shall look the relationship between multi-qubit unitary operators
and their corresponding quantum circuits. You will learn how to compute a unitary
operator from a quantum circuit description of it to compute the unitary operator
corresponding to a given quantum circuit, and how find a quantum circuit suffi-
cient to implement a desired unitary operator. We will also look at the surprisingly
efficient quantum circuits for computing various key quantum transforms such as
quantum versions of the Fourier, wavelet, cosine, and fractional Fourier transforms.

3.1 Quantum Circuit Diagrams

A quantum circuit diagram provides a visual representation of a sequence of quan-
tum gate operations (e.g., see Fig. 3.1).

!Source: Comment made by physicist Bruce Knapp of Columbia University to reporter William
J. Broad recounted in “With Stakes High, Race is on for Fastest Computer of All” from the 1st
February 1983 issue of the New York Times. In the 1980’s Japan and the U.S. were racing to make
faster and faster supercomputers. Knapp was commenting on the capabilities of a new classical
supercomputer he and his colleagues were developing. However, the quotation is even more fitting
for quantum computers.

C.P. Williams, Explorations in Quantum Computing, 123
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_3, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-1-84628-887-6_3

124 3 Quantum Circuits

H T T R(0) —'X

X A H B E’:
D
Y ROH H E’j
T i
z D—Rr.0)H e X Hz*©

Fig. 3.1 A quantum circuit diagram illustrating different types of quantum gates. Single qubit
gates are drawn as boxes on the qubit on which they act labeled with their gate name (H for
Hadamard gate, X and Y for Pauli gates, R, (@) for a rotation gate about the x-axis through angle
0 etc.). Controlled gates are drawn with their controls depicted as circles (white for control-on-|0)
and black for control-on-|1)) and the operation they perform on the target is show as a labeled box.
At the end of the computation certain qubit values are read out. Also shown are the special 2-qubit
gates, CNOT, SWAP, and iSWAP

An n-qubit circuit consists of n horizontal rails, which correspond to the n qubits.
Our convention is to have the most significant qubit on the top rail and the least sig-
nificant qubit on the bottom rail. Time flows from left to right in the quantum circuit,
with the leftmost gates applied before the rightmost gates. If the rail is a single line,
it carries a quantum value (i.e., a pure or mixed quantum state). If the rail is a double
line, it carries a classical bit value. The double rails typically appears immediately
after a qubit has been measured and a classical bit value readout obtained. A mea-
surement gate is indicated by an icon that resembles a meter. This measures a qubit
in the computational basis and returns the result |0) or |1).

Inputs to the quantum circuit are drawn to the left of the horizontal rails, and
outputs from the circuit are drawn to right of the rails. Typically, the output will not
be a product state (i.e., expressible as the direct product of a state for each qubit) but
will, instead, be entangled.

A 1-qubit logic gate on the i-th qubit is depicted as a square box on the i-th rail
labeled with the name of the gate. A two qubit gate acting between the i-th and j-th
qubits is depicted as an icon with end points on qubits i and j. If such a gate is a
controlled gate, the controlling value is depicted as a black or white dot according
to whether the controlled operation is applied when the control qubit is in state |1)
or |0) respectively. The quantum gate icons we use were introduced in Chap. 2 and
merely summarized in Fig. 3.2.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit

A quantum computation on n qubits typically requires several quantum gates to be
applied, sequentially, in parallel, or conditionally, to various subsets of the qubits.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 125

Fig. 3.2 Quantum gate icons ! !

: : vz)
and tl}el.r corfespondmg 1y _ | | oy - - [e]
descriptions in terms of L 0 e
unitary matrices for the most V2 V2

common quantum gates

D G (0 1)RX(9)=[C°S(:) ()]

1 0

L O Y bl

£ 0 sin(-';) cos(

1 0 {? 0

1 V4 — = [0 71) — R,0) — = »
0 e2

1 0 0 0 uyp Uupp 0 0

P —

0 1 0 0 Uy U 0 0

[o) 100wy up () 1o o0 10
w =00 uy up) L 0 0 01
1 000 1 000

0100 0010

“100 01 “lo1 00
0o010) —7X— 0001

The net unitary transformation they perform is computed by composing the uni-
tary matrices of the corresponding quantum gates according to certain rules. These
rules make use of three matrix operations, the dot product, the direct product and
the direct sum. The dot product corresponds to the usual product of two matrices.
However, the direct product and direct sum are taught less often in undergraduate
linear algebra courses. Therefore, in the interests of having a self-contained text, we
include their definitions here.

126 3 Quantum Circuits

Fig. 3.3 The net effect of
gates acting in series is
obtained from their dot

product in reverse order A B .B-A

aQ
1
a

Fig. 3.4 If the matrices
corresponding to two gates —HR.0) R.(6) -
that are applied sequentially ‘ "
commute they may be applied
in either order without it
affecting the overall
transformation they achieve 1/ 1/

3.2.1 Composing Quantum Gates in Series: The Dot Product

The dot product arises when composing the effect of quantum gates that act in series.

Dot Product If A is a m x p dimensional matrix and B is an p x n dimensional
matrix, their dot product, A - B is the m x n dimensional matrix defined by:

a .. aip b11 blj bln Cl1 Cln
A-B=lai ...oap|-f = cij
dml .- Qmp bpi bpi ... bpy Cml --- Cmn
(3.1)

p
where ¢;j = ai1bij +ainbaj + -+ -+ aiphpj =3 i, Gikbij-

If several gates, e.g., A, B, C say, act upon the same subset of qubits, then those
gates must be applied in series and their overall effect is computed using the dot
product. In a quantum circuit (with time flowing from left to right) if A acts before
B and B acts before C, their overall effect is computed by their dot product in
reverse order,i.e., C - B - A, as shown in Fig. 3.3.

If the unitary matrices for a pair of gates that act on the same set of qubits com-
mute, i.e., for gates A and B, A- B = B - A, then the order in which the gates are
performed is immaterial.

Example Taking A = (R;(f) ® 1) and B = CNOT, we have that (R;(0) ® 1) -
CNOT = CNOT - (R;(0) ® 1) and so, as depicted in Fig. 3.4, their order does not
matter.

However, if the unitary matrices for a pair of gates that act on the same set of
qubits do not commute, i.e., for gates A and B, A - B # B - A, then the order in
which the gates are performed affects the overall transformation they achieve.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 127

Fig. 3.5 If the matrices

corresponding to two gates
that are applied sequentially %=
do not commute the order in
which they are performed — R.(6) R.0) -
matters N N

Fig. 3.6 Quantum gates that I L _
act on disjoint sets of qubits A A

can be applied in parallel or 1F —
any either order with no — —

change to the overall
operation performed

1l
I

S
®
[~
®
aQ

Example Taking A = (1 ® R;(6)) and B = CNOT, we have that (1 ® R;(#)) -
CNOT # CNOT - (1 ® R;(0)) and so their order, as depicted in Fig. 3.5, affects the
net transformation that is achieved.

3.2.2 Composing Quantum Gates in Parallel: The Direct Product

If adjacent gates within a quantum circuit act on independent subsets of the qubits,
then those gates can be applied simultaneously in parallel, as depicted in Fig. 3.6.
The operation that computes the net effect of parallel gates is the direct product.

Direct Product If A is a p x ¢ dimensional matrix and B is an r x s dimensional
matrix, their direct product, A ® B is the pr x gs dimensional matrix defined by:

anB apB - ayB
anB a»B --- ayB

A®B = (3.2)
aplB apB --- apgB

Notice that the dimensions of the direct product matrix can grow very rapidly if
we take the direct product of multiple matrices.

An especially common circumstance is when a j-qubit quantum gate, U say,
acts on a subset of the qubits and there is no explicit operation on the other qubits.
Mathematically, this can be regarded as parallel gate operations in which an i-qubit
identity gate (“no-op”) is applied to qubits 1 through i, the j-qubit U gate is applied
to qubits i + 1 through i + 1 + j, and a k-qubit identity gate (“no-op”) is applied to
qubits i + j 4 1 through i 4 j 4 k. As the direct product (“®”) is the mathematical
operation that combines gates in parallel, the net gate, shown in Fig. 3.7, is 1,; ®

128 3 Quantum Circuits

EEU —
= L ® U ®1Ly
k qubits
Fig. 3.8 The direct sum
A @ B describes a controlled
quantum gate having one

control qubit

Fig. 3.7 When a gate acts on

a contiguous subset of qubits, i qubits
and no other gates act, the net

operation can be thought of as

the parallel application of Jj qubits
“no-op”

i p——

A®B

U ® 1%, where 1, is a £-qubit identity (“no-op”) gate, i.e., a 2¢ x 2¢ dimensional
identity matrix.

3.2.3 Composing Quantum Gates Conditionally: The Direct Sum

Sometimes we might want to compute the effect of a gate that is applied condition-
ally. Typically, we have one subset of qubits (called “controls”) whose values dictate
what gate is to be applied to some other subset of qubits (called the “targets”). The
mathematical operation for composing gates conditionally is the direct sum.

Direct Sum If A is a p x g dimensional matrix and B is an r x s dimensional
matrix, their direct sum, A @ B is the (p +r) x (¢ + s) dimensional matrix defined

by:
A 0
A®B= pes 3.3
) (0rxq B) (3.3)

In quantum computing the matrices involved will invariably be square and have
dimensions that are a power of two. The direct sum is the basic mathematical opera-
tion by which controlled (or conditional) quantum logic gates are built. For example,

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 129

Fig. 3.9 The direct sum —
A@® B®C @ D describes a
controlled quantum gate

having two control qubits —

1 M B M = AeBeceD

if A and B are arbitrary 3-qubit quantum gates the operation A @ B means, as shown
in Fig. 3.8, that gate A is applied to the bottom three qubits if the top (control) qubit
is in state |0), and gate B is applied to the bottom three qubits if the top (control)
qubit is in state |1).

Direct sums can be generalized quite easily to allow for multiple controls. For
example, if A, B, C, and D are all 2-qubit gates, then the circuit made from A &
B @ C & D applies A to the bottom two qubits if the top two (control) qubits are in
state |00), and applies B if the top two control qubits are in state |01) etc. The pattern
is best seen in the quantum circuit direct for this direct sum shown in Fig. 3.9.

We can use the matrix dot product, direct product, and direct sum, to translate a
quantum circuit diagram into its implied unitary matrix, and thereby compute the
overall transformation achieved by a quantum circuit. Summing up what we saw
above, the basic rules for mapping from a quantum circuit diagram to its equivalent
unitary matrix are as follows:

e Rule 1—No-op: if no gate is applied at a given step this is mathematically equiv-
alent to applying the identity gate, 1, at that step.

e Rule 2—Sequential: if gates A, B, and C are applied sequentially to a given
subset of qubits in the order A first, then B, then C, the overall unitary matrix is
given by C.B.A, i.e., their dot product in reverse order.

e Rule 3—Parallel: if gates A, B, and C are applied to qubits 1, 2, and 3 simulta-
neously, their net effect is computed from the direct product A ® B ® C.

e Rule 4—Conditional: if qubit 1 is |0) apply gate A to qubit 2 and if qubit 1 is |1)
apply gate B to qubit 2, is given by A & B.

e Rule 5—Permute: if a gate A is to be applied to non-adjacent qubits, permute the
qubits, according to permutation P, so they are adjacent, perform the gate and
unpermute the qubits. The net effect is P~1.A.P.

The exercises allow you to practice using these rules, and to generalize them to more
complicated multi-qubit gates.

130 3 Quantum Circuits

3.2.4 Measures of Quantum Circuit Complexity

In the quantum circuit model of quantum computation, one can characterize “com-
plexity” as the width, size, and length of the quantum circuit. Here width is the total
number of qubits on which the circuit acts (including any ancillae qubits); size is
the total number of gates the circuit uses, and length is the number of serial gate op-
erations after having parallelized the circuit to the maximum extent possible. Most
often we take the length of the quantum circuit as the primary indicator of its com-
plexity.

If the size (or any other complexity measure) of the quantum circuit grows as a
polynomial in the number of qubits, n, i.e., as a function like n* with k > 0, the cir-
cuit is regarded as being of “polynomial-size” and hence an efficient way to perform
the desired computation. On the other hand, if the size of the quantum circuit grows
as an exponential in the number of qubits, i.e., a function like 2", or ", the cir-
cuit is deemed of “exponential-size” and an inefficient way of achieving the desired
computation. Luckily, many useful quantum computations admit polynomial-size
quantum circuits.

For quantum computing to offer a genuine breakthrough compared to classical
computing the minimum circuit complexity needed to achieve some computation
quantumly must be significantly less than that needed to achieve the same computa-
tion classically. In the ideal case the complexity separation will be exponential. That
is, ideally, we would like the quantum circuit complexity to grow as a polynomial
function in the number of qubits, 7, i.e., (’)(nk), whereas the complexity of the cor-
responding classical circuit grows exponentially with the number of qubits, i.e., as
O(e™).

Unfortunately, it is now known that a maximally general quantum computa-
tion on n-qubits (i.e., a fully general 2" x 2" unitary matrix) requires at least
%4" - %2" + % CNOT gates and this result cannot be improved by more than a
factor of two, [453]. Thus, the size of the circuit for a maximally general n-qubit
quantum computation is exponential in the number of qubits and cannot therefore
be implemented “efficiently”.

However, it turns out that many of the computations that arise in practical ap-
plications are naturally unitary (which is lucky), and naturally implementable effi-
ciently in quantum circuits (which is even more lucky). The reason for this is that
the matrix elements of the practically useful unitary matrices are typically highly
interrelated, which means that the matrix as a whole requires less than the full com-
plement of degrees of freedom to specify it completely. Nature did not have to be so
kind to us, but this appears to be the case. Perhaps there is a deeper reason to it, but
there it is.

In the following sections we shall look at some of these specially structured uni-
tary matrices and the polynomially-sized quantum circuits into which they can be
decomposed.

3.3 Quantum Permutations 131

3.3 Quantum Permutations

In Chap. 2 we saw that the actions performed by classical reversible gates can be
represented mathematically in terms of permutation matrices, i.e., square matrices
having a single 1 in each row and column and zeroes everywhere else. Each distinct
n-bit classical reversible gate can be thought of as applying a different permutation
to the 2" bit strings that can be made from # bits. Thus, the classical reversible gates
could equally be called classical permutation gates.

Not surprisingly, as permutation matrices are also unitary matrices, a given clas-
sical permutation gate can also be viewed as a quantum gate that applies the same
permutation to the computational basis states of n-qubits, i.e., |00...0),|00...1),
..., |11...1) that the classical permutation gate applies to bit strings. We call such
quantum gates “quantum permutations” in analogy to their classical counterparts.

There are, however, important differences between classical permutation gates
and quantum ones. Whereas classical permutation gates are restricted to act upon
only classical bit strings, the quantum permutation gates are free to act upon ar-
bitrary n-qubit states, including entangled states and mixed states. This allows the
quantum gates can apply a given permutation to a superposition of (essentially) sev-
eral bit-string inputs at once, which can be put to great advantage in many quantum
algorithms.

The number of possible quantum permutations grows worse than exponentially in
the number of qubits. Crudely speaking, a 2" x 2" permutation matrix can be thought
of as an 2" x 2" identity matrix with its rows (or columns) permuted. As there are
2" ways to permute 2" objects there are 2"! possible quantum permutations. Most
of these correspond to rather haphazard permutations and do not, therefore, have a
useful computational interpretation. But some of them turn out to be quite useful in
manipulating quantum states.

Although a given quantum permutation can be specified by a 2" x 2" permutation
matrix, it is sometimes easier to interpret its action in terms of its affect on a column
vector of 2" amplitudes or its affect on a product state of n-qubits. We will flip back
and forth between interpretations in the examples below.

3.3.1 Qubit Reversal Permutation: Py»

The qubit reversal permutation arises in the circuit for the quantum Fourier trans-
form (QFT) as the final step needed to put the qubits back into the order they had
when they entered the circuit, i.e., with the most significant bit on the top line of the
circuit, and the least significant bit on the bottom line of the circuit. By preserving
the ordering of the qubits the QFT can be treated as a module that may be slotted
into a quantum computation without requiring qubit re-ordering operations on the
preceding or succeeding parts of the computation.

The qubit reversal permutation is defined via its affect on the computational basis
states, i.e., the 2" n-qubit states in which each bit, j;, is 0 or 1:

Pyt {jija-ejn) = lnjn—1-.-j1) (3.4)

132 3 Quantum Circuits

Fig. 3.10 The structure of Pig P Pey
the n =2 to n = 6 qubit g :
reversal permutatlon matrices

P22 P23 ceey

The qubit reversal permutation can be specified equivalently as a unitary matrix,
which is shown here for the case of 1-, 2- and 3-qubits:

1 000
1 0 00 1 0
PZ]Z(O 1)’ P2=10 10 o
00 0 1
1 000O0UO0OTO OO
000O0T1UO0TO 0O (3.5)
001 000TO0O
p._|00 000010
2=lo 10000 0 0
0000O0T1TO0O0
0001 00TO0O0
0000O0O0O0 1

The structure of the qubit reversal permutation matrices can seen more clearly in
Fig. 3.10. Each figure depicts a matrix, with dimensions a power of two, and color-
coded so that the (i, j)-th element of the matrix is white it that element is a 0 and
orange if it is a +1. As we scale up to larger matrices this makes it easier to see that
there is a special structure to these qubit reversal matrices.

Although the qubit reversal permutation is defined in terms of its action on
computational basis states, it is not restricted to acting on only these kinds of
states. For example, suppose a 3-qubit quantum computation returns an unentan-
gled output state |Yq)|¥p)¥c) where [q) = aol0) + aill), [¥p) = bol0) + by|1),
and |¥.) = ¢p|0) + c1/1). Then the operation Pg will reverse the qubits, i.e.,
Pyl o) [Yp) W) = |We) W) |Wa). Hence the name “qubit reversal permutation”. To
see this note that Py = P{n] , and check the amplitudes.

wawive = () o (7)o ()

apboco
apboci
apbico
apbicy
arboco
aybocy
arbico
arbic

3.3 Quantum Permutations 133

apboco
arboco
apbico
arbico
apboci
aybocy
apbic
arbicy

[=NeNeBoloNe el S
S OO~ OO OO
[=NeoNeBoNel =Xl
=N NeloNoNoNeNe]
S oo oo o ~O
[=NeN SeolololoNe]
[=NeNeBal RN
—_ O OO OO OO

coboag
coboay
cobiag
cobra
crboag
c1boay
c1biag
cibia

S OO~ OO OO
=N e NeNoNoNeNel
SO~ OO O oo
—_ 0 O O O O OO

coococococo~
coococo~oo
—_— OO0 Oo~o0oOoO

> OCcocococo—~O
Q9
—_ O

Il
S
7N
[

S

Je(in)e (@)
1 1

= Py (1Y) [¥6) [¥ra) (3.6)
Hence Pg|ya)[¥n)e) = [We)l¥n)a).

A quantum circuit for P»», when n is even, that uses only SWAP (i.e., I14) gates
between adjacent qubits can be obtained from the following factorization:

n/2
Py = [(174 @My - QML @My @Iy QI @ 12)] (3.7)

-1

(SR

n
2

This factorization corresponds to a quantum circuit for (even n) qubit-reversal of
the form shown in Fig. 3.11 Conversely, when n is odd the factorization of P»
becomes:

n—1

nl
Py = [(12®H4®~--®H4)-(H4®---®H4®112)] (L2 QR 11y
\//

n-l n=1 n-l
2 2 2
(3.8)
and its corresponding circuit is shown in Fig. 3.12 More gate-efficient versions of
the qubit-reversal permutation are possible if SWAP gates between non-adjacent
qubits are allowed as in Fig. 3.13. However, physically, it is much more difficult to
achieve SWAP operations that are not amongst nearest neighbor qubits.

Thus, we can interpret the qubit-reversal quite literally when the input state is
a direct product of n single qubit states. In this case, the qubits emerge from the
circuit in the opposite order they went in. But how are we to interpret what this
operation is doing if the input state is not a product state of n single qubit states?

134

Fig. 3.11 Quantum circuit
for the qubit reversal
permutation, when the
number of qubits, n, is even,
using gates that only act on
adjacent qubits. In the
factorization we use the
notation I7T4 for the 4 x 4
unitary matrix corresponding
to a 2-qubit SWAP gate

Fig. 3.12 Quantum circuit
for the qubit reversal
permutation, when the
number of qubits, n, is odd,
using gates that only act on
adjacent qubits. In the
factorization we use the
notation [14 for the 4 x 4
unitary matrix corresponding
to a 2-qubit SWAP gate

1)

[¥2)

13>

[Wa)

1)

W)

[3)

[Wa)

s>

3 Quantum Circuits

¥4

[¥3)

[¥2)

W)

[¥s>

[¥a)

[¥3)

[¥2)

2%}

The best way to see what happens is to work with the column vectors of amplitudes
corresponding to arbitrary superposition states of n qubits. Considering the n = 3

case as an illustrative example we have:

1Y) = apl000) + a1]001) + a2]010) + a3|011) + as|100)

+as|101) + ag|110) +a7|111)

ao
aj
as
as
as
as
ag
as

(3.9)

3.3 Quantum Permutations 135

Fig. 3.13 Quantum circuit W) Wa)

for the qubit reversal

permutation using SWAP

gates that can act between

any pair of qubits
[v2) lvr3)
¥3) ¥2)
29 1)

and the effect of the qubit-reversal Pg on this state is:

aop ao ao
ai as ajl
a a an
_ az | _fas | | a3
Pglyr) = Pg as | a |7 a (3.10)
as as ays
ae as ae
ay asg ay

where |i means to take the bits in the binary representation of integer i, padded
with zeroes on the left to make the number n bits wide (n = 3 in our example), then
reverse the order of these bits, and map the result back into an integer to give the
new index. Thus, for the case of n = 3 we have:

40 — 000 — 000 — 0O
1 — 001 — 100 — 4
2 — 010 - 010 — 2
3—- 011 > 110—> 6
4 — 100 — 001 — 1
5— 101 - 101 = 5
6 > 110 - 011 — 3
J7—= 111 =111 =7

(3.11)

3.3.2 Qubit Cyclic Left Shift Permutation: IT»

The qubit left shift permutation arises in applications such as wavelet pyramid and
packet algorithms where shifting and shuffling of the amplitudes is required. The
operation is defined in terms of its effect on the computational basis states, i.e., the

136 3 Quantum Circuits

Fig. 3.14 The structure of I, I1g I 115, Iy
then =2 (leff)ton=6 [" . e o s 3
(right) qubit cyclic left shift MEE . s e L R
permutation matrices i n " = B :
2" n-qubit states in which each qubit, j;, is 0 or 1:

Iy |jij2 - Jn=1Jn) —> 1j2J3 - - - Jn—1Jnj1) (3.12)

The qubit left shift permutation can be specified equivalently as a unitary matrix,
which is shown here for the case of 1-, 2- and 3-qubits are:

1 000
1 0 00 1 0
”2‘:<o 1)’ =19 10 ol
00 0 1
1 0000UO0TO 0O
000O0T1UO0TO 0O (3.13)
01 00O0O0OTO OO
.0 0000100
27lo o1 00000
0000O0UOTO
000T100TG 0O
0000O0TO0O 0 I

The structure of the qubit cyclic left shift permutation matrices can seen more clearly
in Fig. 3.14. Notice that the qubit left shift operation, IT5», can also be understood as
the operation that performs a perfect shuffie on the column vector of amplitudes. For
example, the 3-qubit left shift permutation, I1g acting on the general three qubit state
ap|000) 4+ a1]001) 4 a2|010) + a3|011) + a4|100) + as|101) 4 ae|110) + a7|111)
shuffles the amplitudes:

ao 1 000O0O0OTO OO a ao
aq 00 0 01 0 O00O0 al ay
a 01 000O0O 0O a a
a3 0000O0T1TO00 a3 as

M- =10 0100000 7 Bl (3.14)
as 0000O0UOTO0 as as
as 00010000 as a
az 00 0 0 0 0 0 1 ay ay

A circuit for the cyclic qubit left shift permutation can, as shown in Fig. 3.15, be
derived from the recursive factorization of the I1r» matrix:

My = (Lynz ® My2) - (Myn-1 ® 17) (3.15)

3.3 Quantum Permutations 137

Fig. 3.15 Quantum circuit
for the qubit cyclic left shift
permutation operation, [Tpn.
This consists of a simple
cascade of SWAP gates

M

where 1, is the 2/ x 2! dimensional identity matrix. Note that ITy is simply the
2-qubit SWAP gate. A SWAP operation that swaps qubits i and j, is given by
SWAP(, j) = CNOT(, j)-CNOT(j, i) -CNOT(, j), where CNOT(i, j) isa CNOT
gate with control qubit i and target qubit j.

The qubit cyclic left shift permutation, ITp», is used in Sect. 3.5 within quantum
circuits for the wavelet packet and quantum wavelet pyramid algorithms.

3.3.3 Amplitude Downshift Permutation: Qn

Another permutation that turns out to be surprisingly useful is the n-qubit downshift
permutation, Q»». This matrix has the form:

01 00 0
0 010 0
0 0 0 1 0
Oon = . (3.16)
: 0
0 00O 1
1 000 0

The structure of the Q»» matrices is seen in Fig. 3.16.

138 3 Quantum Circuits

Fig. 3.16 The structure of [N Ois 03 Ogs
then =2 (leftyton =06 " ™ '
(right) downshift permutation
matrix Qon

Fig. 3.17 The high level]
factorization of the Qo
downshift permutation matrix
in terms of the qubit reversal =~ =
permutation P>» and multiply
controlled X gates where the | Oyl =
control action occurs when 2 N
the control qubits are in state
|0) (as indicated by the open
circles)

In turn, Q7= may be factored as:

Q2n = P2n (Q[(X ®]lznfi) @ 12n_2ni+1]) . P2" (317)

i=1

where X is the NOT gate, 1,; is a 2J x 27 dimensional identity matrix, and Pp» is
the qubit reversal permutation introduced in Sect. 3.3.1.
A quantum circuit for Qo» is given in Fig. 3.17. This instance is specialized to
the case n =5 but the generalization to arbitrary » is obvious.
To understand how this circuit is constructed, it is instructive to follow the argu-
ment for a small value of n. For example, taking n = 4, we can rewrite the expression
(X ® Lpn—i) B Lyn_on—i+1 fori =1, 2,3, 4 as follows:
i=1: (X ® 12471) &) 12)1_2)L—l+1
=XR1®181)

i=2 (X®1y-2) @ Lpn_opn—241
=XQI1RL - (1sd(X®1Q1) - (X®1Q1®1)
=(XQ11®1) - (Controlled-X ®1®1)- (X R1Q1R1)

i= 3: (X ®]].24—3) @ 12n72n—3+1

=X®X®IQD 126 (X)) (X®XQ1®1) (3.18)
=(X®X®1®1)- (Controlled-Controlled-X ® 1)
(XRXQR1®1)
i =4: (X ®]];24*4) @ 12)1 _on—4+1
=X®X®XQ®D) IudX) - (XXQXQ1L)
=(X® X ® X ®1) - Controlled-Controlled-Controlled-X
(XRXQRX®1)

3.3 Quantum Permutations 139

Note that the multiply-controlled X gates have their control qubits negated so that
the gate acts when the controls are in the |0) state. The structure of the circuit for
Qon is then apparent.

3.3.4 Quantum Permutations for Classical Microprocessor
Design?

It is generally understood that, as we attempt to cram more computing power into
less and less space, it is becoming more and more challenging to dissipate the heat
that is generated as a side effect of computation. For example, you may already
have seen chips that need to be cooled actively to handle the heat load they gen-
erate. Electronic engineers still have a few tricks left to solve the problem for the
next few generations of microprocessors such as switching to new materials or new
architectures. Nevertheless, as we discussed in Sect. 2.1.7, at some point they will
inevitably run into the fundamental fact that there is an absolute minimum energy
that must be dissipated by irreversible logic operations whenever information is lost
or erased. At that time the final trick left available to them will be to switch to (classi-
cal) reversible logic as the basis for microprocessor design. However, given that the
action of any reversible logic gate is merely to apply a permutation to its input bits,
and given that such permutation gates can be implemented as quantum circuits, it is
natural to wonder whether a quantum circuit implementation of classical reversible
logic might offer any advantages over a purely classical reversible design?

There are clear differences. Whereas the classical circuit decompositions of clas-
sical reversible gates (i.e., classical permutation gates) may only employ other clas-
sical reversible gates, the quantum circuit decompositions of quantum permutation
gates allow for the use of true quantum gates. This means that even if the inputs
and outputs of classical and quantum permutation gates look similar, i.e., classi-
cal bit-strings in comparison to unentangled quantum computational basis states,
internal to such circuits the manipulations going on can be dramatically different.
In principle, one could imagine a quantum circuit implementation of a classical re-
versible gate, such that the inputs and outputs are always guaranteed to be classical
bit-strings (or unentangled computational basis states) but internal to the circuit ar-
bitrary quantum states may be used. Would such an architecture offer any additional
advantages as a basis for implementation of classical reversible logic devices?

It is early days to say for sure but a few things are clear. We do know that any
circuit for classical reversible logic is obliged to used only classical reversible gates
within it. This is really quite a nasty limitation because it restricts the allowed fac-
torizations of the overall reversible computation into simpler reversible operations.
By contrast, allowing arbitrary 1-qubit and 2-qubit (say) quantum gates is consid-
erably more freeing. In particular, it is known any even-permutation (i.e., one re-
quiring an even number of transpositions) can be achieved in a circuit using only
NOT/CNOT/TOFFOLI gates with no ancillae, whereas any odd-permutation can be
achieved in a circuit using only NOT/CNOT/TOFFOLI gates, but must necessarily

140 3 Quantum Circuits

use one ancilla. That is, the odd permutations can only be implemented reversibly if
we allow extra storage. By comparison, it is easy to see that any permutation (even
or odd) can be achieved in a circuit using only R;, Ry, Ph and CNOT (or ~/SWAP
or iSWAP) gates using no ancillae. In a spintronic implementation, for example, the
R;, Ry, and Ph would be single spin-rotations about the z-axis, x-axis and phase
shifts respectively, and +/SWAP would be the only 2-spin interaction needed and
would be implemented using the spin-spin exchange interaction run for half the
time required for a total spin exchange. Moreover, unlike the classical case, we do
not need any 3-bit elementary gates (such as Toffoli and Fredkin gates) to have a
universal gate set of spintronic reversible computing.

Thus, it is apparent that by relaxing the requirement to remain in the computa-
tional basis for all intermediate steps in a reversible circuit, one can indeed achieve
more space efficient implementations of classical reversible logic. But whether the
degree of advantage is sufficient to warrant such a radical change in architecture is
questionable. Nevertheless, it is conceivable that quantum circuit implementations
of classical reversible logic could be the first practical use of quantum gates. This
is an intriguing prospect since it could provide a natural pathway by which quan-
tum gates may be infused into the mainstream computer chip industry, and stimulate
the marriage of (say) spintronic or photonic logic devices and conventional micro-
processor technology. As reversible gates are the ultimate energy-efficient classical
gates, this could be useful for future generations of classical computer chips, and
could provide a stepping stone to a full quantum computer, but with perhaps more
forgiving thresholds on error correction since the starting and ending states would al-
ways have to be computational basis states even prior to measurements being made.

3.4 Quantum Fourier Transform: QFT

A periodic signal is a continuous stream of data values that eventually repeat after
some point. Such signals are commonplace in a wide variety of fields ranging from
the sciences, medicine, engineering, economics, finance, and applied mathematics.
For centuries mathematicians have striven to understand the nature of periodic sig-
nals and have devised many techniques for extracting useful information from them.
One of the most useful of these techniques is that of Fourier analysis.

Fourier analysis transforms the periodic signal from the “time-domain” (i.e.,
from a sequence of data values that vary over time) to the “frequency-domain” (i.e.,
to a sequence of data values that represent the relative contributions of different fre-
quency components within the periodic signal). The underlying reason why Fourier
analysis works is that any periodic function can, in principle, be expressed as a
weighted sum of sines and cosines of different amplitudes and frequencies. Sur-
prisingly, any weird shaped periodic function can be written in terms of sums of
neat and regular sines and cosines having different frequencies. Knowledge of the
relative contributions of sines and cosines of different frequencies to an unusually
shaped periodic function can sometimes reveal useful information about the under-
lying process that generates the signal.

3.4 Quantum Fourier Transform: QFT 141

3.4.1 Continuous Signals as Sums of Sines and Cosines

Formally, we can write any function f(¢) as a sum of sines and cosines of different
frequencies:

(t)_?0+2ancos<) + b, sm(n:t) (3.19)

where
1 L
0:—/ f@)dt (3.20)
LJ L
—I/L) ("m> dt 3.21)
an—z 7Lf COS T .
= rsin (T an 3.2
_Z/_Lf()sm(T (3.22)

wheren=1,2,3,....

Thus any periodic signal can viewed as a sum of sines and cosines of different
amplitudes and frequencies. The highest frequency component present in such an
expansion sets a limit to the rate with which the signal must be sampled in order to
guarantee that the continuous signal can be reconstructed perfectly from knowledge
of only a finite number of samples of it.

For example, consider the periodic signal shown in Fig. 3.18. This signal is pe-
riodic, with the period boundaries at {—L,+L} = {—2, 42}, and has a sharp dis-
continuity in its first derivative at, e.g., the point = 1, making it quite unlike any
individual sine or cosine function.> Nevertheless, we can approximate this periodic

5

20 ; .

15 ; .

10 ; .
Fig. 3.18 Periodic signal sl]
showing a sharp kink. Here r
the horizontal axis is time, t, i 1
and the vertical axis is the obe v v R S
signal value at that time, f () -10 -5 0 5 10

2This data is synthetic and was generated using the piecewise continuous function f () = 5t + 3
(for —2 <t <1)and f(t) = —13 +9 (for 1 < < 2) and shifted versions thereof.

142 3 Quantum Circuits

signal quite well using a 10-th order truncated Fourier series given by:

Fioy~ — 16(3 4 47 + 72) cos(%t) N (12 — 572) cos(rt)

a4 274
_16(1 — 47 +37%) cos() | 2lcos2rn)
2774 872
1603 4207 + 2572) cos(ZL) N (4 — 1572) cos(3rt)
62574 5474

16(3 — 287 +4972) cos(ZL) 21 cos(4nr)
B 240174 3272

16(1 + 127 +27n2)cos(%) (12 = 1257%) cos(57t)
B 218774 125074

224 — 447 — 1372 + 1) sin(E) (=19 + 117?) sin(rr)
_ 3 + 3

2(—8 — 447 + 3972 + 997 %) sin(3ZL) N (=3 + 4472) sin(27 1)

2774 873
2(24 — 2207 — 3257% + 13757%) sin(3ZL) N (=19 4 9972) sin(37t)
62574 2773
2(—24 — 3087 + 63772 +377373) sin(&L) L (34 1767%) sin(47 1)
240174 6473

28 — 1327 — 35172 +26737%) sin(%ZL) (=19 4 27572) sin(571)
B 21877* 12573
+ 17 (3.23)

16

You can see that even the truncated Fourier series gives a pretty good approximation
to the function by laying the graph of the Fourier series on top of that of the original
signal as shown in Fig. 3.19. The approximation gets better and better the more
terms from the Fourier series you include.

3.4.2 Discrete Signals as Samples of Continuous Signals

In practical applications, where we are monitoring some signal, we general do not
know the exact functional form for the signal. Instead, we are obliged to work with
a finite set of samples of the true signal spaced at regular time intervals. Such as
signal is therefore a discretization of the true (but unknown) underlying continuous
signal. We can however, adapt the idea of the Fourier transform to such a discrete
case. The result is called the discrete Fourier transform (or “DFT”).

3.4 Quantum Fourier Transform: QFT 143

Fig. 3.19 Truncated 10th
order Fourier series of the
periodic signal shown in

Fig. 3.18. Note that an
appropriately weighted sum
of sine and cosines of
different frequencies
approximates the given signal
quite well. Here the
horizontal axis is time, ¢, and
the vertical axis is the signal
value at that time, f(¢)

-10 -5 0 5 10

Fig. 3.20 A natural signal
typically has structure on
many scales simultaneously.
This signal shows a periodic
behavior with interesting
higher frequency structure
imposed upon a lower
frequency oscillation

Naturally occurring signals typically have structure on many different scales. For
example, the signal shown in Fig. 3.20 consists of a lower frequency oscillation on
top of which is added many higher frequency components.

In general, we see not this entire continuous signal, but rather a finite set of
samples from it over some time interval of interest. We can imagine what we are
given is the values of some underlying continuous function f(¢) sampled at the
discrete times jAf for j =0, 1, 2, ... taking on integer values ranging from 1 to N
(the number of sample points in the chosen interval) and At the spacing between
samples, i.e., (fmax — fmin)/ (N — 1). This gives us a snapshot of the function values
at discrete time instants:

F@O={fQ0), fFAAD, fQRAD), ..., f(N = DA} (3.24)

As an example, consider the signal in Fig. 3.20 sampled at 128 points spaced
At = (tmax — fmin)/(N — 1) = (20 — 0) /(128 — 1) seconds apart.

Surprisingly, even though we may be given only a finite number of samples of a
continuous signal, f(¢), at discrete times, it can nevertheless be re-created perfectly

144 3 Quantum Circuits

Fig. 3.21 The same signal as LOF™ g T T +
. . r 3
shown in Fig. 3.20 sampled i I v'** ;
. . [
uniformly at 128 points [I t? i
1 . ¢ i 1 1
05 % R [1]
_ [[1]
4 R LA P !
~ ' oy e 1
= ool 1t . po ;
1] 0.0 [’ . 1,) '+ . |]
! \ I \ ! \ I
S Pt P T s
S R Pl [|
05k i) . It . s s
051 ¢ ' ! b e i !
o 1 ’I\\M{ ll Nea s .| ﬂ.o‘,
[¢ . . ¢ L} , °
L \ "/ [l o‘ 1 f
* 8 &4
-1oL, N~ ¥ ¥]
0 5 10 15 20
t= jAt

from such samples provided the sampling rate used is above a certain threshold,
called the Nyquist limit. In particular, the following holds:

Nyquist Criterion If a signal f(¢) does not contain any frequencies greater than or
equal to w Hz, it is completely determined from knowledge of its samples at evenly
spaced times ﬁ seconds apart.

3.4.3 Discrete Signals as Superpositions

Assuming we have a discrete set of values of some signal, if we are to operate
on them with a quantum Fourier transform we need to relate these signal val-
ues to a quantum state upon which our quantum Fourier transform operator is to
act. To do so, we associate the different time points, jAt, with different eigen-
states, |j), and thereby encode all the signal values at the sampled times in a
superposition such that the signal values are the amplitudes and the time points
are the corresponding eigenstate. Hence, a discrete set of samples of a signal
f@) = {f), f(1A?), fRAL),..., f((N — 1)At)} can be encoded as the state

|¥signal) where:

[Vsignal) = f(0)|0) + fF(AAD[L) + fRAD2) +---+ f(IN — DA?[N — 1)
N-—1
=Y fGAanlj) (3.25)
j=0
If we are using qubits, it is convenient to take the number of sample points, N, to be

a power of two, i.e. N =2". So henceforth we will assume N = 2".
In addition, for |Yigna) to be a valid quantum state, it must be normal-

ized, i.e., Z?/:_OI | f(£A1)|? = 1. Therefore, if the signal values do not happen to
have this property naturally, we simply re-normalize them by dividing the am-

plitudes by the re-normalization factor ,/ Z?’:_ol | f(jAD)|? (see Fig. 3.22). If we

3.4 Quantum Fourier Transform: QFT 145

T
1 t *
f X 3 '
0.10 - i o . f*
é) H 1
= R ! . T 1
1
< 005 t [i *‘ 1
4 roe e [i
~ A [| [} 1
< e 1 s i 1 $
| 1 \ .
I 0.00 v ’ l‘\ :’ |* !

1 ! H 1
~ —0.05 | W ! i i o 1A
— . o ’0 11 o !’ 1] 1

é ! ,,'o’o\t{ \ Moo | M."‘
‘ o c ¢ . 4
-0.10 VL ' I 1
'.v.}' L9 L)
‘ ‘ hd ‘ ‘
0 5 10 15 20
t= jAt

Fig. 3.22 The same signal as shown in Fig. 3.20 re-normalized and sampled uniformly at 128
points at intervals of At = (fmax — fmin)/(N — 1), where fax and fpin define the time interval over
which the function is being analyzed and N = 128 is the number of discrete points at which the
function is sampled within this interval. In our case, we took #,x = 20 and tpip = 0, and N = 128.
The effect of the renormalization is to scale the function values so that the sum of the squares of
the function values at the sample points is unity. This allows us to encode the 128 samples within
an n = log, 32 =7 qubit quantum state

build this re-normalization step into out encoding, a finite set of samples f(z) ~
{fQ0), fF(AAY), fQAL), ..., f((N —1)At)} will be encoded as the quantum super-

position:
-1

N ‘A
hpsignal) = Z A

=0\ i L fean?

In the following sections, for convenience, we will assume our signal samples are
already properly normalized.

[J) (3.26)

3.4.4 QFT of a Computational Basis State

Having understood how to represent a signal in a quantum state, we are ready to
compute the quantum Fourier transform (QFT) of that state. The rule for trans-
forming quantum state vectors under the QFT is exactly the same as the rule for
transforming classical vectors under the DFT. We simply imagine a quantum state
as being defined by a column vector of amplitudes representing the (re-normalized)
signal values. Thus the component of this column vector, corresponding to eigen-
state | j) is defined to transform, under the action of the QFT, as follows:

21
. 1 - jk
QFTo|j) = N > T k) (3.27)
k=0

146 3 Quantum Circuits

Note that the output state now has amplitude smeared across all 2" eigenstates and
the quantity < 57 1s a rational number 0 < —n < 1. This property is important in un-
derstanding the phase estimation and elgenvalue estimation algorithms in Chap. 9.

Furthermore, since j is a base-10 integer, we can re-define the QFT in terms of
its affect of the individual bits which comprise the representation of j in base-2
notation. Specifically, if (j)10 = (j1j2J3--- ju)2, 1.€., if j in base-10 is equivalent to
the n-bit binary string ji j2j3 ... j, in base-2, we have:

DN10=Grjajz--jn)2=Q" ji+2" 2o+ 4+2%)10
=2"Q7 i+ 2+ 27010 =2" 0.1 j2 . ju)2

where 0.j1 /2 ... j, is a binary fraction. Using this notation we can re-represent the
affect of the QFT as follows:

2" —1
1 ; ik
QFTy|j) = > k)
v 2" k=0
| i ,
Z T =1 k2 Ky L Ky)

1=0k>=0 k=0

< L ¢
T @ g
=0ky=0 k=0 =1

Z eZkagZ

=L @0+)
=1

-4

(10) + >0 1)) (10) + > Ot 1))

n

4

.. (|()> + 271012 Jn | 1)) (3.28)

In this form it is apparent that the output state from the QFT of a computational basis
state is a direct product of single qubit states and is, therefore, unentangled! This is a
rather surprising property given how complicated the transformation appears to be.
Nevertheless, the QFT of a computational basis state is unentangled. This alternative
representation of the QFT finds application in many quantum algorithms based on
phase estimation, where the binary fraction 0.1 j2 ... j, = 2]—,, is a binary encoding of
a numerical phase factor that we wish to extract from a superposition. We will come
back to this issue when we discuss the phase estimation and eigenvalue estimation
algorithms in Chap. 9.

3.4 Quantum Fourier Transform: QFT 147

3.4.5 QFT of a Superposition

Using the definition of how the QFT is to transform a single computational basis
state, |j), we can now use the linearity of quantum operations to predict how the
QFT will transform an arbitrary superposition of computational basis states. In par-
ticular, we have:

211 2n—12"—1
1 . . QFT 1 . i ik
i =— At = At)e ™ 7 |k 3.29)
|[¥signal) 7 J;)f(]) i ;) jz_;)fu) k) (

Thus, if we encode a signal in the amplitude sequence of a quantum state, we can
compute the DFT of the signal by applying QFT operator to this quantum state.
The result will be a new state vector that will be peaked in probability amplitude
at frequencies (indexed by computational eigenstates) which contribute the most
strongly to the signal.

Note that in any QFT the peaks are arranged symmetrically. That is, as shown
in Fig. 3.23, if eigenstate |k) in the QFT transformed signal is peaked, then so too
will be the eigenstate |2" — k). This is a normal feature of the discrete Fourier
transform and happens in both the classical and quantum contexts. As an example,
the QFT of the signal shown in Fig. 3.21 has decreasing peaks at computational
eigenstates |3) (and the symmetric |128 — 3) =|125)), |6) (and the symmetric state
[128 — 6) = |122)), and |4) (and its symmetric cousin |128 — 4) = |124)).

The QFT is a very important transform. Most of the known quantum algorithms
showing an exponential speedup, including Shor’s algorithm [455, 458], the phase
and eigenvalue estimation algorithms [2], and the quantum counting algorithm [76],
depend upon the QFT. Moreover, you can use the known (classical) relationships
between the discrete Fourier transform (DFT) and other classical discrete transforms
to infer corresponding relationships in the quantum domain [183]. This is potentially
a source of new quantum transforms.

0.30 T

0.25F]
Fig. 3.23 Plot of probability 020]
(modulus amplitude squared) []
versus eigenstate in the QFT 3 0.15 1
of the re-normalized signal & F]
shown in Fig. 3.22. Note the 0.101 1
symmetric peaks in the QFT.
If there is a peak at eigenstate 0.05F]
|k) there will be a symmetric V\I\.IL J\]\/U]
peak at eigenstate [2" — k) 0.00F, w w w w w e

0 20 40 60 80 100 120

where n is the number of
qubits being acted upon k

148 3 Quantum Circuits

3.4.6 QFT Matrix

In classical computer science, the discrete Fourier transform (DFT) of a signal is
usually computed by way of a matrix-vector operation. In this approach, a vector—
the “signal vector”—encodes a sequence of sampled data values, and the elements
of the DFT matrix encode components of the Fourier transform. These components
are arranged in the matrix so that the dot product of the DFT matrix with the data
vector computes the DFT of the signal vector.

As luck would have it the DFT matrix happens to be a unitary matrix. Thus,
if we imagine representing a signal in the sequence of amplitudes of a quantum
state, |Ysignal),—the “signal state”—the quantum Fourier transform of the signal
state would require us to apply exactly the same matrix that the discrete Fourier
transform applies to the signal vector.

Thus, the QFT transformation specified in (3.29) can be represented, alterna-
tively, as the unitary matrix QFT,. defined in such a way that QF Ty [¥gigna) per-
forms the QFT on the state vector |Yignar). For things to work our correctly, the

elements of this QFT matrix need to be QFTy, = ﬁ{w/ kY k=o0....@1—1) where
is the 2"-th root of unity,’ i.e., w = exp(27i/N) and i = /—1.

1 1 1 1
a)l a)2 w(zn’l)
1 2 4 2(2"—1)
QFTyn := il I o w w (3.30)
i w(zr;—l) w(z'l'—nz . w(2”—1.)(2”—1)

The QFT matrix is highly structured as can be seen from the visual representation
depicted in Fig. 3.24. The matrices in the left hand column depict the real part of the
QFT matrix and those in the right hand column the corresponding imaginary parts.
In each pair, the matrices are shaded so that —#n — “orange”, 0 — “white”, and

N
+ \/127 — “blue”.

This special structure allows the QFT matrix, QFT,, to be implemented in a
quantum circuit whose number of gates that grows only polynomially in n. This
is exponentially more compact that the minimum size quantum circuit needed to
implement an arbitrary unitary matrix of the same dimensions, i.e., 2" x 2". This
economy of gate count in implementation is critically important to achieving effi-
cient quantum algorithms.

Note that, as the QFT matrix is unitary, no information is lost in taking the Fourier
transform of a signal, because the signal can always be recovered by applying the
inverse QFT matrix.

3Note that it is purely a matter of convention whether we pick w = exp(4+27i/N), or w =
exp(—2mi/N) since exp(+2mi/N)N = exp(—2mi/N)N = 1. Physicists tend to use the former
and electrical engineers the latter. The two versions of the transform are the inverse of one another.
It does not matter which version we pick so long as we use it consistently.

3.4 Quantum Fourier Transform: QFT

Fig. 3.24 The real (lefr) and
imaginary (right) parts of the
2-qubit to 6-qubit QFT
matrices. The patterning
reveals that the QFT matrices
are highly structured,
allowing them to be
implemented far more
efficiently than random,
maximally general, unitary
matrices of the same size

Re(QFT),)

149

Im(QFT,)

Re(QFTy)

Im(QFTy)

Im(QFT,4)

Im(QFT},)

150 3 Quantum Circuits

3.4.7 QFT Circuit

A quantum circuit for the QFT can be obtained from the factorization given
by (3.31). This shows, if the input to the QFT is a computational basis state, i.e.,
an input of the form |(j)10) = |(j1Jj2--- jn)2), then the output will be an unentan-
gled product state:

QFT) = J%(m +e 1)) (10) + 20T 1)) - ([0) 4 e2TOS I 1)
(3.31)

Thus, the relative phase of each output qubit is controlled by the bit values of a
subset the input bits |ji j2 ... ju). These can be determined via the quantum circuit
shown in Fig. 3.25. In the QFT circuit,

He (11 (3.32)
VAN ‘
is the Walsh-Hadamard gate and

1 0
Rn = (o exp(27ri/2")) (3.33)

is a 1-qubit gate that inserts a relative phase shift of exp(27i/2") between the |0)
and |1) components of a qubit. The backwards inserted controlled- R, gates can be
obtained from the normally inserted controlled- R, gates (i.e., (1 & R,)(in conjunc-
tion with SWAP gates and P»» gates. For example, the 2-qubit QFT showing these

k1)

k)

Fig. 3.25 Quantum circuit for the Quantum Fourier Transform (QFT). If the input is a compu-
tational basis state |jij2...Jj,) the output will be an unentangled product state |ki)|k2) ... |k,)

where |kj) = iz(|o> + 20|, k) = %(\0) + 27 O0-fi-1J|1)), and so on until

|kn) = %(m) + 2012 | 1Y)

3.5 Quantum Wavelet Transform: QWT 151

extra embeddings explicitly is as follows:

Ui=H®1)

Uy =SWAP; 3,2 - (1 ® Ry) - SWAP; 50

Us=(1® H) (3.34)
Uy = Py

QFT =Us - Us - Uy - Uy

Multiplying out the gates, you will find that the 2-qubit QFT circuit performs the
following transformation:

QFTyj1j2) = (10) + ¥ (22D |1)) @ (|0) + 2012 +02270) 1)
= (|0) + 2 O2|1)) ® (|0) + 271 O7122)|1)) (3.35)

Likewise, the 3-qubit QFT showing these embeddings explicitly is given by:

U=(H®1®1)
U =SWAP; 2.3 (1 D R2) ®1) - SWAP 2.3
Us = Py - SWAP; 2.3 - (1 ® (1 @ R3)) - SWAP 2.3 - Py3
Uy=1QH®1)
Us =SWAP; 3.3 - (1 ® (1@ Ry)) - SWAP; 3.3
Us=(1Q1Q H)
U7 = Pys
QFTy: =U7-Us-Us -Us - Uz - Uy - Uy

(3.36)

Multiplying out the gates, you will see the 3-qubit QFT performs the transformation:

QFTy |j1jajs) = (10) + X702 D |1)) @ (0) + 27122 455279 1)
® (]0) + eZﬂi(j12_1+j22_2+j32_3)|1>)
= (|0) + 20| 1)) @ (10) 4 27O 20| 1y)
® (]0) + eZﬂi(O‘j1j2j3)|1>) (3.37)

3.5 Quantum Wavelet Transform: QWT

The idea of a wavelet transform is to re-represent a signal or time-series as a sum of
scaled and shifted versions of a fundamental function called the “mother wavelet”.
The scaling and shifting is performed in such a way that the derived “daughter

152 3 Quantum Circuits

wavelets” form an orthonormal basis* for the set of all square integrable real valued
functions. A wavelet decomposition of a signal is similar, therefore, to a Fourier de-
composition in that we write the signal as a sum of orthonormal basis functions. In
the Fourier decomposition these are the sines and cosines, but in a wavelet decom-
position they are the daughter wavelets of some mother wavelet. However, unlike
the Fourier decomposition the wavelet decomposition is not unique. There can be
many different mother wavelets, leading to different daughter wavelets and hence
wavelet representations of a given signal. Moreover, whereas sines and cosines are
highly localized in frequency but spread out in space, the daughter wavelets are
localized in both frequency and space, on scales different for each daughter. This
locality property of wavelets, and the freedom to pick the mother wavelet, makes
the wavelet representation ideal for describing aperiodic, and especially jagged, sig-
nals such as electrocardiograms, and seismic waves. With the appropriate choice
of mother wavelet, a complicated signal can often be represented as a sum of just
a handful of daughter wavelets, whereas its Fourier series may require dozens of
terms. This makes the signal representation very sparse and helps accelerate signal
processing operations.

3.5.1 Continuous Versus Discrete Wavelet Transforms

As in the case of Fourier transforms, there are both continuous and discrete ver-
sions of wavelet transforms. The main difference is that whereas the continuous
wavelet transforms employ daughter wavelets that can be shifted and scaled over a
continuum of values with respect to the mother wavelet, the discrete wavelet trans-
form uses daughter wavelets that are shifted and scaled over only a discrete set of
values. Of special interest to us is when such shifting and scaling operations are
performed over powers of two. Thus, if the mother wavelet is the function, 1 (x)
(say), a family of the daughter wavelets, with scaling in powers of two, could be of
the form v j (x) = 2724 (277 x — k) where j and k are integers. Thus, any square
integrable function, f(x) can then be expanded in the form:

F) =) ciptrji(x) (3.38)
J.k
where
Yie(x) =271y 27 x —k) (3.39)

where j and k are integers and where the cj; = f)Yk (x)dx are called wavelet
coefficients.

4An orthonormal basis for a vector space is a set of vectors such that the overlap between any pair
of distinct vectors is 0, i.e., {¥;|¥;) = 0, iffi # j, and the overlap of a vector with itself is 1, i.e.,

Vi, (Yili) = 1.

3.5 Quantum Wavelet Transform: QWT 153

In this case the resulting family of discrete wavelet transforms can be represented
as sparse 2" x 2"-dimensional unitary matrices, which can be factored into quantum
circuits whose size is polynomial in n. The wavelet transform of a signal can be
affected via a matrix-vector operation in which the vector (containing 2" samples
of some signal) can be represented in terms of the sequence of 2" amplitudes that
define some n-qubit pure state. Thus, by focussing on the 2" x 2" dimensional DWT
matrix (from classical computing) we can make a very easy transition from the
classical domain to the quantum one.

3.5.1.1 Daubechies Wavelets and Quadrature Mirror Filters

Of the many possible families of discrete wavelets, the family invented by Ingrid
Daubechies in the late 1980s is especially useful [126—131]. Daubechies wavelets
are orthogonal and have compact support, but they do not have a closed analytic
form. Moreover, the lower order Daubechies wavelets are not differentiable every-
where and have a rather spiky appearance, whereas the higher order Daubechies
wavelets are relatively smooth. To create a particular Daubechies wavelet one begins
by designing a so-called “quadrature mirror filter”. In signal processing, a “filter”
can be thought of as a transformation of each signal value, taking account of nearby
signal values, and weighting the contributions mostly around the signal value being
transformed. The precise way the weighting is done is controlled by a set of parame-
ters called “wavelet filter coefficients”, which determine the type of mother wavelet.

Mathematically, one can model the action of a quadrature mirror filter as a
“matrix-vector product” in which the “vector” is a column vector of signal values,
and the matrix has rows whose elements correspond to the wavelet filter coeffi-
cients. A quadrature mirror filter uses two sets of inter-related wavelet filter coeffi-
cients, {co, c1, ¢2, c3} and {c3, —c2, ¢1, —co}, which are designed so that one filter
({co, €1, 2, c3}) gives a strong response to a smooth signal and a weak response to
a rapidly varying signal, and the other filter ({c3, —c3, c1, —co}) gives a strong re-
sponse to a rapidly varying signal and a weak response to a smooth signal. These
contrasting properties are the motivation behind the use of the term “mirror” in
the name “quadrature mirror filter”. By embedding these quadrature mirror filters
aligned in adjacent rows of a matrix, and then staggering the pattern two columns
over each time it is repeated, we can make a filter that has the effect of partitioning
an input signal into two bands. One band describes the slow frequency (smooth) be-
havior of the signal, whilst the other describes the high frequency (wiggly) behavior
of signal. What makes this division worthwhile, is that we can often then go on to
sub-sample each band separately, and thereby throw out much of the data from the
original signal, without affecting our ability to reconstruct the original signal from
the (now decimated) sub-bands to a very good approximation.

The different members of the family of Daubechies wavelet arise from dif-
ferent choices of quadrature mirror filters, which amount to different choices of
mother wavelet. The simplest class of Daubechies wavelets are the Daubechies D™

154 3 Quantum Circuits

wavelets—so-called because they use four different parameters (called “wavelet fil-
ter coefficients”) in the quadrature mirror filter. Hence, the general structure of the
Daubechies D™ matrix is:

co ¢t ¢ ¢c3 00 0 0 0 0 0 00 O 0 0
c3—c2c1—cg 0 0 0 0 0 O 0O 0O O 0 0
0 0 co ¢y 2 c3 0 0 0 0 0O OO 0 O O
0 0 ¢3—crci—cg 0 0 0 00 00O 0 0 O
0 0 0 0 cgci ¢ca c3 00 0 00 0 0 O
0 0 0 0 ¢c3—c2ci —c9g 00 0 00 0 0 0
0 0 00 0 0 .. 0 00 0 0 0
pP=]l0 0 0 0 0 O .0 00 0 0 0
0000 00O 0 0 ... 0 0 0 0
000000 0 0 ... 0 0 0 0
O 0 0 0 O 0 0 0 0 0 0 0 ¢ c1 2 c3
00 00O O 0 0 00 0 0 c3—c2c —co
c2c3 000 0 0 0 0 0 0 00 0 ¢ c1
ci—=c0 0 00 0 0 0 0 0 0 00 0 35—
(3.40)

Notice that the filters alternate from row to row, and step two columns to the right
every other row. Moreover, as the D matrices are applied, typically, to signals
having 2" samples, the final two rows always have a few wrap around elements
in the bottom left corner of the matrix. The net effect of D™ when applied to a
column vector of signal values, is to interleave two filters—one that responds to
smooth signals (and suppresses wiggly ones) and the other that responds to highly
oscillatory signals (and suppresses smooth ones). Therefore, if we were to shuffle
the elements in the transformed column vector, we could separate the signal into
a description in terms of its smooth components and one in terms of its wiggly
components. In the following discussion, if we know the D® wavelet kernel is
to act on an n-qubit state, i.e., a column vector if 2" amplitudes or on a 2" x 2"
dimensional density matrix, we indicate this with a subscript as in Dg,f).

The D™ wavelet kernel is just one of the family of Daubechies wavelets. Other
possibilities are the Daubechies D©, D® DUO D2 wavelets,> which as
you might guess require 6, 8, 10, ..., 22 wavelet filter coefficients respectively.

3.5.2 Determining the Values of the Wavelet Filter Coefficients

So much for the structure of the D® wavelet kernel and its quadrature mirror filter.
But what values are we to use for the wavelet filter coefficients, cg, c1, ¢2, ¢3?

It turns out that the values of the wavelet filter coefficients are determined by a
set of constraint equations that follow from the properties we require our wavelet
transform to possess. Specifically, if we are to be able to reconstruct a signal from

SN.B. The superscript is always an even number.

3.5 Quantum Wavelet Transform: QWT 155

its wavelet transform, then the wavelet kernel matrix needs to be invertible. This
is achieved by requiring the wavelet kernel matrix to be orthogonal. In this case,
the inverse matrix is simply the transpose. Thus, if the 4-qubit D® wavelet kernel,

D;P, is given by:
co ¢ 2 c3 0 0O 0O O 0 O O 0 0O O O O
¢z —cpcp—cg 0 0O O OO O O O O O O O
0 0 ¢ ¢cf 2 c3 0 0 0 0 O O O O O O
0 0 3 —c2c¢cip —c0o 0O 0O 0 O 0 0O O O O O
0 0 0 0 ¢ ¢ ¢2 c3 0 O 0 O O O O O
0 0 0 0 ¢3—c2¢c1 —cg0 O O O O O O O
0 0 00 0 O ¢ ¢ 2 c3 00 0 0 0 O
D(4) 0 0 0 0 0 0 ¢3—cpct —cg0 0 O O O O
22710 0 0 0 0 O O O ¢ ¢ 23 0 0 0 O
0 0 000 0 0 0 ¢3—cpcp—c90 0 0 O
0 0 0 0O0O 0 0 0 0 0 ¢ ¢ 2 ¢35 0 0
0 0 000 0 0 0 0 0 ¢c3—2c1 —co0 O
0O 0 000 0 0 0 0 0 0 0 ¢ c1 2 c3
0O 0 0 0000 0 0 0 0 0 ¢3—c2ci —co
¢ c3 00O O 0O 0 0 0 0 0 0 0 0 ¢ c1
cit—¢cg 0 0 0 0O O OO O O O 0 0 ¢3—
(3.41)
its transpose is given by:
co c3 0O 0 OO 0O 0 0 0 0 0 0 0 2 c
ct—c2 0 0 0 OO O O O 0 O O 0 3 —co
¢ ¢ ¢ c3 0 OO O O O O O 0 0 0 O
c3 —cgcg —c2 0 0O OO O O O O O 0 0 O
0 0 ¢ ¢f ¢c9 3 0 0O 0 O O O O O O O
0 0 3 —cpcf =20 0 0 O O O O O O O
0 0 0 0 ¢2 ¢c1 ¢c9g c3 0 O 0 O O O O O
(D(4))T= 0 0 0 0 ¢3—cpcy —c20 O O O O O O O
24 0 0 0 00O O ¢ ¢ ¢cogc3 0O 0 0 0 0 O
0O 0 0 00O O ¢3g—cocy —c20 0 0 0 0 O
0 0 000 0 0 O ¢ ¢ ¢ 3 0 0 0 O
0 0 0 00 0 0 0 ¢3—cpecg —c20 0 0 O
0 0 0 000 0 0 0 0 ¢c2 ¢ ¢ c3 0 0
0O 0 0O 0O0OO0O 0 0 0 0 ¢3—cpcy —20 0
0O 0 0 0 O 0O 0 0 0 0 0 0 ¢ 1 ¢ c3
0O 0 0o 000 0 0 0 0 0 0 ¢3—coc1 —

(3.42)

@) @
24 24 > 24
(D;P)T = 1, the identity matrix, which can only be true if the diagonal elements

and, for the matrix (D\;)T to be the inverse of matrix D we require D

of D;‘) . (D;P)T are all 1’s and off-diagonal elements are all zeroes. Taking the dot

156 3 Quantum Circuits

product of D@ and (D™)T we obtain a matrix of the form:

4 4

24
0(2)+c]2+c§+c§ 0 cocy +cic3 0 0
B 0 c%+c%+c§+c% 0 L0
coc2 + c1c3 0 cg+c%+c§+c§ 0

(3.43)
This matrix is supposed to be the identity matrix, which implies we need to satisfy
the constraints:

gttt tea=1 (3.44)
cocy +c1e3 =0 (3.45)

In addition, for the Daubechies wavelets, we also want all moments up to p-th order
to be zero. If we map the wavelet filter coefficients to the Fourier domain as in:

20—1
H(w) =) cje'’” (3.46)
j=0

then the constraint on the moments up to p-th order being zero amounts to requiring:

0HY (w)

dw®

=0 (3.47)

W=TT

fora =0,1,2,...,(p — 1). In particular, for the Daubechies D® wavelets p=2
and the implied constraints are therefore:

H(w) = co+ c1€'® + c2¢™ + ¢3¢ (3.48)
OH . : :
@) =ie'®ci +2ie?“cy + 3ie’ 3 =0 (3.49)
P
aHZ . . ,
(0)) — _ela)c1 _ 46'2le2 _ 9e3lwc3 =0 (350)
002 |,y
IH? : : -
(@) = —ie'®c; — 8ie?“cy — 27ie¥ 3 =0 (3.51)
0 |y

Solving the orthogonality constraints (as in (3.44)) and the moments constraint
(as in (3.48)) for the c; determines the values of the wavelet filter coefficients,
{co, 1, c2, c3}. In general, there are multiple sets of solutions for the c¢;. One such

3.5 Quantum Wavelet Transform: QWT 157

|00000100) in QWT~! basis |00001100) in QWT™! basis
0.2 03
0.2
0.1
0.1
0 0
-0.1
-0.1
-0.2
0 50 100 150 200 250 0 50 100 150 200 250
|00011100) in QWT~" basis |00111100) in QWT ™' basis
0.4
0.3 0.4
0.2
01 0.2
0 0
-0.1
_02 -0.2
-0.3 -0.4
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 3.26 One can visualize the shape of a wavelet by running a delta function through the inverse
wavelet transform

solution is:

1443

co =
0 WG
3443
= ———
42 (3.52)
3-43
)= ——
2 WG
1-3
c3 =

42

Having found values for the wavelet filter coefficients, we can now see, as shown
in Fig. 3.26, what wavelets look like by applying the inverse of the wavelet kernel
matrix (given by (3.42)) to one of the computational basis states. Using the afore-
mentioned values for the wavelet filter coefficients, Fig. 3.27 shows the structure if

the Dg,f) wavelet kernel matrices for n =2 to n = 6 qubits.

3.5.3 Factorization of Daubechies Dg,:) Wavelet Kernel

Next we turn to the factorization of the Daubechies Déi) wavelet kernel into 1-qubit
and 2-qubit unitaries that are easily interpretable as quantum gates. We begin by

158

Fig. 3.27 The structure of
the Daubechies quantum
wavelet kernel transforms

4 4 4
Déz) . D;), D§4) (top row)
and D D D;‘;) (bottom

2577726
row)

3 Quantum Circuits

n=4

defining the single qubit gates Co and Cj:

_~(€3
Co=2 (Cz

DY = (1,1 ® C1) - Qo - (Tpu1 ® (NOT - Cp))

—C)
3
)
1
o
where the values of ¢, c1, ¢p, and c¢3 are as defined in (3.52). With these definitions,

as you will show in Exercise 3.13, we can factor the Daubechies Dg,t) wavelet kernel
matrix as:

(3.53)

(3.54)

where 1,.-1 is the 2n=1 % 2n=1 dimensional identity matrix, and Qo is the 2" x 2"-
dimensional downshift permutation matrix described in Sect. 3.3.3.

3.5.4 Quantum Circuit for Dg,‘,) Wavelet Kernel

To obtain the quantum circuit for the Dg,t)

torization given in (3.54). This gives Dgﬁ)

shown in Fig. 3.28.

wavelet kernel, we can interpret the fac-
in terms of Qo» and single qubit gates as

Expanding out the definition of Q,» we obtain the quantum circuit shown in

Fig. 3.29.

3.5.5 Quantum Circuit for the Wavelet Packet Algorithm

As we mentioned above, a single application of the wavelet kernel transform, splits a
signal into a coarse description and a fine description, but these two representations

3.5 Quantum Wavelet Transform: QWT 159

Fig. 3.28 The high level
factorization of the Dg,f) B [
wavelet kernel in terms of the
downshift permutation Qo»

and single qubit gates

) :
405 = 40

4 L 5 Tﬁx L
_ L —C X

4D = Py — X Py

4 L -] fi

4 F HdCHXH HX e b

Fig. 3.29 Quantum circuit for the 2" x 2" dimensional Dg,l) wavelet kernel

end up interleaved. In classical applications of the discrete wavelet transform, one
therefore usually shuffles the transformed signal to group all the coarse components
together, and all the fine components together, making two vectors half the length of
the original. These vectors are called sub-band signals. One then repeats the process
with new (half-length) discrete wavelet transforms applied to each sub-band inde-
pendently. Depending on how you split and recurse on the transformed signals, one
can achieve the so-called wavelet packet or wavelet pyramidal algorithms. In the
quantum context, these turn out to be phenomenally more efficient than is possible
classically.

A wavelet transform typically involves a wavelet kernel and a scheme for em-
ploying that kernel within a so-called “pyramid” or “packet” algorithm. The wavelet
kernel splits a signal into a part describing its smooth behavior and a part describ-

160 3 Quantum Circuits

Fig. 3.30 The structure of
the Daubechies D™ quantum
wavelet packet trans-

forms PAC,2, PAC,3, PACy4
(top row) and PAC,s, PAC»6,
PACy7 (bottom row)

n=4

ing its detailed behavior, and then stops. Then other operations, i.e., the pyramid or
packet operations, are used to permute the result, and then a wavelet kernel is used
again on a smaller subset of the vector.

Once we have a quantum circuit for the quantum wavelet kernel, it is trivial to
write the circuit for the quantum wavelet packet algorithm (based on this kernel)
using the factorization:

PAC = (112 ® DyV) - (113 ® ITg) -+~ (Lui ® DY) - (Lyn-i-1 @ Iis1)

- (12® DY) - M DY) (3.55)

because operators of the form U @ 1 apply U to one subset of qubits and the identity
(1) to the remaining ones. The structure of the resulting quantum wavelet packet
matrices, based on the Daubechies D wavelet kernel, are shown in Fig. 3.30.

3.5.6 Quantum Circuit Wavelet Pyramidal Algorithm

A wavelet kernel used within a pyramid algorithm splits a signal into a part de-
scribing its smooth behavior and a part describing its detailed behavior, shuffles the
amplitudes to group all the smooth components together, and all the detail compo-
nents together, and then recurses on the newly grouped smooth components (now
half the length of the previous vector acted upon). This pyramid algorithm is best
described by example. Suppose W is some wavelet kernel transform. Then W can
be used within a wavelet pyramid algorithm as follows:

3.5 Quantum Wavelet Transform: QWT

aop
ap
ax
as
as
as
as
as
ag
ag
aio
ari
aln
as
ais
ais

The first level factorization of the wavelet pyramid algorithm is given by:

PYR = (D} @ 121_4) - (Ts ® Ly _5) -~ (DS ® Lyu_51)

S0
do
s1
d
52
dy
53
d3
54
dy
S5
ds
S6
de
57
d7

s//

“(Iiv1 @ Lpn_pit1) -~ ITlpn

p¥

ar

161

(3.56)

(3.57)

The structure of the resulting quantum wavelet pyramid matrices, based on the
Daubechies D™ wavelet kernel, are shown in Fig. 3.31. Thus, just as we can obtain
efficient quantum circuits for the quantum Fourier transform (QFT), so too can we
obtain them for the quantum wavelet transform (QWT) as exemplified here by the
particular case of Daubechies D wavelet kernel and its subsequent use within both

162 3 Quantum Circuits

Fig. 3.31 The structure of n=2
the Daubechies D™ quantum
wavelet pyramid trans-

forms PYR,2, PYR,3, PYR,4

Il
~

i

.‘ulﬁ:li::i'

(top row) and PYR s, s
PYR,6, PYR,7 (bottom row) om
- —
n=>5 n="7
i - 7 I B
- T3 '

wavelet packet and wavelet pyramid algorithms. In all these circuit constructions
permutation matrices play a pivotal role. If viewed from a conventional (classical)
computer science perspective, such permutation matrices correspond to instructions
specifying data movement patterns. Surprisingly, sometimes the data movement pat-
terns that are hard to implement classically turn out to be easy to implement quan-
tumly and vice versa. Moreover, perhaps completely counter-intuitively, the com-
plexity of quantum circuits for the wavelet packet and wavelet pyramid schemes
(which incorporate multiple calls to a wavelet kernel sub-routine) can, after simpli-
fication, be lower than the complexity of the wavelet kernels used within them. So
in the quantum world one can sometimes do more with less! The discrete wavelet
transform is so useful classically it is hard to believe we cannot also exploit the cor-
responding QWT in clever ways quantumly. Part of my motivation for including a
discussion of the QWT in this book is to stimulate others to use it in creative and
productive ways. Two-dimensional extensions of the QWT (and indeed, all other
1D quantum transforms) are discussed in Chap. 10.

3.6 Quantum Cosine Transform: QCT

In classical computing, the Discrete Cosine Transform (DCT) is used widely within
algorithms for video, image, and audio compression [9, 287]. In particular, it is
the cornerstone of the JPEG image , and MPEG video, compression schemes. The
DCT’s popularity comes from the fact that it is able to concentrate most of the
information in a signal into a small number of low frequency components of the
transformed signal. Hence, one need only send these few low frequency components
to be able to reconstruct an image that is indistinguishable (by eye) from the original.
The DCT is similar to the DFT in that they both transform discretely sampled
signals of finite duration or extent into new signals that reveal the frequency contri-
butions to the original signal. However, whereas the foundation for DFT is based on
the idea of Fourier series, the foundation of DCT comes from that of cosine series.

3.6 Quantum Cosine Transform: QCT 163

In a Fourier series one represents a signal of finite extent as a periodic function
of infinite extent built from a sum of sinusoids and cosinusoids of different frequen-
cies and amplitudes such that the function values match the signal values over each
period. However, as the signal value at the beginning of a period is usually different
from the signal value at the end of that period, it very likely that the periodic function
used to represent the signal will have abrupt discontinuities at each period-to-period
boundary. Due to these abrupt discontinuities it typically takes a great many sine and
cosine terms in the Fourier series expansion to obtain a satisfactory approximation
to the original signal.

3.6.1 Signals as Sums of Cosines Only

The cosine series is similar to the Fourier series except that it uses only cosine
functions of different amplitudes and frequencies in the sum used to approximate
a signal. As for Fourier series, the use of cosinusoids means that the function used
to represent a signal of finite extent actually has infinite extent, and therefore has
to be defined beyond the original domain of the signal. However, one has some
flexibility in how one defines the function outside the signal domain. In particular,
the extensions do not have to be periodic replications of the signal. In fact, if we
use discrete samples of a continuous signal, we can choose to make the extension
even or odd about an end point of the signal or about a point midway between an
endpoint and the next point. Different types of DCT (called DCT-I, DCT-I], ...,
DCT-VIII) come from making different choices about how to continue the signal
from one domain to the next, and whether to make the symmetry be based on an
end point or a point midway between an end point and the next point. In cosine
series, the extended function is always chosen to be an even function on the left—
because the cosine function is even—(1 choice) but may be an even or odd function
on the right (2 choices). In addition, the point of symmetry on the left can be an
end point or a point midway between the end point and the next point (2 choices).
Likewise, the point of symmetry on the right can be an end point or a point midway
between the end point and the next point (2 choices). Thus there are 1 x2x2x2 =8
possible ways to define the (functional) continuation of the original signal beyond
its defined domain. These alternatives give rise eight variants of the DCT known
DCT-I, DCT-1I, ..., DCT-VIIL.

3.6.2 Discrete Cosine Transform DCT-II and Its Relation to DFT

The most commonly used DCT is the DCT-II. This has boundary conditions such
that the continuation of the discrete signal values, {xg, x1, ..., xy—1}, are made to

164 3 Quantum Circuits

be an even function on the left about the point n = —% and an even function on the
right about the point n = N — % The classical one-dimensional DCT-II is defined
to implement the following transformation:

N-1
b4 1
Vi = ZO Xn cos(N <n + §>k> (3.58)

The unusual-looking factor of % in the definition of DCT-II come from taking the
symmetry points to be midway between end points and the next points in the ex-
tended signal in either direction.

In this form, there is an surprisingly simple relationship between DCT-II and
DFT (the discrete Fourier transform). One finds that a DCT-II transform of a signal,
S = {xo,x1,...,xny—1}, having N sample values, is related to the DFT transforma-
tion of a signal S’ = {0, x0,0,x1,0,...,xy_1,0,xy_1,0,xy_2,0,...,x1,0, x0},
having 4N sample values. In particular, the first N elements of DFT - §” are exactly
the same as DCT-II - S. As DFT and QFT transforms are defined by identical ma-
trices, this means there is a direct relationship between QFT and this version of the
classical DCT-II. Amazing!

Does this mean we are seconds away from a fast quantum circuit for perform-
ing “QCT-II”, the quantum version of DCT-II? Well not so fast. Unfortunately,
the DFT-II transform as defined in (3.58) is not orthogonal, and hence not uni-
tary. So we cannot use QFT to obtain QCT-II in a straightforward way. However,
there is an alternative way to define the classical DCT-II that inserts coefficients
into (3.58) specifically to make the DCT-II transformation matrix orthogonal and
unitary.

The (classical) orthogonalized version of DCT-II is defined by the transforma-

tion:
N—1
2 T 1
Yk =,/N(xk HEZO Xn COS(N (n—i— §>k) (3.59)

such that «g = % and for all k£ # 0, oy = 1. Unfortunately, if we use this defi-
nition of DCT-II, we no longer have the elegant relationship between the DCT-1I
and DFT that we had using the old non-orthogonalized version. Nevertheless, as
the orthogonalized version of DCT-II given in (3.59) is unitary it is a much better
starting point from which to attempt to construct its quantum counterpart QCT-II.
Moreover, even though the simple relationship with DFT is lost, it turns out that the
orthogonalized version of DCT-II can still be factored in terms of DFT (and hence
QFT) and so the quantum circuit for QCT-II can still employ QFT in its construc-
tion.

3.6 Quantum Cosine Transform: QCT 165

3.6.3 QCTRI, Transformation

We therefore choose to define the Type II quantum cosine transform acting on a sig-
nal having N = 2" sample values as the following transformation of a superposition
representing a (normalized) signal [V/signal) :

|1//signal Z filJ)

N lN 1 1
QCTl _ZZ\/»akcos< <'+§)k)fj|j)

k=0 j=0

(3.60)

with N =2", o9 = and for all k £ 0, ay = 1.

L
V2

3.6.4 QCTY Matrix

Given the definition of QCT}\I, in (3.60) the corresponding unitary matrix that im-
plements this transformation is:

2 b4 1
QCTY = {,/ —oy cos(— (j + —)k) } (3.61)
N N 2 jk=0,1,2,...N—1

with N =2", ap = % and for all k£ # 0, a4 = 1. This definition gives rise to highly

structured unitary matrices for QCT;I, transformations on increasing numbers of
qubits. This structure is best revealed graphically as shown in Fig. 3.32.

Fig. 3.32 The structure of
the unitary matrices
correspondmg QCT22,
QCT23 , QCT (top row) and
QCTY;, QCTH QCTY,

166 3 Quantum Circuits

3.6.5 QCTY Circuit

A quantum circuit for QCTE, relies on the following identity:
Ul - QFT,y - Vay = QCTY @ —QSTY, (3.62)

where QFT, is the Quantum Fourier Transform on a signal of length 2N, U,y and
Von are 2N x 2N dimensional unitary matrices that will be described below, and
—QSTE\I, is the negative of the Type II Quantum Sine Transform, which is analogous
to QCTR, except that it uses sines instead of cosines and always has an odd sym-
metry about the left hand boundary of the signal. Specifically, the unitary matrix
describing the QSTR/ is:

QSTY = <\/Z,Bk sin<1 (j + l>(k + 1))) (3.63)
N N 2 jk=0,1,2,...N—1

with N =2", By = % and for all k ## N — 1, B = 1. Note that the direct sum
on the right hand side of (3.62) implies it is a controlled gate, with the control value
being on the topmost qubit. In this case, when the input state is |1)|y), the output
bottom qubits will contain the QCT% (V).

The V,n matrices are defined as:

1 1
5 0 5 0
o L o L
=], V2 . 2, (3.64)
V2 2
1 1
5 0 -5 0
1 1
5 0 0 0 — 0 0 0
0 % 0 0 0 % 0 0
1 1
0 0 5 0 0 0 7 0
o o o L o 0 0 L
_ V2 V2
=10 o o L0 0 o LI (3-65)
0o 0 L o 0 o —-L o0
V2 V2
1 1
0 5 0 0 0 -5 0 0
1 1
5 0 0 0 -5 0 0 0

167

(3.66)
(3.67)
(3.68)

ﬁ

0001_ﬂ1_0000000
o o - §o Ol_ﬁO ©c o o o o
01_00001_ﬁ00000

l_ﬁOOOOOOI_ﬁOOOO

S o o o YSo S o o
00000000001__J0 _

3.6 Quantum Cosine Transform: QCT

&
£
=
000000000001_ﬁ 2] OOnw_ﬁOOOJ.m_ﬁO
=
©c o o 8 Soc o c o o o o 3
[0) o
o o o oo o o o o o g - O_M_IOOOOO.m_ﬁ
172})
©c So o o o Sc o c o o 8 OOI_AO
2
o o o o o oo o o o m o o o BSe HS e o
-1 3[S Q
© oo oo oo oo o o = O_IOM_IOOQw_ﬁOOOzw_ﬁO
o Soc oo c oo oo oo Sc o)
© oo oo oo oo oo oS %m..v o fSo 3§ o S o o o o o S
©C 0o 0o 0o o oo oo oo oo o-S .W e o 6 - 6 6 6 6 o oo
o
<
[= Mo

Vie
etc.
Uy =

168 3 Quantum Circuits

100000000 O 0O O O 0 0 0
0%000000—%0000000
00%000000—%000000
0003—;00000 0—%00000
oooo%oooooo—%oooo
000003—;000000—%000
0000003—;000000—%00

, .

Um:ooooooo?—fzoooooo-%o
00000000 O O O O O 0 0 —I
00000003—;000000%0
000000‘;—;000000%00
000003—;000000%000
0000%000000%0000
0003—;000000%00000
003—;000000%000000
04000000 % 0o 0 0 0 0 00

(3.69)

where w = exp(2mi/4N) and @ = exp(—2mi/4N) is the complex conjugate of w.

As efficient quantum circuits for the QFT,, are known, we can obtain efficient
quantum circuits any QCT?, if we can find efficient quantum circuits for U2T n and
Van . To this end, the following permutation matrices turn out to be useful:

3.6.5.1 Controlled-One’s Complement

The “One’s Complement” of a computational basis state |x{, x2, ..., x,) is obtained
by NOT-ing each bit individually. A Controlled-One’s Complement only performs
the operation when a control bit is set to |1). Thus, we have:

10, X1, X2, -, Xn) =25 [0, X1, X2, ., %) (3.70)
X0, 22 e X)) =S 11—y, T =0,y L= xy) (3.71)

This operation can be obtained from:

n=log, 2N
COCy= () CNOT (3.72)
j=2

3.6 Quantum Cosine Transform: QCT 169

where CNOT] ., is a CNOT gate between the first and j-th of n qubits. That is,
this is simply a cascade of CNOT gates all having the control on the first qubit.

3.6.5.2 Controlled-Two’s Complement

Let x be the base-10 number corresponding to the n-qubit bit string x1, x2, ..., X,.
“Two’s Complement” of |x) is defined as follows:

10.%) <510, %)

11,0) <=5 11, 0) (3.73)

C-TC
I1,x) — |1,2" —x)
This transformation can be obtained from the unitary matrix:

CTCon =1y @ ((NOT®1°g2N) QN) (3.74)

where 0>, Q4, Qs, ... are permutation matrices of the form:

0 1
Q2=(1 0) (3.75)
01 00
0010
Q=19 0 0 1 (3.76)
1 000
01 000O0TO0 O
001 00O0UO0 O
000 100UO0O0
00 0O0T1GO0UO0O0
%=10 000010 0 @3.77)
00 0O0O0GOT1 0
00 0O0O0O0O0 1
1 0000O0GO0O

that rotate the sequence of amplitudes one position.
3.6.5.3 Controlled-ModularAddOne

10, x) 8910, x) (3.78)

11, x) 8911, x 4 1 mod2”) (3.79)

170 3 Quantum Circuits

This transformation can be obtained from the unitary matrix:
C-MAOyy =1y ® 0O, (3.80)

As you recall, the reason we are interested in the quantum arithmetic operations
C-0C, C-TC, and C-MAO is because they arise in the factorization of the matrices
Von and U2T that are, in turn, used in the factorization of the Type II quantum
cosine transform QCTE,. In particular, we have:

Uly - QFT,y - Vay = QCTY, @& —QSTY (3.81)

Thus, in any circuit implementing U2T ~ - QFTay - Vo, when the top (control) qubit is
set to have the value |0), the alternative factorization on the right hand side of (3.81),
allows us to see that the transformation the circuit will perform will then be QCTY.
This is because, if a unitary matrix of dimension 2" x 2" can be written as a direct
sum of two 2" ! x 2"~ ! unitaries such as “A @ B”, the resulting matrix will corre-
spond to a conditional quantum gate which performs A on the bottom n — 1 qubits
when the top (control) qubit is set to |0), and B on the bottom n — 1 qubits when
the top (control) qubit is set to |1).

3.6.5.4 Quantum Circuit for V5 Using C-OC;y

By inspection, you can see that a V, matrix can be factored as:
Vony =C-0Cyy - (H @ 1y) (3.82)
where H is the 1-qubit Walsh-Hadamard gate, i.e., H = %(1 !)-

1 -1

3.6.5.5 Quantum Circuit for U; y Using C-TCzy and C-MAO,x

The quantum circuit for UZJf 1s considerably more involved. In Exercise 3.15 you

are asked to verify the following factorization for U;N:

Ujy = (C-MAOay)" - Doy - (C-TO)T - Dloy (@) (3.83)

3.6 Quantum Cosine Transform: QCT 171

where
Dyy = Py - NOT® "D @ 1) - (1ay 2 & C) - NOT®"~D @ 1)
Py - (B®1y)
I U
V2 V2
C= i 1
V22
1 1
_|v2 2
B= i i
V2 V2
1 0
Dloy = |:(0 5)) (A1 ® Az)}
1
(3.84)
A =Q)L(j.)
j=n
1
Ay = ® K(j,w)
j=n

where @ is the complex conjugate of w. You should check this factorization for
yourself by doing Exercise 3.15.

Using the given factorizations for Voy, QFT,y, and U2T N> W€ can construct a
complete factorization of the Type II Quantum Cosine Transform, QCT%,, and for
that matter, the type II Quantum Sine Transform, QSTE, from:

Uly - QFToy - Vay = QCTY ® —QSTY (3.85)

Note that QCT% and —QSTRI, are both highly structured unitary transforms and
admit anomalously small quantum circuit decompositions.

172 3 Quantum Circuits

3.7 Circuits for a Arbitrary Unitary Matrices

Automated circuit design tools are indispensable to the modern microelectronics
industry. They span every layer of the design process including the logic-layer,
architecture-layer, layout, fabrication etc. By contrast there are relatively few tools
today to help quantum computing experimentalists in translating desired unitary and
non-unitary operations into explicit quantum gate sequences.

Despite considerable effort being expended on trying to understand the principles
of quantum circuit design we still do not know of any efficient method for finding
the minimal quantum circuit that achieves a given n-qubit quantum computation for
arbitrarily large n. To date, approaches to quantum circuit design have fallen into one
of four categories. The majority of researchers use no formal scheme whatsoever
but instead rely upon ad hoc trial and error, and human ingenuity, to arrive at a
decomposition by hand. This approach is feasible for specially structured unitary
matrices such as the Quantum Fourier Transform [34] and the quantum wavelet
transform [183], because the special structure of the unitary operator reflects a
regular structure in the corresponding quantum circuit.

A second approach is to exhaustively enumerate the space of possible circuit de-
signs of increasing complexity starting from the empty circuit [149, 150]. For each
topologically distinct circuit, a computer finds optimal values for the parameters of
all parameterized-gates in the circuit. In principle, this method is guaranteed to find
the smallest circuit sufficient to implement the desired unitary operator. However,
exhaustive search composed with numerical optimization is computationally expen-
sive because the number of possible quantum circuit topologies grows exponentially
with increasing numbers of gates in the circuit. Hence the method is only feasible
for unitary operators that in fact have compact circuit descriptions.

A third approach uses genetic algorithms [472, 473, 536]. A random population
of circuits is created, and each is scored according to its “fitness” value, which is a
measure of how closely it comes to achieving the desired unitary operator. Pairs of
circuits are selected for breeding in proportion to their fitness and then mutation and
crossover operations are applied to make a new generation of circuits. By iterating
this process one converges on a population of circuits that tend towards implement-
ing the desired unitary operator. For genetic algorithms to work well, one needs a
degree of decomposability in the problem, i.e., that part of the solution is basically
correct while ignoring the rest. Because of the way the direct product of matrices
tends to spread elements throughout the resulting matrix, it can be hard for a genetic
algorithm to find satisfactory circuits for highly entangling unitary operators. Nev-
ertheless, several novel quantum circuits, algorithms and protocols have been found
by genetic and evolutionary algorithms [36, 327, 328, 345, 470, 471, 474, 475, 480].
A good review of the evolutionary approach is [197].

The fourth and most systematic approach is to apply a recursive algebraic decom-
position procedure such as the progressive matrix diagonalization of Reck [415], the
“quantum Givens” operations of Cybenko [122] or the hierarchical CS decomposi-
tion of Tucci [498]. Algebraic factorization is guaranteed to work, but is likely to
result in quantum circuits that are exponentially large unless one embeds circuit
compactification rules within the decomposition procedure.

3.7 Circuits for a Arbitrary Unitary Matrices 173

3.7.1 Uses of Quantum Circuit Decompositions

Quantum circuit decomposition of an arbitrary unitary matrix can be used to de-
termine an optimal pathway for the direct synthesis of any pure or mixed quantum
state [222], and to perfectly simulate high-dimensional stochastic processes that are
hard to do faithfully using classical pseudo-random number generators [180, 184].
Moreover, in Grover’s algorithm [219], if one has prior knowledge of the approxi-
mate location of the solution state(s) one can use a biased amplitude amplification
operator which tends to pump probability amplitude preferentially into eigenstates
in the presumed region of the solutions [221]. Such a unitary matrix may not have
any special structure, making its quantum circuit hard to guess.

3.7.2 Choice of Which Gate Set to Use

Moreover, although the set of gates used in such quantum circuits has tradition-
ally been taken to be the set of all one-qubit quantum gates in conjunction with
CNOT, many equally good universal gate sets exist, and there might be advantages
in using a non-standard gate set if certain choices happen to be easier to realize in
one hardware context than another. For example, in the context of spin-based quan-
tum computing, fractional powers of the two-qubit exchange interaction (i.e., the
SWAP gate) are known to be as powerful as CNOT as far as computational univer-
sality is concerned. Likewise, in the context of charge-based quantum computing,
the two-qubit gate iISWAP is easier to realize than CNOT and yet is equally as pow-
erful computationally [163]. It makes sense therefore, to tailor the decomposition
of a unitary operator to fit the chosen physical hardware, rather than to wrestle the
physics to fit an ad hoc model of computation.

3.7.3 Circuit Complexity to Implement Arbitrary Unitary Matrices

What is the most general quantum gate operation that can be performed on an n-
qubit state? If we imagine the n qubits to be well isolated from the environment,
and to go unmeasured until after the operation is completed, then the most gen-
eral operation corresponds to some n-qubit quantum gate which is mathematically
equivalent to a N x N dimensional unitary matrix, where N = 2". In turn, this
unitary matrix can be thought of as the matrix exponential of a maximally general
n-qubit Hamiltonian, which can be represented as a N x N dimensional hermitian
matrix. The fact that the Hamiltonian matrix needs to be hermitian constrains its ele-
ments along the main diagonal to be purely real numbers, but allows its off diagonal
elements can be complex numbers such that H;; = H?;, where » denotes taking the

Ji’
complex conjugate. A complex number takes two parameters to specify it (one for

174 3 Quantum Circuits

the real part and one for the imaginary part). We can use this information to quan-
tify how many free parameters go into specifying a maximally general quantum gate
on n qubits. The Hamiltonian matrix is fully specified by picking N real numbers
down the main diagonal, plus as many complex numbers as possible in the upper (or
lower) triangular region above (or below) the main diagonal, i.e., 2 ZlNzl N —i.So
overall we have N +2N(N — 1) =2N? — N. If we are free to pick O(2N?) ~ 2%
free parameters to specify a maximally general n-qubit unitary matrix, we ought not
to be surprised if we have to use this many gates to implement such an operator.
Indeed, Shende, Bullock and Markov have proved that the quantum circuit for a
maximally general n-qubit unitary matrix requires at least %22” - %2" + % CNOT
gates to implement it, and that this result cannot be improved by more than a factor
of two [453]. Thus, it is a difficult problem and even writing down the circuit for
a maximally general quantum gate will require exponential resources. Luckily, the
unitary matrices that arise in practice are usually highly structured and admit anoma-
lously compact quantum circuit decompositions. Nevertheless, for smallish circuits
that defy obvious interpretation the use of an algebraic (always works) method in
conjunction with circuit simplification rules can be the most expedient way to find
a quantum circuit for a desired unitary matrix.

3.7.4 Algebraic Method

In this section, we describe a recursive algebraic scheme for constructing a quan-
tum circuit decomposition of an arbitrary unitary operator, interleaved with cir-
cuit compactification rules that reduce the complexity of the final quantum cir-
cuit. The scheme starts with a similar mathematical decomposition to that used by
Tucci [498], but uses different techniques for mapping the matrix factors into equiv-
alent circuit fragments. Since Tucci’s pioneering work two other groups have pub-
lished algebraic decomposition engines for arbitrary unitary matrices along similar
lines, [363, 453, 511] and Tucci has improved his compiler design further [499].

The essence of all these algebraic approaches is the following: first we decom-
pose the 2" x 2" dimensional unitary operator into a product of 2" x 2" block-
diagonal matrices, and direct sums of bit-reversal matrices (which need never be
implemented explicitly). Next we map these block-diagonal matrices into corre-
sponding quantum circuit fragments, each involves only one-qubit rotations about
the y- and z-axes, one-qubit phase shifts, and a standard two-qubit gate, such as
CNOT, the square root of SWAP (+/SWAP), or iSWAP. One can pick whichever
primitive two-qubit gate [147] one wants and obtain different quantum circuits ac-
cordingly. The last step is to join these quantum circuit fragments together, while
again applying compactification rules to minimize the size of the resulting circuit.
The net result is a quantum circuit capable of implementing any (real or complex)
unitary matrix, specialized to use one of several types of two-qubit gates, appropri-
ate for different physical implementations of quantum computing hardware.

Our procedure below relies upon the Generalized Singular Value Decomposition
(GSVD) [204]. The GSVD recognizes that the SVDs of the four quadrants of an

3.7 Circuits for a Arbitrary Unitary Matrices 175

orthogonal matrix are highly inter-related to one another. In particular, if we have a
unitary matrix U, of dimension 2" x 2", where n is the number of qubits, the GSVD

yields
_(Li O 2u 22 R, O
U= (0 L2> ' (221 222) (0 R2> ’ (3.86)
where the L;, Ly, R;, and R, blocks are 2! x 27n—1 unitary matrices, and the
matrix X' is a tri-banded unitary matrix as with X;;s are all diagonal matrices. The
XY matrix can be further decomposed into a product of two qubit-reversal operations

and a block-diagonal unitary matrix with blocks representing one-qubit elementary
gate operations:

00 L 0
0 > 0
X X -1 22
=Pn ~Pn, 387
(221 Zzz) 2 : R : ? G871
0 0 ... T

where P is a qubit reversal matrix which is composed of cascaded SWAP gates,
and X{,, X/, etc, are 2 x 2 unitary operations that can be expressed as R -rotations.

If n > 2, the decomposition can be iterated. The four unitary sub-blocks can be
further decomposed until all resulting matrices are block-diagonal unitary matrices,
with blocks representing 1-qubit elementary gates. For example, further decompos-
ing L and L, above

(L 0\ . [z, 0 R 0
L1_<0 L,2)~P2,,_1-<O =, Py R;): (3.88)

L 0 _ > 0 R” 0
_ 1 1 11 1
L (0 Lg) Py < 0 25/2) Pyt < 0 R/2/>' (3.89)

Rejoining L and L,, we obtain

_(Ly O
L_<O L2>

L, 0 0
0 1 0
10 L’2 _1 0 Eéz
- L/l/ () : (]]- ® P n) : 2{/1 O
O o 1 O o0 =
o oR0
(1 ® Py) - 2 R ol (3.90)
0 1
0 Ry

where 1 is the 2 x 2 identity matrix. This process can be repeated until each matrix
is block-diagonal, in which the blocks are 2 x 2 unitary matrices representing arbi-
trary 1-qubit gates. In turn, each of the 1-qubit gates can be decomposed into four

176 3 Quantum Circuits

independent operations by application of the following lemma: Every 2 x 2 unitary
matrix can be factored as a product of two R -rotations, one Ry-rotation and one
phase shift [33]

e 0 ez 0 cos(9/2) sin(0/2) Bz
0 %)\ 0 e ?2) \—sin@©/2) cos®/2))] \ 0 P2
= Ph(8) - R () - Ry(8) - R,(B), (3.91)

where §, o, 8, and B are real valued. If the unitary matrix has unit determinant, the
phase gate can be dropped. Hence, any 2" x 2" dimensional block-diagonal unitary
matrix, whose blocks are 2 x 2 unitary matrices, can be decomposed into the product
of (at most) four simpler 2" x 2" dimensional unitary matrices corresponding to
purely phase shifts, z-rotations, or y-rotations.

The next step is to map each of these (“purified”) block diagonal matrices into an
equivalent quantum circuit fragment. The concatenation of all such fragments, inter-
leaved with compactification rules, yields a complete quantum circuit for U. Differ-
ent types of block diagonal matrices factorize into different circuit fragments. Con-
sider a 4 x 4 block-diagonal unitary matrix, R, in which the blocks are y-rotations
about different angles. As a matrix, R is expressed as

o (R 0
0 R®)

Intuitively, we can create R from two simpler operators: one which applies the same
angular rotation to both the upper left and lower right quadrants, and another which
applies opposing angular rotations to the upper left and lower right quadrants. For
appropriately chosen angles, the product of such operations can achieve any desired

angular pair. Thus, we consider
Ry (x 0
1®Ry(0‘)=< v(@) >,

0 Ry
Ry (B) 0
CNOT- (1 ® R,(B))-CNOT = ~
(1® Ry(B)) (0 Ry ﬂ)>

We can achieve R provided « + 8 = 61 and @« — B = 6». Hence, o = @, B=
@, and the quantum circuit diagram representing R = R, (01) ® Ry (6>) is shown
in Fig. 3.33.

Generalizing to the n-qubit case, we have a 2" x 2" block-diagonal matrix whose
blocks are one-qubit Ry-rotations through angles {01, ..., 6,.—1}. The quantum cir-

cuit for such a matrix can be generated recursively as
R¥(n, A) = CNOT| ;. - (1@ RE(n — 1, A}, 5u2))
-CNOT |y - (I ®@ RE(n — 1, Agu—2 1 20-1)), (3.92)

3.7 Circuits for a Arbitrary Unitary Matrices 177

= R, (6) ® Ry(6,)

0;+ 6,
R(

Fig. 3.33 Quantum circuit for a block-diagonal Ry operator

where A is a vector of angles given by

A] 91
A= . = W®(n71) . s
A2n—| 92n—1

with the (intentionally non-unitary) matrix W = %(% J]), and CNOT ,., is a

CNOT gate between the first and n-th of n-qubits. The notation A; . ; means the
vector of angles between indices i and j in A.

An identical construction applies to the case of the direct sum of many R, rota-
tions through different angles. Hence a 2" x 2" block-diagonal matrix whose blocks
are one-qubit R_-rotations through different angles can be mapped into a quantum
circuit generated as:

R®(n,A) =CNOT} ;- (1@ RE(n — 1, A|_, n2))
“CNOT| - D@ RE(n — 1, Ajuapn1)). (3.93)

For the 4 x 4 block-diagonal unitary matrix, @, in which the blocks are Ph-gates
represented as

_(Ph61) 0O
¢_(0 Ph(@z))' (3.94)

The quantum circuit achieving @ is R (61 — 62) ® Ph((61 + 62)/2). It follows that
the quantum circuit fragment for a 2" x 2" block-diagonal matrix whose blocks are
one-qubit Ph-gates can be defined recursively as:

Ph®(n, A)=Us-U, - U (3.95)
where
U3 =1 ®Ph®(”l - 1, A1—>2”_2)’

Up=R,(Ap2,)®1® - ®1,
Ul == CNOT ® RZ(AZ"’Z—Q—Z—)Z”’I) ® CNOT

178 3 Quantum Circuits

Hence, all three primitive types of 2" x 2" dimensional block-diagonal matrices can
be mapped into corresponding quantum circuit fragments, which use only CNOT
gates, and one-qubit Ph-, Ry-, and R;-operations.

3.7.5 Simplification via Rewrite Rules

To complete the decomposition we concatenate the circuit fragments, and apply fi-
nal compactification in an attempt to minimize the overall circuit complexity. The
compactification rules eliminate unnecessary gate operations including rotations
and phase shifts through an angle of zero or 2nm, combine contiguous sequences
of Ph-, Ry-, or R;-gate operations, accumulate phase gates into an overall phase,
compress sequences of CNOT gates having the same embedding, and implement
bit-reversals by explicitly rewiring the circuit (rather than implementing such oper-
ations computationally). These compactification rules are found to reduce the com-
plexity of the final quantum circuit significantly. Specifically, whereas naive use of
algebraic schemes would always result in exponentially large circuits, if augmented
with rewrite rules, unitary operators having a direct product structure are mapped
to compact quantum circuits, real unitary operators are mapped into smaller circuits
than complex unitary operators, and known “special case” unitary operators (such
as the QFT) are found to have smaller circuits than random unitary operators.

The idea is that we have found, by one means or another, a quantum circuit suffi-
cient to realize a desired n-qubit quantum computation. We now wish to “compact-
ify” the circuit so that the n-qubit operation can be accomplished using the fewest
quantum gates. This can be accomplished by developing rewrite rules for quantum
circuits.

Term rewriting is a general purpose technique used in automated theorem prov-
ing [91]. To be effective, a rewrite rule system must be “Canonical” and “Church-
Rosser”. “Canonical” means that equivalent expressions are rewritten to a common
form. “Church-Rosser” means that some measure of the structural complexity of the
expression being rewritten is reduced after each rule invocation. We can guarantee
that rewrite rules are Canonical and Church-Rosser by using a strict syntactic gram-
mar for circuits, and ensuring that a rewrite is only applied if it reduces or leaves
constant the gate count.

It makes sense, initially, to focus attention on rewrite rules for simplifying 2-qubit
quantum circuits. The rationale for this is that all quantum circuits can be reduced
to 1-qubit and 2-qubit quantum gates. However, it is very possible that higher levels
of circuit abstraction, e.g., treating a QFT as a special group of gates, could facili-
tate recognition of more simplification opportunities. However, by grouping CNOT
gates with the surrounding 1-qubit gates that share the same embedding, and then
compactifying them, we systematically reduce the complexity of the overall n-qubit
operation. The number of possibilities are enormous. Here is an example of that
gives you the flavor of what is involved.

There are several ways to find rewrite rules. However, one must exercise good
judgment in rule selection as there are infinitely many potential rules. We need to

3.7 Circuits for a Arbitrary Unitary Matrices 179

Ve
1 RA2) Ph(—)
2 4

4 Ry@

/e n n n
Ry(b) +— R(—— R.(—) —Ry(b+—) Ry(a——
\J_/ (2) w (2) (@ +2/ w @ 2)

Fig. 3.34 Example of a rewrite rule that eliminates a CNOT gate. The structure shown in this
circuit fragment happens to arise very often when using the algebraic circuit design method using
a gate family consisting of CNOT, R, (), Ry (-), and Ph(-) gates

find those rules that (a) allow us to recognize special structure (should it be present)
and (b) tend to arise in practice during the operation of the algebraic decomposition
procedure. Hence, permutation matrices, and other sparse unitary matrices having
a single non-zero element in each row and column, are especially good sources
of inspiration for discovering rewrite rules. Being sparse, they require fewer gates
than a general purpose 2-qubit unitary, and often give rise to gates involving special
angles, often 77 /2%,

The following example is typical of the kinds of rewrite rules one can find. The
circuit fragment on the left hand side of Fig. 3.34 arises commonly in the algebraic
decomposition method that uses the GSVD, which we described above. This cir-
cuit fragment contains two CNOT gates. However, it can be rewritten into the form
shown on the right hand side of Fig. 3.34, which contains only one CNOT gate.
Thus, the application of the rewrite rule of Fig. 3.34 eliminates a 2-qubit gate at the
expense of inserting extra 1-qubit gates. This is preferable, however, because any
contiguous sequence of 1-qubit gates, no matter how long, that are all acting on the
same qubit, can be compressed into a sequence of at most four 1-qubit gates. This
is because the net effect of any such contiguous sequence of gates is still just some
1-qubit gate. However, we known that any 1-qubit gate can be factored into the form

Ph(8) - R;(y) - Ry(B) - R;().

Example: Finding a Quantum Circuit for an Arbitrary Unitary Matrix As an
example, the unitary operator generated by the Hamiltonian o, ® o, in Mermin’s
version of the Bell-Kochen-Specker theorem [415] is

—-i 0 0 1
110 —i 10
V2li 0 01

0 i 10

Figure 3.35 shows a quantum circuit sufficient to implement this operator.

180 3 Quantum Circuits

Fig. 3.35 Quantum circuit
for the unitary operator in
Mermin’s version of the
Bell-Kocher-Specker
theorem [415]

Ph(7T) R R z
2 ~(5) —)’(_5)7

N
3.7.6 Numerical Method

Another way to find a quantum circuit that implements a given unitary matrix is
via an exploration of the space of possible circuits templates in conjunction with
numerical optimization. This method is only feasible for few qubit circuits due to the
combinatorial explosion in the number of possible circuit templates with increasing
numbers of qubits.

The motivation behind a numerical approach is as follows. Given a unitary ma-
triX, Utarget, describing some desired quantum computation, one is typically most
interested in finding the smallest quantum circuit, with respect to a particular uni-
versal gate set, sufficient to implement it? For 2-qubit quantum computations, and
the gate set consisting of CNOT and all 1-qubit gates, a solution is already know us-
ing the circuit templates outlined in Chap. 2. Conversely, for quantum computations
on large numbers of qubits, the problem appears utterly intractable at present. In
this case the best we can do is to synthesize a (likely) sub-optimal quantum circuit
using algebraic or genetic methods, and then apply rewrite rules recursively to sim-
plify and compress the circuit until no more rules fire. However, such an approach
is neither guaranteed, nor likely, to find an the smallest quantum circuit for a given
target unitary matrix.

In the regime between “two” qubits and “many” qubits, exhaustive enumera-
tion of all possible circuit templates followed by numerical optimization can work
surprisingly well, even on modest modern computers. The idea is to exhaustively
generate all possible circuit topologies of increasing complexity, and to use numeri-
cal methods to find the values for the free parameters in those circuit topologies that
minimize the discrepancy, discrepancy(Utarget, Utemplate), between the target uni-
tary matrix, Utarger and the actual unitary matrix such a circuit template achieves,
Utemplate- A simple measure of discrepancy (but by no means the only one) is the
absolute value of the difference between respective elements of the matrices Utarget
and U template » ie.,

N N

‘ 1

discrepancy (Utarget, Utemplate) = V2 E E Ujk — Vil (3.96)
j=1k=1

By finding values for the parameters within a particular circuit template that make
the discrepancy between the target unitary and one implied by the template go to
zero, an exact quantum circuit for Ugarger can be found. Moreover, if the different

3.7 Circuits for a Arbitrary Unitary Matrices 181

circuit templates are generated in the order of increasing circuit size, the first circuit
template found that achieves Utarger Will indeed be the smallest circuit for achieving
the target with respect to the chosen family of gates. A nice feature of this approach
is that we do not have to limit ourselves to a minimal set of universal gates. We
can, if we choose, use an over-complete set of universal gates. If we use an under-
complete set of gates there is no guarantee a solution can be found. Nevertheless,
a numerical search is sometimes worthwhile, e.g., if one is limited in the types of
gates one can achieve physically in a particular embodiment of a quantum computer.

Example: Numerical Design of a Circuit for a 1-Qubit Gate Suppose the target
unitary matrix Utarget be the 1-qubit Walsh-Hadamard gate:

I /1 1
Utargetzﬁ 1 =1 (3.97)

and we wish to find how to achieve a Walsh-Hadamard gate in terms of 1-qubit
rotations about the z-axis and y-axis, and a single phase gate. We know a solution
in terms of such gates is always possible because we learned in Chap. 2 that any
1-qubit gate can be expressed in terms of the circuit template:

Utarget = Ph(8) - R:(y) - Ry(B) - Ry() (3.98)

where «, B, y and § are angles. Our job is to find values for these angles that
achieves the Walsh-Hadamard gate.

We can solve this problem using computer algebra tools such as Mathematica—a
superb software package for doing all things mathematical on a computer. Specifi-
cally, we can use Mathematica’s “NMinimize” function to find values of the angles
o, B, v, and § that minimize discrepancy as follows:

1 (1 1),
Uta.rgetzﬁ 1 -1/

Utemplate = Ph(8) - R (y) - Ry(,B) R ()

) | | (3.99)
e~ THII—TF cos(Z) —eTHII=T sin(£)
e s sin(g) o3+ +is cos(%)
answer = NMinimize [discrepancy [Utarget> Utemplate], {a, B, v, 68}
T
—>{O,{a—>n,ﬂ—>5,y—>0,6—>%” (3.100)

where we replaced approximate numerical values in the answer with rational multi-
ples of 7 or zero and then checked the result. Thus, we find that numerical minimiza-
tion of the discrepancy reveals that Upyrger = Ph(7/2) - R;(0) - Ry (7 /2) - R, () =
Ph(r/2) - Ry (7 /2) - R, (7).

182 3 Quantum Circuits

Example: Numerical Design of a Circuit for a 3-Qubit Gate Numerical discrep-
ancy minimization can be used to find circuits for multi-qubit gates too. Unfortu-
nately, the number of potential quantum circuit templates grows exponentially with
the depth of the circuit. So brute force numerical minimization of the discrepancy
between a target unitary matrix and that induced by a particular circuit template
is only feasible for multi-qubit circuits that are not too deep. Moreover, any quan-
tum circuit needs at most one phase gate Ph(§). All the other 1-qubit gates can be
factored in the form R;(y) - Ry(B) - R («). Therefore, when enumerating circuit
templates we should allow for the possibility that each 1-qubit gate may require up
to three free parameters to specify it completely. Hence, the number of parameters
over which one is optimizing can grow rapidly with the number of 1-qubit gates.
Luckily, the unitary matrices that usually arise in purposeful quantum computations
tend to be sparse and hence realizable in quantum circuits that are neither too deep
(in step count) nor too large (in gate count).
As an example, consider the unitary matrix Utarge; defined as follows:

0 ? 01 0 0 —% % 0
B T
oﬁ 0 0 oﬁ L 0 0 £
Utarget= 1 0 0 1 f 0 0 “65 (3.101)
oﬁ 0 0 f L 0 o -1
V2 2
0 0 0 0 0 —% —% 0
0 JLQ JLE 0 0 0 0 0

This is an 8 x 8 unitary matrix corresponding to a circuit having three qubits. How-
ever, whereas random 8 x 8 unitary matrices would have a non-zero complex value
for every element, this unitary matrix is relatively sparse, has only real elements, and
is somewhat symmetric. These are all clues that the matrix may admit an anoma-
lously compact quantum circuit. Our goal is to find the smallest quantum circuit
template, which when suitably optimized, will provide an exact circuit for imple-
menting Utarget.-

To apply the numerical design method, we need to pick an ordering in which
to enumerate quantum circuit templates that can be built from a given universal set
of gates, such as the set of 1-qubit gates and CNOT. One such ordering is given
by allowing each “step” of the circuit to taken up by either a single general-up-to-
phase-factor 1-qubit gate (R,(y) - Ry(B) - R;(@)) or a single CNOT gate between
the i-th and j-th of k qubits (CNOT; ;.x). In an n-qubit circuit, there are therefore n
ways to embed the 1-qubit gate plus 2(;) =n(n—1) ways to embed the CNOT gate.
Hence, using this enumeration scheme, which is certainly not the only possibility,
each step in the circuit can be taken up by one of n? distinct templates. Hence, the
number of possible templates that need to be tested in a circuit k steps deep will be
approximately n2X. In the present (3-qubit) example the number of templates to test

3.7 Circuits for a Arbitrary Unitary Matrices

template((U; ® Uz ® Uz), CNOT] 2.3)
template((U; ® Up ® Uz), CNOT] 3.3)
template((U; ® Uz ® Uz), CNOT7 3.3)
template(CNOT 5.3, (U1 ® U ® Us))
template(CNOT] 5.3, CNOT 3.3)
template(CNOT] 5.3, CNOT, 3.3)
template(CNOT?2 1.3, (U] ® Uz ® U3))
template(CNOT3 1.3, CNOT] 3.3)
template(CNOT?3 .3, CNOT5 3.3)
template(CNOT 3.3, (U1 ® U ® Us))
template(CNOT] 3.3, CNOT3 1.3)
template(CNOT] 3.3, CNOT, 3.3)
template(CNOT3 1.3, (U] ® Uz ® U3))
template(CNOT3 1.3, CNOT3 1.3)
template(CNOT3 1.3, CNOT5 3.3)
template(CNOT, 3.3, (U ® U ® Us))
template(CNOT?3 3.3, CNOT3 1.3)
template(CNOT5 3.3, CNOT3 1.3)
template(CNOT3 5.3, (U] ® Uz ® U3))
template(CNOT3 5.3, CNOT, 1.3)
template(CNOT3 5.3, CNOT3 1.3)

183

template((U; ® Uz ® Uz), CNOT3 1.3)
template((U; ® U, ® Uz), CNOT3 1.3)
template((U; ® Uz ® Uz), CNOT32.3)
template(CNOT] 5.3, CNOT3 1.3)
template(CNOT] 5.3, CNOT3 1.3)
template(CNOT] 5.3, CNOT3 5.3)
template(CNOT? ;.3, CNOT 5.3)
template(CNOT3 1.3, CNOT3 1.3)
template(CNOT?7 1.3, CNOT3 5.3)
template(CNOT] 3.3, CNOT] ».3)
template(CNOT] 3.3, CNOT3 1.3)
template(CNOT] 3.3, CNOT3 ».3)
template(CNOT3 1.3, CNOT] 5.3)
template(CNOT3 1.3, CNOT] 3.3)
template(CNOT3 1.3, CNOT3 5.3)
template(CNOT3 3.3, CNOT ».3)
template(CNOT?, 3.3, CNOT} 3.3)
template(CNOT3 3.3, CNOT3 ».3)
template(CNOT3 5.3, CNOT| 5.3)
template(CNOT3 5.3, CNOT] 3.3)
template(CNOT3 5.3, CNOT5 3.3)

Fig. 3.36 Enumeration of quantum circuit templates for a 3-qubit circuit of depth two using a
universal set consisting of all 1-qubit gates and CNOT. Note that, at a given step, a single qubit
gate can be inserted in one of three ways, and a single CNOT gate can be inserted in one of six
ways. Thus, a quantum circuit template of depth two has 9> = 81 possible forms. Of these we
exclude those that involve a sequence of same type of gate with the same embedding. This brings
the number of templates down to 72

in a depth k circuit is approximately 3%, which grows exponentially in k, the depth

of the circuit. As an explicit example, Fig. 3.36 shows the templates that would
be tested in an attempt to find a decomposition of a 3-qubit unitary matrix into a
depth-2 quantum circuit.

The number of quantum circuit templates to test can be reduced by excluding
redundant circuit topologies (e.g., CNOT; j.x - CNOT; ;.x = 1, merging abutting 1-
qubit gates (e.g., R, (@) - R (o) = R;(2w)), recognizing circuits that achieve U T (in
which case you reverse the ordering of the gates) and recognizing those that achieve
P>» - Pon (in which case you reverse the order of the qubits). Nevertheless, such

184 3 Quantum Circuits

numerical methods are still demanding computationally.

0 (1) 01 0 0 —% % 0
wE e
2 Vi |
A S
oﬁ 0 0 ? L 0 o -1
) V2
0 0 0 0 0 —% —% 0 (3.102)
0 % % 0 0 0 0 0

Utemplate = CNOT3,];3 : CNOTZ,];S “(Ry(a) ® Ry(b) ® R;(c))

. CNOT2’3;3 . CNOT1’3;3;

answer = NMinimize [discrepancy|[Utarget, Uremplate], {@, B, ¥ }]
T
- {0,{a >m B~ 5,)/—>JT}}

where numerical optimization of this last template yields an exact solution with
a—>n,b—->m/2,andc — 7.

3.7.7 Re-use Method

“If I have seen further it is by standing on the shoulders of Giants”
— Isaac Newton

So far we have seen how to synthesize quantum circuits algebraically, using ma-
trix decompositions, and numerically, using discrepancy minimization. Although
both these approaches have their uses, neither builds upon any insights we may have
gleaned about efficient quantum circuits for other unitary transforms. An alternative
approach to quantum circuit design, pioneered by computer scientists extraordinaire
Andreas Klappenecker and Martin Roettler, is to design a quantum circuit for a
desired unitary transform by understanding how that unitary transform is related
functionally to another unitary transform for which an efficient quantum circuit is
already known. In particular, in the “design-by-re-use” method a known quantum
circuit for an operator U, and a known (typically polynomial) functional relation-
ship V=fU)=),a;U ! is used to predict a new efficient quantum circuit for V
[289, 290].

Moreover, surprisingly, the structural form of the new (efficient) quantum circuit
for V. = f(U) is essentially fixed: the same basic circuit structure works regardless
of the function f. All that needs to be changed is the form of a central gate whose

3.7 Circuits for a Arbitrary Unitary Matrices 185

elements depend upon the coefficients ¢; in the expansion V = f(U) =Y, o;U L
Therefore, when applicable, the “design-by-re-use” method is better than generic
algebraic circuit design for maximally general unitaries, which always yields an ex-
ponentially large circuit unless compactification rules are applied, and it is better
than numerical circuit design, which quickly becomes intractable due to the com-
binatorial explosion in the number of potential circuit templates . Moreover, the
design by re-use method operates at a higher level of abstraction than the 1-qubit
and 2-qubit gate level, allowing a more meaningful interpretation of what the circuit
is doing. Frankly, it is a beautiful and insightful approach to quantum circuit design
and is deserving of far greater attention.

3.7.7.1 Functions of Matrices

The foundation of the “design-by-re-use” strategy is the idea of working with func-
tions of matrices. We represent one unitary matrix, V, as a function of some other
unitary matrix, U, i.e., V = f(U). The reason this is possible is that if U is unitary,
then it is guaranteed to be unitarily equivalent to a diagonal matrix, i.e.,
U=T-diag(ht, A2, ..., An) - T' (3.103)

where {};} are the eigenvalues of U, and T is some (so-called “diagonalizing”)
unitary matrix. Similarly, powers of U are diagonalized by the same matrix 7'

U'=T-diag\l, 25, ..., A0 - TT (3.104)

Thus, if we have some function defined by its Taylor series:
o
f) =) ax! (3.105)
i=0

we can see that the corresponding function of U, i.e., V = f(U), can be written as:

V=fU)=T-diag(f(h1), fG2), ..., fON)) - T' (3.106)

We can then rewrite this formula to confirm that f(U) can also be written as a linear
combination of powers of U. Specifically, we have:

fU) =T -diag(f (A1), fFR2), ..., FON))-T7

00 00 0
=T-. diag(Zaikll, Zaiklz, ceey Zai)L?V) Tt
i=0 i=0 i=0

o0
=T. |:Zdiag(a,~)»"1, ai)\é, .. .,ai)»’}\,):| Tt
i=0

186 3 Quantum Circuits

o0
=T. [Zaidiag(xg,xg, ...,Ag\,)} Tt

i=0

=Za,~T-D'-TT=Za,-U’ (3.107)
=0 =0

which implies we can write a function of the matrix U as a linear combination of
integer powers of U, i.e.,

V=fU)=>) U’ (3.108)

i=0

where the «; are, in general, complex numbers. In many cases of interest, the sum
need not run to infinity to obtain an exact equivalence.

3.7.7.2 Quantum Hartley Transform as a Polynomial in QFT

For example, the discrete Hartley transform can be expressed as a polynomial in the
discrete Fourier transform. Analogizing to the quantum case, the quantum Hartley
transform will be given by:

QHTy =« QFTy + 8 QFT3, = QFTy - (&« 1y + 8 QFT%) (3.109)

where o = (%) and 8 = (%). As an efficient quantum circuit for the QFT is
known, if we can find an efficient quantum circuit for (o 1y + 8 QFT%V) we will
find an efficient quantum circuit for the quantum Hartley transform (QHT).

3.7.7.3 Quantum Fractional Fourier Transform as a Polynomial in QFT

Similarly, another useful transform, the fractional Fourier transform, can also be
expressed as a low order polynomial in the Fourier transform. Specifically, in the
quantum case we have:

2
QFFTy., = QFTy/”

= ap(e) QFTY + a; () QFTY,
+ az(@) QFT, 4 az(a) QFT3, (3.110)

3.7 Circuits for a Arbitrary Unitary Matrices 187

where

ap(a) = %(1 + €'Y cos(@)

aj(a) = l(1 —ie'*)sin(a)
2 (3.111)

ar(@) = 3(—1 + €') cos(a)

az(a) = %(—1 —ie'*) sin(@)

Like the Fourier transform, the fractional Fourier transform is a time-frequency
transform, but by involving the parameter « it can transform a signal to a domain
that is intermediate between time and frequency. Clearly:

e when o =0 the QFFT collapses to the identity, i.e., QFFT .0 =1y}
e when o = % the QFFT collapses to the QFT, i.e., QFFTy. 1= QFTy;
o the indices of two QFFTs add, i.e., QFFTy., - QFFTy.5 = QFFTy . 4 g.

The design by re-use method exploits the ability to express the QFFT as a polyno-
mial in the QFT to find an efficient quantum circuit for QFFT.

3.7.7.4 Fixed Structure of the “Design by Re-use” Circuit

It turns out that any unitary matrix V that can be written as a linear combination of
integer powers of a unitary matrix U for which efficient quantum circuits are known,
also admits an efficient quantum circuit decomposition. Furthermore, the structure
of a circuit for V =3, ;U i is essentially the same in all cases and is shown in
Fig. 3.37. Inevery case the gate C corresponds to a unitary circulant matrix whose
elements are related to the particular coefficients ¢; in the series expansion of V =
fO)y=%;a;U".

A circulant matrix is matrix in which the elements in each row are rotated one
element to the right relative to the preceding row. Therefore circulant matrices have
the structure:

o €3 (2
1 €0 €3 (2
¢ €1 ¢y €3
3 2 €1 CQ

(3.112)

A key property of circulant matrices is that they are diagonalized by the QFT matrix.
That is, QFT" - C - QFT is always a diagonal matrix.

The generic circuit structure shown in Fig. 3.37 can be “programmed” to imple-
ment a particular V. =), o; U ! by changing the unitary circulant matrix, C, used in
the center of the circuit. Below we give examples of how to “program” this generic
circuit to yield efficient quantum circuits for the quantum Hartley transform (QHT)
and quantum fractional Fourier transform (QFFT).

188 3 Quantum Circuits

O H ——— - o ——— H [0)
— C -
Wy i AU R e A UE e At e g VD= W)

Fig. 3.37 Given efficient quantum circuits for U?, an efficient quantum circuit for
V = f(U)=7);oU" has the form shown. Here C is a unitary circulant matrix whose elements
are related to the coefficients «;

3.7.7.5 Quantum Circuit for QHT via “Design-by-Re-use”

In the case of the quantum Hartley transform (QHT) we have
QHT = QFTy - (@ 1y + § QFTR) (3.113)

where @ = (%) and 8 = (%). The leading QFT is easy so we only need to fo-
cus on finding an efficient quantum circuit for the matrix (a¢ly + 8 QFT?V). The
circulant matrix in this case is:

L(1—i 1+i
C_§<LH 1_J (3.114)

and therefore using the “design-by-re-use” template circuit of Fig. 3.37 an efficient
quantum circuit for the QHT will have the form shown in Fig. 3.38.

3.7.7.6 Quantum Circuit for QFFT via “Design-by-Re-Use”

In the case of the quantum fractional Fourier transform (QFFT) we have

QFFTy., = QFT%/™ = ag(@) QFTY +aj (@) QFTY +ax(a) QFTY +a3(a) QFTY

(3.115)

3.7 Circuits for a Arbitrary Unitary Matrices 189

0>

QFT;, QFTy

QFTy — OHT |¢)

Fig. 3.38 Given an efficient quantum circuit for QFT, an efficient quantum circuit for

QHT =QFTy - (¢ Ly +8 QFTIZ\,) has the form shown. Here the circulant matrix is C = % (i_: 11 :’)

where

ap(a) = %(1 + /%) cos(@)
aj(a) = %(1 —ie'*)sin(a)
a(a) = %(—1 + ¢%) cos(a)

az(e) = %(—1 —ie'®)sin(@)

The QFTy generates a finite group of order four with QFT‘]‘\, = 1y. The circulant
matrix in this case is:

ap(a) az(a) ax(a) aj(a)
om0 0 2
az(@) ax(a) ai(a) ao(a)

Using the template given in Fig. 3.37 an efficient quantum circuit for the QFFT
therefore has the form shown in Fig. 3.39.

In truth, Klappenecker and Roettler technique is more general than our descrip-
tion of it here and can be re-cast in sophisticated group-theoretic terms. The more
general way to look at the design-by-re-use method is that provided the unitary
matrices, U’, possess a finite dimensional group algebra one can always find an
efficient quantum circuit for V = Y, o; U’ having the fixed structure shown in
Fig. 3.37, which can be “programmed” to obtain any unitary matrix contained in the

190 3 Quantum Circuits

Fig. 3.39 In the figure,
Fy represents a quantum 10)1 H H - 10)
Fourier transform QFT and Cq
Fp.q represents a quantum 0y4 H . . H | |0
fractional Fourier transform, T T
QFFTy; o with N =2"

Xy ¢ AFy HF3 AFL HFr bt Fagly)

group algebra. To learn more, the interested reader should consult references [290]
and [289].

3.8 Probabilistic Non-unitary Quantum Circuits

So far we have described quantum computations as the application of a sequence
of deterministic quantum gates to an input quantum state followed by some non-
deterministic measurement. In this picture, we generally view measurements as a
necessary evil—the price we must pay to extract an answer from our quantum com-
putation. However, we can use measurements in a more constructive manner, to
apply a desired non-unitary transformation to a subset of qubits in a larger quan-
tum system. However, the inherent randomness of the measurement process means
that we will lose determinism. That is, we will not be able to achieve desired non-
unitary transformations deterministically. However, it is possibly to trade success
probability for damage in the sense that we can conceive of scheme for achieving
non-unitary transformations of a state probabilistically such that the more likely
we are to achieve the desired transform the more damage we do if we don’t. The
following example, based on a pair of papers by Bob Gingrich and I [199, 535],
serves to illustrate this principle, but there are other constructions that could be used
e.g., [275, 463, 488].

Suppose we want to construct a quantum circuit that performs the non-unitary
transformation:

L pin - Ct
—y_~Hm =
tr(ﬁ * Pin ﬁk)

where £ is an M x N dimensional non-unitary matrix, and pj, is an arbitrary n-qubit
density operator. The trace in the denominator guarantees that the output will be
properly normalized. To ensure the transformation is well-defined, we also require
det(L) # 0. If this condition is not met, we must explicitly exclude input states, pip,
such that £ - pin - £ is the zero matrix.

Without loss of generality, we may assume the non-unitary matrix £ is of dimen-
sion 2" x 2" such that max(M, N) < 2". If, initially, £ has fewer than 2" rows or

Pin (3.116)

3.8 Probabilistic Non-unitary Quantum Circuits 191

columns, we must pad £ with zeroes to the right of the columns, and/or below the
rows, sufficient to make £ a 2" x 2" dimensional matrix.

Given such padding, £ now has the right shape to be an n-qubit quantum gate.
Unfortunately, it is still is not unitary, and so cannot serve as a quantum gate di-
rectly. We need, therefore, to find a larger (n 4 1)-qubit unitary matrix that contains
L within it in some computationally useful way. One route to creating such a en-
veloping unitary is to begin by first creating a specially crafted Hamiltonian.

3.8.1 Hamiltonian Built from Non-unitary Operator

Let us define a Hamiltonian to be of the form:

0 —il
H:—e(m o) (3.117)

Such an H is an hermitian matrix that contains the non-unitary matrix is anti-
diagonal block form. Here € is a constant that may be chosen freely. The value of €
will affect the fidelity with which we will be able to achieve our target non-unitary
transformation and also the probability with which it can be made to occur.

3.8.2 Unitary Embedding of the Non-unitary Operator

Given such a Hamiltonian, we next determine what unitary evolution it implies. An
(n + 1)-qubit quantum system with a Hamiltonian H as defined above can achieve
the following unitary gate:

2 =exp(—iH) = exp (ie <i2T Tf)) (3.118)

3.8.3 Non-unitarily Transformed Density Matrix

If we augment the input state pj, with a single ancilla prepared initially in state
|1)(1], and evolve the expanded system under the action of £2 we can predict, as
illustrated in Fig. 3.40, the final density matrix we will obtain, namely:

Pout = 2 - (I1){1] ® pin) - 27 (3.119)

If we then measure the ancilla in the computational basis, we will obtain either |0) or
|1), and a certain transformation will be applied to the unmeasured qubits. But what

192 3 Quantum Circuits

I —— 10)

Q Pout
Pin try (P oul)

Fig. 3.40 Quantum circuit for achieving a non-unitary transformation probabilistically. Under the
construction given in the text, when the output state of the ancilla is found to be |0) the reduced
density matrix of the remaining unmeasured qubits contains a good approximation to the desired
non-unitary transform, £, of the input state pj,. The unitary operator §2 is defined via a designer
Hamiltonian that contains the non-unitary operator £ in block anti-diagonal form

exactly will these transformations be? To answer this, we re-write the non-unitary
operator £ in terms of its singular value decomposition:

L=U"x.v
(U -cos(eX)-U 0
- 0 Vi.cos(eX) -V
0 U' - sin(eX) -V
+ (—VT-sin(eZ‘) U 0) (3.120)

In this form, we can read off what transformations are effected when we measure
the ancilla and find it to be in either state |0) or [1). If the ancilla qubit in the output
state, pout, 18 measured and found to be in state |0), this constitutes the “success”
scenario, and the transformation effected on the remaining » unmeasured quits is
approximately

L =yt sinex)-v (3.121)

succ

If we pick € small and as ¥ is a diagonal matrix, sin(e X') =~ € X', and so the effective
transformation on the remaining n unmeasured quits is approximately eU" - X - V,
which is close to L.

Conversely, if the ancilla qubit in the output state, ooy, is measured and found to
be in state |1), this constitutes the “failure” scenario, and the transformation effected
on the remaining n unmeasured quits is approximately

L =vT.cos(ex)-V (3.122)

As € is small and X' is a diagonal matrix, cos(e X') is close to the identity operator,
and so the transformation is approximately V' -V =1.

3.8 Probabilistic Non-unitary Quantum Circuits 193

Thus, applying £2 to (|]1){1] ® pin) and measuring the ancilla qubit performs
(almost) the desired non-unitary transformation when the ancilla is found to be |0)
and almost the identity operator when the ancilla is found to be |1).

3.8.4 Success Probability

With what success probability can these outcomes be accomplished? To answer this,
we define the measurement operators on the ancilla qubit to be My and M as:

Mo = (10)(0) ®1 (3.123)
My =(1){1h 1 (3.124)

then the probabilities of the two outcomes for the ancilla measurement can be com-
puted as:

po= tr(Mg - Mo - pout)
p1= tl‘(MI “Mj - pout)

3.8.5 Fidelity when Successful

Similarly, we can ask, we are “successful” with what fidelity to we accomplish the
desired non-unitary state transformation of pj,? The density matrices conditioned
on these two measurement outcomes are:

Mg “ Mo - Pout

PO=——_———
Po

M - My - pou

pPrl=——————"
P1

and the part of the state that contains the desired output is the reduced density matrix
of the unmeasured qubits, i.e.,

actual

pou[= trl (,00) (3‘125)

This should be compared to the desired density matrix:

desired __ L pin- L

e — 3.126
Pout = L - L) (3.126)

and the fidelity is given by:

P, ™) = (/ sl pdd \/pzﬁiual) @.127)

194 3 Quantum Circuits
3.9 Summary

In this chapter we described how to compute the unitary matrix corresponding to a
given quantum circuit, and how to compute a quantum circuit that achieves a given
unitary matrix. In the forward direction (circuit to matrix) three matrix products
turn out to be useful. The direct product (also known as the tensor or Kroenecker
product) is used to describe quantum gates that act in parallel. Such gates are drawn
vertically aligned over distinct subsets of qubits in quantum circuits. Similarly, the
dot product is used to describe quantum gates that act sequentially. Sequential gates
are drawn one after the other from left to right in a quantum circuit. When mapping
from a sequential quantum circuit to its corresponding unitary matrix remember that
if the circuit shows gate A acting first, then gate B, then gate C, the corresponding
dot product describing these stepsis C - B - A, where the ordering is reversed. Finally,
we introduced the direct sum, which describes controlled quantum gates. These ap-
ply a quantum gate to some “target” subset of qubits depending on the qubit values
on another set of “control” qubits. The controlling values can be 0 (white circles) or
1 (black circles), and combinations of control values are allowed. We remind you
that in controlled quantum gates we do not have to read the control value in order
to determine the action. Instead, the controlled quantum gates apply all the control
actions consistent with the quantum state of the control qubits.

Certain types of quantum gates are considered as important primitives in quan-
tum computing. The standard 1-qubit and 2-qubit elementary gates were introduced
in Chap. 2. In Chap. 3 we built upon these to create more sophisticated n-qubit gates,
such as quantum permutations (for qubit reversal, qubit cyclic left shift, and ampli-
tude downshift), and quantum Fourier transform (QFT), quantum wavelet transform
(QWT), and quantum cosine transform (QCT). These all admit anomalously com-
pact, polynomially-sized, quantum circuits. Of these the QFT is the most important
being at the heart of most quantum algorithms that admit exponential speedups.
However, our hope is that by collecting together so many useful transforms and giv-
ing explicit quantum circuits for them, we might inspire the reader to compose them
in novel ways to achieve new and useful quantum algorithms.

We also showed several techniques for decomposing a given unitary matrix into
an equivalent quantum circuit, i.e., a sequence of 1-qubit and 2-qubit quantum logic
gates. In so doing, we can use the gate identities of Chap. 2 to choose a particular
family of quantum gates that is easiest to implement within some preferred quantum
hardware scheme, because we believe it makes sense to tailor the decomposition of
a unitary transformation to fit the chosen physical hardware, rather than to wrestle
the physics to fit an ad hoc model of computation.

In particular, we presented numerical, algebraic, and re-use methods for quantum
circuit design and gave examples of the use of each. A completely arbitrary 2" x 2"
unitary matrix does not admit an efficient (polynomially-sized) quantum circuit de-
composition. However, the types of unitary matrices that arise in practically useful
quantum algorithms are often not maximally general and in fact do admit efficient
quantum circuits. If the circuits are small enough numerical template minimization
can often find them. If the unitary matrices bear a special relationship to previously

3.10 Exercises 195

Fig. 3.41 Quantum circuit
implementing U —® C) () C
U = B
N N
o A ¢ N

known unitary matrices, e.g., if they can be written as low order polynomials in
known unitary matrices, we can sometimes apply the re-use method of circuit de-
sign. However, only the algebraic method of circuit design is guaranteed to work
in every case. However, to achieve efficient quantum circuits using the algebraic
design method one must apply circuit compactification rules during and after the
design process to identify and strip away unnecessary gate inefficiencies.

Finally, we departed somewhat from the standard quantum circuit model by
showing how to harness measurement operations in a useful way to achieve certain
non-unitary quantum computations probabilistically. This scheme had the interest-
ing feature that failed attempts to project the computation into the desired output are
not totally destructive and one can use these outputs again to attempt to achieve the
desired computation, albeit with a degraded fidelity.

3.10 Exercises
3.1 Decompose a general Ry (6) rotation in terms of only R, gates and R, gates.

3.2 Draw a picture to show what the R (6) gate does to the state |1) on the Bloch
sphere.

3.3 Show how the decomposition of the Hadamard gate into Ry and R, rotations al-
lows us to predict how the Hadamard gate will move a state |0)on the Bloch sphere.

3.4 Quantum Circuit for Inverse Operation Look at the quantum circuit shown
in Fig. 3.41 that implements a unitary operation U. Sketch the quantum circuits for
the operations

(a) U2
(b) U!
(c) UT

3.5 Quantum Circuit for the FREDKIN Gate In Chap. 2, you saw the FREDKIN
gate, which is a (3-bit)-to-(3-bit) universal gate for classical reversible computing.

1. Prove that matrix describing the action of the FREDKIN gate is unitary, and
hence admits a quantum circuit decomposition.

196 3 Quantum Circuits

2. By regarding the FREDKIN gate as a controlled-SWAP gate, write down a quan-
tum circuit for the FREDKIN gate in terms of TOFFOLI gates, and hence, con-
trolled 2-qubit gates.

3. Is the quantum circuit you found in part (2), the most compact quantum circuit for
the FREDKIN gate? Exhibit a more compact quantum circuit for the FREDKIN
gate or explain why the quantum circuit you found in part (2) is already optimal.

3.6 Alternative Factorization of an Arbitrary Unitary Matrix There are other
procedures for factorizing an arbitrary 2" x 2" dimensional unitary matrix, U other
than the scheme based on the GSVD presented in this chapter. One method, is to
multiply U on the left (say) by matrices that systematically zero out chosen elements
of U until only the identity matrix is left. Specifically, show that:

1. You can zero the i-th element of the leftmost column of U, by multiplying U
with the matrix Vj given by:

at o0 ... pT
0 1
vi=| : (3.128)
b —a
where
g= — 210 (3.129)
i)+ Juip |?
b= til (3.130)

i + Juip |?

2. That Vi, and hence V| - U are unitary.
3. Show that repeating the process of zeroing out the i-th element that in 2" — 1
steps you can obtain the unitary matrix Von_1 - Vo - V1 - U of the form:

1 0 0
0 uy uy

Van_i Vo -V U= (3.131)

!
0 uy,

3.10 Exercises 197

4. Repeat this procedure on the inner (2" — 1) x (2" — 1) dimensional unitary ma-
trix, using a matrix of the form V| where

1 0 ...
o a" o ... pf

vi=|. . . . (3.132)
0 b —a

and so on, eventually bottoms out at the identity matrix.

3.7 In the text we claimed that the classical Type II Discrete Cosine Transform
(DCT-II), as given by equation 3.58, of a signal S = {fy, f1,..., fn—1}, having
N sample values, is related to the Discrete Fourier Transform (DFT) of a sig-
nal S/ = {0, fo, 0, f], 0, ey fN—l» 0, fN—l, O, fN—2, 0, ey fl, 0, f()}, having 4N

values. Verify this claim for the signal consisting of the eight discrete values,

¢ L /2 3 1 /2 3 5 3 i i}
S'— {\/7_47 2 37> m,' \/7_47 37> m, \/7—4’ «/7_4} Note that the umtary ma
trix defining the DFT is the same as that defining the QFT. Show further that this

relationship breaks down if we use instead the orthogonalized version of the classi-
cal DCT-II transform as defined by (3.59).

3.8 Using N = 4, write down the definitions of the matrices Vo5 and Upy given
by (3.64) and (3.67) respectively. By computing UZJf ~ - QFToy - Vo verify that the
result contains the Type II Quantum Cosine Transform in its upper left quadrant.
Interpret what this means as a conditional logic gate.

3.9 Verify that the permutation matrix Qo» defined in (3.17) can be factored in
accordance with Q2 = Py [/ (X @ Lyn-i) @ Lon_on—i+1] - Pon.

3.10 What are the unitary matrices implied by the circuits shown in Fig. 3.42?
3.11 What are the unitary matrices implied by the circuits shown in Fig. 3.43?

3.12 It is often useful to represent a given unitary operator in a different basis:

(a) Write the CNOT gate in the {|0), |1)}-basis where |0) = %(|o> +i[1)) and

10) = 55(10) —i[1)).
(b) Write the iISWAP gate in the Bell basis {|Boo), |8o1), |B10), |B11)}-

198 3 Quantum Circuits

Fig. 3.42 S 2-qubit gats
ig ome 2-qubit gates N P v
1 I NP
(a))
N N
I 1y D L
- H () H
d
© ()
Fig. 3.43 In (a) the gates act
in parallel. In (b) the gates act - X 4 g
on only a subset of the qubits.
In (c) and (d) the CNOT gates
act on non-adjacent qubits 4 v
N
— Z —
(@ (0
N N
N %
N
N
N @
—U
(©)
3.13 Given the 1-qubit gates C¢ and C; defined by:
Co=2 (C3 _C2>
(S
(2 1
Ci==-1° o
2\1 o
1+v/3 . _ 3+V3 1-v3

3—/3
where ¢cp = ,Cl = , == and ¢c3 = s
0= 4T a2 T T

(a) prove that Co and C are unitary,
(b) factor them in terms of R;, Ry, and Ph gates, and

3.10 Exercises 199

(c) verify the factorization of the Daubechies Dg,t) wavelet transform given
by (3.54).

3.14 The following quantum arithmetic operations arose in the quantum circuit
decomposition of the Type II Quantum Cosine Transform: the controlled-One’s
Complement operation (C-OC defined in (3.72)), the controlled-Two’s Complement
operation (C-TC defined in (3.74)), and the Controlled-Modular-Add-One opera-
tion (C-MAO defined in (3.80)). Find quantum circuits for C-OCp», C-TCy, and
C-MAO>» where the subscript indicates the dimension of the associate unitary ma-
trix. Note that these quantum arithmetic operations are anomalously easy compared
to a general unitary transformation of the same size.

3.15 The Type I Quantum Cosine Transform can be obtained from the factorization
given by (3.81), i.e.,
i _ 1 11
U,y - QFT,yy - Voy =QCTy, @ —QSTy

In this factorization, QFT,y and V,y are straightforward, but the factorization of
UQT 1s more involved. Verify the factorization of U; n given in (3.84) and sketch a
quantum circuit reflecting this factorization.

3.16 Verify the “design-by-re-use” method of quantum circuit design by checking
the quantum circuit for QFFT can be written in terms of controlled-powers-of-QFT
by checking the factorization for QFFT given by:

U=HQH®1y
U=1,® (1y ® QFT ')
Us = SWAP| 5,12 - 12 ® (Ly ® QFTR?) - SWAP; 5.1
Uy=Cy @1y
Us = SWAP| 2,542 - 12 ® (1y @ QFT}) - SWAP; 2,42
Us =1, ® (1y ® QFTy)
Uy=HQH®1y

QFFTy., =U7-Us-Us-Us-Us-Us - Uy

(3.134)

Chapter 4
Quantum Universality, Computability, &
Complexity

“[...] Turing’s theory is not entirely mathematical [...]. It makes hidden assumptions about
physics which are not quite true. Turing and other physicists who constructed universal
models for classical computation tried hard not to make any assumptions about the un-
derlying physics [...]. But their intuition did not encompass quantum theory, and their
imaginary paper did not exhibit quantum coherence.”

— David Deutsch!

Once while visiting Stephen Hawking in Cambridge, England, Stephen asked
me what [was working on. At the time I was a research scientist at Xerox PARC
developing what later became called the theory of computational phase transitions,
which is a view of computation inspired by statistical physics that I will describe
in Chap. 7. However, since the term “computational phase transition” was generally
unknown at that time, I replied by saying I was working on “computational complex-
ity theory”. I distinctly recall an expression of disdain sweep across Stephen’s face,
and the conversation quickly switching to something else. In retrospect, Stephen’s
pained expression turned out to be prophetic for many subsequent conversations I
have had with other physicists. It appears physicists are not generally enamored with
computational complexity theory!

Why is this? In part, I believe it is a cultural difference. I have found that physi-
cists tend to embrace simplified approximate models that encourage comprehension,
whereas computer scientists tend to prefer detailed exact models about which strong
theorems can be proved. Neither style is right nor wrong—just different. Moreover,
physicists have an uncanny knack for picking terminology that is vivid, and allur-
ing, e.g., “Big Bang”, “dark matter”, “black hole”, “twin-paradox”, “strange attrac-
tor” etc., whereas theoretical computer science is replete with the most iiber-geeky
nomenclature imaginable as exemplified by the byzantine names of computational
complexity classes. My complaint is not so much about the archaic names theo-
retical computer scientists have chosen, but the ad hoc ways in which the system
of names has been expanded. Had we done the same with organic chemistry key

!'Source: in David Deutsch, “Quantum Computation,” Physics World, June (1992) pp. 57-61.

C.P. Williams, Explorations in Quantum Computing, 201
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_4, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-1-84628-887-6_4

202 4 Quantum Universality, Computability, & Complexity

insights and generalizations might have been missed. Had we picked a more sys-
tematic naming convention that aids comprehension of the concepts underpinning
the complexity classes and how they differ from one another, then perhaps greater
insights, or more useful classes, might have been discovered. The current nomen-
clature does not, in my opinion, assist comprehension of the underlying complexity
class distinctions and their interrelationships.

Despite these differences, both fields have revealed extremely counter-intuitive,
intriguing, and profound results. In this chapter, we highlight some of these amazing
results from theoretical computer science and ask whether or not they still hold true
in the quantum domain.

First, there is the question of complexity: Can a quantum computer perform the
same tasks as a classical computer, but in significantly fewer steps? Second, there is
the question of computability; Can a quantum computer perform computations that a
classical computer cannot? And finally there is the question of universality; Is there
a specialized quantum computer that can simulate any other quantum computer, and
classical computer, efficiently? A difference between the capabilities of a quantum
computer and those of a classical computer on any one of these criteria would be
significant.

4.1 Models of Computation

To answer questions about complexity, universality, and computability, one must
have a model of computation in mind. In the 1930°s three superficially different
models of computation were invented by Alan Turing, Emil Post, Kurt Godel and
Alonzo Church.

4.1.1 The Inspiration Behind Turing’s Model of Computation:
The Entscheidungsproblem

In 1900, Hilbert gave an address at the International Congress of Mathematics held
in Paris concerning what he believed to be the 23 most challenging mathematical
problems of his day. The last problem on his list asked whether there was a mechan-
ical procedure by which the truth or falsity of any mathematical conjecture could
be decided. In German, the word for “decision” is “entscheidung,” so Hilbert’s 23rd
problem became known as the “Entscheidungsproblem”. Turing’s abstract model
of computation grew out of his attempt to answer the Entscheidungsproblem.
Hilbert’s motivation for asking this question arose from the trend towards ab-
straction in mathematics. Throughout the 19th century, mathematics was largely a
practical matter, concerned with making statements about real-world objects. In the
late 1800s mathematicians began to invent, and then reason about, imaginary ob-
jects to which they ascribed properties that were not necessarily compatible with

4.1 Models of Computation 203

“common sense.” Thus the truth or falsity of statements made about such imaginary
objects could not be determined by appealing to the real world. In an attempt to put
mathematical reasoning on secure logical foundations, Hilbert advocated a “formal-
ist” approach to proofs. To a formalist, symbols cease to have any meaning other
than that implied by their relationships to one another. No inference is permitted un-
less there is an explicit rule that sanctions it, and no information about the meaning
of any symbol enters into a proof from outside itself. Thus the very philosophy of
mathematics that Hilbert advocated seemed very machine-like, and hence Hilbert
proposed the Entscheidungsproblem.

Turing heard about Hilbert’s Entscheidungsproblem during a course of lectures,
given by Max Newman, which he attended at Cambridge University. In his lecture
Newman had described the Entscheidungsproblem as asking whether there was be a
“mechanical” means of deciding the truth or falsity of a mathematical proposition.
Although Newman probably meant “mechanical” figuratively, Turing interpreted it
literally. Turing wondered whether a machine could exist that would be able to de-
cide the truth or falsity of any mathematical proposition. Thus, in order to address
the Entscheidungsproblem, Turing realized that he needed to model the process in
which a human mathematician engages when attempting to prove some mathemati-
cal conjecture.

Mathematical reasoning is an enigmatic activity. We do not really know what
goes on inside a mathematician’s head, but we can examine the result of his thought
processes in the form of the notes he creates whilst developing a proof. Mathe-
matical reasoning consists of combining axioms (statements taken to be true with-
out proof) with rules of logical inference, to infer consequents, which themselves
become additional nuggets of information upon which further inferences may be
drawn. So the reasoning process builds on itself and will result in valid conclusions
provided the starting axioms are correct and the rules of inference are valid.

Turing abstracted the process followed by the mathematician into four principal
ingredients: a set of transformation rules that allowed one mathematical statement
to be transformed into another; a method for recording each step in the proof, an
ability to go back and forth over the proof to combine earlier inferences with later
ones, and a mechanism for deciding which rule to apply at any given moment. This
is the essence of the proof process (at least its visible part). Next, Turing sought to
simplify these steps in such a way that a machine could be made to imitate them.
Mathematical statements are built up out of a mixture of ordinary letters, numbers,
parentheses, operators (e.g., plus, “+” and times “x”) and special mathematical
symbols (e.g., ¥, 3, =, A, V). Turing realized that the symbols themselves were of
no particular significance. All that mattered was that they were used consistently
and that their number was finite. Moreover, once you know you are dealing with
a finite alphabet, you can place each symbol in one-to-one correspondence with a
unique pattern of any two symbols (such as 0 and 1). Hence, rather than deal with
a rich array of esoteric symbols, Turing realized that a machine only needed to be
able to read and write two kinds of symbol, 0 and 1, say, with blank spaces or some
other convention to identify the boundaries between the distinct symbols. Similarly,
the fact that the scratch pad on which the mathematician writes intermediate results

204 4 Quantum Universality, Computability, & Complexity

is two-dimensional is of no particular importance. You could imagine attaching the
beginning of one line of a proof to end of the previous line, making one long con-
tinuous strip of paper. So, for simplicity, Turing assumed that the proof could be
written out on a long strip of paper or a “tape.” Moreover, rather than allowing
freeform handwriting, it would clearly be easier for a machine to deal with a tape
marked off into a sequence of identical cells and only permitting one symbol to be
written inside each cell, or the cell to be left blank.

Finally, the process of the mathematician going back and forth over previous
conclusions in order to draw new ones could be captured by imagining that there
is a “read/write” head going back and forth along the tape. When a mathematician
views an earlier result it is usually in some context. A mathematician might read a set
of symbols, write something, but come back to read those same symbols again later,
and write something else. Thus, the context in which a set of symbols is read can
affect the subsequent actions. Turing captured this idea by defining the “head” of his
Turing machine to be in certain “states,” corresponding to particular contexts. The
combination of the symbol being read under the head and the state of the machine
determined what symbol to write on the tape, which direction to move the head, and
which state to enter next.

This is clearly a crude model of the proof process. Nevertheless it turned out to be
surprisingly powerful. No matter what embellishments people dreamed up, Turing
could always argue that they merely were refinements to some existing part of the
model rather than being fundamentally new features. Consequently the Turing ma-
chine model was indeed the essence of the proof process. By putting the aforemen-
tioned mechanistic analogues of human behavior into a mathematical form, Turing
was led to the idea of a “deterministic Turing machine”.

4.1.2 Deterministic Turing Machines

The most influential model of computation was invented by Alan Turing in
1936 [501]. A Turing machine is an idealized mathematical model of a computer
that can be used to understand the limits of what computers can do [237]. It is
not meant to be a practical design for any actual machine but rather a simplified
abstraction that, nevertheless, captures the essential features of any real computer.
A Turing machine’s usefulness stems from being sufficiently simple to allow mathe-
maticians to prove theorems about its computational capabilities and yet sufficiently
complex to accommodate any actual classical digital computer, no matter how it is
implemented in the physical world.

A deterministic Turing machine is illustrated in Fig. 4.1. Its components are in-
spired by Turing’s abstract view mathematical reasoning. A deterministic Turing
machine consists of an infinitely long tape that is marked off into a sequence of
cells on which may be written a O or a 1, and a read/write head that can move back
and forth along the tape scanning the contents of each cell. The head can exist in
one of a finite set of internal “states” and contains a set of instructions (constituting

4.1 Models of Computation 205

Fig. 4.1 A deterministic Turing machine

the “program”) that specifies, given the current internal state, how the state must
change given the bit (i.e., the binary digit O or 1) currently being read under the
head, whether that bit should be changed, and in which direction the head should
then be advanced.

The tape is initially set up in some standardized state such as all cells containing
0 except for a few that hold the program and any initial data. Thereafter the tape
serves as the scratch pad on which all intermediate results and the final answer (if
any) are written.

Despite its simplicity, the Turing Machine model has proven to be remarkably
durable. In the 70-odd years since its inception, computer technology has advanced
considerably. Nevertheless, the Turing machine model remains as applicable today
as it was back in 1936. Although we are apt to think of multimillion dollar su-
percomputers as being more powerful than humble desktop machines, the Turing
machine model proves otherwise. Given enough time and memory capacity there
is not a single computation that a supercomputer can perform that a personal com-
puter cannot also perform. In the strict theoretical sense, they are equivalent. Thus
the Turing machine is the foundational upon which much of current computer sci-
ence rests. It has enabled computer scientists to prove many theorems that bound
the capabilities of computing machinery.

More recently, however, a new idea has emerged that adds a slight twist to the
deterministic Turing machine. Deterministic Turing machines, which follow rigid
pre-defined rules, are susceptible to systematic biases that can cause them to take
a very long time to solve certain problems. These are the problems for which the
particular set of deterministic rules happen to make the Turing machine examine
almost all the potential solutions before discover an actual solution. For example,
if an adversary knew the rules by which a give DTM operated they could devise
a problem that was guarantee to tax the machine to its maximum before finding a
true solution. To avoid such pitfalls, a new type of Turing machine was invented
that employs randomness, this is called a probabilistic, or non-deterministic, Turing
machine.

4.1.3 Probabilistic Turing Machines

An alternative model of classical computation is to equip a deterministic Turing
machine with the ability to make a random choice, such as flipping a coin. The
result is a probabilistic Turing machine. Surprisingly, many problems that take a

206 4 Quantum Universality, Computability, & Complexity

long time to solve on a deterministic Turing machine (DTM) can often be solved
very quickly on a probabilistic Turing machine (PTM).

In the probabilistic model of computation there are often tradeoffs between the
time it takes to return an answer to a computation and the probability that the answer
returned is correct. For example, suppose you wanted to plan a round the world trip
that visited 100 cities, but you wanted to minimize the distance you have to travel
between cities and you only wanted to visit each city once. The problem of com-
puting the optimal (shortest path) route for your trip is extremely demanding com-
putationally. However, if you were prepared to accept a route that was guaranteed
to be only a little bit longer than the optimal route, and could in fact be the opti-
mal route, then this problem is very easy to solve computationally. For example, the
Euclidean TSP is known to be an NP-Complete problem [377], which means that,
to the best knowledge of computer scientists at the present time, the computational
cost of finding the optimal tour scales exponentially with the number of cities to be
visited, N, making the problem intractable for sufficiently large N. Nevertheless,
there is a randomized algorithm that can find a tour to within O(1 + 1/c¢) of the
optimal tour (for any constant ¢) in a time that scales only as O(N (log(N)) 0y
[20], which is worse than linear but better than exponential scaling. Thus, random-
ization can be a powerful tool for rendering intractable problems tractable provided
we are content with finding a good approximation to the optimal or exact solu-
tion.

An alternative tradeoff, if you require a correct answer, is to allow uncertainty in
the length of time the probabilistic algorithm must run before it returns an answer.
Consequently, a new issue enters the computational theory, namely, the correctness
of an answer and its relationship to the running time of an algorithm.

Whereas a deterministic Turing Machine, in a certain state, reading a certain
symbol, has precisely one successor state available to it, the probabilistic Turing
machine has multiple legitimate successor states available, as shown in Fig. 4.2.
The choice of which state is the one ultimately explored is determined by the
outcome of a random choice (possibly with a bias in favor of some states over
others). In all other respects the PTM is just like a DTM. Despite the superfi-
cial difference between PTMs and DTMs, computer scientists have proved that
anything computable by a probabilistic Turing machine can also be computed
by a deterministic Turing machine, although in such cases the probabilistic ma-
chine is often more efficient [198]. The basic reason for the success of proba-
bilistic approach is that a probabilistic algorithm can be thought of as swapping
between a collection of deterministic algorithms. Whereas it is fairly easy to de-
sign a problem so that it will mislead a particular deterministic algorithm, it is
much harder to do so for a probabilistic algorithm because it keeps on changing
its “identity.” Indeed the latest algorithms for solving hard computational prob-
lems now interleave deterministic, with probabilistic steps. The exact proportions
of each strategy can have a huge impact on the overall efficiency of problem solv-
ing.

4.1 Models of Computation 207

TLLEELT
LT

TLLELEE |
L] Tl 2le]

Jafofofa]afo]-

Fig. 4.2 In a probabilistic classical Turing machine there are multiple possible successor states,
only one of which is actually selected and pursued at any one time

4.1.4 The Alternative Godel, Church, and Post Models

Kurt Godel invented a very different model of computation than that formulated
by Turing. Godel identified the tasks that a computer can perform with a class of
recursive functions, i.e., functions that refer to themselves. For example, the function
fib(x) = fib(x — 1) + fib(x — 2) such that fib(1) = fib(2) = 1 defines a recursive
function that generates the Fibonnaci sequence, i.e., as x takes on integer values x =
1,2,3,4,5,6,..., then f(x) generates the Fibonnaci numbers 1, 1,2,3,5,8,....
The function fib(-) is defined in terms of itself, and is therefore a recursive function.

Yet another model of computation was formulated by Alonzo Church. Church
equated the tasks that a computer can perform with the so-called A-definable func-
tions (which you will have encountered if you have ever used the LISP program-
ming language). This viewed computation as a nesting of function evaluations. The
simplicity of the A-calculus made it possible to prove various properties of compu-
tations.

Hence both Godel’s and Church’s formulations of computation viewed it as an
elaborate mathematical function evaluation in which simpler functions were com-
posed to make more elaborate ones.

Emil Post anticipated many of the results of Godel, Turing, and Church but chose
not publish them. His “finite combinatory processes—Formulation I’ [397] is sim-
ilar in spirit to the idea of a Turing machine. Post did not ever speak overtly of
computing machines, but he did invent (independently of Turing) the idea of a hu-
man worker moving along a two way infinite “workspace” of boxes each of which
could be marked or unmarked, and following a set of directions: a conditional jump,
“Stop”, move left, move right, mark box or unmark box.

208 4 Quantum Universality, Computability, & Complexity

4.1.5 Equivalence of the Models of Computation

Thus, Turing identified the tasks a computer can perform with the class of func-
tions computable by a hypothetical computing device called a Turing Machine. This
viewed computation a rather imperative or “procedural” style. Slightly later Emil
Post also formalized computation in a similar machine model, which he asserted
was “logically equivalent to recursiveness”. Kurt Godel equated computation with
recursive functions and Alonzo Church with A-definable functions.

Although, superficially, the models of computation advanced by Turing, Godel,
Church, and Post look different, it turns out that they are equivalent to one another.
This was something of a surprise as there was no reason to expect their equivalence
a priori.

Moreover, any one of the models alone might be open to the criticism that it
provided an incomplete account of computation. But the fact that three radically
different views of computation all turned out to be equivalent was a clear indication
that the most important aspects of computation had been characterized correctly.

4.2 Universality

In the 1930s computer science was a rather fledgling field. People dabbled with
building computers but very few machines actually existed. Those that did had been
tailor-made for specific applications. However, the concept of a Turing machine
raised new possibilities. Turing realized that one could encode the transformation
rules of any particular Turing machine, T say, as some pattern of Os and Is on
the tape that is fed into some special Turing machine, called U. U had the effect
of reading in the pattern specifying the transformation rules for 7" and thereafter
treated any further input bits exactly as 7 would have done. Thus U was a universal
mimic of T and hence was called the Universal Turing Machine. Thus, one Turing
machine could mimic the behavior of another.

4.2.1 The Strong Church-Turing Thesis

The ability to prove that all the competing models of classical computation were
equivalent led Church to propose the following principle, which has subsequently
become known as the Church-Turing thesis [450]:

Strong Church-Turing Thesis Any process that is effective or algorithmic in na-
ture defines a mathematical function belonging to a specific well-defined class,
known variously as the recursive, the A-definable, or the Turing computable func-
tions. Of, in Turing’s words, every function which would naturally be regarded as
computable can be computed by the universal Turing machine.

4.2 Universality 209

Thus a model of computation is deemed universal, with respect to a family of
alternative models of computation, if it can compute any function computable by
those other models either directly or via emulation.

4.2.2 Quantum Challenge to the Strong Church-Turing Thesis

Notwithstanding these successes, in the early 1980s a few maverick scientists began
to question the correctness of the classical models of computation. The determin-
istic Turing machine and probabilistic Turing machine models are certainly fine as
mathematical abstractions but are they consistent with known physics? This ques-
tion was irrelevant in Turing’s era because computers operated at a scale well above
that of quantum systems. However, as miniaturization progresses, it is reasonable,
in fact, necessary, to re-consider the foundations of computer science in the light of
our improved understanding of the microscopic world.

Unfortunately, we now know that although these models were intended to be
mathematical abstractions of computation that were free of physical assumptions,
they do, in fact, harbor implicit assumptions about the physical phenomena available
to a computer. These assumptions appear to be perfectly valid in the world we see
around us, but they cease to be valid on sufficiently small scales.

We now know that the Turing Machine model contains a fatal flaw. In spite of
Turing’s best efforts, some remnants of classical physics, such as the assumption
that a bit must be either a 0 or a 1, crept into the Turing machine models. The ob-
vious advances in technology, such as more memory, more instructions per second,
greater energy efficiency have all been merely quantitative in nature. The underly-
ing foundations of computer science have not changed. Similarly, although certainly
having a huge social impact, apparent revolutions, such as the explosion of the In-
ternet, have merely provided new conduits for information to be exchanged. They
have not altered the fundamental capabilities of computers in any way whatsoever.
However, as computers become smaller, eventually their behavior must be described
using the physics appropriate for small scales, that is, quantum physics.

The apparent discrepancy between Feynman’s observation that classical comput-
ers cannot simulate quantum system efficiently and the Church-Turing thesis means
that the Strong Church-Turing Thesis may be flawed for there is no known way to
simulate quantum physics efficiently on any kind of classical Turing machine. This
realization led David Deutsch in 1985 to propose reformulating the Church-Turing
thesis in physical terms. Thus Deutsch prefers:

Deutsch’s Thesis Every finitely realizable physical system can be perfectly simu-
lated by a universal model computing machine operating by finite means.

This can only be made compatible with Feynman’s observation on the efficiency
of simulating quantum systems by basing the universal model computing machine
on quantum mechanics itself. This insight was the inspiration that allowed David

210 4 Quantum Universality, Computability, & Complexity

Deustch to prove that it was possible to devise a “Universal Quantum Turing Ma-
chine”, i.e., a quantum Turing machine that could simulate any other quantum Tur-
ing machine. The efficiency of Deustch’s Universal Quantum Turing Machine has
since been improved upon by several other scientists.

We don’t yet know how history with rate the relative contributions of various
scientists to the field of quantum computing. Curiously though, if you search for
“quantum computing” at www.wikiquote.com you will discover “David Deutsch,
Relevance: 4.2%; Richard Feynman, Relevance: 2.2% and (my personal favorite)
God, Relevance: 0.9%”. I have to say that I think wikiquote has it about right! I cer-
tainly concur with the relative ratings of Deutsch’s and Feynman’s contributions,
but I will leave it to each author (one living, one dead) to argue with the Almighty
Himself, the merits of their ranking with respect to God.

4.2.3 Quantum Turing Machines

The first quantum mechanical description of a Turing machine was given by Paul
Benioff in 1980 [43]. Benioff was building on earlier work carried out by Charles
Bennett who had shown that a reversible Turing machine was a theoretical possibil-
ity [44].

A reversible Turing machine is a special version of a deterministic Turing ma-
chine that never erases any information. This is important because physicists had
shown that, in principle, all of the energy expended in performing a computation
can be recovered provided that the computer does not throw any information away.
The notion of “throwing information away”” means that the output from each step of
the machine must contain within it enough information that the step can be undone
without ambiguity. Thus, if you think of a reversible Turing machine as a dynamical
system, then given knowledge of its state at any one moment would allow you to
predict its state at all future and all past times. No information was ever lost and the
entire computation could be run forwards or backwards.

This fact struck a chord with Benioff, for he realized that any isolated quan-
tum system had a dynamical evolution that was reversible in exactly this sense.
Thus it ought to be possible to devise a quantum system whose evolution over time
mimicked the actions of a classical reversible Turing machine. This is exactly what
Benioff did. Unfortunately, Benioff’s machine is not a true quantum computer. Al-
though between computational steps the machine exists in an intrinsically quantum
state (in fact a “superposition,” of computational basis states, at the end of each step
the “tape” of the machine was always back in one of its classical states: a sequence
of classical bits. Thus, Benioff’s design could do no more than a classical reversible
Turing machine.

The possibility that quantum mechanical effects might offer something genuinely
new was first hinted at by Richard Feynman of Caltech in 1982, when he showed that
no classical Turing machine could simulate certain quantum phenomena without
incurring an unacceptably large slowdown but that a “universal quantum simulator”

http://www.wikiquote.com

4.2 Universality 211

could do so. Unfortunately, Feynman did not provide a design for such a simulator,
so his idea had little immediate impact. Nor did he did not prove, conclusively, that a
universal quantum simulator was possible. However, indeed it is. The question was
answered in the affirmative by Seth Lloyd in 1996 [321].

The key step in making it possible to study the computational power of quan-
tum computers came in 1985, when David Deutsch of Oxford University, described
the first true quantum Turing machine (QTM) [136]. A QTM is a Turing machine
whose read, write, and shift operations are accomplished by quantum mechanical
interactions and whose “tape” can exist in states that are highly nonclassical. In par-
ticular, whereas a conventional classical Turing machine can only encode a 0, 1,
or blank in each cell of the tape, the QTM can exist in a blend, or “superposition”
of 0 and 1 simultaneously. Thus the QTM has the potential for encoding many in-
puts to a problem simultaneously on the same tape, and performing a calculation
on all the inputs in the time it takes to do just one of the calculations classically.
This results in a superposition of all the classical results and, with the appropri-
ate measurement, you can extract information about certain joint properties of all
these classical results. This technique is called “quantum parallelism.” We saw an
example of quantum parallelism when we solved Deutsch’s problem in Chap. 1.

Moreover, the superposition state representing the tape of the QTM can corre-
spond to an entanglement of several classical bit string configurations. Entanglement
means that the quantum state of the entire tape is well-defined but the state of the
individual qubits is not. For example, a 3-qubit tape in the state %QOIO) + |101))

represents an entanglement of the two configurations |010) and [101). It is entangled
in the sense that it you were to measure any one of these qubits, the quantum state
of the other two qubits would become definite instantaneously. Thus, if you read out
the bit values from a part of the tape of the QTM when it is in an entangled state,
your actions will have a side effect on the state of the other (unmeasured) qubits.
In fact it is the existence of such “entangled” qubits that is the fundamental reason
QTMs are different from classical deterministic and probabilistic TMs.

A graphical representation of a QTM is shown in Fig. 4.3. There is a single
physical tape running from left to right in the figure. However, this single tape is
drawn as if it were several tapes in parallel to convey the idea that the single quantum
tape can hold a superposition of many different bit strings simultaneously.

As we saw in Chap. 1, each qubit in a QTM, when considered is perfect isola-
tion from other qubits, can be visualized as a small arrow contained in a sphere.
“Straight up” represents the (classical) binary value 0 and “straight down” repre-
sents the (classical) binary value 1. When the arrow is at any other orientation, the
angle the arrow makes with the horizontal axis is a measure of the ratio of 0-ness
to 1-ness in the qubit. Likewise, the angle through which the arrow is rotated about
the vertical axis is a measure of the “phase”. Thus, drawing qubits as arrows con-
tained in spheres we can depict a typical superposition state of Deutsch’s quantum
Turing machine as shown in Fig. 4.3. The possible successor states of the tape are
indicated by edges between different possible tape configurations.

Quantum Turing machines (QTMs) are best thought of as quantum mechanical
generalizations of probabilistic Turing machines (PTMs). In a PTM, if you initialize

212 4 Quantum Universality, Computability, & Complexity

5%, %)

apy; b07

ags bos

ags bos -

agy h()4

agpz b03

agy b02

ap; b("

ag boo

CEOBODDD
BEDDEEDD
BOGDBDBED

CEC N
UEDBEIBEDPED

COCTOD0D
.

& %)
S S
S S
& %)
5%, %)
S S
S S

I
s
s

1

Fig. 4.3 In the quantum Turing machine, each cell on the tape can hold a qubit. In this figure there
is one physical tape but it is drawn as multiple tapes corresponding to a different bit pattern for
each component of the net superposition state

the tape in some starting configuration and run the machine without inspecting its
state for ¢ steps, then its final state will be uncertain and can only be described using
a probability distribution over all the possible states accessible in ¢ steps.

Likewise, in a QTM if you start the machine off in some initial configuration, and
allow it to evolve for ¢ steps, then its state will be described by a superposition of
all states reachable in ¢ steps. The key difference is that in a classical PTM only one
particular computational trajectory is followed, but in the QTM all computational
trajectories are followed and the resulting superposition is the sum over all possible
states reachable in ¢ steps. This makes the calculation of the net probability of a
particular computational outcome different for a PTM than a QTM.

In the PTM if a particular answer can be reached independently, in more than
one way, the net probability of that answer is given by the sum of each probability
that leads to that answer. However, in the QTM if a given answer can be reached in
more than one way the net probability of obtaining that answer is given by summing
the amplitudes of all trajectories that lead to that answer and then computing their
absolute value squared to obtain the corresponding probabilities.

If the quantum state of the QTM in Fig. 4.3 is the superposition c(|00000) +
¢1]/00001) 4+ ¢2]|00010) + --- 4 c31]|11111) the coefficients cg, cy, ..., c3; are the
amplitudes, and probability of finding the tape of the QTM in the bit configuration
|00010), say, when you read each of the bits is equal to |c> |2. If an event occurs with
a probability of O this means that there is a 0% chance, i.e., utter impossibility, of that
event occurring. Conversely, if an event occurs with a probability of 1 this means
that there is a 100% chance, i.e., absolutely certainty, that the event will occur.

Whereas classical probabilities are real numbers between zero and one, “ampli-
tudes” are complex numbers (i.e. numbers of the form x 4 iy where x and y are
real numbers). When you add two probabilities you always get a bigger or equal
probability. However, when you add two complex amplitudes together they do not
always result in a number that has a bigger absolute value. Some pairs of amplitudes

4.3 Computability 213

tend to cancel each other out resulting in a net reduction in the probability of seeing
a particular outcome. Other pairs of amplitudes tend to reinforce one another and
thereby enhance the probability of a particular outcome. This is the phenomenon of
quantum interference.

Quantum interference is a very important mechanism in quantum computing.
Typically, when designing a quantum computer to solve a hard computational prob-
lem, you have to devise a method (in the form of a quantum algorithm) to evolve
a superposition of all the valid inputs to the problem into a superposition of all the
valid solutions to that problem. If you can do so, when you read the final state of your
memory register you will be guaranteed to obtain one of the valid solutions. Under-
standing how to achieve your desired evolution invariably entails arranging for the
computational pathways that lead to non-solutions to interfere destructively with
one another and hence cancel out, and arranging for the computational pathways
that lead to solutions to interfere constructively and hence reinforce one another.

Armed with this model of an abstract quantum Turing machine, several re-
searchers have been able to prove theorems about the capabilities of quantum com-
puters [58]. This effort has focused primarily on universality (whether one machine
can simulate all others efficiently), computability (what problems the machines can
do), and complexity (how the memory, time and communication resources scale
with problem size). Let us take a look at each of these concepts and compare the
perspective given to us by classical computing and quantum computing.

4.3 Computability

Computability theory is concerned with which computational tasks, for a particular
model of computation, can and cannot be accomplished within a finite length of
time. If there is no algorithm, with respect to a particular model of computation, that
can guarantee to find an answer to a given problem in a finite amount of time, that
answer is said to be uncomputable with respect to that model of computation. One
of the great breakthroughs in classical computer science was the recognition that
all of the candidate models for computers, Turing machines, recursive functions,
and A-definable functions were equivalent in terms of what they could and could
not compute. It is natural to wonder whether this equivalence extends to quantum
computation too.

If you ask a young child what a computer can do you might be told, “They let
me learn letters and numbers and play games.” Ask a teenager and you might hear,
“They let me surf the Web and meet online in chat rooms with my friends.” Ask
an adult and you might discover, “They’re great for email, word processing and
keeping track of my finances.” What is remarkable is that the toddler, the teenager,
the parent might all be talking about the same machine! By running the appropriate
software it seems we can make the computer perform almost any task.

The possibility of one machine simulating another gave a theoretical justification
for pursuing the idea of a programmable computer. In 1982, Richard Feynman ob-
served that it did not appear possible for a Turing machine to simulate certain quan-

214 4 Quantum Universality, Computability, & Complexity

tum physical processes without incurring an exponential slowdown [181]. Here is
an example.

Suppose you want to use a classical computer to simulate a quantum computer.
Let’s assume that the quantum computer is to contain n qubits and that each qubit is
initially in a superposition state, co|0) + c1|1). Each such superposition is described
by two complex numbers, cg and ¢y, so we need a total of 2n complex numbers to
describe the initial state of all n qubits when they are in this product state form.

Now what happens if we want to simulate a joint operation on all n qubits? Well,
you’ll find that the cost of the simulation skyrockets. Once we perform a joint op-
eration on all n qubits, i.e., once we evolve them under the action of some quantum
algorithm, they will most likely become entangled with one another. Whereas the
initial state that we started with could be factored into a product of a state for each
qubit, an entangled state cannot be factored in this manner. In fact, to even write
down an arbitrary entangled state of n qubits requires 2" complex numbers. Thus,
as a classical computer must keep track of all these complex numbers explicitly,
the cost of a classical simulation of a quantum system requires a huge amount of
memory and computer time.

What about a quantum computer? Could a quantum computer simulate any quan-
tum system efficiently? There is a good chance that it could because the quantum
computer would have access to exactly the same physical phenomena as the system
it is simulating. This result poses something of a problem for traditional (classical)
computer science.

4.3.1 Does Quantum Computability Offer Anything New?

Is it possible to make more pointed statements about computability and quantum
computers?

The first work in this area appeared in David Deutsch’s original paper on quan-
tum Turing machines [136]. Deutsch argued that quantum computers could compute
certain outputs, such as true random numbers, that are not computable by any de-
terministic Turing machine. Classical deterministic Turing machines can only com-
pute functions, that is, mathematical procedures that return a single, reproducible,
answer. However, there are certain computational tasks that cannot be performed
by evaluating any function. For example, there is no function that generates a true
random number. Consequently, a Turing machine can only feign the generation of
random numbers.

In the same paper, Deutsch introduced the idea of quantum parallelism. Quan-
tum parallelism refers to the process of evaluating a function once on a blend or
“superposition” of all possible inputs to the function to produce a superposition of
outputs. Thus all the outputs are computed in the time taken to evaluate just one
output classically. Unfortunately, you cannot obtain all of these outputs explicitly
because a measurement of the final superposed state would yield only one output.
Nevertheless, it is possible to obtain certain joint properties of all of the outputs.

4.3 Computability 215

In 1991 Richard Jozsa gave a mathematical characterization of the class of func-
tions (i.e., joint properties) that were computable by quantum parallelism [261]. He
discovered that if f is some function that takes integer arguments in the range 1 to
m and returns a binary value, and if the joint property function J that defines some
collective attribute of all the outputs of f, takes m binary values and returns a single
binary value, then only a fraction % — omtly) (22" of all possible joint property
functions are computable by quantum parallelism.

Thus quantum parallelism alone is not going to be sufficient to solve all the joint
property questions we might wish to ask. Of course, you could always make a QTM
simulate a classical TM and compute a particular joint property in that way. Al-
though this is feasible, it is not desirable, because the resulting computation would
be no more efficient on the quantum computer than on the classical machine. How-
ever, the ability of a QTM to simulate a TM means that the class of functions com-
putable on QTMs exactly matches the class of functions computable on classical
TMs.

4.3.2 Decidability: Resolution of the Entscheidungsproblem

It was, you will recall, a particular question regarding computability that was the
impetus behind the Turing machine idea. Hilbert’s Entscheidungsproblem had asked
whether there was a mechanical procedure for deciding the truth or falsity of any
mathematical conjecture, and the Turing machine model was invented to prove that
there was no such procedure.

To construct this proof, Turing used a technique called reductio ad absurdum, in
which you begin by assuming the truth of the opposite of what you want to prove
and then derive a logical contradiction. The fact that your one assumption coupled
with purely logical reasoning leads to a contradiction proves that the assumption
must be faulty. In this case the assumption is that there is a procedure for deciding
the truth or falsity of any mathematical proposition and so showing that this leads
to a contradiction allows you to infer that there is, in fact, no such procedure.

The proof goes as follows: if there were such a procedure, and it were truly me-
chanical, it could be executed by some Turing machine with an appropriate table of
instructions. But a “table of instructions” could always be converted into some finite
sequence of 1s and Os. Consequently, such tables can be placed in an order, which
meant that the things these tables represented (i.e., the Turing machines) could also
be placed in an order.

Similarly, the statement of any mathematical proposition could also be converted
into a finite sequence of 1s and Os; so they too could be placed in an order. Hence
Turing conceived of building a table whose vertical axis enumerated every possible
Turing machine and whose horizontal axis, every possible input to a Turing ma-
chine.

But how would a machine convey its decision on the veracity of a particular input,
that is, a particular mathematical proposition? You could simply have the machine

216 4 Quantum Universality, Computability, & Complexity

Table 4.1 Turing’s Table. The i-th row is the sequence of outputs of the i-th Turing machine
acting on inputs 0, 1, 2, 3, ...

i-th DTM Jj-th Input

0 1 2 3 4 5 6
0 ® ® ® ® ® ® ®
1 0 0 0 0 0 0 0
2 1 2 1 ® 3 0 ®
3 2 0 0 1 5 7 ®
4 3 ® 1 8 1 6 9
5 7 1 ® ® 5 0 0
6 ® 2 4 1 7 3 4
Table 4.2 Turing’s Table after diagonal slash
i-th DTM Jj-th Input

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 1 2 1 0 3 0 0
3 2 0 0 1 5 7 0
4 3 0 1 8 1 6 9
5 7 1 0 0 5 0 0
6 0 2 4 1 7 3 4

print out the result and halt. Hence the Entscheidungsproblem could be couched as
the problem of deciding whether the i-th Turing machine acting on the j-th input
would ever halt. Thus Hilbert’s Entscheidungsproblem had been refashioned into
Turing’s Halting Problem.

Turing wanted to prove that there was no procedure by which the truth or falsity
of a mathematical proposition could be decided; thus his proof begins by assuming
the opposite, namely, that there is such a procedure. Under this assumption, Turing
constructed a table whose (7, j)-th entry was the output of the i-th Turing machine
on the j-th input, if and only if the machine halted on that input, or else some special
symbol, such as ®, signifying that the corresponding Turing machine did not halt
on that input. Such a table would resemble that shown in Table 4.1.

Next Turing replaced each symbol ® with the bit “0”. The result is shown in
Table 4.2: Now because the rows enumerate all possible Turing machines and the
columns enumerate all possible inputs (or, equivalently, mathematical propositions)
all possible sequences of outputs, that is, all computable sequences of 1s and Os,

4.3 Computability 217

Table 4.3 Turing’s Table with 1 added to each element on the diagonal slash
i-th DTM Jj-th Input
0 1

S}
w
~
W
=)

AN N R WD = O
O\lLﬂN»—‘OE
NHOONHO
&O—‘0.00
[\
'—‘OOO-OOO
(3]
~N W “w W O O
.-N
MHO\\IOOO

must be contained somewhere in this table. However, since any particular output
is merely some sequence of 1s and Os it is possible to change each one in some
systematic way, for example by flipping one of the bits in the sequence. Consider
incrementing each element on a diagonal slash through the table as shown in Ta-
ble 4.3. The sequence of outputs along the diagonal differs in the i-th position from
the sequence generated by the i-th Turing machine acting on the i-th input. Hence
this sequence cannot appear in any of the rows in the table. However, by construc-
tion, the infinite table is supposed to contain all computable sequences and yet here
is a sequence that we can clearly compute and yet cannot appear in any one row!
Hence Turing established a contradiction and the assumption underpinning the ar-
gument must be wrong. That assumption was “there exists a procedure that can
decide whether a given Turing machine acting on a given input will halt.” As Tur-
ing showed that the Halting problem was equivalent to the Entscheidungsproblem,
the impossibility of determining whether a given Turing machine will halt before
running it shows that the Entscheidungsproblem must be answered in the negative
too. In other words, there is no procedure for deciding the truth or falsity of all
mathematical conjectures.

4.3.3 Proof Versus Truth: Godel’s Incompleteness Theorem

In 1936 Kurt Godel proved two important theorems that illustrated the limitations
of formal systems. A formal system L is called “consistent” if you can never prove
both a proposition P and its negation —P within the system. Godel showed that
“Any sufficiently strong formal system of arithmetic is incomplete if it is consistent.”
In other words there are sentences P and — P such that neither P nor —P is prov-
able using the rules of the formal system £. As P and —P express contradictory
sentences, one of them must be true. So there must be true statements of the formal
system L that can never be proved. Hence Godel showed that truth and theoremhood
(or provability) are distinct concepts.

218 4 Quantum Universality, Computability, & Complexity

In a second theorem, Godel showed that the simple consistency of £ cannot be
proved in L. Thus a formal system might be harboring deep-seated contradictions.

The results of Turing and Godel are startling. They reveal that our commonsense
intuitions regarding logical and mathematical theorem proving are not reliable. They
are no less startling than the phenomena of entanglement, non-locality, etc in quan-
tum physics.

In the 1980s some scientists began to think about the possible connections be-
tween physics and computability [320]. To do so, we must distinguish between
Nature, which does what it does, and physics, which provides models of Nature
expressed in mathematical form. The fact that physics is a mathematical science
means that it is ultimately a formal system. Asher Peres and Wojciech Zurek have
articulated three reasonable desiderata of a physical theory [390], namely, deter-
minism, verifiability, and universality (i.e., the theory can describe anything). They
conclude that:

“Although quantum theory is universal, it is not closed. Anything can be de-
scribed by it, but something must remain unanalyzed. This may not be a flaw of
quantum theory: It is likely to emerge as a logical necessity in any theory which is
self-referential, as it attempts to describe its own means of verification.”

“In this sense it is analogous to Godel’s undecidability theorem of formal num-
ber theory: the consistency of the system of axioms cannot be verified because there
are mathematical statements which can neither be proved nor disproved by the use
of the formal rules of the theory, although their truth may be verified by metamath-
ematical reasoning.’

In a later paper Peres points out a “logico-physical paradox” [385]. He shows
that it is possible to set up three quantum observables such that two of the observ-
ables have to obey the Heisenberg Uncertainty Principle. This Principle, says that
certain pairs of observables, such as the position and momentum of a particle, cannot
be measured simultaneously. Measuring one such observable necessarily disturbs
the complementary observable, so you can never measure both observable together.
Nevertheless, Peres arranges things so that he can use the rules of quantum mechan-
ics to predict, with certainty, the value of both these variables individually. Hence
we arrive at an example system that we can say things about but which we can never
determine experimentally (a physical analogue of Gddel’s undecidability theorem).

4.3.4 Proving Versus Providing Proof

Many decades have now passed since Turing first dreamt of his machine and in
fact today there are a number of programs around that actually perform as artifi-
cial mathematicians in exactly the sense Turing anticipated. Current interest in them
stems not only from a wish to build machines that can perform mathematical rea-
soning but also more general kinds of logical inference such as medical diagnosis,
dialog management, and even legal reasoning. Typically, these programs consist of
three distinct components: a reservoir of knowledge about some topic (in the form

4.3 Computability 219

of axioms and rules of inference), an inference engine (which provides instructions
on how to pick which rule to apply next), and a specific conjecture to be proved.

In one of the earliest examples, SHRDLU, a one-armed robot, was given a com-
mand in English which was converted into its logical equivalent and then used to
create a program to orchestrate the motion of the robot arm [542]. So the robot gave
the appearance of understanding a command in plain English simply by following
rules for manipulating symbols. Nowadays such capabilities are commonplace. For
example, many cell phones can understand a limited repertoire of verbal commands
to dial telephone numbers, and some companies use automated query-answering
systems to field routine customer enquiries.

In a more sophisticated example, the British Nationality Act was encoded in
first-order logic and a theorem prover used to uncover logical inconsistencies in the
legislation [447]. Similarly, the form of certain legal arguments can be represented
in logic which can then be used to find precedents by revealing analogies between
the current case and past examples. So although most people would think themselves
far removed from the issue of “theorem proving,” they could be in for a surprise if
the tax authorities decided to play these games with the tax laws!

Today’s artificial mathematicians are far less ingenious than their human counter-
parts. On the other hand, they are infinitely more patient and diligent. These qual-
ities can sometimes allow artificial mathematicians to churn through proofs upon
which no human would have dared embark. Take, for example, the case of map
coloring. Cartographers conjectured that they could color any planar map with just
four different colors so that no two adjacent regions had the same color. However,
this conjecture resisted all attempts to construct a proof for many years. In 1976 the
problem was finally solved with the help of an artificial mathematician. The “proof,”
however, was somewhat unusual in that it ran to some 200 pages [541]. For a human
to even check it, let alone generate it, would be a mammoth undertaking. Table 4.4
shows a summary of some notable milestones in mathematical proof by humans and
machines.

Despite differences in the “naturalness” of the proofs they find, artificial mathe-
maticians are nevertheless similar to real mathematicians in one important respect:
their output is an explicit sequence of reasoning steps (i.e., a proof) that, if fol-
lowed meticulously, would convince a skeptic that the information in the premises
combined with the rules of logical inference would be sufficient to deduce the con-
clusion. Once such a chain were found the theorem would have been proved. The
important point is that the proof chain is a tangible object that can be inspected
at leisure. Surprisingly, this is not necessarily the case with a QTM. In principle,
a QTM could be used to create some proof that relied upon quantum mechanical
interference among all the computations going on in superposition. Upon interro-
gating the QTM for an answer you might be told, “Your conjecture is true,” but
there would be no way to exhibit all the computations that had gone on in order to
arrive at the conclusion. Thus, for a QTM, the ability to prove something and the
ability to provide the proof trace are quite distinct concepts. Worse still, if you tried
to peek inside the QTM as it was working, to glean some information about the state
of the proof at that time, you would invariably disrupt the future course of the proof.

220

4 Quantum Universality, Computability, & Complexity

Table 4.4 Some impressive mathematical proofs created by humans and machines. In some cases
simple proofs of long-standing mathematical conjectures have only recently been discovered. In
other cases, the shortest known proofs are extremely long, and arguably too complex to be grasped

by any single human

Mathematician

Proof feat

Notable features

Daniel Gorenstein

Kenneth Appel and
Wolfgang Haken

Andrew Wiles

Laszlo Babai and colleagues

Thomas Hales

Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena

Classification of finite
simple groups

Proved the Four Color
Theorem

Proved Fermat’s Last
Theorem

Invented probabilistic proof
checking

Proved Kepler’s conjecture
on the densest way to pack
spheres again using ad hoc
programs to check a large
number of test cases

On August 6, 2002 they
proved primality testing can
done deterministically in
polynomial time

Created by human. 15,000
pages long

Created by computer.
Reduced all planar maps to
combinations of 1,936
special cases and then
exhaustively checked each
case using ad hoc programs.
Human mathematicians
dislike this proof on the
grounds that these ad hoc
checking programs may
contains bugs and the proof
is too hard to verify by hand

Created by human. 200
pages long. Only 0.1% of all
mathematicians are
competent to judge its
veracity

Able to verify that a complex
proof is “probably correct”
by replicating any error in
the proof in many places in
the proof, thereby
amplifying the chances of
the error being detected

In reaction to complaints by
mathematicians, this proof is
now being re-done using
automated theorem provers
instead of ad hoc checking
programs since automated
theorem provers, which have
been tested extensively, have
a higher assurance of being
correct

Created by humans. Took
centuries to find this proof

4.4 Complexity 221
4.4 Complexity

Complexity theory is concerned with how the inherent cost required to solve a com-
putational problem scales up as larger instances of the problem are considered. It is
possible to define many different resources by which the difficulty of performing a
computation can be assessed. These include the time needed to perform the com-
putation, the number of elementary steps, the amount of memory used, the number
of calls to an oracle or black-box function, and the number of communicative acts.
These lead to the notions of computational, query, and communication complexity.
Specifically,

o Computational complexity measures the number of steps (which is proportional
to time) or the minimum amount of memory required (which is proportional to
space) needed to solve the problem.

e Query complexity measures the number of times a certain sub-routine must be
called, or “queried”, in order to solve the problem.

o Communication complexity measures the volume of data that must be sent back
and forth between parties collaborating to solve the problem.

Thus, whereas computability is concerned with which computational tasks comput-
ers can and cannot do, complexity is concerned with the efficiency with which they
can do them. Efficiency is an important consideration for real-world computing. The
fact that a computer can solve a particular kind of problem, in principle, does not
guarantee that it can solve it in practice. If the running time of the computer is too
long, or the memory requirements too great, then an apparently feasible computa-
tion can still lay beyond the reach of any practicable computer.

Computer scientists have developed a taxonomy for describing the complexity
of various algorithms running on different kinds of computers. The most common
measures of efficiency employ the rate of growth of the time or memory needed
to solve a problem as the size of the problem increases. Of course “size” is an
ambiguous term. Loosely speaking, the “size” of a problem is taken to be the number
of bits needed to state the problem to the computer. For example, if an algorithm is
being used to factor a large integer N, the “size” of the integer being factored would
be roughly log, N.

The traditional computational complexity distinction between tractable and in-
tractable problems depends on whether the asymptotic scaling of the algorithm
grows polynomially, i.e., O(n*), or exponentially, i.e., O(k") with the problem
size n.

These notions or tractability and intractability are somewhat imperfect because
asymptotic scaling results are unattainable mathematical ideals in a finite Universe.
Nor do they take into account the practically interesting range of sizes of problem
instances. For example, airline scheduling is an NP-Complete problem. In the worst
case, the time needed to find the optimal schedule scales exponentially in the number
of aircraft to be scheduled. But the number of jetliners with which we are ever
likely to have to deal, in practice, is bounded. So if someone invented a scheduling
algorithm that scaled as O (n'%Y (where n is the number of jetliners) then, even

222 4 Quantum Universality, Computability, & Complexity

though it is polynomial it might not be practically better than an exponential time
scheduling algorithm for realistic problems.

The reason complexity classifications are based on the rates of growth of running
times and memory requirements, rather than absolute running times and memory re-
quirements, is to factor out the variations in performance experienced by different
makes of computers with different amounts of RAM, swap space, and processor
speeds. Using a growth rate-based classification, the complexity of a particular al-
gorithm becomes an intrinsic measure of the difficulty of the problem the algorithm
addresses.

Although complexity measures are independent of the precise make and con-
figuration of computer, they are related to a particular mathematical model of the
computer such as a deterministic Turing machine or a probabilistic Turing machine.
It is now known, for example, that many problems that are intractable with respect to
a deterministic Turing machine can be solved efficiently, or at least can sometimes
have their solutions approximated efficiently, with high probability on a probabilis-
tic Turing machine. The Euclidean Traveling Salesman Problem (Euclidean-TSP),
e.g., consists of finding a path having minimum Euclidean distance between a set of
points in a plane such that the path visits each point exactly once before returning
to its starting point. Euclidean-TSP is known to be NP-Complete [377], and there-
fore rapidly becomes intractable as the number of points to be visited, N — oo.
Nevertheless, in [20], Arora exhibits a randomized algorithm that can find a tour
to within a factor of O(1 4 1/c¢) of the optimal tour (for any constant ¢) in a time
that scales only as O(N (log(N)©©). This is worse than linear scaling but much
better than exponential scaling. Other examples include random walk algorithms for
approximating the permanent of a matrix with non-zero entries [255], finding sat-
isfying assignments to a Boolean expression (k-SAT with k > 2) [439], estimating
the volume of a convex body [162], and estimating graph connectivity [364]. Clas-
sical random walks also underpin many standard methods in computational physics,
such as Monte Carlo simulations. Thus, randomization can be a powerful tool for
rendering intractable problems tractable provided we are content with finding a good
approximation to a global optimum or exact solution.

There are many criteria by which you could assess how efficiently a given algo-
rithm solves a given type of problem. For the better part of the century, computer
scientists focused on worst-case complexity analyses. These have the advantage
that, if you can find an efficient algorithm for solving some problem, in the worst
case, then you can be sure that you have an efficient algorithm for any instance of
such a type of problem.

Worst case analyses can be somewhat misleading however. Recently some com-
puter scientists have developed average case complexity analyses. Moreover, it is
possible to understand the finer grain structure of complexity classes and locate re-
gions of especially hard and especially easy problems within a supposedly “hard”
class [101, 537, 539]. Nevertheless, one of the key questions is whether some algo-
rithm runs in polynomial time or exponential time.

4.4 Complexity 223

Fig. 4.4 A comparison of 2500
polynomial versus el ol (e (1)
exponential growth rates.

‘ : 2 2000 —]
Exponential growth will 8
always exceed polynomial =
growth eventually, regardless & 1500 92
of the order of the polynomial £ /

2 1000 —

(=¥

g /

S s00 / = -

= |
0 5 10 15 20 25 30 35
Problem Size L

4.4.1 Polynomial Versus Exponential Growth

Computer scientists have developed a rigorous way of quantifying the difficulty of
a given type of problem. The classification is based on the mathematical form of the
function that describes how the computational cost incurred in solving the problem
scales up as larger problems are considered. The most important quantitative dis-
tinction is between polynomially growing costs (which are deemed tractable) and
exponentially growing costs (which are deemed intractable). Exponential growth
will always exceed polynomial growth eventually, regardless of the order of the
polynomial. For example, Fig. 4.4 compares the growth of the exponential function
exp(L) with the growth of the polynomials L2, L3 and L*. As you can see, eventu-
ally, whatever the degree of the polynomial in L, the exponential becomes larger.

A good pair of example problems that illustrate the radical difference between
polynomial and exponential growth are multiplication versus factoring. It is rela-
tively easy to multiply two large numbers together to obtain their product, but it
is extremely difficult to do the opposite; namely, to find the factors of a composite
number:

1459 x 83873 — 122370707 (easy) 4.1
122370707 — 1459 x 83873 (hard) 4.2)

If, in binary notation, the numbers being multiplied have L bits, then multiplica-
tion can be done in a time proportional to L2, a polynomial in L.

For factoring, the best known classical algorithms are the Multiple Polynomial
Quadratic Sieve [460] for numbers involving roughly 100 to 150 decimal dig-
its, and the Number Field Sieve [309] for numbers involving more than roughly
110 decimal digits. The running time of these algorithms grows subexponentially
(but superpolynomially) in L, the number of bits needed to specify the num-
ber to be factored N. The best factoring algorithms require a time of the order
C’)(exp(L% (log L)*/3)) which grows subexponentially (but superpolynomially) in L,
the number of bits needed to specify the number being factored.

224 4 Quantum Universality, Computability, & Complexity

Table 4.5 Progress in factoring large composite integers. One MIP-Year is the computational
effort of a machine running at one million instructions per second for one year

Number Number of decimal digits First factored MIPS years
Typical 20 1964 0.001
Typical 45 1974 0.01
Typical 71 1984 0.1
RSA-100 100 1991

RSA-110 110 1992

RSA-120 120 1993 825
RSA-129 129 1994 5000
RSA-130 130 1996 750
RSA-140 140 1999 2000
RSA-150 150 2004

RSA-155 155 1999 8000

Richard Crandall charted the progress in factoring feats from the 1970s to the
1990s [118]. In Table 4.5 we extend his data to more modern times. In the early
1960s computers and algorithms were only good enough to factor numbers with 20
decimal digits, but by 1999 that number had risen to a 155 decimal digit numbers,
but only after a Herculean effort. Many of the numbers used in these tests were is-
sued as grand challenge factoring problems by RSA Data Securities, Inc., and hence
bear their name. Curiously, RSA-155 was factored prior to RSA-150 (a smaller
number). The most famous of these factoring challenge problems is RSA-129.

As we show later in the book, the presumed difficulty of factoring large inte-
gers is the basis for the security of so-called public key cryptosystems that are in
widespread use today. When one of these systems was invented the authors laid
down a challenge prize for anyone who could factor the following 129 digit number
(called RSA-129) :

RSA-129 = 1143816257578888676692357799761466120102182
...9672124236256256184293570693524573389783059
... 7123563958705058989075147599290026879543541 4.3)

But in 1994 a team of computer scientists using a network of workstations succeed-
ing in factoring RSA-129 = p x g where the factors p are g are given by:

p = 34905295108476509491478496199038981334177646384933878
... 43990820577

q = 32769132993266709549961988190834461413177642967992942
...539798288533

(4.4)

Extrapolating the observed trend in factoring suggests that it would take millions
of MIP-Years to factor a 200-digit number using conventional computer hardware.

4.4 Complexity 225

However, it might be possible to do much better than this using special purposes
factoring engines as we discuss in Chap. 13.

Although, the traditional computational complexity distinction between tractable
and intractable problems depends on whether the asymptotic scaling of the algo-
rithm grows polynomially, i.e., O(n¥), or exponentially, i.e., O (k") with the prob-
lem size n, strictly speaking, this distinction is imperfect since it does not take into
account the finiteness of the Universe. Asymptotic results are unattainable mathe-
matical ideals in a finite Universe. Nor do they take into account the practically in-
teresting range of sizes of problem instances. For example, airline scheduling is an
NP-Complete problem. In the worst case, the time needed to find the optimal sched-
ule scales exponentially in the number of aircraft to be scheduled. But the number
of jetliners with which we are ever likely to have to deal, in practice, is bounded. So
if someone invented a scheduling algorithm that scaled as O (n'%) (where n is the
number of jetliners) then, even though it is polynomial it might not be practically
better than an exponential time scheduling algorithm for realistic problems.

4.4.2 Big O, O and 2 Notation

Complexity theory involves making precise statements about the scaling behav-
ior of algorithms in the asymptotic limit. This is usually described by comparing
the growth rate of the algorithm to that of a simple mathematical function in the
limit that the size of the computational problem goes to infinity. The most common
asymptotic scaling relationships, together with their standard notations, are summa-
rized in Table 4.6.

For example, consider the three functions f(x) = %, glx) = 3

= sinx + logx,
and h(x) = log %". Their graphs are shown in Fig. 4.5. For small values of x, g(x)
can be greater than or less than f(x), and likewise greater than or less than A (x).
However, asymptotically, i.e., “eventually”, g(x) is bounded above by f(x) and

therefore g(x) = O(f(x)). Similarly, asymptotically, g(x) is bounded below by

3
h(x) and so g(x) = £2(h(x)). However, as the limit limy_, o |/‘511[:;;$ —1]=0,
T

we also have g(x) equals #(x) asymptotically, i.e., g(x) ~ h(x) asymptotically.
We can use the aforementioned notation to characterize the asymptotic behaviors

of some well-known algorithms. Table 4.7 shows the asymptotic running times of
some famous algorithms.

4.4.3 Classical Complexity Zoo

Knowing the exact functional forms for the rates of growth of the number of com-
putational steps for various algorithms allows computer scientists to classify com-
putational problems based on difficulty. The most useful distinctions are based on

226

4 Quantum Universality, Computability, & Complexity

Table 4.6 Notation used to characterize the asymptotic scaling behavior of algorithms

Notation

Meaning

Formal definition

fx)=0(gx)

f@x)=o0(g(x)

fx) =02(gx)

fx) =w(gk))

fx)=0(gx)

fx)~gx)

f(x) is bounded above by g(x)
asymptotically

f(x) is dominated by g(x)
asymptotically

f(x) is bounded below by g(x)
asymptotically

f(x) dominates g(x)
asymptotically

f(x) is bounded above and below
by g(x) asymptotically

f(x) equals g(x) asymptotically

As x — o0, dk s.t. | f(x)| <kg(x)
As x — 00, Vk s.t. | f(x)| <kg(x)
As x — o0,k s.t. | f(x)| > kg(x)
As x — 00, Vk s.t. [f(x)| > kg(x)
As x — 00, 3ky, ky s.t.

kig(x) < | f(x)| = kag(x)
Asn — 00, Vk s.t.

If(x)/g(x) — 11 <k

Fig. 4.5 Graphs of T

fo=/3,

gx)= % sinx + log x, and
h(x) =log %. As x becomes
larger the relative dominance
of the functions becomes
clear

()

classes of problems that either can or cannot be solved in polynomial time, in the
worst case. Problems that can be solved in polynomial time are usually deemed
“tractable” and are lumped together into the class P. Problems that cannot be solved
in polynomial time are usually deemed “intractable” and may be in one of several
classes. Of course it is possible that the order of the polynomial is large making a
supposedly “tractable” problem rather difficult in practice. Fortunately, such large
polynomial growth rates do not arise that often, and the polynomial/exponential dis-
tinction is a pretty good indicator of difficulty. In Table 4.8 we list some classical
complexity classes.

The known inclusion relationships between the more important of these com-
plexity classes are shown in Fig. 4.6.

227

4.4 Complexity

(emaredq st yders oy J1 9proop
0} pa1Inbai are 9[orIOo Y} 03 S[[BD AUueW

noy ‘9 ‘ydess e jo xuyewr Aouddelpe SSANALILIVAIE

[6S] 998 (/60 (COr)) JO FPI[MOUY Sk Jey) I[ILI0 UL UIAID DNIAIDHA
(yped 1ySrom 3somof & puy
0) paxnbar are 9[orI0 A} 0} S[[Ed Auew

moy ‘0 ‘ydeis e jo xmew Aouddelpe SHLVd LHOIAM

[191] 998 ((u3oD) ¢/)0 (COr Y} JO 98PA[MOUY SEY JEY) A[ILIO UE UIATD) LSHMOT ONIANIA
{P1oauuod st ydei3 oy} J1 oproap
0 paxnbazr a1e 9[orIO0 9Y) 0} S[[EO Auew

aoy ‘H ‘qdess e jo xmew ouaselpe ALIATLDANNOD

[191] 998 (¢/zH O (COr)) JO FPI[MOUY Sk Jey) I[ILI0 UL UIAID HdVYD DNIAIDHA
{221 Suruueds wnwiuw € puy

0) paxnbar are 9[orI0 Y} 03 S[[d Auew HdVYD

aoy ‘9 ‘ydess e jo xryew Louadelpe ddLHOIdM 40 9941

[191] 998 (¢/zW O (WU Y} JO dFPIA[MOUY Sk JEY) J[ILIO UE UIAID ONINNVIS WNININTIN

o0=4V 1LONaodd

[L8] 998 (e 0o AJUIoA *) pUE ‘g ‘Y SPOLIBW USAID XTI LVIN ONIAITIHA

(¢/z(u30D WO bd = N yey) yons SYHADALNI

[8S¥] 998 ((N3oD)O ‘N BoT = u Im b pue d s1030e) puy N 1230JUT UL UOATD) ONIYO.LOVA
(4 xoput
9} puy 0) papaau e (X) / 03 S[[ed Auew

MO ISIMIYJO () pUB 7 = X JJI | SUINJQIX HOYVAS

[612] 998 (NMO (NT 1e (¥) / uondUNg X0q YOB[q B UALD AINLONYLSNN

2IN0S wnjueng) [earsse) uondirosog w3y

suryiog e juetoduir swos Jo Jo1Aeyeq Jurpess onoydwiAse oYy, L'y dqelL

228

4 Quantum Universality, Computability, & Complexity

Table 4.8 Some classical complexity classes and example problems within those classes

Classical
complexity class

Intuitive meaning

Examples

P or PTIME

PP

BPP

NP

NP-Complete

NP-Hard

#P

P-Complete

Polynomial-Time: the running time
of the algorithm is, in the worst
case, a polynomial in the size of the
input. All problems in P are
tractable

Zero-Error Probabilistic
Polynomial-Time: Can be solved,
with certainty, by PTMs in average
case polynomial time

Bounded-Error Probabilistic
Polynomial Time: Decisions
problems solvable in polynomial
time by PTMs with probability

> 2/3. Probability of success can
be made arbitrarily close to 1 by
iterating the algorithm a certain
number of times

Nondeterministic Polynomial time:
The class of decision problems with
the property that if you could
magically “guess” a correct
solution you could verify this fact
in polynomial time

Subset of problems in NP that can
be mapped into one another in
polynomial time. If just one of the
problems in this class is shown to
be tractable, then they must all be
tractable. Not all problems in NP
are NP-Complete

The optimization version of
NP-Complete problems, wherein
one not only wants to decide if a
solution exists but to actually one

Counting version of an NP-Hard
problem

Sharp P Complete

Multiplication, linear

programming [276], and primality
testing (a relatively new addition to
this class) [5, 6]. Computing the
determinant of a matrix. Deciding if
a graph has a perfect matching

Randomized Quicksort

Decision version of Min-Cut [198]

Factoring composite integers: a
purported solution can be verified
by multiplying the claimed factors
and comparing the result to the
number being factored. At the
present time it is unknown whether
or not P = NP but it appears
unlikely

Examples include Scheduling,
Satisfiability, Traveling Salesman
Problem, 3-Coloring, Subset-Sum,
Hamiltonian Cycle, Maximum
Clique [115]

Determining the solutions to a SAT
problem

Determining the number of
satisfying assignments to a SAT
problem [507]

Computing the permanent of an
n x n 0-1 matrix {g;;}, i.e.,

>, [T/—, ai,s(i) where o ranges
over all permutations of
1,2,3,...,n. The number of
perfect matchings in a graph

4.4 Complexity 229

Fig. 4.6 Some known
inclusion relationships

between classical complexity NPy g
classes. The most important ce—NP
classes shown are P—class of NP'

problems that can be solved
in polynomial time, and
NP—the class of problems
whose solution can be
verified in polynomial time.
Of these a special subset—the
NP-Complete problems—are
at least as hard as any other
problem in NP

4.4.4 Quantum Complexity Zoo

The introduction of quantum considerations turns out to have profound implications
for the foundations of computer science and information theory. Decades of old
theory must now be taken from the library shelves, dusted off and checked for an
implicit reliance upon classical bits and classical physics. By exploiting entirely new
kinds of physical phenomena, such as superposition, interference, entanglement,
non-determinism and non-clonability, we can suddenly catch a glimpse of a new
theoretical landscape before us. This shift from classical to quantum is a qualitative
change not merely a quantitative change such as the trends we saw in Chap. 1. It is
something entirely new.

Just as there are classical complexity classes, so too are there quantum complex-
ity classes (see Fig. 4.7). As quantum Turing machines are quantum mechanical
generalizations of probabilistic Turing machines, the quantum complexity classes
resemble the probabilistic complexity classes. There is a tradeoff between the cer-
tainty of your answer being correct versus the certainty of the answer being available
within a certain time bound. In particular, the classical classes P, ZPP, and BPP be-
come the quantum classes QP, ZQP, and BQP. These mean, respectively, that a
problem can be solved with certainty in worst-case polynomial time, with certainty
in average-case polynomial time, and with probability greater than 2/3 in worst-
case polynomial time, by a quantum Turing machine.

Statements about the relative power of one type of computer over another can
be couched in the form of subset relationships among complexity classes. Thus QP
is the class of problems that can be solved, with certainty, in polynomial time, on a
quantum computer, and P is the set of problems that can be solved, with certainty, in
polynomial time on a classical computer. As the class QP contains the class P (see
Table 4.9) this means that there are more problems that can be solved efficiently by
a quantum computer than by any classical computer. Similar relationships are now
known for some of the other complexity classes too, but there are still many open
questions remaining.

230 4 Quantum Universality, Computability, & Complexity

PSPACE

PP

Fig. 4.7 Some known inclusion relationships between classical and quantum complexity classes.
Classes correspond to circular and oval shapes and containment is shown by shape inclusion. The
most important classes shown are QP—the class of problems that can be solved with certainty
by a quantum computer in worst-case polynomial time; ZQP—the class of problems that can be
solved with certainty by a quantum computer in average-case polynomial time; and BQP—the
class of problems that can be solved with probability greater than 2/3 by a quantum computer in
worst-case polynomial time

The study of quantum complexity classes began with David Deutsch in his orig-
inal paper on quantum Turing machines (QTMs). The development of the field is
summarized in Table 4.10.

In Deutsch’s original paper he presented the idea of quantum parallelism. Quan-
tum parallelism allows you to compute an exponential number of function evalua-
tions in the time it takes to do just one function evaluation classically. Unfortunately,
the laws of quantum mechanics make it impossible to extract more than one of these
answers explicitly. The problem is that although you can indeed calculate all the
function values for all possible inputs at once, when you read off the final answer
from the tape, you will only obtain one of the many outputs. Worse still, in the pro-
cess, the information about all the other outputs is lost irretrievably. So the net effect
is that you are no better off than had you used a classical Turing machine. So, as
far as function evaluation goes, the quantum computer is no better than a classical
computer.

Deutsch realized that you could calculate certain joint properties of all of the
answers without having to reveal any one answer explicitly. (We explained how
this works in Chap. 1). The example Deutsch gave concerned computing the XOR
(exclusive-or) of two outputs. Suppose there is a function f that can receive one
of two inputs, O or 1, and that we are interested in computing the XOR of both
function values, i.e., f(0) @ f(1) (where @ here means “XOR”). The result could,

4.4 Complexity

231

Table 4.9 Some quantum complexity classes and their relationships to classical complexity

classes

Quantum class

Class of computational problems that
can...

Relationship to classical complexity
classes (if known)

QP

ZQP

BQP

Quantum Polynomial-Time: ... be
solved, with certainty, in worst-case
polynomial time by a quantum
computer. All problems in QP are
tractable

Zero-Error Quantum
Polynomial-Time: ... can be solved,
with zero error probability, in
expected polynomial time by a
quantum computer

Bounded-Error Quantum Polynomial
Time: ... be solved in worst-case
polynomial time by a quantum
computer with probability > % (thus
the probability of error is bounded;
hence the B in BQP)

P C QP (The quantum computer can
solve more problems in worst case
polynomial time than the classical
computer)

ZPP C ZQP

BPP € BQP C PSPACE (i.e., the
possibility of the equality means it is
not known whether QTMs are more
powerful than PTMs.) BQP is the
class of problems that are easy for a
quantum computer, e.g., factoring

composite integers, computing
discrete logarithms, sampling from a
Fourier transform, estimating
eigenvalues, and solving Pell’s
equation [225, 458]

for example, be a decision as to whether to make some stock investment tomorrow
based on today’s closing prices. Now suppose that, classically, it takes 24 hours to
evaluate each f. Thus if we are stuck with a single classical computer, we would
never be able to compute the XOR operation in time to make the investment the next
day. On the other hand, using quantum parallelism, Deutsch showed that half the
time we would get no answer at all, and half the time we would get the guaranteed
correct value of f(0) @ f(1). Thus the quantum computer would give useful advice
half the time and never give wrong advice.

Richard Jozsa refined Deutsch’s ideas about quantum parallelism by showing
that many functions—for example, SAT (the propositional satisfiability problem)—
cannot be computed by quantum parallelism at all [261]. Nevertheless, the question
about the utility of quantum parallelism for tackling computational tasks that were
not function calculations remained open.

In 1992 Deutsch and Jozsa exhibited a problem, that was not equivalent to a
function evaluation, for which a quantum Turning machine (QTM) was exponen-
tially faster than a classical deterministic Turing Machine (DTM). The problem was
rather contrived, and consisted of finding a true statement in a list of two statements.
It was possible that both statements were true, in which case either statement would
be acceptable as the answer. This potential multiplicity of solutions meant that the
problem could not be reformulated as a function evaluation. The upshot was that
the QTM could solve the problem in a “polynomial in the logarithm of the prob-

232

4 Quantum Universality, Computability, & Complexity

Table 4.10 Historical development of quantum complexity theory

Year Advance in quantum complexity theory

Benioft (1980) Shows how to use quantum mechanics to implement a Turing Machine
(TM)

Feynman (1982) Shows that TMs cannot simulate quantum mechanics without

Deutsch (1985)

Jozsa (1991)

Deutsch & Jozsa
(1992)

Berthiaume &
Brassard (1992)

Bernstein &
Vazirani (1993)

Yao (1993)

Berthiaume &
Brassard (1994)

Simon (1994)
Shor (1994)

Grover (1996)

exponential slowdown

Proposes first universal QTM and the method of quantum parallelism.
Proves that QTMs are in the same complexity with respect to function
evaluation as TMs. Remarks that some computational tasks (e.g,
random number generation) do not require function evaluation,
Exhibits a contrived decision problem that can be solved faster on a
QTM than on a TM

Describes classes of functions that can and cannot be computed
efficiently by quantum parallelism

Exhibit a contrived problem that the QTM solves with certainty in
poly-log time, but that requires linear time on a DTM. Thus, the QTM
is exponentially faster than the DTM. Unfortunately, the problem is
also easy for a PTM so this is not a complete victory over classical
machines

Prove P C QP (strict inclusion). The first definitive complexity
separation between classical and quantum computers

Describe a universal QTM that can simulate any other QTM efficiently
(Deutsch’s QTM could simulate other QTMs, but only with an
exponential slowdown)

Shows that complexity theory for quantum circuits matches that of
QTMs. This legitimizes the study of quantum circuits (which are
simpler to design and analyze than QTMs)

Prove that randomness alone is not what gives QTMs the edge over
TMs. Prove that there is a decision problem that is solved in
polynomial time by a QTM, but requires exponential time, in the worst
case, on a DTM and PTM. First time anyone showed a QTM to beat a
PTM. Prove there is a decision problem that is solved in exponential
time on a QTM but which requires double exponential times on a DTM
on all but a few instances

Lays foundational work for Shor’s algorithm

Discovers a polynomial-time quantum algorithm for factoring large
composite integers. This is the first significant problem for which a
quantum computer is shown to outperform any type of classical
computer. Factoring is related to breaking codes in widespread use
today

Discovers a quantum algorithm for finding a single item in an unsorted
database in square root of the time it would take on a classical
computer. if the search takes N steps classically, it takes (77 /4)v/N
quantum-mechanically

lem size” time (poly-log time), but that the DTM required linear time. Thus the
QTM was exponentially faster than the DTM. The result was only a partial success,

4.5 What Are Possible “Killer-Aps” for Quantum Computers? 233

however, as a probabilistic Turing machine (PTM) could solve it as efficiently as
could the QTM. But this did show that a quantum computer at least could beat a
deterministic classical computer.

So now the race was on to find a problem for which the QTM beat a DTM and
a PTM. Ethan Bernstein and Umesh Vazirani analyzed the computational power of
a QTM and found a problem that did beat both a DTM and a PTM [57]. Given any
Boolean function on r-bits Bernstein and Vazirani showed how to sample from the
Fourier spectrum of the function in polynomial time on a QTM. It was not known if
this were possible on a PTM. This was the first result that hinted that QTMs might
be more powerful than PTMs.

The superiority of the QTM was finally clinched by André Berthiaume and Gilles
Brassard who constructed an “oracle” relative to which there was a decision problem
that could be solved with certainty in worst-case polynomial time on the quantum
computer, yet cannot be solved classically in probabilistic expected polynomial time
(if errors are not tolerated). Moreover, they also showed that there is a decision prob-
lem that can be solved in exponential time on the quantum computer, that requires
double exponential time on all but finitely many instances on any classical deter-
ministic computer. This result was proof that a quantum computer could beat both a
deterministic and probabilistic classical computer but it was still not headline news
because the problems for which the quantum computer was better were all rather
contrived.

The situation changed when, in 1994, Peter Shor, building on work by Dan Si-
mon, devised polynomial-time algorithms for factoring composite integers and com-
puting discrete logarithms. The latter two problems are believed to be intractable
for any classical computer, deterministic or probabilistic. But more important, the
factoring problem is intimately connected with the ability to break the RSA cryp-
tosystem that is in widespread use today. Thus if a quantum computer could break
RSA, then a great deal of sensitive information would suddenly become vulnerable,
at least in principle. Whether it is vulnerable in practice depends, of course, on the
feasibility of designs for actual quantum computers.

4.5 What Are Possible “Killer-Aps” for Quantum Computers?

The discovery of Shor’s and Grover’s algorithms led many people to expect other
quantum algorithms would quickly be found. However, this was not the case. It turns
out to be quite hard to find new quantum algorithms. So where exactly should we
be looking? Currently, there are two broad classes of quantum algorithms. There are
those, such as Shor’s algorithm, that exhibit exponential improvements over what is
possible classically and those, such as Grover’s algorithm, that exhibit polynomial
speedups over what is possible classically. Shor’s algorithm is arguably the more in-
teresting case since exponential speedups are game-changing. It is natural to wonder
whether the other computational problems that lie in the same complexity class as
the problems tackled by Shor’s algorithm might be amenable to a similar speedup.

234 4 Quantum Universality, Computability, & Complexity

The most likely candidate opportunities are therefore computational problems
(like factoring and discrete log) that are believed to be in the NP-Intermediate class.
These are problems that are certainly in NP but neither in P nor NP-Complete.
Some examples of presumed NP-Intermediate problems collected by Miklos San-
tha are as follows [429]:

GRAPH-ISOMORPHISM Given two graphs G| = (V, E1), and G» = (V, E3),
is there a mapping between vertices, f : V — V, such that {u,v} € E| &

{f @), f(v)} € E2?

HIDDEN-SUBGROUP Let G be a finite group, and let y : G — X (X a finite
set), such that y is constant and distinct on cosets of a subgroup H of G. Find a
generating set for H.

PIGEONHOLE SUBSET-SUM Given a set of positive integers s1, 52, ..., 8, € N
such that Z?:l s; < 2", are there two subsets of indices, I} # I C {1, 2,...,n} that
sum to the same value, i.e., Ziell s = Zjelz 5;?

With sufficient research, it is conceivable any of the NP-Intermediate problems
might be re-classified at some point. Nevertheless, today, the NP-Intermediate
problems are the best prospects for being amenable to an exponential speedup using
some as-yet-to-be-discovered quantum algorithm. So far, exponentially faster quan-
tum algorithms have been found for solving the Hidden Subgroup Problem over
abelian groups [72, 283, 362, 458] and some non-abelian groups [30, 192]. However,
extending these results to other non-abelian groups has proven to be challenging and
only limited progress has been made [324]. Researchers are especially interested in
extending these results to two families of non-abelian groups—permutation groups
and dihedral groups—because doing so will lead immediately to efficient solutions
for GRAPH ISOMORPHISM [262] and the SHORTEST LATTICE VECTOR
problems [416], which would make quantum computing considerably more inter-
esting.

While progress is therefore being made the exact boundary where quantum algo-
rithms can be found that outperform classical counterparts by an exponential factor
is still ill-defined.

4.6 Summary

The most important concept of this chapter is the idea that, as computers are phys-
ical objects, their capabilities are constrained exclusively by the laws of physics
and not pure mathematics. Yet the current (classical) theory of computation had
several independent roots, all based on mathematical idealizations of the computa-
tional process. The fact that these mathematically idealized models turned out to be
equivalent to one another led most classical computer scientists to believe that the
key elements of computation had been captured correctly, and that it was largely a

4.7 Exercises 235

matter of taste as to which model of computation to use when assessing the limits
of computation.

However, it turns out that the classical models of computation all harbor implicit
assumptions about the physical phenomena available to the computer. As Feynman
and Deutsch pointed out, models of computation that allow for the exploitation of
quantum physical effects are qualitatively different from, and potentially more pow-
erful than, those that do not. Which quantum effects really matter the most is still
not entirely understood, but the phenomenon of entanglement appears to play a sig-
nificant role.

In this chapter we surveyed issues of complexity, computability, and universality
in the quantum and classical domains. Although there is no function a quantum
computer can compute that a classical computer cannot also compute, given enough
time and memory, there are computational fasks, such as generating true random
numbers and teleporting information, that quantum computers can do but which
classical ones cannot.

A question of some practical importance is to determine the class of computa-
tional problems that quantum computers can solve faster than classical ones. To
this end, quantum computer scientists have determined the scaling of the ‘“cost”
(in terms of space, time, or communications) of certain quantum algorithms (such
as factoring integers, and unstructured search, in comparison to that of their best
classical counterparts. Some quantum algorithms, such as Shor’s algorithm for fac-
toring composite integers and computing discrete logarithms, Hallgren’s algorithm
for solving Pell’s equation, and eigenvalue estimation, show exponential speedups,
whereas others, such as Grover’s algorithm for unstructured search, show only poly-
nomial speedups [55]. The greatest challenge to quantum computer scientists is to
systematically expand the repertoire of problems exhibiting exponential speedups.
Good candidates for problems that might admit such speedups are the other prob-
lems in the same complexity class as FACTORING and DISCRETE-LOG, i.e.,
NP-Intermediate. However, to date, no one has succeeded in showing exponen-
tial speedups on these other NP-Intermediate problems in their most general
form. Other problems admit only a polynomial speedup (e.g., SEARCHING-A-
SORTED-LIST) or no speedup whatsoever (e.g., PARITY). So far, no quantum
algorithm has been found that can speedup the solution of an NP-Complete or NP-
Hard problem by an exponential factor, and most quantum computer scientists are
highly skeptical any such algorithm exists.

4.7 Exercises

4.1 Stirling’s approximation for the factorial function is n! = & (v/ 27rn(§)") (for
integer values of n). Does this mean that n! grows at a faster, slower, or equal rate
to +/2mn(%)"? Plot a graph of the ratio of the left and right hand sides of Stirling’s
formula for n =1, 2, ..., 20. How does the percentage error in the approximation
change with increasing values of n?

236 4 Quantum Universality, Computability, & Complexity

4.2 Prove, using non-numeric methods,

(a) The base of natural logarithms, e, and 7 satisfy ¢ > ¢

(b) The golden ratio ¢ = (1 + «/5)/2 is less than n2/6. [Hint: %2 = fo’:] ”lz]

4.3 Classify the following particular claims involving O(-) notation as correct or
incorrect, and if incorrect, give a corrected version:

(@) O@*+n’)=0mn) +0m)

(b) Om?* x logn) = O(n?) x O(logn)

(c) 0.000173 + 100012 + 17 = On3)

(d) 4n* + 3072 + 130> = O(n'?)

(e) logn'® = O(logn)

() (logm)'=0m*")

(g) 3logyn*+ 10log, log, n'0 = O(log, n)

4.4 Classify the following generic claims regarding O(-) notation as correct or in-
correct, and if incorrect, give a corrected version:

(a) If f(n) =0O(g(n)) then kf (n) = O(g(n)) for any k

(b) If f(n) = O(g(n)) and h(n) = O(g'(n)) then f(n) + h(n) = O(g(n) + g'(n))
(©) If f(n)=0(g(n)) and h(n) = O(g'(n)) then f(n)h(n) = O(g(n)g'(n))

(d) If f(n) =O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

(e) If f(n) is a polynomial of degree d, then f(n) = o n?)

(f) If logn* = O(logn) for k > 0

(g) If (logn)k =O(n/) for k > 0 and j>0

4.5 What can be said about the expression 3n* 4+ 512> 4 14logn'? in terms of

(a) O(-) notation
(b) ®(-) notation
(c) £2(-) notation

4.6 Complexity analyses often involve summing series over finitely many terms.
Evaluate the following sums in closed form:

@ Y, i’
b) Y,
© Y
@ 37,2
) ik
() Y1 i%e" where e ~2.71828

4.7 The following question is aimed at stimulating discussion. It is often said that
physicists are searching for a unified theory of physics—an ultimate theory that will
explain everything that can be explained. Do you think a unified theory of physics
will be expressed mathematically? Will it be a computable axiomatic system pow-

4.7 Exercises 237

erful enough to describe the arithmetic of the natural numbers? If so, in light of
Godel’s Incompleteness theorem, do you think a unified theory of physics is pos-
sible? Or will certain truths of the theory be forever beyond proof? That is, if the
unified theory of physics is consistent must it be incomplete? And can the con-
sistency of the axioms of the unified theory of physics be proven within the the-
ory?

Part 11
What Can You Do with a Quantum
Computer?

Chapter 5
Performing Search with a Quantum Computer

“Grover’s quantum searching technique is like cooking a soufflé. You put the state obtained
by quantum parallelism in a “quantum oven” and let the desired answer rise slowly. Success
is almost guaranteed if you open the oven at just the right time. But the soufflé is very likely
to fall—the amplitude of the correct answer drops to zero—if you open the oven too early.”
— Kristen Fuchs!

“Search” is one of the most pervasive tasks in computer science. Many important
problems can be solved by enumerating the possible solutions and then searching
amongst them, systematically or randomly, to determine which are correct. In some
cases, determining that certain possibilities are incorrect allows you to eliminate
others and hence narrow the search for a true solution. These search problems are
said to be “structured”. Alternatively, there are other search problems in which you
learn nothing useful upon discovering certain possibilities are incorrect, other than
the futility of trying those possibilities again. These search problems are said to be
“unstructured”. Thus unstructured search is the quintessential “find-the-needle-in-
the-haystack”™ problem.

Grover’s algorithm provides a quantum method for solving unstructured search
problems in roughly the square root of the number of steps required using a classical
computer. This amounts to a polynomial speed up over what is possible classically.
Although this is not as impressive a speedup as that seen in other quantum algo-
rithms, such as the Deutsch-Jozsa algorithm, for which an exponential speedup is
obtained, Grover’s algorithm is applicable to a much wider range of computational
problems. Moreover, a quadratic speedup is not bad either. While it won’t tame prob-
lems having an exponential complexity scaling it could, nevertheless, allow signifi-
cantly larger problem instances to be solved than might otherwise be possible. For
example, in an airline scheduling problem any given airline only has finitely many
aircraft, and finitely many routes. It is quite possible that a quadratic speedup in

Source: [71]. Kristen Fuchs is the spouse of quantum computer scientist Chris Fuchs. Her vivid
analogy has helped me convey the essence of amplitude amplification to dozens of students in a
single sentence.

C.P. Williams, Explorations in Quantum Computing, 241
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_5, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-1-84628-887-6_5

242 5 Performing Search with a Quantum Computer

solving a scheduling problem is sufficient to confer a practical advantage (provided
any required quantum error correction overhead is not too great).

5.1 The Unstructured Search Problem

The concept of an unstructured search problem can be demonstrated using a stan-
dard telephone directory. A standard telephone directory contains a list of names,
ordered alphabetically, together with their associated telephone numbers. To find
someone’s telephone number given knowledge of their name you proceed as fol-
lows: open the directory at a random page; if the names on the page alphabetically
precede the name you want, mark the current page and open the directory again at
a later page. If the names alphabetically succeed the name you want, mark the page
and open the directory again at an earlier page. For a telephone directory containing
N entries, repeating this process, delimited by the marked points, will take you to
the sought after entry in roughly O (log N) steps. Hence, this algorithm is said to
have a complexity of O (log N), which is deemed “efficient” since it is logarithmic
in the number of entries in the telephone directory, or equivalently, polynomial in
the number of bits, n =log, N, needed to assign a unique index to each entry. The
fundamental reason that telephone directory look-up can be performed so efficiently
is that when you fail to find the sought after name on a given page you neverthe-
less gain reliable information as to the direction in which to search next. In other
words the alphabetically ordered search space is structured and you can exploit this
structure to narrow the search for a solution.

Now contrast this with the task of using the same telephone directory to find
someone’s name given their telephone number. That is, we are now using the tele-
phone directory to do a reverse lookup. In this case, because the telephone directory
is unordered with respect to telephone numbers, whenever you find a telephone
number that is not the given number, you learn nothing useful regarding in which
direction to search next, namely, amongst the predecessors or successors of the last
telephone number found. In this case, the search you process you are forced to per-
form is essentially “generate-and-test”. This consists of opening the phone book at a
random page, if that page contains the given number reading off the corresponding
name and stopping. Else marking the page a “dead-end” and picking one of the un-
read pages at random, repeating this process until the sought after item is found or
all the entries have been exhausted. If there are N entries in the telephone directory
it would therefore take you, on average, O (N /2) repetitions of the algorithm to find
the given telephone number and hence the associated name. In the worst case, it is
conceivable a really unlucky person would have to search every entry in the direc-
tory only to find the given number at the last trial. So in the worst case it could take
O(N) steps.

We can use the aforementioned example of searching a telephone directory to
motivate a more formal statement of the unstructured search problem, as follows:

Unstructured Search Consider a search problem that requires us to find a particu-
lar target item amongst a set of N candidates. Suppose that these N candidates are

5.1 The Unstructured Search Problem 243

labelled by indices x in the range 0 < x < N — 1, and that the index of the sought
after target item is x = t. Let there be a computational oracle, of “black-box func-
tion”, f;(x) that when presented with an index x can pronounce on whether or not
it is the index of the target. Specifically, f;(x) is defined such that:

0 ifx#t

.mm={1ﬁx=t (5.1

where 0 stands for “no” and 1 stands for “yes”. The search problem is “unstructured”
because there is no discernible pattern to the values of f;(x) to provide any guidance
in finding x = ¢. Our job is to find the index x = ¢, using the fewest calls to the oracle

Ji(x).

This formalization of the unstructured search problem will allow us to estimate
the computational cost of solving the problem classically versus quantumly. To facil-
itate this comparison, in the next section we describe the classical generate-and-test
algorithm using the language of quantum mechanics. Before we do that it is worth
making a few comments about the oracle, or “black-box function” f;(x).

5.1.1 Meaning of the Oracle

The computational oracle used in Grover’s algorithm has been the source of much
confusion to students of quantum computing, because it sounds like the use of the
oracle introduces circular reasoning in the search algorithm. You need to know ¢ to
build f;(x) to then use f;(x) to find ¢! Maddening isn’t it?

The basis for the confusion stems from a misunderstanding about the meaning
and purpose of the oracle. To computer scientists, an oracle is merely a fictitious
mathematical device that allows them to estimate the computational cost of some
algorithm measured in units of “the number of calls to the oracle”. In the present
example, this enables them to compare the relative costs of classical unstructured
search versus quantum unstructured search in terms how many times each algorithm
much call the oracle.

On the other hand, physicists, especially experimental physicists who actually
have to build quantum computing hardware, cry foul because someone in their lab
has to pick ¢ to built a quantum circuit that plays the role of the oracle, f;(x). So,
they cannot see the point of Grover’s algorithm because they already know ¢ to be
able to build a contraption that finds ¢! All true.

However, this is similar to the situation we encountered when searching a tele-
phone directory for someone’s name given knowledge of their telephone number.
When the telephone directory was composed the author must have had knowledge
of which telephone number to associate with which name, and vice versa. So the
issue is not whether the solution to some search problem is or is not known in ad-
vance of the search, but rather how many times we must query the knowledge-holder

244 5 Performing Search with a Quantum Computer

before we learn the solution. In the abstract unstructured search problem the knowl-
edge holder is the oracle, or “black-box function” f;(x). In the example of searching
a telephone directory the knowledge holder is the telephone directory itself.

Moreover, when we come to perform unstructured search on real problems, the
oracle, which contains explicit foreknowledge of the solution, is replaced, typi-
cally, by a polynomial time (or better) testing procedure. This testing procedure
only knows the solutions implicitly via the properties that a valid solution must
possess. A good example is provided by the graph coloring problem, which is an
NP-Complete problem.

In graph coloring we are required to assign one of k colors to a graph containing
n nodes and m edges such that every node is assigned some color, and every pair
of nodes that are directly connected by an edge have different colors. As there are

n nodes there can be at most m = (;’) = %n(n — 1) edges, and so we must only

check a maximum of %n(n — 1) constraints to verify that a given coloring is or is
not acceptable. In this case the complexity will be measured in terms of how many
times this testing procedure must be called times the cost of running it each time.

These efficient testing procedures could be quite different from problem to prob-
lem. So the use of the oracle in Grover’s algorithm is really only a proxy for such a
testing procedure in which we assume, arbitrarily, that there is a unit cost per call to
the oracle.

We will have more to say about the oracle shortly, but for now we describe a
classical algorithm for solving the unstructured search problem in the language of
quantum mechanics. Having done so, we will be able to more clearly see how the
quantum search algorithm differs from its classical counterpart.

5.2 Classical Solution: Generate-and-Test

As we saw in the telephone directory example, we can solve the unstructured search
problem on a classical computer by a procedure known as “generate-and-test”. This
can be done with or without replacement of the indices that are tested along the
way. The simplest case to analyze is generate-and-test-with-replacement. Here we
imagine we have a bag of indices and we repeatedly dip into this bag, pluck out an
index, and ask the oracle whether or not this is the target index, |¢). If it is, we stop.
If not, we put the index back in the bag (this is the “replacement” step), and repeat
the process.

This classical procedure can be expressed in quantum mechanical language as
follows: a quantum analog of the bag of indices can be regarded as an equally
weighted superposition of all the indices in the range 0 <x < N — 1, i.e., the state
ﬁ Zi\:ol |x). Similarly, a quantum analog of the act of plucking out an index, at

random, can be regarded as the act of reading this superposition (in the index ba-
sis). This gives us a particular index, |x) say. Then we ask the oracle whether or not
X =t.

If there are N indices, these can be expressed in binary notation using n = logy, N
qubits. Hence, the easiest way to create the equally weighted superposition state

5.3 Quantum Solution: Grover’s Algorithm 245

is apply a separate 1-qubit Walsh-Hadamard gate H to each of n qubits prepared

L. . . . H®" n_
initially in the |0) state, i.e., we perform the operation |00...0) — \/127 x:()l |x).

When we read this superposition we will obtain a single index non-deterministically.
So this simple process mimics the classical generate-and-test procedure.

Generalizing slightly, if we have partial information about the identity of the
target index we might want to create a superposition that is weighted more towards
indices in the vicinity of where we believe the target to lie. We can do so by picking
an arbitrary starting state |s) (instead of the state |0)®"), and an (almost) arbitrary
unitary operator U (instead of H®"). We say “almost” arbitrary because if we are to
have any hope of finding the target |¢) by reading the superposition U |s), we have
ensure U |s) has some non-zero component of |¢). Otherwise, we would never find
|t) no matter how often we prepared and measured U |s).

To recap then, the general set up we have for a quantum description of classical
generate-and-test is that we initialize the system to be in some starting state |s) and
apply to it an operator U such that U|s) is guaranteed to contain some non-zero
component in |¢) (for an unknown target index |z)). In the absence of any prior in-
formation about the target, the most natural choices for |s) and U are |s) =(00...0)
and U = H®" respectively. These choices guarantee that there will be a non-zero
overlap between the (unknown) target |t) and Uls), i.e., (t|U]s) # 0O, but other
choices are possible, and might be advisable, if you have some prior knowledge
about the solution.

Each time we re-synthesize and measure Uls) the probability of finding |t)
is given by the modulus squared of the overlap between |¢) and Uls), i.e.,

SCUIE?SSICAL = |(t|U|s)|*. Using standard statistical theory, we can infer we will
need to repeat this experiment roughly |(f|U|s)| =2 times to find the solution with
probability O(1) (i.e., near certainty). Hence, this is the “classical” complexity for
performing an unstructured search for the target using a generate-and-test-with-
replacement procedure.

5.3 Quantum Solution: Grover’s Algorithm

Can quantum computers do better? We might expect so because quantum comput-
ers need not limit themselves to testing each index in succession. Instead, quantum
computers can test several indices at once, in superposition, using quantum paral-
lelism. Unfortunately, since we cannot see the results of these tests individually,
quantum parallelism alone does not confer any advantage whatsoever.

Fortunately, in 1996, Lov Grover, a computer scientist at Lucent Technologies
Bell Labs, discovered a new quantum technique called amplitude amplification, that
can be exploited to make a quantum algorithm for solving the unstructured search
problem [217]. The oracle is used to create an amplitude amplification operator that
increases the amplitude of the target index within a superposition of indices while
decreasing the amplitudes of the non-target indices. Thus by creating a superposi-
tion of all the possible indices and then amplitude amplifying the amplitude of the

246 5 Performing Search with a Quantum Computer

target index prior to reading this superposition, we can bias the outcome of the mea-
surement in favor of the target index. This is the key idea behind Grover’s algorithm.

The amplitude amplification operator has a very simple form. It is built out of
three operators related to the starting state |s), the (almost) arbitrary unitary operator
U, and the (unknown) target |¢). Specifically, the amplitude amplification operator
is given by:

0=-ULU"1, (5.2)

where 1; = 1 — 2|s)(s| is an operator that inverts the phase of the starting state |s),
1, =1 — 2|t)(z] is an operator that inverts the phase of the (unknown) target state
|t), and U is the (almost) arbitrary unitary operator that maps the starting state |s)
into a superposition that is guaranteed to contain a non-zero component in the target
state |f).

As written, it looks like the operator 1; requires explicit foreknowledge of the
target state |f). However, as we will explain in Sect. 5.4.3, the operator 1, can be
created using the oracle, or “black-box” function f;(x), which in real applications
is replaced, typically, by an efficient testing procedure that can recognize a target
state via its properties rather than its identity. Thus, in a real application the oracle
(and hence 1,) will not have explicit foreknowledge of the target state |¢). For the
moment, however, just assume 1, is available since this simplifies the discussion of
Grover’s algorithm.

With these definitions for |s), |¢), 1, 1y, and U, Grover’s algorithm can be
described as follows:

Grover’s Algorithm

1. Given an oracle, or black-box quantum function, f;(x) that can pronounce on
whether or not a given index x is that of a sought after target ¢ construct: an “am-
plitude amplification” operator Q = —U1,U "1, using the black-box function
ft(x) where

|s) = the starting state

|t) = the (unknown) target state

Ly =1 —2|s)(s|

1; =1 —2|t)(t| (which is built from f;(x) without explicit knowledge of |¢))
U = any unitary operator such that (¢|U|s) # 0

2. Compute |) = QXU]|s), i.e., iterate the operator Q, k = %\/N times on the state
Uls).

Measure each of the n bit values of the state |y).

4. Result: with high probability, the target state |¢)

w

So how exactly does this sequence of operators perform search? And why does
the quantum unstructured search algorithm find the target state in just the square root
of number of calls to the oracle as does the classical unstructured search algorithm?

5.4 How Does Grover’s Algorithm Work? 247

5.4 How Does Grover’s Algorithm Work?

To understand how Grover’s algorithm works let’s examine the evolution of the
overlap between the (unknown) target state |t) and the amplitude amplified state
0*U |s).

The amplitude amplification operator Q = —U1,U 1, where |s) is the starting
state, 1, =1 — 2|s)(s| and 1, = 1 — 2|¢)(¢|. The operators 1 and 1, both perform
controlled-phase flips. Specifically, 15|x) = —|x) if and only if x = 5. Likewise,
1;]x) = —|x) if and only if x = ¢. We can use these controlled phase flips to build
an operator that pumps probability amplitude into the target eigenstate within a su-
perposition at the expense of the amplitude in the non-target eigenstates.

Substituting in the definitions 1y = 1 — 2|s)(s| and 1; = 1 — 2|¢){¢| into Q =
—U1,U"1, and expanding out the terms we obtain:

0 =—1+42t)(t| +2U|s)(s|U" —4U|s)(s|UT|t) (¢] (5.3)

Next we consider the effect of Q on two states of particular interest, namely, Ul|s),
and |t). A convenient shorthand way to represent Q acting on U |s) and Q acting on
|t) is to write the two equations as the following matrix equation:

Uls L=4[|UIs)* 2(t1UIs) (U)s

|7) —2(t|U]s) 1 |7)
When the overlap between U |s) and [t) is very small, i.e., when u = (¢|U|s) <K 1,
the states U|s) and |t) are almost orthogonal to each other, and Q behaves like a 1-
qubit rotation gate, in the space spanned by U|s) and |¢). In fact, when (¢|U|s) < 1

we have |(t|U|s)|> < |(t|U]s)], i.e., |u|* < |u|, and so the matrix representation of
QO becomes almost the matrix:

Uls)\ 1 2u) (Uls)
o)~ (o) (W)
_ 0 2u Uls)
—exp(_zu* 0)(It)) (5.5)

In the matrix exponential form, the k-th power of Q is easy to calculate, and we

find:
r(Uls)\ _ 0 2ku Uls)
Q (It) >_eXp<—2ku* 0)(It))

N cos(2k|ul) w1 sin@kluD \ (U|s) 56
T\ sin@klul) cos(2klul) It) .

This implies that after k iterations of the amplitude operator Q the overlap between
the (unknown) target state |¢) and the amplitude amplified state 0*U|s) will be:

(t|Q*U|s) ~ u cos(2k|ul) + % sin(2k|ul) (5.7)
u

248 5 Performing Search with a Quantum Computer

Although these expressions are approximate and only valid in the regime where
u = (t|U|s) < 1, they illustrate the essential feature of amplitude amplification.
With u small, and k modest, u cos(2k|u|) &~ u and ﬁ sin(2k|u|) ~ 2ku = 2k(t|U |s).
By (5.7) we then have (crudely) (1|Q*U|s) ~ (1 + 2k)(t|U|s), which implies that
the overlap grows roughly linearly with the number of steps of amplitude ampli-
fication, k. Hence the probability, upon reading the quantum memory register, of
obtaining the target state grows quadratically with the number of steps of amplitude
amplification, i.e.

pSllCC

Compare this to the scaling for the classical generate-and-test algorithm described
in Sect. 5.2. There we found the probability of success to scale with the number of
repetitions as:

succ

Thus amplitude amplification has the effect of enhancing the probability of obtain-
ing the solution when the quantum memory register is read after k iterations.

The second major feature of amplitude amplification that is apparent from (5.7)
is that the overlap between the target and the amplitude amplified state oscillates .
Thus, it is possible to amplitude amplify too far and actually reduce your probability
of finding a solution compared to the classical case. This is the reason Fuchs likens
amplitude amplification to baking a soufflé.

5.4.1 How Much Amplitude Amplification Is Needed to Ensure
Success?

To conclude our analysis, we would like to estimate how many steps of amplitude
amplification are required to reach the target state |¢) using the amplitude amplifica-
tion operator Q starting from state U |s). After k rounds of amplitude amplification,

o cosKlul) i sin(2k|u])
Q_<—”7*|sin(2k|u|) cos(2k|ul) (5.10)

which is almost the same as a matrix that rotates a vector through angle 6, i.e.,

cosf sin6
. (5.1
—sinf cosd

Hence, as U|s) and |t) are almost orthogonal initially, we need to apply O until
we have rotated U|s) by an angle of about 7r/2 to reach |¢). At that moment if we
were to measure the system we would find it in state |¢) with probability of order 1.
Therefore, the number of iterations of Q that are required to rotate U |s) into |¢)
is given by 2k|u| = %, which implies k = 7-. The same result is also evident by

5.4 How Does Grover’s Algorithm Work? 249

solving for the smallest positive non-zero real value of k such that u cos(2k|ul|) +
a7 sin(2k|u]) = 1, which also implies k — Z/N. Either way,

k%%|(r|U|s)|_1=%\/ﬁ (5.12)

where N = 2" is the number of items searched over. Thus the complexity of quan-
tum search scales as the square root of that of classical search. Hence, Grover’s
algorithm is quadratically faster than the classical algorithm for performing unstruc-
tured search.

5.4.2 An Exact Analysis of Amplitude Amplification

The foregoing description of amplitude amplification was motivated from a desire
to de-mystify the process of amplitude amplification. However, it is possible to redo
the analysis without introducing any approximations whatsoever. When we do so,
and as you are asked to do as Exercise 5.2, we find that the exact expression for the
net operator that is obtained after k iterations of amplitude amplification is:

Ui (Ju — L Uok—1(|u
Qk(U|s)) PR ok (lu]) nA2k—1(lu]) (U|s)> (5.13)
) k-1 (ul) —Uar—2(|ul))
where u = (¢|U|s) and Uy(cosO) = sin((£ + 1)0)/sin6 is the Chebyshev polyno-
mial of the second kind. This then gives the overlap after k iterations of amplitude

amplification between the target state and the amplitude amplified state to be:

(110" Uls) = (=D (uuzk(lul) - iUzkl(lul)) (5.14)

|ue]
Hence, the probability of success after k iterations of amplitude amplification is:

2

Psuccess (k) = [(t] QXU |5)|* = ‘(—1>"(uu2k(|u|) - iuzquun) = Topr1(Ju))?

|ue]

=cos?((2k + 1) cos ') forkeZAnk>0,anducRAO<u <1
(5.15)

where 7 (|u]) is a Chebyshev polynomial of the first kind, 7;(cos8) = cos(£6).

Figure 5.1 shows the oscillations in the probability of success of Grover’s al-
gorithm with increasing amounts of amplitude amplification. In the figure, there is
one solution amongst 2! search items. The maximum probability of success first
occurs after %x/ZT ~ 25 iterations of amplitude amplification, but then declines if
one “over-amplifies”.

Independent and quite different exact analyses of amplitude amplification are
provided in [70] and [61, 200] (for an arbitrary amplitude distribution), but the re-
sults are similar.

250 5 Performing Search with a Quantum Computer

Fig. 5.1 The prol?ability of 1o[‘h.‘ ‘ A ~ ‘ A]
success as a function of the S s s 2
number of steps of amplitude osk o % ot > o]
amplification for a problem S b :on . .
having one solution amongst g [* |, . . . e .
210 possibilities. Notice that 2 061 [Do Y o e]
at first the success probability ; [° . : N . N .
rises but falls again if one ;E, 04 N . N . . N . o
amplitude amplifies too much g . S P .« 2 .
= 0af ¢ <l Sl o .
[e . . ¢ e . .
: v s - P
oY Y VA
0 50 100 150 200

k iterations
5.4.3 The Oracle in Amplitude Amplification

Before we conclude our discussion of Grover’s algorithm we need to explain how
we can use the oracle, or black-box function f;(x), to construct the operator 1, =
1 — 2|¢) (|, which is used within the amplitude amplification procedure.

In mythology an “oracle” is an omniscient person who answers all questions
instantly and infallibly. This notion has been borrowed by computer science to con-
ceive of “computational oracles”. These are synonymous with “black-boxes”. You
provide an input to the oracle (a “question”) and in one step the oracle responds
with the correct answer. The main value of computational oracles is that they allow
us to quantify the complexity of complicated algorithms (up to the cost of the or-
acle) even though parts of those algorithms may be poorly understood. An oracle
is a means by which we can compare the relative complexities of two algorithms
without necessarily understanding how to implement that oracle. The difference be-
tween classical oracles and quantum oracles is in the nature of the questions we can
pose and the answers they can give.

As you will recall, the oracle accepts an integer x in the range 0 <x <N — 1
and returns 1 or 0 according to whether or not the index is that of the sought after
target ¢, i.e., we have:

0 ifx#t

To create the operator 1, we introduce a single ancilla to create an (n + 1)-qubit
unitary transformation, §2; defined as:

Qr:Q2¢x)y) — [X)y @ fi(x)) (5.17)

where |x) one of the indices we want to test, |y) is the ancilla qubit, and |y & f;(x))
is the exclusive-OR of the bit value of the ancilla and the bit value that is output
from our black-box function f;(x).

Next we prepare the ancilla in the state %(lO) — |1)). This can be done easily

by applying a 1-qubit Walsh-Hadamard gate, H, to the ancilla prepared initially

5.5 Quantum Search with Multiple Solutions 251

in state |1). By the linearity of quantum mechanics, with the ancilla in the state
%QO) — |1)) the transformation effected by £2; is then:

1 1 1
—= —= 0@ fi(x)) = —=x)1 & fi(x))

2 0)— 1) =
t|x>ﬁ(|) — 1) 7 7
1 1
:ﬁ|x>|ft(x))_ﬁ|x>|l®ft(x))

%Ix)(IO) — 1)) if x # ¢ and therefore f;(x) =0
%pc)(ll) —10)) if x =t and therefore f;(x) =1

= (_1)f%<">|x>%(|o> — |1)) either way (5.18)

Thus, regardless of whether x =t or x # ¢ the transformation performed by £2; is:
Q1 210)1y) — (=D PNx)]y) (5.19)

when the ancilla |y) is specialized to be in the input state |y) = %(lO) —|1)).

To obtain 1, from £2; we merely ignore the ancilla qubit! Then the transformation
we see on the first n qubits is:

11 x) — (= DAy = (@ — 201 (7)) Ix) (5.20)

Thus the operator 1,, which appears to require explicit foreknowledge of the state
|t) can in fact be obtained from the oracle f;(x). Again, in practical applications
the oracle is replaced by a polynomial time (or better) testing procedure that can
recognize the target state via its’ properties but does not necessarily know those
target states explicitly in advance.

5.5 Quantum Search with Multiple Solutions

Many search problems have multiple, equally acceptable, solutions. In such cases
there will be multiple index values of j for which f(j) = 1. If there are N items to
search amongst, of which exactly ¢ are solutions, we next show that the number of
amplitude steps needed to ensure success becomes Z/N /1. Each time the Grover
search algorithm is run on such a problem, the algorithm will return any one of these
t solutions with equal probability.

Let us consider the case of an unstructured quantum search problem that has
multiple, specifically ¢, solutions out of a total number of N = 2" possible index
values. That is, there are exactly ¢ solutions to the equation f(j) =1 where j is an
n bit index value. How would quantum search work in this case?

252 5 Performing Search with a Quantum Computer

The following beautiful approach to analyzing this problem was developed by
Gilles Brassard, Peter Hgyer, Michele Mosca, and Alain Tapp [78]. One can con-
sider the index values falling naturally into two sets: the set of “good” index val-
ues, j € G for which f(j) =1 and the set of “bad” index values, j € B for which
f(j) =0, with the number of solutions being equal to the cardinality of the good
set, i.e., t = |G|. Therefore, if we define two superpositions:

| 1ﬁgood Z |]

’eg (5.21)

[Vbad) =

/EB

a superposition consisting of all possible indices can be expressed as a combination
of [Vgo0d) and [Ypad), namely:

1 t
_ g®n _ N — [
ly)=H IO)—ﬁjE=O|J>—,/NIWgood>+

where H is a Walsh-Hadamard gate. For clarity, we introduce a parameter 6 defined

Nbad) (5.22)

via sinf = \/%, and define a state, |), orthogonal to |v) that will prove to be
useful shortly. Thus, we can write:
|¥) = sin6|Ygood) + €086 [Ypad) (5.23)
) = 086 |¥good) — SINO|Ybad) (5.24)

With these definitions, it is apparent that the {|), [y)}-basis spans the same space
as the {|Y¥good), |¥bad) }-basis, and we can flip back and forth between these bases in
our analyses. As we will need them later, we note that the basis transformations in
the other direction are given by inverting (5.23) and (5.24) to yield:

|[Wgo0d) = sin6|y) + cos 6|) (5.25)
|[¥baa) = cosO|y) — sin6|y) (5.26)

We can now re-interpret the objective of Grover’s algorithm as being to take an
equally weighted superposition of all possible indices, |/}, into [{good), and then
measure this state to reveal one of the index values j that solves f(j) = 1.

5.5.1 Amplitude Amplification in the Case of Multiple Solutions

By the above construction, the probability of finding a solution (naively) simply
by measuring the equal superposition state, |{), is (as seen from (5.22)) %, which

5.5 Quantum Search with Multiple Solutions 253

is exactly what one expects classically by a random generate-and-test approach.
However, if we amplitude amplify the equal superposition state before making our
final measurement then we can boost our chances of success considerably. For this
we need the 7-solutions analog of the “amplitude amplification” operator, Q, which
we built for the single-solution case. We will use the same symbol for this new
operator here as it plays the same role although its definition is changed to:

Q="—H®1,H® 1, =U;Uy (5.27)

1
Uy Uy

where U 1# and Uy are the unitary matrices needed to perform the following opera-
tions:

Ugly) = Iy)
- _ (5.28)
Uyly) =—1¥)
and
U ood/ — — 00
f1¥eood) [¥g00d) (5.29)

U¢l¥road) = |¥bad)

In analogy with the single-solution quantum search, the amplitude amplification
operator rotates the state vector being amplitude amplified within a two-dimensional
sub-space spanned by the basis vectors {[Ybad), |¥good)} OF, equally, the basis vec-
tors {|¥), |¥)}. The transformations Q performs are as follows:

Qly) = Uy Usl¥) = Uy U (sin 6 Yrgo0d) + €050 ¥baa))
= Uy (—sin6|Yrgo0d) + €08 0| ¥paa)) = Uy (cos 20|¢) — sin26011))
=c0s20|y) + sin260|y) = cos 30|¥g00d) + sin 30 |Yrpaq) (5.30)

where we used (5.25) and (5.26) to switch from the {|1/fg09d>, [¥bad) }-basis to the
{Iv), |¥)}-basis. Likewise, for the orthogonal input state, |), we have:

Q) = Uy Uysl) = Uy U (cos B Yrgood) — $in 0| ¥bad))
= Uy (= c0os 0| ¥gooa) — $in[Yuaa)) = Uy (—sin20 [) — cos 260[1))

= —sin20|y) + cos 20|¥) = —sin30 [Wgood) + €08 36 [Vbad) (5.31)

Thus the effect of Q is to rotate the initial state, [¢) = sin@|Y¥good) + €08 0| Vpad),
through an angle of 26. Hence, in the {|\/go0d), |¥bad) }-basis, QO takes the form:

cos26 sin26
¢= (—sin29 cos29> (5-32)

254 5 Performing Search with a Quantum Computer
where sinf = \/% . When Q is so defined, we have:
Q|y) = Q(sinb|Ygo0d) + €08 | Pbad))
_(cos20 sin20) (sinf
“\ —sin20 cos20 cosf
sin 36 .
= (COS 39> = 8in 30 |Ygood) + €08 36 [Ybad) (5.33)

To predict the affect of k successive applications of Q, we compute:
Qk _(cos20 sin20 k _(cos(2k0) sin(2k0) (5.34)
T\ —sin20 cos20) \ —sin(2k0) cos(2k0) ’

Hence, when applied to the initial state [{) = sin@|¥g00d) + €08 0]1paq) We obtain

0" 1¥r) = QX (sin 6 [Ygood) + €OSO [Whad))
= sin((2k + 1)0)|Wgo0d) + c0s((2k + 1)0)[Ybaa) (5.35)

Consequently, to obtain a solution to f(j) = 1 by first amplitude amplifying |i) a
number of times k, and then measuring the resulting state, we will obtain a success
probability of O(1) provided we pick the smallest integer k such that (2k+1)0 ~ %

Asf = \/z, this implies k = %ﬁ— 1/2,1.e., O(ﬁ). Thus, classically a solution

can be found in O(%) trials, whereas quantumly one can be found in O(\/g) trials.
As in the case of a single solution, we again see a square root speedup for the case
when there are ¢ solutions out of N = 2" candidates.

If the number of solutions ¢ to a multi-solution quantum search problem is not
known in advance, then quantum search can be combined with another quantum
algorithm—called quantum counting—to efficiently count the number of solutions

prior to running the quantum search algorithm. The quantum counting algorithm
is described in Chap. 10.

5.6 Can Grover’s Algorithm Be Beaten?

It is natural to think that grover’s algorithm is just the first example of a quantum al-
gorithm for solving unstructured search problems and that in time most likely better
variants will emerge. Unfortunately, this will not the case. Remarkably, Christoph
Zalka has proved that Grover’s algorithm is optimal [557]. This means that any other
quantum algorithm for performing unstructured quantum search must call the ora-
cle as least as many times as is done by Grover’s algorithm. Nor can you parallelize
Grover’s algorithm to any extent better than merely partitioning the search space
amongst multiple quantum computers.

5.7 Some Applications of Quantum Search 255

Nevertheless, the fact that there is generally a non-zero probability of success
when you terminate Grover’s algorithm after exactly k£ rounds of amplitude am-
plification allows us to consider an “early-termination” strategy. That is, terminate
Grover’s algorithm for k < Z+/N rounds of amplitude amplification and read the
result. If it is the solution stop; if not restart a new Grover search and run it for an-
other k rounds of amplitude amplification. On average the cost of running such an

algorithm will be:

Cavg = kpsuce (k) + 2kpsuce (k) (1 — psuce (k) + 3kpsuce (k) (1 — psucc(k))2 +--

k
Dsuce (k)

= Zikpsucc(k)(l - psucc(k))i_l =

i=1

(5.36)

where pgycc 1S the probability of success after k rounds of amplitude amplification.

5.7 Some Applications of Quantum Search

Grover’s algorithm may lack the impressive exponential speedup seen in the
Deutsch-Jozsa, Shor (Quantum Factoring), Eigenvalue Estimation, and Quantum
Simulation algorithms, but it has proven to be surprisingly versatile in its own right
and as a sub-routine in other quantum algorithms. In Chap. 10 we will give several
examples of how quantum search can be used to speed up the solution of various
problems in mathematics. Here we focus on how quantum search can be used as a
within computer science.

5.7.1 Speeding Up Randomized Algorithms

One of the most effective types of search algorithms for hard computational prob-
lems, such as the traveling salesperson problem, are “randomized algorithms™ [364].
In a classical randomized algorithm, we use a sequence of pseudo-random numbers
to determine a trajectory through the search space. Figure 5.2 shows four runs of
a hypothetical randomized algorithm that samples different paths through a search
space. At each step the search can go up one step, down one step, or stay at the
same level with probabilities reflecting slight local preferences to go up rather than
down. After a certain number of steps we assess whether the state reached is deemed
a “solution” state. Randomized algorithms usually work such that they either con-
verge on a desired solution after a certain number of steps, or else, they tend to
wander aimlessly in the wrong region of the solution space until we give up and
run the whole algorithm again using a different seed for the pseudo-random number
generator. Quantum search can speed up such classical randomized algorithms [97]
by using a superposition of seeds for the pseudo-random number generator to create
a superposition of final states that is very likely to contain a solution within it. We
can then use quantum search to amplitude amplify this superposition to extract the
desired solution in the square root of the number of parallel pseudo-random trials.

256 5 Performing Search with a Quantum Computer

State Visited

1 Steps

Fig. 5.2 Randomized algorithms use a seed in a pseudo-random number generator to determine
a trajectory through the search space. Different seeds lead to different trajectories. If one creates
a superposition of seeds, one obtains a superposition of trajectories. If enough seeds are chosen,
one or more of these trajectories are likely to terminate in a valid solution. Inspecting this super-
position picks out a trajectory at random. But amplitude amplifying the superposition before it is
inspected, amplifies the probability of obtaining one of the solution trajectories and suppressed the
non-solution trajectories

5.7.2 Synthesizing Arbitrary Superpositions

A final application of quantum search is in the domain of experimental physics to
prepare selected superposition states [222]. For example, if we want to create a
superposition of indices that correspond to just prime numbers, we could invent an
oracle f(x) that returns 1 if x is a prime and O otherwise. By amplitude amplifying
an equally weighted superposition of indices in some range, we could selectively
create a state that is just a superposition of prime numbers within this range. Thus,
the quantum search algorithm might find a role in experimental quantum physics as
a way of systematically manufacturing desired superposition states.

Quantum State Synthesis Based on Grover’s Algorithm

1. Given an n-qubit state |) = lelal ¢;|i) that we wish to synthesize. . ..

2. Introduce a single extra ancilla qubit prepared initial in state |0) to make a
register containing (1 + n) qubits initialized to state [0)]00...0).

3. Define U1 = (1@ H® H®---® H) where 1 is the 1-qubit identity gate, and
H is the 1-qubit Walsh-Hadamard gate.

4. Define Uy, a matrix implementing U|0)|i) — ¢;|0)|i) ++/1 — |c;|2[1)]i) plus
the remaining orthonormal columns.

5. Define 1, = diag(—1,—1,...,—1,4+1,+1,...,+1) (i.e., a sequence of (2")
—1’s followed by (2"*) +1’s).

6. Define 1, = diag(—1,+1,4+1,...,+1) (i.e., a single —1 followed by
@1 — 1) +1s.

7. Define U = U, - Uj.

5.7 Some Applications of Quantum Search 257

8. Define Q =—(1,-U~'-1,-U).
9. Compute U Q™[0)[00...0) where m =% [25—

iy leil?
10. Measure the ancilla (i.e. the first qubit). If you find the ancilla in state |0), the
remaining qubits will be in the state we wish to synthesize.

Let’s trace through the execution of this algorithm being used to synthesize the
state |y) = \/% (2]00) — 3]01) +5i|10) — 7i|11)). This is a fairly complicated state:
the amplitude of each eigenstate is either positive or negative, real or imaginary,
and their magnitudes are relatively prime to one another. Let’s see how the quantum
state synthesis algorithm works in this case.

First let’s re-write the amplitudes in |¢) using approximate numbers to better
visualize what is going on. We have |) = ﬁ(2|00) —3]01) +5i|10) — 7i|11)) =
c0]00) 4+ ¢1]|01) + c2|10) + c3|11), where cp = 0.214423, ¢; = —0.321634, c; =
0.536056i, and c3 = —0.750479i. This will help explain the form of U, below.

Next we compute the form of U = (1 ® H ® H) where 1 = ((1) ?) and H =

L(1 !) This gives:

NAYES!
1 1 1 1
Lol 0 0 0 o0
1 1 1 1
3 2 3 —32 0.0 00
1 1 1 1
2 2 —3 —3 0.0 00
1 1 1 1
L1 _1 1 .9 o o o0
Uil=A®H®H)=|* = = 2 = X X (5.37)
oo o o L 1 1 1
T
0 0 0 0 L o1l
0 0 0 0 Ly by

Next we compute a suitable matrix for U. This is more tricky. We seek a Uz
such that U |0)]i) — ¢;]0)|i) ++/1 — |c;i|?|1)|i). Note that, given this definition, U,
is only partially specified, because we only care about how four of the eight possi-
ble basis eigenstates are transformed under the action of U. Specifically, we only
care how the basis eigenstates |0)|00), |0)|01), |0)|10), and |0)|11) are transformed
under U,. The remaining eigenstates can be transformed in any way we pleased so
long as the full U, matrix is unitary. So the easiest way to build a suitable matrix
for U is to start with a “blank” matrix (say all zeroes) and fill in matrix elements
to comply with the prescription for how U, is to map the four eigenstates |0)|00),
|0)]01), |0)]10), and |0)|11). We will then complete U, by finding values for the
remaining rows and columns sufficient to guarantee that all the rows (and, equiva-
lently, all the columns) are orthonormal and hence U is unitary.

258 5 Performing Search with a Quantum Computer

So to fix the first requirement U;]0)]00) — c(|0)[00) + /1 — |co|?|1)|00) we
define the first column of U, to be:

(5.38)

—
I

S

S

©
[=NeoNeoBoloNeloNe]
[=NeNeBaoleol=RoNe]
[=NeNeloloNeoleNe]
[=NeoNelolBoNeoloNe]
[=NeoNeoloNoNeloNe]
[=NeNelaololehoXe]
[=NeNeloloNeoloNe]

Next we insert the second column for U, which thereby fixes the transformation for
both the |0)|00) (first column) and |0)|01) (second column) states:

co 0 000000
0) 000000
0 0 000000
0 0 000000

1= |col? 0 000000 (5.39)
0 JI—la2 00 0 0 0 0
0 0 000000
0 0 000000

Continuing, in the same manner to insert the third and fourth columns of U, then
yields:

co 0 0 0 000 0
0 ¢l 0 0 000 0
0 0 ¢ 0 000 0
0 0 0 ¢ 000 0
V1= col2 0 0 0 0000 G40
0 J1= P 0 0 000 0
0 0 V1= |el? 0 000 0
0 0 0 V=12 0.0 0 0

Now we are almost done. All that remains is to find any set of vectors for last four
columns (which are currently “blank™) such that they are orthonormal to the first
four columns we have just defined. We can do this easily using (say) the Gram-
Schmidt orthogonalization procedure. Thus we obtain a suitable form for U, as

5.7 Some Applications of Quantum Search 259

being:
0.214 0 0 0 —0.977 0 0 0
0 —0.322 0 0 0 0.607 —0.503; 0.525
0 0 0.536i 0 0 —0.598 —0.581i 0.134
Uy = 0 0 0 —0.751i 0 —0.196i —0.327 0.54i
0.977 0 0 0 0.214 0 0 0
0 0.947 0 0 0 0206 —0.171; 0.178
0 0 0.844 0 0 —0.379i 0.369 0.085i
0 0 0 0.661 0 —0.223 0.371i 0.613
(5.41)

You can check that U, is unitary by verifying® Uy - U2T = 1g where 1g is an 8 x 8
identity matrix.

1 0 0 0000 0
0 -1 0 0000 0
0 0 -1 0000 0
0 0 0 -1 000 0
=19 0 0 01000 (5.42)
0 0 0 00100
0 0 0 00010
0 0 0 00001
10000000
01000000
00100000
00010000
L=1 00001000 (5.43)
00000100
00000O0T 0
0000000 1
0.107 0.107 0.107 0.107 —0.488 —0.488 —0.488 —0.488
—0.161 0.161 —0.161 0.161 0.566 —0.252i —0.566 —0.252i 0.041 4+0.252i —0.041 +0.252i
0.268i 0.268; —0.268;i —0.268i —0.232—-0.291i 0.232—-0.291i —0.366+0.291i 0.366 +0.291i
U_ —0.375i 0.375i 0.375i —0.375i —0.163+0.172i —0.163 —0.172i 0.163 —0.368i 0.163 + 0.368i
- 0.488 0.488 0.488 0.488 0.107 0.107 0.107 0.107
0.473 —0.473 0.473 —0.473 0.192 —0.085; —0.192—0.085i 0.014 +0.085/ —0.014 + 0.085i
0.422 0.422 —0.422 —0.422 0.185—0.147i 0.185+0.147i —0.185—0.232i —0.185+0.232i

0.33 -0.33 -033 0.33 0.195+0.185; —0.195+0.185i —0.418 —0.185i 0.418 —0.185i

(5.44)

2Note you will get some small round off errors because we have only written the elements of U
to four decimal places.

260 5 Performing Search with a Quantum Computer

0.5 0.167 0.351 —0.109 0.571 —0.083i —0.051+0.166i —0.314 —0.238; 0.212+0.155/

—0.167 —0.5 0.109 —0.351 0.051 +0.166i —0.571 —0.083i —0.212+0.155i 0.314 —0.238i

—0.351 0.109 —0.5 —0.167 —0.002 +0.079; 0.104 + 0.328i —0.55—-0.4i 0.029 — 0.007i

Q _ 0.109 —0.351 —0.167 -0.5 0.104 —0.328; —0.002—-0.079i 0.029 + 0.007i —0.55+0.4i

—0.571 —0.083; 0.051 —0.166i —0.002—0.079; 0.104 + 0.328i 0.632 0.019 —0.188i 0.218 +0.022i 0.039 + 0.166;

0.05140.166i —0.57140.083; 0.104 —0.328; —0.002+40.079i 0.019 +0.188i 0.632 0.039 - 0.166i 0.218 — 0.022i

0.314 -0.238i —0.212—0.155i —0.55+0.4i 0.029 — 0.007i 0.218 — 0.022i 0.039 + 0.166i 0.368 0.284 — 0.143;
—0.2124+0.155; 0.31440.238i 0.029 + 0.007i —0.55-0.4i 0.039 — 0.166i 0.218 + 0.022/ 0.284 +0.143i 0.368

(5.45)

The operation U - Q]0)|00) produces the state:

0.177244]000) — 0.265866]001) + 0.44311i010) — 0.620354i|011)
—0.31736]100) — 0.307652]101) — 0.274289|110) — 0.214736|111) (5.46)

We now read the first qubit (the ancilla). It is found to be |0) with probability
10.1772441% 4+ |—0.265866|> + [0.44311i|> + |—0.620354i|> = 0.683287. In this
case the superposition is projected into the state:

0.214423|000) — 0.321634]001) 4+ 0.536056i|010) — 0.750479i|011) (5.47)

showing that the second and third qubits now correspond to the state we wished to
synthesize namely |{) = \/%(2|00) —3]01) 4+ 5i|10) — 7i|11)) = 0.214423|00) —
0.321634|01) + 0.536056i |10) — 0.750479i|11).

5.8 Quantum Searching of Real Databases

Shortly after Grover’s algorithm was published I received a telephone call from
someone at Oracle asking me if I thought Grover’s algorithm could be used to
search a real database. I answered that it could provided the database was encoded
in a quantum state, and the oracle (with a little “0”) was replaced with a testing
procedure.

Clearly, to obtain a practically useful algorithm, and to build a practically useful
quantum computer capable of running that algorithm, we cannot rely upon fore-
knowledge of the solution to the problem we are trying to solve. Therefore, to ob-
tain a practically useful quantum algorithm, we must always replace the use of an
oracle defined via the black box function f;(x) (which contains explicit knowledge
of the solution in advance) with an efficient (i.e., polynomially bounded) procedure
that applies a test to the index being queried sufficient to decide whether or not that
index meets the criteria for being the target ¢. Typically, this testing procedure will
involve checking that a purported solution exhibits all the required properties that
an acceptable solution must possess.

For example, consider the graph coloring problem. Here we have to assign one
of k colors to a graph having n nodes and m edges such that every node has some
color and no two nodes connected directly by an edge share the same color. These
constraints express what it means to be a solution, but do not require foreknowl-
edge