

Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For further volumes:
http://www.springer.com/series/3191

http://www.springer.com/series/3191

Colin P. Williams

Explorations in Quantum
Computing

Second edition

Dr. Colin P. Williams
California Institute of Technology
NASA Jet Propulsion Laboratory
Oak Grove Drive 4800
Pasadena, CA 91109-8099
USA
Colin.P.Williams@jpl.nasa.gov

Series Editors
David Gries
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

Fred B. Schneider
Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501, USA

ISSN 1868-0941
ISBN 978-1-84628-886-9

e-ISSN 1868-095X
e-ISBN 978-1-84628-887-6

DOI 10.1007/978-1-84628-887-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010936191

1st edition: © Springer-Verlag New York, Inc. 1998
2nd edition: © Springer-Verlag London Limited 2011
© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: SPI, Puducherry, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:Colin.P.Williams@jpl.nasa.gov
http://www.springer.com
http://www.springer.com/mycopy

To my wife and children

Preface

In the decade since the publication of the first edition of “Explorations in Quantum
Computing” the field has blossomed into a rich and diverse body of knowledge, and
tremendous progress has been made on building functional quantum computer hard-
ware. Yet I find that a discussion of applications of quantum computers still remains
largely confined to Shor’s algorithm for factoring composite integers and Grover’s
algorithm for quantum search. As more and more books have been written on quan-
tum computing this standard presentation has been reinforced, thereby overlooking
less well known, but arguably more interesting, applications.

In this edition I have tried to survey the field of quantum computing from a fresh
perspective, showing how it can be applied to solve problems in a wide range of
technical areas including physics, computer science, mathematics, chemistry, simu-
lation, and finance. For sure, many of the newer quantum algorithms have their roots
in Shor’s algorithm or Grover’s algorithm, but I think it is important to appreciate
how the daughter algorithms have diverged from their parents. Moreover, there are
now several quantum transforms known, such as the quantum wavelet and quan-
tum cosine transforms, which show promising complexity properties and yet await
exploitation in practical quantum algorithms. The classical versions of these trans-
forms are of widespread utility in classical computing, especially signal and image
processing, and I am optimistic that some fresh attention might stimulate others to
find good uses for them.

The second edition is organized around four main parts. Part I addresses the ques-
tion “What is Quantum Computing?” It provides the mathematical framework and
physics concepts needed to understand quantum computing, and introduces the first
quantum trick—quantum parallelism—and its use within the Deutsch-Jozsa algo-
rithm. I assume the quantum circuit model but discuss several non-standard 2-qubit
gates, such as SWAPα , iSWAP, and Berkeley B, that lend themselves more easily
to implementation than does CNOT. In addition, I describe how to quantify the en-
tangling power of quantum gates, and several techniques for constructing quantum
circuits that achieve arbitrary n-qubit unitary, and non-unitary, operators including
numerical, algebraic, and re-use methods, as well as specialized tricks for construct-
ing optimal circuits for 2-qubit unitary operators.

vii

viii Preface

Part II addresses the question “What Can you Do With a Quantum Computer?”
I begin with Grover’s algorithm for quantum search, and applications thereof to
speeding up randomized algorithms and synthesizing arbitrary superpositions. I then
review Shor’s algorithm for factoring composite integers and computing discrete
logarithms, and show how to apply these to breaking the RSA and elliptic curve
public key cryptosystems. This is followed with a look at phase transition phenom-
ena in computation and how to apply the insights gleaned from these studies to char-
acterize the complexity of a nested quantum search I developed with Nicolas Cerf
and Lov Grover for solving NP-Complete problems. This is followed by chapters
on applications of quantum algorithms to quantum simulation, quantum chemistry
and mathematics. These three areas have the greatest potential for finding new and
important quantum algorithms for solving practical problems.

The second edition also includes a greatly expanded discussion of quantum in-
formation theory. In particular, in Part III “What Can you Do with Quantum In-
formation”, I look at the notion of pure versus mixed states, density operators, en-
tanglement, how to quantify it, the partial transpose (for signalling the presence of
entanglement), the partial trace (for characterizing part of a larger quantum sys-
tem), and Schmidt decompositions. I have gone beyond the standard presentations
on quantum teleportation and superdense coding, to include less well known but
potentially useful protocols such as quantum data compression, universal quantum
cloning and universal negation—all with complete quantum circuit descriptions.
I again emphasize applications of these protocols. In particular, I describe how quan-
tum teleportation has inspired an entirely new, and very promising, model of quan-
tum computation, and how approximate clones and approximate negated states can
be used to determine the exact expectation values of observables of ideal clones and
ideal negated states. I then describe the most mature of the quantum technologies—
quantum cryptography—and discuss the challenges in integrating quantum cryptog-
raphy with the commercial secure communications infrastructure. I survey the three
main quantum key distribution protocols—Bennett and Brassard’s BB84, Bennett’s
B92, and Ekert’s E91 protocols, and how they have been implemented in fiber and
free-space systems, and look at the prospects for extending the range of quantum
cryptography using quantum repeaters and Earth-to-Space channels.

Finally, the book concludes with Part IV “Towards Practical Quantum Comput-
ers” by examining some of the practical issues in designing scalable quantum com-
puters. However, I have elected to focus not on hardware per se, for which many
excellent texts already exist, but more on reliability and architectural issues. In par-
ticular, I describe several techniques for quantum error correction including error
reduction by symmetrization, quantum error correcting codes, the optimal 5-qubit
code, stabilizer codes, bounds on quantum codes, fault-tolerance and concatenated
quantum codes. I end the book by discussing the amazing array of alternative mod-
els of quantum computing beyond the quantum circuit model, showing how they are
inter-related, and how certain schemes lend themselves naturally to implementation
in particular types of quantum computer hardware.

The new edition also includes numerous end-of-chapter exercises. Many of these
were field tested on students I taught at Stanford University while teaching my “In-
troduction to Quantum Computing and Quantum Information Theory” course for

Preface ix

several years. In so doing, I learned first hand which concepts students found most
difficult. Moreover, in teaching these classes and elsewhere I have learned that quan-
tum physics appeals to many people who might not otherwise have much interest
in science. For example, Playboy Playmate Carmen Elektra has been quoted as say-
ing “I’m really into quantum physics. Some of my friends are into it, some of them
aren’t, so I’m trying to get them excited about discovering all these interesting things
about thoughts and the power of thoughts. It gives me chills thinking about it. It’s
fun.” [169]. Although some of my colleagues have mocked her for saying this, I
say bravo Carmen! Quantum physics is indeed an amazing branch of science, which
challenges our most foundational assumptions about the nature of reality. It’s a won-
derful thing when a scientific field can so electrify someone that they are compelled
to seek a deeper understanding. Certainly, experience in teaching to a very diverse
student body has encouraged me to explain things as simply as possible in a self-
contained volume. And I hope the reader benefits from my more inclusive style.
I can certainly say that Carmen Elektra’s interest in matters quantum has at least
given me a more arresting answer to the question “Who did you have in mind when
you wrote your book?” than is typical of most scholarly texts!

Finally, I would like to thank the people who have helped me make this sec-
ond edition a reality. First my family for putting up with the countless evenings
and weekends I was away from them. And to Wayne Wheeler and Simon Rees
of Springer-Verlag for their encouragement, and eternal patience, in seeing the
manuscript through to completion. They deserve a very big thank you! In addition, I
am indebted to the physicists and computer scientists who have developed the field
of quantum computing to what it is today. Many of these people are known to me
personally, but some only via their research papers. I hope I have done justice to
their research contributions in writing about them. Known personally to me or not,
they have all greatly enriched my life via their discoveries and insights.

Colin P. Williams

Contents

Part I What is Quantum Computing?

1 Introduction . 3
1.1 Trends in Computer Miniaturization 4
1.2 Implicit Assumptions in the Theory of Computation 7
1.3 Quantization: From Bits to Qubits 8

1.3.1 Ket Vector Representation of a Qubit 9
1.3.2 Superposition States of a Single Qubit 9
1.3.3 Bloch Sphere Picture of a Qubit 11
1.3.4 Reading the Bit Value of a Qubit 15

1.4 Multi-qubit Quantum Memory Registers 17
1.4.1 The Computational Basis 17
1.4.2 Direct Product for Forming Multi-qubit States 19
1.4.3 Interference Effects . 20
1.4.4 Entanglement . 21

1.5 Evolving a Quantum Memory Register: Schrödinger’s Equation . 23
1.5.1 Schrödinger’s Equation 24
1.5.2 Hamiltonians . 24
1.5.3 Solution as a Unitary Evolution of the Initial State 25
1.5.4 Computational Interpretation 26

1.6 Extracting Answers from Quantum Computers 26
1.6.1 Observables in Quantum Mechanics 26
1.6.2 Observing in the Computational Basis 29
1.6.3 Alternative Bases . 30
1.6.4 Change of Basis . 32
1.6.5 Observing in an Arbitrary Basis 34

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 35
1.7.1 The Problem: Is f (x) Constant or Balanced? 36
1.7.2 Embedding f (x) in a Quantum Black-Box Function . . . 37
1.7.3 Moving Function Values Between Kets and Phase Factors 38
1.7.4 Interference Reveals the Decision 39
1.7.5 Generalized Deutsch-Jozsa Problem 40

xi

xii Contents

1.8 Summary . 44
1.9 Exercises . 45

2 Quantum Gates . 51
2.1 Classical Logic Gates . 52

2.1.1 Boolean Functions and Combinational Logic 52
2.1.2 Irreversible Gates: AND and OR 53
2.1.3 Universal Gates: NAND and NOR 55
2.1.4 Reversible Gates: NOT, SWAP, and CNOT 57
2.1.5 Universal Reversible Gates: FREDKIN and TOFFOLI . . 60
2.1.6 Reversible Gates Expressed as Permutation Matrices . . . 61
2.1.7 Will Future Classical Computers Be Reversible? 63
2.1.8 Cost of Simulating Irreversible Computations Reversibly 64
2.1.9 Ancillae in Reversible Computing 66

2.2 Universal Reversible Basis . 67
2.2.1 Can All Boolean Circuits Be Simulated Reversibly? . . . 68

2.3 Quantum Logic Gates . 69
2.3.1 From Quantum Dynamics to Quantum Gates 70
2.3.2 Properties of Quantum Gates Arising from Unitarity . . . 71

2.4 1-Qubit Gates . 71
2.4.1 Special 1-Qubit Gates 71
2.4.2 Rotations About the x-, y-, and z-Axes 76
2.4.3 Arbitrary 1-Qubit Gates: The Pauli Decomposition 81
2.4.4 Decomposition of Rx Gate 83

2.5 Controlled Quantum Gates . 83
2.5.1 Meaning of a “Controlled” Gate in the Quantum Context 85
2.5.2 Semi-Classical Controlled Gates 86
2.5.3 Multiply-Controlled Gates 87
2.5.4 Circuit for Controlled-U 87
2.5.5 Flipping the Control and Target Qubits 90
2.5.6 Control-on-|0〉 Quantum Gates 90
2.5.7 Circuit for Controlled-Controlled-U 91

2.6 Universal Quantum Gates . 92
2.7 Special 2-Qubit Gates . 94

2.7.1 CSIGN, SWAPα , iSWAP, Berkeley B 95
2.7.2 Interrelationships Between Types of 2-Qubit Gates 97

2.8 Entangling Power of Quantum Gates 100
2.8.1 “Tangle” as a Measure of the Entanglement Within

a State . 101
2.8.2 “Entangling Power” as the Mean Tangle Generated

by a Gate . 103
2.8.3 CNOT from any Maximally Entangling Gate 106
2.8.4 The Magic Basis and Its Effect on Entangling Power . . . 106

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 107
2.9.1 Entangling Power of an Arbitrary 2-Qubit Gate 109

Contents xiii

2.9.2 Circuit for an Arbitrary Real 2-Qubit Gate 110
2.9.3 Circuit for an Arbitrary Complex 2-Qubit Gate 111

2.9.4 Circuit for an Arbitrary 2-Qubit Gate Using SWAPα . . . 111
2.10 Summary . 112
2.11 Exercises . 113

3 Quantum Circuits . 123
3.1 Quantum Circuit Diagrams . 123
3.2 Computing the Unitary Matrix for a Given Quantum Circuit . . . 124

3.2.1 Composing Quantum Gates in Series: The Dot Product . 126
3.2.2 Composing Quantum Gates in Parallel: The Direct

Product . 127
3.2.3 Composing Quantum Gates Conditionally: The Direct

Sum . 128
3.2.4 Measures of Quantum Circuit Complexity 130

3.3 Quantum Permutations . 131
3.3.1 Qubit Reversal Permutation: P2n 131
3.3.2 Qubit Cyclic Left Shift Permutation: �2n 135
3.3.3 Amplitude Downshift Permutation: Q2n 137
3.3.4 Quantum Permutations for Classical Microprocessor

Design? . 139
3.4 Quantum Fourier Transform: QFT 140

3.4.1 Continuous Signals as Sums of Sines and Cosines 141
3.4.2 Discrete Signals as Samples of Continuous Signals 142
3.4.3 Discrete Signals as Superpositions 144
3.4.4 QFT of a Computational Basis State 145
3.4.5 QFT of a Superposition 147
3.4.6 QFT Matrix . 148
3.4.7 QFT Circuit . 150

3.5 Quantum Wavelet Transform: QWT 151
3.5.1 Continuous Versus Discrete Wavelet Transforms 152
3.5.2 Determining the Values of the Wavelet Filter Coefficients 154
3.5.3 Factorization of Daubechies D(4)

2n Wavelet Kernel 157

3.5.4 Quantum Circuit for D(4)
2n Wavelet Kernel 158

3.5.5 Quantum Circuit for the Wavelet Packet Algorithm . . . 158
3.5.6 Quantum Circuit Wavelet Pyramidal Algorithm 160

3.6 Quantum Cosine Transform: QCT 162
3.6.1 Signals as Sums of Cosines Only 163
3.6.2 Discrete Cosine Transform DCT-II and Its Relation

to DFT . 163
3.6.3 QCTII

N Transformation 165

3.6.4 QCTII
N Matrix . 165

3.6.5 QCTII
N Circuit . 166

3.7 Circuits for a Arbitrary Unitary Matrices 172
3.7.1 Uses of Quantum Circuit Decompositions 173

xiv Contents

3.7.2 Choice of Which Gate Set to Use 173
3.7.3 Circuit Complexity to Implement Arbitrary Unitary

Matrices . 173
3.7.4 Algebraic Method . 174
3.7.5 Simplification via Rewrite Rules 178
3.7.6 Numerical Method . 180
3.7.7 Re-use Method . 184

3.8 Probabilistic Non-unitary Quantum Circuits 190
3.8.1 Hamiltonian Built from Non-unitary Operator 191
3.8.2 Unitary Embedding of the Non-unitary Operator 191
3.8.3 Non-unitarily Transformed Density Matrix 191
3.8.4 Success Probability . 193
3.8.5 Fidelity when Successful 193

3.9 Summary . 194
3.10 Exercises . 195

4 Quantum Universality, Computability, & Complexity 201
4.1 Models of Computation . 202

4.1.1 The Inspiration Behind Turing’s Model of Computation:
The Entscheidungsproblem 202

4.1.2 Deterministic Turing Machines 204
4.1.3 Probabilistic Turing Machines 205
4.1.4 The Alternative Gödel, Church, and Post Models 207
4.1.5 Equivalence of the Models of Computation 208

4.2 Universality . 208
4.2.1 The Strong Church-Turing Thesis 208
4.2.2 Quantum Challenge to the Strong Church-Turing Thesis . 209
4.2.3 Quantum Turing Machines 210

4.3 Computability . 213
4.3.1 Does Quantum Computability Offer Anything New? . . . 214
4.3.2 Decidability: Resolution of the Entscheidungsproblem . . 215
4.3.3 Proof Versus Truth: Gödel’s Incompleteness Theorem . . 217
4.3.4 Proving Versus Providing Proof 218

4.4 Complexity . 221
4.4.1 Polynomial Versus Exponential Growth 223
4.4.2 Big O, Θ and Ω Notation 225
4.4.3 Classical Complexity Zoo 225
4.4.4 Quantum Complexity Zoo 229

4.5 What Are Possible “Killer-Aps” for Quantum Computers? 233
4.6 Summary . 234
4.7 Exercises . 235

Part II What Can You Do with a Quantum Computer?

5 Performing Search with a Quantum Computer 241
5.1 The Unstructured Search Problem 242

Contents xv

5.1.1 Meaning of the Oracle 243

5.2 Classical Solution: Generate-and-Test 244
5.3 Quantum Solution: Grover’s Algorithm 245
5.4 How Does Grover’s Algorithm Work? 247

5.4.1 How Much Amplitude Amplification Is Needed
to Ensure Success? . 248

5.4.2 An Exact Analysis of Amplitude Amplification 249
5.4.3 The Oracle in Amplitude Amplification 250

5.5 Quantum Search with Multiple Solutions 251
5.5.1 Amplitude Amplification in the Case of Multiple

Solutions . 252
5.6 Can Grover’s Algorithm Be Beaten? 254
5.7 Some Applications of Quantum Search 255

5.7.1 Speeding Up Randomized Algorithms 255
5.7.2 Synthesizing Arbitrary Superpositions 256

5.8 Quantum Searching of Real Databases 260
5.9 Summary . 261
5.10 Exercises . 262

6 Code Breaking with a Quantum Computer 263
6.1 Code-Making and Code-Breaking 264

6.1.1 Code-Breaking: The Enigma Code and Alan Turing . . . 265
6.2 Public Key Cryptosystems . 267

6.2.1 The RSA Public-Key Cryptosystem 267
6.2.2 Example of the RSA Cryptosystem 271

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 272
6.3.1 The Continued Fraction Trick at the End of Shor’s

Algorithm . 276
6.3.2 Example Trace of Shor’s Algorithm 280

6.4 Breaking Elliptic Curve Cryptosystems with a Quantum
Computer . 285

6.5 Breaking DES with a Quantum Computer 287
6.6 Summary . 289
6.7 Exercises . 290

7 Solving NP-Complete Problems with a Quantum Computer 293
7.1 Importance and Ubiquity of NP-Complete Problems 295

7.1.1 Worst Case Complexity of Solving NP-Complete
Problems . 296

7.2 Physics-Inspired View of Computational Complexity 297
7.2.1 Phase Transition Phenomena in Physics 297
7.2.2 Phase Transition Phenomena in Mathematics 299
7.2.3 Computational Phase Transitions 299
7.2.4 Where Are the Really Hard Problems? 302

7.3 Quantum Algorithms for NP-Complete Problems 302

xvi Contents

7.3.1 Quantum Solution Using Grover’s Algorithm 303
7.3.2 Structured Search Spaces: Trees and Lattices 304

7.4 Quantum Solution Using Nested Grover’s Algorithm 308
7.4.1 The Core Quantum Algorithm 308
7.4.2 Analysis of Quantum Structured Search 309
7.4.3 Quantum Circuit for Quantum Structured Search 312
7.4.4 Quantum Average-Case Complexity 312

7.5 Summary . 316
7.6 Exercises . 316

8 Quantum Simulation with a Quantum Computer 319
8.1 Classical Computer Simulations of Quantum Physics 320

8.1.1 Exact Simulation and the Problem of Memory 321
8.1.2 Exact Simulation and the Problem of Entanglement . . . 321
8.1.3 Approximate Simulation and the Problem of Fidelity . . 322

8.2 Quantum Computer Simulations of Quantum Physics 325
8.2.1 Feynman Conceives of a Universal Quantum Simulator . 326
8.2.2 Quantum Systems with Local Interactions 326
8.2.3 Lloyd-Zalka-Wiesner Quantum Simulation Algorithm . . 327

8.3 Extracting Results from Quantum Simulations Efficiently 328
8.3.1 Single Ancilla-Assisted Readout 328
8.3.2 Multi-Ancilla-Assisted Readout 330
8.3.3 Tomography Versus Spectroscopy 332
8.3.4 Evaluating Correlation Functions 333

8.4 Fermionic Simulations on Quantum Computers 334
8.4.1 Indistinguishability and Implications for Particle

Statistics . 334
8.4.2 Symmetric Versus Anti-Symmetric State Vectors 335
8.4.3 Bosons and Fermions 336
8.4.4 Bose-Einstein Statistics 337
8.4.5 Pauli Exclusion Principle and Fermi-Dirac Statistics . . . 337
8.4.6 Fermionic Simulations via the Jordan-Wigner

Transformation . 339
8.4.7 Fermionic Simulations via Transformation

to Non-interacting Hamiltonians 341
8.5 Summary . 344
8.6 Exercises . 345

9 Quantum Chemistry with a Quantum Computer 349
9.1 Classical Computing Approach to Quantum Chemistry 349

9.1.1 Classical Eigenvalue Estimation via the Lanczos
Algorithm . 351

9.2 Quantum Eigenvalue Estimation via Phase Estimation 352
9.2.1 The “Phase” State . 352
9.2.2 Binary Fraction Representation of the Phase Factor . . . 353

9.3 Quantum Phase Estimation . 354

Contents xvii

9.4 Eigenvalue Kick-Back for Synthesizing the Phase State 357

9.5 Quantum Eigenvalue Estimation Algorithms 361
9.5.1 Abrams-Lloyd Eigenvalue Estimation Algorithm 361
9.5.2 Kitaev Eigenvalue Estimation Algorithm 361

9.6 Quantum Chemistry Beyond Eigenvalue Estimation 364
9.7 Summary . 364
9.8 Exercises . 365

10 Mathematics on a Quantum Computer 369
10.1 Quantum Functional Analysis 369

10.1.1 Quantum Mean Estimation 370
10.1.2 Quantum Counting . 371

10.2 Quantum Algebraic Number Theory 375
10.2.1 The Cattle Problem of Archimedes and Pell’s Equation . 375
10.2.2 Why Solving Pell’s Equation Is Hard 376
10.2.3 Solution by Finding the “Regulator” 377
10.2.4 The Regulator and Period Finding 378
10.2.5 Quantum Core of Hallgren’s Algorithm 378
10.2.6 Hallgren’s Quantum Algorithm for Solving Pell’s

Equation . 378
10.2.7 What Is the Significance of Pell’s Equation? 381

10.3 Quantum Signal, Image, and Data Processing 382
10.3.1 Classical-to-Quantum Encoding 382
10.3.2 Quantum Image Processing: 2D Quantum Transforms . . 384
10.3.3 Quantum-to-Classical Readout 385

10.4 Quantum Walks . 385
10.4.1 One-Dimensional Quantum Walks 387
10.4.2 Example: Biased Initial Coin State & Hadamard Coin . . 389
10.4.3 Example: Symmetric Initial Coin State & Hadamard

Coin . 391
10.4.4 Example: Chiral Initial Coin State & Hadamard Coin . . 392
10.4.5 Example: Symmetric Initial Coin State &

Non-Hadamard Coin 393
10.4.6 Quantum Walks Can Spread Faster than Classical Walks . 395

10.5 Summary . 397
10.6 Exercises . 398

Part III What Can You Do with Quantum Information?

11 Quantum Information . 403
11.1 What is Classical Information? 404

11.1.1 Classical Sources: The Shannon Entropy 405
11.1.2 Maximal Compression (Source Coding Theorem) 407
11.1.3 Reliable Transmission (Channel Coding Theorem) 408
11.1.4 Unstated Assumptions Regarding Classical Information . 410

xviii Contents

11.2 What is Quantum Information? 411
11.2.1 Pure States cf. Mixed States 411
11.2.2 Mixed States from Partial Knowledge: The Density

Operator . 411
11.2.3 Mixed States from Partial Ignorance: The Partial Trace . 417
11.2.4 Mixed States as Parts of Larger Pure States:

“Purifications” . 419
11.2.5 Quantifying Mixedness 420

11.3 Entanglement . 422
11.3.1 Separable States Versus Entangled States 422
11.3.2 Signalling Entanglement via Entanglement Witnesses . . 423
11.3.3 Signalling Entanglement via the Peres-Horodecki

Criterion . 425
11.3.4 Quantifying Entanglement 429
11.3.5 Maximally Entangled Pure States 431
11.3.6 Maximally Entangled Mixed States 432
11.3.7 The Schmidt Decomposition of a Pure Entangled State . 433
11.3.8 Entanglement Distillation 436
11.3.9 Entanglement Swapping 441
11.3.10 Entanglement in “Warm” Bulk Matter 443

11.4 Compressing Quantum Information 444
11.4.1 Quantum Sources: The von Neumann Entropy 445
11.4.2 Schumacher-Jozsa Quantum Data Compression 445
11.4.3 “Discard-on-Fail” Quantum Data Compression Protocol . 447
11.4.4 “Augment-on-Fail” Quantum Data Compression

Protocol . 449
11.4.5 Quantum Circuit for Schumacher-Jozsa Compressor . . . 450
11.4.6 Is Exponential Compression Possible? 452

11.5 Superdense Coding . 453
11.5.1 Bell States . 454
11.5.2 Interconversion Between Bell States by Local Actions . . 455
11.5.3 Superdense Coding Protocol 455

11.6 Cloning Quantum Information 457
11.6.1 Historical Roots and Importance of Quantum Cloning . . 457
11.6.2 Impossibility of Exact Deterministic Quantum Cloning . 458
11.6.3 Universal Approximate Quantum Cloning 460
11.6.4 Circuit for Quantum Cloning 463
11.6.5 Usability of the Quantum Clones 464
11.6.6 Universal Probabilistic Quantum Cloning 468
11.6.7 Broadcasting Quantum Information 470

11.7 Negating Quantum Information 470
11.7.1 Universal Quantum Negation Circuit 471
11.7.2 Expectation Value of an Observable Based on the

Negated State . 472
11.8 Summary . 472
11.9 Exercises . 474

Contents xix

12 Quantum Teleportation . 483
12.1 Uncertainty Principle and “Impossibility” of Teleportation 483

12.1.1 Heisenberg Uncertainty Principle 484
12.2 Principles of True Teleportation 486

12.2.1 Local Versus Non-local Interactions 486
12.2.2 Non-locality: Einstein’s “Spooky Action at a Distance” . 488
12.2.3 Bell’s Inequality . 489

12.3 Experimental Tests of Bell’s Inequality 492
12.3.1 Speed of Non-local Influences 494

12.4 Quantum Teleportation Protocol 496
12.4.1 Teleportation Does Not Imply Superluminal

Communication . 499
12.5 Working Prototypes . 500
12.6 Teleporting Larger Objects . 501
12.7 Summary . 502
12.8 Exercises . 503

13 Quantum Cryptography . 507
13.1 Need for Stronger Cryptography 508

13.1.1 Satellite Communications Can Be Tapped 508
13.1.2 Fiber-Optic Communications Can Be Tapped 510
13.1.3 Growing Regulatory Pressures for Heightened Security . 512
13.1.4 Archived Encrypted Messages Retroactively Vulnerable . 512

13.2 An Unbreakable Cryptosystem: The One Time Pad 515
13.2.1 Security of OTP: Loopholes if Used Improperly 518
13.2.2 Practicality of OTP: Problem of Key Distribution 519

13.3 Quantum Key Distribution . 520
13.3.1 Concept of QKD . 520
13.3.2 Security Foundations of QKD 520
13.3.3 OTP Made Practical by QKD 521
13.3.4 Varieties of QKD . 521

13.4 Physics Behind Quantum Key Distribution 522
13.4.1 Photon Polarization . 522
13.4.2 Single Photon Sources 523
13.4.3 Entangled Photon Sources 524
13.4.4 Creating Truly Random Bits 525
13.4.5 Encoding Keys in Polarized Photons 526
13.4.6 Measuring Photon Polarization with a Birefringent

Crystal . 528
13.4.7 Measuring Photon Polarization with a Polarizing Filter . 529

13.5 Bennett and Brassard’s BB84 QKD Scheme 529
13.5.1 The BB84 QKD Protocol 531
13.5.2 Example: BB84 QKD in the Absence of Eavesdropping . 534
13.5.3 Example: BB84 QKD in the Presence of Eavesdropping . 536
13.5.4 Spedalieri’s Orbital Angular Momentum Scheme

for BB84 . 537

xx Contents

13.5.5 Generalization of BB84: Bruss’ 6-State Protocol 538
13.6 Bennett’s 2-State Protocol (B92) 539

13.6.1 The B92 QKD Protocol 539
13.6.2 Threat of “Discard-on-Fail” Unambiguous State

Discrimination . 540
13.7 Ekert’s Entanglement-Based Protocol 541

13.7.1 The E91 Protocol . 541
13.8 Error Reconciliation and Privacy Amplification 542

13.8.1 Error Reconciliation . 543
13.8.2 Privacy Amplification 544

13.9 Implementations of Quantum Cryptography 545
13.9.1 Fiber-Optic Implementations of Quantum Cryptography . 545
13.9.2 Extending the Range of QKD with Quantum Repeaters . 547
13.9.3 Earth-to-Space Quantum Cryptography 548
13.9.4 Hijacking Satellites . 550
13.9.5 Commercial Quantum Cryptography Systems 554

13.10 Barriers to Widespread Adoption of Quantum Cryptography . . . 555
13.10.1 Will People Perceive a Need for Stronger

Cryptography? . 555
13.10.2 Will People Believe the Foundations of QKD Are

Solid? . 556
13.10.3 Will People Trust the Warranties of Certification

Agencies? . 556
13.10.4 Will Wide Area Quantum Cryptography Networks Be

Practical? . 557
13.10.5 Will Key Generation Rate Be High Enough to Support

OTP? . 558
13.10.6 Will Security Be the Dominant Concern? 558

13.11 Summary . 558
13.12 Exercises . 560

Part IV Towards Practical Quantum Computers

14 Quantum Error Correction . 567
14.1 How Errors Arise in Quantum Computing 568

14.1.1 Dissipation-Induced Bit Flip Errors 568
14.1.2 Decoherence-Induced Phase Shift Errors 569
14.1.3 Natural Decoherence Times of Physical Systems 570
14.1.4 What Makes Quantum Error Correction so Hard? 571

14.2 Quantum Error Reduction by Symmetrization 573
14.2.1 The Symmetrization Trick 574
14.2.2 Quantum Circuit for Symmetrization 576
14.2.3 Example: Quantum Error Reduction via Symmetrization . 577

14.3 Principles of Quantum Error Correcting Codes (QECCs) 579
14.3.1 Classical Error Correcting Codes 579

Contents xxi

14.3.2 Issues Unique to Quantum Error Correcting Codes 580
14.3.3 Modeling Errors in Terms of Error Operators 581

14.3.4 Protecting Quantum Information via Encoding 583
14.3.5 Digitizing and Diagnosing Errors by Measuring Error

Syndromes . 585
14.3.6 Reversing Errors via Inverse Error Operators 585
14.3.7 Abstract View of Quantum Error Correcting Codes . . . 585

14.4 Optimal Quantum Error Correcting Code 588
14.4.1 Laflamme-Miquel-Paz-Zurek’s 5-Qubit Code 588
14.4.2 Error Operators for the 5-Qubit Code 588
14.4.3 Encoding Scheme for the 5-Qubit Code 589
14.4.4 Error Syndromes & Corrective Actions for the 5-Qubit

Code . 591
14.4.5 Example: Correcting a Bit-Flip 592

14.5 Other Additive Quantum Error Correcting Codes 593
14.5.1 Shor’s 9-Qubit Code . 593
14.5.2 Steane’s 7-Qubit Code 594

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 594
14.6.1 Group Theory for Stabilizer Codes 595
14.6.2 The Stabilizer . 595
14.6.3 Example: A Stabilizer for the 5-Qubit Code 596
14.6.4 Using a Stabilizer to Find the Codewords It Stabilizes . . 597
14.6.5 How the Stabilizer is Related to the Error Operators . . . 599
14.6.6 Example: Stabilizers and Error Operators for the 5-Qubit

Code . 600
14.6.7 Stabilizer-Based Error Correction: The Encoding Step . . 603
14.6.8 Stabilizer-Based Error Correction: Introduction of the

Error . 603
14.6.9 Stabilizer-Based Error Correction: Error Diagnosis &

Recovery . 603
14.6.10 Stabilizers for Other Codes 604

14.7 Bounds on Quantum Error Correcting Codes 605
14.7.1 Quantum Hamming Bound 606
14.7.2 Quantum Singleton Bound 606
14.7.3 Quantum Gilbert-Varshamov Bound 607
14.7.4 Predicting Upper and Lower Bounds on Additive Codes . 607
14.7.5 Tightest Proven Upper and Lower Bounds on Additive

Codes . 611
14.8 Non-additive (Non-stabilizer) Quantum Codes 611
14.9 Fault-Tolerant Quantum Error Correcting Codes 611

14.9.1 Concatenated Codes and the Threshold Theorem 617
14.10 Errors as Allies: Noise-Assisted Quantum Computing 620
14.11 Summary . 621
14.12 Exercises . 622

xxii Contents

15 Alternative Models of Quantum Computation 627
15.1 Design Principles for a Quantum Computer 627
15.2 Distributed Quantum Computer 628
15.3 Quantum Cellular Automata Model 630
15.4 Measurement I: Teleportation-Based Quantum Computer 633
15.5 Measurement II: One-Way Quantum Computer 640
15.6 Topological Quantum Computer 641

15.6.1 Topological Quantum Effects 642
15.6.2 Beyond Fermions and Bosons—Anyons 643
15.6.3 Abelian Versus Non-Abelian Anyons 644
15.6.4 Quantum Gates by Braiding Non-Abelian Anyons 644
15.6.5 Do Non-Abelian Anyons Exist? 649

15.7 Adiabatic Quantum Computing 649
15.8 Encoded Universality Using Only Spin-Spin Exchange

Interactions . 653
15.8.1 The Exchange Interaction 653
15.8.2 SWAPα via the Exchange Interaction 654
15.8.3 Problem: Although SWAPα Is Easy 1-Qubits Gates Are

Hard . 655
15.8.4 Solution: Use an Encoded Basis 655
15.8.5 U

1,2
L , U2,3

L , and U
1,3

L . 656
15.8.6 Rz Gates in Encoded Basis 657
15.8.7 Rx Gates in Encoded Basis 657
15.8.8 Ry Gates in Encoded Basis 658
15.8.9 CNOT in Encoded Basis 658

15.9 Equivalences Between Alternative Models of Quantum
Computation . 659

15.10 Summary . 660
15.11 Exercises . 660

References . 663

Index . 689

Part I
What is Quantum Computing?

Chapter 1
Introduction

“The theory of computation has traditionally been studied almost entirely in the abstract,
as a topic in pure mathematics. This is to miss the point of it. Computers are physical
objects, and computations are physical processes. What computers can or cannot compute
is determined by the laws of physics alone, and not by pure mathematics”
– David Deutsch1

Over the past 50 years there has been an astonishing miniaturization in computer
technology. Whereas a microprocessor in 1971 contained roughly 2,300 transistors,
a modern microprocessor of the same size contains in excess of one billion tran-
sistors. Throughout this evolution, even though there have been several changes in
how computer hardware is implemented, the same underlying mathematical model
of a computer has held sway. However, if current trends continue, by the year 2020
the basic components of a computer will be the size of individual atoms. At such
scales, the mathematical theory underpinning modern computer science will cease
to be valid. Instead, scientists are inventing a new theory, called “quantum com-
puting”, which is built upon the recognition that a computing device is a physical
system governed by physical laws, and at very small scales, the appropriate laws are
those of quantum mechanics—the most accurate model of reality that is currently
known.

There are two attitudes one could adopt regarding the necessity of incorporating
quantum mechanical effects into computing machinery. One response it to strive
to suppress the quantum effects and still preserve a semblance of classicality even
though the computational elements are very small. The other approach is to embrace
quantum effects and try to find clever ways to enhance and sustain them to achieve
old computational goals in new ways. Quantum computing attempts to pursue the
latter strategy by harnessing quintessentially quantum effects.

Remarkably, this new theory of quantum computer science predicts that quan-
tum computers will be able to perform certain computational tasks in phenomenally

1Source: Opening words of Chap. 5, “Virtual Reality” of “The Fabric of Reality,” by David
Deutsch, the Penguin Press (1997), ISBN 0-7139-9061-9.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_1, © Springer-Verlag London Limited 2011

3

http://dx.doi.org/10.1007/978-1-84628-887-6_1

4 1 Introduction

fewer steps than any conventional (“classical”) computer—including any supercom-
puter yet to be invented! This bold assertion is justified because the algorithms avail-
able to quantum computers can harness physical phenomena that are not available
to classical computers no matter how sophisticated they may be. As a result, quan-
tum computers can perform computations in fundamentally new ways that can, at
best, only be mimicked inefficiently by classical computers. Thus, quantum com-
puting represents a qualitative change in how computation is done, making it of
a different character than all previous advances in computer science. In particular,
quantum computers can perform truly unprecedented tasks such as teleporting in-
formation, breaking supposedly “unbreakable” codes, generating true random num-
bers, and communicating with messages that betray the presence of eavesdropping.
Similar counterintuitive capabilities are being discovered, routinely, making quan-
tum computing a very active and exciting field. While no one book can do justice
to the myriad of discoveries that have been made so far, I hope to give you a fresh
perspective on the capabilities of quantum computers, and to provide you with the
tools necessary to make your own foray into this exciting field.

1.1 Trends in Computer Miniaturization

“I like small gadgets, look at this tiny digital camera . . . where is it?”
– Artur Ekert [17]

Computer technology has been driven to smaller and smaller scales because,
ultimately, the limiting factor on the speed of microprocessors is the speed with
which information can be moved around inside the device. By cramming the tran-
sistors closer together, and evolving to ever faster mechanisms for switching, one
can speed up the rate of computation. But there is a price to pay. As transistors are
packed closer together it becomes more challenging to remove the heat they dissi-
pate. So at any given stage of technological development there has always been an
optimal transistor density that trades off size for thermal management.

In 1965 Gordon Moore, a co-founder of Intel, noticed that the most economically
favorable transistor densities in integrated circuits seemed to have been doubling
roughly every 18 months. He predicted that this trend would continue well into the
future. Indeed, as evidenced by Table 1.1, it has, and Moore’s anticipated scaling
became known as the more official sounding “Moore’s Law”. However, it is not a
Law in the proper scientific sense as Nature does not enforce it. Rather, Moore’s
Law is merely an empirical observation of a scaling regularity in transistor size and
power dissipation that industry had achieved, and Gordon Moore extrapolated into
the future. However, there is uncertainty in the chip industry today regarding how
much longer Moore’s Law can be sustained.

Nevertheless, in the 40 years since Moore’s Law was invented, successive gen-
erations of Intel chips have adhered to it surprisingly. This is all the more surpris-
ing when one realizes how just how much the underlying transistor technology has
changed (see Fig. 1.1).

1.1 Trends in Computer Miniaturization 5

Table 1.1 Growth of the clock rate, and the number of transistors per chip in Intel processors from
1971 to 2007. Note that the transistor sizes reduced over the same time period, allowing the chips
to remain about the same size. In the table 1 μ= 10−6 meter and 1 nm= 10−9 meter

Intel microprocessor Year Speed # Transistors Manufacturing scale

4004 1971 108 kHz 2,300 10 μ
8008 1972 500–800 kHz 3,500 10 μ
8080 1974 2 MHz 4,500 6 μ
8086 1978 5 MHz 29,000 3 μ
8088 1979 5 MHz 29,000 3 μ
286 1982 6 MHz 134,000 1.5 μ
386 1985 16 MHz 275,000 1.5 μ
486 1989 25 MHz 1,200,000 1 μ
Pentium 1993 66 MHz 3,100,000 0.8 μ
Pentium Pro 1995 200 MHz 5,500,000 0.6 μ
Pentium II 1997 300 MHz 7,500,000 0.25 μ
Pentium II Xeon 1997 300 MHz 7,500,000 0.25 μ
Pentium III 1999 500 MHz 9,500,000 0.18 μ
Pentium III Xeon 1999 500 MHz 9,500,000 0.18 μ
Pentium 4 2000 1.5 GHz 42,000,000 0.18 μ
Xeon 2001 1.5 GHz 42,000,000 0.18 μ
Pentium M 2002 1.7 GHz 55,000,000 90 nm

Itanium 2 2002 1 GHz 220,000,000 0.13 μ
Pentium D 2005 3.2 GHz 291,000,000 65 nm

Core 2 Duo 2006 2.93 GHz 291,000,000 65 nm

Core 2 Extreme 2006 2.93 GHz 291,000,000 65 nm

Dual-Core Xeon 2006 2.93 GHz 291,000,000 65 nm

Dual-Core Itanium 2 2006 1.66 GHz 1,720,000,000 90 nm

Quad-Core Xeon 2006 2.66 GHz 582,000,000 65 nm

Quad-Core Core 2 Extreme 2006 2.66 GHz 582,000,000 65 nm

Core 2 Quad 2007 2.66 GHz 582,000,000 65 nm

Quad-Core Xeon 2007 >3 GHz 820,000,000 45 nm

Dual-Core Xeon 2007 >3 GHz 820,000,000 45 nm

Quad-Core Core 2 Extreme 2007 >3 GHz 820,000,000 45 nm

Today, many industry insiders see Moore’s Law surviving for just two or three
more generations of microprocessors at best. In a valiant effort to sustain Moore’s
Law chip manufacturers are migrating to multi-core microprocessor architectures,
and exotic new semiconductor materials. Beyond these advances, a switch to nan-
otechnology may be necessary.

Whatever strategy industry adopts to maintain Moore’s Law it is clear that as
time goes on fewer and fewer atoms will be used to implement more and more bits.

6 1 Introduction

Fig. 1.1 Historical scaling in the numbers of transistors per chip in successive generations of Intel
processors. The latest chips use multiple cores

Fig. 1.2 Historical scaling in
the number of atoms needed
to implement one bit

Figure 1.2 shows the scaling in the number of atoms needed to implement a bit as a
function of time. Extrapolating this trend shows we will be at the one atom per bit
level by about 2020. At the one-atom-per-bit level the appropriate physical model to
describe what is going on is that of quantum physics rather than classical physics.

Quantum physics is considerably different from classical physics. Facts that we
take as being “common sense” in our everyday (classical) world do not necessarily
hold in the quantum realm. For example, in the classical world we are accustomed
to thinking of particles (like grains of sand or dust) as having a definite location in
space and time. But in the quantum world particles do have a definite location in
space and time—in fact they can be in more than one place, or in more than one

1.2 Implicit Assumptions in the Theory of Computation 7

state, at the same time! More bizarre still, supposed “particles” can interact with
one another more in a manner that is more reminiscent of waves than solid objects.
Ultimately, as bits must be encoded in the states of physical systems, whether those
systems are quantum or classical can therefore affect their properties profoundly.

1.2 Implicit Assumptions in the Theory of Computation

“Nature isn’t classical damn it!”
– Richard Feynman

Bits, or “binary digits” lie at the heart of all modern digital equipment rang-
ing from computers to iPODs to high-definition television (HDTV). Contemporary
computers use voltage levels to encode bits. Old fashioned, mechanical, computers
use the position of gear teeth. The only requirement is that the physical system must
possess two clearly distinguishable configurations, or states, that are sufficiently sta-
ble so that they do not flip, spontaneously, from the state representing the bit 0 into
the state representing the bit 1 or vice versa.

Once we have the ability to store 0s and 1s and to manipulate them in a controlled
manner we have the basis for making all digital devices. By now, we are all so
familiar with digital devices that, to the extent we even think about them at all, we
take the properties of the bits within them for granted. For example, I am sure you
will agree that the following operations on bits seem eminently reasonable: we can
read a bit to learn the value it has; we can copy, erase or negate a bit regardless of
whether it is a 0 or a 1; and we can read some of the bits inside a digital device
without changing the other bits that we did not read. In fact such properties seem so
obvious that we don’t even bother to question these assumptions.

However, in his 1959 address “There’s Plenty of Room at the Bottom” physi-
cist Richard Feynman alluded to the tremendous opportunity available at the time
for further miniaturization of technology [182]. He also anticipated that very small
physical devices would be governed by quantum mechanics rather than classical
mechanics and, as such, would not necessarily behave the same their larger counter-
parts. For example, a robot on the quantum scale might pick up and not pick up an
object at the same time, and to carry it off left and right simultaneously. You would
never know which was the case until you performed an observation as to what he
robot had done. Once you did that, and made a permanent record of the result, its
behavior would become definite. That sounds crazy, but that is what quantum me-
chanics tells us can happen.

Likewise, bits are going to be recorded, ultimately, in the state of some physical
system. So as devices become miniaturized the sizes of the physical systems used
to encode those bits will become smaller. At some point their behavior will need
to be described by quantum physics rather than classical physics. At this point, our
common sense assumptions about how bits ought to behave, e.g., that we can read,
copy, erase, negate them without causing them to change in any way, cease to be

8 1 Introduction

Table 1.2 Assumptions about the properties of bit that are no longer necessarily true at the quan-
tum scale

Assumption Classically Quantum mechanically

A bit always has a definite value True False. A bit need not have a definite value
until the moment after it is read

A bit can only be 0 or 1 True False. A bit can be in a superposition of 0
and 1 simultaneously

A bit can be copied without
affecting its value

True False. A qubit in an unknown state cannot
be copied without necessarily changing its
quantum state

A bit can be read without affecting
its value

True False. Reading a qubit that is initially in a
superposition will change the qubit

Reading one bit in the computer
memory has no affect on any other
(unread) bit in the memory

True False. If the bit being read is entangled
with another qubit, reading one qubit will
affect the other

To compute the result of a
computation, you must run the
computer

True False

valid. In fact, at the quantum scale you cannot necessarily read a bit without chang-
ing its value; you cannot necessarily copy, or negate it without perturbing it; you
may be unable to erase it; and sometimes when you read one bit your actions can
change the state of another bit with which you never interacted. Thus, bits encoded
in quantum-scale objects cease to behave like normal bits ought. Some of the differ-
ences between normal (classical) and bits encoded at the quantum scale are shown
in Table 1.2.

Thus, once computers becomes so small that we are then dealing with quantum
bits as opposed to classical bits, we open up a new repertoire of physical effects that
can be harnessed to achieve novel functionalities. As a result many new opportuni-
ties present themselves.

1.3 Quantization: From Bits to Qubits

Fortunately, quantum systems possess certain properties that lend themselves to en-
coding bits as physical states. When we measure the “spin” of an electron, for ex-
ample, we always find it to have one of two possible values. One value, called “spin
up” or |↑〉, means that the spin was found to be parallel to the axis along which
the measurement was taken. The other possibility, “spin-down” or |↓〉, means that
the spin was found to be anti-parallel to the axis along which the measurement was
taken. This intrinsic discreteness, a manifestation of quantization, allows the spin of
an electron to be considered as a natural binary digit or “bit”.

Such intrinsic “discreteness” is not unique to spin-systems. Any 2-state quantum
system, such as the plane of polarization of a linearly polarized photon, the direction

1.3 Quantization: From Bits to Qubits 9

of rotation of a circularly polarized photon, or the discrete energy levels in an excited
atom, would work equally well. Whatever the exact physical embodiment chosen, if
a quantum system is used to represent a bit, we call the resulting system a quantum
bit, or just “qubit” for short.

1.3.1 Ket Vector Representation of a Qubit

As we are talking variously about (classical) bits and (their quantum counterparts)
qubits, we’d better find a way of distinguishing them. To do so, we adopt a notation
invented by British physicist extraordinaire Paul Dirac, which has since become
known as “Dirac-notation”.

In Dirac notation, when we are talking about a qubit (a quantum bit) in a physical
state that represents the bit value 0, we’ll write the qubit state using an angular-
looking bracket, |0〉, which is called a “ket” vector. Likewise, a qubit in a physical
state representing the bit value 1 will be written |1〉. What these notations mean
physically will depend upon the nature of the system encoding them. For example,
a |0〉 could refer to a polarized photon, or an excited state of an atom, or the direction
of circulation of a superconducting current etc. The notation speaks only to the
computational abstraction that we ascribe to a 2-state quantum system and doesn’t
give us any direct information about the underlying physical embodiment of the
system encoding that qubit.

Mathematically, kets are a shorthand notation for column vectors, with |0〉 and
|1〉 corresponding to:

|0〉 ≡
(

1
0

)
, |1〉 ≡

(
0
1

)
(1.1)

You might ask “Why do we need to represent a single quantum bit as a two-element
column vector?” “Isn’t one binary digit enough to specify it completely?” The an-
swer lies in the fact that quantum bits are not constrained to be wholly 0 or wholly 1
at a given instant. In quantum physics if a quantum system can be found to be in
one of a discrete set of states, which we’ll write as |0〉 or |1〉, then whenever it is
not being observed it may also exist in a superposition, or blend of those states
simultaneously, |ψ〉 = a|0〉 + b|1〉 such that |a|2 + |b|2 = 1.

1.3.2 Superposition States of a Single Qubit

Thus, whereas at any instant a classical bit can be either a 0 or a 1, a qubit can be a
superposition of both a |0〉 and a |1〉 simultaneously, i.e., a state such as:

|ψ〉 = a|0〉 + b|1〉 ≡
(
a

b

)
(1.2)

10 1 Introduction

where a, and b are complex numbers2 having the property |a|2 + |b|2 = 1.
The coefficient “a” is called the amplitude of the |0〉 component and the co-

efficient “b” is called the amplitude of the |1〉 component. The requirement that
|a|2 + |b|2 = 1 is to ensure the qubit is properly normalized. Proper normalization
guarantees that when we do finally read a qubit, it will be found, with probability
|a|2 to be in state |0〉 or, with probability |b|2 to be in state |1〉 and nothing else.
Thus the sums of the probabilities of the possible outcomes add up to one.

Dirac notation makes it easy to write down compact descriptions of quantum
states and operators. Some common examples are as follows:

Dirac Notation: Bras, Kets, Inner and Outer Products For every “ket” |ψ〉
(which can be thought of as a shorthand notation for a column vector) there is a
corresponding “bra” 〈ψ | (which can be though of as shorthand for a row vector).
The ket and the bra contain equivalent information about the quantum state in ques-
tion. Mathematically, they are the dual of one another, i.e.:

|ψ〉 = a|0〉 + b|1〉 =
(
a

b

)

〈ψ | = a∗〈0| + b∗〈1| = (a∗ b∗)
(1.3)

Note that the amplitudes in the bra space are the complex conjugates of the ampli-
tudes in the ket space. That is, if z = x + iy is a complex number with real part x
and imaginary part y, then the complex conjugate of z is z∗ = x − iy.

What is the purpose of introducing bra vectors into the discussion if they don’t
contain any new information about the quantum state? It turns out that products
of bras and kets give us insight into the similarities between two quantum states.
Specifically, for a pair of qubits in states |ψ〉 = a|0〉 + b|1〉 and |φ〉 = c|0〉 + d|1〉
we can define their inner product, 〈ψ |φ〉 as:

〈ψ |φ〉 = (〈ψ |) · (|φ〉)︸ ︷︷ ︸
bra (c) ket

= (a∗ b∗) ·
(
c

d

)
= a∗c+ b∗d (1.4)

The inner product 〈ψ |φ〉 is also called the overlap between (normalized) states |ψ〉
and |φ〉 because it varies from zero for orthogonal states to one for identical normal-
ized states. We can verify this with a direct calculation: 〈ψ |ψ〉 = (a∗ b∗) · (a

b

) =
a∗a + b∗b= |a|2 + |b|2 = 1.

A second product we can define on states |ψ〉 = a|0〉+b|1〉 and |φ〉 = c|0〉+d|1〉
is their outer product |ψ〉〈φ|:

|ψ〉〈φ| = (|ψ〉) · (〈φ|)=
(
a

b

)
· (c∗ d∗)=

(
ac∗ ad∗
bc∗ bd∗

)
(1.5)

2A complex number z = x + iy is a composite number consisting of two real numbers x and
y, and a constant i =√−1. x = Re(z) is called the “real” part of z, and y = Im(z) is called the
“imaginary” part of z. z∗ = x− iy denotes the complex conjugate of z, and |z| =√

x2 + y2 denotes
the modulus of z.

1.3 Quantization: From Bits to Qubits 11

which is a matrix. The outer product provides a very nice way of describing the
structure of unitary operators, which as will see later, correspond to quantum logic
gates. For example, a NOT gate has a corresponding unitary matrix NOT = (0 1

1 0

)
.

In terms of outer products this can also be written as NOT = |0〉〈1| + |1〉〈0|. The
outer product factorization of the NOT gate shows the transformation it performs
explicitly. Indeed, all quantum gates can be best understood as a sum of such outer
products.

1.3.3 Bloch Sphere Picture of a Qubit

An intuitive, albeit approximate, way to visualize the quantum state of a single qubit
is to picture it as a unit vector inside a bounding sphere, called the Bloch sphere (see
Fig. 1.3). The parameters defining the quantum state are related to the azimuth and

Fig. 1.3 Bloch sphere showing the computational basis states |0〉 and |1〉, and a general qubit state
|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉

12 1 Introduction

elevation angles that determine where the tip of this vector touches the surface of
the Bloch sphere. In this picture, the North pole corresponds to the pure state |0〉
and the South pole corresponds to the (orthogonal) pure state |1〉. All other points
on the surface of the Bloch sphere correspond to the superposition states of the
form a|0〉 + b|1〉 for all possible values of the complex numbers a and b such that
|a|2 + |b|2 = 1.

In particular, an arbitrary pure state of a single qubit |ψ〉 = a|0〉 + b|1〉 such that
|a|2 + |b|2 = 1 can be written in terms of these azimuth and elevation angles as:

|ψ〉 = eiγ
(

cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉

)
(1.6)

where γ , θ , and φ are all real numbers. A pair of elevation and azimuth angles
(θ,φ) in the range 0≤ θ ≤ π and 0≤ φ ≤ 2π pick out a point on the Bloch sphere.
Qubit states corresponding to different values of γ are indistinguishable and are all
represented by the same point on the Bloch sphere. γ is said to be an overall phase
factor that is unobservable.

Students are often confused about the Bloch sphere for three main reasons: first
how come the azimuth and elevation angles are expressed in half-angles? Second,
how come orthogonal states are not at right angles on the Bloch sphere? Instead they
are 180° apart. Third how can it be that the γ parameter has no observable effect?

How might we draw a picture that captures in an intuitive way the complete
character of a qubit in a superposition state such as a|0〉 + b|1〉? The Bloch sphere
provides a way of visualizing the quantum mechanical state of a single qubit. “Wait
a minute!” you say. “Aren’t orthogonal states supposed to be at right angles? How
can the |0〉 state be the North pole and the |1〉 be the South Pole? They’re 180°
apart!”

Students are often confused by the Bloch sphere representation of a quantum
state because orthogonal states are not found to be at right angles on the Bloch
sphere. So it is worth a little detour to explain how the Bloch sphere is constructed.

Consider the general quantum state a|0〉+ b|1〉. Since a and b are complex num-
bers they can be written in either Cartesian or Polar coordinates as: a = xa + iya =
rae

iφa and a = xb + iyb = rbe
iφb with i = √−1 and the x’s, y’s, r’s, and φ’s are

all real numbers. So, naively, it looks like we need to depict four real numbers
xa, xb, ya, yb or ra, rb,φa,φb depending on whether we use the Cartesian or polar
representation of the complex numbers a and b. Not so!

Write the general state of a qubit a|0〉 + b|1〉 as rae
iφa |0〉 + rbe

iφb |1〉. Since
an overall phase factor has no observable consequence (you’ll prove this as an ex-
ercise later), we can multiply by any global phase we please to obtain an equiv-
alent state. In particular, we could multiply by the phase factor e−iφa to obtain
ra|0〉 + rbe

i(φb−φa)|1〉. This allows us to represent the state of the qubit using three
real numbers ra , rb and φ = (φb −φa). Switching back to Cartesian coordinates for
the amplitude of the |1〉 component we can write this state as ra|0〉+(x+ iy)|1〉. Ap-
plying normalization we have |ra |2+|x+ iy|2 = 1 or equivalently r2

a +x2+y2 = 1
which is the equation of a sphere in coordinates ra , x, and y. We can rename ra = z

for aesthetic reasons and it doesn’t change anything but now we have the equation

1.3 Quantization: From Bits to Qubits 13

of a sphere in coordinates x, y, and z. Ok so let’s switch from these Cartesian coor-
dinates to spherical coordinates. We have,

x = r sin(θ) cos(φ) (1.7)

y = r sin(θ) sin(φ) (1.8)

z = r cos(θ) (1.9)

But given the constraint x2 + y2 + z2 = r2 = 1, we see r = 1. So now the po-
sition on the surface of the sphere is specified using only two parameters, θ

and φ. And the general qubit state can be written as z|0〉 + (x + iy)|1〉 or equiv-
alently, since r = 1, cos(θ)|0〉+ (sin(θ) cos(φ)+ i sin(θ) sin(φ))|1〉, or equivalently
cos(θ)|0〉 + eiφ sin(θ)|1〉 since cos(φ)+ i sin(φ)= eiφ . Given that a qubit must lie
between the extremes of being wholly |0〉 (which occurs when θ = 0 and wholly
|1〉 (which occurs when θ = 90 it appears all the qubit states are mapped out over
just a hemispherical region of the sphere defined by x2 + y2 + z2 = 1. If we want
all the possible qubit states to correspond to the points on the surface of a whole
sphere, we can simply map this hemisphere or points onto a sphere of points by
introducing a new angle θ ′ = 2θ . Thus the general qubit state can now be written as
cos(θ

′
2)|0〉+ eiφ sin(θ

′
2)|1〉. Thus the complete set of qubit states is now mapped out

as θ ′ runs from 0° to 180°. This final sphere is the Bloch sphere.
An immediate consequence of how the Bloch sphere is constructed is that orthog-

onal quantum states, i.e., states |ψ〉 and |χ〉 for which 〈ψ |χ〉 = 0, are represented by
antipodal points on the Bloch sphere (rather than being drawn at right angles which
is how we usually expect to see orthogonal vectors drawn in 3D space). This is the
reason why |0〉 lies at the North Pole and |1〉 lies at the South Pole of the Bloch
sphere. For a general pure state, represented as a point on the surface of the Bloch
sphere, the antipodal state is the one diametrically opposite it on the other side of
the Bloch sphere such that a straight line drawn between the original state and its
antipodal state would pass through the center of the Bloch sphere. The operation
that maps an unknown state to its antipodal state cannot be expressed as a rotation
on the Bloch sphere. Rather it is the sum of a rotation (in longitude through 180 de-
grees) and a reflection (in latitude with respect to the equatorial plane of the Bloch
sphere). This inability to express the operation purely as a rotation will turn out to
impact our ability to achieve it in a sequence of unitary quantum gates.

Figure 1.4 shows the Bloch sphere labeled with pure 1-qubit states at the ex-
tremes of the x-, y-, and z-axes. These are, respectively, |↗〉 = 1√

2
(|0〉 + |1〉),

|↖〉 = 1√
2
(|0〉 − |1〉), |R〉 = |�〉 = 1√

2
(|0〉 + i|1〉), |L〉 = |�〉 = 1√

2
(|0〉 − i|1〉),

|0〉, and |1〉. Notice that orthogonal states are indeed located at antipodal points on
the surface of the Bloch sphere.

1.3.3.1 Other Rotations Having Period 4π

When first encountering the Bloch sphere, students often find it hard to grasp why
a rotation of 2π radians (i.e., 360°) would not restore an object back to its original

14 1 Introduction

Fig. 1.4 Bloch sphere representation of the states |0〉, |1〉, |↗〉 = 1√
2
(|0〉 + |1〉), |↖〉 =

1√
2
(|0〉 − |1〉), |R〉 = |�〉 = 1√

2
(|0〉 + i|1〉), and |L〉 = |�〉 = 1√

2
(|0〉 − i|1〉). Orthogonal pure

states are at antipodal points on the surface of the Bloch sphere

configuration. However, such a phenomenon can also be seen in the motions of
certain classical physical systems.

For example, extend your right hand straight out so your palm is face up. Keep-
ing your palm face up at all times, rotate your hand clockwise around a vertical axis
passing through the center of your palm until your hand returns to its original config-
uration. The basic contortions you need to do are as follows: starting with your right
hand extended straight out palm up, pull your arm inwards (keeping your palm flat),
twisting your wrist to the right and pushing your elbow to the left, continue twisting
your palm clockwise so your fingertips are pointing towards your right shoulder, and
swing your elbow around to the right and upwards, and push your arm out again.
Congratulations! Your palm has now been rotated through 2π radians (360°) and it
is indeed still face up, but your hand is not in its original configuration because your
elbow is now on top! To return your hand to its original configuration you need to
apply another full rotation of 360° to your palm. To do so, continue turning your
wrist to the right (still keeping your palm face up) so that your fingertips point to-
wards your tight armpit, swing you elbow around and downwards in a clockwise

1.3 Quantization: From Bits to Qubits 15

rotating arc, whilst twisting your wrist to the right. This will take your arm back
to its starting configuration. Thus, your hand requires a total rotation of 4π radians
(720°) to return it to its starting configuration. Resting a plate on your palm as you
do this ensures you keep your palm face up for fear of dropping the plate. This is
sometimes known as “Feynman’s Plate Trick”.

A more surprising demonstration of the same symmetry property occurs in the
rotations of a flat belt that is fixed at one end and rotated at the other. This version if
called “Dirac’s Belt Trick” and it is always a hit at parties. Take off a long flat belt
strap. Have a friend hold the buckle end of the belt and hold the other end yourself.
Pull the belt taut so it is flat with the outer face of the belt (as it is normally worn)
pointing upwards. Tell your friend to keep hold their end of the belt tightly in a fixed
position. Ok now twist (i.e., rotate) your end of the belt through 2π radians (i.e.,
360°). Can you remove the kink you have imparted to the belt by passing the belt
under and over itself while keeping the orientation of the ends of the belt fixed (i.e.,
flat with the outer face of the belt pointing upwards)? After a little experimentation
you will conclude you cannot.

Let us make the problem even harder by applying an additional twist to your
end of the belt through another 2π radians (i.e., another 360°). Can you remove the
double kink by passing the belt under and over itself while keeping both ends flat
and pointed upwards? Surely if you could not remove one kink in this manner, you
would expect it would be even harder to remove two! Yet, remarkably, you can!
After a rotation of 4π radians (720°) applied to the end of the belt, the belt can be
restored to its original configuration by passing it under and over itself while keeping
the orientations of the two ends fixed in space! This seems to be more surprising to
most people than the plate trick. Yet both are examples of physical systems in which
rotations of 2π radians do not restore an object to its original state whereas rotations
of 4π radians do! Such examples show that the 4π periodicity of the Bloch sphere
has parallels in the classical world around us.

1.3.4 Reading the Bit Value of a Qubit

In the everyday classical world when we read, or measure, or observe, something
we don’t usually perturb it in the process. For example, when we read a newspaper
we don’t change the words on the page merely by reading them. Moreover, if ten
people read ten different copies of the same edition of the same paper they would
all see the same words. However, in the quantum world this is not what happens.

The states |0〉 and |1〉 correspond to the North and South poles of the Bloch
sphere respectively, and the axis passing through these points is the z-axis (see
Fig. 1.5). Thus the act of reading the bit value of a qubit amounts to determining
the alignment of its spin with respect to this z-axis. If the particle is aligned “spin-
up” it is in the state |0〉. If it is aligned “spin-down” it is in the state |1〉.

When a single qubit in state a|0〉 + b|1〉 is read (or “measured” or “observed”),
with respect to some axis through the center of the Bloch sphere, the probability of

16 1 Introduction

Fig. 1.5 Measuring the bit value of a qubit initially in state a|0〉 + b|1〉 yields the answer 0 with
probability |a|2 or 1 with probability |b|2, and projects the qubit into either state |0〉 or state |1〉
respectively

finding it in state |0〉 or state |1〉 depends upon the values of a and b, and on the
orientation of this axis. The most commonly used axis is that passing through the
North and South poles corresponding to the states |0〉 and |1〉. A measurement of a
qubit with respect to this axis is called a measurement “in the computational basis”
because the answer we get will be one of the bit values |0〉 or |1〉. The outcome we
obtain is, in general, not certain but depends on the amplitudes a and b. Specifically,
measuring the bit value of a|0〉 + b|1〉 in the computational basis will yield the
answer |0〉 with probability |a|2 and the answer |1〉 with probability |b|2. These two
probabilities sum to 1, i.e., |a|2 + |b|2 = 1.

Read(a|0〉 + b|1〉)=
{

0 with probability |a|2
1 with probability |b|2 (1.10)

Thus, a single qubit quantum memory register exhibits the interesting property
that even though its contents may be definite, i.e., it may be precisely in the state

1.4 Multi-qubit Quantum Memory Registers 17

|ψ〉 = a|0〉 + b|1〉, the outcome we obtain from reading it is non-deterministic.
Sometimes we will find it in state |0〉 and sometimes we will find it in state |1〉.
However, the instant after the measurement is made, the state is known with cer-
tainty to be |0〉 or |1〉 consistent with result we obtained. Moreover, if we rapidly
and repeatedly keep measuring the same state we can suppress its evolution and

effectively freeze it in a fixed quantum state |ψ〉 read→ |0〉 read→ |0〉 read→ |0〉 · · · or

|ψ〉 read→ |1〉 read→ |1〉 read→ |1〉 · · · . This is a variant of the so-called Quantum Zeno Ef-
fect.3 But if we allow time to elapse between measurements the state will, in general,
evolve, or “drift off”, in accordance with Schrödinger’s equation.

1.4 Multi-qubit Quantum Memory Registers

So far we have only been dealing with single qubits, but a useful quantum computa-
tional device will need to have a multi-qubit quantum memory register. In general,
this is assumed to consist of a collection of n-qubits, which are assumed to be or-
dered, indexed and addressable so that selective operations can be applied to any
single qubit or any pair of qubits at will. If two qubits selected for an operation are
not physically adjacent, there is usually an operational sequence that achieves the
interaction between them as if they were. This detail is typically omitted from the
abstract model of the quantum memory as it is more an implementation issue than
anything fundamental to the computational model.

Just as a single qubit can be found in a superposition of the possible bit values
it may assume, i.e., |0〉 and |1〉, so too can a n-qubit register be found in a super-
position of all the 2n possible bit strings |00 . . .0〉, |00 . . .1〉, . . . , |11 . . .1〉 it may
assume. However, the most interesting superposition states typically involve non-
uniform contributions of eigenstates.

1.4.1 The Computational Basis

When we describe the state of a multi-qubit quantum memory register as a super-
position of its possible bit-string configurations, we say the state is represented in
the computational basis. This is arguably the most natural basis for quantum com-
puting. For example, the most general form for a pure state of a 2-qubit quantum
memory register can be written as:

|ψ〉 = c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉 (1.11)

3The Quantum Zeno Effect says that if you repeatedly measure (or observe) a quantum system,
you can suppress its quantum mechanical evolution. It is named after Zeno of Elea who devised a
paradox that aimed to prove if you continually observe an arrow in flight at any instant it would
appear motionless and hence it cannot be moving: “If everything when it occupies an equal space
is at rest, and if that which is in locomotion is always occupying such a space at any moment, the
flying arrow is therefore motionless.”—Aristotle, Physics VI:9, 239b5.

18 1 Introduction

where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1. This implies we can think of the register
as containing many different bit string configurations at once, each with their own
amplitude. Similarly, the general state of a 3-qubit register can be written as:

|ψ〉 = c0|000〉 + c1|001〉 + c2|010〉 + c3|011〉 + c4|100〉 + c5|101〉
+ c6|110〉 + c7|111〉 (1.12)

where |c0|2 + |c1|2 + |c2|2 + |c3|2 + |c4|2 + |c5|2 + |c6|2 + |c7|2 = 1. Continuing
in this fashion, we see that the most general form for a pure state of an n-qubit
quantum memory register is:

|ψ〉 = c0|00 . . .0〉 + c1|00 . . .1〉 + · · · + c2n−1|11 . . .1〉 =
2n−1∑
i=0

ci |i〉

where
∑2n−1

i=0 |ci |2 = 1 and |i〉 represents the “computational basis eigenstate”
whose bit values match those of the decimal number i expressed in base-2 notation,
padded on the left (if necessary) with “0” bits in order to make a full complement
of n bits. For example, the 5-qubit computational basis eigenstate corresponding to
|6〉 is |00110〉. This is because 6 in base-2 is “110” and then we pad on the left with
two “0” bits to make a total of 5 bits.

As for the case of single qubits, such ket vectors can always be regarded as a
short hand notation for a column vector. The size of these column vectors grow
exponentially with the number of qubits, making it computationally intractable to
simulate arbitrary quantum computations on classical computers. For example, a
100-qubit quantum memory register requires 2100 complex amplitudes to specify it
completely! In very few qubits, we run out of particle in the known Universe with
which to make a classical memory large enough to represent a quantum state.

In a multi-qubit quantum state it is not necessary (and for often not desirable)
for every amplitude to be non-zero. For example, if the quantum memory register
contains the output from some quantum computation, typically, many of the eigen-
states (corresponding) to non-solutions will be absent. For example, a particular
3-qubit quantum state, |ψ〉 = a|001〉 + b|010〉 + c|100〉 does not contain any con-
tributions from the eigenstates |000〉, |011〉, |101〉, |110〉, |111〉. The amplitude of
these omitted components is zero by implication. Hence, as a column vector, the
aforementioned 3-qubit state would actually be:

|ψ〉 = a|001〉 + b|010〉 + c|100〉 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
a

b

0
c

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

amplitude of |000〉 component
” |001〉 ”
” |010〉 ”
” |011〉 ”
” |100〉 ”
” |101〉 ”
” |110〉 ”
” |111〉 ”

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.13)

1.4 Multi-qubit Quantum Memory Registers 19

1.4.2 Direct Product for Forming Multi-qubit States

Suppose we create a quantum memory register from a set of n independent qubits.
How the state of the n-qubit register is related to the states of the individual qubits?
The answer is provided by way of the direct product of the n individual quantum
states.

Definition Direct Product of Quantum States of qubit states. Let |φ〉 =∑2m−1
j=0 aj |j 〉

be an m-qubit pure state, and |ψ〉 = ∑2n−1
k=0 bk|k〉 be an n-qubit pure state. The

quantum state of a memory register formed by considering |φ〉 and |ψ〉 together is
computed by taking their direct product, |φ〉 ⊗ |ψ〉 (sometimes called “tensor” or
“Kroenecker” product too):

|φ〉 ⊗ |ψ〉 =
2m−1∑
j=0

aj |j 〉 ⊗
2n−1∑
k=0

bk|k〉 =
⎛
⎜⎝

a0
a1
...

a2m−1

⎞
⎟⎠⊗

⎛
⎜⎝

b0
b1
...

b2n−1

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

⎛
⎜⎜⎝

b0
b1
...

b2n−1

⎞
⎟⎟⎠

a1

⎛
⎜⎜⎝

b0
b1
...

b2n−1

⎞
⎟⎟⎠

...

a2m−1

⎛
⎜⎜⎝

b0
b1
...

b2n−1

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0b0
a0b1
...

a0b2n−1
...

a1b0
a1b1
...

a1b2n−1
...

a2m−1b0
a2m−1b1

...

a2m−1b2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.14)

For example, let |φ〉 = a|0〉+b|1〉 and |ψ〉 = c|0〉+d|1〉. Then the direct product

|φ〉 ⊗ |ψ〉 =
(
a

b

)
⊗

(
c

d

)
=

⎛
⎜⎜⎜⎝
a

(
c

d

)

b

(
c

d

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝

ac

ad

bc

bd

⎞
⎟⎟⎠= ac|00〉 + ad|01〉 + bc|10〉 + bd|11〉 (1.15)

20 1 Introduction

Fig. 1.6 A particle
impinging on a double slit
seen at four different times
t = 5.0, 35.0, 55.0 and 75.0.
Notice the interference
pattern beyond the double slit
(upper right quadrant of lower
right frame). This, and several
other stunning animations of
quantum mechanical
interference effects, can be
found in [420]

1.4.3 Interference Effects

One of the most striking differences between quantum memory registers and clas-
sical memory registers is the possibility of encountering “quantum interference”
effects in the quantum case that are absent in the classical case. In general terms,
quantum interference can occur whenever there is more than one way to obtain a
particular computational result. The different pathways can interfere constructively
to increase the net probability of that result, or they can interfere destructively to
reduce the probability of that result. For example, if a quantum mechanical particle
impinges on a double slit it will, as shown in Fig 1.6, pass through both slits and
self-interfere beyond the slit, resulting in an oscillatory pattern of probability am-
plitude for where the particle will be found. To understand this quantitatively, let’s
consider the probability of obtaining a particular computational result first by pre-
tending that our quantum register behaves like a classical probabilistic register and
then by treating it (correctly) as a true quantum memory register.

Let |j 〉 and |k〉 be two eigenstates of an n-qubit quantum memory register that
hold two different bit strings corresponding to integers j and k respectively. These
states are orthogonal (〈j |k〉 = 0) and normalized (〈j |j 〉 = 〈k|k〉 = 1). So long as it
is not being observed, it is possible for the quantum memory register to exist in a
superposition of any of its allowed eigenstates such as a superposition of |j 〉 and |k〉,
i.e., |ψ〉 = cj |j 〉 + ck|k〉. If we observed this state in the computational basis we
would find it in state |j 〉 with probability |cj |2 and in state |k〉 with probability
|ck|2 = 1− |cj |2 (since these are the only two possibilities).

Thus, on the face of it, one might think that the quantum memory register holding
the state |ψ〉 = cj |j 〉 + ck|k〉 behaves just the same as if it were a classical proba-

1.4 Multi-qubit Quantum Memory Registers 21

bilistic memory register that outputs state |j 〉 with probability pj (= |cj |2) and state
|k〉 with probability pk (= |ck|2). But as we now show, this is not the case.

Specifically, let A be some observable that can act on an n-qubit register. Suppose
one of the eigenvalues of this observable is “a” when the corresponding state of the
memory register is |ψa〉. In other words we have A|ψa〉 = a|ψa〉.

The question is, with what probability would be obtain the value “a” when we
measure the observable A when the quantum memory register is in state |ψ〉 =
cj |j 〉 + ck|k〉?

Well in the (erroneous) “classical” view, the register really holds either state |j 〉
or state |k〉 but we are ignorant about which is the case. The probability of getting
“a” if the register is in state |j 〉 is Pj (a) = |〈ψa|j 〉|2. Similarly, the probability of
getting “a” if the register is in state |k〉 is Pk(a) = |〈ψa|k〉|2. As we are ignorant
about whether the register really holds state |j 〉 or state |k〉 the probability with
which we expect to see “a” is:

PCLASSICAL(a)= Pj (a)pj + Pk(a)pk = |cj |2Pj (a)+ |ck|2Pk(a)

= |cj |2|〈ψa|j 〉|2 + |ck|2|〈ψa|k〉|2 (1.16)

So this is our prediction for the probability with which we see result “a” if our
memory register behaves “classically”.

In the case of the “quantum” interpretation of the register, however, we’re not
ignorant of anything! The register truly exists in the superposition state |ψ〉 =
cj |j 〉 + ck|k〉, and the probability of getting “a” is therefore:

PQUANTUM(a)= |〈ψa|ψ〉|2 = |cj 〈ψa|j 〉 + ck〈ψa|k〉|2

= |cj |2|〈ψa|j 〉|2 + |ck|2|〈ψa|k〉|2 + 2 Re(cj c
∗
k 〈ψa|j 〉〈ψa|k〉∗)

(1.17)

Thus, in the quantum case there is an addition term contributing to the probability of
obtaining result “a”. This is the result of quantum interference between the different
computational pathways by which result “a” can be obtained.

1.4.4 Entanglement

“I would not call [entanglement] one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical lines of thought.”
– Erwin Schrödinger

Another way in which quantum memory registers can differ from classical mem-
ory registers is in their ability to exist in entangled states. This is a state of a compos-
ite quantum system that involves unusually strong correlations between parts of the
system. There is considerable debate at present about the nature of entanglement, es-
pecially in systems involving more than two particles, and whether entanglement is

22 1 Introduction

strictly necessary to obtain a complexity advantage over a classical computer. How-
ever, at this time it appears that entanglement is crucial to obtaining the exponential
speedups seen in some quantum algorithms.

So what is an entangled state exactly? In its simplest terms we can define an
entangled state as follows:

Definition: Entangled Pure State A multi-qubit pure state is entangled if and only
if it cannot be factored into the direct product of a definite state for each qubit
individually. Thus, a pair of qubits, A and B , are entangled if and only if their joint
state |ψ〉AB cannot be written as the product of a state for qubit A and a state for
qubit B , i.e., if and only if |ψ〉AB �= |ψ〉A⊗ |ψ〉B for any choice of states |ψ〉A and
|ψ〉B .

In a multi-qubit memory register if qubits are entangled then actions performed
on one subset of qubits can have an impact on another, “untouched”, subset of
qubits. For example, consider a 2-qubit memory register comprised of qubits A

and B , in state 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). If qubit A is measured in the com-

putational basis and found to be in state |1〉 then even though qubit B has not yet
been touched, its quantum state is now determined to be |1〉 too. Thus a measure-
ment of qubit A has had a side effect on the value of qubit B!

For notational compactness entangled state are more commonly written by drop-
ping the particle label (A, B , etc.) because this is implied by position, and by drop-
ping the ⊗ product as this is implied by simply abutting ket vectors. So the afore-
mentioned entangled state could also be written as 1√

2
(|00〉 + |11〉)

Entanglement is a pervasive phenomenon in multi-qubit quantum memory reg-
isters, It is also the cornerstone of many quantum algorithms. For example, we can
prepare two entangled quantum registers, A and B say, such that register A contains
a set of indices running from 0 to 2n− 1 and register B contains a set of values of a
function who behavior depends upon the value of the index in register A. So the joint
state (ignoring the normalization factor) can be something like

∑2n−1
i=0 |i〉A|f (i)〉B .

By measuring the value of the function (in register B) to be value “c” say, we can
project out the set of indices (in register A) consistent with the observed function
value, giving us a superposition of the form

∑
{i′:f (i′)=c} |i′〉A|c〉. That’s a neat trick

because in one shot we get all the index values (in register A) that give the same
value for the function (in register B).

1.4.4.1 Entanglement and Quantum States in Different Number Bases

One of the most interesting aspects of entanglement is how it is tied to our choice
of representation of numbers. Traditionally, we think of quantum computing using
the base-2 number system. Showing the number base as a subscript we have |010〉 =
|02〉, |110〉 = |12〉, |210〉 = |102〉, |310〉 = |112〉,

If the quantum gate, represented by the unitary matrix U , is to act on n qubits,
U will have dimensions of that are a power of two, specifically, 2n × 2n. Likewise,

1.5 Evolving a Quantum Memory Register: Schrödinger’s Equation 23

the unitary matrix corresponding to a quantum gate that acts on qutrits (i.e., base 3
quantum computation), will have dimensions that are a power of three, i.e., 3n× 3n.
Typically, most researchers use a base 2 (qubit) model of quantum computation.
This is partly out of habit, and partly because quantum gates that manipulate qubits
(and which therefore require 2-body interactions) are assumed to be simpler to build
than those that manipulate qutrits (and which therefore require 3-body interactions).
But in principle, one could use whatever base one wants.

Does the choice of base matter? Well, not from a computability perspective. Any
computation that can be done using qubits can also be done using qutrits. However,
it does raise some interesting issues when we consider the degree to which entangle-
ment is critical to quantum computation. For example, suppose you wanted to create
a superposition of two numbers “1” and “2” in some quantum memory register. Us-
ing qubits, such a superposition could be coded as 1√

2
(|01〉 + |10〉) (which is entan-

gled). However, using qutrits, the equivalent state could be encoded as 1√
2
(|1〉+|2〉)

(a plain, unentangled, superposition). So the choice of base affects the degree to
which entanglement is needed.

Some researchers misinterpreted the implications of this by proposing that quan-
tum computation can be implemented without entanglement. For example, suppose
we consider using a single atom (or perhaps artificial quantum dot) that has a huge
spectrum of energy levels available to it. We could imagine associating each energy
level with a different computational state: the ground state of the atom could be
“|0〉”, the first excited state “|1〉”, the second excited state “|2〉” etc. We could then
regard a quantum computation as a sequence of operations that maps some initial
state of this atom (represented as an unentangled superposition of states) into a final
state (represented as an unentangled superposition of states). And it would seem as
though entanglement is unnecessary.

The problem with this approach is that it neglects a hidden exponential cost.
To do universal (i.e., arbitrary) quantum computation we need to be able to access
exponentially many different energy levels. However, as the total energy of the atom
is finite, this means we will need to “fit” exponentially many energy levels into
a finite energy interval. Hence, we will require exponentially increasing precision
in order to address a specific energy level. Hence, although in principle one could
perform quantum computation in higher bases, and perhaps lower the degree to
which entanglement is needed, in practice it is very hard to imagine doing away
with entanglement entirely.

1.5 Evolving a Quantum Memory Register: Schrödinger’s
Equation

So far we have been discussing the properties of individual quantum bits (such as
superposition), and those of multi-qubit quantum memory registers (such as super-
position, entanglement and interference). Our working assumption has been that the
instantaneous state of a quantum memory register, |ψ(t)〉, holds the instantaneous

24 1 Introduction

state of the quantum computation. But how does this state evolve with time, and
how can we control this evolution to enact a purposeful quantum computation?

1.5.1 Schrödinger’s Equation

Remarkably in 1929, long before anyone had ever thought of quantum computers,
physicist Erwin Schrödinger discovered an equation that describes how any isolated
quantum system evolves in time. Since a quantum memory register is nothing more
than an isolated quantum system, it too must be described by Schrödinger’s equa-
tion.

Schrödinger’s equation is a linear first order deterministic partial differential
equation that involves the instantaneous state of the quantum memory register
|ψ(t)〉, a time independent Hermitian matrix H, called the Hamiltonian (the observ-
able for the total energy of the system), and a constant � equal to Planck’s constant
divided by 2π . The fact that Schrödinger’s equation is “linear” means that sums of
solution to the equation are also solutions to the equation, which is the fundamental
origin of the superposition principle. The fact that the Schrödinger equation is de-
terministic means that if you know its instantaneous state at any moment you can
predict its future and past states with certainty (provided the system is not observed).

Regardless of the precise details of the physical system, Schrödinger’s equation
always takes the form:

i�
∂|ψ(t)〉

∂t
= H|ψ(t)〉 (1.18)

As � is a constant, and |ψ(t)〉 describes the instantaneous state of the quantum
memory register, the form of this equation implies that all of the details pertaining to
the particular physical system in question must be bundled into the operator H—the
Hamiltonian. So what does this Hamiltonian mean exactly?

1.5.2 Hamiltonians

In quantum mechanics observables are described by operators, which in turn can
be represented as Hermitian matrices. The allowed values for an observable are the
eigenvalues of its associated Hermitian matrix. The Hamiltonian, H is the observ-
able corresponding to the total energy of the system, and its eigenvalues are the
possible values one can obtain when one measures (or “observes”) the total energy
of the system. Depending on the physical situation such a Hamiltonian may be time
dependent or time independent.

The Hamiltonian H for a particular quantum physical system is built up from
knowledge of the elementary interactions available in the system, and it can be writ-

1.5 Evolving a Quantum Memory Register: Schrödinger’s Equation 25

ten in terms of operator products like those we encountered in Sect. 1.3.2. For ex-
ample, the Hydra superconducting quantum processor [423] has the Hamiltonian:

H(t)=
N∑
i=1

hiZi +
N∑

i<j=2

JijZiZj +
N∑
i=1

i(t)Xi (1.19)

where Zi = σ i
z and Xi = σ i

x are the Paul-Z and Pauli-X matrices for qubit i, hi is
the bias applied to qubit i,
i(t) is the tunneling matrix element for qubit i, and Jij
is the coupling between qubits i and j .

The fact that H is the observable for the total energy of the n-qubit system means
that H is a 2n×2n dimensional Hermitian matrix such that there exist energy eigen-
states |ψi〉, and energy eigenvalues Ei such that H|ψi〉 = Ei |ψi〉. The eigenvalues
Ei are the only allowed values for the total energy of the system. Thus there is al-
ways some basis (the energy eigenbasis {|ψi〉}) in which H is a diagonal matrix,
H =∑

i Ei |ψi〉〈ψi |.

H =

⎛
⎜⎜⎜⎝
E0 0 0 0
0 E1 0 0

0 0
. . . 0

0 0 0 E2n−1

⎞
⎟⎟⎟⎠ (1.20)

However, the Hamiltonian if often stated with respect to some other basis, e.g.,
the computational basis, {|00 . . .0〉, |00 . . .1〉, . . . , |1 . . .1〉}. Hence, it is sometimes
necessary to change the basis used to describe states and operators in quantum com-
puting. We will come back to this issue and discuss it in detail in Sect. 1.6.4.

1.5.3 Solution as a Unitary Evolution of the Initial State

Once the Hamiltonian is known the Schrödinger equation can be solved. The sim-
plest case is that of a time-independent Hamiltonian. In this case the solution to the
Schrödinger equation is:

U(t)= exp(−iHt/�) (1.21)

This says that if you know the initial state of the system, |ψ(0)〉, you can de-
termine its state at a later time, t , by acting on the initial state with the opera-
tor exp(−iHt/�). Or, in other words, the system is described by some Hamil-
tonian H and you let it “run” for a length of time t , then the result you get is
|ψ(t)〉 =U(t)|ψ(0)〉 = exp(−iHt/�)|ψ(0)〉.

The matrix U(t) is therefore the matrix exponential of −iHt �. If A is any ma-
trix, its matrix exponential is:

eA = 1+A+ A2

2! +
A3

3! +
A4

4! +
A5

5! + · · · (1.22)

26 1 Introduction

As H is an Hermitian matrix, its matrix exponential exp(−iHt/�) is a unitary
matrix. A unitary matrix has the property that its inverse is equal to its conjugate
transpose, i.e. U−1 = U†. Therefore, a unitary matrix is always invertible which
means that the evolution it describes is reversible, i.e., there is no loss of informa-
tion. Hence, the closest classical analog to quantum computing is classical reversible
computing, as it too preserves information about the computational history.

1.5.4 Computational Interpretation

A classical computer follows essentially a LOAD-RUN-READ cycle wherein one
loads data into the machine, runs a program using this data as input, and then reads
out the result. This becomes an analogous PREPARE-EVOLVE-MEASURE cy-
cle for a quantum computer. That is, one prepares a quantum state, evolves it on the
quantum computer, and measures the result.

Each aspect of the quantum computer’s operation offers new opportunities un-
available in the analogous phase of a classical computer’s operation. For example,
whereas in a classical computer you can only load one input at a time, in a quan-
tum computer you can prepare exponentially many inputs in the same amount of
time. The whereas a classical computer can only run a computation on one input,
a quantum computer can evolve a superposition of computations on all inputs in
the same time. Finally, whereas a classical computer can only read one output, we
can perform more sophisticated measurements of the output state from a quantum
computer to compute certain joint properties of all the answers to a particular com-
putational problem in the time it takes a classical computer to find just one of the
answers. This gives quantum computers the potential to be much faster than any
classical computer, even a state-of-the supercomputer.

1.6 Extracting Answers from Quantum Computers

The process of extracting answers from quantum computers can be more tricky than
one might imagine. In order to learn the result of a quantum computation we must
read the quantum memory register that contains it. Such an act is more properly
thought of as performing a measurement on a certain quantum state (i.e., the result
of the quantum computation) in a certain basis (typically, but not necessarily, the
computational basis).

1.6.1 Observables in Quantum Mechanics

A measurement of a quantum memory register couples the quantum computer to
the measuring device, temporarily, causing information from the quantum memory

1.6 Extracting Answers from Quantum Computers 27

register to be transferred to the measuring apparatus, whereupon it is converted to
classical information and amplified to a scale detectable by human senses. At this
point we say the observable has been “read” or “measured”. Therefore, the act of
reading a quantum memory register is more properly thought of as an experimental
determination of the value of some observable of the system.

In quantum mechanics, an observable for some property of an n-qubit system
is represented by a 2n × 2n dimensional Hermitian matrix, O say. The Hermitian
property means that O = O† and so the eigenvalues of O are guaranteed to be real.
the significance of this is that quantum mechanics says that when the property asso-
ciated with observable O is measured that the answer we obtain has to be one of the
eigenvalues of O, and the state immediately after the measurement is the eigenvec-
tor that pairs with this eigenvalue. Thus, if {|ψi〉} are the family of eigenvectors of
O and {λi} are the corresponding family of eigenvalues, such that:

O|ψi〉 = λi |ψi〉 (1.23)

then the only possible values we can ever obtain for the property associated with
observable O are one of the λi ’s and, having obtained such a result, the state im-
mediately after this measurement will be |ψi〉. Moreover, if we repeatedly prepared
and measured several preparations of the state |ψ〉 then the average value we would
obtain would be:

〈O〉 = 〈ψ |O|ψ〉 (1.24)

where |ψ〉 and O should be described with respect to the same basis.
Many students find this measurement formalism perplexing. Why should acts

of measurement be associated with matrices? And why should the values obtained
from acts of measurements be associated with eigenvalues? What motivates this
formalism?

The answer lies in our desire to have a mathematical way of describing acts
of measurement that reflects, faithfully, the phenomena experimentalists encounter
when they perform real measurements on quantum systems. As we shall see in the
next section, by associating observables with Hermitian matrices, and the allowed
values of observables with eigenvalues of those operators, we can conjure up a rel-
atively simple and concise mathematical model of the measurement process that
naturally has all the requisite properties.

1.6.1.1 Observables as Hermitian Operators

Let us start by summarizing the phenomena scientists encounter when they try to
make observations on quantum systems, as this will make the subsequent mathe-
matical account of observation that is used in quantum mechanics far more intuitive.

The first idea is that when we measure some property of a system we obtain a
real number for the answer. So measurement results need to be real numbers.

Secondly, for quantum-scale objects, the act of observing the system can change
its state. For example, to find the position of an electron you need to bounce light

28 1 Introduction

off it. The shorter the wavelength of the light used the more precisely you can deter-
mine position. But the shorter the wavelength of the light the greater the momentum
kick the light imparts to the electron as it scatters off it. Hence, a very precise mea-
surement of position necessarily induces a large uncertainty in momentum and vice
versa. So the second idea is that acts of observation can change the state.

Third, the measured values one obtains do not usually span a continuous range
of possibilities but instead may take on only certain discrete values. For example, if
we measure the spin of an electron it is always found to be aligned or anti-aligned
with the measurement axis. Even if you try to “cheat” by setting up an experiment
with the electron spinning at some known angle to the axis of measurement, when
you make the measurement the spin jumps into alignment or anti-alignment with
the measurement axis. These are the only two values allowed. So the third idea is
that measured values are discrete rather than continuous.

Fourth, the order in which we make a sequence of observations can affect the
outcome we obtain. So an experiment that measures property A first and then prop-
erty B does not always yield the same results, even statistically, as if we measured
property B first and then property A. So the fourth idea is that the order in which
we perform measurements can affect the outcome we obtain.

Fifth, when we measure certain pairs of observables, the more accurately we
can pin down one, the less accurately we can pin down the other. That is there is
a fundamental quantifiable limit to how accurately we can measure certain pairs of
observables. In particular, defining:

O A = O A − 〈O A〉

O B = O B − 〈O B〉 (1.25)

it can be shown that

OA
OB ≥ constant (1.26)

where the inequality is strict if the order in which observations are made makes
a difference. The mathematical machinery used in quantum mechanics to describe
acts of observation has to reflect the phenomena scientists encounter when they do
actual measurements.

It turns out that all these properties fall out naturally if we associate observables
with Hermitian operators. If an observable A is associated with an Hermitian oper-
ator OA, then:

1. Quantized values: the only allowed outcomes for the measurement are the eigen-
values of OA.

2. Real values: as OA is Hermitian its eigenvalues must be real.
3. Observation changes the state: if the system is in a superposition state just prior

to a measurement then upon obtaining the result λi the system will be projected
into the state |ψi〉. This is the eigenstate of OA such that OA|ψi〉 = λi |ψi〉.

4. Non-commuting Measurements: if we are interested in two observables A and B

represented by Hermitian matrices OA and OB then the order in which measure-
ments are made will make a difference whenever OA · OB �= OB · OA.

1.6 Extracting Answers from Quantum Computers 29

5. Uncertainty principle: as we show in Chap. 12, for any pair of observables O A
and O B there is a minimum uncertainty with which the A and B properties can
be measured simultaneously given by
O A
O B ≥ 1

4 |〈[O A, O B]〉|.
Hence, although the quantum mechanical account of observables appears quite

alien to most people when they first encounter it, remember that the reason it is set up
this way is simply to capture the empirically determined properties of measurements
and observations on quantum scale objects.

1.6.2 Observing in the Computational Basis

The most common kind of measurement that is made in quantum computing is to
measure a set of qubits “in the computational basis”. By this we mean that the spin
orientation of each qubit in the quantum memory register is measured along an axis
parallel to the z-axis of the Bloch sphere, which is the axis passing through its North
and South poles. When such a measurement is made, each qubit will be found to be
aligned or anti-aligned with the z-axis corresponding to being “spin-up” (i.e., in
state |0〉) or “spin-down” (i.e., in state |1〉) respectively. When such a measurement
is applied to each qubit in an n-qubit quantum memory register one will obtain one
of the 2n possible bit string configurations that the register can take on. The probably
of obtaining the different outcomes depends upon the amplitude with which each bit
string configuration appears in the superposition state of the register just prior to it
being measured.

Consider, for example, an n-qubit quantum memory register in the (normalized)
state

∑2n−1
i=0 ci |i〉. Here we use the shorthand notation that |i〉 really stands for a bit

string, |i〉 ≡ |in−1in−2 . . . i2i1i0〉, such that i = 20i0 + 21i1 + · · · + 2n−1in−1. The
outcome we obtain will depend on the amplitudes ci and on whether we measure
some or all of the qubits.

1.6.2.1 Complete Readout

If all the qubits are measured in the computational basis one will obtain the result |i〉
with probability |ci |2. Consequently, if one of the amplitudes is zero, i.e., there exists
an index value i′ such that ci′ = 0, there is no chance whatsoever of obtaining the
answer |ψi′ 〉 from the measurement. Conversely, if one of the amplitudes is unity,
i.e., there exists an index value i′′ such that ci′′ = 1, then if the state is properly
normalized, the result of the measurement is guaranteed to be the corresponding
eigenstate, |ψi′′ 〉.

Consider a 3-qubit quantum memory register that initially is in the state

|ψ〉 = c0|000〉 + c1|001〉 + c2|010〉 + c3|011〉 + c4|100〉 + c5|101〉
+ c6|110〉 + c7|111〉 (1.27)

30 1 Introduction

Table 1.3 Probabilities of
obtaining the eight distinct
triples of values when three
qubits are read in the
computational basis

Qubit A Qubit B Qubit C Probability

|0〉 |0〉 |0〉 |c0|2
|0〉 |0〉 |1〉 |c1|2
|0〉 |1〉 |0〉 |c2|2
|0〉 |1〉 |1〉 |c3|2
|1〉 |0〉 |0〉 |c4|2
|1〉 |0〉 |1〉 |c5|2
|1〉 |1〉 |0〉 |c6|2
|1〉 |1〉 |1〉 |c7|2

where
∑7

i=0 |ci |2 = 1. For convenience imagine labeling the leftmost qubit A, the
middle qubit B , and the rightmost qubit C. When we do a complete measurement of
all the qubits in this memory register, we expect to find the result |i〉 with probability
|ci |2. That is we obtain the results shown in Table 1.3.

1.6.2.2 Partial Readout

Alternatively, suppose we measure only the middle qubit, B , and find it to be in
state “|1〉”. Such a measurement projects the qubits into a form that constrains the
middle qubit to be |1〉, but leaves the other qubits indeterminate (since neither qubits
A nor C were measured). Moreover, the resulting state must still be properly nor-
malized. Hence, after the measurement, the state of the 3-qubit memory register is
c2|010〉+c3|011〉+c6|110〉+c7|111〉√

|c2|2+|c3|2+|c6|2+|c7|2
.

1.6.3 Alternative Bases

We do not have to view the contents of a quantum memory register as being in
the computational basis however. A basis for an n-qubit quantum memory reg-
ister is any complete orthonormal set of eigenstates such any n-qubit state can
be written as a superposition of states taken from only this set. The computa-
tional basis states for a single qubit memory register are |0〉 and |1〉, and for an
n-qubit quantum memory register the tensor product of all combinations of these,
i.e. {|0〉, |1〉}⊗n ≡ {|00 . . .0〉, |00 . . .1〉, . . . , |11 . . .1〉}. However, many other bases
are possible, including those related to rotations of the single qubit computational
basis states and tensor products thereof, and entirely unusual choices such as entan-
gled multi-qubit states, e.g., the Bell basis. Table 1.4 shows some possible bases for
a rudimentary (2-qubit) quantum memory register. The first three bases are related
to rotations of the single computational basis states, but the fourth basis is a basis
consisting of purely 2-qubit states, which is nevertheless a proper basis for 2-qubit
states.

1.6 Extracting Answers from Quantum Computers 31

Table 1.4 Some examples of
different bases for 2-qubit
quantum memory register.
Note that the Bell basis is
defined over entangled
2-qubit states. The other
bases shown are unitary
transformations of the
computational basis states |0〉
and |1〉

Basis Eigenstates

θ° Rotated |0̄〉 = cos θ |0〉 + sin θ |1〉
|1̄〉 = cos θ |0〉 − sin θ |1〉

Diagonal |↗↙〉 = 1√
2
(|0〉 + |1〉)

|↖↘〉 = 1√
2
(|0〉 − |1〉)

Chiral |�〉 = 1√
2
(|0〉 + i|1〉)

|�〉 = 1√
2
(|0〉 − i|1〉)

Bell |β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

However, the proper way to think of this is that there is an observable, A say,
whose eigenvectors correspond to the possible n-bit computational eigenstates,
|00 . . .0〉, |00 . . .1〉, . . . , |11 . . .1〉. To remind ourselves that these are eigenvectors
of observable A we’ll rename these eigenvectors |ai〉 and call them the “a”-basis.

However, we do not have to use the computational basis to represent a state.
Any complete orthonormal set of eigenvectors for an n-qubit state will do. In some
circumstances, it is convenient to re-represent a given state in a new basis that sim-
plifies some subsequent calculation. For example, suppose we are interested in cal-
culating the expected outcomes of an observable property of an n-qubit state other
than its bit values. Let us call the observable operator in which we are interested B
having eigenvectors |bj 〉. Measuring observable B amounts to measuring the state
|ψ〉 in the “b”-basis. The question is given a representation of a particular state |ψ〉
in the “a”-basis, how would this same state be represented in the “b”-basis? Know-
ing this we can then calculate the expected outcome from measuring observable B
of |ψ〉.

First we need to know how the eigenvectors in the two bases are related. In par-
ticular, imagine creating the operator, U , defined as follows:

U =
∑
k

|bk〉〈ak| (1.28)

An operator, U , of this form is unitary and induces the following mapping between
the “a”-basis and the “b”-basis:

|b1〉 = U |a1〉
|b2〉 = U |a2〉

...

|b2n〉 = U |a2n〉
(1.29)

32 1 Introduction

Hence for each eigenvector in the “a”-basis there is a corresponding eigenvector in
the “b”-basis.

1.6.4 Change of Basis

A given quantum state is not wedded to any particular basis. The same state can be
interpreted as different superposition states of eigenstates from a completely differ-
ent basis. Once this is understood, it makes it easier to appreciate why we might
choose to observe a given state in a basis other than the computational basis.

Typically, in this book, we represent the states of a quantum memory register in
the computational basis. That is, we write an n-qubit pure state in the form:

|ψ〉 =
∑
i

ci |i〉 (1.30)

where |i〉 is the binary representation of integer i padded on the left with zeroes,
if necessary, to make a full complement of n bits, and ci is the complex amplitude
with which eigenstate |i〉 contributes to the superposition, such that

∑
i |ci |2 = 1.

In the computational basis representation it is easy to calculate the probability of
measuring the quantum memory register to be in a certain bit-string configuration,
since configuration |i〉 will be found with probability |ci |2.

1.6.4.1 Change of Basis for a State

Thus a given state |ψ〉 can be written in either the “a”-basis or the “b”-basis. Specif-
ically, we have:

|ψ〉 =
∑
i

αi |ai〉 =
∑
j

βj |bj 〉 (1.31)

where the amplitudes αi and βj are given by:

αi = 〈ai |ψ〉 (1.32)

βj = 〈bj |ψ〉 (1.33)

Equation (1.29) tells us how to compute each “b”-basis vector |bk〉 given its
corresponding “a”-basis vector, |ak〉, and U . So all we need to do now is to learn
how to compute βj . We can rewrite βj as follows:

βj = 〈bj |ψ〉 = 〈bj |
(∑

i

|ai〉〈ai |
)
|ψ〉 =

∑
i

〈bj |ai〉〈ai |ψ〉

=
∑
i

〈aj |U†|ai〉〈ai |ψ〉 =
∑
i

(U†)jiαi (1.34)

1.6 Extracting Answers from Quantum Computers 33

where we have used the facts that (
∑

i |ai〉〈ai |) = 1, the identity operator, and
|bj 〉 =U |aj 〉, which implies 〈bj | = 〈aj |U†. The last line of (1.34) is the usual form
for the dot product of a matrix (i.e., U†) with a column vector (i.e., the column vec-
tor of amplitudes αi). Hence, the column vector of amplitudes βj representing the
state |ψ〉 in the {|bj 〉} (i.e.,“new”) basis is related to column vector of amplitudes ci
in the {|ai〉} (i.e., “old”) basis via the matrix equation:

|ψ〉“b”-basis =U†|ψ〉“a”-basis (1.35)

where U is the operator define by (1.28) and which induced the connection between
the bases given in (1.29).

Example: Linear versus Diagonal Polarization Bases Imagine a qubit encoded
in the linear polarization state of a photon. By this we mean if we think of light as
an oscillating electromagnetic wave, the plane in which the electric field component
of that wave is oscillating, i.e., the state of its linear polarization, encodes our qubit.
If the plane is “vertical” (with respect to some arbitrary axis in physical space) we
say the qubit is a logical 0 |�〉. Conversely, if the plane in which the electric field is
oscillating is “horizontal” (with respect to the same axis in physical space) we say
the qubit is a logical 1 |↔〉. Note, just to reinforce your understanding of the geom-
etry on the Bloch sphere, on the Bloch sphere the states representing vertical and
horizontal polarization (|0〉 ≡ |�〉 and |1〉 ≡ |↔〉) correspond to the North Pole and
South Pole respectively (i.e., at 180° separation). But in physical space the planes
representing vertical and horizontally polarized photons lie at 90° to one another.

Now let’s imagine switching to a polarization basis that it tilted at 45° with re-
spect to the original basis. The new basis kets are |↗↙〉 = 1√

2
(|0〉+ |1〉) (correspond-

ing to a photon whose plane of polarization is tipped at +45° to the old plane of
polarization) and |↖↘〉 = 1√

2
(|0〉 − |1〉) (corresponding to a photon whose plane of

polarization is tipped at −45° to the old plane of polarization). Thus following the
recipe given above, the unitary matrix that maps a state in the old basis to its equiv-
alent in the new basis is

U = |↗↙〉〈0| + |↖↘〉〈1| = 1√
2
(|0〉 + |1〉)〈0| + 1√

2
(|0〉 − |1〉)〈1|

= 1√
2

(
1 1
1 −1

)
(1.36)

1.6.4.2 Change of Basis for an Operator

Just as we can view quantum states in different bases, so too can we view quantum
operators in different bases. Consider some operator, O say, given initially in the

34 1 Introduction

“a”-basis. By inserting the identity operator twice we can write:

〈bk|O|b�〉 = 〈bk|
(∑

m

|am〉〈am|
)
·X ·

(∑
m

|am〉〈am|
)
|b�〉

=
∑
m

∑
n

〈bk|am〉〈am|O|an〉〈an|b�〉

=
∑
m

∑
n

〈ak|U†|am〉〈am|O|an〉〈an|U |a�〉

=
∑
m

∑
n

(U†)kmOmnUn� (1.37)

This has the form of a “similarity transform”, which is encountered routinely in
linear algebra. That is, in matrix form, we can write:

O“b”-basis =U† · O“a”-basis ·U (1.38)

Thus, given an operator in the “a”-basis equation (1.38) shows how to transform it
into the “b”-basis.

1.6.5 Observing in an Arbitrary Basis

So far we have equated the act of observing a quantum memory register with the act
of reading its bit values, or equivalently, measuring its qubits in the computational
basis. However, a given quantum state does not have a unique interpretation: any
state—even the state of a quantum memory register—can be pictured as different
superposition states over different bases. Consequently, although most of the time
in quantum computing it seems natural to read a quantum memory register in the
computational basis, in some circumstances it might be more natural to read the
quantum memory register with respect to some other basis.

Consider what this means in the case of a single qubit. Although a qubit might
be defined initially with respect to the computational basis, i.e., as a state of the
form a|0〉 + b|1〉, where |0〉 is the North pole, and |1〉 the South pole, of the Bloch
sphere, this same state can be re-represented in infinitely many other ways simply
by changing which vectors we regard as the “basis” vectors.

Picture the state of a single qubit as a point on the surface of the Block sphere.
Define a vector whose origin lies at the center of the Bloch sphere and whose tip
touches this same point on the surface. Imagine keeping this vector in a fixed ori-
entation but rotating the Bloch sphere surrounding it. Although the vector has not
changed, the coordinates of its tip with respect to the x-, y-, and z-axes of the Bloch
sphere have changed, and so the state at the tip of the vector appears to have changed.
But however we rotate the axes around we can always pick an observation-axis
that is on a line from the qubit state, |ψ〉 say (on the surface of the Bloch sphere),

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 35

Fig. 1.7 Measuring the state of a qubit initially in state a|0〉 + b|1〉 along an axis passing through
states |ψ〉 and |ψ⊥〉 corresponds to measuring the qubit in the {|ψ〉, |ψ⊥〉} basis

through the center of the Bloch sphere piercing the opposite side. The (antipodal)
point where this line pierces the Bloch sphere corresponds to the quantum state
|ψ⊥〉, which is orthogonal to |ψ〉. Thus the basis made from states {|ψ〉, |ψ⊥〉} is
equally as good as the computational basis, {|0〉, |1〉}, for describing single qubit
states. Thus, it is possible to measure our qubit in this alternate {|ψ〉, |ψ⊥〉} basis
too. Such a measurement is illustrated in Fig. 1.7.

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm

Having introduced the main ideas of quantum computing we end this chapter by
describing our first quantum computation—deciding whether a given function has
a certain property using the Deutsch-Jozsa quantum algorithm. This computation

36 1 Introduction

cannot be solved as efficiently using any classical computer. It is not an especially
useful computation, mind you. In fact, it is rather contrived. Nevertheless it illus-
trates many of the key steps in a typical quantum computation.

1.7.1 The Problem: Is f (x) Constant or Balanced?

The problem, originally formulated by Cleve, Ekert, Macchiavello, and Mosca [112]
as a variant of one by Deutsch and Jozsa [138] is this: Let x be any n-bit binary
number and let f (x) be a function that returns a single binary output (i.e., 0 or 1)
for each value of x. Furthermore, we are promised that f (x) behaves in only one of
two possible ways: either f (x) returns the same value for all binary inputs (in which
case f (x) is said to be constant), else f (x) returns one bit value for half its inputs
and the other bit value for the other half of its inputs (in which case f (x) is said
to be balanced). Finally, we are not allowed to inspect the mathematical definition
of f (x). Instead, we imagine f (x) is given to us as a “black-box” function that
acts in such a way that, when given the input x, the black box responds with the
correct value for f (x). Our task is to decide, using the fewest calls to the black-
box, whether f (x) is constant or balanced. Note that the decision does require us to
exhibit the values of f (x). Rather it only concerns a property those values possess,
namely, whether they are all the same, or whether half have one bit value and half
the other.

Using our conventional (classical) thinking, the number of times we would seem
to need to call the black box is clear. There are a total of 2n possible bit string inputs
that can be made from n bits. Thus, we will need to check at least one more than half
of them, i.e., (1

2 × 2n)+ 1 = 2n−1 + 1, to be able to decide with certainty whether
f (x) is constant or balanced. Note that we don’t have to check all the 2n input bit
strings because we were promised that f (x) is either constant or balanced. Thus,
discovering f (x) is non-constant is enough to conclude it must be the other possi-
bility, namely, balanced. Even though we can avoid checking all inputs, classically,
as larger and larger decision problems are considered the number of elementary
calls to the black box would still seem to have to grow exponentially in the length
of the input bit string n. In contrast, as we shall show, using a quantum computer,
and a quantum implementation of the black-box that encodes f (x), we can decide
the question of whether f (x) is constant or balanced in just one call to the black-
box! This represents an exponential speedup in obtaining the decision—which is
amazing!

Let’s begin by looking at the simplest instance of such a decision problem when
the input bit string is just a single bit (i.e., when n = 1). In this case, the decision
problem can be stated as:

decision(f)=
{

constant iff f (0)= f (1)
balanced iff f (0) �= f (1)

(1.39)

Using a classical computer we could decide the matter by first computing f (0) and
then computing f (1) and then comparing the results to determine whether f (0)=

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 37

f (1) or f (0) �= f (1). This approach would require two calls to the black box to
make the decision regarding whether f (x) is constant or balanced.

A quantum computer can solve this problem differently using a technique called
quantum parallelism. To understand how quantum parallelism works we must first
figure out how to define the action of the black-box that encodes knowledge of the
function f (x) in a manner that is consistent with quantum mechanics.

1.7.2 Embedding f (x) in a Quantum Black-Box Function

On the face of it you might think that the black-box could be defined as performing
the mapping |x〉 → |f (x)〉 since, in the special (i.e., n = 1) case we are consider-
ing both x and f (x) are single bits. However, this won’t do because as we saw in
Sect. 1.5 quantum mechanical evolutions are described by unitary, and hence logi-
cally reversible, operations. For an operation to be logically reversible, each distinct
input ought to be mapped to a distinct output and vice versa. Unfortunately, de-
scribing the black-box as performing the mapping |x〉 → |f (x)〉 is not necessarily
logically reversible. If f (x) happens to be constant then both possible values for |x〉
would be mapped into the same value for f (x). So if the operation performed by our
black-box is to be described quantum mechanically, the specification |x〉→ |f (x)〉
won’t do. Strike one!

Ok well how about introducing an extra register—one to hold the input and the
other to hold the output? The starting configuration could be |x〉|0〉, with the second
register initialized to |0〉, which we can think of as analogous to a blank piece of
paper on which the correct answer for f (x) is to be written. In this case, our black-
box would perform the operation |x〉|0〉 → |x〉|f (x)〉. Since the input, |x〉, is now
recorded explicitly in the output we can always invert this mapping unambiguously,
whatever the value of f (x). Unfortunately, we’re still not done because for a map-
ping between bit strings to be unitary (as quantum mechanics requires) we need to
a complete mapping, i.e., a specification how each possible binary input is mapped
to a distinct output. Since, the specification of the black-box as performing the op-
eration |x〉|0〉→ |x〉|f (x)〉 only accounts for inputs that end in |0〉 it is missing half
the possible inputs that could be given to it. Hence, the specification is incomplete,
and therefore, won’t do either. Strike two!

Thus to ensure our description of the black-box is unitary we need to specify how
input states ending in |0〉 and states ending in |1〉 are to be mapped to outputs. Thus
the right way to define the black-box operation is as

|x〉|y〉 −→ |x〉|y ⊕ f (x)〉. (1.40)

The y⊕f (x) operation is the exclusive-OR operation, and is computed as shown in
Table 1.5. When y = 0, y ⊕ f (x)= f (x), so the definition |x〉|y〉→ |x〉|y ⊕ f (x)〉
includes the case |x〉|0〉 → |x〉|f (x)〉. But by defining the operation with the sec-
ond qubit allowed to be either |0〉 or |1〉 we ensure that our description of the ac-
tion of the black-box is a unitary (reversible) operation, which specifies a com-
plete mapping between all possible 2-qubit binary inputs and all possible 2-qubit

38 1 Introduction

Table 1.5 Truth table of the
exclusive-OR (⊕) operation.
This is different from the
usual OR operation (∨) in
that 1∨ 1= 1 whereas
1⊕ 1= 0

x f (x) y ⊕ f (x)

0 0 0

0 1 1

1 0 1

1 1 0

binary outputs, and hence is implementable quantum mechanically. The operation

|x〉|y〉 f -c-N−→ |x〉|y ⊕ f (x)〉 is sometimes called an “f -controlled-NOT” operation
(f -c-N) since one way to think of it is that the value of f (x) controls whether or
not the value of y is negated.

1.7.3 Moving Function Values Between Kets and Phase Factors

Armed with our quantum black-box, which encapsulates the knowledge of f (x),
we are now ready to tackle the decision problem regarding whether f (x) is constant
or balanced.

If we restricted ourselves to inputting only quantum states corresponding to the
“classical” binary inputs |0〉|0〉, |0〉|1〉, |1〉|0〉, and |1〉|1〉, to our quantum black box
then our quantum method would confer no advantage over what we can do clas-
sically. The magic happens when we use quantum states corresponding to non-
classical inputs. Specifically, consider what happens under the action of the f -
controlled-NOT operation when the input is |x〉⊗ 1√

2
(|0〉−|1〉). The transformation

effected is shown in (1.41)

|x〉 1√
2
(|0〉 − |1〉) f -c-N−→ |x〉 1√

2
(|0⊕ f (x)〉 − |1⊕ f (x)〉) (1.41)

As we are only considering the simplest (n= 1) instance of the decision problem at
this time, the argument of f (x), i.e., x, can be only 0 or 1, and the value of f (x) is
also only 0 or 1. So we can write out a table showing how the values of x, f (x), and
the right hand side of (1.41) are related: Notice that the table also contains a fourth
column corresponding to the value of the expression (−1)f (x)|x〉 1√

2
(|0〉 − |1〉). Re-

markably, for all pairs of 2-bit binary inputs, the value returned by the expression
|x〉 1√

2
(|0⊕ f (x)〉 − |1⊕ f (x)〉) is, as shown in Table 1.6, identical to the value re-

turned by the expression (−1)f (x)|x〉 1√
2
(|0〉 − |1〉). Hence—drum roll please—the

two expressions are equally good mathematical descriptions of the output quantum
state after the f -controlled-NOT operation has been applied. Thus, we could equally
well describe the transformation the f -controlled-NOT operation has achieved as:

|x〉 1√
2
(|0〉 − |1〉) f -c-N−→ (−1)f (x)|x〉 1√

2
(|0〉 − |1〉) (1.42)

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 39

Table 1.6 By considering the possible values of x, f (x) and the right hand side of (1.41) recognize
an equivalent way to write the equation

x f (x) |x〉 1√
2
(|0⊕ f (x)〉 − |1⊕ f (x)〉) (−1)f (x)|x〉 1√

2
(|0〉 − |1〉)

0 0 |0〉(|0〉 − |1〉) |0〉(|0〉 − |1〉)= |0〉(|0〉 − |1〉)
0 1 |0〉(|1〉 − |0〉) −|0〉(|0〉 − |1〉)= |0〉(|1〉 − |0〉)
1 0 |1〉(|0〉 − |1〉) |1〉(|0〉 − |1〉)= |1〉(|0〉 − |1〉)
1 1 |1〉(|1〉 − |0〉) −|1〉(|0〉 − |1〉)= |1〉(|1〉 − |0〉)

Thus, with no physical action whatsoever taking place, we can simply re-interpret
what mathematical transformation we have achieved. This re-interpretation of the
output state allows us to regard the value of the function f (x) as being moved from
inside the ket (in (1.41)) to being in the phase factor (in (1.42)). This is very impor-
tant because we saw in Sect. 1.4.3 that quantum mechanical interference effects can
change the relative probabilities of various outcomes. What we will do next is en-
gineer these interference effects to enhance or suppress various possible outcomes
depending on whether f (x) is constant or balanced!

1.7.4 Interference Reveals the Decision

To achieve our desired interference effect we take the interpretation of the f =
controlled-NOT transformation defined in (1.42) and we specialize the input |x〉 to
be |x〉 = 1√

2
(|0〉+ |1〉). We can create this state by applying a Walsh-Hadamard gate

to just the first qubit prepared initially in the state |0〉, i.e., H |0〉 = 1√
2
(|0〉 + |1〉).

With this specialization, the transformation we perform is therefore:

1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉) f -c-N−→ 1√

2

(
(−1)f (0)|0〉 + (−1)f (1)|1〉

) 1√
2
(|0〉 − |1〉)

(1.43)

Next we apply a Walsh-Hadamard gate to just the first qubit again. This results in
the transformation:

1√
2
(|0〉+|1〉) 1√

2
(|0〉−|1〉) f -c-N−→ 1√

2

(
(−1)f (0)|0〉 + (−1)f (1)|1〉

)
⊗ 1√

2
(|0〉−|1〉)

(1.44)

Summarizing all the steps in the Deutsch-Jozsa algorithm:

|0〉|1〉 H⊗H−→ 1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉)

f -c-N−→ 1√
2

(
(−1)f (0)|0〉 + (−1)f (1)|1〉

)
⊗ 1√

2
(|0〉 − |1〉)

40 1 Introduction

Fig. 1.8 Quantum circuit implementing the Deutsch-Jozsa algorithm. The black-box func-
tion f (x) accepts a single bit x and returns 0 or 1. If the returned values are the same
f (x) is “constant”. Otherwise f (x) is “balanced”. The function f (x) is implemented by way
of the Deutsch-Jozsa oracle f -controlled-NOT (f-c-N). This implements the transformation

|x〉|y〉 f -c-N→ |x〉|y ⊕ f (x)〉 ≡ (−1)f (x)|x〉|y〉 when |y〉 = 1√
2
(|0〉 − |1〉). Using the Deutsch-Jozsa

algorithm we can decide whether f (x) is constant or balanced using a single call to the oracle

H⊗1−→
[(

1

2
(−1)f (0) + 1

2
(−1)f (1)

)
|0〉

+
(

1

2
(−1)f (0) − 1

2
(−1)f (1)

)
|1〉

]
⊗ 1√

2
(|0〉 − |1〉) (1.45)

Inspection of the amplitudes of the |0〉 and |1〉 components of the first qubit suggest
that if this qubit is read (in the computational basis) then if f (x) is constant, i.e., if
f (0)= f (1), then we will find the first qubit in state |0〉. Else if f (x) is balanced,
i.e., f (0) �= f (1), then we will find the first qubit in state |1〉. This means we can
determine whether f (x) is constant or balanced in just one call to the black-box
(when using quantum inputs) versus two calls to the black-box (if using classical
bit value inputs). The quantum circuit implementing the Deutsch-Jozsa algorithm
is shown in Fig. 1.8. This is interesting but not that dramatic. To determine what
scaling we’re actually seeing we need to consider the relative costs of the quantum
and classical methods as we scale up to larger problem instances.

1.7.5 Generalized Deutsch-Jozsa Problem

The aforementioned decision problem only pertains to a function f (x) that has a
single bit input and a single bit output. In this case we obtain a factor of two speedup
over the naive classical algorithm for the solving the same problem. How does this
speedup change if we allow f to accept an n-bit input instead of just a single bit
input?

To formalize the question, let x = x1x2 · · ·xn be an n-bit binary string with binary
values x1, x2, . . . , xn. Thus, x represents the bit string corresponding to any integer
in the range 0 to 2n − 1 inclusive. Let f (x) be a function that accepts and n-bit
input x and returns a single bit output, i.e., 0 or 1. We are promised that f (x) is one
of only two kinds of function, namely, “constant” or ”balanced”. An n-bit function
f (x) is “constant” if it returns the same bit value on all 2n possible inputs, and

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 41

“balanced” if it returns 0 on exactly half its possible inputs, and 1 on the other half
of inputs. Note that the promise is our guarantee that the only types of functions
under consideration are constant functions and balanced functions and no others.
With this promise in mind, our challenge is to decide whether f (x) is constant or
balanced using the fewest calls the oracle.

Classically, in the worst case, we will have to call the oracle a total of 1
2 2n+ 1=

2n−1 + 1 times. This is because we cannot know for sure that f (x) is constant until
we have evaluated f (x) on one more than half its possible inputs. At that point if
all the returned values are the same, the promise allows us to conclude that f (x)
is constant. However, if in the course of performing these 2n−1 + 1 evaluations we
find any two inputs that yield different values for the function, then the promise
allows us to conclude the given f (x) is balanced. So, given the promise, on average
deciding that f (x) is balanced is easier than deciding it is constant. But in the worst
case (when we are unlucky enough that even though f (x) is balanced the first 2n−1

inputs we tried happened to be those for which f (x) returned the same value), we
need to test one more than half the values to be sure. Since the classical algorithm
needs 2n−1 + 1 calls to the oracle, the classical complexity is exponential in the
number of bits, n.

Can do better using a quantum algorithm? As you will see shortly, it turns out
that there is a quantum algorithm, the “Generalized Deutsch-Jozsa Algorithm”, for
solving this same decision problem that only needs to make a single call to the
oracle, regardless of n. This amounts to an exponential speedup over what is possi-
ble classically! This is an astonishing difference in complexity between a quantum
computer and a classical computer on the same problem. So even though the actual
problem solved is rather arcane and esoteric, nevertheless, it illustrates the enor-
mous potential of quantum computers to outperform classical computers on certain
computational problems.

The best way to see how the Generalized Deutsch-Jozsa algorithm works is to
start with the quantum circuit that implements it and to walk through the state trans-
formations it enacts. This will allow us to compute the mathematical form of the
final state that is synthesized by the circuit and hence determine how a measure-
ment made upon this final state can reveal the decision regarding whether f (x) is
constant or balanced.

The quantum circuit for the generalized Deutsch-Jozsa algorithm is shown in
Fig. 1.9 and the associated algorithm is as follows:

Generalized Deutsch-Jozsa Algorithm Given an oracle, or black-box quantum
function, f (x) that accepts an n-bit binary string input, x = x1x2 · · ·xn, and the
promise that f (x) is either constant or balanced, decide which is the case using the
fewest calls to the oracle.

1. Create an (n+ 1)-qubit quantum register having n control qubits, each in state
|0〉, and one ancilla qubit in state |1〉.

42 1 Introduction

Fig. 1.9 Quantum circuit implementing the Generalized Deutsch-Jozsa algorithm. The black-box
function f (x) accepts an n-bit input x and returns the single bit 0 or 1. We are promised that
f (x) is either “constant” (i.e., returns the same value on all its possible 2n inputs) or “balanced”
(i.e., returns 0 on half of its possible inputs and 1 on the other half of its possible inputs). The
function f (x) is implemented by way of the Generalized Deutsch-Jozsa oracle f -controlled-NOT

(f -c-N). This implements the transformation |x〉|y〉 f -c-N→ |x〉|y ⊕ f (x)〉. In turn, this is equiv-
alent to (−1)f (x)|x〉|y〉 when |y〉 is specialized to be the state |y〉 = 1√

2
(|0〉 − |1〉). Using the

Generalized Deutsch-Jozsa algorithm we can decide whether f (x) is constant or balanced using
a single call to the oracle. A classical computer would need to use 1

2 2n + 1 calls to the oracle
to arrive at the same decision. Hence, in this case, a quantum computer running the General-
ized Deutsch-Jozsa algorithm is exponentially more efficient than a classical computer. Hence, the
Generalized Deutsch-Jozsa algorithm, although not particularly useful as a practical algorithm, il-
lustrates the potential for enormous complexity advantages of quantum computers over classical
computers on certain problems

2. Apply a Walsh-Hadamard gate to each qubit. That is, perform the operation:

|00 . . .0〉|1〉 H⊗(n+1)−→ 1√
2n

2n−1∑
x=0

|x〉 1√
2
(|0〉 − |1〉) (1.46)

3. Then apply the Generalized Deutsch-Jozsa oracle.

f -c-N−→ 1√
2n

2n−1∑
x=0

(−1)f (x)|x〉 1√
2
(|0〉 − |1〉) (1.47)

4. Apply a Walsh-Hadamard gate to the top n qubits.

H⊗n⊗1−→ 1√
2n

2n−1∑
x=0

(−1)f (x)(H ⊗H ⊗ · · · ⊗H)︸ ︷︷ ︸
n

|x〉 1√
2
(|0〉 − |1〉) (1.48)

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm 43

≡ 1√
2n

⎛
⎝2n−1∑

x=0

(−1)f (x) 1√
2n

2n−1∑
z=0

(−1)x·z|z〉
⎞
⎠ 1√

2
(|0〉 − |1〉) (1.49)

≡ 1

2n

⎛
⎝2n−1∑

x=0

2n−1∑
z=0

(−1)f (x)(−1)x·z|z〉
⎞
⎠ 1√

2
(|0〉 − |1〉) (1.50)

5. Measure the top n qubits in the computational basis. If the first n qubits are found
to be in state |0〉 = |00 . . .0〉, f (x) is “constant”. If any other pattern of values is
obtained for the first n qubits, then f (x) is “balanced”.

The algorithm works as follows: in the first step we initialize n control qubits to
be in state |00 . . .0〉 and we initialize a single ancilla qubit to be in state |1〉. Next
we apply our oracle, i.e., the f -controlled-NOT gate. This acts on n control bits
(which hold the value of the input “x”) and one target qubit (which starts off in state

1√
2
(|0〉 − |1〉)). The transformation the oracle performs is:

|x〉︸︷︷︸
n qubits

⊗ |y〉︸︷︷︸
1 qubit

f -c-N−→ |x〉 ⊗ |y ⊕ f (x)〉 ≡ (−1)f (x)|x〉|y〉 (1.51)

Next we apply a Walsh-Hadamard gate to the top n qubits only. This is perhaps
the hardest part of the algorithm to understand because it is not immediately ob-
vious why H⊗n|x〉 = 1√

2n

∑2n−1
z=0 (−1)x·z|z〉. To see why this is true let’s start by

considering a simple 3-qubit instance of the problem.

(H ⊗H ⊗H)|x〉 = (H ⊗H ⊗H)|x1x2x3〉
=H |x1〉 ⊗H |x2〉 ⊗H |x3〉

= 1√
23

(|0〉 + (−1)x1 |1〉)⊗ (|0〉 + (−1)x2 |1〉)

⊗ (|0〉 + (−1)x3 |1〉)

= 1√
23

(|000〉 + (−1)x3 |001〉 + (−1)x2 |010〉

+ (−1)x2+x3 |011〉 + (−1)x1 |100〉
+ (−1)x1+x3 |101〉 + (−1)x1+x2 |110〉 + (−1)x1+x2+x3 |111〉)

= 1√
23

1∑
z1=0

1∑
z2=0

1∑
z3=0

(−1)x1z1+x2z2+x3z3 |z1z2z3〉

= 1√
23

23−1∑
z=0

(−1)x·z|z〉
(1.52)

44 1 Introduction

where x · z= x1z1 + x2z2 + x3z3. The generalization to the case of H⊗n|x〉 (i.e., n
qubits) is obvious.

The last step of the algorithm is to measure the first n qubits in the computational
basis. We claim that if the n qubits are each found in state |0〉, then f (x) is constant.
Otherwise, f (x) is balanced.

To justify this claim, consider the amplitude of the |z〉 = |0〉 = |00 . . .〉 com-
ponent of the final superposition created in step 4 of Generalized Deutsch Jozsa
Algorithm:

1

2n

⎛
⎝2n−1∑

x=0

2n−1∑
z=0

(−1)f (x)(−1)x·z|z〉
⎞
⎠ 1√

2
(|0〉 − |1〉) (1.53)

This amplitude is:

a0 = 1

2n

2n−1∑
x=0

(−1)f (x) (1.54)

If f (x) is “constant”, i.e., always returns 0 or always returns 1 regardless of the
input x, then the amplitude a0 = ±1. Hence, the probability of finding the first n
qubits to be in state |0〉 = |00 . . .0〉 is |± 1|2 = 1, i.e., certainty! Conversely, if f (x)
is “balanced”, there will be exactly as many terms in the sum for a0 that are −1
as there are that are +1. Hence a0, will be zero. Thus, if f (x) is “balanced” there
is no chance whatsoever of finding the first n qubits to be in state |0〉 = |00 . . .0〉.
Thus, a final measurement of the first n qubits reveals the decision as to whether
f (x) is “constant” or “balanced”, with only a single call to the oracle! Contrast this
with a classical computer that requires 2n−1 + 1 calls to oracle. Hence, a quantum
computer is exponentially faster than a classical computer at deciding whether f (x)
is “constant” or “balanced”.

1.8 Summary

Quantum computing is forcing us to re-think the foundations of computer science.
Although theoretical computer science, being based on pure mathematics, is sup-
posed to be free of any assumptions regarding how a computer is implemented, in
fact it is not. It is flawed in assuming that the rules by which any computer operates
must be those of classical physics. Until recently this assumption was reasonable.
But as computer miniaturization is leading us inexorably to smaller and smaller
scales, we are close to the point at which we can no longer ignore the fact that the
laws of physics that most accurately describe what happens at those small scales is
quantum mechanics. And the rules of quantum mechanics are quite unlike the rules
that hold sway in the everyday world around us.

In this chapter we have introduced the basic mathematical formalism of quantum
computing, and have described several quantum effects that can be harnessed to con-
ceive of algorithms that cannot be run as efficiently on any classical computer. The

1.9 Exercises 45

most important quantum effects are superposition, interference, non-determinism,
and entanglement. Superposition allows a quantum computer to act upon an input
state representing an exponential number of different classical inputs simultane-
ously. Interference can cause the relative proportions of a superposition to change
making some outcomes more likely than others. Non-determinism means that we
cannot predict with certainty what answer we will get when we read a quantum
memory register that exists in a superposition state. However, we can calculate the
probabilities with which we expect to see the various possible outcomes. Finally,
entanglement is the most quintessentially quantum effect that allows strong correla-
tions to exist between different subsets of qubits such that measurements made (say)
on one subset of qubits can affect the likelihood of the outcomes of measurements
made on other subsets of qubits, even though they were not “touched” in any direct
way.

Whereas when a classical computer completes a computation we are restricted
to merely reading its output in the computational basis, in a quantum computer we
can choose the measurement basis so as to extract different types of information.
Not surprisingly, therefore, we found that a given quantum state can be represented
in different ways by using different bases, and we showed how to change from one
basis to another. Such basis transformations can reveal insight into the structure of
the superposition states or operators with which you are dealing.

We ended the chapter with an example of a simple quantum computation, a deci-
sion problem, that cannot be done as efficiently on a classical computer. The trick of
moving information between the arguments of ket vectors and phase factors is used
in many quantum algorithms, and is especially prevalent in algorithms that involve
the quantum Fourier transform (QFT).

1.9 Exercises

1.1 A single qubit in state |ψ〉 = a|0〉+b|1〉 is normalized iff |a|2+|b|2 = 1. Which
of the following states of a single qubit are normalized?

1. 1
2 |0〉 +

√
3

2 |1〉
2. − i

3 |0〉 −
√

3
2 |1〉

3. − 1
3 |0〉 + 2

3 |1〉
4. cos(θ)|0〉 − sin(θ)|1〉
5. cosh(θ)|0〉 + i sinh(θ)|1〉
6. eiα cos(θ)|0〉 − eiβ sin(θ)|1〉
1.2 An un-normalized quantum state, i.e., |ψ〉 = a|0〉 + b|1〉 s.t. |a|2 + |b|2 �= 1,
can be normalized by re-scaling the amplitudes according to:

|ψ〉 = a|0〉 + b|1〉 −→ a√|a|2 + |b|2 |0〉 +
b√|a|2 + |b|2 |1〉

Normalize the following un-normalized quantum states.

46 1 Introduction

(a) |0〉 + eiθ |1〉
(b) 1

2 |0〉 − 2
3 |1〉

(c) i|00〉 + |01〉 + |00〉
(d) (|0〉 + i|1〉)⊗ (|0〉 − i|1〉)

1.3 Compute the probability with which each of the following qubits is found in
the state |0〉 when measured in the computational basis. Be careful as the given state
may or may not be properly normalized as given.

1. 1
2 |0〉 +

√
3

2 |1〉
2. − i

3 |0〉 −
√

3
2 |1〉

3. 2
√

2
3 |0〉 + 1

3 |1〉
4. i

2 |0〉 −
√

3
2 |1〉

1.4 Let |0̄〉 = 1√
2
(|0〉 + |1〉) and |1̄〉 = 1√

2
(|0〉 − |1〉). Prove that the states |0̄〉 and

|1̄〉 are orthogonal. Write the state a|0〉 + b|1〉 in the {|0̄〉, |1̄〉} basis.

1.5 The memory register of a 3-qubit quantum computer evolves into the state
1
3 |001〉 +

√
5

3 |010〉 + 1√
3
|100〉. What is the probability of:

1. Finding the first qubit to be |1〉?
2. Finding the second qubit to be |0〉?
3. Finding the last two qubits to be |00〉?

1.6 Which of the following states are entangled, and which are unentangled?

(a) 1√
2
(|000〉 + |111〉)

(b) 1
3
√

2
|00〉 + 2

3 |01〉 + 1
3
√

2
|10〉 + 2

3 |11〉
(c) 1

6 |00〉 − 1
2
√

3
|01〉 +

√
2

3 |10〉 −
√

2
3 |11〉

(d) 1√
3
(|001〉 + |010〉 + |100〉)

(e) 1√
2
(|00〉 − i|10〉)

1.7 Prove that the quantum state |ψ〉 defined by:

|ψ〉 = 6√
181

|000〉 − 4√
181

|001〉 + 3√
181

|010〉 − 4

√
3

181
|011〉

+
√

2

181
|100〉 −

√
6

181
|101〉 + 4√

181
|110〉 − 4

√
3

181
|111〉 (1.55)

is properly normalized. Given the state |ψ〉, what is the probability, when you read
|ψ〉 in the computational basis, of obtaining:

(a) the result |010〉?

1.9 Exercises 47

(b) the result |001〉?
(c) finding the first qubit to be in state |1〉?
(d) finding the first and third qubits to both be in state |0〉?
(e) finding the first and second qubits to be the same?

1.8 Consider a single qubit in state |ψ〉 = cos(θ2)|ψ〉 + eiφ sin(θ2)|1〉 such that 0≤
θ ≤ π and 0≤ φ ≤ 2π . Prove that the state |ψ〉⊥ at the antipodal point of the Bloch
sphere is orthogonal to |ψ〉. The antipodal point is found by projecting a straight
line from the point on the surface of the Bloch sphere representing |ψ〉 through the
origin to intersect the surface of the Bloch sphere on the opposite side.

1.9 Prove that the expectation value of any observable A, 〈ψ |A|ψ〉, for a quantum
system in state |ψ〉 is no different from that obtained if the state where eiφ |ψ〉 in-
stead. That is, prove the claim made in this chapter that overall phase factors have
no observable consequence.

1.10 Let Ω be an observable operator for a single qubit described as:

Ω =
(
a b

c d

)

Answer the following questions:

(a) Which elements of Ω must be real numbers?
(b) Which elements of Ω can be complex numbers?
(c) Which two elements of Ω are related?
(d) What are the eigenvalues of Ω?
(e) What is the expectation value 〈ψ |Ω|ψ〉 when |ψ〉 = α|0〉 +√

1− |α|2|1〉?

1.11 A qubit in an arbitrary pure quantum state is described mathematically by the
state vector |ψ〉 = eiγ (cos(θ2)|0〉 + eiφ sin(θ2)|1〉). Equivalently, as you will see in
Sect. 11.2.2 the same state can be described by the density operator ρ = |ψ〉〈ψ |. On
how many free parameters does the state |ψ〉 depend? Compute the density operator
ρ corresponding to the state |ψ〉. On how many free parameters does the density
operator ρ depend? Explain what role the parameter γ plays in the density operator
representation of the state.

1.12 Look up the definition of the quantum Fourier transform (QFT) matrix defined
in Sect. 3.4.6. Prove that the 1-qubit Walsh-Hadamard gate, H = 1√

2

(1 1
1 −1

)
, can be

thought of as a 1-qubit quantum Fourier transform.

1.13 Find the unitary matrix that changes a state represented in the {|+〉, |−〉} basis
to one represented in the {|R〉, |L〉} basis. You may assume |+〉 = 1√

2
(|0〉 + |1〉),

|−〉 = 1√
2
(|0〉 − |1〉), |R〉 = 1√

2
(|0〉 + i|1〉), and |L〉 = 1√

2
(|0〉 − i|1〉).

48 1 Introduction

1.14 Find the unitary matrix that changes an arbitrary 2-qubit gate,

U =

⎛
⎜⎜⎝
u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

⎞
⎟⎟⎠ ,

in the {|00〉, |01〉, |10〉, |11〉} basis to one represented in the {|RR〉, |RL〉, |LR〉,
|LL〉} basis. You may assume |R〉 = 1√

2
(|0〉 + i|1〉), and |L〉 = 1√

2
(|0〉 − i|1〉), and

|RL〉 = |R〉 ⊗ |L〉 etc.

1.15 Consider a 2-qubit Hamiltonian having a block diagonal structure when ex-
pressed in the computational basis:

H =

⎛
⎜⎜⎝

a e 0 0
e∗ b 0 0
0 0 c g

0 0 g∗ d

⎞
⎟⎟⎠ (1.56)

What are the eigenvalues and normalized eigenvectors of H?

1.16 Suppose we are promised that we are given either a known state |ψ〉 or a
known state |ϕ〉 and we have to decide, by making some measurement, which is the
case. If |ψ〉 and |ϕ〉 are non-orthogonal quantum states there is no single measure-
ment that can distinguish between them 100% of the time. However, given knowl-
edge of the forms for |ψ〉 and |ϕ〉 we can choose a measurement basis in which
to measure our mystery state that optimizes our chances of guessing correctly. For
example, consider the pair of quantum states defined by:

|ψ〉 = |0〉
|ϕ〉 = α(θ)|0〉 + β(θ)|1〉 (1.57)

where

α(θ) = csc θ√| csc θ |2 + | cot θ |2
β(θ) = cot θ√| csc θ |2 + | cot θ |2

(1.58)

The amplitudes of the |ϕ〉 state are certainly peculiar, having the form over the
interval 0≤ θ ≤ 2π shown in Fig. 1.10.

(a) Nevertheless, prove that |ϕ〉 is a properly normalized state.
(b) With what probability can we guess correctly if we measure the mystery state

in the computational, i.e., {|0〉, |1〉}, basis?
(c) In what basis ought we to make the measurement to maximize our chances of

guessing correctly whether we were given |ψ〉 and |ϕ〉?

1.9 Exercises 49

Fig. 1.10 Amplitudes of the
state |ϕ〉 = α|0〉 − β|1〉 where
α = csc θ√

| csc θ |2+| cot θ |2 and

β = cot θ√
| csc θ |2+| cot θ |2

(d) What is the state |ϕ〉 at θ = π? Is there any ambiguity?
(e) What is the density operator corresponding to |ϕ〉, i.e., ρ = |ϕ〉〈ϕ|?
(f) What is the density operator ρ at θ = π? Is there any ambiguity? How do you

reconcile your answers to parts (d) and (f)?

Chapter 2
Quantum Gates

“When we get to the very, very small world—say circuits of seven atoms—we have a lot of
new things that would happen that represent completely new opportunities for design. Atoms
on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum
mechanics. So, as we go down and fiddle around with the atoms down there, we are working
with different laws, and we can expect to do different things. We can manufacture in different
ways. We can use, not just circuits, but some system involving the quantized energy levels,
or the interactions of quantized spins.”
– Richard P. Feynman1

Currently, the circuit model of a computer is the most useful abstraction of the
computing process and is widely used in the computer industry in the design and
construction of practical computing hardware. In the circuit model, computer scien-
tists regard any computation as being equivalent to the action of a circuit built out
of a handful of different types of Boolean logic gates acting on some binary (i.e., bit
string) input. Each logic gate transforms its input bits into one or more output bits
in some deterministic fashion according to the definition of the gate. By compos-
ing the gates in a graph such that the outputs from earlier gates feed into the inputs
of later gates, computer scientists can prove that any feasible computation can be
performed.

In this chapter we will look at the types of logic gates used within circuits and
how the notions of logic gates need to be modified in the quantum context.

1Source: Opening words of the “Atoms in a SmallWorld” section of Richard Feynman’s classic
talk “There’s Plenty of Room at the Bottom,” given on 29th December 1959 at the annual meeting
of the American Physical Society at the California Institute of Technology. The full transcript of
the talk is available at http://www.zyvex.com/nanotech/feynman.html.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_2, © Springer-Verlag London Limited 2011

51

http://www.zyvex.com/nanotech/feynman.html
http://dx.doi.org/10.1007/978-1-84628-887-6_2

52 2 Quantum Gates

2.1 Classical Logic Gates

2.1.1 Boolean Functions and Combinational Logic

Logic is a sub-field of mathematics that is principally concerned with the validity
of arguments, i.e., determining the truth or falsity of propositions by a process of
reasoning from starting assumptions, called axioms, and by applying valid rules of
inference to them. Logic is not concerned with determining what is actually true
or false in the real world, since the real world is but one of infinitely many possi-
ble worlds we may choose to reason about. Rather logic provides the mathematical
framework upon which we may draw valid conclusions from given starting assump-
tions.

The concept of a logic gate arose from efforts to formalize the laws of thought.
George Boole (1815–1864) was a British mathematician who lived long before days
of transistors and electronic digital computers. Like Babbage and von Leibinitz
before him, Boole was interested in formalizing the process of mathematical rea-
soning. Before Boole, algebra had been thought about, primarily, as a vehicle for
performing numerical calculations. However, Boole foresaw a wider opportunity:
“[. . .] hitherto the expression of magnitude, or of operations upon magnitude, has
been the express object for which the symbols of Analysis [algebra] have been in-
vented, and for which their laws have been investigated, but this does not mean that
the interpretations of algebra can only be quantitative”.

Boole went on to provide an interpretation of algebraic expressions as statements
about classes of objects. The universe of all objects is a set, and symbols, such as A,
B , C, stands for subsets of objects from this set. Then the usual operations on sets,
such as intersection (A∩B), union (A∪B), and complement (Ac) can be interpreted
as making statements about these subsets of objects as show in Fig. 2.1.

For example, suppose we consider a universe of people with various pizza pref-
erences. If A is the set people who like pepperoni, and B is the set of people who
like anchovies, then A ∩ B is the set of people who like pepperoni and anchovies,

Fig. 2.1 Graphical
illustration of the union,
intersection and complement
operations on sets

2.1 Classical Logic Gates 53

A∪B is the set of people who like pepperoni or anchovies or both, and Ac is the set
of people who do not like pepperoni etc. Algebraic expressions interpreted in this
way define what is called a Boolean algebra.

As you can see from the example, the interpretation of the sets that result from
the intersection, union, and complement operations are described in terms of the log-
ical connectives AND, OR, and NOT, indicating that there is a close parallel between
set operations and logical operations. For example, if one assumes there are only
two objects 1 = the set of all objects = TRUE and 0 = the empty set of objects =
∅ = FALSE, we can write algebraic expressions that correctly capture alternate
syntactic forms for logically equivalent statements. Hence, the logical assertion that
a statement and its negation is necessarily contradictory expressed as the logical
statement a ∧ (¬a) = 0 = FALSE (i.e., a AND (NOT a) is necessarily FALSE)
mirrors the algebraic statement that the intersection of a set and its complement
is necessarily empty, A ∩ Ac = ∅. This restriction of the variables to just 0 and 1
makes the Boolean algebra into a Boolean logic.

Once one has the thought of interpreting algebraic statements as logical state-
ments, one can easily define syntactically different forms having the same logical
meaning. These are mathematical formulae in which the symbols, a, b, c, . . . stand
for logical propositions that can be either true or false, and the connectives are logi-
cal functions. Table 2.1 lists the so-called “De Morgan’s Laws” which give syntac-
tically equivalent versions of elementary logical propositions. By using these laws
we can systematically eliminate from any logical expression all instances of ∧ or
all instances of ∨. This means that we can reduce very complicated logical propo-
sitions to forms one of two standard forms, i.e., either a disjunction of conjuncts
(i.e., Disjunctive Normal Form) or a conjunction of disjuncts (Conjunctive Normal
Form).

Thus, if we can create hardware implementations of some very simple elementary
gates, e.g., NOT, AND and OR, we can in principle combine those operations into
very complex circuits

2.1.2 Irreversible Gates: AND and OR

The logical connectives AND (∧) and OR (∨) capture, respectively, the notions of
logical conjunction and disjunction . That is, for a compound proposition of the form
a ∧ b to be true both a and b must be true. Conversely, for a compound proposition
of the form a ∨ b to be true it is sufficient for either a or b to be true individually.

Conventionally, a logic gate is thought of as a physical device that takes one or
more Boolean values (i.e., FALSE or TRUE) as inputs and returns a single Boolean
value as output. The Boolean values (FALSE and TRUE) are often used synony-
mously with the bit values 0 and 1 respectively. Logic gates are the key components
of modern computers. Any classical computation can always be decomposed into a
sequence of logic gates that act on only a few bits at a time. Hence logic gates lie at
the heart of all modern computers.

54 2 Quantum Gates

Table 2.1 Logically equivalent propositions. Note by using De Morgan’s laws any proposition
can be expressed using NOT and AND alone or using NOT and OR alone

Logically equivalent forms

a ∧ 0= 0 Zero of ∧
a ∧ 1= a Identity of ∧
a ∨ 0= a Zero of ∨
a ∨ 1= 1 Identity of ∨
a ∧ a = a Indempotence

a ∨ a = a Indempotence

a ∧¬a = 0 Law of Contradiction

a ∨¬a = 1 Tautology

¬¬a = a Double Negation

a ∧ b= b ∧ a Commutativity of ∧
a ∨ b= b ∨ a Commutativity of ∨
a ∨ (b ∨ c)= (a ∨ b)∨ c Associativity

a ∧ (b ∧ c)= (a ∧ b)∧ c Associativity

a ∧ (b ∨ c)= (a ∧ b)∨ (a ∧ c) Distributivity

a ∨ (b ∧ c)= (a ∨ b)∧ (a ∨ c) Distributivity

a ∧ (a ∨ b)= a Absorption

a ∨ (a ∧ b)= a Absorption

a ∨ (¬a ∧ b)= a ∨ b Absorption

a ∧ (¬a ∨ b)= a ∧ b Absorption

¬(a ∧ b)= (¬a)∨ (¬b) De Morgan’s Law

¬(a ∨ b)= (¬a)∧ (¬b) De Morgan’s Law

(a ∧ b)∨ (a ∧¬b)= a

a =⇒ b=¬a ∨ b

a =⇒ b=¬(a ∧¬b)

The best way to describe the action of a logic gate is in terms of its “truth table”.
In a truth table we write down all the possible logical values of the inputs together
with their corresponding outputs. For example, the truth table for the AND gate
is given in Table 2.2. The corresponding icon for the AND gate as seen in circuit
diagrams is shown in Fig. 2.2. The AND gate is logically irreversible, which means
that you cannot determine unique inputs for all outputs. Specifically, if the output
is 0 (i.e. FALSE), you cannot tell whether the input values where 00, 01, or 10. It
“erases” some information when it acts whenever the output from the AND gate
is 0.

Similarly, the truth table for the OR gate is shown in Table 2.3. The corresponding
circuit icon for the OR gate is shown in Fig. 2.3. The OR gate is also logically
irreversible because when its output is 1 (i.e., TRUE) it is impossible to say whether
the inputs were 01, 10, or 11. Hence, again the OR gate erases some information
when it acts whenever the output is a 1.

There is a variant of the OR gate, called exclusive-OR (often written “XOR” or
“⊕”) that turns out to be very useful. The XOR gate is like the OR gate except that

2.1 Classical Logic Gates 55

Table 2.2 Truth table of
AND

AND:

a b a ∧ b

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 2.2 Icon for the AND
gate—a logically irreversible
gate

Table 2.3 Truth table of OR

OR:

a b a ∨ b

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 2.3 Icon for the OR
gate—a logically irreversible
gate

Table 2.4 Truth table of
XOR (exclusive-OR)

XOR:

a b a⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

it returns 0 (i.e., FALSE) when both its inputs are 1 (i.e., TRUE). The truth table for
XOR is shown in Table 2.4. The corresponding circuit icon for XOR is shown in
Fig. 2.4.

2.1.3 Universal Gates: NAND and NOR

There is a special class of logic gates, called universal gates, any one of which is
alone sufficient to express any desired computation. The possibility of such uni-

56 2 Quantum Gates

Fig. 2.4 Icon for the XOR
gate—a logically irreversible
gate

Table 2.5 Truth table of
NAND

NAND:

a b a|b

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 2.5 Icon for the NAND
gate—a universal gate for
classical irreversible
computing

versal gates accounts, in part, for the remarkable miniaturization of modern com-
puters since computer designers need only focus on miniaturizing a single type of
gate. Nowadays, the logic gates that manipulate these values are implemented us-
ing transistors, but in future computers even smaller, and faster, devices are being
considered in an effort to maintain the pace of Moore’s Law.

You can see why such universal gates are possible from Table 2.1. The rules in the
table show that any Boolean function can be reduced to an expression involving only
¬ and ∧ or only ¬ and ∨. Hence, any Boolean function can be computed by means
of a circuit comprising NOT and AND gates, or NOT and OR gates. Nevertheless,
the construction of large scale logic circuits would be greatly streamlined if manu-
facturers only had to use a single type of gate. Such a gate is said to be “universal”
since from it circuits for any Boolean function can be derived. Restricting circuits to
using a single type of universal gate does not necessarily lead to the smallest circuit
for computing a desired Boolean function but it does allow chip manufacturers to
perfect the design and manufacturing process for the universal gate, which, in prac-
tice, tends to make it easier to improve yield, reliability, and boost speed. Today, the
microprocessor industry pursues this strategy by basing their circuits on the NAND
(“NOT AND”) gates. Mathematically, aNANDb ≡ ¬(a ∧ b), often written as a|b,
and is universal for classical irreversible computing. The truth table for the NAND
gate is shown in Table 2.5: The corresponding circuit icon for the NAND gate is
shown in Fig. 2.5.

To convince you that the NAND gate is truly universal, given that we already
know we can compute any Boolean function in a circuit comprising only NOT and
AND gates, it is sufficient to show we can obtain NOT from NAND gates and AND
from NAND gates. Table 2.6 shows how to obtain ¬a from a|a: Likewise, Table 2.7
shows we can obtain a ∧ b from two a|b gates. Since we proved that any logical

2.1 Classical Logic Gates 57

Table 2.6 A NOT gate can
be obtained using a NAND
gate since a|a has precisely
the same truth values as ¬a NOT in terms of NAND:

a a a|a ¬a

0 0 1 1

1 1 0 0

Table 2.7 An AND gate can
be obtained using only
NAND gates since a ∧ b has
precisely the same truth
values as (a|b)|(a|b) AND in terms of NAND:

a b a|b (a|b)|(a|b) a ∧ b

0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

proposition can be written in terms of only ¬ and ∧, and that ¬ and ∧ can, in turn,
each be written in terms of | (NAND) we have proved that any logical proposition
can be written only in terms of | (NAND) gates. This is good news for chip man-
ufacturers because it means they need only perfect the implementation of just one
type of gate, the NAND gate, to be sure that they can build a circuit that can perform
any feasible computation.

There are other universal gates for classical irreversible computing including the
NOR gate (“NOT OR”) and the NMAJORITY gate (“NOT MAJORITY”). The
NMAJORITY gate is a relatively new universal gate. It is especially interesting
because it is implementable in a new transistor design and leads to highly compact
circuits.

Unfortunately, logical irreversibility comes at a price. Fundamental physics dic-
tates that energy must be dissipated when information is erased, in the amount
kT ln 2 per bit erased, where k is Boltzman’s constant (k = 1.3805× 10−23 JK−1)
and T is the absolute temperature (in degrees Kelvin). Thus, even if all other en-
ergy loss mechanisms were eliminated from any NAND based circuit, the circuit
would still dissipate energy when it operated due to the unavoidable energy losses
that occur when information is erased.

Today energy losses in NAND-based logic circuits due to logical irreversibility
are dwarfed by other loss mechanisms. However, as these other loss mechanisms
are tamed, someday the energy losses due solely to information erasure (in turn a
consequence of using irreversible logic gates) will become the significant contribu-
tion. At this point if nothing is done, further miniaturization of computer technology
will be impeded by the difficulty of removing this unwanted waste heat from deep
within the irreversible circuitry.

2.1.4 Reversible Gates: NOT, SWAP, and CNOT

One way chip manufacturers can suppress the unwanted heat produced as a side
effect of running irreversible logic gates is to modify their chip designs to use only

58 2 Quantum Gates

reversible logic gates. In a reversible logic gate there is always a unique input as-
sociated with a unique output and vice versa. So reversible gates never erase any
information when they act, and consequently, a computation based on reversible
logic can be run forward to obtain an answer, the answer copied, and then the whole
computation undone to recover all the energy expended apart from the small amount
used to copy the answer at the mid-way point.

The simplest example of a reversible logic gate is the NOT gate. NOT is a 1-
input/1-output gate that simply inverts the bit value it is handed. The truth table for
the NOT gate is shown in Table 2.8. The circuit icon for the NOT gate is shown
in Fig. 2.6. If one knows the output bit value, one can infer the input bit value
unambiguously and vice versa.

A slightly more complicated example, is the 2-input/2-output SWAP gate. SWAP
simply exchanges the bit values it is handed. Its truth table is shown in Table 2.9: The
circuit icon for the SWAP gate is shown in Fig. 2.7. In quantum computing a circuit
may not have any physical wires connecting the gates together. Instead a circuit
can be merely a visual specification of a sequence of gate operations with time
increasing from left to right in the circuit diagram as successive gates are applied.
Consequently, in quantum computing we sometimes use a different icon for a SWAP
gate (showing in Fig. 2.8, that is more suggestive that some operation (other than
crossing wires) needs to occur to achieve the effect of a SWAP operation.

A reversible gate of considerable importance in quantum computing is the 2-bit
controlled-NOT gate (CNOT). The truth table for CNOT is shown in Table 2.10. The
circuit icon for the CNOT gate is shown in Fig. 2.9. The effect of the “controlled”-
NOT gate is to flip the bit value of the second bit if and only if the first bit is set to 1.

Table 2.8 Truth table of
NOT

NOT:

a ¬a

0 1

1 0

Fig. 2.6 Icon for the XOR
gate—a 1-bit logically
reversible gate

Table 2.9 Truth table of
SWAP

SWAP:

a b a′ b′

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

2.1 Classical Logic Gates 59

Fig. 2.7 Icon for the SWAP
gate—a 2-bit logically
reversible gate. The icon
conveys the idea that to swap
two bits we simply cross the
wires on which those bits
reside

Fig. 2.8 Alternative icon for a SWAP gate that is more common in quantum circuit diagrams. The
reason for having a different icon for SWAP in quantum circuits compared to classical circuits is
that many implementations of quantum circuits do not have physical wires as such. Hence, it could
be misleading to depict a SWAP operation as a crossing of wires. Instead, a SWAP operation can
be achieved as the result of a sequence of applied fields

Table 2.10 Truth table of
CNOT

CNOT:

a b a′ b′

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Fig. 2.9 Icon for the CNOT
gate—a 2-bit logically
reversible gate

That is, the decision to negate or not negate the second bit is controlled by the value
of the first bit. Hence, the name “controlled-NOT”. Note that, as shown in Fig. 2.10,
the SWAP gate can be obtained from a sequence of three CNOT gates.

60 2 Quantum Gates

Fig. 2.10 A SWAP gate can
be obtained from three CNOT
gates

Table 2.11 Truth table of the
TOFFOLI gate, which is
universal for classical
reversible computing

TOFFOLI:

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2.12 Truth table of the
FREDKIN gate, which is
universal for classical
reversible computing

FREDKIN:

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

2.1.5 Universal Reversible Gates: FREDKIN and TOFFOLI

Just as there can be universal gates for classical irreversible computing, such as the
NAND gate (which has two inputs and one output), so too can there be universal
gates for classical reversible computing. However, the smallest gates that are both
reversible and universal require three inputs and three outputs. Two well-known
examples are the FREDKIN (controlled-SWAP) gate and the TOFFOLI (controlled-
CNOT) gate, whose truth tables are shown in Tables 2.11 and 2.12 respectively.

2.1 Classical Logic Gates 61

Fig. 2.11 Icon for the
TOFFOLI gate also called the
controlled-controlled-NOT
gate. TOFFOLI is reversible
and universal

Fig. 2.12 Icon for the
FREDKIN gate also called
the controlled-SWAP gate.
FREDKIN is reversible and
universal

2.1.5.1 TOFFOLI (a.k.a. “Controlled-Controlled-NOT”)

The TOFFOLI gate is also called the controlled-controlled-NOT gate since it can be
understood as flipping the third input bit if, and only if, the first two input bits are
both 1. In other words, the values of the first two input bits control whether the third
input bit is flipped. The icon for the TOFFOLI gate is shown in Fig. 2.11.

2.1.5.2 FREDKIN (a.k.a. “Controlled-SWAP”)

Another famous reversible gate is the FREDKIN (controlled-SWAP) gate. The truth
table for the FREDKIN gate is: The icon for the FREDKIN gate is shown in
Fig. 2.12. The FREDKIN gate can also be seen as a controlled-SWAP gate in that it
swaps the values of the second and third bits, if, and only if, the first bit is set to 1.

2.1.6 Reversible Gates Expressed as Permutation Matrices

Any n-bit reversible gate must specify how to map each distinct bit string input into
a distinct bit string output of the same length. Thus no two inputs are allowed to be

62 2 Quantum Gates

mapped to the same output and vice versa. This ensures the mapping is reversible.
Consequently, one can think of a reversible gate as encoding a specification for
how to permute the 2n possible bit strings inputs expressible in n bits. In the case
of the 2-bit SWAP gate, for example, the four possible input bit strings are 00,
01, 10, 11 and these are mapped, respectively, into 00 → 00, 01 → 10, 10 → 01,
1 → 11. In the case of CNOT gate, the inputs 00, 01, 10, and 11 are mapped into
00, 01, 11, and 10 respectively. Thus a natural way to represent an n-bit reversible
gate is as an array whose rows and columns are indexed by the 2n possible bit
strings expressible in n bits. The (i, j)-th element of this array is defined to be 1
if, and only if, the input bit string corresponding to the i-th row is mapped to the
output bit string corresponding to the j -th column. The resulting array will contain
a single 1 in each row and column and zeroes everywhere else, and will therefore
be a permutation matrix. As arrays, the NOT, SWAP and CNOT gates would be
described as follows:

NOT=
(

0 1
1 0

)
; SWAP=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ;

CNOT=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

(2.1)

Likewise, the TOFFOLI gate could be represented as:

TOFFOLI:

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

Similarly, the action of the FREDKIN gate could be represented as:

FREDKIN:

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.3)

2.1 Classical Logic Gates 63

In fact, the matrices corresponding to classical reversible gates are always permu-
tation matrices, i.e., 0/1 matrices having a single 1 in each row and column, and
permutation matrices are also always unitary matrices.

To calculate the effect of a reversible gate, e.g., the FREDKIN or TOFFOLI gate,
on an input bit string, we simply prepare the column vector corresponding to that
bit string, and then perform the usual matrix vector product operation. For example,
since the FREDKIN and TOFFOLI gates act on three bits, we can imagine a column
vector consisting of 23 = 8 slots, one of which (the i-th say) contains a single 1, and
all the other elements are 0.

000≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 001≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 010≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . . 111≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

etc. We can calculate the effect of, e.g., the TOFFOLI gate on such an input by
vector-matrix multiplication.

TOFFOLI|110〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= |111〉 (2.5)

2.1.7 Will Future Classical Computers Be Reversible?

The computer industry has done a truly remarkable job at squeezing more and more
computation out of fewer and fewer physical resources. For example, the energy per
logical operation has decreased pretty much exponentially since the inception of the
microchip, in lock step with a similar reduction in the size of transistors. As a result
a given volume of microprocessor has, over successive generations, been made to
perform exponentially more computation.

However, chip designers are now finding it harder to increase performance with-
out incurring the need to dissipate more energy per unit area of chip. You can sense
this quite directly if you spend any time working with a notebook computer on your
lap. After a while you will notice it becoming quite warm. This is because the mi-
croprocessor is dissipating heat as it runs. Indeed, modern chips can consume 100

64 2 Quantum Gates

Watts or more. Since it is impractical to allow them to dissipate more power than
this, this problem could ultimately stall Moore’s Law.

Today, power losses arise from the non-zero electrical resistance of the conduc-
tors used inside microprocessors and some leakage of current through materials that
are supposed to be insulators. This chip designers are working feverishly to lessen
such losses by using fewer and fewer electrons and avoiding large voltage swings,
which cuts down leakage. Once these stratagems have been played out to the max-
imum extent possible chip designers will have to consider various methods, such
as charge recovery, to recapture energy, much like a flywheel recaptures energy in
mechanical devices. Beyond this, what options remain to further reduce energy dis-
sipation during computation?

The answer could lie in the use of classical reversible gates, such as FREDKIN
and TOFFOLI gates that we discussed earlier. This is because, as Rolf Landauer
showed, energy need only be dissipated when information is erased, and the min-
imum amount that Nature demands is kBT ln 2 per bit erased, where kB is Blotz-
mann’s constant and T is the temperature in degrees Kelvin. At room temperature
(300 Kelvin) this is about 3 × 10−21 Joules per bit erased. Therefore, if we were
to use reversible computing, the only energy that must be dissipated is related to
that required to initialize the computer, or to make a permanent record on an an-
swer, because these operations must take a memory register in one state, and reset
it, regardless of what that state was, in a fixed configuration. Hence this operation
is necessarily irreversible. But apart from that, in principle, it takes no energy to
compute!

2.1.8 Cost of Simulating Irreversible Computations Reversibly

Today, most computing hardware employs, at its lowest level, gates that are logically
irreversible. Logical irreversibility means that certain outputs from a logic gate are
consistent with more than one set of inputs, preventing one from inferring a unique
input for each output. For example, the logic gate AND(x, y) = z that maps two
input bits, x and y, into a single bit, z, is logically irreversible because an output
z= 0 (false) could be accounted for by any of the three input pairs (x = 0, y = 0),
(x = 0, y = 1) and (x = 1, y = 0). Hence, for this particular output, the input is
ambiguous and the operation is therefore logically irreversible.

It has long been known that such logical irreversibility has a thermodynamic
consequence, namely, that energy must be dissipated, in the amount kBT log 2 per
bit erased, whenever a logically irreversible operation is performed [299]. However,
the converse of this is also true. If we were to employ only logically reversible gates
inside our chips, then no net energy need be dissipated in performing those gate
operations. The only thermodynamic cost to computing would then be the cost of
creating the initial input, reading the output, and re-setting the computer.

For a computation to be logically reversibility each “step” of the computation
must be logically reversible. However, the exact meaning of a “step” changes de-

2.1 Classical Logic Gates 65

pending on the model of computation being used. For example, in the Turing ma-
chine model one step of computation is a transition of the finite control of the ma-
chine [44], which maps one “configuration” of the machine to another configuration.
Likewise, in the circuit model, a step of computation is the execution of one gate
of the circuit (see, e.g., [187, 494]). Thus, a reversible Turing machine is a ma-
chine mapping distinct input configurations to distinct output configurations, and
a reversible circuit is a circuit comprised of gates each mapping distinct input bit
patterns to distinct output bit patterns.

There are two important questions concerning reversible computing. The first is
the practical question of how to find the optimal reversible circuit implementing a
desired Boolean function [343, 451, 494]. This approach boils down to understand-
ing how to implement permutations by reversible circuits, and is mainly concerned
with generic functions.

The second question concerning reversible computing is to determine with what
efficiency a reversible computer can simulate an irreversible computation [44, 45,
88, 119, 302, 311, 312]. Most previous studies of this question have addressed it in
the context of the Turing machine model of computation. In this paper we present
a similar analysis in the context of the circuit model. In order to aid comparison we
first recap the insights gleaned from these Turning machine studies.

Initially it was believed that the only way to simulate an irreversible computation
on a reversible Turing machine was to keep all the intermediate calculations. Con-
sequently, the size of the memory (i.e., “space”) needed to perform the computation
reversibly was proportional to the time (i.e., number of steps) of the correspond-
ing irreversible computation. Bennett, however, [44] discovered that the history of
a reversible computation could be cleared in a reversible fashion, leaving only the
input and the output in memory, and recording the configuration of certain check-
points of the irreversible computation. This reduced the space needed to simulate
an irreversible computation reversibly but at the expense of increasing the time of
the reversible computation. Specifically, in [45] Bennett proposed a method which
uses time S T log 3 and space S logT , when the irreversible computation uses T time
and S space. In this case the space complexity of the simulation is S2 in the worst
case. Later it was shown that it is possible to have a reversible simulation in space
O(S) but at the cost of requiring the simulation to run in exponential time [302]. The
best tradeoff for reversible simulation of an irreversible computation was provided
by Li [312]. It uses time Θ(T 1+ε/Sε) and space Θ(c(ε)S[1+ log(T /S)]), for any
ε > 0, where c(ε)≈ ε21/ε . Similarly, in [119] it is shown that any nondeterministic
Turing machine running in space S can be simulated by a reversible machine using
space O(S2).

The foregoing studies of the efficiency with which a reversible computer can
simulate an irreversible computation were all based on the deterministic or non-
deterministic Turing machine models. As best we can tell there has been no similar
direct study in the literature based on the circuit model of computation. This is the
main contribution of our paper.

Toffoli and Fredkin [187, 494] performed some of the first systematic studies of
reversible circuits. Toffoli showed, for example, that the reversible basis consisting

66 2 Quantum Gates

of NOT, CNOT , and Toffoli gates (defined in Sect. 2.2) is universal for reversible
computation. More precisely, he showed that every permutation on {0,1}n can be
realized by means of a reversible circuit over the NOT-CNOT-TOFFOLI basis using
at most one ancilla bit.2

2.1.9 Ancillae in Reversible Computing

Ancillae are an essential ingredient in classical reversible computing. For example,
every circuit with more than 3 inputs over the NOT-CNOT-TOFFOLI basis realizes
an even permutation on the space of its inputs. Therefore, to realize an odd permuta-
tion on {0,1}n, we need at least one ancilla bit with fixed constant value in addition
to the n variable inputs. Toffoli has shown that one ancilla bit is, in fact, always
sufficient [451]. Another way to see ancillae are essential is to consider computing
a Boolean function f : {0,1}n −→ {0,1} reversibly. Every reversible circuit on m

inputs, computing f , has exactly m outputs with one of them considered the value
of f . If m = n, i.e., there is no ancilla bit, then it is easy to see that every output
function must be a balanced Boolean function.3 Therefore, if the function we want
to simulate is not balanced, we require m > n and there must therefore be at least
one ancilla bit.

In general, we use the model described in Fig. 2.13 to define how a reversible
circuit computes a function f : {0,1}n −→ {0,1}. In this model, it is required that
at the end of the computation all ancillae have their initial values, except one ancilla
bit, designated as the “answer” bit, that carries the value of the function.

As in the case of reversible Turing machines, we can trade space for time in
reversible circuit simulations of irreversible computations. But in the circuit picture
“space” (i.e., the amount of auxiliary memory) is measured in terms of the number
of ancillae required to perform the computation, and “time” is measured by the size,
i.e. total gate count, of the circuit. In some cases allowing more ancillae results in a
reversible circuit with smaller net size (i.e., fewer total gates).

Fig. 2.13 Computing a
Boolean function using a
reversible circuit

2What we call an “ancilla bit” is also referred to as a “storage bit” or a “garbage bit” in the literature.
3A balanced function on {0,1}n returns a value “1” for 2n−1 of its inputs and a value “0” for the
other 2n−1 inputs.

2.2 Universal Reversible Basis 67

To the best of my knowledge, only Cleve [110, 111] has addressed the space-
time (ancillae-size) trade-off of simulation for the reversible circuits. He has shown
that any polynomial size formula can be simulated by a polynomial size reversible
circuit, which uses only 3 ancillae. If his method is applied to a circuit, then the
result is an exponential size reversible circuit with 3 ancillae.

In contrast, we provide two new methods for simulating general Boolean cir-
cuits. In the first method, we show that any irreversible computation having t gates,
depth d , and width w, can be implemented in a reversible circuit having O(t2.58)

gates, and at most (w+ 1) logd +O(1) ancillae. The second method deals with the
simulation of branching programs. We prove that any branching program of depth
d and width w can be simulated by a reversible circuit of size ≤4w 2d with 2w
ancillae.

2.2 Universal Reversible Basis

We consider reversible circuits over the NOT-CNOT-TOFFOLI basis. Table 2.13 de-
fines the action of these gates, and the Fig. 2.14 represents their standard icons. Note
that the TOFFOLI gate alone is universal for reversible computing so, in principle,
we do not need the NOT and CNOT gates. However, we allow them to simplify
the constructions. Figure 2.15 shows how these reversible gates can simulate the
classical (irreversible) standard gates, in some cases with ancillae.

Table 2.13 The action of
reversible gates NOT CNOT TOFFOLI

a �→ 1⊕ a

(
a

b

)
�→

(
a

a⊕ b

) ⎛
⎜⎝
a

b

c

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

a

b

c⊕ (a · b)

⎞
⎟⎟⎟⎟⎠

Fig. 2.14 The reversible
basis

68 2 Quantum Gates

Fig. 2.15 Reversible
simulation of classical gates

Fig. 2.16 Synthesis via reversible substitution

2.2.1 Can All Boolean Circuits Be Simulated Reversibly?

The constructions of Fig. 2.15 suggest a simple (naive) method for simulating any
Boolean (irreversible) circuit: simply replace each irreversible gate in the circuit
with its reversible counterpart. Figure 2.16 shows an example of this method.

However, this naive method is hardly efficient and we now present a better
scheme. Before we begin, we define some useful terminology. A synchronous cir-
cuit is one in which all paths from the inputs to any gate have the same length.
Synchronous circuits may have delay (identity) gates, and gates at level m get in-
puts from gates at level m − 1. Thus, without loss of generality, we can assume
that our desired irreversible circuit is synchronous. For a Boolean circuit, the size
is the total number of gates, the depth is the number of levels, and the width is the
maximum number of gates in any level.

2.3 Quantum Logic Gates 69

The following procedure shows how to create a reversible circuit that simulates
and irreversible circuit while making substantial savings in the number of ancillae
used.

• First simulate the gates in the first-half levels.
• Keep the results of the gates in the level d/2 separately.
• Clean up the ancillae bits.
• Use them to simulate the gates in the second-half levels.
• After computing the output, clean up the ancillae bits.
• Clean up the result of the level d/2.

Note This method needs roughly half the number of ancillae used by the previous
(naive) method. Figure 2.16 shows the circuit of this procedure.

By applying the above procedure recursively, on a circuit of size t , depth d ,
and width w we obtain the following recursive relations for S, the size, and A, the
number of the ancillae needed:

S(t)≤ 6S(t/2)+O(1),

A(d)≤A(d/2)+w+ 1.

Solving these recursion relations leads to the following result.

Efficiency of Reversible Simulation Any irreversible computation (in the syn-
chronous form) having t gates, depth d , and width w, can be simulated by a re-
versible circuit having O(t2.58) gates, and at most (w + 1) logd +O(1) ancillae.

Thus, most of the irreversible computations going on inside your notebook com-
puter could, in principle, be implemented using reversible logic gates, which in turn
need no net energy to run apart from any operations that require erasure of infor-
mation, such as overwriting a memory register to make a copy of an answer! This
is surprise to many people because their perception is that computers are making
something new. But in reality, they don’t. They just take the known information
given as input and re-arrange it. The vast majority of the operations employed along
the way can be done reversibly, and hence, don’t generate any more information in
their output than they had in their input. There is no truly creative act as such. As
Pablo Picasso once said, “Computers are useless—they only give answers!”

2.3 Quantum Logic Gates

Now that we have looked at classical irreversible and classical reversible gates, we
have a better context in which to appreciate the benefits of quantum gates.

Just as any classical computation can be broken down into a sequence of classical
logic gates that act on only a few classical bits at a time, so too can any quantum
computation can be broken down into a sequence of quantum logic gates that act on

70 2 Quantum Gates

only a few qubits at a time. The main difference is that whereas classical logic gates
manipulate the classical bit values, 0 or 1, quantum gates can manipulate arbitrary
multi-partite quantum states including arbitrary superpositions of the computational
basis states, which are frequently also entangled. Thus the logic gates of quantum
computation are considerably more varied than the logic gates of classical compu-
tation.

2.3.1 From Quantum Dynamics to Quantum Gates

The physical phenomena used to achieve the desired manipulation of a quantum
state can be very varied. For example, if qubits are encoded in particles having
quantum mechanical spin, the logic is effected by spin-manipulation brought about
by varying an applied magnetic field at various orientations. Or if the qubit is en-
coded in an internal excitation state of an ion, the gate operation can be achieved
by varying the time a laser beam is allowed to irradiate the ion or by varying the
wavelength of that laser light.

As any quantum gate must be implemented physically as the quantum mechani-
cal evolution of an isolated quantum system, the transformation it achieves is gov-
erned by Schrödinger’s equation, i�∂|ψ〉/∂t = H|ψ〉, where H is the Hamiltonian,
specifying the physical fields and forces at work. Thus, the unitary matrices describ-
ing quantum gates are related to the physical processes by which they are achieved
via the equation U = exp(−iHt/�). Here H is the Hamiltonian which specifies the
interactions that are present in the physical system.

As we saw in Chap. 1, the quantum mechanical evolution induced by this
equation is unitary provided no measurements are made, and no unwanted stray
interactions occur with the environment. In this case, starting from some initial
state, |ψ(0)〉, the quantum system will evolve, in time t , into the state |ψ(t)〉 =
exp(−iHt/�)|ψ(0)〉 = U |ψ(0)〉 where U is some unitary matrix. Thus the evolu-
tion, in time t , of an isolated quantum system is described by a unitary transfor-
mation of an initial state |ψ(0)〉 to a final state |ψ(t)〉 = U |ψ(0)〉. This means that
a quantum logic gate acting on an isolated quantum computer, will transform that
state unitarily up until the point at which an observation is made. Hence, quantum
logic gates are described, mathematically, by unitary matrices, and their action is
always logically reversible.

The parallels between classical reversible gates and quantum gate were not lost
the early quantum computer pioneers Richard Feynman and David Deutsch. They
recognized that since the matrices corresponding to reversible (classical) gates were
permutation matrices, they were also unitary matrices and hence could be inter-
preted as operators that evolved some initial quantum state representing the input
to a gate into some final quantum state representing its output in accordance with
Schrödinger’s equation. Thus, the closest classical analogs to quantum logic gates
are the classical reversible gates such as the NOT, SWAP, CNOT, TOFFOLI and
FREDKIN. However, whereas the repertoire of gates available in classical reversible

2.4 1-Qubit Gates 71

computing is limited to the unitary gates whose matrix representations correspond
to permutation matrices, in deterministic quantum computing any gate is allowed
whose matrix is unitary whether or not it is also a permutation matrix.

2.3.2 Properties of Quantum Gates Arising from Unitarity

The essential properties of quantum logic gates flow immediately from that fact that
they are described by unitary matrices. A matrix, U , is unitary if and only if its
inverse4 equals its conjugate transpose, i.e., if and only if U−1 =U†. If U is unitary
the following facts hold:

• U† is unitary.
• U−1 is unitary.
• U−1 =U† (which is the criterion for determining unitarity).
• U†U = 1
• |det(U)| = 1.
• The columns (rows) of U form an orthonormal set of vectors.
• For a fixed column,

∑2n
i=1 |Uij |2 = 1.

• For a fixed row,
∑2n

j=1 |Uij |2 = 1.

• U = exp(iH) where H is an hermitian matrix, i.e., H = H†.

The fact that, for any quantum gate U , U†U = 1 ensures that we can always undo
a quantum gate, i.e., that a quantum gate is logically reversible. Moreover, that fact
that for a fixed column

∑2n
i=1 |Uij |2 = 1 and for a fixed row

∑2n
j=1 |Uij |2 = 1 guar-

antee that if you start with a properly normalized quantum state and act upon it with
a quantum gate, then you will end up with a properly normalized quantum state.
Thus, there are no probability “leaks”. The fact that it is the magnitude |det(U)|
that is constrained to be unity means that the constraint on the determinant can be
satisfied with det(U)=±1 or ±i. Thus the elements of a general unitary matrix are
generically allowed to be complex numbers.

2.4 1-Qubit Gates

2.4.1 Special 1-Qubit Gates

2.4.1.1 Pauli Spin Matrices

For single qubits, the “Pauli matrices” (1,X,Y,Z), which happen to be both hermi-
tian and unitary, are of special interest since any 1-qubit Hamiltonian can always be

4If A and B are two matrices B is the inverse of A when A.B = 1 where 1 is the identity matrix,
i.e., a matrix having only ones down the main diagonal.

72 2 Quantum Gates

written as a weighted sum of the Pauli matrices:

1=
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)
(2.6)

Some common forms for Hamiltonians that arise in practice are H = Z(1)Z(2) (the
Ising interaction) and H =X(1)⊗X(2)+Y (1)⊗Y (2) (the XY interaction) and H =
2X(1)⊗X(2)+Y (1)⊗Y (2) where the parenthetical superscripts labels which of two
qubits the operator acts upon.

2.4.1.2 NOT Gate

The Pauli X matrix is synonymous with the classical (reversible) NOT gate, i.e.,

X ≡NOT=
(

0 1
1 0

)
(2.7)

Thus, it is not surprising that X negates the computational basis states |0〉 and |1〉,
correctly as these correspond to the classical bits, 0 and 1, respectively. Specifically,
we have:

X|0〉 =
(

0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
= |1〉 (2.8)

X|1〉 =
(

0 1
1 0

)
·
(

0
1

)
=

(
1
0

)
= |0〉 (2.9)

2.4.1.3
√

NOT Gate

One of the simplest 1-qubit non-classical gates one can imagine is a fractional power
the of NOT gate, such as

√
NOT:

√
NOT=

(
0 1
1 0

) 1
2 =

(
1
2 + i

2
1
2 − i

2
1
2 − i

2
1
2 + i

2

)
(2.10)

The
√

NOT gate has the property that a repeated application of the gate, i.e.,
√

NOT ·√
NOT, is equivalent to the NOT operation, but a single application results in a

quantum state that neither corresponds to the classical bit 0, or the classical bit 1.
So

√
NOT it is the first truly non-classical gate we have encountered.

|0〉
√

NOT−→
(

1

2
+ i

2

)
|0〉 +

(
1

2
− i

2

)
|1〉

√
NOT−→ |1〉 (2.11)

|1〉
√

NOT−→
(

1

2
− i

2

)
|0〉 +

(
1

2
+ i

2

)
|1〉

√
NOT−→ |0〉 (2.12)

2.4 1-Qubit Gates 73

2.4.1.4 Is Pauli X a NOT Gate for Qubits?

Although the Pauli X gate negates the computational basis states correctly, does it
also behave like a true “NOT” gate when acting on a qubit in an arbitrary quantum
state, i.e., a qubit state corresponding to a point on the Bloch sphere other than
the North or South poles? To answer this, we must first specify what we require
a quantum NOT gate to do, and then determine whether X acts in the appropriate
manner.

Since the NOT gate has the effect of mapping a state at the North pole of the
Bloch sphere into a state at the South pole and vice versa, it is natural to extend
the definition of a NOT gate to be the operation that maps a qubit, |ψ〉, lying at
any point on the surface of the Bloch sphere, into its antipodal state , |ψ⊥〉, on the
opposite side of the Bloch sphere as shown in Fig. 2.17. The antipodal point is that
obtained by projecting a straight line from the original state through the origin to
intersect the surface of the Bloch sphere on the opposite side. Mathematically, we
can assume that our arbitrary starting state |ψ〉 is given by:

|ψ〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 (2.13)

where θ is the “latitude” and φ the “longitude” angles of |ψ〉 on the Bloch sphere.
To obtain the antipodal point we move, just as we would on Earth, to the equivalent
latitude in the opposite hemisphere and shift the longitude by 180° (i.e., π radians).
Given the aforementioned definition of |ψ〉, the mathematical form of the antipodal
state, |ψ̄〉, must therefore be:

|ψ⊥〉 = cos

(
π − θ

2

)
|0〉 + ei(φ+π) sin

(
π − θ

2

)
|1〉

= cos

(
π − θ

2

)
|0〉 − ei(φ) sin

(
π − θ

2

)
|1〉

= sin

(
θ

2

)
|0〉 − eiφ cos

(
θ

2

)
|1〉 (2.14)

where we have used the identities cos(π−θ
2)= sin(θ2) and sin(π−θ

2)= cos(θ2).
Having understood the relationship between the mathematical form of an arbi-

trary starting state, |ψ〉 to that of its true antipodal state, |ψ⊥〉, we can now check
whether X|ψ〉 = |ψ⊥〉, and hence, whether X qualifies as a true NOT gate for an
arbitrary qubit. By direct evaluation we have:

X|ψ〉 =
(

0 1
1 0

)
·
(

cos
(
θ
2

)
eiφ sin

(
θ
2

)
)
=

(
eiφ sin

(
θ
2

)
cos

(
θ
2

)
)

= eiφ sin

(
θ

2

)
|0〉 + cos

(
θ

2

)
|1〉 (2.15)

74 2 Quantum Gates

Fig. 2.17 The affect of the Pauli X gate operation on the computational basis states and an ar-
bitrary pure state of a single qubit. The Pauli X gate “negates” the computational basis states
correctly, but not an arbitrary superposition state! So the Pauli X gate is not a universal NOT gate
for qubits. The universal NOT gate for qubits is discussed in Chap. 11

We are free to multiply by any overall phase factor we please since states that differ
only in global phase are indistinguishable. As the amplitude of the |0〉 component
of the true |ψ⊥〉 state is sin(θ/2), we multiply through (2.15) by e−iφ . Hence, the
result of X|ψ〉 can be written as:

X|ψ〉 = sin

(
θ

2

)
|0〉 + e−iφ cos

(
θ

2

)
|1〉 �= |ψ⊥〉 (2.16)

This is not |ψ⊥〉. Hence, it is clear that X|ψ〉 does not negate an arbitrary single
qubit state |ψ〉 since the result we get is not |ψ⊥〉. Thus although, in classical com-
puting, we can legitimately call the gate whose matrix is

(0 1
1 0

)
the “NOT” gate, we

really ought not to use this name in the context of quantum computing.
We shall see in Chap. 11 that there is, in fact, no universal quantum NOT gate!

That is, there is no fixed quantum gate that correctly negates every qubit it is handed.

2.4.1.5 Hadamard Gate

One of the most useful single qubit gates, in fact perhaps the most useful one, is the
Hadamard gate, H . The Hadamard gate is defined by the matrix:

H = 1√
2

(
1 1
1 −1

)
(2.17)

It acts, as depicted in Fig. 2.18, so as to map computational basis states into super-
position states and vice versa:

H |0〉 = 1√
2
(|0〉 + |1〉) (2.18)

H |1〉 = 1√
2
(|0〉 − |1〉) (2.19)

2.4 1-Qubit Gates 75

Fig. 2.18 The icon for the
1-qubit Walsh-Hadamard
gate, H and its affect on
computational basis states

Fig. 2.19 By applying n H gates independently to n qubits, all prepared initially in state |0〉,
we can create an n-qubit superposition whose component eigenstates are the binary representation
of all the integers in the range 0 to 2n − 1. Thus, a superposition containing exponentially many
terms can be prepared using only a polynomial number of operations. This trick is used in a great
many quantum algorithms to load a quantum memory register efficiently with an equally weighted
superposition of all the numbers it can contain

When the Hadamard gate H acts on a computational basis state |x〉 it transforms the
input according to H |x〉 = 1√

2
(|0〉 + (−1)x |1〉).

The Hadamard is one of the unsung heroes of quantum computing. It is a de-
ceptively simple looking gate but it harbors a remarkable property that, if you think
about it, turns out to be of vital importance to quantum computing. If you prepare n

qubits each in the state |0〉 and you apply to each qubit, in parallel, its own Hadamard
gate, then, as shown in Fig. 2.19, the state produced is an equal superposition of all
the integers in the range 0 to 2n − 1.

H |0〉 ⊗H |0〉 ⊗ · · · ⊗H |0〉 = 1√
2n

2n−1∑
j=0

|j 〉 (2.20)

where |j 〉 is the computational basis state indexed by the binary number that would
correspond to the number j in base-10 notation. For example, in a 7-qubit register
the state “|19〉” corresponds to the computational basis state |0010011〉. The first
two bits (00) are padding to make the binary number 7 bits in length, and 100112
(i.e., 10011 in base 2) corresponds to 1910 (i.e. 19 in base-10).

The utility of the Hadamard gate derives from that fact that by applying, in par-
allel, a separate Hadamard gate to each of n qubits, each initially in the state |0〉,

76 2 Quantum Gates

we can create an n-qubit superposition containing 2n component eigenstates. These
eigenstates represent all the possible bit strings one can write using n bits. The im-
portance of this capability is often overlooked. But, in reality, it is one of the most
important tricks of quantum computing as it gives is the ability to load exponentially
many indices into a quantum computer using only polynomially many operations.
Had Nature been unkind, and had we had to enter the different bit-strings individu-
ally, as we do in classical computing, then quantum computing would have had far
less potential for breakthroughs in computational complexity.

2.4.2 Rotations About the x-, y-, and z-Axes

Having seen a couple of examples of special quantum logic gates (i.e.,
√

NOT
and H) we next turn to the question of what is the most general kind of quan-
tum gate for a single qubit. To address this, we must first introduce the family of
quantum gates that perform rotations about the three mutually perpendicular axes of
the Bloch sphere.

A single qubit pure state is represented by a point on the surface of the Bloch
sphere. The effect of a single qubit gate that acts in this state is to map it to some
other point on the Bloch sphere. The gates that rotate states around the x-, y-, and
z-axes are of special significance since we will be able to decompose an arbitrary
1-qubit quantum gate into sequences of such rotation gates.

First, let’s fix our reference frame with respect to which arbitrary single qubit
pure states is defined. We choose three mutually perpendicular axes, x-, y-, and z-,
or equivalently, three polar coordinates, a radius r (which is unity for all points on
the surface of the Bloch sphere) and two angles θ (the latitude, measured monoton-
ically from the North pole to the South pole over the interval 0≤ θ ≤ π) and φ the
longitude (measured monotonically as we rotate around the z-axis in a clockwise
fashion. So any point on the surface of the Bloch sphere can be specified using its
(x, y, z) coordinates or, equivalently, its (r, θ,φ) coordinates. Right? Well actually
not quite right since a general qubit state also must specify an overall phase fac-
tor. But let’s ignore this for now. These two coordinate systems are related via the
equations:

x = r sin(θ) cos(φ) (2.21)

y = r sin(θ) sin(φ) (2.22)

z = r cos(θ) (2.23)

So what are the quantum gates that rotate this state about the x-, y-, or z-axes? We
claim that these gates, illustrated in Figs. 2.20, 2.21, and 2.22, can be built from the
Pauli X, Y , Z, matrices, and the fourth Pauli matrix, 1, can be used to achieve a
global overall phase shift. Specifically, let’s define the following unitary matrices,
Rx(θ), Ry(θ), Rz(θ), and Ph from Hamiltonians chosen to be, respectively, the four
Pauli matrices, X, Y , Z, and I (the identity matrix). That is, we have:

2.4 1-Qubit Gates 77

Fig. 2.20 An Rx(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Rx(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the x-axis. Note that a rotation of 4π is needed to
return to the original state

Rx(α) = exp(−iαX/2)=
(

cos(α2) −i sin(α2)

−i sin(α2) cos(α2)

)
(2.24)

Ry(α) = exp(−iαY/2)=
(

cos(α2) − sin(α2)

sin(α2) cos(α2)

)
(2.25)

Rz(α) = exp(−iαZ/2)=
(
e−iα/2 0

0 eiα/2

)
(2.26)

Ph(δ) = eiδ
(

1 0
0 1

)
(2.27)

Consider the gate Rz(α). Let’s see how this gate transforms an arbitrary single qubit
state |ψ〉 = cos(θ2)|0〉 + eiφ sin(θ2)|1〉.

78 2 Quantum Gates

Fig. 2.21 An Ry(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Ry(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the y-axis. Note that a rotation of 4π is needed to
return to the original state

Rz(α)|ψ〉 =
(
e−iα/2 0

0 eiα/2

)
·
(

cos
(
θ
2

)
eiφ sin

(
θ
2

)
)

=
(

e−iα/2 cos
(
θ
2

)
eiα/2eiφ sin

(
θ
2

)
)

= e−iα/2 cos

(
θ

2

)
|0〉 + eiα/2eiφ sin

(
θ

2

)
|1〉 (2.28)

We are free to multiply this state by any overall phase factor we please since for any
quantum state |χ〉, the states |χ〉 and eiγ |χ〉 are indistinguishable. So let’s multiply
by an overall phase factor of exp(iα/2), which gives us the state:

Rz(α)|ψ〉 ≡ cos

(
θ

2

)
|0〉 + ei(φ+α) sin

(
θ

2

)
(2.29)

2.4 1-Qubit Gates 79

Fig. 2.22 An Rz(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Rz(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the z-axis. Note that a rotation of 4π is needed to
return to the original state

where ≡ is to be read as “equal up to an unimportant arbitrary overall phase factor”.
Hence the action of the Rz(α) gate on |ψ〉 has been to advance the angle φ by α and
hence rotate the state about the z-axis through angle α. This is why we call Rz(α) a
z-rotation gate. We leave it to the exercises for you to prove that Rx(α) and Ry(α)

rotate the state about the x- and y-axes respectively.
Rotations on the Bloch sphere do not conform to commonsense intuitions about

rotations that we have learned from our experience of the everyday world. In par-
ticular, usually, a rotation of 2π radians (i.e., 360 degrees) of a solid object about
any axis, restores that object to its initial orientation. However, this is not true of
rotations on the Bloch sphere! When we rotate a quantum state through 2π on the
Bloch sphere we don’t return it to its initial state. Instead we pick up a phase factor.
To see this, let’s compute the effect of rotating our arbitrary single qubit pure state,
|ψ〉 about the z-axis through 2π radians. We have:

80 2 Quantum Gates

Fig. 2.23 “Dirac’s Belt” uses a commonplace belt to illustrate that topology of a single qubit state
wherein a rotation of 4π (two full twists) is required to restore the belt to its starting configuration

Rz(2π)|ψ〉 =
(
e−iπ 0

0 eiπ

)
·
(

cos
(
θ
2

)
eiφ sin

(
θ
2

)
)

=
(
− cos

(
θ
2

)
−eiφ sin

(
θ
2

)
)
=−|ψ〉 (2.30)

which has an extra overall phase of −1. To restore a state back to its original form
we need to rotate it through 4π on the Bloch sphere.

Have you ever encountered anything like this in your everyday world? You prob-
ably think not, but you’d be wrong! Find yourself a thick leather belt. Have a friend
hold one end flat and apply a rotation of 2π to the other end, i.e., one full twist (see
Fig. 2.23). Now try to loop the belt around itself without tilting either end. In so
doing, can you remove the twist? After some experimentation you should be con-
vinced that the twist is there to stay and there is no way to remove it and yet keep the
orientations of the ends of the belt fixed relative to one another. By analogy, a rota-
tion of 2π has not restored the belt to its initial (flat and twist free) state. Ok so let’s
try again. Have a friend hold one end flat and apply a rotation of 4π to the other end,
i.e., two full twists. Now try to loop the belt around itself without tilting either end.
After a little experimentation you should find, to the surprise of most people, that the
twist has gone! In other words, a rotation of 4π to one end of the belt has resulted
in a state that is equivalent to the original (flat and twist free) state of the belt.

2.4 1-Qubit Gates 81

2.4.2.1 NOT,
√

NOT, and Hadamard from Rotation Gates

The NOT,
√

NOT, and Hadamard gates can all be obtained via sequences of rotation
gates. For example,

NOT ≡ Rx(π) · Ph

(
π

2

)
(2.31)

NOT ≡ Ry(π) ·Rz(π) · Ph

(
π

2

)
(2.32)

√
NOT ≡ Rx

(
π

2

)
· Ph

(
π

4

)
(2.33)

√
NOT ≡ Rz

(
−π

2

)
·Ry

(
π

2

)
·Rz

(
π

2

)
· Ph

(
π

4

)
(2.34)

H ≡ Rx(π) ·Ry

(
π

2

)
· Ph

(
π

2

)
(2.35)

H ≡ Ry

(
π

2

)
·Rz(π) · Ph

(
π

2

)
(2.36)

2.4.3 Arbitrary 1-Qubit Gates: The Pauli Decomposition

So far we have seen how specific 1-qubit gates can be decomposed into sequences of
rotation gates, i.e., Rx(·),Ry(·),Rz(·), and phase gates, i.e., Ph(·). Next we consider
how to decompose an arbitrary, maximally general, 1-qubit gate.

A maximally general 1-qubit gate will correspond to some 2× 2 unitary matrix,
U . As U is unitary the magnitude of its determinant must be unity, i.e., |det(U)| = 1.
This equation can be satisfied by det(U) taking on any of the values +1,−1,+i, or
−i. If det(U)=+1 then U is said to be “special unitary”. If not, we can always write
U in the form U = eiδV where V is a special unitary matrix, i.e., det(V)=+1. So
to find a circuit for the unitary matrix U it is sufficient to find a circuit for the special
unitary matrix V , because simply appending a phase shift gate Ph(δ) to the circuit
for V will give a circuit for U . This is easily seen by realizing

U = eiδV = eiδ
(

1 0
0 1

)
· V =

(
eiδ 0

0 eiδ

)
· V = Ph(δ) · V

As V is a 2 × 2 special unitary matrix its rows and columns are orthonormal and,
its elements, most generally, are complex numbers. Hence, V must have the form:

V =
(
α − β̄

β ᾱ

)
(2.37)

82 2 Quantum Gates

Fig. 2.24 Any 1-qubit special unitary gate can be decomposed into a rotation about the z-axis, the
y-axis, and the z-axis

Fig. 2.25 Any 1-qubit unitary gate can be decomposed into a rotation about the z-axis, the y-axis,
the z-axis, followed by a phase shift

where α and β are arbitrary complex numbers that satisfy the determinant equation
det(V)= αᾱ − β(−β̄)= |α|2 + |β|2 = 1. This equation can be satisfied by picking
α = eiμ cos(θ/2), and β = eiξ sin(θ/2). This means we can also write the matrix
for V as:

V =
(
α − β̄

β ᾱ

)
with α→ eiμ cos(θ/2) and β → eiξ sin(θ/2)

=
(
eiμ cos(θ/2) −e−iξ sin(θ/2)

eiξ sin(θ/2) e−iμ cos(θ/2)

)
(2.38)

But this matrix can also be obtained as the product of the three gates Rz(a) ·Ry(b) ·
Rz(c) with a→−(μ− ξ), b→ θ , and c→−(μ+ ξ).

Rz(a) ·Ry(b) ·Rz(c)=
(
e− ia

2 − ic
2 cos

(
b
2

) −e
ic
2 − ia

2 sin
(
b
2

)
e

ia
2 − ic

2 sin
(
b
2

)
e

ia
2 + ic

2 cos
(
b
2

)
)

with a→−(μ− ξ), b→ θ, and c→−(μ+ ξ)

=
(
eiμ cos(θ/2) −e−iξ sin(θ/2)

eiξ sin(θ/2) e−iμ cos(θ/2)

)
= V

(2.39)

Thus, any 1-qubit special unitary gate V can be decomposed into the form Rz(a) ·
Ry(b) · Rz(c) as shown in Fig. 2.24. Hence, any 1-qubit unitary gate, U can be
decomposed into the form:

U ≡Rz(a) ·Ry(b) ·Rz(c) · Ph(d) (2.40)

as shown in Fig. 2.25.

2.5 Controlled Quantum Gates 83

2.4.4 Decomposition of Rx Gate

Lest it seem peculiar that we can achieve an arbitrary 1-qubit gate without perform-
ing a rotation about the x-axis, we note that it is possible to express rotations about
the x-axis purely in terms of rotations about the y- and z-axes. Specifically, we have
the identities:

Rx(θ)= exp(−iθX/2)=
(

cos(θ2) i sin(θ2)

i sin(θ2) cos(θ2)

)

≡Rz(−π/2) ·Ry(θ) ·Rz(π/2)

≡Ry(π/2) ·Rz(θ) ·Ry(−π/2) (2.41)

2.5 Controlled Quantum Gates

To perform non-trivial computations it is often necessary to change the opera-
tion applied to one set of qubits depending upon the values of some other set of
qubits. The gates that implement these “if-then-else” type operations are called con-
trolled gates. Some examples of controlled gates that appeared earlier in this chap-
ter are CNOT (controlled-NOT), FREDKIN (controlled-SWAP), and TOFFOLI
(controlled-controlled-NOT). The justification for calling these gates “controlled”
stems from their effect on the computational basis states. For example, CNOT trans-
forms the computational basis states such that the second qubit is negated if and only
if the first qubit is in state |1〉.

|00〉 CNOT−→ |00〉 (2.42)

|01〉 CNOT−→ |01〉 (2.43)

|10〉 CNOT−→ |11〉 (2.44)

|11〉 CNOT−→ |10〉 (2.45)

Hence, the value of the second qubit (called the “target” qubit) is controlled by the
first qubit (called the “control” qubit).

Likewise, under the action of the FREDKIN gate the second and third qubits are
swapped if and only if the first qubit is in state |1〉. So the FREDKIN gate performs
a controlled-SWAP operation.

|000〉 FREDKIN−→ |000〉 (2.46)

|001〉 FREDKIN−→ |001〉 (2.47)

|010〉 FREDKIN−→ |010〉 (2.48)

84 2 Quantum Gates

|011〉 FREDKIN−→ |011〉 (2.49)

|100〉 FREDKIN−→ |100〉 (2.50)

|101〉 FREDKIN−→ |110〉 (2.51)

|110〉 FREDKIN−→ |101〉 (2.52)

|111〉 FREDKIN−→ |111〉 (2.53)

It is also possible to have controlled gates with multiple control qubits and mul-
tiple target qubits. The action of the TOFFOLI gate is to negate the third qubit (i.e.,
the target qubit) if and only if the first two qubits (the control qubits) are in state
|11〉. Thus the TOFFOLI gate has two control qubits and one target qubit.

|000〉 TOFFOLI−→ |000〉 (2.54)

|001〉 TOFFOLI−→ |001〉 (2.55)

|010〉 TOFFOLI−→ |010〉 (2.56)

|011〉 TOFFOLI−→ |011〉 (2.57)

|100〉 TOFFOLI−→ |100〉 (2.58)

|101〉 TOFFOLI−→ |101〉 (2.59)

|110〉 TOFFOLI−→ |111〉 (2.60)

|111〉 TOFFOLI−→ |110〉 (2.61)

Now all this is very well, but aren’t CNOT, FREDKIN and TOFFOLI not just
classical reversible gates? Well yes they are! But in addition they are also quantum
gates because the transformations they perform (i.e., permutations of computational
basis states) also happen to be unitary. But indeed, controlled quantum gates can
be far more sophisticated than controlled classical gates. For example, the natural
quantum generalization of the controlled-NOT gate is the controlled-U gate:

controlled-U ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.62)

where U = (U11 U12
U21 U22

)
is an arbitrary 1-qubit gate.

2.5 Controlled Quantum Gates 85

Fig. 2.26 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top qubit is |0〉 or |1〉

2.5.1 Meaning of a “Controlled” Gate in the Quantum Context

If we are using CNOT, FREDKIN or TOFFOLI gates within the context of classical
reversible computing their inputs are only ever classical bits. Hence, there is no
problem imagining reading each control bit to determine what action to perform on
the target bit. But if we use these gates in the context of quantum computing, where
they may be required to act on arbitrary superposition states, we ought to question
whether it continues to make sense to speak of “controlled” gates because, in the
quantum case, the act of reading the control qubit will, in general, perturb it.

The answer is that we do not need to read control bits during the application of
a controlled quantum gate! Instead if a controlled quantum gate acts on a superpo-
sition state all of the control actions are performed in parallel to a degree commen-
surate with the amplitude of the corresponding control qubit eigenstate within the
input superposition state.

For example, suppose A and B are a pair of unitary matrices corresponding to
arbitrary 1-qubit quantum gates. Then the gate defined by their direct sum:

A⊕B =
(
A 0
0 B

)
=

⎛
⎜⎜⎝
A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ (2.63)

performs a “controlled” operation in the following sense. If the first qubit is in state
|0〉 then the operation A is applied to the second qubit. Conversely, if the first qubit
is in state |1〉 then the operation B is applied to the second qubit. And if the control
qubit is some superposition of |0〉 and |1〉 then both control actions are performed
to some degree. The quantum circuit for such a gate is shown in Fig. 2.26. Don’t
believe me? Let’s work it out explicitly.

If the first qubit is in state |0〉 we can write the input as a state of the form
|0〉(a|0〉 + b|1〉), and if the first qubit is in state |1〉 we write the input as a state of

86 2 Quantum Gates

the form |1〉(a|0〉 + b|1〉). For the first case, when the gate acts we therefore obtain:

(A⊕B)(|0〉 ⊗ (a|0〉 + b|1〉))=

⎛
⎜⎜⎝
A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
a

b

0
0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
aA11 + bA12
aA21 + bA22

0
0

⎞
⎟⎟⎠

= (aA11 + bA12)|00〉 + (aA21 + bA22)|01〉
= |0〉 ⊗A(a|0〉 + b|1〉) (2.64)

Likewise, for the second case, when the gate acts on an input of the form |1〉 ⊗
(a|0〉 + b|1〉) we obtain:

(A⊕B)(|1〉 ⊗ (a|0〉 + b|1〉)) =

⎛
⎜⎜⎝
A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

0
0
a

b

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0
0

aB11 + bB12
aB21 + bB22

⎞
⎟⎟⎠

= (aB11 + bB12)|10〉 + (aB21 + bB22)|11〉
= |1〉 ⊗B(a|0〉 + b|1〉) (2.65)

Putting these results together, when the 2-qubit controlled gate (A⊕ B) acts on a
general 2-qubit superposition state |ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 the control
qubit is no longer purely |0〉 or purely |1〉. Nevertheless, the linearity of quantum
mechanics guarantees that the correct control actions are performed, in the correct
proportions, on the target qubit.

(A⊕B)|ψ〉 = |0〉 ⊗A(a|0〉 + b|1〉)+ |1〉 ⊗B(c|0〉 + d|1〉) (2.66)

2.5.2 Semi-Classical Controlled Gates

Note that although we do not have to read the values of control qubits in order for
controlled actions to be imposed on target qubits, we may do so if we wish. Specifi-
cally, in the traditional model of quantum computation one prepares a quantum state,
evolves it unitarily through some quantum circuit, and then makes a final measure-
ment on the output qubits. The values of the control qubits contained within such a

2.5 Controlled Quantum Gates 87

Fig. 2.27 Semi-classical quantum gates. Measurements of a control qubit made after a controlled
gate can be moved before the gate and the subsequent controlled gate then be classically controlled.
Griffiths and Niu used this trick in their semi-classical QFT [213], and Brassard used it in his
quantum teleportation circuit [75]

quantum circuit are never read. However, we don’t have to operate quantum circuits
this way. If we want, we can move the final measurements on control qubits to earlier
parts of the quantum circuit, and use the resulting classical bits to determine which
gate operation to apply to the corresponding target qubits. Such a strategy will, of
course, change the final state produced by the quantum circuit on any particular
run, but it won’t change their statistical properties averaged over many repetitions.
Such intermediate measurements have been used to make a “semi-classical Fourier
transform” [213] and also within a quantum circuit for teleportation [75].

For example, as shown in Fig. 2.27 the control qubits of the controlled gates in
the quantum Fourier transform can be measured immediately after they have acted
and the resulting classical bit used to classically condition a subsequent controlled
gate operation. The ability to move some final measurements to earlier stages of a
quantum circuit and then condition subsequent gate operations on their (classical)
outcomes can be of practical value by lowering the engineering complexity required
to achieve practical quantum computational hardware.

2.5.3 Multiply-Controlled Gates

Controlled gates can be generalized to have multiple controls as shown in Fig. 2.28.
Here a different operation is performed on the third qubit depending on the state
of the top two qubits. Such multiply-controlled quantum gates are quite common
in practical quantum circuits. Note, however, that the number of distinct states of
the controls grows exponentially with the number of controls. So it becomes more
difficult to actually build multiply-controlled gates beyond just a few control qubits.

2.5.4 Circuit for Controlled-U

Regardless of when qubits are to be read, we should like to know how to decompose
these controlled gates into a simpler set of standard gates. Factoring a controlled gate

88 2 Quantum Gates

Fig. 2.28 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top two qubits are |00〉, |01〉, |10〉, or |1〉

as in A⊕ B = (1⊗ A) · (1⊗ A−1 · B) where 1 = (1 0
0 1

)
, we can see that the core

“controlled” component of the gate is really a gate of the form:

controlled-U ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.67)

where the Uij are the elements of an arbitrary 1-qubit gate U = A−1 · B . We call a

2-qubit gate of the form
(
1 0̂
0̂ U

)
a controlled-U gate.

We can construct a quantum circuit for a 2-qubit controlled-U gate in terms of
CNOT gates and 1-qubit gates as follows. Let U be an arbitrary 1-qubit gate having
a single qubit (Pauli) decomposition of the form U = eiaRz(b) ·Ry(c) ·Rz(d). The
action of the controlled-U gate is to do nothing to the target qubit when the control
qubit is |0〉 and to apply U to the target qubit when the control qubit is |1〉. The
act of “doing nothing” is mathematically equivalent to applying the identity gate to
the target. So given the quantum circuit decomposition for computing U , what is a
quantum circuit that computes controlled-U?

By (2.40) there exist angles a, b, c, and d such that:

U = eiaRz(b) ·Ry(c) ·Rz(d) (2.68)

Given these angles, define matrices A, B , C as follows:

A = Rz

(
d − b

2

)
(2.69)

B = Ry

(
− c

2

)
·Rz

(
−d + b

2

)
(2.70)

C = Rz(b) ·Ry

(
c

2

)
(2.71)

Δ = diag(1, eia) (2.72)

We claim that the circuit shown in Fig. 2.29 computes controlled-U . Here is how
it works. When the control qubit is in state |0〉 the Δ gate does change it because
Δ|0〉 = |0〉 (with no phase addition). The control qubits of the CNOT gates are

2.5 Controlled Quantum Gates 89

Fig. 2.29 A quantum circuit
for a controlled-U gate,
where U is an arbitrary
1-qubit gate

therefore also |0〉 and so the CNOTs do not do anything to the target qubit. Hence,
the transformation to which the target qubit will be subject when the control qubit
in the circuit is |0〉 is C ·B ·A. Note that the order is reversed with respect to the left
to right sequence in the circuit diagram because, mathematically, if the A gate acts
first, then the B gate, and then the C gate, the matrices must be multiplied in the
order C ·B ·A since when this object acts in an input state |ψ〉 we want the grouping
to be (C · (B · (A|ψ〉))) (gate A first then gate B then gate C). A little algebra shows
that the net effect of these three operations is the identity (as required).

C ·B ·A≡Rz(b) ·Ry

(
c

2

)
·Ry

(
− c

2

)
·Rz

(
−d + b

2

)
·Rz

(
d − b

2

)
=

(
1 0
0 1

)

(2.73)

Next we consider what happens when the control qubit is in state |1〉. In this case
the control qubit first picks up a phase factor since Δ|1〉 = eia|1〉. The control qubits
of the CNOT gates will all be set to |1〉, and so they will apply a NOT gate (equiv-
alent to a Pauli-X gate) to the target qubit when the CNOT gate acts. Hence, the
transformation to which the target qubit will be subject when the control qubit
is |1〉 is eiaC · X · B · X · A. To simplify this expression we need to notice that
X ·Ry(θ) ·X ≡Ry(−θ) and X ·Rz(θ) ·X ≡Rz(−θ). Hence we obtain:

C ·X ·B ·X ·A=Rz(b) ·Ry

(
c

2

)
·X ·Ry

(
− c

2

)
·Rz

(
−d + b

2

)

·X ·Rz

(
d − b

2

)

=Rz(b) ·Ry

(
c

2

)
·X ·Ry

(
− c

2

)
·X ·X ·Rz

(
−d + b

2

)

·X ·Rz

(
d − b

2

)

=Rz(b) ·Ry

(
c

2

)
·X.Ry

(
− c

2

)
·X ·X ·Rz

(
−d + b

2

)

·X ·Rz

(
d − b

2

)

=Rz(b) ·Ry

(
c

2

)
·Ry

(
c

2

)
·Rz

(
b+ d

2

)
·Rz

(
d − b

2

)

=Rz(b) ·Ry(c) ·Rz(d) (2.74)

90 2 Quantum Gates

Fig. 2.30 A quantum circuit
for an upside down
controlled-U gate, where U

is an arbitrary 1-qubit gate

Hence the circuit for controlled-U performs as follows:

controlled-U |0〉(a|0〉 + b|1〉) = |0〉 ⊗C ·B ·A(a|0〉 + b|1〉)
= |0〉 ⊗ (a|0〉 + b|1〉)

controlled-U |1〉(a|0〉 + b|1〉) = eia|1〉 ⊗C ·X ·B ·X ·A(a|0〉 + b|1〉)
= |1〉 ⊗ eiaC ·X ·B ·X ·A(a|0〉 + b|1〉)
= |1〉 ⊗U(a|0〉 + b|1〉)

(2.75)

Thus U is applied to the target qubit if and only if the control qubit is set to |1〉.

2.5.5 Flipping the Control and Target Qubits

The control qubit does not have to be the topmost qubit in a quantum circuit. An
upside down controlled-U gate would be given by SWAP · controlled-U · SWAP as
shown in Fig. 2.30.

upside-down-controlled-U = SWAP ·controlled-U ·SWAP=

⎛
⎜⎜⎝

1 0 0 0
0 U11 0 U12
0 0 1 0
0 U21 0 U22

⎞
⎟⎟⎠

(2.76)

The second qubit is now the control qubit and the first qubit the target qubit. The
result is the matrix corresponding to a 2-qubit controlled quantum gate inserted into
a circuit “upside down”.

2.5.6 Control-on-|0〉 Quantum Gates

Furthermore, in a controlled quantum gate the value that determines whether or not
a special action is performed does not have to be |1〉; it can be |0〉 (or any other state)
too. A 2-qubit quantum gate with the special action conditioned on the value of the

2.5 Controlled Quantum Gates 91

Fig. 2.31 A quantum circuit for a controlled quantum gate that acts when its control qubit is in
state |0〉 (as indicated by the open circle on the control qubit) rather than state |1〉

first qubit being |0〉 instead of |1〉 is related to the usual controlled gate as follows:

controlled[1]-U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.77)

controlled[0]-U = (NOT⊗ 12) · controlled[1]-U · (NOT⊗ 12)

=

⎛
⎜⎜⎝
U11 U12 0 0
U21 U22 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (2.78)

as illustrated in Fig. 2.31.

2.5.7 Circuit for Controlled-Controlled-U

We can carry on in a similar fashion by, e.g., allowing multiple control qubits and/or
target qubits. For example, earlier we interpreted the TOFFOLI gate as a controlled-
controlled-NOT gate. Generalizing leads us to consider a controlled-controlled-U
gate, where U is an arbitrary 1-qubit gate.

As a matrix, the controlled-controlled-U gate has the form:

controlled-controlled-U ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 U11 U12
0 0 0 0 0 0 U21 U22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.79)

We can decompose a controlled-controlled-U gate into a circuit built from only
CNOT gates and 1-qubit gates of the form shown in Fig. 2.32 (see [33]). Here V =
U1/2. The operation of this circuit can be understood by considering what it does to

92 2 Quantum Gates

Fig. 2.32 Quantum circuit
for the
controlled-controlled-U
operation. Here V is any
quantum gate such that
V 2 =U

the eight possible computational basis states of a three qubit system.

|000〉 ctrl-ctrl-U−→ |000〉 (2.80)

|001〉 ctrl-ctrl-U−→ |001〉 (2.81)

|010〉 ctrl-ctrl-U−→ |01〉 ⊗ (V † · V |0〉)= |010〉 (2.82)

|011〉 ctrl-ctrl-U−→ |01〉 ⊗ (V † · V |1〉)= |011〉 (2.83)

|100〉 ctrl-ctrl-U−→ |10〉 ⊗ (V · V †|0〉)= |100〉 (2.84)

|101〉 ctrl-ctrl-U−→ |10〉 ⊗ (V · V †|1〉)= |101〉 (2.85)

|110〉 ctrl-ctrl-U−→ |11〉 ⊗ V 2|0〉 = |11〉 ⊗U |0〉 (since V 2 =U) (2.86)

|111〉 ctrl-ctrl-U−→ |11〉 ⊗ V 2|1〉 = |11〉 ⊗U |1〉 (since V 2 =U) (2.87)

2.6 Universal Quantum Gates

A set of gates, S , is “universal” if any feasible computation can be achieved in a
circuit that uses solely gates from S . The most interesting universal sets of gates
are those containing a single gate. The NAND gate, the NOR gate, and the NMA-
JORITY gate, are all known, individually, to be universal for classical irreversible
computing. Similarly, the TOFFOLI and FREDKIN gates are each known to be
universal for classical reversible computing. Are there similar universal gates for
quantum computing? If so, how many qubits does the smallest universal quantum
gate have to have?

The fact that the closest classical gates to the quantum gates are the classical
reversible gates, and these need a minimum of three bits to be universal, might lead
you to expect that the smallest universal quantum gate will be a 3-qubit gate too.
Indeed, there is a 3-qubit gate that is universal for quantum computing. It is called a
DEUTSCH gate, and any feasible quantum computation can be achieved in a circuit
built only from DEUTSCH gates acting on various triplets of qubits [137]. This gate

2.6 Universal Quantum Gates 93

has the form:

DEUTSCH=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos(θ) sin(θ)
0 0 0 0 0 0 sin(θ) i cos(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.88)

where θ is any constant angle such that 2θ/π is an irrational number. However,
circuits for an arbitrary 2n× 2n unitary matrix built from this gate are typically very
inefficient in gate count.

Surprisingly, however, Deutsch’s gate is not the smallest possibility. David Di-
Vincenzo and John Smolin showed that DEUTSCH’s gate could be built from only
2-qubit gates [149], and Adriano Barenco showed it could be obtained using only
just a single type of 2-qubit gate—the BARENCO gate [32], which has the form:

BARENCO=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiα cos(θ) −iei(α−φ) sin(θ)
0 0 −iei(α+φ) sin(θ) eiα cos(θ)

⎞
⎟⎟⎠ (2.89)

where φ,α and θ are fixed irrational multiples of π and each other.
Thus, quantum gates are very different from classical gates in terms of univer-

sality. Whereas in classical reversible computing there is no 2-bit gate that is both
reversible and universal, in quantum computing almost all 2-qubit gates are univer-
sal [80, 147]. This is quite remarkable. In particular, it means that certain classi-
cal reversible computations (which are described by permutation matrices and are,
therefore, unitary) can potentially be implemented more efficiently using quantum
gates than using only classical reversible gates. Ironically, it is conceivable that one
of the nearest term large scale applications of quantum gates will be in implemen-
tations of (perhaps spintronic-based) “classical” reversible computers for fast, low
power, reversible microprocessors.

The primary reason to study universal gates is to make the life of the experimen-
talist a little easier. If all quantum computations can be built from a single type of
gate, then an experimentalist need only focus on how to achieve that gate in order
to be guaranteed that any quantum computation is, in principle, attainable. Unfor-
tunately, in practice, it is quite hard to use the Barenco gate as a primitive gate
as it requires a 2-qubit Hamiltonian having three “tunable” parameters, φ,α and
θ . However, luckily, the BARENCO gate is clearly a controlled-U gate and can
therefore be further decomposed, using the methods of Sect. 2.9, into a sequence
of 1-qubit gates and a single (fixed) 2-qubit gate such as CNOT. Hence, the set of
gates S = {Rx(α),Ry(β),Rz(γ),Ph(δ),CNOT} must be a universal set of gates for
quantum computing (and we can even drop one of the rotation gates if we wanted

94 2 Quantum Gates

Table 2.14 Families of gates that are universal for quantum computing

Universal gate family Meaning Noteworthy properties

{Rx,Ry,Rz,Ph,CNOT} The union of the set of
1-qubit gates and CNOT is
universal

The most widely used set of
gates in current quantum
circuits

BARENCO(φ,α, θ) A single type of 2-qubit gate
is universal

The surprise here is that
whereas in classical
reversible computing no 2-bit
classical reversible gate is
universal, in quantum
computing almost all 2-qubit
gates are universal

{H,S,T ,CNOT} where
H = 1√

2

(1 1
1 −1

)
is the

Walsh-Hadamard gate,
S = (1 0

0 i

)
is the “phase gate”,

and T = (1 0
0 exp(iπ/4)

)
is the

“π/8 gate”

Three fixed-angle 1-qubit
gates together with CNOT

The surprise here is that fixed
angle gates can form a
universal set. In fact, the
Solvay-Kitaev theorem [284]
implies that any 1-qubit gate
can be approximated to
accuracy ε using O(logc 1/ε)
gates from the set
{H,S,T ,CNOT} where c is
a positive constant

to). In fact, the set of all 1-qubit gates and CNOT is the most common set of gates
used in constructing practical quantum circuits. Other universal gate sets are known,
summarized in Table 2.14, that involve only fixed-angle gates. However, these do
not typically lead to efficient quantum circuits due to the need to repeat fixed angle
rotations many times to approximate a desired 1-qubit gate to adequate precision.
Moreover, even if a given set of gates is universal, and therefore in principle all that
is needed to achieve any quantum circuit, in practice, certain computations can be
done more efficiently if an “over-complete” family of universal gates is used.

2.7 Special 2-Qubit Gates

The decision to use the set of all 1-qubit gates and CNOT as the universal family
of gates, might not be the best choice depending on your type of quantum com-
puting hardware. Different types of quantum computing hardware are associated
with different Hamiltonians. So while a CNOT gate (say) may be easy to obtain in
one embodiment, it might not be easy in another. For this reason, the next sections
describe several different families of 1-qubit and 2-qubit gates that are more “natu-
ral” with respect to different types of quantum computing hardware. We give rules
for inter-changing between these types of 2-qubit gates so that experimentalists can
look at a quantum circuit expressed using one gate family and map it into another,
perhaps easier to attain, family.

2.7 Special 2-Qubit Gates 95

2.7.1 CSIGN, SWAPα , iSWAP, Berkeley B

The physical interactions available within different types of quantum computer
hardware can give rise to different “natural” 2-qubit gates such as iSWAP, SWAPα ,
CSIGN etc. These are typically easier to achieve than CNOT in the particular phys-
ical embodiment, and if maximally entangling, provide no less efficient decomposi-
tions of arbitrary 2-qubit operations.

The four most common alternatives to CNOT are shown below:

CSIGN =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

SWAPα =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2

(
1+ eiπα

) 1
2

(
1− eiπα

)
0

0 1
2

(
1− eiπα

) 1
2

(
1+ eiπα

)
0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(2.90)

iSWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎜⎝

cos
(
π
8

)
0 0 i sin

(
π
8

)
0 cos

(3π
8

)
i sin

(3π
8

)
0

0 i sin
(3π

8

)
cos

(3π
8

)
0

i sin
(
π
8

)
0 0 cos

(
π
8

)

⎞
⎟⎟⎟⎟⎟⎠

Figure 2.33 shows the special icons for some of these gates and summarizes their
properties with respect to qubit reversal and their relationship to their own inverse.

2.7.1.1 CSIGN

CSIGN arises naturally in Linear Optical Quantum Computing (LOQC).

CSIGN=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (2.91)

96 2 Quantum Gates

Fig. 2.33 Icons for the special quantum gates SWAP, iSWAP, and SWAPα . The first row shows
the basic gate icon. The second row emphasizes that, unlike CNOT, these gates do not have a
preferred “control” qubit and can be inserted “right way up” or “upside down” without it af-
fecting the operation the gate performs. However, whereas CNOT is its own inverse, the same
is not true for iSWAP (for which iSWAP† = iSWAP−1 = iSWAP3) and SWAPα (for which
(SWAPα)† = (SWAPα)−1 = SWAP−α)

2.7.1.2 iSWAP

iSWAP arises naturally in superconducting quantum computing via Hamiltonians
implementing the so-called XY model.

iSWAP=

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ (2.92)

2.7.1.3
√

SWAP

√
SWAP arises naturally in spintronic quantum computing as that approach employs

the “exchange interaction”.

2.7 Special 2-Qubit Gates 97

√
SWAP=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.93)

2.7.1.4 SWAPα

SWAPα also arises naturally in spintronic quantum computing. The duration of the
exchange operation determines the exponent achieved in SWAPα .

SWAPα =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2

(
1+ eiπα

) 1
2

(
1− eiπα

)
0

0 1
2

(
1− eiπα

) 1
2

(
1+ eiπα

)
0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.94)

2.7.1.5 The Berkeley B Gate

Hamiltonian is H = π
8 (2X⊗X+ Y ⊗ Y). Gate is U = exp(iH).

B = ei
π
8 (2X⊗X+Y⊗Y)

=

⎛
⎜⎜⎜⎜⎜⎝

cos
(
π
8

)
0 0 i sin

(
π
8

)
0 cos

(3π
8

)
i sin

(3π
8

)
0

0 i sin
(3π

8

)
cos

(3π
8

)
0

i sin
(
π
8

)
0 0 cos

(
π
8

)

⎞
⎟⎟⎟⎟⎟⎠

=
√

2−√
2

2

⎛
⎜⎜⎜⎜⎜⎝

1+√
2 0 0 i

0 1 i
(
1+√

2
)

0

0 i
(
1+√

2
)

1 0

i 0 0 1+√
2

⎞
⎟⎟⎟⎟⎟⎠

(2.95)

2.7.2 Interrelationships Between Types of 2-Qubit Gates

In experimental quantum computing one is faced with having to work with the phys-
ical interactions Nature provides. A priori, there is no reason to expect that the most
accessible and controllable physical interactions should happen to permit a quan-
tum mechanical evolution that can be interpreted as a CNOT gate. However, if one

98 2 Quantum Gates

looks at the Hamiltonians available in different types of physical systems one can
always find 2-qubit gates from which we can, in conjunction with 1-qubit gates,
build CNOT gates. In the following sections we give explicit constructions for how
to build CNOT gates out of the kinds of 2-body interactions that are commonly
available in real physical systems.

2.7.2.1 CNOT from CSIGN

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and CSIGN.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠≡

(
12 ⊗Ry

(
π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ ·

(
12 ⊗Ry

(
−π

2

))

(2.96)
An equivalent quantum circuit diagram is shown in Fig. 2.34.

2.7.2.2 CNOT from
√

SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and
√

SWAP.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
Rz

(
−π

2

)
⊗

(
Ry

(
−π

2

)
·Rz

(
−π

2

)))

·

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

Fig. 2.34 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and CSIGN

2.7 Special 2-Qubit Gates 99

Fig. 2.35 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and

√
SWAP

· (Rz(π)⊗ 12) ·

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

·
(

1I2 ⊗Ry

(
π

2

))
(2.97)

An equivalent quantum circuit diagram is shown in Fig. 2.35.

2.7.2.3 CNOT from iSWAP and one SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates, iSWAP, and
SWAP.⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
12 ⊗Ry

(
−π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

·
(
Rz

(
π

2

)
⊗

(
Rz

(
−π

2

)
·Ry

(
π

2

)))
(2.98)

An equivalent quantum circuit diagram is shown in Fig. 2.36.

2.7.2.4 CNOT from Two iSWAPs

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and iSWAP.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
12 ⊗

(
Rz

(
π

2

)
·Ry

(
−π

2

)))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠

100 2 Quantum Gates

Fig. 2.36 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates,
iSWAP, and SWAP

Fig. 2.37 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and iSWAP

·
((

Rz

(
π

2

)
·Ry

(
−π

2

))
⊗Rz

(
−π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠

·
(

12 ⊗ Ph

(
π

4

))
(2.99)

An equivalent quantum circuit diagram is shown in Fig. 2.37.

2.8 Entangling Power of Quantum Gates

A set of qubits is entangled if the operations performed on one subset of qubits af-
fect the complementary subset of qubits, even though those qubits are not operated
upon directly. For example, imagine partitioning a set of n qubits S into two subsets
A ⊂ S and B = S \ A. If operations performed on the qubits in A affect the state of
the qubits in B then there is entanglement between the qubits in A and those in B. In
such a circumstance, the state of the system cannot be written as the direct product
of a state for the qubits in subset A and a state for the qubits in the complemen-
tary subset B. Such entanglement is unmediated and undiminished by distance and
gives rise to so-called “non-local” effects which Einstein dubbed “spooky action at
a distance”.

The most striking difference between quantum logic gates and classical logic
gates lies in the fact that quantum logic gates can cause the qubits upon which they

2.8 Entangling Power of Quantum Gates 101

act to become more or less entangled, whereas classical gates cannot. In fact, the
entire notion of entanglement is absent in classical computing and classical gates can
neither entangle nor disentangle the bits upon which they act. Thus entanglement is
a quintessentially quantum resource that is only available to quantum computers.
Consequently, entanglement is believed to be essential in achieving the exponential
speedups seen in quantum algorithms without other computational resources, such
as space (memory), time and energy, ballooning exponentially.

Given the apparent importance of entanglement in quantum computing, it is natu-
ral to wonder whether all 2-qubit gates are equally good at generating entanglement
or whether some are better than others? A little thought should convince you that
some 2-qubit gates, such as those built as the direct product of two 1-qubit gates,
cannot generate any entanglement whatsoever. But other gates, such as CNOT, seem
able to map unentangled inputs into maximally entangled outputs. So clearly there
is some variability in the potential for 2-qubit gates to generate entanglement. To
make our study precise, however, we need a way to quantify the degree of entangle-
ment within a state, i.e., we need an entanglement measure, and we need to define
an ensemble of input states over which we would like to average this entanglement
measure. Intuitively, if we pick an ensemble of initially unentangled inputs, i.e.,
product states, then we ought to be able to characterize how effective a given gate is
at generating entanglement by seeing how entangled, on average, its outputs will be
given it received initially unentangled inputs. This is the essential idea between the
notion of the “entangling power” of a quantum gate. Intuitively, the more the output
is entangled, the greater the entangling power of the gate.

2.8.1 “Tangle” as a Measure of the Entanglement Within a State

It turns out that there are many ways one could characterize the degree of entan-
glement within a 2-qubit quantum state. Fortunately, in the case of 2-qubit states,
all the different entanglement measures turn out to be equivalent to one another.
However, no such equivalence is found for entanglement measures of n-qubit states
and attempts to find a unifying entanglement measure for n-qubit states have been
fraught with difficulties spawning a cottage industry of“entanglement monotones”
on which many Ph.D. theses have been written. For us, however, here we are con-
cerned only with the entangling power of 2-qubit gates, and so any of the equivalent
2-qubit entanglement measures will serve us equally well.

Specifically, the tangle provides a quantitative measure of the degree of entangle-
ment within a quantum state. Formally, the tangle is the square of the concurrence,
which for a 2-qubit pure state, |ψ〉, is given by:

Concurrence(|ψ〉)= |〈ψ |ψ̃〉| (2.100)

where |ψ̃〉 is the spin-flipped version of |ψ〉. This is defined as |ψ̃〉 = (Y ⊗ Y)|ψ∗〉,
where Y is the Pauli-Y matrix, and |ψ∗〉 is |ψ〉 with its amplitudes complex conju-
gated. Thus, if |ψ〉 = a|00〉+b|01〉+ c|10〉+d|11〉, then |ψ∗〉 = a∗|00〉+b∗|01〉+

102 2 Quantum Gates

c∗|10〉 + d∗|11〉 and |ψ̃〉 = −d∗|00〉 + c∗|01〉 + b∗|10〉 − a∗|11〉. Hence, the con-
currence of a general 2-qubit state |ψ〉 is given by:

Concurrence(a|00〉 + b|01〉 + c|10〉 + d|11〉)= |2b∗c∗ − 2a∗d∗| (2.101)

The “spin-flip” transformation maps the state of each component qubit into its or-
thogonal state. Hence the spin-flip transformation is not unitary and cannot, there-
fore, be performed deterministically by any isolated quantum system. So there can
be no such thing as a perfect spin-flip “gate” as such. (If there were it would be a
universal NOT gate.) Nevertheless, the spin-flip transformation is a perfectly legit-
imate mathematical specification of a transformation. One of the properties of the
spin-flip transformation is that, if the 2-qubit state |ψ〉 happens to be a product state
(i.e., an unentangled state) its spin-flipped version, |ψ̃〉, will be orthogonal to |ψ〉.
Hence, the overlap 〈ψ |ψ̃〉 will be zero and hence the concurrence of state |ψ〉 will
be zero. So unentangled states have a concurrence of zero.

At the other extreme, under the spin-flip transformation maximally entangled
states, such as Bell states, remain invariant up to an unimportant overall phase. To
see this, the four Bell states are given by: Bell states

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.102)

Under the spin-flip transformation these states transform, respectively, into:

|β00〉 spin-flip−→ −|β00〉
|β01〉 spin-flip−→ |β01〉
|β10〉 spin-flip−→ |β10〉
|β11〉 spin-flip−→ −|β11〉

(2.103)

Hence, the overlap between a maximally entangled state and its spin-flipped coun-
terpart is unity, which is the most it can be, implying that maximally entangled states
have a concurrence of one.

Thus the tangle, as defined above, provides a quantitative measure for the degree
of entanglement within a pure 2-qubit state. Generalizations of tangle to mixed states
and multi-partite states are discussed in Chap. 11.

2.8 Entangling Power of Quantum Gates 103

2.8.2 “Entangling Power” as the Mean Tangle Generated
by a Gate

Having quantified the degree of entanglement within a state, it becomes possible
to quantify the degree to which different gates generate entanglement when acting
upon initially unentangled inputs. Specifically we can define the entangling power
of a gate as follows [559]:

Entangling Power The entangling power of a 2-qubit gate U , EP(U), is the mean
tangle that U generates averaged over all input product state inputs sampled uni-
formly on the Bloch sphere.

Mathematically this is expressed as:

EP(U)= 〈E(U |ψ1〉 ⊗ |ψ2〉)〉|ψ1〉,|ψ2〉 (2.104)

where E(·) is the tangle of any other 2-qubit entanglement measure such as the
linear entropy (as all the 2-qubit entanglement measures are equivalent to one an-
other), and |ψ1〉 and |ψ2〉 are single qubit states sampled uniformly on the Bloch
sphere.

Although formally correct, the definition of entangling power given in (2.104)
is not an easy thing to compute. However, since we have fixed the probability dis-
tribution over which the samples |ψ1〉 and |ψ2〉 are to be taken to be the uniform
distribution on the surface of the Bloch sphere, we can build this assumption into
the definition of entangling power and derive a more explicit, and effectively com-
putable, formula for entangling power.

Let’s begin by writing the arbitrary pure states |ψ1〉 and |ψ2〉 as:

|ψ1〉 = cos

(
θ1

2

)
|0〉 + eiφ1 sin

(
θ1

2

)
|1〉 (2.105)

|ψ2〉 = cos

(
θ2

2

)
|0〉 + eiφ2 sin

(
θ2

2

)
|1〉 (2.106)

For state |ψ1〉, θ1 is the angle between the z-axis and the state vector, and φ1 is the
angle around the z-axis in the x–y plane. Hence, as we desire to compute an average
over the product of such states sampled uniformly over the Bloch sphere, we need
to weight the contributions depending on the values of θ1 and θ2. Otherwise, the
samples would be biased towards product states in the vicinity of the poles. To see
this imagine that the density of states around the circumference of the Bloch sphere
in the x–y plane is N states in a distance 2πR, where R is the radius of the Bloch
sphere, so the density of states at the equator is N/(2πR). As we ascend the z-
axis, to be unbiased, we still want to sample points around the circumference of a
plane parallel to the x–y plane at height z at the same density. Hence we require
n/(2πr) = N/(2πR) which implies n/N = r/R = sin(θ1). Thus we must dilute
states by a factor of sin(θ1) as we ascend the z-axis to maintain constant density.

104 2 Quantum Gates

Likewise for |ψ2〉, giving an overall weighting function of sin(θ1) sin(θ2). Hence,
we have:

EP(U)= 〈E(U |ψ1〉 ⊗ |ψ2〉)〉|ψ1〉,|ψ2〉

= 2tr

(
(U ⊗U) ·Ωp · (U† ⊗U†) · 1

2
(116 − SWAP1,3;4)

)
(2.107)

where 116 is the 16× 16 identity matrix, and SWAPi,j ;k is the operator that swaps
the i-th and j -th of k qubits.

Ωp = 1

16π2

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(θ1) sin(θ2)(|ψ1〉〈ψ1|⊗|ψ2〉〈ψ2|)⊗2dθ2dθ1dφ2dφ1

(2.108)

and the normalization factor 1/(16π2) comes from the average of the weighting
function:

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(θ1) sin(θ2)dθ2dθ1dφ2dφ1 = 16π2 (2.109)

With these definitions, Ωp evaluates to the matrix

Ωp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

18 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0

0 0 1
18 0 0 0 0 0 1

18 0 0 0 0 0 0 0
0 0 0 1

36 0 0 1
36 0 0 1

36 0 0 1
36 0 0 0

0 1
18 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0
0 0 0 1

36 0 0 1
36 0 0 1

36 0 0 1
36 0 0 0

0 0 0 0 0 0 0 1
18 0 0 0 0 0 1

18 0 0
0 0 1

18 0 0 0 0 0 1
18 0 0 0 0 0 0 0

0 0 0 1
36 0 0 1

36 0 0 1
36 0 0 1

36 0 0 0
0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

18 0 0 1
18 0

0 0 0 1
36 0 0 1

36 0 0 1
36 0 0 1

36 0 0 0
0 0 0 0 0 0 0 1

18 0 0 0 0 0 1
18 0 0

0 0 0 0 0 0 0 0 0 0 0 1
18 0 0 1

18 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.110)

2.8 Entangling Power of Quantum Gates 105

Table 2.15 Entangling power of some common 2-qubit gates. Here 12 ⊕ U is a controlled gate
with U defined as U = Rx(a) · Ry(b) · Rz(c) · Ph(d), and 12 ⊕ V is a controlled gate with V

defined as V =Rz(a) ·Ry(b) ·Rz(c) ·Ph(d). Notice that there can be no angle α that would make
the SWAPα a maximally entangling gate

U EP(U)

U ⊗ V 0

CNOT 2
9

iSWAP 2
9

B 2
9

SWAP 0
√

SWAP 1
6

SWAPα 1
6 sin2(πα)

Rx(a)⊕Rx(b)
1
9 (1− cos(a − b))

Rx(a)⊕Ry(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Rx(a)⊕Rz(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Ry(a)⊕Rx(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Ry(a)⊕Ry(b)
1
9 (1− cos(a − b))

Ry(a)⊕Rz(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Rz(a)⊕Rx(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Rz(a)⊕Ry(b)
1

18 (− cos(b)− cos(a)(cos(b)+ 1)+ 3)

Rz(a)⊕Rz(b)
1
9 (1− cos(a − b))

12 ⊕U 1
6 + 1

18 (sin(a) sin(b) sin(c)− cos(a) cos(b)− cos(c) cos(b)− cos(a) cos(c))

12 ⊕ V 1
6 − 1

18 (cos(a + c) cos(b)+ cos(b)+ cos(a + c))

Although it is non-obvious, an equivalent way to compute EP(U) is from the for-
mula:

EP(U)= 5

9
− 1

36
[tr((U ⊗U)† · SWAP1,3;4 · (U ⊗U) · SWAP1,3;4)

+ tr(((SWAP1,2;2 ·U ⊗ SWAP1,2;2 ·U))† · SWAP1,3;4
· (SWAP1,2;2 ·U ⊗ SWAP1,2;2 ·U) · SWAP1,3;4)] (2.111)

The entangling power of a gate ranges from 0 for non-entangling gates (such as
SWAP), to 2

9 for maximally entangling gates (such as CNOT, iSWAP, and Berke-

ley B). Other gates, such as
√

SWAP and more generally SWAPα , have intermediate
values of entangling power. Table 2.15 lists the entangling powers for some com-
mon types of 2-qubit gates. Typically, the entangling powers of parameterized gates,
such as SWAPα and Ry(a)⊕Ry(b), varies with the parameter values used.

106 2 Quantum Gates

2.8.3 CNOT from any Maximally Entangling Gate

In experimental quantum computing, one often needs to find a way to obtain a
CNOT gate from whatever physically realizable 2-qubit interaction, is available.
It turns out that the ease with which a CNOT can be obtained from the physically
available 2-qubit gate, U , is intimately connected to the entangling power of U . In
particular, if EP(U) = 2

9 , i.e., maximal, but U is itself not a CNOT gate, then we
can always create a CNOT gate from just two calls to U via a decomposition of the
form:

CNOT≡ (A1 ⊗A2) ·U · (H ⊗ 12) ·U (2.112)

where H is the Hadamard gate and A1 and A2 are 1-qubit gates.
This result is of practical importance to experimentalists since it may not always

possible to achieve a CNOT gate directly from whatever interaction Hamiltonian is
attainable within some physical context. Nevertheless, this result shows that once
it is understood how a maximally entangling operation can be achieved from the
available interaction Hamiltonians, then we can use it, in conjunction with 1-qubit
gates, to achieve a CNOT.

2.8.4 The Magic Basis and Its Effect on Entangling Power

As you might recall, a quantum gate with unitary matrix U in the computational
basis can be viewed as the matrix V ·U ·V † in the “V -basis”. In the case of 2-qubit
gates there is a special basis, called the magic basis, that turns out to several have
remarkable properties [54, 232, 296].

The “magic basis” is a set of 2-qubit states that are phase shifted versions of the
Bell states. In particular, we have:

|00〉 M−→ |M1〉 = |β00〉 (2.113)

|01〉 M−→ |M2〉 = i|β10〉 (2.114)

|10〉 M−→ |M3〉 = i|β01〉 (2.115)

|11〉 M−→ |M4〉 = |β11〉 (2.116)

where |β00〉, |β01〉, |β10〉, and |β11〉 are the Bell states defined by:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.117)

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 107

Fig. 2.38 Quantum circuit
that implements the magic
basis transformation. Here
S = Ph(π4) ·Rz(

π
2) and

H = Z ·Ry(− π
2)

Thus, the matrix, M, which maps the computational basis into the “magic” basis is:

M = |M1〉〈00| + |M2〉〈01| + |M3〉〈10| + |M4〉〈11|

= 1√
2

⎛
⎜⎜⎝

1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

⎞
⎟⎟⎠ (2.118)

The reason this basis is called the “magic basis” is because it turns out that any
partially or maximally entangling 2-qubit gate, described by a purely real unitary
matrix, U , becomes an non-entangling gate in the “magic” basis. In other words, no
matter how entangling U may be, M ·U · M† is always a non-entangling gate, and
hence EP(M ·U · M†)= 0.

We can make use of this observation in order to find a circuit for any 2-qubit gate
described by a purely real unitary matrix, U , because either M ·U · M† = A⊗ B

(one kind of non-entangling circuit) or else is related to a single SWAP gate (another
non-entangling gate). And it is pretty easy to spot which is the case. Therefore, if
we know the simplest quantum circuit implementing the magic basis transformation,
we can then invert M · U · M† = A⊗ B (or the similar one involving SWAP) to
find a circuit for U . Luckily, it is easy to find a quantum circuit for the magic basis
transformation. A simple quantum circuit that achieves the magic basis gate is show
in Fig. 2.38.

If that was not magical enough, we can also use the magic basis transformation
to relate a given purely real unitary, via a mathematical procedure involving M,
to gate that is guaranteed to be maximally entangling! Specifically, for any purely
real 4× 4 unitary matrix, U , then, regardless of its entangling power, the entangling
power of the gate defined by M ·U · M is maximal, i.e., 2

9 . Amazing!

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition

Given that qubit-qubit interactions are essential to performing non-trivial quantum
computations, it is important to understand how an arbitrary 2-qubit gate can be
decomposed into more elementary gates such as CNOTs and 1-qubit gates. A priori
it is not at all obvious how many CNOTs we will need. As we shall see the answer
depends on the structure of the 2-qubit gate in question, but in no case do we ever
need to use more than three CNOT gates [90, 452, 512, 517].

The key to finding a general circuit that can implement any 2-qubit gate is to use
the magic basis transformation in conjunction with a factorization of an arbitrary

108 2 Quantum Gates

Fig. 2.39 Quantum circuit for the core entangling gate N(a,b, c). Here A = Rz(− π
2),

B =Rz(
π
2 − 2c), C =Ry(2a − π

2), D =Ry(
π
2 − 2b), E =Rz(

π
2), and F = Ph(π4)

2-qubit gate discovered by Krauss and Cirac. Krauss and Cirac found that any 4× 4
unitary matrix can be factored into the form:

U ≡ (A1 ⊗A2) · ei(aX⊗X+bY⊗Y+cZ⊗Z) · (A3 ⊗A4) (2.119)

where X, Y , and Z are the three Pauli matrices, and eM = 1+M + 1
2! (M ·M)+

1
3! (M ·M ·M)+ 1

3! (M ·M ·M ·M)+ · · · is the matrix exponential5 and a, b, c ∈R

[277, 296, 562]. Since we already know how to find quantum circuits for any 1-qubit
gate, we can always find decompositions for the Aj whatever they may happen to
be. We also know that the 1-qubit gates cannot change the entangling power of the
core 2-qubit gate N(a,b, c). So all the action is really concentrated in the 2-qubit
gate N(a,b, c), which is equivalent to the following unitary matrix:

N(a,b, c)

≡

⎛
⎜⎜⎝
eic cos(a − b) 0 0 ieic sin(a − b)

0 e−ic cos(a + b) ie−ic sin(a + b) 0
0 ie−ic sin(a + b) e−ic cos(a + b) 0

ieic sin(a − b) 0 0 eic cos(a − b)

⎞
⎟⎟⎠

(2.120)

A quantum circuit for N(a,b, c) is shown in Fig. 2.39. Algebraically, we have:
N(a,b, c) = (E ⊗ F) · CNOT2,1;2 · (1⊗D) · CNOT1,2;2 · (B ⊗ C) · CNOT2,1;2 ·
(1⊗A) where A=Rz(−π

2), B =Rz(
π
2 −2c), C =Ry(2a− π

2), D =Ry(
π
2 −2b),

E =Rz(
π
2), and F = Ph(π4).

The matrix, U , corresponding to any 2-qubit quantum gate is always unitary,
and the magnitude of its determinant is always unity, i.e., |det(U)| = 1. However,
the ease with which we can implement U depends upon whether its elements are
real or complex and whether its determinant is +1 or one of the other possibilities,
consistent with |det(U)| = 1, namely −1,+i, or −i. We classify the possibilities as
follows:

1. U ∈ SU(2n) implies U is a 2n×2n dimensional special unitary matrix containing
real or complex elements and having a determinant |det(U)| = 1, i.e., det(U)=
±1 or ±i.

5N.B. the leading “1” in the series expansion of the exponential function is replaced with the
identity matrix, 1.

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 109

2. U ∈U(2n) implies U is a 2n × 2n dimensional unitary matrix containing real or
complex elements and having a determinant |det(U)| = 1, i.e., det(U)= ±1 or
±i.

3. U ∈ SO(2n) implies U is a 2n×2n dimensional special unitary matrix containing
only real elements and having a determinant det(U)=+1.

4. U ∈ O(2n) implies U is a 2n × 2n dimensional unitary matrix containing only
real elements and having a determinant det(U)=±1.

The number of CNOT gates needed to implement U depends upon which the
class into which U falls.

Using the upside down CNOT, we can write a circuit that implements the core
entangling gate N(a,b, c):

N(a,b, c) ≡
(
Rz

(
π

2

)
⊗ Ph

(
π

4

))

·

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ ·

(
12 ⊗Ry

(
π

2
− 2b

))

·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ·

(
Rz

(
π

2
− 2c

)
⊗Ry

(
2a − π

2

))

·

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ ·

(
12 ⊗Rz

(
−π

2

))
(2.121)

2.9.1 Entangling Power of an Arbitrary 2-Qubit Gate

An arbitrary 2-qubit gate, U , can be factored according to the Krauss-Cirac decom-
position as U = (A1 ⊗A2) ·N(a,b, c) · (A3 ⊗A4), where the Aj are 1-qubit gates,
and N(a,b, c)= exp(i(aX⊗X+ bY ⊗ Y + cZ⊗Z)) is the core entangling oper-
ation. As the entangling power of any gate is not affected by 1-qubit operations, the
entangling power of an arbitrary 2-qubit gate must be determined entirely by the en-
tangling power of its core factor N(a,b, c). Using the formulae given earlier, we can
calculate the entangling power of N(a,b, c). In particular, one finds EP(N(a, b, c))

is given by:

EP(N(a, b, c))=− 1

18
cos(4a) cos(4b)− 1

18
cos(4c) cos(4b)

− 1

18
cos(4a) cos(4c)+ 1

6
(2.122)

110 2 Quantum Gates

Fig. 2.40 Quantum circuit sufficient to implement any 2-qubit gate U ∈ SO(4). The unitary matrix
for such a gate is purely real and has a determinant of +1

Notice that this immediately gives us a way of proving that the greatest entan-
gling power of any 2-qubit gate is the largest value that EP(N(a, b, c)) can assume,
namely, 2

9 . The CNOT, iSWAP, and Berkeley B gates introduced earlier are all max-
imally entangling gates in this sense. However, the SWAPα gate is not a maximally
entangling gate.

2.9.2 Circuit for an Arbitrary Real 2-Qubit Gate

2.9.2.1 Case of U ∈ SO(4)

If U ∈ SO(4) then the elements of U are purely real numbers and det(U)=+1.

Theorem 2.1 In the magic basis, M, any purely real special unitary matrix U ∈
SO(4), can be factored as the tensor product of two special unitary matrices, i.e.,
we always have M ·U · M† =A⊗B where A,B ∈ SU(2).

A quantum circuit implementing the magic basis transformation (2.118) was
shown in Fig. 2.38. Therefore, every 2-qubit quantum gate in SO(4) can be real-
ized in a circuit consisting of 12 elementary 1-qubit gates and two CNOT gates (see
Fig. 2.40).

2.9.2.2 Case of U ∈ O(4)

If U ∈O(4) then the elements of U are purely real numbers and det(U)=±1.

Theorem 2.2 In the magic basis, M, any purely real unitary matrix U ∈O(4) with
det(U)=−1, can be factored as the tensor product of two special unitary matrices,
i.e., we always have M ·U · M† = (A⊗ B) · SWAP · (1⊗Z) where A,B ∈ U(2)
and Z is the Pauli-Z matrix.

Every 2-qubit quantum gate in O(4) with det(U)=−1 can be realized in a cir-
cuit consisting of 12 elementary gates, two CNOT gates, and one SWAP gate (see
Fig. 2.41). As you will show in Exercise 2.29 this circuit can be simplified further
to one involving at most three CNOT gates.

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition 111

Fig. 2.41 Quantum circuit sufficient to implement any 2-qubit gate U ∈O(4). The unitary matrix
for such a gate is purely real and has a determinant of ±1. Those gates having a determinant of
+1 can be implemented using at most two CNOT gates. Those having a determinant of −1 can be
implemented in a circuit of the form shown. In Exercise 2.29 you will simplify this circuit further
to show that an arbitrary 2-qubit gate U ∈O(4) requires at most three CNOT gates

Fig. 2.42 Quantum circuit for an arbitrary 2-qubit gate, U . By the Kraus-Cirac decomposition
U can be written in the form (A1 ⊗ A2) · N(a,b, c) · (A3 ⊗ A4). As in the quantum circuit for
N(a,b, c), B =Rz(

π
2 −2c), C =Ry(2a− π

2), D =Ry(
π
2 −2b). The leftmost and rightmost single

qubit gates needed to obtain N(a,b, c) can be absorbed into the single qubit gates A1,A2,A3,A4

2.9.3 Circuit for an Arbitrary Complex 2-Qubit Gate

An arbitrary 2-qubit gate SWAPα and can therefore have elements whose values are
complex numbers. Every 2-qubit quantum gate in U(4) can be realized, up to an
overall global phase factor, in a circuit consisting of 15 elementary 1-qubit gates,
three CNOT gates (see Fig. 2.42).

2.9.4 Circuit for an Arbitrary 2-Qubit Gate Using SWAPα

Ponder for a moment whether you would expect the quantum circuit for an arbitrary
2-qubit using the CNOT ∪ 1-qubit gates family to require more, less, or the same
number of 2-qubit gates than the equivalent circuits based on different a gate family
relying on a less than maximally entangling gate, such as SWAPα . Since a general
2-qubit gate needs three CNOTs (and CNOT is a maximally entangling gate) one
might expect that one needs more than three SWAPα gates to implement a general
2-qubit gate. Surprisingly, this is not the case! In fact, three SWAPα gates, hav-
ing three different values for the exponents, are sufficient. The proof is by explicit

112 2 Quantum Gates

construction of the central entangling gate of the Krauss-Cirac decomposition:

N(a,b, c)≡ (Ph(a + b− c)⊗ 12) ·
(
Rz

(
π

2

)
⊗Rz

(
−π

2

)
·Ry(π)

)

· SWAP1− 2(b−c)
π · (Ry(π) ·Rz(−π)⊗Ry(π))

· SWAP
2(c−a)

π · (Rz(π)⊗Ry(π) ·Rz(−π))

· SWAP1− 2(a+b)
π ·

(
Rz

(
π

2

)
⊗Rz

(
π

2

))
(2.123)

2.10 Summary

Quantum gates are not always to be thought of in the same way we picture classical
gates. In a conventional electronic circuits we are used to thinking of bits passing
through logic gates. In quantum circuits this notion may or may not be accurate
depending on how qubits are actually encoded within the physical system. If one
is using photons to encode qubits and optical elements (such as beam-splitters or
phase shifters) to perform gate operations, then the qubits are quite literally moving
through the quantum gates. However, if we are using say trapped ions to encode the
qubits, the logical state of the qubits is encoded within the internal excitation state of
the ions, and the ions are held more or less in place. This distinction illustrates that
a quantum gate is really nothing more than a deliberate manipulation of a quantum
state.

In this chapter we introduced the idea of a quantum gate, and contrasted
it with logically irreversible and logically reversible classical gates. Quantum
gates are, like classical reversible gates, logically reversible, but they differ
markedly on their universality properties. Whereas the smallest universal classi-
cal reversible gates have to use three bits, the smallest universal quantum gates
need only use two bits. As the classical reversible gates are also unitary, it is
conceivable that one of the first practical applications of quantum gates is in
non-standard (e.g., “spintronic”) implementations of classical reversible comput-
ers.

We described some of the more popular quantum gates and why they are use-
ful, explained how these gates can be achieved via the natural evolution of certain
quantum systems, and discussed quantum analogs of controlled and universal gates.
Controlled gates are key to achieving non-trivial computations, and universal gates
are key to achieving practical hardware.

In the theory of classical computing you would interpret a controlled gate op-
eration as implying that you read (i.e., measure) the control bit and, depend-
ing on its value, perform the appropriate action on the target bits. However,
such explicit measurement operations on the control qubits are neither implied
nor necessary in quantum controlled gates. Instead, the controlled quantum gates

2.11 Exercises 113

apply all the control actions consistent with the quantum state of the control
qubits.

We showed that there are several 2-qubit gates that are as powerful as the
CNOT gate when used in conjunction with 1-qubit gates, and gave explicit in-
tercoversions between these types of gates. Such alternatives to CNOT gates
may be easier to achieve than CNOT in specific schemes for quantum com-
puting hardware. For example, iSWAP, SWAPα , and CSIGN are more natu-
rally suited to superconducting, spintronic, and optical quantum computers than
CNOT.

We introduced the “tangle” as a way of quantifying the entanglement within a
quantum state, and used it to define the “entangling power” of a quantum gate.
We also introduced the magic basis and demonstrated its effects on entangling
power.

We ended the chapter with exact minimal quantum circuits sufficient to imple-
ment an arbitrary 2-qubit gate and gave an analytic scheme for converting a given
unitary matrix into a minimal 2-qubit circuit.

2.11 Exercises

2.1 Which of the following matrices are unitary?

1.

⎛
⎝

1√
2

− 1√
2

− 1√
2

− 1√
2

⎞
⎠

2.

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠

3.

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
1 0 0 1

⎞
⎟⎟⎠

4.

⎛
⎜⎜⎝

0 0 i 0
0 i 0 0
i 0 0 0
0 0 0 i

⎞
⎟⎟⎠

Which of those could describe quantum gates that act on qubits? Explain your an-
swer.

2.2 What is the output state from the quantum circuit shown in Fig. 2.43.

114 2 Quantum Gates

2.3 How would a CNOT gate transform an entangled input state of the form |ψ〉 =
1√
2
(|00〉 + |11〉)? Are the qubits still entangled after the CNOT has been applied?

Explain your answer by making reference to the definition of an entangled state.

2.4 Show that X does not negate a general quantum state |ψ〉 = cos(θ2)|0〉 +
exp(iφ) sin(θ2)|1〉.
2.5 Given a qubit whose state is known to lie in the equatorial x–y plane in the
Bloch sphere is it possible to find a quantum gate that will always negate this qubit?
If so, exhibit such a gate. If not, explain why it is impossible.

2.6 The circuit for controlled-controlled-U that was given earlier in this chapter
assumed the existence of a controlled-V gate defined such that V 2 = U with V

unitary. Prove, for any unitary matrix U , that such a V always exists, i.e. that there
exists a unitary matrix V such that V 2 =U .

2.7 Decompose the Hadamard gate, H = 1√
2

(1 1
1 −1

)
, in terms of Ry(θ) and Rz(φ)

gates.

2.8 The “magic” basis is defined by the matrix. . . .

2.9 Given real numbers x, y, and z and the Pauli matrices defined as

1=
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)

(2.124)

prove the identity

ei(xX+yY+zZ) = cos(r)1+ sin(r)

r
i(xX+ yY + zZ) (2.125)

where r = √
x2 + y2 + z2. You might find the following identities to be useful:

cos(α) = cosh(iα) and sin(β) = −i sinh(iβ), and i
√
x2 + y2 + z2 =√−x2 − y2 − z2.

2.10 Prove any 2 × 2 hermitian matrix can be written as a sum of Pauli matrices.
This shows that any 1-qubit Hamiltonian can be expressed in terms of just Pauli
matrices.

Fig. 2.43 This quantum
circuit applies a Hadamard
gate to the first qubit followed
by a CNOT gate to both
qubits

2.11 Exercises 115

2.11 Show that a state, |ψ〉, is orthogonal to its antipodal state, |ψ⊥〉, i.e., show
〈ψ |ψ⊥〉 = 0.

2.12 Prove that Rx(α) and Ry(α) rotate a general single qubit pure state about the
x- and y-axes respectively through angle α.

2.13 Show that the NOR gate defined by a NOR b ≡ ¬(a ∨ b) is, like the NAND
gate, also universal for classical irreversible computing. [Hint: Show that any logical
proposition can be written in terms of just ¬ and ∨, and that both ¬ and ∨ can be
expressed using only NOR gates.]

2.14 One of the most fundamental tasks we might imagine a computer doing is to
decide whether two items in memory are the same and, if so, to output TRUE and,
if not, to output FALSE. If we imagine the items in memory are represented by bit
strings, our task becomes on of determining whether two bit strings are the same.
Show that you can accomplish this task in a circuit that uses only ¬ and ∧ gates.
That is, provide a Boolean circuit for the ⇔ (equivalence) relation in terms of just
¬ and ∧ gates.

2.15 Quantum gates are supposed to be unitary and hence logically reversible. How
then, do you explain why, when you apply a Hadamard gate to state |0〉 and observe
what state you obtain, that some of the time you find the result to be |0〉 and some
of the time you find the result to be |1〉? How can a Hadamard gate be logically
reversible if it is not producing a deterministic output. Where has our logic failed
us?

2.16 What measurement, or repeated measurements, might you make on a quantum
system in order to verify that the action of a box purported to enact a Hadamard
gate is functioning correctly. The Hadamard gate enacts the transformations |0〉 →

1√
2
(|0〉 + |1〉) and |1〉→ 1√

2
(|0〉 − |1〉)? How many measurements would you need

to make to have a 99% confidence in your answer?

2.17 The Hadamard gate, H = 1√
2

(1 1
1 −1

)
can be obtained, up to an overall global

phase factor, using one Rx gate and one Ry gate, or using one Ry gate and one Rz

gate. Can you obtain a Hadamard gate, up to an overall global phase factor, using
just one Rx gate and one Rz gate? If so, exhibit the construction, else explain why
it is impossible.

2.18 The FREDKIN and TOFFOLI gates are not the only (3-bit)-to-(3-bit) univer-
sal gates for reversible computing. For example, consider the reversible gate having
the truth table given in Table 2.16 or, equivalently, the reversible gate represented
by the matrix:

116 2 Quantum Gates

NAND/NOR≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.126)

If the first bit in the input is set to 0, then the gate computes the NAND of the
second and third input bits. Conversely, if the first bit in the input is set to 1, the gate
computes the NOR of the second and third qubits.

Find (a) a classical reversible circuit and (b) a quantum circuit that implements
the NAND/NOR gate.

2.19 If U is a maximally entangling gate, show that a CNOT gate can always
be obtained from U via a decomposition of the form CNOT ≡ (A1 ⊗ A2) · U ·
(Ry(

π
2)⊗ 1) ·U−1 where A1 and A2 are single qubit gates.

2.20 Find the general form for a 2-qubit circuit, which uses only 1-qubit gates
and Berkeley B gates, that will implement an arbitrary 2-qubit gate, U . How many
Berkeley B gates are necessary? How does this compare to the number of CNOT
gates needed for an arbitrary 2-qubit gate?

2.21 Given an arbitrary 1-qubit gate defined as U = (u11 u12
u21 u22

)
, what is the unitary

matrix for the multiply controlled-U gate shown in Fig. 2.44?

2.22 What are the unitary matrices implied by the circuits shown in Fig. 2.45?

2.23 Determine the eigenvalues and normalized eigenvectors of the following op-
erators built from the Pauli matrices:

(a) 1√
3
(X+ Y +Z)

Table 2.16 Truth table of the
NAND/NOR gate, which is a
reversible gate containing the
NAND and NOR gates quite
explicitly

NAND/NOR:

Input bits Output bits

000 111

001 101

010 110

011 011

100 100

101 001

110 010

111 000

2.11 Exercises 117

(b) 1√
2
(X · Y + Y ·Z)

(c) 1⊕X⊕ Y ⊕Z

(d) eiα(X⊗X+Y⊗Y) (N.B. this is a matrix exponential).

2.24 Construct the unitary matrix, U = e−iHt/�, of the quantum gate one would
obtain from the Hamiltonian, H, at time t = 1, assuming you are working in units
of �= 1, for each of the following Hamiltonians:

(a) H = α X⊗ 1,
(b) H = α X⊗X,
(c) H = α X⊗X+ β Y ⊗ Y ,
(d) H = α X⊗ Y + β Y ⊗X,

where X,Y,1 are Pauli matrices, and α,β ∈R.

2.25 Decompose the following 2 × 2 unitary matrices into sequences of Ry(α),
Rz(β), and Ph(γ) gates:

(a)

⎛
⎜⎝

1
2 i

√
1
2 (5+

√
5) 1

4 i(1−
√

5)

− 1
4 i(−1+√

5) − 1
2 i

√
1
2 (5+

√
5)

⎞
⎟⎠

(b)

⎛
⎜⎜⎝

√
3
2

2 + 1
2
√

2

√
3
2

2 − 1
2
√

2√
3
2

2 − 1
2
√

2
−

√
3
2

2 − 1
2
√

2

⎞
⎟⎟⎠

(c)

(1
4 (3+ i

√
3) 1

4 (1− i
√

3)

1
4 (1− i

√
3) 1

4 (3+ i
√

3)

)

2.26 Assess the degree to which the following 2-qubit states are entangled by com-
puting their “tangle”, i.e., tangle(|ψ〉) where:

Fig. 2.44 A single qubit gate
having an unusual pattern of
control qubits

118 2 Quantum Gates

Fig. 2.45 Some 2-qubit gates involving “control-on-|0〉” CNOT gates and reversed embeddings

(a) |ψ〉 = 1√
3
|00〉 + 1√

3
|01〉 + 1√

3
|11〉. Is the state entangled?

(b) |ψ〉 = 1
3
√

5
|00〉 + 2

3
√

5
|01〉 + 2

3

√
2
5 |10〉 + 4

3

√
2
5 |11〉. Is the state entangled?

(c) |ψ〉 = 3
2
√

31
|00〉 + 5

2
√

31
|01〉 + 9

2
√

31
|10〉 + 3

2
√

31
|11〉. Is the state entangled?

(d) |ψ〉 = 1√
2
|01〉 − i√

2
|10〉. Is the state entangled?

(e) |ψ〉 = − e
i π3√

2
|00〉 − 1√

2
|10〉. Is the state entangled?

2.27 Consider the Bloch sphere with perpendicular axes x, y, and z. What 1-qubit
gates, up to overall phase factors, perform the following operations on the Bloch
sphere:

(a) Map the state at the North pole of the Bloch sphere to the state at the South
pole?

(b) Map the state at (x, y, z)= (0,0,1) to the state at (x, y, z)= (0,1,0)?
(c) Map the state at (x, y, z)= (0,0,1) to the state at (x, y, z)= (1√

2
, 1√

2
,0)?

(d) Map the state at (x, y, z)= (0, 1√
2
, 1√

2
) to the state at (x, y, z)= (0,−1,0)?

(e) Map the state at (x, y, z)= (0,0,1) to the state at (x, y, z)= (1√
3
, 1√

3
, 1√

3
)?

2.11 Exercises 119

2.28 Compute the entangling power of the following 2-qubit quantum gates, and
determine which ones are maximal entanglers:

(a)

⎛
⎜⎜⎜⎜⎜⎝

cos
(
α
2

)
0 0 − sin

(
α
2

)
sin

(
α
2

)
0 0 cos

(
α
2

)
0 cos

(
α
2

) − sin
(
α
2

)
0

0 sin
(
α
2

)
cos

(
α
2

)
0

⎞
⎟⎟⎟⎟⎟⎠

(b)

⎛
⎜⎜⎜⎜⎜⎝

e− iα
2 0 0 0

0
(1

2 + i
2

)
e

iα
2

(1
2 − i

2

)
e

iα
2 0

0
(1

2 − i
2

)
e− iα

2
(1

2 + i
2

)
e− iα

2 0

0 0 0 e
iα
2

⎞
⎟⎟⎟⎟⎟⎠

(c)

⎛
⎜⎜⎜⎜⎝

cos
(
α
2

)
0 − sin

(
α
2

)
0

sin
(
α
2

)
0 cos

(
α
2

)
0

0 cos
(
α
2

)
0 − sin

(
α
2

)
0 sin

(
α
2

)
0 cos

(
α
2

)

⎞
⎟⎟⎟⎟⎠

(d)

⎛
⎜⎜⎜⎝
e− iα

2 0 0 0

0 0 0 e
iα
2

0 0 ie− iα
2 0

0 ie
iα
2 0 0

⎞
⎟⎟⎟⎠

(e)

⎛
⎜⎜⎜⎝

cos
(
π
18

) − sin
(
π
18

)
0 0

0 0 cos
(
π
18

)
sin

(
π
18

)
sin

(
π
18

)
cos

(
π
18

)
0 0

0 0 − sin
(
π
18

)
cos

(
π
18

)

⎞
⎟⎟⎟⎠

2.29 In Fig. 2.41 we show a circuit sufficient to implement an arbitrary real unitary
U ∈ O(4) that uses four CNOT gates. However, this circuit is not in its simplest
form. Prove the following circuit identities and use them to show an arbitrary purely
real unitary matrix having det(U) = −1 can be implemented in a circuit requiring
at most three CNOT gates:

(a) (1⊗Z) ·CNOT2,1;2 ≡ CNOT2,1;2 · (1⊗Rz(π) ·Ph(π2)) (i.e., prove the identity
illustrated in Fig. 2.46)

(b) CNOT1,2;2 ·CNOT2,1;2 ·CNOT1,2;2 ·CNOT2,1;2 ≡ CNOT2,1;2 ·CNOT1,2;2 (i.e.,
prove the circuit identity illustrated in Fig. 2.47)

(c) Hence, prove that any U ∈ O(4) with det(U) = −1 can be implemented in a
quantum circuit requiring at most three CNOT gates.

120 2 Quantum Gates

Fig. 2.46 A circuit identity that allows a Z gate to be moved through the control qubit of a CNOT
gate

Fig. 2.47 A circuit identity that allows four CNOT gates to be contracted to two CNOT gates

2.30 Let M be the 2-qubit gate that maps the computational basis states |00〉, |01〉,
|10〉, and |11〉, into the “magic basis”:

|00〉 M−→ |M1〉 = |β00〉 (2.127)

|01〉 M−→ |M2〉 = i |β10〉 (2.128)

|10〉 M−→ |M3〉 = i |β01〉 (2.129)

|11〉 M−→ |M4〉 = |β11〉 (2.130)

where |β00〉, |β01〉, |β10〉, and |β11〉 are the Bell states defined by:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.131)

(a) Verify that the matrix, M, which maps the computational basis into the magic
basis, is given by:

M = 1√
2

⎛
⎜⎜⎝

1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

⎞
⎟⎟⎠ (2.132)

(b) Prove that if U is a purely real unitary matrix then, regardless of the entangling
power of U , the entangling power of M ·U · M is maximal, i.e., 2

9 .

2.11 Exercises 121

(c) Prove that if U is a purely real unitary matrix then, regardless of the entangling
power of U , the entangling power of M ·U · M† is zero.

(d) Check these claims by computing the entangling powers of U , M ·U · M, and
M ·U · M† for U given by:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3
2

2
1

2
√

2
−

√
3
2

2 − 1
2
√

2

1
2
√

2
−

√
3
2

2 − 1
2
√

2

√
3
2

2

1
2
√

2

√
3
2

2
1

2
√

2

√
3
2

2√
3
2

2 − 1
2
√

2

√
3
2

2 − 1
2
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.133)

These remarkable properties explain why the vectors |M1〉, |M2〉, |M3〉 and
|M4〉 are called the “magic basis”.

2.31 The nice properties of the “magic basis”, M, do not, in general, carry over to
complex unitary matrices.

(a) Experiment by generating a complex 4 × 4 unitary matrix, U , at random, and
compute det(U), |det(U)|, EP(U), EP(M ·U ·M), and EP(M ·U ·M†). Such
a matrix is most easily generated by guessing a quantum circuit containing a
few Rx , Rz, Ph, and CNOT gates. After a few experiments you should convince
yourself that the nice properties of the magic basis do not hold, in general, for
complex unitaries.

(b) Show that det(SWAPα)= (−1)α , rather than ±1 as is the case for all real uni-
tary matrices. Based on this, would you expect EP(M · SWAPα · M) to be
maximal? Compute EP(M · SWAPα · M) to check your answer.

(c) Given that det(iSWAP) = 1 (just like many real unitaries), would you expect
EP(M · iSWAP · M†) to be non-entangling? Compute EP(M · iSWAP · M†)

to check your answer.

2.32 Prove each of the following identities:

(a) SWAP · SWAP · SWAP= SWAP
(b) SWAP · iSWAP · SWAP= iSWAP
(c) SWAP · SWAPα · SWAP= SWAPα

(d) SWAP† = SWAP
(e) iSWAP† = iSWAP3

(f) (SWAPα)† = SWAP−α

The first three identities show that it makes not difference which way around you in-
sert a SWAP, iSWAP, and SWAPα gate into a quantum circuit. The last two identities
show that, whereas SWAP and CNOT are their own inverses, iSWAP and SWAPα

are not.

122 2 Quantum Gates

2.33 Invent an icon for the Berkeley B gate. In choosing your icon, decide whether
you need to make it asymmetric so that you can distinguish between embedding the
gate one way around or upside down, or whether this is immaterial. Then express
the inverse of the Berkeley B gate in terms of itself and 1-qubit gates if necessary.

2.34 Invent an icon for the CSIGN gate. In choosing your icon, decide whether you
need to make it asymmetric so that you can distinguish between embedding the gate
one way around or upside down, or whether this is immaterial. Then express the
inverse of the CSIGN gate in terms of itself and 1-qubit gates if necessary. Is the
CSIGN gate a maximal entangling gate?

2.35 What matrix do you obtain when you raise the matrix representing the Berke-
ley B gate to the sixteenth power, i.e., B16?

Chapter 3
Quantum Circuits

[Quantum Computing] “. . . means you can try to answer questions you thought the Universe
was going to have to do without.”
– Bruce Knapp1

A quantum circuit provides a visual representation of how a complicated multi-
qubit quantum computation can be decomposed into a sequence of simpler, usually
1-qubit and 2-qubit, quantum gates. In general, a given unitary matrix, which spec-
ifies some desired quantum computation, will admit many different, but equivalent,
decompositions depending on the set of primitive quantum gates used, and the skill
of the quantum circuit designer in composing those gates in an intelligent way. In
this chapter we shall look the relationship between multi-qubit unitary operators
and their corresponding quantum circuits. You will learn how to compute a unitary
operator from a quantum circuit description of it to compute the unitary operator
corresponding to a given quantum circuit, and how find a quantum circuit suffi-
cient to implement a desired unitary operator. We will also look at the surprisingly
efficient quantum circuits for computing various key quantum transforms such as
quantum versions of the Fourier, wavelet, cosine, and fractional Fourier transforms.

3.1 Quantum Circuit Diagrams

A quantum circuit diagram provides a visual representation of a sequence of quan-
tum gate operations (e.g., see Fig. 3.1).

1Source: Comment made by physicist Bruce Knapp of Columbia University to reporter William
J. Broad recounted in “With Stakes High, Race is on for Fastest Computer of All” from the 1st
February 1983 issue of the New York Times. In the 1980’s Japan and the U.S. were racing to make
faster and faster supercomputers. Knapp was commenting on the capabilities of a new classical
supercomputer he and his colleagues were developing. However, the quotation is even more fitting
for quantum computers.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_3, © Springer-Verlag London Limited 2011

123

http://dx.doi.org/10.1007/978-1-84628-887-6_3

124 3 Quantum Circuits

Fig. 3.1 A quantum circuit diagram illustrating different types of quantum gates. Single qubit
gates are drawn as boxes on the qubit on which they act labeled with their gate name (H for
Hadamard gate, X and Y for Pauli gates, Rx(θ) for a rotation gate about the x-axis through angle
θ etc.). Controlled gates are drawn with their controls depicted as circles (white for control-on-|0〉
and black for control-on-|1〉) and the operation they perform on the target is show as a labeled box.
At the end of the computation certain qubit values are read out. Also shown are the special 2-qubit
gates, CNOT, SWAP, and iSWAP

An n-qubit circuit consists of n horizontal rails, which correspond to the n qubits.
Our convention is to have the most significant qubit on the top rail and the least sig-
nificant qubit on the bottom rail. Time flows from left to right in the quantum circuit,
with the leftmost gates applied before the rightmost gates. If the rail is a single line,
it carries a quantum value (i.e., a pure or mixed quantum state). If the rail is a double
line, it carries a classical bit value. The double rails typically appears immediately
after a qubit has been measured and a classical bit value readout obtained. A mea-
surement gate is indicated by an icon that resembles a meter. This measures a qubit
in the computational basis and returns the result |0〉 or |1〉.

Inputs to the quantum circuit are drawn to the left of the horizontal rails, and
outputs from the circuit are drawn to right of the rails. Typically, the output will not
be a product state (i.e., expressible as the direct product of a state for each qubit) but
will, instead, be entangled.

A 1-qubit logic gate on the i-th qubit is depicted as a square box on the i-th rail
labeled with the name of the gate. A two qubit gate acting between the i-th and j -th
qubits is depicted as an icon with end points on qubits i and j . If such a gate is a
controlled gate, the controlling value is depicted as a black or white dot according
to whether the controlled operation is applied when the control qubit is in state |1〉
or |0〉 respectively. The quantum gate icons we use were introduced in Chap. 2 and
merely summarized in Fig. 3.2.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit

A quantum computation on n qubits typically requires several quantum gates to be
applied, sequentially, in parallel, or conditionally, to various subsets of the qubits.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 125

Fig. 3.2 Quantum gate icons
and their corresponding
descriptions in terms of
unitary matrices for the most
common quantum gates

The net unitary transformation they perform is computed by composing the uni-
tary matrices of the corresponding quantum gates according to certain rules. These
rules make use of three matrix operations, the dot product, the direct product and
the direct sum. The dot product corresponds to the usual product of two matrices.
However, the direct product and direct sum are taught less often in undergraduate
linear algebra courses. Therefore, in the interests of having a self-contained text, we
include their definitions here.

126 3 Quantum Circuits

Fig. 3.3 The net effect of
gates acting in series is
obtained from their dot
product in reverse order

Fig. 3.4 If the matrices
corresponding to two gates
that are applied sequentially
commute they may be applied
in either order without it
affecting the overall
transformation they achieve

3.2.1 Composing Quantum Gates in Series: The Dot Product

The dot product arises when composing the effect of quantum gates that act in series.

Dot Product If A is a m× p dimensional matrix and B is an p × n dimensional
matrix, their dot product, A ·B is the m× n dimensional matrix defined by:

A ·B =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 . . . a1p
... . . .

...

ai1 . . . aip
... . . .

...

am1 . . . amp

⎞
⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11 . . . b1j . . . b1n
... . . .

... . . .
...

... . . .
... . . .

...
... . . .

... . . .
...

bp1 . . . bpj . . . bpn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 . . . c1n
... . . .

...
... cij

...
... . . .

...

cm1 . . . cmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)
where cij = ai1b1j + ai2b2j + · · · + aipbpj =∑p

k=1 aikbkj .

If several gates, e.g., A, B , C say, act upon the same subset of qubits, then those
gates must be applied in series and their overall effect is computed using the dot
product. In a quantum circuit (with time flowing from left to right) if A acts before
B and B acts before C, their overall effect is computed by their dot product in
reverse order, i.e., C ·B ·A, as shown in Fig. 3.3.

If the unitary matrices for a pair of gates that act on the same set of qubits com-
mute, i.e., for gates A and B , A · B = B ·A, then the order in which the gates are
performed is immaterial.

Example Taking A = (Rz(θ) ⊗ 1) and B = CNOT, we have that (Rz(θ) ⊗ 1) ·
CNOT = CNOT · (Rz(θ)⊗ 1) and so, as depicted in Fig. 3.4, their order does not
matter.

However, if the unitary matrices for a pair of gates that act on the same set of
qubits do not commute, i.e., for gates A and B , A · B �= B · A, then the order in
which the gates are performed affects the overall transformation they achieve.

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 127

Fig. 3.5 If the matrices
corresponding to two gates
that are applied sequentially
do not commute the order in
which they are performed
matters

Fig. 3.6 Quantum gates that
act on disjoint sets of qubits
can be applied in parallel or
any either order with no
change to the overall
operation performed

Example Taking A = (1 ⊗ Rz(θ)) and B = CNOT, we have that (1 ⊗ Rz(θ)) ·
CNOT �= CNOT · (1⊗Rz(θ)) and so their order, as depicted in Fig. 3.5, affects the
net transformation that is achieved.

3.2.2 Composing Quantum Gates in Parallel: The Direct Product

If adjacent gates within a quantum circuit act on independent subsets of the qubits,
then those gates can be applied simultaneously in parallel, as depicted in Fig. 3.6.
The operation that computes the net effect of parallel gates is the direct product.

Direct Product If A is a p× q dimensional matrix and B is an r × s dimensional
matrix, their direct product, A⊗B is the pr × qs dimensional matrix defined by:

A⊗B =

⎛
⎜⎜⎜⎝
a11B a12B · · · a1qB

a21B a22B · · · a2qB
...

...
. . .

...

ap1B ap2B · · · apqB

⎞
⎟⎟⎟⎠ (3.2)

Notice that the dimensions of the direct product matrix can grow very rapidly if
we take the direct product of multiple matrices.

An especially common circumstance is when a j -qubit quantum gate, U say,
acts on a subset of the qubits and there is no explicit operation on the other qubits.
Mathematically, this can be regarded as parallel gate operations in which an i-qubit
identity gate (“no-op”) is applied to qubits 1 through i, the j -qubit U gate is applied
to qubits i + 1 through i + 1+ j , and a k-qubit identity gate (“no-op”) is applied to
qubits i + j + 1 through i + j + k. As the direct product (“⊗”) is the mathematical
operation that combines gates in parallel, the net gate, shown in Fig. 3.7, is 12i ⊗

128 3 Quantum Circuits

Fig. 3.7 When a gate acts on
a contiguous subset of qubits,
and no other gates act, the net
operation can be thought of as
the parallel application of
“no-op”

Fig. 3.8 The direct sum
A⊕B describes a controlled
quantum gate having one
control qubit

U ⊗ 1k
2, where 12� is a �-qubit identity (“no-op”) gate, i.e., a 2� × 2� dimensional

identity matrix.

3.2.3 Composing Quantum Gates Conditionally: The Direct Sum

Sometimes we might want to compute the effect of a gate that is applied condition-
ally. Typically, we have one subset of qubits (called “controls”) whose values dictate
what gate is to be applied to some other subset of qubits (called the “targets”). The
mathematical operation for composing gates conditionally is the direct sum.

Direct Sum If A is a p × q dimensional matrix and B is an r × s dimensional
matrix, their direct sum, A⊕B is the (p+ r)× (q + s) dimensional matrix defined
by:

A⊕B =
(

A 0p×s

0r×q B

)
(3.3)

In quantum computing the matrices involved will invariably be square and have
dimensions that are a power of two. The direct sum is the basic mathematical opera-
tion by which controlled (or conditional) quantum logic gates are built. For example,

3.2 Computing the Unitary Matrix for a Given Quantum Circuit 129

Fig. 3.9 The direct sum
A⊕B ⊕C ⊕D describes a
controlled quantum gate
having two control qubits

if A and B are arbitrary 3-qubit quantum gates the operation A⊕B means, as shown
in Fig. 3.8, that gate A is applied to the bottom three qubits if the top (control) qubit
is in state |0〉, and gate B is applied to the bottom three qubits if the top (control)
qubit is in state |1〉.

Direct sums can be generalized quite easily to allow for multiple controls. For
example, if A, B , C, and D are all 2-qubit gates, then the circuit made from A⊕
B ⊕C ⊕D applies A to the bottom two qubits if the top two (control) qubits are in
state |00〉, and applies B if the top two control qubits are in state |01〉 etc. The pattern
is best seen in the quantum circuit direct for this direct sum shown in Fig. 3.9.

We can use the matrix dot product, direct product, and direct sum, to translate a
quantum circuit diagram into its implied unitary matrix, and thereby compute the
overall transformation achieved by a quantum circuit. Summing up what we saw
above, the basic rules for mapping from a quantum circuit diagram to its equivalent
unitary matrix are as follows:

• Rule 1—No-op: if no gate is applied at a given step this is mathematically equiv-
alent to applying the identity gate, 1, at that step.

• Rule 2—Sequential: if gates A, B , and C are applied sequentially to a given
subset of qubits in the order A first, then B , then C, the overall unitary matrix is
given by C.B.A, i.e., their dot product in reverse order.

• Rule 3—Parallel: if gates A, B , and C are applied to qubits 1, 2, and 3 simulta-
neously, their net effect is computed from the direct product A⊗B ⊗C.

• Rule 4—Conditional: if qubit 1 is |0〉 apply gate A to qubit 2 and if qubit 1 is |1〉
apply gate B to qubit 2, is given by A⊕B .

• Rule 5—Permute: if a gate A is to be applied to non-adjacent qubits, permute the
qubits, according to permutation P , so they are adjacent, perform the gate and
unpermute the qubits. The net effect is P−1.A.P .

The exercises allow you to practice using these rules, and to generalize them to more
complicated multi-qubit gates.

130 3 Quantum Circuits

3.2.4 Measures of Quantum Circuit Complexity

In the quantum circuit model of quantum computation, one can characterize “com-
plexity” as the width, size, and length of the quantum circuit. Here width is the total
number of qubits on which the circuit acts (including any ancillae qubits); size is
the total number of gates the circuit uses, and length is the number of serial gate op-
erations after having parallelized the circuit to the maximum extent possible. Most
often we take the length of the quantum circuit as the primary indicator of its com-
plexity.

If the size (or any other complexity measure) of the quantum circuit grows as a
polynomial in the number of qubits, n, i.e., as a function like nk with k > 0, the cir-
cuit is regarded as being of “polynomial-size” and hence an efficient way to perform
the desired computation. On the other hand, if the size of the quantum circuit grows
as an exponential in the number of qubits, i.e., a function like 2n, or en, the cir-
cuit is deemed of “exponential-size” and an inefficient way of achieving the desired
computation. Luckily, many useful quantum computations admit polynomial-size
quantum circuits.

For quantum computing to offer a genuine breakthrough compared to classical
computing the minimum circuit complexity needed to achieve some computation
quantumly must be significantly less than that needed to achieve the same computa-
tion classically. In the ideal case the complexity separation will be exponential. That
is, ideally, we would like the quantum circuit complexity to grow as a polynomial
function in the number of qubits, n, i.e., O(nk), whereas the complexity of the cor-
responding classical circuit grows exponentially with the number of qubits, i.e., as
O(en).

Unfortunately, it is now known that a maximally general quantum computa-
tion on n-qubits (i.e., a fully general 2n × 2n unitary matrix) requires at least
23
48 4n − 3

2 2n + 4
3 CNOT gates and this result cannot be improved by more than a

factor of two, [453]. Thus, the size of the circuit for a maximally general n-qubit
quantum computation is exponential in the number of qubits and cannot therefore
be implemented “efficiently”.

However, it turns out that many of the computations that arise in practical ap-
plications are naturally unitary (which is lucky), and naturally implementable effi-
ciently in quantum circuits (which is even more lucky). The reason for this is that
the matrix elements of the practically useful unitary matrices are typically highly
interrelated, which means that the matrix as a whole requires less than the full com-
plement of degrees of freedom to specify it completely. Nature did not have to be so
kind to us, but this appears to be the case. Perhaps there is a deeper reason to it, but
there it is.

In the following sections we shall look at some of these specially structured uni-
tary matrices and the polynomially-sized quantum circuits into which they can be
decomposed.

3.3 Quantum Permutations 131

3.3 Quantum Permutations

In Chap. 2 we saw that the actions performed by classical reversible gates can be
represented mathematically in terms of permutation matrices, i.e., square matrices
having a single 1 in each row and column and zeroes everywhere else. Each distinct
n-bit classical reversible gate can be thought of as applying a different permutation
to the 2n bit strings that can be made from n bits. Thus, the classical reversible gates
could equally be called classical permutation gates.

Not surprisingly, as permutation matrices are also unitary matrices, a given clas-
sical permutation gate can also be viewed as a quantum gate that applies the same
permutation to the computational basis states of n-qubits, i.e., |00 . . .0〉, |00 . . .1〉,
. . . , |11 . . .1〉 that the classical permutation gate applies to bit strings. We call such
quantum gates “quantum permutations” in analogy to their classical counterparts.

There are, however, important differences between classical permutation gates
and quantum ones. Whereas classical permutation gates are restricted to act upon
only classical bit strings, the quantum permutation gates are free to act upon ar-
bitrary n-qubit states, including entangled states and mixed states. This allows the
quantum gates can apply a given permutation to a superposition of (essentially) sev-
eral bit-string inputs at once, which can be put to great advantage in many quantum
algorithms.

The number of possible quantum permutations grows worse than exponentially in
the number of qubits. Crudely speaking, a 2n×2n permutation matrix can be thought
of as an 2n × 2n identity matrix with its rows (or columns) permuted. As there are
2n! ways to permute 2n objects there are 2n! possible quantum permutations. Most
of these correspond to rather haphazard permutations and do not, therefore, have a
useful computational interpretation. But some of them turn out to be quite useful in
manipulating quantum states.

Although a given quantum permutation can be specified by a 2n×2n permutation
matrix, it is sometimes easier to interpret its action in terms of its affect on a column
vector of 2n amplitudes or its affect on a product state of n-qubits. We will flip back
and forth between interpretations in the examples below.

3.3.1 Qubit Reversal Permutation: P2n

The qubit reversal permutation arises in the circuit for the quantum Fourier trans-
form (QFT) as the final step needed to put the qubits back into the order they had
when they entered the circuit, i.e., with the most significant bit on the top line of the
circuit, and the least significant bit on the bottom line of the circuit. By preserving
the ordering of the qubits the QFT can be treated as a module that may be slotted
into a quantum computation without requiring qubit re-ordering operations on the
preceding or succeeding parts of the computation.

The qubit reversal permutation is defined via its affect on the computational basis
states, i.e., the 2n n-qubit states in which each bit, ji , is 0 or 1:

P2n : |j1j2 . . . jn〉 −→ |jnjn−1 . . . j1〉 (3.4)

132 3 Quantum Circuits

Fig. 3.10 The structure of
the n= 2 to n= 6 qubit
reversal permutation matrices
P22 , P23 , . . . ,P26

The qubit reversal permutation can be specified equivalently as a unitary matrix,
which is shown here for the case of 1-, 2- and 3-qubits:

P21 =
(

1 0
0 1

)
, P22 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

P23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

The structure of the qubit reversal permutation matrices can seen more clearly in
Fig. 3.10. Each figure depicts a matrix, with dimensions a power of two, and color-
coded so that the (i, j)-th element of the matrix is white it that element is a 0 and
orange if it is a +1. As we scale up to larger matrices this makes it easier to see that
there is a special structure to these qubit reversal matrices.

Although the qubit reversal permutation is defined in terms of its action on
computational basis states, it is not restricted to acting on only these kinds of
states. For example, suppose a 3-qubit quantum computation returns an unentan-
gled output state |ψa〉|ψb〉|ψc〉 where |ψa〉 = a0|0〉 + a1|1〉, |ψb〉 = b0|0〉 + b1|1〉,
and |ψc〉 = c0|0〉 + c1|1〉. Then the operation P8 will reverse the qubits, i.e.,
P8|ψa〉|ψb〉|ψc〉 = |ψc〉|ψb〉|ψa〉. Hence the name “qubit reversal permutation”. To
see this note that P2n = P−1

2n , and check the amplitudes.

|ψa〉|ψb〉|ψc〉 ≡
(
a0
a1

)
⊗

(
b0
b1

)
⊗

(
c0
c1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0b0c0
a0b0c1
a0b1c0
a0b1c1
a1b0c0
a1b0c1
a1b1c0
a1b1c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.3 Quantum Permutations 133

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0b0c0
a1b0c0
a0b1c0
a1b1c0
a0b0c1
a1b0c1
a0b1c1
a1b1c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0b0a0
c0b0a1
c0b1a0
c0b1a1
c1b0a0
c1b0a1
c1b1a0
c1b1a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P−1
8 ·

(
c0
c1

)
⊗

(
b0
b1

)
⊗

(
a0
a1

)

= P−1
8 (|ψc〉|ψb〉|ψa〉) (3.6)

Hence P8|ψa〉|ψb〉|ψc〉 = |ψc〉|ψb〉|ψa〉.
A quantum circuit for P2n , when n is even, that uses only SWAP (i.e., Π4) gates

between adjacent qubits can be obtained from the following factorization:

P2n =
[
(Π4 ⊗Π4 · · · ⊗Π4︸ ︷︷ ︸

n
2

)(12 ⊗Π4 ⊗Π4 · · · ⊗Π4︸ ︷︷ ︸
n
2−1

⊗ 12)

]n/2

(3.7)

This factorization corresponds to a quantum circuit for (even n) qubit-reversal of
the form shown in Fig. 3.11 Conversely, when n is odd the factorization of P2n

becomes:

P2n =
[
(12 ⊗Π4 ⊗ · · · ⊗Π4︸ ︷︷ ︸

n−1
2

) · (Π4 ⊗ · · · ⊗Π4︸ ︷︷ ︸
n−1

2

⊗ 12)

] n−1
2 · (12 ⊗Π4 ⊗ · · · ⊗Π4︸ ︷︷ ︸

n−1
2

)

(3.8)

and its corresponding circuit is shown in Fig. 3.12 More gate-efficient versions of
the qubit-reversal permutation are possible if SWAP gates between non-adjacent
qubits are allowed as in Fig. 3.13. However, physically, it is much more difficult to
achieve SWAP operations that are not amongst nearest neighbor qubits.

Thus, we can interpret the qubit-reversal quite literally when the input state is
a direct product of n single qubit states. In this case, the qubits emerge from the
circuit in the opposite order they went in. But how are we to interpret what this
operation is doing if the input state is not a product state of n single qubit states?

134 3 Quantum Circuits

Fig. 3.11 Quantum circuit
for the qubit reversal
permutation, when the
number of qubits, n, is even,
using gates that only act on
adjacent qubits. In the
factorization we use the
notation Π4 for the 4× 4
unitary matrix corresponding
to a 2-qubit SWAP gate

Fig. 3.12 Quantum circuit
for the qubit reversal
permutation, when the
number of qubits, n, is odd,
using gates that only act on
adjacent qubits. In the
factorization we use the
notation Π4 for the 4× 4
unitary matrix corresponding
to a 2-qubit SWAP gate

The best way to see what happens is to work with the column vectors of amplitudes
corresponding to arbitrary superposition states of n qubits. Considering the n = 3
case as an illustrative example we have:

|ψ〉 = a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉
+ a5|101〉 + a6|110〉 + a7|111〉

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.9)

3.3 Quantum Permutations 135

Fig. 3.13 Quantum circuit
for the qubit reversal
permutation using SWAP
gates that can act between
any pair of qubits

and the effect of the qubit-reversal P8 on this state is:

P8|ψ〉 = P8 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a4
a2
a6
a1
a5
a3
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a↓0
a↓1
a↓2
a↓3
a↓4
a↓5
a↓6
a↓7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.10)

where ↓i means to take the bits in the binary representation of integer i, padded
with zeroes on the left to make the number n bits wide (n= 3 in our example), then
reverse the order of these bits, and map the result back into an integer to give the
new index. Thus, for the case of n= 3 we have:

↓0 → 000 → 000 → 0
↓1 → 001 → 100 → 4
↓2 → 010 → 010 → 2
↓3 → 011 → 110 → 6
↓4 → 100 → 001 → 1
↓5 → 101 → 101 → 5
↓6 → 110 → 011 → 3
↓7 → 111 → 111 → 7

(3.11)

3.3.2 Qubit Cyclic Left Shift Permutation: Π2n

The qubit left shift permutation arises in applications such as wavelet pyramid and
packet algorithms where shifting and shuffling of the amplitudes is required. The
operation is defined in terms of its effect on the computational basis states, i.e., the

136 3 Quantum Circuits

Fig. 3.14 The structure of
the n= 2 (left) to n= 6
(right) qubit cyclic left shift
permutation matrices

2n n-qubit states in which each qubit, ji , is 0 or 1:

Π2n : |j1j2 . . . jn−1jn〉 −→ |j2j3 . . . jn−1jnj1〉 (3.12)

The qubit left shift permutation can be specified equivalently as a unitary matrix,
which is shown here for the case of 1-, 2- and 3-qubits are:

Π21 =
(

1 0
0 1

)
, Π22 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

Π23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.13)

The structure of the qubit cyclic left shift permutation matrices can seen more clearly
in Fig. 3.14. Notice that the qubit left shift operation, Π2n , can also be understood as
the operation that performs a perfect shuffle on the column vector of amplitudes. For
example, the 3-qubit left shift permutation, Π8 acting on the general three qubit state
a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉 + a5|101〉 + a6|110〉 + a7|111〉
shuffles the amplitudes:

Π8 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a4
a1
a5
a2
a6
a3
a7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.14)

A circuit for the cyclic qubit left shift permutation can, as shown in Fig. 3.15, be
derived from the recursive factorization of the Π2n matrix:

Π2n = (12n−2 ⊗Π22) · (Π2n−1 ⊗ 12) (3.15)

3.3 Quantum Permutations 137

Fig. 3.15 Quantum circuit
for the qubit cyclic left shift
permutation operation, Π2n .
This consists of a simple
cascade of SWAP gates

where 12i is the 2i × 2i dimensional identity matrix. Note that Π4 is simply the
2-qubit SWAP gate. A SWAP operation that swaps qubits i and j , is given by
SWAP(i, j)≡ CNOT(i, j) ·CNOT(j, i) ·CNOT(i, j), where CNOT(i, j) is a CNOT
gate with control qubit i and target qubit j .

The qubit cyclic left shift permutation, Π2n , is used in Sect. 3.5 within quantum
circuits for the wavelet packet and quantum wavelet pyramid algorithms.

3.3.3 Amplitude Downshift Permutation: Q2n

Another permutation that turns out to be surprisingly useful is the n-qubit downshift
permutation, Q2n . This matrix has the form:

Q2n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · 1

1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.16)

The structure of the Q2n matrices is seen in Fig. 3.16.

138 3 Quantum Circuits

Fig. 3.16 The structure of
the n= 2 (left) to n= 6
(right) downshift permutation
matrix Q2n

Fig. 3.17 The high level
factorization of the Q2n

downshift permutation matrix
in terms of the qubit reversal
permutation P2n and multiply
controlled X gates where the
control action occurs when
the control qubits are in state
|0〉 (as indicated by the open
circles)

In turn, Q2n may be factored as:

Q2n = P2n

(
n⊙

i=1

[(X⊗ 12n−i)⊕ 12n−2n−i+1]
)
· P2n (3.17)

where X is the NOT gate, 12j is a 2j × 2j dimensional identity matrix, and P2n is
the qubit reversal permutation introduced in Sect. 3.3.1.

A quantum circuit for Q2n is given in Fig. 3.17. This instance is specialized to
the case n= 5 but the generalization to arbitrary n is obvious.

To understand how this circuit is constructed, it is instructive to follow the argu-
ment for a small value of n. For example, taking n= 4, we can rewrite the expression
(X⊗ 12n−i)⊕ 12n−2n−i+1 for i = 1,2,3,4 as follows:

i = 1: (X⊗ 124−1)⊕ 12n−2n−1+1

= (X⊗ 1⊗ 1⊗ 1)

i = 2: (X⊗ 124−2)⊕ 12n−2n−2+1

= (X⊗ 1⊗ 1⊗ 1) · (18 ⊕ (X⊗ 1⊗ 1)) · (X⊗ 1⊗ 1⊗ 1)

= (X⊗ 1⊗ 1⊗ 1) · (Controlled-X⊗ 1⊗ 1) · (X⊗ 1⊗ 1⊗ 1)

i = 3: (X⊗ 124−3)⊕ 12n−2n−3+1

= (X⊗X⊗ 1⊗ 1) · (112 ⊕ (X⊗ 1)) · (X⊗X⊗ 1⊗ 1)

= (X⊗X⊗ 1⊗ 1) · (Controlled-Controlled-X⊗ 1)

· (X⊗X⊗ 1⊗ 1)

i = 4: (X⊗ 124−4)⊕ 12n−2n−4+1

= (X⊗X⊗X⊗ 1) · (114 ⊕X) · (X⊗X⊗X⊗ 1)

= (X⊗X⊗X⊗ 1) ·Controlled-Controlled-Controlled-X

· (X⊗X⊗X⊗ 1)

(3.18)

3.3 Quantum Permutations 139

Note that the multiply-controlled X gates have their control qubits negated so that
the gate acts when the controls are in the |0〉 state. The structure of the circuit for
Q2n is then apparent.

3.3.4 Quantum Permutations for Classical Microprocessor
Design?

It is generally understood that, as we attempt to cram more computing power into
less and less space, it is becoming more and more challenging to dissipate the heat
that is generated as a side effect of computation. For example, you may already
have seen chips that need to be cooled actively to handle the heat load they gen-
erate. Electronic engineers still have a few tricks left to solve the problem for the
next few generations of microprocessors such as switching to new materials or new
architectures. Nevertheless, as we discussed in Sect. 2.1.7, at some point they will
inevitably run into the fundamental fact that there is an absolute minimum energy
that must be dissipated by irreversible logic operations whenever information is lost
or erased. At that time the final trick left available to them will be to switch to (classi-
cal) reversible logic as the basis for microprocessor design. However, given that the
action of any reversible logic gate is merely to apply a permutation to its input bits,
and given that such permutation gates can be implemented as quantum circuits, it is
natural to wonder whether a quantum circuit implementation of classical reversible
logic might offer any advantages over a purely classical reversible design?

There are clear differences. Whereas the classical circuit decompositions of clas-
sical reversible gates (i.e., classical permutation gates) may only employ other clas-
sical reversible gates, the quantum circuit decompositions of quantum permutation
gates allow for the use of true quantum gates. This means that even if the inputs
and outputs of classical and quantum permutation gates look similar, i.e., classi-
cal bit-strings in comparison to unentangled quantum computational basis states,
internal to such circuits the manipulations going on can be dramatically different.
In principle, one could imagine a quantum circuit implementation of a classical re-
versible gate, such that the inputs and outputs are always guaranteed to be classical
bit-strings (or unentangled computational basis states) but internal to the circuit ar-
bitrary quantum states may be used. Would such an architecture offer any additional
advantages as a basis for implementation of classical reversible logic devices?

It is early days to say for sure but a few things are clear. We do know that any
circuit for classical reversible logic is obliged to used only classical reversible gates
within it. This is really quite a nasty limitation because it restricts the allowed fac-
torizations of the overall reversible computation into simpler reversible operations.
By contrast, allowing arbitrary 1-qubit and 2-qubit (say) quantum gates is consid-
erably more freeing. In particular, it is known any even-permutation (i.e., one re-
quiring an even number of transpositions) can be achieved in a circuit using only
NOT/CNOT/TOFFOLI gates with no ancillae, whereas any odd-permutation can be
achieved in a circuit using only NOT/CNOT/TOFFOLI gates, but must necessarily

140 3 Quantum Circuits

use one ancilla. That is, the odd permutations can only be implemented reversibly if
we allow extra storage. By comparison, it is easy to see that any permutation (even
or odd) can be achieved in a circuit using only Rz, Ry , Ph and CNOT (or

√
SWAP

or iSWAP) gates using no ancillae. In a spintronic implementation, for example, the
Rz, Ry , and Ph would be single spin-rotations about the z-axis, x-axis and phase
shifts respectively, and

√
SWAP would be the only 2-spin interaction needed and

would be implemented using the spin-spin exchange interaction run for half the
time required for a total spin exchange. Moreover, unlike the classical case, we do
not need any 3-bit elementary gates (such as Toffoli and Fredkin gates) to have a
universal gate set of spintronic reversible computing.

Thus, it is apparent that by relaxing the requirement to remain in the computa-
tional basis for all intermediate steps in a reversible circuit, one can indeed achieve
more space efficient implementations of classical reversible logic. But whether the
degree of advantage is sufficient to warrant such a radical change in architecture is
questionable. Nevertheless, it is conceivable that quantum circuit implementations
of classical reversible logic could be the first practical use of quantum gates. This
is an intriguing prospect since it could provide a natural pathway by which quan-
tum gates may be infused into the mainstream computer chip industry, and stimulate
the marriage of (say) spintronic or photonic logic devices and conventional micro-
processor technology. As reversible gates are the ultimate energy-efficient classical
gates, this could be useful for future generations of classical computer chips, and
could provide a stepping stone to a full quantum computer, but with perhaps more
forgiving thresholds on error correction since the starting and ending states would al-
ways have to be computational basis states even prior to measurements being made.

3.4 Quantum Fourier Transform: QFT

A periodic signal is a continuous stream of data values that eventually repeat after
some point. Such signals are commonplace in a wide variety of fields ranging from
the sciences, medicine, engineering, economics, finance, and applied mathematics.
For centuries mathematicians have striven to understand the nature of periodic sig-
nals and have devised many techniques for extracting useful information from them.
One of the most useful of these techniques is that of Fourier analysis.

Fourier analysis transforms the periodic signal from the “time-domain” (i.e.,
from a sequence of data values that vary over time) to the “frequency-domain” (i.e.,
to a sequence of data values that represent the relative contributions of different fre-
quency components within the periodic signal). The underlying reason why Fourier
analysis works is that any periodic function can, in principle, be expressed as a
weighted sum of sines and cosines of different amplitudes and frequencies. Sur-
prisingly, any weird shaped periodic function can be written in terms of sums of
neat and regular sines and cosines having different frequencies. Knowledge of the
relative contributions of sines and cosines of different frequencies to an unusually
shaped periodic function can sometimes reveal useful information about the under-
lying process that generates the signal.

3.4 Quantum Fourier Transform: QFT 141

3.4.1 Continuous Signals as Sums of Sines and Cosines

Formally, we can write any function f (t) as a sum of sines and cosines of different
frequencies:

f (t)= a0

2
+

∞∑
n=1

an cos

(
nπt

L

)
+ bn sin

(
nπt

L

)
(3.19)

where

a0 = 1

L

∫ L

−L

f (t) dt (3.20)

an = 1

L

∫ L

−L

f (t) cos

(
nπt

L

)
dt (3.21)

bn = 1

L

∫ L

−L

f (t) sin

(
nπt

L

)
dt (3.22)

where n= 1,2,3,
Thus any periodic signal can viewed as a sum of sines and cosines of different

amplitudes and frequencies. The highest frequency component present in such an
expansion sets a limit to the rate with which the signal must be sampled in order to
guarantee that the continuous signal can be reconstructed perfectly from knowledge
of only a finite number of samples of it.

For example, consider the periodic signal shown in Fig. 3.18. This signal is pe-
riodic, with the period boundaries at {−L,+L} = {−2,+2}, and has a sharp dis-
continuity in its first derivative at, e.g., the point t = 1, making it quite unlike any
individual sine or cosine function.2 Nevertheless, we can approximate this periodic

Fig. 3.18 Periodic signal
showing a sharp kink. Here
the horizontal axis is time, t ,
and the vertical axis is the
signal value at that time, f (t)

2This data is synthetic and was generated using the piecewise continuous function f (t)= 5t2 + 3
(for −2≤ t < 1) and f (t)=−t3 + 9 (for 1≤ t ≤ 2) and shifted versions thereof.

142 3 Quantum Circuits

signal quite well using a 10-th order truncated Fourier series given by:

f (t) ≈ −16(3+ 4π + π2) cos(πt2)

π4
+ (12− 5π2) cos(πt)

2π4

− 16(1− 4π + 3π2) cos(3πt
2)

27π4
+ 21 cos(2πt)

8π2

− 16(3+ 20π + 25π2) cos(5πt
2)

625π4
+ (4− 15π2) cos(3πt)

54π4

− 16(3− 28π + 49π2) cos(7πt
2)

2401π4
+ 21 cos(4πt)

32π2

− 16(1+ 12π + 27π2) cos(9πt
2)

2187π4
+ (12− 125π2) cos(5πt)

1250π4

− 2(24− 44π − 13π2 + 11π3) sin(πt2)

π4
+ (−19+ 11π2) sin(πt)

π3

− 2(−8− 44π + 39π2 + 99π3) sin(3πt
2)

27π4
+ (−3+ 44π2) sin(2πt)

8π3

− 2(24− 220π − 325π2 + 1375π3) sin(5πt
2)

625π4
+ (−19+ 99π2) sin(3πt)

27π3

− 2(−24− 308π + 637π2 + 3773π3) sin(7πt
2)

2401π4
+ (−3+ 176π2) sin(4πt)

64π3

− 2(8− 132π − 351π2 + 2673π3) sin(9πt
2)

2187π4
+ (−19+ 275π2) sin(5πt)

125π3

+ 117

16
(3.23)

You can see that even the truncated Fourier series gives a pretty good approximation
to the function by laying the graph of the Fourier series on top of that of the original
signal as shown in Fig. 3.19. The approximation gets better and better the more
terms from the Fourier series you include.

3.4.2 Discrete Signals as Samples of Continuous Signals

In practical applications, where we are monitoring some signal, we general do not
know the exact functional form for the signal. Instead, we are obliged to work with
a finite set of samples of the true signal spaced at regular time intervals. Such as
signal is therefore a discretization of the true (but unknown) underlying continuous
signal. We can however, adapt the idea of the Fourier transform to such a discrete
case. The result is called the discrete Fourier transform (or “DFT”).

3.4 Quantum Fourier Transform: QFT 143

Fig. 3.19 Truncated 10th
order Fourier series of the
periodic signal shown in
Fig. 3.18. Note that an
appropriately weighted sum
of sine and cosines of
different frequencies
approximates the given signal
quite well. Here the
horizontal axis is time, t , and
the vertical axis is the signal
value at that time, f (t)

Fig. 3.20 A natural signal
typically has structure on
many scales simultaneously.
This signal shows a periodic
behavior with interesting
higher frequency structure
imposed upon a lower
frequency oscillation

Naturally occurring signals typically have structure on many different scales. For
example, the signal shown in Fig. 3.20 consists of a lower frequency oscillation on
top of which is added many higher frequency components.

In general, we see not this entire continuous signal, but rather a finite set of
samples from it over some time interval of interest. We can imagine what we are
given is the values of some underlying continuous function f (t) sampled at the
discrete times j
t for j = 0,1,2, . . . taking on integer values ranging from 1 to N

(the number of sample points in the chosen interval) and
t the spacing between
samples, i.e., (tmax − tmin)/(N − 1). This gives us a snapshot of the function values
at discrete time instants:

f (t)≈ {f (0), f (1
t),f (2
t), . . . , f ((N − 1)
t)} (3.24)

As an example, consider the signal in Fig. 3.20 sampled at 128 points spaced

t = (tmax − tmin)/(N − 1)= (20− 0)/(128− 1) seconds apart.

Surprisingly, even though we may be given only a finite number of samples of a
continuous signal, f (t), at discrete times, it can nevertheless be re-created perfectly

144 3 Quantum Circuits

Fig. 3.21 The same signal as
shown in Fig. 3.20 sampled
uniformly at 128 points

from such samples provided the sampling rate used is above a certain threshold,
called the Nyquist limit. In particular, the following holds:

Nyquist Criterion If a signal f (t) does not contain any frequencies greater than or
equal to w Hz, it is completely determined from knowledge of its samples at evenly
spaced times 1

2w seconds apart.

3.4.3 Discrete Signals as Superpositions

Assuming we have a discrete set of values of some signal, if we are to operate
on them with a quantum Fourier transform we need to relate these signal val-
ues to a quantum state upon which our quantum Fourier transform operator is to
act. To do so, we associate the different time points, j
t , with different eigen-
states, |j 〉, and thereby encode all the signal values at the sampled times in a
superposition such that the signal values are the amplitudes and the time points
are the corresponding eigenstate. Hence, a discrete set of samples of a signal
f (t) ≈ {f (0), f (1
t),f (2
t), . . . , f ((N − 1)
t)} can be encoded as the state
|ψsignal〉 where:

|ψsignal〉 = f (0)|0〉 + f (1
t)|1〉 + f (2
t)|2〉 + · · · + f ((N − 1)
t |N − 1〉

=
N−1∑
j=0

f (j
t)|j 〉 (3.25)

If we are using qubits, it is convenient to take the number of sample points, N , to be
a power of two, i.e. N = 2n. So henceforth we will assume N = 2n.

In addition, for |ψsignal〉 to be a valid quantum state, it must be normal-
ized, i.e.,

∑N−1
�=0 |f (�
t)|2 = 1. Therefore, if the signal values do not happen to

have this property naturally, we simply re-normalize them by dividing the am-

plitudes by the re-normalization factor
√∑N−1

j=0 |f (j
t)|2 (see Fig. 3.22). If we

3.4 Quantum Fourier Transform: QFT 145

Fig. 3.22 The same signal as shown in Fig. 3.20 re-normalized and sampled uniformly at 128
points at intervals of
t = (tmax − tmin)/(N − 1), where tmax and tmin define the time interval over
which the function is being analyzed and N = 128 is the number of discrete points at which the
function is sampled within this interval. In our case, we took tmax = 20 and tmin = 0, and N = 128.
The effect of the renormalization is to scale the function values so that the sum of the squares of
the function values at the sample points is unity. This allows us to encode the 128 samples within
an n= log2 32= 7 qubit quantum state

build this re-normalization step into out encoding, a finite set of samples f (t) ≈
{f (0), f (1
t),f (2
t), . . . , f ((N −1)
t)} will be encoded as the quantum super-
position:

|ψsignal〉 =
N−1∑
j=0

f (j
t)√∑N−1
�=0 |f (�
t)|2

|j 〉 (3.26)

In the following sections, for convenience, we will assume our signal samples are
already properly normalized.

3.4.4 QFT of a Computational Basis State

Having understood how to represent a signal in a quantum state, we are ready to
compute the quantum Fourier transform (QFT) of that state. The rule for trans-
forming quantum state vectors under the QFT is exactly the same as the rule for
transforming classical vectors under the DFT. We simply imagine a quantum state
as being defined by a column vector of amplitudes representing the (re-normalized)
signal values. Thus the component of this column vector, corresponding to eigen-
state |j 〉 is defined to transform, under the action of the QFT, as follows:

QFT2n |j 〉 = 1√
2n

2n−1∑
k=0

e2πi jk2n |k〉 (3.27)

146 3 Quantum Circuits

Note that the output state now has amplitude smeared across all 2n eigenstates and
the quantity j

2n is a rational number 0 ≤ j
2n < 1. This property is important in un-

derstanding the phase estimation and eigenvalue estimation algorithms in Chap. 9.
Furthermore, since j is a base-10 integer, we can re-define the QFT in terms of

its affect of the individual bits which comprise the representation of j in base-2
notation. Specifically, if (j)10 ≡ (j1j2j3 . . . jn)2, i.e., if j in base-10 is equivalent to
the n-bit binary string j1j2j3 . . . jn in base-2, we have:

(j)10 ≡ (j1j2j3 . . . jn)2 = (2n−1j1 + 2n−2j2 + · · · + 20jn)10

= 2n(2−1j1 + 2−2j2 + · · · + 2−njn)10 = 2n(0.j1j2 . . . jn)2

where 0.j1j2 . . . jn is a binary fraction. Using this notation we can re-represent the
affect of the QFT as follows:

QFT2n |j 〉 = 1√
2n

2n−1∑
k=0

e2πi jk2n |k〉

= 1√
2n

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

e2πij (
∑n

�=1 k�2−�)|k1k2 . . . kn〉

= 1√
2n

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

n⊗
�=1

e2πijk�2−� |k�〉

= 1√
2n

n⊗
�=1

⎛
⎝ 1∑

k�=0

e2πijk�2−� |k�〉
⎞
⎠

= 1√
2n

n⊗
�=1

(|0〉 + e2πij2−� |1〉)

= 1√
2n

(|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉)

· · · (|0〉 + e2πi0.j1j2...jn |1〉) (3.28)

In this form it is apparent that the output state from the QFT of a computational basis
state is a direct product of single qubit states and is, therefore, unentangled! This is a
rather surprising property given how complicated the transformation appears to be.
Nevertheless, the QFT of a computational basis state is unentangled. This alternative
representation of the QFT finds application in many quantum algorithms based on
phase estimation, where the binary fraction 0.j1j2 . . . jn = j

2n is a binary encoding of
a numerical phase factor that we wish to extract from a superposition. We will come
back to this issue when we discuss the phase estimation and eigenvalue estimation
algorithms in Chap. 9.

3.4 Quantum Fourier Transform: QFT 147

3.4.5 QFT of a Superposition

Using the definition of how the QFT is to transform a single computational basis
state, |j 〉, we can now use the linearity of quantum operations to predict how the
QFT will transform an arbitrary superposition of computational basis states. In par-
ticular, we have:

|ψsignal〉 = 1√
2n

2n−1∑
j=0

f (j
t)|j 〉 QFT→ 1√
2n

2n−1∑
k=0

2n−1∑
j=0

f (j
t)e2πi jk2n |k〉 (3.29)

Thus, if we encode a signal in the amplitude sequence of a quantum state, we can
compute the DFT of the signal by applying QFT operator to this quantum state.
The result will be a new state vector that will be peaked in probability amplitude
at frequencies (indexed by computational eigenstates) which contribute the most
strongly to the signal.

Note that in any QFT the peaks are arranged symmetrically. That is, as shown
in Fig. 3.23, if eigenstate |k〉 in the QFT transformed signal is peaked, then so too
will be the eigenstate |2n − k〉. This is a normal feature of the discrete Fourier
transform and happens in both the classical and quantum contexts. As an example,
the QFT of the signal shown in Fig. 3.21 has decreasing peaks at computational
eigenstates |3〉 (and the symmetric |128− 3〉 = |125〉), |6〉 (and the symmetric state
|128− 6〉 = |122〉), and |4〉 (and its symmetric cousin |128− 4〉 = |124〉).

The QFT is a very important transform. Most of the known quantum algorithms
showing an exponential speedup, including Shor’s algorithm [455, 458], the phase
and eigenvalue estimation algorithms [2], and the quantum counting algorithm [76],
depend upon the QFT. Moreover, you can use the known (classical) relationships
between the discrete Fourier transform (DFT) and other classical discrete transforms
to infer corresponding relationships in the quantum domain [183]. This is potentially
a source of new quantum transforms.

Fig. 3.23 Plot of probability
(modulus amplitude squared)
versus eigenstate in the QFT
of the re-normalized signal
shown in Fig. 3.22. Note the
symmetric peaks in the QFT.
If there is a peak at eigenstate
|k〉 there will be a symmetric
peak at eigenstate |2n − k〉
where n is the number of
qubits being acted upon

148 3 Quantum Circuits

3.4.6 QFT Matrix

In classical computer science, the discrete Fourier transform (DFT) of a signal is
usually computed by way of a matrix-vector operation. In this approach, a vector—
the “signal vector”—encodes a sequence of sampled data values, and the elements
of the DFT matrix encode components of the Fourier transform. These components
are arranged in the matrix so that the dot product of the DFT matrix with the data
vector computes the DFT of the signal vector.

As luck would have it the DFT matrix happens to be a unitary matrix. Thus,
if we imagine representing a signal in the sequence of amplitudes of a quantum
state, |ψsignal〉,—the “signal state”—the quantum Fourier transform of the signal
state would require us to apply exactly the same matrix that the discrete Fourier
transform applies to the signal vector.

Thus, the QFT transformation specified in (3.29) can be represented, alterna-
tively, as the unitary matrix QFT2n defined in such a way that QFT2n |ψsignal〉 per-
forms the QFT on the state vector |ψsignal〉. For things to work our correctly, the
elements of this QFT matrix need to be QFT2n = 1√

2n
{ωjk}j,k=0,...,(2n−1) where ω

is the 2n-th root of unity,3 i.e., ω= exp(2πi/N) and i =√−1.

QFT2n := 1√
2n

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω1 ω2 . . . ω(2n−1)

1 ω2 ω4 . . . ω2(2n−1)

...
...

...
. . .

...

1 ω(2n−1) ω(2n−1)2 . . . ω(2n−1)(2n−1)

⎞
⎟⎟⎟⎟⎟⎠

(3.30)

The QFT matrix is highly structured as can be seen from the visual representation
depicted in Fig. 3.24. The matrices in the left hand column depict the real part of the
QFT matrix and those in the right hand column the corresponding imaginary parts.
In each pair, the matrices are shaded so that − 1√

2n
→ “orange”, 0 → “white”, and

+ 1√
2n
→ “blue”.

This special structure allows the QFT matrix, QFT2n , to be implemented in a
quantum circuit whose number of gates that grows only polynomially in n. This
is exponentially more compact that the minimum size quantum circuit needed to
implement an arbitrary unitary matrix of the same dimensions, i.e., 2n × 2n. This
economy of gate count in implementation is critically important to achieving effi-
cient quantum algorithms.

Note that, as the QFT matrix is unitary, no information is lost in taking the Fourier
transform of a signal, because the signal can always be recovered by applying the
inverse QFT matrix.

3Note that it is purely a matter of convention whether we pick ω = exp(+2πi/N), or ω =
exp(−2πi/N) since exp(+2πi/N)N = exp(−2πi/N)N = 1. Physicists tend to use the former
and electrical engineers the latter. The two versions of the transform are the inverse of one another.
It does not matter which version we pick so long as we use it consistently.

3.4 Quantum Fourier Transform: QFT 149

Fig. 3.24 The real (left) and
imaginary (right) parts of the
2-qubit to 6-qubit QFT
matrices. The patterning
reveals that the QFT matrices
are highly structured,
allowing them to be
implemented far more
efficiently than random,
maximally general, unitary
matrices of the same size

150 3 Quantum Circuits

3.4.7 QFT Circuit

A quantum circuit for the QFT can be obtained from the factorization given
by (3.31). This shows, if the input to the QFT is a computational basis state, i.e.,
an input of the form |(j)10〉 = |(j1j2 . . . jn)2〉, then the output will be an unentan-
gled product state:

QFT2n |j 〉 = 1√
2n

(|0〉+e2πi0.jn |1〉)(|0〉+e2πi0.jn−1jn |1〉) · · · (|0〉+e2πi0.j1j2...jn |1〉)
(3.31)

Thus, the relative phase of each output qubit is controlled by the bit values of a
subset the input bits |j1j2 . . . jn〉. These can be determined via the quantum circuit
shown in Fig. 3.25. In the QFT circuit,

H = 1√
2

(
1 1
1 −1

)
(3.32)

is the Walsh-Hadamard gate and

Rn =
(

1 0
0 exp(2πi/2n)

)
(3.33)

is a 1-qubit gate that inserts a relative phase shift of exp(2πi/2n) between the |0〉
and |1〉 components of a qubit. The backwards inserted controlled-Rn gates can be
obtained from the normally inserted controlled-Rn gates (i.e., (1⊕Rn)(in conjunc-
tion with SWAP gates and P2n gates. For example, the 2-qubit QFT showing these

Fig. 3.25 Quantum circuit for the Quantum Fourier Transform (QFT). If the input is a compu-
tational basis state |j1j2 . . . jn〉 the output will be an unentangled product state |k1〉|k2〉 . . . |kn〉
where |k1〉 = 1√

2
(|0〉 + e2πi(0.jn)|1〉), |k2〉 = 1√

2
(|0〉 + e2πi(0.jn−1jn)|1〉), and so on until

|kn〉 = 1√
2
(|0〉 + e2πi(0.j1j2...jn)|1〉)

3.5 Quantum Wavelet Transform: QWT 151

extra embeddings explicitly is as follows:

U1 = (H ⊗ 1)

U2 = SWAP1,2;2 · (1⊕R2) · SWAP1,2;2
U3 = (1⊗H)

U4 = P22

QFT22 = U4 ·U3 ·U2 ·U1

(3.34)

Multiplying out the gates, you will find that the 2-qubit QFT circuit performs the
following transformation:

QFT22 |j1j2〉 = (|0〉 + e2πi(j22−1)|1〉)⊗ (|0〉 + e2πi(j12−1+j22−2)|1〉)
= (|0〉 + e2πi(0.j2)|1〉)⊗ (|0〉 + e2πi(0.j1j2)|1〉) (3.35)

Likewise, the 3-qubit QFT showing these embeddings explicitly is given by:

U1 = (H ⊗ 1⊗ 1)

U2 = SWAP1,2;3 · ((1⊕R2)⊗ 1) · SWAP1,2;3
U3 = P23 · SWAP1,2;3 · (1⊗ (1⊕R3)) · SWAP1,2;3 · P23

U4 = (1⊗H ⊗ 1)

U5 = SWAP2,3;3 · (1⊗ (1⊕R2)) · SWAP2,3;3
U6 = (1⊗ 1⊗H)

U7 = P23

QFT23 = U7 ·U6 ·U5 ·U4 ·U3 ·U2 ·U1

(3.36)

Multiplying out the gates, you will see the 3-qubit QFT performs the transformation:

QFT23 |j1j2j3〉 = (|0〉 + e2πi(j32−1)|1〉)⊗ (|0〉 + e2πi(j22−1+j32−2)|1〉)
⊗ (|0〉 + e2πi(j12−1+j22−2+j32−3)|1〉)

= (|0〉 + e2πi(0.j3)|1〉)⊗ (|0〉 + e2πi(0.j2j3)|1〉)
⊗ (|0〉 + e2πi(0.j1j2j3)|1〉) (3.37)

3.5 Quantum Wavelet Transform: QWT

The idea of a wavelet transform is to re-represent a signal or time-series as a sum of
scaled and shifted versions of a fundamental function called the “mother wavelet”.
The scaling and shifting is performed in such a way that the derived “daughter

152 3 Quantum Circuits

wavelets” form an orthonormal basis4 for the set of all square integrable real valued
functions. A wavelet decomposition of a signal is similar, therefore, to a Fourier de-
composition in that we write the signal as a sum of orthonormal basis functions. In
the Fourier decomposition these are the sines and cosines, but in a wavelet decom-
position they are the daughter wavelets of some mother wavelet. However, unlike
the Fourier decomposition the wavelet decomposition is not unique. There can be
many different mother wavelets, leading to different daughter wavelets and hence
wavelet representations of a given signal. Moreover, whereas sines and cosines are
highly localized in frequency but spread out in space, the daughter wavelets are
localized in both frequency and space, on scales different for each daughter. This
locality property of wavelets, and the freedom to pick the mother wavelet, makes
the wavelet representation ideal for describing aperiodic, and especially jagged, sig-
nals such as electrocardiograms, and seismic waves. With the appropriate choice
of mother wavelet, a complicated signal can often be represented as a sum of just
a handful of daughter wavelets, whereas its Fourier series may require dozens of
terms. This makes the signal representation very sparse and helps accelerate signal
processing operations.

3.5.1 Continuous Versus Discrete Wavelet Transforms

As in the case of Fourier transforms, there are both continuous and discrete ver-
sions of wavelet transforms. The main difference is that whereas the continuous
wavelet transforms employ daughter wavelets that can be shifted and scaled over a
continuum of values with respect to the mother wavelet, the discrete wavelet trans-
form uses daughter wavelets that are shifted and scaled over only a discrete set of
values. Of special interest to us is when such shifting and scaling operations are
performed over powers of two. Thus, if the mother wavelet is the function, ψ(x)

(say), a family of the daughter wavelets, with scaling in powers of two, could be of
the form ψjk(x)= 2−j/2ψ(2−j x− k) where j and k are integers. Thus, any square
integrable function, f (x) can then be expanded in the form:

f (x)=
∑
j,k

cjkψjk(x) (3.38)

where

ψjk(x)= 2−j/2ψ(2−j x − k) (3.39)

where j and k are integers and where the cjk =
∫
f (x)ψjk(x)dx are called wavelet

coefficients.

4An orthonormal basis for a vector space is a set of vectors such that the overlap between any pair
of distinct vectors is 0, i.e., 〈ψi |ψj 〉 = 0, iffi �= j , and the overlap of a vector with itself is 1, i.e.,
∀i, 〈ψi |ψi〉 = 1.

3.5 Quantum Wavelet Transform: QWT 153

In this case the resulting family of discrete wavelet transforms can be represented
as sparse 2n×2n-dimensional unitary matrices, which can be factored into quantum
circuits whose size is polynomial in n. The wavelet transform of a signal can be
affected via a matrix-vector operation in which the vector (containing 2n samples
of some signal) can be represented in terms of the sequence of 2n amplitudes that
define some n-qubit pure state. Thus, by focussing on the 2n×2n dimensional DWT
matrix (from classical computing) we can make a very easy transition from the
classical domain to the quantum one.

3.5.1.1 Daubechies Wavelets and Quadrature Mirror Filters

Of the many possible families of discrete wavelets, the family invented by Ingrid
Daubechies in the late 1980s is especially useful [126–131]. Daubechies wavelets
are orthogonal and have compact support, but they do not have a closed analytic
form. Moreover, the lower order Daubechies wavelets are not differentiable every-
where and have a rather spiky appearance, whereas the higher order Daubechies
wavelets are relatively smooth. To create a particular Daubechies wavelet one begins
by designing a so-called “quadrature mirror filter”. In signal processing, a “filter”
can be thought of as a transformation of each signal value, taking account of nearby
signal values, and weighting the contributions mostly around the signal value being
transformed. The precise way the weighting is done is controlled by a set of parame-
ters called “wavelet filter coefficients”, which determine the type of mother wavelet.

Mathematically, one can model the action of a quadrature mirror filter as a
“matrix-vector product” in which the “vector” is a column vector of signal values,
and the matrix has rows whose elements correspond to the wavelet filter coeffi-
cients. A quadrature mirror filter uses two sets of inter-related wavelet filter coeffi-
cients, {c0, c1, c2, c3} and {c3,−c2, c1,−c0}, which are designed so that one filter
({c0, c1, c2, c3}) gives a strong response to a smooth signal and a weak response to
a rapidly varying signal, and the other filter ({c3,−c2, c1,−c0}) gives a strong re-
sponse to a rapidly varying signal and a weak response to a smooth signal. These
contrasting properties are the motivation behind the use of the term “mirror” in
the name “quadrature mirror filter”. By embedding these quadrature mirror filters
aligned in adjacent rows of a matrix, and then staggering the pattern two columns
over each time it is repeated, we can make a filter that has the effect of partitioning
an input signal into two bands. One band describes the slow frequency (smooth) be-
havior of the signal, whilst the other describes the high frequency (wiggly) behavior
of signal. What makes this division worthwhile, is that we can often then go on to
sub-sample each band separately, and thereby throw out much of the data from the
original signal, without affecting our ability to reconstruct the original signal from
the (now decimated) sub-bands to a very good approximation.

The different members of the family of Daubechies wavelet arise from dif-
ferent choices of quadrature mirror filters, which amount to different choices of
mother wavelet. The simplest class of Daubechies wavelets are the Daubechies D(4)

154 3 Quantum Circuits

wavelets—so-called because they use four different parameters (called “wavelet fil-
ter coefficients”) in the quadrature mirror filter. Hence, the general structure of the
Daubechies D(4) matrix is:

D(4) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 0 0 0 0 0 0 0 0 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c0 c1 c2 c3 0 0 0 0 0 0 0 0 0 0
0 0 c3 −c2 c1 −c0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c0 c1 c2 c3 0 0 0 0 0 0 0 0
0 0 0 0 c3 −c2 c1 −c0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

. . .
. . .

. . .
. . . 0 0 0 0 0 0

0 0 0 0 0 0
. . .

. . .
. . .

. . . 0 0 0 0 0 0
0 0 0 0 0 0 0 0

. . .
. . .

. . .
. . . 0 0 0 0

0 0 0 0 0 0 0 0
. . .

. . .
. . .

. . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 0 0 0 0 c0 c1 c2 c3
0 0 0 0 0 0 0 0 0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 0 0 0 0 0 0 0 0 c0 c1
c1 −c0 0 0 0 0 0 0 0 0 0 0 0 0 c3 −c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.40)
Notice that the filters alternate from row to row, and step two columns to the right
every other row. Moreover, as the D(4) matrices are applied, typically, to signals
having 2n samples, the final two rows always have a few wrap around elements
in the bottom left corner of the matrix. The net effect of D(4) when applied to a
column vector of signal values, is to interleave two filters—one that responds to
smooth signals (and suppresses wiggly ones) and the other that responds to highly
oscillatory signals (and suppresses smooth ones). Therefore, if we were to shuffle
the elements in the transformed column vector, we could separate the signal into
a description in terms of its smooth components and one in terms of its wiggly
components. In the following discussion, if we know the D(4) wavelet kernel is
to act on an n-qubit state, i.e., a column vector if 2n amplitudes or on a 2n × 2n

dimensional density matrix, we indicate this with a subscript as in D
(4)
2n .

The D(4) wavelet kernel is just one of the family of Daubechies wavelets. Other
possibilities are the Daubechies D(6),D(8),D(10), . . . ,D(22) wavelets,5 which as
you might guess require 6,8,10, . . . ,22 wavelet filter coefficients respectively.

3.5.2 Determining the Values of the Wavelet Filter Coefficients

So much for the structure of the D(4) wavelet kernel and its quadrature mirror filter.
But what values are we to use for the wavelet filter coefficients, c0, c1, c2, c3?

It turns out that the values of the wavelet filter coefficients are determined by a
set of constraint equations that follow from the properties we require our wavelet
transform to possess. Specifically, if we are to be able to reconstruct a signal from

5N.B. The superscript is always an even number.

3.5 Quantum Wavelet Transform: QWT 155

its wavelet transform, then the wavelet kernel matrix needs to be invertible. This

is achieved by requiring the wavelet kernel matrix to be orthogonal. In this case,

the inverse matrix is simply the transpose. Thus, if the 4-qubit D(4) wavelet kernel,
D

(4)
24 , is given by:

D
(4)
24 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 0 0 0 0 0 0 0 0 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c0 c1 c2 c3 0 0 0 0 0 0 0 0 0 0
0 0 c3 −c2 c1 −c0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c0 c1 c2 c3 0 0 0 0 0 0 0 0
0 0 0 0 c3 −c2 c1 −c0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c0 c1 c2 c3 0 0 0 0 0 0
0 0 0 0 0 0 c3 −c2 c1 −c0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c0 c1 c2 c3 0 0 0 0
0 0 0 0 0 0 0 0 c3 −c2 c1 −c0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c0 c1 c2 c3 0 0
0 0 0 0 0 0 0 0 0 0 c3 −c2 c1 −c0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c0 c1 c2 c3
0 0 0 0 0 0 0 0 0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 0 0 0 0 0 0 0 0 c0 c1
c1 −c0 0 0 0 0 0 0 0 0 0 0 0 0 c3 −c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.41)

its transpose is given by:

(D
(4)
24)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c3 0 0 0 0 0 0 0 0 0 0 0 0 c2 c1
c1 −c2 0 0 0 0 0 0 0 0 0 0 0 0 c3 −c0
c2 c1 c0 c3 0 0 0 0 0 0 0 0 0 0 0 0
c3 −c0 c1 −c2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c2 c1 c0 c3 0 0 0 0 0 0 0 0 0 0
0 0 c3 −c0 c1 −c2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c2 c1 c0 c3 0 0 0 0 0 0 0 0
0 0 0 0 c3 −c0 c1 −c2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c2 c1 c0 c3 0 0 0 0 0 0
0 0 0 0 0 0 c3 −c0 c1 −c2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c2 c1 c0 c3 0 0 0 0
0 0 0 0 0 0 0 0 c3 −c0 c1 −c2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c2 c1 c0 c3 0 0
0 0 0 0 0 0 0 0 0 0 c3 −c0 c1 −c2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c2 c1 c0 c3
0 0 0 0 0 0 0 0 0 0 0 0 c3 −c0 c1 −c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.42)

and, for the matrix (D
(4)
24)T to be the inverse of matrix D

(4)
24 , we require D

(4)
24 ·

(D
(4)
24)T = 1, the identity matrix, which can only be true if the diagonal elements

of D(4)
24 · (D(4)

24)T are all 1’s and off-diagonal elements are all zeroes. Taking the dot

156 3 Quantum Circuits

product of D(4) and (D(4))T we obtain a matrix of the form:

D
(4)
24 · (D(4)

24)T

=

⎛
⎜⎜⎜⎜⎜⎝

c2
0 + c2

1 + c2
2 + c2

3 0 c0c2 + c1c3 0 0 · · ·
0 c2

0 + c2
1 + c2

2 + c2
3 0

. . . 0 · · ·
c0c2 + c1c3 0 c2

0 + c2
1 + c2

2 + c2
3 0

. . . · · ·
...

. . .
...

. . .
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

(3.43)

This matrix is supposed to be the identity matrix, which implies we need to satisfy
the constraints:

c2
0 + c2

1 + c2
2 + c2

3 = 1 (3.44)

c0c2 + c1c3 = 0 (3.45)

In addition, for the Daubechies wavelets, we also want all moments up to p-th order
to be zero. If we map the wavelet filter coefficients to the Fourier domain as in:

H(ω)=
2�−1∑
j=0

cj e
ijω (3.46)

then the constraint on the moments up to p-th order being zero amounts to requiring:

∂Hα(ω)

∂ωα

∣∣∣∣
ω=π

= 0 (3.47)

for α = 0,1,2, . . . , (p − 1). In particular, for the Daubechies D(4) wavelets p = 2
and the implied constraints are therefore:

H(ω) = c0 + c1e
iω + c2e

i2ω + c3e
i3ω (3.48)

∂H(ω)

∂ω

∣∣∣∣
ω=π

= ieiωc1 + 2ie2iωc2 + 3ie3iωc3 = 0 (3.49)

∂H 2(ω)

∂ω2

∣∣∣∣
ω=π

= −eiωc1 − 4e2iωc2 − 9e3iωc3 = 0 (3.50)

∂H 3(ω)

∂ω3

∣∣∣∣
ω=π

= −ieiωc1 − 8ie2iωc2 − 27ie3iωc3 = 0 (3.51)

Solving the orthogonality constraints (as in (3.44)) and the moments constraint
(as in (3.48)) for the cj determines the values of the wavelet filter coefficients,
{c0, c1, c2, c3}. In general, there are multiple sets of solutions for the cj . One such

3.5 Quantum Wavelet Transform: QWT 157

Fig. 3.26 One can visualize the shape of a wavelet by running a delta function through the inverse
wavelet transform

solution is:

c0 = 1+√
3

4
√

2

c1 = 3+√
3

4
√

2

c2 = 3−√
3

4
√

2

c3 = 1−√
3

4
√

2

(3.52)

Having found values for the wavelet filter coefficients, we can now see, as shown
in Fig. 3.26, what wavelets look like by applying the inverse of the wavelet kernel
matrix (given by (3.42)) to one of the computational basis states. Using the afore-
mentioned values for the wavelet filter coefficients, Fig. 3.27 shows the structure if
the D

(4)
2n wavelet kernel matrices for n= 2 to n= 6 qubits.

3.5.3 Factorization of Daubechies D
(4)
2n Wavelet Kernel

Next we turn to the factorization of the Daubechies D(4)
2n wavelet kernel into 1-qubit

and 2-qubit unitaries that are easily interpretable as quantum gates. We begin by

158 3 Quantum Circuits

Fig. 3.27 The structure of
the Daubechies quantum
wavelet kernel transforms
D

(4)
22 ,D

(4)
23 ,D

(4)
24 (top row)

and D
(4)
25 ,D

(4)
26 ,D

(4)
27 (bottom

row)

defining the single qubit gates C0 and C1:

C0 = 2

(
c3 −c2
c2 c3

)

C1 = 1

2

(c0
c3

1
1 c1

c2

) (3.53)

where the values of c0, c1, c2, and c3 are as defined in (3.52). With these definitions,
as you will show in Exercise 3.13, we can factor the Daubechies D(4)

2n wavelet kernel
matrix as:

D
(4)
2n = (12n−1 ⊗C1) ·Q2n · (12n−1 ⊗ (NOT ·C0)) (3.54)

where 12n−1 is the 2n−1×2n−1 dimensional identity matrix, and Q2n is the 2n×2n-
dimensional downshift permutation matrix described in Sect. 3.3.3.

3.5.4 Quantum Circuit for D
(4)
2n Wavelet Kernel

To obtain the quantum circuit for the D
(4)
2n wavelet kernel, we can interpret the fac-

torization given in (3.54). This gives D(4)
2n in terms of Q2n and single qubit gates as

shown in Fig. 3.28.
Expanding out the definition of Q2n we obtain the quantum circuit shown in

Fig. 3.29.

3.5.5 Quantum Circuit for the Wavelet Packet Algorithm

As we mentioned above, a single application of the wavelet kernel transform, splits a
signal into a coarse description and a fine description, but these two representations

3.5 Quantum Wavelet Transform: QWT 159

Fig. 3.28 The high level
factorization of the D

(4)
2n

wavelet kernel in terms of the
downshift permutation Q2n

and single qubit gates

Fig. 3.29 Quantum circuit for the 2n × 2n dimensional D(4)
2n wavelet kernel

end up interleaved. In classical applications of the discrete wavelet transform, one
therefore usually shuffles the transformed signal to group all the coarse components
together, and all the fine components together, making two vectors half the length of
the original. These vectors are called sub-band signals. One then repeats the process
with new (half-length) discrete wavelet transforms applied to each sub-band inde-
pendently. Depending on how you split and recurse on the transformed signals, one
can achieve the so-called wavelet packet or wavelet pyramidal algorithms. In the
quantum context, these turn out to be phenomenally more efficient than is possible
classically.

A wavelet transform typically involves a wavelet kernel and a scheme for em-
ploying that kernel within a so-called “pyramid” or “packet” algorithm. The wavelet
kernel splits a signal into a part describing its smooth behavior and a part describ-

160 3 Quantum Circuits

Fig. 3.30 The structure of
the Daubechies D(4) quantum
wavelet packet trans-
forms PAC22 ,PAC23 ,PAC24

(top row) and PAC25 ,PAC26 ,

PAC27 (bottom row)

ing its detailed behavior, and then stops. Then other operations, i.e., the pyramid or
packet operations, are used to permute the result, and then a wavelet kernel is used
again on a smaller subset of the vector.

Once we have a quantum circuit for the quantum wavelet kernel, it is trivial to
write the circuit for the quantum wavelet packet algorithm (based on this kernel)
using the factorization:

PAC = (12n−2 ⊗D
(4)
4) · (12n−3 ⊗Π8) · · · (12n−i ⊗D

(4)
2i

) · (12n−i−1 ⊗Π2i+1)

· · · (12 ⊗D
(4)
2n−1) ·Π2nD

(4)
2n (3.55)

because operators of the form U⊗1 apply U to one subset of qubits and the identity
(1) to the remaining ones. The structure of the resulting quantum wavelet packet
matrices, based on the Daubechies D(4) wavelet kernel, are shown in Fig. 3.30.

3.5.6 Quantum Circuit Wavelet Pyramidal Algorithm

A wavelet kernel used within a pyramid algorithm splits a signal into a part de-
scribing its smooth behavior and a part describing its detailed behavior, shuffles the
amplitudes to group all the smooth components together, and all the detail compo-
nents together, and then recurses on the newly grouped smooth components (now
half the length of the previous vector acted upon). This pyramid algorithm is best
described by example. Suppose W is some wavelet kernel transform. Then W can
be used within a wavelet pyramid algorithm as follows:

3.5 Quantum Wavelet Transform: QWT 161

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W16−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0
d0
s1
d1
s2
d2
s3
d3
s4
d4
s5
d5
s6
d6
s7
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ΠT
16−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0
s1
s2
s3
s4
s5
s6
s7
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W8−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s′0
d ′0
s′1
d ′1
s′2
d ′2
s′3
d ′3
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ΠT
8−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s′0
s′1
s′2
s′3
d ′0
d ′1
d ′2
d ′3
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W4−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s′′0
d ′′0
s′′1
d ′′1
d ′0
d ′1
d ′2
d ′3
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ΠT
4−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s′′0
s′′1
d ′′0
d ′′1
d ′0
d ′1
d ′2
d ′3
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W2−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s′′′0
d ′′′0
d ′′0
d ′′1
d ′0
d ′1
d ′2
d ′3
d0
d1
d2
d3
d4
d5
d6
d7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.56)

The first level factorization of the wavelet pyramid algorithm is given by:

PYR = (D
(4)
4 ⊕ 12n−4) · (Π8 ⊕ 12n−8) · · · (D(4)

2i
⊕ 12n−2i)

· (Π2i+1 ⊕ 12n−2i+1) · · ·Π2nD
(4)
2n (3.57)

The structure of the resulting quantum wavelet pyramid matrices, based on the
Daubechies D(4) wavelet kernel, are shown in Fig. 3.31. Thus, just as we can obtain
efficient quantum circuits for the quantum Fourier transform (QFT), so too can we
obtain them for the quantum wavelet transform (QWT) as exemplified here by the
particular case of Daubechies D(4) wavelet kernel and its subsequent use within both

162 3 Quantum Circuits

Fig. 3.31 The structure of
the Daubechies D(4) quantum
wavelet pyramid trans-
forms PYR22 ,PYR23 ,PYR24

(top row) and PYR25 ,

PYR26 ,PYR27 (bottom row)

wavelet packet and wavelet pyramid algorithms. In all these circuit constructions
permutation matrices play a pivotal role. If viewed from a conventional (classical)
computer science perspective, such permutation matrices correspond to instructions
specifying data movement patterns. Surprisingly, sometimes the data movement pat-
terns that are hard to implement classically turn out to be easy to implement quan-
tumly and vice versa. Moreover, perhaps completely counter-intuitively, the com-
plexity of quantum circuits for the wavelet packet and wavelet pyramid schemes
(which incorporate multiple calls to a wavelet kernel sub-routine) can, after simpli-
fication, be lower than the complexity of the wavelet kernels used within them. So
in the quantum world one can sometimes do more with less! The discrete wavelet
transform is so useful classically it is hard to believe we cannot also exploit the cor-
responding QWT in clever ways quantumly. Part of my motivation for including a
discussion of the QWT in this book is to stimulate others to use it in creative and
productive ways. Two-dimensional extensions of the QWT (and indeed, all other
1D quantum transforms) are discussed in Chap. 10.

3.6 Quantum Cosine Transform: QCT

In classical computing, the Discrete Cosine Transform (DCT) is used widely within
algorithms for video, image, and audio compression [9, 287]. In particular, it is
the cornerstone of the JPEG image , and MPEG video, compression schemes. The
DCT’s popularity comes from the fact that it is able to concentrate most of the
information in a signal into a small number of low frequency components of the
transformed signal. Hence, one need only send these few low frequency components
to be able to reconstruct an image that is indistinguishable (by eye) from the original.

The DCT is similar to the DFT in that they both transform discretely sampled
signals of finite duration or extent into new signals that reveal the frequency contri-
butions to the original signal. However, whereas the foundation for DFT is based on
the idea of Fourier series, the foundation of DCT comes from that of cosine series.

3.6 Quantum Cosine Transform: QCT 163

In a Fourier series one represents a signal of finite extent as a periodic function
of infinite extent built from a sum of sinusoids and cosinusoids of different frequen-
cies and amplitudes such that the function values match the signal values over each
period. However, as the signal value at the beginning of a period is usually different
from the signal value at the end of that period, it very likely that the periodic function
used to represent the signal will have abrupt discontinuities at each period-to-period
boundary. Due to these abrupt discontinuities it typically takes a great many sine and
cosine terms in the Fourier series expansion to obtain a satisfactory approximation
to the original signal.

3.6.1 Signals as Sums of Cosines Only

The cosine series is similar to the Fourier series except that it uses only cosine
functions of different amplitudes and frequencies in the sum used to approximate
a signal. As for Fourier series, the use of cosinusoids means that the function used
to represent a signal of finite extent actually has infinite extent, and therefore has
to be defined beyond the original domain of the signal. However, one has some
flexibility in how one defines the function outside the signal domain. In particular,
the extensions do not have to be periodic replications of the signal. In fact, if we
use discrete samples of a continuous signal, we can choose to make the extension
even or odd about an end point of the signal or about a point midway between an
endpoint and the next point. Different types of DCT (called DCT-I, DCT-II, . . . ,
DCT-VIII) come from making different choices about how to continue the signal
from one domain to the next, and whether to make the symmetry be based on an
end point or a point midway between an end point and the next point. In cosine
series, the extended function is always chosen to be an even function on the left—
because the cosine function is even—(1 choice) but may be an even or odd function
on the right (2 choices). In addition, the point of symmetry on the left can be an
end point or a point midway between the end point and the next point (2 choices).
Likewise, the point of symmetry on the right can be an end point or a point midway
between the end point and the next point (2 choices). Thus there are 1×2×2×2= 8
possible ways to define the (functional) continuation of the original signal beyond
its defined domain. These alternatives give rise eight variants of the DCT known
DCT-I, DCT-II, . . . , DCT-VIII.

3.6.2 Discrete Cosine Transform DCT-II and Its Relation to DFT

The most commonly used DCT is the DCT-II. This has boundary conditions such
that the continuation of the discrete signal values, {x0, x1, . . . , xN−1}, are made to

164 3 Quantum Circuits

be an even function on the left about the point n=− 1
2 and an even function on the

right about the point n= N − 1
2 . The classical one-dimensional DCT-II is defined

to implement the following transformation:

yk =
N−1∑
n=0

xn cos

(
π

N

(
n+ 1

2

)
k

)
(3.58)

The unusual-looking factor of 1
2 in the definition of DCT-II come from taking the

symmetry points to be midway between end points and the next points in the ex-
tended signal in either direction.

In this form, there is an surprisingly simple relationship between DCT-II and
DFT (the discrete Fourier transform). One finds that a DCT-II transform of a signal,
S = {x0, x1, . . . , xN−1}, having N sample values, is related to the DFT transforma-
tion of a signal S′ = {0, x0,0, x1,0, . . . , xN−1,0, xN−1,0, xN−2,0, . . . , x1,0, x0},
having 4N sample values. In particular, the first N elements of DFT · S′ are exactly
the same as DCT-II · S. As DFT and QFT transforms are defined by identical ma-
trices, this means there is a direct relationship between QFT and this version of the
classical DCT-II. Amazing!

Does this mean we are seconds away from a fast quantum circuit for perform-
ing “QCT-II”, the quantum version of DCT-II? Well not so fast. Unfortunately,
the DFT-II transform as defined in (3.58) is not orthogonal, and hence not uni-
tary. So we cannot use QFT to obtain QCT-II in a straightforward way. However,
there is an alternative way to define the classical DCT-II that inserts coefficients
into (3.58) specifically to make the DCT-II transformation matrix orthogonal and
unitary.

The (classical) orthogonalized version of DCT-II is defined by the transforma-
tion:

yk =
√

2

N
αk

N−1∑
n=0

xn cos

(
π

N

(
n+ 1

2

)
k

)
(3.59)

such that α0 = 1√
2

and for all k �= 0, αk = 1. Unfortunately, if we use this defi-
nition of DCT-II, we no longer have the elegant relationship between the DCT-II
and DFT that we had using the old non-orthogonalized version. Nevertheless, as
the orthogonalized version of DCT-II given in (3.59) is unitary it is a much better
starting point from which to attempt to construct its quantum counterpart QCT-II.
Moreover, even though the simple relationship with DFT is lost, it turns out that the
orthogonalized version of DCT-II can still be factored in terms of DFT (and hence
QFT) and so the quantum circuit for QCT-II can still employ QFT in its construc-
tion.

3.6 Quantum Cosine Transform: QCT 165

3.6.3 QCTII
N Transformation

We therefore choose to define the Type II quantum cosine transform acting on a sig-
nal having N = 2n sample values as the following transformation of a superposition
representing a (normalized) signal |ψsignal〉:

|ψsignal〉 =
N−1∑
j=0

fj |j 〉

QCTII
N :=

N−1∑
k=0

N−1∑
j=0

√
2

N
αk cos

(
π

N

(
j + 1

2

)
k

)
fj |j 〉

(3.60)

with N = 2n, α0 = 1√
2

and for all k �= 0, αk = 1.

3.6.4 QCTII
N Matrix

Given the definition of QCTII
N in (3.60) the corresponding unitary matrix that im-

plements this transformation is:

QCTII
N :=

{√
2

N
αk cos

(
π

N

(
j + 1

2

)
k

)}
j,k=0,1,2,...,N−1

(3.61)

with N = 2n, α0 = 1√
2

and for all k �= 0, αk = 1. This definition gives rise to highly

structured unitary matrices for QCTII
N transformations on increasing numbers of

qubits. This structure is best revealed graphically as shown in Fig. 3.32.

Fig. 3.32 The structure of
the unitary matrices
corresponding QCTII

22 ,

QCTII
23 ,QCTII

24 (top row) and

QCTII
25 ,QCTII

26 ,QCTII
27

166 3 Quantum Circuits

3.6.5 QCTII
N Circuit

A quantum circuit for QCTII
N relies on the following identity:

U
†
2N ·QFT2N · V2N =QCTII

N ⊕−QSTII
N (3.62)

where QFT2N is the Quantum Fourier Transform on a signal of length 2N , U2N and
V2N are 2N × 2N dimensional unitary matrices that will be described below, and
−QSTII

N is the negative of the Type II Quantum Sine Transform, which is analogous
to QCTII

N except that it uses sines instead of cosines and always has an odd sym-
metry about the left hand boundary of the signal. Specifically, the unitary matrix
describing the QSTII

N is:

QSTII
N :=

(√
2

N
βk sin

(
π

N

(
j + 1

2

)
(k + 1)

))
j,k=0,1,2,...,N−1

(3.63)

with N = 2n, βN−1 = 1√
2

and for all k �= N − 1, βk = 1. Note that the direct sum
on the right hand side of (3.62) implies it is a controlled gate, with the control value
being on the topmost qubit. In this case, when the input state is |1〉|ψ〉, the output
bottom qubits will contain the QCTII

N |ψ〉.
The V2N matrices are defined as:

V4 =

⎛
⎜⎜⎜⎜⎜⎝

1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0

⎞
⎟⎟⎟⎟⎟⎠
, (3.64)

V8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 1√
2

0 0 0

0 1√
2

0 0 0 1√
2

0 0

0 0 1√
2

0 0 0 1√
2

0

0 0 0 1√
2

0 0 0 1√
2

0 0 0 1√
2

0 0 0 − 1√
2

0 0 1√
2

0 0 0 − 1√
2

0

0 1√
2

0 0 0 − 1√
2

0 0

1√
2

0 0 0 − 1√
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.65)

3.6 Quantum Cosine Transform: QCT 167

V16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0

0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0

0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0 0

0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0

0 0 0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0

0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0

0 0 0 0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0

0 0 0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0

0 0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0

0 0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0

0 1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.66)

etc.
Likewise, the U2N matrices are defined as:

U4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 ω̄√
2

− iω̄√
2

0

0 0 0 −1

0 ω√
2

iω√
2

0

⎞
⎟⎟⎟⎟⎠ , (3.67)

U8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 ω̄√
2

0 0 − iω̄√
2

0 0 0

0 0 ω̄2√
2

0 0 − iω̄2√
2

0 0

0 0 0 ω̄3√
2

0 0 − iω̄3√
2

0

0 0 0 0 0 0 0 −1

0 0 0 ω3√
2

0 0 iω3√
2

0

0 0 ω2√
2

0 0 iω2√
2

0 0

0 ω√
2

0 0 iω√
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.68)

168 3 Quantum Circuits

U16 =

⎛
⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ω̄√
2

0 0 0 0 0 0 − iω̄√
2

0 0 0 0 0 0 0

0 0 ω̄2√
2

0 0 0 0 0 0 − iω̄2√
2

0 0 0 0 0 0

0 0 0 ω̄3√
2

0 0 0 0 0 0 − iω̄3√
2

0 0 0 0 0

0 0 0 0 ω̄4√
2

0 0 0 0 0 0 − iω̄4√
2

0 0 0 0

0 0 0 0 0 ω̄5√
2

0 0 0 0 0 0 − iω̄5√
2

0 0 0

0 0 0 0 0 0 ω̄6√
2

0 0 0 0 0 0 − iω̄6√
2

0 0

0 0 0 0 0 0 0 ω̄7√
2

0 0 0 0 0 0 − iω̄7√
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 ω7√
2

0 0 0 0 0 0 iω7√
2

0

0 0 0 0 0 0 ω6√
2

0 0 0 0 0 0 iω6√
2

0 0

0 0 0 0 0 ω5√
2

0 0 0 0 0 0 iω5√
2

0 0 0

0 0 0 0 ω4√
2

0 0 0 0 0 0 iω4√
2

0 0 0 0

0 0 0 ω3√
2

0 0 0 0 0 0 iω3√
2

0 0 0 0 0

0 0 ω2√
2

0 0 0 0 0 0 iω2√
2

0 0 0 0 0 0

0 ω√
2

0 0 0 0 0 0 iω√
2

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎠

(3.69)

where ω= exp(2πi/4N) and ω̄= exp(−2πi/4N) is the complex conjugate of ω.
As efficient quantum circuits for the QFT2N are known, we can obtain efficient

quantum circuits any QCTII
N if we can find efficient quantum circuits for U†

2N and
V2N . To this end, the following permutation matrices turn out to be useful:

3.6.5.1 Controlled-One’s Complement

The “One’s Complement” of a computational basis state |x1, x2, . . . , xn〉 is obtained
by NOT-ing each bit individually. A Controlled-One’s Complement only performs
the operation when a control bit is set to |1〉. Thus, we have:

|0, x1, x2, . . . , xn〉 C-OC−→ |0, x1, x2, . . . , xn〉 (3.70)

|1, x1, x2, . . . , xn〉 C-OC−→ |1,1− x1,1− x2, . . . ,1− xn〉 (3.71)

This operation can be obtained from:

C-OC2N ≡
n=log2 2N⊙

j=2

CNOT1,j ;n (3.72)

3.6 Quantum Cosine Transform: QCT 169

where CNOT1,j ;n is a CNOT gate between the first and j -th of n qubits. That is,
this is simply a cascade of CNOT gates all having the control on the first qubit.

3.6.5.2 Controlled-Two’s Complement

Let x be the base-10 number corresponding to the n-qubit bit string x1, x2, . . . , xn.
“Two’s Complement” of |x〉 is defined as follows:

|0,x〉 C-TC−→ |0,x〉
|1,0〉 C-TC−→ |1,0〉
|1,x〉 C-TC−→ |1,2n − x〉

(3.73)

This transformation can be obtained from the unitary matrix:

C-TC2N ≡ 1N ⊕
(
(NOT⊗ log2 N) ·QN

)
(3.74)

where Q2,Q4,Q8, . . . are permutation matrices of the form:

Q2 =
(

0 1
1 0

)
(3.75)

Q4 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ (3.76)

Q8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.77)

that rotate the sequence of amplitudes one position.

3.6.5.3 Controlled-ModularAddOne

|0,x〉 C-MAO−→ |0,x〉 (3.78)

|1,x〉 C-MAO−→ |1,x+ 1 mod 2n〉 (3.79)

170 3 Quantum Circuits

This transformation can be obtained from the unitary matrix:

C-MAO2N ≡ 1N ⊕Q
†
N (3.80)

As you recall, the reason we are interested in the quantum arithmetic operations
C-OC, C-TC, and C-MAO is because they arise in the factorization of the matrices
V2N and U

†
2N that are, in turn, used in the factorization of the Type II quantum

cosine transform QCTII
N . In particular, we have:

U
†
2N ·QFT2N · V2N =QCTII

N ⊕−QSTII
N (3.81)

Thus, in any circuit implementing U
†
2N ·QFT2N ·V2N , when the top (control) qubit is

set to have the value |0〉, the alternative factorization on the right hand side of (3.81),
allows us to see that the transformation the circuit will perform will then be QCTII

N .
This is because, if a unitary matrix of dimension 2n × 2n can be written as a direct
sum of two 2n−1 × 2n−1 unitaries such as “A⊕B”, the resulting matrix will corre-
spond to a conditional quantum gate which performs A on the bottom n− 1 qubits
when the top (control) qubit is set to |0〉, and B on the bottom n− 1 qubits when
the top (control) qubit is set to |1〉.

3.6.5.4 Quantum Circuit for V2N Using C-OC2N

By inspection, you can see that a V2N matrix can be factored as:

V2N = C-OC2N · (H ⊗ 1N) (3.82)

where H is the 1-qubit Walsh-Hadamard gate, i.e., H = 1√
2

(1 1
1 −1

)
.

3.6.5.5 Quantum Circuit for U
†
2N Using C-TC2N and C-MAO2N

The quantum circuit for U†
2N is considerably more involved. In Exercise 3.15 you

are asked to verify the following factorization for U†
2N :

U
†
2N = (C-MAO2N)† ·D2N · (C-TC)† ·D12N(ω) (3.83)

3.6 Quantum Cosine Transform: QCT 171

where

D2N = P2N · (NOT⊗(n−1) ⊗ 1) · (12N−2 ⊕C) ·NOT⊗(n−1) ⊗ 1)

· P2N · (B ⊗ 1N)

C =
⎛
⎝

1√
2

− i√
2

− i√
2

1√
2

⎞
⎠

B =
⎛
⎝

1√
2

1√
2

i√
2

− i√
2

⎞
⎠

D12N =
[(

1 0
0 ω̄

)
· (
1 ⊕
2)

]

1 =
1⊗

j=n

L(j,ω)

2 =
1⊗

j=n

K(j,ω)

L(j,ω) =
(

1 0

0 ω2j−1

)

K(j,ω) =
(
ω̄2j−1

0

0 1

)

ω = exp

(
2πi

4N

)

(3.84)

where ω̄ is the complex conjugate of ω. You should check this factorization for
yourself by doing Exercise 3.15.

Using the given factorizations for V2N , QFT2N , and U
†
2N , we can construct a

complete factorization of the Type II Quantum Cosine Transform, QCTII
N , and for

that matter, the type II Quantum Sine Transform, QSTII
N from:

U
†
2N ·QFT2N · V2N =QCTII

N ⊕−QSTII
N (3.85)

Note that QCTII
N and −QSTII

N are both highly structured unitary transforms and
admit anomalously small quantum circuit decompositions.

172 3 Quantum Circuits

3.7 Circuits for a Arbitrary Unitary Matrices

Automated circuit design tools are indispensable to the modern microelectronics
industry. They span every layer of the design process including the logic-layer,
architecture-layer, layout, fabrication etc. By contrast there are relatively few tools
today to help quantum computing experimentalists in translating desired unitary and
non-unitary operations into explicit quantum gate sequences.

Despite considerable effort being expended on trying to understand the principles
of quantum circuit design we still do not know of any efficient method for finding
the minimal quantum circuit that achieves a given n-qubit quantum computation for
arbitrarily large n. To date, approaches to quantum circuit design have fallen into one
of four categories. The majority of researchers use no formal scheme whatsoever
but instead rely upon ad hoc trial and error, and human ingenuity, to arrive at a
decomposition by hand. This approach is feasible for specially structured unitary
matrices such as the Quantum Fourier Transform [34] and the quantum wavelet
transform [183], because the special structure of the unitary operator reflects a
regular structure in the corresponding quantum circuit.

A second approach is to exhaustively enumerate the space of possible circuit de-
signs of increasing complexity starting from the empty circuit [149, 150]. For each
topologically distinct circuit, a computer finds optimal values for the parameters of
all parameterized-gates in the circuit. In principle, this method is guaranteed to find
the smallest circuit sufficient to implement the desired unitary operator. However,
exhaustive search composed with numerical optimization is computationally expen-
sive because the number of possible quantum circuit topologies grows exponentially
with increasing numbers of gates in the circuit. Hence the method is only feasible
for unitary operators that in fact have compact circuit descriptions.

A third approach uses genetic algorithms [472, 473, 536]. A random population
of circuits is created, and each is scored according to its “fitness” value, which is a
measure of how closely it comes to achieving the desired unitary operator. Pairs of
circuits are selected for breeding in proportion to their fitness and then mutation and
crossover operations are applied to make a new generation of circuits. By iterating
this process one converges on a population of circuits that tend towards implement-
ing the desired unitary operator. For genetic algorithms to work well, one needs a
degree of decomposability in the problem, i.e., that part of the solution is basically
correct while ignoring the rest. Because of the way the direct product of matrices
tends to spread elements throughout the resulting matrix, it can be hard for a genetic
algorithm to find satisfactory circuits for highly entangling unitary operators. Nev-
ertheless, several novel quantum circuits, algorithms and protocols have been found
by genetic and evolutionary algorithms [36, 327, 328, 345, 470, 471, 474, 475, 480].
A good review of the evolutionary approach is [197].

The fourth and most systematic approach is to apply a recursive algebraic decom-
position procedure such as the progressive matrix diagonalization of Reck [415], the
“quantum Givens” operations of Cybenko [122] or the hierarchical CS decomposi-
tion of Tucci [498]. Algebraic factorization is guaranteed to work, but is likely to
result in quantum circuits that are exponentially large unless one embeds circuit
compactification rules within the decomposition procedure.

3.7 Circuits for a Arbitrary Unitary Matrices 173

3.7.1 Uses of Quantum Circuit Decompositions

Quantum circuit decomposition of an arbitrary unitary matrix can be used to de-
termine an optimal pathway for the direct synthesis of any pure or mixed quantum
state [222], and to perfectly simulate high-dimensional stochastic processes that are
hard to do faithfully using classical pseudo-random number generators [180, 184].
Moreover, in Grover’s algorithm [219], if one has prior knowledge of the approxi-
mate location of the solution state(s) one can use a biased amplitude amplification
operator which tends to pump probability amplitude preferentially into eigenstates
in the presumed region of the solutions [221]. Such a unitary matrix may not have
any special structure, making its quantum circuit hard to guess.

3.7.2 Choice of Which Gate Set to Use

Moreover, although the set of gates used in such quantum circuits has tradition-
ally been taken to be the set of all one-qubit quantum gates in conjunction with
CNOT, many equally good universal gate sets exist, and there might be advantages
in using a non-standard gate set if certain choices happen to be easier to realize in
one hardware context than another. For example, in the context of spin-based quan-
tum computing, fractional powers of the two-qubit exchange interaction (i.e., the
SWAP gate) are known to be as powerful as CNOT as far as computational univer-
sality is concerned. Likewise, in the context of charge-based quantum computing,
the two-qubit gate iSWAP is easier to realize than CNOT and yet is equally as pow-
erful computationally [163]. It makes sense therefore, to tailor the decomposition
of a unitary operator to fit the chosen physical hardware, rather than to wrestle the
physics to fit an ad hoc model of computation.

3.7.3 Circuit Complexity to Implement Arbitrary Unitary Matrices

What is the most general quantum gate operation that can be performed on an n-
qubit state? If we imagine the n qubits to be well isolated from the environment,
and to go unmeasured until after the operation is completed, then the most gen-
eral operation corresponds to some n-qubit quantum gate which is mathematically
equivalent to a N × N dimensional unitary matrix, where N = 2n. In turn, this
unitary matrix can be thought of as the matrix exponential of a maximally general
n-qubit Hamiltonian, which can be represented as a N ×N dimensional hermitian
matrix. The fact that the Hamiltonian matrix needs to be hermitian constrains its ele-
ments along the main diagonal to be purely real numbers, but allows its off diagonal
elements can be complex numbers such that Hij =H�

ji , where � denotes taking the
complex conjugate. A complex number takes two parameters to specify it (one for

174 3 Quantum Circuits

the real part and one for the imaginary part). We can use this information to quan-
tify how many free parameters go into specifying a maximally general quantum gate
on n qubits. The Hamiltonian matrix is fully specified by picking N real numbers
down the main diagonal, plus as many complex numbers as possible in the upper (or
lower) triangular region above (or below) the main diagonal, i.e., 2

∑N
i=1 N − i. So

overall we have N + 2N(N − 1)= 2N2 −N . If we are free to pick O(2N2)≈ 22n

free parameters to specify a maximally general n-qubit unitary matrix, we ought not
to be surprised if we have to use this many gates to implement such an operator.
Indeed, Shende, Bullock and Markov have proved that the quantum circuit for a
maximally general n-qubit unitary matrix requires at least 23

48 22n − 3
2 2n + 4

3 CNOT
gates to implement it, and that this result cannot be improved by more than a factor
of two [453]. Thus, it is a difficult problem and even writing down the circuit for
a maximally general quantum gate will require exponential resources. Luckily, the
unitary matrices that arise in practice are usually highly structured and admit anoma-
lously compact quantum circuit decompositions. Nevertheless, for smallish circuits
that defy obvious interpretation the use of an algebraic (always works) method in
conjunction with circuit simplification rules can be the most expedient way to find
a quantum circuit for a desired unitary matrix.

3.7.4 Algebraic Method

In this section, we describe a recursive algebraic scheme for constructing a quan-
tum circuit decomposition of an arbitrary unitary operator, interleaved with cir-
cuit compactification rules that reduce the complexity of the final quantum cir-
cuit. The scheme starts with a similar mathematical decomposition to that used by
Tucci [498], but uses different techniques for mapping the matrix factors into equiv-
alent circuit fragments. Since Tucci’s pioneering work two other groups have pub-
lished algebraic decomposition engines for arbitrary unitary matrices along similar
lines, [363, 453, 511] and Tucci has improved his compiler design further [499].

The essence of all these algebraic approaches is the following: first we decom-
pose the 2n × 2n dimensional unitary operator into a product of 2n × 2n block-
diagonal matrices, and direct sums of bit-reversal matrices (which need never be
implemented explicitly). Next we map these block-diagonal matrices into corre-
sponding quantum circuit fragments, each involves only one-qubit rotations about
the y- and z-axes, one-qubit phase shifts, and a standard two-qubit gate, such as
CNOT, the square root of SWAP (

√
SWAP), or iSWAP. One can pick whichever

primitive two-qubit gate [147] one wants and obtain different quantum circuits ac-
cordingly. The last step is to join these quantum circuit fragments together, while
again applying compactification rules to minimize the size of the resulting circuit.
The net result is a quantum circuit capable of implementing any (real or complex)
unitary matrix, specialized to use one of several types of two-qubit gates, appropri-
ate for different physical implementations of quantum computing hardware.

Our procedure below relies upon the Generalized Singular Value Decomposition
(GSVD) [204]. The GSVD recognizes that the SVDs of the four quadrants of an

3.7 Circuits for a Arbitrary Unitary Matrices 175

orthogonal matrix are highly inter-related to one another. In particular, if we have a
unitary matrix U , of dimension 2n×2n, where n is the number of qubits, the GSVD
yields

U =
(
L1 0
0 L2

)
·
(
Σ11 Σ12
Σ21 Σ22

)
·
(
R1 0
0 R2

)
, (3.86)

where the L1, L2, R1, and R2 blocks are 2n−1 × 2n−1 unitary matrices, and the
matrix Σ is a tri-banded unitary matrix as with Σij s are all diagonal matrices. The
Σ matrix can be further decomposed into a product of two qubit-reversal operations
and a block-diagonal unitary matrix with blocks representing one-qubit elementary
gate operations:

(
Σ11 Σ12
Σ21 Σ22

)
= P−1

2n ·

⎛
⎜⎜⎜⎝
Σ ′

11 0 . . . 0
0 Σ ′

22 . . . 0
...

...
. . .

...

0 0 . . . Σ ′
2n−12n−1

⎞
⎟⎟⎟⎠ · P2n , (3.87)

where P2n is a qubit reversal matrix which is composed of cascaded SWAP gates,
and Σ ′

11, Σ ′
22 etc, are 2×2 unitary operations that can be expressed as Ry -rotations.

If n > 2, the decomposition can be iterated. The four unitary sub-blocks can be
further decomposed until all resulting matrices are block-diagonal unitary matrices,
with blocks representing 1-qubit elementary gates. For example, further decompos-
ing L1 and L2 above

L1 =
(
L′1 0
0 L′2

)
· P−1

2n−1 ·
(
Σ ′

11 0
0 Σ ′

22

)
· P2n−1 ·

(
R′

1 0
0 R′

2

)
, (3.88)

L2 =
(
L′′1 0
0 L′′2

)
· P−1

2n−1 ·
(
Σ ′′

11 0
0 Σ ′′

22

)
· P2n−1 ·

(
R′′

1 0
0 R′′

2

)
. (3.89)

Rejoining L1 and L2, we obtain

L =
(
L1 0
0 L2

)

=

⎛
⎜⎜⎝
L′1 0
0 L′2

0

0
L′′1 0
0 L′′2

⎞
⎟⎟⎠ · (1⊗ P−1

2n) ·

⎛
⎜⎜⎝
Σ ′

11 0
0 Σ ′

22
0

0
Σ ′′

11 0
0 Σ ′′

22

⎞
⎟⎟⎠

· (1⊗ P2n) ·

⎛
⎜⎜⎝
R′

1 0
0 R′

2
0

0
R′′

1 0
0 R′′

2

⎞
⎟⎟⎠ , (3.90)

where 1 is the 2× 2 identity matrix. This process can be repeated until each matrix
is block-diagonal, in which the blocks are 2× 2 unitary matrices representing arbi-
trary 1-qubit gates. In turn, each of the 1-qubit gates can be decomposed into four

176 3 Quantum Circuits

independent operations by application of the following lemma: Every 2× 2 unitary
matrix can be factored as a product of two Rz-rotations, one Ry -rotation and one
phase shift [33]

(
eiδ 0
0 eiδ

)
·
(
eiα/2 0

0 e−iα/2

)
·
(

cos (θ/2) sin (θ/2)
− sin (θ/2) cos (θ/2)

)
·
(
eiβ/2 0

0 e−iβ/2

)

≡ Ph(δ) ·Rz(α) ·Ry(θ) ·Rz(β), (3.91)

where δ, α, θ , and β are real valued. If the unitary matrix has unit determinant, the
phase gate can be dropped. Hence, any 2n× 2n dimensional block-diagonal unitary
matrix, whose blocks are 2×2 unitary matrices, can be decomposed into the product
of (at most) four simpler 2n × 2n dimensional unitary matrices corresponding to
purely phase shifts, z-rotations, or y-rotations.

The next step is to map each of these (“purified”) block diagonal matrices into an
equivalent quantum circuit fragment. The concatenation of all such fragments, inter-
leaved with compactification rules, yields a complete quantum circuit for U . Differ-
ent types of block diagonal matrices factorize into different circuit fragments. Con-
sider a 4× 4 block-diagonal unitary matrix, R, in which the blocks are y-rotations
about different angles. As a matrix, R is expressed as

R =
(
Ry(θ1) 0

0 Ry(θ2)

)
,

Intuitively, we can create R from two simpler operators: one which applies the same
angular rotation to both the upper left and lower right quadrants, and another which
applies opposing angular rotations to the upper left and lower right quadrants. For
appropriately chosen angles, the product of such operations can achieve any desired
angular pair. Thus, we consider

1⊗Ry(α) =
(
Ry(α) 0

0 Ry(α)

)
,

CNOT · (1⊗Ry(β)) ·CNOT =
(
Ry(β) 0

0 Ry(−β)

)

We can achieve R provided α + β = θ1 and α − β = θ2. Hence, α = θ1+θ2
2 , β =

θ1−θ2
2 , and the quantum circuit diagram representing R =Ry(θ1)⊕Ry(θ2) is shown

in Fig. 3.33.
Generalizing to the n-qubit case, we have a 2n×2n block-diagonal matrix whose

blocks are one-qubit Ry -rotations through angles {θ1, . . . , θ2n−1}. The quantum cir-
cuit for such a matrix can be generated recursively as

R⊕
y (n,A) = CNOT1,n;n · (1⊗R⊕

y (n− 1,A1→2n−2))

·CNOT1,n;n · (1⊗R⊕
y (n− 1,A2n−2+1→2n−1)), (3.92)

3.7 Circuits for a Arbitrary Unitary Matrices 177

Fig. 3.33 Quantum circuit for a block-diagonal Ry operator

where A is a vector of angles given by

A=
⎛
⎜⎝

A1
...

A2n−1

⎞
⎟⎠=W⊗(n−1)

⎛
⎜⎝

θ1
...

θ2n−1

⎞
⎟⎠ ,

with the (intentionally non-unitary) matrix W = 1
2

(1 1
1 −1

)
, and CNOT1,n;n is a

CNOT gate between the first and n-th of n-qubits. The notation Ai→j means the
vector of angles between indices i and j in A.

An identical construction applies to the case of the direct sum of many Rz rota-
tions through different angles. Hence a 2n×2n block-diagonal matrix whose blocks
are one-qubit Rz-rotations through different angles can be mapped into a quantum
circuit generated as:

R⊕
z (n,A) = CNOT1,n;n · (1⊗R⊕

z (n− 1,A1→2n−2))

·CNOT1,n;n · (1⊗R⊕
z (n− 1,A2n−2+1→2n−1)). (3.93)

For the 4 × 4 block-diagonal unitary matrix, Φ , in which the blocks are Ph-gates
represented as

Φ =
(

Ph(θ1) 0
0 Ph(θ2)

)
. (3.94)

The quantum circuit achieving Φ is Rz(θ1 − θ2)⊗ Ph((θ1 + θ2)/2). It follows that
the quantum circuit fragment for a 2n× 2n block-diagonal matrix whose blocks are
one-qubit Ph-gates can be defined recursively as:

Ph⊕(n,A)=U3 ·U2 ·U1 (3.95)

where

U3 = 1⊗ Ph⊕(n− 1,A1→2n−2),

U2 = Rz(A2n−2+1)⊗ 1⊗ · · · ⊗ 1,

U1 = CNOT⊗Rz(A2n−2+2→2n−1)⊗CNOT.

178 3 Quantum Circuits

Hence, all three primitive types of 2n×2n dimensional block-diagonal matrices can
be mapped into corresponding quantum circuit fragments, which use only CNOT
gates, and one-qubit Ph-, Ry -, and Rz-operations.

3.7.5 Simplification via Rewrite Rules

To complete the decomposition we concatenate the circuit fragments, and apply fi-
nal compactification in an attempt to minimize the overall circuit complexity. The
compactification rules eliminate unnecessary gate operations including rotations
and phase shifts through an angle of zero or 2nπ , combine contiguous sequences
of Ph-, Ry -, or Rz-gate operations, accumulate phase gates into an overall phase,
compress sequences of CNOT gates having the same embedding, and implement
bit-reversals by explicitly rewiring the circuit (rather than implementing such oper-
ations computationally). These compactification rules are found to reduce the com-
plexity of the final quantum circuit significantly. Specifically, whereas naive use of
algebraic schemes would always result in exponentially large circuits, if augmented
with rewrite rules, unitary operators having a direct product structure are mapped
to compact quantum circuits, real unitary operators are mapped into smaller circuits
than complex unitary operators, and known “special case” unitary operators (such
as the QFT) are found to have smaller circuits than random unitary operators.

The idea is that we have found, by one means or another, a quantum circuit suffi-
cient to realize a desired n-qubit quantum computation. We now wish to “compact-
ify” the circuit so that the n-qubit operation can be accomplished using the fewest
quantum gates. This can be accomplished by developing rewrite rules for quantum
circuits.

Term rewriting is a general purpose technique used in automated theorem prov-
ing [91]. To be effective, a rewrite rule system must be “Canonical” and “Church-
Rosser”. “Canonical” means that equivalent expressions are rewritten to a common
form. “Church-Rosser” means that some measure of the structural complexity of the
expression being rewritten is reduced after each rule invocation. We can guarantee
that rewrite rules are Canonical and Church-Rosser by using a strict syntactic gram-
mar for circuits, and ensuring that a rewrite is only applied if it reduces or leaves
constant the gate count.

It makes sense, initially, to focus attention on rewrite rules for simplifying 2-qubit
quantum circuits. The rationale for this is that all quantum circuits can be reduced
to 1-qubit and 2-qubit quantum gates. However, it is very possible that higher levels
of circuit abstraction, e.g., treating a QFT as a special group of gates, could facili-
tate recognition of more simplification opportunities. However, by grouping CNOT
gates with the surrounding 1-qubit gates that share the same embedding, and then
compactifying them, we systematically reduce the complexity of the overall n-qubit
operation. The number of possibilities are enormous. Here is an example of that
gives you the flavor of what is involved.

There are several ways to find rewrite rules. However, one must exercise good
judgment in rule selection as there are infinitely many potential rules. We need to

3.7 Circuits for a Arbitrary Unitary Matrices 179

Fig. 3.34 Example of a rewrite rule that eliminates a CNOT gate. The structure shown in this
circuit fragment happens to arise very often when using the algebraic circuit design method using
a gate family consisting of CNOT, Rz(·), Ry(·), and Ph(·) gates

find those rules that (a) allow us to recognize special structure (should it be present)
and (b) tend to arise in practice during the operation of the algebraic decomposition
procedure. Hence, permutation matrices, and other sparse unitary matrices having
a single non-zero element in each row and column, are especially good sources
of inspiration for discovering rewrite rules. Being sparse, they require fewer gates
than a general purpose 2-qubit unitary, and often give rise to gates involving special
angles, often π/2k .

The following example is typical of the kinds of rewrite rules one can find. The
circuit fragment on the left hand side of Fig. 3.34 arises commonly in the algebraic
decomposition method that uses the GSVD, which we described above. This cir-
cuit fragment contains two CNOT gates. However, it can be rewritten into the form
shown on the right hand side of Fig. 3.34, which contains only one CNOT gate.
Thus, the application of the rewrite rule of Fig. 3.34 eliminates a 2-qubit gate at the
expense of inserting extra 1-qubit gates. This is preferable, however, because any
contiguous sequence of 1-qubit gates, no matter how long, that are all acting on the
same qubit, can be compressed into a sequence of at most four 1-qubit gates. This
is because the net effect of any such contiguous sequence of gates is still just some
1-qubit gate. However, we known that any 1-qubit gate can be factored into the form
Ph(δ) ·Rz(γ) ·Ry(β) ·Rz(α).

Example: Finding a Quantum Circuit for an Arbitrary Unitary Matrix As an
example, the unitary operator generated by the Hamiltonian σy ⊗ σx in Mermin’s
version of the Bell-Kochen-Specker theorem [415] is

1√
2

⎛
⎜⎜⎝
−i 0 0 1
0 −i 1 0
i 0 0 1
0 i 1 0

⎞
⎟⎟⎠ .

Figure 3.35 shows a quantum circuit sufficient to implement this operator.

180 3 Quantum Circuits

Fig. 3.35 Quantum circuit
for the unitary operator in
Mermin’s version of the
Bell-Kocher-Specker
theorem [415]

3.7.6 Numerical Method

Another way to find a quantum circuit that implements a given unitary matrix is
via an exploration of the space of possible circuits templates in conjunction with
numerical optimization. This method is only feasible for few qubit circuits due to the
combinatorial explosion in the number of possible circuit templates with increasing
numbers of qubits.

The motivation behind a numerical approach is as follows. Given a unitary ma-
trix, Utarget, describing some desired quantum computation, one is typically most
interested in finding the smallest quantum circuit, with respect to a particular uni-
versal gate set, sufficient to implement it? For 2-qubit quantum computations, and
the gate set consisting of CNOT and all 1-qubit gates, a solution is already know us-
ing the circuit templates outlined in Chap. 2. Conversely, for quantum computations
on large numbers of qubits, the problem appears utterly intractable at present. In
this case the best we can do is to synthesize a (likely) sub-optimal quantum circuit
using algebraic or genetic methods, and then apply rewrite rules recursively to sim-
plify and compress the circuit until no more rules fire. However, such an approach
is neither guaranteed, nor likely, to find an the smallest quantum circuit for a given
target unitary matrix.

In the regime between “two” qubits and “many” qubits, exhaustive enumera-
tion of all possible circuit templates followed by numerical optimization can work
surprisingly well, even on modest modern computers. The idea is to exhaustively
generate all possible circuit topologies of increasing complexity, and to use numeri-
cal methods to find the values for the free parameters in those circuit topologies that
minimize the discrepancy, discrepancy(Utarget,Utemplate), between the target uni-
tary matrix, Utarget and the actual unitary matrix such a circuit template achieves,
Utemplate. A simple measure of discrepancy (but by no means the only one) is the
absolute value of the difference between respective elements of the matrices Utarget
and Utemplate, i.e.,

discrepancy(Utarget,Utemplate)= 1

N2

N∑
j=1

N∑
k=1

|Ujk − Vjk| (3.96)

By finding values for the parameters within a particular circuit template that make
the discrepancy between the target unitary and one implied by the template go to
zero, an exact quantum circuit for Utarget can be found. Moreover, if the different

3.7 Circuits for a Arbitrary Unitary Matrices 181

circuit templates are generated in the order of increasing circuit size, the first circuit
template found that achieves Utarget will indeed be the smallest circuit for achieving
the target with respect to the chosen family of gates. A nice feature of this approach
is that we do not have to limit ourselves to a minimal set of universal gates. We
can, if we choose, use an over-complete set of universal gates. If we use an under-
complete set of gates there is no guarantee a solution can be found. Nevertheless,
a numerical search is sometimes worthwhile, e.g., if one is limited in the types of
gates one can achieve physically in a particular embodiment of a quantum computer.

Example: Numerical Design of a Circuit for a 1-Qubit Gate Suppose the target
unitary matrix Utarget be the 1-qubit Walsh-Hadamard gate:

Utarget = 1√
2

(
1 1
1 −1

)
(3.97)

and we wish to find how to achieve a Walsh-Hadamard gate in terms of 1-qubit
rotations about the z-axis and y-axis, and a single phase gate. We know a solution
in terms of such gates is always possible because we learned in Chap. 2 that any
1-qubit gate can be expressed in terms of the circuit template:

Utarget = Ph(δ) ·Rz(γ) ·Ry(β) ·Rz(α) (3.98)

where α, β , γ and δ are angles. Our job is to find values for these angles that
achieves the Walsh-Hadamard gate.

We can solve this problem using computer algebra tools such as Mathematica—a
superb software package for doing all things mathematical on a computer. Specifi-
cally, we can use Mathematica’s “NMinimize” function to find values of the angles
α, β , γ , and δ that minimize discrepancy as follows:

Utarget = 1√
2

(
1 1
1 −1

)
;

Utemplate = Ph(δ) ·Rz(γ) ·Ry(β) ·Rz(α)

=
⎛
⎝e− iα

2 +iδ− iγ
2 cos

(β
2

) −e
iα
2 +iδ− iγ

2 sin
(β

2

)
e− iα

2 + iγ
2 +iδ sin

(β
2

)
e

iα
2 + iγ

2 +iδ cos
(β

2

)
⎞
⎠ ;

(3.99)

answer=NMinimize [discrepancy [Utarget,Utemplate], {α,β, γ, δ}]

→
{

0,

{
α→ π,β → π

2
, γ → 0, δ→ π

2

}}
(3.100)

where we replaced approximate numerical values in the answer with rational multi-
ples of π or zero and then checked the result. Thus, we find that numerical minimiza-
tion of the discrepancy reveals that Utarget = Ph(π/2) · Rz(0) · Ry(π/2) · Rz(π) =
Ph(π/2) ·Ry(π/2) ·Rz(π).

182 3 Quantum Circuits

Example: Numerical Design of a Circuit for a 3-Qubit Gate Numerical discrep-
ancy minimization can be used to find circuits for multi-qubit gates too. Unfortu-
nately, the number of potential quantum circuit templates grows exponentially with
the depth of the circuit. So brute force numerical minimization of the discrepancy
between a target unitary matrix and that induced by a particular circuit template
is only feasible for multi-qubit circuits that are not too deep. Moreover, any quan-
tum circuit needs at most one phase gate Ph(δ). All the other 1-qubit gates can be
factored in the form Rz(γ) · Ry(β) · Rz(α). Therefore, when enumerating circuit
templates we should allow for the possibility that each 1-qubit gate may require up
to three free parameters to specify it completely. Hence, the number of parameters
over which one is optimizing can grow rapidly with the number of 1-qubit gates.
Luckily, the unitary matrices that usually arise in purposeful quantum computations
tend to be sparse and hence realizable in quantum circuits that are neither too deep
(in step count) nor too large (in gate count).

As an example, consider the unitary matrix Utarget defined as follows:

Utarget =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 1√
2

1√
2

0

0 1√
2

− 1√
2

0 0 0 0 0

− 1√
2

0 0 − 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 1√
2

− 1√
2

0 0 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 − 1√
2

0 0 0 0 0 − 1√
2

− 1√
2

0

0 1√
2

1√
2

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.101)

This is an 8× 8 unitary matrix corresponding to a circuit having three qubits. How-
ever, whereas random 8× 8 unitary matrices would have a non-zero complex value
for every element, this unitary matrix is relatively sparse, has only real elements, and
is somewhat symmetric. These are all clues that the matrix may admit an anoma-
lously compact quantum circuit. Our goal is to find the smallest quantum circuit
template, which when suitably optimized, will provide an exact circuit for imple-
menting Utarget.

To apply the numerical design method, we need to pick an ordering in which
to enumerate quantum circuit templates that can be built from a given universal set
of gates, such as the set of 1-qubit gates and CNOT. One such ordering is given
by allowing each “step” of the circuit to taken up by either a single general-up-to-
phase-factor 1-qubit gate (Rz(γ) · Ry(β) · Rz(α)) or a single CNOT gate between
the i-th and j -th of k qubits (CNOTi,j ;k). In an n-qubit circuit, there are therefore n

ways to embed the 1-qubit gate plus 2
(n

2

)= n(n−1) ways to embed the CNOT gate.
Hence, using this enumeration scheme, which is certainly not the only possibility,
each step in the circuit can be taken up by one of n2 distinct templates. Hence, the
number of possible templates that need to be tested in a circuit k steps deep will be
approximately n2k . In the present (3-qubit) example the number of templates to test

3.7 Circuits for a Arbitrary Unitary Matrices 183

template((U1 ⊗U2 ⊗U3), CNOT1,2;3) template((U1 ⊗U2 ⊗U3), CNOT2,1;3)

template((U1 ⊗U2 ⊗U3), CNOT1,3;3) template((U1 ⊗U2 ⊗U3), CNOT3,1;3)

template((U1 ⊗U2 ⊗U3), CNOT2,3;3) template((U1 ⊗U2 ⊗U3), CNOT3,2;3)

template(CNOT1,2;3, (U1 ⊗U2 ⊗U3)) template(CNOT1,2;3, CNOT2,1;3)

template(CNOT1,2;3, CNOT1,3;3) template(CNOT1,2;3, CNOT3,1;3)

template(CNOT1,2;3, CNOT2,3;3) template(CNOT1,2;3, CNOT3,2;3)

template(CNOT2,1;3, (U1 ⊗U2 ⊗U3)) template(CNOT2,1;3, CNOT1,2;3)

template(CNOT2,1;3, CNOT1,3;3) template(CNOT2,1;3, CNOT3,1;3)

template(CNOT2,1;3, CNOT2,3;3) template(CNOT2,1;3, CNOT3,2;3)

template(CNOT1,3;3, (U1 ⊗U2 ⊗U3)) template(CNOT1,3;3, CNOT1,2;3)

template(CNOT1,3;3, CNOT2,1;3) template(CNOT1,3;3, CNOT3,1;3)

template(CNOT1,3;3, CNOT2,3;3) template(CNOT1,3;3, CNOT3,2;3)

template(CNOT3,1;3, (U1 ⊗U2 ⊗U3)) template(CNOT3,1;3, CNOT1,2;3)

template(CNOT3,1;3, CNOT2,1;3) template(CNOT3,1;3, CNOT1,3;3)

template(CNOT3,1;3, CNOT2,3;3) template(CNOT3,1;3, CNOT3,2;3)

template(CNOT2,3;3, (U1 ⊗U2 ⊗U3)) template(CNOT2,3;3, CNOT1,2;3)

template(CNOT2,3;3, CNOT2,1;3) template(CNOT2,3;3, CNOT1,3;3)

template(CNOT2,3;3, CNOT3,1;3) template(CNOT2,3;3, CNOT3,2;3)

template(CNOT3,2;3, (U1 ⊗U2 ⊗U3)) template(CNOT3,2;3, CNOT1,2;3)

template(CNOT3,2;3, CNOT2,1;3) template(CNOT3,2;3, CNOT1,3;3)

template(CNOT3,2;3, CNOT3,1;3) template(CNOT3,2;3, CNOT2,3;3)

Fig. 3.36 Enumeration of quantum circuit templates for a 3-qubit circuit of depth two using a
universal set consisting of all 1-qubit gates and CNOT. Note that, at a given step, a single qubit
gate can be inserted in one of three ways, and a single CNOT gate can be inserted in one of six
ways. Thus, a quantum circuit template of depth two has 92 = 81 possible forms. Of these we
exclude those that involve a sequence of same type of gate with the same embedding. This brings
the number of templates down to 72

in a depth k circuit is approximately 32k , which grows exponentially in k, the depth
of the circuit. As an explicit example, Fig. 3.36 shows the templates that would
be tested in an attempt to find a decomposition of a 3-qubit unitary matrix into a
depth-2 quantum circuit.

The number of quantum circuit templates to test can be reduced by excluding
redundant circuit topologies (e.g., CNOTi,j ;k · CNOTi,j ;k = 1, merging abutting 1-
qubit gates (e.g., Rz(α) ·Rz(α)=Rz(2α)), recognizing circuits that achieve U† (in
which case you reverse the ordering of the gates) and recognizing those that achieve
P2n · P2n (in which case you reverse the order of the qubits). Nevertheless, such

184 3 Quantum Circuits

numerical methods are still demanding computationally.

Utarget =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 1√
2

1√
2

0

0 1√
2

− 1√
2

0 0 0 0 0

− 1√
2

0 0 − 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 1√
2

− 1√
2

0 0 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 − 1√
2

0 0 0 0 0 − 1√
2

− 1√
2

0

0 1√
2

1√
2

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Utemplate = CNOT3,1;3 ·CNOT2,1;3 · (Rx(a)⊗Ry(b)⊗Rz(c))

·CNOT2,3;3 ·CNOT1,3;3;
answer = NMinimize [discrepancy[Utarget,Utemplate], {α,β, γ }]

→ {0, {α→ π,β → π

2
, γ → π}}

(3.102)

where numerical optimization of this last template yields an exact solution with
a→ π , b→ π/2, and c→ π .

3.7.7 Re-use Method

“If I have seen further it is by standing on the shoulders of Giants”
– Isaac Newton

So far we have seen how to synthesize quantum circuits algebraically, using ma-
trix decompositions, and numerically, using discrepancy minimization. Although
both these approaches have their uses, neither builds upon any insights we may have
gleaned about efficient quantum circuits for other unitary transforms. An alternative
approach to quantum circuit design, pioneered by computer scientists extraordinaire
Andreas Klappenecker and Martin Röettler, is to design a quantum circuit for a
desired unitary transform by understanding how that unitary transform is related
functionally to another unitary transform for which an efficient quantum circuit is
already known. In particular, in the “design-by-re-use” method a known quantum
circuit for an operator U , and a known (typically polynomial) functional relation-
ship V = f (U)=∑

i αiU
i is used to predict a new efficient quantum circuit for V

[289, 290].
Moreover, surprisingly, the structural form of the new (efficient) quantum circuit

for V = f (U) is essentially fixed: the same basic circuit structure works regardless
of the function f . All that needs to be changed is the form of a central gate whose

3.7 Circuits for a Arbitrary Unitary Matrices 185

elements depend upon the coefficients αi in the expansion V = f (U) =∑
i αiU

i .
Therefore, when applicable, the “design-by-re-use” method is better than generic
algebraic circuit design for maximally general unitaries, which always yields an ex-
ponentially large circuit unless compactification rules are applied, and it is better
than numerical circuit design, which quickly becomes intractable due to the com-
binatorial explosion in the number of potential circuit templates . Moreover, the
design by re-use method operates at a higher level of abstraction than the 1-qubit
and 2-qubit gate level, allowing a more meaningful interpretation of what the circuit
is doing. Frankly, it is a beautiful and insightful approach to quantum circuit design
and is deserving of far greater attention.

3.7.7.1 Functions of Matrices

The foundation of the “design-by-re-use” strategy is the idea of working with func-
tions of matrices. We represent one unitary matrix, V , as a function of some other
unitary matrix, U , i.e., V = f (U). The reason this is possible is that if U is unitary,
then it is guaranteed to be unitarily equivalent to a diagonal matrix, i.e.,

U = T · diag(λ1, λ2, . . . , λN) · T † (3.103)

where {λi} are the eigenvalues of U , and T is some (so-called “diagonalizing”)
unitary matrix. Similarly, powers of U are diagonalized by the same matrix T :

Ui = T · diag(λi1, λ
i
2, . . . , λ

i
N) · T † (3.104)

Thus, if we have some function defined by its Taylor series:

f (x)=
∞∑
i=0

αix
i (3.105)

we can see that the corresponding function of U , i.e., V = f (U), can be written as:

V = f (U)= T · diag(f (λ1), f (λ2), . . . , f (λN)) · T † (3.106)

We can then rewrite this formula to confirm that f (U) can also be written as a linear
combination of powers of U . Specifically, we have:

f (U) = T · diag(f (λ1), f (λ2), . . . , f (λN)) · T †

= T · diag

(∞∑
i=0

αiλ
i
1,

∞∑
i=0

αiλ
i
2, . . . ,

∞∑
i=0

αiλ
i
N

)
· T †

= T ·
[∞∑
i=0

diag(αiλ
i
1, αiλ

i
2, . . . , αiλ

i
N)

]
· T †

186 3 Quantum Circuits

= T ·
[∞∑
i=0

αidiag(λi1, λ
i
2, . . . , λ

i
N)

]
· T †

=
∞∑
i=0

αiT ·Di · T † =
∞∑
i=0

αiU
i (3.107)

which implies we can write a function of the matrix U as a linear combination of
integer powers of U , i.e.,

V = f (U)=
∞∑
i=0

αiU
i (3.108)

where the αi are, in general, complex numbers. In many cases of interest, the sum
need not run to infinity to obtain an exact equivalence.

3.7.7.2 Quantum Hartley Transform as a Polynomial in QFT

For example, the discrete Hartley transform can be expressed as a polynomial in the
discrete Fourier transform. Analogizing to the quantum case, the quantum Hartley
transform will be given by:

QHTN = α QFTN + β QFT3
N =QFTN · (α 1N + β QFT2

N) (3.109)

where α = (1−i
2) and β = (1+i

2). As an efficient quantum circuit for the QFT is
known, if we can find an efficient quantum circuit for (α 1N + β QFT2

N) we will
find an efficient quantum circuit for the quantum Hartley transform (QHT).

3.7.7.3 Quantum Fractional Fourier Transform as a Polynomial in QFT

Similarly, another useful transform, the fractional Fourier transform, can also be
expressed as a low order polynomial in the Fourier transform. Specifically, in the
quantum case we have:

QFFTN;α = QFT2α/π
N

= a0(α) QFT0
N + a1(α) QFT1

N

+ a2(α) QFT2
N + a3(α) QFT3

N (3.110)

3.7 Circuits for a Arbitrary Unitary Matrices 187

where

a0(α) = 1

2
(1+ eiα) cos(α)

a1(α) = 1

2
(1− ieiα) sin(α)

a2(α) = 1
2 (−1+ eiα) cos(α)

a3(α) = 1

2
(−1− ieiα) sin(α)

(3.111)

Like the Fourier transform, the fractional Fourier transform is a time-frequency
transform, but by involving the parameter α it can transform a signal to a domain
that is intermediate between time and frequency. Clearly:

• when α = 0 the QFFT collapses to the identity, i.e., QFFTN;0 = 1N ;
• when α = π

2 the QFFT collapses to the QFT, i.e., QFFTN; π2 =QFTN ;
• the indices of two QFFTs add, i.e., QFFTN;α ·QFFTN;β =QFFTN;α+β .

The design by re-use method exploits the ability to express the QFFT as a polyno-
mial in the QFT to find an efficient quantum circuit for QFFT.

3.7.7.4 Fixed Structure of the “Design by Re-use” Circuit

It turns out that any unitary matrix V that can be written as a linear combination of
integer powers of a unitary matrix U for which efficient quantum circuits are known,
also admits an efficient quantum circuit decomposition. Furthermore, the structure
of a circuit for V =∑

i αiU
i is essentially the same in all cases and is shown in

Fig. 3.37. In every case the gate C corresponds to a unitary circulant matrix whose
elements are related to the particular coefficients αi in the series expansion of V =
f (U)=∑

i αiU
i .

A circulant matrix is matrix in which the elements in each row are rotated one
element to the right relative to the preceding row. Therefore circulant matrices have
the structure:

C =

⎛
⎜⎜⎝
c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0

⎞
⎟⎟⎠ (3.112)

A key property of circulant matrices is that they are diagonalized by the QFT matrix.
That is, QFT† ·C ·QFT is always a diagonal matrix.

The generic circuit structure shown in Fig. 3.37 can be “programmed” to imple-
ment a particular V =∑

i αiU
i by changing the unitary circulant matrix, C, used in

the center of the circuit. Below we give examples of how to “program” this generic
circuit to yield efficient quantum circuits for the quantum Hartley transform (QHT)
and quantum fractional Fourier transform (QFFT).

188 3 Quantum Circuits

Fig. 3.37 Given efficient quantum circuits for Ui , an efficient quantum circuit for
V = f (U)=∑

i αiU
i has the form shown. Here C is a unitary circulant matrix whose elements

are related to the coefficients αi

3.7.7.5 Quantum Circuit for QHT via “Design-by-Re-use”

In the case of the quantum Hartley transform (QHT) we have

QHT=QFTN · (α 1N + β QFT2
N) (3.113)

where α = (1−i
2) and β = (1+i

2). The leading QFT is easy so we only need to fo-
cus on finding an efficient quantum circuit for the matrix (α1N + β QFT2

N). The
circulant matrix in this case is:

C = 1

2

(
1− i 1+ i

1+ i 1− i

)
(3.114)

and therefore using the “design-by-re-use” template circuit of Fig. 3.37 an efficient
quantum circuit for the QHT will have the form shown in Fig. 3.38.

3.7.7.6 Quantum Circuit for QFFT via “Design-by-Re-Use”

In the case of the quantum fractional Fourier transform (QFFT) we have

QFFTN;α =QFT2α/π
N = a0(α) QFT0

N +a1(α) QFT1
N +a2(α) QFT2

N +a3(α) QFT3
N

(3.115)

3.7 Circuits for a Arbitrary Unitary Matrices 189

Fig. 3.38 Given an efficient quantum circuit for QFT, an efficient quantum circuit for
QHT=QFTN ·(α 1N+β QFT2

N) has the form shown. Here the circulant matrix is C = 1
2

(1−i 1+i

1+i 1−i

)

where

a0(α) = 1

2
(1+ eiα) cos(α)

a1(α) = 1

2
(1− ieiα) sin(α)

a2(α) = 1

2
(−1+ eiα) cos(α)

a3(α) = 1

2
(−1− ieiα) sin(α)

The QFTN generates a finite group of order four with QFT4
N = 1N . The circulant

matrix in this case is:

Cα =QFT−1
4 ·diag(1, e−iα, e2iα, e−iα) ·QFT4 =

⎛
⎜⎜⎝
a0(α) a3(α) a2(α) a1(α)

a1(α) a0(α) a3(α) a2(α)

a2(α) a1(α) a0(α) a3(α)

a3(α) a2(α) a1(α) a0(α)

⎞
⎟⎟⎠

Using the template given in Fig. 3.37 an efficient quantum circuit for the QFFT
therefore has the form shown in Fig. 3.39.

In truth, Klappenecker and Röettler technique is more general than our descrip-
tion of it here and can be re-cast in sophisticated group-theoretic terms. The more
general way to look at the design-by-re-use method is that provided the unitary
matrices, Ui , possess a finite dimensional group algebra one can always find an
efficient quantum circuit for V = ∑

i αiU
i having the fixed structure shown in

Fig. 3.37, which can be “programmed” to obtain any unitary matrix contained in the

190 3 Quantum Circuits

Fig. 3.39 In the figure,
FN represents a quantum
Fourier transform QFTN and
FN;α represents a quantum
fractional Fourier transform,
QFFTN ;α with N = 2n

group algebra. To learn more, the interested reader should consult references [290]
and [289].

3.8 Probabilistic Non-unitary Quantum Circuits

So far we have described quantum computations as the application of a sequence
of deterministic quantum gates to an input quantum state followed by some non-
deterministic measurement. In this picture, we generally view measurements as a
necessary evil—the price we must pay to extract an answer from our quantum com-
putation. However, we can use measurements in a more constructive manner, to
apply a desired non-unitary transformation to a subset of qubits in a larger quan-
tum system. However, the inherent randomness of the measurement process means
that we will lose determinism. That is, we will not be able to achieve desired non-
unitary transformations deterministically. However, it is possibly to trade success
probability for damage in the sense that we can conceive of scheme for achieving
non-unitary transformations of a state probabilistically such that the more likely
we are to achieve the desired transform the more damage we do if we don’t. The
following example, based on a pair of papers by Bob Gingrich and I [199, 535],
serves to illustrate this principle, but there are other constructions that could be used
e.g., [275, 463, 488].

Suppose we want to construct a quantum circuit that performs the non-unitary
transformation:

ρin −→ L · ρin · L†

tr(L · ρin · L†)
(3.116)

where L is an M×N dimensional non-unitary matrix, and ρin is an arbitrary n-qubit
density operator. The trace in the denominator guarantees that the output will be
properly normalized. To ensure the transformation is well-defined, we also require
det(L) �= 0. If this condition is not met, we must explicitly exclude input states, ρin,
such that L · ρin · L† is the zero matrix.

Without loss of generality, we may assume the non-unitary matrix L is of dimen-
sion 2n × 2n such that max(M,N) ≤ 2n. If, initially, L has fewer than 2n rows or

3.8 Probabilistic Non-unitary Quantum Circuits 191

columns, we must pad L with zeroes to the right of the columns, and/or below the
rows, sufficient to make L a 2n × 2n dimensional matrix.

Given such padding, L now has the right shape to be an n-qubit quantum gate.
Unfortunately, it is still is not unitary, and so cannot serve as a quantum gate di-
rectly. We need, therefore, to find a larger (n+ 1)-qubit unitary matrix that contains
L within it in some computationally useful way. One route to creating such a en-
veloping unitary is to begin by first creating a specially crafted Hamiltonian.

3.8.1 Hamiltonian Built from Non-unitary Operator

Let us define a Hamiltonian to be of the form:

H =−ε

(
0 −iL

iL† 0

)
(3.117)

Such an H is an hermitian matrix that contains the non-unitary matrix is anti-
diagonal block form. Here ε is a constant that may be chosen freely. The value of ε
will affect the fidelity with which we will be able to achieve our target non-unitary
transformation and also the probability with which it can be made to occur.

3.8.2 Unitary Embedding of the Non-unitary Operator

Given such a Hamiltonian, we next determine what unitary evolution it implies. An
(n+ 1)-qubit quantum system with a Hamiltonian H as defined above can achieve
the following unitary gate:

Ω = exp(−iH)= exp

(
iε

(
0 −iL

iL† 0

))
(3.118)

3.8.3 Non-unitarily Transformed Density Matrix

If we augment the input state ρin with a single ancilla prepared initially in state
|1〉〈1|, and evolve the expanded system under the action of Ω we can predict, as
illustrated in Fig. 3.40, the final density matrix we will obtain, namely:

ρout =Ω · (|1〉〈1| ⊗ ρin) ·Ω† (3.119)

If we then measure the ancilla in the computational basis, we will obtain either |0〉 or
|1〉, and a certain transformation will be applied to the unmeasured qubits. But what

192 3 Quantum Circuits

Fig. 3.40 Quantum circuit for achieving a non-unitary transformation probabilistically. Under the
construction given in the text, when the output state of the ancilla is found to be |0〉 the reduced
density matrix of the remaining unmeasured qubits contains a good approximation to the desired
non-unitary transform, L, of the input state ρin. The unitary operator Ω is defined via a designer
Hamiltonian that contains the non-unitary operator L in block anti-diagonal form

exactly will these transformations be? To answer this, we re-write the non-unitary
operator L in terms of its singular value decomposition:

L = U† ·Σ · V
=

(
U† · cos(εΣ) ·U 0

0 V † · cos(εΣ) · V
)

+
(

0 U† · sin(εΣ) · V
−V † · sin(εΣ) ·U 0

)
(3.120)

In this form, we can read off what transformations are effected when we measure
the ancilla and find it to be in either state |0〉 or |1〉. If the ancilla qubit in the output
state, ρout, is measured and found to be in state |0〉, this constitutes the “success”
scenario, and the transformation effected on the remaining n unmeasured quits is
approximately

Leff
succ =U† · sin(εΣ) · V (3.121)

If we pick ε small and as Σ is a diagonal matrix, sin(εΣ)≈ εΣ , and so the effective
transformation on the remaining n unmeasured quits is approximately εU† ·Σ · V ,
which is close to L.

Conversely, if the ancilla qubit in the output state, ρout, is measured and found to
be in state |1〉, this constitutes the “failure” scenario, and the transformation effected
on the remaining n unmeasured quits is approximately

Leff
fail = V † · cos(εΣ) · V (3.122)

As ε is small and Σ is a diagonal matrix, cos(εΣ) is close to the identity operator,
and so the transformation is approximately V † · V = 1.

3.8 Probabilistic Non-unitary Quantum Circuits 193

Thus, applying Ω to (|1〉〈1| ⊗ ρin) and measuring the ancilla qubit performs
(almost) the desired non-unitary transformation when the ancilla is found to be |0〉
and almost the identity operator when the ancilla is found to be |1〉.

3.8.4 Success Probability

With what success probability can these outcomes be accomplished? To answer this,
we define the measurement operators on the ancilla qubit to be M0 and M1 as:

M0 = (|0〉〈0|)⊗ 1 (3.123)

M1 = (|1〉〈1|)⊗ 1 (3.124)

then the probabilities of the two outcomes for the ancilla measurement can be com-
puted as:

p0 = tr
(
M

†
0 ·M0 · ρout

)
p1 = tr

(
M

†
1 ·M1 · ρout

)

3.8.5 Fidelity when Successful

Similarly, we can ask, we are “successful” with what fidelity to we accomplish the
desired non-unitary state transformation of ρin? The density matrices conditioned
on these two measurement outcomes are:

ρ0 = M
†
0 ·M0 · ρout

p0

ρ1 = M
†
1 ·M1 · ρout

p1

and the part of the state that contains the desired output is the reduced density matrix
of the unmeasured qubits, i.e.,

ρactual
out = tr1(ρ0) (3.125)

This should be compared to the desired density matrix:

ρdesired
out = L · ρin · L†

tr(L · ρin · L†)
(3.126)

and the fidelity is given by:

F
(
ρactual

out , ρdesired
out

)= tr

(√√
ρactual

out · ρdesired
out ·

√
ρactual

out

)
(3.127)

194 3 Quantum Circuits

3.9 Summary

In this chapter we described how to compute the unitary matrix corresponding to a
given quantum circuit, and how to compute a quantum circuit that achieves a given
unitary matrix. In the forward direction (circuit to matrix) three matrix products
turn out to be useful. The direct product (also known as the tensor or Kroenecker
product) is used to describe quantum gates that act in parallel. Such gates are drawn
vertically aligned over distinct subsets of qubits in quantum circuits. Similarly, the
dot product is used to describe quantum gates that act sequentially. Sequential gates
are drawn one after the other from left to right in a quantum circuit. When mapping
from a sequential quantum circuit to its corresponding unitary matrix remember that
if the circuit shows gate A acting first, then gate B , then gate C, the corresponding
dot product describing these steps is C ·B ·A, where the ordering is reversed. Finally,
we introduced the direct sum, which describes controlled quantum gates. These ap-
ply a quantum gate to some “target” subset of qubits depending on the qubit values
on another set of “control” qubits. The controlling values can be 0 (white circles) or
1 (black circles), and combinations of control values are allowed. We remind you
that in controlled quantum gates we do not have to read the control value in order
to determine the action. Instead, the controlled quantum gates apply all the control
actions consistent with the quantum state of the control qubits.

Certain types of quantum gates are considered as important primitives in quan-
tum computing. The standard 1-qubit and 2-qubit elementary gates were introduced
in Chap. 2. In Chap. 3 we built upon these to create more sophisticated n-qubit gates,
such as quantum permutations (for qubit reversal, qubit cyclic left shift, and ampli-
tude downshift), and quantum Fourier transform (QFT), quantum wavelet transform
(QWT), and quantum cosine transform (QCT). These all admit anomalously com-
pact, polynomially-sized, quantum circuits. Of these the QFT is the most important
being at the heart of most quantum algorithms that admit exponential speedups.
However, our hope is that by collecting together so many useful transforms and giv-
ing explicit quantum circuits for them, we might inspire the reader to compose them
in novel ways to achieve new and useful quantum algorithms.

We also showed several techniques for decomposing a given unitary matrix into
an equivalent quantum circuit, i.e., a sequence of 1-qubit and 2-qubit quantum logic
gates. In so doing, we can use the gate identities of Chap. 2 to choose a particular
family of quantum gates that is easiest to implement within some preferred quantum
hardware scheme, because we believe it makes sense to tailor the decomposition of
a unitary transformation to fit the chosen physical hardware, rather than to wrestle
the physics to fit an ad hoc model of computation.

In particular, we presented numerical, algebraic, and re-use methods for quantum
circuit design and gave examples of the use of each. A completely arbitrary 2n× 2n

unitary matrix does not admit an efficient (polynomially-sized) quantum circuit de-
composition. However, the types of unitary matrices that arise in practically useful
quantum algorithms are often not maximally general and in fact do admit efficient
quantum circuits. If the circuits are small enough numerical template minimization
can often find them. If the unitary matrices bear a special relationship to previously

3.10 Exercises 195

Fig. 3.41 Quantum circuit
implementing U

known unitary matrices, e.g., if they can be written as low order polynomials in
known unitary matrices, we can sometimes apply the re-use method of circuit de-
sign. However, only the algebraic method of circuit design is guaranteed to work
in every case. However, to achieve efficient quantum circuits using the algebraic
design method one must apply circuit compactification rules during and after the
design process to identify and strip away unnecessary gate inefficiencies.

Finally, we departed somewhat from the standard quantum circuit model by
showing how to harness measurement operations in a useful way to achieve certain
non-unitary quantum computations probabilistically. This scheme had the interest-
ing feature that failed attempts to project the computation into the desired output are
not totally destructive and one can use these outputs again to attempt to achieve the
desired computation, albeit with a degraded fidelity.

3.10 Exercises

3.1 Decompose a general Ry(θ) rotation in terms of only Rx gates and Rz gates.

3.2 Draw a picture to show what the Ry(θ) gate does to the state |1〉 on the Bloch
sphere.

3.3 Show how the decomposition of the Hadamard gate into Ry and Rz rotations al-
lows us to predict how the Hadamard gate will move a state |0〉on the Bloch sphere.

3.4 Quantum Circuit for Inverse Operation Look at the quantum circuit shown
in Fig. 3.41 that implements a unitary operation U. Sketch the quantum circuits for
the operations

(a) U2

(b) U−1

(c) U†

3.5 Quantum Circuit for the FREDKIN Gate In Chap. 2, you saw the FREDKIN
gate, which is a (3-bit)-to-(3-bit) universal gate for classical reversible computing.

1. Prove that matrix describing the action of the FREDKIN gate is unitary, and
hence admits a quantum circuit decomposition.

196 3 Quantum Circuits

2. By regarding the FREDKIN gate as a controlled-SWAP gate, write down a quan-
tum circuit for the FREDKIN gate in terms of TOFFOLI gates, and hence, con-
trolled 2-qubit gates.

3. Is the quantum circuit you found in part (2), the most compact quantum circuit for
the FREDKIN gate? Exhibit a more compact quantum circuit for the FREDKIN
gate or explain why the quantum circuit you found in part (2) is already optimal.

3.6 Alternative Factorization of an Arbitrary Unitary Matrix There are other
procedures for factorizing an arbitrary 2n× 2n dimensional unitary matrix, U other
than the scheme based on the GSVD presented in this chapter. One method, is to
multiply U on the left (say) by matrices that systematically zero out chosen elements
of U until only the identity matrix is left. Specifically, show that:

1. You can zero the i-th element of the leftmost column of U , by multiplying U

with the matrix V1 given by:

V1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a† 0 · · · b† · · ·
0 1 · · ·
...

. . .

b · · · · · · −a · · ·
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.128)

where

a = u11√|u11|2 + |ui1|2
(3.129)

b = ui1√|u11|2 + |ui1|2
(3.130)

2. That V1, and hence V1 ·U are unitary.
3. Show that repeating the process of zeroing out the i-th element that in 2n − 1

steps you can obtain the unitary matrix V2n−1 · V2 · V1 ·U of the form:

V2n−1 · V2 · V1 ·U =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
0 u′22 u′23 · · ·
0 u′32

. . .

...
...

⎞
⎟⎟⎟⎟⎠ (3.131)

3.10 Exercises 197

4. Repeat this procedure on the inner (2n − 1)× (2n − 1) dimensional unitary ma-
trix, using a matrix of the form V ′

1 where

V ′
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · ·
0 a† 0 · · · b† · · ·
0 0 1 · · ·
...

...
. . .

0 b · · · · · · −a · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.132)

and so on, eventually bottoms out at the identity matrix.

3.7 In the text we claimed that the classical Type II Discrete Cosine Transform
(DCT-II), as given by equation 3.58, of a signal S = {f0, f1, . . . , fN−1}, having
N sample values, is related to the Discrete Fourier Transform (DFT) of a sig-
nal S′ = {0, f0,0, f1,0, . . . , fN−1,0, fN−1,0, fN−2,0, . . . , f1,0, f0}, having 4N
values. Verify this claim for the signal consisting of the eight discrete values,

S = { 1√
74
,2

√
2
37 ,

3√
74
,− 1√

74
,−

√
2
37 ,− 3√

74
, 5√

74
, 3√

74
}. Note that the unitary ma-

trix defining the DFT is the same as that defining the QFT. Show further that this
relationship breaks down if we use instead the orthogonalized version of the classi-
cal DCT-II transform as defined by (3.59).

3.8 Using N = 4, write down the definitions of the matrices V2N and U2N given
by (3.64) and (3.67) respectively. By computing U

†
2N ·QFT2N · V2N verify that the

result contains the Type II Quantum Cosine Transform in its upper left quadrant.
Interpret what this means as a conditional logic gate.

3.9 Verify that the permutation matrix Q2n defined in (3.17) can be factored in
accordance with Q2n = P2n [⊙n

i=1(X⊗ 12n−i)⊕ 12n−2n−i+1] · P2n .

3.10 What are the unitary matrices implied by the circuits shown in Fig. 3.42?

3.11 What are the unitary matrices implied by the circuits shown in Fig. 3.43?

3.12 It is often useful to represent a given unitary operator in a different basis:

(a) Write the CNOT gate in the {|0̄〉, |1̄〉}-basis where |0̄〉 = 1√
2
(|0〉 + i|1〉) and

|0̄〉 = 1√
2
(|0〉 − i|1〉).

(b) Write the iSWAP gate in the Bell basis {|β00〉, |β01〉, |β10〉, |β11〉}.

198 3 Quantum Circuits

Fig. 3.42 Some 2-qubit gates

Fig. 3.43 In (a) the gates act
in parallel. In (b) the gates act
on only a subset of the qubits.
In (c) and (d) the CNOT gates
act on non-adjacent qubits

3.13 Given the 1-qubit gates C0 and C1 defined by:

C0 = 2

(
c3 −c2
c2 c3

)

C1 = 1

2

(
c0
c3

1

1 c1
c2

)

where c0 = 1+√3
4
√

2
, c1 = 3+√3

4
√

2
, c2 = 3−√3

4
√

2
, and c3 = 1−√3

4
√

2
,

(a) prove that C0 and C1 are unitary,
(b) factor them in terms of Rz, Ry , and Ph gates, and

3.10 Exercises 199

(c) verify the factorization of the Daubechies D
(4)
2n wavelet transform given

by (3.54).

3.14 The following quantum arithmetic operations arose in the quantum circuit
decomposition of the Type II Quantum Cosine Transform: the controlled-One’s
Complement operation (C-OC defined in (3.72)), the controlled-Two’s Complement
operation (C-TC defined in (3.74)), and the Controlled-Modular-Add-One opera-
tion (C-MAO defined in (3.80)). Find quantum circuits for C-OC2n , C-TC2n , and
C-MAO2n where the subscript indicates the dimension of the associate unitary ma-
trix. Note that these quantum arithmetic operations are anomalously easy compared
to a general unitary transformation of the same size.

3.15 The Type II Quantum Cosine Transform can be obtained from the factorization
given by (3.81), i.e.,

U
†
2N ·QFT2N · V2N =QCTII

N ⊕−QSTII
N

In this factorization, QFT2N and V2N are straightforward, but the factorization of
U

†
2N is more involved. Verify the factorization of U†

2N given in (3.84) and sketch a
quantum circuit reflecting this factorization.

3.16 Verify the “design-by-re-use” method of quantum circuit design by checking
the quantum circuit for QFFT can be written in terms of controlled-powers-of-QFT
by checking the factorization for QFFT given by:

U1 = H ⊗H ⊗ 1N

U2 = 12 ⊗ (1N ⊕QFT−1
N)

U3 = SWAP1,2;n+2 · 12 ⊗ (1N ⊕QFT−2
N) · SWAP1,2;n+2

U4 = Cα ⊗ 1N

U5 = SWAP1,2;n+2 · 12 ⊗ (1N ⊕QFT2
N) · SWAP1,2;n+2

U6 = 12 ⊗ (1N ⊕QFTN)

U7 = H ⊗H ⊗ 1N

QFFTN;α = U7 ·U6 ·U5 ·U4 ·U3 ·U2 ·U1

(3.134)

Chapter 4
Quantum Universality, Computability, &
Complexity

“[. . .] Turing’s theory is not entirely mathematical [. . .]. It makes hidden assumptions about
physics which are not quite true. Turing and other physicists who constructed universal
models for classical computation tried hard not to make any assumptions about the un-
derlying physics [. . .]. But their intuition did not encompass quantum theory, and their
imaginary paper did not exhibit quantum coherence.”
– David Deutsch1

Once while visiting Stephen Hawking in Cambridge, England, Stephen asked
me what I was working on. At the time I was a research scientist at Xerox PARC
developing what later became called the theory of computational phase transitions,
which is a view of computation inspired by statistical physics that I will describe
in Chap. 7. However, since the term “computational phase transition” was generally
unknown at that time, I replied by saying I was working on “computational complex-
ity theory”. I distinctly recall an expression of disdain sweep across Stephen’s face,
and the conversation quickly switching to something else. In retrospect, Stephen’s
pained expression turned out to be prophetic for many subsequent conversations I
have had with other physicists. It appears physicists are not generally enamored with
computational complexity theory!

Why is this? In part, I believe it is a cultural difference. I have found that physi-
cists tend to embrace simplified approximate models that encourage comprehension,
whereas computer scientists tend to prefer detailed exact models about which strong
theorems can be proved. Neither style is right nor wrong—just different. Moreover,
physicists have an uncanny knack for picking terminology that is vivid, and allur-
ing, e.g., “Big Bang”, “dark matter”, “black hole”, “twin-paradox”, “strange attrac-
tor” etc., whereas theoretical computer science is replete with the most über-geeky
nomenclature imaginable as exemplified by the byzantine names of computational
complexity classes. My complaint is not so much about the archaic names theo-
retical computer scientists have chosen, but the ad hoc ways in which the system
of names has been expanded. Had we done the same with organic chemistry key

1Source: in David Deutsch, “Quantum Computation,” Physics World, June (1992) pp. 57–61.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_4, © Springer-Verlag London Limited 2011

201

http://dx.doi.org/10.1007/978-1-84628-887-6_4

202 4 Quantum Universality, Computability, & Complexity

insights and generalizations might have been missed. Had we picked a more sys-
tematic naming convention that aids comprehension of the concepts underpinning
the complexity classes and how they differ from one another, then perhaps greater
insights, or more useful classes, might have been discovered. The current nomen-
clature does not, in my opinion, assist comprehension of the underlying complexity
class distinctions and their interrelationships.

Despite these differences, both fields have revealed extremely counter-intuitive,
intriguing, and profound results. In this chapter, we highlight some of these amazing
results from theoretical computer science and ask whether or not they still hold true
in the quantum domain.

First, there is the question of complexity: Can a quantum computer perform the
same tasks as a classical computer, but in significantly fewer steps? Second, there is
the question of computability; Can a quantum computer perform computations that a
classical computer cannot? And finally there is the question of universality; Is there
a specialized quantum computer that can simulate any other quantum computer, and
classical computer, efficiently? A difference between the capabilities of a quantum
computer and those of a classical computer on any one of these criteria would be
significant.

4.1 Models of Computation

To answer questions about complexity, universality, and computability, one must
have a model of computation in mind. In the 1930’s three superficially different
models of computation were invented by Alan Turing, Emil Post, Kurt Gödel and
Alonzo Church.

4.1.1 The Inspiration Behind Turing’s Model of Computation:
The Entscheidungsproblem

In 1900, Hilbert gave an address at the International Congress of Mathematics held
in Paris concerning what he believed to be the 23 most challenging mathematical
problems of his day. The last problem on his list asked whether there was a mechan-
ical procedure by which the truth or falsity of any mathematical conjecture could
be decided. In German, the word for “decision” is “entscheidung,” so Hilbert’s 23rd
problem became known as the “Entscheidungsproblem”. Turing’s abstract model
of computation grew out of his attempt to answer the Entscheidungsproblem.

Hilbert’s motivation for asking this question arose from the trend towards ab-
straction in mathematics. Throughout the 19th century, mathematics was largely a
practical matter, concerned with making statements about real-world objects. In the
late 1800s mathematicians began to invent, and then reason about, imaginary ob-
jects to which they ascribed properties that were not necessarily compatible with

4.1 Models of Computation 203

“common sense.” Thus the truth or falsity of statements made about such imaginary
objects could not be determined by appealing to the real world. In an attempt to put
mathematical reasoning on secure logical foundations, Hilbert advocated a “formal-
ist” approach to proofs. To a formalist, symbols cease to have any meaning other
than that implied by their relationships to one another. No inference is permitted un-
less there is an explicit rule that sanctions it, and no information about the meaning
of any symbol enters into a proof from outside itself. Thus the very philosophy of
mathematics that Hilbert advocated seemed very machine-like, and hence Hilbert
proposed the Entscheidungsproblem.

Turing heard about Hilbert’s Entscheidungsproblem during a course of lectures,
given by Max Newman, which he attended at Cambridge University. In his lecture
Newman had described the Entscheidungsproblem as asking whether there was be a
“mechanical” means of deciding the truth or falsity of a mathematical proposition.
Although Newman probably meant “mechanical” figuratively, Turing interpreted it
literally. Turing wondered whether a machine could exist that would be able to de-
cide the truth or falsity of any mathematical proposition. Thus, in order to address
the Entscheidungsproblem, Turing realized that he needed to model the process in
which a human mathematician engages when attempting to prove some mathemati-
cal conjecture.

Mathematical reasoning is an enigmatic activity. We do not really know what
goes on inside a mathematician’s head, but we can examine the result of his thought
processes in the form of the notes he creates whilst developing a proof. Mathe-
matical reasoning consists of combining axioms (statements taken to be true with-
out proof) with rules of logical inference, to infer consequents, which themselves
become additional nuggets of information upon which further inferences may be
drawn. So the reasoning process builds on itself and will result in valid conclusions
provided the starting axioms are correct and the rules of inference are valid.

Turing abstracted the process followed by the mathematician into four principal
ingredients: a set of transformation rules that allowed one mathematical statement
to be transformed into another; a method for recording each step in the proof, an
ability to go back and forth over the proof to combine earlier inferences with later
ones, and a mechanism for deciding which rule to apply at any given moment. This
is the essence of the proof process (at least its visible part). Next, Turing sought to
simplify these steps in such a way that a machine could be made to imitate them.
Mathematical statements are built up out of a mixture of ordinary letters, numbers,
parentheses, operators (e.g., plus, “+” and times “×”) and special mathematical
symbols (e.g., ∀,∃,¬,∧,∨). Turing realized that the symbols themselves were of
no particular significance. All that mattered was that they were used consistently
and that their number was finite. Moreover, once you know you are dealing with
a finite alphabet, you can place each symbol in one-to-one correspondence with a
unique pattern of any two symbols (such as 0 and 1). Hence, rather than deal with
a rich array of esoteric symbols, Turing realized that a machine only needed to be
able to read and write two kinds of symbol, 0 and 1, say, with blank spaces or some
other convention to identify the boundaries between the distinct symbols. Similarly,
the fact that the scratch pad on which the mathematician writes intermediate results

204 4 Quantum Universality, Computability, & Complexity

is two-dimensional is of no particular importance. You could imagine attaching the
beginning of one line of a proof to end of the previous line, making one long con-
tinuous strip of paper. So, for simplicity, Turing assumed that the proof could be
written out on a long strip of paper or a “tape.” Moreover, rather than allowing
freeform handwriting, it would clearly be easier for a machine to deal with a tape
marked off into a sequence of identical cells and only permitting one symbol to be
written inside each cell, or the cell to be left blank.

Finally, the process of the mathematician going back and forth over previous
conclusions in order to draw new ones could be captured by imagining that there
is a “read/write” head going back and forth along the tape. When a mathematician
views an earlier result it is usually in some context. A mathematician might read a set
of symbols, write something, but come back to read those same symbols again later,
and write something else. Thus, the context in which a set of symbols is read can
affect the subsequent actions. Turing captured this idea by defining the “head” of his
Turing machine to be in certain “states,” corresponding to particular contexts. The
combination of the symbol being read under the head and the state of the machine
determined what symbol to write on the tape, which direction to move the head, and
which state to enter next.

This is clearly a crude model of the proof process. Nevertheless it turned out to be
surprisingly powerful. No matter what embellishments people dreamed up, Turing
could always argue that they merely were refinements to some existing part of the
model rather than being fundamentally new features. Consequently the Turing ma-
chine model was indeed the essence of the proof process. By putting the aforemen-
tioned mechanistic analogues of human behavior into a mathematical form, Turing
was led to the idea of a “deterministic Turing machine”.

4.1.2 Deterministic Turing Machines

The most influential model of computation was invented by Alan Turing in
1936 [501]. A Turing machine is an idealized mathematical model of a computer
that can be used to understand the limits of what computers can do [237]. It is
not meant to be a practical design for any actual machine but rather a simplified
abstraction that, nevertheless, captures the essential features of any real computer.
A Turing machine’s usefulness stems from being sufficiently simple to allow mathe-
maticians to prove theorems about its computational capabilities and yet sufficiently
complex to accommodate any actual classical digital computer, no matter how it is
implemented in the physical world.

A deterministic Turing machine is illustrated in Fig. 4.1. Its components are in-
spired by Turing’s abstract view mathematical reasoning. A deterministic Turing
machine consists of an infinitely long tape that is marked off into a sequence of
cells on which may be written a 0 or a 1, and a read/write head that can move back
and forth along the tape scanning the contents of each cell. The head can exist in
one of a finite set of internal “states” and contains a set of instructions (constituting

4.1 Models of Computation 205

Fig. 4.1 A deterministic Turing machine

the “program”) that specifies, given the current internal state, how the state must
change given the bit (i.e., the binary digit 0 or 1) currently being read under the
head, whether that bit should be changed, and in which direction the head should
then be advanced.

The tape is initially set up in some standardized state such as all cells containing
0 except for a few that hold the program and any initial data. Thereafter the tape
serves as the scratch pad on which all intermediate results and the final answer (if
any) are written.

Despite its simplicity, the Turing Machine model has proven to be remarkably
durable. In the 70-odd years since its inception, computer technology has advanced
considerably. Nevertheless, the Turing machine model remains as applicable today
as it was back in 1936. Although we are apt to think of multimillion dollar su-
percomputers as being more powerful than humble desktop machines, the Turing
machine model proves otherwise. Given enough time and memory capacity there
is not a single computation that a supercomputer can perform that a personal com-
puter cannot also perform. In the strict theoretical sense, they are equivalent. Thus
the Turing machine is the foundational upon which much of current computer sci-
ence rests. It has enabled computer scientists to prove many theorems that bound
the capabilities of computing machinery.

More recently, however, a new idea has emerged that adds a slight twist to the
deterministic Turing machine. Deterministic Turing machines, which follow rigid
pre-defined rules, are susceptible to systematic biases that can cause them to take
a very long time to solve certain problems. These are the problems for which the
particular set of deterministic rules happen to make the Turing machine examine
almost all the potential solutions before discover an actual solution. For example,
if an adversary knew the rules by which a give DTM operated they could devise
a problem that was guarantee to tax the machine to its maximum before finding a
true solution. To avoid such pitfalls, a new type of Turing machine was invented
that employs randomness, this is called a probabilistic, or non-deterministic, Turing
machine.

4.1.3 Probabilistic Turing Machines

An alternative model of classical computation is to equip a deterministic Turing
machine with the ability to make a random choice, such as flipping a coin. The
result is a probabilistic Turing machine. Surprisingly, many problems that take a

206 4 Quantum Universality, Computability, & Complexity

long time to solve on a deterministic Turing machine (DTM) can often be solved
very quickly on a probabilistic Turing machine (PTM).

In the probabilistic model of computation there are often tradeoffs between the
time it takes to return an answer to a computation and the probability that the answer
returned is correct. For example, suppose you wanted to plan a round the world trip
that visited 100 cities, but you wanted to minimize the distance you have to travel
between cities and you only wanted to visit each city once. The problem of com-
puting the optimal (shortest path) route for your trip is extremely demanding com-
putationally. However, if you were prepared to accept a route that was guaranteed
to be only a little bit longer than the optimal route, and could in fact be the opti-
mal route, then this problem is very easy to solve computationally. For example, the
Euclidean TSP is known to be an NP-Complete problem [377], which means that,
to the best knowledge of computer scientists at the present time, the computational
cost of finding the optimal tour scales exponentially with the number of cities to be
visited, N , making the problem intractable for sufficiently large N . Nevertheless,
there is a randomized algorithm that can find a tour to within O(1 + 1/c) of the
optimal tour (for any constant c) in a time that scales only as O(N(log(N))O(c))

[20], which is worse than linear but better than exponential scaling. Thus, random-
ization can be a powerful tool for rendering intractable problems tractable provided
we are content with finding a good approximation to the optimal or exact solu-
tion.

An alternative tradeoff, if you require a correct answer, is to allow uncertainty in
the length of time the probabilistic algorithm must run before it returns an answer.
Consequently, a new issue enters the computational theory, namely, the correctness
of an answer and its relationship to the running time of an algorithm.

Whereas a deterministic Turing Machine, in a certain state, reading a certain
symbol, has precisely one successor state available to it, the probabilistic Turing
machine has multiple legitimate successor states available, as shown in Fig. 4.2.
The choice of which state is the one ultimately explored is determined by the
outcome of a random choice (possibly with a bias in favor of some states over
others). In all other respects the PTM is just like a DTM. Despite the superfi-
cial difference between PTMs and DTMs, computer scientists have proved that
anything computable by a probabilistic Turing machine can also be computed
by a deterministic Turing machine, although in such cases the probabilistic ma-
chine is often more efficient [198]. The basic reason for the success of proba-
bilistic approach is that a probabilistic algorithm can be thought of as swapping
between a collection of deterministic algorithms. Whereas it is fairly easy to de-
sign a problem so that it will mislead a particular deterministic algorithm, it is
much harder to do so for a probabilistic algorithm because it keeps on changing
its “identity.” Indeed the latest algorithms for solving hard computational prob-
lems now interleave deterministic, with probabilistic steps. The exact proportions
of each strategy can have a huge impact on the overall efficiency of problem solv-
ing.

4.1 Models of Computation 207

Fig. 4.2 In a probabilistic classical Turing machine there are multiple possible successor states,
only one of which is actually selected and pursued at any one time

4.1.4 The Alternative Gödel, Church, and Post Models

Kurt Gödel invented a very different model of computation than that formulated
by Turing. Gödel identified the tasks that a computer can perform with a class of
recursive functions, i.e., functions that refer to themselves. For example, the function
fib(x) = fib(x − 1) + fib(x − 2) such that fib(1) = fib(2) = 1 defines a recursive
function that generates the Fibonnaci sequence, i.e., as x takes on integer values x =
1,2,3,4,5,6, . . . , then f (x) generates the Fibonnaci numbers 1,1,2,3,5,8,
The function fib(·) is defined in terms of itself, and is therefore a recursive function.

Yet another model of computation was formulated by Alonzo Church. Church
equated the tasks that a computer can perform with the so-called λ-definable func-
tions (which you will have encountered if you have ever used the LISP program-
ming language). This viewed computation as a nesting of function evaluations. The
simplicity of the λ-calculus made it possible to prove various properties of compu-
tations.

Hence both Gödel’s and Church’s formulations of computation viewed it as an
elaborate mathematical function evaluation in which simpler functions were com-
posed to make more elaborate ones.

Emil Post anticipated many of the results of Gödel, Turing, and Church but chose
not publish them. His “finite combinatory processes—Formulation I” [397] is sim-
ilar in spirit to the idea of a Turing machine. Post did not ever speak overtly of
computing machines, but he did invent (independently of Turing) the idea of a hu-
man worker moving along a two way infinite “workspace” of boxes each of which
could be marked or unmarked, and following a set of directions: a conditional jump,
“Stop”, move left, move right, mark box or unmark box.

208 4 Quantum Universality, Computability, & Complexity

4.1.5 Equivalence of the Models of Computation

Thus, Turing identified the tasks a computer can perform with the class of func-
tions computable by a hypothetical computing device called a Turing Machine. This
viewed computation a rather imperative or “procedural” style. Slightly later Emil
Post also formalized computation in a similar machine model, which he asserted
was “logically equivalent to recursiveness”. Kurt Gödel equated computation with
recursive functions and Alonzo Church with λ-definable functions.

Although, superficially, the models of computation advanced by Turing, Gödel,
Church, and Post look different, it turns out that they are equivalent to one another.
This was something of a surprise as there was no reason to expect their equivalence
a priori.

Moreover, any one of the models alone might be open to the criticism that it
provided an incomplete account of computation. But the fact that three radically
different views of computation all turned out to be equivalent was a clear indication
that the most important aspects of computation had been characterized correctly.

4.2 Universality

In the 1930s computer science was a rather fledgling field. People dabbled with
building computers but very few machines actually existed. Those that did had been
tailor-made for specific applications. However, the concept of a Turing machine
raised new possibilities. Turing realized that one could encode the transformation
rules of any particular Turing machine, T say, as some pattern of 0s and 1s on
the tape that is fed into some special Turing machine, called U . U had the effect
of reading in the pattern specifying the transformation rules for T and thereafter
treated any further input bits exactly as T would have done. Thus U was a universal
mimic of T and hence was called the Universal Turing Machine. Thus, one Turing
machine could mimic the behavior of another.

4.2.1 The Strong Church-Turing Thesis

The ability to prove that all the competing models of classical computation were
equivalent led Church to propose the following principle, which has subsequently
become known as the Church-Turing thesis [450]:

Strong Church-Turing Thesis Any process that is effective or algorithmic in na-
ture defines a mathematical function belonging to a specific well-defined class,
known variously as the recursive, the λ-definable, or the Turing computable func-
tions. Of, in Turing’s words, every function which would naturally be regarded as
computable can be computed by the universal Turing machine.

4.2 Universality 209

Thus a model of computation is deemed universal, with respect to a family of
alternative models of computation, if it can compute any function computable by
those other models either directly or via emulation.

4.2.2 Quantum Challenge to the Strong Church-Turing Thesis

Notwithstanding these successes, in the early 1980s a few maverick scientists began
to question the correctness of the classical models of computation. The determin-
istic Turing machine and probabilistic Turing machine models are certainly fine as
mathematical abstractions but are they consistent with known physics? This ques-
tion was irrelevant in Turing’s era because computers operated at a scale well above
that of quantum systems. However, as miniaturization progresses, it is reasonable,
in fact, necessary, to re-consider the foundations of computer science in the light of
our improved understanding of the microscopic world.

Unfortunately, we now know that although these models were intended to be
mathematical abstractions of computation that were free of physical assumptions,
they do, in fact, harbor implicit assumptions about the physical phenomena available
to a computer. These assumptions appear to be perfectly valid in the world we see
around us, but they cease to be valid on sufficiently small scales.

We now know that the Turing Machine model contains a fatal flaw. In spite of
Turing’s best efforts, some remnants of classical physics, such as the assumption
that a bit must be either a 0 or a 1, crept into the Turing machine models. The ob-
vious advances in technology, such as more memory, more instructions per second,
greater energy efficiency have all been merely quantitative in nature. The underly-
ing foundations of computer science have not changed. Similarly, although certainly
having a huge social impact, apparent revolutions, such as the explosion of the In-
ternet, have merely provided new conduits for information to be exchanged. They
have not altered the fundamental capabilities of computers in any way whatsoever.
However, as computers become smaller, eventually their behavior must be described
using the physics appropriate for small scales, that is, quantum physics.

The apparent discrepancy between Feynman’s observation that classical comput-
ers cannot simulate quantum system efficiently and the Church-Turing thesis means
that the Strong Church-Turing Thesis may be flawed for there is no known way to
simulate quantum physics efficiently on any kind of classical Turing machine. This
realization led David Deutsch in 1985 to propose reformulating the Church-Turing
thesis in physical terms. Thus Deutsch prefers:

Deutsch’s Thesis Every finitely realizable physical system can be perfectly simu-
lated by a universal model computing machine operating by finite means.

This can only be made compatible with Feynman’s observation on the efficiency
of simulating quantum systems by basing the universal model computing machine
on quantum mechanics itself. This insight was the inspiration that allowed David

210 4 Quantum Universality, Computability, & Complexity

Deustch to prove that it was possible to devise a “Universal Quantum Turing Ma-
chine”, i.e., a quantum Turing machine that could simulate any other quantum Tur-
ing machine. The efficiency of Deustch’s Universal Quantum Turing Machine has
since been improved upon by several other scientists.

We don’t yet know how history with rate the relative contributions of various
scientists to the field of quantum computing. Curiously though, if you search for
“quantum computing” at www.wikiquote.com you will discover “David Deutsch,
Relevance: 4.2%; Richard Feynman, Relevance: 2.2% and (my personal favorite)
God, Relevance: 0.9%”. I have to say that I think wikiquote has it about right! I cer-
tainly concur with the relative ratings of Deutsch’s and Feynman’s contributions,
but I will leave it to each author (one living, one dead) to argue with the Almighty
Himself, the merits of their ranking with respect to God.

4.2.3 Quantum Turing Machines

The first quantum mechanical description of a Turing machine was given by Paul
Benioff in 1980 [43]. Benioff was building on earlier work carried out by Charles
Bennett who had shown that a reversible Turing machine was a theoretical possibil-
ity [44].

A reversible Turing machine is a special version of a deterministic Turing ma-
chine that never erases any information. This is important because physicists had
shown that, in principle, all of the energy expended in performing a computation
can be recovered provided that the computer does not throw any information away.
The notion of “throwing information away” means that the output from each step of
the machine must contain within it enough information that the step can be undone
without ambiguity. Thus, if you think of a reversible Turing machine as a dynamical
system, then given knowledge of its state at any one moment would allow you to
predict its state at all future and all past times. No information was ever lost and the
entire computation could be run forwards or backwards.

This fact struck a chord with Benioff, for he realized that any isolated quan-
tum system had a dynamical evolution that was reversible in exactly this sense.
Thus it ought to be possible to devise a quantum system whose evolution over time
mimicked the actions of a classical reversible Turing machine. This is exactly what
Benioff did. Unfortunately, Benioff’s machine is not a true quantum computer. Al-
though between computational steps the machine exists in an intrinsically quantum
state (in fact a “superposition,” of computational basis states, at the end of each step
the “tape” of the machine was always back in one of its classical states: a sequence
of classical bits. Thus, Benioff’s design could do no more than a classical reversible
Turing machine.

The possibility that quantum mechanical effects might offer something genuinely
new was first hinted at by Richard Feynman of Caltech in 1982, when he showed that
no classical Turing machine could simulate certain quantum phenomena without
incurring an unacceptably large slowdown but that a “universal quantum simulator”

http://www.wikiquote.com

4.2 Universality 211

could do so. Unfortunately, Feynman did not provide a design for such a simulator,
so his idea had little immediate impact. Nor did he did not prove, conclusively, that a
universal quantum simulator was possible. However, indeed it is. The question was
answered in the affirmative by Seth Lloyd in 1996 [321].

The key step in making it possible to study the computational power of quan-
tum computers came in 1985, when David Deutsch of Oxford University, described
the first true quantum Turing machine (QTM) [136]. A QTM is a Turing machine
whose read, write, and shift operations are accomplished by quantum mechanical
interactions and whose “tape” can exist in states that are highly nonclassical. In par-
ticular, whereas a conventional classical Turing machine can only encode a 0, 1,
or blank in each cell of the tape, the QTM can exist in a blend, or “superposition”
of 0 and 1 simultaneously. Thus the QTM has the potential for encoding many in-
puts to a problem simultaneously on the same tape, and performing a calculation
on all the inputs in the time it takes to do just one of the calculations classically.
This results in a superposition of all the classical results and, with the appropri-
ate measurement, you can extract information about certain joint properties of all
these classical results. This technique is called “quantum parallelism.” We saw an
example of quantum parallelism when we solved Deutsch’s problem in Chap. 1.

Moreover, the superposition state representing the tape of the QTM can corre-
spond to an entanglement of several classical bit string configurations. Entanglement
means that the quantum state of the entire tape is well-defined but the state of the
individual qubits is not. For example, a 3-qubit tape in the state 1√

2
(|010〉 + |101〉)

represents an entanglement of the two configurations |010〉 and |101〉. It is entangled
in the sense that it you were to measure any one of these qubits, the quantum state
of the other two qubits would become definite instantaneously. Thus, if you read out
the bit values from a part of the tape of the QTM when it is in an entangled state,
your actions will have a side effect on the state of the other (unmeasured) qubits.
In fact it is the existence of such “entangled” qubits that is the fundamental reason
QTMs are different from classical deterministic and probabilistic TMs.

A graphical representation of a QTM is shown in Fig. 4.3. There is a single
physical tape running from left to right in the figure. However, this single tape is
drawn as if it were several tapes in parallel to convey the idea that the single quantum
tape can hold a superposition of many different bit strings simultaneously.

As we saw in Chap. 1, each qubit in a QTM, when considered is perfect isola-
tion from other qubits, can be visualized as a small arrow contained in a sphere.
“Straight up” represents the (classical) binary value 0 and “straight down” repre-
sents the (classical) binary value 1. When the arrow is at any other orientation, the
angle the arrow makes with the horizontal axis is a measure of the ratio of 0-ness
to 1-ness in the qubit. Likewise, the angle through which the arrow is rotated about
the vertical axis is a measure of the “phase”. Thus, drawing qubits as arrows con-
tained in spheres we can depict a typical superposition state of Deutsch’s quantum
Turing machine as shown in Fig. 4.3. The possible successor states of the tape are
indicated by edges between different possible tape configurations.

Quantum Turing machines (QTMs) are best thought of as quantum mechanical
generalizations of probabilistic Turing machines (PTMs). In a PTM, if you initialize

212 4 Quantum Universality, Computability, & Complexity

Fig. 4.3 In the quantum Turing machine, each cell on the tape can hold a qubit. In this figure there
is one physical tape but it is drawn as multiple tapes corresponding to a different bit pattern for
each component of the net superposition state

the tape in some starting configuration and run the machine without inspecting its
state for t steps, then its final state will be uncertain and can only be described using
a probability distribution over all the possible states accessible in t steps.

Likewise, in a QTM if you start the machine off in some initial configuration, and
allow it to evolve for t steps, then its state will be described by a superposition of
all states reachable in t steps. The key difference is that in a classical PTM only one
particular computational trajectory is followed, but in the QTM all computational
trajectories are followed and the resulting superposition is the sum over all possible
states reachable in t steps. This makes the calculation of the net probability of a
particular computational outcome different for a PTM than a QTM.

In the PTM if a particular answer can be reached independently, in more than
one way, the net probability of that answer is given by the sum of each probability
that leads to that answer. However, in the QTM if a given answer can be reached in
more than one way the net probability of obtaining that answer is given by summing
the amplitudes of all trajectories that lead to that answer and then computing their
absolute value squared to obtain the corresponding probabilities.

If the quantum state of the QTM in Fig. 4.3 is the superposition c0|00000〉 +
c1|00001〉 + c2|00010〉 + · · · + c31|11111〉 the coefficients c0, c1, . . . , c31 are the
amplitudes, and probability of finding the tape of the QTM in the bit configuration
|00010〉, say, when you read each of the bits is equal to |c2|2. If an event occurs with
a probability of 0 this means that there is a 0% chance, i.e., utter impossibility, of that
event occurring. Conversely, if an event occurs with a probability of 1 this means
that there is a 100% chance, i.e., absolutely certainty, that the event will occur.

Whereas classical probabilities are real numbers between zero and one, “ampli-
tudes” are complex numbers (i.e. numbers of the form x + iy where x and y are
real numbers). When you add two probabilities you always get a bigger or equal
probability. However, when you add two complex amplitudes together they do not
always result in a number that has a bigger absolute value. Some pairs of amplitudes

4.3 Computability 213

tend to cancel each other out resulting in a net reduction in the probability of seeing
a particular outcome. Other pairs of amplitudes tend to reinforce one another and
thereby enhance the probability of a particular outcome. This is the phenomenon of
quantum interference.

Quantum interference is a very important mechanism in quantum computing.
Typically, when designing a quantum computer to solve a hard computational prob-
lem, you have to devise a method (in the form of a quantum algorithm) to evolve
a superposition of all the valid inputs to the problem into a superposition of all the
valid solutions to that problem. If you can do so, when you read the final state of your
memory register you will be guaranteed to obtain one of the valid solutions. Under-
standing how to achieve your desired evolution invariably entails arranging for the
computational pathways that lead to non-solutions to interfere destructively with
one another and hence cancel out, and arranging for the computational pathways
that lead to solutions to interfere constructively and hence reinforce one another.

Armed with this model of an abstract quantum Turing machine, several re-
searchers have been able to prove theorems about the capabilities of quantum com-
puters [58]. This effort has focused primarily on universality (whether one machine
can simulate all others efficiently), computability (what problems the machines can
do), and complexity (how the memory, time and communication resources scale
with problem size). Let us take a look at each of these concepts and compare the
perspective given to us by classical computing and quantum computing.

4.3 Computability

Computability theory is concerned with which computational tasks, for a particular
model of computation, can and cannot be accomplished within a finite length of
time. If there is no algorithm, with respect to a particular model of computation, that
can guarantee to find an answer to a given problem in a finite amount of time, that
answer is said to be uncomputable with respect to that model of computation. One
of the great breakthroughs in classical computer science was the recognition that
all of the candidate models for computers, Turing machines, recursive functions,
and λ-definable functions were equivalent in terms of what they could and could
not compute. It is natural to wonder whether this equivalence extends to quantum
computation too.

If you ask a young child what a computer can do you might be told, “They let
me learn letters and numbers and play games.” Ask a teenager and you might hear,
“They let me surf the Web and meet online in chat rooms with my friends.” Ask
an adult and you might discover, “They’re great for email, word processing and
keeping track of my finances.” What is remarkable is that the toddler, the teenager,
the parent might all be talking about the same machine! By running the appropriate
software it seems we can make the computer perform almost any task.

The possibility of one machine simulating another gave a theoretical justification
for pursuing the idea of a programmable computer. In 1982, Richard Feynman ob-
served that it did not appear possible for a Turing machine to simulate certain quan-

214 4 Quantum Universality, Computability, & Complexity

tum physical processes without incurring an exponential slowdown [181]. Here is
an example.

Suppose you want to use a classical computer to simulate a quantum computer.
Let’s assume that the quantum computer is to contain n qubits and that each qubit is
initially in a superposition state, c0|0〉+ c1|1〉. Each such superposition is described
by two complex numbers, c0 and c1, so we need a total of 2n complex numbers to
describe the initial state of all n qubits when they are in this product state form.

Now what happens if we want to simulate a joint operation on all n qubits? Well,
you’ll find that the cost of the simulation skyrockets. Once we perform a joint op-
eration on all n qubits, i.e., once we evolve them under the action of some quantum
algorithm, they will most likely become entangled with one another. Whereas the
initial state that we started with could be factored into a product of a state for each
qubit, an entangled state cannot be factored in this manner. In fact, to even write
down an arbitrary entangled state of n qubits requires 2n complex numbers. Thus,
as a classical computer must keep track of all these complex numbers explicitly,
the cost of a classical simulation of a quantum system requires a huge amount of
memory and computer time.

What about a quantum computer? Could a quantum computer simulate any quan-
tum system efficiently? There is a good chance that it could because the quantum
computer would have access to exactly the same physical phenomena as the system
it is simulating. This result poses something of a problem for traditional (classical)
computer science.

4.3.1 Does Quantum Computability Offer Anything New?

Is it possible to make more pointed statements about computability and quantum
computers?

The first work in this area appeared in David Deutsch’s original paper on quan-
tum Turing machines [136]. Deutsch argued that quantum computers could compute
certain outputs, such as true random numbers, that are not computable by any de-
terministic Turing machine. Classical deterministic Turing machines can only com-
pute functions, that is, mathematical procedures that return a single, reproducible,
answer. However, there are certain computational tasks that cannot be performed
by evaluating any function. For example, there is no function that generates a true
random number. Consequently, a Turing machine can only feign the generation of
random numbers.

In the same paper, Deutsch introduced the idea of quantum parallelism. Quan-
tum parallelism refers to the process of evaluating a function once on a blend or
“superposition” of all possible inputs to the function to produce a superposition of
outputs. Thus all the outputs are computed in the time taken to evaluate just one
output classically. Unfortunately, you cannot obtain all of these outputs explicitly
because a measurement of the final superposed state would yield only one output.
Nevertheless, it is possible to obtain certain joint properties of all of the outputs.

4.3 Computability 215

In 1991 Richard Jozsa gave a mathematical characterization of the class of func-
tions (i.e., joint properties) that were computable by quantum parallelism [261]. He
discovered that if f is some function that takes integer arguments in the range 1 to
m and returns a binary value, and if the joint property function J that defines some
collective attribute of all the outputs of f , takes m binary values and returns a single
binary value, then only a fraction (22m − 2m+1)/(22m) of all possible joint property
functions are computable by quantum parallelism.

Thus quantum parallelism alone is not going to be sufficient to solve all the joint
property questions we might wish to ask. Of course, you could always make a QTM
simulate a classical TM and compute a particular joint property in that way. Al-
though this is feasible, it is not desirable, because the resulting computation would
be no more efficient on the quantum computer than on the classical machine. How-
ever, the ability of a QTM to simulate a TM means that the class of functions com-
putable on QTMs exactly matches the class of functions computable on classical
TMs.

4.3.2 Decidability: Resolution of the Entscheidungsproblem

It was, you will recall, a particular question regarding computability that was the
impetus behind the Turing machine idea. Hilbert’s Entscheidungsproblem had asked
whether there was a mechanical procedure for deciding the truth or falsity of any
mathematical conjecture, and the Turing machine model was invented to prove that
there was no such procedure.

To construct this proof, Turing used a technique called reductio ad absurdum, in
which you begin by assuming the truth of the opposite of what you want to prove
and then derive a logical contradiction. The fact that your one assumption coupled
with purely logical reasoning leads to a contradiction proves that the assumption
must be faulty. In this case the assumption is that there is a procedure for deciding
the truth or falsity of any mathematical proposition and so showing that this leads
to a contradiction allows you to infer that there is, in fact, no such procedure.

The proof goes as follows: if there were such a procedure, and it were truly me-
chanical, it could be executed by some Turing machine with an appropriate table of
instructions. But a “table of instructions” could always be converted into some finite
sequence of 1s and 0s. Consequently, such tables can be placed in an order, which
meant that the things these tables represented (i.e., the Turing machines) could also
be placed in an order.

Similarly, the statement of any mathematical proposition could also be converted
into a finite sequence of 1s and 0s; so they too could be placed in an order. Hence
Turing conceived of building a table whose vertical axis enumerated every possible
Turing machine and whose horizontal axis, every possible input to a Turing ma-
chine.

But how would a machine convey its decision on the veracity of a particular input,
that is, a particular mathematical proposition? You could simply have the machine

216 4 Quantum Universality, Computability, & Complexity

Table 4.1 Turing’s Table. The i-th row is the sequence of outputs of the i-th Turing machine
acting on inputs 0, 1, 2, 3, . . .

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ . . .

1 0 0 0 0 0 0 0 . . .

2 1 2 1 ⊗ 3 0 ⊗ . . .

3 2 0 0 1 5 7 ⊗ . . .

4 3 ⊗ 1 8 1 6 9 . . .

5 7 1 ⊗ ⊗ 5 0 0 . . .

6 ⊗ 2 4 1 7 3 4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

Table 4.2 Turing’s Table after diagonal slash

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 0 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 . . .

2 1 2 1 0 3 0 0 . . .

3 2 0 0 1 5 7 0 . . .

4 3 0 1 8 1 6 9 . . .

5 7 1 0 0 5 0 0 . . .

6 0 2 4 1 7 3 4 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

print out the result and halt. Hence the Entscheidungsproblem could be couched as
the problem of deciding whether the i-th Turing machine acting on the j -th input
would ever halt. Thus Hilbert’s Entscheidungsproblem had been refashioned into
Turing’s Halting Problem.

Turing wanted to prove that there was no procedure by which the truth or falsity
of a mathematical proposition could be decided; thus his proof begins by assuming
the opposite, namely, that there is such a procedure. Under this assumption, Turing
constructed a table whose (i, j)-th entry was the output of the i-th Turing machine
on the j -th input, if and only if the machine halted on that input, or else some special
symbol, such as ⊗, signifying that the corresponding Turing machine did not halt
on that input. Such a table would resemble that shown in Table 4.1.

Next Turing replaced each symbol ⊗ with the bit “0”. The result is shown in
Table 4.2: Now because the rows enumerate all possible Turing machines and the
columns enumerate all possible inputs (or, equivalently, mathematical propositions)
all possible sequences of outputs, that is, all computable sequences of 1s and 0s,

4.3 Computability 217

Table 4.3 Turing’s Table with 1 added to each element on the diagonal slash

i-th DTM j -th Input

0 1 2 3 4 5 6 . . .

0 1 0 0 0 0 0 0 . . .

1 0 1 0 0 0 0 0 . . .

2 1 2 2 0 3 0 0 . . .

3 2 0 0 2 5 7 0 . . .

4 3 0 1 8 2 6 9 . . .

5 7 1 0 0 5 1 0 . . .

6 0 2 4 1 7 3 5 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

must be contained somewhere in this table. However, since any particular output
is merely some sequence of 1s and 0s it is possible to change each one in some
systematic way, for example by flipping one of the bits in the sequence. Consider
incrementing each element on a diagonal slash through the table as shown in Ta-
ble 4.3. The sequence of outputs along the diagonal differs in the i-th position from
the sequence generated by the i-th Turing machine acting on the i-th input. Hence
this sequence cannot appear in any of the rows in the table. However, by construc-
tion, the infinite table is supposed to contain all computable sequences and yet here
is a sequence that we can clearly compute and yet cannot appear in any one row!
Hence Turing established a contradiction and the assumption underpinning the ar-
gument must be wrong. That assumption was “there exists a procedure that can
decide whether a given Turing machine acting on a given input will halt.” As Tur-
ing showed that the Halting problem was equivalent to the Entscheidungsproblem,
the impossibility of determining whether a given Turing machine will halt before
running it shows that the Entscheidungsproblem must be answered in the negative
too. In other words, there is no procedure for deciding the truth or falsity of all
mathematical conjectures.

4.3.3 Proof Versus Truth: Gödel’s Incompleteness Theorem

In 1936 Kurt Gödel proved two important theorems that illustrated the limitations
of formal systems. A formal system L is called “consistent” if you can never prove
both a proposition P and its negation ¬P within the system. Gödel showed that
“Any sufficiently strong formal system of arithmetic is incomplete if it is consistent.”
In other words there are sentences P and ¬P such that neither P nor ¬P is prov-
able using the rules of the formal system L. As P and ¬P express contradictory
sentences, one of them must be true. So there must be true statements of the formal
system L that can never be proved. Hence Gödel showed that truth and theoremhood
(or provability) are distinct concepts.

218 4 Quantum Universality, Computability, & Complexity

In a second theorem, Gödel showed that the simple consistency of L cannot be
proved in L. Thus a formal system might be harboring deep-seated contradictions.

The results of Turing and Gödel are startling. They reveal that our commonsense
intuitions regarding logical and mathematical theorem proving are not reliable. They
are no less startling than the phenomena of entanglement, non-locality, etc in quan-
tum physics.

In the 1980s some scientists began to think about the possible connections be-
tween physics and computability [320]. To do so, we must distinguish between
Nature, which does what it does, and physics, which provides models of Nature
expressed in mathematical form. The fact that physics is a mathematical science
means that it is ultimately a formal system. Asher Peres and Wojciech Zurek have
articulated three reasonable desiderata of a physical theory [390], namely, deter-
minism, verifiability, and universality (i.e., the theory can describe anything). They
conclude that:

“Although quantum theory is universal, it is not closed. Anything can be de-
scribed by it, but something must remain unanalyzed. This may not be a flaw of
quantum theory: It is likely to emerge as a logical necessity in any theory which is
self-referential, as it attempts to describe its own means of verification.”

“In this sense it is analogous to Gödel’s undecidability theorem of formal num-
ber theory: the consistency of the system of axioms cannot be verified because there
are mathematical statements which can neither be proved nor disproved by the use
of the formal rules of the theory, although their truth may be verified by metamath-
ematical reasoning.”

In a later paper Peres points out a “logico-physical paradox” [385]. He shows
that it is possible to set up three quantum observables such that two of the observ-
ables have to obey the Heisenberg Uncertainty Principle. This Principle, says that
certain pairs of observables, such as the position and momentum of a particle, cannot
be measured simultaneously. Measuring one such observable necessarily disturbs
the complementary observable, so you can never measure both observable together.
Nevertheless, Peres arranges things so that he can use the rules of quantum mechan-
ics to predict, with certainty, the value of both these variables individually. Hence
we arrive at an example system that we can say things about but which we can never
determine experimentally (a physical analogue of Gödel’s undecidability theorem).

4.3.4 Proving Versus Providing Proof

Many decades have now passed since Turing first dreamt of his machine and in
fact today there are a number of programs around that actually perform as artifi-
cial mathematicians in exactly the sense Turing anticipated. Current interest in them
stems not only from a wish to build machines that can perform mathematical rea-
soning but also more general kinds of logical inference such as medical diagnosis,
dialog management, and even legal reasoning. Typically, these programs consist of
three distinct components: a reservoir of knowledge about some topic (in the form

4.3 Computability 219

of axioms and rules of inference), an inference engine (which provides instructions
on how to pick which rule to apply next), and a specific conjecture to be proved.

In one of the earliest examples, SHRDLU, a one-armed robot, was given a com-
mand in English which was converted into its logical equivalent and then used to
create a program to orchestrate the motion of the robot arm [542]. So the robot gave
the appearance of understanding a command in plain English simply by following
rules for manipulating symbols. Nowadays such capabilities are commonplace. For
example, many cell phones can understand a limited repertoire of verbal commands
to dial telephone numbers, and some companies use automated query-answering
systems to field routine customer enquiries.

In a more sophisticated example, the British Nationality Act was encoded in
first-order logic and a theorem prover used to uncover logical inconsistencies in the
legislation [447]. Similarly, the form of certain legal arguments can be represented
in logic which can then be used to find precedents by revealing analogies between
the current case and past examples. So although most people would think themselves
far removed from the issue of “theorem proving,” they could be in for a surprise if
the tax authorities decided to play these games with the tax laws!

Today’s artificial mathematicians are far less ingenious than their human counter-
parts. On the other hand, they are infinitely more patient and diligent. These qual-
ities can sometimes allow artificial mathematicians to churn through proofs upon
which no human would have dared embark. Take, for example, the case of map
coloring. Cartographers conjectured that they could color any planar map with just
four different colors so that no two adjacent regions had the same color. However,
this conjecture resisted all attempts to construct a proof for many years. In 1976 the
problem was finally solved with the help of an artificial mathematician. The “proof,”
however, was somewhat unusual in that it ran to some 200 pages [541]. For a human
to even check it, let alone generate it, would be a mammoth undertaking. Table 4.4
shows a summary of some notable milestones in mathematical proof by humans and
machines.

Despite differences in the “naturalness” of the proofs they find, artificial mathe-
maticians are nevertheless similar to real mathematicians in one important respect:
their output is an explicit sequence of reasoning steps (i.e., a proof) that, if fol-
lowed meticulously, would convince a skeptic that the information in the premises
combined with the rules of logical inference would be sufficient to deduce the con-
clusion. Once such a chain were found the theorem would have been proved. The
important point is that the proof chain is a tangible object that can be inspected
at leisure. Surprisingly, this is not necessarily the case with a QTM. In principle,
a QTM could be used to create some proof that relied upon quantum mechanical
interference among all the computations going on in superposition. Upon interro-
gating the QTM for an answer you might be told, “Your conjecture is true,” but
there would be no way to exhibit all the computations that had gone on in order to
arrive at the conclusion. Thus, for a QTM, the ability to prove something and the
ability to provide the proof trace are quite distinct concepts. Worse still, if you tried
to peek inside the QTM as it was working, to glean some information about the state
of the proof at that time, you would invariably disrupt the future course of the proof.

220 4 Quantum Universality, Computability, & Complexity

Table 4.4 Some impressive mathematical proofs created by humans and machines. In some cases
simple proofs of long-standing mathematical conjectures have only recently been discovered. In
other cases, the shortest known proofs are extremely long, and arguably too complex to be grasped
by any single human

Mathematician Proof feat Notable features

Daniel Gorenstein Classification of finite
simple groups

Created by human. 15,000
pages long

Kenneth Appel and
Wolfgang Haken

Proved the Four Color
Theorem

Created by computer.
Reduced all planar maps to
combinations of 1,936
special cases and then
exhaustively checked each
case using ad hoc programs.
Human mathematicians
dislike this proof on the
grounds that these ad hoc
checking programs may
contains bugs and the proof
is too hard to verify by hand

Andrew Wiles Proved Fermat’s Last
Theorem

Created by human. 200
pages long. Only 0.1% of all
mathematicians are
competent to judge its
veracity

Laszlo Babai and colleagues Invented probabilistic proof
checking

Able to verify that a complex
proof is “probably correct”
by replicating any error in
the proof in many places in
the proof, thereby
amplifying the chances of
the error being detected

Thomas Hales Proved Kepler’s conjecture
on the densest way to pack
spheres again using ad hoc
programs to check a large
number of test cases

In reaction to complaints by
mathematicians, this proof is
now being re-done using
automated theorem provers
instead of ad hoc checking
programs since automated
theorem provers, which have
been tested extensively, have
a higher assurance of being
correct

Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena

On August 6, 2002 they
proved primality testing can
done deterministically in
polynomial time

Created by humans. Took
centuries to find this proof

4.4 Complexity 221

4.4 Complexity

Complexity theory is concerned with how the inherent cost required to solve a com-
putational problem scales up as larger instances of the problem are considered. It is
possible to define many different resources by which the difficulty of performing a
computation can be assessed. These include the time needed to perform the com-
putation, the number of elementary steps, the amount of memory used, the number
of calls to an oracle or black-box function, and the number of communicative acts.
These lead to the notions of computational, query, and communication complexity.
Specifically,

• Computational complexity measures the number of steps (which is proportional
to time) or the minimum amount of memory required (which is proportional to
space) needed to solve the problem.

• Query complexity measures the number of times a certain sub-routine must be
called, or “queried”, in order to solve the problem.

• Communication complexity measures the volume of data that must be sent back
and forth between parties collaborating to solve the problem.

Thus, whereas computability is concerned with which computational tasks comput-
ers can and cannot do, complexity is concerned with the efficiency with which they
can do them. Efficiency is an important consideration for real-world computing. The
fact that a computer can solve a particular kind of problem, in principle, does not
guarantee that it can solve it in practice. If the running time of the computer is too
long, or the memory requirements too great, then an apparently feasible computa-
tion can still lay beyond the reach of any practicable computer.

Computer scientists have developed a taxonomy for describing the complexity
of various algorithms running on different kinds of computers. The most common
measures of efficiency employ the rate of growth of the time or memory needed
to solve a problem as the size of the problem increases. Of course “size” is an
ambiguous term. Loosely speaking, the “size” of a problem is taken to be the number
of bits needed to state the problem to the computer. For example, if an algorithm is
being used to factor a large integer N , the “size” of the integer being factored would
be roughly log2 N .

The traditional computational complexity distinction between tractable and in-
tractable problems depends on whether the asymptotic scaling of the algorithm
grows polynomially, i.e., O(nk), or exponentially, i.e., O(kn) with the problem
size n.

These notions or tractability and intractability are somewhat imperfect because
asymptotic scaling results are unattainable mathematical ideals in a finite Universe.
Nor do they take into account the practically interesting range of sizes of problem
instances. For example, airline scheduling is an NP-Complete problem. In the worst
case, the time needed to find the optimal schedule scales exponentially in the number
of aircraft to be scheduled. But the number of jetliners with which we are ever
likely to have to deal, in practice, is bounded. So if someone invented a scheduling
algorithm that scaled as O(n100) (where n is the number of jetliners) then, even

222 4 Quantum Universality, Computability, & Complexity

though it is polynomial it might not be practically better than an exponential time
scheduling algorithm for realistic problems.

The reason complexity classifications are based on the rates of growth of running
times and memory requirements, rather than absolute running times and memory re-
quirements, is to factor out the variations in performance experienced by different
makes of computers with different amounts of RAM, swap space, and processor
speeds. Using a growth rate-based classification, the complexity of a particular al-
gorithm becomes an intrinsic measure of the difficulty of the problem the algorithm
addresses.

Although complexity measures are independent of the precise make and con-
figuration of computer, they are related to a particular mathematical model of the
computer such as a deterministic Turing machine or a probabilistic Turing machine.
It is now known, for example, that many problems that are intractable with respect to
a deterministic Turing machine can be solved efficiently, or at least can sometimes
have their solutions approximated efficiently, with high probability on a probabilis-
tic Turing machine. The Euclidean Traveling Salesman Problem (Euclidean-TSP),
e.g., consists of finding a path having minimum Euclidean distance between a set of
points in a plane such that the path visits each point exactly once before returning
to its starting point. Euclidean-TSP is known to be NP-Complete [377], and there-
fore rapidly becomes intractable as the number of points to be visited, N →∞.
Nevertheless, in [20], Arora exhibits a randomized algorithm that can find a tour
to within a factor of O(1 + 1/c) of the optimal tour (for any constant c) in a time
that scales only as O(N(log(N))O(c)). This is worse than linear scaling but much
better than exponential scaling. Other examples include random walk algorithms for
approximating the permanent of a matrix with non-zero entries [255], finding sat-
isfying assignments to a Boolean expression (k-SAT with k > 2) [439], estimating
the volume of a convex body [162], and estimating graph connectivity [364]. Clas-
sical random walks also underpin many standard methods in computational physics,
such as Monte Carlo simulations. Thus, randomization can be a powerful tool for
rendering intractable problems tractable provided we are content with finding a good
approximation to a global optimum or exact solution.

There are many criteria by which you could assess how efficiently a given algo-
rithm solves a given type of problem. For the better part of the century, computer
scientists focused on worst-case complexity analyses. These have the advantage
that, if you can find an efficient algorithm for solving some problem, in the worst
case, then you can be sure that you have an efficient algorithm for any instance of
such a type of problem.

Worst case analyses can be somewhat misleading however. Recently some com-
puter scientists have developed average case complexity analyses. Moreover, it is
possible to understand the finer grain structure of complexity classes and locate re-
gions of especially hard and especially easy problems within a supposedly “hard”
class [101, 537, 539]. Nevertheless, one of the key questions is whether some algo-
rithm runs in polynomial time or exponential time.

4.4 Complexity 223

Fig. 4.4 A comparison of
polynomial versus
exponential growth rates.
Exponential growth will
always exceed polynomial
growth eventually, regardless
of the order of the polynomial

4.4.1 Polynomial Versus Exponential Growth

Computer scientists have developed a rigorous way of quantifying the difficulty of
a given type of problem. The classification is based on the mathematical form of the
function that describes how the computational cost incurred in solving the problem
scales up as larger problems are considered. The most important quantitative dis-
tinction is between polynomially growing costs (which are deemed tractable) and
exponentially growing costs (which are deemed intractable). Exponential growth
will always exceed polynomial growth eventually, regardless of the order of the
polynomial. For example, Fig. 4.4 compares the growth of the exponential function
exp(L) with the growth of the polynomials L2,L3 and L4. As you can see, eventu-
ally, whatever the degree of the polynomial in L, the exponential becomes larger.

A good pair of example problems that illustrate the radical difference between
polynomial and exponential growth are multiplication versus factoring. It is rela-
tively easy to multiply two large numbers together to obtain their product, but it
is extremely difficult to do the opposite; namely, to find the factors of a composite
number:

1459× 83873 → 122370707 (easy) (4.1)

122370707 → 1459× 83873 (hard) (4.2)

If, in binary notation, the numbers being multiplied have L bits, then multiplica-
tion can be done in a time proportional to L2, a polynomial in L.

For factoring, the best known classical algorithms are the Multiple Polynomial
Quadratic Sieve [460] for numbers involving roughly 100 to 150 decimal dig-
its, and the Number Field Sieve [309] for numbers involving more than roughly
110 decimal digits. The running time of these algorithms grows subexponentially
(but superpolynomially) in L, the number of bits needed to specify the num-
ber to be factored N . The best factoring algorithms require a time of the order

O(exp(L
1
3 (logL)2/3)) which grows subexponentially (but superpolynomially) in L,

the number of bits needed to specify the number being factored.

224 4 Quantum Universality, Computability, & Complexity

Table 4.5 Progress in factoring large composite integers. One MIP-Year is the computational
effort of a machine running at one million instructions per second for one year

Number Number of decimal digits First factored MIPS years

Typical 20 1964 0.001

Typical 45 1974 0.01

Typical 71 1984 0.1

RSA-100 100 1991

RSA-110 110 1992

RSA-120 120 1993 825

RSA-129 129 1994 5000

RSA-130 130 1996 750

RSA-140 140 1999 2000

RSA-150 150 2004

RSA-155 155 1999 8000

Richard Crandall charted the progress in factoring feats from the 1970s to the
1990s [118]. In Table 4.5 we extend his data to more modern times. In the early
1960s computers and algorithms were only good enough to factor numbers with 20
decimal digits, but by 1999 that number had risen to a 155 decimal digit numbers,
but only after a Herculean effort. Many of the numbers used in these tests were is-
sued as grand challenge factoring problems by RSA Data Securities, Inc., and hence
bear their name. Curiously, RSA-155 was factored prior to RSA-150 (a smaller
number). The most famous of these factoring challenge problems is RSA-129.

As we show later in the book, the presumed difficulty of factoring large inte-
gers is the basis for the security of so-called public key cryptosystems that are in
widespread use today. When one of these systems was invented the authors laid
down a challenge prize for anyone who could factor the following 129 digit number
(called RSA-129) :

RSA-129= 1143816257578888676692357799761466120102182

. . .9672124236256256184293570693524573389783059

. . .7123563958705058989075147599290026879543541 (4.3)

But in 1994 a team of computer scientists using a network of workstations succeed-
ing in factoring RSA-129= p× q where the factors p are q are given by:

p = 34905295108476509491478496199038981334177646384933878
. . .43990820577

q = 32769132993266709549961988190834461413177642967992942
. . .539798288533

(4.4)

Extrapolating the observed trend in factoring suggests that it would take millions
of MIP-Years to factor a 200-digit number using conventional computer hardware.

4.4 Complexity 225

However, it might be possible to do much better than this using special purposes
factoring engines as we discuss in Chap. 13.

Although, the traditional computational complexity distinction between tractable
and intractable problems depends on whether the asymptotic scaling of the algo-
rithm grows polynomially, i.e., O(nk), or exponentially, i.e., O(kn) with the prob-
lem size n, strictly speaking, this distinction is imperfect since it does not take into
account the finiteness of the Universe. Asymptotic results are unattainable mathe-
matical ideals in a finite Universe. Nor do they take into account the practically in-
teresting range of sizes of problem instances. For example, airline scheduling is an
NP-Complete problem. In the worst case, the time needed to find the optimal sched-
ule scales exponentially in the number of aircraft to be scheduled. But the number
of jetliners with which we are ever likely to have to deal, in practice, is bounded. So
if someone invented a scheduling algorithm that scaled as O(n100) (where n is the
number of jetliners) then, even though it is polynomial it might not be practically
better than an exponential time scheduling algorithm for realistic problems.

4.4.2 Big O, Θ and Ω Notation

Complexity theory involves making precise statements about the scaling behav-
ior of algorithms in the asymptotic limit. This is usually described by comparing
the growth rate of the algorithm to that of a simple mathematical function in the
limit that the size of the computational problem goes to infinity. The most common
asymptotic scaling relationships, together with their standard notations, are summa-
rized in Table 4.6.

For example, consider the three functions f (x) =
√

x
2 , g(x) = 3

x
sinx + logx,

and h(x)= log 3x
4 . Their graphs are shown in Fig. 4.5. For small values of x, g(x)

can be greater than or less than f (x), and likewise greater than or less than h(x).
However, asymptotically, i.e., “eventually”, g(x) is bounded above by f (x) and
therefore g(x) = O(f (x)). Similarly, asymptotically, g(x) is bounded below by

h(x) and so g(x)=Ω(h(x)). However, as the limit limx→∞ | 3
x

sinx+logx

log 3x
4

− 1| = 0,

we also have g(x) equals h(x) asymptotically, i.e., g(x)∼ h(x) asymptotically.
We can use the aforementioned notation to characterize the asymptotic behaviors

of some well-known algorithms. Table 4.7 shows the asymptotic running times of
some famous algorithms.

4.4.3 Classical Complexity Zoo

Knowing the exact functional forms for the rates of growth of the number of com-
putational steps for various algorithms allows computer scientists to classify com-
putational problems based on difficulty. The most useful distinctions are based on

226 4 Quantum Universality, Computability, & Complexity

Table 4.6 Notation used to characterize the asymptotic scaling behavior of algorithms

Notation Meaning Formal definition

f (x)= O(g(x)) f (x) is bounded above by g(x)

asymptotically
As x→∞,∃k s.t. |f (x)| ≤ kg(x)

f (x)= o(g(x)) f (x) is dominated by g(x)

asymptotically
As x→∞,∀k s.t. |f (x)| ≤ kg(x)

f (x)=Ω(g(x)) f (x) is bounded below by g(x)

asymptotically
As x→∞,∃k s.t. |f (x)| ≥ kg(x)

f (x)= ω(g(x)) f (x) dominates g(x)
asymptotically

As x→∞,∀k s.t. |f (x)| ≥ kg(x)

f (x)=Θ(g(x)) f (x) is bounded above and below
by g(x) asymptotically

As x→∞,∃k1, k2 s.t.
k1g(x)≤ |f (x)| ≥ k2g(x)

f (x)∼ g(x) f (x) equals g(x) asymptotically As n→∞,∀k s.t.
|f (x)/g(x)− 1| ≤ k

Fig. 4.5 Graphs of

f (x)=
√

x
2 ,

g(x)= 3
x

sinx + logx, and

h(x)= log 3x
4 . As x becomes

larger the relative dominance
of the functions becomes
clear

classes of problems that either can or cannot be solved in polynomial time, in the
worst case. Problems that can be solved in polynomial time are usually deemed
“tractable” and are lumped together into the class P. Problems that cannot be solved
in polynomial time are usually deemed “intractable” and may be in one of several
classes. Of course it is possible that the order of the polynomial is large making a
supposedly “tractable” problem rather difficult in practice. Fortunately, such large
polynomial growth rates do not arise that often, and the polynomial/exponential dis-
tinction is a pretty good indicator of difficulty. In Table 4.8 we list some classical
complexity classes.

The known inclusion relationships between the more important of these com-
plexity classes are shown in Fig. 4.6.

4.4 Complexity 227

Ta
bl

e
4.

7
T

he
as

ym
pt

ot
ic

sc
al

in
g

be
ha

vi
or

of
so

m
e

im
po

rt
an

ta
lg

or
ith

m
s

A
lg

or
ith

m
D

es
cr

ip
tio

n
C

la
ss

ic
al

Q
ua

nt
um

So
ur

ce

U
N

S
T

R
U

C
T

U
R

E
D

S
E

A
R

C
H

G
iv

en
a

bl
ac

k
bo

x
fu

nc
tio

n
f
(x
)

th
at

re
tu

rn
s

1
if

f
x
=

t
an

d
0

ot
he

rw
is

e
ho

w
m

an
y

ca
lls

to
f
(x
)

ar
e

ne
ed

ed
to

fin
d

th
e

in
de

x
t?

Ω
(N

)
O
(√

N
)

Se
e

[2
19

]

FA
C

T
O

R
IN

G
IN

T
E

G
E

R
S

G
iv

en
an

in
te

ge
r
N

fin
d

fa
ct

or
s
p

an
d
q

su
ch

th
at

N
=

p
q

W
ith

n
=

lo
g
N

,
O
(e

n
1/

3
(l

og
n
)2/

3
)

O
((

lo
g
N
)3
)

Se
e

[4
58

]

V
E

R
IF

Y
IN

G
M

A
T

R
IX

P
R

O
D

U
C

T
G

iv
en

m
at

ri
ce

s
A

,B
,a

nd
C

,v
er

if
y

A
·B

=
C

O
(n

2
)

O
(n

5/
3
)

Se
e

[8
7]

M
IN

IM
U

M
S

PA
N

N
IN

G
T

R
E

E
O

F
W

E
IG

H
T

E
D

G
R

A
P

H

G
iv

en
an

or
ac

le
th

at
ha

s
kn

ow
le

dg
e

of
th

e
ad

ja
ce

nc
y

m
at

ri
x

of
a

gr
ap

h,
G

,h
ow

m
an

y
ca

lls
to

th
e

or
ac

le
ar

e
re

qu
ir

ed
to

fin
d

a
m

in
im

um
sp

an
ni

ng
tr

ee
?

Ω
(n

2
)

Θ
(n

2/
3
)

Se
e

[1
61

]

D
E

C
ID

IN
G

G
R

A
P

H
C

O
N

N
E

C
T

IV
IT

Y
G

iv
en

an
or

ac
le

th
at

ha
s

kn
ow

le
dg

e
of

th
e

ad
ja

ce
nc

y
m

at
ri

x
of

a
gr

ap
h,

G
,h

ow
m

an
y

ca
lls

to
th

e
or

ac
le

ar
e

re
qu

ir
ed

to
de

ci
de

if
th

e
gr

ap
h

is
co

nn
ec

te
d?

Ω
(n

2
)

Θ
(n

2/
3
)

Se
e

[1
61

]

F
IN

D
IN

G
L

O
W

E
S

T
W

E
IG

H
T

PA
T

H
S

G
iv

en
an

or
ac

le
th

at
ha

s
kn

ow
le

dg
e

of
th

e
ad

ja
ce

nc
y

m
at

ri
x

of
a

gr
ap

h,
G

,h
ow

m
an

y
ca

lls
to

th
e

or
ac

le
ar

e
re

qu
ir

ed
to

fin
d

a
lo

w
es

tw
ei

gh
tp

at
h?

Ω
(n

2
)

O
(n

2/
3
(l

og
n
)2
)

Se
e

[1
61

]

D
E

C
ID

IN
G

B
IP

A
R

T
IT

E
N

E
S

S
G

iv
en

an
or

ac
le

th
at

ha
s

kn
ow

le
dg

e
of

th
e

ad
ja

ce
nc

y
m

at
ri

x
of

a
gr

ap
h,

G
,h

ow
m

an
y

ca
lls

to
th

e
or

ac
le

ar
e

re
qu

ir
ed

to
de

ci
de

if
th

e
gr

ap
h

is
bi

pa
rt

ite
?

Ω
(n

2
)

O
(n

3/
2
)

Se
e

[5
9]

228 4 Quantum Universality, Computability, & Complexity

Table 4.8 Some classical complexity classes and example problems within those classes

Classical
complexity class

Intuitive meaning Examples

P or PTIME Polynomial-Time: the running time
of the algorithm is, in the worst
case, a polynomial in the size of the
input. All problems in P are
tractable

Multiplication, linear
programming [276], and primality
testing (a relatively new addition to
this class) [5, 6]. Computing the
determinant of a matrix. Deciding if
a graph has a perfect matching

ZPP Zero-Error Probabilistic
Polynomial-Time: Can be solved,
with certainty, by PTMs in average
case polynomial time

Randomized Quicksort

BPP Bounded-Error Probabilistic
Polynomial Time: Decisions
problems solvable in polynomial
time by PTMs with probability
> 2/3. Probability of success can
be made arbitrarily close to 1 by
iterating the algorithm a certain
number of times

Decision version of Min-Cut [198]

NP Nondeterministic Polynomial time:
The class of decision problems with
the property that if you could
magically “guess” a correct
solution you could verify this fact
in polynomial time

Factoring composite integers: a
purported solution can be verified
by multiplying the claimed factors
and comparing the result to the
number being factored. At the
present time it is unknown whether
or not P=NP but it appears
unlikely

NP-Complete Subset of problems in NP that can
be mapped into one another in
polynomial time. If just one of the
problems in this class is shown to
be tractable, then they must all be
tractable. Not all problems in NP
are NP-Complete

Examples include Scheduling,
Satisfiability, Traveling Salesman
Problem, 3-Coloring, Subset-Sum,
Hamiltonian Cycle, Maximum
Clique [115]

NP-Hard The optimization version of
NP-Complete problems, wherein
one not only wants to decide if a
solution exists but to actually one

Determining the solutions to a SAT
problem

P Counting version of an NP-Hard
problem

Determining the number of
satisfying assignments to a SAT
problem [507]

P-Complete Sharp P Complete Computing the permanent of an
n× n 0-1 matrix {aij }, i.e.,∑

σ

∏n
i=1 ai,σ (i) where σ ranges

over all permutations of
1,2,3, . . . , n. The number of
perfect matchings in a graph

4.4 Complexity 229

Fig. 4.6 Some known
inclusion relationships
between classical complexity
classes. The most important
classes shown are P—class of
problems that can be solved
in polynomial time, and
NP—the class of problems
whose solution can be
verified in polynomial time.
Of these a special subset—the
NP-Complete problems—are
at least as hard as any other
problem in NP

4.4.4 Quantum Complexity Zoo

The introduction of quantum considerations turns out to have profound implications
for the foundations of computer science and information theory. Decades of old
theory must now be taken from the library shelves, dusted off and checked for an
implicit reliance upon classical bits and classical physics. By exploiting entirely new
kinds of physical phenomena, such as superposition, interference, entanglement,
non-determinism and non-clonability, we can suddenly catch a glimpse of a new
theoretical landscape before us. This shift from classical to quantum is a qualitative
change not merely a quantitative change such as the trends we saw in Chap. 1. It is
something entirely new.

Just as there are classical complexity classes, so too are there quantum complex-
ity classes (see Fig. 4.7). As quantum Turing machines are quantum mechanical
generalizations of probabilistic Turing machines, the quantum complexity classes
resemble the probabilistic complexity classes. There is a tradeoff between the cer-
tainty of your answer being correct versus the certainty of the answer being available
within a certain time bound. In particular, the classical classes P, ZPP, and BPP be-
come the quantum classes QP, ZQP, and BQP. These mean, respectively, that a
problem can be solved with certainty in worst-case polynomial time, with certainty
in average-case polynomial time, and with probability greater than 2/3 in worst-
case polynomial time, by a quantum Turing machine.

Statements about the relative power of one type of computer over another can
be couched in the form of subset relationships among complexity classes. Thus QP
is the class of problems that can be solved, with certainty, in polynomial time, on a
quantum computer, and P is the set of problems that can be solved, with certainty, in
polynomial time on a classical computer. As the class QP contains the class P (see
Table 4.9) this means that there are more problems that can be solved efficiently by
a quantum computer than by any classical computer. Similar relationships are now
known for some of the other complexity classes too, but there are still many open
questions remaining.

230 4 Quantum Universality, Computability, & Complexity

Fig. 4.7 Some known inclusion relationships between classical and quantum complexity classes.
Classes correspond to circular and oval shapes and containment is shown by shape inclusion. The
most important classes shown are QP—the class of problems that can be solved with certainty
by a quantum computer in worst-case polynomial time; ZQP—the class of problems that can be
solved with certainty by a quantum computer in average-case polynomial time; and BQP—the
class of problems that can be solved with probability greater than 2/3 by a quantum computer in
worst-case polynomial time

The study of quantum complexity classes began with David Deutsch in his orig-
inal paper on quantum Turing machines (QTMs). The development of the field is
summarized in Table 4.10.

In Deutsch’s original paper he presented the idea of quantum parallelism. Quan-
tum parallelism allows you to compute an exponential number of function evalua-
tions in the time it takes to do just one function evaluation classically. Unfortunately,
the laws of quantum mechanics make it impossible to extract more than one of these
answers explicitly. The problem is that although you can indeed calculate all the
function values for all possible inputs at once, when you read off the final answer
from the tape, you will only obtain one of the many outputs. Worse still, in the pro-
cess, the information about all the other outputs is lost irretrievably. So the net effect
is that you are no better off than had you used a classical Turing machine. So, as
far as function evaluation goes, the quantum computer is no better than a classical
computer.

Deutsch realized that you could calculate certain joint properties of all of the
answers without having to reveal any one answer explicitly. (We explained how
this works in Chap. 1). The example Deutsch gave concerned computing the XOR
(exclusive-or) of two outputs. Suppose there is a function f that can receive one
of two inputs, 0 or 1, and that we are interested in computing the XOR of both
function values, i.e., f (0)⊕ f (1) (where ⊕ here means “XOR”). The result could,

4.4 Complexity 231

Table 4.9 Some quantum complexity classes and their relationships to classical complexity
classes

Quantum class Class of computational problems that
can. . .

Relationship to classical complexity
classes (if known)

QP Quantum Polynomial-Time: . . . be
solved, with certainty, in worst-case
polynomial time by a quantum
computer. All problems in QP are
tractable

P⊂QP (The quantum computer can
solve more problems in worst case
polynomial time than the classical
computer)

ZQP Zero-Error Quantum
Polynomial-Time: . . . can be solved,
with zero error probability, in
expected polynomial time by a
quantum computer

ZPP⊂ ZQP

BQP Bounded-Error Quantum Polynomial
Time: . . . be solved in worst-case
polynomial time by a quantum
computer with probability > 2

3 (thus
the probability of error is bounded;
hence the B in BQP)

BPP⊆ BQP⊆ PSPACE (i.e., the
possibility of the equality means it is
not known whether QTMs are more
powerful than PTMs.) BQP is the
class of problems that are easy for a
quantum computer, e.g., factoring
composite integers, computing
discrete logarithms, sampling from a
Fourier transform, estimating
eigenvalues, and solving Pell’s
equation [225, 458]

for example, be a decision as to whether to make some stock investment tomorrow
based on today’s closing prices. Now suppose that, classically, it takes 24 hours to
evaluate each f . Thus if we are stuck with a single classical computer, we would
never be able to compute the XOR operation in time to make the investment the next
day. On the other hand, using quantum parallelism, Deutsch showed that half the
time we would get no answer at all, and half the time we would get the guaranteed
correct value of f (0)⊕f (1). Thus the quantum computer would give useful advice
half the time and never give wrong advice.

Richard Jozsa refined Deutsch’s ideas about quantum parallelism by showing
that many functions—for example, SAT (the propositional satisfiability problem)—
cannot be computed by quantum parallelism at all [261]. Nevertheless, the question
about the utility of quantum parallelism for tackling computational tasks that were
not function calculations remained open.

In 1992 Deutsch and Jozsa exhibited a problem, that was not equivalent to a
function evaluation, for which a quantum Turning machine (QTM) was exponen-
tially faster than a classical deterministic Turing Machine (DTM). The problem was
rather contrived, and consisted of finding a true statement in a list of two statements.
It was possible that both statements were true, in which case either statement would
be acceptable as the answer. This potential multiplicity of solutions meant that the
problem could not be reformulated as a function evaluation. The upshot was that
the QTM could solve the problem in a “polynomial in the logarithm of the prob-

232 4 Quantum Universality, Computability, & Complexity

Table 4.10 Historical development of quantum complexity theory

Year Advance in quantum complexity theory

Benioff (1980) Shows how to use quantum mechanics to implement a Turing Machine
(TM)

Feynman (1982) Shows that TMs cannot simulate quantum mechanics without
exponential slowdown

Deutsch (1985) Proposes first universal QTM and the method of quantum parallelism.
Proves that QTMs are in the same complexity with respect to function
evaluation as TMs. Remarks that some computational tasks (e.g,
random number generation) do not require function evaluation,
Exhibits a contrived decision problem that can be solved faster on a
QTM than on a TM

Jozsa (1991) Describes classes of functions that can and cannot be computed
efficiently by quantum parallelism

Deutsch & Jozsa
(1992)

Exhibit a contrived problem that the QTM solves with certainty in
poly-log time, but that requires linear time on a DTM. Thus, the QTM
is exponentially faster than the DTM. Unfortunately, the problem is
also easy for a PTM so this is not a complete victory over classical
machines

Berthiaume &
Brassard (1992)

Prove P ⊂QP (strict inclusion). The first definitive complexity
separation between classical and quantum computers

Bernstein &
Vazirani (1993)

Describe a universal QTM that can simulate any other QTM efficiently
(Deutsch’s QTM could simulate other QTMs, but only with an
exponential slowdown)

Yao (1993) Shows that complexity theory for quantum circuits matches that of
QTMs. This legitimizes the study of quantum circuits (which are
simpler to design and analyze than QTMs)

Berthiaume &
Brassard (1994)

Prove that randomness alone is not what gives QTMs the edge over
TMs. Prove that there is a decision problem that is solved in
polynomial time by a QTM, but requires exponential time, in the worst
case, on a DTM and PTM. First time anyone showed a QTM to beat a
PTM. Prove there is a decision problem that is solved in exponential
time on a QTM but which requires double exponential times on a DTM
on all but a few instances

Simon (1994) Lays foundational work for Shor’s algorithm

Shor (1994) Discovers a polynomial-time quantum algorithm for factoring large
composite integers. This is the first significant problem for which a
quantum computer is shown to outperform any type of classical
computer. Factoring is related to breaking codes in widespread use
today

Grover (1996) Discovers a quantum algorithm for finding a single item in an unsorted
database in square root of the time it would take on a classical
computer. if the search takes N steps classically, it takes (π/4)

√
N

quantum-mechanically

lem size” time (poly-log time), but that the DTM required linear time. Thus the
QTM was exponentially faster than the DTM. The result was only a partial success,

4.5 What Are Possible “Killer-Aps” for Quantum Computers? 233

however, as a probabilistic Turing machine (PTM) could solve it as efficiently as
could the QTM. But this did show that a quantum computer at least could beat a
deterministic classical computer.

So now the race was on to find a problem for which the QTM beat a DTM and
a PTM. Ethan Bernstein and Umesh Vazirani analyzed the computational power of
a QTM and found a problem that did beat both a DTM and a PTM [57]. Given any
Boolean function on n-bits Bernstein and Vazirani showed how to sample from the
Fourier spectrum of the function in polynomial time on a QTM. It was not known if
this were possible on a PTM. This was the first result that hinted that QTMs might
be more powerful than PTMs.

The superiority of the QTM was finally clinched by André Berthiaume and Gilles
Brassard who constructed an “oracle” relative to which there was a decision problem
that could be solved with certainty in worst-case polynomial time on the quantum
computer, yet cannot be solved classically in probabilistic expected polynomial time
(if errors are not tolerated). Moreover, they also showed that there is a decision prob-
lem that can be solved in exponential time on the quantum computer, that requires
double exponential time on all but finitely many instances on any classical deter-
ministic computer. This result was proof that a quantum computer could beat both a
deterministic and probabilistic classical computer but it was still not headline news
because the problems for which the quantum computer was better were all rather
contrived.

The situation changed when, in 1994, Peter Shor, building on work by Dan Si-
mon, devised polynomial-time algorithms for factoring composite integers and com-
puting discrete logarithms. The latter two problems are believed to be intractable
for any classical computer, deterministic or probabilistic. But more important, the
factoring problem is intimately connected with the ability to break the RSA cryp-
tosystem that is in widespread use today. Thus if a quantum computer could break
RSA, then a great deal of sensitive information would suddenly become vulnerable,
at least in principle. Whether it is vulnerable in practice depends, of course, on the
feasibility of designs for actual quantum computers.

4.5 What Are Possible “Killer-Aps” for Quantum Computers?

The discovery of Shor’s and Grover’s algorithms led many people to expect other
quantum algorithms would quickly be found. However, this was not the case. It turns
out to be quite hard to find new quantum algorithms. So where exactly should we
be looking? Currently, there are two broad classes of quantum algorithms. There are
those, such as Shor’s algorithm, that exhibit exponential improvements over what is
possible classically and those, such as Grover’s algorithm, that exhibit polynomial
speedups over what is possible classically. Shor’s algorithm is arguably the more in-
teresting case since exponential speedups are game-changing. It is natural to wonder
whether the other computational problems that lie in the same complexity class as
the problems tackled by Shor’s algorithm might be amenable to a similar speedup.

234 4 Quantum Universality, Computability, & Complexity

The most likely candidate opportunities are therefore computational problems
(like factoring and discrete log) that are believed to be in the NP-Intermediate class.
These are problems that are certainly in NP but neither in P nor NP-Complete.
Some examples of presumed NP-Intermediate problems collected by Miklos San-
tha are as follows [429]:

GRAPH-ISOMORPHISM Given two graphs G1 = (V ,E1), and G2 = (V ,E2),
is there a mapping between vertices, f : V → V , such that {u,v} ∈ E1 ⇔
{f (u), f (v)} ∈E2?

HIDDEN-SUBGROUP Let G be a finite group, and let γ : G→ X (X a finite
set), such that γ is constant and distinct on cosets of a subgroup H of G. Find a
generating set for H .

PIGEONHOLE SUBSET-SUM Given a set of positive integers s1, s2, . . . , sn ∈N

such that
∑n

i=1 si < 2n, are there two subsets of indices, I1 �= I2 ⊆ {1,2, . . . , n} that
sum to the same value, i.e.,

∑
i∈I1

si =∑
j∈I2

sj ?

With sufficient research, it is conceivable any of the NP-Intermediate problems
might be re-classified at some point. Nevertheless, today, the NP-Intermediate
problems are the best prospects for being amenable to an exponential speedup using
some as-yet-to-be-discovered quantum algorithm. So far, exponentially faster quan-
tum algorithms have been found for solving the Hidden Subgroup Problem over
abelian groups [72, 283, 362, 458] and some non-abelian groups [30, 192]. However,
extending these results to other non-abelian groups has proven to be challenging and
only limited progress has been made [324]. Researchers are especially interested in
extending these results to two families of non-abelian groups—permutation groups
and dihedral groups—because doing so will lead immediately to efficient solutions
for GRAPH ISOMORPHISM [262] and the SHORTEST LATTICE VECTOR
problems [416], which would make quantum computing considerably more inter-
esting.

While progress is therefore being made the exact boundary where quantum algo-
rithms can be found that outperform classical counterparts by an exponential factor
is still ill-defined.

4.6 Summary

The most important concept of this chapter is the idea that, as computers are phys-
ical objects, their capabilities are constrained exclusively by the laws of physics
and not pure mathematics. Yet the current (classical) theory of computation had
several independent roots, all based on mathematical idealizations of the computa-
tional process. The fact that these mathematically idealized models turned out to be
equivalent to one another led most classical computer scientists to believe that the
key elements of computation had been captured correctly, and that it was largely a

4.7 Exercises 235

matter of taste as to which model of computation to use when assessing the limits
of computation.

However, it turns out that the classical models of computation all harbor implicit
assumptions about the physical phenomena available to the computer. As Feynman
and Deutsch pointed out, models of computation that allow for the exploitation of
quantum physical effects are qualitatively different from, and potentially more pow-
erful than, those that do not. Which quantum effects really matter the most is still
not entirely understood, but the phenomenon of entanglement appears to play a sig-
nificant role.

In this chapter we surveyed issues of complexity, computability, and universality
in the quantum and classical domains. Although there is no function a quantum
computer can compute that a classical computer cannot also compute, given enough
time and memory, there are computational tasks, such as generating true random
numbers and teleporting information, that quantum computers can do but which
classical ones cannot.

A question of some practical importance is to determine the class of computa-
tional problems that quantum computers can solve faster than classical ones. To
this end, quantum computer scientists have determined the scaling of the “cost”
(in terms of space, time, or communications) of certain quantum algorithms (such
as factoring integers, and unstructured search, in comparison to that of their best
classical counterparts. Some quantum algorithms, such as Shor’s algorithm for fac-
toring composite integers and computing discrete logarithms, Hallgren’s algorithm
for solving Pell’s equation, and eigenvalue estimation, show exponential speedups,
whereas others, such as Grover’s algorithm for unstructured search, show only poly-
nomial speedups [55]. The greatest challenge to quantum computer scientists is to
systematically expand the repertoire of problems exhibiting exponential speedups.
Good candidates for problems that might admit such speedups are the other prob-
lems in the same complexity class as FACTORING and DISCRETE-LOG, i.e.,
NP-Intermediate. However, to date, no one has succeeded in showing exponen-
tial speedups on these other NP-Intermediate problems in their most general
form. Other problems admit only a polynomial speedup (e.g., SEARCHING-A-
SORTED-LIST) or no speedup whatsoever (e.g., PARITY). So far, no quantum
algorithm has been found that can speedup the solution of an NP-Complete or NP-
Hard problem by an exponential factor, and most quantum computer scientists are
highly skeptical any such algorithm exists.

4.7 Exercises

4.1 Stirling’s approximation for the factorial function is n! = Θ(
√

2πn(n
e
)n) (for

integer values of n). Does this mean that n! grows at a faster, slower, or equal rate
to
√

2πn(n
e
)n? Plot a graph of the ratio of the left and right hand sides of Stirling’s

formula for n = 1,2, . . . ,20. How does the percentage error in the approximation
change with increasing values of n?

236 4 Quantum Universality, Computability, & Complexity

4.2 Prove, using non-numeric methods,

(a) The base of natural logarithms, e, and π satisfy eπ > πe

(b) The golden ratio φ = (1+√
5)/2 is less than π2/6. [Hint: π2

6 =∑∞
n=1

1
n2]

4.3 Classify the following particular claims involving O(·) notation as correct or
incorrect, and if incorrect, give a corrected version:

(a) O(n3 + n5)= O(n3)+ O(n5)

(b) O(n2 × logn)= O(n2)× O(logn)
(c) 0.0001n3 + 1000n2.99 + 17= O(n3)

(d) 4n4 + 3n3.2 + 13n2.1 = O(n7.2)

(e) logn10 = O(logn)
(f) (logn)10 = O(n2.1)

(g) 3 log10 n
2 + 10 log2 log2 n

10= O(loge n)

4.4 Classify the following generic claims regarding O(·) notation as correct or in-
correct, and if incorrect, give a corrected version:

(a) If f (n)= O(g(n)) then kf (n)=O(g(n)) for any k

(b) If f (n)= O(g(n)) and h(n)= O(g′(n)) then f (n)+ h(n)= O(g(n)+ g′(n))
(c) If f (n)= O(g(n)) and h(n)= O(g′(n)) then f (n)h(n)= O(g(n)g′(n))
(d) If f (n)= O(g(n)) and g(n)=O(h(n)) then f (n)= O(h(n))

(e) If f (n) is a polynomial of degree d , then f (n)=O(nd)

(f) If lognk = O(logn) for k > 0
(g) If (logn)k = O(nj) for k > 0 and j > 0

4.5 What can be said about the expression 3n4 + 5n2.5 + 14 logn1.2 in terms of

(a) O(·) notation
(b) Θ(·) notation
(c) Ω(·) notation

4.6 Complexity analyses often involve summing series over finitely many terms.
Evaluate the following sums in closed form:

(a)
∑n

i=1 i
2

(b)
∑n

i=1 i
3

(c)
∑n

i=1 i
k

(d)
∑n

i=1 2i

(e)
∑n

i=1 k
i

(f)
∑n

i=1 i
3ei where e≈ 2.71828

4.7 The following question is aimed at stimulating discussion. It is often said that
physicists are searching for a unified theory of physics—an ultimate theory that will
explain everything that can be explained. Do you think a unified theory of physics
will be expressed mathematically? Will it be a computable axiomatic system pow-

4.7 Exercises 237

erful enough to describe the arithmetic of the natural numbers? If so, in light of
Gödel’s Incompleteness theorem, do you think a unified theory of physics is pos-
sible? Or will certain truths of the theory be forever beyond proof? That is, if the
unified theory of physics is consistent must it be incomplete? And can the con-
sistency of the axioms of the unified theory of physics be proven within the the-
ory?

Part II
What Can You Do with a Quantum

Computer?

Chapter 5
Performing Search with a Quantum Computer

“Grover’s quantum searching technique is like cooking a soufflé. You put the state obtained
by quantum parallelism in a “quantum oven” and let the desired answer rise slowly. Success
is almost guaranteed if you open the oven at just the right time. But the soufflé is very likely
to fall—the amplitude of the correct answer drops to zero—if you open the oven too early.”
– Kristen Fuchs1

“Search” is one of the most pervasive tasks in computer science. Many important
problems can be solved by enumerating the possible solutions and then searching
amongst them, systematically or randomly, to determine which are correct. In some
cases, determining that certain possibilities are incorrect allows you to eliminate
others and hence narrow the search for a true solution. These search problems are
said to be “structured”. Alternatively, there are other search problems in which you
learn nothing useful upon discovering certain possibilities are incorrect, other than
the futility of trying those possibilities again. These search problems are said to be
“unstructured”. Thus unstructured search is the quintessential “find-the-needle-in-
the-haystack” problem.

Grover’s algorithm provides a quantum method for solving unstructured search
problems in roughly the square root of the number of steps required using a classical
computer. This amounts to a polynomial speed up over what is possible classically.
Although this is not as impressive a speedup as that seen in other quantum algo-
rithms, such as the Deutsch-Jozsa algorithm, for which an exponential speedup is
obtained, Grover’s algorithm is applicable to a much wider range of computational
problems. Moreover, a quadratic speedup is not bad either. While it won’t tame prob-
lems having an exponential complexity scaling it could, nevertheless, allow signifi-
cantly larger problem instances to be solved than might otherwise be possible. For
example, in an airline scheduling problem any given airline only has finitely many
aircraft, and finitely many routes. It is quite possible that a quadratic speedup in

1Source: [71]. Kristen Fuchs is the spouse of quantum computer scientist Chris Fuchs. Her vivid
analogy has helped me convey the essence of amplitude amplification to dozens of students in a
single sentence.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_5, © Springer-Verlag London Limited 2011

241

http://dx.doi.org/10.1007/978-1-84628-887-6_5

242 5 Performing Search with a Quantum Computer

solving a scheduling problem is sufficient to confer a practical advantage (provided
any required quantum error correction overhead is not too great).

5.1 The Unstructured Search Problem

The concept of an unstructured search problem can be demonstrated using a stan-
dard telephone directory. A standard telephone directory contains a list of names,
ordered alphabetically, together with their associated telephone numbers. To find
someone’s telephone number given knowledge of their name you proceed as fol-
lows: open the directory at a random page; if the names on the page alphabetically
precede the name you want, mark the current page and open the directory again at
a later page. If the names alphabetically succeed the name you want, mark the page
and open the directory again at an earlier page. For a telephone directory containing
N entries, repeating this process, delimited by the marked points, will take you to
the sought after entry in roughly O(logN) steps. Hence, this algorithm is said to
have a complexity of O(logN), which is deemed “efficient” since it is logarithmic
in the number of entries in the telephone directory, or equivalently, polynomial in
the number of bits, n= log2 N , needed to assign a unique index to each entry. The
fundamental reason that telephone directory look-up can be performed so efficiently
is that when you fail to find the sought after name on a given page you neverthe-
less gain reliable information as to the direction in which to search next. In other
words the alphabetically ordered search space is structured and you can exploit this
structure to narrow the search for a solution.

Now contrast this with the task of using the same telephone directory to find
someone’s name given their telephone number. That is, we are now using the tele-
phone directory to do a reverse lookup. In this case, because the telephone directory
is unordered with respect to telephone numbers, whenever you find a telephone
number that is not the given number, you learn nothing useful regarding in which
direction to search next, namely, amongst the predecessors or successors of the last
telephone number found. In this case, the search you process you are forced to per-
form is essentially “generate-and-test”. This consists of opening the phone book at a
random page, if that page contains the given number reading off the corresponding
name and stopping. Else marking the page a “dead-end” and picking one of the un-
read pages at random, repeating this process until the sought after item is found or
all the entries have been exhausted. If there are N entries in the telephone directory
it would therefore take you, on average, O(N/2) repetitions of the algorithm to find
the given telephone number and hence the associated name. In the worst case, it is
conceivable a really unlucky person would have to search every entry in the direc-
tory only to find the given number at the last trial. So in the worst case it could take
O(N) steps.

We can use the aforementioned example of searching a telephone directory to
motivate a more formal statement of the unstructured search problem, as follows:

Unstructured Search Consider a search problem that requires us to find a particu-
lar target item amongst a set of N candidates. Suppose that these N candidates are

5.1 The Unstructured Search Problem 243

labelled by indices x in the range 0 ≤ x ≤ N − 1, and that the index of the sought
after target item is x = t . Let there be a computational oracle, of “black-box func-
tion”, ft (x) that when presented with an index x can pronounce on whether or not
it is the index of the target. Specifically, ft (x) is defined such that:

ft (x)=
{

0 if x �= t

1 if x = t
(5.1)

where 0 stands for “no” and 1 stands for “yes”. The search problem is “unstructured”
because there is no discernible pattern to the values of ft (x) to provide any guidance
in finding x = t . Our job is to find the index x = t , using the fewest calls to the oracle
ft (x).

This formalization of the unstructured search problem will allow us to estimate
the computational cost of solving the problem classically versus quantumly. To facil-
itate this comparison, in the next section we describe the classical generate-and-test
algorithm using the language of quantum mechanics. Before we do that it is worth
making a few comments about the oracle, or “black-box function” ft (x).

5.1.1 Meaning of the Oracle

The computational oracle used in Grover’s algorithm has been the source of much
confusion to students of quantum computing, because it sounds like the use of the
oracle introduces circular reasoning in the search algorithm. You need to know t to
build ft (x) to then use ft (x) to find t! Maddening isn’t it?

The basis for the confusion stems from a misunderstanding about the meaning
and purpose of the oracle. To computer scientists, an oracle is merely a fictitious
mathematical device that allows them to estimate the computational cost of some
algorithm measured in units of “the number of calls to the oracle”. In the present
example, this enables them to compare the relative costs of classical unstructured
search versus quantum unstructured search in terms how many times each algorithm
much call the oracle.

On the other hand, physicists, especially experimental physicists who actually
have to build quantum computing hardware, cry foul because someone in their lab
has to pick t to built a quantum circuit that plays the role of the oracle, ft (x). So,
they cannot see the point of Grover’s algorithm because they already know t to be
able to build a contraption that finds t! All true.

However, this is similar to the situation we encountered when searching a tele-
phone directory for someone’s name given knowledge of their telephone number.
When the telephone directory was composed the author must have had knowledge
of which telephone number to associate with which name, and vice versa. So the
issue is not whether the solution to some search problem is or is not known in ad-
vance of the search, but rather how many times we must query the knowledge-holder

244 5 Performing Search with a Quantum Computer

before we learn the solution. In the abstract unstructured search problem the knowl-
edge holder is the oracle, or “black-box function” ft (x). In the example of searching
a telephone directory the knowledge holder is the telephone directory itself.

Moreover, when we come to perform unstructured search on real problems, the
oracle, which contains explicit foreknowledge of the solution, is replaced, typi-
cally, by a polynomial time (or better) testing procedure. This testing procedure
only knows the solutions implicitly via the properties that a valid solution must
possess. A good example is provided by the graph coloring problem, which is an
NP-Complete problem.

In graph coloring we are required to assign one of k colors to a graph containing
n nodes and m edges such that every node is assigned some color, and every pair
of nodes that are directly connected by an edge have different colors. As there are
n nodes there can be at most m = (n

2

) = 1
2n(n − 1) edges, and so we must only

check a maximum of 1
2n(n− 1) constraints to verify that a given coloring is or is

not acceptable. In this case the complexity will be measured in terms of how many
times this testing procedure must be called times the cost of running it each time.

These efficient testing procedures could be quite different from problem to prob-
lem. So the use of the oracle in Grover’s algorithm is really only a proxy for such a
testing procedure in which we assume, arbitrarily, that there is a unit cost per call to
the oracle.

We will have more to say about the oracle shortly, but for now we describe a
classical algorithm for solving the unstructured search problem in the language of
quantum mechanics. Having done so, we will be able to more clearly see how the
quantum search algorithm differs from its classical counterpart.

5.2 Classical Solution: Generate-and-Test

As we saw in the telephone directory example, we can solve the unstructured search
problem on a classical computer by a procedure known as “generate-and-test”. This
can be done with or without replacement of the indices that are tested along the
way. The simplest case to analyze is generate-and-test-with-replacement. Here we
imagine we have a bag of indices and we repeatedly dip into this bag, pluck out an
index, and ask the oracle whether or not this is the target index, |t〉. If it is, we stop.
If not, we put the index back in the bag (this is the “replacement” step), and repeat
the process.

This classical procedure can be expressed in quantum mechanical language as
follows: a quantum analog of the bag of indices can be regarded as an equally
weighted superposition of all the indices in the range 0 ≤ x ≤N − 1, i.e., the state

1√
N

∑N−1
x=0 |x〉. Similarly, a quantum analog of the act of plucking out an index, at

random, can be regarded as the act of reading this superposition (in the index ba-
sis). This gives us a particular index, |x〉 say. Then we ask the oracle whether or not
x = t .

If there are N indices, these can be expressed in binary notation using n= log2 N

qubits. Hence, the easiest way to create the equally weighted superposition state

5.3 Quantum Solution: Grover’s Algorithm 245

is apply a separate 1-qubit Walsh-Hadamard gate H to each of n qubits prepared

initially in the |0〉 state, i.e., we perform the operation |00 . . .0〉 H⊗n−→ 1√
2n

∑2n−1
x=0 |x〉.

When we read this superposition we will obtain a single index non-deterministically.
So this simple process mimics the classical generate-and-test procedure.

Generalizing slightly, if we have partial information about the identity of the
target index we might want to create a superposition that is weighted more towards
indices in the vicinity of where we believe the target to lie. We can do so by picking
an arbitrary starting state |s〉 (instead of the state |0〉⊗n), and an (almost) arbitrary
unitary operator U (instead of H⊗n). We say “almost” arbitrary because if we are to
have any hope of finding the target |t〉 by reading the superposition U |s〉, we have
ensure U |s〉 has some non-zero component of |t〉. Otherwise, we would never find
|t〉 no matter how often we prepared and measured U |s〉.

To recap then, the general set up we have for a quantum description of classical
generate-and-test is that we initialize the system to be in some starting state |s〉 and
apply to it an operator U such that U |s〉 is guaranteed to contain some non-zero
component in |t〉 (for an unknown target index |t〉). In the absence of any prior in-
formation about the target, the most natural choices for |s〉 and U are |s〉 = |00 . . .0〉
and U = H⊗n respectively. These choices guarantee that there will be a non-zero
overlap between the (unknown) target |t〉 and U |s〉, i.e., 〈t |U |s〉 �= 0, but other
choices are possible, and might be advisable, if you have some prior knowledge
about the solution.

Each time we re-synthesize and measure U |s〉 the probability of finding |t〉
is given by the modulus squared of the overlap between |t〉 and U |s〉, i.e.,
pCLASSICAL

succ = |〈t |U |s〉|2. Using standard statistical theory, we can infer we will
need to repeat this experiment roughly |〈t |U |s〉|−2 times to find the solution with
probability O(1) (i.e., near certainty). Hence, this is the “classical” complexity for
performing an unstructured search for the target using a generate-and-test-with-
replacement procedure.

5.3 Quantum Solution: Grover’s Algorithm

Can quantum computers do better? We might expect so because quantum comput-
ers need not limit themselves to testing each index in succession. Instead, quantum
computers can test several indices at once, in superposition, using quantum paral-
lelism. Unfortunately, since we cannot see the results of these tests individually,
quantum parallelism alone does not confer any advantage whatsoever.

Fortunately, in 1996, Lov Grover, a computer scientist at Lucent Technologies
Bell Labs, discovered a new quantum technique called amplitude amplification, that
can be exploited to make a quantum algorithm for solving the unstructured search
problem [217]. The oracle is used to create an amplitude amplification operator that
increases the amplitude of the target index within a superposition of indices while
decreasing the amplitudes of the non-target indices. Thus by creating a superposi-
tion of all the possible indices and then amplitude amplifying the amplitude of the

246 5 Performing Search with a Quantum Computer

target index prior to reading this superposition, we can bias the outcome of the mea-
surement in favor of the target index. This is the key idea behind Grover’s algorithm.

The amplitude amplification operator has a very simple form. It is built out of
three operators related to the starting state |s〉, the (almost) arbitrary unitary operator
U , and the (unknown) target |t〉. Specifically, the amplitude amplification operator
is given by:

Q=−U1sU
†1t (5.2)

where 1s = 1− 2|s〉〈s| is an operator that inverts the phase of the starting state |s〉,
1t = 1− 2|t〉〈t | is an operator that inverts the phase of the (unknown) target state
|t〉, and U is the (almost) arbitrary unitary operator that maps the starting state |s〉
into a superposition that is guaranteed to contain a non-zero component in the target
state |t〉.

As written, it looks like the operator 1t requires explicit foreknowledge of the
target state |t〉. However, as we will explain in Sect. 5.4.3, the operator 1t can be
created using the oracle, or “black-box” function ft (x), which in real applications
is replaced, typically, by an efficient testing procedure that can recognize a target
state via its properties rather than its identity. Thus, in a real application the oracle
(and hence 1t) will not have explicit foreknowledge of the target state |t〉. For the
moment, however, just assume 1t is available since this simplifies the discussion of
Grover’s algorithm.

With these definitions for |s〉, |t〉, 1s , 1ft , and U , Grover’s algorithm can be
described as follows:

Grover’s Algorithm

1. Given an oracle, or black-box quantum function, ft (x) that can pronounce on
whether or not a given index x is that of a sought after target t construct: an “am-
plitude amplification” operator Q = −U1sU

†1t using the black-box function
ft (x) where

|s〉 = the starting state
|t〉 = the (unknown) target state
1s = 1− 2|s〉〈s|
1t = 1− 2|t〉〈t | (which is built from ft (x) without explicit knowledge of |t〉)
U = any unitary operator such that 〈t |U |s〉 �= 0

2. Compute |ψ〉 =QkU |s〉, i.e., iterate the operator Q, k = π
4

√
N times on the state

U |s〉.
3. Measure each of the n bit values of the state |ψ〉.
4. Result: with high probability, the target state |t〉

So how exactly does this sequence of operators perform search? And why does
the quantum unstructured search algorithm find the target state in just the square root
of number of calls to the oracle as does the classical unstructured search algorithm?

5.4 How Does Grover’s Algorithm Work? 247

5.4 How Does Grover’s Algorithm Work?

To understand how Grover’s algorithm works let’s examine the evolution of the
overlap between the (unknown) target state |t〉 and the amplitude amplified state
QkU |s〉.

The amplitude amplification operator Q =−U1sU
†1t where |s〉 is the starting

state, 1s = 1− 2|s〉〈s| and 1t = 1− 2|t〉〈t |. The operators 1s and 1t both perform
controlled-phase flips. Specifically, 1s |x〉 = −|x〉 if and only if x = s. Likewise,
1t |x〉 = −|x〉 if and only if x = t . We can use these controlled phase flips to build
an operator that pumps probability amplitude into the target eigenstate within a su-
perposition at the expense of the amplitude in the non-target eigenstates.

Substituting in the definitions 1s = 1 − 2|s〉〈s| and 1t = 1 − 2|t〉〈t | into Q =
−U1sU

†1t and expanding out the terms we obtain:

Q=−1+ 2|t〉〈t | + 2U |s〉〈s|U† − 4U |s〉〈s|U†|t〉〈t | (5.3)

Next we consider the effect of Q on two states of particular interest, namely, U |s〉,
and |t〉. A convenient shorthand way to represent Q acting on U |s〉 and Q acting on
|t〉 is to write the two equations as the following matrix equation:

Q

(
U |s〉
|t〉

)
=

(
1− 4|〈t |U |s〉|2 2〈t |U |s〉
−2〈t |U |s〉∗ 1

)(
U |s〉
|t〉

)
(5.4)

When the overlap between U |s〉 and |t〉 is very small, i.e., when u= 〈t |U |s〉 (1,
the states U |s〉 and |t〉 are almost orthogonal to each other, and Q behaves like a 1-
qubit rotation gate, in the space spanned by U |s〉 and |t〉. In fact, when 〈t |U |s〉 (1
we have |〈t |U |s〉|2 (|〈t |U |s〉|, i.e., |u|2 (|u|, and so the matrix representation of
Q becomes almost the matrix:

Q

(
U |s〉
|t〉

)
≈

(
1 2u

−2u∗ 1

)(
U |s〉
|t〉

)

= exp

(
0 2u

−2u∗ 0

)(
U |s〉
|t〉

)
(5.5)

In the matrix exponential form, the k-th power of Q is easy to calculate, and we
find:

Qk

(
U |s〉
|t〉

)
= exp

(
0 2ku

−2ku∗ 0

)(
U |s〉
|t〉

)

≈
(

cos(2k|u|) u
|u| sin(2k|u|)

− u∗
|u| sin(2k|u|) cos(2k|u|)

)(
U |s〉
|t〉

)
(5.6)

This implies that after k iterations of the amplitude operator Q the overlap between
the (unknown) target state |t〉 and the amplitude amplified state QkU |s〉 will be:

〈t |QkU |s〉 ≈ u cos(2k|u|)+ u

|u| sin(2k|u|) (5.7)

248 5 Performing Search with a Quantum Computer

Although these expressions are approximate and only valid in the regime where
u = 〈t |U |s〉 (1, they illustrate the essential feature of amplitude amplification.
With u small, and k modest, u cos(2k|u|)≈ u and u

|u| sin(2k|u|)≈ 2ku≡ 2k〈t |U |s〉.
By (5.7) we then have (crudely) 〈t |QkU |s〉 ≈ (1 + 2k)〈t |U |s〉, which implies that
the overlap grows roughly linearly with the number of steps of amplitude ampli-
fication, k. Hence the probability, upon reading the quantum memory register, of
obtaining the target state grows quadratically with the number of steps of amplitude
amplification, i.e.

pQUANTUM
succ ∼ k2|〈t |U |s〉|2 (5.8)

Compare this to the scaling for the classical generate-and-test algorithm described
in Sect. 5.2. There we found the probability of success to scale with the number of
repetitions as:

pCLASSICAL
succ ∼ k|〈t |U |s〉|2 (5.9)

Thus amplitude amplification has the effect of enhancing the probability of obtain-
ing the solution when the quantum memory register is read after k iterations.

The second major feature of amplitude amplification that is apparent from (5.7)
is that the overlap between the target and the amplitude amplified state oscillates .
Thus, it is possible to amplitude amplify too far and actually reduce your probability
of finding a solution compared to the classical case. This is the reason Fuchs likens
amplitude amplification to baking a soufflé.

5.4.1 How Much Amplitude Amplification Is Needed to Ensure
Success?

To conclude our analysis, we would like to estimate how many steps of amplitude
amplification are required to reach the target state |t〉 using the amplitude amplifica-
tion operator Q starting from state U |s〉. After k rounds of amplitude amplification,

Qk =
(

cos(2k|u|) u
|u| sin(2k|u|)

− u∗
|u| sin(2k|u|) cos(2k|u|)

)
(5.10)

which is almost the same as a matrix that rotates a vector through angle θ , i.e.,
(

cos θ sin θ

− sin θ cos θ

)
(5.11)

Hence, as U |s〉 and |t〉 are almost orthogonal initially, we need to apply Q until
we have rotated U |s〉 by an angle of about π/2 to reach |t〉. At that moment if we
were to measure the system we would find it in state |t〉 with probability of order 1.
Therefore, the number of iterations of Q that are required to rotate U |s〉 into |t〉
is given by 2k|u| = π

2 , which implies k = π
4u . The same result is also evident by

5.4 How Does Grover’s Algorithm Work? 249

solving for the smallest positive non-zero real value of k such that u cos(2k|u|)+
u
|u| sin(2k|u|)= 1, which also implies k→ π

4

√
N . Either way,

k ≈ π

4
|〈t |U |s〉|−1 = π

4

√
N (5.12)

where N = 2n is the number of items searched over. Thus the complexity of quan-
tum search scales as the square root of that of classical search. Hence, Grover’s
algorithm is quadratically faster than the classical algorithm for performing unstruc-
tured search.

5.4.2 An Exact Analysis of Amplitude Amplification

The foregoing description of amplitude amplification was motivated from a desire
to de-mystify the process of amplitude amplification. However, it is possible to redo
the analysis without introducing any approximations whatsoever. When we do so,
and as you are asked to do as Exercise 5.2, we find that the exact expression for the
net operator that is obtained after k iterations of amplitude amplification is:

Qk

(
U |s〉
|t〉

)
= (−1)k

(
U2k(|u|) − u

|u| U2k−1(|u|)
u∗
|u|U2k−1(|u|) −U2k−2(|u|)

)(
U |s〉
|t〉

)
(5.13)

where u = 〈t |U |s〉 and U�(cos θ) = sin((� + 1)θ)/ sin θ is the Chebyshev polyno-
mial of the second kind. This then gives the overlap after k iterations of amplitude
amplification between the target state and the amplitude amplified state to be:

〈t |QkU |s〉 = (−1)k
(
uU2k(|u|)− u

|u|U2k−1(|u|)
)

(5.14)

Hence, the probability of success after k iterations of amplitude amplification is:

psuccess(k)= |〈t |QkU |s〉|2 =
∣∣∣∣(−1)k

(
uU2k(|u|)− u

|u|U2k−1(|u|)
)∣∣∣∣

2

= T2k+1(|u|)2

= cos2((2k + 1) cos−1(u)) for k ∈ Z∧ k > 0, and u ∈R∧ 0 < u< 1
(5.15)

where T�(|u|) is a Chebyshev polynomial of the first kind, T�(cos θ)= cos(�θ).
Figure 5.1 shows the oscillations in the probability of success of Grover’s al-

gorithm with increasing amounts of amplitude amplification. In the figure, there is
one solution amongst 210 search items. The maximum probability of success first
occurs after π

4

√
210 ≈ 25 iterations of amplitude amplification, but then declines if

one “over-amplifies”.
Independent and quite different exact analyses of amplitude amplification are

provided in [70] and [61, 200] (for an arbitrary amplitude distribution), but the re-
sults are similar.

250 5 Performing Search with a Quantum Computer

Fig. 5.1 The probability of
success as a function of the
number of steps of amplitude
amplification for a problem
having one solution amongst
210 possibilities. Notice that
at first the success probability
rises but falls again if one
amplitude amplifies too much

5.4.3 The Oracle in Amplitude Amplification

Before we conclude our discussion of Grover’s algorithm we need to explain how
we can use the oracle, or black-box function ft (x), to construct the operator 1t =
1− 2|t〉〈t |, which is used within the amplitude amplification procedure.

In mythology an “oracle” is an omniscient person who answers all questions
instantly and infallibly. This notion has been borrowed by computer science to con-
ceive of “computational oracles”. These are synonymous with “black-boxes”. You
provide an input to the oracle (a “question”) and in one step the oracle responds
with the correct answer. The main value of computational oracles is that they allow
us to quantify the complexity of complicated algorithms (up to the cost of the or-
acle) even though parts of those algorithms may be poorly understood. An oracle
is a means by which we can compare the relative complexities of two algorithms
without necessarily understanding how to implement that oracle. The difference be-
tween classical oracles and quantum oracles is in the nature of the questions we can
pose and the answers they can give.

As you will recall, the oracle accepts an integer x in the range 0 ≤ x ≤ N − 1
and returns 1 or 0 according to whether or not the index is that of the sought after
target t , i.e., we have:

ft (x)=
{

0 if x �= t

1 if x = t
(5.16)

To create the operator 1t we introduce a single ancilla to create an (n + 1)-qubit
unitary transformation, Ωt defined as:

Ωf :Ωf |x〉|y〉 −→ |x〉|y ⊕ ft (x)〉 (5.17)

where |x〉 one of the indices we want to test, |y〉 is the ancilla qubit, and |y⊕ ft (x)〉
is the exclusive-OR of the bit value of the ancilla and the bit value that is output
from our black-box function ft (x).

Next we prepare the ancilla in the state 1√
2
(|0〉 − |1〉). This can be done easily

by applying a 1-qubit Walsh-Hadamard gate, H , to the ancilla prepared initially

5.5 Quantum Search with Multiple Solutions 251

in state |1〉. By the linearity of quantum mechanics, with the ancilla in the state
1√
2
(|0〉 − |1〉) the transformation effected by Ωt is then:

Ωt |x〉 1√
2
(|0〉 − |1〉)= 1√

2
|x〉|0⊕ ft (x)〉 − 1√

2
|x〉|1⊕ ft (x)〉

= 1√
2
|x〉|ft (x)〉 − 1√

2
|x〉|1⊕ ft (x)〉

=
⎧⎨
⎩

1√
2
|x〉(|0〉 − |1〉) if x �= t and therefore ft (x)= 0

1√
2
|x〉(|1〉 − |0〉) if x = t and therefore ft (x)= 1

= (−1)ft (x)|x〉 1√
2
(|0〉 − |1〉) either way (5.18)

Thus, regardless of whether x = t or x �= t the transformation performed by Ωt is:

Ωt :Ωt |x〉|y〉 −→ (−1)ft (x)|x〉|y〉 (5.19)

when the ancilla |y〉 is specialized to be in the input state |y〉 = 1√
2
(|0〉 − |1〉).

To obtain 1t from Ωt we merely ignore the ancilla qubit! Then the transformation
we see on the first n qubits is:

1t : 1t |x〉 −→ (−1)ft (x)|x〉 = (1− 2|t〉〈t |) |x〉 (5.20)

Thus the operator 1t , which appears to require explicit foreknowledge of the state
|t〉 can in fact be obtained from the oracle ft (x). Again, in practical applications
the oracle is replaced by a polynomial time (or better) testing procedure that can
recognize the target state via its’ properties but does not necessarily know those
target states explicitly in advance.

5.5 Quantum Search with Multiple Solutions

Many search problems have multiple, equally acceptable, solutions. In such cases
there will be multiple index values of j for which f (j)= 1. If there are N items to
search amongst, of which exactly t are solutions, we next show that the number of
amplitude steps needed to ensure success becomes π

4

√
N/t . Each time the Grover

search algorithm is run on such a problem, the algorithm will return any one of these
t solutions with equal probability.

Let us consider the case of an unstructured quantum search problem that has
multiple, specifically t , solutions out of a total number of N = 2n possible index
values. That is, there are exactly t solutions to the equation f (j)= 1 where j is an
n bit index value. How would quantum search work in this case?

252 5 Performing Search with a Quantum Computer

The following beautiful approach to analyzing this problem was developed by
Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp [78]. One can con-
sider the index values falling naturally into two sets: the set of “good” index val-
ues, j ∈ G for which f (j) = 1 and the set of “bad” index values, j ∈ B for which
f (j) = 0, with the number of solutions being equal to the cardinality of the good
set, i.e., t = |G|. Therefore, if we define two superpositions:

|ψgood〉 = 1√
t

∑
j∈G

|j 〉

|ψbad〉 = 1√
N − t

∑
j∈B

|j 〉
(5.21)

a superposition consisting of all possible indices can be expressed as a combination
of |ψgood〉 and |ψbad〉, namely:

|ψ〉 =H⊗n|0〉 = 1√
N

N−1∑
j=0

|j 〉 =
√

t

N
|ψgood〉 +

√
N − t

N
|ψbad〉 (5.22)

where H is a Walsh-Hadamard gate. For clarity, we introduce a parameter θ defined

via sin θ =
√

t
N

, and define a state, |ψ̄〉, orthogonal to |ψ〉 that will prove to be
useful shortly. Thus, we can write:

|ψ〉 = sin θ |ψgood〉 + cos θ |ψbad〉 (5.23)

|ψ̄〉 = cos θ |ψgood〉 − sin θ |ψbad〉 (5.24)

With these definitions, it is apparent that the {|ψ〉, |ψ̄〉}-basis spans the same space
as the {|ψgood〉, |ψbad〉}-basis, and we can flip back and forth between these bases in
our analyses. As we will need them later, we note that the basis transformations in
the other direction are given by inverting (5.23) and (5.24) to yield:

|ψgood〉 = sin θ |ψ〉 + cos θ |ψ̄〉 (5.25)

|ψbad〉 = cos θ |ψ〉 − sin θ |ψ̄〉 (5.26)

We can now re-interpret the objective of Grover’s algorithm as being to take an
equally weighted superposition of all possible indices, |ψ〉, into |ψgood〉, and then
measure this state to reveal one of the index values j that solves f (j)= 1.

5.5.1 Amplitude Amplification in the Case of Multiple Solutions

By the above construction, the probability of finding a solution (naively) simply
by measuring the equal superposition state, |ψ〉, is (as seen from (5.22)) t

N
, which

5.5 Quantum Search with Multiple Solutions 253

is exactly what one expects classically by a random generate-and-test approach.
However, if we amplitude amplify the equal superposition state before making our
final measurement then we can boost our chances of success considerably. For this
we need the t-solutions analog of the “amplitude amplification” operator, Q, which
we built for the single-solution case. We will use the same symbol for this new
operator here as it plays the same role although its definition is changed to:

Q= “−H⊗n1sH
⊗n”︸ ︷︷ ︸

U⊥
ψ

1t︸︷︷︸
Uf

=U⊥
ψ Uf (5.27)

where U⊥
ψ and Uf are the unitary matrices needed to perform the following opera-

tions:

U⊥
ψ |ψ〉 = |ψ〉

U⊥
ψ |ψ̄〉 = −|ψ̄〉 (5.28)

and

Uf |ψgood〉 = −|ψgood〉
Uf |ψbad〉 = |ψbad〉

(5.29)

In analogy with the single-solution quantum search, the amplitude amplification
operator rotates the state vector being amplitude amplified within a two-dimensional
sub-space spanned by the basis vectors {|ψbad〉, |ψgood〉} or, equally, the basis vec-
tors {|ψ〉, |ψ̄〉}. The transformations Q performs are as follows:

Q|ψ〉 =U⊥
ψ Uf |ψ〉 =U⊥

ψ Uf (sin θ |ψgood〉 + cos θ |ψbad〉)
=U⊥

ψ (−sin θ |ψgood〉 + cos θ |ψbad〉)=U⊥
ψ (cos 2θ |ψ〉 − sin 2θ |ψ̄〉)

= cos 2θ |ψ〉 + sin 2θ |ψ̄〉 = cos 3θ |ψgood〉 + sin 3θ |ψbad〉 (5.30)

where we used (5.25) and (5.26) to switch from the {|ψgood〉, |ψbad〉}-basis to the
{|ψ〉, |ψ̄〉}-basis. Likewise, for the orthogonal input state, |ψ̄〉, we have:

Q|ψ̄〉 =U⊥
ψ Uf |ψ̄〉 =U⊥

ψ Uf (cos θ |ψgood〉 − sin θ |ψbad〉)
=U⊥

ψ (− cos θ |ψgood〉 − sin θ |ψbad〉)=U⊥
ψ (− sin 2θ |ψ〉 − cos 2θ |ψ̄〉)

=− sin 2θ |ψ〉 + cos 2θ |ψ̄〉 = − sin 3θ |ψgood〉 + cos 3θ |ψbad〉 (5.31)

Thus the effect of Q is to rotate the initial state, |ψ〉 = sin θ |ψgood〉 + cos θ |ψbad〉,
through an angle of 2θ . Hence, in the {|ψgood〉, |ψbad〉}-basis, Q takes the form:

Q=
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
(5.32)

254 5 Performing Search with a Quantum Computer

where sin θ =
√

t
N

. When Q is so defined, we have:

Q|ψ〉 =Q(sin θ |ψgood〉 + cos θ |ψbad〉)

=
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
·
(

sin θ
cos θ

)

=
(

sin 3θ
cos 3θ

)
= sin 3θ |ψgood〉 + cos 3θ |ψbad〉 (5.33)

To predict the affect of k successive applications of Q, we compute:

Qk =
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)k

=
(

cos(2kθ) sin(2kθ)
− sin(2kθ) cos(2kθ)

)
(5.34)

Hence, when applied to the initial state |ψ〉 = sin θ |ψgood〉 + cos θ |ψbad〉 we obtain

Qk|ψ〉 =Qk(sin θ |ψgood〉 + cos θ |ψbad〉)
= sin((2k + 1)θ)|ψgood〉 + cos((2k + 1)θ)|ψbad〉 (5.35)

Consequently, to obtain a solution to f (j)= 1 by first amplitude amplifying |ψ〉 a
number of times k, and then measuring the resulting state, we will obtain a success
probability of O(1) provided we pick the smallest integer k such that (2k+1)θ ≈ π

2 .

As θ =
√

t
N

, this implies k = π
4

√
N
t
−1/2, i.e., O(

√
N
t
). Thus, classically a solution

can be found in O(N
t
) trials, whereas quantumly one can be found in O(

√
N
t
) trials.

As in the case of a single solution, we again see a square root speedup for the case
when there are t solutions out of N = 2n candidates.

If the number of solutions t to a multi-solution quantum search problem is not
known in advance, then quantum search can be combined with another quantum
algorithm—called quantum counting—to efficiently count the number of solutions
prior to running the quantum search algorithm. The quantum counting algorithm
is described in Chap. 10.

5.6 Can Grover’s Algorithm Be Beaten?

It is natural to think that grover’s algorithm is just the first example of a quantum al-
gorithm for solving unstructured search problems and that in time most likely better
variants will emerge. Unfortunately, this will not the case. Remarkably, Christoph
Zalka has proved that Grover’s algorithm is optimal [557]. This means that any other
quantum algorithm for performing unstructured quantum search must call the ora-
cle as least as many times as is done by Grover’s algorithm. Nor can you parallelize
Grover’s algorithm to any extent better than merely partitioning the search space
amongst multiple quantum computers.

5.7 Some Applications of Quantum Search 255

Nevertheless, the fact that there is generally a non-zero probability of success
when you terminate Grover’s algorithm after exactly k rounds of amplitude am-
plification allows us to consider an “early-termination” strategy. That is, terminate
Grover’s algorithm for k < π

4

√
N rounds of amplitude amplification and read the

result. If it is the solution stop; if not restart a new Grover search and run it for an-
other k rounds of amplitude amplification. On average the cost of running such an
algorithm will be:

Cavg = kpsucc(k)+ 2kpsucc(k)(1− psucc(k))+ 3kpsucc(k)(1− psucc(k))
2 + · · ·

=
∞∑
i=1

ikpsucc(k)(1− psucc(k))
i−1 = k

psucc(k)
(5.36)

where psucc is the probability of success after k rounds of amplitude amplification.

5.7 Some Applications of Quantum Search

Grover’s algorithm may lack the impressive exponential speedup seen in the
Deutsch-Jozsa, Shor (Quantum Factoring), Eigenvalue Estimation, and Quantum
Simulation algorithms, but it has proven to be surprisingly versatile in its own right
and as a sub-routine in other quantum algorithms. In Chap. 10 we will give several
examples of how quantum search can be used to speed up the solution of various
problems in mathematics. Here we focus on how quantum search can be used as a
within computer science.

5.7.1 Speeding Up Randomized Algorithms

One of the most effective types of search algorithms for hard computational prob-
lems, such as the traveling salesperson problem, are “randomized algorithms” [364].
In a classical randomized algorithm, we use a sequence of pseudo-random numbers
to determine a trajectory through the search space. Figure 5.2 shows four runs of
a hypothetical randomized algorithm that samples different paths through a search
space. At each step the search can go up one step, down one step, or stay at the
same level with probabilities reflecting slight local preferences to go up rather than
down. After a certain number of steps we assess whether the state reached is deemed
a “solution” state. Randomized algorithms usually work such that they either con-
verge on a desired solution after a certain number of steps, or else, they tend to
wander aimlessly in the wrong region of the solution space until we give up and
run the whole algorithm again using a different seed for the pseudo-random number
generator. Quantum search can speed up such classical randomized algorithms [97]
by using a superposition of seeds for the pseudo-random number generator to create
a superposition of final states that is very likely to contain a solution within it. We
can then use quantum search to amplitude amplify this superposition to extract the
desired solution in the square root of the number of parallel pseudo-random trials.

256 5 Performing Search with a Quantum Computer

Fig. 5.2 Randomized algorithms use a seed in a pseudo-random number generator to determine
a trajectory through the search space. Different seeds lead to different trajectories. If one creates
a superposition of seeds, one obtains a superposition of trajectories. If enough seeds are chosen,
one or more of these trajectories are likely to terminate in a valid solution. Inspecting this super-
position picks out a trajectory at random. But amplitude amplifying the superposition before it is
inspected, amplifies the probability of obtaining one of the solution trajectories and suppressed the
non-solution trajectories

5.7.2 Synthesizing Arbitrary Superpositions

A final application of quantum search is in the domain of experimental physics to
prepare selected superposition states [222]. For example, if we want to create a
superposition of indices that correspond to just prime numbers, we could invent an
oracle f (x) that returns 1 if x is a prime and 0 otherwise. By amplitude amplifying
an equally weighted superposition of indices in some range, we could selectively
create a state that is just a superposition of prime numbers within this range. Thus,
the quantum search algorithm might find a role in experimental quantum physics as
a way of systematically manufacturing desired superposition states.

Quantum State Synthesis Based on Grover’s Algorithm

1. Given an n-qubit state |ψ〉 =∑2n−1
i=0 ci |i〉 that we wish to synthesize. . . .

2. Introduce a single extra ancilla qubit prepared initial in state |0〉 to make a
register containing (1+ n) qubits initialized to state |0〉|00 . . .0〉.

3. Define U1 = (1⊗H ⊗H ⊗ · · · ⊗H) where 1 is the 1-qubit identity gate, and
H is the 1-qubit Walsh-Hadamard gate.

4. Define U2, a matrix implementing U2|0〉|i〉 → ci |0〉|i〉 +
√

1− |ci |2|1〉|i〉 plus
the remaining orthonormal columns.

5. Define 1t = diag(−1,−1, . . . ,−1,+1,+1, . . . ,+1) (i.e., a sequence of (2n)
−1’s followed by (2n) +1’s).

6. Define 1s = diag(−1,+1,+1, . . . ,+1) (i.e., a single −1 followed by
(2n+1 − 1) +1’s.

7. Define U =U2 ·U1.

5.7 Some Applications of Quantum Search 257

8. Define Q=−(1s ·U−1 · 1t ·U).

9. Compute UQm|0〉|00 . . .0〉 where m= π
4

√
2n∑2n−1

i=0 |ci |2
.

10. Measure the ancilla (i.e. the first qubit). If you find the ancilla in state |0〉, the
remaining qubits will be in the state we wish to synthesize.

Let’s trace through the execution of this algorithm being used to synthesize the
state |ψ〉 = 1√

87
(2|00〉−3|01〉+5i|10〉−7i|11〉). This is a fairly complicated state:

the amplitude of each eigenstate is either positive or negative, real or imaginary,
and their magnitudes are relatively prime to one another. Let’s see how the quantum
state synthesis algorithm works in this case.

First let’s re-write the amplitudes in |ψ〉 using approximate numbers to better
visualize what is going on. We have |ψ〉 = 1√

87
(2|00〉 − 3|01〉 + 5i|10〉 − 7i|11〉)=

c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉, where c0 = 0.214423, c1 = −0.321634, c2 =
0.536056i, and c3 =−0.750479i. This will help explain the form of U2 below.

Next we compute the form of U1 = (1 ⊗ H ⊗ H) where 1 = (1 0
0 1

)
and H =

1√
2

(1 1
1 −1

)
. This gives:

U1 = (1⊗H ⊗H)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2

1
2

1
2 0 0 0 0

1
2 − 1

2
1
2 − 1

2 0 0 0 0
1
2

1
2 − 1

2 − 1
2 0 0 0 0

1
2 − 1

2 − 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2

1
2

1
2

0 0 0 0 1
2 − 1

2
1
2 − 1

2

0 0 0 0 1
2

1
2 − 1

2 − 1
2

0 0 0 0 1
2 − 1

2 − 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.37)

Next we compute a suitable matrix for U2. This is more tricky. We seek a U2

such that U2|0〉|i〉→ ci |0〉|i〉+
√

1− |ci |2|1〉|i〉. Note that, given this definition, U2

is only partially specified, because we only care about how four of the eight possi-
ble basis eigenstates are transformed under the action of U2. Specifically, we only
care how the basis eigenstates |0〉|00〉, |0〉|01〉, |0〉|10〉, and |0〉|11〉 are transformed
under U2. The remaining eigenstates can be transformed in any way we pleased so
long as the full U2 matrix is unitary. So the easiest way to build a suitable matrix
for U2 is to start with a “blank” matrix (say all zeroes) and fill in matrix elements
to comply with the prescription for how U2 is to map the four eigenstates |0〉|00〉,
|0〉|01〉, |0〉|10〉, and |0〉|11〉. We will then complete U2 by finding values for the
remaining rows and columns sufficient to guarantee that all the rows (and, equiva-
lently, all the columns) are orthonormal and hence U2 is unitary.

258 5 Performing Search with a Quantum Computer

So to fix the first requirement U2|0〉|00〉 → c0|0〉|00〉 + √
1− |c0|2|1〉|00〉 we

define the first column of U2 to be:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√

1− |c0|2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.38)

Next we insert the second column for U2 which thereby fixes the transformation for
both the |0〉|00〉 (first column) and |0〉|01〉 (second column) states:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√

1− |c0|2 0 0 0 0 0 0 0
0

√
1− |c1|2 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.39)

Continuing, in the same manner to insert the third and fourth columns of U2 then
yields:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0
0 0 c2 0 0 0 0 0
0 0 0 c3 0 0 0 0√

1− |c0|2 0 0 0 0 0 0 0
0

√
1− |c1|2 0 0 0 0 0 0

0 0
√

1− |c2|2 0 0 0 0 0
0 0 0

√
1− |c3|2 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.40)

Now we are almost done. All that remains is to find any set of vectors for last four
columns (which are currently “blank”) such that they are orthonormal to the first
four columns we have just defined. We can do this easily using (say) the Gram-
Schmidt orthogonalization procedure. Thus we obtain a suitable form for U2 as

5.7 Some Applications of Quantum Search 259

being:

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.214 0 0 0 −0.977 0 0 0
0 −0.322 0 0 0 0.607 −0.503i 0.525
0 0 0.536i 0 0 −0.598 −0.581i 0.134
0 0 0 −0.751i 0 −0.196i −0.327 0.54i

0.977 0 0 0 0.214 0 0 0
0 0.947 0 0 0 0.206 −0.171i 0.178
0 0 0.844 0 0 −0.379i 0.369 0.085i
0 0 0 0.661 0 −0.223 0.371i 0.613

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.41)

You can check that U2 is unitary by verifying2 U2 · U†
2 = 18 where 18 is an 8× 8

identity matrix.

1t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.42)

1s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.43)

U =

⎛
⎜⎜⎜⎜⎜⎝

0.107 0.107 0.107 0.107 −0.488 −0.488 −0.488 −0.488
−0.161 0.161 −0.161 0.161 0.566− 0.252i −0.566− 0.252i 0.041+ 0.252i −0.041+ 0.252i
0.268i 0.268i −0.268i −0.268i −0.232− 0.291i 0.232− 0.291i −0.366+ 0.291i 0.366+ 0.291i
−0.375i 0.375i 0.375i −0.375i −0.163+ 0.172i −0.163− 0.172i 0.163− 0.368i 0.163+ 0.368i

0.488 0.488 0.488 0.488 0.107 0.107 0.107 0.107
0.473 −0.473 0.473 −0.473 0.192− 0.085i −0.192− 0.085i 0.014+ 0.085i −0.014+ 0.085i
0.422 0.422 −0.422 −0.422 0.185− 0.147i 0.185+ 0.147i −0.185− 0.232i −0.185+ 0.232i
0.33 −0.33 −0.33 0.33 0.195+ 0.185i −0.195+ 0.185i −0.418− 0.185i 0.418− 0.185i

⎞
⎟⎟⎟⎟⎟⎠

(5.44)

2Note you will get some small round off errors because we have only written the elements of U2

to four decimal places.

260 5 Performing Search with a Quantum Computer

Q =

⎛
⎜⎜⎜⎝

0.5 0.167 0.351 −0.109 0.571− 0.083i −0.051+ 0.166i −0.314− 0.238i 0.212+ 0.155i

−0.167 −0.5 0.109 −0.351 0.051+ 0.166i −0.571− 0.083i −0.212+ 0.155i 0.314− 0.238i

−0.351 0.109 −0.5 −0.167 −0.002+ 0.079i 0.104+ 0.328i −0.55− 0.4i 0.029− 0.007i

0.109 −0.351 −0.167 −0.5 0.104− 0.328i −0.002− 0.079i 0.029+ 0.007i −0.55+ 0.4i

−0.571− 0.083i 0.051− 0.166i −0.002− 0.079i 0.104+ 0.328i 0.632 0.019− 0.188i 0.218+ 0.022i 0.039+ 0.166i

0.051+ 0.166i −0.571+ 0.083i 0.104− 0.328i −0.002+ 0.079i 0.019+ 0.188i 0.632 0.039− 0.166i 0.218− 0.022i

0.314− 0.238i −0.212− 0.155i −0.55+ 0.4i 0.029− 0.007i 0.218− 0.022i 0.039+ 0.166i 0.368 0.284− 0.143i

−0.212+ 0.155i 0.314+ 0.238i 0.029+ 0.007i −0.55− 0.4i 0.039− 0.166i 0.218+ 0.022i 0.284+ 0.143i 0.368

⎞
⎟⎟⎟⎠

(5.45)

The operation U ·Qm|0〉|00〉 produces the state:

0.177244|000〉 − 0.265866|001〉 + 0.44311i|010〉 − 0.620354i|011〉
− 0.31736|100〉 − 0.307652|101〉 − 0.274289|110〉 − 0.214736|111〉 (5.46)

We now read the first qubit (the ancilla). It is found to be |0〉 with probability
|0.177244|2 + |−0.265866|2 + |0.44311i|2 + |−0.620354i|2 = 0.683287. In this
case the superposition is projected into the state:

0.214423|000〉 − 0.321634|001〉 + 0.536056i|010〉 − 0.750479i|011〉 (5.47)

showing that the second and third qubits now correspond to the state we wished to
synthesize namely |ψ〉 = 1√

87
(2|00〉 − 3|01〉 + 5i|10〉 − 7i|11〉)= 0.214423|00〉 −

0.321634|01〉 + 0.536056i|10〉 − 0.750479i|11〉.

5.8 Quantum Searching of Real Databases

Shortly after Grover’s algorithm was published I received a telephone call from
someone at Oracle asking me if I thought Grover’s algorithm could be used to
search a real database. I answered that it could provided the database was encoded
in a quantum state, and the oracle (with a little “o”) was replaced with a testing
procedure.

Clearly, to obtain a practically useful algorithm, and to build a practically useful
quantum computer capable of running that algorithm, we cannot rely upon fore-
knowledge of the solution to the problem we are trying to solve. Therefore, to ob-
tain a practically useful quantum algorithm, we must always replace the use of an
oracle defined via the black box function ft (x) (which contains explicit knowledge
of the solution in advance) with an efficient (i.e., polynomially bounded) procedure
that applies a test to the index being queried sufficient to decide whether or not that
index meets the criteria for being the target t . Typically, this testing procedure will
involve checking that a purported solution exhibits all the required properties that
an acceptable solution must possess.

For example, consider the graph coloring problem. Here we have to assign one
of k colors to a graph having n nodes and m edges such that every node has some
color and no two nodes connected directly by an edge share the same color. These
constraints express what it means to be a solution, but do not require foreknowl-
edge of the solutions explicitly. In this example, the graph coloring problem is NP-
Complete, and can be very challenging. Nevertheless, for any given graph, and any

5.9 Summary 261

given value of k, we have at most
(n

2

)
pairs of nodes we must check to ensure they

are colored acceptably. Hence, the test is at most quadratic in the number of nodes
and hence we can easily devise an efficient testing procedure that can check whether
a proposed coloring satisfies all the requirements to be a true solution. When we
swap out the oracle for one of these efficient testing procedures instead, the cost of
running the algorithm becomes measured in terms of how many times we must call
this testing procedure times the cost per run.

By using an efficient procedure to test whether an index is or is not the target,
one can avoid having to know the identity of that target in advance). Fortunately,
there are many important computational problems, such as all NP-Complete prob-
lems, which admit such an efficient testing procedures. So the oracular quantum
algorithms are not generally directly useful algorithms for solving real problems.
But they do simplify the assessment of the relative costs of quantum and classical
algorithms solving the same problem with access to the same (fictional) oracle.

5.9 Summary

Although Grover’s algorithm offers only a polynomial speedup over what we can
do classically, it is nevertheless extremely versatile and has inspired several other
quantum algorithms. Moreover, by nesting one quantum search algorithm within
another, even more impressive speedups appear to be possible, and a better-than-
classical exponential time quantum algorithm for NP-Hard problems appears to be
within reach.

Originally, Grover’s algorithm was called the database search algorithm, but this
name was dropped because it misled people into thinking that it could be used to
search real databases when, in fact, it cannot, at least not without first encoding
the database in the quantum state to be amplitude amplified [558]. If this encod-
ing is done naively, the cost of creating the database would be linear in its size—
that is, O(N). Thus, the cost of encoding followed by quantum search would be
O(N +√

N), whereas the cost of a classical search alone would be just O(N)—
beating the quantum scheme. More clever (parallel) encoding schemes might be
feasible but they would seem to necessitate trading time complexity for space com-
plexity. Nevertheless, in some applications, this might be acceptable. For Grover’s
algorithm to be of practical use, we must avoid creating the database explicitly and
work instead with a set of indices that enumerate distinct candidate solutions to some
problem. Provided we can map an index to a particular candidate solution efficiently
and then test it for correctness in polynomial time, we would have a quantum search
procedure that could work on interesting problems such as the NP-Hard and NP-
Complete problems. However, if there is a systematic mapping between an index
and the candidate solution, the problem must have some internal structure, and is
not therefore truly an unstructured search problem.

Grover’s algorithm is can often be used as a sub-routine in more sophisticated
quantum algorithms. In this chapter we looked at applications in physics, e.g., syn-
thesizing arbitrary superposition states, and in computer science, e.g., speeding up

262 5 Performing Search with a Quantum Computer

randomized algorithms. In the next chapter we shall find it useful for speeding up
the breaking of the classical cryptosystem called DES [71]. In Chap. 10 we will also
find it useful in speeding up mean estimation and counting problems.

5.10 Exercises

5.1 Describe how you would use Grover’s algorithm to synthesize the states:

(a) |ψ〉 = 1
2 |0〉 +

√
3

2 |1〉
(b) |ψ〉 = 1√

2
|00〉 + 1√

2
|11〉

(c) |ψ〉 = 1√
3
|001〉 + 1√

3
|010〉 1√

3
|100〉

5.2 The analysis of Grover’s algorithm required us to compute the k-th power of
the matrix Q where:

Q=
(

1− 4|u|2 2u

−2u∗ 1

)
(5.48)

where u is an arbitrary complex number. In the chapter we deduced that:

Qk ≈
(

cos(2k|u|) u
|u| sin(2k|u|)

− u∗
|u| sin(2k|u|) cos(2k|u|)

)
(5.49)

However, Qk can be computed exactly in terms of Chebyshev polynomials. We find
that:

Qk = (−1)k
(U2k(|u|) − u

|u| U2k−1(|u|)
u∗
|u| U2k−1(|u|) −U2k−2(|u|)

)
(5.50)

where Uk(cos θ) = sin((k + 1)θ)/ sin θ is the Chebyshev polynomial of the sec-
ond kind. Use a proof by induction to show that this form is correct. You will
find the following facts to be useful: U0(x)= 1, U1(x)= 2x, U2(x)= 4x2 − 1 and
the Chebyshev polynomials are related to one another via the recursion formula
Uk+1(x)− 2xUk(x)+ Uk−1(x)= 0.

5.3 The success probability of Grover’s algorithm after k rounds of amplitude am-
plification is given elsewhere as psucc = sin2((2k + 1) arcsin(u)) where u is the
overlap between the target state and the starting state, i.e., u = 〈t |U |s〉. Yet in this
chapter we derive the same result as psucc = T2k+1(|u|)2 = cos2((2k+1) arccos(u))
for k ∈ Z∧k > 0 and u ∈R∧0 < u< 1. Show that there is no discrepancy by prov-
ing cos2((2k + 1) arccos(u)) = sin2((2k + 1) arcsin(u)) when k ∈ Z ∧ k > 0 and
u ∈R∧ 0 < u< 1.

Chapter 6
Code Breaking with a Quantum Computer

“There are three names in quantum computing: Shor, Alice and Bob”
– Michail Zak

The next quantum algorithm we will consider is the most famous of all—Peter
Shor’s quantum algorithm for factoring composite integers [455]. The discovery of
this algorithm played a pivotal role in transforming the field of quantum computing
from an esoteric backwater of computer science to the mainstream.

How this algorithm came to have such importance is interesting story. Every few
months the National Security Agency receives an academic paper from someone
claiming to have made a significant breakthrough in cryptography. In most cases,
the claim proves to be unfounded, and the purported result can be ruled out quickly
by NSA’s expert cryptographers and mathematicians. When Peter Shor’s algorithm
arrived at the NSA it was met with the usual degree of skepticism. The state-of-
the-art classical algorithm for factoring composite integers was, at that time (and
still is), the Number Field Sieve [309]. The running time of this algorithm is super-
polynomial in the number of bits needed to represent the integer being factored. So
as bigger integers are factored the time needed to do so grows faster than any poly-
nomial. This makes factoring an intractable problem for conventional computers. So
a claim, like Shor’s, that there was an algorithm that could factor composite integers
in polynomial time seemed very unlikely to be correct at first sight. Worse still, this
new algorithm was written in an arcane language of quantum mechanical states and
operators—not the terminology NSA-mathematicians were accustomed to seeing.

As the weeks went by, however, and appropriate experts were brought in.
It became apparent that Shor’s proposal had substance, and various government
workshops were organized to consult with more quantum expertise. Jon Dowl-
ing, a charismatic early evangelist quantum computing, says he could identify the
“spooks” at one of these early meetings because they were the only people with no
affiliation printed on their name tags, listened attentively, said nothing, and scrib-
bled notes in standard government issue green-cover notebooks. Later I was told the
NSA had a hard time assigning someone to assess Shor’s algorithm because they
had few staff at that time conversant with the quantum mechanical concepts needed

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_6, © Springer-Verlag London Limited 2011

263

http://dx.doi.org/10.1007/978-1-84628-887-6_6

264 6 Code Breaking with a Quantum Computer

to understand it. Nevertheless, to their credit, they did so, and, moreover, quickly
realized that they needed to know whether it was possible for anyone to build such
a factoring engine. That single-minded objective became the rallying cry around
which most U.S. funding for quantum computing has since been directed.

6.1 Code-Making and Code-Breaking

Cryptography, the science of making and breaking coded messages, is undoubtedly
one of the oldest expressions of human mathematical ingenuity. The first known
coded text is a small piece of Babylonian cuneiform writing dating from around
1500 BC. It describes a secret method for making a glaze for pottery. By recording
the instructions in a code, the potter could preserve his secret recipe whilst denying
its details to jealous competitors.

The ancient Greeks used a code-making scheme known as the scytale to send
messages via human couriers across insecure territories. The scytale consisted of
long thin strip of cloth and a matching pair of irregularly tapered sticks. One stick
was in the possession of the sender and the other was in possession of the intended
recipient prior to any message being sent. Given this pre-agreed arrangement, to
encode a message, a blank cloth strip was wrapped around the senders’ stick and
the message written in vertical columns. When the cloth was unwound and removed
from the stick the letters comprising the message became permuted by an amount
determined by the contours of the irregularly tapered stick on which the cloth had
been wrapped. Thus, anyone intercepting the cloth, but who did not possess the
appropriately tapered stick, would be unable to read the message. But when the
intended recipient, who already possessed the appropriately tapered stick, received
the cloth from the courier he could decipher the message simply by wrapping it
around his stick and reading the letters in vertical columns.

A more algorithmic approach was adopted by the Roman emperor Julius Caesar.
Caesar is known to have used a transposition code in which each character in a
message was displaced four characters ahead in the alphabet. Thus the message
“Brutus might betray me” would have been encrypted as the text string “Fvyxyw
qmklx fixvec og”.

With the advent of modern computers, cryptosystems have become significantly
more sophisticated and complex. Indeed modern e-commerce routinely uses encryp-
tion to protect sensitive information and financial transactions as they fly across the
Internet. Nowadays, cryptosystems do more than merely protect our confidential in-
formation, however. They are used to authenticate our identity, ensure the integrity
of the data we transfer over public channels, and commit us to making our transac-
tions.

Cryptography remains a game of cat and mouse between code-makers and code-
breakers. As fast as one group creates codes the other tries to break them. On several
occasions cryptographers had thought they had invented unbreakable sometimes
turn out to fall short of this, in practice, due to subtle holes in their security proofs,
imperfect implementation or enforcement of the ideal protocol, or outright black-
mail or intimidation of the users.

6.1 Code-Making and Code-Breaking 265

6.1.1 Code-Breaking: The Enigma Code and Alan Turing

The modern era of code breaking dates from the Second World War when encrypted
messages became widely used for conveying secret message over radio broadcasts.
Since such broadcasts could be intercepted it became necessary to encrypt the com-
munications.

In more modern times machines have been developed to encode and decode mes-
sages using sophisticated new codes. The Enigma machine was invented around
1918, by Arthur Scherbius who promoted its use for secure banking communica-
tions. It was described in a patent in 1919 and was adopted by the German Navy in
1926, the German Army in 1928 and the German Air Force in 1935. It was with-
drawn from public use once the German Navy adopted it but it had already become
known worldwide, throughout the cryptographic community. It was certainly known
to the British government as there is a record of a meeting at which it was determined
that the Enigma machine was not suitable for military use.

The Germans thought otherwise, however. In the Second World War, they used
the Enigma machine and an even more elaborate Lorenz machine to pass orders be-
tween the German High Command and officers in the field. The Enigma code was
used for communications with German submarines called U-boats, and the Lorenz
code, known as the “Fish” code to the British code-breakers, was used for com-
munications amongst the higher echelons of the German Army. Three Polish math-
ematicians, working for the Polish government first cracked the Enigma-encoded
messages of the German military in 1930. However, the ability was lost again when
the Germans used more sophisticated machines.

The breaking of Enigma and Lorenz-encrypted coded messages quickly became
a military priority. The British and the Americans both established code-breaking
centers staffed by some of the best minds of their generation. In Britain, the center
was located within a manor house known as Bletchley Park. These elite teams were
not composed exclusively of mathematicians, but rather by bright people with a
knack for solving puzzles. For example, at Bletchley Park, Dilly Knox, an eminent
Greek scholar, unscrambled Enigma encoded messages of the Italian navy once or
twice during the Spanish Civil War. Bill Tute, at the time a biologist, reconstructed
a Lorenz machine in 1942/1943, that enabled him to tackle some of the Fish codes.
Despite the skill of these individuals, the need to use a machine to break the codes
quickly became apparent.

A machine that reads in a coded message and unscrambles it by applying some
systematic algorithm is nothing other than a Turing machine. So it is not surpris-
ing that Alan Turing was enlisted into the British code breaking effort during the
Second World War. Turing joined the Code and Cipher School at Bletchley Park.
The first code-breaking machines were called Turing Bombes. The Turing Bombes
were electro-mechanical contraptions built to design of Alan Turing with contribu-
tions from others such as Gordon Welchman, a Cambridge mathematician. They
employed relays, parts of tabulating machines and special rotors and weighed about
one ton each. They were programmed by means of plug boards and first started
breaking the Enigma codes in the summer 1940. In all, 210 Turing Bombes were

266 6 Code Breaking with a Quantum Computer

built in UK and 200 in USA by end of War. They were extremely effective, breaking
a total of 186 different keys during the War, some virtually every day.

By 1943 onwards, the British and Americans were reading an average of 2000–
3000 secret German messages a day. Turing Bombes took from 14 to 55 hours to
break each Enigma coded message, less when the Germans were found to be re-
using certain keys. Speed was crucial. A message had to be decoded before the
event threatened in the message took place. The old Turing Bombes were simply too
slow to get the job done in time. Consequently, British Intelligence commissioned
the construction of an electronic code-breaking machine that was based on vacuum
tubes, which are much faster than electro-mechanical relays. At the time, there was
no computer industry as such, so the British had to make do with the best they
had—the Post Office, which also controlled the telephone system. They had more
experience in the use of vacuum tube technology than anyone else.

The first vacuum tube code breaking machine used at Bletchley Park was called
the “Heath-Robinson” because of its outlandish design. The Heath-Robinson used
two tape loops that had to be kept synchronized and broke frequently. They were
never used operationally but demonstrated that a vacuum tube based “computer”
could break the encrypted messages, such as the “Fish codes” produced by the
Lorenz machines. The real breakthrough for unscrambling the Fish codes came
with the introduction of the “Colossus” computer that employed some 3500 vac-
uum tubes. In all, 13 Colossus machines were built. Typically, they could crack a
Fish code in one or two days but once succeeded in doing so in 20 minutes.

On the 12th November 1940, at the height of the Second World War, British mil-
itary intelligence intercepted an Enigma-encoded message from the German high
command to the commander of the Luftwaffe. The Germans had no idea that the
Allies could break the Enigma code and were remarkably explicit in communicat-
ing their true intentions in their coded messages. This particular message outlined
a plan for a bombing raid on 14th November on the city of Coventry, an industrial
center in the middle of England. Unfortunately, the British code-breakers misinter-
preted the reference to Coventry and instead warned Winston Churchill, the British
Prime Minister, that the raid was probably to be on London but there was a pos-
sibility that it could be Coventry or Birmingham. At 3:00 pm on 14th November
the Radio Countermeasures team, a group independent of the cryptographic team,
detected intersecting directional radio beams over the city of Coventry confirming
that Coventry was indeed the target.

It is not entirely clear what happened next. It is most likely that in the fog of war
the message was not relayed to a high enough authority to be acted upon effectively.
Less likely, some have speculated that Winston Churchill or other senior British
officers deliberately failed to alert the people of Coventry of the impending raid
so that the Germans would not suspect that the Enigma code had been broken. If
Churchill had known the target for the air raid he would not have been likely to
announce it publicly but would, instead, have stepped up the anti-aircraft defenses
around Coventry. Curiously, the ack-ack defenses were increased around Coventry
on the night of the 14th November but this might simply have been in response to
the possibility of the raid being on Coventry. The ensuing air raid on Coventry killed

6.2 Public Key Cryptosystems 267

hundreds of people but probably many more lives were saved from the knowledge
gleaned from intercepted German messages in the months that followed.

6.2 Public Key Cryptosystems

Although symmetric private key cryptosystems, such as the OTP, are highly secure
provided the keys are kept secret and not re-used, they are also highly impractical.
This is because all symmetric private key cryptosystems require the sender and re-
ceiver to agree upon matching keys prior to the commencement of their secure com-
munications. Worse still, as these symmetric private key cryptosystems are enacted,
they typically consume their key material at a voracious rate. These two properties
make the symmetric private key systems quite impractical in a world of classical
communications.

For decades cryptographers sought a more practical protocol that would enable
parties to communicate securely without the need for a pre-arranged shared private
key required by the One Time Pad cryptosystem. Breakthroughs were made in 1976
when Diffie and Hellman [144], and in 1978 when Rivest, Shamir, and Adleman
[419] and Merkle [349], invented different versions of public key cryptosystems.
In truth, the breakthrough appears to have occurred even earlier at the British mili-
tary intelligence establishment GCHQ, but it was hushed-up by the authorities for
several decades. Today all secure internet transactions use some form of public key
cryptosystem to ensure the confidentiality and integrity of sensitive data as it zips
across the internet for all to see. These public schemes work along the same lines
as a safe with two keys—one public and the other private. The public key can be
given out freely, and anyone wanting to send a message locks it (securely) in the
safe using this public key. But only the legitimate recipient can open the locked safe
using the matching private key. Rather than these keys being physical hardware, in
the public key cryptography schemes they are the products of mathematical opera-
tions that are easy to compute in one direction, but intractably hard to compute in
the other. In particular, the Diffie-Hellman scheme relies upon the exponentiation
(easy)/discrete-logarithm (hard) problems to make the key pairs, whereas RSA re-
lies upon multiplication (easy)/factoring (hard) problems to make its key pairs. So
long as the operations needed to obtain the private key from purely publicly avail-
able information are computationally intractable, these public key schemes remain
secure.

6.2.1 The RSA Public-Key Cryptosystem

One of the public key cryptosystem of most interest to us is the so-called RSA sys-
tem invented by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978 [419].

The RSA cryptosystem solves the key distribution problem. Unlike the one-time
pad scheme, in RSA the sender and recipient do not need to meet beforehand to

268 6 Code Breaking with a Quantum Computer

exchange secret keys. Instead, the sender and receiver use different keys to encrypt
and decrypt a message. This makes it significantly more practical than the one-time
pad scheme.

The basic idea is as follows. A person wishing to receive secret messages, using
RSA, creates his own pair of keys, consisting of a public key and a private key.
He makes the public key known but keeps the private key hidden. When someone
wants to send him a secret message, the sender obtains the public key of the intended
recipient and uses it to encrypt his message. Upon receiving the scrambled message,
the recipient uses his private key to decrypt the message. The trick is to understand
how the public key and private key need to be related to make the scheme work in
an efficient, yet secure, fashion.

To be an efficient cryptographic scheme, it must be easy for a sender to compute
E, the encryption of the plaintext message M given the public key $PublicKey. In
other words, the computation

E = Encrypt[MessageToIntegers[M, $PublicKey] (6.1)

must be simple. Moreover, it must also be easy for the intended recipient to decrypt
an encrypted message given the private key $PrivateKey. That is, the computation

M = IntegersToMessage[Decrypt[E, $PrivateKey]] (6.2)

must be simple too. Last but not least it must be computationally easy to generate
the required public key/private key pairs.

Alice encrypts: Encrypt[plaintext, kpublic]= ciphertext (6.3)

Bob decrypts: Decrypt[ciphertext, kprivate]= plaintext (6.4)

To be a secure cryptographic scheme, it must be extremely difficult to determine
the message M given only knowledge of E and the public key $PublicKey. Also,
it must be extremely difficult to guess the correct key pair. Such a dual-key scheme
is called a public key cryptosystem [528]. It is possible to have different cryptosys-
tems by choosing different mathematical functions for creating the key pairs or by
choosing different encryption or decryption procedures, e.g., elliptic curve cryp-
tosystems.1

The RSA system is just such a cryptosystem. It relies on the presumed difficulty
of factoring large integers on a classical computer. In an effort to assure people that
factoring was indeed a sound basis on which to risk the security of a cryptosystem,
in 1991 RSA Laboratories announced set of grand challenge factoring problems that
were believed to be difficult to solve using the computers of the day. The results of
this competition are summarized in Table 6.1. In the early years the integers to be
factored were given names such as “RSA-100” in which the number in the name

1Curiously, the quantum algorithm that breaks the RSA public key cryptosystem can be modified
slightly to break the elliptic curve cryptosystem too. We will have more to say on this later.

6.2 Public Key Cryptosystems 269

Table 6.1 Table showing the number of MIPS-years of effort needed to factor progressively larger
integers. A “MIPS-year” is the number of steps processed in one year at a rate of one million
instructions per second. The table shows the name of the integer factored, the size of that integer
in base-10 and base-2 notation, the magnitude of the cash prize offered for factoring it, the date it
was factored (if ever) and the MIPS-years of computational effort that were required

Number Number of
decimal
digits

Number
of binary
digits

Cash prize First
factored

MIPS years

Typical 45 – – 1974 0.01

Typical 71 – – 1984 0.1

RSA-100 100 – – Apr. 1991

RSA-110 110 – – Apr. 1992

RSA-120 120 399 – Jun. 1993 825

RSA-129 129 429 $100 Apr. 1994 5000

RSA-130 130 432 – Apr. 1996 750

RSA-140 140 466 – Feb. 1999 2000

RSA-150 150 – – Apr. 2004

RSA-155 155 512 – Aug. 1999 8000

RSA-160 160 – – Apr. 2003

RSA-576 174 – $10,000 Dec. 2003

RSA-640 193 640 $20,000 Nov. 2005

RSA-200 200 – – May 2005

RSA-704 212 704 $30,000 Unsolved

RSA-768 232 768 $50,000 Unsolved

RSA-896 270 896 $75,000 Unsolved

RSA-1024 309 1024 $100,000 Unsolved

RSA-1536 463 1536 $150,000 Unsolved

RSA-2048 617 2048 $200,000 Unsolved

referred to how many decimal digits they contained. This convention was changed
with the introduction of “RSA-576” and thereafter the number in the name referred
to how many binary digits were in the integer to be factored. The last cash prizes
paid out were for factoring RSA-576 and RSA-640. The latter required approxi-
mately 30 CPU-years of computational effort (for a 2.2 GHz Opteron processor)
over 5 months of calendar time [445]. This is actually less than the 55 CPU-years
(on a 2.2 GHz Opteron processor) and 3 months of calendar time that was required
to factor RSA-200 [444]. These results tend to support the belief that factoring is
indeed a hard computational problem even with modern computer hardware. How-
ever, the RSA factoring competition was closed in 2007, and the outstanding prizes
may no longer be claimed, leaving several of the grand challenge factoring problems
remaining unsolved to this day.

A cryptosystem whose security is based on the presumption that factoring is hard
works as follows. Suppose Alice wants to receive secret messages from other peo-

270 6 Code Breaking with a Quantum Computer

ple. To create a public key/private key pair, Alice picks two large prime numbers,
p and q , and computes their product, n= pq . She then finds two special integers,
d and e, that are related to p and q . The integer d can be chosen to be any in-
teger such that the largest integer that divides both d and (p − 1)(q − 1) exactly
(i.e. with zero remainder) is 1. When this is the case d is said to be “co-prime” to
(p− 1)(q − 1). The integer e is picked in such a way that the remainder after di-
viding ed by (p− 1)(q − 1) is 1. When this relationship holds, e is said to be the
modular inverse of d . Alice uses these special integers to create a public key consist-
ing of the pair of numbers (e, n) and a private key consisting of the pair of numbers
(d,n). Alice broadcasts her public key but keeps her private key hidden.

Now suppose Bob wishes to send Alice a secret message. Even though Bob and
Alice have not conspired beforehand to exchange key pads, Bob can still send a
message to Alice that only she can unscramble. To do so, Bob looks up the public
key that Alice has advertised and represents his text message Mtext as a sequence of
integers in the range 1 to n. Let us call these message integers Mintegers. Now Bob
creates his encrypted message E by applying the rule:

Ei =Me
i mod n (6.5)

(i.e., raise the i-th message integer to the power e, divide the result by n and keep
the remainder) for each of the integers Mi in the list of message integers Mintegers.

Upon receipt of these integers, Alice decrypts the message using the rule:

Mi =Ed
i mod n (6.6)

The final step is then to reconvert the message integers to the corresponding text
characters. Thus the RSA cryptosystem can be summarized as follows:

Algorithm for the RSA Public Key Cryptosystem

1. Find two large primes p and q and compute their product n= pq .
2. Find an integer d that is co-prime to (p− 1)(q − 1).
3. Compute e from ed ≡ 1 mod (p− 1)(q − 1).
4. Broadcast the public key, i.e., the pair or numbers (e, n).
5. Represent the message to be transmitted, Mtext, say, as a sequence of integers,
{Mi}ni=1.

6. Encrypt each Mi using the public key by applying the rule

Ei =Me
i mod n

7. The receiver decrypts the message using the rule

Mi =Ed
i mod n

8. Reconvert the {Mi}ni=1 into the original message Mtext.

6.2 Public Key Cryptosystems 271

6.2.2 Example of the RSA Cryptosystem

It is instructive to follow through the steps of the RSA algorithm. We will use atypi-
cally small numbers to make it easier to verify the steps in the algorithm. In practice,
to have a secure system one would need to use numbers containing hundreds of dig-
its.

Let’s suppose Alice wishes to tell Bob her PIN number for her bank ATM ma-
chine. So Alice’s plaintext message is “My PIN number is 1234”. She trusts Bob
with her PIN number but not other people, so she wants to maintain the confidential-
ity of her message to Bob by encrypting it using the RSA public-key cryptosystem.

Her first task is to convert the message (a string of characters) into an equivalent
sequence of “message integers.” The standard ASCII encoding associates, for each
character, an integer in the range 0 to 255. Alice can use the ASCII codes plus 100 to
guarantee that each encoded character has a 3-digit code. Note that such an encoding
amounts to nothing more than a simple substitution cipher for the plaintext. This
in itself confers little security. The main purpose of converting the plaintext into
corresponding sequence of integers is to prepare the way for encrypting the plaintext
by performing mathematical operations on these message integers. Here, then, is one
way Alice can map her plaintext into a sequence of message integers:

Example: Prelude to Encryption—Converting a Message to Integers

1. Partition the string “My PIN number is 1234” into its individual characters giving
“M, y, , P, I, N, , n, u, m, b, e, r, , i, s, , 1, 2, 3, 4”. Note that blank spaces and
punctuation marks are also regarded as characters and they have unique ASCII
codes too.

2. Map each character into its ASCII equivalent giving “77, 121, 32, 80, 73, 78, 32,
110, 117, 109, 98, 101, 114, 32, 105, 115, 32, 49, 50, 51, 52”.

3. Increment each such integer by 100 to ensure all the integers have exactly three
digits, giving “177, 221, 132, 180, 173, 178, 132, 210, 217, 209, 198, 201, 214,
132, 205, 215, 132, 149, 150, 151, 152”.

4. We can regard these integers as our “message integers” or we can re-group
contiguous sequences of them into larger blocks, and treat those blocks as our
message integers. For example, in groups of 6 they would be “177221, 132180,
173178, 132210, 217209, 198201, 214132, 205215, 132149, 150151, 152” and
we could just as well call these our message integers. The blocking does not re-
ally matter. So long as our cryptosystem can reproduce the digits in each block,
we can reproduce the digit triplets, and hence the ASCII integers, and hence the
plaintext message.

This concludes the discussion of how message strings can be converted into in-
tegers. Now let’s run the RSA algorithm on these message integers.

Example of How to Use the RSA Cryptosystem

1. Find two “large” primes p and q and compute their product n= pq . Alice picks
p = 659 and q = 541 and their product is n= pq = 356519.

272 6 Code Breaking with a Quantum Computer

2. Find an integer d that is co-prime to (p − 1)(q − 1). Alice finds d = 182257,
which we can verify is co-prime to (p−1)(q−1) by noting that gcd((659−1)×
(541 − 1),182257) = 1. Thus Alice’s private key is the pair (d,n) = (182257,
356519).

3. Compute e from ed ≡ 1 mod(p − 1)(q − 1). Alice finds e = 79033. Thus her
public key is the pair (e, n)= (79033,356519).

4. Broadcast the public key, i.e., the pair or numbers (e, n), but keep the private key
(d,n) secret.

5. Represent the message to be transmitted, Mtext, say, as a sequence of integers,
{Mi}ni=1. As shown above, Alice and Bob agreed upon a character encoding that
mapped her plaintext “My PIN number is 1234” into the sequence “177221,
132180, 173178, 132210, 217209, 198201, 214132, 205215, 132149, 150151,
152”.

6. Encrypt each Mi using the public key by applying the rule

Ei =Me
i mod n

Applying this rule gives Alice the ciphertext “4253, 222477, 99943, 139852,
141469, 321340, 239261, 307414, 42925, 9406, 8973”.

7. The receiver (Bob), looks up Alice’s public key (so he learns (e, n), and decrypts
Alice’s message using the rule

Mi =Ed
i mod n

This allows Bob to recover the message integers “177221, 132180, 173178,
132210, 217209, 198201, 214132, 205215, 132149, 150151, 152”.

8. Reconvert the {Mi}ni=1 into the original message Mtext. That is, from the mes-
sage integers, Bob recovers the integer triplets and hence the plaintext that Alice
intended to send. “My PIN number is 1234”.

What makes RSA so useful is not merely the fact that there is an algorithm by
which messages can be encrypted and decrypted but rather that the algorithm can be
computed efficiently. Speed is vital if a cryptosystem is to provide a viable means
of secure communication. Fortunately, each step in the RSA procedure can be done
quickly. It is not immediately obvious that the calculations needed to find the pair
of large prime numbers p and q , and the special integers d and e can all be done
efficiently. However, it turns out they can [528]. Thus every step that the RSA pro-
cedure can be computed efficiently making it a viable cryptosystem overall.

Does the ease of the computations underlying RSA mean that RSA is vulnerable
to attack? To answer this, let us take a look at what an adversary would have to do
to crack RSA encoded messages.

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly

The essential trick to breaking the RSA public key cryptosystem is a method for
factoring composite integers (i.e., integers that are the product of two large primes)

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 273

efficiently. Currently, the Number Field Sieve (NFS) is the preferred algorithm for
factoring such composite integers if they have more than 100 digits. It’s run time
complexity scales as:

O(e(c+o(1))(logn)1/3(log logn)2/3
) (6.7)

which is superpolynomial. Thus, factoring remains a very difficult computational
problem to solve today, although it is not as hard as many other problems in the NP
class.

Shor’s algorithm provides an ingenious new way to factor composite integers
in a time that grows only polynomially in the size of the number being factored.
The general structure of Shor’s algorithm can be inferred from the structure of the
quantum circuit which implements it. This circuit is shown in Fig. 6.1.

Shor’s Quantum Algorithm for Factoring Composite Integers

1. Pick a number q = 2tA such that N2 ≤ q < 2N2.
2. Pick a random integer x that is co-prime to N . That is, pick an integer x such

that x and N have no common factors other than 1, i.e., gcd(x,N)= 1.
3. Repeat steps (4) through (10) O(logq) times, using the same value for x each

time.
4. Initialize Register A (having tA qubits) to be |0〉 and Register B (having tB

qubits) to be |0〉, i.e.,

|ψ0〉 = |0〉A|0〉B (6.8)

5. Apply a Hadamard gate to each qubit in Register A, i.e.

|ψ1〉 = (H ⊗H ⊗ · · · ⊗H)|0〉A ⊗ |0〉B (6.9)

= 1√
2tA

2tA−1∑
j=0

|j 〉A|0〉B (6.10)

Think of this as placing Register A in an equally weighted superposition of
all the possible integer values it can contain, i.e., all integers in the range 0 to
2tA − 1.

6. Now apply the transformation Ux : |j 〉A|0〉B → |j 〉A|xj mod N〉B to state |ψ1〉.
The state of the complete register becomes:

|ψ2〉 = Ux |ψ1〉

= 1√
2tA

2tA−1∑
j=0

Ux |j 〉A|0〉B

= 1√
2tA

2tA−1∑
j=0

|j 〉A|xj mod N〉B (6.11)

274 6 Code Breaking with a Quantum Computer

Fig. 6.1 Quantum circuit for Shor’s Algorithm. Register A has tA qubits. Register B has tB qubits.
The state of the registers after each step of the computation is indicated by |ψ0〉, |ψ1〉, . . . , |ψ5〉
left to right across the top of the circuit. Initially, both registers are set to |0〉, a set of tA Walsh
Hadamard gates are applied to Register A, thereby creating an equally weighted superposition of
all the bit strings (i.e., different values of j) Register A can hold. Next a transformation is applied
to Register B conditional on the value in Register A. Specifically, if Register A contains integer
|j〉, and Register B contains |0〉, the transformation is |j〉|0〉 → |j〉|xj mod N〉. Then Register B
is read, projecting out a particular value of xj mod N〉. Due to entanglement between the registers,
Register A is thereby projected into a superposition of values of j consistent with the outcome in
Register B . These j values are spaced r apart, where r is the sought after period. Hence, taking
the inverse QFT of Register A, gives state that is sharply peaked in the vicinity of multiples of the
inverse period. Thus, by reading Register A we obtain a string of bits corresponding to the binary
representation of a number k2tA /r where k, tA and r are all integers, of which tA is known. Hence,
after a few repetitions we have enough samples of integer multiples of the inverse period to be able
to guess r . The two factors of N may then be computed from gcd(xr/2−1,N) and gcd(xr/2+1,N)

7. Measure the state of Register B . This reveals a particular integer value for the
contents of Register B , e.g., |xb0 mod N〉B for some smallest value b0, and
simultaneously projects the state of Register A into a superposition of just those
values of |j 〉 such that xj mod N = xb0 mod N . As these j values are separated
from one another by an integer amount, namely the sought-after period r , they
can be written in the form |ar + b0〉. If r happens to be a power of 2, the
superposition created as a side effect of measuring Register B can be written in

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 275

the form:

|ψ3〉 = 1√
2tA/r

⎛
⎜⎝

2tA
r
−1∑

a=0

|ar + b0〉
⎞
⎟⎠

A

|xb0 mod N〉B (6.12)

In this case the values in Register A are now strongly peaked at multiples of
r offset by the value b0, i.e., |b0〉, |r + b0〉, |2r + b0〉, . . . , thereby creating a
periodically repeating pattern in Register A. However, if r is not a power of 2,
we would replace the factor 2tA

r
with the integer mb0 representing the largest

integer for which (mb0 − 1)r + b0 ≤ 2tA − 1. In practice this means that the
superposition in Register A will still be periodic with period r , but it will not
contain a whole number of complete periods. In the remainder of the analysis
we will assume r is a power of 2 as it is easier to see how the algorithm works in
this case. The complications caused when r is not a power of 2 will be explained
by example.

8. Next compute the inverse QFT of the projected state in Register A and do noth-
ing (equivalent to applying the identity operator) to Register B .

|ψ4〉 = (QFT−1 ⊗ 12tB)|ψ3〉

= 1√
2tA/r

2tA
r
−1∑

a=0

⎛
⎝ 1√

2tA

2tA−1∑
j=0

e−2πij (ar+b0)/2tA |j 〉
⎞
⎠

A

|xb0 mod N〉B

= 1√
r

⎛
⎜⎝

2tA−1∑
j=0

⎛
⎜⎝ 1

2tA/r

2tA
r
−1∑

a=0

e
−2πi ja

2tA /r

⎞
⎟⎠ e−2πijb0/2tA |j 〉

⎞
⎟⎠

A

|xb0 mod N〉B

= 1√
r

(
r−1∑
k=0

e−2πi k
r
b0 |k2tA

r
〉
)

A

|xb0 mod N〉B (6.13)

where we have used the identity

1

L

L−1∑
a=0

exp

(
−2πi

ja

L

)
=

{
1 if j is an integer multiple of L
0 otherwise

(6.14)

with L= 2tA/r and j = k 2tA
r

for 0≤ k < r, k ∈ Z.
9. Measure Register A. This effectively samples from the inverse discrete Fourier

transform of the periodic function that was in Register A just before the inverse
QFT was applied. As can be seen from the final form for |ψ4〉, in measuring
Register A we will obtain a result that is of the form | k2tA

r
〉 for some unknown

integer k (0≤ k ≤ r − 1).
10. By repeating the steps (4) through (9) O(logq) (i.e., “polynomially many”)

times, and when r happens to be a power of 2, we obtain a set of samples

276 6 Code Breaking with a Quantum Computer

from the inverse QFT of the periodic sequence contained in register A. That is,
each time we run Shor’s algorithm we find Register A in a state such as | k12tA

r
〉,

| k22tA
r
〉, or | k32tA

r
〉 etc. where the integers ki and the period r are all unknown.

There are three cases to consider: (a) If we obtain ki
r
= 0 (i.e., ki = 0), we cannot

learn anything about r so we re-run Shor’s algorithm; (b) If ki �= 0 and ki is co-
prime to r , the fraction ki

r
cannot be further reduced so the denominator is in this

case r ; (c) If ki �= 0 and ki is not co-prime to r , then the rational number ki
r

has
a common factor. Canceling this common factor will yield a rational number
having a denominator smaller than r . For example, if the period r happened
to be 4 (say) and ki happened to be 2, then the rational number ki

r
= 2

4 would
reduce to 1

2 and the denominator would not be r . However, one could easily
spot this by re-running Shor’s algorithm just a handful of times to find, e.g.,
multiples of the inverse period to be 1

4 , 1
2 (= 2

4), 3
4 etc.

If r is not a power of 2, (6.13) is no longer strictly correct, although it is
close to being correct. In this case, the integers that are the outputs from Shor’s
algorithm are only guaranteed to be approximations to integer multiples of 1

r
.

That is, we will obtain integers such as c1 ≈ k12tA
r

, c2 ≈ k22tA
r

, c3 ≈ k32tA
r

, etc. To
find r in this case we use the continued fraction trick explained in Sect. 6.3.1. In
brief, this involves dividing each distinct integer obtained by reading Register
A, c1, c2, c3, . . . , by 2tA to obtain the rational approximations c1

2tA ≈ k1
r

, c2
2tA ≈ k2

r
,

c3
2tA ≈ k3

r
etc. Each such number ci

2tA can written as a continued fraction. The
sequence of rational numbers obtained by truncating this continued fraction
expansion after progressively more terms define the convergents of ci

2tA . The
convergent of ci

2tA having the largest denominator less than n, the number being

factored, is the exact integer multiple of the inverse period ki
r

. By seeing just
a handful of examples of multiples of the inverse period 1

r
, 2
r
, 3
r

etc. it is very
easy to determine r .

11. Having obtained the period r of the contents of Register A, if r is odd, the
algorithm has failed and must be re-run using a different value for x. However, if
r is even the factors of n can be obtained from gcd(xr/2−1,N) and gcd(xr/2+
1,N). Occasionally, the algorithm returns only the trivial factors of N , namely
1 and N , and must then be re-run using a different value of x.

6.3.1 The Continued Fraction Trick at the End of Shor’s Algorithm

Curiously, I have found that the most puzzling part of Shor’s algorithm for many
students is the classical computation used to extract the period r from the samples
of the inverse QFT obtained from Register A on successive runs of the algorithm. So
let us take a look at this using a concrete example. To remind you, the basic strategy
behind Shor’s algorithm is to arrange for Register A to contain a periodic function

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 277

whose period is related to the factors of N (the composite number we wish to fac-
tor). The algorithm then uses quantum computing techniques to efficiently prepare
a superposition containing this periodic function, and the inverse QFT to efficiently
extract its period, r . Once r is known the rest of the algorithm proceeds classically
by finding the factors of n from gcd(xr/2− 1,N) and gcd(xr/2+ 1,N). The inverse
QFT of a periodic function has sharp narrow spikes in the vicinity of integer multi-
ples of the inverse period 1

r
, i.e. around 1

r
, 2
r
, 3
r

etc. For certain periodic functions
the spikes are exactly at integer multiples of the inverse period. But for other peri-
odic functions the spikes have some noticeable (albeit small) width, which means
when we sample there is some small probability of obtaining a value near (but not
exactly at) the peak of the spike. In this more general case the integers obtained by
reading Register A, i.e., the samples ci of the inverse QFT of the periodic function,
are only guaranteed to be approximations to integer multiples of the inverse period.
That is, we have ci ≈ ki2tA

r
for unknown integers ki and r . How then do we find ki

and r given knowledge of only ci (the samples) and 2tA (the size of Register A)?
This is where the continued fraction trick comes in. It relies on the fact that any real
number ξ can be written as a continued fraction expansion as follows:

ξ = a0 + 1

a1 + 1

a2 + 1

a3 + 1

a4 + . . .

(6.15)

where a0, a1, a2, . . . are all positive integers. Such a continued fraction expansion
is finite (i.e., terminates at some point) if ξ is rational. Otherwise, it is infinite (i.e.,
never terminates). We can find progressively better rational number approximations
to ξ by truncating its continued fraction expansion after progressively more terms.
The rational approximations formed by truncating the continued fraction expansion
at successive terms are called the convergents of ξ . Thus, given the aforementioned
continued fraction expansion of ξ its first few convergents will be:

0th convergent of ξ ≈ a0 = a0

1

1st convergent of ξ ≈ a0 + 1

a1
= a1a0 + 1

a1

2nd convergent of ξ ≈ a0 + 1

a1 + 1

a2

= a2(a1a0 + 1)+ a0

a2a1 + 1
(6.16)

278 6 Code Breaking with a Quantum Computer

3rd convergent of ξ ≈ a0 + 1

a1 + 1

a2 + 1

a3

= a3(a2(a1a0 + 1)+ a0)+ (a1a0 + 1)

a3(a2a1 + 1)+ a1

By induction, and counting from i = 0, the ith convergent of ξ can therefore be
written as:

ith convergent of ξ = αi

βi
(6.17)

where

αi = aiαi−1 + αi−2, α−1 = 1, α−2 = 0

βi = aiβi−1 + βi−2, β−1 = 0, β−2 = 1
(6.18)

Given the convergents of a continued fraction there is a theorem in number theory
that states the following:
Convergent Approximation Theorem If there is a rational number k

r
(for integers

k and r) and a real number ξ such that:

∣∣∣∣ξ − k

r

∣∣∣∣≤ 1

2r2
(6.19)

then k
r

is a convergent of the continued fraction expansion of ξ . In the context of
Shor’s algorithm, the samples from the inverse QFT give us several distinct inte-
gers ci ≈ ki2tA

r
. Knowing the the size of Register A, i.e., 2tA , we can therefore form

the rational numbers ci
2tA ≈ ki

r
. Thus, provided the approximation is close enough,

i.e., provided | ci2tA − ki
r
| ≤ 1

2r2 , then the above theorem applies and ki
r

is a conver-
gent of the continued fraction expansion of ci

2tA . Thus, to find ki and r we compute
the convergents of ci

2tA until we find that convergent having the largest denomina-
tor less than N , the integer we wish to factor. This convergent is the sought-after
ki
r

. As a concrete example, suppose we are trying to factor N = 21 and have picked
q = 512= 2tA = 29 and x = 10. After running Shor’s algorithm, the distinct nonzero
integers we might obtain by sampling from the inverse QFT of Register A might
be ci ∈ {84,85,86,169,170,171,255,256,257,340,341,342,425,426,427}. We
know that these output integers, ci , are approximately integer multiples of 1

r
, specif-

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 279

ically, ci
2tA ≈ ki

r
. Computing, for each such ci , the convergents of ci

2tA we obtain:

convergents

(
84

29

)
=

{
0,

1

6
,

10

61
,

21

128

}

convergents

(
85

29

)
=

{
0,

1

6
,

42

253
,

85

512

}

convergents

(
86

29

)
=

{
0,

1

5
,

1

6
,

21

125
,

43

256

}

convergents

(
169

29

)
=

{
0,

1

3
,

33

100
,

34

103
,

169

512

}

convergents

(
170

29

)
=

{
0,

1

3
,

85

256

}

convergents

(
171

29

)
=

{
0,

1

2
,

1

3
,

171

512

}

convergents

(
255

29

)
=

{
0,

1

2
,

127

255
,

255

512

}

convergents

(
256

29

)
=

{
0,

1

2

}

convergents

(
257

29

)
=

{
0,1,

1

2
,

128

255
,

257

512

}

convergents

(
340

29

)
=

{
0,1,

1

2
,

2

3
,

85

128

}

convergents

(
341

29

)
=

{
0,1,

1

2
,

2

3
,

341

512

}

convergents

(
342

29

)
=

{
0,1,

2

3
,

171

256

}

convergents

(
425

29

)
=

{
0,1,

4

5
,

5

6
,

39

47
,

44

53
,

127

153
,

425

512

}

convergents

(
426

29

)
=

{
0,1,

4

5
,

5

6
,

104

125
,

213

256

}

convergents

(
427

29

)
=

{
0,1,

5

6
,

211

253
,

427

512

}

(6.20)

280 6 Code Breaking with a Quantum Computer

Fig. 6.2 Step 1: Load
Register A and Register B
with zeroes

Keeping, in each case, that convergent having the largest denominator less than
n = 21 gives the integer multiples of the (unknown) inverse period as 1

6 ,
1
3 (= 2

6),
1
2 (= 3

6),
2
3 (= 4

6), and 5
6 . Hence, it is easy to see that the sought-after period is, in

this case, r = 6. Hence, the continued fraction trick allows us to find the appropriate
multiple of the inverse period.

6.3.2 Example Trace of Shor’s Algorithm

Let’s look at a trace of Shor’s algorithm when it is being used to factor the number
N = 15. In the following figures, we represent the contents of Register A in the
horizontal direction and the contents of Register B in the vertical direction.

As we wish to factor N = 15, we begin by picking a value for x that is co-
prime to 15. This means we need to choose a value for x such that gcd(x,15)= 1.
The value x = 13 works fine. Next we pick a value for q in the region N2 ≤
q ≤ 2N2. We pick q = 256 = 28. Therefore, Register A, which needs to hold
all the possible integers from 0 to q − 1, need only have tA = 8 qubits. Like-
wise, Register B , which needs to hold all the values in the periodic sequence xj

mod N need only have tB = 4 qubits because 13j mod 15 generates the sequence
1,13,4,7,1,13,4,7,1,13,4,7,1,13,4,7,1,13, . . . in which the largest number is
13 and this is expressible in 4 bits.

Initially we load Register A (8-qubits wide) and Register B (4-qubits wide) with
zeroes, as indicated by the dot in bottom left corner of Fig. 6.2.

Next we load Register A with a superposition of all the possible integers in the
range 0 to q − 1. This is represented as a long horizontal stripe in Fig. 6.3.

Next the gate Ux performs a different computation on Register B depending on
the value of j in Register A. Specifically, if Register A is in state |j 〉, then the
value inserted into Register B is Ux |j 〉|0〉 = |j 〉|xj mod N〉. As Register A con-
tains a superposition of many different j values, Register B becomes set a super-
position of many different values of xj mod N too. For the case of N = 15 and

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 281

Fig. 6.3 Step 2: Load
Register A with an equally
weighted superposition of all
the integers it can hold

Fig. 6.4 Step 3: Compute, in
quantum parallel, the modular
exponential of xj mod N for
each index j stored in
Register A, and put the result
in Register B

x = 13, the sequence of values in Register B is periodic as the j values increase
monotonically. In fact, Register B will, as shown in Fig. 6.4, contain the superposi-
tion of states representing the sequence of values 1,13,4,7,1,13,4,7,1,13,4,7,1,
13,4,7,1,13,4,7,1,13,4,7,1,13,4,7,1,13,4,7,1,13,4,7,1,13,4,7, . . . etc.

Next we read the contents of Register B . That is, we read the bit values of the four
qubits in Register B and interpret the result as a base10 number that Register B is
“holding”. Suppose the value we find is, as shown in Fig. 6.5, a “1” (corresponding
to the four bit values |0001〉).

Due to there being entanglement between Registers A and B , the measurement
we just performed on Register B has an instantaneous side effect on the contents of
Register A. It projects Register A into an equally weighted superposition of all the

282 6 Code Breaking with a Quantum Computer

Fig. 6.5 Step 4: Read the bit
values in Register B

Fig. 6.6 Step 5: Register B
is found to hold a particular
integer “1”. Register A is
projected into a superposition
of j values for which
xj mod N = 1

j values such that xj mod N = 1, i.e., the state |0〉 + |4〉 + |8〉 + |12〉 + |16〉 + · · · .
This is illustrated in Fig. 6.6.

Next we compute the inverse quantum Fourier transform (QFT−1) of the con-
tents of Register A. This produces a superposition in which, as shown in Fig. 6.7,
the amplitudes are no longer equal, but instead are very strongly peaked around cer-
tain values. In fact the inverse Fourier transformed state has most of the amplitude
concentrated in states that correspond to multiples of 1/r , where r is the sought
after period.

Upon observing the state of the Register A, we essentially sample from the in-
verse QFT and are likely to find a result corresponding to k 2t /r for some integer k.

6.3 Shor’s Factoring Algorithm for Breaking RSA Quantumly 283

Fig. 6.7 Step 6: Compute the
QFT−1 of Register A

Fig. 6.8 Step 7: Read the bit
values in Register A

Suppose we obtain the result “64”, as indicated in Fig. 6.8. We store this result
and repeat the procedure all over again.

Multiple repetitions of the preceding steps might give us the following set of sam-
ples from the Fourier transform: {128,64,0,192,0,128,128,64,0,192,192,64}.
On those occasions when 0 is returned the algorithm yields no useful information
and must be repeated. However, when nonzero integers are returned we know that
each of these is an approximation to (or equal to) an integer multiple of the inverse
period 1

r
. To find this period we follow the prescription given earlier and compute

the convergents of 64
28 , 128

28 , and 192
28 , and find the multiples of the inverse period to be

1
4 , 1

2 (= 2
4), and 3

4 . Hence, we deduce that the sought after period r is r = 4. We can
then obtain the factors of 15 by computing gcd(xr/2−1,15)= gcd(132−1,15)= 3
and gcd(132 + 1,15)= 5. Thus, the factors of 15 are 3 and 5.

It is important to realize that Shor’s algorithm is probabilistic: it does not al-
ways return a non-trivial factor. For example, if we wanted to factor N = 15,
but we picked x = 14 (instead of x = 13) as the number co-prime to N , then

284 6 Code Breaking with a Quantum Computer

Fig. 6.9 Step 7: Read the bit values in Register A

the periodic sequence in Register B would be 1,14,1,14,1,14,1,14,1,14,
Hence we get a period r = 2. Unfortunately, when we compute gcd(14r/2 − 1,15)
we obtain gcd(13,15) = 1, and when we compute gcd(14r/2 + 1,15) we obtain
gcd(15,15)= 15. Hence, in this case, Shor’s algorithm only yields the trivial divi-
sors “1” and “15” and therefore fails. In such a circumstance we run Shor’s algo-
rithm again using a different value for x, which can be any number co-prime to N ,
the number being factored.

6.4 Breaking Elliptic Curve Cryptosystems with a Quantum Computer 285

6.4 Breaking Elliptic Curve Cryptosystems with a Quantum
Computer

Peter Shor’s original paper contained quantum algorithms for order finding (and
hence factoring composite integers) and computing discrete logarithms over finite
groups. So far we have paid exclusive attention to the integer factorization problem,
as this is the foundation on which the security of the RSA public-key cryptosys-
tem rests. However, there are other public-key cryptographic protocols, such as the
Diffie-Hellman key agreement scheme [143], the ElGamal encryption and signature
schemes [170], and the Elliptic Curve Cryptosystem [294, 353] that rely for their se-
curity on the presumption that a different mathematical problem, namely computing
discrete logarithms, is computationally intractable on classical computers. Discrete
logarithms are similar to ordinary logarithms except that they work over finite fields
of numbers instead of over real and complex numbers. Whereas the ordinary loga-
rithm of b to base a, i.e., �= loga b is the solution of the equation b = a� over the
field of real or complex numbers, the discrete logarithm of β to base α is the solu-
tion of the equation β = α� where α and β are restricted to be elements of a finite
cyclic group G. For example, let Zp be the set of integers {0,1,2, . . . , p− 1} where
p is a prime number and all arithmetic operations (e.g., addition and multiplication)
are performed modulo p. There is a mathematical theorem that guarantees that any
member of Zp can be written as α� (mod p). The discrete logarithm problem con-
cerns the finding this power, �. More formally, we have:

The Discrete Logarithm Problem Given a prime p, a generator α of a group, e.g.,
Zp , and a non-zero element β ∈ Zp , find the unique integer � (for 0 ≤ � ≤ p − 2),
such that β ≡ α� (mod p). The integer � is the discrete logarithm of β to base α.

One can devise cryptosystems whose routine encoding and decoding steps rely
on modular exponentiation (mod p) (which is easy), but which to break requires the
computation of discrete logarithms (which is so hard as to be effectively intractable).
Having functions that are easy to compute in one direction but effectively intractable
to compute in the inverse direction make them a possible foundation for a public
key cryptosystem. However, the actual complexity of solving a discrete logarithm
problem depends on the choice of the underlying group over which the problem is
defined. In the Diffie-Hellman and ElGamal schemes the groups used allow discrete
logarithms to be computed in sub-exponential time, i.e., the same time as required
for factoring a composite integer n, namely O(ec(logn)1/3(log logn)2/3

). However, if the
underlying groups are taken to be elliptic curve groups on finite fields such as GF(p)
(p an odd prime) or GF(2m) (m an integer), the discrete logarithm problem is then
especially difficult, requiring truly exponential time to find a solution. The essential
ideas behind these elliptic curve groups are the following. An elliptic curve provides
a geometric way of picturing the elements of a finite field of q elements, Fq , as
points on a planar curve. In particular, let Fq denote a finite field of q elements, i.e.,
{0,1,2, . . . , q − 1}. Operations on the elements of Fq are to be computed modulo
q , and always result in an element of Fq . In practical cryptosystems we usually take

286 6 Code Breaking with a Quantum Computer

q = 2m or q = p where p is a large prime. An elliptic curve is then defined as the
locus of points such that

y2 (mod q)= x3 + ax + b (mod q) s.t. 4a3 + 27b2 (mod q) �= 0 (6.21)

When a and b satisfy the above specified criterion, the locus of points induced by
(6.21) defines an elliptic curve whose points are closed under modular arithmetic
operations. That is, modular arithmetic operations (mod q) on the elements of Fq

will always return elements in Fq . This means that modular arithmetic operations
on the elements of Fq correspond to geometric operations on the points of the el-
liptic curve. For example, the “point addition” of point P on the elliptic curve and
point Q on the elliptic curve yields another point R = P ·Q on the elliptic curve.
Geometrically, this point is obtained by projecting a straight line through points P

and Q until it intersects the elliptic curve and then reflecting the intersection point
across the x-axis. The result is a point R (on the elliptic curve) that is the “point
addition” of points P and Q. If a point is added to itself, R = P · P , we project
the tangent of the point P until it intersects the elliptic curve and then reflect this
intersection point across the x axis to yield R = P ·P . An elliptic curve augmented
with such an “addition” operation creates a so-called elliptic curve group because
it imbues the points on the elliptic curve with all the required characteristics of an
abelian group (closure, associativity, zero element, inverse element, and commu-
tativity). Once the addition operation is defined, whatever sequence of operations
are performed the result is always one of the finitely many points on the elliptic
curve. Thus, given an elliptic curve, a definition for the “addition”, i.e., “·”, of any
pair of points on the elliptic curve, and a starting point, it is trivial to follow a pre-
scribed sequence of additions to determine the final point reached. This is analogous
to modular exponentiation and is easy. What is much harder is to find the number
of iterations needed to carry a given starting point P into a given desired point Q
via a sequence of self-additions, i.e., finding the integer � (if it exists) such that
Q= P � = P · P · · · · · P (i.e., P added to itself � times). This amounts to solving
the elliptic curve discrete logarithm problem defined as follows:

The Elliptic Curve Discrete Logarithm Problem Given an elliptic curve E de-
fined over a group Fq , a point P ∈ E(Fq) of order n, and a point Q ∈ E(Fq),
determine the integer � with 0 ≤ � ≤ n− 1, such that Q = P �, provided that such
an integer exists. (Note: others write this in the notation “Q= �P ” but it means the
same).

The realization that the elliptic curve discrete logarithm problem was so difficult
led Neal Koblitz [294] and Victor Miller [353] to invent the concept of the Elliptic
Curve Cryptosystem (ECC) , independently, in the mid to late 1980s. To break ECC
one would need to solve the socalled Elliptic Curve Discrete Logarithm Problem
(ECDLP). Currently, the best known classical algorithm for computing the ellip-
tic curve discrete logarithms is the Pollard rho-method [195, 395, 530], which has

a complexity of O(
√
πn/2)≡ O(e

1
2 logn+ 1

2 log π
4) serially and O(

√
πn/(2r)) when

6.5 Breaking DES with a Quantum Computer 287

parallelized on r processors [489] . Using the elliptic curve groups on finite fields
such as GF(p) (p an odd prime) or GF(2m) (m integer) the discrete logarithm prob-
lem is especially difficult, requiring truly exponential time to find a solution. Thus,
for the same key length the ECC cryptosystem provides a higher level of security
than the RSA, Diffie- Helman and ElGamal cryptosystems. In fact, a mere 256-
bit ECC key is about as hard to break as a 1024-bit RSA key [102]. Such is the
confidence in the security of the Elliptic Curve Cryptosystem that it was recently
approved by the U.S. National Security Agency (NSA) for encrypting information
up to “Top Secret” level.2 backslash before the underscore character Of most sig-
nificance for quantum computing, as Shor’s algorithms for factoring integers and
computing discrete logarithms both run in O(n3) time, the speedup afforded by
Shor’s algorithm in breaking ECC would be considerably greater than its speedup
in breaking RSA, provided Shor’s discrete logarithm algorithm can be made to work
over the groups GF(p) (p an odd prime) or GF(2m) (m integer). This was indeed
shown to be possible by John Proos and Christof Zalka for GF(p) (p an odd prime)
in [403] and by Phillip Kaye and Christof Zalka for GF(2m) (m integer) in [269].
The latter result was improved by Donny Cheung , Dmitri Maslov , Jimson Mathew ,
and Dhiraj Pradhan in [102] and [344] by showing that multiplicative inversion need
only be used once, at the last stage of the algorithm, rather than at each operation on
a point on the elliptic curve. Thus, quantum computers can speed up the breaking
of Elliptic Curve Cryptosystems by more than they can speed up the breaking of
RSA, Diffie-Helman and ElGamal cryptosystems, even though the ECC cryptosys-
tem is classically “more secure”, for a given key length, than the other cryptosystems
mentioned. Specifically, whereas Shor’s quantum algorithm moves a subexponen-
tial problem classically to a polynomial one quantumly, Proos and Zalka’s modified
version for discrete logarithms, moves a truly exponential problem classically to
a polynomial one quantumly. Moreover, a 160-bit ECC key can be broken on a
1000-qubit quantum computer, whereas a 1024-bit RSA key would require about a
2000-qubit quantum computer [403]. Thus, the threshold to implementing a quan-
tum algorithm to compute elliptic curve discrete logarithms requires far fewer qubits
than that needed to factor integers, and so it might be more feasible to build such a
quantum computer.

6.5 Breaking DES with a Quantum Computer

In the 1970’s the dramatic expansion of electronic funds transfers and other e-
transactions caused the U.S. government to realize the need for a new cryptographic
standard to protect the integrity and confidentiality of such transactions. Accord-
ingly, the U.S. National Bureau of Standards (NBS) solicited proposals for a new
data encryption standard. The intent was to embed a dedicated chip within devices

2See NSA web page “The Case for Elliptic Curve Cryptography,” http://www.nsa.gov/business/
programs/elliptic_curve.shtml

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml

288 6 Code Breaking with a Quantum Computer

that exchanged confidential information so that a standard algorithm could be run
quickly on data flowing into and out of such devices. Initially, the scheme the NBS
selected was a simplification of one proposed by IBM called the Lucifer cipher.
However, whereas the Lucifer cipher used 128 bit keys, to achieve acceptable speeds
of operation, the NBS wanted to use only 64 bit keys and of these eight were dis-
carded by the encryption algorithm. Thus the Data Encryption Standard (DES) was
born using a key consisting of one out of effectively 256 possibilities. Once the
key was selected the DES algorithm operated deterministically encoding a given
plaintext into a unique ciphertext. At the time the claim was made that “Anyone
buying cryptographic equipment which has been validated against the DES can be
assured of a specific level of data security: namely that 255 attempts and the use
of the method of exhaustion are required to obtain any one key for the encryption
algorithm used in DES” [132]. Unfortunately, from the 1970’s onwards computer
speed rose at such an astonishing rate the 56-bit DES scheme was quickly seen to be
uncomfortably close to being breakable by the computers of the day, and the con-
sensus was that, if adopted, it would only have a usable lifetime of about a decade.
To break the DES scheme a code-breaker needs to obtain (or hypothesize) matching
fragments of plaintext and ciphertext and then test whether different possible cryp-
tographic keys, when plugged into the DES encoding algorithm, would map the
plaintext into the ciphertext. Once the code-breaker determines the cryptographic
key that works for this fragment of the ciphertext they can use it to unscramble the
other parts of the intercepted message, or other messages, that were encrypted us-
ing the same key. The computation to try out all these key possibilities and thereby
break DES is an unstructured search problem, which is NP-Hard. Hence, the DES
scheme is secure provided P �=NP (which is still unproven although widely believed
to hold) and provided the key length is sufficiently long that this code-breaking com-
putation is effectively intractable for the computers of the day. Using a 56-bit key
means there are 256 key possibilities to try, so on average one would expect to have
to test about half of these (255 attempts) before hitting on the correct key. With
the advent of quantum computing, however, there is an alternative approach to the
trial and error search through the cryptographic keys. One could use Grover’s algo-
rithm to find the sought after key in roughly the square root of the number of trials
needed classically. The trick, first recognized by Gilles Brassard [71], is to think of
the relationship between keys and ciphertexts as a virtual “quantum phone book”
in which the keys corresponded to “names” and the ciphertexts corresponded to
“phone numbers”. Given a known ciphertext (i.e., a “phone number”) and a known
corresponding plaintext, our job is to find the DES key (i.e., the unique “name”)
that correctly maps the plaintext into the ciphertext by following the steps of the
DES encryption algorithm. Hence, the task of breaking DES corresponds to that of
finding someone’s name in this virtual phone book given knowledge of only their
telephone number, which is the familiar unstructured search problem. To assess the
potential speedup one could obtain, imagine a sub-routine that tests whether a spe-
cific number is the secret key. A classical computer will need to call this sub-routine,
on average, 1

2 256 ≈ 3.6 × 1010 million times before finding the right key! In con-
trast a quantum computer need only call the quantum version of this sub-routine, on

6.6 Summary 289

average, 1
2 × π

4

√
256 ≈ 105 million times to find the right key. So although Grover’s

algorithm does not give an exponential speedup it could nevertheless be extremely
useful.

6.6 Summary

Modern internet communications and electronic transactions rely heavily on the
use of public key cryptosystems. Two famous examples are the RSA cryptosystem
(RSA), and the elliptic curve cryptosystem (ECC). Such cryptosystems have the ad-
vantage that they do not require the sender and recipient of confidential messages to
have met beforehand and exchanged secret key material. Instead, the person wishing
to receive confidential messages creates a pair of matching public and private cryp-
tographic keys, posts their public key for all to see, but keeps their private key secret.
Anyone wishing to send the author of the public key a confidential message uses the
posted public key to encrypt a message, and transmits the encrypted message via a
potentially insecure classical communications channel. Upon receipt, the legitimate
recipient uses his matching private key to unscramble the encrypted message.

The security of such public key cryptosystems relies upon the presumption that
certain mathematical problems are intractably hard to solve. For example, the se-
curity of the RSA public key cryptosystem relies upon the presumption that fac-
toring composite integers is intractable. Likewise, the security of the ECC public
key cryptosystem relies upon the presumption that computing discrete logarithms
is intractable. Both these presumptions appear to be valid if the code-breaker is
only able to use a classical computer. Specifically, the best known classical algo-
rithm for breaking RSA (the Number Field Sieve), has a running time that scales
super-polynomially (but sub-exponentially) with increasing key length. A super-
polynomial complexity scaling is regarded as intractable provided the key length is
sufficiently great. Similarly, the best known classical algorithm for breaking ECC
(the Pollard rho algorithm), has a running time that scales truly exponentially with
increasing key length. This means, that for a given key length, an ECC-encrypted
message is even harder to break than the corresponding RSA-encrypted message.

The situation changed in 1994, however, when Peter Shor published his polyno-
mial time algorithm for factoring composite integers and computing discrete log-
arithms [455]. Thus, Shor’s algorithm can break both RSA (via efficient integer
factorization) and ECC (via efficient computation of discrete logarithms). The fact
that quantum computers have the potential to break the types of public key cryp-
tosystems used in email and electronic commerce was the impetus behind much
of the funding for quantum computing, at least in the United States. One of the
most striking, but under-reported, aspects of Shor’s algorithm for factoring inte-
gers and solving the discrete logarithm problem, and Proos and Zalka’s extension
of the latter to the elliptic curve discrete logarithm problem, is that it shows the
separation in complexity scaling between classical and quantum breaking of RSA
is less than the complexity separation between classical and quantum breaking of

290 6 Code Breaking with a Quantum Computer

ECC. Whereas breaking RSA requires sub-exponential time classically, and poly-
nomial time quantumly, breaking ECC requires truly exponential time classically
and polynomial time quantumly. Hence, the advantage of the quantum computer is
even greater in breaking ECC than in breaking RSA.

Other cryptosystems, such a DES, are also impacted by the arrival of quantum
computing, but in this case the speedup in code breaking is only polynomial, as it
relies upon the use of Grover’s algorithm to search through possible DES keys.

It is worth pointing out, however, that just as quantum mechanics takes away our
security, by showing how to break supposedly “strong” classical cryptosystems, so
too does it restore security by providing us with quantum cryptography—a funda-
mentally new approach to cryptography that is invulnerable to both quantum and
classical attacks. We shall look at quantum cryptography in Chap. 13.

6.7 Exercises

6.1 Multiply the following numbers by hand:

(a) Let p = 12 and q = 34. Find N = p× q .
(b) Let p = 123 and q = 456. Find N = p× q .
(c) Let p = 1234 and q = 5678. Find N = p× q .

Now try factoring the following numbers by hand:
(d) Let 403= p× q . Find p and q .
(e) Let 56,089= p× q . Find p and q .
(f) Let 7,006,619= p× q . Find p and q .

Do you notice any change in difficulty between the multiplication problems and
the factoring ones?

6.2 Table 6.1 shows the computational effort needed to factor various composite
integers quoted in units of “MIPS-years”. 1 MIPS-year is the number of operations
performed in one year by a single computer running at a rate of one million oper-
ations per second. If the running time of a Number Field Sieve factoring algorithm
is “55 CPU-Years” when the CPU in question is a 2.2 GHz machine, what is the
equivalent computational effort measured in MIPS-years? Use your calculations to
fill in the missing “MIPS-year” data for factoring RSA-200 given in Table 6.1.

6.3 Given two integers, x and y, having greatest common divisor d , i.e., d =
gcd(x, y), what is the least common multiple of x and y, i.e. lcm(x, y)?

6.4 Suppose you want to factor the number 15 using Shor’s algorithm on a quantum
computer.

(a) Generate e a random integer, 1 < x < 15, that is co-prime to 15
(b) Pick the number of qubits you will need for Register A and Register B . Explain

why you picked this number
(c) What is the period, r , of the sequence x0 mod 15, x0 mod 15, x0 mod 15, . . .

6.7 Exercises 291

(d) Suppose you pick x = 7 and n= 8 qubits and you generate the superposition

|ψ〉 = 1√
256

255∑
i=0

|i〉|xi mod 15〉 (6.22)

What are the first 15 terms of this superposition?
(e) If you measure the second register, when the two registers are in state |ψ〉, and

find it to be in state |1〉, what is the corresponding state of the (unread) first
register?

(f) How is the state of the first register then related to the period r?
(g) How is the period r related to the factors of 15?
(h) What is the state of the first register after you apply the inverse QFT to it?

6.5 In Shor’s algorithm the inverse QFT plays a pivotal role. Draw a quantum circuit
for the inverse QFT.

6.6 Prove the shift invariance property of the n-qubit quantum Fourier transform,
QFT2n . Specifically, define

|ψ〉 =
2n−1∑
j=0

cj |j 〉 (6.23)

and define a “shifted” version of this state as:

|ψ ′〉 =
2n−1∑
j=0

cj |j + � mod 2n〉 (6.24)

Show that:

(a) QFT2n |ψ〉 and QFT2n |ψ ′〉 are the same up to an overall phase factor.
(b) What is this phase factor?
(c) How does this affect the probabilities with which we would obtain the outcome

|j 〉 if we measured the output from QFT2n |ψ〉 in comparison to measuring the
outcome from QFT2n |ψ ′〉?

6.7 Prove the convolution property of the n-qubit quantum Fourier transform,
QFT2n . In classical computing, the “convolution” of two signals quantifies the de-
gree to which they are similar. We can extend this notion to quantum states as
follows. Suppose we have two n-qubit quantum states, which we can think of as
encoding two “signals”, of the form:

|ψ〉 =
2n−1∑
k=0

ck|k〉 (6.25)

292 6 Code Breaking with a Quantum Computer

|ϕ〉 =
2n−1∑
k=0

dk|k〉 (6.26)

Following classical signal processing, we define the “convolution” of two such
quantum states to be:

convolution(|ψ〉, |ϕ〉)= 1√
2n

2n−1∑
j=0

2n−1∑
�=0

c�dj−�|j 〉 (6.27)

and we follow the classical convention that when j − � is negative we take dj−� =
d2n+j−ell . Your task is to show that the QFT of the convolution of two such states is
related to the QFTs of the states themselves. To see this, write the QFTs of |ψ〉 and
|ϕ〉 in the form:

QFT2n |ψ〉 =
2n−1∑
k=0

αk|k〉

QFT2n |ϕ〉 =
2n−1∑
k=0

βk|k〉
(6.28)

and, based on these definitions, prove:

QFT2nconvolution(|ψ〉, |ϕ〉)=
2n−1∑
j=0

αjβj |j 〉 (6.29)

Note that it is not possible to devise a deterministic quantum circuit that actually
computes the convolution of two such quantum states even though the mathemat-
ical relationship between the QFT of the convolution and the QFTs of the states
being convolved still holds (see [323]). But approximate convolution is possible
(see [121]).

6.8 What are the convergents of the rational numbers (a) 291
29 , (b) 365

29 , and (c) 438
29 ?

If the numbers 291, 365, and 438 had arisen as the output samples from Register A
having run Shor’s algorithm to factor n = 39 what would be the period r? Would
this have been a successful or unsuccessful run of Shor’s algorithm? Explain your
answer.

Chapter 7
Solving NP-Complete Problems with a Quantum
Computer

“If quantum states exhibit small nonlinearities during time evolution, then quantum comput-
ers can be used to solve NP-Complete problems in polynomial time [. . .] we would like to
note that we believe that quantum mechanics is in all likelihood exactly linear, and that the
above conclusions might be viewed most profitably as further evidence that this is indeed
the case.”
– Dan Abrams and Seth Lloyd1

In computer science, a “decision problem” is a problem with a “yes” or “no”
answer. Therefore, the question “Are there more than five prime numbers whose
values are between 4 and 20?” is an example of a decision problem. In this case, by
the way, the answer happens to be “yes”.

A decision problem is in NP (which stands for “Non-deterministic Polynomial”
time) if a “yes” answer can be verified efficiently, i.e., in a time that grows no faster
than a polynomial in the size of the problem. Hence, loosely speaking, the problems
in NP are those such that if you happened to guess the solution correctly (this is the
“non-deterministic” aspect) then you could verify the solution efficiently (this is the
“polynomial” aspect). Hence the name “Non-deterministic Polynomial” time.

A decision problem is NP-Complete if it lies in the complexity class NP and all
other problems in NP can be reduced to it. Thus the NP-Complete problems are
the only ones we need to study to understand the computational resources needed to
solve all of the problems in NP. Hence, the NP-Complete problems have a special
place in complexity theory.

Notice, that a decision problem does not require that the solution on which the
decision is based be exhibited, although exhibiting such a solution and then veri-
fying it is certainly one way to arrive at the decision. For example, in the prime
number example above, I could have listed out all the primes between 4 and 20,
i.e., 5,7,11,13,17,19, and then counted them to decide if there were more than
five. But the distinction between deciding the answer and exhibiting the answer was

1Source: in “Nonlinear Quantum Mechanics Implies Polynomial-Time Solution for NP-Complete
and # P Problems, Phys. Rev. Lett., Volume 81 (1998) pp. 3992–3995”.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_7, © Springer-Verlag London Limited 2011

293

http://dx.doi.org/10.1007/978-1-84628-887-6_7

294 7 Solving NP-Complete Problems with a Quantum Computer

Fig. 7.1 Diagram showing the relationship between the P, NP, NP-Complete, and NP-Hard
complexity classes

shown very clearly in Chap. 1 when we looked at Deutsch’s algorithm for deciding
if a function was constant or balanced.

Typically, if the “decision” version of some problem is NP-Complete, the related
problem of “exhibiting a solution explicitly” is NP-Hard. The relationship between
these complexity classes (assuming P �= NP, which most computer scientists be-
lieve) is shown in Fig. 7.1.

The NP-Complete problems are amongst the most common computational prob-
lems encountered in practice [196]. Unfortunately, NP-Complete problems ap-
pear to be even harder than the integer factorization problem. Whereas, clas-
sically, the best known algorithm for the integer factorization scales only sub-
exponentially [308, 309], the best known algorithms for solving NP-Complete
problems all scale exponentially [196]. Thus, the discovery of Shor’s quantum al-
gorithm for factoring composite integers and computing discrete logarithms expo-
nentially faster than is possible classically does not amount to a complete victory
over the entire NP class. The factoring and discrete logarithm problems are in NP

7.1 Importance and Ubiquity of NP-Complete Problems 295

but they are not NP-Complete. So Shor’s algorithm tells us nothing about how effi-
ciently we can solve NP-Complete problems on a quantum computer.

7.1 Importance and Ubiquity of NP-Complete Problems

Computer scientists now know of over 3000 superficially different NP-Complete
problems. Some of the most famous examples are the following:

1. PROPOSITIONAL SATISFIABILITY (k-SAT): Find an assignment of True or
False to the n variables in a Boolean formula, written in conjunctive normal form
(CNF), which makes the formula True. CNF means that the formula is a conjunct
(i.e., logical “AND”) of m clauses where each clause is the disjunct (i.e., logical
“OR”) of k variables or negated variables. Thus a CNF formula for an instance
of 3-SAT has a form such as:

(x1 ∨¬x3 ∨ x4)∧
k variables per clause︷ ︸︸ ︷
(¬x2 ∨ x3 ∨ x4) ∧ · · · ∧ (x1 ∨ x5 ∨ x6)︸ ︷︷ ︸

m clauses

Deciding if a k-SAT formula is satisfiable is NP-Complete for k ≥ 3, and ex-
hibiting a satisfying assignment is NP-Hard.

2. GRAPH COLORING (k-COL): Find a coloring of a graph having n nodes and
m edges using k colors such that every node has a color and no two nodes that
are connected to one another directly have the same color. Deciding if a coloring
exists that uses no more than k colors is NP-Complete for k ≥ 3, and exhibiting
such a coloring is NP-Hard. Although GRAPH-COLORING might sound like
a toy problem, it turns out to be equivalent to the SCHEDULING problem, and
therefore has immense importance to industry.

3. TRAVELLING SALESMAN: Given an n-node graph with edge weights wij

find a tour of the graph that visits every node once and minimizes the cumulative
sum of the weights of the edges traversed. Deciding if the shortest tour has a
length less than some threshold is NP-Complete. Exhibiting a shortest tour is
NP-Hard.

4. SUBSET SUM: Given a set of positive and negative integers, is there a subset of
those integers that sums exactly to zero? SUBSET SUM is NP-Complete.

Notice that there are similarities between these problems: they all involve a set
of variables that may take on various allowed values (which may be discrete or
continuous) and there exists a set of constraints between the variables that restricts
what values the variables may assume simultaneously. Thus they are generically
“constraint satisfaction problems” (if the goal is to find a solution that satisfies all
constraints), “maximization” problems (if the goal is to find a solution that satisfies
as many constraints as possible), or “optimization” problems (if the goal is to find
the best solution according to some criterion). All these variants are typically NP-
Complete or NP-Hard, depending on whether or not you simply want to merely

296 7 Solving NP-Complete Problems with a Quantum Computer

decide the answer or exhibit a solution, again illustrating the ubiquity and impor-
tance of these complexity classes.

In addition to their ubiquity, NP-Complete problems share a fortuitous kinship:
any NP-Complete problem can be mapped into any other NP-Complete problem
using only polynomial resources [56]. Thus, if a quantum algorithm were found
that can solve one type of NP-Complete problem efficiently, this would immedi-
ately lead to efficient quantum algorithms for all NP-Complete problems (up to
the polynomial cost of translation). And, for sure, such a discovery would mark
one of the greatest advances in theoretical computer science. So, in some sense,
the thousand or so different NP-Complete problems are really the same problem
in disguise. It is therefore sufficient to focus on any single NP-Complete problem,
for any progress made in solving that problem is likely applicable to all the other
NP-Complete problems too, so long as you don’t mind paying the polynomial cost
of translation.

7.1.1 Worst Case Complexity of Solving NP-Complete Problems

Broadly speaking, algorithms for solving NP-Complete problems fall into two cat-
egories: “backtracking” and “heuristic”. Backtracking algorithms extend a partial
solution towards a complete solution by systematically exploring the entire space
of possible solutions, and jumping back to an earlier partial solution if a particu-
lar variable assignment can be proven to be impossible to extend into a complete
solution. Heuristic algorithms make a sequence of local changes iteratively to a
complete assignment of values to variables, which tend to increase the number of
satisfied clauses. Typically the heuristic algorithms are correct (i.e., when they find
a solution it is a valid solution) but incomplete (i.e., they do not check all possible
value assignments to the variables before giving up, and so can miss solutions even
if they do exist). However, in practice, the heuristic methods work surprisingly well
often finding solutions faster than the complete search algorithms.

7.1.1.1 The Davis-Putnam-Logemann-Loveland Algorithm

The DPLL algorithm [133, 332] picks a variable in the 3-SAT formula, sets its value
to True or False, simplifies the resulting formula (which now contains one fewer
unassigned variable) and then checks recursively if the simplified formula is sat-
isfiable. If the simplified formula is satisfiable, then so is the original. If not, the
recursion is repeated using the other value for the truth assignment. If the problem
remains unsatisfiable after all possible value assignments to the variables have been
tried, the problem instance is proven unsatisfiable.

7.2 Physics-Inspired View of Computational Complexity 297

7.1.1.2 The WalkSAT Algorithm

The WalkSAT algorithm [446] picks a random truth assignment for each variable in
the problem, and iteratively improves it using a combination of random and greedy
changes to the Boolean values assigned to the variables. In a greedy change, the
variable selected for flipping is the one that minimizes the resulting number of un-
satisfied clauses. In a random change, a variable is selected at random and its bit
value is flipped regardless of whether this increases or decreases the number of
clauses that are unsatisfied. The choice of whether to make a random move or a
greedy move is set by a user-defined probability p such that WalkSAT makes a
random flip with probability p, and a greedy flip with probability (1−p). On a par-
ticular trial, WalkSAT continues until a user-defined limit of max-flips flips have
been performed. If it has not found a solution by then, WalkSAT restarts the search
from a new random assignment. The total number of re-starts allowed is set by an-
other user-defined parameter max-trials. There is still some art in picking these user
defined parameters to get the best overall problem solving performance.

7.1.1.3 NP-Complete Problems Are Hard in the Worst Case

A given problem instance can be easy for both types, hard for both types, or easy
for one type and hard for the other type. Unfortunately, you cannot tell which is the
case just by looking at the problem instance. Instead you have to attempt to solve the
problem to find out whether it is an easy one or a hard one with respect to whatever
algorithms you have available. As the running time needed to solve the problem
exactly with certainty needs to scale, in the worst case, as an exponential function
in the size of the problem NP-Complete problems are regarded as generically hard
to solve.

Having said that, in practice it is observed that many instances of NP-Complete
problems are much easier to solve than we might expect. This dichotomy between
the “official” opinion that NP-Complete problems are intractable and the “practical
experience” that suggests this is not always the case, led some scientists to dis-
sect the nature of NP-Completeness more carefully. Rather than focussing solely
on the worst case scaling of the run time needed to ensure success, they looked in-
stead at how the difficulty of solving instances of an NP-Complete problem of fixed
size varied as you changed the degree of constrainedness of the problem instance.
This approach was motivated by analogies the scientists saw between phenomena
in computational problems and phase transition phenomena in statistical physics.

7.2 Physics-Inspired View of Computational Complexity

7.2.1 Phase Transition Phenomena in Physics

Many physical systems undergo a phase transition as some property of the system is
varied. For example, from ancient times it was known that when certain hot metals,

298 7 Solving NP-Complete Problems with a Quantum Computer

such as iron, cooled they acquired a strong and persistent magnetic field. That is
they transitioned from a non-magnetic phase to a magnetic phase. When the spin
of the electron was discovered it was speculated that magnetism was the collective
alignment of several spins. However, it was unclear how this alignment came about.
Hence, the two-dimensional Ising model was invented to simulate the behavior of
simple magnets.

In the 2D Ising model a potentially magnetic material is pictured as a 2D rect-
angular array of quantum spins, which interact locally with their nearest neighbors.
Initially the spin orientations are random. However, the nature of the spin-spin in-
teractions between nearest neighbors is such that it is energetically more favorable
for neighboring spins to be aligned (i.e., spin-up/spin-up or spin-down/spin-down)
than it is for them to anti-aligned (spin-up/spin-down or vice versa). At high tem-
peratures the thermal excitations jostle the spins around swamping their spin-spin
interactions. But as the system cools the spin-spin interactions eventually dominate
the thermal excitations. In this regime the system attempts to relax to its lowest
energy configuration by groups of spins aligning over large spatial regions, called
magnetic domains. In this regime the system attempts to relax to its lowest energy
configuration by groups of spins aligning over large spatial regions, called magnetic
domains. A typical distribution of magnetic domains is shown in Fig. 7.2. The rel-
ative preponderance and sizes of spin-up domains relative to spin-down domains
determines the net magnetization of the material. In this case the temperature of
the system controls the magnetic phase. The material will be magnetized below a
critical temperature and unmagnetized above it. Statistical physics aims to predict
coarse effects, such as net magnetization, or the critical temperature at which mag-

Fig. 7.2 Phase transition in magnetization based on the 2D Ising model. A magnetic material is
modeled as a lattice of spins that can each be either “spin up” (white) or “spin down” black. At
high temperature the spins are oriented randomly with respect to each other and the material has
no net magnetization. However, as the temperature is reduced large regions of aligned spins (called
magnetic domains) suddenly emerge and the material acquires a net magnetization

7.2 Physics-Inspired View of Computational Complexity 299

Fig. 7.3 Phase transition in connectivity of a random graph. For a graph with n nodes, when the
probability of an edge p <

(1−ε) lnn
n

the graph is likely to be unconnected, and when p >
(1+ε) lnn

n
the graph is likely to be connected, i.e., has no isolated nodes. The data shows the probability a
n = 30 node graph is connected as a function of the probability of an edge, p. A sharp phase
transition in connectivity occurs around p ≈ lnn

n
= ln 30

30 = 0.113. The step becomes more steep
as n →∞. in the figure we computed the mean probability of being connected averaged over
1000 graphs per value of p used. Similar threshold phenomena occur in chromatic number, clique
number, and the size of the giant component

netization appears, without having to know, or care about, the specific orientations
of every particle.

7.2.2 Phase Transition Phenomena in Mathematics

Similar phase transition phenomena occur in mathematics. For example, in the the-
ory of random graphs there is a sharp phase transition in connectivity as the ratio of
the number of edges to the number of nodes exceeds a critical value. Specifically,
consider a graph having n nodes. Such a graph can have at most 1

2n(n− 1) edges.
We can therefore create a random graph by fixing n and selecting each of the pos-
sible edges independently with probability p where 0 ≤ p ≤ 1. You obtain graphs
with different characteristics for different values of p. As shown in Fig. 7.3, when p

is increased such graphs undergo a sharp phase transition from being unconnected
(when p <

(1−ε) lnn
n

where 0 ≤ ε (1) to being connected (when p >
(1+ε) lnn

n
where 0 ≤ ε (1). Similar phase transitions occur in the chromatic number, clique
number, and the size of giant component.

7.2.3 Computational Phase Transitions

Given the appearance of phase transition phenomena Ising spin systems and in ran-
dom graphs, it is not surprising that similar phase transition phenomena can arise

300 7 Solving NP-Complete Problems with a Quantum Computer

Fig. 7.4 Scatter plot of the
cost of solving random
instances of 3-SAT versus the
ratio of the number of clauses
to the number of variable.
The hardest problem
instances tend to cluster
around the value α = 4.25

in constraint networks too. Indeed there are strong similarities between Ising spin
systems and constraint satisfaction problems. The spins in an Ising system, which
can be “up” or “down”, play an analogous role to Boolean variables in a constraint
satisfaction problem, which can be “True” or “False”. Likewise, the spin-spin in-
teractions between a particular spin and its neighbors, play an analogous role to
the constraints amongst the Boolean variables in a constraint satisfaction problem,
which dictate what values they can assume.

Figure 7.4 plots the computational costs of solving random instances of 3-SAT
or proving they are unsatisfiable as a function of the ratio of the number of clauses
to number of variables, α = m/n. The algorithm used is a complete SAT-solver
known as the Davis-Putnam algorithm, so for every instance it is sure to determine
a solution or sure to determine the instance is unsatisfiable. At a critical value of α ≈
4.25 the problem instances suddenly become much harder to solve or much harder to
prove unsatisfiable. This critical ratio also coincides with the point at which problem
instances suddenly transition from being very likely to be satisfiable (for α < αcrit)
to very likely to be unsatisfiable (for α > αcrit). Thus, we see a phase transition-like
phenomenon going on in a computational problem.

Over recent years physicists and computer scientists have placed the analogy
between Ising spin systems and constraint satisfaction problems on a firm footing
by analyzing the computational phase transitions observed in constraint satisfaction
problems using the tools of statistical physics [234]. This has led to insight on the
internal structure of NP-Complete problems and how the degree of constrainedness
of a problem instance is loosely correlated to the degree of difficulty in finding a
solution or proving no solution is possible. Although the full mathematical methods
used are complex, we can deduce the essential qualitative features of computational
phase transitions using a very simple argument.

7.2.3.1 Approximate Analysis for k-SAT

In k-SAT, each clause is a disjunct of k variables (or negated variables). Such a
clause can only be False when all of its k components are False. Hence, there

7.2 Physics-Inspired View of Computational Complexity 301

is only one out of the possible 2k ways to assign Boolean values to the k compo-
nents that can make all the components False. Hence, for a random assignment of
Boolean values to the variables, each clause is False with probability p = 1

2k
and,

therefore, True with probability (1− p)= (1− 1
2k
).

Now let’s assume the clauses in the CNF formula are independent of one another.
This is not strictly true, of course, because for a solution to be self-consistent, the
choice of Boolean assignment made to a variable in one clause is required to be the
same as that made to the same variable in another clause. Nevertheless, we are only
doing an approximate analysis so we will take such liberties freely. For the whole
CNF formula of m clauses to be True we require each component of the conjunct
is True. Hence, given a random assignment of Boolean values to variables, the
probability that the whole CNF formula is True is (crudely) (1−p)m = (1− 1

2k
)m.

Hence, since there are n variables in total, there are 2n possible ways to assign
Boolean values to the variables. Hence, the expected number of solutions to the
CNF formula is given by Nsoln = 2n(1− 1

2k
)m. The parameter controlling the degree

of constrainedness is the ratio of the number of clauses to the number of variables,
i.e., α = m

n
. Hence, for a k-SAT problem having n variables, m clauses, and k vari-

ables (or negated variables) per clause, the expected number of solutions is given
(roughly) by:

Nk-SAT
soln = 2n

(
1− 1

2k

)αn

(7.1)

We can assume the hardest problem instances correspond to those cases when only
one solution to the problem is viable. Hence, setting Nk-SAT

soln = 1 and solving for α
we can estimate at what ratio of clauses to variables we expect the hardest graph
coloring problems to occur. This gives us:

αcrit =− ln 2

ln(1− 1
2k
)

(7.2)

For 3-SAT this predicts the critical point at 5.2 whereas the empirically observed
value is around 4.25.

7.2.3.2 Approximate Analysis for GRAPH-COLORING

In GRAPH-COLORING (k-COL), the constraints are the fact that the edges in a
graph cannot be colored the same. There are k colors to choose from, so there are k2

ways to pick a color pair for the nodes at either end of an edge. Of these k choice are
forbidden because they would assign the same color to both nodes. Hence, crudely,
the probability that a random coloring of a single edge is acceptable is then p =
k2−k

k2 = 1− 1
k

.
There are a total of m edges in the graph. Therefore, of we pretend the edges

can be colored independently of one another, the probability that a random color
assignment for all n nodes is acceptable is then (1− 1

k
)m. So the expected number

302 7 Solving NP-Complete Problems with a Quantum Computer

of solutions is kn(1− 1
k
)m. This time we want to study what happens as we vary the

ratio of the number of edges to the number of nodes. The average number of edges
exiting a node is γ = 2m/n.

Hence, for a k-COL problem having n nodes, m edges, and k colors, the expected
number of solutions is given (roughly) by:

Nk-COL
soln = kn

(
1− 1

k

) 1
2 γ n

(7.3)

We can assume the hardest problem instances correspond to those cases when only
one solution to the problem is viable. Hence, setting Nk-COL

soln = 1 and solving for γ
we can estimate at what connectivity we expect the hardest graph coloring problems
to occur. This gives us:

γcrit =−2
lnk

ln(1− 1
k
)

(7.4)

For 3-COL this predicts the critical point at 5.4 whereas the empirically observed
value is around 4.6.

7.2.4 Where Are the Really Hard Problems?

The approximate analyses neglected the correlations between the constraints. When
these are taken into account they reduce the number of solutions at given values of
α and γ , which pushes αcrit and γcrit to lower values. With such corrections we can
get closer to the observed phase transition points.

Experimental data on the actual computational cost encountered when solving
progressively larger instances of NP-Complete problems, such as the data 3-SAT
shown in Fig. 7.5, reveal a characteristic easy-hard-easy pattern with the cost peak
coinciding with a phase transition in the solvability of the problem. Over the
decade since these results first appeared more sophisticated techniques from statisti-
cal physics have been employed to bound the phase transition point more rigorously
[4, 205, 206, 280, 281, 351, 361].

7.3 Quantum Algorithms for NP-Complete Problems

In the years following the publication of Shor’s algorithm there was a great deal
of effort put into searching for quantum algorithms that could solve NP-Complete
problems in polynomial time. However, to date all such attempts have failed. Indeed,
it has even proven to be difficult to adapt Shor’s algorithm to tackle other problems,
such as GRAPH-ISOMORPHISM, which are, like FACTORING and DISCRETE-
LOG, in NP but are not NP-Complete. Nevertheless, these efforts did stimulate the

7.3 Quantum Algorithms for NP-Complete Problems 303

Fig. 7.5 3-SAT phase transition. The easy-hard-easy pattern is clearly visible as the ratio of the
number of clauses to the number of variables increases from zero through 4.25. The hardest prob-
lem instances coincide with the region where the probability of the 3-SAT instances being soluble
plummets from close to 1 to close to 0. This data is provided by Bart Selman of Cornell University

invention of new paradigms for quantum computing including, e.g., adiabatic quan-
tum computing. Unfortunately, the early promise that adiabatic quantum computing
might break the intractability of NP-Complete problems, in the sense of permitting
such problems to be solved in guaranteed polynomial time [178], was subsequently
shown to be illusory [355, 509].

7.3.1 Quantum Solution Using Grover’s Algorithm

In contradistinction to Shor’s quantum factoring algorithm, Grover’s quantum
search algorithm can be adapted quite readily to solve NP-Complete problems,

304 7 Solving NP-Complete Problems with a Quantum Computer

albeit again in exponential time, but with a reduced exponent compared to what
is known classically. The idea is quite simple. Imagine a database containing all
the possible solutions to an NP-Complete problem. Let’s say there are N of them.
Furthermore, let’s imagine replacing the oracle used in Grover’s algorithm with a
polynomial cost “testing circuit” that can pronounce on whether or not a candidate
solution is in fact a valid solution. Then one could apply the unstructured quantum
search algorithm substituting the polynomial cost testing circuit in lieu of the oracle,
to find a solution in square root the number of possible solutions, i.e., O(

√
N). For

a typical NP-Complete problem in which one has to find an assignment of one of
b values to each of μ variables, the number of candidate solutions, N = bμ, grows
exponentially with μ. Hence, a classical exhaustive algorithm would therefore take
a time O(bμ) to find the solution whereas the aforementioned unstructured quan-
tum search algorithm would take a time O(bμ/2). Unfortunately, although this is an
impressive speedup there are already more sophisticated classical algorithms that
can do better than O(bμ/2). Hence, a direct application of the quantum unstructured
search algorithm to solving NP-Complete problems is not worthwhile.

7.3.2 Structured Search Spaces: Trees and Lattices

Fortunately, there is a way to improve upon a naïve use of quantum search in solv-
ing NP-Complete problems. This is possible because the search spaces of NP-
Complete problems typically have structure in the sense that one can build up
complete solutions (i.e., value assignments for all the variables) by extending par-
tial solutions (i.e., value assignments for a subset of the variables). Thus, rather
than performing an unstructured quantum search amongst all the candidate solu-
tions (treating them as undifferentiated entities), in an NP-Complete problem, we
can perform a quantum search amongst the partial solutions in order to narrow the
subsequent quantum search amongst their extensions. This is reminiscent of a tree-
search amongst the partial solutions, in which a parent node represents a partial
solution and its children all the logical extensions of that partial solution. Such a
tree of partial solutions is illustrated in Fig. 7.6.

Such a tree-structured quantum search allows us to find a solution to an NP-
Complete problem in a time that grows, on average, as O(bαμ/2) for the hardest
problems (as localized by the phase transition results above), where α < 1 is a con-
stant depending on the problem instance considered.

To explain this approach more quantitatively we need to analyze the structure of
these search trees. Our goal is to find the probability that node in a typical search tree
is “good”, i.e., is consistent with respect to all of the constraints against which it can
be tested. These are the subset of the problem constraints that only involve those
variables that have been assigned values so far in the search tree. Let is call this
probability p(i), the probability that a node at level i in the search tree is “good”.

The determination of p(i) is complicated by the fact that the order in which vari-
ables are assigned values can influence, greatly, the computational cost of solving

7.3 Quantum Algorithms for NP-Complete Problems 305

Fig. 7.6 A tree of partial solutions. Each node represents a distinct assignment of values to a
particular subset of the variables in the problem, extending the assignment by one extra variable at
each level. Thus, all the nodes at a given level correspond to the same subset of variables assigned
values in all possible ways. If there are a total of μ variables each of which can take on one of b
possible values, the tree will have a depth of μ, a branching ratio of b, and there will be at most bi

possible nodes at level i. Moreover, there will be bμ complete assignments (i.e., potential solutions)
amongst the leaf nodes at the bottom level of the tree of which only a subset will correspond to
complete solutions. If a node corresponding to a partial solution is found to be inconsistent, then
descendants of that node need not be considered, and paths extending from these nodes can be
omitted from the diagram

the problem. For example, suppose that due to the constraints a particular variable is
forced to take only one value. If that variable is examined early in the search process,
i.e., high up in the search tree, then the fact that is must take a certain value allows
us to prune all partial solutions in which it took some other value. As this pruning
occurs high in he search tree, an enormous part of the potential search space can be
eliminated. Conversely, if this variable is examined late in the search process, much
of the tree might already have been explored, resulting in relatively little gain. So
we need a trick for computing the probability that a node is good, averaged over all
variable orderings.

The simplest way to do this is to consider a lattice of partial solutions rather than
a tree of partial solutions as shown in Fig. 7.7.

Each node in a lattice corresponds to a particular assignment of values to a partic-
ular subset of variables. The i-th level of such a lattice contains all possible subsets
of variables of a certain size, assigned values in all possible ways. Thus a lattice of
partial solutions effectively encodes all possible variable orderings simultaneously.
Thus, a lattice over-represents a search space. But its advantage is that it makes it
much easier to assess what is likely to be encountered in an average tree search,
where we have factored out bias due to reliance on a particular variable ordering.
However, the size of such lattices grows rapidly with increasing values of μ.

7.3.2.1 Computing the Lattice Parameters for a Constraint Satisfaction
Problem

Quantitatively, the ith level of a lattice of partial solutions represents all possible
subsets of i variables out of μ variables, assigned values in all possible combina-
tions. Thus, in a lattice there are

(μ
i

)
bi nodes at level i rather than the bi nodes in a

tree. So each level of the lattice encodes the information contained in
(μ
i

)
different

trees.
As each constraint involves exactly k variables, and each variable can be assigned

any one of its b allowed values, there are exactly bk “ground instances” of each

306 7 Solving NP-Complete Problems with a Quantum Computer

Fig. 7.7 A lattice of partial solutions. Here each row of the lattice represents all subsets of i out
of μ variables, each assigned any of b values in all possible ways. Hence, there are

(μ
i

)
bi nodes

at level i of the lattice. The figure corresponds to a lattice having μ= 5 variables, each of which
can be assigned any one of b = 2 values. The solutions (complete consistent assignments) reside
at the top of the lattice. Lower down, the nodes correspond to partial assignments, i.e., tuples of
variable/value pairs for a subset of i out of μ variables assigned values in all possible ways. Those
partial assignments that satisfy all the problem constraints against which they may be tested are
deemed “good”, and those that do not are deemed “nogood”. In a graph coloring problem, e.g.,
the pairwise assignments at level i = 2 would correspond to color (value) choices for any pair of
vertices (variables). Each such choice is either “good” (meaning the two vertices are allowed to be
colored in the way chosen) or “nogood” (meaning that the two vertices cannot be colored the same
as they are directly connected by an edge). Complete solutions can only be extensions of good
nodes. As soon as a node in the lattice if found to be nogood, no further nodes above it need be
considered

constraint. Moreover, as each constraint involves a different combination of k out of
a possible μ variables, there can be at most

(μ
k

)
constraints. Each ground instance

of a constraint may be “good” or “nogood”, so the number of ground instances that
are “nogood”, xi , must be such that 0 ≤ xi ≤ bk

(μ
k

)
. If xi is small the problem

typically has many solutions. If xi is large the problem typically has few, or perhaps
no, solutions. The exact placement of the xi nogoods is, of course, important in
determining the their ultimate pruning power.

7.3.2.2 Calculation of p(i)

To estimate p(i) in an average tree, we calculate the corresponding probability that a
node in the lattice (which implicitly incorporates all trees) is “nogood”, conditional
on there being ξ “nogoods” at level k. For a node at level i of the lattice to be “good”
it must not sit above any of the ξ “nogoods” at level k. A node at level i of the lattice
sits above

(
i
k

)
nodes at level k. Thus, out of a total possible pool of bk

(μ
k

)
nodes at

level k, we must exclude
(
i
k

)
of them. However, we can pick the ξ nogoods from

7.3 Quantum Algorithms for NP-Complete Problems 307

amongst the remaining nodes in any way whatsoever. Hence the probability that a
node is “good” at level i, given that there are ξ “nogoods” at level k, is given by
the ratio of the number of ways to pick the “nogoods” such that a particular node
at level i is “good”, to the total number of ways of picking the ξ “nogoods”. As a
consequence, the probability for a partial solution to be good at level i in a tree of
height μ and branching ratio b can be approximated as [537–539]

p(i)=

(
bk

(μ
k

)− (
i
k

)
ξ

)
(
bk

(μ
k

)
ξ

) (7.5)

where k is the size of the constraint (i.e., number of variables involved in a con-
straint) and ξ is the number of “nogood” ground instances (or number of con-
straints). This approximation essentially relies on the assumption that the partial
solutions at a given level are uncorrelated. Strictly speaking this is not exactly the
case in real problems, but the approximation is good enough to predict the correct
qualitative features of real search spaces.

Now, we are interested in obtaining an asymptotic expression for p(i) for large
problems, i.e., when the number of variables μ→∞. Recall that to scale a con-
straint satisfaction problem up, however, it is not sufficient to increase only μ. In
addition, we ought also to increase the number of constraints so as to preserve
the “constrainedness-per-variable”, β = ξ/μ. Thus, when we consider scaling our
problems up, as we must do to assess the asymptotic behavior of the classical
and quantum structured search algorithms, we have μ →∞ and scale ξ = βμ,
keeping β , b and k constant.2 We now make the assumption that ξ (bk

(μ
k

)
and

ξ (bk
(μ
k

) − (
i
k

)
, which is justified in the asymptotic regime. Using Stirling for-

mula, we have (
M
K

)
(
N
K

)) (M −K)K

(N −K)K
)

(
M

N

)K

(7.6)

for large M and N , provided that K (M,N . This allows us to reexpress (7.5) as

p(i)=
(

1− b−k

(
i
k

)
(μ
k

)
)ξ

(7.7)

Now, assuming that k(i and k(μ, and reusing (7.6), we have

p(i)=
(

1− b−k

(
i

μ

)k
)ξ

(7.8)

2For graph coloring, this scaling assumption corresponds to adding more edges to the graph as we
allow the number of nodes to go to infinity, while simultaneously keeping the average connectivity
(number of edges per node) and the number of colors fixed.

308 7 Solving NP-Complete Problems with a Quantum Computer

Fig. 7.8 Schematic
representation of stages (1)
and (2) of the quantum
structured search algorithm.
These operations partially
amplify the solution states,
and can be nested into a
standard quantum search
algorithm (3) in order to
speedup the amplification of
the solutions

for large i and μ. Finally, assuming for simplicity that bk * 1 and (i/μ)k (1, we
obtain

p(i)= b
−μ(

β
βc

)(i
μ
)k (7.9)

where β = ξ/μ measures the difficulty of the problem and βc = bk log(b) is the
critical value around which the problem is the most difficult.

7.4 Quantum Solution Using Nested Grover’s Algorithm

Our improved quantum search algorithm works by nesting one quantum search
within another, as illustrated in Fig. 7.8. Specifically, by performing a quantum
search at a carefully selected level in the tree of partial solutions, we can narrow
the effective quantum search amongst the candidate solutions so that the net com-
putational cost is minimized. The resulting algorithm is the quantum counterpart of
a classical nested search algorithm which scales as O(bαμ), giving a square root
speedup overall. The nested search procedure mentioned here corresponds to a sin-
gle level of (classical or quantum) nesting, but it can be extended easily to several
nesting levels.

The expected time to find a solution grows as O(bαμ/2), that is, as the square
root of the classical time for problem instances in the hard region. The constant
α, depending on the problem considered, is shown to decrease with an increasing
nesting depth (i.e., an increasing number of nesting levels).

7.4.1 The Core Quantum Algorithm

Assume that the Hilbert space of our search problem is the tensor product of two
Hilbert spaces HA and HB . As before, A denotes the set of primary variables, that

7.4 Quantum Solution Using Nested Grover’s Algorithm 309

is, the variables to which we assign a value in the first stage. The partial solutions
correspond to definite values for these variables. Thus, HA represents the search
space for partial solutions (of dimension dA). The set of secondary variables, char-
acterizing the extensions of partial solutions, is denoted by B , and the corresponding
Hilbert space HB is of dimension dB . The quantum algorithm with a single nesting
level works as follows:

Quantum Structured Search Algorithm

1. Construct a superposition (with equal amplitudes) of all the could-be solutions
at level i by use of the standard unstructured search algorithm based on H .

2. Perform a subsequent quantum search in the subspace of the descendants of all
the could-be partial solutions, simultaneously. This second stage is achieved by
using the standard quantum search algorithm with, as an input, the superposition
of could-be solutions resulting from the first stage. The overall yield of stages (1)
and (2) is a superposition of all states where the solutions have been partially
amplified with respect to non-solutions.

3. Nest stages (1) and (2)—using them as a search operator U—inside a higher-
level quantum search algorithm until the solutions get maximally amplified, at
which point a measurement is performed. This is summarized in Fig. 7.8.

7.4.2 Analysis of Quantum Structured Search

Next we look at the steps in the quantum structured search algorithm in more detail
and estimate the number of iterations required to ensure success. To start we assume
there is a single “cut” level in the search tree. We can then think of performing
a quantum search at some intermediate “cut” level i and using the superposition
so created as the starting state for a quantum search in the leaves of the search tree.
Ultimately, we’re going to nest these two operations together rather than doing them
sequentially.

The starting state of the search is denoted as |s, s′〉, where |s〉 is state that lies in
Hilbert space HA (i.e., the top of the tree up to the “cut” level) and |s′〉 in a state that
lies in Hilbert HB (i.e., bottom of the tree from cut level to the leaves). The number
of qubits in the combined register needs to be enough to hold the bμ leaf nodes of
the search tree at level μ.

Register A stores the starting state at an intermediate level i in the tree, while
register B stores the continuation of that state at level μ. In other words, A holds
partial solutions and B their elaboration in the leaves of the tree.

Step 1. Standard Quantum Search at Intermediate Level i

The first stage of the algorithm consists of a standard quantum search for could-be
partial solutions |c〉 at level i, that is, states in subspace HA that do not violate any
(testable) constraint.

310 7 Solving NP-Complete Problems with a Quantum Computer

We start from state |s〉 in subspace HA, and apply a quantum search based on the
Walsh-Hadamard transformation H since we do not have a priori knowledge about
the location of could-be solutions. The use of H is the least biased assumption since
all states are a priori assumed to be equally likely to be solutions.

Using

〈c|H |s〉 = ±1/
√
dA (7.10)

we can perform an amplification of the components |c〉 based on Q = −H1sH1c

where

1s = exp(iπ |s〉〈s|) (7.11)

1c = exp

(
iπ

∑
c∈C

|c〉〈c|
)

(7.12)

The states |c〉 correspond to the could-be partial solutions in HA (assignment of
the primary variables that could lead to a solution), and belong to the subset C =
{c1, . . . , cnA}.

We assume that there are nA could-be partial solutions, with 1(nA (dA. The
quadratic amplification of these could-be solutions, starting from |s〉, is reflected by

〈c|QnH |s〉) n 〈c|H |s〉) n/
√
dA (7.13)

for small rotation angle. Thus, applying Q sequentially, we can construct a super-
position of all the could-be solutions |c〉, each with an amplitude of order ∼1/

√
nA.

The required number of iterations of Q scales as

n)√
dA/nA (7.14)

This amplitude amplification process can equivalently be described in the joint
Hilbert space HA ⊗ HB , starting from the product state |s, s′〉, where |s′〉 denotes
an arbitrary starting state in HB , and applying (Q⊗ 1) sequentially:

〈c, s′|(Q⊗ 1)n(H ⊗ 1)|s, s′〉 = 〈c|QnH |s〉 ∼ n/
√
dA (7.15)

Here and below, we use the convention that the left (right) term in a tensor product
refers to subspace A (B).

Step 2. Standard Quantum Search Amongst Descendants

The second stage of the algorithm is a standard quantum search for the secondary
variables B in the subspace of the “descendants” of the could-be solutions that have
been singled out in stage (1).

As before, we can use the search operator H that connects extended could-be
solutions |c, s′〉 to the actual solutions or target states |t, t ′〉 in the joint Hilbert space:

〈t, t ′|(1⊗H)|c, s′〉 = 〈t |c〉 〈t ′|H |s′〉 = ±δc,t /
√
dB (7.16)

7.4 Quantum Solution Using Nested Grover’s Algorithm 311

Note that, this matrix element is non-vanishing only for could-be states |c〉 that lead
to an actual solution. Define the operator R =−(1⊗H1s′H)1t , with

1s′ = exp
(
iπ |s′〉〈s′|) (7.17)

1t = exp

(
iπ

∑
(t,t ′)∈T

|t, t ′〉〈t, t ′|
)

(7.18)

where T is the set of solutions |t, t ′〉 at the bottom of the tree, and #(T) = nAB ,
i.e., the problem admits nAB solutions. We can apply the operator R sequentially in
order to amplify a target state |t, t ′〉, namely

〈t, t ′|Rm(1⊗H)|c, s′〉)
{
m〈t, t ′|(1⊗H)|c, s′〉 if c= t

〈t, t ′|(1⊗H)|c, s′〉 if c �= t
(7.19)

for small rotation angle. Note that, for a could-be state |c〉 that does not lead to
a solution (c �= t), we have 1t |c, x〉 = |c, x〉 for all x, so that Rm(1⊗ H)|c, s′〉 =
(−1⊗H1s′H)m(1⊗H)|c, s′〉 = (1⊗H)|c, s′〉, and the matrix element is not am-
plified by m compared to the case c = t . In other words, no amplification occurs in
the space of descendants of could-be partial solutions that do not lead to an actual
solution. Thus, (7.19) results in

〈t, t ′|Rm(1⊗H)|c, s′〉) m√
dB

δc,t (7.20)

Assuming that, among the descendants of each could-be solution |c, s′〉, there is
either zero or one solution, we need to iterate R of the order of

m)√
dB (7.21)

times in order to maximally amplify each solution. We then obtain a superpo-
sition of the solution states |t, t ′〉, each with an amplitude ∼1/

√
nA. This can

also be seen by combining (7.15) and (7.20), and using the resolution of identity
1=∑

x,y |x, y〉〈x, y|:

〈t, t ′|Rm(1⊗H)(Q⊗ 1)n(H ⊗ 1)︸ ︷︷ ︸
U

|s, s′〉

=
∑
x,y

〈t, t ′|Rm(1⊗H)|x, y〉 〈x, y|(Q⊗ 1)n(H ⊗ 1)|s, s′〉

= 〈t, t ′|Rm(1⊗H)|t, s′〉 〈t, s′|(Q⊗ 1)n(H ⊗ 1)|s, s′〉
) (m/

√
dB)(n/

√
dA)) 1/

√
nA (7.22)

Thus, applying the operator Qn followed by the operator Rm connects the starting
state |s, s′〉 to each of the solutions |t, t ′〉 of the problem with a matrix element of
order ∼1/

√
nA.

312 7 Solving NP-Complete Problems with a Quantum Computer

Step 3. Nest the Two Previous Searches

The third stage consists in using the operator U ≡ Rm(1 ⊗ H)(Q ⊗ 1)n(H ⊗ 1)
resulting from steps (i) and (ii) as a search operator for a higher-level quantum
search algorithm, in order to further amplify the superposition of nAB target (or
solution) states |t, t ′〉. The goal is thus to construct such a superposition where each
solution has an amplitude of order ∼1/

√
nAB . As before, we can make use of the

operator S =−U(1s ⊗ 1s′)U†1t where 1s , 1s′ , and 1t are defined in (7.11), (7.17),
and (7.18), in order to perform amplification according to the relation

〈t, t ′|SrU |s, s′〉) r 〈t, t ′|U |s, s′〉) r/
√
nA (7.23)

for small rotation angle. The number of iterations of S required to maximally am-
plify the solutions is thus of the order of

r)
√

nA

nAB

(7.24)

This completes the algorithm. At this point, it is sufficient to perform a measurement
of the amplified superposition of solutions. This yields one solution |t, t ′〉 with a
probability of order 1.

7.4.3 Quantum Circuit for Quantum Structured Search

The quantum network that implements this nested quantum search algorithm is il-
lustrated in Fig. 7.9. Clearly, a sequence of two quantum search circuits (a search in
the A space followed by a search in the B space) is nested into a global search circuit
in the whole Hilbert space HAB . This can be interpreted as a “dynamical” choice
of the search operator U that is used in the global quantum search. This quantum
nesting is distinct from a procedure where one would try to choose an optimum U

before running the quantum search by making use of the structure classically (mak-
ing several classical queries to the oracle) in order to speedup the resulting quantum
search. Here, no measurement is involved and structure is used at the quantum level.

7.4.4 Quantum Average-Case Complexity

Let us estimate the total number of iterations, or more precisely the number of times
that a controlled-phase operator (1t , which flips the phase of a solution, or 1c , which
flips the phase of a could-be partial solution) is used. Since we need to repeat r times
the operation S, which itself requires applying n times Q and m times R, we obtain
for the quantum computation time

Tq) r(n+m))
√
dA +√

nAdB√
nAB

(7.25)

7.4 Quantum Solution Using Nested Grover’s Algorithm 313

Fig. 7.9 Circuit implementing the nested quantum search algorithm (with a single level of nest-
ing). The upper set of quantum variables, initially in state |s〉, corresponds to the primary vari-
ables A. The lower set of quantum variables, initially in states |s′〉, is associated with the sec-
ondary variables B . The quantum circuit makes use of controlled-phase gates 1s = exp(iπ |s〉〈s|),
1s′ = exp(iπ |s′〉〈s′|), 1c = exp(iπ

∑
c∈C |c〉〈c|), and 1t = exp(iπ

∑
(t,t ′)∈T |t, t ′〉〈t, t ′|), and Wal-

sh-Hadamard gates H . The entire operation of U (exhibited inside the dashed box) is repeated r

times. Note that U−1 =U† corresponds to same the circuit as U but read from right to left

This expression has the following interpretation. The first term in the numerator cor-
responds to a quantum search for the could-be partial solutions in space of size dA.
The second term is associated with a quantum search of actual solutions in the space
of all the descendants of the nA could-be solutions (each of them has a subspace of
descendants of size dB). The denominator accounts for the fact that the total num-
ber of iterations decreases with the square root of the number of solutions of the
problem nAB , as in the standard quantum search algorithm.

Let us now estimate the scaling of the computation time required by this quantum
nested algorithm for a large search space (μ→∞). Remember that μ is the number
of variables (number of nodes for the graph coloring problem) and b is the number of
values (colors) per variable. As before, if we “cut” the tree at level i (i.e., assigning
a value to i variables out of μ defines a partial solution), we have dA = bi and
dB = bμ−i . Also, we have nA = p(i)bi , and nAB = p(μ)bμ, where p(i) is the
probability of having a partial solution at level i that is “good” in a tree of height μ.
(The quantity p(μ) is thus the probability of having a solution in the total search
space.) We can reexpress the computation time as a function of i,

Tq(i)=
√
bi +√

p(i)bμ√
p(μ)bμ

(7.26)

314 7 Solving NP-Complete Problems with a Quantum Computer

In order to determine the scaling of Tq , we use the asymptotic estimate of p(i),
which is derived in [100], namely

p(i)= b
−μ(

β
βc

)(i
μ
)k (7.27)

Equation (7.27) is a good approximation of p(i) in the asymptotic regime, i.e., when
the dimension of the problem μ (or the number of variables) tends to infinity. Re-
member that, in order keep the difficulty constant when increasing the size of the
problem, we need to choose the number of constraints ξ = βμ when μ→∞.3 The
constant β corresponds to the average number of constraints per variable, and is a
measure of the difficulty of the problem. The difficulty is maximum when β is close
to a critical value βc = bk log(b), where k is the size of the constraint (i.e., number
of variables involved in a constraint). Note that p(μ)= b−μ(β/βc), implying that the
number of solutions at the bottom of the tree is n(μ)= bμ(1−β/βc). Thus, if β) βc ,
we have p(μ)) b−μ, so that the problem admits of the order of n(μ)) 1 solutions.
This corresponds indeed to the hardest case, where one is searching for a single so-
lution in the entire search space. When β < βc , however, there are less constraints
and the problem admits more than one solution, on average. If β > βc, the problem
is overconstrained, and it typically becomes easier to check the nonexistence of a
solution.

Now, plugging (7.27) into (7.26), we obtain for the quantum computation time

Tq(i))
√
bi +

√
bμ−μ(β/βc)(i/μ)k√
bμ−μ(β/βc)

(7.28)

Defining the reduced level on the tree as x = i/μ, i.e., the fraction of the height of
the tree at which we exploit the structure of the problem, we have

Tq(x)= ax + a1−(β/βc)x
k

a1−β/βc
(7.29)

where a ≡√
bμ. Now, we want to find the value of x that minimizes the computation

time Tq(x), so we have to solve

(β/βc) kx
k−1 = a(β/βc)x

k+x−1 (7.30)

For large μ (or large a), this equation asymptotically reduces to

(β/βc) x
k + x − 1= 0 (7.31)

The solution x (with 0≤ x ≤ 1) corresponds therefore to the reduced level for which
Tq(x) grows asymptotically (μ→∞) with the smallest power in b. Note that this

3For the graph coloring problem, since ξ = eb (where e being the number of edges and b the
number of colors), it implies that the number of edges must grow linearly with the number of
nodes for a fixed number of colors in order to preserve the difficulty. In other words, the average
connectivity must remain constant.

7.4 Quantum Solution Using Nested Grover’s Algorithm 315

optimum x is such that both terms in the numerator of (7.28) grow with the same
power in b (for large μ). This reflects that there is a particular fraction x of the
height of the tree where it is optimal to “cut”, i.e., to look at partial solutions. The
optimum computation time can then be written as

Tq) 2aα

a1−β/βc
)

√
bαμ√

bμ(1−β/βc)
(7.32)

where the constant α < 1 is defined as the solution x of (7.31).4 Note that, for a
search with several levels of nesting, the constant α < x (see [100] for details).

Equation (7.32) implies that the scaling of the quantum search in a space of di-
mension d = bμ is essentially O(dα/2) modulo the denominator (which simply ac-
counts for the number of solutions). In contrast, the standard unstructured quantum
search algorithm applied to this problem corresponds to α = x = 1, with a computa-
tion time scaling as Tq(α = 1)=O(d1/2). This means that exploiting the structure
in the quantum algorithm results in a decrease of the power in b by a coefficient
α: the power 1/2 of the standard quantum search is reduced to α/2 for this nested
quantum search algorithm. Consider this result at β = βc, i.e., when the difficulty
of the problem is maximum for a given size μ. This is the most interesting case
since when β < βc , the problem becomes easier to solve classically. For β = βc, the
nested algorithm essentially scales as

Tq) dα/2 =√
bαμ (7.33)

where α = x < 1 with x being the solution of xk + x − 1= 0, and d = bμ is the di-
mension of the search space. This represents a significant improvement over the
scaling of the unstructured quantum search algorithm, O(d1/2). Nevertheless, it
must be emphasized that the speedup with respect to the computation time O(dα) of
the classical nested algorithm is exactly a square root. This implies that this nested
quantum search algorithm is the optimum quantum version of this particular classi-
cal non-deterministic algorithm.

For the graph coloring problem (k = 2), we must solve the linear equation of
second order x2 + x− 1= 0, whose solution is simply x = (−1+√5)/2= 0.6180.
(When k > 2, the solution for x increases, and tends to 1 for large k.) This means
that the level on the tree where it is optimal to use the structure is at about 62% of the
total height of the tree, i.e., when assigning values to about 62% of the μ variables.
In this case, the computation time of the nested algorithm scales as O(d 0.31), which
is clearly an important computational gain compared to O(d 0.5).

Consider the regime where β < βc , i.e., there are fewer constraints and therefore
more than one solution on average, so that the problem becomes easier to solve. For
a given k, the solution x of (7.31) increases when β decreases, and tends asymptot-
ically to 1 for β → 0. This means that we recover the unstructured quantum search

4We may ignore the prefactor 2 as it only yields an additive constant in the logarithm of the com-
putation time.

316 7 Solving NP-Complete Problems with a Quantum Computer

algorithm in the limit where β → 0. The denominator in (7.32) increases, and it is
easy to check that the computation time

Tq)
√
bμ(α−1+β/βc) (7.34)

decreases when β decreases. As expected, the computation time of the nested algo-
rithm approaches O(

√
dβ/βc) as β tends to 0 (or x → 1), that is, it reduces to the

time of the standard unstructured quantum search algorithm at the limit β → 0.

7.5 Summary

In the 1990’s a handful of computer scientists with a background in physics began
looking at computational complexity from a fresh perspective [101, 234, 280, 537–
540]. They wanted to know how the computational cost to solve an NP-Complete
problem varied with the degree of constrainedness of the problem instances. They
found that there is a critical value in constrainedness at which the difficulty of find-
ing a solution rises steeply. Moreover, empirically, this region also coincides with an
abrupt collapse in the probability of there being a valid solution. This has led to more
physics-insight into analogies between the structure of NP-Complete problems and
physical phase transitions [4, 205, 206, 281, 351, 361].

The problems of factoring composite integers and computing discrete logarithms,
which are addressed by Shor’s algorithm, both fall within the NP complexity class,
but neither is NP-Complete. Thus although Shor’s algorithm is remarkable, it only
achieves an exponential speedup on two of the easier problems within NP. This led
many computer scientists to question whether similar quantum algorithms could be
found that solve NP-Complete problems in polynomial time. At this point, no such
quantum algorithms have been found. It has even proven difficult to extend Shor’s
algorithm to solve other problems, such as GRAPH-ISOMORPHISM, which are in
NP that are not NP-Complete.

However, it is possible to apply Grover’s algorithm to solve NP-Complete prob-
lems. Unfortunately, if this is done naively, by merely amplitude amplifying in the
leaves of the search tree without exploiting its structure, the resulting speedup is
insufficient to beat the best known classical algorithms for NP-Complete prob-
lems [379]. However, a variant of Grover’s algorithm, which nests one Grover search
within another (and another . . . and another . . . etc.), does make use of the implicit
structure inherent in the NP-Complete problem, and thereby yields an average case
complexity that beat the best known classical algorithms for solving that kind of NP-
Complete problem. The average case complexity analysis of the expected running
time of this algorithm makes use of the phase transition results mentioned earlier.

7.6 Exercises

7.1 Phase transition phenomena are very common, and even arise in graph theory.

7.6 Exercises 317

(a) Write a computer program that generates a random graph having n nodes and
m edges

(b) Write a computer program to test whether or not an n node, m edge, graph is
connected

(c) Choose ten values of m that span across the range from 0 <m< 1
2n(n− 1). For

each value of m generate 100 random graphs having n= 50 nodes and m edges
and record the fraction of those graphs that are connected

(d) Plot your data to visualize how the fraction of graphs that are connected varies
as you increase the number of edges. Does the fraction change linearly from
m= 0 to m= or nonlinearly?

(e) What happens if you use larger graphs and much larger sample sets?

7.2 Suppose you are asked to find all ways to color a graph containing n nodes and
m edges with k colors.

(a) Roughly, how many k-colorings would you expect there to be?
(b) Plot a graph illustrating how the number of colorings is expected to vary as you

vary the ratio of 2m/n (for fixed n)
(c) At what value of the ratio 2m/n would you expect the hardest graph coloring

problems to be most often encountered?

7.3 Suppose you are asked to solve k = SAT problems involving n variables and m

clauses.

(a) Roughly, how many solutions to the k-SAT problem would you expect there to
be?

(b) Plot a graph illustrating how the number of solutions is expected to vary as you
vary the ratio clauses to variables (for fixed number of variables)

(c) At what value of the ratio of number of clauses to number of variables, m/n,
would you expect the hardest k-SAT problems to be most often encountered?

Fig. 7.10 Random graph
having n= 30 nodes and each
of its possible edges included
with probability lnn

n

318 7 Solving NP-Complete Problems with a Quantum Computer

7.4 We generate the random graph shown in Fig. 7.10 by fixing the number of
nodes to be n = 30 and then including each of its possible 1

2n(n − 1) edges with
probability p = lnn

n
. Use the data presented earlier in this chapter to estimate with

what probability you must pick an edge in a n= 30 node graph to ensure:

(a) A greater than 95% chance, on average, that the graph is connected?
(b) A greater than 95% chance, on average, that the graph is unconnected?
(c) Is the graph in Fig. 7.10 connected or unconnected? Explain your answer.
(d) Is the problem of deciding graph connectivity in P or NP? Justify your answer.

Chapter 8
Quantum Simulation with a Quantum
Computer

“Nature isn’t classical, dammit, and if you want to make a simulation of Nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look
so easy.”
– Richard P. Feynman

The main catalyst for funding quantum computers in the U.S.A. came with the
publication of Peter Shor’s quantum algorithm for factoring composite integers and
computing discrete logarithms, and hence the possibility of breaking public key
cryptosystems in polynomial time. Whilst such an application might be of keen in-
terest to intelligence agencies and criminals, it has little significance to the majority
of scientists and engineers, nor does it have much commercial value. Industry is not
going to adopt quantum computers if all they can do is factor integers and compute
discrete logarithms. Moreover, a quantum computer needed to run Shor’s algorithm
on problems of practical significance will require thousands of qubits and tens of
thousands of quantum gate operations. We are still some way from achieving any-
thing close to this experimentally. Luckily, however, there is another use of quantum
computers that has much lower technical hurdles and might be of greater commer-
cial interest. This is the idea of using quantum computers to simulate other quan-
tum mechanical systems exponentially faster than is possible classically. A quantum
computer having just 50–100 qubits would be able to outperform any foreseeable
classical supercomputer in simulating quantum physical systems. The potential pay-
off here is considerably more valuable, not to mention scientifically and socially
useful, than any business based on code breaking. As Geordie Rose puts it “Success
means a chance to fundamentally change three trillion dollar industries. Total mar-
ket cap of pharma, chemical, and biotech industries [is] US$964B plus US$1153B
plus US$979B equals US$3.1 trillion dollars.”

Thus, in this chapter we address the question “How do you simulate the evolu-
tion of a quantum system, and extract useful predictions efficiently?” This problem,
which is the foundation of several potential new industries including nanotechnol-
ogy and spintronics, is effectively intractable classically for all but the simplest of
quantum systems, but is much easier for a quantum computer.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_8, © Springer-Verlag London Limited 2011

319

http://dx.doi.org/10.1007/978-1-84628-887-6_8

320 8 Quantum Simulation with a Quantum Computer

8.1 Classical Computer Simulations of Quantum Physics

It is common today to hear about supercomputers being used to simulate complex
phenomena ranging from the trajectories of hurricanes, the movements of weather
patterns, the interactions between biomolecules, global climate change, the stock
market, flows across futuristic airplanes, and the folding of proteins. In fact, it is
hard to find any field of science that has not benefitted greatly from supercomputer
simulations.

Few people, however, give much thought to what goes on behind such simula-
tions. Do these simulations capture a complete picture of what is going on? Are the
results exact or approximate? Does it matter if we have to replace exact numbers
with finite precision approximations to them? Can computers simulate absolutely
anything or are there fundamental limits to what can be simulated on either a clas-
sical, or quantum, machine?

The essence of performing a quantum simulation is to be able to predict the
final state of a quantum system given knowledge of its initial state, |ψ(0)〉, and
the Hamiltonian, H, by which it is governed. In other words, we need to solve the
Schrödinger equation for the particular quantum system:

i�
∂|ψ(t)〉

∂t
= H|ψ(t)〉 (8.1)

which has the solution

|ψ(t)〉 = e−iHt/�|ψ(0)〉 =U |ψ(0)〉 (8.2)

where e−iHt ≡ 1 − i(Ht/�) − 1
2! (Ht/�)2 + 1

3! i(Ht/�)3 + 1
4! (Ht/�)4 − · · · and

powers of Ht/� are computed by taking their repeated dot product, e.g., (Ht/�)3 =
Ht/� ·Ht/� ·Ht/�. Thus, if we can compute the matrix exponential of the hermitian
matrix describing the Hamiltonian, H, we can predict the unitary evolution, U =
e−iHt/�, by which the system will change, and so predict its state at any time.

Although the Schrödinger equation has been known for the better part of a cen-
tury [487] it turns out to be impractical to solve it exactly analytically in all but the
simplest of contexts due to the difficulty of calculating the required matrix exponen-
tials. In part this is because the matrices involves are very large indeed and many
terms in the (infinite) series expansion are required to obtain a good enough approx-
imation. Thus, while we can solve the Schrödinger equation of a simple molecule
like hydrogen, H2, exactly analytically, and from the result compute all of its observ-
able properties, we cannot easily replicate this success for other molecules, such as
caffeine, C8H10N4O2, that are only moderately more complex.

The infeasibility of analytic methods led scientists to use supercomputers to solve
Schrödinger’s equation numerically. This can be done using more sophisticated
methods to estimate matrix exponentials, or by writing the state vector, |ψ(t)〉 as
the superposition |ψ(t)〉 =∑N

j=1 cj (t)|ψj 〉 over some complete set of eigenstates,
|ψj 〉 (j = 1,2, . . . ,N), and then solving the implied set of N coupled differential

8.1 Classical Computer Simulations of Quantum Physics 321

equations for the amplitudes, cj (t). Specifically, from the Schrödinger equation and
the eigenbasis expansion for the state vector we obtain:

∂cj (t)

∂t
=− i

�

N∑
k=1

Hjkck(t) where Hjk = 〈ψj |H|ψk〉 (8.3)

However, such an approach is still costly in terms of both computer time and com-
puter memory.

8.1.1 Exact Simulation and the Problem of Memory

The computational challenge scientists face when simulating quantum systems is
daunting. The crux of the problem lies in the amount of memory and computing time
needed to solve the Schrödinger equation for any non-trivial atomistic system being
simulated. By “size” we could mean the number or atoms or electrons within it, or
the number of basis functions that must be used to represent its total wavefunction,
or the number of lattice points used to discretize space. Fortunately, all ways of
characterizing the “size” of the atomistic system are, for a fixed level of accuracy,
proportional to one another and so it matters little which we use.

Thus, even considering a simple n-qubit quantum system, to merely represent its
state vector requires, in the worst case, the classical computer to store 2n complex
numbers, each with perhaps several digits of precision. Moreover, if we want to pre-
dict how this state vector will evolve in space and time, we will have to solve the
n-qubit Schrödinger equation, which will entail manipulating matrices containing
22n complex elements! As you can see n does not have to be that large before it be-
comes quite impractical to perform the required mathematical operations in a direct
way. Worse still, simulating a quantum system containing just one extra qubit, by
increasing n→ n+ 1, means the length of the state vector doubles, and the number
of elements in the matrices we manipulate quadruples! This limits our ability to
determine the physical and chemical properties of nano-devices and materials by ab
initio quantum mechanical calculations, even though, in principle, this ought to be
possible.

8.1.2 Exact Simulation and the Problem of Entanglement

An even more perplexing problem of using classical computers to simulate quan-
tum systems arises from the possibility that different parts of a composite quantum
system may be entangled with one another and hence possess correlations that ex-
ceed values that are possible classically. This means that no classical process can
truly replicate the statistics of such quantum entanglement unless it is augmented
with artificial hidden variables that force the correlations to be as strong as the en-
tanglement requires. In other words there are certain quantum phenomena that are

322 8 Quantum Simulation with a Quantum Computer

intrinsically unsimulatable classically without the introduction of artificial “hidden
variables”. This means that classical computers, even probabilistic classical comput-
ers, cannot truly simulate all quantum systems without “cheating” by conspiring to
arrange, via secret hidden variables, correlations that the classical simulations would
not naturally display. Indeed, the minimum amount of communication required to
mimic the statistics of an entangled system is used nowadays as one way to quantify
the degree of entanglement between sub-systems [77, 120, 495, 515].

8.1.3 Approximate Simulation and the Problem of Fidelity

In response to the intractability of simulating quantum systems exactly using clas-
sical computers, scientists have devised an assortment of computational techniques
that trade the physical fidelity of a simulation for its computational efficiency (in
memory and/or time). These models typically impose strictly incorrect, yet toler-
able, simplifying assumptions that allow the mathematical models of composite
quantum systems to be reduced to a more tractable form, which render the compu-
tation within reach of classical supercomputers. This gives scientists approximate
solutions that, in many cases, can shed useful insight into complex quantum sys-
tems. Some of the standard approximate methods currently used are as follows:

8.1.3.1 Full Configuration Interaction

A “Configuration Interaction” (CI) model represents the wavefunction of an atom
or molecule as a linear combination of its ground state and excited states wavefunc-
tions. This allows correlation effects to be included in ab initio quantum mechani-
cal calculations of quantum many-body systems. In turn, the component wavefunc-
tions can each be expanded in terms of so-called “Slater determinants” (discussed
in Chap. 9). This means that a CI model describes the total wavefunction as a su-
perposition of molecular orbitals, and each of these molecular orbitals as a linear
combination of basis functions. If there are N electrons and K orbitals the so-called
“Full Configuration Interaction” will involve a total of (2K!)/(N !(2K−N)!) terms.
This number grows so rapidly that the FCI model cannot be used on anything other
than the smallest of molecules. Nevertheless, when applicable, the Full Configu-
ration Interaction gives excellent results with respect to the chosen basis set used,
which is under the control of the programmer.

8.1.3.2 Tight-Binding

Tight-Binding (TB) methods are often used to determine the electronic properties of
crystalline solids. In such materials the nuclei of atoms appear at the lattice sites of
the appropriate crystal lattice. The TB model makes the assumption that the Fourier

8.1 Classical Computer Simulations of Quantum Physics 323

transform of the Bloch-function, which gives the electron spatial distribution—or
“Wannier function”, can be written as a “Linear Combination of Atomic Orbitals”
(LCAO). Furthermore, it is assumed that the atomic orbitals decay rapidly on the
scale less than the lattice spacing between the nuclei. Hence, to a good approxima-
tion, the Hamiltonian for the whole solid can be expressed in terms if the Hamil-
tonians of the individual atoms that comprise it. As such, the TB method is able to
include certain electron-correlation effects if these are already implicit in the math-
ematical descriptions of the local atomic orbitals.

8.1.3.3 Hartree-Fock

The Hartree-Fock model is a much simpler wavefunction method, similar in spirit to
a FCI model, except that it dramatically restricts the number of Slater determinants
used. In fact, each energy eigenfunction is assumed to be described using a sin-
gle Slater determinant. This means that the electrons are assumed to be distributed
amongst individual single electron orbitals, and hence electron-electron correlation
effects are neglected. It is widely used to compute approximations to the ground
state energy and ground state itself. The basis for the method is a proof that any
approximation to the true ground state energy has to be higher than the true energy.
Consequently, if there are two approximations to the ground state energy and one is
lower than the other, it is known which one is better. Moreover, at the true energy
the variation in the energy goes to zero. The Hartree-Fock equations were devised
by imposing this variational constraint on the ground state energy and requiring that
the molecular orbitals be orthonormal.

8.1.3.4 Density Functional Theory

Density Functional Theory (DFT) estimates desired properties of multi-electron sys-
tems, such as their ground state energy, via determination of their overall spatial
electron density distribution. In DFT electron-electron interactions are only charac-
terized on average, and no strong electron-electron correlation effects are included.
The foundation for the method rests on a paper by Hohenberg and Kohn that shows
that the ground state energy and other properties of multi-electron systems can be
approximated as functionals of the spatial electron density distribution. The compu-
tational cost of DFT is considerably less than that of wavefunction methods, such
as Hartree-Fock and Full Configuration Interaction, and in many cases of practical
interest the answers DFS provides are close enough to reality to provide useful guid-
ance for chemists and material scientists. However, DFT fails badly [94] when the
system under study no longer conforms adequately to the implicit assumptions upon
which DFT is based, namely, that electron correlation effects can be neglected, e.g.,
in entangled systems and those possessing van der Waals forces.

Using such approximate techniques, scientists have built many useful models of
large molecular systems and made quantitative predictions that are close to observed

324 8 Quantum Simulation with a Quantum Computer

values [193]. And others have conceived of possibly designing new materials from
ab initio quantum simulations [154, 186].

Notwithstanding these successes, approximate methods don’t always get a good
enough answer. They seem to break down most noticeably for quantum systems
that possess unusually strong electron correlations. This is not surprising because,
typically, approximate methods tend to grossly simplify electron interactions. They
may impose the assumption that each electron behaves largely independently of the
other electrons, or at least sees them as some mean field charge distribution. Unfor-
tunately, in certain materials neither of these assumptions are sufficiently close to
being correct for the model to make reliable predictions. In particular, high temper-
ature superconductors, Mott insulators, and quasi-low dimensional materials can all
display unexpectedly complex properties that depend crucially on the presence of
strong electron correlations.

The 1D Hubbard model is the most widely used model for probing correlated
electron systems. There are many approximate solutions to the Hubbard model, the
most robust being those based on the Bethe ansatz [60, 319], which work well for
defining the ground state and the first few excited states. However, questions of high
temperature dynamics are not well described by the ground state symmetries. Worse
still, there are no adequate classical approximations to the 2D and 3D Hubbard
models. It would seem that such models will require a fundamentally new approach
to simulation.

Moreover, recent reviews of old experimental results have even revealed that
aspects of certain bulk materials can only be explained by assuming the existence
of entanglement on a large scale [85, 513]. Approximate methods used to simulate
such materials that fail to account for entanglement will therefore never be able to
model such materials adequately.

With the advent of nano-technology scientists are beginning to conceive of more
exotic and intelligently designed nano-devices that are engineered to harness strong
electron correlation effects and entanglement. Physically faithful simulations of
such devices will be essential in order to design them correctly and make them
robust to noise and imperfections. While supercomputers have proven to be great
workhorses for the design and optimization of regular (crystalline) materials and
devices, they appear to be quite limited in their ability to simulate such exotic nano-
devices due to the amount of memory exact simulations will require, and an in-
adequate accounting of the physical effects in play. Hence, there appears to be a
growing need for a genuinely new strategy for simulating such quantum-engineered
devices.

8.1.3.5 Limited Speedup via Parallelization: Amdahl’s Law

One might think that parallelization is the key to speeding up quantum mechanical
simulations on classical computers. Well let’s think about this. There is a formula,
called Amdahl’s law, which allows one to estimate the expected speedup of paral-
lelized implementations of an algorithm relative to the non-parallelized algorithm.

8.2 Quantum Computer Simulations of Quantum Physics 325

Let us define the running time of the original algorithm as “1” in some appropriate
unit. If this algorithm can be parallelized, we will likely find that different parts can
be sped up to different degrees. So the question is what is the overall speedup we
can expect?

Suppose we benchmark our algorithm and find that it consists of N parts, labeled
1 to N that can be sped up to various degrees. If Pi is the fraction of the net number
of computational instructions devoted to performing part i and if Si is the speedup
to part i then Amdahl’s Law states that the net speedup will be:

Told

Tnew
= 1∑N

i=1 Pi/Si
(8.4)

Here is an example. Suppose we have an algorithm that has three parts. The fraction
of the total number of instructions in the algorithm consumed by the different parts
is P1 = 0.3, P2 = 0.5, and P3 = 0.2, and therefore, as required, P1 + P2 + P3 = 1.
Now let’s assume the speedup (or slow down) of each part is given by S1 = 5× (a
500% increase), S2 = 3.2× (a 320% increase) and S3 = 0.9× (a 10% slow down).
Then the net speedup from parallelization will be 1/(P1

S1
+ P2

S2
+ P3

S3
) = 1/(0.3

5 +
0.5
3.2 + 0.2

0.9)≈ 2.28.
So parallelization offers some help with obtaining a speedup but it does noth-

ing to eliminate the exponential explosion in memory needed to simulate bigger
quantum system. Adding one more qubit doubles the size of the memory needed to
encode its state. So parallelism is not sufficient to render exact quantum simulation
on classical supercomputers tractable.

8.2 Quantum Computer Simulations of Quantum Physics

Up until the 1980’s people working in theoretical computer science did not have
much interaction with those working in theoretical physics. Theoretical computer
scientists tended to use pure mathematics, rigorous proofs, and formal systems,
whereas theoretical physicists tended to use applied mathematics, approximate
models, and less formal arguments. It was fairly unusual, therefore, that in the
Spring of 1981, a group of 60 scientists met at MIT’s conference center, Endi-
cott House, in Dedham, Massachusetts to discuss the inter-relationships between
physics and computation. The meeting was arranged by Ed Fredkin a famous com-
puter scientist, and Fredkin invited Richard Feynman, a famous Caltech physicist,
to come. Initially, Feynman declined but after some cajoling accepted. It is for-
tunate that Feynman did participate because the ideas he presented at that meet-
ing would prove to be the foundation for nanotechnology and quantum comput-
ing.

326 8 Quantum Simulation with a Quantum Computer

8.2.1 Feynman Conceives of a Universal Quantum Simulator

“A lecture by Dr. Feynman is a rare treat indeed. For humor and drama, suspense and in-
terest it often rivals Broadway stage plays. And above all, it crackles with clarity. If physics
is the underlying ‘melody’ of science, then Dr. Feynman is its most lucid troubadour.”
– Los Angeles Times science editor, 1967.

In his talk Feynman speculated on the efficiency with which computers could simu-
late different kinds of physical systems. The ideas expressed in this lecture became
immortalized subsequently in a scientific paper entitled “Simulating Physics with
Computers” that appeared in the International Journal of Theoretical Physics the
next year [181].

Feynman realized that in order to make precise statements about the efficiency
with which certain computations can be done, that he needed an operational defini-
tion of what it meant to be “efficient”. So, in a characteristically pragmatic manner,
he adopted the common sense notion that simulation should be deemed efficient
if, and only if, the space and time resources the simulation consumed were pro-
portional to the size of the system being simulated. Given this criterion, Feynman
posed four fundamental questions concerning the efficiency with which computers
can simulate different types of physical system. He asked: “Can classical physics be
simulated efficiently by a classical computer?”, “Can quantum physics be simulated
efficiently by a classical computer?”, “Can quantum physics be simulated efficiently
by a quantum computer?”, and “Does there exist a universal quantum simulator?”.
Feynman answered some of these questions in full but could only answer others
in part. In particular, whilst he was confident a quantum computer could simulate
systems of bosons efficiently, he was less certain they could simulate systems of
fermions efficiently. Specifically he asked (p. 476 [181]):

“. . . could we imitate every quantum mechanical system which is discrete and
has a finite number of degrees of freedom? I know, almost certainly, that we could
do that for any quantum mechanical system which involves Bose particles. I’m not
sure whether Fermi particles could be described by such a system. So I leave that
open. Well thats’s what I meant by a general quantum mechanical simulator. I’m not
sure that it’s sufficient, because I am not sure that it takes care of Fermi particles.”

It would take another 15 years before this question was settled definitively by
quantum physicists Dan Abrams and Seth Lloyd, who proved that, indeed, quantum
computers can simulate systems of fermions efficiently [1, 321]. However, we will
postpone discussion of this case for now as it is more complicated, but we will revisit
it in Sect. 8.4.

8.2.2 Quantum Systems with Local Interactions

For one quantum system to simulate another efficiently all stages of the simulation
process need to be efficient including:

8.2 Quantum Computer Simulations of Quantum Physics 327

• Preparing the simulator in an initial state that mirrors the initial state of the system
to be simulated.

• Evolving the state.
• Extracting an answer.

Unfortunately, there is a problem with quantum simulation as described above. In
Chap. 3 on “Quantum Circuits”, we learned that the number of gates needed to im-
plement an arbitrary unitary operator on n-qubits grows exponentially in n. Any
such unitary, U say, can always we pictured as the result of a suitably complicated
Hamiltonian, i.e., U = eiH for some Hamiltonian H. Hence, there must be Hamilto-
nians (in fact they will be the majority of mathematically allowed Hamiltonians) that
cannot be implemented in a quantum circuit with a number of gates that is only a
polynomial in n. This means that there must be many hypothetical quantum systems
governed by such complicated Hamiltonians that will not be possible to simulate in
polynomial time on any quantum computer!

This would seem to undermine the usefulness of a universal quantum computer as
a quantum simulator. Although the quantum computer still knocks down the space
(memory) complexity needed to perform the simulation by an exponential factor, it
appears it has not made any significant dent on the exponential time complexity!

Fortunately, Nature has been kind to quantum computer scientists. Typically,
the kinds of Hamiltonians that arise in practice involve particles that only interact
strongly with near neighbors, or, if there are long range interactions, the governing
Hamiltonian often has a simple tensor product structure. Either way these kinds of
Hamiltonians can be simulated using only polynomially-sized quantum circuits.

8.2.3 Lloyd-Zalka-Wiesner Quantum Simulation Algorithm

Thus, we can make the simplifying assumption that we are dealing with a Hamilto-
nian having only local interactions, i.e., that H has the form H =∑L

�=1 H�, where
each H� involves only few-body interactions.

The Schrödinger equation for a time independent, local Hamiltonian H is:

i�
∂|ψ〉
∂t

= H|ψ〉 (8.5)

with solution |ψ(t)〉 = e−iHt/�|ψ(0)〉 = U |ψ(0)〉. Thus we now need to find an
efficient way to factor the unitary evolution operator U .

Unfortunately, if there is at least one pair of the component Hamiltonians that
do not commute, i.e., if there exists H� and H�′ such that [H�, H�′] = H�H�′ −
H�′ H� �= 0 then mathematically we cannot write exp(−i

∑L
�=1 H�)= exp(−iH1) ·

exp(−iH2) · · · exp(−iHL). How then, do you build a circuit for U?
The trick is to break up the evolution into small increments [1, 532, 556].

|ψ(t)〉 = e−iH
t/� · e−iH
t/� · · · e−iH
t/�︸ ︷︷ ︸
M factors

|ψ(0)〉 =
(

M⊙
m=1

U(
t)

)
|ψ(0)〉 (8.6)

where
t = t/M , and U(
t)= exp(−iH
t/�)≈⊙L
�=1 e

−iH�
t/� + O((
t)2).

328 8 Quantum Simulation with a Quantum Computer

If each H� is local and
t is small enough, there is an efficient quantum circuit
for exp(−iH�
t/�). The mathematical basis for this approximation rests on the
limit:

lim
n→∞(e−iH1t/n · e−iH2t/n)n = e−i(H1+H2)t (8.7)

Thus the simplest so-called “Trotter” formula is:

e−iH
t = e−iH1
t · e−iH2
t + O((
t)2) (8.8)

However, higher-order Trotter approximations having a smaller error term can easily
be obtained [230, 466, 467].

e−iH
t = e−iH1

t
2 · e−iH2
t · e−iH1

t
2 + O((
t)3) (8.9)

e−iH
t = e−iH2

t
2 · e−iH1
t · e−iH2

t
2 + O((
t)3) (8.10)

8.3 Extracting Results from Quantum Simulations Efficiently

It is not enough, of course, to simulate a quantum system on a quantum computer.
At the end of the day we need to extract some useful information from the end state
of the simulation. In general, we can assume this final state will be some super-
position, |ψ(t)〉 say, containing valuable information about the simulated quantum
system. Unfortunately, we cannot learn what this final superposition state is merely
by reading it (as we would on a classical computer). If we tried to read it we would
collapse the superposition into some eigenstate of the observable operator being
used. It would therefore take many repetitions of the simulation and subsequent
measurement to build up enough information to re-construct the final superposi-
tion state using principles of “quantum state tomography”, which is a notoriously
costly and inefficient process. In general, we would have to attempt to reconstruct
the full density matrix for |ψ(t)〉, i.e., ρ(t) = |ψ(t)〉〈ψ(t)|. If |ψ(t)〉 were (say)
and n-qubit system, it would have a 2n × 2n dimensional density matrix, contain-
ing 22n elements. We would, therefore, have to re-synthesize and measure |ψ(t)〉
on the order of O(22n) times to be able to estimate this density matrix empirically.
Thus naive quantum state tomography is inefficient, and quite impractical for even
moderately complex quantum systems. In fact, reconstructing the final state using
quantum state tomography would incur as much work as we would have incurred
had we performed the simulation classically!

8.3.1 Single Ancilla-Assisted Readout

How then, can there by an advantage to simulating a quantum system on a quantum
computer compared to simulating the same system on a classical computer if we

8.3 Extracting Results from Quantum Simulations Efficiently 329

cannot “see” the final result? The answer is that, fortunately, we often only care
about learning the expectation value of some operator of interest with respect to
the quantum system in question, i.e., 〈ψ(t)|O|ψ(t)〉, rather than having to know
the final state of the simulated system, |ψ(t)〉, explicitly. In many cases of practical
significance this is information we can extract efficiently. The following sections
describe some examples of operators whose expectation values can be obtained with
surprisingly little effort in comparison to what would be needed for quantum state
tomography.

Specifically, as Somma et al. show in [464], suppose we want to know was the
expectation value:

O = 〈U†V 〉 = 〈ψ(t)|U†V |ψ(t)〉 (8.11)

where U and V unitary, when the system is in state |ψ(t)〉, but neither know, nor
desire to know, |ψ(t)〉 explicitly. Such an expectation value can be obtained by a
procedure which augments the simulated system with a single ancilla qubit, and then
entangle the simulated system with this ancilla so that a certain expectation value of
the ancilla is made to match the expectation value of the operator (on the simulated
system) that we seek [354, 464]. The whole process requires re-synthesizing the
state |ψ(t)〉 a number of times that is only polynomial in the size of the simulated
system, and each time measuring the expectation value of an operator on only the
single (ancilla) qubit. It is exponentially easier to estimate the state of a single qubit
than that of n-qubits. Hence, this scheme results in an efficient way to extract the
expectation value of interest. The procedure, embodied in the quantum circuit shown
in Fig. 8.1, works as follows:

Fig. 8.1 Quantum circuit for
ancilla-assisted readout. By
determining the expectation
value of the operator 〈2σ+〉
for a single ancilla qubit
using a number of trials
polynomial in n, we can infer
the expectation value
〈ψ |U†V |ψ〉 of the operator
U†V for an n-qubit quantum
system in state |ψ〉. This
means we can extract
properties of the result of a
quantum simulation without
having to know the final state
explicitly

330 8 Quantum Simulation with a Quantum Computer

Single Ancilla-Assisted Readout

1. Prepare the system in state |ψ〉
2. Introduce a single ancilla (i.e. extra) qubit and prepare it in equally weighted

state |+〉 = 1√
2
(|0〉 + |1〉) by acting on state |0〉 with a single Walsh-Hadamard

gate
3. Apply two controlled-gates, Ṽ = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗V and Ũ = |0〉〈0| ⊗U +
|1〉〈1| ⊗ 1. Thus V only acts on the system qubits if the ancilla is in state |1〉 and
U only acts on the system qubits if the ancilla is in state |0〉.

4. Measure the expectation value of the operator 2σ+ = σx+ iσy of the ancilla qubit
(only). This can be done by re-synthesizing |ψ〉 polynomially many times and
measuring the observables σx and σy alternately on successive trials.

5. After a large but still polynomial number of trials 〈2σ+〉 = 〈U†V 〉.

The significance of the ancilla-assisted readout is that by monitoring the state of a
single ancilla qubit over only polynomially re-syntheses of the state |ψ〉, the expec-
tation value of a property of |ψ〉 (an n-qubit system) can be extracted.

8.3.2 Multi-Ancilla-Assisted Readout

The foregoing trick can be extended to allow more complicated expectation values
to be extracted efficiently from quantum simulations [380, 464]. Suppose we want
to learn the expectation value of an operator that can be written as a sum of unitary
products, i.e., an operator of the form:

O =
2m∑
i=1

aiU
†
i Vi (8.12)

where Ui and Vi are unitary and the coefficients ai are positive real numbers. One
approach would be to use 2m different single ancilla-assisted readout circuits com-
puting the 2m different expectation values 〈U†

i Vi〉 and then adding up the results
weighted by the ai . But this is not the most efficient strategy. A better approach is to
use a quantum circuit such as that shown in Fig. 8.2, which involves the following
procedure:

Multi-Ancilla-Assisted Readout Our goal is to estimate the expectation value
〈ψ |O|ψ〉 where O =∑2m

i=1 aiU
†
i Vi where Ui and Vi are unitary operators.

1. Let
∑2m

i=1 ai =N , and then rewrite the operator O as O =N
∑2m

i=1 α
2
i U

†
i Vi , with

α2
i = ai/N .

2. Prepare the system in state |ψ〉, which could be the output from a quantum sim-
ulation.

3. Introduce m+ 1 ancillae qubits (labeled a1, a2, . . . , am+1) each prepared in the
state |0〉.

8.3 Extracting Results from Quantum Simulations Efficiently 331

Fig. 8.2 Quantum circuit for ancilla-assisted readout. By determining the expectation value of the
operator 〈2σ+〉 for a single ancilla qubit using a number of trials polynomial in n, we can infer
the expectation value of 〈ψ |∑2m

i=1 aiU
†
i Vi |ψ〉 for the operator

∑2m
i=1 aiU

†
i Vi for an n-qubit system

in state |ψ〉. This means we can extract properties of the result of a quantum simulation without
having to know the final state explicitly

4. Apply a Walsh-Hadamard gate to just the first ancilla qubit to put it in the state
|+〉 = 1√

2
(|0〉 + |1〉).

5. Apply 2m controlled-Ui gates to the (n) system qubits such that gate Ui acts on
the system qubits iff the state of the ancillae qubits is |0〉1|i〉, where the subscript
“1” refers to the state of the first (ancilla) qubit.

6. Likewise, apply 2m controlled-Vi gates to the (n) system qubits such that gate Vi

acts on the system qubits iff the state of the ancillae qubits is |1〉1|i〉.
7. Apply two controlled-gates, Ṽ = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗V and Ũ = |0〉〈0| ⊗U +
|1〉〈1| ⊗ 1. Thus V only acts in the system qubits if the ancilla is in state |1〉 and
U only acts on the system qubits if the ancilla is in state |0〉.

8. Measure the expectation value of the operator 2σ+ = σx + iσy of the single (top-
most) ancilla qubit (only). This can be done by re-synthesizing |ψ〉 polynomially
many times and measuring the observables σx and σy alternately on successive
trials.

9. After a large but still polynomial number of trials 〈2σ+〉 = 〈∑2m
i=1 α

2
i U

†
i Vi〉.

10. Thus we can obtain the desired expectation value by multiplying the measured
value of 〈2σ+〉 by N .

This provides and even more dramatic example of how it is possible to obtain ex-
pectation values of observables of quantum systems, without the need to learn the
state of those quantum systems explicitly.

332 8 Quantum Simulation with a Quantum Computer

8.3.3 Tomography Versus Spectroscopy

The ancilla-assisted readout scheme shown in Fig. 8.1 enables us to determine ex-
perimentally the expected value of the operator O = U†V , where U and V are
unitary, when the quantum system is in state |ψ〉. Conceptually, if |ψ〉 were an (un-
known) state produced as the result of some quantum simulation, we would there-
fore be able to predict properties of the simulated system. However, as pointed out
by Miquel et al. [354], there is another way of thinking about the ancilla-assisted
readout circuit that suggests how to extract other information of significance.

The output state of the ancilla depends on both the input state |ψ〉 and the oper-
ator O. Therefore, in principle, if one knew the operator O one could gain informa-
tion about |ψ〉 and, conversely, if one knew the state |ψ〉, one could gain informa-
tion about the operator O, such as characteristics of its spectrum. In other words, the
ancilla-assisted readout circuit could be used to perform quantum state tomography
(when O is known and |ψ〉 is not) and it can be used to perform spectroscopy (when
|ψ〉 is known and O is not).

For such applications it useful to consider a slight variation on the ancilla-assisted
readout circuit that allows for more general inputs and operators. The resulting cir-
cuit is shown in Fig. 8.3. Given a mixed state n-qubit input ρ and an n+ 1-qubit
controlled-U operator that can be implemented in a polynomially sized quantum cir-
cuit, then it can be shown that by monitoring the expectation values of the Pauli spin
operators, σz and σy of the ancilla, i.e., 〈σz〉 and 〈σy〉, we can obtain information
about the real and imaginary parts of the trace of Uρ. Specifically,

〈σz〉 = Re[tr(Uρ)]
〈σy〉 = Im[tr(Uρ)] (8.13)

For example, if we pick the input n-qubit state to be maximally mixed, i.e., ρ = 1
2n ,

then the expectation value 〈σz〉 = Re[tr(U)]/2n, which is proportional to the sum of

Fig. 8.3 Quantum circuit that
can be used for both quantum
state tomography and
spectroscopy. Only the first
qubit (the ancilla) is observed
at each trial. By obtaining
estimates for 〈σz〉 and 〈σy〉
we can obtain information
about U if ρ is know, or we
can obtain information about
ρ if U is known. This follows
from that fact that
〈σz〉 = Re[tr(Uρ)] and
〈σy〉 = Im[tr(Uρ)]

8.3 Extracting Results from Quantum Simulations Efficiently 333

Fig. 8.4 Quantum circuit for determining spectral density in the vicinity of a specific energy

Fig. 8.5 Quantum circuit for measuring correlation functions

the eigenvalues of U , thereby giving some coarse information about the spectrum
of U .

More precise characterization of the spectrum of U in the vicinity of specific
energies can be obtained from the circuit shown in Fig. 8.4.

8.3.4 Evaluating Correlation Functions

Another type of information that is often sought from simulations of quantum
systems is a temporal or spatial correlation function. Mathematically, tempo-
ral correlations amount to determining expectation values of operators such as
〈ψ |T †ATB|ψ〉, where A=∑

i αiAi and B =∑
j βjBj are sums of unitary opera-

tors, and T = exp(−iHt), with H being the Hamiltonian, is the temporal evolution
operator. Spatial correlation functions are computed similarly except that we take
the operator T to be T = exp(−ip ·x), which is the space translation operator. Once
posed in this form, it is apparent that correlation functions can be computed using
the technique of ancilla-assisted readout introduced earlier by setting U

†
i = T †Ai

and Vj = T Bj . Then a circuit for computing one of the components of the desired
correlation function using a single ancilla would be that shown in Fig. 8.5. Notice

334 8 Quantum Simulation with a Quantum Computer

that the control-on-0 T gate and control-on-1 T gate can be merged since, regard-
less of the control value, T is to be applied to the system qubits. This reduces, quite
significantly, the complexity of the quantum circuit needed to demonstrate the com-
putation of correlation functions.

8.4 Fermionic Simulations on Quantum Computers

In Feynman’s original paper on “Simulating Physics with Computers,” [181] he al-
luded to uncertainty in whether or not a true universal quantum simulator might
exist. By universal quantum simulator he meant a finite quantum system that could
be made to simulate any other quantum system, which is discrete and has a finite
number of degrees of freedom, such that the time and space (memory) resources
of the simulator are linear in the size of the system being simulated. It is important
to appreciate that all aspects of the simulation must be able to be done efficiently
including its initialization, evolution and measurement. Feynman felt sure such a
universal quantum simulator could exist for simulating bosonic systems, doubted
whether one could exist for fermionic systems. However, nowhere in the paper did
he spell out exactly why he had this doubt. So let us look at this question, and
consider the special problems caused by simulating fermionic systems on a com-
puter.

8.4.1 Indistinguishability and Implications for Particle Statistics

In classical physics we are accustomed to assuming that particles, even if they
are identical, are nevertheless distinguishable. For example, using classical physics
thinking, if we rack up a set of identical pool balls in a triangular frame we can tell
one ball from another by the fact it has a distinct starting position. Subsequently, as
we break, we can track the trajectory of each ball individually. Hence, even though
the balls are identical, they remain, in principle, distinguishable. Scaling things up
to very large numbers of identical classical particles does not remove this basic
property of distinguishability.

Physicists discovered that in a “gas” of such particles, the distribution of their
energies will always obey what is known as Maxwell-Boltzmann statistics. This
predicts that the statistics of their distribution of energies will be predictable. In
particular, the number of particles having energy εi , i.e., nεi , will be given by:

nεi =
gi

eβεi+α
(8.14)

where εi is the energy, gi is the number of particle states having this energy, and
α and β are two parameters related to the physical properties of the system. In
particular, β = 1

kT
where k is Boltzmann’s constant (k = 1.3805 × 10−23 JK−1)

8.4 Fermionic Simulations on Quantum Computers 335

and T is the absolute temperature (measured in degrees Kelvin). In addition, e−α =
N/Z where N is the total number of particles and Z is the partition function Z =∑

i gie
βεi . It is therefore possible to re-express the Maxwell-Boltzmann distribution

in the form:

nεi =
gi

e(εi−μ)/kT
(8.15)

where μ=−αkT .
When we go to the quantum scale, we need to re-examine our fundamental notion

of distinguishable particles. For example, imagine that we have just two quantum
particles of the same type (e.g., two electrons or two photons), which we’ll call
“particle 1” and “particle 2”. Let particle 1 be in state |ψm〉 and let particle 2 be
in state |ψn〉. Therefore, using superscripts to label the particles, we are tempted to
write their joint state as |Ψ 12〉 = |ψ1

m〉|ψ2
n〉. Is this an adequate description of the

situation?
The product state representation would be a correct description if the particles

were truly distinguishable. However, quantum particles do not have this basic prop-
erty of guaranteed distinguishability—you cannot zoom in on a quantum particle
using a gigantic microscope to see which way it is going without affecting its
behavior. For example, a pair of electrons in the same orbital of an atom cannot
be distinguished from one another since the orbital merely gives the spatial dis-
tribution of the collective electron probability amplitude. So if we know that we
have two quantum particles, one of which is in state |ψm〉 and the other of which
is in state |ψn〉 we cannot really say which particle is in which state. Therefore,
we ought really to write the state as a superposition of the two possibilities, i.e.,
|Ψ 12〉 = cmn|ψ1

m〉|ψ2
n〉 + cnm|ψ1

n〉|ψ2
m〉 such that |cmn|2 + |cnm|2 = 1. Obviously, to

be unbiased we should further require |cmn| = |cnm| = 1√
2

. However, this still does
not specify things completely. Specifically, there are two simple ways to satisfy the
constraint that |cmn| = |cnm| = 1√

2
. We could pick cmn =−cnm = 1√

2
or we could

pick cmn =+cnm = 1√
2

. Depending on our choice the quantum system will turn out
to have profoundly different behavior!

8.4.2 Symmetric Versus Anti-Symmetric State Vectors

For example, suppose we had picked cmn =−cnm = 1√
2

and consider what happens
to the total state vector when we interchange particles. Our initial state vector is:

|Ψ 12〉 = 1√
2
(|ψ1

m〉|ψ2
n〉 − |ψ1

n〉|ψ2
m〉) (8.16)

Now interchange the particles:

336 8 Quantum Simulation with a Quantum Computer

|Ψ 21〉 = 1√
2
(|ψ2

m〉|ψ1
n〉 − |ψ2

n〉|ψ1
m〉)

= − 1√
2
(|ψ1

m〉|ψ2
n〉 − |ψ1

n〉|ψ2
m〉)

= −|Ψ 12〉 (8.17)

The state vector has acquired a minus sign upon interchange of the particles! Any
state vector having this property is said to be anti-symmetric. Physical systems
whose state vectors acquire a minus sign upon interchange of particles are called
“fermions”.

Conversely, had we chosen cmn = +cnm = 1√
2

then |Ψ 12〉 = 1√
2
(|ψ1

m〉|ψ2
n〉 +

|ψ1
n〉|ψ2

m〉) on interchange of particles we would have obtained:

|Ψ 21〉 = 1√
2
(|ψ2

m〉|ψ1
n〉 + |ψ2

n〉|ψ1
m〉)

= 1√
2
(|ψ1

m〉|ψ2
n〉 + |ψ1

n〉|ψ2
m〉)

= 1√
2
(|ψ2

n〉|ψ1
m〉 + |ψ2

m〉|ψ1
n〉)

= 1√
2
(|ψ2

m〉|ψ1
n〉 + |ψ2

n〉|ψ1
m〉)=+|Ψ 12〉 (8.18)

In this case the state vector remains unchanged upon interchange of a pair of parti-
cles. Any state vector having this property is said to be symmetric. Physical systems
whose state vectors are symmetric are called “bosons”.

8.4.3 Bosons and Fermions

Thus, in quantum mechanics there are fundamentally two kinds of particles—
fermions and bosons—that differ in whether they need to be described using anti-
symmetric or symmetric state vectors. It turns out that particles having half inte-
ger spin (e.g., protons, neutrons, and electrons) are all fermions (and are therefore
described by anti-symmetric state vectors), whereas particles having integer spin
(such as photons) are all bosons (and are therefore described by symmetric state
vectors). Moreover, a composite quantum object that contains an odd number of
fermions is a fermion, e.g., a carbon-13 nucleus consisting of 6 protons and 7 neu-
trons (i.e., 13 fermions). Conversely, a composite object containing an even number
of fermions is a boson. For example, a carbon-12 nucleus consisting of 6 protons
and 6 neutrons (i.e., 12 fermions) is therefore a boson. Thus fermions and bosons
are not restricted to merely elementary particles. Indeed, there are now known to be
many other “quasi-particles” such as Cooper-pairs, electron-hole pairs, plasmons,
magnons, and polarons.

8.4 Fermionic Simulations on Quantum Computers 337

As an aside we mention that if particles are confined to move in only two di-
mensions then a third and highly unusual class of quasi-particles, called “anyons”,
is possible [533]. Whereas the state vectors of bosons and fermions pick up either
a +1 or −1 phase factor upon interchange of particles, the state vectors describing
anyons can pick up any phase factor exp(iφ) upon interchange of particles. Hence
the name “any-on”. Indeed, there is now a model of so-called “topological quantum
computation” based on the braiding of anyons on a two dimensional surface, which
we discuss in Chap. 15.

However, in three dimensions all particles and quasi-particles are either fermions
or bosons, and are classified as one or the other depending on how their state vector
transforms under particle interchange. This fundamental difference in the symmetry
properties of the state vector causes profound differences in the properties bosons
and fermions possess at very low temperatures and high particle densities.

8.4.4 Bose-Einstein Statistics

Bosons always have an integer value of spin, and the distribution of their energies
obeys Bose-Einstein particle statistics:

nεi =
gi

e(εi−μ)/kT − 1
(8.19)

At high temperatures this distribution converges to the Maxwell-Boltzmann distri-
bution. But at low temperatures, and high particle densities, the bosonic features
dominate behavior. In particular, bosons have the property that an arbitrarily large
number may occupy the same quantum state at the same time. Thus, when a collec-
tion of bosons are cooled, they fall into the same quantum state, creating a so-called
Bose-Einstein condensate. Ultimately, this phenomenon explains certain anomalous
behaviors in low temperature systems including superfluidity and superconductivity
(due to Cooper pairs).

8.4.5 Pauli Exclusion Principle and Fermi-Dirac Statistics

If bosons can all occupy the same state, can fermions do likewise? Let us consider
a pair of fermions, such as electrons, described by the anti-symmetric state vector:

|Ψ 12〉 = 1√
2
(|ψ1

m〉|ψ2
n〉 − |ψ1

n〉|ψ2
m〉) (8.20)

What happens if |ψm〉=|ψn〉? In this case, we would obtain |Ψ 12〉= 1√
2
(|ψ1

m〉|ψ2
m〉−

|ψ1
m〉|ψ2

m〉) = 0. This is not a valid state! So the anti-symmetric nature of the state
vector for a fermion tells us that we are never allowed to have a situation in which
|ψm〉 = |ψn〉. That is, no two fermions may ever be in the same quantum state at the
same time!

338 8 Quantum Simulation with a Quantum Computer

Pauli Exclusion Principle No two identical fermions may occupy the same quan-
tum state simultaneously.

As an illustrative example, consider an atom. The state of each electron in an
atom is completely. The azimuthal quantum number specifies the shape of the orbital
with � = 0 for a spherical s-orbital, � = 1 for a dumbbell shaped p-orbital, � = 2
for a dumbbell with doughnut shaped d-orbital etc. The magnetic quantum number
specifies the projection of the orbital angular momentum along an axis. And the
spin quantum number specifies the angular momentum of the electron. The allowed
values for these quantum numbers are interrelated: 0 ≤ � ≤ n − 1, −� ≤ m� ≤ �,
and ms =− 1

2 or + 1
2 , so for a given principal quantum number (the “electron energy

level” or “shell”) there are a finite number of distinct and allowed combinations for
the other three quantum numbers. The Pauli Exclusion Principle says that no two
electrons in the same atom may have the same values for all four quantum numbers.
Hence, as we move up the Periodic Table by considering nuclei with progressively
more protons, to keep the atom electrically neutral the number of electrons must
grow to match the number of protons. But by the Pauli Exclusion Principle the extra
electrons cannot pile up in the same state. As electrons are added they must fill up a
shell by exhausting all distinct combinations for the four quantum numbers. Having
done so, the next electron added must start to fill up the next shell etc.

The electronic structure of an atom depends on this property. For example, in
an atom the electrons (which are spin- 1

2 particles and hence fermions) lie in or-
bitals, which constitute different quantum mechanical states of a certain energy,
such that there can be at most two electrons per orbital. These two electrons cannot
be in the same quantum state (i.e., have identical values for all their quantum num-
bers) even though they are in the same orbital. So they must differ in the value of
some quantum number. Indeed they do. The two electrons will have opposing spins,
thereby enforcing their anti-social nature as fermions. Using this rule we can build
up the electronic structure of an atom. The orbitals fill up two electrons at a time.
Orbitals of the same energy constitute an energy “shell” such that the n-th shell
has at most 2n2 electrons in it, and then electrons need to go to the next shell etc.
This electron distribution is what gives atoms their chemical properties. Hence, this
anti-social characteristic of fermions essential to account for electronic structure of
atoms.

In general, fermions have half-integer values for their spin and need to be de-
scribed using anti-symmetric state vectors. Hence they all exhibit this anti-social
tendency of avoiding the same quantum state at the same time. This behavior
changes the statistics of the energy distribution of fermions compared with the
classical Maxwell-Boltzmann distribution. Fermions, it turns out, must obey Fermi-
Dirac statistics:

nεi =
gi

e(εi−μ)/kT + 1
(8.21)

At high temperatures this distribution converges to the Maxwell-Boltzmann distri-
bution. But at low temperatures, and high particle densities, the fermionic features

8.4 Fermionic Simulations on Quantum Computers 339

dominate behavior. For example, certain types of white dwarf stars are able to resist
collapse due to pressure exerted because of Fermi-Dirac statistical effects.

Thus, we have now seen that the distribution laws for the energies of bosons and
fermions are quite different and as a consequence bosonic systems and fermionic
systems display quite different particle statistics at low temperatures and high den-
sities. If we are to have a universal quantum simulator this means that the machine
will have to mimic the right kind of particle statistics for the quantum system be-
ing simulated. It is not obvious a priori that this can be done. For example, if our
quantum simulator uses bosons (e.g., photons) can it simulate fermionic systems
(e.g., electrons) correctly and vice versa? Even Feynman in his original “Simulating
Physics with Computers” paper was unsure whether this could be done and whether
it was possible to have a universal quantum simulator. The trick, it turns out, is to
use the Jordan-Wigner transformation.

8.4.6 Fermionic Simulations via the Jordan-Wigner
Transformation

We would like to be able to use a universal quantum simulator to simulate all the
various kinds of quantum objects described above—elementary particles, compos-
ite particles, and quasi-particles—regardless of whether they are bosons, fermions
or anyons. Unfortunately, the basic problem of conceiving of a universal quantum
simulator is that the quantum particles we want to simulate may obey completely
different operator algebras from the quantum particles with which the simulator is
built. How then can we be sure that one quantum algebra can be used to simulate
another, and even if it can, that it can be done efficiently?

This is the crux of the problem to which Feynman alluded with fermions. As we
saw above, fermions must be described by anti-symmetric state vectors. Therefore,
if we want to simulate a fermionic quantum system, we are obliged to initialize our
quantum simulator in an anti-symmetric quantum state. However, for an n particle
system, such a state will contain n! states in superposition. It was not obvious to
Feynman, at the time he wrote his classic “Simulating Physics with Computers” pa-
per, that there was an efficient procedure to create this initial anti-symmetric state
having factorially many components. Hence, his doubt regarding the efficiency of
fermionic simulations on a quantum computer. The question remained open until
Dan Abrams and Seth Lloyd showed that this could be done [1]. Subsequently these
ideas were generalized and embellished by the work of G. Ortiz, J.E. Gubernatis,
E. Knill, R. Laflamme, and R. Somma [375, 376, 464], and extended to quantum
simulations of topological field theories by Michael Freedman, Alexei Kitaev, and
Zhenghan Wang [189]. Collectively, these works have made great progress in push-
ing forward the frontiers of quantum simulation.

The key to quantum simulation is therefore to map the operator algebra of the
target quantum system to be simulated into the operator algebra of the quantum
simulator, e.g., qubits (spin- 1

2 particles) and unitary gates, perform the simulation

340 8 Quantum Simulation with a Quantum Computer

Fig. 8.6 Quantum simulation can be done provided we can map the operator algebra of the target
quantum system into the operator algebra of the quantum simulator, e.g., qubits (spin- 1

2 particles)
and unitary gates, perform the simulation in the simulator’s algebra, and then invert the mapping
to translate the answer back into the original operator algebra

in the simulator’s algebra, and then invert the mapping to translate the simulation
result back into the original operator algebra. This basic strategy is illustrated in
Fig. 8.6. By being able to interpret quantum mechanical calculations in as equiva-
lent computations in different operator algebras, we can sometimes pick the algebra
that makes the calculation easiest, translate the problem to that algebra, solve the
problem, and then translate the result back to the original operator algebra.

A good example, is provided by trying to simulate the quantum mechanical be-
havior of a two-dimensional lattice of spinless fermions. The situation is described
using an algebra of creation and annihilation operators, which create fermions on
one site and annihilate them on another as a way of modeling how the fermions are
allowed to hop around the lattice. The anti-social nature of the fermions, i.e., the
fact that no two can share the same values for all their quantum numbers, restricts
their allowed spatial distributions on the lattice. Moreover, the anti-symmetric na-
ture of their state vector means that it must acquire a minus sign each time a pair of
fermions are interchanged on the lattice.

The key to simulating such a fermionic system (which obeys the creation/annihil-
ation operator algebra) using a simulator based on the standard quantum circuit
model (which obeys the Pauli algebra of spin- 1

2 particles) is to map the fermionic
algebra into the Pauli algebra, simulate in the translated system in the Pauli algebra,
and then map the result back to the fermionic algebra. In this case the relevant
mapping is performed by way of the Jordan-Wigner transformation, which is defined
as follows:

cj →
(
j−1∏
�=1

−σ�
z

)
σ
j
−

c
†
j →

(
j−1∏
�=1

−σ�
z

)
σ
j
+

(8.22)

where

σ+ = σx + iσy

σ− = σx − iσy
(8.23)

8.4 Fermionic Simulations on Quantum Computers 341

and σx,σy and σz are the usual Pauli matrices, which obey the SU(2) algebra,

whereas aj and a
†
j are the annihilation and creation operators for a fermion at site j ,

which obey the fermionic anti-commutation algebra:

{ai, aj } = 0

{a†
i , a

†
j } = 0

{a†
i , aj } = δij

(8.24)

where {A,B} = AB + BA is the anti-commutator of operators A and B . Once,
in the Pauli-algebra of spin- 1

2 particles, the simulation can be performed using the
methods of Sect. 8.2.3. Moreover, the two-dimensional lattice of Nx ×Ny sites can
be mapped into a one-dimensional chain of sites by mapping the site with coordinate
(�,m) into the site j =m+ (�− 1)Nx on a one-dimensional chain, where 1≤ �≤
Ny and 1≤m≤Nx . Hence, the fermionic algebra can be simulated using the Pauli-
algebra.

8.4.7 Fermionic Simulations via Transformation to
Non-interacting Hamiltonians

Recently, another approach to quantum simulation, especially suited to strongly cor-
related electron systems, was discovered. It pertains, amongst other things, to the
famous XY -model [514]. The scheme uses a fixed quantum circuit to transform the
Hamiltonian of a system having strong electron correlations into one corresponding
to non-interacting particles, the subsequent simulation of which is trivial. It works
because this fixed circuit has the effect of diagonalizing the strong electron correla-
tion Hamiltonian. Moreover, this mapping is exact, and obviates the need to use any
approximations, such as the Trotter formula, in simulating the Hamiltonian. This
scheme is therefore conceptually simpler than the approaches discussed earlier, and
ought to lead to higher fidelity simulations.

We start with the XY -Hamiltonian of a system having strong electron correla-
tions:

HXY [σ] =
n∑

i=1

(
1+ γ

2
σx
i σ

x
i+1 +

1− γ

2
σ
y
i σ

y

i+1

)

+ λ

n∑
i=1

σz
i +

1+ γ

2
σ
y

1 σ
z
2 · · ·σz

n−1σ
y
n + 1− γ

2
σx

1 σ
z
2 · · ·σz

n−1σ
x
n (8.25)

γ is the anisotropy and λ an external transverse magnetic field. These last two terms
arise from boundary conditions and are not important in the large n limit.

342 8 Quantum Simulation with a Quantum Computer

Suppose there is a unitary matrix, Udis, which can be implemented in only poly-
nomially many gates, that disentangles the dynamics. That is,

HXY =Udis · H̃ ·U†
dis (8.26)

where H̃ is the non-interacting Hamiltonian and Udis is the unitary matrix corre-
sponding to the fixed quantum circuit that diagonalizes the strong-electron correla-
tion Hamiltonian HXY . If such a matrix exists it will then be possible to synthesize
arbitrary excited states (not just ground states) of the strong electron correlation
systems (a very difficult task ordinarily) merely by preparing an appropriate prod-
uct state, and then applying Udis. Likewise, the time evolution of a strong electron
correlation system (an even harder task!) can be simulated from:

e−iHXY t =Udis · e−iH̃t ·U†
dis (8.27)

Frank Verstraete, Ignacio Cirac, and Jose Latorre discovered just such a Udis

having the remarkable property of being a fixed operation able to disentangle the
dynamics of a strong electron correlation system [514]. Their recipe for disentan-
gling the XY -Hamiltonian proceeds by transforming the strong electron correlation
Hamiltonian into a disentangled form by applying a sequence of steps

HXY
Jordan-Wigner−→ H2[c] QFT−→ H3[b] Bogoliubov−→ H4[a] (8.28)

where H4[a] is unentangled.

Direct Fermionic Simulation via Mapping to Non-interacting Hamiltonians

1. Start with the Hamiltonian HXY [σ]. This is expressed in terms of spin operator
algebra.

2. Re-express the Hamiltonian HXY [σ] in terms of fermionic modes by using the
Jordan-Wigner transformation. This is not a physical operation it is merely using
mathematical transformation to re-represent HXY [σ] (in a spin-operator algebra)
as H2[c] (in a fermionic mode representation).

3. Likewise, also use the Jordan-Wigner transformation to re-express the input state
of the system (represented initially by spin- 1

2 particles) as a fermionic state:

|ψ〉 =
∑

i1,i2,...,in=0,1

ψi1,i2,...,in |i1, i2, . . . , in〉

Jordan-Wigner−→
∑

i1,i2,...,in=0,1

ψi1,i2,...,in (c
†
1)

i1(c
†
2)

i2 · · · (c†
n)

in |vacuum〉 (8.29)

4. Apply the QFT in the “fermionic mode” representation. That is, apply the trans-
formation bk = 1√

n

∑n
j=1 exp(i2πjk/n)cj for k = −n

2 + 1, . . . , n
2 . This opera-

tion maps H2[c] into a momentum space representation H3[b].

8.4 Fermionic Simulations on Quantum Computers 343

Fig. 8.7 Fermionic quantum simulation by transforming to an interaction-free Hamiltonian. This
circuit diagonalizes the Hamiltonian of the XY -model for eight sites. The circuit performs a
Bogoliubov transformation (involving the B gates), followed by a QFT (involving the Fk and
fermionic SWAP gates). The circuit icon for the latter is taken here to be that of a SWAP gate with
blacked in ends. In the disentangling direction, HXY → H4[a], this circuit would be used right–
to-left. It is written left-to-right because it was derived by analyzing the mapping H4[a] → HXY .
Moreover, the full circuit needs some additional qubit permutation gates to re-order them in the
same order they began

5. Finally, to completely disentangle HXY [σ] we map H3[b] into a momentum-
dependent mixture of modes. Specifically, we obtain H4[a] =∑n/2

k=−(n/2)+1 ωka
†
kak where ak = cos(θk/2)bk − i sin(θk/2)b†

−k . The angles θk

are given by

θk = arccos

(−λ+ cos(2πk
n

)√
[λ− cos(2πk

n
)]2 + γ 2 sin2(2πk

n
)

)
(8.30)

6. Thus we arrive at a disentangled Hamiltonian H4[a] = ∑n/2
k=−(n/2)+1 ωka

†
kak

where ωk =
√
[λ− cos(2πk

n
)]2 + γ 2 sin2(2πk

n
). This is a sum of non-interacting

terms whose spectrum is equivalent to a non-interacting Hamiltonian H̃ =∑
i ωiσ

z
i .

The quantum circuit that performs the QFT and Bogoliubov transformations is
shown in Fig. 8.7 In Fig. 8.7 the gate icons that resemble SWAP gates with blacked

344 8 Quantum Simulation with a Quantum Computer

in ends, represents a fermionic-SWAP gate, defined as:

femionicSWAP=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎟⎠ (8.31)

the Fk are the gates:

Fk =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1√

2
α(k)√

2
0

0 1√
2

−α(k)√
2

0

0 0 0 −α(k)

⎞
⎟⎟⎟⎠ (8.32)

with α(k)= exp(i 2πk/n). The combination of Fk gates and fermionic SWAP gates
comprise the QFT operation. Similarly, the gates

Bk =

⎛
⎜⎜⎝

cos θk 0 0 i sin θk
0 1 0 0
0 0 1 0

i sin θk 0 0 cos θk

⎞
⎟⎟⎠ (8.33)

collectively implement the Bogoliubov transformation where

θk = arccos

(−λ+ cos(2πk
n

)√
[λ− cos(2πk

n
)]2 + γ 2 sin2(2πk

n
)

)
(8.34)

Quantum simulation via mapping to a non-interacting Hamiltonian represents a
fresh perspective on fermionic simulation and appears to be implementable using
even fewer qubits than conventional quantum simulation. In fact, it seems likely
that such a scheme will be the basis for the first true quantum simulation to exceed
the capabilities of any classical supercomputer simulation.

8.5 Summary

Exact numerical simulations of quantum systems are intractable using classical
computers for all but trivial systems. Approximate simulations can omit phenomena
that are of critical importance to the system being simulated. And, last but not least,
certain quantum phenomena are not intrinsically simulatable by any classical de-
vice unless we introduce artificial hidden variables. A fundamentally new approach
to the simulation of quantum systems is needed.

Quantum simulation provides such a breakthrough. The Lloyd-Zalka-Wiesner al-
gorithm [1, 532, 556] shows that it is possible, in principle, to simulate any Hamilto-
nian by using the Trotter product formula. However, if we want to simulate quantum

8.6 Exercises 345

systems that obey an operator algebra other than that native to the simulator, then
we need to find the mapping from the target operator algebra to the Pauli-algebra
of spin- 1

2 particles, perform the simulation in the Pauli-algebra, and then map the
result back to the target operator algebra. The most recent methods exploit these
mappings between operator algebras to simulate a fermionic system by mapping it
to a non-interacting Hamiltonian for which simulation is easy.

It is believed that a quantum computer having just 50–100 qubits would be able to
outperform any foreseeable classical supercomputer in simulating quantum physical
systems. Such special-purpose quantum simulators may, in fact, be the only way to
design new nanotechnology devices that deliberately seek to exploit strong electron
correlations and other exotic quantum effects, and which are beyond the reach of
classical supercomputer-based simulation. Thus quantum simulation has the poten-
tial to have a far greater impact on science and engineering, and a far greater value
to society, than that of quantum factoring engines. It is a pity so many resources
have been directed towards the goal of achieving a quantum factoring engine when
quantum simulation engines have so much greater potential.

8.6 Exercises

8.1 Matrix exponentials arise routinely in quantum computing, and certainly in
quantum simulation. One way to compute a matrix exponential is to substitute the
relevant matrix for all powers of the variable in the series expansion of the expo-
nential function in the variable. If the order of the expansion is high enough you can
often spot a pattern and thereby guess the correct closed form for the exact matrix
exponential. Answer the following questions to obtain the exact matrix exponential
e−iH where H is the XY -Hamiltonian. We will assume we are working in units of
�= 1.

(a) Write down the series expansion of eω around ω= 0 to order n.
(b) Write down the series expansion of sinω around ω= 0 to order n.
(c) Write down the series expansion of cosω around ω= 0 to order n.
(d) Compute a series that approximates e� to order n by substituting the matrix �

for all power of the variable ω in the series you obtained in part (a) above. [Hint:
be sure to account for all powers of ω and realize that ωk →� ·� · · · · ·�︸ ︷︷ ︸

k

]

(e) Let H be the XY -Hamiltonian H = αX⊗X+βY ⊗Y . Using the formulae you
obtained in part (d) above, approximate the matrix exponential of the matrix
−iH to order 7.

(f) What is the significance of the matrix defined in part (e) from a quantum simu-
lation perspective?

(g) Look at the structure of the matrix elements you obtained in part (e) and use
the formulae you obtained in parts (b) and (c) to recognize the closed form
functions corresponding to the matrix elements of e−iH. The result is the exact
matrix exponential e−iH.

346 8 Quantum Simulation with a Quantum Computer

8.2 If Exercise 8.1 was too easy, try the following variant on it. Answer the follow-
ing questions to obtain the exact matrix exponential e−iH where H is the Hamilto-
nian defined below. We will assume we are working in units of �= 1.

(a) Write down the series expansion of eω around ω= 0 to order n.
(b) Write down the series expansion of sinhω around ω= 0 to order n.
(c) Write down the series expansion of coshω around ω= 0 to order n.
(d) Compute a series that approximates the matrix exponential e� to order n by sub-

stituting the matrix � for all power of the variable ω in the series you obtained
in part (a) above.

(e) Let H be the Hamiltonian H = αX⊗X+βZ⊗1+γ1⊗Z. Using the formulae
you obtained in part (d) above, approximate e−iH to order 7.

(g) Use your results in parts (b) and (c) to predict the exact closed form of the matrix
exponential e−i(αX⊗X+βZ⊗1+γ1⊗Z).

8.3 In Sect. 2.9 we encountered the Krauss-Cirac decomposition of a maxi-
mally general 2-qubit unitary matrix. The core entangling operation in that de-
composition, i.e., N(a,b, c), was defined via the matrix exponential N(a,b, c) =
ei(aX⊗X+bY⊗Y+cZ⊗Z), where X, Y , and Z are the Pauli matrices. In Sect. 2.9 we
stated the closed form of N(a,b, c) without proof. Use the following steps to con-
firm that the stated the form given was correct.

(a) Write down the series expansion of eω around ω= 0 to order n.
(b) Write down the series expansion of sinω around ω= 0 to order n.
(c) Write down the series expansion of cosω around ω= 0 to order n.
(d) Compute a series that approximates the matrix exponential e� to order n by sub-

stituting the matrix � for all power of the variable ω in the series you obtained
in part (a) above.

(e) Let H be the Hamiltonian H = aX⊗X+bY ⊗Y +cZ⊗Z. Using the formulae
you obtained in part (d) above, approximate eiH to order 7.

(f) Use your results in parts (b) and (c) to predict the exact closed form of the
matrix exponential e−i(aX⊗X+bY⊗Y+cZ⊗Z), and verify it matches the unitary
matrix N(a,b, c) of Sect. 2.9. This is the core entangling operation within any
maximally general 2-qubit gate.

8.4 In quantum simulation we sometimes approximate a matrix exponential of

the form e−i(H1+H2)
t such that [H1, H2] �= 0 by the Trotter formula e−iH1

t
2 ·

e−iH2
t · e−iH1

t
2 . Check the veracity of this approximation by answering the fol-

lowing questions.

(a) Let H1 = 1
3X⊗X+ 1

5Y ⊗ Y and H2 = 1
21⊗Z + 1

7X⊗ 1. Prove that:

[H1, H2] =

⎛
⎜⎜⎝

0 − 2
35 0 − 2

15
2
35 0 8

15 0
0 − 8

15 0 2
35

2
15 0 − 2

35 0

⎞
⎟⎟⎠ �= 0 (8.35)

8.6 Exercises 347

(b) For
t = 1 prove

e−i(H1+H2)
t

=
⎛
⎜⎝

0.861− 0.473i −0.044+ 0.005i −0.067− 0.117i −0.125i
−0.044+ 0.005i 0.736+ 0.452i −0.483i 0.067− 0.117i
−0.067− 0.117i −0.483i 0.736− 0.452i −0.044− 0.005i

−0.125i 0.067− 0.117i −0.044− 0.005i 0.861+ 0.473i

⎞
⎟⎠

e−iH1

t
2 · e−iH2
t · e−iH1

t
2

=
⎛
⎜⎝

0.861− 0.475i −0.041+ 0.014i −0.067− 0.118i −0.115i
−0.041+ 0.014i 0.748+ 0.475i −0.442i 0.067− 0.118i
−0.067− 0.118i −0.442i 0.748− 0.475i −0.041− 0.014i

−0.115i 0.067− 0.118i −0.041− 0.014i 0.861+ 0.475i

⎞
⎟⎠

(c) For
t = 0.1, i.e., a time times smaller time step, that the approximation be-
comes even better. In particular, prove:

e−i(H1+H2)
t

=
⎛
⎜⎝

0.999− 0.05i 0 −0.001− 0.014i −0.013i
0 0.997+ 0.05i −0.053i 0.001− 0.014i

−0.001− 0.014i −0.053i 0.997− 0.05i 0
−0.013i 0.001− 0.014i 0 0.999+ 0.05i

⎞
⎟⎠

e−iH1

t
2 · e−iH2
t · e−iH1

t
2

=
⎛
⎜⎝

0.999− 0.05i 0 −0.001− 0.014i −0.013i
0 0.997+ 0.05i −0.053i 0.001− 0.014i

−0.001− 0.014i −0.053i 0.997− 0.05i 0
−0.013i 0.001− 0.014i 0 0.999+ 0.05i

⎞
⎟⎠

8.5 Assume particles A and B are electrons (fermions) in quantum state |ΨAB〉 =
1√
2
(|ψA〉|ψB〉 − |ψB〉|ψA〉). How is the state SWAP|ΨAB〉 related to the state

|ΨAB〉? What happens if |ψA〉 = |ψB〉? Is the result a valid quantum state? What
is to prevent this possibility?

8.6 Suppose a “programmable quantum simulator”, S, exists that can be pro-
grammed to simulate a unitary operator U applied to input quantum “data” |d〉 by
effecting the transformation:

S|d〉|PU 〉 = (U |d〉)|P ′
U 〉 (8.36)

Can such a device be built that is capable of deterministically simulating an arbitrary
unitary operator of the appropriate dimensionality? To answer this, show that if N
unitary operators, U1,U2, . . . ,UN , which are distinct up to a global phase, can be
simulated by this device that:

(a) The program register is at least N -dimensional, i.e., requires log2 N qubits and

348 8 Quantum Simulation with a Quantum Computer

(b) The corresponding program states, |PU1〉, |PU2〉, . . . , |PUN
〉must be orthogonal.

(c) What do these requirements on the dimensionality of the program register, and
orthogonality of the program states, imply regarding the existence of a deter-
ministic universal programmable quantum simulator?

(Hint: Start off by considering how S acts when asked to simulate two different
programs acting on the same data, i.e.,

S|d〉|PU1〉 = (U1|d〉)|P ′
U1
〉

S|d〉|PU2〉 = (U2|d〉)|P ′
U2
〉

Then compute the overlap 〈PU2 |PU1〉. What assumption would allow you to divide
this overlap by 〈P ′

U2
|P ′

U1
〉? Do both sides of your resulting equation depend on the

data d? If not, what does the lack of d dependence imply regarding the form U
†
2U1

must take? Is this implication compatible with your starting assumptions? If not,
which other assumption has to be wrong? What does this prove about the required
orthogonality properties of the program states that you will need in order to simulate
unitary operators that are distinct up to a global phase? Compare this to the number
of potential unitary operators you will need to be able to simulate if your device is
to be truly universal. What does that tell you about the existence of a deterministic
programmable universal simulator?)

Chapter 9
Quantum Chemistry with a Quantum Computer

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too complicated to be soluble.”
– Paul Dirac1

9.1 Classical Computing Approach to Quantum Chemistry

Quantum chemistry seeks to explain the chemical behavior of molecules by solving
the molecular Schrödinger equation. In essence, it is an attempt to reduce chemistry
to physics by using first principles calculations to predict chemical properties. Once
the molecular Schrödinger’s equation is solved and the wavefunction is known, it is
possible to predict all the chemical properties of the molecule by calculating the ex-
pectation values of the appropriate observables. In this manner bond angles, affinity,
reactivity, electronic structure and the energy eigenspectrum of the molecule can all
be obtained.

Typically, quantum chemists take their starting point to be the molecules’ time-
independent many-electron Schrödinger equation. This describes the spatial part of
the wavefunction, and can shed light on matters such energy eigenvalues of the
molecule. In Cartesian coordinates, the time-independent Schrödinger equation has
the form2:

(
−1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j=i+1

1

|ri − rj | +
N∑
i=1

V (ri)

)
ψ(r1, r2, . . . , rN)

=Eψ(r1, r2, . . . , rN) (9.1)

1Source: [145].
2This model uses the simplifying assumption that the positively charged nuclei are at fixed posi-
tions, and the electrons therefore move in a potential that is partly governed by the spatial distribu-
tion of these positively charged nuclei and partly by an external field.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_9, © Springer-Verlag London Limited 2011

349

http://dx.doi.org/10.1007/978-1-84628-887-6_9

350 9 Quantum Chemistry with a Quantum Computer

where ∇2
i ≡ ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

is the Laplacian operator, the ri signify the electron

coordinates, V (ri) the potential, and E the energy. This is an eigenvalue equation
and can only be satisfied at discrete values the energy E. These are the only allowed
energies the molecule can assume and define its energy eigenspectrum. Such eigen-
spectra have many uses, e.g., they can allow us to recognize the chemical composi-
tion of a remote astronomical body by measuring the spectrum of the light it gives
off and comparing the result to spectra predicted from first principles calculations.

As the electrons are fermions, the solution wavefunction of the many-electron
Schrödinger equation is required to be anti-symmetric, i.e., it must acquire a minus
sign whenever two electron coordinates are interchanged, i.e.,

ψ(. . . , ri , . . . , rj , . . .)=−ψ(. . . , rj , . . . , ri , . . .) (9.2)

This anti-symmetric property can be guaranteed if we assume the solution wave-
function takes a certain form, namely, that it can be written as a sum of so-called
“Slater determinants”:

ψ(r1, r2, . . . , rN)=
∑
I

CI

1√
N !

∣∣∣∣∣∣
φi1(r1) · · · φiN (r1)

· · · · · · · · ·
φi1(rN) · · · φiN (rN)

∣∣∣∣∣∣ (9.3)

where the index I runs over different configurations of orbitals. If there are N elec-

trons and M one-electron orbitals there will be
(
M

N

)=M!/(N !(M −N)!) different

Slater determinants in the expansion. If all these Slater determinants are included,
the resulting model is called the “full configuration interaction” (FCI). However,
the cost of performing calculations in the FCI is prohibitive as the number of de-
terminants in the FCI grows factorially with the number of electrons and orbitals.
Hence, it is only practical to use the FCI when dealing with molecules having only
a few dozen electrons, and several million to a few billion determinants. When the
FCI model is tractable, however, it yields solutions that are in good agreement with
chemical properties that are measured experimentally.

To go beyond the few electron case, quantum chemists (limited to using classical
computers) are obliged to impose various approximations and assumptions. These
approximations and assumptions include asserting the geometric configuration of
the molecule, ignoring relativistic effects, and choosing a particular basis set with
which to expand the wavefunction of each atom. The choice of basis set is a critical
factor in determining the fidelity of the model and, at this point in time, is something
of an art.

Whereas the N electron/M orbital full configuration interaction (FCI) model re-
quires a runtime of O(M!) on a classical computer, which scales exponentially3

in M , an approximation called CCSD(T) (which stands for “Coupled-Cluster with
Single and Double and Perturbative Triple excitations”) requires just O(M7) steps,

3The exponential scaling can be seen from Stirling’s approximation of the factorial M! ≈
MMe−M

√
2πM .

9.1 Classical Computing Approach to Quantum Chemistry 351

which is polynomial in M . However, even though CCSD(T) is considered the cur-
rent “gold-standard” by quantum chemists, it is nevertheless still an approximate
algorithm. Moreover, a seventh order polynomial scaling is not exactly cheap.

Using quantum computers, there is, however, an alternative approach. A quan-
tum computer can run the full configuration interaction model (i.e., without ap-
proximation) in polynomial time, and we can extract certain information, such as
ground state energy eigenvalues, in polynomial time too. The method uses a special
quantum eigenvalue estimation algorithm that can only be run on a quantum com-
puter. However, fairly sophisticated instances of this quantum algorithm have been
simulated by Alán Aspuru-Guzik et al. [25], and an elementary quantum chem-
istry calculation has been performed on a rudimentary quantum computer [304].
These authors, which include leading edge quantum chemists, concluded that the
quantum eigenvalue estimation algorithm can give an exponential speedup over the
FCI model for the same level of accuracy, or alternatively, can give a polynomial
speedup, but greater accuracy, over the highly respected CCSD(T) algorithm. Ei-
ther way, the quantum algorithm shows great potential to make a positive impact on
quantum chemistry. So let us take a look at this algorithm in some detail.

9.1.1 Classical Eigenvalue Estimation via the Lanczos Algorithm

One of the most important tasks for a quantum chemist is to calculate energy eigen-
values and energy eigenstates of a molecule. Usually, the ground state energy and
the energies of the first few excited states are of greatest interest. In principle, given
a Hamiltonian H, which for realistic molecules is a sparse hermitian matrix, it ought
to be possible to obtain its eigenvalues using elementary methods of linear algebra,
such as finding the roots of the characteristic polynomial of the Hamiltonian ma-
trix, i.e., finding the values of the eigenvalues λ for which det(λ1 − H) = 0. In
practice, however, the dimensions of typical molecular Hamiltonian matrices are so
large that naive approaches to eigenvalue determination are impractical. To com-
bat this problem, more sophisticated methods must be used such as the Lanczos
algorithm. For an explanation of this algorithm see pp. 470–507 of Ref. [204]. This
works by mapping the original Hamiltonian matrix into a new basis in which it is
tri-diagonal (without generating any full size intermediary matrices along the way)
such that the eigenvalues of this tri-diagonal matrix are close to those of the orig-
inal Hamiltonian. Moreover, there are specialized fast methods for obtaining the
eigenvalues of tri-diagonal matrices. Even better, information about the Hamilto-
nian’s extremal eigenvalues (i.e., its largest and smallest ones) usually emerge long
before the tri-diagonalization process completes. Hence, if it is only the smallest
(or largest) eigenvalues that are sought, the Lanczos method is often a good tool to
find them. Nevertheless, the complexity of the Lanczos algorithm is at least linear
in the dimension of the Hamiltonian matrix. This, in turn, is set by the number of
basis vectors used to describe the wavefunction, and this number can grow exponen-
tially with the number of electrons in the molecule. This makes the determination of

352 9 Quantum Chemistry with a Quantum Computer

molecular energy eigenvalues far more difficult than it might at first appear, as one
is obliged to work with such large matrices.

9.2 Quantum Eigenvalue Estimation via Phase Estimation

Fortunately, quantum computing provides an alternative approach. Suppose we have
a Hamiltonian H with energy eigenstates |ψλ〉 and corresponding energy eigenval-
ues λ. That is, the eigenstates and eigenvalues satisfy H|ψλ〉 = λ|ψλ〉. The basic
eigenvalue estimation problem is the following:

Eigenvalue Estimation Given a n-qubit Hamiltonian H find the eigenvalue, λ, of
H corresponding to an eigenstate |ψλ〉, i.e., find λ such that H|ψλ〉 = λ|ψλ〉.

To accomplish this goal using a quantum computer we would like to switch at-
tention to corresponding unitary operators for which we can build quantum circuits.
If we had a physical system with Hamiltonian H available to us, in time t this sys-
tem would evolve according to the unitary operator U = e−iHt/�. We can set the
time t = 1 and work in units of � = 1. Then, if λ is an eigenvalue of H, e−iλ will
the corresponding eigenvalue of U = e−iH. Equally, we can associate the eigen-
values of the inverse of this unitary operator, U = e+iH with the eigenvalues of
H too. Specifically, if λ is an eigenvalue of H, then eiλ will be the corresponding
eigenvalue of U = eiH, and |ψλ〉 will be an eigenstate of both H and U . Thus,
we can find an eigenvalue, λ, of the Hamiltonian H by finding the corresponding
eigenvalue, eiλ, of U = eiH. This leads to the following slight reformulation of our
problem as follows:

Quantum Eigenvalue Estimation Given a n-qubit Hamiltonian H having eigen-
values and eigenstates such that H|ψλ〉 = λ|ψλ〉, define a related unitary operator
U = eiH having eigenvalues and eigenstates such that U |ψλ〉 = eiλ|ψλ〉. Find the
eigenvalue, eiλ, of U corresponding to an eigenstate |ψλ〉.

Having related the eigenvalues of H to those of U the basic strategy of quantum
eigenvalue estimation is to use U (or more precisely controlled-U2k gates) to create,
efficiently, a quantum state, which we call the “phase state”, in which the desired
eigenvalue appears as a phase factor, and then to extract this phase factor, efficiently,
using a technique known as quantum phase estimation. Thus, quantum eigenvalue
estimation reduces to a two-step process of creating the special phase state and then
performing phase estimation on it.

9.2.1 The “Phase” State

We start by giving the structure of the required phase state and explain how to extract
the phase from it using quantum phase estimation. Having done so it will be clear

9.2 Quantum Eigenvalue Estimation via Phase Estimation 353

why we would want to synthesize such a state. The desired “phase state” is:

1√
2n

2n−1∑
y=0

eiλy |y〉 = 1√
2n

2n−1∑
y=0

e2πiϕy |y〉 (9.4)

which contains the sought after eigenvalue, λ = 2πϕ. Furthermore, it is suffi-
cient to choose 0 ≤ ϕ < 1, which means we can express ϕ as a binary fraction
ϕ = 0.x1x2x3 Thus, our desired phase state takes the form:

1√
2n

2n−1∑
y=0

e2πiϕy |y〉 = 1√
2n

2n−1∑
y=0

e2πi(0.x1x2x3...)y |y〉 (9.5)

where each xi is a binary digit, i.e., a 0 or a 1.

9.2.2 Binary Fraction Representation of the Phase Factor

The justification for the binary fraction expansion is as follows. We can write
any real number 0 ≤ ϕ < 1 as the (potentially never-ending) binary fraction ϕ =
0.x1x2x3x4 . . . , such that each xi is a binary digit (i.e., a 0 or 1), and ϕ =∑

i xi2
−i .

Clearly, the maximum value we can obtain for ϕ is 1 (because
∑∞

i=1 2−i = 1), and
the minimum value is 0. Hence, in principle, any real number 0 ≤ ϕ < 1 can be so
represented.

Binary fractions have interesting properties. By repeatedly multiplying by two’s
we can split the number into a binary integer part (to the left of the dot) and a binary
fraction part (to the right of the dot):

ϕ = 0.x1x2x3x4 . . .

21ϕ = x1.x2x3x4 . . .

22ϕ = x1x2.x3x4 . . . (9.6)

...

2(j−1)ϕ = x1x2x3 . . . xj−1.xj xj+1 . . .

Consequently,

e2πi ϕ = e2πi0.x1x2x3x4...

e2πi 21ϕ = e2πix1.x2x3x4... = e2πix1e2πi0.x2x3x4...

e2πi 22ϕ = e2πix1x2.x3x4... = e2πix1x2e2πi0.x3x4... (9.7)

...

354 9 Quantum Chemistry with a Quantum Computer

e2πi2(j−1)ϕ = e2πix1x2x3...xj−1.xj xj+1... = e2πix1x2x3...xj−1 .e2πi0.xj xj+1...

We can then eliminate the exponential factors, such as e2πix1x2 , because their argu-
ments are always integer multiples of 2πi and so e2πix1x2 , and similar factors, are
always 1. Thus, we have:

e2πiϕ = e2πi0.x1x2x3x4...

e2πi21ϕ = e2πi0.x2x3x4...

e2πi22ϕ = e2πi0.x3x4... (9.8)

...

e2πi2(j−1)ϕ = e2πi0.xj xj+1...

Thus, as you can see, we can move the j -th bit in the expansion to immediately after
the dot by multiplying by 2j−1.

9.3 Quantum Phase Estimation

Given such a “phase” state, 1√
2n

∑2n−1
y=0 e2πiϕy |y〉 = 1√

2n

∑2n−1
y=0 e2πi(0.x1x2x3...)y |y〉,

we can reveal the digits x1, x2, x3, . . . in the binary fraction representation of ϕ if we
can transform the state into the corresponding computational basis state |x1x2x3 . . .〉,
and then read it out qubit-by-qubit. This operation is called “quantum phase estima-
tion”.

Quantum Phase Estimation Given a state of the form 1√
2n

∑2n−1
y=0 e2πiϕy |y〉 =

1√
2n

∑2n−1
y=0 e2πi(0.x1x2x3...)y |y〉 determine its phase factor ϕ by mapping the bits in

its binary fraction expansion into the state |x1x2x3 . . .〉.

Setting ϕ ≈ x
2n for sufficiently large integer x, we see immediately that the phase

state is nothing more than the quantum Fourier transform of the computational basis
state |x〉. Specifically, we have:

|x〉 QFT→ 1√
2n

2n−1∑
y=0

e2πi xy2n |y〉

= 1√
2n

1∑
y1=0

1∑
y2=0

· · ·
1∑

yn=0

e2πix(
∑n

�=1 y�2−�)|y1y2 . . . yn〉

= 1√
2n

1∑
y1=0

1∑
y2=0

· · ·
1∑

yn=0

n⊗
�=1

e2πixy�2−� |y�〉

9.3 Quantum Phase Estimation 355

Fig. 9.1 Quantum circuit for transferring a phase factor, given as a 1-bit binary fraction in an
exponent, into an output eigenstate. One can identify the bit value by reading this output eigenstate
in the computational basis

= 1√
2n

n⊗
�=1

(
1∑

y�=0

e2πixy�2−� |y�〉
)

= 1√
2n

n⊗
�=1

(|0〉 + e2πix2−� |1〉)

= 1√
2n

(|0〉 + e2πi0.xn |1〉)(|0〉 + e2πi0.xn−1xn |1〉) · · · (|0〉 + e2πi0.x1x2...xn |1〉)

(9.9)

Since the phase state, 1√
2n

∑2n−1
y=0 e2πi(x

2n)y |y〉, is nothing more than the QFT of a
computational basis state |x〉, this means we can extract the desired x (and so the
desired phase factor ϕ = x

2n) by applying the inverse quantum Fourier transform,
QFT†, to the phase state (assuming we had such a state available)! We can see this
most clearly by considering successive binary fraction approximations to ϕ.

Case 1: If ϕ = 0.x1 Exactly

To begin imagine that ϕ = 0.x1 exactly. In this case a single Walsh-Hadamard gate
is sufficient to extract x1 (see Fig. 9.1).

Case 2: If ϕ = 0.x1x2 Exactly

Next suppose instead that ϕ = 0.x1x2 exactly. In this case the circuit shown in
Fig. 9.2 would be sufficient to extract x1 and x2. This circuit uses two Hadamard
gates and one controlled-R−1

2 gate where R−1
2 = (1 0

0 e2πi/22

)
.

Case 3: If ϕ = 0.x1x2x3 Exactly

Now imagine ϕ = 0.x1x2x3 exactly. In this case the circuit shown in Fig. 9.3
would be sufficient to extract x1, x2, and x3. This uses three Hadamard gates, two
controlled-R−1

2 gates and one controlled- R−1
3 gate where R−1

3 = (1 0

0 e2πi/23

)
.

356 9 Quantum Chemistry with a Quantum Computer

Fig. 9.2 Quantum circuit for transferring a phase factor, ϕ = 0.x1x2, i.e., a 2-bit binary fraction
in an exponent, into the same 2-bit binary sequence in an eigenstate. One can identify the bit
values by reading the eigenstate in the computational basis. Note that the last operation performed

reverses the order of the qubits. In this circuit R−1
2 = (1 0

0 e2πi/22

)
. We can recover the value of ϕ

from ϕ ≈ 2−1x1 + 2−2x2

Fig. 9.3 Quantum circuit for transferring the 3-bit sequence of a binary fraction in an exponent
into the same 3-bit sequence in an eigenstate. One can identify the bit values by reading the eigen-
state in the computational basis. Note that the last operation performed reverses the order of the

qubits. In this circuit R−1
2 = (1 0

0 e2πi/22

)
and R−1

3 = (1 0

0 e2πi/23

)
. We can recover the value of ϕ from

ϕ ≈ 2−1x1 + 2−2x2 + 2−3x3

General Case: If ϕ = 0.x1x2. . .xn Exactly

In the general case, the overall transformation this circuit achieves is:

2n−1∑
y=0

e2πi xy2n |y〉→ |x〉 (9.10)

where ϕ = x/2n and x is the integer which in binary is (x)10 ≡ (x1x2 . . . xn)2. The
reader will recognize this operation as the inverse Quantum Fourier Transform.

If ϕ �= 0.x1x2. . . xn Exactly

In general, the sought after phase ϕ will not be exactly equal to a rational num-
ber ϕ = x

2n for any integers x and n. In this case, performing the aforementioned
procedure will only yield an approximate answer.

9.4 Eigenvalue Kick-Back for Synthesizing the Phase State 357

To summarize, phase estimation is the process of extracting an unknown phase
factor, 0≤ ϕ < 1, from a state of the form

|Φ〉 = 1√
2n

2n−1∑
y=0

eiλy |y〉 = 1√
2n

2n−1∑
y=0

e2πiϕy |y〉 (9.11)

To do so, we approximate ϕ to n bits of precision as the binary fraction ϕ ≈
(0.x1x2 . . . xn)2 = (2−1x1 + 2−2x2 + · · · + 2−nxn)10 thereby re-casting the phase
state as

|Φ〉 = 1√
2n

2n−1∑
y=0

e2πi(0.x1x2...xn)y |y〉 (9.12)

We then perform an operation that maneuvers the bit sequence defining the bi-
nary fraction representation of ϕ into one of the computational basis eigenstates,
|x1x2 . . . xn〉. By reading this state in the computational basis we extract the bits
x1, x2, . . . , xn that determine the mystery phase factor. Moreover, we recognize that
the required maneuver is a QFT run in the reverse direction, i.e., it is an inverse
Quantum Fourier Transform.

9.4 Eigenvalue Kick-Back for Synthesizing the Phase State

Let us now return to eigenvalue estimation. To recap, we assume we know a Hamil-
tonian H and wish to find the eigenvalue λ corresponding to eigenstate |ψλ〉. That
is, given |ψλ〉 we seek λ such that

H|ψλ〉 = λ|ψλ〉 (9.13)

The eigenstate |ψλ〉 or an approximation to it may be known explicitly, or it may be
unknown, but physically available to us, as the output from some preceding quantum
simulation. Either way, we want to use knowledge of H and the physical eigenstate
|ψλ〉 to find λ in a manner that is more efficient than can be done classically.

Rather than working with H directly, our strategy is to work with the unitary
operator U = eiH. This is because, if H has eigenstate |ψλ〉 with eigenvalue λ,
U = eiH has eigenstate |ψλ〉 with eigenvalue eiλ. That is, with U = eiH we have:

U |ψλ〉 = eiλ|ψλ〉 (9.14)

Furthermore, we set λ = 2πϕ and express ϕ to n bits of precision as the binary
fraction ϕ = 0.x1x2 . . . xn. So it is also true that

U |ψλ〉 = eiλ|ψλ〉 = e2πiϕ |ψλ〉 = e2πi0.x1x2...xn |ψλ〉 (9.15)

358 9 Quantum Chemistry with a Quantum Computer

Fig. 9.4 When the control
qubit is set to |0〉 the output
states match the input states
and there is no eigenvalue
kick-back

We showed in Sect. 9.3 that if we could create a state we call the “phase state”
|Φ〉 such that

|Φ〉 = 1√
2n

2n−1∑
y=0

eiλy |y〉

= 1√
2n

2n−1∑
y=0

e2πiϕy |y〉

= 1√
2n

2n−1∑
y=0

e2πi(0.x1x2...xn)y |y〉

= 1√
2n

(
|0〉 + e2πi0.xn |1〉

)(
|0〉 + e2πi0.xn−1xn |1〉

)
· · ·

(
|0〉 + e2πi0.x1x2...xn |1〉

)
(9.16)

we can extract the binary digits x1, x2, . . . , xn by applying the inverse QFT to the
phase state, i.e., QFT−1|Φ〉 = |x1x2 . . . xn〉. Thus, to find the eigenvalue λ = 2πϕ
we pursue a two-step strategy: first construct the phase state |Φ〉 and then apply
the inverse QFT to extract the digits x1.x2, . . . , xn of the binary fraction for ϕ =
(0.x1x2 . . . xn)2 = (2−1x1 + 2−2x2 + · · · + 2−nxn)10. Given the phase ϕ, we can
then compute the eigenvalue λ= 2πϕ. As the method for extracting the phase from
the phase state is already known, all that remains is to understand how to synthesize
the phase state |Φ〉 given knowledge of H (or equivalently U = eiH) and the state
|ψλ〉. We will next show how to accomplish this using the technique of “eigenvalue
kick-back”.

To see how eigenvalue kick-back works consider the circuit shown in Fig. 9.4.
Conceptually, the qubits in this circuit are split into two registers; the first contain-
ing a single “control” qubit and the second containing n “target” qubits, and the
circuit is comprised of a single controlled-U gate, which we assume can be imple-
mented efficiently. Consider the effect of a “controlled-U” gate on inputs |0〉|ψλ〉
and |1〉|ψλ〉 individually. When the control value is |0〉 the U gate does not act on
its qubits, and the circuit passes the input states unchanged.

However, as shown in Fig. 9.5, if, instead, the control value is set to |1〉, mak-
ing the input |1〉|ψλ〉, then U will act on its qubits and compute U |ψλ〉 = eiλ|ψλ〉
because |ψλ〉 is an eigenstate of both H and U = eiH. However, from a mathemat-
ical point of view the states |1〉 ⊗ (eiλ|ψλ〉) and (eiλ|1〉) ⊗ |ψλ〉 are the same, so

9.4 Eigenvalue Kick-Back for Synthesizing the Phase State 359

Fig. 9.5 When the control qubit is set to |1〉 the output state is |1〉U |ψλ〉 = |1〉eiλ|ψλ〉, since |ψλ〉
is an eigenstate of U with eigenvalue eiλ. This state is equivalent, mathematically, to the state
eiλ|1〉|ψλ〉. In other words, this circuit, when the control qubit is in state |1〉, has kicked-back the
eigenvalue from the second register (the qubits on which U acts) to the phase of the first register
(the control qubit)

we are free to interpret the output either way. If we adopt the latter interpretation it
appears that the action of the controlled-U gate has “kicked-back” the eigenvalue
of U (namely eiλ) as the phase factor of the control qubit. Hence, the name “eigen-
value kick-back”. Thus, the effect of the control-U gate with the control qubit in a
computational basis state is given by:

|0〉|ψλ〉 controlled-U−→ |0〉|ψλ〉 (9.17)

|1〉|ψλ〉 controlled-U−→ |1〉(eiλ|ψλ〉)≡ (eiλ|1〉)|ψλ〉 (9.18)

By the relationships defined previously we also note that

eiλ|1〉|ψλ〉 = ei2πϕ |1〉|ψλ〉 = ei2π0.x1x2...xj |1〉|ψλ〉 (9.19)

Unfortunately, as we saw in Chap. 1, a global phase shift of a quantum state |1〉|ψλ〉,
to make it a state such as eiλ|1〉|ψλ〉, has no measurable consequences. However, if
the state of the control qubit is made to be a superposition of its two control values,
as in a|0〉 + b|1〉 say, then the phase factor we just saw becomes a relative phase
between the |0〉 and |1〉 components in the superposition a|0〉 + b|1〉. Specifically,
we obtain the transformation

(a|0〉 + b|1〉)|ψλ〉 controlled-U−→ (a|0〉 + beiλ|1〉)|ψλ〉 (9.20)

which does have measurable consequences.
Next consider the effect of a controlled-Uk gate on the states |0〉|ψλ〉 and |1〉|ψλ〉.

If |ψλ〉 is an eigenstate of U with eigenvalue eiλ, it is also an eigenstate of Uk (k
an integer) with eigenvalue eikλ. Thus, if the control qubit is in the superposition
a|0〉 + b|1〉 we have:

(a|0〉 + b|1〉)|ψλ〉 controlled- Uk−→ (a|0〉 + beikλ|1〉)|ψλ〉 (9.21)

Hence, using a controlled-Uk gate in lieu of a controlled-U gate multiplies the phase
factor appearing in the control qubit by k. We can exploit this trick to systematically

360 9 Quantum Chemistry with a Quantum Computer

Fig. 9.6 When the control qubit is set to a superposition of its two control values, the circuit causes
a relative phase to be introduced between the |0〉 and |1〉 eigenstates. This is significant because the
state we are trying to synthesize can be written as the direct product of several single qubit states
in which there is a prescribed relative phase difference between the |0〉 and |1〉 components

construct the single qubit states within |Φ〉 as given in the last line of (9.16), which
you will note is unentangled. That is, we want to synthesize the phase state

|Φ〉 = 1√
2n

(
|0〉 + e2πi0.xn |1〉

)(
|0〉 + e2πi0.xn−1xn |1〉

)
· · ·

(
|0〉 + e2πi0.x1x2...xn |1〉

)
(9.22)

by synthesizing its terms individually. For this we use the transformation (a|0〉 +
b|1〉)|ψλ〉 controlled-Uk−→ (a|0〉 + beikλ|1〉)|ψλ〉 with k equal to increasing powers of 2.
To see why this works recall from Sect. 9.2.2 that multiplying a binary frac-
tion 0.x1x2x3 . . . xn by 2j−1 moves the j -th bit to the position immediately af-
ter the dot, i.e., 2j−10.x1x2x3 . . . xn = x1x2 . . . xj−1.xj xj+1 . . . xn. Splitting the re-
sulting number into the parts to the left and the right of the dot and simplifying
gives us e2πi2j−10.x1x2x3...xn = e2πi0.xj xj+1...xn etc. Therefore, setting k = 2j−1 for
j = 1,2,3, . . . , n in the controlled-Uk gates gives us:

e2πikϕ = e2πi2j−1ϕ = e2πi2j−10.x1x2...xn = e2πi0.xj xj+1...xn (9.23)

Hence for a = b = 1√
2

and k = 20,21,22, . . . ,2n−1 we can obtain the transforma-
tions

1√
2
(|0〉 + |1〉)|ψλ〉 controlled-U20

−→ 1√
2
(|0〉 + e2πi0.x1x2x3...xn |1〉)|ψλ〉

1√
2
(|0〉 + |1〉)|ψλ〉 controlled-U21

−→ 1√
2
(|0〉 + e2πi0.x2x3...xn |1〉)|ψλ〉

1√
2
(|0〉 + |1〉)|ψλ〉 controlled-U22

−→ 1√
2
(|0〉 + e2πi0.x3...xn |1〉)|ψλ〉

...

1√
2
(|0〉 + |1〉)|ψλ〉 controlled- U2n−1

−→ 1√
2
(|0〉 + e2πi0.xn |1〉)|ψλ〉

(9.24)

9.5 Quantum Eigenvalue Estimation Algorithms 361

The direct product of all these individual qubit states is the phase state |Φ〉 that we
seek to synthesize.

9.5 Quantum Eigenvalue Estimation Algorithms

“. . . quantum computers of tens to hundreds of qubits can match and exceed the capabilities
of classical full configuration interaction (FCI) calculations”
– Alán Aspuru-Guzik [25]

The combination of the eigenvalue kick-back trick of Sect. 9.4 and the quan-
tum phase estimation trick of Sect. 9.3 gives us everything we need to com-
plete a full quantum eigenvalue estimation algorithm. That is, to perform quantum
eigenvalue estimation we use eigenvalue kick-back to synthesize the phase state,
|Φ〉 = 1√

2n

∑2n−1
y=0 e2πi(0.x1x2...xn)y |y〉, and then quantum phase estimation to extract

the phase, i.e., QFT−1|Φ〉 = |x1x2 . . . xn〉. Dan Abrams and Seth Lloyd were the
first to combine the eigenvalue kick-back trick with the inverse quantum Fourier
transform to perform eigenvalue determination [2]. Personally, I believe this is by
far the most important quantum algorithm discovered to date because it is the core
component of so many of the quantum algorithms that display exponential speedups.

9.5.1 Abrams-Lloyd Eigenvalue Estimation Algorithm

The Abrams-Lloyd algorithm requires two registers: the first containing n-qubits
will be used obtain a n-bit approximation to the desired eigenvalue, eiλ = e2πiϕ

by determining the bits in the binary fraction expansion of ϕ = (0.x1x2x3 . . . xn)2,
and the second containing m-qubits sufficient to hold |ψλ〉 on which controlled-U2k

operations are performed for k = 0,1,2, . . . , (n− 1). The overall circuit is shown
in Fig. 9.7.

9.5.2 Kitaev Eigenvalue Estimation Algorithm

An alternative to the Abrams-Lloyd eigenvalue estimation algorithm was proposed
by Kitaev [282]. Kitaev’s algorithm obtains the bits in the binary fraction expan-
sion of the phase factor ϕ one at a time rather than all-at-once as in the Abrams-
Lloyd algorithm. However, it has a lower overhead in terms the number of qubits
needed because it only requires a single extra qubit beyond those needed to perform
controlled-U2k operations. A quantum circuit for Kitaev’s algorithm is shown in
Fig. 9.8.

Given a unitary operator, U , one of whose eigenstates is |ψλ〉, find the corre-
sponding eigenvalue eiλ.

362 9 Quantum Chemistry with a Quantum Computer

Fig. 9.7 Quantum circuit for the Abrams-Lloyd Eigenvalue Estimation Algorithm. The in-
put |ψ̃λ〉 is a close guess at the true eigenstate |ψλ〉 with eigenvalue eiλ = e2πiϕ where
0 ≤ ϕ < 1. Representing ϕ as a binary fraction, ϕ = 0.x1x2 . . . xn, measurement of the top n

qubits in the computational basis reveals the bit values x1, x2, . . . , xn and hence the eigenvalue
λ= 2πϕ = 2π(0.x1x2 . . . xn)2 = 2π(2−1x1 + 2−2x2 + . . .+ 2−nxn)10

Fig. 9.8 Quantum circuit for
the Kitaev Eigenvalue
Estimation Algorithm

In Kitaev’s algorithm, the key idea is to create, repeatedly, a superposition state
of the form |ψ(ϕ)〉 =√

p0(ϕ)|0〉+√p1(ϕ)|1〉 in which the amplitudes are a known
function of the phase factor ϕ. By preparing sufficiently many instances of the state
|ψ(ϕ)〉 and measuring each one independently in the computational basis, one ob-
tains an estimate of p0(ϕ), which you then invert to obtain ϕ. A key feature of
the algorithm is that each round of preparation and measurement, the starting state

9.5 Quantum Eigenvalue Estimation Algorithms 363

|ψ(ϕ)〉 is restored up to an unimportant global phase factor. This means that the
repeated preparations of |ψ(ϕ)〉 are obtained automatically.

Kitaev’s Eigenvalue Estimation Algorithm Given an eigenstate, |ψλ〉, of a uni-
tary operator U , find the corresponding eigenvalue eiλ = e2πiϕ

|0〉|ψλ〉 H⊗1−→ 1√
2
(|0〉 + |1〉)|ψλ〉

controlled-U−→ 1√
2
|0〉|ψλ〉 + 1√

2
|1〉U |ψλ〉

= 1√
2
|0〉|ψλ〉 + eiλ√

2
|1〉|ψλ〉

H⊗1−→ 1√
2

(|0〉 + |1〉√
2

)
|ψλ〉 + eiλ√

2

(|0〉 − |1〉√
2

)
|ψλ〉

= 1

2
(1+ eiλ)|0〉|ψλ〉 + 1

2
(1− eiλ)|1〉|ψλ〉 (9.25)

To follow the aforementioned steps you need to use the fact that |ψλ〉 is an eigen-
state of U with eigenvalue eiλ, i.e., U |ψλ〉 = eiλ|ψλ〉. If the first qubit of the fi-
nal state is measured, it is found to be |0〉 with probability p0(ϕ) = 1

4 |1 + eiλ|2 =
1
4 |1 + e2iπϕ |2 = cos2(πϕ) and |1〉 with probability p1(ϕ) = 1

4 |1 − eiλ|2 = 1
4 |1 −

e2iπϕ |2 = sin2(πϕ). Depending on the value obtained the output is projected into
either |0〉|ψλ〉 or |1〉|ψλ〉. Notice that we can re-use the output (either directly or by
negating the first qubit) as the input to the next round, to repeat the process an arbi-
trary number of times. By collecting statistics on how often we find the first qubit
to be |0〉 and how often we find it to be |1〉 we can estimate p0(ϕ)= cos2(πϕ) and
p1(ϕ) = sin2(πϕ). Hence we can estimate ϕ and therefore the eigenvalue e2πiϕ .
Amazing!

However, we need to ask ourselves how good an estimate we obtain as a function
of the number of times we repeat the process. Suppose we find the first qubit to be
in state |0〉 N0 times out of N trials. This allows us to estimate the probability p0 to
be pest

0 =N0/N . Then by the weak Law of Large Numbers, for any δ, we have:

Prob(|pest
0 − p0|> δ)≤ ε = 2√

2π
exp

(
− δ2N

2p0p1

)
(9.26)

There is good news and bad news in this equation. The good news is that for a fixed
precision (i.e., fixed δ) the error probability decreases exponentially with increasing
numbers of trials. However, conversely, for a fixed error probability (i.e., fixed ε)
for each extra bit of precision we want to get in δ (i.e., each time we want to use a δ

half the size it was last time), we can only do so and still maintain the desired fixed
error probability by increasing the number of trials by a factor of four. That is, if we
replace δ→ δ/2 and we want to keep ε fixed, we need to increase N → 4N . Thus,

364 9 Quantum Chemistry with a Quantum Computer

to get l bits of precision in the estimate of p0 requires O(4l) trials. This is bad news.
The Abrams-Lloyd algorithm is therefore my preferred version.

9.6 Quantum Chemistry Beyond Eigenvalue Estimation

There is much more to quantum chemistry than merely eigenvalue estimation of
course. Quantum chemistry seeks to predict the fundamental properties of elements,
molecules, and compounds from first principle quantum mechanical calculations. At
the present time the vast majority of quantum chemistry calculations solve approxi-
mate quantum mechanical models on classical computers. Such approximations are
necessary to make the computations tractable but they render the models less accu-
rate and can lead to spurious predictions. A much better approach would be to use
quantum mechanics to perform quantum mechanical calculations, such as we did
for eigenvalue estimation.

In addition to eigenvalues, quantum chemists are also interested in predicting,
on the basis of first principles calculations, the detailed physical and chemical the
properties of the chemical elements, the shape of complex molecules, complete de-
scriptions of molecular spectra, heats of reaction, reactivity, etc. Remarkably, al-
though not widely known, several quantum algorithms have been devised to perform
such computations. For example, Wang et al. have developed a quantum algorithm
for obtaining the spectrum of a molecule [522]; Jordan et al. use a quantum algo-
rithm to simulate chemical dynamics [266]; Perdomo et al. use a quantum algorithm
to predict lattice protein conformations [384]; and Rebentrost et al. have analyzed
quantum transport phenomena, critical to light harvesting in photosynthesis, and
have shown that such quantum transport can actually be enhanced by the presence
of some noise in the quantum system [414].

9.7 Summary

In quantum chemistry, one is often interested in the static properties of a molec-
ular quantum system, such its electronic structure, or its energy eigenvalues and
eigenstates. In this chapter we describe the Abrams-Lloyd and Kitaev eigenvalue
estimation algorithms. These provide efficient algorithms for determining the ex-
act eigenvalue associated with a given eigenstate, a feat that is exponentially more
difficult to do classically to the same precision.

In particular, using the quantum eigenvalue estimation algorithm, we see that
quantum computers can determine the ground state energies of molecules exponen-
tially faster than classical computers, and that chemically useful results can be ob-
tained with just 20 qubits—far fewer qubits than are required for Shor’s algorithm.
In fact, ignoring the qubits needed for error correction, quantum computers having
50–100 perfect qubits would exceed the capabilities of the World’s best supercom-
puters on such problems. This could potentially revolutionize quantum chemistry

9.8 Exercises 365

and allow full configuration interaction calculations to be extended to much more
complex molecules than can be analyzed today. Moreover, since the quantum eigen-
value estimation algorithm is not restricted to determining only ground state energy
eigenvalues we can, by using different inputs, effectively probe multiple parts of
the energy eigenspectrum of a molecule. However, we cannot compute the entire
eigenspectrum any faster than is possible classically.

We ended by noting that quantum computing could potentially play a much
greater role in quantum chemistry than just eigenvalue estimation, and we gave ex-
amples of quantum algorithms that have been devised for determining properties of
molecular eigenspectra, molecular conformations, and even reaction rates. It is ap-
parent that a great deal could be done to make special purpose quantum devices for
assisting in quantum chemistry calculations.

9.8 Exercises

9.1 Rewrite the following real numbers as binary fractions to 16 bits of precision:

(a) 0.8415910
(b) 0.2986510
(c) 0.1111110

9.2 Rewrite the following binary fractions as real numbers to 5 decimal places:

(a) 0.001101002
(b) 0.110101012
(c) 0.111111112

9.3 Any eigenvalue ξ of a matrix U can be expressed in “polar” form as ξ = reiθ .

(a) Write down formulae for r and θ assuming ξ is known and possibly complex.
(b) Prove that if U is unitary then it is always the case that |r| = 1.
(c) Show, by way of providing an explicit formula connecting θ with ϕ, how to

rewrite ξ = reiθ as ξ = e2πiϕ in which it is guaranteed that 0≤ ϕ < 1.
(d) Use your formula to rewrite the eigenvalue ξ =−0.749789+ 0.661677i in the

form ξ = e2πiϕ such that 0≤ ϕ < 1.
(e) Express the value you found for ϕ as a binary fraction to 16 bits of precision.

9.4 Let H be an hermitian matrix with eigenvector |ψλ〉 and eigenvalue λ, i.e., let
|ψλ〉 and λ be defined such that H|ψλ〉 = λ|ψλ〉.
(a) Prove that U = eiH is a unitary matrix with eigenvector |ψλ〉 and eigenvalue eiλ.
(b) Prove further that, for integers k = 0,1,2, . . ., |ψλ〉 is also an eigenvector of Uk

with eigenvalue eikλ.

9.5 Let H be the Hamiltonian of a 2-qubit system such that H = α X⊗X+β Z⊗Z

where X and Z are Pauli matrices and α and β are real numbers.

366 9 Quantum Chemistry with a Quantum Computer

(a) Prove that

H =

⎛
⎜⎜⎝
β 0 0 α

0 −β α 0
0 α −β 0
α 0 0 β

⎞
⎟⎟⎠ .

(b) Prove that

U = eiH

=
⎛
⎜⎝

1
2 eiβ−iα + 1

2 eiα+iβ 0 0 − 1
2 eiβ−iα + 1

2 eiα+iβ

0 1
2 e−iα−iβ + 1

2 eiα−iβ − 1
2 e−iα−iβ + 1

2 eiα−iβ 0

0 − 1
2 e−iα−iβ + 1

2 eiα−iβ 1
2 e−iα−iβ + 1

2 eiα−iβ 0

− 1
2 eiβ−iα + 1

2 eiα+iβ 0 0 1
2 eiβ−iα + 1

2 eiα+iβ

⎞
⎟⎠ .

(9.27)

(c) Prove that the normalized eigenvectors of U are

|ψλ0〉 =
1√
2
(|10〉 − |01〉)

|ψλ1〉 =
1√
2
(|10〉 + |01〉)

|ψλ2〉 =
1√
2
(|11〉 − |00〉)

|ψλ3〉 =
1√
2
(|11〉 + |00〉)

(9.28)

(d) Show that the corresponding eigenvalues of U are

λ0 = e−i(α+β)

λ1 = ei(α−β)

λ2 = e−i(α−β)

λ3 = ei(α+β)

(9.29)

(e) Show, with the aforementioned Hamiltonian H = α X⊗X+ β Z⊗Z that the
operator for the Kitaev eigenvalue estimation circuit takes the form:

⎛
⎜⎜⎜⎜⎜⎝

1
2 (eiβ cos(α)+ 1) 0 0 1

2 ieiβ sin(α) 1
2 (1− eiβ cos(α)) 0 0 − 1

2 ieiβ sin(α)

0 1
2 (e−iβ cos(α)+ 1) 1

2 ie−iβ sin(α) 0 0 1
2 (1− e−iβ cos(α)) − 1

2 ie−iβ sin(α) 0

0 1
2 ie−iβ sin(α) 1

2 (e−iβ cos(α)+ 1) 0 0 − 1
2 ie−iβ sin(α) 1

2 (1− e−iβ cos(α)) 0

1
2 ieiβ sin(α) 0 0 1

2 (eiβ cos(α)+ 1) − 1
2 ieiβ sin(α) 0 0 1

2 (1− eiβ cos(α))

1
2 (1− eiβ cos(α)) 0 0 − 1

2 ieiβ sin(α) 1
2 (eiβ cos(α)+ 1) 0 0 1

2 ieiβ sin(α)

0 1
2 (1− e−iβ cos(α)) − 1

2 ie−iβ sin(α) 0 0 1
2 (e−iβ cos(α)+ 1) 1

2 ie−iβ sin(α) 0

0 − 1
2 ie−iβ sin(α) 1

2 (1− e−iβ cos(α)) 0 0 1
2 ie−iβ sin(α) 1

2 (e−iβ cos(α)+ 1) 0

− 1
2 ieiβ sin(α) 0 0 1

2 (1− eiβ cos(α)) 1
2 ieiβ sin(α) 0 0 1

2 (eiβ cos(α)+ 1)

⎞
⎟⎟⎟⎟⎟⎠

(9.30)

9.8 Exercises 367

(f) Show that with input |0〉|ψλ0〉 the Kitaev circuit produces the state

1

2
(1+ λ0)|0〉|ψλ0〉 +

1

2
(1− λ0)|1〉|ψλ0〉

=
(
− 1

2
√

2
− e−iα−iβ

2
√

2

)
|001〉 +

(
1

2
√

2
+ e−iα−iβ

2
√

2

)
|010〉

+
(
− 1

2
√

2
+ e−iα−iβ

2
√

2

)
|101〉 +

(
1

2
√

2
− e−iα−iβ

2
√

2

)
|110〉 (9.31)

(g) With what probability is the first qubit in the output measured to be |0〉 and with
what probability is it measured to be |1〉? How are these probabilities related to
the eigenvalue λ0 = e−i(α+β)?

9.6 Let H be the Hamiltonian of a 2-qubit system such that H = α X ⊗ X + β

Y ⊗ Y where X and Y are Pauli matrices and α and β are real numbers.

(a) What is the unitary matrix U = eiH?
(b) What are the eigenvalues of U?
(c) What are the normalized eigenvectors of U expressed as ket vectors over the

computational basis?
(d) The Abrams-Lloyd eigenvalue estimation algorithm makes use of the controlled-

U2k gates. Write down the unitary matrices for controlled-U20
, controlled-U21

and controlled-U22
.

(e) Given the gate embedding shown in Fig. 9.7 do these controlled-U2k gates com-
mute? If so, is there any advantage in ordering these gates so that the value of k
increases from left to right, or decreases from left to right, in the circuit?

(f) How is k related to the precision with which we can estimate an eigenvalue
of H?

(g) How many times must we run the Abrams-Lloyd algorithm to obtain an estimate
for the energy eigenvalue corresponding to a particular eigenstate?

9.7 Suppose that the ground state of a quantum system described by Hamiltonian H
is |ψλ0〉, and its first, second, and third excited states are |ψλ1〉, |ψλ2〉, and |ψλ3〉 re-
spectively. Furthermore, assume each eigenstate is associated with a corresponding
eigenvalue λ0 < λ1 < λ2 < λ3, i.e., H|ψλj 〉 = λj |ψλj 〉 for j = 0,1,2,3.

(a) If we wanted to use the Abrams-Lloyd eigenvalue estimation algorithm to find
the eigenvalue corresponding to the first excited state, what input would we
provide to the quantum circuit shown in Fig. 9.7?

(b) If instead of using the exact eigenvalue |ψλj 〉 in the input to the Abrams-Lloyd
circuit we used an approximate eigenvalue |ψ̃λj 〉 how would this affect the prob-
ability of obtaining the correct eigenvalue? Quantify your answer with reference
to the overlap between the exact eigenstate and the approximation to it, i.e.,
〈ψ̃λj |ψλj 〉.

Chapter 10
Mathematics on a Quantum Computer

“No one has yet discovered any warlike purpose to be served by the theory of numbers or
relativity, and it seems unlikely that anyone will do so for many years.”
– G.H. Hardy1

Pure mathematics has an uncanny habit of becoming more applicable with age.
When G.H. Hardy wrote the words opening this chapter he clearly picked number
theory and relativity as exemplifying the most useless topics a mathematician might
concern himself with, unaware of the decisive roles they were to play in World War
II via the Enigma machine and Fish Codes (i.e., cryptography) and the Hiroshima
and Nagasaki bombs (i.e., nuclear weapons). I mention this because, in the past
decade, a great many new quantum algorithms have been discovered in areas of
pure mathematics that are considered arcane, abstract, esoteric, and quite possibly
“useless”, by most engineers and applied scientists. The new quantum algorithms
exhibiting superpolynomial speedups are mostly related to solving problems in al-
gebraic number theory [225, 510], group theory [135, 226, 259, 437], and topol-
ogy [543]. Moreover, other less dramatic but potentially more applicable, quantum
algorithms have been discovered exhibiting polynomial speedups for solving prob-
lems in linear algebra [87], calculus [3, 258, 485, 496], optimization [89], func-
tional analysis [74] and graph theory [161, 231]. Indeed, there are now so many
mathematics-related quantum algorithms it has become difficult to survey them all
with any degree of detail. Nevertheless, in this chapter I will survey a representa-
tive cross section of these mathematics-related quantum algorithms to give a taste
of how quantum computing might impact mathematics.

10.1 Quantum Functional Analysis

Many quantum algorithms work with a black box function f (x) which is assumed
to be available as a quantum oracle. If you pose a question to this oracle you will

1Source: “A Mathematician’s Apology”.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_10, © Springer-Verlag London Limited 2011

369

http://dx.doi.org/10.1007/978-1-84628-887-6_10

370 10 Mathematics on a Quantum Computer

receive a yes/no answer in unit time. If you pose a superposition of questions, as you
are allowed to do when the “questions” are quantum states, you obtain a correspond-
ing superposition of answers. With a function f (x) encoded as such an oracle, you
can determine many properties of f (x) in fewer steps than would be required classi-
cally. Examples include counting the number of solutions to f (x)= 1 [78], finding
the mean value of f (x) [220], finding the median of f (x) [218], finding maxima
and minima of f (x) [157], and finding function collisions [74]. The quantum mean
estimation algorithm is especially useful as it paves the way to quantum numerical
integration too. So let’s take a more detailed look a quantum mean estimation. The
other quantum algorithms for functional analysis are quite similar.

10.1.1 Quantum Mean Estimation

A central problem in functional analysis is to determine the mean value of a func-
tion, f (x), for x ∈ [a, b]. If f (x) is available as a quantum oracle, we can approach
this via a technique known as quantum mean estimation.

Whatever the function is to begin with, we can always add a constant offset and
re-scale it so as to ensure the function values are bounded between 0 and 1. Hence,
without loss of generality, we assume 0≤ f (x)≤ 1 for x ∈ [a, b].

To numerically estimate the mean of such an f (x) over the interval [a, b] we
evaluate f (x) at discrete sample points x0, x1, . . . , xN−1 such that xi ∈ [a, b] and
then average the results. The greater the number of sample points, N , the more ac-
curately we can estimate 〈f (x)〉. Classically, to estimate 〈f (x)〉 to order ε requires
O(1

ε2) such sample points.

Let us take N = 2n sample points to be {xj : xj = j
x + a} where
x = b−a
N−1 .

Thus as j ranges over the integers from 0 to N − 1, x ranges over the reals from
a to b. Without loss of generality we can therefore define a daughter function
f̃ (j) = f (j
x + a), so that 〈f̃ (j)〉 sampled at j = 0,1,2, . . . ,N − 1 matches
〈f (x)〉 sampled at x = x1, x2, . . . , xN−1. Thus we can work with f̃ (j) in lieu of
f (x) in the knowledge that 〈 ˜f (j)〉 = 〈f (x)〉 over corresponding intervals.

Thus, we can now state the quantum mean estimation algorithm:

Quantum Mean Estimation Find the mean value of 0 ≤ f̃ (j) ≤ 1 for j taking
the values j = 0,1,2, . . . ,N − 1.

1. We begin by defining

R
f̃ (j)

=
⎛
⎝ f̃ (j)

√
1− f̃ (j)2√

1− f̃ (j)2 −f̃ (j)

⎞
⎠ (10.1)

to be a single qubit “rotation” that depends on f̃ (j).

10.1 Quantum Functional Analysis 371

2. Using R
f̃ (j)

we construct the “mean value” operator U〈f̃ 〉 as follows:

U〈f̃ 〉 = (H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
n

⊗ 1)−1 ·
(

2n−1⊕
j=0

Rj

)
· (H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸

n

⊗ 1)

(10.2)
where

2n−1⊕
j=0

R
f̃ (j)

=

⎛
⎜⎜⎜⎝

R
f̃ (0) 0 0 0
0 R

f̃ (1) 0 0

0 0
. . . 0

0 0 0 R
f̃ (2n−1)

⎞
⎟⎟⎟⎠ (10.3)

3. With U〈f̃ 〉 so defined, we have:

|ψ〈f̃ 〉〉 =U〈f̃ 〉|00 . . .0〉 = 〈f̃ 〉|00 . . .0〉 + · · · (10.4)

which shows that the mean of f̃ (j) (and equally f (x)) appears as the amplitude
of the |00 . . .0〉 component of the output superposition |ψ〈f̃ 〉〉.

4. If we were to measure |ψ〈f̃ 〉〉 in the computational basis immediately after it was

prepared, the probability of obtaining |00 . . .0〉 would be |〈f̃ 〉|2. Hence, by this
method, to estimate 〈f̃ 〉 to accuracy ε would require O(1

ε2) repetitions, which is
no better than we could have done classically via direct sampling.

5. The “trick” to quantum mean estimation is to amplitude amplify only the
|00 . . .0〉 component of |ψ〈f̃ 〉〉 by a known amount prior to making any mea-
surement. Fortunately, by the theory of amplitude amplification developed in
Sect. 5.4.2, we have a quantitative understanding of how successive applications
of an amplitude amplification operator changes the amplitude. In the current case
we know the identity of the target state to be amplified, i.e., |00 . . .0〉, and we
known that this is the only “target” we have. Hence, in this case the amplitude
amplification operator takes the form Q = −U〈f̃ 〉1sU

†
〈f̃ 〉1t with |t〉 = |00 . . .0〉

(the target) known a priori, and |s〉 the starting state.

10.1.2 Quantum Counting

Another common task in mathematics is to determine the number of solutions to
a problem without necessarily wanting to exhibit those solutions explicitly. If the
problem happens to be of a certain kind we can sometimes just write down its num-
ber of solutions. For example, an n-th order polynomial has n roots, so knowing
the order of the polynomial tells us the number of solutions (at least up to repeated
roots). But if we do not have any special properties to rely on the best we can do
using classical methods is to enumerate all possible solutions and then count them.

372 10 Mathematics on a Quantum Computer

This means we come to know the solutions first and then count them. If the prob-
lem is unstructured and there are N possible candidate solutions, we will incur a
cost Θ(N) in counting the number of solutions.2 The need to know the number of
solutions to a problem is even more pressing in Grover’s algorithm for unstructured
quantum search. In Grover’s original unstructured quantum search algorithm, one
needs to know the number of solutions to the search problem in advance in order
to know how many rounds of amplitude amplification to perform before measuring
the amplitude amplified state at such time as to maximize your chances of obtain-
ing a solution. If one under amplitude amplifies, or over amplitude amplifies, the
probability of success will be less than O(1) when the final measurement is made.

Is there a better way using quantum computing that allows us to count the number
of solutions without learning what they are explicitly?

The answer appears to be “yes” if the function whose solutions are sought is
available as a quantum oracle. Fortunately, in 1998 Gilles Brassard, Peter Høyer
and Alain Tapp combined ideas from Grover’s algorithm with those from the quan-
tum phase estimation algorithm to conceive of a quantum counting algorithm that
can return a good estimate of the number of solutions, t , to an unstructured search
problem [76, 78]. Knowing t allows a subsequent quantum search to be configured
optimally by choosing the number of amplitude amplification steps to be performed
to be O(π4

√
N/t), at which point the success probability will be O(1). The trick is

to exploit the fact that the eigenvalues of Grover’s amplitude amplification opera-
tor, Q, are related to the number of targets t . This means we can perform quantum
counting of the number of solutions as an eigenvalue estimation problem.

Specifically, the quantum counting algorithm returns an estimate for the num-
ber of index values, j , for which the function f (j) : {0,1,2, . . . ,N − 1} → {0,1}
returns the value 1. The quantum counting algorithm exploits the fact that the eigen-

values of Grover’s amplitude amplification operator, Q= (cos 2θ sin 2θ
− sin 2θ cos 2θ

)
, are related

to the number of solutions, t , to the search problem. Thus by estimating the eigen-
values of Q using the quantum eigenvalue estimation algorithm, one infer t . The
quantum search algorithm for finding one of t solutions, and hence the operator
Q, was explained in Chap. 5. Likewise the quantum eigenvalue estimation was ex-
plained in Chap. 9. So once we understand how the eigenvalues of Q are related to
the number of solutions t , the quantum counting algorithm follows quite easily.

The Grover amplitude amplification operator, Q, in the {|ψgood〉, |ψbad〉} basis,
when there are t solutions out of N = 2n possibilities is (as shown in Sect. 5.5.1):

Q=
(

cos 2θ sin 2θ
− sin 2θ cos 2θ

)
(10.5)

with sin θ =√
t/N where t is the unknown number of solutions that we seek, and

N = 2n is the number of candidates.
To obtain t , we make use of the fact that Q has two eigenvalues and associ-

ated eigenvectors: the eigenvalues e−2iθ is associated with the eigenvector |ψ+〉 =

2Big Θ notation is discussed in Sect. 4.4.2.

10.1 Quantum Functional Analysis 373

i√
2
|ψgood〉 + 1√

2
|ψbad〉, and the eigenvalue e2iθ is associated with the eigenvector

|ψ−〉 =− i√
2
|ψgood〉+ 1√

2
|ψbad〉. Thus the eigenvalues depend on θ , and θ depends

on t . Hence, if we can find the eigenvalue e−2iθ given knowledge of |ψ+〉, or if we
can find e2iθ given knowledge of |ψ−〉, we will be able to compute θ and hence
t =Nθ2.

Unfortunately, there is a problem: we do not know |ψ+〉, and |ψ−〉 because we do
not know the two states from which they are built, i.e., |ψgood〉 and |ψbad〉. Luckily,
though, we can write a state that is easy to make—the equally weighted superposi-
tion state—as a sum of |ψ+〉, and |ψ−〉. Specifically, we have:

|ψ〉 = 1√
N

N−1∑
x=0

|x〉

= sin θ |ψgood〉 + cos θ |ψbad〉

=
(
ie−iθ − ieiθ

2

)
|ψgood〉 +

(
e−iθ + eiθ

2

)
|ψbad〉

= eiθ√
2

(
i√
2
|ψgood〉 + 1√

2
|ψbad〉

)
+ e−iθ

√
2

(
− i√

2
|ψgood〉 + 1√

2
|ψbad〉

)

= eiθ√
2
|ψ+〉 + e−iθ

√
2
|ψ−〉 (10.6)

Now we can use this state as the known input to the eigenvalue estimation algorithm
of Sect. 9.5.

The quantum counting scheme is illustrated in Fig. 10.1.

Quantum Counting Suppose we are given f (x)→{0,1} as a black box quantum
oracle such that f (x)= 1 if x ∈ G (the “good” states) and f (x)= 0 if x ∈ B. Find
the number of values of x for which f (x)= 1.

1. Prepare |ψ0〉 = |0〉⊗(p+n).
2. Apply a Walsh-Hadamard gate to each qubit to give |ψ1〉 =H⊗p ⊗H⊗n|ψ0〉.
3. Apply a cascade of controlled-G2j gates for j = 0,1, . . . , p− 1.
4. Measure the second (n-qubit) register.
5. Apply QFT†

2p to the first (p-qubit) register.
6. Measure the bits values output from the first register. Let the result be the binary

string (b1b2 · · ·bp)2.
7. Compute m= 2p−1b1 + 2p−2b2 + · · · + 20bp .
8. Estimate the number of solutions, t̃ , from t̃ = 2n sin2(mπ

2p).

In the quantum counting algorithm we must pick the number of bits of precision
to which we wish to estimate the eigenvalue (and hence the precision with which we
can estimate the number of solutions t). Without knowing the number of solutions in
advance it is hard to know what precision to use. So the way the quantum counting

374 10 Mathematics on a Quantum Computer

Fig. 10.1 Quantum circuit for quantum counting the number of solutions to a search problem with
amplitude amplification operator Q. Note that the Walsh-Hadamard gates acting on the bottom set
of qubits creates the uniform superposition |ψ〉 = 1√

N

∑N−1
x=0 |x〉. However, this state may also

be interpreted as a superposition of the two (unknown) eigenvectors of Q, i.e., |ψ+〉 and |ψ−〉.
Specifically, we have |ψ〉 = eiθ√

2
|ψ+〉 + e−iθ√

2
|ψ−〉. So the output from the top set of qubits are the

sequence of bits in the binary fraction expansion of one or other of the eigenvalues of Q

Table 10.1 Accuracy of the
estimate in the number of
solutions return by quantum
counting as a function of the
precision used in the inverse
QFT

Precision p Provable bound on t

p = c
√
N |t̃ − t |< 2π

c

√
t + π2

c2

p = c

√
N
t

(1+ π
c
)2 < t̃

t
< 1/((1+ π

c
)2)

p = c
√
t̃N t̃ = t with bounded probability

algorithm should be used is to pick a number of bits of precision p = √
N and

obtain a first estimate of the number of solutions t̃ such that |t − t̃ |< 2π
√
t + π2.

Then reset the precision to p = 20
√
t̃N and run the quantum counting algorithm

again to obtain a better estimate of t̃ . Following this procedure, one obtains the true
t with probability of at least 8/π2 [76, 78]. Various other relations are now known,
as summarized in Table 10.1, that bound the accuracy with which we know t to the
precision p used in the quantum counting algorithm.

10.2 Quantum Algebraic Number Theory 375

10.2 Quantum Algebraic Number Theory

“Hallgren has recently shown that the Fourier transform can also be used to find the peri-
odicity of functions with irrational periods, and that this is useful in solving certain number
theory problems such as finding solutions to Pell’s equation and finding class groups of
number fields.”
– Peter Shor

The discovery of Shor’s algorithm for factoring composite integers in polynomial
time stimulated the search for other quantum algorithms that solve similar mathe-
matical problems in an analogous way. One of the best algorithms that resulted is
Sean Hallgren’s algorithm for solving Pell’s equation [225].

If you are not a mathematician with a penchant for algebraic number theory most
likely you are wondering “Who the heck is Pell?” and “What on Earth is Pell’s
equation?”. Indeed, Pell’s equation is not often encountered outside of specialty
mathematics courses. So on the face of it, it may seems a tad esoteric to worry about
a quantum algorithm for solving an obscure equation. But Hallgren’s algorithm is
important primarily because it extends the period-finding technique in Shor’s algo-
rithm in a new direction. In particular, whereas Shor’s period finding algorithm can
find, efficiently, the period of a periodic function having an integer period, Hall-
gren’s algorithm can find, efficiently, the period of a periodic function having an
irrational period. The significance of this extension is lost on many people because
they assume, wrongly, that you could simply approximate the irrational period by
increasing the rate at which you sample the function so that the irrational period will
be “close” to a rational number. Unfortunately, this strategy fails miserably because
no matter how finely you partition the domain of the function into rational intervals
the rounding errors you introduce when you try to sample a function with an irra-
tional period on a grid whose spacing is in rational numbers messes up the period by
too large a factor. So Hallgren’s algorithm deserves a special place in the history of
quantum computing as being genuinely distinct from the period finding algorithm
invented by Peter Shor.

Before looking at the details of Hallgren’s algorithm, let us review Pell’s equation
and understand why it is so hard to solve.

10.2.1 The Cattle Problem of Archimedes and Pell’s Equation

John Pell was an English mathematician who lived between 1610–1685, and he
turns out to having nothing whatsoever to do with the equation that bears his name!
The mis-attribution can be traced back to Euler who confused Pell with another En-
glish mathematician William Brouncker (1620–1684) who had devised a method
of solution [307]. But in fact the equation had been studied even earlier by Greek
and Indian mathematicians. In particular, one of the earliest references to the equa-
tion was implicit in the “Cattle Problem” posed by Archimedes (287–212 B.C.) in
rhyming verse concerning the numbers of cows and bulls of various colors (white,

376 10 Mathematics on a Quantum Computer

black, dappled, and brown) belonging to the Sun god on the island of Sicily. The
poem defined various relations between the numbers of cattle of different colors
and genders and the final constraint Archimedes included is an instance of Pell’s
equation. See [307], p. 184 for an English translation of the “Cattle Problem of
Archimedes”.

Pell’s equation is any equation of the form:

x2 − dy2 = 1 (10.7)

where d is an integer that is not a perfect square (i.e., the square root of d is required
to be non-integer). The stipulation on d is easily motivated since if d were a perfect
square, we would have d = d̃2 for some integer d̃ , and so Pell’s equation would then
read x2 − d̃2y2 = x2 − (d̃y)2 = 1, which would imply there are two integers that
when squared are 1 apart, and this is clearly impossible. A solution to Pell’s equation
is deemed to be any pair of integers (xj , yj) for which the equality holds. However,
the composite formula xj +

√
dyj is often referred to as a “solution” where the√

d factor plays a similar role in quadratic numbers to that played by i =√−1 in
complex numbers. The equation has a smallest solution (x1, y1) expressed in the
form:

x1 + y1
√
d (10.8)

This is called the fundamental solution because all the other solutions can be written
as powers of the fundamental solution. Specifically, the j -th solution is the j -th
power of the fundamental solution.

xj + yj
√
d = (x1 + y1

√
d)j (10.9)

Therefore, our goal is to find the fundamental solution, because once it is known we
can easily can find all the other solutions. Any given instance of Pell’s equation has
infinitely many solutions.

10.2.2 Why Solving Pell’s Equation Is Hard

Table 10.2 shows some examples of the fundamental solution for increasing values
of d . As you can see, the size of the solutions can vary widely with different values
of d and no obvious pattern is apparent.

In the case of the cattle problem of Archimedes d = 410286423278424 (i.e., d is
expressed in 15 digits) yet it takes 206,545 digits to express the smallest solution
explicitly! In the worst case, if the input size of Pell’s equation is taken to be d , the
solution can be of order O(e

√
d). So merely writing down the fundamental solution

will require O(
√
d) digits which scales exponentially in d . The fact that one has to

work with such unwieldy integers is what makes solving Pell’s equation so hard.

10.2 Quantum Algebraic Number Theory 377

Table 10.2 A sampling of
the fundamental solutions of
Pell equations for 2≤ d ≤ 62
illustrating the wildly
different solution values for
different values of d

d x y x2 − dy2

2 3 2 1

3 2 1 1

5 9 4 1

6 5 2 1

7 8 3 1

8 3 1 1

10 19 6 1

11 10 3 1

12 7 2 1

13 649 180 1

14 15 4 1

15 4 1 1
.
.
.

.

.

.
.
.
.

.

.

.

27 26 5 1

28 127 24 1

29 9801 1820 1

30 11 2 1

31 1520 273 1

32 17 3 1

33 23 4 1
.
.
.

.

.

.
.
.
.

.

.

.

58 19603 2574 1

59 530 69 1

60 31 4 1

61 1766319049 226153980 1

62 63 8 1

10.2.3 Solution by Finding the “Regulator”

Fortunately, there are a couple of ways to circumvent this problem. The first is to
use a “power product” representation of the fundamental solution. For example,
using power products the fundamental solution to the Cattle Problem of Archimedes

can be expressed as x1+ y1
√
d = 24514(2175+√d)18(2184+√d)10(2187+√d)20(4341+2

√
d)6

327752993120(2162+√d)18(4351+2
√
d)10

[307] (p. 190 therein). This is a much more compact representation that the required
206,545 digits to express the fundamental solution explicitly.

An alternative technique is to work with the logarithm of the fundamental solu-
tion, rather than the fundamental solution directly. The logarithm, R = loge(x1 +√
dy1), is called the regulator, which is an irrational number. Given the regulator

378 10 Mathematics on a Quantum Computer

you can compute the power product representation of the solution. Moreover, the
j -th solution to Pell’s equation, xj +

√
dyj , is just the fundamental solution raised

to the j -th power, xj +
√
dyj = (x1 +

√
dy1)

j and so the j -th solution must also
given by jR.

10.2.4 The Regulator and Period Finding

The main thrust of Hallgren’s algorithm for solving Pell’s equation is to set up a
periodic function whose period is R, the regulator, which is generally an irrational
number. Then, by finding the period one finds the regulator and hence the funda-
mental solution from R = x1 +

√
dy1. Once the fundamental solution is known all

others follow trivially, as integer multiples of the regulator, and hence Pell’s equa-
tion is solved.

The translation from Pell’s equation to period finding uses well-established math-
ematics. The novelty in Hallgren’s algorithm is that he adapts the (integer) period
finding algorithm underpinning Shor’s algorithm to the case when the period is an
irrational number. Thus for our purposes, we will focus only on the quantum aspect
of Hallgren’s algorithm. Readers interested in understanding the underlying alge-
braic number theory behind Pell’s equation should read the excellent review paper
on the topic written by Richard Jozsa [263].

10.2.5 Quantum Core of Hallgren’s Algorithm

Thus the core of Hallgren’s algorithm is a quantum technique for determining the
period of a periodic function that possesses an irrational period.

The fact that period is irrational complicated periodic finding considerably. To
see this, imagine a periodic function over the real numbers. We might sample this
function at tick marks falling on rational numbers, 0, 1

3 ,
2
3 , . . . etc. If the period of

our function is an integer, then the function will repeat exactly after some number
of tick marks. But if its period is an irrational number, this will no longer be true.
Worse still the distance between the end of the true period and the closest integer to
the true period will jump around erratically in each successive period. You can see
this visually from Fig. 10.2.

10.2.6 Hallgren’s Quantum Algorithm for Solving Pell’s Equation

It turns out, if we can find the integer closest to the regulator, R, (either above or
below it) there is a classical algorithm that will compute R to n digit accuracy in a
time that scales as poly(n, logd). So to find R, it suffices to find the integer closest
to R.

10.2 Quantum Algebraic Number Theory 379

Fig. 10.2 When a period function having an irrational period is sampled on a grid whose points
coincide with rational numbers, the true period is hard to recognize. The function shown is a si-
nusoid with period

√
5 sampled on a grid with spacings in increments of 1/3. The beginnings and

ends of periods at marked by dots. Notice that the dot at the end of the first period (x =√
5) is clos-

est to a tick mark on its right, whereas the dot at the end of the second period (x = 2
√

5) is closest
to a tick mark on its left. Rounding to the nearest tick mark therefore causes us to miscalculate the
true period

In Hallgren’s algorithm we will make use of the following notation:

.�/ = the closest integer less than �

0�1 = the closest integer greater than �

[�] = an integer that is either .�/ or 0�1
.�1 = the closest integer above or below � implying |�− .�1| ≤ 1/2

(10.10)

The algorithm then works as follows.
Richard Jozsa [263], and more recently Andrew Childs and Win van Dam [104]

have both written beautiful accounts of Hallgren’s algorithm for solving Pell’s equa-
tion and related mathematical problems. Below I give a less formal account of Hall-
gren’s algorithm following the development of Childs and van Dam. The reader
wanting details of the algebraic number theory behind Pell’s equation should con-
sult one of these texts.

Hallgren’s Algorithm for Solving Pell’s Equation Problem: Given a function
f (x) defined on the reals that has an irrational period R, i.e., f (x) = f (x + R),
find the closest integer to R.

380 10 Mathematics on a Quantum Computer

1. Create a uniform superposition of x ∈ Z/NZ:

|ψ0〉 =
∑

x∈Z/NZ

|x〉|0〉 (10.11)

2. Evaluate f (x) on these values and place the result in the second register—the
“ancilla”:

|ψ1〉 = 1√
N

∑
x∈Z/NZ

|x,f (x)〉 (10.12)

3. Measure the ancilla register, thereby preparing the first register in a superposition
of values of x that all take the same value for f (x). Thereafter we can ignore the
ancilla register as it plays no further role. The first register is, however, left in a
state of the form:

|ψ2〉 = 1√
n

n−1∑
j=0

|x0 + [jr]〉 (10.13)

where “[jr]” can be either .jr/ or 0jr1 and which it is jumps around erratically
from term to term.

4. Compute the QFT over the cyclic group Z/NZ. Setting ωN to be the N -th root
of unity, i.e., ωN = exp(2πi/N) we have:

|ψ3〉 = 1√
nN

∑
k∈Z/NZ

ω
kx0
N

n−1∑
j=0

ω
k[jr]
N |k〉 (10.14)

This state is similar to the post-QFT state one obtains in Shor’s algorithm, for
which the sought after period is guaranteed to be an integer. In the case of Hall-
gren’s algorithm, the period is, instead, an irrational number. But we can esti-
mate by how much the amplitudes of eigenstate |k〉 differ in the case of Shor’s al-
gorithm versus Hallgren’s algorithm. In Hallgren’s algorithm, the exponent con-
tains the term [jr] = jr + δj where −1 < δj < 1, and so

∑n−1
j=0 ω

k[jr]
N |k〉 =∑n−1

j=0 ω
kjr
N ω

kδj
N . If all the δj were zero, this would reduce to the form found in

Shor’s algorithm. Hence, the difference in the amplitudes of eigenstate |k〉 in
Hallgren’s algorithm versus Shor’s is the following:

∣∣∣∣∣∣∣∣∣∣∣

n−1∑
j=0

ω
kjr
N ω

kδj
N

︸ ︷︷ ︸
Hallgren

−
n−1∑
j=0

ω
kjr
N

︸ ︷︷ ︸
Shor

∣∣∣∣∣∣∣∣∣∣∣
≤

n−1∑
j=0

|ωkδj
N − 1|

≤ 1

2

n−1∑
j=0

∣∣∣∣πkδjN

∣∣∣∣≤ πkn

2N
(10.15)

10.2 Quantum Algebraic Number Theory 381

which is not necessarily small for large enough values of k. Therefore, in Hall-
gren’s algorithm, when we measure the post-QFT state (as we are about to do)
we will only accept the result as “usable” whenever the k value we find is such
that k < N/ log r . Luckily, this event occurs with probability Ω(1/poly(log r))
(cf. Ω(1) in the case of Shor’s algorithm). But Ω(1/poly(log r)) is still a pretty
high probability.

5. Measure |ψ3〉 in the computational basis. This provides a sample from the QFT
which is strongly peaked around values of k = . jN

r
1 such that j ∈ Z, which we

only deem to be “usable” if k < N/ log r . The probability of obtaining such a k

satisfying k < N/ log r is Ω(1/poly(log r)).
6. Finally, we obtain an estimate of r from these samples. But because r is not an

integer the continued fraction trick used in Shor’s algorithm needs to be modified
in Hallgren’s algorithm. Specifically, by re-running steps 1–5 only polynomially
many times we obtain two samples k1 = . j1N

r
1 and k2 = . j2N

r
1 such that j1

and j2 are relatively prime. Hallgren showed, provided N ≥ 3r2, that j1/j2 is
guaranteed to be a convergent in the continued fraction expansion of k1/k2. From
this we can compute j1 and hence the regulator, r , from

∣∣∣∣r −
⌊

jN

.jN/r1
⌉∣∣∣∣≤ 1 (10.16)

So what happens if we Fourier sample. Well for any integer period function we
have a repeating superposition. Compute the FT and compute the continued fraction
expansion on the result. When the period is integer it is sufficient to take one period
and analyze to get the while thing. But when the period is irrational can’t do that.

10.2.7 What Is the Significance of Pell’s Equation?

One might wonder why solving such an esoteric problem as Pell’s equation really
matters? The answer lies in the fact that solving Pell’s equation appears to be a
slightly harder problem than factoring composite integers or computing discrete log-
arithms, and yet it too admit a polynomial time algorithm on a quantum computer.
In particular, it is known that solving Pell’s equation is at least as hard as factor-
ing. The fastest classical factoring algorithm is the Number Field Sieve, which has
complexity of order O(exp(n1/3)). In contrast, the fastest known classical algorithm
for finding the regulator has complexity of order O(exp(n1/2)). Moreover, there is
a polynomial time reduction from factoring to finding the regulator, but not vice
versa. This implies that finding the regulator is at least as hard as factoring. Never-
theless, in the quantum domain, both problems can be solved in polynomial time on
a quantum computer. Thus Hallgren’s quantum algorithm for solving Pell’s equa-
tion gives a distinct example of a superpolynomial speedup separation between the
quantum and classical domains on a problem that has been known to mathematics
since antiquity. Moreover, whereas Shor’s algorithm can find the period of periodic

382 10 Mathematics on a Quantum Computer

functions having an integral period, Hallgren’s algorithms extends this to periodic
functions having an irrational period. This is a significant advance in the field of
quantum algorithms.

10.3 Quantum Signal, Image, and Data Processing

An important potential use of quantum computers, and a relatively under researched
area, is to speed up certain signal, image, and data processing tasks. For example,
in genomics, we might want a faster way to compare sequences [235]. Or we might
want to match an image against a template [431]. To be able to perform such tasks
on a quantum computer it is first necessary to create a quantum state that encodes the
signal, image, or data. Once in this form we may then operate on it using quantum
gates.

10.3.1 Classical-to-Quantum Encoding

A good example of the general data encoding problem is provided by the needs of
image processing. Suppose we are given an image as a N ×N = 2n × 2n array of
pixel values. The first step in quantum image processing is to create a pure quan-
tum state that encodes this image. One way to do so is to append the columns of
the image on top of one another, as we move from left to right across the pixel ar-
ray, to obtain an N2 × 1 = 22n × 1 dimensional column vector of pixel values. We
then renormalize these pixel values so that sum of the squares of their absolute val-
ues equals one. The result is a sequence of real numbers that encodes the relative
magnitudes of the pixel values in the image. Next, we simply choose to interpret
this sequence of (now normalized) real numbers as the sequence of amplitudes of
the successive eigenstates of a 2n-qubit pure quantum state. Let us call this state
|ψimage〉. Thus, the problem of encoding an arbitrary image in a quantum state re-
duces to the problem of synthesizing the state |ψimage〉.

Fortunately, there are several ways this can be done [42, 223, 267]. A method
based on Grover’s algorithm was given in Sect. 5.7.2. Another method is to construct
the matrix having the column vector of amplitudes implicit in |ψimage〉 as the first
column, and 1’s down the main diagonal elsewhere [465].

⎛
⎜⎝

↑
|ψimage〉 . . .

↓ 1

⎞
⎟⎠≡

⎛
⎜⎜⎜⎝

p′0
p′1 1
...

. . .

p′
N2−1

1

⎞
⎟⎟⎟⎠ (10.17)

Then we apply the Gram-Schmidt orthogonalization procedure to this matrix. For
an explanation of this see pp. 230–231 [204]. This result will be a unitary matrix.

10.3 Quantum Signal, Image, and Data Processing 383

A quantum circuit for this matrix can be found using the GSVD (Generalize Singu-
lar Value Decomposition) of Sect. 3.7.4.

The basic algorithm for synthesizing any pure state that has an arbitrary ampli-
tude sequence is as follows [465]:

Algorithm SynthesizePureState
Input: Specification of the desired pure state |ψ〉 =∑2n−1

i=0 ci |i〉.
Goal: Find a quantum circuit that synthesizes |ψ〉.
1. Without loss of generality, assume amplitude c0 �= 0 (otherwise perform an op-

eration that shuffles the amplitudes in the column vector such that the top one is
non-zero).

2. Define the matrix, M , such that the first column of this matrix is the sequence of
amplitudes in |ψ〉, the remaining entries down the main diagonal are 1’s and the
remaining elements are 0’s, i.e., define M as:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

c0
c1 1
... 1
...

. . .

c2n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.18)

3. Use the Gram-Schmidt procedure to compute a set of orthonormal columns for
the rest of the matrix, i.e. U :=GramSchmidt(M)

4. The resulting matrix, U , is unitary. Find a quantum circuit for U using QCD.

Such state synthesis capability is very useful. For example, in addition to its role
in encoding images, we might need the ability to create arbitrary superpositions in
order to perform such tasks as the analysis of excited-state molecular spectra in
quantum chemistry [2, 25, 304]. As we showed in Chap. 9 such tasks may require
us to synthesize states that are close to a desired excited state, in order to determine
the corresponding eigenvalue.

Using the SynthesizePureState algorithm, or other method, it is possible
to synthesize a state such as |ψimage〉 that encodes an arbitrary image in a quantum
state in a number of steps that scales as O(22n) = O(N2). This is exponential in
the number of qubits, 2n, which looks bad. But in reality, whenever we handle an
image on a classical computer we expect to incur costs that are at least linear in the
size of the image. For example, the cost of handling an N × N image classically
is O(N2) = O(22n). So the cost of classical-to-quantum encoding of an arbitrary
image is no that bad. If, subsequently, the quantum encoded image can be processed
exponentially faster, than this encoding would be a price worth paying.

Furthermore, there are opportunities in quantum image encoding that are not
present in classical image encoding. For example, if we have a pair of co-registered
images taken in two different wavebands, such as visible and infrared, we could
encode the visible image in a sequence of purely real numbers, and the infrared

384 10 Mathematics on a Quantum Computer

image in a sequence of purely imaginary numbers, then add these two together, re-
normalize the result, and use this as the basis for defining the amplitude sequence
of our 2n-qubit pure state. The amplitude sequence will now consist of complex
numbers, whose real part encodes the visible image and whose imaginary part en-
codes the infrared image. Subsequently, any manipulations of the quantum-encoded
image essentially manipulate the visible and infrared images simultaneously, at no
additional computational cost!

10.3.2 Quantum Image Processing: 2D Quantum Transforms

In Chap. 3 we described how to apply the QFT, QCT, and QWT to state vectors,
and we saw that exponential speedups are quite common [288]. This is analogous to
applying the DFT, DCT and DWT to one-dimensional signals or one-dimensional
time series. However, in classical computing we also employ the DFT, DCT and
DWT to transform two-dimensional data such as images, stored as arrays of pixel
values, i.e., positive integers between 0 and 255 representing gray levels. It is natural
to ask how are we to compute the QFT, QCT and QWT of two-dimensional data sets
in the quantum domain?

As soon as we try to do this we hit a problem. Generically, if we have a unitary
transform U , say, which could be the one-dimensional QFT, QCT or QWT, then
the two-dimensional transform on an image, I , encoded as an array of pixel values,
is computed by first applying U to each column of I independently, and then to
each row of the result, independently. Overall, as the rows and columns of U are
orthonormal for the U matrices we care about, this sequence of operations also
happens to be writable in a more compact and elegant way. Specifically, if U is the
one-dimensional transform, then the two-dimensional transform acting on an image
I can be written as:

U · I ·UT (10.19)

where T denotes taking the transpose and is equivalent to computing the matrix
inverse (since the U matrices we care about are orthonormal). Classically, such a
transform poses no problem.

Trying to compute such two-dimensional transforms on a quantum computer as a
product of matrices is more problematic. For example, one might think to encode an
image in a density matrix ρ because ρ is a naturally two-dimensional representation
of a quantum state. However, an array representing an image can contain an arbitrary
distribution of pixel values. But density matrices have to have conform to certain
symmetries, e.g., their trace must be 1. So it is not possible to merely reinterpret
an image array, I , as a density matrix ρ. Instead, we have to stay with the idea of
encoding an image in a pure state, ψimage, made by extracting each column of I
and appending it to the base of the previous column. This is the so-called “vec”
operation. Having computed vec(I) and renormalizing the resulting column vector
gives us a description of the amplitude sequence in a pure state that is sufficient

10.4 Quantum Walks 385

to encode an arbitrary image. Then the traditional image transformation I → U ·
I · UT can be re-expressed as an equivalent operation on vec(I). Specifically, the
connection is:

vec(U · I ·UT)≡ (U ⊗U) · vec(I) (10.20)

Thus, once we have one-dimensional version of any unitary transform, such as the
1D QFT, QCT or QWT, we can obtain the analogous two-dimensional transform on
a 2D image or 2D data set using the aforementioned trick.

If these 2D transforms are augmented with the ability to synthesize an arbitrary
pure state (which is needed to input an image into a quantum computer) we have
the beginning of a method to encode an image in a quantum state, and then operate
upon it using a two-dimensional version of our favorite quantum transform.

10.3.3 Quantum-to-Classical Readout

The final stage of image processing requires extracting information from the result.
Traditionally, in classical computing, this is done by looking at the image that is
the product of the various transformations we have applied. However, we cannot, of
course, do this in the quantum domain as our transformed images will be stored in
quantum states not classical states. So any attempt to observe them in the traditional
face will destroy the very information we are trying to visualize.

The alternative is to make a measurement that either samples from the trans-
formed image, or extracts some collective property of the transformed image. The
easiest example is the provided by QFT. If one encodes a one-dimensional time-
series signal in a pure state of n qubits, quantum Fourier transforms it, and then
reads the quantum-transformed image, one is most likely to obtain a result that cor-
responds to a peak in the Fourier transformed signal. This indicates that the corre-
sponding frequency component is strongly represented in the Fourier transform of
the signal. This measurement therefore gives you information about the transformed
signal, without you having to “see” the whole signal in the conventional sense.

It is early days yet for understanding the full gamut of methods able to extract
useful information from quantum-transformed images. Nevertheless, we know we
need to give up our assumption that we have to be able to “see” a processed image to
be able to glean useful information from it. Instead, we need to shift our thinking to
classes of measurements on the processed image that can reveal its properties even
without seeing the processed image explicitly.

10.4 Quantum Walks

An altogether different area of mathematics where quantum computers might play
a role is in the study of “random walks”. A classical random walk is a mathematical
process that starts at a particular point, in some real or abstract space, and takes

386 10 Mathematics on a Quantum Computer

Table 10.3 Comparison of quantum versus classical random walk adapted from Viv Kendon
[274]. Algorithms for the one dimensional classical random walk (left) and its quantum coun-
terpart (right). A quantum walker at position x with a coin in state c is denoted |x, c〉. The quantum
analogs of the coin toss and stepping operation are embodied in the operators C and S. Note that
the quantum walker never observes the outcomes of the coin tosses. If he did, this would project
the quantum walk into a classical walk

Classical random walk Quantum random walk

1. Start at the origin: x = 0 1. Start at the origin: x = 0

2. Initialize the coin Initialize the coin

3. Toss a coin 2. Toss a qubit (quantum coin)

result is HEAD or TAIL C|x,0〉 −→ (a|x,0〉 + b|x,1〉)
C|x,1〉 −→ (c|x,0〉 + d|x,1〉)

4. Move one unit left or right
according to coin state:

3. Move one unit left and right
according to qubit state

TAIL: x −→ x − 1 S|x,0〉 −→ |x − 1,0〉
HEAD: x −→ x + 1 S|x,1〉 −→ |x + 1,1〉

5. Repeat steps 2 and 3 t times 4. Repeat steps 2 and 3 t times

6. Measure position −t ≤ x ≤ t 5. Measure position −t ≤ x ≤ t

7. Repeat steps 1 to 5 many times
−→ prob. dist. P (x, t), binomial
standard deviation 〈x2〉1/2 =√

t

6. Repeat steps 1 to 5 many times
−→ prob. dist. P (x, t) has
standard deviation 〈x2〉1/2 ∝ t

successive steps in random directions. The next direction to step is determined by
the toss of a coin (or multi-sided dice etc.) and the step size is fixed. Usually, one
wants to know the typical distance from the starting point, or the probability of
reaching an absorbing boundary, or the number of times a given point is re-visited,
as functions of the number of steps taken by the walker. Such random walks are
usually constrained, depending on their intended purpose, to take place along a line,
on a surface, within a volume, or even on a graph.

Random walks are interesting in their own right as part of pure probability theory.
However, they have also found application in almost every scientific field ranging
from the physics of Brownian motion on the molecular scale, to the creation of
stars and galaxies, on the cosmic scale. Random walks find applications across all
intermediate scales too and have been used to shed light on phenomena ranging
weather prediction, biology, sociology, and even financial markets.

The simplest type of random walk is the one-dimensional walk on a line, some-
times called the “drunkard’s walk”. The idea is that a drunkard is wandering along a
line and chooses to step right or left depending on the outcome of the toss of a coin.
A particular realization of the random walk is created by repeatedly tossing a coin,
reading the outcome, and then stepping one space to the left or right depending on
the result. This process is summarized in the left hand column of Table 10.3.

Some important questions to ask about such a classical random walk is how
far, typically, the walker will be from his starting point after t steps, and what

10.4 Quantum Walks 387

is the uncertainty (or variance) in this estimate. We can calculate these quanti-
ties quite easily: Let the walk consist of a total of t steps, of which tR are to the
right and tL are to the left. Clearly, t = tR + tL. Let the probability of a right-
ward step be pR and that of a leftward step be qL = 1 − pR . Each of these right-
ward steps can occur in any order amongst the t trials. The number of possible

orderings in which the rightward steps could be taken is
(

t

tR

)
. Each such walk

occurs with probability p
tR
R q

tL
L = p

tR
R (1 − pR)

t−tR . Hence, the overall probabil-

ity of a walk having tR rightward steps is Pr(tR) =
(

t

tR

)
p
tR
R (1 − pR)

t−tR . Hence,

the mean number of rightward steps taken is 〈tR〉 = pRt and the mean number of
leftward steps is 〈tL〉 = qLt = (1 − pR)t . Moreover, the variance in the number
of rightward steps (which equals the variance in the number of leftward steps) is
σ 2
R = 〈t2

R〉 − 〈tR〉2 = tpRqL = tpR(1− pR), which grows linearly with the number
of steps t . The typical distance of the walker from his starting point after t steps is
roughly the standard deviation of the spatial probability distribution the walk gen-
erates, i.e., σR = √

tpR(1− pR), and so scales as
√
t with increasing number of

steps.
Given the tremendous versatility and success of random walks as a mathematical

tool, a reasonable place to look for inspiration for new quantum algorithms would
be to start with classical random walks and attempt to “quantumize” them. But how,
exactly, are we to generalize the notion of a random walk to the quantum domain?

10.4.1 One-Dimensional Quantum Walks

In a classical random walk, once we have specified the initial position of the walker,
and how the outcome of each coin toss is to decide in which direction to step next,
we only need to keep track of two key pieces of information in order to determine
an entire random walk, namely, the position of the walker after t steps, x(t), and the
state of the coin (“heads” or “tails’) after the t-th coin toss c(t) say. Collectively,
these determine the next position of the walker.

We therefore generalize the classical random walk to the quantum domain as
follows: when we initialize the quantum walk, we start in a definite state for the
position of the walker (which we can label as position |x〉 = |0〉) and a definite state
for the coin. This might be “tails”, which we can represent as |c〉 = |0〉, or “heads”,
which we can represent as |c〉 = |1〉. Alternatively, a quantum coin can also start off
in a superposition of both “heads” and “tails”, i.e., |c〉 = α|0〉+β|1〉. Hence, we can
represent the initial state of the quantum walk as the state |ψ(0)〉 = |x〉|c〉, where
|x〉 represents the position state and |c〉 represents the coin state.

Now let us generalize the notions of the coin toss and the step operations. When
we toss a coin classically, we cause it to spin in an attempt to randomize its state
upon being measured. The analogous operation quantumly can be thought of as
applying a unitary operator to the state of the coin, which causes it to enter a state
whose identity (heads or tails) is ambiguous until measured. We can mimic this

388 10 Mathematics on a Quantum Computer

operation quantumly by representing the coin toss as the application of a unitary
transformation to the current state of the coin, as follows:

C|x,0〉 −→ a|x,0〉 + b|x,1〉
C|x,1〉 −→ c|x,0〉 + d|x,1〉 (10.21)

where
(
a b

c d

)
is a 2 × 2 unitary matrix. Thus, if the coin starts off in state |0〉 (i.e.,

“tails” say), the coin toss puts the coin in a state whose outcome is |0〉 with probabil-
ity |a|2 and whose outcome is |1〉 (i.e., “heads”) with probability |b|2. Conversely,
if the coin starts off in state |1〉 (“heads”) then the coin toss puts it in a state whose
outcome is |0〉 with probability |c|2 and or |1〉 with probability |d|2. However, in
a quantum walk we do not read the coin after each “toss”. Instead, we merely ap-
ply the coin toss operator, and compute the next joint state of the walker’s position
and coin, |ψ(t)〉. In general, |ψ(t)〉 becomes a superposition of different position-
state/coin-state pairs. Note that the quantum coin toss operator does not have to
be fair. Any, 1-qubit unitary transformation could be used. However, unitarity of the
matrix defining the coin toss operator is important in order to conserve probabilities.

Similarly, we can generalize the notion of the step operation as moving the walker
one step to the left or right depending on the state of the coin (“heads” or “tails”).
Formally, the step operator only acts on the position of the walker (not the state of
his coin) and can therefore be defined to act as follows:

S|x,0〉 −→ |x − 1,0〉
S|x,1〉 −→ |x + 1,1〉 (10.22)

Notice that, unlike the classical case, the quantum walker is not allowed to read the
coin. After each coin toss the quantum walker therefore takes a step to the left and
a step to the right simultaneously! An intuitive consequence of this is that, indeed,
the quantum walker typically spreads out faster than the classical walker.

To predict the spatial probability distribution of the walker after t steps, we cal-
culate how the joint state of the walker’s position and coin evolve after t steps,
namely:

|ψ(t)〉 = (S ·C)t |x〉|c〉 (10.23)

where S only acts on the degrees of freedom describing the position of the walker
(and leaves the coin state alone), and C only acts on the degrees of freedom describ-
ing the coin (and leaves the position alone). By following this recipe, and provided
that we do not read the coin during the walk, the state of the walk after t steps can
be determined.

Note that this process is entirely deterministic up until the point any measure-
ments are made. This is the reason we describe this quantum process as a “quantum
walk”, rather than a “quantum random walk”. Randomness would only come in
when at the point we make a final measurement of the walker’s position at the end
of the time period of interest, after the walk is over.

10.4 Quantum Walks 389

Typically, quantum interference effects cause a quantum walk to behave quite
differently from a classical walk. In particular, by choosing the initial state of coin
and the coin flip operator appropriately, quantum walks can be configured so as to
diffuse outwards dramatically faster than classical walks. Specifically, whereas in
a classical random walk, the classical walker will be typically

√
t steps from the

starting point after t coin tosses, in a quantum walk the quantum walker will be
typically t steps from the starting point.

Moreover, the shape of the probability distributions over spatial locations can be
dramatically different, with the classical random walk showing a uni-modal prob-
ability distribution centered at the starting point, and the quantum walk showing a
predominantly bi-modal probability distribution, that may even preclude certain po-
sitions, and may or may not be symmetric about the starting point. That is, even if a
quantum walker is required at each coin toss to take one step left or right, interfer-
ence effects can, in some cases, preclude the quantum walker from ever occupying
certain positions over which it can, in principle, pass. That is, if there are three po-
sitions in a line x1 < x2 < x3, it is possible for a quantum walker to walk from x1

to x3 without it ever being possible to find it at the intermediate position x2! In
the following sections we will illustrate these phenomena by way of simple one-
dimensional examples. Generalizations of quantum walks to higher dimensions are
possible.

10.4.2 Example: Biased Initial Coin State & Hadamard Coin

The first quantum walk we shall look at is the one-dimensional quantum walk on a
line, in which the starting position, the initial coin state, the coin flip operator, and
the step operator are defined as follows:

|x〉 = |0〉
|c〉 = |0〉

|x,0〉 C−→ 1√
2
(|x,0〉 + |x,1〉)

|x,1〉 C−→ 1√
2
(|x,0〉 − |x,1〉)

|x,0〉 S−→ |x − 1,0〉
|x,1〉 S−→ |x + 1,1〉

(10.24)

where C performs a Hadamard transform on the coin state, and S performs a shift
transformation on the position state. Notice the initial state of the coin, i.e., |c〉 = |0〉,
is biased as it is wholly |0〉.

To compute the state of the walk after t steps, we compute |ψ(t)〉 = (S ·C)t |x〉|c〉
using the aforementioned values. The first five states of this quantum walk are found

390 10 Mathematics on a Quantum Computer

to be:

|ψ(0)〉 = |0,0〉
|ψ(1)〉 = 1√

2
(|−1,0〉 + |1,1〉)

|ψ(2)〉 = 1

2
(|−2,0〉 + |0,0〉 + |0,1〉 − |2,1〉)

|ψ(3)〉 = 1

2
√

2
(|−3,0〉 + 2|−1,0〉 + |−1,1〉 − |1,0〉 + |3,1〉)

|ψ(4)〉 = 1

4
(|−4,0〉 + 3|−2,0〉 + |−2,1〉 − |0,0〉 + |0,1〉
+ |2,0〉 − |2,1〉 − |4,1〉)

(10.25)

Notice that certain spatial positions for the quantum walker are disallowed. The true
difference between a classical walk and this quantum walk can be grasped by a
more visual comparison. Figure 10.3 shows the spatial probability distribution of
the classical walker (dotted) and the quantum walker (solid) after t = 100 steps.
Notice the appearance of a pronounced leftward bias in the quantum walk compared
to a the symmetry of the classical walk. Moreover, notice the emergence of “ripples”
in the spatial probability function in the quantum case that are absent in the classical
case.

Note that we have only plotted the probability distribution of the walker at even-
numbered locations since there is no possibility the walker will ever be found as
an odd numbered location. Therefore, strictly speaking, we should not have con-
nected the dots in this plot. However, we did so to better visualize the probability
distribution of the quantum walker, especially the oscillatory nature of the distribu-
tion.

Fig. 10.3 Quantum walk
using a starting state of |0,0〉
and a Hadamard coin flip

operator, C= 1√
2

(1 1
1 −1

)
.

Notice that the walk is biased
towards the left

10.4 Quantum Walks 391

10.4.3 Example: Symmetric Initial Coin State & Hadamard Coin

We might guess that the origin of the leftward bias of the quantum walk shown in
Fig. 10.3 is due to having initialized the starting state of the coin to be purely “tails”,
|0〉, rather than the equally weighted symmetric superposition of “heads” and “tails”
(1√

2
(|0〉 + |1〉)). So let us redo the quantum walk such that the starting position, the

initial coin state, the coin flip operator, and the step operator are now defined as
follows:

|x〉 = |0〉
|c〉 = 1√

2
(|0〉 + |1〉)

|x,0〉 C−→ 1√
2
(|x,0〉 + |x,1〉)

|x,1〉 C−→ 1√
2
(|x,0〉 − |x,1〉)

|x,0〉 S−→ |x − 1,0〉
|x,1〉 S−→ |x + 1,1〉

(10.26)

where as before C performs a Hadamard transform on the coin state, and S performs
a shift transformation on the position state. Notice the initial state of the coin, |c〉 =

1√
2
(|0〉 + |1〉), is now unbiased as it is an equally weighted superposition of heads

and tails. Does this removal of bias in the initial coin state make the subsequent
quantum walk symmetric?

The first five states of this quantum walk are:

|ψ(0)〉 = 1√
2
(|0,0〉 + |0,1〉)

|ψ(1)〉 = |−1,0〉
|ψ(2)〉 = 1√

2
(|−2,0〉 + |0,1〉)

|ψ(3)〉 = 1

2
(|−3,0〉 + |−1,0〉 + |−1,1〉 − |1,1〉)

|ψ(4)〉 = 1

2
√

2
(|−4,0〉 + |−2,0〉 + |−2,1〉 − |0,0〉 + |2,1〉)

We can visualize what this walk looks like by carrying the pattern forward for t =
100 steps and then plotting the spatial probability distribution of the quantum walker
at the end of that process. The result is shown in Fig. 10.4. We see that, perhaps
surprisingly, the walk is again biased. How can we fix this?

392 10 Mathematics on a Quantum Computer

Fig. 10.4 Quantum random
walk using a starting state of

1√
2
(|0,0〉 + |0,1〉) and a

Hadamard coin flip operator,

C = 1√
2

(1 1
1 −1

)
. Notice that

the walk is biased towards the
left

10.4.4 Example: Chiral Initial Coin State & Hadamard Coin

It turns out that there are two ways to fix the bias. One is to change the starting state
of the coin to the “chiral” form 1√

2
(|0〉 + i|1〉), while keeping the coin flip operator

the same, and the other if to change the coin flip operator. For example, defining the
initial coin state, the coin flip operator, and the step operator as follows:

|x〉 = |0〉
|c〉 = 1√

2
(|0〉 + i|1〉)

|x,0〉 C−→ 1√
2
(|x,0〉 + |x,1〉)

|x,1〉 C−→ 1√
2
(|x,0〉 − |x,1〉)

|x,0〉 S−→ |x − 1,0〉
|x,1〉 S−→ |x + 1,1〉

(10.27)

we see that the initial coin state, i.e., |c〉 = 1√
2
(|0〉 + i|1〉), is now “chiral” but nev-

ertheless still unbiased in terms of probability between heads and tails. The first five
states of this quantum walk are:

|ψ(0)〉 = 1√
2
(|0,0〉 + i|0,1〉)

|ψ(1)〉 =
(

1

2
+ i

2

)
|−1,0〉 +

(
1

2
− i

2

)
|1,1〉

|ψ(2)〉 = 1√
2

((
1

2
+ i

2

)
|−2,0〉 +

(
1

2
− i

2

)
|0,0〉

+
(

1

2
+ i

2

)
|0,1〉 −

(
1

2
− i

2

)
|2,1〉

)

10.4 Quantum Walks 393

Fig. 10.5 Quantum random
walk using a starting state of

1√
2
(|0,0〉 + i|0,1〉) and a

Hadamard coin flip operator,

C = 1√
2

(1 1
1 −1

)
. In this cases

the quantum walk is
symmetric

|ψ(3)〉 =
(

1

4
+ i

4

)
|−3,0〉 + 1

2
|−1,0〉 +

(
1

4
+ i

4

)
|−1,1〉

(10.28)

−
(

1

4
− i

4

)
|1,0〉 − i

2
|1,1〉 +

(
1

4
− i

4

)
|3,1〉

|ψ(4)〉 = 1√
2

((
1

4
+ i

4

)
|−4,0〉 +

(
3

4
+ i

4

)
|−2,0〉

+
(

1

4
+ i

4

)
|−2,1〉 −

(
1

4
+ i

4

)
|0,0〉

+
(

1

4
− i

4

)
|0,1〉 +

(
1

4
− i

4

)
|2,0〉

−
(

1

4
− 3i

4

)
|2,1〉 −

(
1

4
− i

4

)
|4,1〉

)

As before, we can visualize the spatial probability distribution induced by this quan-
tum walk after t = 100 steps. The result is shown in Fig. 10.5. The sequence of
states leading to this result can also be visualized by plotting the spread of the spa-
tial probability distribution with increasing numbers of steps t as shown in Fig. 10.6.
Notice that the quantum walk is now symmetric about the starting location and the

spatial probability distribution of the walker is predominantly bi-modal with several
“ripples” at intermediate spatial locations. This is quite different from the central
uni-modal hump seen in the analogous classical walk.

10.4.5 Example: Symmetric Initial Coin State & Non-Hadamard
Coin

As we alluded to above, the other way to “fix” the asymmetry problem is to pick a
symmetric initial state for the coin, where C performs a non-Hadamard transform

394 10 Mathematics on a Quantum Computer

Fig. 10.6 The probability distribution of a quantum walk being at position x after (from front
to back) n = 10,20, . . . ,100 steps. The walk starts at |x〉 = |0〉 and the coin is initialized to

1√
2
(|0〉 + i|1〉). The coin flip operator is the Hadamard gate, i.e., 1√

2

(1 1
1 −1

)

on the coin state, and S performs a shift transformation on the position state. Notice
the initial state of the coin, |c〉 = 1√

2
(|0〉 + |1〉), and to change the coin flip operator

to the more symmetric form C = 1√
2

(
i 1
1 i

)
. Defining the initial coin state, the coin

flip operator, and the step operator as follows:

|x〉 = |0〉
|c〉 = 1√

2
(|0〉 + |1〉)

|x,0〉 C−→ 1√
2
(i|x,0〉 + |x,1〉)

|x,1〉 C−→ 1√
2
(|x,0〉 + i|x,1〉) (10.29)

10.4 Quantum Walks 395

|x,0〉 S−→ |x − 1,0〉
|x,1〉 S−→ |x + 1,1〉

gives us the quantum walk whose first five states are as follows:

|ψ(0)〉 = 1√
2
(|0,0〉 + |0,1〉)

|ψ(1)〉 =
(

1

2
+ i

2

)
|−1,0〉 +

(
1

2
+ i

2

)
|1,1〉

|ψ(2)〉 = 1√
2

((
1

2
+ i

2

)
|−2,0〉 −

(
1

2
− i

2

)
|0,0〉

−
(

1

2
− i

2

)
|0,1〉 +

(
1

2
+ i

2

)
|2,1〉

)

|ψ(3)〉 =
(

1

4
+ i

4

)
|−3,0〉 − 1

2
|−1,0〉 −

(
1

4
− i

4

)
|−1,1〉

(10.30)

−
(

1

4
− i

4

)
|1,0〉 − i

2
|1,1〉 +

(
1

4
+ i

4

)
|3,1〉

|ψ(4)〉 = 1√
2

((
1

4
+ i

4

)
|−4,0〉 −

(
3

4
+ i

4

)
|−2,0〉

−
(

1

4
− i

4

)
|−2,1〉 −

(
1

4
+ i

4

)
|0,0〉

−
(

1

4
+ i

4

)
|0,1〉 −

(
1

4
− i

4

)
|2,0〉

−
(

3

4
− i

4

)
|2,1〉 +

(
1

4
+ i

4

)
|4,1〉

)

Continuing the pattern, we can visualize the spatial probability distribution induced
by this quantum walk after t steps by computing |ψ(t)〉 = (S ·C)t |x〉|c〉. The result
is shown in Fig. 10.7. Again, we obtain a symmetric walk that appears to spread
(or diffuse) faster than a similar classical walk. Let us next compare the rates of
diffusion of these four quantum walks to each other and to a typical unbiased one-
dimensional classical walk.

10.4.6 Quantum Walks Can Spread Faster than Classical Walks

As you can see, the choice of initial state for the coin, and the coin flip operator can
affect the course of the quantum walk significantly. More importantly, though, the

396 10 Mathematics on a Quantum Computer

Fig. 10.7 Quantum random
walk using a starting state of

1√
2
(|0,0〉 + |0,1〉) and a coin

flip operator, C = 1√
2

(
i 1
1 i

)
.

Notice that the walk is
symmetric.

long time behavior of a quantum walk is markedly different from the corresponding
classical random walk, due to interference between the different possible paths. In
particular, the shape of the probability distribution for finding the walker a certain
distance from the starting point is dramatically different in the classical and quantum
cases. The upshot is that quantum walkers find themselves further from their starting
point on average than a classical walker, and this forms the basis of a quantum speed
up that can be exploited to solve problems faster.

We can make the argument more precise by computing the variance of the quan-
tum walk in space after t steps. We have:

var(x) = 〈x2〉 − 〈x〉2

=
t∑

i=1

x2 Pr(x)−
(

t∑
i=1

x Pr(x)

)2

(10.31)

over the t steps taken. We can obtain Pr(x) from quantum walker’s state after t

steps, i.e., |ψ(t)〉, where the first index of |ψ(t)〉 defines the spatial coordinate of
the walker.

In Fig. 10.8 we plot the variance in the spatial location of the quantum walker
after t steps for up to t = 50 steps for the first three quantum walks outlined above.
We then fitted polynomials to the data to obtain numerical estimates for the rate of
growth of variance of the three quantum walks. In all cases, the rate of growth of the
variance of the spatial probability distributions fits a quadratic form very well, with
the fastest rate of increase in variance found for the symmetric quantum walk. As the
rate of growth of variance of all the quantum walks fits a quadratic in t very well,
this means that the typical distance of the quantum walker grows as t rather than√
t for the closest analogous classical walk scenario. Hence, quantum walks can

be configured to diffuse out (explore the space) much more rapidly than classical
random walks. This phenomenon provides the basis on which many quantum-walk
based algorithms can be devised that out-perform their classical counterparts.

10.5 Summary 397

Fig. 10.8 Growth of variance of three quantum walks. All three walks start at the same posi-
tion, i.e., |x〉 = |0〉. The initial state of the coin is (a) |0〉 (for the blue curve), (b) 1√

2
(|0〉 + |1〉)

(for the green curve) and (c) 1√
2
(|0〉 + i|1〉) (for the red curve). The probability distribution

for the green and blue quantum walks are similar and show a high asymmetry in the walk,
favoring a leftward drift. The probability distribution of the red quantum walk is highly sym-
metrical about the starting position. In all cases the growth in the variance is an excellent
fit to a quadratic in the number of steps, n. Specifically, for quantum walk (a) the variance
grows as var(Pr(t)) ≈ 0.498 + 0.195t + 0.207t2. For quantum walk (b) the variance grows
as var(Pr(t)) ≈ 0.316 − 0.197t + 0.207t2. And for quantum walk (c) the variance grows as
var(Pr(t)) ≈ 0.582 − 0.004t + 0.293t2. Contrast these results to a classical random walk whose
variance typically grows in proportion to t (the step count) rather than t2. This means that quantum
walks can be configured so as to diffuse out faster than classical walks

10.5 Summary

Since the discovery of Shor’s algorithm, people have been looking for quantum al-
gorithms that can solve other mathematical problems apart from factoring compos-
ite integers and computing discrete logarithms. The result has been quantum algo-
rithms for addressing many areas of mathematics, including, computing numerical
integrals, determining eigensolutions of differential operators, solving Diophantine
equations, computing properties of graphs. In addition, some useful mathematical
techniques such as random walks and game theory have been generalized to the
quantum domain and new versions of famous theorems related to the rate at which
random walkers diffuse out and the equilibria of games have been found.

In this chapter we gave but a taste of these developments. The quantum counting
algorithm is especially noteworthy since it combines ideas from both Grover’s al-
gorithm and phase estimation. Moreover, quantum counting is practically useful as
it can be used as a preliminary step in a quantum search when the number of solu-
tions to the search problem is not known a priori. Hallgren’s algorithm for solving
Pell’s equation is noteworthy because it represents a significant extension of Shor’s
algorithm to the case of periodic functions having an irrational period. Quantum
random walks are noteworthy because they have stimulated a great many new ideas
for quantum algorithms and have also contributed to new physics understanding of

398 10 Mathematics on a Quantum Computer

transport phenomena in materials. Quantum algorithms that work on times series
data and 2D images are possible, but these require that the data be encoded in a
quantum state prior to the application of the quantum algorithm. This generally re-
quires a computational cost that is proportional to the size of the data. Nevertheless,
this could still be advantageous if subsequent quantum processing is exponentially
faster than classical alternatives.

10.6 Exercises

10.1 In the text we defined a quantum random walk in terms an operator that acts
on |x, c〉, i.e., the instantaneous position of the walker, x, and the instantaneous state
of his or her coin c. Consider the following as an alternative strategy: let the position
of the quantum walker be x. At each time step, and for any position x, we imagine
there is an amplitude for the walker to move left, an amplitude to stay in place, and
an amplitude to move right. Thus, the transform we require, U , would perform the
following mapping: U |x〉 −→ aLEFT|x − 1〉 + aSTAY|x〉 + aRIGHT|x + 1〉. Then Ut

would give the state describing the position of the quantum walker after t steps.
Explain why this is not a suitable specification for a quantum random walk. [Hint:
is the given random walk operator, U , physically allowed?]

10.2 Consider the quantum random walk stating in state |0,0〉 and using the

Hadamard coin flip operator, C = 1√
2

(1 1
1 −1

)
. Prove that the quantum walker can

never be found at an odd-numbered location.

10.3 In Grover’s algorithm with a single solution, or “good” state |t〉, we write the
operator 1t = 1− 2|t〉〈t |. When there are multiple solutions it is natural to write the
superposition of good indices as |ψgood〉 =∑

j∈Xgood
|j 〉. Can we write the corre-

sponding operator as 1good = 1− 2|ψgood〉〈ψgood|?

10.4 In this chapter we described an algorithm for synthesizing an arbitrary pure
state. We can build upon this technique to devise a method for synthesizing an ar-
bitrary mixed state. The scheme can best be understood by inspecting the structure
of the quantum circuit, show in Fig. 10.9, used to implement it. The mixed state
synthesis algorithm works as follows:

Algorithm SynthesizeMixedState A quantum circuit sufficient to synthe-
size an arbitrary 2n × 2n dimensional density operator ρ can be determined as fol-
lows:

1. Compute the spectral decomposition of ρ =∑k
i=1 pi |i〉〈i|. This reveals a set of

quantum states {|i〉}.
2. Compute the unitary matrices Ui such that |i〉 =Ui |0〉.
3. Compute a circuit for performing U =U1 ⊕U2 ⊕ · · · ⊕Uk .

10.6 Exercises 399

Fig. 10.9 Quantum circuit
for synthesizing an arbitrary
mixed state, ρ

4. Compute a circuit for preparing the “loaded dice” state |ϕ〉 =∑k
i=1

√
pi |i〉.

5. Compute the input state |ψ〉 = |ϕ〉 ⊗ |00 . . .0︸ ︷︷ ︸〉
n qubits

.

6. Push this state through U , and trace over the control qubits, C, i.e., perform the
computation trC(U |ψ〉〈ψ |U†)= ρ.

Apply the aforementioned SynthesizeMixedState algorithm to find a quan-
tum circuit to synthesize the maximally-entangled mixed state, ρ, where:

ρ =

⎛
⎜⎜⎝

1
3 0 0 1

6
0 1

3 0 0
0 0 0 0
1
6 0 0 1

3

⎞
⎟⎟⎠ (10.32)

Part III
What Can You Do with Quantum

Information?

Chapter 11
Quantum Information

“One could caricature quantum information processing as the science of turning quantum
conundrums into potentially useful applications.”
– Nicolas Gisin1

Classical information theory, invented by Claude Shannon in 1948, addresses two
main issues: the degree to which a classical message (i.e., a sequence of symbols)
can be compressed, and the maximum rate at which reliable communications can be
sustained over a noisy communications channel. The quantitative statement regard-
ing the maximum compressibility of a symbol sequence is enshrined in Shannon’s
“Noiseless Source Coding Theorem”, and the quantitative statement regarding the
maximum rate of reliable communications, for a given noise level in the channel,
is enshrined in Shannon’s “Noisy Channel Coding Theorem”. Together, these theo-
rems laid the foundations for several multi-billion dollar industries such as telecom-
munications, cellular phone networks, internet, and disk drives. In fact, we make
use of information theory everyday but barely give it any thought whatsoever.

Since information theory was invented, engineers have refined communications
and data storage devices constantly so that they use fewer physical resources to
encode more information. This has enabled dramatic increases in the storage ca-
pacity of computer memories, significant reductions in the power consumption of
communications devices, and large increases in the rate at which information can
be exchanged. Indeed, codes are now known that operate surprisingly close to the
limits implied by Shannon’s theorems.

In this chapter we consider how information theory needs to be modified once we
use the quantum states of simple systems (such as photons) to encode symbols. We
might expect that some modification is necessary because, e.g., whereas symbols
encoded in the states of classical physical systems are guaranteed to be distinguish-
able, the same cannot be said for symbols encoded in the states of quantum systems
(e.g., if they are non-orthogonal). But, in fact, the reasons for modification runs
much deeper than this: Some elementary information processing operations, such

1Source: in “Quantum Cryptography” Reviews of Modern Physics, Volume 74, January (2002).

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_11, © Springer-Verlag London Limited 2011

403

http://dx.doi.org/10.1007/978-1-84628-887-6_11

404 11 Quantum Information

as copying data, which are permitted on classical information are impossible when
attempted on quantum information. Conversely, other operations, such as teleporta-
tion, which are impossible when using classical information, can be achieved using
quantum information.

As in the case of computer science, this shift in the foundations of the field turns
out to have profound consequences. In particular, it leads to new (quantum) versions
of both the noiseless coding theorem and the noisy channel coding theorem. As
you shall see, quantum information theory forces us to revise our most cherished
assumptions regarding how information should behave.

11.1 What is Classical Information?

“It might even be fair to observe that the concept that information is fundamental is very
old knowledge of humanity, witness for example the beginning of the gospel according to
John: “In the beginning was the Word” ”
– Anton Zeilinger2

Most people have an intuitive understanding of what they mean by “informa-
tion”. It’s the stuff they read in newspapers, copy off blackboards, or absorb while
watching CNN etc. However, when pressed to give a more precise definition, I find
that most people equate “information” with the knowledge imparted during some
communicative act, i.e., what they know now that they didn’t know before. This
implicitly connects “information” with the meaning of a communication, i.e., its
qualitative aspects.

A problem with this position, is that it makes the “information” contained within
a message highly subjective, hard to quantify, and context dependent. For example,
the “information” two people may attach to a CNN report would then depend on
what they knew beforehand. It is tricky to make any mathematical headway with
such a subjective basis for a notion of “information”. So the commonsense view
of “information” as the knowledge imparted during some communicative act is not
very useful in a practical sense.

In 1948 Claude Shannon hit upon an alternative view of what we should mean
by “information”. He suggested the information within a message was simply the
minimum number of 0s and 1s needed to transmit it. In Shannon’s own words [14]:

“The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem. The significant aspect is
that the actual message is one selected from a set of possible messages. The system
must be designed to operate for each possible selection, not just the one which will
actually be chosen since this is unknown at the time of design.”

2Source: [560].

11.1 What is Classical Information? 405

Shannon’s insight was as ingenious as it was dehumanizing! By equating “in-
formation” with the minimal resources needed to represent a message, rather than
its knowledge content per se, it became possible to derive laws describing how the
amount of information would change under various operations, such as compress-
ing messages or sending them through noisy communications channels. In turn, such
understanding led to breakthroughs in data compression, encryption, and telecom-
munications.

Yet the cost is severe. Shannon’s perspective strips all humanity from the notion
of information. In Shannon’s theory a love letter might have the same information
content as a bus schedule, since his notion of information only addresses its quan-
titative aspects not its qualitative aspects. “Information” became something sterile,
lifeless, and devoid of passion or creativity. Nevertheless, the operational utility of
regarding information as the minimum number of 0s and 1s needed to encode some
message is currently the best handle we have on quantifying the elusive and abstract
notion of “information”.

11.1.1 Classical Sources: The Shannon Entropy

We can think of a source of classical information as a device that produces a stream
of classical symbols, such as lowercase letters, uppercase letters, numbers, and
punctuation marks. After large numbers of such symbols have been produced we
can determine their probability distribution. In principle, all sorts of subtle correla-
tions amongst the symbols are possible. For example, in English the symbol “q” is
followed, invariably, by the symbol “u” as in the words such “quantum”, “quest”,
“quibble”, and “quoff ”. Nevertheless, as each distinct symbol can be encoded as
a corresponding binary string, we can equally think of a source of classical infor-
mation as a device that produces sequences of bits, i.e., 0s and 1s. Consequently,
correlations amongst the symbols would then appear as correlations amongst sub-
sequences of bits. However, correlations at the level of individual bits would tend to
be diluted out.

How one sets up the mapping between symbols and bit strings makes a differ-
ence. For example, the frequencies with which different letters arise in written En-
glish are different (see Fig. 11.1) with “e” being the most common letter. Similarly,
one could treat whole words as “symbols” and plot their frequency of occurrence
too. Such statistical insights into the structure of natural languages have permit-
ted modern marvels such as smarter internet search engines (which exploit word
correlations to infer context and relevance) and statistical machine translation tools
(which can teach themselves to translate documents by being “trained” to infer the
mathematical correlations between the words and phrases found in matching pairs
of human-translations of large corpora of documents). When one makes the sensible
choice of using shorter bit strings to encode more frequent symbols in a language,
one finds that although we can model a source of the language as a stream of inde-
pendent, identically distributed, bits in which 0 occurs with probability p0 = p and

406 11 Quantum Information

Fig. 11.1 Letter frequency distribution in English

1 occurs with probability p1 = 1 − p, that for real languages there is an asymme-
try between p0 and p1. Ultimately, this asymmetry is what allows us to compress
messages.

Specifically, if 0 occurs with probability p0 = p and 1 occurs with probability
p1 = 1 − p, a “typical” n-bit message will have roughly np 0s and n(1 − p) 1s.
Hence, the number of “typical” bit strings is therefore:

(
n

np

)
= n!

(np)!(n− np)! (11.1)

Using Stirling’s formula N ! ≈ NNe−N
√

2πN for N * 1 we have loge N ! ≈
N loge N −N and so:

loge

(
n

np

)
≈ n loge n− n− (np loge np− np

+ (n− np) loge(n− np)− (n− np))

= n(−p loge p− (1− p) loge(1− p))

= 1

log2 e
n(−p log2 p− (1− p) log2(1− p))

≈ nH({p,1− p}) (11.2)

where {pi} is the set of positive real numbers defining the probability with which
each possible symbol appears in the message. In the case of bit string messages there
are only two symbols, i = 0 and i = 1, and so the probabilities are simply p0 and

11.1 What is Classical Information? 407

p1 = 1− p0. The function H({p0,p1})=−∑1
i=0 pi log2 pi is called the Shannon

entropy. For symbols that are just single bits we have H({pi}) ≡ H({p0,p1}) ≡
H({p,1− p}).

The choice of which base to use for the logarithm is somewhat arbitrary as differ-
ent choices only serve to re-scale the measure of information (or entropy) by a con-
stant factor. If we choose to use base 2, our scale has a certain natural feel to it. Using
base 2 logarithms, if p0 = p1 = 1

2 , an n-bit classical message would be completely
random (and hence incompressible) and would convey exactly nH({ 1

2 ,
1
2 })= n bits

of information. At the other extreme, a string of n identical bits, such as n 0s (and
hence devoid of any useful information), would convey nH({1,0})= 0 bits of infor-
mation. So by choosing base 2, we arrive at a fairly intuitive scale for information.

11.1.2 Maximal Compression (Source Coding Theorem)

“Source coding” refers to the data compression problem. That is, given a source
producing a sequence of symbols in accordance with some a priori probability dis-
tribution, by what factor can we compress a typical message from this source with-
out corrupting it? If no information whatsoever is lost, the compression is said to be
“lossless”. But in many cases we are content with a “lossy” compression provided
the losses do not rise to a level we perceive as significant.

We can approach this question with the help of Shannon information theory.
Suppose we model the source as emitting a sequence of independent, identically
distributed, bits in which 0 occurs with probability p0 and 1 occurs with probability
p1 = 1− p0. Then most n-bit messages generated by such a source will be close to
the “typical” messages. That is, they will have close to np0 0’s and n(1− p0) 1’s.
Therefore, we need only worry about how sending “typical” messages. So rather
than there being O(2n) messages to worry about, we only really need to figure out
how to handle O(2nH({p0,p1})) typical messages. All we need to do is to assign a
unique positive integer to each typical message, and send that integer, which re-
quires only nH({p0,p1}) bits, rather than the message, which requires n bits. As
n→ inf almost all message will be close to typical. For example, if p0 = 0.3 and
p1 = 0.7, then a “typical” 20-bit message would have six 0’s and fourteen 1’s, and
instead of there being 220 ≈ 1,000,000 possible messages to send there would be
only 2nH({0.3,0.7}) ≈ 200,000) typical messages to send.

The notion of the entropy of a source that emits one of two possible symbols,
i.e., a binary source, can be generalized readily to one that emits one of d possible
symbols, x1, x2, . . . , xd . Assuming symbol xi appears with probability pi , a typical
message of length n* 1 symbols from such a source will have roughly np1 occur-
rences of x1, np2 occurrences of x2, etc. Hence the number of such typical messages
is given by the number of ways np1 x1’s, np2 x2’s, etc. can be placed within a string
of length n symbols, which is just the multinomial formula:

n!∏d
i=1(npi)!

(11.3)

408 11 Quantum Information

such that 0≤ pi ≤ 1 and
∑d

i=1 pi = 1. We can write this approximately as an expo-
nential function of a modified entropy function

n!∏
i (npi)! ≈ 2nH({p1,p2,...,pd }) (11.4)

if we define

H({p1,p2, . . . , pd})=−
d∑

i=1

pi log2 pi (11.5)

Such a generalization to the case of alphabets having d-symbols gives the Source
Coding Theorem:

Source Coding Theorem If n independent, identically distributed, random vari-
ables taken from a finite d-symbol alphabet each with entropy H({p1,p2, . . . , pd})
are compressed into no fewer than nH({p1,p2, . . . , pd}) bits then there is negli-
gible risk of information loss, but compression beyond this limit makes some loss
almost certain.

For natural languages this notion of source coding is appropriate. But in other
fields, e.g., mathematics and computer science, strings of letters and symbols arise
that although outwardly complex if viewed as a symbol sequence, are actually much
simpler if one understands the underlying generator. In such cases algorithmic in-
formation theory is a better tool for understanding their compressibility. In partic-
ular, Kolmogorov complexity is the shortest program needed to reproduce some
sequence. So the Kolmogorov complexity of a truly random sequence is the se-
quence itself as a random sequence is, be definition, incompressible. In contrast,
the sequence of (say) Fibonacci numbers, in which each successive number is the
sum of the last two numbers, i.e., 1,1,2,3,5,8,13,21,34, . . . can be describe more
compactly via the recursive formula f (n) : f (n) = f (n − 1) + f (n − 2) for n ≥
3 ∧ f (1) = f (2) = 1. This is dramatically shorter than writing out the sequence
itself.

11.1.3 Reliable Transmission (Channel Coding Theorem)

Besides compression, another aspect of information theory is to ask how reliably
information may be conveyed over a noisy communications channel. A typical com-
munications channel adds noise to any signal sent through it causing errors in the
data received. Attempts to correct such errors are prone to errors themselves. It is
not obvious a priori, therefore, that a noisy communications channel can be used
to transmit messages without error. Remarkably, in 1948 Claude Shannon proved
a theorem that showed, regardless of how noisy a given channel may be, that it
is always possible to communicate information over such a channel almost error

11.1 What is Classical Information? 409

free up to a certain maximum rate set by the Channel Coding theorem. The method
for doing so relies upon the use of error correcting codes, but the Channel Coding
theorem does not tell us how to find these good codes, only that they exist. Never-
theless, since the advent of the Channel Coding theorem many excellent codes have
been discovered, driven in large part by the needs of deep Space communications
for supporting reliable communications during NASA Space missions. In particular,
Turbo Codes, and Low Density Parity-Check Codes now come close to saturating
the limit set by Shannon’s Channel Coding theorem.

To state the theorem quantitatively we need a few key ideas. First the notion of
a discrete channel is one consisting of an input alphabet X and an output alphabet
Y and a probability transition matrix p(Y |X), which specifies the probability of re-
ceiving symbol Y ∈ Y given that symbol X ∈ X was sent. When this probability
distribution only depends on the last input to the channel, the channel is said to be
“memoryless”. We can also define the marginal probabilities of seeing the different
symbols as p(x =X)=∑

y p(x, y) and p(y = Y)=∑
x p(x, y), where p(x, y) is

the joint probability of seeing x = X and y = Y . From these we construct the mu-
tual information I (X : Y) =∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x)p(y)

, which is a measure
of how much the two variables depend on each another. Then the channel capacity,
C, of a discrete memoryless channel, can be defined to be the mutual information
maximized over all probability distributions, i.e.,

C =max
p(X)

I (X : Y) (11.6)

The relationship between entropy, conditional entropy, joint entropy, and mutual
information is shown in Fig. 11.2. Formally, the Channel Coding theorem then es-
tablishes the maximum rate at which reliable communications can be supported
given the characteristics of the channel.

Fig. 11.2 Graphical
illustration of the relationship
between entropy (H(X),
H(Y)), conditional entropy
(H(X|Y) and H(Y |X)), joint
entropy (H(X,Y)) and
mutual information
(I (X : Y)). Formally we have
I (X : Y)=H(X)+H(Y)−
H(X|Y) or, equivalently,
I (X : Y)=H(X)−
H(X|Y)=H(Y)−H(Y |X).
Furthermore,
I (X : Y)= I (Y :X) and
I (X :X)=H(X). Mutual
information is a way to
quantify the degree to which
two variables depend on each
other

410 11 Quantum Information

Channel Coding Theorem For any upper bound on the acceptable block error
rate, ε > 0, and for any rate R < C (where C = maxp(X) I (X;Y) is the channel
capacity), there is an encoding/decoding protocol that can guarantee that the prob-
ability of block error is less than ε for a sufficiently long code. Moreover, for any
rate R >C, i.e., if the communications rate attempted exceeds the channel capacity,
errors are inevitable.

A proof the Channel Coding theorem is given in Chapter 8 of Cover & Thomas’s
“Elements of Information Theory” [117].

11.1.4 Unstated Assumptions Regarding Classical Information

“Information is physical.”
– Rolf Landauer

Just as the inventors of classical computer science had attempted to construct a
theory of computation that was independent of how computers were implemented,
so too did Shannon attempt to construct a theory of information that was supposed
to be independent of how symbols were implemented. By building information the-
ory on such a mathematical ideal, Shannon was able to make heroic advances in
modeling data compression and communications channels and hence designing su-
perior telecommunications systems. However, accepting this mathematical ideal as
reality, causes people to assume (implicitly perhaps) that information has certain
eminently reasonable properties. Back in 1948 and for most of the time since then,
these assumptions have in fact been so obvious that no-one has ever really ques-
tioned them—until now. For example, thinking of information as the mathematical
ideal of a stream of symbols invites the following presumptions:

• Information consists of a stream of distinguishable symbols
• Information can be compressed to no more than the Shannon bound
• Information does not change upon being read
• Information can be read in part without it affecting the unread parts
• Information can be copied exactly deterministically
• Information can be negated trivially by flipping every bit value

Indeed, the remarkable advances in communications systems since 1948 bear wit-
ness to how effective Shannon’s theory has been, and how solidly these assumptions
have been upheld.

Yet when we reduce the scale of the systems encoding information to individual
quantum systems, then the nature of information itself begins to change. Under the
right circumstances every one of the aforementioned plausible statements about in-
formation can be made false. The fundamental reason for this, as Richard Feynman
put it, is that “Nature isn’t classical dammit!”. Indeed it is not. Our preconceptions
of the properties that information should possess are intimately tied to the (more

11.2 What is Quantum Information? 411

implicit) assumptions for how such information is implemented. Just as computa-
tion should be seen as a physical process that depends in an essential way on the
physical systems being used to enact computations, so it is for quantum information
systems too.

11.2 What is Quantum Information?

The concept of quantum information is derived quite readily from that of classical
information. Whereas classical information is a sequence of bits quantum informa-
tion is a sequence of qubits. Entirely new types of phenomena are possible with
quantum information that have no counterparts in classical information. For exam-
ple, the successive qubits in a quantum message need not, and generally are not,
orthogonal to one another, nor are they necessarily unentangled from one another.
Thus a typical quantum memory register holds within it quantum information rather
than classical information. As such it will typically hold information in an entan-
gled superposition state, and the strengths of the correlations between bit values can
exceed that which is possible classically.

11.2.1 Pure States cf. Mixed States

So far we have been mostly concerned with situations in which we have complete
knowledge of the state of some n-qubit quantum memory register. That is, there is
no uncertainty whatsoever regarding its state. It exists in some superposition of the
possible bit string configurations of n bits, weighted by various amplitudes corre-
sponding (via their modulus squared) to the probabilities of obtaining that particular
bit string configuration if the memory register were to be read in the computational
basis. In other words, the n-qubit register is in a state of the form:

|ψ〉 = c0|00 . . .0〉 + c1|00 . . .1〉 + · · · + c2n−1|11 . . .1〉 (11.7)

such that
∑2n−1

i=0 |ci |2 = 1. Such a quantum state is said to be a pure state.
There are, however, situations in which we have only incomplete knowledge

about some quantum state. Such states are called mixed states, as they correspond
to weighted mixtures of different pure states.

11.2.2 Mixed States from Partial Knowledge: The Density
Operator

One way mixed states can arise is when we only have probabilistic knowledge
regarding the composition of a quantum state. Suppose, for example, that we

412 11 Quantum Information

only known that a quantum system is in one of the (not necessarily orthogonal)
states |ψ1〉, |ψ2〉, . . . , |ψN 〉 with probabilities p1,p2, . . . , pN respectively such that∑N

i=1 pi = 1. We are therefore a little uncertain of what the state actually is. How
are we to characterize the quantum state of such a system?

One way we might learn something about the state is to make some sort of mea-
surement on it. If we performed a measurement, described by the observable O, on
this system, the result we would expect to obtain would be the weighted average of
the results we would obtain if the system was in each of the states |ψ1〉, |ψ2〉, . . . ,
or |ψN 〉, namely:

〈O〉 =
N∑
i=1

pi〈ψi |O|ψi〉 (11.8)

which after some manipulations (see problem 11.12) can be re-written as:

N∑
i=1

pi〈ψi |O|ψi〉 = tr

((
N∑
i=1

pi |ψi〉〈ψi |
)
· O

)
= tr(ρ · O) (11.9)

where “tr(·)” is the sum of the diagonal elements (i.e. the “trace”) of its argument
(which is a matrix), and ρ =∑N

i=1 pi |ψi〉〈ψi | (which is also a matrix). Notice that ρ
contains information only about the statistical mixture of pure states that contribute
to the state, and O contains information only about the observable being measured.
Hence, ρ must be a complete characterization of the mixed state.

Density Operator If a quantum system exists in the state |ψ1〉 with probability
p1, |ψ2〉 with probability p2, . . . , |ψN 〉 with probability pN , where in general
〈ψi |ψj 〉 �= 1 for i �= j , then the best description of its state is given by the density
operator:

ρ =
N∑
i=1

pi |ψi〉〈ψi | (11.10)

11.2.2.1 Density Operator for a Mixed State

Although you can use density operators to describe pure states, the main motivation
for introducing them is to be able to represent mixed states, i.e., statistical mixtures
of pure states. This allows us to model circumstances in which we only have partial
knowledge regarding the state. Specifically, if a quantum system exists in the state
|ψ1〉 with probability p1, |ψ2〉 with probability p2, . . . , |ψN 〉 with probability pN ,
where in general 〈ψi |ψj 〉 �= 1 for i �= j , then the best description of its state is given
by the density operator:

ρ =
N∑
i=1

pi |ψi〉〈ψi | (11.11)

11.2 What is Quantum Information? 413

where
∑

i=1 pN = 1. Here the component states need not be orthogonal with respect
to one another, i.e., in general 〈ψi |ψj 〉 �= 0 for i �= j .

Many people are puzzled about the distinction between a mixed state and a
superposition state, so it is worth stating this explicitly. A superposition state
is a completely known pure state consisting of a weighted sum of eigenstates,
|ψ〉 =∑

i ci |i〉, which are all orthogonal with respect to one another, i.e., 〈i|j 〉 = 0
for all i �= j . In principle, given knowledge of a superposition state, |ψ〉, one
could build a measuring device that always yielded the same predictable result
each time you used it to measure state |ψ〉. For example, if we had a single qubit
in the superposition state 1√

2
(|0〉 + |1〉) we could rotate a measuring device that

measures in the {|0〉, |1〉} basis by 45° and then it would be measuring in the
{|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)} basis, and always yield the result |+〉.

In contrast, a mixed state ρ =∑
j pj |φj 〉〈φj | is an incompletely known state

in which the component pure states (described by density operators |φj 〉〈φj |) need
not be, and generally are not, orthogonal to one another. The fact that the state
is incompletely known means that you can never be sure whether you really are
dealing with a |φ1〉, or a |φ2〉, etc. Consequently, even if you know ρ, you cannot
pick a measurement basis for a mixed state that is always guaranteed to yield the
same predictable outcome.

The following example illustrates how to calculate the density operator of a
mixed state that is a combination of three non-orthogonal pure states, |ψ1〉, |ψ2〉,
and |ψ3〉, with probabilities p1 = 1

3 ,p2 = 2
5 and p3 = 4

15 respectively where:

|ψ1〉 = |0〉 (11.12)

|ψ2〉 = 1√
2
(|0〉 − |1〉) (11.13)

|ψ3〉 = 1

2
|0〉 + i

√
3

2
|1〉) (11.14)

The corresponding density operator is:

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + p3|ψ3〉〈ψ3|

= 1

3

(
1 0
0 0

)
+ 2

5

(
1
2 − 1

2

− 1
2

1
2

)
+ 4

15

(
1
4 −i

√
3

4

i
√

3
4

3
4

)

=
⎛
⎝

3
5 − 1

5 − i 1
5
√

3

− 1
5 + i 1

5
√

3
2
5

⎞
⎠ (11.15)

Note that tr(ρ)= 1 (as for a pure state), but since

ρ2 = ρ · ρ =
⎛
⎝

31
75 − 1

5 − i 1
5
√

3

− 1
5 + i 1

5
√

3
16
75

⎞
⎠ ,

414 11 Quantum Information

tr(ρ2)= 47
75 < 1. Seeing tr(ρ2) < 1 is sufficient to conclude that ρ is a mixed state.

This criterion holds true whatever of the dimensions of ρ.

11.2.2.2 Density Operator for a Pure State

Although we don’t have to, we can certainly express a pure state in terms of its den-
sity operator. As the state is pure we have complete knowledge about it. Hence the
ensemble contains exactly one kind of state, namely |ψ〉, and so the probability of
this state being in the ensemble is 1 and all others are 0. Hence the density operator
corresponding to pure state |ψ〉 = a|0〉 + b|1〉 is:

ρpure = |ψ〉〈ψ | (11.16)

with no summation. By expanding out the implied bras and kets, we can compute
the density matrix explicitly as:

ρpure = |ψ〉〈ψ | =
(
a

b

)
· (a∗ b∗)=

(|a|2 ab∗
ba∗ |b|2

)
(11.17)

where 〈ψ | ≡ (a∗ b∗) is the bra vector associated with the ket |ψ〉 ≡ (
a

b

)
. It is

obtained by computing the conjugate transpose of the column vector associated
with |ψ〉.

Notice that the sum of the diagonal elements of the density operator is unity, i.e.,
tr(ρpure) = 1. However, as ρ = |ψ〉〈ψ | is actually a pure state (written in density
operator formalism) it also happens to be true that tr(ρ2) = 1 too. Specifically we
have,

ρ2 =
(
|a|4 + |a|2|b|2 ab∗(|a|2 + |b|2)
ba∗(|a|2 + |b|2) |b|4 + |a|2|b|2

)

=
(

|a|2(|a|2|b|2) ab∗(|a|2 + |b|2)
ba∗(|a|2 + |b|2) |b|2(|a|2|b|2)

)

=
(|a|2 ab∗
ba∗ |b|2

)
= ρ (11.18)

Hence, ρ2 = ρ and so tr(ρ2)= |a|2 + |b|2 = 1 when ρ is a 1-qubit pure state.
The foregoing results carry over to multi-qubit pure states too. Thus, the density

operator associated with a 2-qubit pure state |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉
is:

ρ = |ψ〉〈ψ | =

⎛
⎜⎜⎝
a

b

c

d

⎞
⎟⎟⎠ · (a∗ b∗ c∗ d∗)=

⎛
⎜⎜⎝
|a|2 ab∗ ac∗ ac∗
ba∗ |b|2 bc∗ bd∗
ca∗ cb∗ |c|2 cd∗
da∗ db∗ dc∗ |d|2

⎞
⎟⎟⎠ (11.19)

11.2 What is Quantum Information? 415

and so on. As you will show in problem ***** for this 2-qubit pure state it is also
true that ρ2 = ρ and tr(ρ2)= (|a|2+|b|2+|c|2+|d|2)2 = 1 (the latter factorization
is a hint).

It turns out, whatever the dimensions of ρ, that ρ2 = ρ and tr(ρ2)= 1 if and only
if ρ is the density operator corresponding to a pure state. If the state described by ρ

is not pure, but is instead mixed, then ρ2 �= ρ and tr(ρ2) < 1. These properties can
be used to decide whether a given state is pure or mixed.

11.2.2.3 The Bloch Ball

In Chap. 1 we introduced the Bloch sphere as a way of visualizing single qubit
pure states. In this picture, the pure states are always points on the surface of the
Bloch sphere. Since all pure states that differ only by an overall phase factor are
indistinguishable, this overall phase factor is not depicted in the Bloch sphere rep-
resentation. One might wonder where single qubit mixed states would reside in this
Bloch sphere picture?

The answer is that single qubit mixed states correspond to points inside the Bloch
sphere, a region we shall henceforth call the Bloch ball. After a little algebra, we
find that the (x, y, z) coordinates within the Bloch ball corresponding to the mixed
state ρ are given by [164]:

x = 〈0|ρ|1〉 + 〈1|ρ|0〉
y = i〈0|ρ|1〉 − i〈1|ρ|0〉 (11.20)

z = 〈0|ρ|0〉 − 〈1|ρ|1〉
with the North Pole corresponding to pure state |0〉, and the South Pole to pure state
|1〉. Hence, a superposition state such as |+〉 = 1√

2
(|0〉 + |1〉) will have coordinate

(x, y, z)= (1,0,0) etc. The maximally mixed state is a point, as shown in Fig. 11.3,
at the center of the Bloch ball with coordinates (x, y, z)= (0,0,0). Non-maximally
mixed states lie between the center of the Bloch ball and its surface.

Fig. 11.3 The Bloch Ball can
be used to visualize mixed
states of a single qubit, which
reside on the interior of the
Bloch sphere

416 11 Quantum Information

11.2.2.4 Properties of Density Operators

The quantum mechanical equations based on state vectors, which we have thus far
used to describe the evolution and measurement of pure states can be re-expressed
in the language of density operators. However, the density operator versions apply
to the evolution and measurement of both pure and mixed states. Consequently, they
are more useful, especially when we are dealing with quantum systems for which
we have only incomplete knowledge.

• The sum of the diagonal elements of ρ is always 1, i.e., tr(ρ(t))= 1
• The expected value of an observable 〈A〉 = tr(ρA)

• The time evolution of a density operation obeys i� dρ
dt
= [H, ρ]

• The density operator is Hermitian ρ† = ρ

• If ρ corresponds to a pure state ρ2 = ρ

• If ρ corresponds to a pure state tr(ρ2)= 1
• If ρ corresponds to a pure state the eigenvalues of ρ are either 0 or 1 only
• If ρ corresponds to a mixed state 1

d
≤ tr(ρ2) < 1 where d is the dimension of ρ

• A measure of the similarity between two density matrices is given by the fidelity

F(ρ1, ρ2)=
[
tr(

√
ρ

1/2
1 ρ2ρ

1/2
1)

]2

In Table 11.1 we compare and contrast formulae for performing similar opera-
tions on pure states and mixed states. Note that the formulae for mixed states en-
compass pure states too as a special case, namely, when the density operator takes
the form ρ = |ψ〉〈ψ |.

11.2.2.5 Non-unique Interpretation of Density Operators

The decomposition of a given density operator into a weighted sum of pure states is
non-unique. Any decomposition that synthesizes the density operator is as legitimate
as any other. This means that there is no unique mixed state to which each density
operator corresponds. Moreover, as the expectation value of an observable, O, is
computed from tr(ρO), then all these different mixed states (having the same ρ)

Table 11.1 Analogous quantum mechanical formulae for n-qubit pure and mixed states. Note that
the mixed state formulae can also be used to describe pure states but not vice versa

Characteristic Pure state description Mixed state description

State |ψ〉 =∑2n−1
j=0 cj |j〉 ρ =∑

k pk |φk〉〈φk | where |φk〉 is an
arbitrary n-qubit pure state and∑

k pk = 1

State evolution i�
∂|ψ〉
∂t

= H|ψ〉 i�
∂ρ
∂t
= [H, ρ]

Component evolution
∂cj
∂t

=− i
�

∑2n−1
�=0 Hj�c�

∂ρjk
∂t

=− i
�

∑2n
�=1[Hj�ρ�k − ρj�H�k]

Expected value of observable 〈O〉 = 〈ψ |O|ψ〉 〈O〉 = tr(ρO)

11.2 What is Quantum Information? 417

would produce identical statistical distributions of measurement outcomes what-
ever observable is used! So there is no experiment we can do that will distinguish
between these different mixed states. Operationally, they are all equivalent.

To illustrate the non-uniqueness of the mixed state associated with a given density

operator consider the following. Let |ψA〉 = 1
2 |0〉+

√
3

2 |1〉 and |ψB〉 = 2
3 |0〉+

√
5

3 |1〉.
Then ρ, the density operator corresponding to a mixed state that is 1

3 |ψA〉 and 2
3|ψB〉 can be written as:

ρ = 1

3
|ψA〉〈ψA| + 2

3
|ψB〉〈ψB |

=
(

0.37962962962962965 0.47560689729737526
0.47560689729737526 0.6203703703703703

)
(11.21)

However, ρ can be obtained equally well from states |φA〉 = a|+〉 +√
1− |a|2 |−〉

and |φB〉 = b|+〉 +√
1− |b|2 |−〉 where |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 −

|1〉) as:

ρ = c|φA〉〈φA| + (1− c)|φB〉〈φB |

=
(

0.37962962962962965 0.47560689729737526
0.47560689729737526 0.6203703703703703

)
(11.22)

provided a = −0.875949, b = −0.994988, and c = 0.064635. So the question
whether ρ is “really” a mixture of the states |ψA〉 and |ψB〉 or a mixture of the
states |φA〉 and |φB〉 is unanswerable. Each decomposition is as valid as the other.

11.2.3 Mixed States from Partial Ignorance: The Partial Trace

In Sect. 11.2.1 we introduced the concept of the partial trace operation. There we
explained what it was (i.e., the act of ignoring or discarding a subset of the qubits
of a multi-partite quantum state) but we did explain how to compute it. That is the
subject of this section.

The basic idea is that we start off with the quantum mechanical description of
a multi-qubit state, and we ask how our description must change if we ignore part
of that state. The easiest way to think about this is to partition the set of qubits into
two sets A and B and consider a multi-qubit system having density operator ρAB .
In general, ρAB , will not be a product state, i.e., in general Here the subscript AB

signifies that we can arbitrarily
The (i, i′)-th element of the reduced density operator, ρA obtained by tracing

over the second set of qubits B from the state ρAB is given by:

〈iA|ρA|i′A〉 = trB(ρAB)=
dB−1∑
jB=0

〈iA|〈jB |ρAB |i′A〉|jB〉 (11.23)

418 11 Quantum Information

where |iA〉 and |i′A〉 are eigenstates of A subsystem, and |jB〉 are eigenstates of the
subsystem B (which is a dB dimensional subspace). Notice that, in the summa-
tion, the same eigenstate index jB is used either side of the ρAB and the summa-
tion is computed over all values for this index. Hence, the reduced density operator
ρA is obtained by computing each of its possible matrix elements in accordance
with (11.23).

Likewise, the (j, j ′)-th element of the reduced density operator, ρB is obtained
by tracing over the first set of qubits A from the state ρAB . We have:

〈jB |ρB |j ′B〉 = trA(ρAB)=
dA−1∑
iA=0

〈iA|〈jB |ρAB |iA〉|j ′B〉 (11.24)

where |jB〉 and |j ′B〉 are eigenstates of the B subsystem, and |iA〉 are eigenstates of
the subsystem A (which is a dA dimensional subspace). Notice that, in the summa-
tion, the same eigenstate index iA is used either side of the ρAB and the summa-
tion is computed over all values for this index. Hence, the reduced density operator
ρB is obtained by computing each of its possible matrix elements in accordance
with (11.24).

11.2.3.1 Example: Computing the Partial Trace

For example, consider a pair of non-orthogonal quantum states |ψABC〉 and |ϕABC〉
defined as follows:

|ψABC〉 = 1

2
|000〉 +

√
3

2
|111〉 (11.25)

|ϕABC〉 = 1

2
|000〉 + 1

2
|010〉 + 1

2
|011〉 + 1

2
|111〉 (11.26)

and imagine these are the components of the density operator weighted to be one
third |ψABC〉 and two thirds |ϕABC〉. Thus we have:

ρABC = 1

3
|ψABC〉〈ψABC | + 2

3
|ϕABC〉〈ϕABC |

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 1

6
1
6 0 0 0 1

6 + 1
4
√

3
0 0 0 0 0 0 0 0
1
6 0 1

6
1
6 0 0 0 1

6
1
6 0 1

6
1
6 0 0 0 1

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
6 + 1

4
√

3
0 1

6
1
6 0 0 0 5

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.27)

11.2 What is Quantum Information? 419

Tracing over any one of the qubits we obtain the three reduced density matrices
ρBC , ρAC , and ρAB :

ρBC = trA(ρABC)=

⎛
⎜⎜⎜⎝

1
4 0 1

6
1
6

0 0 0 0
1
6 0 1

6
1
6

1
6 0 1

6
7
12

⎞
⎟⎟⎟⎠ (11.28)

ρAC = trB(ρABC)=

⎛
⎜⎜⎜⎝

5
12

1
6 0 1

6
1
6

1
6 0 1

6

0 0 0 0
1
6

1
6 0 5

12

⎞
⎟⎟⎟⎠ (11.29)

ρAB = trC(ρABC)=

⎛
⎜⎜⎜⎝

1
4

1
6 0 0

1
6

1
3 0 1

6

0 0 0 0
0 1

6 0 5
12

⎞
⎟⎟⎟⎠ (11.30)

Likewise, tracing over any two of the three qubits we obtain the three reduced den-
sity matrices ρA, ρB , and ρC :

ρA = trBC(ρABC)=
(

7
12

1
6

1
6

5
12

)
(11.31)

ρB = trAC(ρABC)=
(

1
4

1
6

1
6

3
4

)
(11.32)

ρC = trAB(ρABC)=
(

5
12

1
6

1
6

7
12

)
(11.33)

Thus, the partial trace operation provides the procedure for calculating the quantum
state of part of a composite quantum system. In general, if the starting state is en-
tangled and pure (say) the restriction of this state to some subset of its qubits, i.e.,
its partial trace, will, in general, be a mixed state described mathematically by a
reduced density operator.

11.2.4 Mixed States as Parts of Larger Pure States: “Purifications”

The foregoing interpretation of the partial trace operation invites the question of
whether there is a procedure for going in the opposite direction? That is, starting
with a mixed state, which we can think of as the reduced density operator of some
larger pure state, is there a procedure for finding this larger pure state? The answer
is that there is such a procedure. It is called a state purification operation, and it
works as follows:

420 11 Quantum Information

Purification of a Mixed State Let ρA =∑
i pi |ψi〉〈ψi | be a n-qubit mixed state

defined on a Hilbert space HA of dimension d = 2n. Our goal is to find a pure state
|Ψ 〉AB , defined on a Hilbert space HA ⊗ HB such that trB(|Ψ 〉AB〈Ψ |AB) = ρA.
Such a |Ψ 〉AB is a purification of the mixed state ρA.

1. Rewrite the mixed state ρA as:

ρA =
N∑
i=1

pi |ψi〉〈ψi | =
d∑

j=1

λj |φj 〉〈φj | (11.34)

where {λj } are the eigenvalues of ρA and {|φj 〉} are the eigenvectors of ρA.
Note that there are d eigenvalues and eigenvectors, whereas there are N states
contributing to the original definition of ρA.

2. Pick out just the first N eigenvalues and eigenvectors from the basis {|φj 〉}. Then
construct the pure state |Ψ 〉AB defined as:

|ΨAB〉 =
N∑
i=1

√
pi |ψi〉|φi〉 (11.35)

3. The given |Ψ 〉AB is a purification of ρA since trB(|Ψ 〉AB〈Ψ |AB)= ρA.

11.2.5 Quantifying Mixedness

How do we quantify the degree of mixedness in a state given its description in terms
of a density operator? Clearly, our measure of “mixedness” must range from zero
(for pure states) to some maximum value (for maximally mixed states). But what
measure should we use? In this section we look at some ways to quantify the degree
of mixedness of a quantum state.

11.2.5.1 Linear Entropy as a Measure of Mixedness

The first measure of mixedness is related to its deviation from a pure state. In partic-
ular, we saw in Sect. 11.2.2.2 that if a state with density matrix ρ is pure ρ2 = ρ and
therefore tr(ρ2) = tr(ρ)= 1, whereas if it is mixed, 1

d
≤ tr(ρ2) < 1 where d is the

dimension of ρ. Hence the deviation of tr(ρ2) from 1 can be used as a measure for
the mixedness of ρ. This gives us our first measure of mixedness called the linear
entropy of ρ, which is especially easy to calculate:

SL(ρ)= d

d − 1
(1− tr(ρ2)) (11.36)

where d is the dimension of ρ. Hence, 0≤ SL(ρ)≤ 1: the linear entropy SL(ρ)= 0
whenever ρ is a pure state, and SL(ρ)= 1 whenever ρ is a maximally mixed state.

11.2 What is Quantum Information? 421

11.2.5.2 von Neumann Entropy as a Measure of Mixedness

A second measure of mixedness is the von Neumann entropy, SV (ρ), which is the
proper quantum generalization of the Shannon entropy.

To remind you, in classical information theory, the Shannon entropy of a classi-
cal source that outputs d distinguishable symbols with corresponding probabilities
p1,p2, . . . , pd is given by H({pi})=−∑d

i=1 pi log2 pi where
∑n

i=1 pi = 1. This
ranges from 0 in the case when all the symbols are the same, to log2 d in the case
when all the d symbols are equiprobable, and therefore maximally random. One can
therefore think of the Shannon entropy as quantifying the degree of randomness in
the symbols streaming from a classical source.

What is the analog of Shannon entropy in the quantum context? We can think
of a quantum source as outputting d not necessarily orthogonal quantum states
|ψ1〉, |ψ2〉, . . . , |ψd〉 with corresponding probabilities p1,p2, . . . , pd . Such a source
is characterized by the density operator ρ given by:

ρ =
d∑

i=1

pi |ψi〉〈ψi | (11.37)

where
∑d

i=1 pi = 1.
However, a given density operator can be decomposed into a sum of component

states in many different ways, which are all equivalent to one another. In particular,
even if the states |ψi〉 are non-orthogonal, we can always diagonalize ρ by finding a
unitary matrix, U , such that UρU† is a diagonal matrix. Thus, any density operator
ρ can also be written as:

ρ =
d∑

i=1

pi |ψi〉〈ψi | =
∑
j

λj |λj 〉〈λj | (11.38)

When so diagonalized, the eigenvalues of ρ, i.e., the λj appearing along the main
diagonal, are positive real numbers that sum to one, and correspond to the prob-
abilities with which we will see the corresponding eigenvectors of ρ, i.e., |λj 〉, if
ρ were measured in its eigenbasis. As these eigenvectors |λj 〉 are orthogonal to
one another they are distinguishable and we can therefore regard them as classi-
cal symbols. Therefore, when viewed in the diagonal basis, we would expect the
quantum entropy of the quantum source to coincide with the Shannon entropy of
the analogous classical source, i.e., one emitting the “classical” (i.e., perfectly dis-
tinguishable) symbols, or equivalently orthonormal states |λj 〉, with corresponding
probabilities λj . This allows us to define the entropy of the quantum source (which
may or may not output distinguishable symbols) in terms of the Shannon entropy
of a corresponding fictitious classical source (which outputs only distinguishable
symbols). In particular, we have:

SV (ρ)=−
∑
j

λj log2 λj =H({λj }) (11.39)

422 11 Quantum Information

where we take 0 log2 0 = 0. Using purely mathematical arguments (i.e. no new
physics insights), we can rewrite (11.39) as:

SV (ρ)=−tr(ρ log2 ρ) (11.40)

This is the von Neumann entropy of the quantum source described by density oper-
ator ρ.

It is apparent from its definition that the von Neumann entropy is bounded as
follows:

0≤ SV (ρ)≤ log2 d (11.41)

with the von Neumann entropy being 0 for a pure state ρ = |ψ〉〈ψ |, and log2 d for a
maximally mixed state ρ = 1

d
1, where 1 is the identity matrix. Thus, the numerical

value of the von Neumann entropy is a measure of the mixedness of the state.

11.3 Entanglement

“No self is of itself alone.”
– Erwin Schrödinger

“Entanglement” describes a correlation between different parts of a quantum
system that exceeds anything that is possible classically. It will appear when sub-
systems interact in such a way that the resulting state of the whole system cannot
be expressed as the direct product of states for its parts. When a quantum system is
in such an entangled state, actions performed on one sub-system will have a side-
effect on another sub-system even though that sub-system is not acted upon directly.
Moreover, provided the sub-systems are separated in such a way that neither is mea-
sured, such entanglement will persist regardless of how far apart the sub-systems
become. This leads to highly counterintuitive phenomena, which Einstein dubbed
“spooky action at a distance”, which we will have more to say about in Chap. 12.

All the known quantum algorithms that display an exponential speedup over their
classical counterparts exploit such entanglement-induced side effects in one way or
another. In addition, some tasks that are impossible by classical standards, such as
teleporting a quantum state, depend upon entanglement in an essential way. Hence,
entanglement deserves to be called a “quintessential” quantum phenomenon that
plays a major role in making quantum computing more powerful than classical
computing, and in enabling quantum information tasks that are impossible in the
classical context.

11.3.1 Separable States Versus Entangled States

Formally, the distinction between whether a state is entangled or not entangled rests
upon whether its quantum state is separable or not. Therefore, let us examine this
question in more mathematical terms.

11.3 Entanglement 423

Suppose we have two independent quantum systems with Hilbert spaces HA

and HB of dimensions dA and dB respectively. There is some complete orthonor-
mal basis for HA consisting of dA eigenstates, called {|jA〉} say, and some com-
plete orthonormal basis for HB consisting of dB eigenstates, {|kB〉} say. In other
words, any pure state in HA can be expressed as |ψA〉 = a0|0〉A + a1|1〉A + · · · +
adA−1|dA − 1〉A. Likewise, any pure state in HB can be expressed as |ψB〉 =
b0|0〉B + b1|1〉B + · · · + bdB−1|dB − 1〉B . And the Hilbert space of the composite
system is just the tensor product of the constituent Hilbert spaces H =HA ⊗HB .

Separable State If a pure (mixed) state, |ψ(AB)〉 (ρ(AB)), of a composite quantum
system defined on a Hilbert space HA ⊗HB can be written as |ψ(AB)〉 = |ψ(A)〉 ⊗
|ψ(B)〉 (ρ(AB) =∑

i piρ
(A)
i ⊗ ρ

(B)
i), then |ψ(AB)〉 (ρ(AB)) is said to be a separable

state.

The linear entropy SL(ρ), can also be useful in deciding whether a given den-
sity operator ρ corresponds to a separable or entangled state. Specifically, it has
been proven that if the linear entropy exceeds a certain threshold, i.e., if SL(ρ) ≥
d(d − 2)/(d − 1)2, then any such ρ is separable [567].

Entangled State If a state, |ψ(AB)〉 (ρ(AB)), of a composite quantum system de-
fined on a Hilbert space HA ⊗HB is not a separable state it is an entangled state.
Note that a state can be entangled and pure, or entangled and mixed, simultaneously.

As an example, consider the state 1√
2
(|01〉 − |10〉). Is this state separable or en-

tangled? Well, if it were separable it could be written in the form |ψA〉 ⊗ |ψB〉
where |ψA〉 = a0|0〉 + a1|1〉 and |ψB〉 = b0|0〉 + b1|1〉. Thus, equating amplitudes
and solving we have:

|ψA〉 ⊗ |ψB〉 = a0b0|00〉 + a0b1|01〉 + a1b0|10〉 + a1b1|11〉
= 1√

2
|01〉 − 1√

2
|10〉 (11.42)

which implies we need to find a solution to the simultaneous equations a0b0 = 0,
a0b1 = 1√

2
, a1b0 = − 1√

2
, a1b1 = 0. Unfortunately, these equations admit no such

solution and hence the state 1√
2
(|01〉 − |10〉) is not separable. Hence it is entangled.

11.3.2 Signalling Entanglement via Entanglement Witnesses

Given a purported entangled state, ρ, how can we verify that ρ is, in fact, entangled?
One approach is to synthesize several instances of the state ρ via identical prepa-

ration procedures and then perform quantum state tomography to reconstruct the
density operator for ρ. This is, in one sense, the preferred option since we would
obtain complete information about ρ—at least to within experimental error.

424 11 Quantum Information

However, in general, quantum state tomography is an extraordinarily costly pro-
cedure. An n-qubit state is described by a 2n × 2n dimensional density operator.
If we are to determine each element of this density operator empirically, we would
need to perform O(22n) different experiments! Thus full quantum state tomography
becomes quite impractical for quantum systems having more than a mere handful
of qubits.

This difficulty spawned the invention of entanglement witnesses [166]. Entangle-
ment witnesses are tools for detecting entanglement that avoid having to perform a
complete quantum state tomographic reconstruction of ρ.

The basic idea is to construct an observable operator, W , whose expectation value
serves as a “witness” to whether the given state is entangled. If the expectation value
of the witness observable W when the system is in state ρ, i.e., tr(Wρ) = 〈W 〉, is
less than some threshold, this provides sufficient evidence that ρ is an entangled
state.

Although the fully theory of entanglement witnesses requires an understanding of
the superoperator formalism of quantum mechanics, entanglement witnesses need
not be that exotic.

11.3.2.1 Example: Entanglement Witness

For example, consider the one-dimensional “Heisenberg chain”. This consists of a
one-dimensional loop of spins coupled together in accordance with the Hamiltonian:

H =
N∑
i=1

(Bσ i
z + Jσ i · σ i+1) (11.43)

where B is the external magnetic field, and a J < 0 or J > 0 are, respectively,
a ferromagnetic or anti-ferromagnetic coupling between the spins. The symbol
σ i
z stands for an the Pauli-Z operator that acts on the i-th qubit, and the vectors

σ i ≡ (σ i
x, σ

i
y, σ

i
z). The one-dimensional chain of spins is made periodic by choos-

ing σN+1 = σ 1.
In the absence of an external magnetic field, i.e., with B = 0, the expectation

value for the energy, 〈H〉 = tr(ρH), can be an entanglement witness. Specifically,
suppose we have chain consisting of two spins, i.e., N = 2. In this case, if the input
state is separable, i.e., ρAB = ρA ⊗ ρB , then it is possible to show that the expecta-
tion value of the energy is guaranteed to be bounded between −2J ≤ 〈H〉 ≤ +2J .

However, if the state ρAB is entangled, ρAB �= ρA ⊗ ρB , we find that there are
entangled states for which 〈H〉<−2J . Thus, by measuring expectation value of the
energy, 〈H〉, we can sometimes decide if the state is entangled. Hence, 〈H〉 serves
as an entanglement witness.

11.3 Entanglement 425

11.3.3 Signalling Entanglement via the Peres-Horodecki Criterion

An alternative to relying on entanglement witnesses to decide if a state is entangled,
is to use the Peres-Horodecki criterion [239, 387]. This criterion uses an operation
on a density matrix known as the partial transpose.

Definition: Partial Transpose Let ρ be a bi-partite density operator expressed in
the form:

ρ =
∑
i,j,k,�

ρij ;k�|eAi ⊗ eBj 〉〈eAk ⊗ eB� | (11.44)

where {|eAi 〉} is an eigenbasis for sub-space A and {|eBj 〉} is an eigenbasis for sub-

space B . Then the partial transpose ρTB of the density operator ρ is:

ρTB =
∑
i,j,k,�

ρi�;kj |eAi ⊗ eBj 〉〈eAk ⊗ eB� | (11.45)

Note that, as implied by the definition, the partial transpose depends on the basis
chosen but the eigenvalues of the partial transposed matrix do not. However, most
practical applications of the partial transpose only need to make use of the eigenval-
ues of the partial transpose matrix.

The partial transpose is important within a test for entanglement known as the Peres-
Horodecki criterion [239, 387].

Peres-Horodecki Criterion: a Necessary and Sufficient Test for Entanglement
If a bi-partite state is entangled, its partial transpose always has one or more negative
eigenvalues, but if it is separable its partial transpose has no negative eigenvalues.

Thus, given a density operator ρ we can decide whether or not it is entangled by
examining the signs of the eigenvalues of its partial transpose.

Note that we can define an analogous partial transpose over the “A” space as
follows:

ρTA =
∑
i,j,k,�

ρk j ;i �|eAi ⊗ eBj 〉〈eAk ⊗ eB� | (11.46)

Even though the partial transpose ρTA will usually be a different matrix from the
partial transpose ρTB their eigenvalues will be the same. In applications of the partial
transpose it is usually the eigenvalues of the partial transpose that we need rather
than the partial transpose itself. If this is the case, whether we use ρTA or ρTB is
immaterial as their eigenvalues are the same.

426 11 Quantum Information

For example, let us compute ρTA and ρTB for a general 2-qubit density matrix
defined by:

ρ =

⎛
⎜⎜⎝
ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠ (11.47)

Computing the partial transposes we obtain:

ρTA =

⎛
⎜⎜⎝
ρ11 ρ12 ρ31 ρ32
ρ21 ρ22 ρ41 ρ42
ρ13 ρ14 ρ33 ρ34
ρ23 ρ24 ρ43 ρ44

⎞
⎟⎟⎠

ρTB =

⎛
⎜⎜⎝
ρ11 ρ21 ρ13 ρ23
ρ12 ρ22 ρ14 ρ24
ρ31 ρ41 ρ33 ρ43
ρ32 ρ42 ρ34 ρ44

⎞
⎟⎟⎠

(11.48)

However, the characteristic polynomials of ρTA and ρTB are identical, and so the
eigenvalues of these matrices must be the same.

Case 1: a Separable Pure State

Let us look at some simple examples. Consider first the case of an unentangled pure
state. In this case we have:

|ψAB〉 =
(

1

2
|0〉 +

√
3

4
|1〉

)
⊗

(
1

3
|0〉 +

√
8

9
|1〉

)
(11.49)

ρAB = |ψAB〉〈ψAB | =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
36

1
9
√

2
1

12
√

3
1

3
√

6
1

9
√

2
2
9

1
3
√

6
2

3
√

3
1

12
√

3
1

3
√

6
1
12

1
3
√

2
1

3
√

6
2

3
√

3
1

3
√

2
2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.50)

ρ
TB
AB =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
36

1
9
√

2
1

12
√

3
1

3
√

6
1

9
√

2
2
9

1
3
√

6
2

3
√

3
1

12
√

3
1

3
√

6
1
12

1
3
√

2
1

3
√

6
2

3
√

3
1

3
√

2
2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.51)

Eigenvalues(ρTB
AB) = {1,0,0,0} (11.52)

11.3 Entanglement 427

As all of the eigenvalues of the partial transpose of ρTB
AB are positive this guarantees,

by the Peres-Horodecki criterion, that ρAB is separable.

Case 2: an Entangled Pure State

Now let’s look what happens when we have an entangled pure state such as |ψAB〉 =
(1

2 |01〉 −
√

3
4 |10〉):

|ψAB〉 =
(

1

2
|01〉 −

√
3

4
|10〉

)
(11.53)

ρAB = |ψAB〉〈ψAB | =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1
4 −

√
3

4 0

0 −
√

3
4

3
4 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ (11.54)

ρ
TB
AB =

⎛
⎜⎜⎜⎜⎝

0 0 0 −
√

3
4

0 1
4 0 0

0 0 3
4 0

−
√

3
4 0 0 0

⎞
⎟⎟⎟⎟⎠ (11.55)

Eigenvalues(ρTB
AB) =

{
3

4
,−

√
3

4
,

√
3

4
,

1

4

}
(11.56)

As one of the eigenvalues of the partial transpose of ρTB
AB is negative, this guarantees

by the Peres-Horodecki criterion, that ρAB is entangled.

Case 3: a Separable Mixed State

The Peres-Horodecki criterion is not limited to deciding whether only pure states are
entangled or separable. It also applies to mixed states. For example, the mixed state
ρAB = 1

3ρA ⊗ ρB + 2
3ρ

′
A ⊗ ρ′B is, by construction, separable. The Peres-Horodecki

criterion gives us:

ρA =
(

1
2 0

0 1
2

)
(11.57)

ρB =
(

2
3 − i

3
i
3

1
3

)
(11.58)

ρ′A =
(

1
2

1
2

1
2

1
2

)
(11.59)

428 11 Quantum Information

ρ′B =
⎛
⎝ 1

8
i
√

3
8

− i
√

3
8

7
8

⎞
⎠ (11.60)

ρAB = 1

3
ρA ⊗ ρB + 2

3
ρ′A ⊗ ρ′B

=

⎛
⎜⎜⎜⎜⎜⎜⎝

11
72 − i

18 + i

8
√

3
1
24

i

8
√

3
i

18 − i

8
√

3
25
72 − i

8
√

3
7
24

1
24

i

8
√

3
11
72 − i

18 + i

8
√

3

− i

8
√

3
7
24

i
18 − i

8
√

3
25
72

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.61)

ρ
TB
AB =

⎛
⎜⎜⎜⎜⎜⎜⎝

11
72

i
18 − i

8
√

3
1
24 − i

8
√

3

− i
18 + i

8
√

3
25
72

i

8
√

3
7
24

1
24 − i

8
√

3
11
72

i
18 − i

8
√

3
i

8
√

3
7
24 − i

18 + i

8
√

3
25
72

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.62)

Eigenvalues(ρTB
AB) =

{
1

36

(
15+

√
95− 12

√
3

)
,

1

36

(
15−

√
95− 12

√
3

)
,

1

36

(
3+√

5
)
,

1

36

(
3−√

5
)}

(11.63)

As all of the eigenvalues of the partial transpose of ρTB
AB are positive this guarantees,

by the Peres-Horodecki criterion, that ρAB is separable.

Case 4: an Entangled Mixed State

Finally we consider what happens when the state is entangled and mixed.

|β00〉 = 1√
2
(|00〉 + |11〉) (11.64)

|β11〉 = 1√
2
(|01〉 − |10〉) (11.65)

ρAB = 1

3
|β00〉〈β00| + 2

3
|β11〉〈β11| =

⎛
⎜⎜⎜⎜⎝

1
6 0 0 1

6

0 1
3 − 1

3 0

0 − 1
3

1
3 0

1
6 0 0 1

6

⎞
⎟⎟⎟⎟⎠ (11.66)

11.3 Entanglement 429

ρ
TB
AB =

⎛
⎜⎜⎜⎜⎝

1
6 0 0 − 1

3

0 1
3

1
6 0

0 1
6

1
3 0

− 1
3 0 0 1

6

⎞
⎟⎟⎟⎟⎠ (11.67)

Eigenvalues(ρTB
AB) =

{
1

2
,

1

2
,−1

6
,

1

6

}
(11.68)

As one of the eigenvalues of the partial transpose of ρTB
AB is negative, this guarantees

by the Peres-Horodecki criterion, that ρAB is entangled.

11.3.4 Quantifying Entanglement

Rather than merely witnessing of detecting the presence or absence or entanglement,
we would prefer to be able to quantify the degree of entanglement in a quantum state.
Such quantitative methods are necessary if we to have any hope of understanding
entanglement properly and how it changes under various physical operations.

Although there is only one effective measure of entanglement in 2-qubit
systems—the “tangle”, which we used in Sect. 2.8 to quantify the entangling power
of a 2-qubit quantum gate—once we go to three or more qubits the situation be-
comes extraordinarily complicated. Even at three qubits we start to encounter coun-
terintuitive results such as the possibility of having 3-qubit states that possess 3-way
entanglement but for which there is no 2-way entanglement amongst every pair of
constituent qubits when considered in isolation!

At present we are stuck with having to wrestle with the notion of entanglement,
and having to live with several different and inequivalent ways of quantifying how
much entanglement there is in a multi-qubit state. These measures are called entan-
glement monotones and all share certain desirable properties.

11.3.4.1 Entanglement Monotones

“All science is either physics or stamp collecting.”
– Ernest Rutherford

“Entanglement monotones” are quantitative measures of entanglement of a quan-
tum state, ρ, that increase, monotonically, with the degree or entanglement in the
state. Such measures, some of which are summarized in Table 11.2, allow us to
compare and contrast the amount of entanglement in different states and hence, to
begin to develop a classification for entangled states. We start by stipulating general
properties any reasonable measure of entanglement, E(ρ), must possess and then
outline some functions that meet these criteria.

430 11 Quantum Information

Table 11.2 Entanglement monotones

Measure Explanation

Entanglement of formation
EF (ρAB)= min{pi ,|ψi 〉}

∑
i piS(ρ

(A)
i)

Quantifies the amount of entanglement needed to
synthesize ρ. In essence, it measures how many
maximally entangled pairs are needed to synthesize ρ.
The minimization is computed over all possible
decompositions of ρAB into sums of pure states
making EF very costly to compute

Entanglement of distillation
ED(ρAB)= lim

n→∞m/n

Quantifies the number of Bell states that can be
distilled from ρ per copy of ρ using the optimal
purification procedure. Here m is the maximum
number of Bell states that can be distilled from n

preparations of the state ρ. ED is also difficult to
calculate in practice

Relative entropy of entanglement
ER(ρ)= min

σ∈D tr(ρ logρ − ρ logσ)
Quantifies the distance of the entangled state ρ from
the nearest separable state in the set of all separable
density operators D. ER is relatively easy to compute
and happens to exactly equal EF for pure states of
2-qubit systems

Negativity
EN(ρ)= 2 max(0,−∑

i λ
negative
i (ρTB))

Quantifies the entanglement in a state as the degree to
which the positive partial transpose separability
criterion is violated. If a state is not entangled, the
partial transpose of its density operator, ρTB , is also a
valid density operator, i.e., a positive semi-definite
matrix. However, if a state is entangled, the partial
transpose of its density operator is not positive
semi-definite because it has at least one negative
eigenvalue. Hence, negativity quantifies entanglement
as the degree to which the positive partial transpose
separability criterion is violated. For 2-qubit pure
states the negativity equals the concurrence. In the
formula for negativity where λ

negative
i (ρTB) is the i-th

negative eigenvalue of the partial transpose of ρ

1. For any entanglement measure E(ρ) we require 0 ≤ E(ρ) ≤ 1 with E(ρ) = 0
if and only if ρ is not entangled, and E(ρ) = 1 at least when ρ is the density
operator of any maximally entangled state, such as one of the Bell states.

2. The entanglement measure should be immune to local operations, i.e. E(ρ) =
E((UA ⊗UB)ρ(UA ⊗UB)

†).
3. The entanglement measure of the full density operator, i.e., E(ρ)=E(

∑
i piρi)

cannot be greater than the weighted sum of the entanglement measures of its
parts, i.e., E(ρ)=E(

∑
i piρi)≤∑

i piE(ρi).

Given the aforemention desiderata, the following candidates have been identified
as acceptable measures of entanglement.

For the case of 2-qubits the different measures of entanglement turn out to be
equivalent, and it is therefore simplest to work with the tangle (see Sect. 2.8.1).
However, this equivalence does not hold for larger numbers of qubits.

11.3 Entanglement 431

11.3.5 Maximally Entangled Pure States

The most famous maximally entangled pure states are the 2-qubit Bell states:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(11.69)

The structure of the Bell states invite generalizations in two ways: Either we can
extend the pattern we see in the |β00〉 state, and conceive of a two-component su-
perposition having one state with all 0’s and the other with all 1’s, or we can extend
the pattern we see in the |β01〉 state, and conceive of an n-component superposition
having a single 1 each in each component at each possible qubit position. This leads
to two fundamentally different kinds of maximally entangled states called GHZ and
W states respectively. GHZ and W states are defined as follows:

|GHZ〉 = 1√
2
(|000〉 + |111〉)

|GHZ〉 = 1√
2
(|0000〉 + |1111〉)

...

|GHZ〉 = 1√
2
(|00 . . .0〉 + |11 . . .1〉)

(11.70)

and

|W〉 = 1√
3
(|001〉 + |010〉 + |100〉)

|W〉 = 1√
4
(|0001〉 + |0010〉 + |0100〉 + |1000〉)

...

|W〉 = 1√
n
(|0 . . .01〉 + |0 . . .10〉 + · · · + |1 . . .00〉)

(11.71)

These two kinds of states are maximally entangled and pure, but are nevertheless
fundamentally inequivalent! That is, we cannot inter-convert from GHZ states to W
states, or vice versa, using any unitary transformation [253].

432 11 Quantum Information

Moreover, GHZ and W states behave quite differently under the partial trace
operation. For example, tracing over the last qubit in a 3-qubit GHZ state, we obtain:

tr3(|GHZ〉〈GHZ|)=

⎛
⎜⎜⎝

1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

⎞
⎟⎟⎠= 1

2
(|00〉〈00| + |11〉〈11|) (11.72)

which has no residual 2-qubit entanglement. However, tracing over the last qubit in
a 3-qubit W state results in a state that does have residual 2-qubit entanglement:

tr3(|W〉〈W|) =

⎛
⎜⎜⎝

1
3 0 0 0
0 1

3
1
3 0

0 1
3

1
3 0

0 0 0 0

⎞
⎟⎟⎠

= 1

3

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠+ 2

3

⎛
⎜⎜⎝

0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎠

= 1

3
|00〉〈00| + 2

3

(|01〉 + |10〉√
2

)(〈01| + 〈10|√
2

)
(11.73)

The indicated factorization of the reduced density matrix can be interpreted as in-
cluding a component in 1√

2
(|01〉 + |10〉), which is one of the Bell states.

11.3.6 Maximally Entangled Mixed States

How does the concept of a maximally entangled state generalize to the case of mixed
states? In what sense can a mixed state be said to be maximally entangled?

A superficially reasonable definition of a maximally entangled mixed state is a
state that, for a given level of mixedness, attains the highest possible value for en-
tanglement. Unfortunately, it turns out that such a definition is problematic without
further qualification. This is because, by the above definition, the identity of the
mixed states that are deemed maximally entangled will change depending on the
measures one chooses with which to quantify the degree of mixedness and quantify
the degree of entanglement in the state! This problem appears to be fundamental and
unavoidable [525]. Nevertheless, once one pins down the measures for mixedness
and entanglement, certain mixed states do pop out as special. These are “frontier”
states in a scatter plots of where mixed states lie in an entanglement-mixedness
plane.

Given the practical utility of maximally entangled pure states in ideal (i.e., noise-
free) quantum information processing, it is possible these maximally entangled

11.3 Entanglement 433

mixed states would find similar application in more noisy quantum information pro-
cessing, as they possess the maximum amount of entanglement possible for a given
degree of mixedness.

Bill Munro and collaborators have identified a class of mixed states that deserve
to be called maximally entangled as they lie on the frontier in the tangle (entangle-
ment measure) versus linear-entropy (mixedness measure) plane. The structure of
the density matrices corresponding to these maximally entangled mixed states is:

ρmax-ent-mixed =

⎛
⎜⎜⎜⎝

1
3 0 0 r

2

0 1
3 0 0

0 0 0 0
r
2 0 0 1

3

⎞
⎟⎟⎟⎠ 0≤ r ≤ 2

3

⎛
⎜⎜⎝

r
2 0 0 r

2

0 1− r 0 0
0 0 0 0
r
2 0 0 r

2

⎞
⎟⎟⎠ 2

3 ≤ r ≤ 1

(11.74)

For a given value of the linear entropy (mixedness) these density matrices give the
highest value of concurrence (entanglement). As tangle and entropy of formation are
also both monotonic functions of concurrence, such density matrices also saturate
the maximum possible degree of entanglement by these measures too.

11.3.7 The Schmidt Decomposition of a Pure Entangled State

Although we cannot write an entangled state of two quantum systems as the direct
product of a state for each system we can, however, write it as a sum of such states.
That is, if A is dA-dimensional Hilbert space, and if B is dB -dimensional Hilbert
space, then for any entangled pure state |ψAB〉 in the Hilbert space of dimension
dA × dB , we can always find amplitudes such that:

|ψAB〉 =
dA−1∑
j=0

dB−1∑
k=0

ajk|jA〉 ⊗ |kB〉 (11.75)

where |jA〉 is a complete eigenbasis (i.e., set of orthonormal eigenvectors) for space
A and |kB〉 is a complete eigenbasis for space B . Notice, in particular, that to de-
scribe the state |ψAB〉 it is necessary to use a double sum over indices j and k.

The Schmidt decomposition, by contrast, allows us to re-express |ψAB〉 as a sum
over a single index. And, moreover, the number of terms in this single sum is the
lesser of dA and dB . This is rather counter-intuitive to most people when they first
see this. Nevertheless, it is formally correct and allows you to interpret a given state
in an interesting new way.

So how does the Schmidt decomposition work? Well it is actually rather simple.
Everything hinges on using the singular value decomposition of a matrix built from
the amplitudes that appear in the double sum description of |ψAB〉.

434 11 Quantum Information

Schmidt Decomposition of a Pure State Given a (generally) entangled pure state
of a composite quantum system, |ψAB〉, which can be thought of as composed of
an nA-qubit sub-system and an nB -qubit sub-system, we can compute the Schmidt
decomposition of |ψAB〉 as follows:

1. Sub-system A is in a dA = 2nA dimensional Hilbert space. Likewise, sub-system
B is in a dB = 2nB dimensional Hilbert space. Let an eigenbasis for A be
{|jA〉}dA−1

j=0 and let an eigenbasis for B be {|kB〉}dB−1
k=0 .

2. Given the decomposition of |ψAB〉 in terms of the eigenbases {|jA〉}dA−1
j=0 and

{|kB〉}dB−1
k=0 as:

|ψAB〉 =
dA−1∑
j=0

dB−1∑
k=0

ajk|jA〉 ⊗ |kB〉 (11.76)

Re-group the amplitudes ajk into a dA × dB dimensional array, and call this
{ajk}. That is, take the linear sequence of amplitudes ajk and make a matrix by
starting a new row after every dB amplitudes.

3. Now compute the singular value decomposition (SVD) of the matrix {ajk} you
just obtained. Specifically, we can write:

SVD({ajk})=U ·Σ · V = {uji} · {σii} · {vik} (11.77)

where U = {uji} is a dA × min(dA, dB) dimensional unitary matrix, V =
{vik} is a min(dA, dB) × dB dimensional unitary matrix, and Σ = {σii} is a
min(dA, dB) × min(dA, dB) diagonal matrix whose elements are the singular
values of the matrix {ajk}.

4. Now create new eigenbases as follows:

{|iA〉}min(dA−1,dB−1)
i=0 :=

dA−1∑
j=0

Uj+1,i+1|jA〉 (11.78)

and

{|iB〉}min(dA−1,dB−1)
i=0 :=

dB−1∑
k=0

Vi+1,k+1|kB〉 (11.79)

5. Pick out the subset of the singular values:

{λi}min(dA−1,dB−1)
i=0 := {σii}min(dA−1,dB−1)

i=0 (11.80)

6. Then the (generally entangled) pure state |ψAB〉 that is describable as the double
sum in (11.75) is equally well describable as the single sum:

|ψAB〉 =
min(dA−1,dB−1)∑

i=0

λi |iA〉|iB〉 (11.81)

which is the Schmidt decomposition of |ψAB〉.

11.3 Entanglement 435

11.3.7.1 Example: Schmidt Decomposition

We illustrate the procedure for constructing the Schmidt decomposition using a sim-
ple 3-qubit pure state |ψAB〉. Here, we assume that A is a dA = 2 dimensional sub-
space and B is as dB = 4 dimensional sub-space. To begin, we start with the state
|ψAB〉 which we have defined to be:

|ψAB〉 = (−0.1661− 0.17i)|0A〉|00B〉 − (0.2982+ 0.0497i)|0A〉|01B〉
+ (0.3471+ 0.3943i)|0A〉|10B〉 − (0.2667+ 0.432i)|0A〉|11B〉
− (0.0293+ 0.2317i)|1A〉|00B〉 + (0.1217+ 0.2168i)|1A〉|01B〉
+ (0.2162− 0.1238i)|1A〉|10B〉 − (0.183+ 0.3263i)|1A〉|11B〉 (11.82)

Here we see the eigenbasis for A is {|jA〉} ≡ {|0A〉, |1A〉} and that of B is {|kB〉} ≡
{|00B〉, |01B〉, |10B〉, |11B〉}. Next we re-group the sequence of amplitudes appear-
ing in (11.82) to form a new matrix {ajk}. As dB = 4 we start a new row of this
matrix after every 4 (i.e., dB) elements. This gives us the matrix:

{ajk} =
(−0.1661− 0.17i −0.2982− 0.0497i 0.3471+ 0.3943i −0.2667− 0.432i
−0.0293− 0.2317i 0.1217+ 0.2168i 0.2162− 0.1238i −0.183− 0.3263i

)

(11.83)
Next we compute the singular value decomposition SVD({ajk}) to give:

SVD({ajk})=U ·Σ · V (11.84)

where

U =
(

0.8876 −0.4606
0.3806− 0.2594i 0.7334− 0.4999i

)

Σ =
(

0.9031 0
0 0.4295

)
(11.85)

V =
(−0.109− 0.2732i −0.3041+ 0.0775i 0.4678+ 0.3975i −0.2455− 0.6147i

0.3978− 0.2475i 0.2754+ 0.5651i 0.1409− 0.3826i 0.3533− 0.3069i

)

From the SVD we then construct the new bases, {|iA〉} and {|iB〉} (we use an overbar
symbol to distinguish these bases from the earlier ones):

|0̄A〉 := 0.8876|0A〉 + (0.3806− 0.2594i)|1A〉 (11.86)

|1̄A〉 := −0.4606|0A〉 + (0.7334− 0.4999i)|1A〉 (11.87)

Likewise,

|0̄B〉 := (−0.109− 0.2732i)|00B〉 − (0.3041− 0.0775i)|01B〉
+ (0.4678+ 0.3975i)|10B〉 − (0.2455+ 0.6147i)|11B〉 (11.88)

|1̄B〉 := (0.3978− 0.2475i)|00B〉 + (0.2754+ 0.5651i)|01B〉〉
+ (0.1409− 0.3826i)|10B + (0.3533− 0.3069i)|11B〉 (11.89)

436 11 Quantum Information

where here “|0̄B〉” and “|0̄B〉” represent 2-qubit states. Notice that we only need
min(dA, dB) eigenvectors for each basis even though the dimensions of sub-space
A is (in this example) less than that of sub-space B .

Finally, we pick out the Schmidt coefficients from the singular values to give:

λ0 = 0.9031 (11.90)

λ1 = 0.4295 (11.91)

Hence our Schmidt decomposition is predicted to be:

|ψAB〉 = λ0|0̄A〉|0̄B〉 + λ1|1̄A〉|1̄B〉 (11.92)

11.3.8 Entanglement Distillation

In most applications of quantum communications and distributed quantum comput-
ing it is necessary to establish noise-free maximally entangled pairs of particles,
such as pure Bell states, between the ends of a quantum communications channel.
Invariably, when one sends quantum particles down real channels those particles
will be affected by noise sources in the channel. Thus, what starts off as pure max-
imally entangled states will not end up as pure maximally entangled states by the
time they reach the ends of the channel. This usually causes a failure of the protocol
for which the sharing of maximal entanglement was necessary.

The solution is to perform “entanglement distillation” whereby a few maximally
entangled bi-partite pure states are obtained from a larger number of non-maximally
entangled bi-partite states. Convention has it that if the original states are pure, the
process is called “entanglement concentration”, whereas if they are mixed the pro-
cess is called “entanglement purification”. Either way the principle is the same—
one sacrifices some of the non-maximally entangled states in order to distill out a
smaller number of maximally entangled ones. There has now been a great deal of
research invested in entanglement distillation reflecting its importance as a quantum
information processing primitive.

11.3.8.1 Distilling Entanglement from Pure States: Entanglement
Concentration

In entanglement concentration we distill out several maximally entangled bi-partite
pure states (e.g., states of the form 1√

2
(|00〉 + |11〉)) from a larger number of non-

maximally entangled bi-partite pure states (e.g. states of the form α|00〉+β|11〉with
|α| �= |β|). Thus, entanglement concentration can also be thought of as a kind of
error correction wherein several “buggy” Bell states are distilled into fewer perfect
Bell states.

Entanglement concentration was first proposed by Charles Bennett, Herbert
Bernstein, Sandu Popescu, and Benjamin Schumacher [51], but their scheme was

11.3 Entanglement 437

later improved upon by Phillip Kaye and Michele Mosca [268] and it is the latter
version we describe here.

Suppose Alice and Bob share an entangled pair of qubits in the state:

|Ψ 〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉 (11.93)

where
∑3

i=0 |ai |2 = 1. Using the Schmidt decomposition of Sect. 11.3.7, such a
state can always be re-expressed in the form

|Ψ 〉 = α|ψ0〉|φ0〉 + β|ψ1〉|φ1〉 (11.94)

for positive reals α and β , a {|ψ0〉, |ψ1〉}-basis for Alice and a {|φ0〉, |φ1〉}-basis
for Bob. Alice and Bob could simply agree by convention to call their bases

{|ψ0〉, |ψ1〉} ≡ {|A0〉, |A1〉} and {|φ0〉, |φ1〉} ≡ {|B0〉, |B1〉}. Thus, whatever the entangled
state Alice and Bob share, we can think of it as a “buggy” Bell state:

|Ψ 〉 = α|A0〉|B0〉 + β|A1〉|B1〉 (11.95)

where the over set letters indicate whether we are talking about Alice’s qubit or
Bob’s. If |α| = |β| we would be dealing with a maximally entangled state. But in
general this is not the case. Yet it is the maximally entangled states we need routinely
in quantum information protocols. So the question arises how do we distill out a few
maximally entangled Bell states from a greater number of non-maximally entangled
ones?

Let us imagine we begin with n of these buggy Bell pairs. Thus, our starting state

can be written as |Ψ 〉 = (
α|A0〉|B0〉 + β|A1〉|B1〉)⊗n. Expanding the definition gives us

a state in which Alice’s and Bob’s qubits are scrambled together. For example, if
n= 2, |Ψ 〉 is equal to:

|Ψ 〉 = (
α|A0〉|B0〉 + β|A1〉|B1〉)⊗2

= α2|AB

00〉|AB

00〉 + αβ|AB

00〉|AB

11〉 + αβ|AB

11〉|AB

00〉 + β2|AB

11〉|AB

11〉 (11.96)

However, it is apparent that a simple bit-permutation applied to the qubits will allow
us to group Alice and Bob’s qubits separately. After this permutation of qubits we
can see |Ψ 〉 is equivalent to:

|Ψ 〉 = α2|AA

00〉|BB

00〉 + αβ|AA

01〉|BB

01〉 + αβ|AA

10〉|BB

10〉 + β2|AA

11〉|BB

11〉 (11.97)

Generalizing, the state we obtain with n non-maximally entangled states is:

|Ψ 〉 =
n∑

j=0

αn−j βj

(∑
HammingWeight(x)=j

|AA ···A
x 〉|BB ···B

x 〉
)

(11.98)

438 11 Quantum Information

Fig. 11.4 Quantum circuit for measuring the Hamming weight of string of qubits. The quantum
state whose Hamming weight we want is in the upper register, and a set of n ancillae qubits is in
the lower register. Each qubit that is set to |1〉 in the upper register adds 1 to the Hamming weight
via a controlled-add-one gate. However, each qubit set to |0〉 adds nothing to the Hamming weight.
By initializing the ancillae qubits to |00 . . .0〉 we accumulate the Hamming weight in the lower
register. If the upper register is a superposition state that has eigenstates of different Hamming
weights (as we intend it to be) the act of measuring the Hamming weight projects the state of the
upper register into a superposition of only those eigenstates consistent with the observed Hamming
weight

Now suppose Alice measures the Hamming weight of |Ψ 〉, i.e., she deter-
mines how many of her qubits are in state |1〉. By the structure of the state
|Ψ 〉 Bob would be guaranteed to obtain the same result if he were to mea-
sure the Hamming weight of his qubits. To measure the Hamming weight, Al-
ice can use a quantum circuit like that shown in Fig. 11.4. This circuit con-
sists of two registers: an upper n-qubit register holding the superposition |Ψ 〉 and
a lower n-qubit register holding n ancillae prepared initially in state |00 . . .0〉.
These registers are connected via a cascade of controlled-add-one gates. If the
i-th qubit in the upper register is set to |1〉 it adds 1 to the Hamming weight
and 0 otherwise. Via the linearity of quantum mechanics, the circuit produces
a superposition of Hamming weights in the lower register. When the Hamming
weight in the lower register is measured the upper register is projected into a
state whose component eigenstates then have the Hamming weight that was mea-
sured in the lower register. Thus, if Alice and Bob each measure the Ham-
ming weight to be |j 〉 they will project the upper register into a state of the
form:

11.3 Entanglement 439

1√(n
j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉 (11.99)

which is a superposition of
(
n

j

)
bit strings.

Next define a function that maps each of these bits strings (arranged in lexico-

graphic order) into a unique integer from 0 to
(
n

j

)− 1. Specifically, we have:

f (00 . . .0011 . . .1︸ ︷︷ ︸
j

)→ (0)10 = 00 . . .0

f (00 . . .0101 . . .1︸ ︷︷ ︸
j−1

)→ (1)10 = 00 . . .1

...

f (11 . . .1︸ ︷︷ ︸
j

00 . . .0)→ ((n
j

)− 1
)

10

(11.100)

For example, if there are n = 6 qubits with Hamming weight 4, the mapping f

would be:

f (0,0,1,1,1,1)→ f (15)→ 0

f (0,1,0,1,1,1)→ f (23)→ 1

f (0,1,1,0,1,1)→ f (27)→ 2

f (0,1,1,1,0,1)→ f (29)→ 3

f (0,1,1,1,1,0)→ f (30)→ 4

f (1,0,0,1,1,1)→ f (39)→ 5

f (1,0,1,0,1,1)→ f (43)→ 6

f (1,0,1,1,0,1)→ f (45)→ 7

f (1,0,1,1,1,0)→ f (46)→ 8

f (1,1,0,0,1,1)→ f (51)→ 9

f (1,1,0,1,0,1)→ f (53)→ 10

f (1,1,0,1,1,0)→ f (54)→ 11

f (1,1,1,0,0,1)→ f (57)→ 12

f (1,1,1,0,1,0)→ f (58)→ 13

f (1,1,1,1,0,0)→ f (60)→ 14

(11.101)

We further extend f in any way that keeps it reversible and hence implementable as
a permutation matrix, i.e. we extend the definition of f so that it maps each of the
other bit strings (which do not have Hamming weight j) to unique indices too.

440 11 Quantum Information

If we define r = ⌈
log2

(
n

j

)⌉
we can write:

1√(
n

j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉

f−→ 1√(
n

j

)
∑

HammingWeight(x)=j

|AA···A
f (x) 〉|BB···B

f (x) 〉

= 1√(
n

j

)

(
n

j

)
−1∑

y=0

|AA···A
0︸︷︷︸

n−r

〉|AA···A
y︸︷︷︸
r

〉|BB···B
0 〉|BB···B

y 〉 (11.102)

If
(
n

j

)= 2r , ignoring the first n− r qubits in each register then gives:

1√
2r

2r−1∑
y=0

|AA···A
y 〉|BB···B

y 〉 (11.103)

which as before can, under a permutation of the qubits, be recognized as r pristine
Bell state pairs, and the entanglement in |Ψ 〉 has been concentrated.

Of course, in general
(
n

j

) �= 2r . In this case, one can still distill out some perfect

Bell state pairs, but their number is not certain a priori. See [268] for details.
Thus, to sum up, the entanglement concentration procedure can be described as

follows:

Entanglement Concentration

1. Alice and Bob start off with n copies of a non-maximally entangled state |Ψ 〉 =
(α|00〉 + β|11〉)⊗n with α �= β , and they each hold one member of each non-
maximally entangled pair.

2. Next Alice and Bob perform a qubit-permutation sufficient to group all Alice’s
qubits together and all Bob’s qubits together, creating a state of the form

|Ψ 〉 =
n∑

j=0

αn−j βj

(∑
HammingWeight(x)=j

|AA ···A
x 〉|BB ···B

x 〉
)

(11.104)

3. Alice and Bob each measure the Hamming weight of their set of particles, i.e.,
they each determine how many of their qubits are in state |1〉. Given the structure
of the state, their results will always agree. If they each determine the Hamming
weight is |j 〉, this measurement operation has the effect of projecting Alice and

11.3 Entanglement 441

Bob’s joint state into the form

1√(
n

j

)
∑

HammingWeight(x)=j

AA···A|x〉 BB···B|x〉 (11.105)

where the labels “A” and “B” specify whether the qubits are in Alice’s posses-
sion or Bob’s possession.

4. Alice and Bob each apply the transformation f to the state obtained in the last

step. In the simplest case when
(
n

j

)= 2r ignoring the first n− r qubits gives the

state 1√
2r

∑2r−1
y=0 |AA···A

y 〉|BB···B
y 〉.

5. By inverting the qubit permutation performed at step (2) above, this state be-
comes that of r perfect Bell pairs.

6. The procedure can extended to deal with the case
(
n

j

) �= 2r , and a quantum circuit

can be defined which allows the number of perfect Bell pairs distilled out to be

measured (see [268]). The expected number of pairs obtainable when
(
n

j

) �= 2r

is at least
∑n

j=0 |α2|n−j (1− |α2|)j (n
j

)(⌊
log2

(
n

j

)⌋− 1
)
.

Entanglement concentration is of practical importance in many quantum commu-
nications protocols as well as in distributed quantum computing (see Sect. 15.2). It
can be extended to the case of distilling bi-partite maximally entangled pure states
from non-maximally entangled mixed states, and is then known as entanglement
purification [53, 54, 139]. This is distinct from the concept of the purification of a
mixed state discussed in Sect. 11.2.4 whereby a mixed state, ρB , is re-cast as the
partial trace of a pure state, |ψAB〉, in a higher dimensional Hilbert space, i.e., state
purification finds the |ψAB〉 such that ρB = trA(|ψAB〉〈ψAB |). By contrast, in en-
tanglement purification we distill out a set of maximally entangled bi-partite pure
states from a larger number of non-maximally entangled bi-partite mixed states.

11.3.9 Entanglement Swapping

Thus far, the schemes we have looked at for creating entanglement have all worked
by causing pairs of initially unentangled qubits to interact directly and then separat-
ing them spatially. However, it is also possible to entangle two particles that have
never interacted directly. The trick is to start with two maximally entangled pairs of
particles, and to arrange for one member of each pair to be measured in a Bell basis
using a device known as a “Bell State Analyzer” (BSA). This sounds fancy, and
experimentally it is challenging to build one, but theoretically speaking it requires
nothing more than the Bell state synthesizer circuit run in reverse followed by single
qubit measurements in the computational basis. The net effect is that we can swap

442 11 Quantum Information

Fig. 11.5 Entanglement swapping provides a means to entangle two parties that have never in-
teracted with one another directly. Alice and Bob each prepare a maximally entangled pair of
particles. They each retain one of these particles and pass the other to Cerys. Cerys performs a
complete Bell state analysis on the two particles she received, which results in classifying them
as being in one of the four Bell states |β00〉, |β01〉, |β10〉, |β11〉. Thereafter, the two particles that
remain in Alice and Bob’s possession will be maximally entangled in some Bell state the identity
of which depends on result of the Bell state analysis. Entanglement swapping is a key ingredient
of quantum repeaters, distributed quantum computing, and heralded entangled photon sources

initial entanglement between particles 1 and 2 and initial entanglement between par-
ticles 3 and 4 into entanglement between particles 1 and 4, even though particles 1
and 4 never interacted directly. The procedure that does this is therefore called en-
tanglement swapping and was originally conceived of by Marek Zukowski, Anton
Zeilinger, Michael Horne, and Artur Ekert in 1993 [565]. The scheme is illustrated
in Fig. 11.5.

Entanglement swapping works as follows: Alice and Bob each prepare match-
ing maximally entangled pairs of particles. For example, they may each prepare
their own Bell singlet pair |β11〉 = 1√

2
(|01〉 − |10〉). Such states can be prepared

by feeding a |11〉 state into a Bell state synthesizer circuit, which consists of a sin-
gle Walsh-Hadamard gate followed by a CNOT gate. Let us say that Alice starts
off in possession of qubits 1 and 2, and Bob starts off in possession of qubits 3
and 4. Using these particle labels as subscripts to avoid ambiguity, the input to the
entanglement swapping circuit is therefore the state |11〉12 ⊗ |11〉34 = |1111〉1234.
Upon applying the double Bell state synthesizer circuits as show in Fig. 11.5, the
following transformation occurs:

|Ψ 〉1234 = (CNOT⊗CNOT) · (H ⊗ 1⊗H ⊗ 1)|11〉12|11〉34

=
(

1√
2
(|01〉12 − |10〉12)

)
⊗

(
1√
2
(|01〉34 − |10〉34)

)
(11.106)

However, |ψ〉1234 can also be re-expressed in the Bell basis by imagining the qubits
to be permuted as follows. Swap qubits 2 and 4 (to take the qubit ordering 1234 into
1432) and then swap qubits 3 and 2 (to take the qubit ordering 1432 into 1423). An
operator sufficient to perform qubit permutation is (14 ⊗ SWAP) · (12 ⊗ SWAP⊗

11.3 Entanglement 443

12) · (14 ⊗ SWAP) · (12 ⊗ SWAP⊗ 12). In the “1423” basis, we can write |ψ〉1234
as the equivalent |ψ〉1423 where:

|ψ1423〉 = 1

2
(−|β00〉14|β00〉23 + |β01〉14|β01〉23 + |β10〉14|β10〉23 − |β11〉14|β11〉23)

(11.107)

Hence, in this Bell basis representation, we can see immediately that if we perform
a complete Bell state analysis of qubits 2 and 3 (i.e., if we figure out which Bell
state they are in), then qubits 1 and 4 will then be projected into the identical Bell
state (up to an overall phase factor), even though qubits 1 and 4 had, at no time,
interacted directly.

To perform a complete Bell-basis measurement we need only invert the operation
that synthesizes the Bell states starting from the computational basis states and then
measure the result in the computational basis. In terms of a quantum circuit such an
inversion is achieved by reversing the order of the gates and using the inverse (or,
since they are unitary, the conjugate transpose) of each gate operator. Therefore, as
the Bell state synthesizer is the operator, CNOT · (H ⊗ 1), the complete Bell state
analyzer is the operator (H ⊗ 1)† · CNOT† = (H ⊗ 1) · CNOT (as shown in the
dashed box in Fig. 11.5). So defined, the Bell state analyzer accepts a Bell state
and returns |00〉, |01〉, |10〉, or |11〉, according to whether the input Bell state was
|β00〉, |β01〉, |β10〉, or |β11〉. A complete Bell state analyzer has been demonstrated
experimentally by Yoon-Ho Kim, Sergei Kulik, and Yanhua Shih in 2001 [278].

Entanglement swapping is a very useful trick in quantum information science. It
is a crucial building block in quantum repeaters (used to extend the range of quan-
tum key distribution in optical fibers) [103, 160, 295, 428], in distributed quantum
computing [552], and as a means to have a heralded source of entangled photon
pairs [565].

11.3.10 Entanglement in “Warm” Bulk Matter

One of the most exciting developments in our understanding of entanglement in
recent years has come from the realization that entanglement can persist in macro-
scopic amounts of matter at room temperature. This came as a complete surprise.
Just a few years ago creating and sustaining entangled states of even a handful of
quantum particles required exquisitely delicate experiments, and ideal laboratory
conditions. Indeed, great suspicion fell on anyone suggesting that entanglement
might play a role in the brain and biological structures mainly on the grounds that
they were too warm and noisy to sustain such effects. However, old-school thinking
about entanglement should no longer be taken as conclusive.

We now know that entanglement can be found in macroscopic systems [19], even
relatively warm ones [513], and in fact plays an essential role in determining how
such matter behaves, such as the anomalously low magnetic susceptibility of cer-
tain magnetic systems [85]. This is quite extraordinary. Such developments are very

444 11 Quantum Information

exciting because they could mark the beginning in an entirely new direction for
materials science and solid state physics. Who knows what miracle materials await
discovery if entanglement can persist and play a role in shaping their properties at
temperatures well above absolute zero.

Similarly, other studies have provided evidence for the existence of quantum ef-
fects in certain biological structures. For example, quantum transport is believed
to occur in the Fenna-Matthews-Olson (FMO) light harvesting complex of purple
bacteria [172, 306]. At low temperatures the excitons created after photon absorp-
tion are found to propagate through the FMO complex coherently, and in fact, their
transport is enhanced by the presence of a small amount of noise, perhaps allow-
ing the phenomenon to persist up to biologically relevant temperatures. Likewise,
it has been hypothesized that magnetoreception in birds works by interconverting
singlet/triplet excited states of the cryptochrome protein [256]. And a recent model
of olfaction replaces the standard shape-based theory with the notion that phonon-
assisted tunneling is used to sense the vibrational spectra of odorant molecules
[500]. All these results are intriguing and may point to more sophisticated ways
of harnessing quantum effects in structures that are at relatively high temperatures.

11.4 Compressing Quantum Information

In classical information theory we describe messages as sequences of symbols
drawn from some finite alphabet, such that each symbol may appear with a different
probability. The obvious quantum analog of this is to treat a source of quantum in-
formation as a device that generates a sequence of quantum states, each potentially
with some different probability. Thus, quantum states that are known only as some
statistical mixture of pure states arise naturally when we extend information theory
into the quantum realm.

Whereas Shannon information theory regards a classical source as a device that
generates a sequence of classical symbols (i.e., distinguishable states) picked from
a finite alphabet according to different probabilities, quantum information theory
regards a quantum source as a device that generates a sequence of quantum symbols
(i.e., not necessarily distinguishable states) picked from a finite alphabet according
to different probabilities. Thus, we find ourselves having to model quantum states
that are only specified in exactly the statistical sense mentioned above. Hence, the
introduction of density operators is absolutely necessary.

If the quantum states used for the alphabet of symbols are all orthogonal to one
another then, in principle, we can measure them without disturbing them, and hence
to all intents and purposes they are essentially just classical symbols in disguise.
Hence, we would could characterize such a source in terms of its Shannon entropy.
In particular, if a source produces a stream of orthogonal (i.e., unambiguously dis-
tinguishable) states in which the i-th state occurs with probability pi the source is
characterized by its Shannon entropy H({pi})=−∑

i pi log2 pi .
The situation becomes more interesting if we assume that the quantum states

encoding the symbols are not necessarily all orthogonal to one another.

11.4 Compressing Quantum Information 445

11.4.1 Quantum Sources: The von Neumann Entropy

Let us imagine we have a device for outputting one of d not necessarily orthog-
onal quantum states at random. In particular, let the device output state |ψi〉 with
corresponding probability pi . The density operator for such a source would be:

ρ =
d∑

i=1

pi |ψi〉〈ψi | (11.108)

and we can characterize its entropy using the techniques introduced in Sect. 11.2.5.2.
There we saw that the entropy of a quantum source can be related to the Shannon
entropy of a corresponding fictitious classical source. Specifically, the von Neumann
entropy of a quantum source having density operator ρ is defined via its representa-
tion in a diagonal basis as:

SV (ρ)=−
∑
i

λi log2 λi =−tr(ρ log2 ρ) (11.109)

As expected, the von Neumann entropy so-defined then equals to the Shannon en-
tropy when the quantum states emitted by the source are unambiguously distinguish-
able.

The von Neumann entropy has many interesting uses and properties. For ex-
ample, if ρ is a pure state, SV (ρ) = 0. Hence, the von Neumann entropy can be
used to decide whether or not a given density operator corresponds to that of a pure
state. In addition, the von Neumann entropy of a state does not change under uni-
tary evolution, i.e., SV (ρ) = SV (Uρ U†), because the von Neumann entropy only
depends upon the eigenvalues and these are not changed under unitary evolution.
These and other important properties of the von Neumann entropy are summarized
in Table 11.3

In analogy to the Shannon noiseless coding theorem wherein the n bit classical
messages from a classical source with Shannon entropy H({pi}) can be compressed
into at most nH({pi}) classical bits, n qubit quantum messages from a quantum
source with von Neumann entropy SV (ρ) can be compressed into at most nSV (ρ)
qubits. However, this tells us nothing about how to accomplish the compression.
That is the domain of quantum data compression.

11.4.2 Schumacher-Jozsa Quantum Data Compression

Suppose Alice chooses real numbers α and β such that α2 + β2 = 1, and creates a
quantum message consisting of sequences of the states |ψ+〉 and |ψ−〉 defined as:

|ψ+〉 = α|0〉 + β|1〉 (11.110)

|ψ−〉 = α|0〉 − β|1〉 (11.111)

446 11 Quantum Information

Table 11.3 Properties of the von Neumann entropy

Property Formula Condition

Purity SV (ρ)= 0 If ρ is a pure state, i.e., ρ = |ψ〉〈ψ |
Invariance SV (ρ)= SV (Uρ U†) If U is a unitary transformation

Maximum SV (ρ)≤ log2 k If ρ has k non-zero eigenvalues. Equality
holds when all the non-zero eigenvalues are
equal

Concavity SV (
∑

i piρi)≥∑
i piSV (ρi) Provided pi ≥ 0 and

∑
i pi = 1. This result

shows that the less we know about how a
state is prepared the greater its von Neumann
entropy

Boundedness SV (ρ)≤H({pi}) For an ensemble of quantum states |ψi〉
occurring with probabilities pi , and having
density operator ρ =∑

i pi |ψi〉 its von
Neumann entropy is never greater than the
Shannon entropy of the corresponding
classical ensemble. Equality holds when all
the quantum states are orthogonal and hence
unambiguously distinguishable

Subadditivity SV (ρAB)≤ SV (ρA)+ SV (ρB) Equality holds when ρAB = ρA ⊗ ρB . That is,
the von Neumann entropies of independent
systems add, but will be lowered if they are
correlated

Strong
subadditivity

SV (ρABC)+ SV (ρB)

≤ SV (ρAB)+ SV (ρBC)

For two systems AB and BC having a
common subsystem B the sum of the von
Neumann entropies of their union and
intersection is less than the sum of their von
Neumann entropies

Araki-Lieb
inequality

SV (ρAB)≥ |SV (ρA)− SV (ρB)| A bipartite state ρAB can be completely
known (zero entropy) even though its parts
are not, such as when SV (ρA)= SV (ρB) �= 0

The overlap 〈ψ+|ψ−〉 = 2α2 − 1 is non-zero, and hence |ψ+〉 and |ψ−〉 are non-
orthogonal, for most values of α. This means that the quantum “symbols” in Alice’s
message are not entirely distinguishable for most choices of α. There is the potential,
therefore, for some added redundancy in messages encoded using (non-orthogonal)
quantum symbols that is not present in messages encoded using (orthogonal) clas-
sical symbols. Ultimately, this is what allows quantum messages to be compressed
beyond the Shannon bound.

If the two states, |ψ+〉 and |ψ−〉, appear with equal probability, the von Neumann
entropy of Alice’s source is:

S(ρ)=−α2 log2 α
2 − β2 log2 β

2 (11.112)

Thus, if the states are orthogonal (which occurs when α2 = β2 = 1
2) the von Neu-

mann entropy of the source reduces to exactly the Shannon entropy.

11.4 Compressing Quantum Information 447

As shown by Mitsumori et al. [356] we can compress our quantum message in
blocks of three qubits at a time.

|BL〉 = |ψL1〉 ⊗ |ψL2〉 ⊗ |ψL3〉 (11.113)

L= (L1,L2,L3) and Li ∈ {+,−}.
Index L corresponds to one of eight possible configurations for the 3-qubit block,

namely |ψ+〉|ψ+〉|ψ+〉, |ψ+〉|ψ+〉|ψ−〉, |ψ+〉|ψ−〉|ψ+〉, . . . , |ψ−〉|ψ−〉|ψ−〉.
Alice applies the “compressor” operation, U , which is defined via its action on

computational basis states as follows:

U :=

|000〉 → |000〉
|001〉 → |001〉
|010〉 → |010〉
|011〉 → |100〉
|100〉 → |011〉
|101〉 → |101〉
|110〉 → |110〉
|111〉 → |111〉

The state of a block of three qubits after this compressor has been applied is as
follows:

U |BL〉 = α2
√

1+ 2β2|0〉|μL〉 + β2
√

1+ 2α2|νL〉 (11.115)

where

|μL〉 = 1

1+ 2β2
(α|00〉 + β1|11〉 + β2|10〉 + β3|01〉) (11.116)

|νL〉 = 1

β2
√

1+ 2α2
[α(β1β2|10〉 + β1β3|01〉 + β2β3|00〉)+ β1β2β3|11〉]

(11.117)

where βi = Liβ which will either be +β or −β .
Next Alice measures the first qubit of the compressed state in the computational

basis, to obtain the value |0〉 or |1〉 [356]. What happens next depends on whether
Alice wants to pursue a “Discard-on-Fail” (see Fig. 11.6) or an “Augment-on-Fail”
(see Fig. 11.7) quantum data compression protocol. Let us take a look at each of
these protocols in turn.

11.4.3 “Discard-on-Fail” Quantum Data Compression Protocol

Discard-on-Fail Quantum Data Compression

1. Partition the data in blocks of three qubits at a time, apply the compressor, U , to
each block, i.e., |BL〉→U |BL〉.

448 11 Quantum Information

Fig. 11.6 First quantum data compression protocol. Alice encodes a sequence of non-orthogonal
qubits in blocks of three qubits using the compressor U . She reads the first qubit obtaining the
result |0〉 or |1〉. If Alice obtains |0〉 she will have prepared the second and third qubits in the same
block in the state |μL〉, and she sends these qubits to Bob. Upon receipt, Bob augments these qubits
with a new first qubit prepared in state |0〉 and sends all three qubits through the decompressor U†.
The output triplet of qubits is now restored close to their original values even though only two
qubits (rather than three) passed through the channel between Alice and Bob. If, instead, when
Alice had measured the first qubit Alice she had found it in state |1〉 she would have regarded this
as a “failure” and would have sent nothing to Bob

2. Alice measures the first qubit in each block output from the compressor, and
obtains |0〉 or |1〉.

3. If Alice obtains |0〉 she retains the measured qubit and passes the remaining two
qubits, now in state ρ

(1)
L = |μL〉〈μL|, to Bob. This event occurs with probability

p = α4(1 + 2β2). If Alice obtains |1〉 she regards this as a “failure” and sends
nothing to Bob. This event, which Bob sees a data drop out in the stream from
Alice, occurs with probability 1− p.

4. If Bob does receive qubits from Alice, he prepares a new qubit in the state |0〉〈0|
to create the state (|0〉〈0| ⊗ ρ

(1)
L), and then feeds this expanded state into the

3-qubit decompressor, U†. This operation produces the state

Φ
(1)
L =U†(|0〉〈0| ⊗ ρ

(1)
L)U (11.118)

5. The result is that for each block, Bob either receives nothing from Alice or a pair
of qubits which he can expand and decompress. Hence, the fidelity of the overall
quantum data compression process is

F (1) =
∑

L

1

8
〈BL|Φ(1)

L |BL〉 = α8(1+ 2β2)2 (11.119)

11.4 Compressing Quantum Information 449

Fig. 11.7 Second quantum data compression protocol. Alice encodes a sequence of non-orthogo-
nal qubits in blocks of three qubits using the compressor U . She reads the first qubit obtaining the
result |0〉 or |1〉. If Alice obtains |0〉 she will have prepared the second and third qubits in the same
block in the state |μL〉, and she sends these qubits to Bob. If, however, Alice had obtained |1〉 when
she had measured the first qubit, she would have modified the state of the second and third qubits
before passing them to Bob. Upon receipt, Bob augments the qubits transmitted from Alice with a
new first qubit prepared in state |0〉 and sends all three qubits through the decompressor U†. The
output triplet of qubits is now restored close to their original values even though only two qubits
(rather than three) passed through the channel between Alice and Bob

11.4.4 “Augment-on-Fail” Quantum Data Compression Protocol

Augment-on-Fail Quantum Data Compression

1. Partition the data in blocks of three qubits at a time, apply the compressor, U , to
each block, i.e., |BL〉→U |BL〉.

2. Alice measures the first qubit in each block output from the compressor, and
obtains 0〉 or |1〉.

3. If Alice obtains |0〉 she retains the measured qubit and passes the remaining two
qubits to Bob. If Alice obtains |1〉 she applies a unitary operation V to the two
unmeasured qubits and then sends them to Bob.

4. When Bob receives a pair of qubits from Alice, he prepares a new qubit in the
state |0〉 to create the state |0〉|μL〉, and then feeds this expanded state into the
3-qubit decompressor, U†.

5. The result is that for each block, Bob either receives nothing from Alice or a pair
of qubits which he can expand and decompress.

The fidelity of the “augment-on-fail” quantum data compression protocol ex-
ceeds that of the “discard-on-fail” quantum data compression protocol. However,

450 11 Quantum Information

the “augment-on-fail” protocol is more challenging to implement in physical hard-
ware due to the conditional correction that Alice must apply to the unmeasured
qubits in each block prior to their transmission to Bob.

11.4.5 Quantum Circuit for Schumacher-Jozsa Compressor

The final step in understanding quantum data compression is to construct explicit
quantum circuits for the compressor, U , and the decompressor, U†.

First, we can make our life easier by recognizing that once we know an efficient
quantum circuit for U we know an efficient quantum circuit for U† too. To see
this, consider a unitary matrix, U , which can be factored in terms of a dot product
of unitary matrices A and B i.e., U = A · B . This implies that the unitary matrix
U† can be factored as U† = U−1 = (A · B)−1 = B−1 ·A−1 = B† ·A†. Thus given
a quantum circuit for the compressor, U , we can obtain a quantum circuit for the
decompressor, U†, by inverting and reversing the gates in the quantum circuit for U .
Hence, we need only find a quantum circuit for just the compressor U .

In order to realize the truth table (i.e., basis transformation) we want U to have,
the matrix for U must take the form:

U :=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.120)

which is a permutation matrix, similar to that of a TOFFOLI gate:

TOFFOLI:=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.121)

except that the “NOT” part is shifted up the diagonal. This suggests that we can ob-
tain U from TOFFOLI by shifting the “NOT” part using the permutation matrix Q:

11.4 Compressing Quantum Information 451

Q :=

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.122)

applied three times to TOFFOLI. Thus we obtain our first clue about how to con-
struct U from the factorization:

U =Q ·Q ·Q · TOFFOLI ·Q† ·Q† ·Q† (11.123)

Next, we need to reduce TOFFOLI and Q to simpler forms. The TOFFOLI gate is
well-studied and we already know of an efficient quantum circuit for implementing
TOFFOLI using 1-qubit gates and CNOT gates (see Sect. 2.5.7. However, the Q

gate is a new (and pretty useful) gate in the toolbox of the quantum circuit designer.
So how do we factor Q into more familiar quantum gates?

The trick is to realize that for the general n-qubit case:

Q2n =QFT−1
2n · T2n ·QFT2n (11.124)

where T2n is defined by:

T2n =
0⊗

k=n−1

(
1 0
0 exp(− 2πi

2n k)

)
(11.125)

Consequently, in our 3-qubit example case, Q3 reduces to:

Q3 =QFT−1 · T 3 ·QFT (11.126)

Once, we recognize this basic structure further reductions become pretty easy to
spot:

U =Q3 · TOFFOLI ·Q†3

= QFT−1 · T 3 ·QFT · TOFFOLI · (QFT−1 · T 3 ·QFT)−1

= QFT−1 · T 3 ·QFT · TOFFOLI ·QFT−1 · T †3 ·QFT (11.127)

which can be further simplified by recognizing that T 3 = Z⊗Rz(
π
2)⊗Rz(− 3π

4).
Hence, we have succeeded in factorizing the compressor U in terms of TOFFOLI

and Q gates, which in turn can both be reduced explicitly to 1-qubit and CNOT
gates. Hence, our quantum circuit for the compressor, U , for the 3-qubit example
block-size used, is shown in Fig. 11.8.

452 11 Quantum Information

Fig. 11.8 Quantum circuit for the data compressor, U , used in the Schumacher-Jozsa quantum
data compression protocols. The example given is appropriate for a block size of three qubits. The
quantum circuit for the decompressor, U†, uses the inverse versions of the same gates applied in
reverse order

11.4.6 Is Exponential Compression Possible?

A final thought on information compression in the quantum context is worthwhile.
Let us compare the storage capacity of the Library of Congress to that a single
qubit. Imagine, for example, that we translate each book in the Library of Congress
into a bit string and concatenate them together. Then the entire Library, the entire
repository of humankind’s literary work product, is equivalent to some (very long)
binary string. Let us call this string, s say. Ok . . . perhaps such an important bit string
deserves a more grandiose letter. You’ve convinced me—let’s call it Σ instead.

Now let’s imagine affixing a period to the front of Σ to make .Σ . Having done
so “.Σ” can be regarded as a binary fraction 0.j1j2 . . . jn. This represents a real
number between 0 and 1 specifically 0 ≤ φ = j12−1 + j22−2 + · · · + jn2−n ≤ 1.
Thus, in principle, we could imagine creating a single qubit state of the form

|ψ〉Σ = |0〉 + exp(iφ)|1〉 (11.128)

and so this single qubit state contains (in some sense) the entire body of human
knowledge! So, on the face of it, it may appear possible to compress information into
a single qubit by an exponential factor. Unfortunately, this is not possible. To encode
all the bits needed to specify the complete contents of the Library of Congress would
require a physically unrealistic precision in setting the angle φ. Moreover, any single
attempt to perform a measurement on |ψ〉Σ , or any transformed version thereof,
will only reveal at most one bit of information. It is neither practically possible to
cram the Library or Congress into a single qubit, nor to extract more than one bit of
information from a single qubit state.

11.5 Superdense Coding 453

11.5 Superdense Coding

We know from Sect. 11.1.2 that if Alice wants to send Bob a classical message
over a classical communications channel, the maximum extent to which she can
compress her message is set by Shannon’s Source Coding Theorem. This states that,
if Alice wants negligible risk of information loss, a message comprising a string of
n bits in which symbol 0 occurs with probability p0, and symbol 1 occurs with
probability p1 = 1 − p0 cannot be compressed into less than nH({p0,p1}) bits,
where 0 ≤ H({p0,p1}) ≤ 1 is the Shannon entropy of the source. The question of
interest is whether Alice can compress her classical message beyond this Shannon
bound if she is able to send it over a quantum communications channel?

At first sight it seems impossible for Alice to do any better that what is allowed
by the Source Coding Theorem. Even if we allow Alice to use quantum states to
encode her classical bits, the fact that we require those quantum states to be unam-
biguously distinguishable, consistent with our commonsense view of what it means
to be a classical “symbol”, forces Alice to have to use orthogonal quantum states to
do the encoding. Thus, Alice could choose quantum state |0〉 to represent a classi-
cal bit 0, and quantum state |1〉 to represent classical bit 1. However, if Alice does
this, the resulting von Neumann entropy, SV (ρ)=−tr(ρ log2 ρ), of her “quantum”
source, described by density operator ρ = p0|0〉〈0| + p1|1〉〈1|, will be identical to
the Shannon entropy of her equivalent classical source, having a probability distri-
bution {p0,p1} = {p0,1 − p0} over the “symbols” 0 and 1. Hence, the maximum
compression that is allowed quantum mechanically, i.e., nSV (ρ) qubits per n qubit
message, will be identical to the maximum compression Alice can achieve classi-
cally, i.e., nH({p0,p1}) bits per n-bit message. It would seem, therefore, that Alice
can realize no benefit whatsoever from having access to a quantum channel over
which to send her classical message.

It turns out, however, that there is a way of using a quantum communications
channel to compress a stream of classical bits—at communications time—beyond
that allowed by Shannon’s Source Coding Theorem. The trick is to allow for the
possibility of creating, distributing and storing certain entangled qubits (or “ebits” as
they are called) over the quantum channel, prior to any “message” communications
taking place. Then, when a classical message of n-bits needs to be communicated, it
can be encoded in only n/2 qubits, sent over the quantum channel, and the measured
jointly with some of the previously shared ebits already at the destination end of the
channel in a such a ways as to re-constitute as the full classical message.

In fact, one could take a maximally compressed classical message, e.g., as given
by a turbo code or low density parity check code, and then further compress this
maximally compressed classical message into quantum message, at communica-
tions time, by an additional factor of two! As the result is, at communications time,
a quantum message needing only half as many qubits as the (perhaps already max-
imally compressed) classical message, this trick is called “superdense coding” and
is only possible using quantum information resources.

It is important to note that this scheme does not violate Shannon’s Source Cod-
ing Theorem because it requires certain quantum states to be created, distributed,

454 11 Quantum Information

and stored across the quantum communications channel prior to any actual classi-
cal message being sent. When one takes account of the communication resources
needed to distribute these shared prior states, and add it to the communications re-
sources required to transmit the quantum-encoding of the classical message itself,
the net efficiency is again identical to the Shannon bound. However, in many practi-
cal circumstances, it is possible to create, distribute, and store the ebits at leisure, so
that an urgent classical message can be transmitted at double density at some critical
communications time. That is the main benefit of superdense coding.

To understand how superdense coding works, we must first discuss the Bell states
and how it is possible to interconvert between them by acting on only one end of a
Bell state.

11.5.1 Bell States

The starting point for superdense coding is to begin with 2-qubit maximally entan-
gled states such as the Bell states.

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(11.129)

which can be summarized as:

|βxy〉 = 1√
2
(|0, y〉 + (−1)x |1,1− y〉) (11.130)

Each of these Bell states can be synthesized from a different starting computa-
tional basis state in a quantum circuit consisting of a single Walsh-Hadamard gate
and a CNOT. Specifically, we have:

|βxy〉 = CNOT · (H ⊗ 1)|xy〉 (11.131)

where x and y can each be 0 or 1.
For superdense coding Alice is going to create Bell states in this manner, store

one member of each pair, and transmit the other member to Bob, which he also
indexes and stores. Provided neither qubit is measured the entanglement between
the qubits in each Bell state is preserved. This shared prior entanglement becomes
the resource upon which we will draw to achieve superdense coding of a subsequent
classical message.

11.5 Superdense Coding 455

11.5.2 Interconversion Between Bell States by Local Actions

The Bell states have the curious property that they can be converted into one an-
other by performing single qubit operations on just one of the qubits in each Bell
pair. Moreover, this capability persists even if the two qubits in a Bell state become
separated spatially over an arbitrarily large distance, provided neither of them is
measured during the separation process.

To see this, suppose Alice and Bob each hold one member of a Bell state. The
single qubit operation Alice needs to perform on her qubit, in order to convert the
joint state into some other Bell state are as follows:

|β00〉 1⊗1−→ |β00〉
|β00〉 X⊗1−→ |β01〉
|β00〉 Z⊗1−→ |β10〉
|β00〉 Z·X⊗1−→ |β11〉

(11.132)

|β01〉 X⊗1−→ |β00〉
|β01〉 1⊗1−→ |β01〉
|β01〉 Z·X⊗1−→ |β10〉
|β01〉 Z⊗1−→ |β11〉

(11.133)

|β10〉 Z⊗1−→ |β00〉
|β10〉 X·Z⊗1−→ |β01〉
|β10〉 1⊗1−→ |β10〉
|β10〉 Z·X·Z⊗1−→ |β11〉

(11.134)

|β11〉 X·Z⊗1−→ |β00〉
|β11〉 Z⊗1−→ |β01〉
|β11〉 Z·X·Z⊗1−→ |β10〉
|β11〉 1⊗1−→ |β11〉

(11.135)

11.5.3 Superdense Coding Protocol

We now have all the pieces needed to understand superdense coding. The protocol
is surprisingly straight forward.

456 11 Quantum Information

Superdense Coding Suppose Alice wishes to send Bob a classical message com-
prising a string of bits. If Alice and Bob have a quantum channel, and quantum
memories available to them, they can halve the required number of communicative
acts needed at the time the message is sent, but exploiting entanglement resources
created, shared, and stored, at an earlier time. The superdense coding protocol works
as follows:

1. Before any information-bearing message is communicated, Alice creates several
pairs of entangled qubits (i.e., ebits), each in the state |β00〉, indexes and stores
one member of each pair and passes the other member of the same pair to Bob.

2. Upon receipt Bob indexes and stores each ebit he receives from Alice. The result
is that Alice and Bob come to possess matching members of pairs of entangled
qubits each in the state |β00〉 stored at matching index locations in some quantum
memory.

3. Subsequently, when Alice wants to send Bob a two bit classical message, pre-
sented as the quantum state |x〉|y〉, she performs one of four possible operations
on the next indexed ebit in her possession. By acting on her end of an entan-
gled pair of qubits, Alice is able to convert the joint state of the entangled pair
into any of the four Bell states. In particular, if |x〉|y〉 = |0〉|0〉 Alice applies 1
(the identity) to her ebit. If |x〉|y〉 = |0〉|1〉 she applies X (the Pauli-X gate) to
her ebit. If |x〉|y〉 = |1〉|0〉 she applies Z (the Pauli-Z gate) to her ebit. Finally,
if |x〉|y〉 = |1〉|1〉 she applies Z · X to her ebit. These operations transform the
entangled state (initially |β00〉) shared between Alice and Bob as follows:

|00〉|β00〉 1⊗1⊗1⊗1−→ |00〉|β00〉
|01〉|β00〉 1⊗1⊗X⊗1−→ |01〉|β01〉
|10〉|β00〉 1⊗1⊗Z⊗1−→ |10〉|β10〉
|11〉|β00〉 1⊗1⊗Z·X⊗1−→ |11〉|β11〉

(11.136)

4. Alice then sends her “treated” ebit to Bob over the quantum communications
channel.

5. Upon receipt, Bob performs a joint Bell state analysis on the ebit he receives from
Alice together with the correspondingly indexed ebit from his quantum memory.

6. The Bell state analysis allows Bob to determine unambiguously which Bell state
he has (|β00〉, |β01〉, |β10〉, or |β11〉) and hence what bit value pair Alice intended
to send. Thus, if Alice and Bob share prior entanglement, then to send a two-bit
message subsequently, Alice need only send a single “treated” ebit to Bob.

It is important to appreciate that superdense coding does not result in a net reduc-
tion in the communications resources needed to transmit n classical bits. However,
it does allow us to time-shift when channel capacity is available. In essence, su-
perdense coding can use an under-utilized channel at one time to share and store
successive members of EPR pairs so that, at a later time, a classical n bit message

11.6 Cloning Quantum Information 457

Fig. 11.9 Quantum circuit for superdense coding. Alice (using qubits 3 and 4 in the figure) pre-
pares maximally entangled pairs of qubits (called “ebits”), keeps one member of each pair, and
passes the other to Bob (qubit 4 in the figure). Subsequently, if Alice wants to send the bits xy

encoded in the quantum state |x〉|y〉, she performs conditional operations on her retained ebit. This
causes the entangled state shared between Alice and Bob to be set in the Bell state |βxy〉. Next
Alice transmits her “treated” ebit to Bob (qubit 3 in the figure). Upon receipt, Bob performs a
complete Bell state analysis which allows him to determine which Bell state qubits 3 and 4 are in.
This tells him what bit values Alive had intended to send. Thus, at communications time, Alice
need only send one qubit to achieve the effect of sending two classical bits. Overall, superdense
coding does not do any better than classical communications because of the communicative acts
needed to establish the shared prior entanglement. Nevertheless, it does allow channel capacity
available at one time to effectively be time-shifted to a later time

can be transmitted using the transmission of only n/2 qubits, consuming one EPR
pair per qubit transmitted. Thus, the extra factor of two compression of the classical
message can only be achieved for as long at the supply of EPR entangled particles
lasts. However, this added factor of two additional compression is even possible if
the classical message has already been maximally compressed (classically) using a
turbo code or low density parity check code.

A quantum circuit for superdense coding is shown in Fig. 11.9

11.6 Cloning Quantum Information

One of the most useful aspects of classical information is our ability to copy, or
“clone”, it reliably without any noticeable error. A photocopier, for example, can
reproduce sheets of papers that are almost indistinguishable from the original. Dig-
ital computer files can be copied with even higher fidelity, in fact, perfectly. The
ability to make perfect copies of classical data is also the curse of the entertainment
and software industries because it also allows bootleggers to make illicit copies of
digital music files, movies, and computer programs. As quantum information appli-
cations become more widespread it therefore behooves us to understand what can
and cannot be done in terms of copying quantum information.

11.6.1 Historical Roots and Importance of Quantum Cloning

“I was the referee who approved the publication of Nick Herbert’s FLASH paper, knowing
perfectly well that it was wrong. I explain why my decision was the correct one, [. . .]”

458 11 Quantum Information

– Asher Peres [389]

The roots of quantum cloning can be traced back to a controversial paper written
by Nick Herbert in 1981 describing an idea for a superluminal communicator based
on the presumption that it is possible to make perfect copies (or clones) of an un-
known quantum state. In 2002 Asher Peres revealed that he and Gian Carlo Ghirardi
had been the “anonymous” reviewers of Herbert’s FLASH paper and that Ghirardi
had recommended its rejection on the grounds that the linear nature of quantum
mechanics meant that the supposed copying process could not exist. Peres likewise
realized the paper was flawed but nevertheless recommended its publication in the
hopes of stimulating others to find the flaw and thereby draw more attention to the
emerging field of quantum information theory.

It turned out Peres was correct. Soon after Herbert’s paper was published William
Wootters and Wojciech Zurek published a paper in Nature entitled “A Single Quan-
tum Cannot be Cloned”, which basically re-discovered Ghirardi’s argument oppos-
ing Herbert’s paper [547]. Around the same time Dennis Dieks published a paper
arguing that the claims of superluminal communications in Herbert’s paper were
also flawed [142]. Thus the publication of the FLASH paper, and the reaction to
it, went a long way towards stimulating more careful analyses of the properties of
quantum information.

Recently, a more pragmatic motivation for studying quantum cloning has arisen
from the need to understand how well an unscrupulous eavesdropper might be able
to tap a quantum communications channel, whilst remaining undetected. If exact
deterministic quantum cloning of unknown quantum states were possible (which
luckily it isn’t), then an eavesdropper would be able to tap a quantum channel, for-
ward perfect copies of the qubits to the intended recipient, and examine the copies
they made at leisure. Fortunately, as we will show below, such exact deterministic
quantum copying is physically impossible. Nevertheless, the practical question is
how well can an eavesdropper do? How much information from a quantum channel
can they extract without their presence being detected? With what fidelity can they
copy unknown quantum states? And if they cannot copy states deterministically, can
they do so probabilistically? These questions and others demonstrate the practical
need to understand what physics permits one to do in terms of cloning quantum
information.

11.6.2 Impossibility of Exact Deterministic Quantum Cloning

As in the classical case, an ideal universal quantum copy machine, or ideal universal
quantum “cloning” machine as it is sometimes called, would be able to make a
perfect copy of any quantum state it was handed. In particular, the action of an ideal
universal quantum cloning machine, Uclone, on an arbitrary pure state |ψ〉 would be
described as:

|ψ〉A|0〉B Uclone−→ |ψ〉A|ψ〉B (11.137)

11.6 Cloning Quantum Information 459

which we read as “particle A starts off in state |ψ〉, and particle B starts off in state
|0〉, and after cloning the state of particle A, i.e., |ψ〉, is replicated on particle B .”
This is more clearly seen to be a cloning procedure by suppressing the particle labels

as in |ψ〉|0〉 Uclone−→ |ψ〉|ψ〉.
Likewise, the ideal behavior of a quantum cloner when handed an arbitrary mixed

state, ρ, would be:

ρA ⊗ |0〉B〈0|B Uclone−→ ρA ⊗ ρB (11.138)

which we read as “particle A starts off in state ρ, and particle B starts off in state
|0〉〈0|, and after cloning the state of particle A, i.e., ρ, is replicated on particle B .”
As above, this is more clearly seen to be a cloning procedure by suppressing the

particle labels as in ρ ⊗ |0〉〈0| Uclone−→ ρ ⊗ ρ.
The question is, does Nature permit such an ideal exact deterministic quantum

cloning operation? To proceed, let us assume that Uclone is a perfect quantum cloning
machine, i.e., a unitary operation such that whatever quantum state is given as input,
two perfect copies of it are returned after Uclone has acted. In particular, Uclone will
clone (say) the computational basis states perfectly. Thus, we would have:

|0〉|0〉 Uclone−→ |0〉|0〉
|1〉|0〉 Uclone−→ |1〉|1〉

(11.139)

So far so good. But now let’s assume the same machine was handed the states
1√
2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉) instead, which are rotated with respect to the com-

putational basis states. In this case, a proper quantum cloning machine is required
to act as follows:

1√
2
(|0〉 + |1〉)|0〉 Uclone−→ 1√

2
(|0〉 + |1〉)| 1√

2
(|0〉 + |1〉)

1√
2
(|0〉 − |1〉)|0〉 Uclone−→ 1√

2
(|0〉 − |1〉) 1√

2
(|0〉 − |1〉)

(11.140)

But this not what our supposed quantum cloning machine Uclone does! If Uclone
clones the computational basis states ({|0〉, |1〉}) correctly then, by the linearity
of quantum mechanics, Uclone will transform the input states 1√

2
(|0〉 + |1〉) and

1√
2
(|0〉 − |1〉) as follows:

1√
2
(|0〉 + |1〉)|0〉 Uclone−→ 1√

2
(|00〉 + |11〉)

1√
2
(|0〉 − |1〉)|0〉 Uclone−→ 1√

2
(|00〉 − |11〉)

(11.141)

In neither case is the output a product state of clones of the input state. Hence,
if Uclone is a unitary procedure that clones computational basis states perfectly,

460 11 Quantum Information

then it is guaranteed to clone states non-orthogonal to these imperfectly, and vice
versa. This echoes the argument Ghirardi and Wootters and Zurek found against the
FLASH paper. Hence, Uclone cannot be an ideal universal quantum cloning machine
as we had supposed, and in fact the foregoing argument proves that ideal universal
quantum cloning is physically impossible using any unitary operation whatsoever!
Thus we arrive at the so-called “no-cloning” theorem for quantum information.

No Cloning Theorem There is no deterministic quantum procedure by which an
unknown pure quantum state can be cloned exactly.

11.6.3 Universal Approximate Quantum Cloning

Although the quantum no-cloning theorem proves that it is impossible to clone an
unknown quantum state perfectly deterministically it leaves open the possibility
of cloning an unknown quantum state approximately deterministically, or perfectly
non-deterministically. We will consider approximate deterministic cloning first.

If we are able to make an approximate clone, our main concerns are going to be
how good an approximation can we obtain; whether the quality of the approxima-
tion can be made independent of the state we are trying to clone; and whether the
resulting approximate clones can be used freely in subsequent quantum computa-
tions as proxies for the state that was cloned. The latter concern arises because if
the approximate clones are entangled, then is may not matter how good they are
individually, because using one of them could mess up the other one. This last point
is often neglected but is, in fact, crucial to the whom concept of the utility of the
clones.

These concerns were well appreciated by Vladimir Bužek and Mark Hillery. In
1996 they devised the first quantum cloning machine that produced high quality
clones, whose fidelities were input independent, and which were practical to use in
lieu of the original state in subsequent quantum computations [93]. Their elegant
scheme for cloning a single qubit can be described as follows.

Imagine a 3-qubit quantum memory register with the qubits labeled A, B , and C.
Qubit A is to hold the qubit whose state we wish to clone, and the outputs of qubits
B and C are to hold the approximate clones. The quantum cloning machine will be
unitary operation, Ũclone, able to perform at least the following transformation on
the computational basis states of qubit A, i.e., |0〉A and |1〉A, augmented with a pair
of ancillae prepared in the state |00〉BC :

|0〉A|0〉B |0〉C Ũclone−→
√

2

3
|000〉ABC + 1√

3
|1〉A

[
1√
2
(|01〉BC + |10〉BC)

]

|1〉A|0〉B |0〉C Ũclone−→
√

2

3
|111〉ABC + 1√

3
|0〉A

[
1√
2
(|01〉BC + |10〉BC)

] (11.142)

Now imagine what the approximate quantum cloning transformation, Ũclone,
does to an arbitrary superposition state on qubit A, i.e., |ψ〉A = α|0〉A + β|1〉A.

11.6 Cloning Quantum Information 461

A little algebra shows that Ũclone will transform a general superposition of qubit A
as:

|ΨABC〉 = Ũclone(α|0〉A + β|1〉A)|0〉B |0〉C

=
√

2

3
α|000〉 + β√

6
|001〉 + β√

6
|010〉 + α√

6
|101〉

+ α√
6
|110〉 +

√
2

3
β|111〉 (11.143)

where we have dropped the qubit labels in the final output state. We can write
|ΨABC〉 equivalently as the density operator:

ρABC = |ΨABC〉〈ΨABC |

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ
∗ 1

3αβ
∗ 0 0 1

3 |α|2 1
3 |α|2 2

3αβ
∗

1
3βα

∗ 1
6 |β|2 1

6 |β|2 0 0 1
6βα

∗ 1
6βα

∗ 1
3 |β|2

1
3βα

∗ 1
6 |β|2 1

6 |β|2 0 0 1
6βα

∗ 1
6βα

∗ 1
3 |β|2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1
3 |α|2 1

6αβ
∗ 1

6αβ
∗ 0 0 1

6 |α|2 1
6 |α|2 1

3αβ
∗

1
3 |α|2 1

6αβ
∗ 1

6αβ
∗ 0 0 1

6 |α|2 1
6 |α|2 1

3αβ
∗

2
3βα

∗ 1
3 |β|2 1

3 |β|2 0 0 1
3βα

∗ 1
3βα

∗ 2
3 |β|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.144)

This density operator ρABC is therefore the output from our quantum cloning ma-
chine.

Next we determine the state of the clones individually by tracing out the un-
wanted qubits to obtain:

ρA = trBC(ρABC)=
(

2
3 |α|2 + 1

3 |β|2 1
3βα

∗
1
3αβ

∗ 1
3 |α|2 + 2

3 |β|2
)

(11.145)

ρB = trAC(ρABC)=
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
)

= 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥| (11.146)

ρC = trAB(ρABC)=
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
)

= 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥| (11.147)

462 11 Quantum Information

where |ψ⊥〉 = α∗|1〉 − β∗|0〉 is a state orthogonal to |ψ〉, which is the antipodal
point to |ψ〉 on the Bloch sphere. Thus, we see that the reduced density operators
for the clones contain the state being cloned plus some extra stuff we did not want.

To assess how close the clones are to the original state, we compute the fidelity of
the clones, i.e., ρB = ρC = 5

6 |ψ〉〈ψ |+ 1
6 |ψ⊥〉〈ψ⊥|, with respect to the original state,

i.e., ρideal = |ψ〉〈ψ |. The formula for the fidelity with which one density operator,
ρ, approximates another, σ , was given in Sect. 11.2.2.4 as:

F(ρ,σ)=
[
tr
(√√

ρ σ
√
ρ
)]2

(11.148)

Plugging the relevant density operators into this formula for fidelity we have:

ρideal = |ψ〉〈ψ | = (α|0〉 + β|1〉)(α∗〈0| + β∗〈1|)

=
(|α|2 αβ∗
βα∗ |β|2

)
(11.149)

and

ρB = ρC =
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
)

(11.150)

which gives F(ρideal, ρB)= F(ρideal, ρC) as:

F(ρideal, ρB) =
[
tr(
√
ρideal · ρB · √ρideal)

]2

= [
tr(ρideal · ρB · ρideal)

]2

=
[

tr

((|α|2 αβ∗
βα∗ |β|2

)
·
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
)

·
(|α|2 αβ∗
βα∗ |β|2

))]2

= 5

6
(11.151)

where we used the fact that, as ρideal is pure,
√
ρideal = ρideal. The same result holds

for the second clone ρC . In both cases the fidelity with which quantum cloning is
achieved is 5

6 . Moreover, as the fidelity we obtain is a numerical constant and does
involve α or β it must, therefore, be independent of the input state being cloned. So
our cloning transform is a state independent cloner. However, whereas the original
state was pure, the clones are mixed. We can understand how these two states are
related in terms of the Bloch sphere/Bloch ball picture of a qubit (see Sect. 11.2.2.3).
The pure state |ψ〉 is represented by a point on the surface of the Bloch sphere. If you
imagine a vector drawn from center of the Bloch sphere to the point representing
|ψ〉, then the clone is the mixed state obtained by shrinking the length of this vector
radially without changing its direction. This may help you to visualize the physical
meaning of an approximate quantum clone.

11.6 Cloning Quantum Information 463

Fig. 11.10 Quantum circuit for cloning an unknown quantum state |ψ〉A = α|0〉A + β|1〉A.
The clones appear in the output on qubits B and C. Their states are given by tracing out the
other two qubits. That is, ρB = trAC(|ψABC〉〈ψABC |), and ρC = trAB(|ψABC〉〈ψABC |). Note that
ρB = ρC = 5

6 |ψA〉〈ψA| + 1
6 |ψ⊥

A 〉〈ψ⊥
A |, showing that the fidelity of the copies with respect to the

original state is 5
6

11.6.4 Circuit for Quantum Cloning

A quantum circuit that accomplishes our desired cloning transformation

|ψ〉A|0〉B |0〉C Ũclone−→ |ΨABC〉 to shown in Fig. 11.10. Here the 1-qubit gate R(θ)

is defined to be:

R(θ) :=
(

cos θ − sin θ
sin θ cos θ

)
(11.152)

and the particular angles used are set at:

θ1 = π

8

θ2 = − arcsin

√
1

6
(3− 2

√
2) (11.153)

θ3 = π

8

With these angle values, the quantum cloning circuit induces a (fixed) unitary trans-
formation described by the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
3 0 − 1√

6
− 1√

6
0 0 0 0

0 0 0 0 1√
6

1√
6

0
√

2
3

0 0 0 0 1√
6

− 1√
6

√
2
3 0

0
√

2
3

1√
6

− 1√
6

0 0 0 0

0 0 0 0 0
√

2
3

1√
6

− 1√
6

1√
6

− 1√
6

√
2
3 0 0 0 0 0

1√
6

1√
6

0
√

2
3 0 0 0 0

0 0 0 0
√

2
3 0 − 1√

6
− 1√

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.154)

464 11 Quantum Information

As a check, it is easy to verify that this circuit transforms the basis states as follows:

Ũclone|000〉 =
√

2

3
|000〉 + 1√

6
|101〉 + 1√

6
|110〉

Ũclone|100〉 = 1√
6
|001〉 + 1√

6
|010〉 +

√
2

3
|111〉

(11.155)

and hence transforms a superposition state |ψ〉 = α|0〉 + β|1〉 as:

Ũclone|ψ〉|0〉|0〉 =
√

2

3
α|000〉 + β√

6
|001〉 + β√

6
|010〉 + α√

6
|101〉

+ α√
6
|110〉 +

√
2

3
β|111〉 (11.156)

which is exactly what is called for in (11.143).

11.6.5 Usability of the Quantum Clones

In an ideal universal cloning machine, the output clones would be perfect copies
of the unknown state |ψ〉, and they would be unentangled from each other and the
top qubit in the cloning circuit shown in Fig. 11.10. If these conditions hold, then
the clones would clearly be useful as they could serve as perfect proxies for the
state |ψ〉 in subsequent quantum computations. Unfortunately, the clones we ob-
tain are neither perfect copies of the original state nor are they unentangled from
each other and the top qubit of the cloning circuit. It is not immediately clear, there-
fore that cloning has achieved anything practically useful because, if the clones
are entangled, operations performed on one of them might mess up the other. Fur-
thermore, is a fidelity of 5

6 really high enough to allow us to compute expecta-
tion values of observables that will be close enough to the true values to be use-
ful? We will now address these issues by showing that although the clones are
indeed entangled, they are nevertheless usable in subsequent quantum computa-
tions.

In an ideal cloning machine, an input state of the form |ψ〉A|0〉B |0〉C to be
mapped into an output state of the form |?〉A|ψ〉B |ψ〉C . Here perfect clones ap-
pear on qubits B and C, and they are unentangled from each other and from
qubit A. Alas, we know from the no-cloning theorem, that quantum mechan-
ics does not allow such perfection. Nevertheless, we can produce approximate
clones on qubits B and C but these are no longer guaranteed to be unentangled
form each or unentangled from qubit A. If they are entangled then, potentially,
subsequent operations on one clone could perturb the other clone (not to men-
tion the ancilla). So we need to understand whether or not the clones are entan-
gled.

11.6 Cloning Quantum Information 465

11.6.5.1 Are the Clones Entangled?

First let us determine whether or not the clones are entangled with each other. That
is, we test whether the joint density operator of the clones, ρBC , is separable or
inseparable. To test this, we can use the Peres-Horodecki criterion of Sect. 11.3.3.
As you will recall this test is based on checking whether there is at least one negative
eigenvalue in the partial transpose of the density operator whose entanglement status
is sought—in our case ρBC .

Starting with ρABC = |ΨABC〉〈ΨABC | we obtain ρBC by tracing over qubit A
(the top qubit in the circuit shown in Fig. 11.10), to obtain:

ρBC = trA(ρABC)=

⎛
⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ
∗ 1

3αβ
∗ 0

1
3βα

∗ 1
6

1
6

1
3αβ

∗
1
3βα

∗ 1
6

1
6

1
3αβ

∗

0 1
3βα

∗ 1
3βα

∗ 2
3 |β|2

⎞
⎟⎟⎟⎟⎠ (11.157)

Then, we compute the partial transpose of ρBC taken over the space “B” i.e., the
space corresponding to the first of the two qubits in ρBC . This gives

ρ
TB
BC =

⎛
⎜⎜⎜⎜⎝

2
3 |α|2 1

3αβ
∗ 1

3βα
∗ 1

6
1
3βα

∗ 1
6 0 1

3βα
∗

1
3αβ

∗ 0 1
6

1
3αβ

∗
1
6

1
3αβ

∗ 1
3βα

∗ 2
3 |β|2

⎞
⎟⎟⎟⎟⎠ (11.158)

The eigenvalues of the partial transpose ρ
TB
BC can be obtained from the characteristic

polynomial3 of the partial transpose ρ
TB
BC , i.e., as the roots of:

det(ρTB
BC − λ1)= (6λ− 1)2(36λ2 − 24λ− 1)

1296
= 0 (11.159)

Amazingly, after simplifying det(ρTB
BC − λ1) by using the fact that |α|2 + |β|2 = 1

and |α| ≤ 1, the resulting characteristic polynomial does not contain any mention
of α and β! This means that the eigenvalues of ρ

TB
BC are independent of the state

being cloned, and are in fact equal to 1
6 , 1

6 , 1
6 (2−

√
5), and 1

6 (2+
√

5). As
√

5 > 2,
we see that the third eigenvalue is assuredly negative. Thus, by the Peres-Horodecki
criterion ρBC , which is the joint state of the clones, must be an entangled.4 Rats!

3The characteristic polynomial of a square matrix U is the left hand side of the equation
det(U − λ1) = 0 where 1 is the identity matrix. The roots of the characteristic polynomial are
the eigenvalues of the matrix U .
4N.B. If we had computed, instead, the partial transpose over the space “C” i.e., the space corre-
sponding to the second of the two qubits in ρBC , we would have obtained a different matrix for the
partial transpose, ρTC

BC , but its eigenvalues would have been the same as those of ρTB
BC , and therefore

one would have still been negative.

466 11 Quantum Information

11.6.5.2 How Entangled are the Clones?

Just how entangled are the clones? To quantify the degree to which the clones are
entangled we can compute the tangle of ρBC . Tangle, as a measure of entanglement
for pure states, was introduced in Sect. 2.8.1. However, it generalizes readily to the
case of mixed states. Define ρ̃ as the “spin-flipped” version of a density operator ρ:

ρ̃ = (Y ⊗ Y) · ρ · (Y ⊗ Y) (11.160)

then the tangle of ρ, tangle(ρ), is related to the eigenvalues of the operator ρ · ρ̃.
Specifically, if the four eigenvalues of ρ · ρ̃ are arranged in decreasing order so that
λ1 ≥ λ2 ≥ λ3 ≥ λ4, then:

tangle(ρ)= [
max(

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4,0)

]2 (11.161)

For the density operator, ρBC , the spin-flipped version is:

ρ̃BC = (Y ⊗ Y) · ρBC · (Y ⊗ Y)

=

⎛
⎜⎜⎜⎜⎝

2
3 |β|2 − 1

3αβ
∗ − 1

3αβ
∗ 0

− 1
3βα

∗ 1
6

1
6 − 1

3αβ
∗

− 1
3βα

∗ 1
6

1
6 − 1

3αβ
∗

0 − 1
3βα

∗ − 1
3βα

∗ 2
3 |α|2

⎞
⎟⎟⎟⎟⎠ (11.162)

and so the eigenvalues of ρBC · ρ̃BC are the roots of the corresponding characteristic
polynomial:

det(ρBC · ρ̃BC − λ1)= λ3
(
λ− 1

9

)
= 0 (11.163)

Amazingly again, after simplifying det(ρBC · ρ̃BC−λ1) by using the fact that |α|2+
|β|2 = 1 and |α| ≤ 1, the resulting characteristic polynomial does not contain any
mention of α and β . This means that the eigenvalues of ρBC · ρ̃BC are independent
of the state being cloned, and are in fact equal to 0, 0, 0, and 1

9 . Thus, arranging the
eigenvalues in decreasing order so that λ1 = 1

9 , λ2 = λ3 = λ4 = 0, and taking square
roots, the tangle is then given by:

tangle(ρBC) =
[
max

(√
λ1 −

√
λ2 −

√
λ3 −

√
λ4,0

)]2

=
[

max

(√
1

9
−√

0−√
0−√

0,0

)]2

= 1

9
(11.164)

This is actually not that bad. A maximally entangled 2-qubit state has a tangle of 1,
so tangle(ρBC) = 1

9 is fairly small. So the clones are far from being maximally
entangled. However, the fact that the clones are entangled at all could spell trouble
because when one uses one of the clones, the operations performed on it, could
change the other clone. Hence, we might wonder whether we can use the two clones

11.6 Cloning Quantum Information 467

freely in subsequent quantum computations. Furthermore, the fidelity of the clones,
5
6 is noticeably less than 1. Is this good enough to learn anything trustworthy about
ρideal by subsequent observations on the clones ρB and ρC? This issues are resolved
in the next two sections.

11.6.5.3 Expectation Value of an Observable Based on Ideal State

To assess how useful the clones really are, we need to examine how the expectation
value of a general operator Ω , when the system is in a clone state ρB or ρC , differs
from the expectation value of the same operator when the system is in the original
state ρideal = |ψ〉〈ψ |.

The ideal state is just the original state |ψ〉 we are trying to clone. Thus we have:

ρideal = |ψ〉〈ψ | =
(|α|2 αβ∗
βα∗ |β|2

)
(11.165)

Without loss of generality, the general form for an arbitrary 1-qubit observable
operator, Ω , can be defined symbolically as:

Ω =
(
p z

z∗ q

)
(11.166)

where p and q are real numbers and z is (in general) a complex number. Any 1-qubit
observable operator has to adhere to this form to be hermitian.

Now we can compute the expectation value of the observable Ω when the system
is in state ρideal. Using the formula given in Table 11.1 for computing the expectation
value of an observable of a state defined by a density operator we have:

〈Ω〉 = tr(ρidealΩ)= (pα + zβ)α∗ + (qβ + αz∗)β∗ (11.167)

This result is therefore our “gold standard” against which the quality of our clones
can be judged.

11.6.5.4 Expectation Value of an Observable Based on a Clone

Now let us re-derive the expectation value 〈Ω〉 this time using our clones. We want
to tell two things. First, given that the clone is imperfect, what is the relationship
between an operator expectation value for a clone state compared to that of the ideal
state? Second, given that the clones are entangled, can we still use both clones in
determining expectation values or does the use of one of them, render the other
useless?

The state of each single clone is given by tracing over the other two qubits in the
output state |ΨABC〉〈ΨABC |. We calculated the reduce density matrices of the clones

468 11 Quantum Information

in (11.146) and (11.147). We found that:

ρB = trAC(ρABC)=
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
)

ρC = trAB(ρABC)=
(

5
6 |α|2 + 1

6 |β|2 2
3αβ

∗
2
3βα

∗ 1
6 |α|2 + 5

6 |β|2
) (11.168)

These reduced density matrices for the clones are telling. These are the states we
will appear to have regardless of what happens to the other clone. So provided we
can milk some useful information out of ρB and ρC we do not need to worry fur-
ther about the fact that the clones are actually entangled. So can we extract useful
information?

Well surprisingly, although the clones ρB and ρC are only approximations to
the ideal state ρideal we can, in principle, use them to obtain the exact expectation
values for any operator, Ω! This is remarkable. The trick is to write “1” in the form
“|α|2 + |β|2” to see that the following identity holds:

ρB = ρC = 2

3
ρideal +

(|α|2
6

+ |β|2
6

)
1 (11.169)

where 1 is the identity matrix. It then follows that:

〈Ω〉 = tr(ρideal ·Ω)= 3

2

(
tr(ρB ·Ω)− 1

6
tr(Ω)

)
(11.170)

Thus we can use the clones to obtain the exact value of any observable, even though
they are only approximations to the ideal clone, and even though they are entangled.
I find this really a most amazing result!

11.6.6 Universal Probabilistic Quantum Cloning

Recall that the no-cloning theorem proves the impossibility of cloning an unknown
state exactly deterministically. Yet it does not preclude the possibility of cloning
an unknown state approximately deterministically, or cloning one exactly non-
deterministically. In the preceding sections we showed that approximate determinis-
tic quantum cloning machines are feasible. These are quantum circuits that use only
unitary quantum gates to produce approximate clones that are described by reduced
density matrices corresponding to mixed states. So even if the input state is pure the
approximate clone is mixed.

In this section we show that the alternative strategy of exact albeit non-
deterministic cloning machines are also feasible. We call such devices “probabilistic
cloning machines” because they might not produce clones every time they run but

11.6 Cloning Quantum Information 469

when they do the fidelity of those clones is higher than what can be achieved deter-
ministically. The quantum circuits corresponding to probabilistic cloning machines
use measurements, in addition to unitary gates, to achieve the desired state trans-
formation. The success of the exact probabilistic cloning procedure is signalled by
obtaining a specific outcome for these measurements.

The first design for a probabilistic cloning machine is due to Lu-Ming Duan
and Guang-Can Guo [152]. They showed that if states are selected secretly from a
set {|ψ1〉, |ψ2〉, . . . , |ψn〉} they can be cloned exactly probabilistically if and only
if the {|ψi〉} are linearly independent. In other words, probabilistic cloning does
not work for arbitrary states—they must be linearly independent—but their precise
identity does not need to be known so long as the promise holds that they are linearly
independent. If this condition holds, then Duan and Guo showed that there exists as
unitary operation U and measurement M such that the following transformation is
possible:

|ψi〉|Σ〉 U&M−→ |ψi〉|ψi〉 (11.171)

Here the measurement M means that the transformation is non-unitary overall,
which is what allows it to appear to circumvent the no-cloning theorem.

To obtain such a transformation we need to design a unitary transformation and a
measurement that does the trick. We begin by imaging there are three sub-spaces to
our system A, B , and C. Sub-space A holds the state to be cloned. Sub-space B will
hold the clone. And sub-space C will hold ancillae states that we intend to measure.

We can begin by defining an orthonormal set of (n + 1) states of a so-called
measurement probe {|P0〉, |P1〉, . . . , |Pn〉}. These states can serve as an unambigu-
ous measurement basis provided 〈Pi |Pj 〉 = 0 for i �= j and 〈Pi |Pi〉 = 1. Given such
basis states, and a state selected secretly from our linearly independent set {|ψi〉},
probabilistic cloning works by creating a unitary evolution of the form:

|ψi〉A|Σ〉B |P0〉C U−→√
pi |ψi〉A|ψi〉B |P0〉C +

n∑
j=1

cij |Φj 〉AB |Pj 〉C (11.172)

followed by a measurement of sub-system C in the {|P1〉, |P2〉, . . . , |Pn〉} basis. In
this transformation |Φ1〉AB, |Φ2〉AB, . . . , |Φn〉AB are n normalized states of sub-
systems A and B combined, but they are not necessarily orthogonal. Given the struc-
ture of the state produced under the action of U on an input |ψi〉A|Σ〉B |P0〉C we
can see immediately that exact cloning will be achieved whenever the measurement
on sub-space C in the {|P0〉, |P1〉, . . . , |Pn〉}-basis yields the result |P0〉. Moreover,
this event will occur with probability pi , which we can think of as the “cloning
efficiency”.

The simplest case is when we want to clone one of only two linearly independent
states {|ψ1〉, |ψ2〉}. In this case Duan and Guo show that the cloning efficiencies p1
and p2 must satisfy the inequality:

1

2
(p1 + p2)≤ 1

1+ 〈ψ1|ψ2〉 (11.173)

470 11 Quantum Information

This result can be generalized to bound all the probabilities p1,p2, . . . , pn based on
a certain matrix having to be positive semi-definite.

Optimal probabilistic cloning is closely related to the task of optimal unambigu-
ous quantum state discrimination [109, 248, 254, 386].

11.6.7 Broadcasting Quantum Information

Extending the notion of quantum cloning to mixed states requires a little thought,
because a complication arises that we do not have in the case of pure states. Given
that we don’t directly “see” the quantum state produced by cloning, but rather only
experience it through the statistical properties it displays, we might wonder whether
our goal is to clone a given mixed state literally, or merely produce clones that
replicate the statistical properties of the given mixed state? This distinction can be
best appreciated in terms of the two possible ways we could set up the notion of
cloning for mixed states. These are usually distinguished by contrasting them as
“cloning” versus “broadcasting”.

ρ ⊗ |Φ〉〈Φ| Cloner−→ ρ ⊗ ρ (11.174)

ρ ⊗ |Φ〉〈Φ| Broadcaster−→ ρAB : trA(ρAB)= ρ and trB(ρAB)= ρ (11.175)

The problem is that there are many density operators that can mimic the statistical
behavior of the true clones. Hence, merely obtaining output density operators that
display the same statistical properties as the true clones, is not entirely enough to
allow is to conclude we really have true clones.

11.7 Negating Quantum Information

“The process of optimal quantum cloning is closely connected to another impossible oper-
ation in quantum mechanics, the so-called universal NOT gate for qubits.”
– Nicolas Cerf [99]

An ideal classical NOT gate, NOT, is able to negate any bit it is handed even if
the bit value is unknown. That is, if b ∈ {0,1}, NOTb = 1 − b = ¬b regardless of
value of b.

Similarly, an ideal universal5 quantum NOT gate (if it existed) would be able to
negate any 1-qubit state it is handed. That is, for |ψ〉 = a|0〉 + b|1〉,

U ideal
NOT |ψ〉 = b∗|0〉 − a∗|1〉 ≡ |ψ⊥〉 (11.176)

5Here “universal” means “input state independent.”

11.7 Negating Quantum Information 471

In terms of the Bloch sphere, |ψ⊥〉 is the antipodal point to |ψ〉 on the opposite side
of the Bloch sphere along a straight line through its center. Hence |ψ〉 and |ψ⊥〉 are
orthogonal quantum states, i.e., 〈ψ |ψ⊥〉 = 0.

Unfortunately, such an ideal universal quantum NOT operation requires that
U

(ideal)
NOT be described by an anti-unitary matrix, whereas deterministic quantum gates

are always described by unitary matrices. Hence it is impossible to achieve U
(ideal)
NOT

exactly deterministically as purely a rotation on the Bloch sphere. Nevertheless, as
in the case of quantum cloning, we can define a universal quantum NOT as the best
approximation to the ideal NOT operation on qubits.

11.7.1 Universal Quantum Negation Circuit

Surprisingly, as the alert reader will have noticed, the desired negated state |ψ⊥〉
happens to be produced as an “unwanted” side effect of using a universal quantum
cloning circuit! In (11.146) and (11.147) we see the negated state appears as the
“distortion” that prevents the clone for being exact. Specifically, we have:

ρB = 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥|

ρC = 5

6
|ψ〉〈ψ | + 1

6
|ψ⊥〉〈ψ⊥|

(11.177)

However, although we did not show this earlier, the contribution of the negated state,
|ψ⊥〉, to the top qubit A, turns out to be even greater. We can see this by factoring
the reduced density operator ρA in terms of |ψ〉 and |ψ⊥〉 as follows:

ρA = trBC(ρABC)=
(

2
3 |α|2 + 1

3 |β|2 1
3βα

∗
1
3αβ

∗ 1
3 |α|2 + 2

3 |β|2
)

= Y ·
(

1

3
|ψ〉〈ψ | + 1

3
|ψ⊥〉〈ψ⊥|

)
· Y (11.178)

where

|ψ〉〈ψ | =
(|α|2 αβ∗
βα∗ |β|2

)
(11.179)

|ψ⊥〉〈ψ⊥| =
(|β|2 −αβ∗
−βα∗ |α|2

)
(11.180)

In fact, it turns out that the optimal universal negating circuit is exactly the same
as the optimal universal cloning circuit! The only difference, when we want to use
the cloning circuit as a negating circuit, is that we pay attention to a different output
qubit, namely the top qubit that contains ρA. Thus, a circuit for universal quantum
negation is shown in Fig. 11.11.

472 11 Quantum Information

Fig. 11.11 Quantum circuit for universal quantum negation. In an ideal universal quantum
negation circuit an unknown quantum state |ψ〉A = α|0〉A + β|1〉A would be transformed into
β∗|0〉A − α∗|1〉A. This is not possible deterministically using unitary gates. Instead the best we
can do is given by monitoring the output of the top qubit (A). The reduced density matrix of this
qubit, ρA = trBC(|ψABC〉〈ψABC |) gives the best approximation to the negated state. This shows
the fidelity of the negated state with respect to the ideal negated state is 1

6

11.7.2 Expectation Value of an Observable Based on the Negated
State

We can ask a similar question for universal negation that we asked for universal
cloning: is the negated state, ρA, close enough to the ideal negated state, |ψ⊥〉〈ψ⊥|,
to be on use in subsequent quantum computations?

Using (11.178) we can express the ideal negated state, ρUNOT
ideal = |ψ⊥〉〈ψ⊥|, in

terms of the original state and the output on the top qubit of the quantum cloning
(or equally, quantum “negating”) circuit:

ρUNOT
ideal = 3

2

(
Y · ρA · Y − 1

3
|ψ〉〈ψ |

)
(11.181)

where |ψ〉〈ψ | = ρCLONE
ideal . So for any observable operator Ω we would have:

〈Ω〉 = tr(ρUNOT
ideal ·Ω)= 3

2

(
tr(Y · ρA · Y ·Ω)− 1

3
tr(|ψ〉〈ψ | ·Ω)

)
(11.182)

So we can obtain the exact expectation value of an operator on the true negated
state, by using the approximation to the negated state on qubit A in conjunction
with ρCLONE

ideal .

11.8 Summary

In Shannon’s view, information is equated to the representation of knowledge rather
than the content of the knowledge per se. This view of “information” is alien to
many people when they first encounter it. However, it turns out to be very useful
in practice because it allows us to make concrete predictions on such matters as the
degree to which an information bearing message can be compressed while ensuring
the original message is recoverable, and the amount of redundancy to build into a
communication to ensure it can be transmitted reliably through a noisy channel.

11.8 Summary 473

In the quantum context, the notion of information is extended in the obvious
way by replacing classical streams of bits with quantum streams of qubits (possibly
in non-orthogonal states). We found that the probability distribution by which we
characterize a classical source is replaced by the density operator by which we char-
acterize a corresponding quantum source. We introduced a new kind of entropy, the
von Neumann entropy, which matches the Shannon entropy only when the quantum
states are orthogonal and hence unambiguously distinguishable (like classical sym-
bols). But when the quantum states are non-orthogonal, the von Neumann entropy
exceeds the Shannon entropy. This allows certain operations on quantum informa-
tion to exceed the bounds for corresponding operations on classical information.
For example, we can compress quantum messages comprising non-orthogonal states
over some probability distribution to a degree that is greater than that of classical
messages over symbols that occur with the same probability distribution. We gave
examples of two variants of such quantum compression protocols—discard-on-fail
and augment-on-fail. More interestingly, we also found that we can use quantum
information to compress a classical message by a factor of two beyond the Shan-
non bound at communication time provided we have already established and stored
matching pairs of entangled qubits between the two ends of the communications
channel. Thus, overall, Shannon’s bound is not exceed. However, at communication
time, we can temporarily appear to exceed the Shannon by a factor of two for as
long as the supply of matching entangled pairs remain.

Some operations that we take for granted on classical information are not so
easy with quantum information. For example, whereas we can copy classical in-
formation perfectly deterministically, we cannot do so for quantum information in
an unknown quantum state. Similarly, whereas we can negate classical information
perfectly deterministically, we cannot negate quantum information in an unknown
state. In both cases, however, we can find approximate quantum protocols that do
as well as Nature allows. Surprisingly, we can use the approximate clones and ap-
proximate negated states to obtain exact expectation values of observable operators
based on them. So in this sense, they are almost as useful as having perfect clones
and perfect negated states.

The main difference between quantum information and classical information is
the ability of the former to use non-orthogonal states to represent symbols, and
for those non-orthogonal states to be entangled. Neither of these options exists for
classical information, and this difference is the root of the dissimilarities between
quantum and classical information. We introduced the formalism of density oper-
ators to describe quantum sources. We showed how the partial trace was used to
describe a part of a composite quantum system. We highlighted the difference be-
tween pure and mixed states and focussed on the maximally entangled variants of
both kinds of quantum states. We introduced a measure of the degree of entangle-
ment in a quantum state via the tangle, and showed that deciding whether or not a
quantum was entangled could be answered using so-called entanglement witnesses
or the Peres-Horodecki criterion.

474 11 Quantum Information

11.9 Exercises

11.1 Calculate the density matrices for the following ensembles.

1. An ensemble of quantum states that are all 1
2 |0〉 −

√
3

2 |1〉.
2. An ensemble of quantum states that are all 1

3
√

3
|01〉 + 1

3

√
26
3 |10〉.

3. An ensemble of quantum states that are 1√
2
(|0〉−|1〉) with probability 0.3, 1

2 |0〉−√
3

2 |1〉 with probability 0.4, and |0〉 with probability 0.3.

11.2 Compute the density operator for an ensemble that is 30% |ψ1〉 = 1√
3
|0〉 +√

2
3 |1〉 and 70% |ψ2〉 = 2

3 |0〉 +
√

5
3 |1〉, and write its elements as decimal numbers.

Now compute the density operators for the following ensembles:

1. An ensemble that is 50% |ψ1〉 = 0.680082|0〉 + 0.733136|1〉 and 50% |ψ2〉 =
0.599759|0〉 + 0.800181|1〉.

2. An ensemble that is 25% |ψ1〉 = 0.568532|0〉 + 0.822661|1〉 and 75% |ψ2〉 =
0.66363|0〉 + 0.748061|1〉.

What do you notice? Can you devise any experimental test to distinguish between
these ensembles? Justify your answer.

11.3 What test on a density operator, ρ, tells you whether the state is pure or mixed?
According to this test, does the density operator given by

ρ =

⎛
⎜⎜⎜⎝

1
9 0 − 2

9
2
9

0 0 0 0
− 2

9 0 4
9 − 4

9
2
9 0 − 4

9
4
9

⎞
⎟⎟⎟⎠

correspond to that of a pure state or a mixed state?

11.4 Under what conditions is a 2-qubit state said to be separable? Your definition
should cover both pure states and mixed states.

11.5 Under what conditions is a 2-qubit density operator said to be that of a pure
state?

11.6 Which of the following simultaneous conditions of a quantum state are possi-
ble? There may be more than one correct answer.

1. A state can be simultaneously pure and mixed.
2. A state can be simultaneously separable and entangled.
3. A state can be simultaneously entangled and mixed.
4. A state can simultaneously mixed and separable.

11.9 Exercises 475

5. A state can be simultaneously entangled and pure.

11.7 What is the linear entropy of the density operator, ρ, defined by:

ρ =

⎛
⎜⎜⎜⎜⎝

1
8 0 0 −

√
3

8

0 3
8

1
8 0

0 1
8

1
8 0

−
√

3
8 0 0 3

8

⎞
⎟⎟⎟⎟⎠ (11.183)

Is linear entropy a good measure of the mixedness or the entanglement within a
state? Explain your answer.

11.8 Exhibit a 2-qubit (i.e., 4×4) density operator having a linear entropy less than
8
9 which is entangled.

11.9 Exhibit a 2-qubit (i.e., 4×4) density operator having a linear entropy less than
8
9 which is separable.

11.10 What test based on the linear entropy of a density operator, ρ, tells you
whether the state is entangled or separable? According to this test, does the den-
sity operator given by

ρ =

⎛
⎜⎜⎝

0.375003 0.0403853 0.0634155 0.00682943
0.0403853 0.126466 0.00682943 0.0213862
0.0634155 0.00682943 0.372806 0.0401487
0.00682943 0.0213862 0.0401487 0.125725

⎞
⎟⎟⎠ (11.184)

correspond to an entangled state or a separable state?

11.11 What is the von Neumann entropy of a mixed state described by a density
operator ρ? Is the von Neumann entropy a good measure of the mixedness or en-
tanglement within a state? Calculate the von Neumann entropies of the following
density operators:

1. The maximally mixed state

ρ =

⎛
⎜⎜⎝

1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

⎞
⎟⎟⎠

2. The typical mixed state

ρ =

⎛
⎜⎜⎝

0.314815 −0.165635i 0 0.166667
0.165635i 0.372685 −0.165359 0

0 −0.165359 0.145833 0
0.166667 0 0 0.166667

⎞
⎟⎟⎠

476 11 Quantum Information

3. The maximally entangled mixed state

ρ =

⎛
⎜⎜⎝

1
3 0 0 1

10
0 1

3 0 0
0 0 0 0
1
10 0 0 1

3

⎞
⎟⎟⎠

11.12 Prove that the expectation value of an observable, O, for a quantum system
in state ρ, given by (11.8) can be re-expressed in trace form as given by (11.9). That
is, prove 〈O〉 =∑N

i=1 pi〈ψi |O|ψi〉 = tr(ρ · O) where O is an hermitian matrix, and
ρ is a density operator.

11.13 It is possible to inter-convert between Bell states by applying single qubit
operation to one member of a Bell state pair. What Bell state transformations do the
following 1-qubit gates bring about?

|β00〉 Ry(−π)⊗1−→ ???

|β01〉 Ph(π/2)·Ry(π)·Rz(π)⊗1−→ ???

|β10〉 Ph(π/2)·Ry(−π)·Rz(π)⊗1−→ ???

|β11〉 Ph(−π/2)·Rz(−π)⊗1−→ ???

11.14 Recall that the quantum No-Cloning theorem asserts that “An unknown quan-
tum state cannot be cloned”. Thus, it is supposed to be impossible to find a unitary
transformation that can accomplish the transformation |ψ〉|0〉 −→ |ψ〉|ψ〉 for |ψ〉
unknown. However, you see an article that challenges the veracity of the No-Cloning
theorem based on the following argument:

(a) A bit, by definition, can be only 0 or 1.
(b) If you are given a bit but not told its value, then the bit is, by definition, unknown

to you. So let’s call the bit value b, but leave the value unspecified.
(c) Conceptually, you could use the bit value b to control the settings of a device

such as a Pockels cell (see Chap. 13), that outputs a horizontally polarized pho-
ton if b = 0 and a vertically polarized photon if b = 1. Thus, without loss of
generality, we can convert our unknown bit to an unknown quantum state, which
we can represent as |b〉, without ever revealing the value of b.

(d) Now imagine augmenting the output from the Pockels cell, the unknown state
|b〉, with another photon in a known state |0〉 (horizontally polarized photon) and
push them through some optical apparatus that implements a CNOT gate, i.e.,
compute CNOT|b〉|0〉. Clearly, b has to be either 0 or 1 so the only two cases we
need to consider are CNOT|0〉|0〉 = |0〉|0〉 and CNOT|1〉|0〉 = |1〉|1〉.

(e) Either way, the unknown quantum state |b〉 has been successfully cloned!
(f) Therefore, the No-Cloning theorem must be wrong, because here we have suc-

cessfully cloned an unknown quantum state |b〉!

11.9 Exercises 477

What is wrong with this argument? Why does it not disprove the No-Cloning theo-
rem? Justify you answer by critiquing each step in the aforementioned argument.

11.15 Given the density matrix:

ρ =

⎛
⎜⎜⎜⎜⎜⎝

4
49 − 6

35
4
√

314
735 − 4i

21

− 6
35

9
25 − 2

√
314

175
2i
5

4
√

314
735 − 2

√
314

175
1256
11025 − 4i

√
314

315
4i
21 − 2i

5
4i
√

314
315

4
9

⎞
⎟⎟⎟⎟⎟⎠

(11.185)

prove that its two partial transposes, ρTA and ρTB , have the same set of eigenvalues.

11.16 What are the density matrices corresponding to the four pure Bell states,
|β00〉, |β01〉, |β10〉, or |β11〉 as defined in (11.69)? Are they the same or different?
Now compute the reduced density matrices obtained by tracing over each of the
qubits in each of these Bell states. Are these reduced density matrices the same or
different? If your results are different, use them to find a single qubit observable,

Ω = (
a c

c∗ b

)
, which is able to distinguish between the four Bell states. Alternatively,

if your results are the same, use them to prove no such observable exists.

11.17 One way to measure the similarity between a pair of density matrices, σ and
ρ, is via their fidelity:

F(σ,ρ)=
[

tr(
√√

σ · ρ · √σ)

]2

(11.186)

Show that if σ is the density matrix of an arbitrary single qubit pure state, i.e., if
σ = |ψ〉〈ψ | where ψ = a|0〉 + √

1− |a|2|1〉 (with |a| ≤ 1 and a ∈ C), and ρ =
p|0〉〈0|+ (1−p)|1〉〈1| (with 0≤ p ≤ 1 and p ∈R) then the fidelity F(σ,ρ) can be
written as:

F(σ,ρ)= 〈ψ |ρ|ψ〉 = 1− p− (1− 2p)|a|2 (11.187)

Notice that if p = 1
2 the fidelity is then independent of a. What is so special about

the state ρ = p|0〉〈0|+ (1−p)|1〉〈1| when p = 1
2 ? Why should the fidelity between

ρ when p = 1
2 and any pure state be independent of the form of that pure state?

11.18 Consider the pair of entangled states |ψW〉 and |ψGHZ〉 defined on the three
qubits A, B , and C as follows:

|ψW〉 = 1√
3
(|001〉 + |010〉 + |100〉); ρW

ABC = |ψW〉〈ψW|

|ψGHZ〉 = 1√
2
(|000〉 + |111〉); ρGHZ

ABC = |ψGHZ〉〈ψGHZ|
(11.188)

478 11 Quantum Information

Prove the following:

(a) The states |ψW〉 and |ψGHZ〉 are orthogonal, i.e., 〈ψW|ψGHZ〉 = 0. What does
this tell you about the degree to which |ψW〉 is similar to |ψGHZ〉?

(b) |ψW〉 and |ψGHZ〉 are both entangled states.
(c) The 2-qubit sub-systems of |ψW〉 are identical, i.e. ignoring indices, we obtain

the same state whether we trace over the first, second, or third qubit:

ρW
BC = trA(|ψW〉〈ψW|)= ρW

AC = trB(|ψW〉〈ψW|)= ρW
AB = trC(|ψW〉〈ψW|)

(11.189)

(d) The 2-qubit sub-systems of |ψGHZ〉 are identical, i.e. ignoring indices, we obtain
the same state whether we trace over the first, second, or third qubit:

ρGHZ
BC = trA(|ψGHZ〉〈ψGHZ|)= ρGHZ

AC = trB(|ψGHZ〉〈ψGHZ|)
= ρGHZ

AB = trC(|ψGHZ〉〈ψGHZ|) (11.190)

(e) For any pair of indices {x, y} ⊂ {A,B,C}, the fidelity between the reduced
density matrices ρW

xy and ρGHZ
xy is 1

6 . That is, prove F(ρW
xy, ρ

GHZ
xy)= 1

6 .
(f) The 1-qubit sub-systems of |ψW〉 are identical, i.e. ignoring indices, we obtain

the same state whether we trace over the second and third, first and third, or first
and second qubits:

ρW
A = trBC(|ψW〉〈ψW|)= ρW

B = trAC(|ψW〉〈ψW|)= ρW
C = trAB(|ψW〉〈ψW|)

(11.191)

(g) The 1-qubit sub-systems of |ψGHZ〉 are identical, i.e. ignoring indices, we obtain
the same state whether we trace over the second and third, first and third, or first
and second qubits:

ρGHZ
A = trBC(|ψGHZ〉〈ψGHZ|)= ρGHZ

B = trAC(|ψGHZ〉〈ψGHZ|)= ρGHZ
C

= trAB(|ψGHZ〉〈ψGHZ|) (11.192)

(h) For any index x ∈ {A,B,C}, the fidelity between the reduced density matrices
ρW
x and ρGHZ

x is 1
6 (3+ 2

√
2). That is prove, F(ρW

x , ρGHZ
x)= 1

6 (3+ 2
√

2).
(i) What is the fidelity between the original pair of states |ψW〉 and |ψGHZ〉 in

comparison to the fidelities of its 2-qubit and 1-qubit sub-systems?

11.19 Consider the state |ψW〉 defined in (11.188). Use the Schmidt decomposition
to “automatically” discover the (trivial) factorization of |ψW〉 in the form:

|ψW〉 =
√

2

3
|0〉 ⊗

(|01〉 + |10〉√
2

)
+ 1√

3
|1〉|00〉 (11.193)

11.9 Exercises 479

11.20 Consider the 3-qubit state |ψABC〉 = 1√
2
(|ψW〉 + |ψGHZ〉) where |ψW〉 and

|ψGHZ〉 are defined as in (11.188). Suppose you wish to write |ψABC〉 in the form:

|ψABC〉 =
min(dA−1,dBC−1)∑

i=0

λi |iA〉|iBC〉 (11.194)

(single index summation) where A is a 2-dimensional subspace, and BC is a
4-dimensional subspace. Demonstrate how to apply the Schmidt decomposition to
find suitable values for the Schmidt coefficients (λi) and the eigenvectors ({|iA〉}
and {|iBC〉}). Verify that your solution yields a Schmidt decomposition for |ψABC〉
of the form:

|ψABC〉 = λ1|1A〉|1BC〉 + λ2|2A〉|2BC〉 (11.195)

where:

λ1 =
√

1

2
+
√

7

12

λ2 = 1

2

√
1

3

(
6−√

7
)

|1A〉 = −
√

1

2
+ 1

2
√

7
|0〉 −

√
1

14

(
7−√

7
) |1〉

|2A〉 = −
√

1

14

(
7−√

7
) |0〉 +

√
1

2
+ 1

2
√

7
|1〉

|1BC〉 = −
√

17

58
+ 43

58
√

7
|00〉 −

√
1

203

(
35−√

7
) |01〉

−
√

1

203

(
35−√

7
) |10〉 −

√
3

406

(
49− 13

√
7
) |11〉

|2BC〉 =
√

1

406

(
119− 43

√
7
) |00〉 −

√
5

29
+ 1

29
√

7
|01〉

−
√

5

29
+ 1

29
√

7
|10〉 +

√
3

406

(
49+ 13

√
7
) |11〉

(11.196)

11.21 Alice and Bob wish to perform a quantum mechanical experiment over a
distance of 400 km. The experiment requires that Alice and Bob have correspond-
ing members of maximally entangled pairs of particles. However, if they transmit
a particle over 100 km they can no longer guarantee its state is pristine. How, in
principle, can Alice and Bob establish the required entangled pairs of particles over
a distance of 400 km? Explain, by describing the sequence of state changes, how

480 11 Quantum Information

they could use this scheme to establish shared pairs of particles each in the state
β01 = 1√

2
(|01〉 + |10〉).

11.22 Suppose Alice and Bob have access to ideal quantum memories, i.e., they
are able to store quantum information without any loss of fidelity indefinitely. In
addition, assume Alice and Bob are connected by a fiber optic communications net-
work, which can support both quantum and classical communications but is shared
with other users. This network is idle for approximately 20% of the time, under-
utilized for 70% of the time and at peak congestion for 10% of the time. Explain
how Alice and Bob can exploit quantum information to boost their effective com-
munications capacity at times of peak congestion. At such times, by what factor can
they, in principle, increase their effective communications rate? Can this enhanced
communications rate be maintained indefinitely? Explain your answer.

11.23 The states that have the maximal possible amount of entanglement for a given
amount of mixedness (as measured by linear entropy) can be written in the form:

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

1
3 0 0 r

2
0 1

3 0 0
0 0 0 0
r
2 0 0 1

3

⎞
⎟⎟⎠ 0≤ r ≤ 2

3

⎛
⎜⎜⎝

r
2 0 0 r

2
0 1− r 0 0
0 0 0 0
r
2 0 0 r

2

⎞
⎟⎟⎠ 2

3 < r ≤ 1

(11.197)

Show when 0≤ r ≤ 2
3 that ρ can be factored in the form:

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + (1− (p1 + p2))|ψ3〉〈ψ3| (11.198)

where

p1 = 1

12

(
4− 9r2)

p2 = 1

3

|ψ1〉 = |00〉
|ψ2〉 = |01〉

|ψ3〉 = 3r√
4+ 9r2

|00〉 + 2√
4+ 9r2

|11〉

(11.199)

Likewise, show when 2
3 < r ≤ 1 that ρ can be factored in the form:

ρ = (1− r)|ψ1〉〈ψ1| + r|ψ2〉〈ψ2| (11.200)

11.9 Exercises 481

where

|ψ1〉 = |01〉

|ψ2〉 = 1√
2
(|00〉 + |11〉)

(11.201)

11.24 We can always regard a mixed state as the reduced density matrix of a larger
pure state within some sub-system of interest. The procedure for finding such an
encompassing pure state is called “purification of a mixed state”, and was described
in this Chapter. Review the purification procedure and apply it to show that the state

|ψAB〉 =
(

1

4

√
7

6
− 1

4

√
3

2

)
|0000〉 +

(
1

4

√
7

6
+ 1

4

√
3

2

)
|0011〉 + 1√

3
|0101〉

− 1√
6
|1100〉 + 1√

6
|1111〉 (11.202)

is a purification of the mixed state

ρA =

⎛
⎜⎜⎝

1
3 0 0 1

4
0 1

3 0 0
0 0 0 0
1
4 0 0 1

3

⎞
⎟⎟⎠ (11.203)

Note that a state such as ρA has the maximum possible value of entanglement for
the degree of mixedness (as measured by linear entropy) in ρA. Verify that |ψAB〉 is
a purification of ρA by showing trB(|ψAB〉〈ψAB |)= ρA, where sub-space A corre-
sponds to the first and second qubits, and sub-space B corresponds to the third and
fourth qubits.

11.25 Show how to construct the purification:

|ψAB〉 = 1

2

√
3

2
|0001〉 + 1

2
√

2
|0100〉 + 1

2
√

2
|0111〉 + 1

2

√
3

2
|1101〉 (11.204)

of the mixed state:

ρA =

⎛
⎜⎜⎝

3
8 0 0 3

8
0 1

4 0 0
0 0 0 0
3
8 0 0 3

8

⎞
⎟⎟⎠ (11.205)

Note that a state such as ρA has the maximum possible value of entanglement for
the degree of mixedness (as measured by linear entropy) in ρA. Verify that |ψAB〉 is
a purification of ρA by showing trB(|ψAB〉〈ψAB |)= ρA.

11.26 Use the Peres-Horodecki criterion to decide whether each of the following
states is or is not entangled:

482 11 Quantum Information

1.

|ψ〉 = 1√
6
|00〉 + 1√

3
|01〉 + 1

4
|10〉 + 1

4

√
7 |11〉 (11.206)

2.

|ψ〉 = 1

5

√
3 |00〉 + 1

5

√
6 |01〉 + 4

5
√

3
|10〉 + 4

5

√
2

3
|11〉 (11.207)

3.

ρ =

⎛
⎜⎜⎝

5
14 0 0 5

14
0 2

7 0 0
0 0 0 0
5
14 0 0 5

14

⎞
⎟⎟⎠ (11.208)

4. ⎛
⎜⎜⎜⎜⎝

1
90 (15− 4

√
3) − i

15
√

3
− 1

90 i(−15+ 4
√

3) 1
15
√

3
i

15
√

3
2

15
√

3
− 1

15
√

3
2i

15
√

3
1
90 i(−15+ 4

√
3) − 1

15
√

3
5
6 − 2

3
√

3
− i

3
√

3
1

15
√

3
− 2i

15
√

3
i

3
√

3
2

3
√

3

⎞
⎟⎟⎟⎟⎠ (11.209)

5.

ρ =

⎛
⎜⎜⎜⎜⎝

2
3 (1− 2√

5
) 0 0 1

15

√
2(−5+ 2

√
5)

0 1√
5

− 1√
5

0

0 − 1√
5

1√
5

0
1
15

√
2(−5+ 2

√
5) 0 0 1

15 (5− 2
√

5)

⎞
⎟⎟⎟⎟⎠ (11.210)

11.27 There are many possible entanglement monotones that can be used to quan-
tify the degree of entanglement within a quantum state. Two popular ones for 2-qubit
states are “negativity” and “concurrence” (which in turn is just the square root of the
tangle). Look up the definitions of negativity and concurrence (i.e., tangle) and then
answer the following questions:

1. Compute the negativity and concurrence for each of the quantum states listed in
Problem 11.26.

2. What do you notice about the values of negativity and concurrence when the
states are pure?

3. What do you notice about the values of negativity and concurrence when the
states are determined, e.g., by the Peres-Horodecki criterion, to be separable?

Chapter 12
Quantum Teleportation

“We report free-space implementation of quantum teleportation over 16 km”
– Jin et al.1

In science fiction stories, teleportation is usually depicted as a routine means
of relocating an object by a process of dissociation, information transmission, and
reconstitution. When all goes well the original object is scanned and disassembled at
one place only to shimmer reassuringly back into existence at another. For dramatic
effect, occasional blunders corrupt the object en route or leave it suspended in some
nebulous state. Hapless bit-part actors seem especially prone to malfunctions.

Such accounts of teleportation are convenient literary devices for moving ac-
tion heroes around the Universe and for introducing paradoxes of identity into story
lines. But to what extent is teleportation consistent with known physical laws? In
particular, does quantum information offer any new possibilities? In this chapter we
look at the scientific basis for teleportation.

12.1 Uncertainty Principle and “Impossibility” of Teleportation

Until recently no serious attention had been paid to the physical principles on which
true teleportation might be based. The presumption of most scientists, if they had
any, was that teleportation was impossible because it would require some sort of
scanning, or measurement, operation in order to extract a precise description of the
state of all the particles in a system. At the very least this would seem to necessitate
having to learn, simultaneously, the positions and momenta of all the particles from
which the object was made.

1Source: “Experimental Free-space Quantum Teleportation” by Xian-Min Jin, Ji-Gang Ren, Bin
Yang, Zhen-Huan Yi, Fei Zhou, Xiao-Fan Xu, Shao-Kai Wang, Dong Yang, Yuan-Feng Hu, Shuo
Jiang, Tao Yang, Hao Yin, Kai Chen, Cheng-Zhi Peng & Jian-Wei Pan, Nature Photonics, Volume 4
(2010) pp. 376–381.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_12, © Springer-Verlag London Limited 2011

483

http://dx.doi.org/10.1007/978-1-84628-887-6_12

484 12 Quantum Teleportation

Unfortunately, such a measurement is provably impossible! The Heisenberg Un-
certainty Principle shows that whenever we try to measure a pair of observables
whose corresponding observable operators do not commute, the product of the un-
certainties in the expected values of the two operators is greater than a definite
minimum value. This is the case for position and momentum observables, because
the position observable, X, does not commute with the momentum observable,
P , and in fact [X,P] = i� from which one can deduce (as we will show below)
that
X
P ≥ �

2 . Consequently, teleportation seemed doomed to fail because you
could never obtain complete information about the original object sufficient to re-
synthesize it perfectly elsewhere.

12.1.1 Heisenberg Uncertainty Principle

To understand where the Heisenberg Uncertainty Principle comes from, consider
any pair of observables represented by Hermitian operators, A, and B . We are in-
terested in quantifying the uncertainties with which we can know the values of
these observables simultaneously. We characterize these uncertainties via their mean
square deviations. Starting with the operators:

A = A− 〈A〉

B = B − 〈B〉 (12.1)

as the deviations of A and B from their true means, squaring gives us:

〈(
A)2〉 = 〈A2〉 − 〈A〉2
〈(
B)2〉 = 〈A2〉 − 〈A〉2 (12.2)

as the mean square deviations. These quantities characterize how uncertain we are
in the value of observables A and B .

Next, to obtain our desired formula we can use the Cauchy-Schwarz inequality.
For vectors u and v the Cauchy-Schwarz inequality tells us how their inner products
are related, namely:

〈u|u〉〈v|v〉 ≥ |〈u|v〉|2 (12.3)

Setting 〈u| = 〈ψ |(
A)† and |v〉 =
A|ψ〉 the Cauchy-Schwarz inequality implies:

〈ψ |(
A)†︸ ︷︷ ︸
〈u|

(
A)|ψ〉︸ ︷︷ ︸
|u〉

〈ψ |(
B)†︸ ︷︷ ︸
〈v|

(
B)|ψ〉︸ ︷︷ ︸
|v〉

≥ |〈ψ |(
A)†︸ ︷︷ ︸
〈u|

(
B)|ψ〉|2︸ ︷︷ ︸
|v〉

(12.4)

However, as A is Hermitian and 〈A〉 is a real number,
A = A − 〈A〉 must be
Hermitian too and so (
A)†(
B)=
A
B . Hence, we obtain

〈(
A)2〉〈(
B)2〉 ≥ |〈
A
B〉|2 (12.5)

12.1 Uncertainty Principle and “Impossibility” of Teleportation 485

So far so good, but to make progress we now need to say something about

A
B . To do so, let us split it into two equal terms and insert zero written in
just the right way. Namely,

A
B = 1

2

A
B + 1

2

A
B

= 1

2
(
A
B −
B
A)+ 1

2
(
A
B +
B
A)

= 1

2
[
A,
B] + 1

2
{
A,
B} (12.6)

which shows
A
B can be written as the sum of commutator [
A,
B] and an
anti-commutator {
A,
B}. The significance of this is that the commutator of two
Hermitian matrices is itself anti-Hermitian, i.e., [
A,
B]† =−[
A,
B], and the
expectation value of an anti-Hermitian operator is purely imaginary. Conversely, the
anti-commutator of two Hermitian matrices is itself Hermitian, i.e., {
A,
B}† =
{
A,
B}, and the expectation value of an Hermitian operator is purely real. Thus,
from (12.5) and (12.6) we see that:

〈(
A)2〉〈(
B)2〉 ≥ |〈
A
B〉|2 ≥
∣∣∣∣
〈

1

2
[
A,
B] + 1

2
{
A,
B}

〉∣∣∣∣
2

≥ 1

4
|〈[
A,
B]〉|2 + 1

4
|〈{
A,
B}〉|2

≥ 1

4
|〈[A,B]〉|2 + 1

4
|〈{
A,
B}〉|2 ≥ 1

4
|〈[A,B]〉|2 (12.7)

where we have used [
A,
B] = [A,B]. Thus, we arrive at the Heisenberg Uncer-
tainty Principle:

Heisenberg’s Uncertainty Principle For any two hermitian operators, the product
of the uncertainties in their values always satisfies the inequality:

〈(
A)2〉〈(
B)2〉 ≥ 1

4
|〈[A,B]〉|2 (12.8)

Thus, if teleportation requires that an object be scanned to ascertain (say) the
position and momentum of all the particles which comprise it, then as the observ-
ables for position and momentum do not commute, i.e., as [X,P] = i�, we have
(setting A=X and B = P) 〈(
X)2〉〈(
P)2〉 ≥ 1

4 |i�|2, which implies the more fa-
mous Heisenberg Uncertainty Relation
X
P ≥ �

2 . It is therefore, as a matter of
physical principle, quite impossible to determine, simultaneously, the exact position
and exact momentum of all the particles in an object. Hence, the Heisenberg Uncer-
tainty Principle appeared to rule the possibility of true physical teleportation given
that the (presumed) scanning step it must involve is physically impossible.

486 12 Quantum Teleportation

12.2 Principles of True Teleportation

The situation changed in 1993 when, in a paper whose author list reads like a
“Who’s Who?” of quantum information theory, Charles Bennett, Gilles Brassard,
Claude Crepeau, Richard Jozsa, Asher Peres, and William Wootters, showed how
to exploit entangled states and non-local influences, to circumvent the limitations of
the Heisenberg Uncertainty Principle and teleport an arbitrary—even unknown—
quantum state between two locations in such a manner that the state did not traverse
the intervening distance [49]. The technique transfers the quantum state of the parti-
cle to be teleported to another remote particle without the original particle having to
traverse the intervening distance. However, in the process, the quantum state of the
original particle is necessarily destroyed and that of the receiving particle becomes
a perfect reincarnation of the original. Quantum teleportation is therefore distinct
from “faxing”, which would leave the original intact and transmit an approximate
copy of it over the intervening distance. It is also distinct from “cloning”, which
would leave the original intact and create a perfect copy. Obviously, the notion of
teleporting a quantum state of a simple particle is considerably less ambitious than
teleporting an entire human being from one place to another, but it is a start and has
been demonstrated experimentally to increasing degrees of sophistication [38, 67,
68, 279, 340, 374, 418, 503].

We emphasize that quantum physics dictates that the state of the original particle
has to be destroyed during the teleportation operation, otherwise teleportation would
produce a perfect copy of the original (unknown) quantum state and this would
violate the “no cloning” theorem (see Sect. 11.6). This marks a slight distinction
from science fiction accounts of teleportation wherein defective teleporters are apt
to create perfect clones.

Note also, that in quantum teleportation it is not the particle that is teleported,
but rather its quantum state. However, if the original particle holding the state, is of
exactly the same type as the particle onto which that state will be teleported then,
as elementary particles such as electrons have identical properties, the net effect of
transferring a quantum state from one electron (say) to another remote electron will
appear, to all intents as purposes as if the electron itself had been teleported. Charles
Bennett, one of the inventors of quantum teleportation, made the humorous collage
shown in Fig. 12.1 of himself with co-inventor Richard Jozsa using photographs
taken as they passed through the (real) Tokyo Teleport station.

12.2.1 Local Versus Non-local Interactions

As we shall see shortly, quantum teleportation is very much dependent on certain
so-called non-local physical effects. So we need to take a brief detour to consider
what this means.

A local interaction is one that involves direct contact, or employs an intermediary
that is in direct contact. The forces with which we are familiar in everyday life, such

12.2 Principles of True Teleportation 487

Fig. 12.1 Photographic collage courtesy of Claude Crepeau showing Richard Jozsa and Charles
Bennett at the Tokyo Teleport station. Crepeau, Jozsa, and Bennett were three of the inventors of
quantum teleportation. Photograph provided courtesy of Charles Bennett

as friction and gravity, are local interactions. With friction, the physical contact
between two bodies is really mediated by an electromagnetic field, which in turn
comes about by the action of an intermediary, the carrier of the electromagnetic
force, called the photon. Photons travel at the speed of light, which although fast
is still finite. Consequently, electromagnetic influences cannot propagate faster than
the speed of light in a vacuum. Moreover, electromagnetic forces tend to weaken
the farther you go from the source.

Locality does not necessarily imply “nearby,” however. Gravity, for example, is
a force that exerts its influence over astronomically large distances. Nevertheless,
gravity is still regarded as a local interaction because it is mediated by particles,
called gravitons, which travel between gravitating objects. It too drops off in strength
as the distance between the gravitating objects increases and cannot travel faster than
the speed of light.

An important corollary of local interactions is the following: if two events oc-
cur in regions of spacetime such that no signal, not even one traveling at the speed
of light, could ever reach one region from the other, these two events ought to be
completely independent of one another. Why? Because if no signal could ever travel
from one region to the other, how could what happens in one region ever be com-
municated to the other? In fact, special relativity has a special name for two such
regions: it says that they are “spacelike separated.”

In short, local interactions can be characterized by three criteria: they are medi-
ated by another entity, such as a particle or field; they propagate no faster than the
speed of light; and their strength drops off with distance. Thus the assumption of
“locality” allows one to infer that events in spacelike separated regions ought to be
independent of one another.

488 12 Quantum Teleportation

Scientists have shown that all the known forces in the Universe, the electromag-
netic, the gravitational, the strong, and the weak forces are all local, in this sense.
One might think, therefore, that is an end to it, and that reality must be local. After
all, if all the known forces are local, what is left to be non-local?

Well, what is left is the “collapse of the state vector.” State vectors, as we dis-
cussed earlier, provide the mathematical description of quantum systems. When we
make measurements, the state vectors collapse into eigenstates, at least according to
the Copenhagen interpretation of quantum theory. Now the intriguing point is that
there is nothing in quantum theory that explains, mediates, or determines the exact
mechanism of the collapse. In particular, the collapse of a state vector involves no
forces of any kind. This lack of reliance upon a force of any kind, provides quantum
theory with an “out”; a way to evade the strictures of locality.

How exactly would a non-local influence be defined? We can just negate each
criterion for a local interactionto say that a non-local interaction is an interaction
that is not mediated by anything, is not limited to acting at the speed of light, and
does not drop off in strength with distance. Thus non-local interactions would appear
to be magic! The question is—do they exist?

12.2.2 Non-locality: Einstein’s “Spooky Action at a Distance”

“That one body may act upon another at a distance through a vacuum without the media-
tion of anything else . . . is to me so great an absurdity, that I believe no man, who has in
philosophical matters a competent faculty for thinking, can ever fall into.”
– Isaac Newton2

Many scientists have an instinctive distaste for non-local interactions. Certainly,
they would seem to be in direct conflict with Einstein’s Theory of Special Relativity
which says that nothing can travel faster than the speed of light. Indeed, it was the
discrepancy between the predictions of relativity and quantum theory concerning
the correlations between events in spacelike separated regions that led Albert Ein-
stein, Boris Podolsky, and Nathan Rosen to point out an effect (thereafter known
as the EPR effect) whereby one part of an entangled quantum system appears to
instantaneously influence another.

To Einstein, Podolsky and Rosen such non-local influences seemed implausible,
and they sought to use their seeming absurdity to prove that quantum mechanics
gave only an incomplete account of physical reality. In particular, as Special Rela-
tivity held that nothing could travel faster than light, they believed that the correla-
tions in measurement outcomes of experiments measuring both members of greatly
separated entangled particles were more plausibly explained by hypothesizing that
the pairs of particles were not really entangled at all but rather had fixed values of all
their measurable attributes from the outset. Thus the experimental outcomes were
really being determined by “hidden variables”. It was out ignorance of these hidden

2Source: [369].

12.2 Principles of True Teleportation 489

variables that made it appear that the states became definite upon being measured
rather than the existence of any instantaneous, unmediated, arbitrarily far separated,
“non-local” interactions.

12.2.3 Bell’s Inequality

Now here comes the twist. It could be argued that it is simply a matter of philo-
sophical taste as to whether you believe the quantum account or the hidden variable
account of how the two entangled photons come to have correlated polarization
states upon being measured. But what if there were some experimentally testable
difference between the predictions of the two theories—then perhaps a physical ex-
periment could resolve a philosophical question?

In the 1960s John Bell, an Irish physicist on leave from CERN (the European
Center for Nuclear Research) showed that there was an empirically testable dif-
ference between the predictions of any hidden variable theory and the predictions
of quantum mechanics. The test relies upon the statistics obtained when collecting
data on the outcomes of pairs of polarization measurements on spacelike separated
entangled particles when the polarizers are oriented at certain angles to one another.

Just what would we see if we performed a set of pairs of polarization measure-
ments? For clarity let us suppose that the pair of photons exist in an entangled state
such that both polarizations are guaranteed to be the same but are otherwise indefi-
nite until they are measured.

Let’s call our experimenters Alice and Bob, and let’s suppose that they agree to
orient their polarizers in the same direction. Thus the angle between their polarizers
is 0°. What would Alice and Bob discover? Well, since the entangled particles we
are dealing with are perfectly correlated, every time Alice observes a “vertical” Bob
also observes a “vertical”. And every time Alice observes a “horizontal”, Bob also
observes a “horizontal”. The fraction of times that they agree on the measurement
outcomes is 1, i.e., always.

Now let’s imagine what would happen if Bob rotated his polarizer through 90°.
Now what looks like “vertical” to Bob is actually seen as “horizontal” by Alice. So
now when Alice and Bob perform polarization measurements on respective pairs of
correlated photons, their results will be perfectly anti-correlated. Every time Alice
sees “vertical” Bob sees “horizontal” and vice versa. The fraction of times that they
agree on the outcomes will be 0, i.e., never.

So far so good. Now suppose Bob rotates his polarizer back towards Alice’s
vertical so that Bob’s polarizer now makes an angle of θ12 to Alice’s vertical. This
is where things get interesting. Suppose Alice measures her photon to be “vertical”.
Thus the twin photon will be “vertical” (in Alice’s basis) too. To Bob however,
the photon he receives will appear to be a superposition of his “horizontal” and
“vertical” orientations. As a result the outcome of Bob’s polarization measurement
is not certain: sometimes when Bob measures a photon that Alice sees as vertical
Bob will obtain “vertical” too. But at other times when Bob measures a photon

490 12 Quantum Teleportation

Alice sees as “vertical” Bob will see “horizontal”. The net effect is that the fraction
of times Alice and Bob agree is now somewhere between 0 (never) and 1 (always)
the exact number being dependent on the angle, θ12, between Bob’s and Alice’s
polarizers.

The question is, what degree of correlation would we expect to see in the out-
comes of the polarization measurements made by Alice and Bob? To answer this
quantitatively, suppose that Alice and Bob’s polarizers are oriented in parallel planes
so that what Alice thinks of as “vertical” is at angle θ1 degrees with respect to some
reference line, and what Bob thinks of as “vertical” is at θ2 degrees with respect to
the same reference line. Hence, the angle between Alice and Bob’s vertical axes is
θ12 = θ2 − θ1.

When Alice and Bob make polarization measurements on successive pairs of
entangled photons they each obtain either “vertical” or “horizontal” in their respec-
tive frames. This means that the quantum state of the joint system can be writ-
ten as a superposition over product states of polarization outcomes, i.e., {|ψxy〉} ≡
{|ψx〉 ⊗ |ψy〉}, where x and y are vertical or horizontal polarizations as perceived
by Alice and Bob respectively. Using geometric arguments we can determine the
projection of Bob’s basis vectors onto Alice’s basis vectors allowing us to write:

|Ψ 〉 = 1

2
cos2 θ12|ψv1v2〉 +

1

2
sin2 θ12|ψv1h2〉

+ 1

2
sin2 θ12|ψh1v2〉 +

1

2
cos2 θ12|ψh1h2〉 (12.9)

Hence the probabilities, Pxy , of Alice finding photon 1 in polarization x, and Bob
finding photon 2 in polarization y are:

Pv1v2 = |〈ψv1v2 |Ψ 〉|2 =
1

2
cos2 θ12 (12.10)

Pv1h2 = |〈ψv1h2 |Ψ 〉|2 =
1

2
sin2 θ12 (12.11)

Ph1v2 = |〈ψh1v2 |Ψ 〉|2 =
1

2
sin2 θ12 (12.12)

Ph1h2 = |〈ψh1h2 |Ψ 〉|2 =
1

2
cos2 θ12 (12.13)

where cos2 θ12 = cos2(θ2 − θ1). Notice that the probabilities for the possible out-
comes add up to 1.

A particularly interesting situation arises when Alice and Bob are so far apart that
no signal, even one traveling at the speed of light, can possibly reach Bob from Alice
and vice versa in the time taken for Alice and Bob to complete their measurements of
the polarization orientations of their respective photons. On commonsense grounds
(as Einstein, Podolsky and Rosen would see it) the fact that Alice and Bob are
spacelike separated means that outcome of Alice’s measurement should not affect
the outcome of Bob’s measurement. Based on this assumption, which amounts to
assuming reality is local, it is possible to derive an inequality that says how the

12.2 Principles of True Teleportation 491

pairs of measurement outcomes Alice and Bob see should be related to one another
when Alice and Bob set their polarizers at various pairs of orientations.

To obtain the inequality let us introduce a third polarizer having its polarization
axes oriented along v3 and h3 rotated through angle θ3 with respect to the same
common reference frame as the first two polarizers. Using a classical viewpoint, in
which reality is assumed to be local, in which case Alice and Bob’s measurements
ought not to affect one another whenever they are spacelike separated) standard
probability arguments would predict:

Pv1h2 = Pv1h2v3 + Pv1h2h3 (12.14)

where the right hand side has taken into account the two possible outcomes for the
third polarization measurement. Similarly, for other combinations of measurement
outcomes we have:

Pv2h3 = Pv1v2h3 + Ph1v2h3 (12.15)

and

Pv1h3 = Pv1v2h3 + Pv1h2h3 (12.16)

From these relations it follows that:

Pv1h2 ≥ Pv1h2h3 (12.17)

and

Pv2h3 ≥ Pv1v2h3 (12.18)

from which it follows

Pv1h2 + Pv2h3 ≥ Pv1h2h3 + Pv1v2h3 (12.19)

or more simply

Pv1h2 + Pv2h3 ≥ Pv1h3 (12.20)

which is Bell’s inequality. Said more plainly in words:

Bell’s Inequality The fraction of times that Alice observes “vertical” and Bob ob-
serves “horizontal” when Alice’s polarizer is at θ1 and Bob’s polarizer is at θ2 plus
the fraction of times that Alice observes “vertical” and Bob observes “horizontal”
when Alice’s polarizer is at θ2 and Bob’s polarizer is at θ3 must be greater than
or equal to the fraction of times that Alice observes “vertical” and Bob observes
“horizontal” when Alice’s polarizer is at θ1 and Bob’s polarizer is at θ3.

Thus, Bell’s inequality is a statement about the correlations between probabilities
(and hence frequencies of outcomes) of various polarization results when we per-
form such an experiment that depends upon the orientations of the three polarization
detectors. The inequality is derived on the assumption that if Alice and Bob are suf-
ficiently well separated so that no signal, not even one traveling at the speed of light,
could propagate between Alice and Bob within the time-frame of the experiment,
then nothing that Alice does can affect Bob and vice versa.

492 12 Quantum Teleportation

Fig. 12.2 Graphical illustration of Bell’s Inequality

Upon expanding out the definitions of these probabilities explicitly, Bell’s in-
equality (12.20) becomes:

1

2
sin2(θ2 − θ1)+ 1

2
sin2(θ3 − θ2)≥ 1

2
sin2(θ3 − θ1) (12.21)

If reality is “local”, Bell’s inequality should always hold regardless of the angles at
which we set the polarization detectors. In this case the left hand side ought always
to be greater than or equal to the right hand side. However, if we fix (say) θ1 = 0°
and plot the difference between the left and right hand sides of Bell’s inequality, we
obtain the surface shown in Fig. 12.2. If Bell’s inequality holds, this surface ought
to touching or above the (θ2, θ3)-plane at height 0, but never below it. However, by
introducing a plane that cuts the surface at height 0, and then rotating the surface so
we can view it from below, we see that indeed there are portions of the surface that
are below zero. This means that quantum mechanical reasoning implies that there
are values at which the polarizer orientations can be set that will cause a violation of
Bell’s inequality! So which theory is right—classical reasoning based on pure logic
and the (reasonable-sounding) assumption of locality, or quantum mechanics?

12.3 Experimental Tests of Bell’s Inequality

Although John Bell derived his inequality in 1964 it was not until 1972 that anyone
attempted to check it experimentally [188]. Part of the delay was due to the inability
to build perfect polarization detectors and to coordinate sufficiently closely-timed
measurements that no speed of light information could make it from one photon to
the other within the duration of pair of measurements. In addition, there was very
little interest in “reality” research at the time.

12.3 Experimental Tests of Bell’s Inequality 493

Fig. 12.3 Graphical illustration of violations of Bell’s Inequality. In this figure the vertical axis is
the function

John Clauser, a young researcher at Columbia University was different. Clauser
took the reality question seriously. To him, and a growing number of physicists
since, it really does matter what is going on behind the mathematical veneer of quan-
tum mechanics. Calculational adequacy alone doesn’t cut it. Most physicists became
physicists precisely because they wanted to understand how the Universe worked.
Comprehension, rather than calculation, was their overriding motivation. However,
a physicist’s training discourages philosophical musings in favor of prowess in cal-
culation. This is partly cultural as the eminent Austrian physicist Anton Zeilinger
has observed:

“[. . .] there was and still is a tradition in Europe of philosophical thinking among physicists.
I saw that in 1977 when I went to America for the first time. Already after a couple of weeks
I started to miss philosophical discussion. Here we’re more ready to ask really fundamental
questions. In Europe it’s important to question things. In America it’s important to be able
to build something. I don’t mean that at all negatively.”
– Anton Zeilinger3

The results of Clauser’s experiment [188], and even more convincing versions
performed later by Alain Aspect, Philippe Grangier, Gérard Roger, and Jean Dal-
ibard [22–24] confirmed the result shown in Fig. 12.3. When one does the experi-
ment one finds that there are indeed certain settings of the angles of the polarizers
at which Bell’s Inequality is violated. Thus the inequality is wrong. This means that
there must be a mistake in the reasoning under which the inequality was derived.
However, the only assumption that was used was the assumption of locality, i.e.,
events in spacelike separated regions ought not to be able to influence one another.
Hence, the assumption of locality must be wrong.

Thus the Clauser and Aspect experiments provide strong experimental evidence
that reality is non-local. In fact, rather than non-local influences being rare and es-

3Source: [561].

494 12 Quantum Teleportation

oteric events, quite the contrary, every time particles interact with one another their
quantum states tend to entangle. Subsequently, when one member of the pair is
“measured” the other member behaves as if it too had been measured, and acquires
a definite quantum state also. Thus, non-local influences are not the exception they
are the rule. We don’t notice them in our macroscopic world because we never have
occasion in the everyday world to deal with spacelike separated events. But if we
could scale the quantum world up to larger proportions these exotic quantum states
should be quite evident.

Remarkably such a scaling up has been performed since the original Clauser and
Aspect experiments and the phenomenon of non-locality has been shown to persist
over much greater distances [493] and the potential so-called “locality” and “de-
tector” loopholes in the original experiment have been closed [21, 346, 426, 526].
Thus, it does indeed appear that Nature is non-local and the parts of an entangled
system can display correlations that are much stronger than can be accounted for by
assuming they always had some definite values from the outset, i.e., were classically
correlated.

12.3.1 Speed of Non-local Influences

Strictly speaking the experimental tests proving violations of Bell’s inequality only
prove that no influence traveling the speed of light (or less) could be responsible
for enforcing the observed non-local correlations. However, a philosophical possi-
bility (if not a physical possibility), is the possibility that something (let us call it a
“non-local influence”) could be traveling faster than the speed of light between the
spacelike separated polarization measurements, and these explain how one part of a
system can affect the other. How can we test that? Can we place a lower bound on
the speed of propagation of such hypothetical influences (assuming they exist)?

Any hypothetical non-local influence has its speed defined in some preferred
frame of reference, which is different from the local latitude/longitude frame of the
rotating Earth. Thus an experiment that appears fixed with respect to the Earth’s
surface (i.e., in a latitude/longitude frame) would not be in a fixed orientation with
respect to this hypothetical preferred frame. As the Earth rotated during the course
of a day the two frames could not possibly be aligned at all times. When the Earth
frame was not aligned with the preferred frame, then events that would be simulta-
neous in the preferred frame would not be simultaneous in the Earth frame. Thus,
if a Bell inequality would be violated at simultaneous polarization measurement
events in the preferred frame it would not be violated in the Earth frame too as those
polarization measurement events would not be simultaneous in the Earth frame, and
so the visibility of the interference fringes (in the Earth frame) should disappear.

In 2008, in an experimental tour de force, Swiss physicists Daniel Salart, Au-
gustin Bass, Cyril Branciard, Nicolas Gisin and Hugo Zbinden performed such an
extended two photon interface experiment over a 24 hour period between two vil-
lages in Switzerland that were oriented along a roughly east-west route, as shown

12.3 Experimental Tests of Bell’s Inequality 495

Fig. 12.4 Experiment to place a lower bound on the speed of quantum information. Pairs of cor-
related photons were created in Geneva. One member of each pair was sent to the Satigny and
the other to Jussy—a pair of villages aligned in an East-West direction—over fiber-optic links of
exactly equal length. Tests of Bell’s inequality violations were performed continuously over a 24
hours period as the whole experiment rotated with the Earth with respect to a hypothetical refer-
ence frame in Space. The observation of persistent Bell inequality violations regardless of the time
of day confirms both that “standard” result that the quantum correlations are greater than any clas-
sical correlation could be (and so the correlations cannot be accounted for as merely arising from a
common cause) but, more importantly, that if there is any nonlocal influence passing between the
two receiving stations then, given the timing resolution of the experimental equipment, its speed
must be greater than ten thousand times the speed of light. However, quantum mechanics does
not predict such nonlocal influences propagate between the receivers (because nonlocal effects are
unmediated), and this experiment does nothing to confirm that they exist. Rather the experiment
proves that if such nonlocal influences to travel between the receivers they would have to travel
much faster than light, if not instantaneously

in Fig. 12.4. The east-west alignment meant that as the Earth rotated the experiment
essentially scanned through all possible orientations for the hypothetical preferred
reference frame within a 24 hour period. If there is a preferred frame, then it should
be revealed by seeing (in the rotating Earth frame) periodic times when Bell’s in-
equality is violated and times when it is not violated over any continuous 24 hour
period.

However, when Salart et al. performed their experiment two-photon interference
fringes were observed throughout the full 24 hour period with a visibility at all
times far exceeding the threshold set by Bell’s inequality. This implies that there is
no preferred frame for non-local effects.

Moreover, assuming non-local influences propagated at all (which is neither pre-
dicted by quantum mechanics nor implied by the Salart et al. experiment) then the
experimental results showed that their speed must be at least ten-thousand times
the speed of light! So 10,000 c can be regarded as a lower bound for the speed of
propagation of these hypothetical non-local influences.

Last but not least, the Salart et al. experiment provided yet another confirmation
violations of a Bell inequality—and hence non-local effects—over a distance of
approximately 18 km.

496 12 Quantum Teleportation

Given the apparent reality of long distance entanglement, and non-local effects,
can we put these phenomena to use? In the next section we show that the answer is
a resounding YES!

12.4 Quantum Teleportation Protocol

The basic idea is that Alice wishes to send Bob a qubit that is in a state unknown
to her, but she does not want to transmit it through the medium between herself and
Bob. If Alice and Bob had met face to face previously and had each retained one
member of an entangled pair of particles, Alice can accomplish her desired state
transfer by the process of quantum teleportation.

Thus quantum teleportation depends crucially on Alice and Bob each having pos-
session of one end of an entangled pair of particles. Such shared prior entanglement
could take many forms. For example, Alice and Bob might each be in possession of
any of the following maximally entangled Bell pairs:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(12.22)

These states can be summarized in a single equation as:

|βxy〉 = 1√
2
(|0, y〉 + (−1)x |1,1− y〉) (12.23)

Such a state can be synthesized using a quantum circuit such as that shown in
Fig. 12.5. To obtain different Bell states, one need only input different combinations
of computational basis states, |x〉|y〉, in order to obtain |βxy〉.

Let us suppose that Alice and Bob each possess one particle from the Bell state
pair |β11〉 = 1√

2
(|01〉 − |10〉). This state is known as a “singlet” state and has a net

spin of zero.4 It is an especially interesting Bell state because it retains the same
basic form under any unitary transformation.

The qubit Alice wishes to teleport to Bob may be assumed to be in state
|ψ〉1 = a|0〉1 + b|1〉1 such that |a|2 + |b|2 = 1, but we assume Alice is ignorant
of the values of a and b. Hence, we can say |ψ〉1 is “unknown” to Alice. This pre-

4The “singlet” name refers to the fact that the quantum number MS can only take on a single value
MS = 0 when the net spin is S = 0 as it is for |β11〉. Contrast this with the Bell state |β01〉 =

1√
2
(|01〉 + |10〉), which is known as a triplet state because the quantum number MS can take on

three values, namely, MS =−1,0,+1, when the net spin is S = 1 as it is for |β01〉.

12.4 Quantum Teleportation Protocol 497

Fig. 12.5 Quantum circuit for synthesizing each of the four Bell states starting from different
combinations of computational basis states

Fig. 12.6 Quantum circuit for teleporting an unknown quantum state from Alice to Bob.
The protocol begins with Alice creating an entangled pair of particles in the Bell state
|β00〉 = 1√

2
(|00〉 + |11〉). She retains one of these qubits and sends the other to Bob. Next Al-

ice performs a Bell basis measurement between the qubit she wishes to teleport and the particle
she retained which is entangled with a particle in Bob’s possession. After the measurement Alice
obtains two classical bit values that she passes to Bob. Upon receipt Bob performs a rotation of the
particle he obtained from Alice conditional on the values of the two bits he received from Alice.
This conditional rotation transforms Bob’s particle into an exact replica of the state Alice wished to
teleport. In the process Alice’s state has been destroyed locally due to the Bell basis measurement
Alice made. Hence, Bob obtains the state that was originally in Alice’s possession without that
state traveling through the intervening space between Alice and Bob

vents Alice from measuring the state to confirm its identity, and if she attempts to
measure the state without choosing the right basis, her attempt will perturb the state
dramatically.

So instead, Alice transmits the quantum information defining the unknown state
to Bob using the non-local correlations established by the shared Bell state, and
two bits of classical communication. The scheme, which is illustrated in Fig. 12.6,
works as follows: Initially Alice possesses the state |ψ〉1 = a|0〉1 + b|1〉1 and Alice
and Bob each hold one particle from a singlet state |β11〉 = 1√

2
(|01〉23 − |10〉23).

Here we have used subscripts to keep track of which particles we are discussing.
Thus there are three particles in all, labeled 1, 2, and 3. Initially, as particle 1 is not

498 12 Quantum Teleportation

Table 12.1 Alice’s measured states and Bob’s corresponding corrective actions. N.B. the 1-qubit
gates 1, X, and Z are all Pauli operators

Alice’s state Alice’s measurement Bob’s state Corrective action Operators

|β00〉12 00 a|1〉 − b|0〉 (0 1

−1 0

)
Z.X

|β01〉12 01 a|0〉 − b|1〉 (1 0

0 −1

)
Z

|β10〉12 10 a|1〉 + b|0〉 (0 1

1 0

)
X

|β11〉12 11 a|0〉 + b|1〉 (1 0

0 1

)
1

entangled with particles 2 and 3, the 3-qubit input state, |Ψinit〉, is:

|Ψinit〉 = |ψ〉1 ⊗ |β11〉23

= (a|0〉1 + b|1〉1)⊗ 1√
2
(|01〉23 − |10〉23)

= a√
2
|001〉123 − a√

2
|010〉123 + b√

2
|101〉123 − b√

2
|110〉123 (12.24)

Without applying any further physical operation, this state can simply be re-written
as:

|Ψinit〉123 = 1

2
[|β11〉12(a|0〉3 + b|1〉3)+ |β01〉12(a|0〉3 − b|1〉3)
+ |β10〉12(a|1〉3 + b|0〉3)+ |β00〉12(a|1〉3 − b|0〉3)] (12.25)

Thus if Alice measures particles 1 and 2 in the Bell basis (for which the four states
{|β00〉12, |β01〉12, |β10〉12, |β1〉12} are all orthogonal to one another) the state of par-
ticle 3 will be projected into a state that bears a simple relationship to the (unknown)
quantum state being teleported, i.e., |ψ〉 = a|0〉 + b|1〉.

Specifically, if Alice finds particles 1 and 2 to be in the Bell state |β11〉12, particle
3 will then be in state a|0〉3+b|1〉3. Likewise, if Alice finds particles 1 and 2 to be in
state |β01〉12, particle 3 will then be in state a|0〉3−b|1〉3 etc. If Alice communicates
the results of her Bell basis measurements to Bob, Bob will then be able to determine
what operation to apply to his qubit in order to place it in the (unknown) state |ψ〉.
Table 12.1 lists the operations Bob must perform on his qubit depending on the joint
state Alice determines particles 1 and 2 to be in.

The aforementioned steps are summarized is the quantum teleportation protocol:

Quantum Teleportation Protocol

1. Alice wishes to teleport to Bob a single qubit in a pure quantum state, |ψ〉1 =
a|0〉1 + b|1〉1, which is unknown to her.

2. To do so, Alice creates an entangled pair of particles shared between herself and
Bob by feeding the state |00〉23 into the quantum circuit shown in Fig. 12.5. The
net state in Alice’s possession is then |ψ〉1|β00〉23

12.4 Quantum Teleportation Protocol 499

3. Next Alice performs a “Bell basis measurement” on qubits 1 and 2. This is equiv-
alent to applying a CNOT and Hadamard gate to qubits 1 and 2 and then mea-
suring their values in the computational basis to obtain, in output, two classical
bits.

4. Alice then transmits these classical bits to Bob using any classical channel of he
choosing.

5. Upon receipt, Bob uses the two classical bit values to determine which one of
four possible actions he is to perform on the qubit he already received from
Alice. The four possible actions are 00→ no action, 01→ apply an X rotation,
10→ apply a Z rotation, or 11→ apply an Z ·X rotation.

12.4.1 Teleportation Does Not Imply Superluminal
Communication

It is important to realize that quantum teleportation does not imply superluminal
communications. This is perhaps best understood by redrawing the teleportation
decoding circuit as in Fig. 12.7 to expose its reliance on classical bit values.
The teleportation protocol requires two bits of classical information to be sent from
Alice to Bob and these bits cannot be transmitted faster than the speed of light.
Moreover, non-local effects between entangled pairs of particles cannot be used for
super-luminal communications either, because although the non-local influence is
conveyed instantaneously (or at least at speeds in excess of 10,000 c—in accordance
with Sect. 12.3.1) such links cannot be used for communicating an information
bearing message. Instead they can only communicate random bits.

Thus, quantum teleportation is a sound physical procedure and does not violate
any known law of physics.

Fig. 12.7 Quantum circuit for teleporting an unknown quantum state from Alice to Bob. This
circuit is functionally equivalent to that shown in Fig. 12.6 but emphasizes the fact that the tele-
portation decoding procedure relies on classical bit values, a and b, to control a pair of quantum
gates, which collectively implement the operation Za ·Xb (X first then Z)

500 12 Quantum Teleportation

12.5 Working Prototypes

In the late 1990’s several working prototypes of quantum teleportation devices were
demonstrated. One was built by Dirk Bouwmeester, J.-W. Pan, K. Mattle, Anton
Zeilinger, M. Eibl, and H. Weinfurter, in Innsbruck [69] and another was built
by Francesco De Martini and collaborators D. Boschi, S. Branca, L. Hardy and
S. Popescu in Rome [66], and a third by Jeff Kimble’s team at Caltech [194]. There
is a little rivalry between the researchers as to which machine constitutes the first
genuine demonstration of quantum teleportation. But all three schemes are similar in
using bench optics components such as beam splitters, parametric down converters,
mirrors and photon detectors.

A sketch of Bouwmeester et al.’s set-up is shown in Fig. 12.8. On the left side of
Fig. 12.8, Alice sends her “message” photon M , which is prepared in a 45° polariza-
tion state, towards a beam splitter. with a specific state, 45 degrees polarization. That
is Alice intends to send the quantum state 1√

2
(|0〉+|1〉) to Bob. Simultaneously, two

entangled photons, A (shown as “Photon to Alice”) and B (shown as “Photon to
Bob”), are created and travel in opposite directions: photon A goes to Alice’s beam
splitter and photon B to Bob’s beam splitter. The timings are arranged so that one
of the entangled photons arrives at Alice’s beam splitter at just the same instant as
Alice’s message photon M . Some of the time the two photons emerge from Alice’s
beam splitter in different directions but Alice is unable to distinguish which photon
is which. As a result of this indistinguishability, Alice’s message photon becomes
entangled with photon A. Now neither M nor A has a definite polarization state
but they must be opposite since they went to different detectors when they emerged
from Alice’s beam splitter. However, photon B also had the opposite polarization
state to photon A. Therefore, photon B must acquire the same polarization state

Fig. 12.8 The Innsbruck quantum teleportation experiment

12.6 Teleporting Larger Objects 501

as photon M (the message photon). Hence teleportation is complete and Bob sees
photon B has a polarization of 45°.

It was quite a surprise that there was a physical basis for teleportation and an
even bigger surprise that the process evolved from a concept to a working prototype
in just four years. Who knows what potential this technology has over the coming
decades.

12.6 Teleporting Larger Objects

From a technological perspective quantum teleportation is much simpler than even
the most rudimentary quantum computation. In fact, in 1997 two groups reported
optical schemes in which they successfully teleported an unknown quantum state
across a laboratory bench [67, 68]. Scaling quantum teleportation up to the level of
an entire human being however, is quite unrealistic at this point. Samuel Braunstein
has estimated how much information you would need to transmit in order to perform
such a feat. Starting from the observation that the visible human project, sponsored
by the American National Institute of Health, requires about 10 Gigabytes of bits
(about 10 CD-ROMs) to hold the information needed to describe the full three-
dimensional structure of a human to a 1 mm3 resolution, Braunstein estimates that
an entire human could be described, down to the atomic level, using roughly 1032

bits. With current communication channel capacities, Braunstein estimates that it
would take about a hundred million centuries to transmit this information down a
single channel!

However, there have been some interesting advances in quantum teleportation
recently, that push it in interesting new directions. Of special note is an experiment
by Qiang Zhang, Alexander Goebel, Claudia Wagenknecht, Yu-Ao Chen, Bo Zhao,
Tao Yang, Alois Mair, Jörg Schmiedmayer, and Jain-Wei Pan, showing that it is
possible to teleport a multi-particle entangled state [563]. The experiment basically
doubled the complexity of the regular quantum teleportation circuit, requiring a 6-
photon interferometer to transfer the joint polarization state of a pair of photons in
such a manner that their entanglement was preserved under the teleportation oper-
ation. This shows that it is possible to teleport the quantum state of objects that are
more complex than single qubits. This is a step in the direction of teleporting the
state of a complete molecule.

Another key advance is an experiment by Jacob Sherson, Hanna Krauter, Rasmus
Olsson, Brian Julsgaard, Klemens Hammerer, Ignacio Cirac, and Eugene Polzik,
showing teleportation of a quantum state between light and matter, i.e., objects of
dissimilar type [454]. The significance of this is that there is currently much interest
in using photons to convey quantum information over long distances, and in using
the long-lived collective spin states of ensembles of alkalai atoms to store quan-
tum information over relatively long times. Quantum teleportation could be useful
in transferring quantum information from flying qubits into stationary qubits by
controlled light-matter interactions. If such interfaces can be perfected they could

502 12 Quantum Teleportation

enable true quantum repeaters that would greatly extend the range of quantum com-
munications in fiber optic cables [83].

Finally, it is worth mentioning, insofar as demonstrations of quantum telepor-
tation rely upon quantum interferometry, that there have been many exciting de-
velopments on demonstrating quantum interference using objects as complex as
fullerenes, i.e., molecules consisting of a cage of 60 carbon atoms [18, 224]. These
experiments are quite remarkable given the relative complexity of the molecules and
consist of multi-level quantum systems.

12.7 Summary

This chapter has examined the physical basis for true teleportation—the transmis-
sion of a quantum state from A to B without it having to pass through the interven-
ing medium. In the process the quantum state is necessarily destroyed at the source
location and is re-incarnated at the receiving station. The scheme requires shared
prior entanglement between the source and receiver, and a classical communications
channel over which to pass the two bit result obtained by making a complete Bell
basis measurement. For the latter reason, quantum teleportation cannot be achieved
super-luminally as the transmission of the classical message through the medium is
limited to traveling at the speed of light.

Notice that quantum teleportation teleports the quantum state of an object, not
the object itself. This is slightly different from the usual science fiction view of tele-
porting an object. Consequently, we cannot use this scheme to teleport an electron
in its entirety from one place to another. Rather, we can teleport the spin state of one
electron at a particular location to another electron at a different location (or indeed
a different kind of particle entirely). The net effect, however, is similar: A particle
in a specific state at the source location has its state destroyed and reincarnated on
another particle at the destination without the original particle traversing the inter-
vening distance.

We emphasize that the non-local effects that underpin quantum teleportation can-
not be used to transmit a content bearing message super-luminally either. At best
they would be limited to transmitting random bits. Quantum mechanics neither re-
quires nor predicts these non-local influences propagate through the medium be-
tween A and B . However, a Swiss team showed recently established experimentally
that if they did so propagate (which is not proven and is frankly unlikely) then they
would have to travel in excess of ten thousand times the speed of light. The quan-
tum mechanical prediction that non-local effects should exist between the parts of
a spacelike-separated entangled quantum system regardless of the distance between
them, the nature of the intervening medium, and without the need for the media-
tion of any influence of any kind, was established experimentally by Freedman and
Clauser [188] and Aspect, Grangier and Roger in [22, 24], and substantiated with
much improved experiments later [346, 426, 493, 526]. These results show the quan-
tum mechanical predictions are correct and contrary to the expectations of Einstein,
Podolsky and Rosen: reality is, as far as we can tell, non-local.

12.8 Exercises 503

Thus, quantum teleportation is a physically sound protocol, has been demon-
strated many times experimentally, and researchers are inching forward to more
teleporting more complex entities. The protocol has been demonstrated in photonic
systems, atomic systems and even between the two. However, a teleportation ma-
chine of the complexity envisioned by science fiction writers is utterly impossible
given current know-how. But that does not mean teleportation is not useful. Indeed it
could prove to be key to making practical quantum repeaters, and has been proposed
as a primitive operation for quantum computation. More on that in Chap. 15.

12.8 Exercises

12.1 Consider two observables represented by Hermitian matrices, A and B . Prove
that their commutator [A,B] =A ·B −B ·A is anti-Hermitian, and that their anti-
commutator, {A,B} = A · B + B · A, is Hermitian. A matrix, M , is Hermitian iff
M =M† and anti-Hermitian iff M =−M†.

12.2 Consider the two Bell states 1√
2
(|00〉 + |11〉) and 1√

2
(|01〉 − |10〉). Transform

each of these states to a new basis. What is the form of each of these states in the U

basis? Do you notice any difference?

12.3 Recall the definition of the Bell basis states, |β00〉, |β01〉, |β10〉, and |β11〉 de-
fined by:

|βxy〉 = 1√
2
(|0, y〉 + (−1)x |1,1− y〉)

and consider an arbitrary single qubit pure state defined by:

|ψ〉 = α|0〉 +
√

1− |α|2|1〉
such that |α| ≤ 1.

(a) Write down a state, |ψ⊥〉, which is orthonormal to |ψ〉, i.e., a state for which
〈ψ⊥|ψ〉 = 0.

(b) If α is purely real with −1 ≤ α ≤ 1, but otherwise arbitrary, prove that
1√
2
(|ψψ〉 + |ψ⊥ψ⊥〉)= |β00〉.

(c) If α is complex with |α| ≤ 1, but otherwise arbitrary, prove that 1√
2
(|ψ⊥ψ〉 −

|ψψ⊥〉)= |β11〉.

12.4 In this chapter, we developed the quantum teleportation protocol using a
source of entangled pairs of particles with each pair in the state 1√

2
(|01〉 + |10〉).

But this form of entanglement is not essential. Modify the quantum teleportation
scheme to use a source of entanglement that produces pairs of particles each in the
state 1√

2
(|00〉 + |11〉).

504 12 Quantum Teleportation

12.5 The states |GHZ〉 = 1√
2
(|000〉+ |111〉) and |W 〉 = 1√

2
(|001〉+ |010〉+ |100〉)

are fundamentally inequivalent types of entangled states.

(a) Can you devise a quantum teleportation scheme that uses |GHZ〉 as the source
of entanglement?

(b) Can you devise a quantum teleportation scheme that uses |W 〉 as the source of
entanglement?

12.6 In many quantum information processing tasks it is useful to “measure
a state in the Bell basis”, i.e., a basis consisting of 2-qubit entangled states,
{|β00〉, |β01〉, |β10〉, |β11〉}. However, we often find the state represented, initially,
in the computational basis. Thus, it is worthwhile knowing how to switch from the
computational basis to the Bell basis. Practice this by rewriting the following states
in the Bell-basis:

(a) An entangled state: 1√
2
(|00〉 + i|11〉)

(b) An unentangled state: 1√
2
(|01〉 + |11〉)

(c) A state whose entanglement is unknown a|00〉 + b|01〉 + c|10〉 + d|11〉

12.7 In many quantum information processing tasks it is useful to perform oper-
ations on a state represented in the Bell-basis, i.e., a basis consisting of 2-qubit
entangled states, {|β00〉, |β01〉, |β10〉, |β11〉}. However, we often find the operator is
given, initially, in the computational basis. Thus, it is worthwhile knowing how to
map gate specified in the computational basis into the equivalent gate in the Bell
basis. Practice this by rewriting the following states in the Bell-basis:

(a) CNOT
(b) SWAP
(c) iSWAP
(d) Berkeley B

12.8 Suppose Alice and Bob are a pair of Space-faring astronauts who desire to
stay in touch with one another over long spaceflights in opposite directions deep
into the cosmos. Realizing that speed of light signal delays will pose a challenge
they take a crash course in quantum information theory in the hopes of devising
a way to use entanglement to overcome speed-of-light signal delays, and thereby
keep in contact. Based on their limited understanding of quantum information the-
ory, Alice and Bob believe that the following communication protocol will allow
them to communicate superluminally over arbitrarily great distances! They suppose
they each start out with an inexhaustible supply of marching EPR particles each in
the state 1√

2
(|00〉 + |11〉). Before leaving Alice, and Bob agreed on an order and

timing pattern in which to measure their respective EPR particles. Alice promises
to measure an EPR particle in her possession (let’s call it her “message ebit”) on
the stroke of each minute. If the answer she obtains is the bit she wishes to send to
Bob, Alice subsequently measures the next 29 ebits (her “check” bits) in the agreed

12.8 Exercises 505

upon order on every even numbered second (2,4,6, . . . ,58) making 29 additional
measurements in all.

Likewise, Bob promises to measure the EPR particle matching Alice’s “message
ebit” at precisely one second after the start of each minute. In addition, Bob promises
to apply a Walsh-Hadamard gate, H , to each of the next 29 ebits in the agreed
upon order and then to measure their bit values on every odd numbered second
(3,5,7, . . . ,59) making 29 additional measurements in all.

Alice and Bob believe that this scheme will allow them to communicate one mes-
sage bit per minute over arbitrarily great distances by reasoning as follows: Each of
their EPR pairs begins in the state 1√

2
(|00〉 + |11〉). When Alice makes her mea-

surement and obtains a 0 or a 1, Bob’s matching EPR particle acquires the same
bit value instantaneously and so reveals the bit Alice obtained. However, Bob does
not know whether this was the bit Alice intended to send or just a random bit. To
communicate a real message Alice must do something to allow Bob to tell whether
the “message ebit” he measured at one second after the start of the minute is the
bit Alice intended to send. This is the reason for the subsequent 29 measurements.
Before Bob makes his measurements, and if Alice has not measured, each of Bob’s
particles are equally likely to be measured as “0” or “1”, and hence will be in the
state 1√

2
(|0〉 + |1〉). But after applying the Walsh-Hadamard transform, Bob’s par-

ticle is rotated into the state |0〉. Hence, when Bob makes his measurements on the
remaining 29 particles he will always obtain a “0” if Alice has not measured her
corresponding EPR particles. However, Bob will only obtain a “0” 50% of the time
if Alice has measured her 29 “check” particles. Hence, by observing the number of
“0” ’s he obtains, Bob can determine (with probability 1− 1

229) whether or not Alice
measured her 29 “check” particles. Hence, Bob learns whether the “message ebit”
he measured (at one second after the start of the minute) is or is not the bit Alice in-
tended to send. As this scheme requires no classical communication Alice and Bob
can be arbitrarily far apart and be able to communicate classical information at the
rate of one bit per minute!

Alas, the aforementioned scheme contains a crucial flaw. Your job is to find the
flaw and explain why it prohibits superluminal communication of classical informa-
tion. The following facts about Walsh=Hadamard gates may be helpful:

H =
(1√

2
1√
2

1√
2

− 1√
2

)

H |0〉 = 1√
2
(|0〉 + |1〉) (12.26)

H |1〉 = 1√
2
(|0〉 − |1〉)

Chapter 13
Quantum Cryptography

“In Nature’s infinite book of secrecy A little can I read”
– William Shakespeare

Over the past two decades society has become more and more reliant on net-
work communications. Today, most important electronic communications are en-
crypted using public-key cryptosystems, such as the RSA cryptosystem (whose se-
curity rests on the intractability of factoring composite integers) [419] and elliptic
curve cryptosystems (whose security rests on the intractability of computing dis-
crete logarithms) [425]. However, as we saw in Chap. 6, such cryptosystems can
both be broken classically in exponential time using networks of computers [527],
or quantumly in polynomial time using a single quantum computer capable of run-
ning Shor’s algorithm [455, 458]. Hence messages transmitted using the existing
public-key infrastructure are potentially vulnerable to attack in one way or another.

At present a quantum attack might not seem like a serious risk because the dif-
ficulty of building a quantum computer of sufficient complexity to run Shor’s algo-
rithm is so challenging that no-one is likely to create one any time soon. However,
basing the security of ones’ confidential communications on the presumed technical
prowess of an adversary is notoriously risky, especially when there are ideas float-
ing around, such as topological quantum computing, that may lower the barrier on
building practical quantum computers from imperfect components [27].

Worse still, if today’s encrypted traffic were intercepted, copied, and stored by an
adversary they could potentially break such encrypted communications at a future
date when classical algorithms or technology has progressed far enough to deliver
the required CPU cycles within a reasonable time. If the encrypted communications
only have transient value, then perhaps this is unimportant. But certain communi-
cations, e.g., medical records or diplomatic communiqués, might need to be kept
confidential for several decades. It is questionable whether one can choose a key
today sufficient to guarantee a message encrypted with it will remain secure for
decades to come, invulnerable to all advances in code-breaking over the intervening
time-period.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_13, © Springer-Verlag London Limited 2011

507

http://dx.doi.org/10.1007/978-1-84628-887-6_13

508 13 Quantum Cryptography

Fortunately, just as quantum mechanics can take away security via Shor’s algo-
rithm so too can it restore it via a technology known as “quantum cryptography”.

Quantum cryptography provides a new foundation for an unconditionally secure
global communications infrastructure, i.e., one whose security does not rely on any
assumed limitations concerning the mathematical sophistication, algorithmic inge-
nuity, or computational resources available to an adversary. Instead, its security rests
upon quantum mechanical phenomena, such as the inevitability of changing a quan-
tum state if it is measured in the “wrong” basis, and the impossibility of copying (or
cloning) an unknown quantum state.

In this chapter we will look at why we might need a more secure communications
infrastructure, describe how quantum cryptography satisfies this need, and look at
other quantum cryptographic protocols besides key exchange.

13.1 Need for Stronger Cryptography

Electronic communications in the form of telephone calls, text messages, emails,
faxes, baking transactions, and database transactions etc, have become so ubiqui-
tous that is hard to imagine living without them. However, as the communications
technology has matured so too has the ability of unintended recipients to tap into
those channels and listen in for information of value to them. In the past such in-
tercepts were limited to criminal or blackmail activity, or narrowly focussed lawful
interception of specific channels under court order and proper oversight. But as au-
tomated data mining technology has advanced, and as anxiety over issues such as
global terrorism have grown, widespread trawling of communications has emerged.
This raises serious questions for free societies that need to balance the legitimate
needs of intelligence and law enforcement agencies with the privacy rights of their
citizens. At a higher level, governments are also concerned that such practices could
undermine not only their security but also their commercial interests. Are such con-
cerns really justified or is the reality quite different?

13.1.1 Satellite Communications Can Be Tapped

There is ample evidence that sensitive communications are being intercepted and
analyzed. For example, in 2001 the European Parliament issued a report “On the
Existence of a Global System for the Interception of Private and Commercial Com-
munications (ECHELON Interception System)” [436]. In this report, the European
Parliament alleges that there is a global surveillance system called “ECHELON” op-
erated cooperatively between Australia, Canada, New Zealand, the United Kingdom
and the United States (known collectively as the “UKUSA” alliance), which grew
out of intelligence collaborations that started during the Second World War. The
geographic distribution of the partners across the globe makes it especially easy
to intercept satellite transmissions as there is at least one partner country within

13.1 Need for Stronger Cryptography 509

the footprint of every transmitting satellite, and these satellite transmissions can
be monitored without disclosing such monitoring is occurring. However, it appears
likely the ECHELON has a far greater reach than this, extending at least to cell
phone intercepts.

The main thrust of the European concern appears to be in ensuring compliance
with E.U. law, protecting the privacy rights of European citizens, and ensuring that
the surveillance system is not being used to conduct industrial espionage to glean
intelligence that might be passed to companies in ECHELON member countries to
give them an unfair economic advantage when negotiating contracts and deals. The
European Parliament report concluded (p. 82, [436]) that:

“To sum up, it can therefore be said that the current legal position is that in principle
an ECHELON type intelligence system is not in breach of Union law because it does not
concern the aspects of Union law that would be required for there to be incompatibility.
However, this applies only where the system is actually used exclusively for the purposes
of state security in the broad sense. On the other hand, were it to be used for other pur-
poses and for industrial espionage directed against foreign firms, this would constitute an
infringement of EC law. Were a Member State to be involved in such action, it would be in
breach of Community law.”

To emphasize its concern over industrial espionage, the European Parliament re-
port cited several examples of alleged intercepts and their subsequent leaking to
either U.K., U.S., or European companies. In one case, the report claims that the
details of a European invention for a new wind turbine were intercepted using ECH-
ELON and passed to a U.S. competitor who filed a U.S. patent before the European
inventor could do so, causing the European company to abandon its plans to en-
ter the U.S. market ([436] p. 104). In another case, the European Parliament report
claims ECHELON intercepts uncovered evidence for bribery in contract negotia-
tions between a Saudi Arabian customer and a European aircraft company [155,
436] p.103. The report alleges that a U.S. aircraft company also bidding on the con-
tract was informed of the evidence for bribery and ultimately won the contract.

A similar pattern of ECHELON uncovering evidence for bribery and passing it to
a U.S. company also competing on the contract was alleged to have been repeated
in a third case involving a $1.4B contract for monitoring the Brazilian rainforest.
A European company and a U.S. company were both bidding on the contract. The
European Parliament report alleges that ECHELON uncovered evidence for bribery
and passed this to the U.S. company, who ultimately won the contract [436] p. 106.

The potential use of ECHELON as a way to level the playing field in the face of
corruption is alluded to, but explicitly denied, in remarks made at a press conference
given by James Woolsey, the former director of the CIA:

“James Woolsey, the former director of the CIA, said at a press conference [546] he gave
at the request of U.S. State Department, that the USA did conduct espionage operations in
continental Europe. However, 95% of ‘economic intelligence’ was obtained by evaluating
publicly accessible information sources, and only 5% came from stolen secrets. Espionage
was used to secure economic intelligence from other countries where compliance with sanc-
tions and dual-use goods were concerned, and in order to combat bribery in connection with
the award of contracts. Such information is not, however, passed to U.S. companies.”

Such allegations of industrial espionage are not confined to one direction, how-
ever. In the same EU report cases are cited alleging improper access to a U.S. car

510 13 Quantum Cryptography

company’s documents by a European rival [436] p. 105, and the discovery of micro-
phones in the First Class cabin of a European airline to eavesdrop on the conversa-
tions of business travelers [436] p. 103.

In cases where illegal intercepts are used to expose corruption in contract negoti-
ations, and (as the EU report alleges but others deny) the information is passed along
to commercial competitors [156], it is difficult for either side to assume the moral
high ground. However, intercepts are not confined to economic espionage. In 2003
bugging devices were found on the telephone system of the Justus Lipsius building
of the European Union (EU). The tapping incident coincided with heated internal
debate regarding the strategy the EU should pursue with respect to Iraq [174].

In the face of such incidents, the European sensitivity to the potential competitive
disadvantage posed by widespread eavesdropping and intelligence gathering, as well
as strategic technology development and scientific pursuit, led the European Union
to create a quantum cryptography program called “SECOQC” in 2004 [245]. This
program invested 11.4 million euros in developing quantum cryptographic technolo-
gies capable of circumventing espionage attempts by systems such as ECHELON
[534], by developing protocols for routing, storing, and managing keys within a
large mesh network. A prototype version of the system was demonstrated success-
fully in Vienna in 2008 [246].

13.1.2 Fiber-Optic Communications Can Be Tapped

Most people are already aware that their key strokes and communications are vul-
nerable to interception when they connect their laptops to wireless networks in com-
mon areas such as airports and coffee shops. Such wireless connections have to be
set up carefully to ensure such communications are kept private. However, currently,
about 99% of the world’s long-distance telephone and data traffic is conveyed over
fiber-optic cables [347], and we tend to ascribe far greater security to these wired
fiber-optic connections. Is such complacency justified? Perhaps not.

The explosion in demand for network traffic that accompanied the growth of the
of the internet during the 1990’s drove the communications industry to deploy high
capacity fiber-optic cables worldwide. The reason is simple: one fiber-optic cable
can handle about 128 times as much traffic as a single satellite transponder. Whereas
pre-Internet, most international telecommunications traffic was running over satel-
lite links (and could therefore be intercepted without detection by an ECHELON-
like system), nowadays most telecommunications traffic is running over fiber-optic
networks, which must be tapped directly in order to intercept traffic on them, and
potentially reveal the intrusion attempt in the process.

However, in April 2003, Computerworld reported that:

“Fiber-optic cables use light to transmit information and can be easily intercepted, inter-
preted and manipulated with standard off-the-shelf equipment that can be obtained legally
throughout the world. More important, the vast majority of private and public fiber networks
don’t incorporate methods for detecting optical taps, offering an intruder a relatively safe
way to conduct corporate espionage. Commercial intrusion-detection systems and other

13.1 Need for Stronger Cryptography 511

IT security systems operate at the data layer and offer no way to identify the existence of
physical taps.”
Computerworld – April 8th 2003 [516], p. 2

Such concerns were borne out in 2003 when it was discovered that an eavesdropping
device had been installed illegally on one of Verizon’s fiber optic networks [175].
It is believed that the device was intended to learn about a forthcoming quarterly
statement from a mutual fund company prior to it being announced publicly [443]
p. 8.

“Tapping a fiber-optic cable without being detected, and making sense of the information
you collect, isn’t trivial but has certainly been done by intelligence agencies for the past
seven or eight years,” said John Pescatore, an analyst at Stamford, Connecticut-based Gart-
ner Inc. and a former National Security Agency analyst. “These days, it is within the range
of a well-funded attacker, probably even a really curious college physics major with access
to a fiber-optics lab and lots of time on his hands.”
Computerworld – April 8th 2003 [516], p. 1

It is surprisingly easy to tap an optical fiber. In part this is because fiber optic
networks are designed to tolerate a certain amount of noise and anomalies in order
to ensure the network is robust and reliable. The downside of this is that it makes it
easier for an intruder to tap the fiber optic without detection. Commercially available
systems for tapping fibers generate less than 3 dB insertion loss and cost less than
$1000. “Professional” grade espionage systems are reported to have insertion losses
of less than 0.5 dB [492]. The simplest method is to gain access to the fiber and
attach a “clip on coupler” that introduces a bend in the fiber sufficient to allow
some, but not all, of the light to leak out. One can then monitor the leaking light
using a photodetector and packet sniffer to extract the packets of interest and stitch
them together to extract the sought after information.

“In theory, it’s easy to find out what’s being transmitted along a fiber. “All you have to do
is put a little bit of a bend in the fiber and look at the light that comes off it.” ”
Jim Hayes, President of the Fiber Optic Association – April, 2003 [98]

Other schemes, such as splicing the fiber, are more likely to reveal the attempted
eavesdropping because the very act of splicing the fiber will cause a momentary,
but noticeable, interruption in service. Nevertheless, there are reports of splicers
having been built into some networks, thereby permitting eavesdropping very easily
and quite undetectably since there is no apparent loss in signal strength from the
inception of the fiber link.

Remarkably, it even appears possible to use specialized submarines to tap optical
fibers that are deep underwater. There is a suggestion that:

“[. . .] the U.S. has been reconfiguring the submarine USS Jimmy Carter for [fiber-optic
tapping]”
Attributed to Jeffrey T. Richelson, author of The U.S. Intelligence Community (Westview
Press, Boulder, Colo., 1999). – April, 2003 [98]

“. . . former intelligence officials confirmed that NSA technicians used a special submarine
to tap into a fiber-optic cable on the seafloor in the mid-1990s—around the same time that
fiber amplifiers began displacing electro-optic amplifiers. The sub supposedly had a special
compartment into which the cable could be hauled, enabling technicians to install the tap.”
Attributed to Wall Street Journal Online – May 2001 [443]

512 13 Quantum Cryptography

In this case one has to use sophisticated methods gain access to the optical fiber
core while avoiding short-circuiting the accompanying electrical cables that carry
the power needed to run the underwater repeater stations. This is doable but not
exactly easy:

“[. . .] in a typical cable, the fiber in question is one of a dozen hair-thin strands of glass,
which are embedded inside a laser welded, hermetically sealed, 3-mm diameter stainless
steel tube. This tube is in turn covered by a few centimeters of reinforcing steel wire and
cables carrying 10 kV of dc power, all at a depth of a couple of thousand meters. [. . .] “It’s
not impossible but it certainly pushes the definition of practical.” ”
Attributed to Jim Hayes, President of the Fiber Optic Association – April, 2003 [98]

13.1.3 Growing Regulatory Pressures for Heightened Security

Just as the tapping of satellite-based communications and fiber-optic communica-
tions are on the rise, so too is the practice of transporting highly sensitive data.
Government financial institutions may need to exchange confidential messages to
coordinate fiscal policy on a global scale; multi-national companies must share tech-
nical and economic data across national boundaries; lawyers need to brief far-away
colleagues or clients on details of cases; doctors may need to transmit patient medi-
cal records to specialists. The potential damage of improper disclosure of such data
is immense. This threat has alarmed legislators and propelled them to enact laws
requiring companies to take responsibility for ensuring the electronic transport of
technical, medical, or client data is properly protected. Such laws will no doubt
levy increasingly large penalties and fines on violators who can be shown to have
acted negligently. To reduce this exposure companies will need to move to higher
standards of security in their electronic communications.

The concern also extends to satellite communications. The 2007 “National In-
formation Assurance Policy for Space Systems used to Support National Security
Missions” [442] states that:

National Security Agency (NSA) approved cryptographies and cryptographic techniques
shall be used to protect all communications links in applicable USG-owned or controlled
space systems from exploitation, corruption, or denial consistent with mission requirements
and the projected threat over the life cycles of these space systems. Information system
security architectures for applicable space systems shall be coordinated with NSA at their
inception, and periodically during their evolution.

13.1.4 Archived Encrypted Messages Retroactively Vulnerable

Clearly, in light of the foregoing reports, the physical layer of security of land-based
and underwater fiber-optic systems can no longer be assumed. We must therefore
add a layer algorithmic security to sensitive communications by encrypting confi-
dential data passing through such networks.

13.1 Need for Stronger Cryptography 513

Encryption is a mathematical procedure that maps a plaintext message into a
scrambled form that is supposed to be unintelligible any unintended recipient, but
which can be decrypted easily back to the original plaintext by its intended recipi-
ent. A pair of complementary encryption-decryption procedures forms a “cryptosys-
tem”. All such cryptosystems have to balance the need for fast encryption and de-
cryption algorithms (to make the use of the encryption appealing to users) against
need for high security (to make it worthwhile). These conflicting needs have driven
the communications industry towards using so-called “public-key” cryptosystems.

Public key cryptosystems make use of a matching pair of cryptographic keys
called a “public-key” and a “private-key”. The public key is generating by the per-
son wanting to receive a secure message and it is broadcast widely for all to see.
Complementary to this public-key, there is a corresponding private-key that is kept
secret by the person wishing to receive secure messages. Anyone can encrypt a mes-
sage using the widely known public key, but only the owner of the matching private
key can decrypt it efficiently back to its plaintext.

But just how secure are such public key systems, and can this level of security
be relied upon indefinitely? Two popular public key cryptosystems are the RSA
cryptosystem [419] and the Elliptic Curve cryptosystem [294, 353]. The encrypting
and decrypting stages of both these cryptosystems are very fast and yet they provide
an acceptable level of security for the vast majority of routine transmissions. The
ECC system was recently approved for use up to “Top Secret” level by the National
Security Agency [372].

In order to break either RSA or ECC one has to solve certain mathematical prob-
lems that are believed to be intractable using the best known algorithms running
on classical computers. Specifically, the security of the RSA public key cryptosys-
tem relies on the presumed difficulty of factoring large composite integers [419,
455]. The best known classical algorithm for factoring an integer n is the Num-
ber Field Sieve (NFS), which has a complexity of O(ec(logn)1/3(log logn)2/3

), with
1.523≤ c ≤ 1.923 [396]. This is a super-polynomial (sub-exponential) complexity,
and rapidly becomes intractable with increasing size of the integer being factored.
To remind you, Table 6.1 shows the historical scaling in the amount of net com-
puter time needed to factor ever larger composite integers. Using generalized NFS
on conventional general purpose computers, the largest composite integer to have
been factored successfully to date is RSA-200 (a 200-digit/663-bit number) equal
to:

RSA-200

= 27997833911221327870829467638722601621070446786955

. . .42853756000992932612840010760934567105295536085606

. . .18223519109513657886371059544820065767750985805576

. . .13579098734950144178863178946295187237869221823983 (13.1)

This factoring feat was reported on 9th May 2005 by F. Bahr, M. Boehm, J. Franke,
T. Kleinjung and required multiple computers equivalent to approximately 55 years

514 13 Quantum Cryptography

of CPU effort for a single 2.2 GHz Opteron processor! Using the Generalized Num-
ber Field Sieve algorithm, the factors were found to be:

p = 35324619344027701212726049781984643686711974001976

. . .25023649303468776121253679423200058547956528088349 (13.2)

and

q = 7925869954478333033347085841480059687737975857364

. . .219960734330341455767872818152135381409304740185467 (13.3)

as can be verified easily by direct multiplication.
Likewise, the security of the elliptic curve public key cryptosystem relies on

the presumed difficulty of computing elliptic curve discrete logarithms [489]. The
best known classical algorithm for computing the elliptic curve discrete loga-
rithms is the Pollard rho-method [395], which has a complexity of O(

√
πn/2) ≡

O(e
1
2 logn+ 1

2 log π
4) serially and O(

√
πn/(2r)) when parallelized on r processors

[489]. Thus, for the same key length the ECC cryptosystem provides a higher level
of security than the RSA cryptosystem.

So long as the integer factorization problem and the elliptic curve discrete loga-
rithm problem remain intractable, the RSA and ECC cryptosystems will be secure.
However, it is possible that, in the future, a better factoring algorithm or a better dis-
crete logarithm algorithm will be found. Equally, it is possible that special-purpose
hardware will be developed that can factor integers or compute discrete logarithms
much faster than expected. If the value of the confidential data exchanged is tran-
sient, then the level of security of existing public key cryptosystems may be accept-
able for routine commercial, governmental, and military communications because
these cryptosystems do not appear that vulnerable to classical algorithms and con-
ventional computers in polynomial time and space. However, if the data exchanged
needs to be kept secret for decades to come, then over such long time periods it is
conceivable that technology might progress in currently unforeseen ways and new
code breaking schemes might become possible. If so, intercepted encrypted com-
munications that cannot be broken today could become vulnerable to attack due to
new code-breaking algorithms or hardware. Given the lengths to which an eaves-
dropper must go to intercept the signal in the first place, it would be foolhardy to
assume they will not place similar efforts in acquiring the computational resources
and decryption methods needed to break the codes.

To illustrate how hard it can be to foresee how code-breaking technology might
evolve, consider the Israeli TWINKLE device [448]. TWINKLE is an ingenious,
special purpose, factoring machine. It is not a general purpose computer, but a hand-
held optoelectronic device that is extraordinarily good at factoring integers. TWIN-
KLE is the brainchild of the Weizmann Institute of Science in Israel. It can factor
large integers using the NFS about 500 to 1000 times faster than was possible on the
conventional computer hardware available at the time, namely, 100 MHz computers
[448]. TWINKLE consists of an opaque blackened cylinder 6 inches in diameter

13.2 An Unbreakable Cryptosystem: The One Time Pad 515

by 10 inches tall. At the base of the cylinder is an array of light emitting diodes
(LEDs). The TWINKLE device assigns primes to LEDs (using space) and loops
over the modular squares (using time). This makes the LEDs “twinkle” at different
frequencies. At the top of the cylinder is a photodetector that measures the net illu-
mination of the LED array. The photodetector sends an alarm to a PC to which it is
connected whenever the total illumination exceeds a pre-set threshold. This defines
a window on the possible factors of the integer being factored that is small enough
to allow the Number Field Sieve to be used on the possible cases. TWINKLE could
analyze 100,000,000 integers and determine in just 10 milliseconds which ones fac-
tor over the first 200,000 prime numbers. Moreover, the device could be replicated
for about $5000 a copy!

In 2003 TWINKLE was superceded by “TWIRL”, another hypothetical special
purpose factoring engine out of the Weizmann Institute [449, 491]. TWIRL is pur-
ported to be able to factor 1024-bit numbers in about a year of effort, and one
TWIRL device would cost a few tens of millions of dollars, an insignificant sum
in certain quarters. As 1024-bit RSA keys are still used for securing sensitive com-
munications, there is a concern that such keys may be insufficient to confer any real
security.

Thus, factoring integers using massive computational resources, coupled with
ingenious exploitation of analog physical methods, can allow codes of increasing
key size to be broken in ways that were unanticipated when the code was created.
This illustrates the potential vulnerability of public-key cryptosystems in the face
of non-obvious special purpose hardware designed exclusively for code-breaking
purposes. We need a much stronger cryptosystem whose security does not rely on
technological, algorithmic, or computational resource assumptions.

13.2 An Unbreakable Cryptosystem: The One Time Pad

Classical cryptosystems that are much stronger than the public-key variety already
exist. The “One Time Pad” (OTP), for example, invented by G.S. Vernam in 1917 in
response to a task AT&T had set him to make a cryptosystem the Germans could not
break, uses matching private keys, i.e., identical sequences of secret random num-
bers, to create an unconditionally secure classical cryptosystem. Provided the keys
are truly random, known only to the legitimate parties wishing to communicate,
and never re-used, then any messages encrypted using the OTP will be unintelli-
gible to an adversary forever no matter how computationally powerful, mathemat-
ically gifted, or algorithmically advanced they might be! In fact, the one time pad
cryptosystem is so secure it is rumored to be used for communicating diplomatic
information between Washington and Moscow (see [528] p. 126).

How is such unconditional security possible? How can a cryptographic scheme
be immune from all future advances in mathematics, computer science, and cryp-
tology regardless of what they might be? That’s an astonishing warranty! The fun-
damental reason is that, if the OTP is used properly, there is no information from
which the public key can be computed. Moreover, there is no value in even guessing

516 13 Quantum Cryptography

the key because the ciphertext can be mapped into any plaintext of the same length
given the appropriate key. So guessing the key is pointless.

Despite its high level of security the “One Time Pad” (OTP) is surprisingly sim-
ple. The two parties wishing to exchange secret messages are traditionally called
“Alice” and “Bob”. Before secure communication can take place, Alice and Bob
must agree on the “alphabet” of symbols from which their messages will be com-
posed. Typically, such an alphabet contains lower-case letters, upper-case letters,
punctuation marks, numbers, and parentheses. But any symbols are allowed. The
exact composition of the alphabet is unimportant. All that matters is that Alice and
Bob agree to use exactly the same set of symbols. For example, the following 76
symbol alphabet is sufficient for simple communications:

$Alphabet=
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 0 ! ? . , ; : () { } [] ′
(13.4)

To be able to perform cryptographic operations on symbols Alice and Bob must
also agree upon a common convention by which they associate a unique integer with
each symbol. These integers should be padded with leading zeroes so that every
integer uses the same number of digits, i.e., has the same “width”. For example,
using the 76 symbol alphabet above Alice and Bob might make the associations:

$Substitutions=
00= a 01= b 02= c 03= d . . . 23= x 24= y 25= z

26=A 27= B 28= C 29=D . . . 49=X 50= Y 51= Z

52= 1 53= 2 54= 3 55= 4 . . . 73=] 74= 75=′
(13.5)

Any plaintext message, written exclusively from the symbols in $Alphabet, can then
be mapped into an equivalent sequence of integers by substituting the appropriate
integer from the $ Substitutions for the successive symbols in the plaintext. Such a
substitution code confers little security in itself. For example, it is easy to break a
substitution code by matching the frequency distribution of the code integers to the
frequency distribution of symbols in the language in which the plaintext is written.
In the context of the OTP, the main purpose of the substitution code is to set the
stage for a numerical procedure to be applied to those integers to conceal their true
identity, and hence the true symbols, from a potential eavesdropper.

This numerical procedure combines the message integers with a set of private
cryptographic “keys”. These are “private” in the sense they are known only to Alice
and Bob, and they are “keys” in the sense that they can be used to lock (i.e., encrypt)
and unlock (i.e., decrypt) a message. They are random integers picked uniformly in
the range 0 to � − 1, where � is the number of distinct symbols in the alphabet.
Typically, these keys are printed in a booklet or “pad”, which is where the word
“pad” in the name “one-time pad” originates. Thus, an admittedly unrealistically

13.2 An Unbreakable Cryptosystem: The One Time Pad 517

small key pad containing 5 pages with 25 keys per page might be as follows:

$Pad=
37 69 40 19 17 65 34 26 62 32 29 57 31 27 56 53 36 15 52 72 07 48 48 19 41
05 75 70 18 56 15 15 09 44 41 00 72 26 31 20 37 36 23 41 19 38 63 01 68 18
30 57 26 33 36 75 52 16 01 70 48 14 42 23 15 20 28 45 34 51 55 37 06 08 66
32 73 68 22 00 70 57 00 09 24 42 26 32 45 46 47 14 35 10 59 35 24 62 66 13
54 36 71 01 28 23 26 39 04 67 23 33 07 09 38 37 10 32 05 64 73 63 32 20 68

(13.6)

Alice and Bob are now ready to start exchanging secure messages. Here are the
steps that must be taken for Alice to send a message to Bob that will be forever un-
intelligible to a potential eavesdropper no matter how mathematically sophisticated,
computationally powerful, or algorithmically advanced they might be.

One-Time Pad Cryptosystem

1. Alice converts her plaintext message into a sequence of integers, M =
MessageToIntegers(plaintext). Thus the original plaintext, consisting of
N symbols, becomes the N message integers M = {m1,m2, . . . ,mN }.

2. Next Alice chooses a page, P , of keys from her copy of the key pad that
matches the one in Bob’s possession. This provides a supply of random integers
{k1, k2, . . .}. Alice only needs to use the first N such keys to encrypt M .

3. To perform the encryption, Alice computes a sequence of N encrypted integers
E = {e1, e2, . . . , eN } by applying the rule ei = mi + ki(mod�); that is, the i-th
encrypted integer is obtained by adding the i-th message integer to the i-th key
on page P of the key pad, dividing the result by � and keeping the remainder.

4. Alice sends Bob (E,P) the encrypted message, E, and page number, P , of the
keys that she used.

5. Upon receipt, Bob looks up the keys on page P from his copy of the key
pad. He finds the keys that Alice used, namely, {k1, k2, . . .}. Using the en-
crypted messageE = {e1, e2, . . . , eN }, Bob reconstructs the message integers,
M = {m1,m2, . . . ,mN }, by computing mi = ei − ki + �(mod�).

6. Finally, Bob converts M back into the original message using plaintext =
IntegersToMessage(M) operation, which is the inverse of the
MessageToIntegers operation.

Alice and Bob agree on a common alphabet and a common encoding of inte-
gers for the symbols in it. They also are assumed to possess identical pads of true
random numbers, which have never been used before in any prior encrypted commu-
nications. Alice encrypts her “plaintext” using her private key, sends the ciphertext
to Bob, who then decrypts it using his matching private key.

Alice encrypts: Encrypt[plaintext, kprivate]= ciphertext (13.7)

Bob decrypts: Decrypt[ciphertext, kprivate]= plaintext (13.8)

Example of a OTP To see how the OTP works, consider the following example.
Suppose Alice wants to send Bob a secret message composed of characters from $

518 13 Quantum Cryptography

Alphabet, such as “My PIN number is 1234!”, using the key pad, $Pad, mentioned
above. We assume Alice and Bob have already agreed to exchange messages that
were only composed of the symbols from $ Alphabet and each has a copy of $Pad.

Given Alice’s choice of which page to use from the key pad, the key pad itself,
and the common alphabet, she can create a one-time pad encryption of a message.
For example, if Alice uses page 3 of her key pad, the message “My PIN number is
1234!” becomes E = {68,5,24,74,70,38,50,29,21,6,49,18,59,21,23,38,26,
21,11,29,34,23}. Bob can decrypt Alice’s coded message using page 3 of his
matching key pad to obtain M=My PIN number is 1234!

13.2.1 Security of OTP: Loopholes if Used Improperly

If used correctly, the One Time Pad is guaranteed to be secure regardless of the
computational power of an adversary. Fundamentally, this is because there is no
information from which an adversary can compute the key (as the key is truly ran-
dom), and guessing the key is impossible because there exists keys that are capable
of mapping any ciphertext into any plaintext of the same length! So an adversary
cannot distinguish between the single “correct” key and the vastly greater number
of “incorrect-but-grammatically-plausible” keys. Because of this, the One Time Pad
is formally regarded as an unconditionally secure cryptosystem. However, in prac-
tice, when human or technological failings cause the actual use of the OTP to deviate
from the ideal, there are several vulnerabilities.

First one needs keys that are truly random. It is not good enough to use the
sequence of numbers arising from (say) a pseudo-random number generator of the
sort found on most modern computers. Instead, one should use a naturally random
process to obtain the random numbers, such as a quantum random number generator,
or the intervals between radioactive decay events. If one uses a less than perfect
random number generator there is an opportunity for an eavesdropper to recognize
subtle structure amongst the (pseudo-)random numbers which can be exploited, e.g.,
by anticipating the continuation of the key sequence.

Secondly, one should never re-use the keys. The reason for this is that in a OTP
there are always some random numbers (i.e., potential keys) that will convert any
ciphertext of N characters into any plaintext of N characters. So merely guessing
what the key material could be is of no help whatsoever. But if you use the same key
material to encrypt two different plaintext messages into two different ciphertexts,
then there are very few options for what the key material could be that would result
in both ciphertexts being converted back to comprehensible language. One of the
most notorious “failures” of the OTP cryptosystem, which led to the discovery of
the Rosenberg spy ring, was due to the spies running out of and, consequently, re-
using their key material. This gave the authorities the ability to determine the keys
and unscramble incriminating message [441].

Thirdly, one needs to keep the random numbers in the key pads secure. If an
adversary obtained the key pads it would make all OTP-encrypted communications
based on those key pads readable.

13.2 An Unbreakable Cryptosystem: The One Time Pad 519

So even though the OTP is, theoretically, an unconditionally secure cryptosys-
tem, in actuality this depends on the OTP protocol being followed precisely.

13.2.2 Practicality of OTP: Problem of Key Distribution

A bigger obstacle in creating a global secure communications infrastructure based
on the OTP lies not in the potential insecurities that would arise if the OTP were used
improperly, but rather the impracticality of performing the required key distribution.

Before Alice and Bob can communicate securely using a OTP, they must possess
matching private keys, i.e., key pads containing identical sets of true random num-
bers. Unfortunately, the OTP protocol consumes one key bit for each message bit
that is encrypted, and therefore consumes key material at such a voracious rate that
any finite key pad will be exhausted quickly. Moreover, there is no convenient classi-
cal method for replenishing the key material at the rate necessary to support modern
communications. This makes it difficult, therefore, to create a viable OTP based
cryptographic infrastructure seamlessly on a wide scale using conventional (i.e.,
purely classical) methods. Sharing more bit-intensive data such as images, speech
recordings, and video files will only exacerbate the problem.

Today, using classical physics, the best Alice and Bob can do is to meet peri-
odically face to face, create new matching key pads, and then return home keeping
their new key material secret. But since they need an independent random num-
ber for each character in each message, they will have to exchange giga-bytes or
tera-bytes of key material each time they meet to ensure they won’t run out of key
material before their next planned meeting.

An alternative is for Alice to create a set of true random numbers, copy them
onto a set of CDs of hard drives, and employ a trusted intermediary to convey them
to Bob. Here “trusted” is a bit of a euphemism: in reality, Alice would use a courier
under armed guard, carrying a tamper resistant, explosive-laden briefcase loaded up
with CD’s or hard drives of true random numbers. This gives Alice high confidence,
but still not absolute certainty, that her random numbers arrived in Bob’s hands
without being compromised. Moreover, certain applications, such as re-keying a
satellite, pose even greater challenges. Hence, the necessity for such face to face
encounters undermines the practical utility of the OTP greatly.

Moreover, the integrity of the entire cryptosystem rests on maintaining the se-
crecy of the key pads. Should one of the key pads ever fall into the wrong hands, the
messages could be decrypted easily by an adversary.

These factors make one-time pads of limited utility. A more practical scheme
needs a way to distribute the keys, in a secure fashion, without the sender and recip-
ient having to meet face to face. Fortunately, quantum information provides such an
alternative means of achieving perfectly secure key distribution under the nose of a
potential adversary using a technique known as “quantum key distribution”.

520 13 Quantum Cryptography

13.3 Quantum Key Distribution

Quantum key distribution (QKD) provides a means for two parties, traditionally
called Alice and Bob, to establish matching, assuredly private, cryptographic keys
across a potentially insecure communications channel. Once such keys have been
established they can be used within a classical cryptosystem such as the uncondi-
tionally secure One Time Pad (OTP) or the still very strong, but not unconditionally
secure, AES [16]. By using AES one is sacrificing absolute security in return for
being able to support a much greater data rate on the encrypted channel.

13.3.1 Concept of QKD

There are many different ways in which a QKD scheme can be accomplished. Al-
though they may differ in the quantum physical resource used to encode the key
material, at their core they all work basically the same way. First, Alice generates
a stream of truly random bits from which Alice and Bob are to distill a matching
private cryptographic key. Neither Alice nor Bob have any particular key in mind at
the outset. In fact, having the key emerge out of the QKD protocol affords a certain
additional security, since the key identity is not written down anywhere in advance.
Once the stream of random bits has been generated, they are encoded in the quan-
tum states of a corresponding stream of photons. The encoding is chosen in such a
manner as to guarantee that any attempt to measure the quantum-encoded key ma-
terial in transit, without proper knowledge of the encoding used, will increase the
bit error rate (BER) on the channel sufficient to expose the fact that eavesdropping
had occurred. Nothing like this is possible in conventional cryptography because
classical information can be read and re-transmitted in a manner imperceptible to
the legitimate parties. However, in the quantum realm, the laws of quantum physics
make it impossible to read the keys without scrambling enough of them to cause a
detectable increase in the bit error rate (BER) on the channel, and hence alert the
legitimate parties to the presence of an eavesdropper. If such a test reveals no ev-
idence for eavesdropping, then the channel may be assumed to have been secure
during the key distribution, and hence he random bits remaining after protocol has
ended may be used as cryptographic keys. However, if eavesdropping was detected,
the keys exchanged must be discarded and a fresh key distribution exchange at-
tempted.

13.3.2 Security Foundations of QKD

Unlike classical public key cryptosystems whose security relies upon the dif-
ficulty of factoring integers or computing discrete logarithms, the security of

13.3 Quantum Key Distribution 521

QKD rests upon quantum physical laws that cannot be circumvented no mat-
ter how mathematically gifted, algorithmically sophisticated, or computation-
ally powerful an adversary might be. These laws include Heisenberg’s Uncer-
tainty Principle (see Sect. 12.1), which quantifies the minimum degree of dis-
turbance an act of measurement on one observable must impart to a comple-
mentary observable, and the No-Cloning Theorem (see Sect. 11.6.2) which pre-
vents an eavesdropper from making a perfect copy of an unknown quantum
state. These quantum physics laws are a fundamental aspect of Nature, veri-
fied experimentally to an exceedingly high level of precision, and are impos-
sible to circumvent. If they were, then all sorts of bizarre implications would
ensue, such as the ability to communicate messages faster than the speed of
light.

13.3.3 OTP Made Practical by QKD

Thus, QKD makes the OTP cryptosystem finally practical because the parties will
no longer have to meet face-to-face periodically to refresh their key material. As
the OTP is an unconditionally secure cryptosystem, it is much stronger than the
public-key cryptosystems we use today for all our discreet communications, such
as online banking transactions. Hence, QKD could potentially revolutionize confi-
dential communications if it could be deployed on a global scale without compro-
mising its underlying theoretical model. In fact, a global OTP-based cryptographic
infrastructure, rekeyed with QKD, would render eavesdropping on encrypted com-
munications quite useless. This fact has not gone unnoticed by parties disgruntled
at the discoveries

13.3.4 Varieties of QKD

There are many different ways to make a QKD system. These differ in the quantum
physical effects being exploited, the key-establishment protocols being used, and
the physical laws being relied upon for security. These include:

1. Bennett and Brassard’s “BB84” protocol based on two non-commuting observ-
ables [47].

2. Bennett’s “B92” protocol based on two non-orthogonal states [46].
3. Bruss’ “Six-state” protocol (which extends BB84) [86].
4. Ekert’s “Entanglement-based” protocol [167].
5. Spedalieri’s “Orbital Angular Momentum”-based protocol [476].
6. Protocols based on coherent states, e.g., [214, 215, 252, 298, 325, 339, 408, 459,

524].

Of these, the BB84 protocol, invented by Charles Bennett and Gilles Brassard in
1984, has a special place in the history of quantum cryptography since it was the
first QKD scheme to be invented.

522 13 Quantum Cryptography

13.4 Physics Behind Quantum Key Distribution

13.4.1 Photon Polarization

In classical physics, light is regarded as consisting of electromagnetic waves that can
travel through space. Traditionally, such waves are pictured, as shown in Fig. 13.1,
as consisting of oscillating electric and magnetic fields that lie in planes perpen-
dicular to each other and to the direction of wave propagation. Thus, in a three-
dimensional coordinate system with mutually perpendicular x-, y-, and z-axes,
if a photon is propagating in the positive z-direction, its electric and magnetic
fields will oscillate in the (x, z)-plane and the (y, z)-plane, respectively. The “po-
larization” of such a wave is determined by how its electric field is varying in
space and time. Several types of polarization are possible. If we imagine riding
along with the light wave along the z-axis, at any instant one can ask what tra-
jectory the electric field in tracing out in the (x, y)-plane (as this plane glides
forward with the wave). If the electric field follows a well defined trajectory in
the (x, y)-plane the light is said to be “polarized”, and the shape of this tra-
jectory determines the type of polarization. In particular, if the electric field os-
cillates back and forth along a line, the light is linearly polarized. Conversely,
if the electric field executes a circular motion, the light is circularly polarized.
And if the electric field follows an elliptical trajectory it is elliptically polarized.

These superficially different types of polarizations turn out to be related to one
another in the sense that, if we superimpose two linearly polarized waves, the result
can be a linear polarized, circularly polarized, or elliptically polarized wave. If the
two linearly polarized waves being superposed are of equal amplitude and in-phase,
the result will be a linearly polarized wave oscillating in an intermediate plane.
If the two linearly polarized waves are of equal amplitude, perpendicular to one
another, but π/2 out of phase, the result will be a circularly polarized wave. As
such a wave propagates its polarization vector will rotate in a plane perpendicular
to the direction of propagation. Similarly, if the two linearly polarized waves are of

Fig. 13.1 A linearly
polarized photon consists of
an oscillating electric field
and oscillating magnetic field
that are perpendicular to each
other and to the direction of
propagation

13.4 Physics Behind Quantum Key Distribution 523

different amplitudes, perpendicular to one another, and π/2 out of phase, the result
will be an elliptically polarized wave.

Given the ability to obtain linear, circular, or elliptically polarized waves from
superpositions of linearly polarized ones, it is not surprising that the converse is
also true. Suitable combinations of a left circular polarization and a phase-shifted
right circular polarization can give us a net linear, circular, or elliptically polarized
light wave. This perspective helps us make the connection to quantum mechanics.

13.4.1.1 Quantum View of Polarized Photons

At the level of individual photons, we can no longer think of light as an electromag-
netic wave. Instead we can only speak in terms of the quantum mechanical state of
a photon. What we have been calling circular polarization at the classical level is
closely related to the quantum mechanical “spin” at the quantum level.

According to quantum mechanics, particles can be broadly classified as bosons
(having integer values of spin) or fermions (having half integer values of spin).
Photons are bosons and have an intrinsic spin of 1, but this can be pointing in the
direction of propagation or opposite to it, and so their spin quantum numbers can
only assume one of two values: +1� or −1�. These correspond, crudely, to circu-
larly polarized states, |�〉 or |�〉, having either a left-handed circular polarization
or a right-handed circular polarization. These spin eigenstates rotate: as the photon
propagates its polarization vector rotates in a plane that is perpendicular to the direc-
tion of motion. Photons therefore also possess angular momentum, just like rotating
masses. A photon has no spin eigenstate for spin 0 (analogous to linear polarization),
but this can be created by superposing the allowed spin eigenstates, corresponding
to spin −1� and spin +1�, with a suitable phase shift between them. Again, this is
analogous to creating linearly polarized light from circularly polarized light. As the
spin of a linearly polarized photon is spin 0 it carries no net angular momentum.

Thus, the most general state of a photon is a superposition of its two allowed
states of spin polarization, i.e., |ψ〉 = aL|�〉 + aR|�〉. In particular, the standard
polarizations can be obtained as follows:

• Left circular polarization, |�〉
• Right circular polarization, |�〉
• Horizontal polarization, |↔〉 = i√

2
(|�〉 − |�〉)

• Vertical polarization, |�〉 = 1√
2
(|�〉 + |�〉)

• Diagonal +45° polarization, |↗↙〉 = 1+i
2 |�〉 + 1−i

2 |�〉
• Diagonal −45° polarization, |↖↘〉 = 1−i

2 |�〉 + 1+i
2 |�〉

13.4.2 Single Photon Sources

As our goal is to generate secure raw key material then, when we generate a random
bit, not only do we want it to be truly random, but we also require it to be one bit—

524 13 Quantum Cryptography

not two or three or zero bits etc. If a purportedly “single” photon source actually
emits multiple photons, this opens a potential security hole in the QKD protocol
to follow, via a so-called “photon-splitting attack”. To minimize this risk, the early
pioneers of QKD used strongly attenuated laser beams that contained, on average,
0.1 photons per pulse. In such systems, the probability of there being n photons is
governed by Poisson statistics [201]:

P(n,μ)= μn

n! e
−μ (13.9)

Hence, the probability that a non-empty weak pulse contains more than one photon
is:

P(n > 1|n > 0,μ)= 1− P(0,μ)− P(1,μ)

1− P(0,μ)
= 1− e−μ(1+μ)

1− e−μ
≈ μ

2
(13.10)

If μ is sufficiently small, i.e., if the beam intensity is sufficiently low, double or
triple photon events are very rare, limiting the potential information an eavesdropper
might glean. Unfortunately, by reducing the intensity so much, most pulses contain
zero photons and so the key generation rate suffers. Although this can be offset by
driver the rate at which the laser is pulsed, the detectors currently available cannot
keep up. The good news is that with the appropriate setting for μ and after sufficient
error reconciliation and privacy amplification the weak-laser scheme can still be
made provably secure, albeit at a disappointingly low key distribution rate.

A better solution is to have a true single photon source, i.e. a device that spits
out exactly one photon when commanded to do so [392]. Over recent years much
progress has been made on such devices. They are generally based on either “single
photon guns” that emit a single photon when stimulated and are typically based on
intrinsic single-emitters such as molecules, quantum dots or diamond color centers
[173, 185, 381, 430], or “heralded” sources that use the detection of one photon
from an entangled pair of photons produced in parametric downconversion to signal
the presence of the other photon in a different path [179, 203, 352, 393]. If one gangs
several such devices together, than in a certain time interval one can be almost sure
of creating at least one heralded single photon, which can be stored in a fiber loop
and released at a pre-determined emission time. Such a source is not exactly on
“on-demand” but is at least available at predictable times, which is almost as good.

13.4.3 Entangled Photon Sources

A key step in Ekert’s protocol is the generation of pairs of maximally entangled par-
ticles. This can be accomplished by sending coherent ultra-violet light into a special
type of crystal called “beta barium borate” (or BBO). In such a crystal, about one
photon in 10 billion undergoes a remarkable transformation: it interacts with the
material so as to convert a single UV photon (at 351 nm) into a pair of longer wave-
length photons (at 702 nm) with one of the photons horizontally polarized and the

13.4 Physics Behind Quantum Key Distribution 525

Fig. 13.2 Entangled photons
can be created by a process
known as “parametric down
conversion”. Ultraviolet light
(351 nm) is shone into a
crystal of “beta barium
borate” (BBO). About 1 in 10
billion of the photons is
down-converted to two
photons of wavelength
702 nm the emerge in
opposing places on two green
cones. The green photons on
one cone are vertically
polarized and those on the
other are horizontally
polarized. Where the green
cones overlap it is impossible
to know from which cone any
particular photon came, and
the pairs for photons from the
two intersection regions are
therefore polarization
entangled. The blue and red
photons emitted are not
entangled. (Copyright the
Institute for Quantum Optics
and Quantum Information,
Austrian Academy of
Sciences, and printed with
their permission)

other vertically polarized. Moreover, these photons leave the BBO crystal in two
overlapping and intersecting (green) cones. In the region where the two green cones
overlap it is impossible to tell from which cone a particular photon came. Hence, in
the region where the two green cones intersect there is entanglement in polarization
states of the form 1√

2
(|�〉|↔〉 + |↔〉|�〉). This becomes the raw source of entan-

glement that can be used in a polarization-implementation of Ekert’s entanglement-
based QKD protocol. Figure 13.2 shows a cross section through the cones of light
leaving a BBO crystal. This has become an iconic image for the quantum informa-
tion sciences.

Some better more modern entangled photon sources are [10, 13, 176].

13.4.4 Creating Truly Random Bits

The BB84 protocol begins with Alice choosing a truly random sequence of bits.
These bits are the raw material from which a cryptographic key will be distilled.

526 13 Quantum Cryptography

Fig. 13.3 idQuantique’s quantum random number generator [405] is available as a PCI board, a
USB device, or as a component ready for mounting on a printed circuit board. It has been tested
and certified by the Swiss Federal Office of Metrology. Images courtesy of idQuantique

One way to generate truly random bits is to repeatedly shoot single photons into a
perfect 50:50 beam splitter and see from which port each photon exits. By adopt-
ing a convention such as “upper port” = 0 and “straight-through” = 1, we can
obtain a random sequence of bits. In reality, there might be complications to this
simple minded scenario: the beam-splitter might not be exactly 50:50 but harbor a
small bias, e.g., 49.9:50.1, in favor of one port over the other. Similarly, the photo-
detectors used on each port might not have exactly the same detection efficiency
due to slight variations in materials. However, there are ways to beat such system-
atic biases. For example, suppose you had a biased coin that came up heads with
probability 49.9% and tails with probability 50.1%. You can still make a perfectly
balanced 50:50 random number generator out of such a coin. Instead of naively tak-
ing “heads” = 0 and “tails” = 1, you simply use two coin tosses per bit, such as,
“heads on the first toss and tails on the second toss” = 0, and “tails on the first toss
and heads on the second toss” = 1, and throw out any trials that were both heads or
both tails. Thus by sacrificing half the coin tosses, you can generate a truly random
bit even though the coin is biased. Quantum random number generators (QRNG)
are now available commercially [405], and these should be used in preference to a
classical pseudo-random number generator to generate the set of random bits from
which the cryptographic key is to be derived. As shown in Fig. 13.3 such QRNGs
are available pre-packaged in form factors that enable seamless integration into other
products.

13.4.5 Encoding Keys in Polarized Photons

We can use the polarization state of a photon to encode a bit. For example, if we were
to use linearly polarized light we might agree on the convention that a vertically
polarized photon, |�〉, corresponds to 0, and a horizontally polarized photon, |↔〉,
corresponds to 1. Or we might have agreed that a +45° polarized photon, |↗↙〉, is a
0 and a −45° polarized photon, |↖↘〉, is a 1. Hence, given a sequence of bits, e.g.,
010100010101101 . . . , a choice of encoding basis, e.g., {|�〉, |↔〉} or {|↗↙〉, |↖↘〉},
to encode each bit we need to be able to create a photon whose electric field is
oscillating in a desired plane.

13.4 Physics Behind Quantum Key Distribution 527

One way to do this is simply to pass the photon through a polarizer whose polar-
ization axis is set at the desired angle. If the photon makes it through its polarization
will have been “set” in the plane corresponding to the alignment of the polarizer.

13.4.5.1 Polarizers

The development of modern polarizers began with Edwin Land, the founder of Po-
laroid Corporation, in 1928, when he was an undergraduate at Harvard College. His
interest in polarization was piqued when he read about the strange properties of
crystals, called herapathite in honor of their discoverer Dr. William Herapath, that
were formed when iodine was dropped into the urine of a dog that had been fed
quinine. Whereas Herapath had struggled to make a single large herapathite crystal,
Land realized he could assemble something almost as good by mechanically placing
several small herapathite crystals in the proper alignment embedded in an extruded
polymer, and thus the first large scale polarizers were born [264].

According to physics, one of two things can happen to a single photon passing
through a polarizer: either it will emerge with its electric field oscillating in a plane
aligned with the axis of the polarizer, or else it will be absorbed and its energy
re-emitted later in the form of heat.

If the axis of the polarizer makes an angle of θ with the plane of the electric field
of a photon fed into it, there is a probability of cos2(θ) that the photon will emerge
with its polarization set at the desired angle (i.e., aligned with the polarization axis
of polarizer) and a probability of 1− cos2(θ) that it will not emerge at all.

Therefore, a cascade of two polarizers with their polarization axes set at 90°
with respect to one another will not pass any light. This is consistent with quantum
theory because either the photon is absorbed at the first polarizer, in which case it
is lost, or it makes it through the first polarizer but in doing so will have had its
polarization state set to be orthogonal to that of the second polarizer (since the first
and second polarizers are orthogonal). Either way the photon will not pass both
polarizers. You can verify this experimentally by looking at some reflected light
(which is often polarized) through two pairs of polarizing sunglasses that are tilted
with respect to one another. As one of the polarizers is rotated while keeping the
other one fixed, the scene will go brighter and darker, extinguishing the transmitted
light when the two polarizes are crossed at 90°. The downside of using polarizers to
set the polarization plane of the photon is that we are not guaranteed that the photon
will make it through. A better method would simply imprint the desired polarization
on the photon deterministically. This is possible using a Pockels cell.

13.4.5.2 Pockels Cells

The Pockels cell was invented in 1893 by German physicist Friedrich Pockels and it
basically acts as a birefringent switch. The birefringence is induced by an externally
applied electric field. By using a Pockels cell, it is possible to create a photon with

528 13 Quantum Cryptography

its electric field oscillating in any desired plane. We can therefore (arbitrarily) call
polarized photons whose electric fields oscillate in a plane at either 0° or 90° to
some reference line “rectilinear” and those whose electric fields oscillate in a plane
at 45° or 135° “diagonal”. Furthermore, we can stipulate that photons polarized
at angles of 0° and 45° are to represent the binary value 0 and those polarized at
angles of 90° and 135° represent the binary value 1. Once this correspondence has
been made, a sequence of bits can be used to control the bias in a Pockels cell and
hence determine the polarization orientations from the stream of photons emerging
from the cell. This allows a sequence of bits to be converted into a sequence of
polarized photons. These may then be fed into some communication channel, such
as an optical fiber or perhaps even transmitted through free space.

13.4.6 Measuring Photon Polarization with a Birefringent Crystal

In order to recover the bits encoded in the polarization orientation of a stream of
photons, it is necessary for the recipient to measure the polarizations. Fortunately,
Nature has provided us with a material, “calcite”, beautifully suited for just this
purpose.

A calcite, or calcium carbonate (CaCO3), crystal has the property of birefrin-
gence. This means that the electrons in the crystal are not bound with equal strength
in each direction. Consequently, a photon passing through the crystal will feel a dif-
ferent electromagnetic force depending on the orientation of its electric field relative
to the polarization axis in the crystal. For example, suppose the calcite’s polarization
axis is aligned so that vertically polarized photons pass straight through it. A photon
with a horizontal polarization will also pass through the crystal but it will emerge
from the crystal shifted from its original trajectory as shown in Fig. 13.4.

If the calcite crystal is oriented such that |�〉 polarized photons pass straight
through and |↔〉 polarized photons emerge lower down, then what happens to a

Fig. 13.4 How a birefringent crystal can be used to separate photons based on their polarization.
In the figure shown, a naturally cleaved and unpolished calcite crystal is placed on top of the
text “polarization dependent refraction” and illuminated with sunlight containing a mixtures of
polarizations. As a result reflected ordinary rays are refracted through the crystal via one path and
reflected extraordinary rays are refracted by a slightly offset path. This causes the blurring of the
letters that are visible through the crystal. We can therefore use where the light rays emerge from
such a crystal to measure their polarization state

13.5 Bennett and Brassard’s BB84 QKD Scheme 529

photon whose polarization is something intermediate such as |↗↙〉? In this case,
the calcite crystal acts as if it is measuring the polarization of the photon in the
{|�〉, |↔〉}-basis. That is, we need to interpret the incident photon in state |↗↙〉 as re-
ally being in a superposition state |↗↙〉 = 1√

2
(|�〉+ |↔〉). Hence, there will be some

probability the photon will pass straight through the crystal and be left in state |�〉,
and there is some probability the photon will pass through the crystal, emerge lower
down, and be left in |↔〉. A priori we cannot tell which will be the case. However,
when using a calcite crystal to classify the polarization it is always going to exit
one way or another and never be blocked, but the result we obtain is not necessarily
the polarization of the incident photon, but rather that of the exiting photon. Thus
we can use the location from which a photon emerges from a calcite crystal as a
way of signaling (i.e., measuring) that photon’s polarization in a particular basis.
Depending on what the incident photon polarization was, in that basis, will depend
on whether the measurement outcome is deterministic or non-deterministic.

13.4.7 Measuring Photon Polarization with a Polarizing Filter

Whereas a calcite crystal always returns a decision regarding the polarization state
of each incoming photon, the polarizing filter is only guaranteed to return a result
when the polarization orientation of the filter happens to be aligned with the po-
larization of the photon. At other angles there is some diminishing probability that
the photon will make it through the filter, and in fact there is zero chance that the
photon will pass through the filter when the photons’ polarization is orthogonal to
the polarization axis of the filter.

You can verify the behavior of polarizers for yourself quite easily by looking at
a light source through two polarizing filters (such as two pairs of polarizing sun-
glasses). Even if initially the source is unpolarized, it will be polarized after passing
through the first filter. Then, as it encounters the second polarizer the chances of
it making it through will depend upon the alignment between the (now polarized
photons) and the polarization axis of the second polarizer. By looking at the light
source through both polarizers, while rotating the second polarizer relative to the
first, you can make the source appear brighter or dimmer, and you can distinguish
the output light completely when the two polarizers are “crossed”, i.e., when the po-
larization axis of the first polarizer is orthogonal to that of the second. This behavior
is illustrated in Fig. 13.5.

13.5 Bennett and Brassard’s BB84 QKD Scheme

The genesis of the BB84 QKD protocol [47] lies in a paper entitled “Conjugate
Coding” written by Stephen Wiesner in the 1970’s but which went unpublished until
1983 [531]. Wiesner introduced the concept of a banknote that was impossible to

530 13 Quantum Cryptography

Fig. 13.5 Polarizing filters are only guaranteed to transmit a photon when the polarization of
the photon and polarization axis of filter are aligned. At other relative angles there is only some
probability that the photon will be transmitted. If the polarization of the photon is orthogonal to
that of the filter the photon’s passage through the filter is guaranteed to be blocked, and no light
will emerge. Hence, the polarizing filter either reports a definite polarization result or no result
whatsoever. Contrast this with a calcite crystal that always reports some result regardless of the
polarization of the input photon

counterfeit. Each banknote was associated with a classical serial number (such as a
classical bit string) together with a quantum serial number (that encoded a bit string
in a sequence of four quantum states—{|�〉, |↔〉} and {|↖↘〉, |↗↙〉}—corresponding
to the basis states of two orthogonal bases that where rotated 45° with respect to
one another). The bank maintained a record of each classical serial number and
its corresponding quantum serial number. When such a banknote was presented to
the issuing bank, it could verify the legitimacy of the banknote by looking up the
basis-encoding that was supposed to accompany the classical serial number, and
then measure the quantum serial number in that basis. If the result agreed with the
what the quantum serial number ought to be, the banknote was legitimate and the
money could be spent. It is likely that the 1970’s reviewers dismissed the scheme as
too fanciful since the idea of storing quantum serial numbers for long durations on
a banknote would have appeared rather far fetched at that time. Today it would still
be a challenge beyond our reach, but is no longer beyond the realm of possibility.
It does make one wonder whether there might not be a better approach to scientific
reviewing in the internet age. If an idea is too far ahead of its time, it could easily
be rejected.

13.5 Bennett and Brassard’s BB84 QKD Scheme 531

13.5.1 The BB84 QKD Protocol

Like Wiesner’s quantum money, the BB84 protocol employs polarization states of
single photons selected from one of two orthogonal polarization bases: {|�〉, |↔〉}
and {|↖↘〉, |↗↙〉}. These bases correspond, respectively, to photons that are either
vertically (|�〉) or horizontally (|↔〉) polarized, and photons that are either diag-
onally (|↖↘〉), or anti-diagonally (|↗↙〉) polarized. Theses bases are related in that
|↖↘〉 = 1√

2
(|�〉 + |↔〉) (say) and |↗↙〉 = 1√

2
(|�〉 − |↔〉), i.e., the polarization orien-

tations of the two bases are tilted at 45° with respect to one another in real space.
Note that, on the Bloch sphere, the geometry is different: |�〉 and ↔〉 correspond to
quantum states at the North and South poles of the Bloch sphere respectively. Like-
wise, |↖↘〉 and |↗↙〉} correspond to East-West antipodal points that lie in the equa-
torial plane. The relative locations of these states on the Bloch sphere are shown
in Fig. 13.6. If you are confused by this, recall that antipodal states on the Bloch
sphere correspond to orthogonal quantum states, review the material in Sect. 1.3.3.

Fig. 13.6 The four states used in the BB84 in terms of their locations on Bloch sphere. Note that
all four states lie in the same plane and that states having orthogonal polarizations lie at antipodal
points on the Bloch sphere

532 13 Quantum Cryptography

Fig. 13.7 BB84 protocol TEST ONLY. This figure is copyright protected and cannot be used.
A new figure conveying similar information needs to be drawn here. Illustration of the BB84 QKD
protocol

The BB84 quantum key distribution protocol is summarized in Fig. 13.7 and
works as follows:

BB84 Quantum Key Distribution Protocol

1. Alice Generates Key Material: Alice uses a true random number generator to
create a long string of random bits. These are the raw bits from which Alice and
Bob must distill a matching private key. Their job is to determine a subset of
these bits that they, and only they, will know in common. This privileged subset
of bits becomes their private cryptographic key.

2. Alice Encodes Key Material in Polarized Photons: Alice sends each of her ran-
dom bits to Bob, one after another, encoded in the polarization state of single
photons. Alice and Bob agree on the following encoding strategy: If Alice wants
to send Bob a 0 she transmits either |�〉 or |↖↘〉 with equal probability, and if she
wants to send a 1 she transmits either a |↔〉 or |↗↙〉 with equal probability.

3. Bob Measures the Polarization of Each Incoming Photon Using a Birefringent
Crystal: Upon receiving each photon, Bob measures its polarization state. To do
so, conceptually, Bob picks a polarization basis ({|�〉, |↔〉} or {|↖↘〉, |↗↙〉}) in
which to make his measurement, orients a birefringent crystal (such as calcite)
accordingly, and observes from which port the photon exits the crystal. If Bob
chooses the polarization basis for his measurement that happens to be the same
as the one Alice used to encode the bit, then Bob will determine the correct
polarization state of the photon, and hence (knowing Alice’s encoding strategy)
be able to tell whether she sent a 0 or a 1. However, if Bob chooses the wrong
polarization basis for his measurement (i.e., the basis other than the one Alice had
used to encode the bit), then Bob will only have a 50:50 chance of determining
the correct bit value that Alice. Moreover, at this point Bob has no idea which of

13.5 Bennett and Brassard’s BB84 QKD Scheme 533

the bit values he measured are correct and which ones are incorrect with respect
to the bit values Alice sent.

4. Bob Discloses the Basis He Used For Each Polarization Measurement: To de-
termine which bits are correct, after Bob has completed all his measurements,
he tells Alice the basis in which he measured each incoming photon, but not the
value he observed for the measurement. Alice then tells Bob those occasions on
which they used the same basis for Alice’s encoding and Bob’s measurement.
This information allows Bob to determine the subset of bits he measured that are
supposed to match the bits Alice sent. Hence, Alice and Bob can now discard all
those cases in which they used different bases. Thus, in the absence of any noise,
imperfections, and eavesdropping, Alice and Bob should come to possess match-
ing sequences of randomly generated bits. These can serve as a fresh supply of
cryptographic keys.

5. Alice and Bob Test for the Presence of an Eavesdropper by Revealing a Sub-
set of the Bit Values they Share: Unfortunately, Alice and Bob don’t yet know
whether an eavesdropper, Eve say, might have been eavesdropping on their com-
munications channel. To test for the presence of an eavesdropper, Alice and Bob
agree to sacrifice a portion of their matching bits and disclose (publicly) their
bit values. If an eavesdropper, Eve, was present she would have to pick a ba-
sis in which to measure each bit en route from Alice to Bob. Like Bob, she
would only guess this correctly, on average, half the time. When Eve guesses
the basis incorrectly (an event that occurs with probability 1

2), she will neces-
sarily perturb the state of the photon incoming from Alice and will therefore
pass on a perturbed state when she re-transmits it to Bob. On those occasions,
Bob would receive an incoming photon that was not in the state it ought to have
been, but instead be in a superposition of the two states of his measurement ba-
sis. Consequently, Bob will measure the “wrong” polarization with probability
1
2 . Thus, for each of the bits Alice and Bob intend to use as key material, there
is a probability of 1

2 × 1
2 = 1

4 that Eve will be detected, and a probability of
3
4 she will remain undetected. Hence, if Alice and Bob sacrifice N of the bits
from their (supposedly matching) key material, and disclose these N bit values
to each other publicly, the probability that Eve will evade detection in all these
trials is (3

4)
N , and so she will be detected with probability 1 − (3

4)
N . By ex-

amining only a small fraction of their (supposedly matching) key material for
errors, Alice and Bob can thereby determine whether or not an eavesdropper was
present.

All the stages of the BB84 protocol are implementable using standard quantum
optics laboratory equipment. The most interesting parts of an implementation of
BB84 concern the generation or the raw key material, its encoding in polarized
photons, and the measurement of the polarization state of each incoming photon to
Bob.

534 13 Quantum Cryptography

13.5.2 Example: BB84 QKD in the Absence of Eavesdropping

Alice and Bob need to choose the probability with which they want to be able to
detect eavesdropping and the number of bits they want to use in their key. These
parameters determine how many photons they must exchange in order to get a key
of the size they require. Suppose they would like to have a 75% chance of detecting
any eavesdropping and would like to create a secure key based on 4 bits. These
numbers are unrealistically low for a real cryptographic key but allow us to illustrate
the principle behind quantum key distribution.

Figure 13.8 is a diagram illustrating the sequence of steps Alice makes to encode
bits as polarized photons.

Alice chooses a set of random bits (first row in Fig. 13.8). Then, for each bit,
she chooses to encode it in either the rectilinear polarization (+) or in the diagonal
(×) polarization of a photon (second row). This choice of polarization bases must
be made randomly. Alice then sends the photons she created to Bob over an open
communications channel (third row of Fig. 13.8).

Next consider the actions Bob takes upon receiving the photons; these actions
are shown in Fig. 13.9. Upon receipt of the photons (first row of Fig. 13.9), Bob
chooses an orientation for his calcite crystal (second row) with which he measures
the direction of polarization of the incoming photons. Hence Bob reconstructs a set
of bits (third row).

Now Alice and Bob enter into a public (insecure) communication in which Alice
divulges to Bob the types of polarizers that she used to encode a subset of the bits.
Likewise Bob divulges to Alice the types of polarizers he used to decode the same
subset of bits, as shown in Fig. 13.10. For those cases in which the orientation of
Alice’s polarizer (i.e., polarization creator) was the same as that of Bob’s calcite
crystal (polarization measuring device), Alice tells Bob what bit values he ought to
have measured. Assuming that the encoding, decoding, and transmission steps are
error free, and provided there is no eavesdropping, Bob’s test bits ought to agree
with Alice’s test bits 100%.

The more bits that are tested, the more likely it is that a potential eavesdropper
is detected. In fact, for each bit tested by Alice and Bob, the probability of that

Fig. 13.8 Alice encodes a sequence of random bits in the polarization orientations of a corre-
sponding sequence of photons

Fig. 13.9 Bob decodes polarized photons as bits

13.5 Bennett and Brassard’s BB84 QKD Scheme 535

Fig. 13.10 Alice and Bob compare a subset of their bits to test for the presence of eavesdropping

Fig. 13.11 Probability of
detecting eavesdropping as a
function of the number of bits
tested by Alice and Bob. For
a bit to be testable, Alice and
Bob must have used the same
polarizer orientation to
encode and decode that bit,
respectively

Fig. 13.12 Key exchange step

test revealing the presence of an eavesdropper (given that an eavesdropper is indeed
present) is 1

4 , i.e., one chance in four. Thus, if N bits are tested, the probability
of detecting an eavesdropper (given that one is present) is 1 − (3

4)
N . Figure 13.11

shows how this probability of detecting eavesdropping grows with the number of
bits tested. As you can see, the probability of detecting eavesdropping approaches 1
asymptotically as the number of bits tested tends to infinity. Thus we can make the
probability of detecting eavesdropping as close to certainty as we please simply by
testing more bits. After Alice and Bob have decided that the channel is secure, Alice
then tells Bob what polarization orientations she used for each of her remaining
bits but not what those bits were (first row of Fig. 13.12). Next, Bob compares his
calcite orientations with those of Alice’s polarizer orientations (second row) and
also records his own answers (third row). Bob then, categorizes each bit in terms
of whether he used the same orientation as Alice (fourth row). Then he projects out
just those cases where the same orientations were used (fifth row).

This sequence of actions allows Bob to deduce a set of bits known only to Alice
and himself. To see this, compare the top line of Fig. 13.8 with the bottom line of

536 13 Quantum Cryptography

Fig. 13.12. You will find that Alice and Bob agree on the bits for those cases in which
they used the same orientations for their polarizer and calcite crystal, respectively.

Having deduced a common sequence of bits, Alice and Bob can use this sequence
as the basis for a key in a provably secure classical cryptosystem such as a one time
pad.

13.5.3 Example: BB84 QKD in the Presence of Eavesdropping

Now consider what would have happened instead if there had been an eavesdropper,
“Eve”, present. Now although we know that eavesdropping is taking place, Alice
and Bob do not, so the first step proceeds as before with Alice encoding her bits
in polarized photons, as in Fig. 13.13. This time, however, there is an eavesdropper,
Eve, who is intercepting Alice’s photons and making her own measurements of their
polarizations in an effort to see what bits Alice is sending to Bob. Eve goes through
the operations that Bob would have performed: She intercepts the photons (first
row), picks calcite orientations (second row), and decodes the polarized photons as
bits (Fig. 13.14). In an effort to cover her tracks Eve then re-transmits the photons
she measured to Bob. Eve is free to do a complete recoding of her measured bits into
photons polarized in whatever orientations she chooses. But the simplest situation
has Eve using the same sequence of orientations that she used during her decoding
step.

At this moment he is unaware of Eve’s presence, so he proceeds to decode the
photons he thinks are coming from Alice, but which are actually coming from Eve
(see Fig. 13.15). Bob intercepts the photons (first row), picks calcite orientations
(second row), and decodes the photons as a sequence of bits.

Now Alice divulges to Bob her polarizer orientations and the actual bit values
sent, for a subset of the bits. Of these, Bob throws out any for which his calcite
crystal had a different orientation. On those cases where they agree on orientation
of Alice’s polarizer and Bob’s calcite crystal they should also agree on the bit sent
and received. In Fig. 13.16 there is an error in the third bit tested that reveals the

Fig. 13.13 Alice encodes her bits as polarized photons

Fig. 13.14 Eve intercepts the photons Alice sent to Bob and tries to decode them. Eve then sends
the photons she decoded on to Bob using whatever polarizer orientations Eve had picked

13.5 Bennett and Brassard’s BB84 QKD Scheme 537

Fig. 13.15 Bob decodes the photons unaware of Eve’s presence

Fig. 13.16 Alice and Bob detect the presence of Eve

presence of Eve, the eavesdropper. Consequently, Alice and Bob decide to discard
the keys they established to date.

13.5.4 Spedalieri’s Orbital Angular Momentum Scheme for BB84

Photons carry both spin and orbital angular momentum. In 2004 Federico Spedalieri,
then at NASA Jet Propulsion Laboratory, Caltech, recognized, that the photon or-
bital angular momentum could be exploited to encode a bit. The photon orbital an-
gular momentum [12] is related to light beams having an axially symmetric intensity
structure about the direction of propagation of the photon but a complicated phase
structure consisting of � twisting intertwined phase fronts. Whereas the photon spin
is related to its circular polarization, the photon orbital angular momentum is re-
lated to how much torque a photon can impart to a particle onto which it impinges.
Moreover, whereas the spin can be described using a two-dimensional sub-space,
and hence is a natural “qubit”, the photon orbital angular momentum can range over
potentially infinity many states, and could therefore be used to implement higher
base quantum logic, potentially enabling more efficient quantum computing and
communications.

Photon orbital angular momentum is quite real: it has been harnessed to make
so-called optical tweezers, which can hold, translate, and rotate very small particles
using OAM states of light. A beautiful demonstration of the application of OAM
states of light to rotate objects is to make a set of eight two-micron glass spheres
perform the Scottish dance “Split-the-Willow”. A video of this feat set to music is
found at [518].

In the original OAM paper Allen et al. discovered that a in Laguerre-Gaussian
light beam the orbital angular momentum was quantized, taking on possible values
�� per photon, where � is an integer [12]. This was later confirmed experimentally
by Zeilinger et al. [334]. The potential for using OAM states of photons as a qudit

538 13 Quantum Cryptography

was noted at almost the same time [360]. In 2004 Spedalieri realized that, as there
are infinitely many different OAM states, in principle, the orbital angular momen-
tum degrees of freedom could be harnessed to implement the BB84 QKD protocol
within a d-dimensional Hilbert space [476]. The information is encoded in the spa-
tial modes of propagating photons, with different modes have different values of
orbital angular momentum. The use of a d-dimensional Hilbert space can, in prin-
ciple, boost the key generation rate by increasing the number of bits per photon
that can be sent. In particular, whereas in a polarization encoding, one photon can
carry one bit, in an OAM encoding one photon can carry logd bits of information.
Although the gain is only logarithmic in the dimension d , Spedalieri suggests it
may be possible to double or triple the key generation rate using current technology.
A similar trick may be of use in other quantum information processing tasks. More-
over, as OAM states are invariant under rotations about the propagation direction,
Spedalieri’s scheme is independent of the alignment between sender and receiver.
So the scheme does not require them to be in aligned reference frames. In fact, the
protocol still works when these reference frames rotate with respect to one other.
See [476] for complete details.

Unfortunately, in practice, OAM states are not well suited (so far) to use in long
distance quantum communication. When OAM states propagate through fibers or
free-space atmospheric paths, their delicate wavefronts can become distorted. In-
deed, it is reported that when photons with no OAM propagated through a fiber-
optic cable with a weight on it (i.e., “a stressed fiber”) the light acquires an OAM
of 1� per photon [348]. Similarly, even weak aberrations in atmospheric paths can
damage OAM states propagating through the medium [378]. The magnitude of the
effect depends upon the beam width relative to the coherence scale of the aberra-
tions. Nevertheless, in laboratory conditions, OAM states are finding many uses in
validating hypothetical quantum protocols. For example, Paul Kwiat used them to
demonstrate quantum superdense coding [37], and others have proposed a quantum
network that uses orbital angular momentum for routing and spin angular momen-
tum for data encoding [482].

13.5.5 Generalization of BB84: Bruss’ 6-State Protocol

The states used in the BB84 protocol, i.e., |�〉, |↔〉, |↖↘〉 and |↗↙〉, all lie in the same
plane in the Bloch sphere. The dimension perpendicular to this plane is not used.
The six-state protocol, invented by Dagmar Bruss in 1998, redresses this oversight
[86]. It allows Alice to encode each random bit she wants to send to Bob in one of
three non-orthogonal bases—{|�〉, |↔〉}, {|↖↘〉, |↗↙〉}, and {|�〉, |�〉} where |�〉 =

1√
2
(|�〉+ i|↔〉) and |�〉 = 1√

2
(|�〉− i|↔〉). Now a 0 bit can be encoded as the states

|�〉, |↖↘〉 or |�〉 and a 1 bit can be encoded as the states |↔〉, |↗↙〉, or |�〉. Hence
the name “six state” protocol. Now the probability that Alice and Bob choose the
same basis is only 1

3 instead of 1
2 for BB84, which increases the proportion of “dud”

photons. But the six state protocol also reduces the optimal information gain for an

13.6 Bennett’s 2-State Protocol (B92) 539

eavesdropper for a given quantum bit error rate (QBER). Indeed, if the eavesdropper
measures every photon the QBER will be 33% versus 25% for BB84.

13.6 Bennett’s 2-State Protocol (B92)

In 1992 Charles Bennett showed that one did not need to use four states (as in BB84)
to support a QKD protocol, but that two non-orthogonal states were sufficient. This
led to a QKD scheme known as the “B92 protocol” which is similar to BB84 except
that two states are used instead of four, and the polarization measurement is done
using polarizing filters rather than calcite crystals.

13.6.1 The B92 QKD Protocol

The B92 quantum key distribution protocol works as follows:

B92 Quantum Key Distribution Protocol

1. Alice Generates Key Material: Alice uses a true random number generator to cre-
ate a long string of random bits. These are the raw bits from which Alice and Bob
must distill a matching private key. Alice and Bob’s job is to determine a sub-
set of these bits that they, and only they, will know in common. This privileged
subset of bits becomes their private cryptographic key.

2. Alice Encodes Key Material in Polarized Photons: Alice sends each of her ran-
dom bits to Bob, one after another, encoded in the polarization state of single
photons. Alice and Bob agree on the following encoding strategy: If Alice wants
to send Bob a 0 she transmits |�〉, and if she wants to send a 1 she transmits |↗↙〉
(thus only two non-orthogonal states are used).

3. Bob Measures the Polarization of Each Incoming Photon Using a Polarizer: Bob
measures the polarization state of each incoming photon using a polarizer. A po-
larizer is an optical film that will pass a photon if its polarization is aligned with
the polarization axis of the polarizer, but will absorb the photon (block it) if the
photon’s polarization is orthogonal to the polarization axis of the polarizer. If the
photon polarization is at some intermediate angle, the photon will be passed or
blocked with some angle-dependent probability. Bob tests for whether Alice sent
a 0 by orienting his polarizer so that it would pass the state |↖↘〉 and block the
state |↗↙〉. Conversely, Bob tests for whether Alice sent a 1 by orienting his po-
larizer so that it would pass the state |↔〉 and block the state |�〉. Thus, whenever
Bob’s polarizer is oriented to test for a 0, and Alice sent a 0, Bob detects this with
probability 1

2 . But if Bob tests for 0 and Alice sent a 1, Alice’s photon will be
absorbed and Bob will detect nothing from his polarizer. Likewise, if Bob tests
for a 1 and Alice sent a 1, Bob detects this with probability 1

2 . But if Bob tests for
1 and Alice sent a 0, Alice’s photon will be absorbed and Bob will detect nothing
from his polarizer.

540 13 Quantum Cryptography

4. Thus for each bit Alice sends, for Bob to detect the photon, he must pick the right
basis (an event that occurs with probability 1

2) and the photon must collapse into
a state that allows transmission through the properly oriented polarizer (an event
that occurs with probability 1

2). Thus, overall, Bob will see only about 1
4 of the

photons Alice sent, but whenever he sees one he knows his polarizer was oriented
the correct way to see Alice bit. Hence, by recording those events at which Bob
detected anything, and interpreting the polarizer orientations back into bit values,
Bon can learn a subset of the bits Alice sent, but Alice does not know which ones
yet.

5. Bob Discloses When he Detected a Photon: To complete the key distribution,
Bob tells Alice at which events he saw a photon but he does not disclose the
orientation of his polarizer. However, Alice knows the polarization of the photons
she sent and so can figure out the bit values Bob received. Hence, Alice and Bob
come to know a common subset of random bits.

6. Alice and Bob Test for the Presence of an Eavesdropper by Revealing a Subset of
the Bit Values they Share: But was anyone eavesdropping on the channel? If no-
one was eavesdropping the channel was secure and the common bits can serve
as a key. To test whether anyone was eavesdropping, Alice and Bob sacrifice
a portion of the commonly known bits and compare their values. If there were
no errors imperfections, Alice and Bob ought to agree on all these bit values.
But if an eavesdropper were present then the error rate will increase. Hence by
monitoring the error rate on the sacrificed bits, Alice and Bob can tell whether or
not an eavesdropper was present. If not, they can discard the disclosed keys and
use the remaining keys in a cryptographic protocol.

13.6.2 Threat of “Discard-on-Fail” Unambiguous State
Discrimination

The B92 QKD protocol simplified the key distribution process and was initially ap-
plauded by experimentalists as an easier path to demonstrating QKD. Unfortunately,
practical implementations of B92 tend to be open subtle security holes that require
additional monitoring to plug. This is because, while it is true that one cannot dis-
tinguish between two non-orthogonal states unambiguously without inevitable dis-
ruption, one can distinguish them unambiguously if one discards failed attempts
[109, 248, 254, 386]. An eavesdropper could therefore attempt unambiguous state
discrimination and merely block further transmission of failed attempts. Of course
this would increase the rate of losses on the channel. But it does mean users of the
B92 protocol will need to monitor the channel losses very carefully, and be sure the
eavesdropping equipment was not already in place at the inception of the channel,
i.e., when its “native” loss characteristics of the channel were being assessed.

13.7 Ekert’s Entanglement-Based Protocol 541

13.7 Ekert’s Entanglement-Based Protocol

“[. . .] the generalized Bell’s theorem can have a practical application in cryptography,
namely, it can test the safety of the key distribution.”
– Artur Ekert [167]

In 1991 Artur Ekert, then at Oxford University, proposed a QKD scheme based on
entanglement [167]. Before this, no-one had used entanglement as the means for
key-generation and security verification. Although originally described in terms of
spin- 1

2 particles, Ekert’s E91 protocol can be implemented more easily with polar-
ized photons.

13.7.1 The E91 Protocol

Ekert’s E91 quantum key distribution protocol works as follows:

E91 Quantum Key Distribution Protocol

1. An entanglement source sitting between Alice and Bob produces a stream of
maximally entangled spin- 1

2 particles each in the singlet state. One member of
each pair is sent to Alice and the other to Bob along an axis we shall call the
z-axis.

2. Alice and Bob each choose a measurement axis, randomly and independently,
along which to measure the spin component of their respective particles. These
measurement axes are not arbitrary. Rather they all lie in planes perpendicu-
lar to the z-axis, but differing in azimuthal angle as measured from the vertical
x-axis. Alice is required to pick her measurement axis for each trial randomly
and uniformly from the set ai (i = 1,2,3), having azimuthal angles of θ(a)1 = 0,

θ
(a)
2 = π

4 , θ(a)3 = π
2 . Similarly, Bob is required to pick his measurement axis for

each trial randomly and uniformly from the set bi (i = 1,2,3), having azimuthal
angles of θ

(b)
1 = π

4 , θ(b)2 = π
2 , θ(b)3 = 3π

4 . If either Alice or Bob fail to detect a
particle, they discard that trial, so the results are always in perfect lock-step with
each other. Each spin-measurement returns a result (in units of �

2) that is either
+1 (spin-up) or −1 (spin-down), which Alice and Bob record.

3. Next Alice and Bob announce publicly what spin-axis orientations they used for
their respective measurements, but they do not disclose what values they ob-
tained for those measurements. This provides enough information to extract a
key. To see this, realize that in making these spin-orientation measurements, 2

9
of the time Alice and Bob pick axes that are aligned, and 7

9 of the time Alice
and Bob pick axes that are not aligned. Regardless, the correlation between these
measurements can always be written as:

E(ai ,bj)= P++(ai ,bj)+P−−(ai ,bj)−P+−(ai ,bj)−P−+(ai ,bj) (13.11)

542 13 Quantum Cryptography

where P+−(ai ,bj) (and similar terms) is the probability that Alice measures +1
and Bob measures −1 when the spin-measurement directions are ai for Alice
and bj for Bob. According to quantum mechanics, in all cases:

E(ai ,bj)=−ai · bj (13.12)

Thus, when Alice and Bob use analyzers that are aligned similarly (i.e., when
Alice uses a2 and Bob uses b1, or when Alice uses a3 and Bob uses b2)
their spin-measurement results will be perfectly anti-correlated, i.e., E(a2,b1)=
E(a3,b2) = −1. Therefore, once Alice and Bob disclose what spin-axis orien-
tations they used for their respective measurements, they can quickly determine
those cases in which they used the same orientations. In these cases, if Bob (say)
then flips his results (which are anti-correlated with those of Alice), Alice and
Bob will obtain a mutually shared private key that could be used in a subsequent
private key cryptosystem. So far so good.

4. To complete the protocol, Alice and Bob need to be sure no-one was eaves-
dropping on the channel. To test for the presence of an eavesdropper, Alice and
Bob use those cases in which they had picked different settings for their spin-
polarization analyzers. In these cases they reveal both the spin-axis orientations
used and the results of those measurements. Using just a subset of these “useless”
results, Alice and Bob can estimate a composite quantity that combines the corre-
lation values at different settings of the measurement directions. As any attempt
at eavesdropping must necessarily break the entanglement between the particle
pairs in Alice and Bob’s possession, Alice and Bob can detect the presence of
an eavesdropper by testing the degree of entanglement between their “useless”
results. Specifically, Alice and Bob compute:

S =E(a1,b1)−E(a1,b3)+E(a3,b1)+E(a3,b3) (13.13)

If the respective particle pairs are entangled (as they should be if no eavesdropper
is present) quantum mechanics predicts S =−2

√
2. However, if eavesdropping

occurred, the entanglement between Alice and Bob’s particles will have been
broken and S will deviate from the value −2

√
2. Thus, Alice and Bob can use

pairs of entangled particles, measurements in non-orthogonal bases, and classical
communication to both generate matching random cryptographic keys and test
for the presence of an eavesdropper.

A simplified version of Ekert’s E91 protocol, in which Alice and Bob each use only
two non-orthogonal measurement axes instead of three, can implement the BB84
protocol. The E91 protocol is illustrated in Fig. 13.17.

13.8 Error Reconciliation and Privacy Amplification

In a perfect world, any of the idealized QKD protocols described above, i.e., BB84,
B92, or Ekert91, would leave Alice and Bob in possession of identical steps of ran-
dom keys. Unfortunately, in the real-world noise sources tend to introduce errors

13.8 Error Reconciliation and Privacy Amplification 543

Fig. 13.17 This figure needs to be redrawn showing similar concept. Source Physics World July
2008. The figures shows the basic idea of entanglement-based QKD. A common source creates a
stream of pairs of maximally entangled particles, and sends one of each pair to Alice and the other
to Bob. Alice and Bob each make independent and random measurements on their particles. On
those occasions when they happen to have used the same alignment of their measuring apparatus
they will create perfectly anti-correlated bits. By one of them (Bob say) flipping his bits they
can therefore create a secret shared random cryptographic key. When this key is XOR-ed with an
image, it produces nonsense. But when XOR-ed with the correct key will recover the image. Alice
and Bob use the times that did not pick the same orientation are thrown out

that Alice and Bob cannot distinguish from eavesdropping. So after the raw key
material has been established using a QKD protocol, Alice and Bob must engage
in two additional tasks—error reconciliation and privacy amplification—aimed at
eliminating discrepancies between the sets of keys, and then thwarting an eaves-
dropper who might have gleaned additional information about the key by listening
in on the public error reconciliation process.

13.8.1 Error Reconciliation

The tricky part of error reconciliation is that Alice and Bob want to fix discrepancies
amongst their respective sets of cryptographic keys without disclosing much infor-
mation about the remaining “good” keys. In the worst case scenario, Alice and Bob
must assume that all the discrepancies between their cryptographic keys are due to
a malicious eavesdropper, Eve. This is the safest assumption to make although it is

544 13 Quantum Cryptography

hardly realistic given the inevitable noise sources along quantum communications
channels such as fiber-optic cables or atmospheric paths. Nevertheless, it pays to be
paranoid in cryptography so let’s assume the worst.

Thus, to eliminate discrepancies without disclosing too much Alice and Bob
communicate publicly about the parities of blocks of their key material, using, e.g.,
the CASCADE protocol [73, 483] (explained below). For CASCADE to work well
one needs a pretty good estimate of the probability a bit at random differs in the
two key strings. To obtain this, Alice and Bob sacrifice a portion of their key mate-
rial by revealing corresponding bits publicly. This provides a crude estimate p∗ of
the probability a bit is different. Given this estimate of p∗ CASCADE proceeds as
follows:

Error Reconciliation

1. Use p∗ to choose a block size into which to segment the two sets of keys, KA

and KB .
2. Compute the parity of each block and compares their values publicly.
3. Whenever the parities computed are different there must be an odd number of

bit errors between the respective blocks from KA and KB . Therefore, divide the
offending blocks iteratively and recurse on each of the respective smaller blocks
until a single error in a block is isolated. At that point, flip that bit.

4. If an error is found in a block that had, in a previous round, been found to have
the correct parity then another error must be contained in that block. Such errors
can be eliminated by shuffling the bits and re-running steps 2, 3, and 4.

5. Repeat step 5 until one attains confidence no further errors remain. At this point
error reconciliation is complete.

13.8.2 Privacy Amplification

Unfortunately, the error reconciliation process places a lot of information in public
view regarding the parities of various blocks of key material. Moreover, Eve may
also have obtained some information about the keys based on her original eaves-
dropping during the QKD protocol. If Eve is sufficiently mathematically gifted she
could, from this information, infer better information about the supposedly secret
error-reconciled key material. Hence, Alice and Bob need to take some final action
to deprive Eve of any significant information about the cryptographic keys Alice
and Bob will eventually use. To do so, Alice and Bob perform a round of “privacy
amplification”.

Privacy amplification uses Alice and Bob’s error-reconciled key to generate a
different, shorter key, in such a way that Eve has no significant information about
the new (shorter) key [50]. The trick is for Alice and Bob to choose (randomly and
publicly) from one of a pre-agreed set of hash functions. The hash functions must
accept a bit string whose length matches that of the error-reconciled key, and return a

13.9 Implementations of Quantum Cryptography 545

shorter bit string, with the degree of compression dependent on how much informa-
tion Eve could have obtained from eavesdropping on the QKD protocol plus moni-
toring the public discussions between Alice and Bob during the error-reconciliation
process.

Privacy Amplification

1. Alice and Bob choose publicly and randomly from a pre-agreed library of hash
functions.

2. Alice and Bob use this hash function to map the (error-reconciled) keys to shorter
keys (i.e., matching bit strings) that leave Eve with virtually no information about
them. These matching bit strings become the final cryptographic keys Alice and
Bob will use in future secure communications using a classical cryptosystem.

Although the OTP is the gold-standard cryptosystem, because it is uncondition-
ally secure, it is also a voracious consumer of key material, requiring one key bit
per message bit. There are, however, other classical cryptosystems, such as AES,
which are pretty secure but not unconditionally secure. So many people have pro-
posed using QKD to increase the frequency of re-keying these less secure (but still
good) classical cryptosystems. Strictly speaking, the use of AES sacrifices absolute
security compared to the OTP. Nevertheless, it allows the user increase the poten-
tial bandwidth for encrypted traffic dramatically as AES consumes much less key
material than OTP. Thus, the ability to re-key AES frequently boosts the effective
security of AES considerably, making an already good classical cryptosystem even
better.

13.9 Implementations of Quantum Cryptography

It is rare for exclamation marks to appear in the titles of scientific papers, yet in
1989 Charles Bennett and Gilles Brassard published a landmark paper entitled “The
Dawn of a New Era for Quantum Cryptography: The Experimental Prototype is
Working!” [48]. Figure 13.18 shows a schematic of the device. In an after-dinner
speech at the 1994 Physics of Computation Conference, Gilles Brassard recalled,
whimsically, that the original machine was not that secure after all, as the devices
used to place photons in particular polarization states made noticeably different
noises depending on the type of polarization selected!

13.9.1 Fiber-Optic Implementations of Quantum Cryptography

Fortunately, such technological quirks have not impeded progress in quantum cryp-
tography. Since 1984 there have been dozens of experimental demonstrations of
quantum key distribution (QKD) by research teams from around the World in-
cluding the U.S.A., U.K., Europe, Japan, China, Scandinavia, and Australia. These

546 13 Quantum Cryptography

F
ig

.1
3.

18
Sc

he
m

at
ic

of
th

e
fir

st
qu

an
tu

m
cr

yp
to

gr
ap

hy
pr

ot
ot

yp
e.

T
he

ac
tu

al
de

vi
ce

is
ab

ou
ta

m
et

er
lo

ng

13.9 Implementations of Quantum Cryptography 547

demonstrations have extended the range of QKD over both standard telecom net-
works [171, 246] and atmospheric line-of-sight paths [438], and developed ancillary
methods for routing and managing the keys. Indeed the “DARPA Quantum Net-
work”, built by a collaboration between BBN, Boston University, Harvard Univer-
sity, and QinetiQ has been running continuously since 23rd October 2003, and now
has ten nodes scattered around the Boston area, including a wireless link supplied
by QinetiQ in 2005 [171]. Similarly, the European SECOQC network, demonstrated
in 2008, uses 200 km of fiber-optic cable linking six sites around Vienna [246].

To date, the longest range over which an error-corrected, privacy-amplified, cryp-
tographic key has been transmitted via fiber-optics is 148.7 km of dark optical fiber
at a mean photon number μ= 0.1, and an astonishing 184.6 km of dark optical fiber
at a mean photon number of μ= 0.5. The same team has also exchanged secret keys
over 67 km that are guaranteed to be secure against photon-number-splitting attacks
[233, 382, 424]. Yamamoto’s group boasts a longer range still but their demonstra-
tion did not involve error reconciliation and privacy amplification [236]. Similarly,
the highest key generation rate was achieved in a system using the BB84 protocol
with so-called “decoy pulses”. This system boasts an impressive key distribution
rate of 1.02 Mbit/s over 20 km, and 10.1 kbit/s over 100 km [151].

These achievements make QKD practical on the scale of local area networks
typically found in the financial districts of major cities. If financial centers have a
quantum key infrastructure in place, banking transactions could be encrypted in a
manner that would be utterly impossible to break regardless of the mathematical
sophistication, computational power, or algorithmic prowess of any eavesdropper—
the ultimate in secure banking! In fact, the first quantum-encrypted banking transac-
tion took place in Vienna on 21st April 2004 when Anton Zeilinger et al. succeeded
in transferring a donation of 3,000 euro from City Hall to a branch of the Bank of
Austria, in Vienna [435]. This appears to have piqued the interest of the Bank of
England and the U.K. Department of Trade and Industry who held meetings in 2005
at which Toshiba Research Europe, idQuantique, MagiQ, and QinetiQ discussed
the viability of using QKD within the communications infrastructure of London’s
financial district—the “City” [545].

13.9.2 Extending the Range of QKD with Quantum Repeaters

To date the distances over which direct quantum cryptography has been demon-
strated in fiber networks has been limited to around 100–150 km [233, 382, 424].
Going beyond this becomes progressively more difficult because the probability of
photon absorption and the probability photon depolarization both grow exponen-
tially with the length of the fiber-strand. Thus, to transmit a photon down a fiber
successfully will require a number of trials that grows exponentially with the length
of the fiber. Moreover, when such a photon finally makes it through, the fidelity of its
polarization state will be degraded exponentially with the length of the fiber. Even-
tually the probability of detecting the photon drops so low that one can no longer

548 13 Quantum Cryptography

distinguish between a true click and a random dark count of the detector. At this
point QKD becomes quite impractical.

The “obvious” solution would be to do what we do classically, i.e., amplify
the signal periodically as it passes along the fiber. However, amplification (in the
sense of increasing the intensity of the signal by inserting more photons of the
desired state) is not allowed quantum mechanically due to the No-Cloning theo-
rem. Moreover, even if it were possible, creating redundant photons to encode a
given state would undermine the security of the QKD protocol. It would seem,
therefore, that quantum cryptography can only be used on local area networks
where inter-node links are short enough to maintain a reasonable key distribution
rate.

A brilliant solution to this problem was found in 1998 when Hans Briegel, Wolf-
gang Dür, Ignacio Cirac, and Peter Zoller (BDCZ) invented a physically-allowed
scheme for a “quantum repeater”. This combines the ideas of entanglement swap-
ping with entanglement purification to conceive of a protocol by which long-range,
high-purity, entanglement can be established over very long fiber-optic links [83,
160]. The basic idea behind the BDCZ quantum repeater is shown in Fig. 13.19.

First one creates many short-range maximally entangled pairs of photons along
segments of the quantum communications channel, and then uses entanglement
swapping where two segments abut to extend the range of entanglement. In prac-
tice, entanglement swapping will introduce small errors that must be eliminated by
applying entanglement purification [51, 52, 139, 268], which sacrifices some en-
tangled pairs in order to increase the purity of the entanglement amongst the ones
that remain. Importantly, the scheme requires only a polynomial overhead in time,
and a logarithmic overhead in the number of qubits that must be manipulated per
node.

Several rudimentary quantum repeaters have now been demonstrated. Some
schemes have used cavity QED to achieve a quantum memory to couple a flying
qubit (a photon) to a stationary qubit (an atom in the cavity) [106, 108]. However,
in 2001 Duan-Lukin-Cirac-Zoller (DLCZ) proposed a new scheme for a quantum
repeater based on atomic ensemble quantum memories and linear optical quantum
computing elements [153]. This approach was demonstrated experimentally in 2008
[555]. However, lately cavity QED has re-emerged as a contender because, in theory,
the rate at which remote entangled pairs can be established is significantly higher
than schemes based on atomic ensemble memories [428]. One way or another long-
haul quantum communications in fiber appears quite feasible at this point.

13.9.3 Earth-to-Space Quantum Cryptography

Another way to extend the range of quantum cryptography is to create a QKD-
link between a ground station A and an orbiting satellite, establish N matching
cryptographic keys with the satellite, and then wait for the satellite to continue in its
orbit until it is within range of a second ground station, B remote from the first. If

13.9 Implementations of Quantum Cryptography 549

Fig. 13.19 Illustration of the stages of a quantum repeater. Initially, many short-range entangled
pairs are created at multiple sites along the communications channel. Then entanglement swapping
is used to extend the range of entanglement. However, this process introduces errors which is re-
moved by applying entanglement purification at the cost of sacrificing some of the entangled pairs
so that the quality of the remaining ones can increase. Then, another round of entanglement swap-
ping extends the range of entanglement further yet again. This too introduces errors which must
be removed by entanglement purification. The process of interleaving entanglement swapping and
entanglement purification continues until maximally entangled pure states are established across
the entire length of the quantum channel, potentially at a distance far in excess of that which is
attainable in a one-shot round of entanglement distribution

the second station B then also establishes N keys with the satellite, the satellite can
thereafter transmit the first set of N keys to B securely. Thereafter, A and B will be
in possession of identical sets of cryptographic keys.

During the time it takes a satellite to cross the field of view of a groundstation,
calculations suggest that it ought to be possible to exchanges a few tens of thousands
of key bits, from which a few thousand error-free key bits can be distilled. The noise
on the atmospheric channel comes partly from atmospheric turbulence, and partly
from background stray photons that can be confused with the photons encoding the
key material. Hence error reconciliation and privacy amplification are essential. This

550 13 Quantum Cryptography

is enough key material to re-key strong cryptosystems such as AES often enough to
significantly boost their already good security still farther.

The first demonstration of QKD over practically significant distances was per-
formed in 2002 in a technical a tour-de-force experiment by Richard Hughes, Jane
Nordholt, Derek Derkacs, and Charles G Peterson of Los Alamos National Labo-
ratory [247]. They demonstrated true QKD over a 10 km, 1-airmass atmospheric
range during daylight and at night time conditions and were able to use the experi-
mentally achievable parameters (for air-mass extinction, background optical noise,
and achievable optical component quality) to infer that free-space QKD to satellites
ought to be feasible.

In 2006 and 2007, in two back to back experiments, a team of European sci-
entists exceeded the Los Alamos National Laboratory distance record by an order
of magnitude performing QKD over a 144 km free-space path between the islands
of La Palma and Tenerife in the Canary Islands. The experimental set up is de-
picted in Figs. 13.20 and 13.21. One experiment implemented the Ekert91 QKD
protocol, which required establishing polarization-entangled pairs of photons some
144 km apart [504] and the other experiment implemented the BB84 QKD protocol
using weak coherent pulses and decoy-states to guarantee the security of the channel
[322, 438], establishing a secure key at a rate of 12.8 bits per second. The experi-
ments required the use of a green laser beam tracking system to compensate for the
atmospheric variability. There is little doubt after these achievements that Earth-to-
satellite QKD is feasible, in principle, as atmospheric density decreases further with
altitude making Earth-to-satellite optical paths waver less than those of equal length
wholly within the Earth’s atmosphere. A first step in a true Earth-to-satellite QKD
exchange occurred in 2008 when a single photon exchange (albeit not true QKD)
was demonstrated between the Matera Laser Ranging Observatory in Italy to the
Ajisai satellite (which resembles an orbiting disco ball), at some 1485 km above the
Earth [519]! Although this experiment does not implement a full QKD protocol, it
does show the feasibility of sending and receiving single photons between a satellite
and a ground station on the Earth.

There is now considerable interest in exploring the potential of Space for con-
ducting fundamental tests of quantum physics. This was summarized in a 2008 study
[505], and a proposal has been made to demonstrate Space-based quantum commu-
nications on the International Space Station [383]. Clearly, the state of the art in
Earth to Space quantum communications is maturing rapidly and already practical
demonstrations are possible.

13.9.4 Hijacking Satellites

However, a more compelling reason to create QKD links with satellites is to main-
tain proper command and control of orbital assets. If a communications system
for a satellite is primed with an authentication key before launch then thereafter,
if an Earth-to-satellite QKD mechanism is available, the authentication key can be

13.9 Implementations of Quantum Cryptography 551

Fig. 13.20 Free space QKD over a 144 km free-space optical path between the islands of La Palma
and Tenerife in the Canary Islands. Alice is on La Palma and Bob on Tenerife (Composite pho-
tographs copyright the Institute for Quantum Optics and Quantum Information, Austrian Academy
of Sciences, and printed with their permission)

changed each time it is used in a manner that has no pattern whatsoever and hence
cannot be inferred by anyone monitoring the uplink communications to the satel-
lite. If instead a fixed authentication key is used, or one that is changed according
to some deterministic algorithm, then potentially the authentication key can be pre-
dicted and an adversary could upload malicious commands to take control of the
satellite and make it do something awry.

It might seem preposterous to imagine that satellites could be hijacked in this
manner. But an incident that occurred in early hours of April 27th 1986 sent chills
down the spines of those entrusted to protect our satellite services [490]. This oc-
curred at a time when satellite television was relatively new and there had been
something of a boom in sales of satellite dishes to home owners who wanted to in-
tercept the free television signals raining down from the sky. However, some satel-
lite television companies, such as HBO, had realized that they could monetize their
services more effectively by scrambling the signals electronically thereby requiring
homeowners to buy specialized decoder equipment and pay a monthly fee. This shift
in policy caused something of a slump in satellite dish sales and a loss in revenues
to dish retailers.

One such retailer was John MacDougall, then just 25 years old, who saw dish
sales plummet and his hopes living the American dream fade. To make ends meet,
he took as job as an engineer at Central Florida Teleport in Ocala Florida that up-
loaded pay-per-view movies for satellite operators. At 12:32AM April 27th, after
watching the movie “Pee-Wee’s Big Adventure” as it was uploaded, MacDougall
began his routine shut down procedure, which involved setting up transmission of
a test card of colored bars, and rotating the large 30 foot satellite dish he had been

552 13 Quantum Cryptography

Fig. 13.21 Free space QKD over 144 km requires beam tracking to compensate for atmospheric
disturbances. The figure shows a green laser beacon sent from the Tenerife optical ground sta-
tion to the QKD source in La Palma 144 km away. The laser is used to implement a beam tracking
mechanism. The photograph and insert where taken by the team members (Composite photographs
copyright the Institute for Quantum Optics and Quantum Information, Austrian Academy of Sci-
ences, and printed with their permission)

using to its parked position in which rainfall could run off it easily. In this position
the dish happened to be pointing at the Galaxy 1 satellite used by HBO. At that
moment, with the decline of his business still gnawing at him, MacDougall decided
to teach HBO a lesson. He had the idea of overriding the HBO signal coming from
the Galaxy 1 satellite with a stronger signal he could upload from Central Florida
Teleport. So overlaid the colored bars of the test card signal with a message and
launched it at Galaxy 1. For four and a half minutes the HBO satellite television
signal, which was showing “The Falcon and the Snowman” movie at the time, was
overridden with the following message (see Fig. 13.22):

GOODEVENING HBO
FROM CAPTAIN MIDNIGHT

$12.95 / MONTH ?
NO WAY !

[SHOWTIME/MOVIE CHANNEL BEWARE!]

The HBO engineers realized the problem and increased the power of their transmis-
sion to wrestle control of the channel back from the mysterious “Captain Midnight”.

However, the content of the message concerned the authorities less than the fact
it was possible to take control of the channel. This was not merely a jamming inci-
dent. Captain Midnight had replaced a legitimate signal with one of his own choos-
ing. That was serious. Moreover, in the following days, when Captain Midnight’s

13.9 Implementations of Quantum Cryptography 553

Fig. 13.22 Captain
Midnight’s message to HBO

identity was still unknown, HBO claimed to have received threats that their Galaxy
1 satellite would be re-positioned. They could not tell whether these threats were
credible or not, and millions of dollars were on the line.

In the ensuing clamor for his head, Captain Midnight’s identity was bound to be-
come known. The FBI was set on his trail and found him using some clever detective
work [564]. To be able to override the HBO signal Captain Midnight would need
access to a powerful transmitter connected to a satellite dish at least a seven meters
in diameter. This reduced it to 580 possible sites. Then by studying the character
font used in Captain Midnight’s message they determined the make and model of
the character generator. This reduced it to 100 possible sites. HBO reported a brief
intrusion of colored bars on their channel at the same time one week earlier, which
they speculated might be the work of the same person. This meant the culprit was on
duty at two known times, which narrowed the pool again. A final clue came when
an accountant overheard an incriminating conversation regarding Captain Midnight
at a pay phone and gave the license plate number of the caller to the authorities, who
linked it to MacDougall. Thus, Captain Midnight’s identity was revealed. He was
fined $5,000 and put on probation for one year.

Concerns over command and control of our satellite systems have continued.
The August 2nd, 2004 issue of New Yorker magazine (pp. 40–53 [370]) contained
an article entitled “The Terror Web”, by Lawrence Wright. This reported on an
interview with French anti-terrorist judge Jean Louis Bruguiere, who is quoted about
the role of Chechnya in the worldwide jihad:

“At present, Al Qaeda and its affiliates operate on a rather low-tech level, but in Chechnya
many recruits are being trained to exploit the technical advantages of developed countries.
“Some of these groups have the capacity for hijacking satellites,” he told me. Capturing
signals beamed from space, terrorists could devastate the communications industry, shut
down power grids, and paralyze the ability of developed countries to defend themselves.”

Such concerns illustrate that future battles might involve, paradoxically, the simul-
taneous use of very high-tech and very low-tech tactics.

554 13 Quantum Cryptography

Even NASA has had its share on incidents. NASA acknowledged a BBC report
that a hacker was able to overload its computers and interrupt communication on a
space shuttle mission in 1997. Although NASA disputes the BBC’s interpretation
of the significance of the event, they acknowledged that “the transmission of routine
medical information was slightly delayed”, confirming that a disruption to space
communications had occurred [243]. The same article contains links to several re-
ports on hacking attacks on NASA ground stations [241, 242, 244].

A list of hacking attacks on civilian satellite systems is reported in a 2002 GAO
report entitled “Critical Infrastructure Protection: Commercial Satellite Security
Should Be More Fully Addressed”, [404]. These include deliberate denial of ser-
vice attacks, such as when Indonesia intentionally interfered with and denied the
services of a commercial satellite belonging to the South Pacific island kingdom of
Tonga because of a satellite orbital slot dispute. Incidents also include inadvertent
denial of service due to unintentional interference, such as when a GPS transmitter
being tested on the ground, unintentionally interfered with the GPS receivers of a
commercial aircraft in the area, causing the plane to lose all of its GPS information
temporarily.

These examples illustrate the potential vulnerability to our satellite systems to a
spectrum of threats. Although Earth-to-satellite QKD cannot overcome all of these
threats, e.g., denial-of-service attacks cannot be defeated, it can contribute to ensur-
ing a firmer grip on command and control of orbital assets.

13.9.5 Commercial Quantum Cryptography Systems

The perceived need for greater network security, and the proven ability to achieve
higher security using quantum cryptography running over standard fiber-optic net-
works, has inspired a handful of entrepreneurs to launch start-up companies offering
security solutions that include quantum cryptography. These include MagiQ Tech-
nologies based in New York City and Sommerville, Massachusetts [333], idQuan-
tique, a spin-off from the University of Geneva, Switzerland [249], a relatively
new arrival, SmartQuantum of Brittany, France [462], and another new arrival,
Quintessence Laboratories of Australia [406].

MagiQ, whose slogan is “Any sufficiently advanced technology is indistinguish-
able from magic” (Arthur C. Clarke), sells their “QPNTM8505 Security Gateway”
[469]. This is based on the BB84 QKD protocol and provides a refresh rate of 100
256-bit AES keys per second, over a metro-area scale (100 km natively to 140 km
using the “decoy state” protocol), has an intrusion detection capability, and uses the
QKD-distributed keys to encrypt messages using the triple DES and AES cryptosys-
tems.

Similarly, idQuantique sells an impressive variety of quantum devices in addition
to their flagship quantum cryptography product “Cerberis” [468]. Cerberis is based
on the BB84 and SARG QKD protocols [433], provides a refresh rate of one key
per minute for up to 12 encryption appliances, over a 50 km length of dark fiber,
and uses those keys within the 256-bit AES cryptosystem.

13.10 Barriers to Widespread Adoption of Quantum Cryptography 555

SmartQuantum offers three QKD-related products—the “SQKey Generator” (for
QKD-based key exchange), the “SQDefender” (for an end-to-end quantum cryptog-
raphy solution that combines QKD with digital cryptography for civilian markets),
and the enhanced “SQFibreShield” (for military-grade cryptography). The company
is developing a worldwide reseller network and has recently established offices in
Sunnyvale, California in the heart of Silicon Valley [402].

Quintessence Labs in the newest arrival and expects to be in production by
early 2010. In June 2009 Quintessence Labs announced a partnership with Lock-
heed Martin to develop QKD solutions for the U.S. and Australian markets [401].
Quintesssence is unique in basing their QKD systems on continuous quantum vari-
ables rather than single photon sources and detectors. This allows them to imprint a
cryptographic key on a bright laser beam (rather than single photon transmissions) at
standard telecom wavelengths (1550 nm) using standard commercial-off-the-shelf
(COTS) components and standard fiber-optic networks. By using conventional laser
beams to carry the key material they can extend the range of QKD in fiber dramati-
cally while simultaneously increasing the key generation rate to the point that direct
use of the One Time Pad becomes feasible. This has the potential to slash the costs
of QKD and make it even easier to integrate into conventional fiber optics networks,
perhaps even allowing wavelength division multiplexing to further enhance the key
generation rate. All exciting developments for this fledgling industry!

13.10 Barriers to Widespread Adoption of Quantum
Cryptography

The fledgling quantum cryptography industry faces some pretty steep hurdles in
gaining market share over the conventional PKI infrastructure. While most of these
hurdles can be overcome over time, it is going to make it challenging for quantum
cryptography companies to gain traction in the short term. Most likely, the early
adopters will be those customers who are most in tune with the unique characteris-
tics of the solution quantum cryptography offers. That is, those customers for whom
the perpetual security of potentially intercepted communications is a prime issue.

13.10.1 Will People Perceive a Need for Stronger Cryptography?

The first obstacle is one of perceived need. Quantum cryptography systems establish
matching cryptographic keys across potentially insecure communications channels,
and then use those keys within a strong cryptosystem to ensure the perpetual con-
fidentiality messages encrypted subsequently with the keys. This makes quantum
cryptography optimally suited for securing information, such as military and diplo-
matic communications, that must be kept confidential indefinitely. However, will
a large number of customers perceive the need for the level of security offered by

556 13 Quantum Cryptography

quantum cryptography? Even though eavesdropping is potentially a problem it does
not, at present, seem to deter electronic commerce. This means the public must per-
ceive the existing PKI infrastructure as secure enough for routine electronic trans-
actions. So long as the financial losses from eavesdropping are manageable, e.g.,
by banks passing on the losses to their customers in the form of fractionally higher
interest rates for everyone rather than the few affected directly, or by identity theft
being repairable, a fundamentally insecure system can (and does) prevail. However,
quantum cryptography is likely overkill for the majority of message, like email,
whose value, even if intercepted, is transient.

13.10.2 Will People Believe the Foundations of QKD Are Solid?

Even if the need for absolute security does become perceived widely, companies
commercializing quantum cryptography still have to convince skeptical information
technology managers charged with protecting networks that the laws of quantum
mechanics on which the security of their QKD schemes are based cannot, in fact, be
circumvented. Such a possibility is unthinkable to most quantum physicists because
if there was a way to elude quantum non-determinism or the quantum no-cloning
theorem we could perform feats, such as superluminal communication, which Na-
ture appears to abhor at the macroscopic scale. Yet quantum mechanics is so alien
to most people that many IT managers will be asked, in effect, to place their trust
in a technology they do not understand, and whose security relies upon our current
understanding of physics, which historically has undergone radical shifts more than
once. This disconnect is potentially an impediment to adoption of QKD technology.

13.10.3 Will People Trust the Warranties of Certification Agencies?

One way to address such security concerns would seem to be to entrust the verifi-
cation of the security of quantum cryptography systems to third party certification
agencies. However, as quantum cryptography is still relatively new, and as ways to
attack a quantum cryptography system are potentially more subtler than the ways to
attack a conventional cryptosystem, will customer have confidence in the security
warranties issued by certification agencies? In particular, even if one believes the
underlying theoretical quantum cryptography protocols are secure, any real quan-
tum cryptography hardware is likely to harbor slight imperfections, which have the
potential to introduce unanticipated security loopholes. So while a quantum cryp-
tography protocol may be secure, any given realization of it in hardware may not
and it may be rather difficult to anticipate the loopholes such imperfections open up.

Certainly, researchers have long recognized the possibility of such loopholes and
have actively sought to find them [329, 335–338, 432, 549]. For the most part the
proposed attack scenarios have been rather hypothetical in nature, and have required

13.10 Barriers to Widespread Adoption of Quantum Cryptography 557

an adversary to possess extraordinary technical abilities. Moreover, in most cases
the attack itself would exhibit a detectable signature. However, in August 2010 a
particularly strong attack was published by the “Quantum Hacking” group at the
Norwegian University of Science and Technology in collaboration with teams from
the University of Erlangen-Nürnberg and the Max Planck Institute [331]. This at-
tack was unusual in that it can be mounted using off the shelf components, was quite
undetectable, and was effective, at the time, in revealing the full key material gen-
erated by two commercially available systems, namely, MagiQ Technology’s QPN
5505 system, and ID Quantique’s Clavis2 system. Luckily, prior to publishing the
details of the attack the quantum hackers collaborated with idQuantique to develop
suitable countermeasures [251]. So this particular vulnerability has been addressed.
Nevertheless, the fact that a quantum cryptography system that was commercially
available could be hacked successfully points to the need to conduct much greater
testing of quantum cryptosystems, and the need to develop a clear set of standards
for certifying their security. Fortunately, the manufacturers of quantum cryptosys-
tems welcome such hacking attempts as, ultimately, they will make quantum cryp-
tosystems as strong in practice as they are in principle [250]. Work on hacking
quantum cryptography systems continues [330, 341, 529] and this is likely to be
essential in bolstering confidence in these systems.

13.10.4 Will Wide Area Quantum Cryptography Networks Be
Practical?

Another concern in deploying quantum cryptography on a wide scale is the need, to
be truly secure, to use an authenticated channel. If the channel is not authenticated,
quantum cryptography systems will be vulnerable to “man-in-the-middle” attacks,
wherein an eavesdropper sitting between Alice and Bob executes independent QKD
protocols with them both while pretending to be the other party. To overcome this,
one needs to have some means to authenticate the person you are talking to and this
requires the establishment of a shared prior secret, or the exchange of a small amount
of truly random key material face-to-face, prior to the onset of the quantum key
distribution. This is an acceptably small price to pay for dedicated channels known
in advance, but it makes it difficult to see how proper QKD would be practical
on a massive scale wherein one wishes to communicate with assured security to
someone you have not met with face-to-face beforehand and agreed upon one of
more authentication keys.

Moreover, another current practical impediment to widespread adoption of QKD
is that the range of QKD in fiber is a limited to around 100km until true quantum
repeaters arrive. However, this concern can be alleviated somewhat by using contin-
uous quantum variables (as in done by Quintessence Labs), or Earth-to-Space QKD
links, and (eventually) quantum repeaters.

558 13 Quantum Cryptography

13.10.5 Will Key Generation Rate Be High Enough to Support
OTP?

Once QKD has achieved the establishment of matching private cryptographic keys
across an insecure channel, those keys should, ideally, be used within an uncondi-
tionally secure classical cryptosystem such as a one time pad (OTP). However, the
OTP is a voracious consumer of key material, requiring one key bit for each mes-
sage bit. The current quantum key distribution rates are too low compared with the
data volume of traffic to make this acceptable. Therefore, in some modern imple-
mentations of quantum cryptography, the keys created and distributed using quan-
tum effects are used within a less secure classical cryptosystem such as AES. This
weakens the overall security of the system, but also places lower demands on the
amount of key material needed. Depending on one’s degree of paranoia, one can
vary the rate at which the key material is refreshed sufficient to achieve any desired
level of practical security, depending on the technological capabilities you assume
your adversary to possess. In practice, this is often good enough, even if absolute
security is lost.

13.10.6 Will Security Be the Dominant Concern?

Finally we should always remember that secure key distribution is not the whole
story in making an end-to-end secure cryptosystem. We still have to keep those keys
secret at all times. Unfortunately, humans and trusted insiders are susceptible to
blackmail, bribery, and corruption. Thus, if the key material is stored somewhere,
and humans have access to it, there is a risk of improper disclosure.

Worse still, perhaps, the greatest economic threat to networks is not loss of con-
fidential information but rather “denial-of-service” type attacks, wherein a hacker
merely seeks to deprive parties of the ability to communicate. These can often cause
more harm than the direct loss of communications data via eavesdropping and in-
terception per se. Quantum cryptography does nothing to remedy denial-of-service
attacks.

Despite these obstacles, the outlook for quantum cryptography remains bright. It
is a quantum technology that offers a unique capability that cannot be provided by
classical means, and appears to fulfill a proper niche in the space of secure commu-
nications, especially those whose content has to remain secret indefinitely.

13.11 Summary

The security of current public key cryptosystems rests upon unproven, but widely
believed, mathematical assumptions about the difficulty of solving certain problems,
such as factoring composite integers (for RSA cryptosystems) or computing discrete

13.11 Summary 559

logarithms (for elliptic curve cryptosystems). Shor’s algorithm proves that it is pos-
sible, in principle, for quantum computers to factor composite integers and compute
discrete logarithms (and hence break all known forms of public key cryptosystems)
in polynomial time. Consequently, the current public key infrastructure for secure
communications will become vulnerable to attack as soon as sufficiently powerful
quantum computers are built. At such time the integrity of our secure communi-
cations infrastructure will be compromised. For routine non-sensitive communica-
tions this may not cause most people much concern. However, today, there are many
types of communications passing through networks, such as diplomatic and military
messages, financial transactions, medical records, and corporate data, that are of a
highly sensitive nature. Moreover, such data may not only be sensitive at the time
it is transmitted, but could remain sensitive for decades to come. Therefore, there is
a need for a new secure communications infrastructure that will remain invulnera-
ble to attack even if hackers and eavesdroppers have access to quantum computers,
and which can ensure perpetual security of encrypted information even if it is in-
tercepted. Fortunately, although quantum mechanics undermines the security of the
classical public key infrastructure, so too does it offer a route to building a much
stronger secure communications system based on what is known as quantum cryp-
tography.

Quantum cryptography allows two parties, traditionally called Alice and Bob,
to establish matching private cryptographic keys across an insecure communica-
tions channel by a process of quantum key distribution (QKD) followed by (clas-
sical) error reconciliation and privacy amplification. In QKD no particular key is
intended initially. Rather, the key emerges by Alice and Bob following one of the
QKD protocols. Regardless of which variant is used, QKD always involves encod-
ing a sequence of random bits in a corresponding sequence of quantum states that
are transmitted along the insecure communications channel. The encoding is such
that if any eavesdropper (Eve) attempts to read the quantum states in transit, her
actions are guaranteed to perturb the correlation statistics Alice and Bob would ex-
pect to see from following the QKD protocol in the absence of eavesdropping. If
there is no evidence of any eavesdropping having taken place, the random crypto-
graphic key Alice and Bob establish is deemed to be secure, and can be used in a
subsequent unconditionally secure cryptosystem such as a OTP or a strong, but not
unconditionally secure, cryptosystem such as AES.

Whereas the security of most classical cryptosystems relies upon the difficulty
of solving certain mathematical problems such as factoring integers or computing
discrete logarithms, the security of QKD rests upon quantum physical laws that
cannot be circumvented no matter how mathematically gifted, algorithmically so-
phisticated, or computationally powerful an adversary might be. These laws include
Heisenberg’s Uncertainty Principle (see Sect. 12.1), and the No-Cloning Theorem
(see Sect. 11.6.2). They are a fundamental aspect of Nature, confirmed to an incred-
ibly high precision experimentally, and are impossible to circumvent.

An excellent in depth review of quantum cryptography can be found in the article
“Quantum Cryptography” written by Nicolas Gisin, Grégoire Ribordy, Wolfgang
Tittel, and Hugo Zbinden [201].

560 13 Quantum Cryptography

13.12 Exercises

13.1 The polarization of a photon can be expressed in several different bases. In
particular, photons can be polarized “rectilinearly”, “diagonally”, or “circularly”. If
a “rectilinear” polarization measurement device is used, a photon can be observed
in either the vertical state, |�〉, or the horizontal state, |↔〉. Likewise, if a “circular”
polarization measurement device is used, a photon can be observed in either the
left circular state, |�〉, or the right circular state, |�〉. These two bases are related
via:

|�〉 = 1√
2
(|�〉 − i|↔〉)

|�〉 = 1√
2
(|�〉 + i|↔〉)

where i =√−1.

(a) If you prepare a photon in the left circular state, |�〉, and immediately measure
its polarization using a “rectilinear” polarization measuring device, what is the
probability of finding the photon to be in state |↔〉?

(b) What state will the photon be in immediately after making such a measurement
and obtaining the result | ↔〉?

(c) If you prepare a photon in the state |ψ〉 = 1
2 |�〉 − i

√
3

2 |↔〉 and immediately
measure its circular polarization, what is the probability of finding the photon
in state |�〉?

13.2 There are many possible ways to construct a QKD protocol. Alice and Bob
come up with the following scheme:

1. Alice and Bob agree that if Alice wants to send Bob a 0 she sends him a +45°
diagonally polarized photon, |↗↙〉, and if she wants to send him a 1 she sends a
right circularly polarized photon, |�〉.

2. Alice picks a random sequence of bits.
3. For each bit in her sequence, Alice transmits a single photon of the appropriate

kind to Bob.
4. Bob tests the polarization of each arriving photon in one of two ways: he either

tests for −45° polarization, |↖↘〉, to reveal 1’s, or for left circular polarization,
|�〉, to reveal 0’s. Note that Bob’s measurement basis differs from Alice’s en-
coding basis.

Answer the following questions:

(a) Conceptually, what QKD protocol are Alice and Bob implementing? Justify
your answer.

(b) With what probability does Bob measure a 0 if he tests for left circularly polar-
ized photons when Alice sends Bob a 0?

13.12 Exercises 561

(c) With what probability does Bob measure a 1 if he tests for left circularly polar-
ized photons when Alice sends Bob a 1?

(d) With what probability does Bob measure a 0 if he tests for −45° polarized
photons when Alice sends Bob a 0?

(e) With what probability does Bob measure a 1 if he tests for −45° polarized
photons when Alice sends Bob a 1?

(f) Assuming no losses or errors during transmission, what fraction of the bits will
Alice and Bob come to know jointly?

(g) Suppose an eavesdropper, Eve, taps the channel between Alice and Bob and
tests each bit using the same protocol as followed by Bob. She then records the
answer, re-encodes the bit value she measured as a polarized photon according
to the same convention as used by Alice, and transmits that fresh polarized
photon to Bob. What fraction of the bits that Alice sent to Bob will Alice, Eve,
and Bob come to know jointly?

13.3 At their core, the 1-qubit BB84 protocol (which does not use entanglement)
and the 2-qubit Ekert91 protocol (which does) are surprisingly similar. To see
this,

(a) Verify that the following identity holds for arbitrary 1-qubit gates U1 and
U2:

(U1 ⊗U2)|β0A0B 〉 = 1⊗ (U2 ·Ut
1)|β0A0B 〉 (13.14)

where |β0A0B 〉 = 1√
2
(|0A0B〉 + |1A1B〉) and t denotes the transpose of the ma-

trix.
(b) Explain how this identity can be used to find a connection between the BB84

protocol and the Ekert91 protocol.

13.4 Let the rectilinear, diagonal, and circular polarization states of a photon be
defined as follows:

• Left circular polarization, |�〉
• Right circular polarization, |�〉
• Horizontal polarization, |↔〉 = i√

2
(|�〉 − |�〉)

• Vertical polarization, |�〉 = 1√
2
(|�〉 + |�〉)

• Diagonal +45° polarization, |↗↙〉 = 1+i
2 |�〉 + 1−i

2 |�〉
• Diagonal −45° polarization, |↖↘〉 = 1−i

2 |�〉 + 1+i
2 |�〉

Determine whether each of the following states is entangled or unentangled:

(a) 1√
2
(|�〉|�〉 + |�〉|�〉)

(b) 1√
2
(|↔〉|�〉 + |�〉|�〉)

(c) 1√
2
(|↗↙〉|�〉 + |�〉|↖↘〉)

(d) 1√
2
(|↔〉|↗↙〉+ |�〉|↖↘〉)

562 13 Quantum Cryptography

13.5 The Pauli operators are defined as in (2.6). Are the following claimed equali-
ties true of false?

(a) X · Y = iZ

(b) Y ·Z = iX

(c) Z ·X = iY

(d) X · Y ·Z = Y ·Z ·X = Z ·X · Y = i1
(e) X ·Z ·X = Y ·Z · Y =−Z

(f) Y ·X · Y = Z ·X ·Z =−X

(g) Z · Y ·Z =X · Y ·X =−Y

13.6 Let 1, X, Y , and Z be the Pauli matrices defined in (2.6). A matrix, H is
hermitian if and only if it equals its own conjugate transpose, i.e., H =H †. Likewise
a matrix, U , is unitary if and only of its inverse equals its conjugate transpose, i.e.,
U · U† = 1 where 1 is the identity matrix. Prove that the Pauli matrices, 1, X, Y ,
and Z, are both unitary and hermitian. Classify the following matrices according to
whether they are hermitian and unitary, hermitian but not unitary, non-hermitian but
unitary, or neither hermitian nor unitary:

(a) 1
2 (X+ Y)

(b) 1√
2
(Y +Z)

(c) 1√
2
(X+ iZ)

(d) 1√
3
(X+ Y +Z)

(e) 1
2 (X+ Y +Z + 1)

(f) 1
2 (X+ Y +Z+ i1)

13.7 Let 1, X, Y , and Z be the Pauli matrices defined in (2.6). Show that the matrix
1
2 (X + Y + Z + i1) can be factored in terms of

√
NOT, a single Rz(α)-rotation

gate, and a single Ph(β) phase gate. Determine the required values for the angles α
and β .

13.8 Compute the following matrix exponentials:

(a) eiαX

(b) eαX

(c) ei(αX+βY)

(d) ei(αX+βY+γZ)

13.9 Let A, B , and C be hermitian operators defined by:

A =
(−0.722 0.148+ 0.569i

0.148− 0.569i −1.674

)

B =
(−2.548 0.3− 0.692i

0.3+ 0.692i −1.787

)

13.12 Exercises 563

C =
(

0.894 −0.805− 0.351i
−0.805+ 0.351i 1.585

)

Verify that A, B and C are Hermitian and compute the following commutators and
anti-commutators:

(a) [A,B]
(b) [A,B +C]
(c) [A, [B,C]]
(d) {A,B} + [A,B]

Part IV
Towards Practical Quantum Computers

Chapter 14
Quantum Error Correction

“I wish to God these calculations had been executed by steam!”
– Charles Babbage1

The descriptions of quantum algorithms and quantum information processing
protocols given in the foregoing chapters all assume a correct design, precise imple-
mentation, and perfect operation of our quantum computing device. But real quan-
tum hardware, and real quantum computations run on it, are unlikely to be manu-
factured exactly to their specifications, and unlikely to perform flawlessly. Compo-
nents of real quantum computers can only be manufactured and assembled to within
some finite tolerances. Pulses can only be shaped and timed to within certain lim-
its. Voltages, currents, fluxes, and inter-qubit couplings cannot be turned on and off
instantaneously, etc. Moreover, the fundamental paradox of quantum computation
is that at one instant we desire our qubits to be isolated perfectly from their envi-
ronment, but at another, we want them to interact strongly with some “external”
measuring apparatus. Turning such environmental interactions wholly on and off at
will is challenging. Thus, real quantum computers will be beset with errors causing
their computations to go awry.

A similar situation holds in classical computing, of course. But in that case
we can identify and correct bit-errors using various classical error-correction tech-
niques. We are helped profoundly in this regard by the ability classical physics gives
us to look at the instantaneous state of a classical computation, assess its correct-
ness, and then make the necessary adjustments. In the quantum realm we do not
have this luxury, because we cannot read the state of a quantum memory register in
the midst of a quantum computation without necessarily, and irreversibly, perturbing
the future course of the computation. Thus it is not at all obvious, a priori, whether
the techniques developed for correcting errors in classical computers are useful for
correcting errors in quantum computers. In fact, shortly after Shor’s algorithm was
first published several highly respected physicists expressed skepticism about the
feasibly of an error-correction method for quantum computers [227, 300, 301, 502].

1Source: Computer History Museum, http://www.computerhistory.org/babbage/history/.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_14, © Springer-Verlag London Limited 2011

567

http://www.computerhistory.org/babbage/history/
http://dx.doi.org/10.1007/978-1-84628-887-6_14

568 14 Quantum Error Correction

14.1 How Errors Arise in Quantum Computing

In the idealized models of quantum computers that we studied in Chaps. 1–3, the
qubits representing the computational state of the computer were assumed to be
perfectly isolated from their environment. In other words, from the moment the
quantum computer is prepared in some initial state to start the computation off, to
the moment it is measured to extract an answer, the logical qubits of ideal quantum
computers are supposed to evolve unitarily in accordance with Schrödinger’s equa-
tion. Unfortunately, such an idealization is unattainable. Any real quantum system
couples to its environment over time. In the process, information leaks out of the
logical state of the qubits in the quantum memory register. If you did not model the
effect of the environment explicitly, it would appear as if the logical qubits were no
longer evolving unitarily in accordance with Schrödinger’s equation. Indeed, this
coupling between a quantum system and its environment, and the resulting loss of
coherence, is what prevents quantum effects from being evident at the macroscopic
level [202].

Even with our best efforts keeping a quantum memory register isolated from its
environment is difficult. For one thing, a quantum memory register has to be built
out of something so there must be some supporting infrastructure, or “scaffolding,”
in the vicinity of the computationally active qubits. There is, therefore, a chance that
the particles within the scaffolding will couple to the computational elements. In ad-
dition, there can be a coupling between the memory register and an ambient thermal
heat bath. Also, incoming stray particles such as cosmic rays or gas molecules can
interact with the memory register. In fact, there are many physical processes that
can perturb the state of a quantum memory register. Broadly speaking, these physi-
cal processes fall under the headings of dissipation and decoherence.

14.1.1 Dissipation-Induced Bit Flip Errors

Dissipation is a process by which a qubit loses energy to its environment. Thus, for
example, if an excited state is used to represent a |1〉 and a lower energy state is
used to represent a |0〉, a qubit might transition, spontaneously, from the |1〉 state to
the |0〉 state emitting a photon in the process. In computational terms, a bit in the
quantum memory register would have “flipped” spontaneously.

Dissipation causes a bit to flip and this operation is described by the action of the
Pauli X matrix. We assume that the qubit starts off in an arbitrary superposed state
given by

|ψ〉 = a|0〉 + b|1〉 (14.1)

such that |a|2 + |b|2 = 1.
The affect of σx on the state of a qubit is:

σx(a|0〉 + b|1〉)=
(

0 1
1 0

)
·
(
a

b

)
=

(
b

a

)
= b|0〉 + a|1〉 (14.2)

14.1 How Errors Arise in Quantum Computing 569

This time the action of the operator has caused the bits to flip. That is, σx causes the
transformation a|0〉+ b|1〉→ b|0〉+ a|1〉. So let us call such an operation a “bit flip
error.”

14.1.2 Decoherence-Induced Phase Shift Errors

Decoherence, on the other hand, is more insidious. Rather than an overt bit flip, stray
interactions between the qubits and the environment cause the quantum memory
register and the environment to become entangled with one another. As a result,
the initially pure state of our ideal quantum memory register becomes progressively
more mixed over time. This mixing alters the relative phases of the computational
basis eigenstates of the memory register. As a result, the interference effects, needed
in any true quantum computation, become distorted and the quantum computation
no longer proceeds as it should.

An overly simplified, but intuitive, model for the impact of such decoherence
on a quantum memory register is as follows. Suppose that initially, i.e., at a time
t = 0, a single qubit in a quantum memory register starts out in the pure state |ψ〉 =
a|0〉 + b|1〉. As a density matrix such a state may also be written as:

ρ(0)= |ψ〉〈ψ | =
(
a

b

)
· (a∗ b∗

)=
(|a|2 ab∗
a∗b |b|2

)
(14.3)

where the asterisk denotes taking the complex conjugate. After merely “storing”
such a qubit in a realistic, i.e., weakly noisy, environment for a time t , its density
matrix will become:

ρ(t)=
(

|a|2 e−t/τ ab∗

e−t/τ a∗b |b|2
)

(14.4)

where τ , called the “decoherence time,” sets the characteristic time-scale of the
decoherence process, i.e., the time it takes for the off-diagonal elements of ρ to
decay appreciably. In the long time limit, τ →∞, the density matrix becomes a
mixture of the two possible measurement outcomes for this qubit, namely:

ρ(∞)=
(|a|2 0

0 |b|2
)

(14.5)

It is as if the environment has “measured” the qubit.
Similarly, applying σz to the qubit results in the following transformation:

σz(a|0〉 + b|1〉)=
(

1 0
0 −1

)
·
(
a

b

)
=

(
a

−b

)
= a|0〉 − b|1〉 (14.6)

That is, σz causes the “correct” state to evolve according to the rule a|0〉 + b|1〉→
a|0〉 − b|1〉, which has changed the phase of the qubit. Consequently, we call such
an operation a “phase shift error.”

570 14 Quantum Error Correction

The action of the identity matrix on a state is to leave the state unchanged. So
that must represent the “no error” possibility.

That only leaves us to consider what happens when we apply σy to the state of
the qubit:

σy(a|0〉 + b|1〉)=
(

0 −i

i 0

)
·
(
a

b

)
=

(−ib

ia

)
=−ib|0〉 + ia|1〉 (14.7)

This operation corresponds to both a phase shift and a bit flip. That is, σy causes the
transformation a|0〉 + b|1〉→−ib|0〉 + ia|1〉. Thus, any error in a single qubit can
be described by the action of a linear combination of the operators σx,σy, σz, and 1
(the identity operator).

14.1.3 Natural Decoherence Times of Physical Systems

Usually, decoherence occurs on a faster timescale than dissipation. The time it takes
a memory register to decohere depends, principally, upon what kind of quantum
systems it is made from, the size of the register, the temperature of the thermal
environment, and the rate of collisions with ambient gas molecules.

A crude estimate of decoherence times in various settings can be obtained from
the Heisenberg Uncertainty Principle, in energy and time,

t ≈ �

E
= �

kBT
(14.8)

where kB is Boltzmann’s constant (approximately 1.38 × 10−23 Joules K−1) and
T is the absolute temperature of the environment. In this estimate we have taken
the uncertainty in the energy to be of the order of the energy of a typical particle
at the ambient temperature. At room temperature, this gives a typical decoherence
time of about 10−14 seconds. At lower temperatures, systems take longer to deco-
here. For example, at the temperature of liquid helium, it takes about 100 times as
long for a system to decohere as it does at room temperature. Consequently, the
simplest way to try to combat decoherence is to operate the computer at a lower
temperature. Table 14.1 summarizes some characteristic decoherence times, under
various physical scenarios. These estimates were derived using a more sophisticated
analysis [257].

Once we have chilled our quantum computer and sealed it in as good a vacuum
as we can, what else can we do to slow down decoherence? Well, we could try build-
ing the quantum memory register out of different types of quantum systems. Certain
quantum systems are much more resilient to decoherence than others. David Di-
Vincenzo has collected statistics on the intrinsic decoherence properties of various
materials [146]. The data are shown in Table 14.2. They reveal that trapped ions, for
example, can potentially sustain a large number of computational steps before the
succumb to decoherence. Step counts reported in Table 14.2 suggest that it might

14.1 How Errors Arise in Quantum Computing 571

Table 14.1 Approximate decoherence times (in seconds) for various sized systems in different
thermal and gaseous environments [257]

System size (cm) Cosmic background
radiation

Room temp.
(300 K)

Sunlight Vacuum Air

10−3 10−7 10−14 10−16 10−18 10−35

10−5 1015 10−3 10−8 10−10 10−23

10−6 1024 105 10−2 10−6 10−19

Table 14.2 The maximum number of computational steps that can be accomplished without losing
coherence for various quantum systems

Quantum system Time per gate operation Coherence time Max. no. of coherent steps

Mössbauer nucleus 10−19 10−10 109

GaAs electrons 10−13 10−10 103

Gold electrons 10−14 10−8 106

Trapped indium ions 10−14 10−1 1013

Optical microcavity 10−14 10−5 109

Electron spin 10−7 10−3 104

Electron quantum dot 10−6 10−3 103

Nuclear spin 10−3 104 107

be possible to build a quantum memory register that can support a significant num-
ber of computational steps. Nevertheless, decoherence looks like it will preclude
quantum computation beyond a certain number of steps. This poses a severe prob-
lem for anyone wanting to build a universal quantum computer. Ideally, we would
like a quantum computer that could, in principle, maintain coherent quantum com-
putations indefinitely. Thus, if can not prevent decoherence, we need to think about
ways of undoing its affects. Thus there needs to be a way of doing quantum error
correction. But to understand how to correct errors, we need to understand how er-
rors will perturb the quantum states we wish to protect. So what we need next is a
mathematical model of the effects of errors on quantum computations.

14.1.4 What Makes Quantum Error Correction so Hard?

With classical computers, it is possible to measure the state of the physical system
used to encode a bit without disrupting the bit. Thus, if a voltage were used to
represent a classical bit, you could, in principle, detect a slight drop from its nominal
value and then give the voltage a nudge to restore it to its correct level.

Secondly, once a full bit-error has occurred, the nature of the error is far more
limited in the classical domain than the quantum domain. In particular, the principal
types of errors that can afflict a classical bit are either a bit flip, i.e., 0 → 1 or

572 14 Quantum Error Correction

1→ 0, or, especially in the case of communication channels, the loss of a bit or the
insertion of spurious bit. These types of errors are discrete and flagrant. There is no
subtle “drift” in a bit value—it is either correct or flipped, and present or absent.
Contrast this with the kinds of errors that can afflict qubits.

Qubits, however, do not have to be in states that are wholly |0〉 or wholly |1〉,
but can be in superpositions of |0〉 and |1〉, e.g., α|0〉 + β|1〉, where the values of
the amplitudes span a continuum of values. Thus, qubit states can “drift” off their
intended values rather than suffer only gross errors (as do classical bits). This makes
the errors that can afflict a qubit potentially far more subtle and insidious that the
errors that can afflict a classical bit. Thus, in addition to a qubit bit flip α|0〉 +
β|1〉 → α|1〉 + β|0〉, it is also possible to have qubit phase shifts α|0〉 + β|1〉 →
α|0〉 + βeiφ |1〉 in which, even though the amplitudes remain the same magnitudes,
errors can creep into the relative phase between the |0〉 and |1〉 components causing
error states such as α|0〉 + βeiφ |1〉. Such corruption of the relative phase between
the |0〉 and |1〉 components can mess up subsequent interference effects that all
quantum algorithms rely upon. This particular, failure mode does not exist in the
case of a classical computer.

Thirdly, in classical computing, we can make copies of bits we want to pro-
tect, replicate computations done on them, and use majority votes of the results to
help eliminate errors. This ability to have redundant information is a great asset in
error-correcting classical information. In quantum computing, however, the quan-
tum no-cloning theorem precludes the possibility of copying an unknown quantum
state. This makes it much more difficult to see how one could exploit redundancy in
quantum computations for error correction purposes.

The aforementioned differences between classical and quantum information
from the perspective of its intrinsic ability to be error-corrected are summarized
in Table 14.3.

Table 14.3 Intrinsic differences between classical information and quantum information that
make quantum error correction more difficult than classical error correction

Feature Classical Quantum

Information Discrete encoding (0 or 1) Continuous encoding (α|0〉 + β|1〉)
Bit Errors 0 � 1 α|0〉 + β|1〉→ α|1〉 + β|0〉
Phase Errors Phase errors cannot occur for

classical bits
α|0〉 + β|1〉→ α|0〉 + βeiφ |1〉

Compound Errors Compound bit and phase errors
cannot occur for classical bits

α|0〉 + β|1〉→ α|1〉 + βeiφ |0〉

Redundancy Can be used Cannot be used once the quantum
computation is underway because the
no-cloning theorem precludes copying
an unknown quantum state

Monitoring Can read memory register during
computation to ascertain nature
of error

Cannot read memory register during
computation to ascertain nature of
error

14.2 Quantum Error Reduction by Symmetrization 573

Fortunately, we now know that there is a solution to our dilemma. The answer lies
in quantum error correction. The trick, as John Preskill of Caltech likes to say, is “to
use entanglement to fight entanglement”. That is, by creating a specially designed
entanglement between a quantum state we want to protect and that of other qubits,
we can recognize when our protected state has gone bad and fix it, without damaging
the delicate quantum correlations within our protected state. In this chapter we will
review some approaches to quantum error correction and explain how entanglement
is both the problem, and solution.

14.2 Quantum Error Reduction by Symmetrization

Classical computers can be made more reliable through the use of redundancy. In-
stead of a single computer being used to perform a given computation, several com-
puters are used to perform the same computation simultaneously. If the computers
are all running the same deterministic algorithm, they should all produce identical
results at each stage of the computation. However, if an error occurs in one of the
computers, its computational state will begin to diverge from that of the others. If
you periodically poll all the computers and reset their computational states to the
majority opinion, you will typically be able to correct errors that arose in a few of
the computers since the last poll was taken. This type of majority voting scheme is
currently used in the Space Shuttle to improve the reliability of the on-board deci-
sion making.

For majority voting to be effective, however, a number of assumptions must hold.
First, the individual chances of any one computer obtaining the “correct” result must
be greater than 50%. If this were not true then the majority opinion is more likely
to be wrong than it is to be right. Secondly, the replicated computations must be
independent of one another so that the errors incurred by the different computers
are uncorrelated. This can be difficult to achieve in practice if all the computers
use the same type of hardware and run the same program. Finally, replicating the
computation an odd number of times (i.e., 2N − 1) guarantees a majority opinion
always exists. The more replicated computations you use, the better your chances of
fixing potential errors. In fact, if there are 2N − 1 computers (for N = 1,2,3, . . .)
and the individual probability of each computer obtaining the correct answer is p >

0.5 then the probability that the majority opinion is correct is given by:

Pr(Majority Correct)=
2N−1∑
i=N

(
2N − 1

i

)
pi(1− p)2N−1−i (14.9)

Although unsophisticated, this scheme is actually used today on the Space Shuttle
and Boeing 777.

Figure 14.1 shows how the probability of the majority vote being correct in-
creases as the probability of success of the individual computations increases for
various numbers of replicated computations.

574 14 Quantum Error Correction

Fig. 14.1 Probability that the
majority vote is correct based
on the probability of a single
independent computation
being correct. The dashed
line is the case of a single
computation without
replication; the lightest curve
is for the same computation
repeated on three computers;
and the darkest curve is for
the same computation
repeated on 13 computers.
When the individual success
probability exceeds 0.5 it
pays to repeat computations
and adopt the majority
decision

Unfortunately, in quantum computation we cannot use such a majority voting
scheme. This is because at the intermediate stages of typical quantum computations
the quantum memory registers will be in superpositions of possible bit string config-
urations weighted non-uniformly by different probability amplitudes. If we were to
readout the memory register during the course of the quantum computation we could
project the state of the register into an eigenstate of the memory register thereby de-
stroying the delicate superposition and in fact de-railing the quantum computation.
So if we attempted to use naive majority voting within quantum computation, we
would unfortunately destroy the computation.

14.2.1 The Symmetrization Trick

There is, however, a more cunning way to use something akin to majority voting
within quantum computation. This is called the method of error reduction via sym-
metrization [35]. The idea is that although we have no idea whatsoever what the
instantaneous state of some quantum computation might be, we do know that if
we had R replicas of the same quantum computation, that the joint state of all R
quantum computations would be the tensor product of the individual quantum com-
putations, i.e.,

|Ψ (t)〉ideal = |ψ(t)〉 ⊗ |ψ(t)〉 ⊗ · · · ⊗ |ψ(t)〉 (14.10)

This is because, so long as no observations are made, the quantum evolution of
an isolated quantum system is governed by Schrödinger’s equation, which is a de-

14.2 Quantum Error Reduction by Symmetrization 575

terministic differential equation. Hence, if no errors afflicted any of the quantum
computations then the joint state ought to have a tensor product structure.

In reality, however, each quantum computation might experience some error at
random and uncorrelated from the errors afflicting the sister quantum computations.
If this happens, the actual joint state of the R quantum computations would be some-
thing like:

|Ψ (t)〉actual = |ψ1(t)〉 ⊗ |ψ2(t)〉 ⊗ · · · ⊗ |ψR(t)〉 (14.11)

Quantum error correction by symmetrization works by intermittently projecting
the joint state of the R quantum computers into the symmetric subspace S Y M. The
correct part of the quantum computation is always guaranteed to lie within S Y M,
so by projecting the joint state into S Y M we only knock out parts of the joint
state that must be buggy, and thereby boost the proportion of the correct state within
S Y M. Unfortunately, there are other symmetric states that can lie within S Y M too
which are not part of the true state. Nevertheless, provided we project into S Y M
often enough and provided we use enough replicas, R, of our computation these
other types of errors can be suppressed to any desired level.

Quantum Error Reduction via Symmetrization

1. Initialize R identical independent quantum computers to be in the same starting
state running the same quantum algorithm. If there are no errors then, at any
instant, the joint state of these R quantum computers would be a state of the
form |ψ〉|ψ〉 · · · |ψ〉, which is invariant under any permutation of the computers.
However, due to independent small errors, the joint state will actually be of the
form |ψ1〉|ψ2〉 · · · |ψR〉 where the individual component states (corresponding to
the R independent quantum computations) will be slightly different from one
another.

2. To suppress the accumulate errors, initialize O(log2 R!)≈O(R log2 R) ancillae
in state |0〉.

3. Place the ancillae in an equally weighted superposition of the integers (i.e., bit
strings) in the range 0 to R! − 1, i.e., perform the transformation:

U |0〉→ 1√
R!

R!−1∑
i=0

|i〉 (14.12)

4. Apply the i-th permutation to the states of the R individual quantum computers
conditioned on the value |i〉 stored in the ancillae. That is, apply the conditional
transformation:

|i〉|ψ1〉|ψ2〉 · · · |ψR〉→ |i〉|ψσi (1)〉|ψσi (2)〉 · · · |ψσi (R)〉 (14.13)

thereby creating the entangled state:
∑
i

|i〉|ψσi(1)〉|ψσi(2)〉 · · · |ψσi(R)〉 (14.14)

576 14 Quantum Error Correction

5. Apply the inverse computation U−1 to that applied in step 3 above. As the for-
ward U operation mapped |0〉 into equally weighted superposition of the R! pos-
sible integers (representing the possible indices of the permutations of R objects),
then the inverse operation does exactly the reverse. Thus the state we obtain can
be written as: ∑

i

|i〉|Ei〉 (14.15)

in which the |E0〉 component (i.e., the state of the rest of the register when the
ancillae is in state |0〉 represents the desired (i.e., symmetrized) state, and the
other components are error states.

6. Measure the ancillae qubits in the computational basis. If they are all found to be
in state |0〉 then |Ψ 〉 has been successfully projected into the symmetric subspace
S Y M.

14.2.2 Quantum Circuit for Symmetrization

Projection into the symmetric subspace can be accomplished using a quantum cir-
cuit like that shown in Fig. 14.2, which is specialized to the case of three replicated
computations. The key insight is realize that you can build up permutations of quan-
tum states recursively. Specifically, consider a set of k+1 elements e1, e2, . . . , ek+1.
How can we construct all permutations of this set? Well suppose we already have
a permutation, eσ(1), eσ(2), . . . , eσ(k) of the first k elements, e1, e2, . . . , ek of the

Fig. 14.2 Quantum circuit for error correction via symmetrization. In this example, we sym-
metrize the state of three replicas of a 1-qubit quantum computation. Provided that, when mea-
sured, the ancillae are all found in state |0〉, the overlap between the joint correct state and the
joint symmetrized state, 〈Ψcorrect|US Y M|Ψbuggy〉, will be higher than the overlap between the joint
correct state and the joint unsymmetrized state, 〈Ψcorrect|Ψbuggy〉

14.2 Quantum Error Reduction by Symmetrization 577

set. We can then join ek+1 to the end of this permutation, creating the permuta-
tion eσ(1), eσ(2), . . . , eσ(k), ek+1. The remaining permutations can be constructed by
systematically swapping ek+1 with each of the eσ(i) in turn. This suggests the struc-
ture of a quantum circuit sufficient to generate all possible permutations of k + 1
quantum states. These represent k + 1 independent realizations of some quantum
computation.

In other words, once we have a symmetrized version of the state |ψ1〉|ψ2〉 · · · |ψk〉,
we can easily symmetrize the state |ψ1〉|ψ2〉 · · · |ψk〉|ψk+1〉 by adjoining state |ψk+1
and applying a sequence of controlled SWAP operations. As you mat recall from
Chap. 2, controlled-SWAP is synonymous with a FREDKIN gate.

Uk =
⎡
⎣ 1⊙

j=k−1

12j−1 ⊗ 1√
k− j + 1

×

⎛
⎜⎜⎝
√−j + k + 1 0 0 0

0 1
√
k − j 0

0 −√k − j 1 0
0 0 0

√−j + k + 1

⎞
⎟⎟⎠⊗ 12k−(j+1)

⎤
⎥⎥⎦

· 1√
k + 1

(
1 −√k√
k 1

)
⊗ 12k−1 (14.16)

14.2.3 Example: Quantum Error Reduction via Symmetrization

Suppose we have three replicas of the same quantum computation, such that the
correct state should be:

|Ψcorrect〉 = |ψ〉|ψ〉|ψ〉 (14.17)

where

|ψ〉 = 1

2
|0〉 −

√
3

2
i|1〉 (14.18)

Imagine that the independent computations have each drifted slightly off the cor-
rect states |ψ〉 so that what we actually have is:

|Ψbuggy〉 = |ψ1〉|ψ2〉|ψ3〉 (14.19)

where

|ψ1〉 =
∥∥∥∥1

2
|0〉 −

√
3.5

2
i|1〉

∥∥∥∥
|ψ2〉 =

∥∥∥∥ 1

2.5
|0〉 −

√
3

2
i|1〉

∥∥∥∥ (14.20)

|ψ3〉 =
∥∥∥∥ 1

1.5
|0〉 −

√
2.5

2
i|1〉

∥∥∥∥

578 14 Quantum Error Correction

where the symbol ‖ ‖ indicates the re-normalized version of the state. We expressed
the perturbed states as shown to make it easier to see that they are only slight adrift
of their ideal values.

Thus the overall correct state is:

|Ψcorrect〉 = |ψ〉|ψ〉|ψ〉

≈
(

0.125|000〉 − 0.216506i|001〉 − 0.216506i|010〉 − 0.375|011〉−
0.216506i|100〉 − 0.375|101〉 − 0.375|110〉 + 0.649519i|111〉

)

(14.21)
whereas the actual (buggy) state we have is:

|Ψbuggy〉 = |ψ1〉|ψ2〉|ψ3〉
≈

(
0.127427|000〉 − 0.15111i|001〉 − 0.275888i|010〉 − 0.327163|011〉
0.238395i|100〉 − 0.282701|101〉 − 0.51614|110〉 + 0.612066i|111〉

)

(14.22)
Hence, the overlap between the correct state and the buggy state is:

〈Ψcorrect|Ψbuggy〉 ≈ 0.979791 (14.23)

Now let us see what happens when we attempt to re-symmetrize the buggy state. By
how much does the error reduce? To construct the error symmetrization operator we
need the following gates:

U1 =
⎛
⎝

1√
2

− 1√
2

1√
2

1√
2

⎞
⎠

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

0 −
√

2
3 0

1√
3

1√
6

1√
6

− 1√
3

1√
3

− 1√
6

1√
6

1√
3

0
√

2
3 0 1√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14.24)

Then, the full error symmetrization operator is constructed from:

US Y M3 = (U−1
2 ⊗U−1

1 ⊗ 18) · FREDKIN1,5,6;6 · FREDKIN2,4,6;6
· FREDKIN3,4,5;6 · (U2 ⊗U1 ⊗ 18) (14.25)

where the subscript 3 on S Y M indicates the operator is specialized to symmetriz-
ing a triple repetition of the quantum computation, and FREDKINi,j,k;� means a
Fredkin gate inserted in � qubits with control on qubit i, and the SWAP it performs
between qubits j and k.

So now let us re-symmetrize the buggy state. That is we compute:

US Y M3 |Ψbuggy〉 = 0.129651|000〉 − 0.232026 i|001〉 − 0.246828 i|010〉

14.3 Principles of Quantum Error Correcting Codes (QECCs) 579

− 0.42901|011〉 − 0.198151 i|100〉 − 0.342299|101〉
− 0.374345|110〉 + 0.622747 i|111〉 (14.26)

Hence, the overlap between the correct state and the buggy state after re-symmetriz-
ation is:

〈Ψcorrect|US Y M3 |Ψbuggy〉 ≈ 0.996889 (14.27)

which is higher than it was before re-symmetrization. Hence, error correction by
symmetrization has succeeded in reducing the error, even without knowing what the
error was!

This idea of coupling two systems, so that measuring the state of one system
projects the state of the other into a specific subspace, can be used to perform error
correction. This technique is most appropriate for correcting several qubits that are
slightly wrong rather than correcting a single qubit that is terribly wrong [388].

Quantum error reduction by symmetrization is most suited to correcting small
independent errors (such as random phase drifts rather than bit flips) and is more
successful the more frequently it is repeated. However, certain error processes, such
as spontaneous emission, can result in sudden large errors, such as bit flips. These
kinds of errors require a different error-correction strategy based on the idea of error-
correcting codes.

14.3 Principles of Quantum Error Correcting Codes (QECCs)

Classical error correcting codes are used routinely to immunize classical computa-
tions and communications from errors such as accidental bit flips. The key idea is
to use classical codewords, i.e., carefully chosen bit strings, to encode each logical
bit we want to protect, in such a manner that a subsequent error, or perhaps multiple
errors, in a codeword can be detected and corrected. Quantum error correcting codes
(QECCs) extend this basic idea to the quantum domain but require several modifi-
cations to allow the codes to handle quantum, rather than classical, information.

14.3.1 Classical Error Correcting Codes

The simplest classical error correcting code maps the logical bits 0 and 1 into a
pair of carefully chosen bitstrings, i.e., codewords, chosen so as to be maximally
distinguishable from one another. Once so encoded, if a bit-flip occurs within a
codeword, causing it to become corrupted, the error can be readily identified and
then corrected by replacing the corrupted codeword with the “closest” legal code-
word to it. Typically, the distance metric used to assess “closeness” is the Hamming
distance between bit strings. This is defined so that, if x and y are two bit strings,
their Hamming distance is the number of places in which x and y differ.

580 14 Quantum Error Correction

Of course, far more sophisticated classical error-correcting codes can be devised
by elaborating on this basic idea, e.g., by finding ways to encode tuples of logical
bits (which one can think of as classical “symbols”) as longer tuples of physical bits
(the codewords) such that multiple bit-flips, bit drops, or bit insertions, within the
codewords are detectable and correctable to the closest legal symbols. NASA did
much of the pioneering work in error-correcting codes, motivated by the needs of
spacecraft to communicate reliably with Earth over exceedingly large distances and
extremely noisy channels. But the field has now blossomed into a rich assortment
of techniques that are used routinely in terrestrial telecommunications and data stor-
age. Not surprisingly, the field of error-correcting codes has deep roots in Shannon
information theory discussed in Chap. 11.

14.3.2 Issues Unique to Quantum Error Correcting Codes

Unfortunately, error correcting codes cannot be used in quite the same way in the
quantum context as they are used in classical context. The problem is that, even if
we have mapped the qubits into quantum codewords, we still cannot read a poten-
tially corrupted quantum codeword directly at any intermediate step of a quantum
computation in an attempt to detect an error. To do so, would cause the superposi-
tion to collapse in some unpredictable way, thereby erasing whatever remnants of
correct information lay buried in the corrupted encoded state. In fact, such measure-
ments would be likely to make the error worse rather than better. In the early years
of quantum computing, this apparent prohibition on reading the corrupted encoded
state to extract an error-syndrome led some researchers to speculate that quantum
error-correcting codes could not exist [227, 300, 301, 502]. This cast severe doubt
on the feasibility of quantum computers, because it seemed as though they would
require absolute perfection in fabrication, initialization, operation, and readout—
which are not likely, in practice, to be achievable. Thus, the apparent impossibility
of quantum error-correcting codes seemed like a major obstacle to the development
of quantum computing, because other quantum error correction schemes, such as
error-correction via symmetrization, were insufficient to correct all the types of er-
rors that were likely to arise in real quantum computing hardware.

The situation changed in 1995, however, when Peter Shor published the first ac-
count of a viable quantum error correcting code [456]. Shor’s idea was to encode
each logical qubit whose state we wanted to protect within a specially crafted entan-
gled state of several qubits. The encoding scheme was such that any error afflicting
one of these entangled qubits thereafter could be identified by making measurements
on a subset of the qubits to obtain what was called an “error syndrome”. Once the
error syndrome was known, the error that afflicted the logical state we were trying to
protect could be reversed by applying an appropriate sequence of unitary gates (i.e.,
error recovery operations) that were different depending on whichever error syn-
drome had been obtained. All subsequent quantum codes have followed this basic
pattern.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 581

In the following sections we describe the theory of quantum error correcting
codes. We will start by specifying the error model as we have to know what kinds
of errors can afflict our logical qubits in order to devise codes to detect and correct
such errors. We then outline the properties any quantum error correcting code needs
to possess to enable it to protect quantum information that is, by its very nature,
unreadable without corruption. Finally, we will look at error diagnosis and recovery.

14.3.3 Modeling Errors in Terms of Error Operators

We can think of an “error” as change in the state of our logical qubit that is caused
because it is not as well isolated from its environment as it is supposed to be. In
this case, instead of the quantum mechanical evolution being the desired unitary
evolution on the qubit alone, we obtain instead an undesired unitary evolution on
the joint state of the qubit and its environment. If we then considered the state of the
qubit alone, it would no longer be pure but rather now mixed. Thus, we model the
error by imagining that our qubit has accidentally become part of a larger quantum
system.

If we adopt this perspective, we can develop a mathematical model of how dif-
ferent types of errors will affect the state of our qubit. Let us imagine that the qubit
starts off in state |ψ〉 = α|0〉 + β|1〉 and the environment starts off in state |E〉. As
the qubit and its environment are assumed to start off independently of one another
their initial joint state is a product state of the form:

|Ψ 〉 = |ψ〉 ⊗ |E〉 = (α|0〉 + β|1〉)⊗ |E〉 (14.28)

Under a general unitary evolution, U , the |0〉|E〉 and |1〉|E〉 components would,
ignoring normalization, evolve according to:

U(|0〉 ⊗ |E〉) = |0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉
U(|1〉 ⊗ |E〉) = |0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉

(14.29)

where |E00〉, |E01〉, |E10〉, and |E11〉 do not have to be orthogonal to one another.
Thus, a qubit in state |ψ〉 = α|0〉 + β|1〉 evolves as:

U |ψ〉|E〉 = U((α|0〉 + β|1〉)|E〉)
= α(|0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉)+ β(|0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉) (14.30)

We can re-write the right hand side of (14.30) in terms of distinct states for the qubit.
The resulting form indicates that the state of the environment is correlated with the

582 14 Quantum Error Correction

state of the qubit. In fact, the two are entangled.

U |ψ〉|E〉 = α(|0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉)+ β(|0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉)

= (α|0〉 + β|1〉)⊗ |E00〉 + |E11〉
2

(no error)

+ (α|0〉 − β|1〉)⊗ |E00〉 − |E11〉
2

(phase flip)

+ (α|1〉 + β|0〉)⊗ |E01〉 + |E10〉
2

(bit flip)

+ (α|1〉 − β|0〉)⊗ |E01〉 − |E10〉
2

(joint phase flip & bit flip)

(14.31)

Loosely speaking,2 this allows us to interpret the undesired unitary evolution of the
joint state of the qubit and its environment as if one of four possible events have
afflicted the qubit: no-error occurred (in which case α|0〉 + β|1〉 → α|0〉 + β|1〉),
a phase-flip error occurred (in which case α|0〉 + β|1〉 → α|0〉 − β|1〉), a bit-flip
error occurred (in which case α|0〉 + β|1〉 → α|1〉 + β|0〉), or simultaneous phase
flip and bit flip errors occurred (in which case α|0〉 + β|1〉 → α|1〉 − β|0〉 up to an
unimportant overall phase).

The alert reader will recognize these four error modes as being describable by
the action of one of the Pauli matrices, 1, X, Y , and Z, on the error-free qubit state
|ψ〉 = α|0〉 + β|1〉. Recognizing that a Pauli Y operation is Y = X · Z up to an
overall phase factor, we can write:

α|0〉 + β|1〉 1−→ α|0〉 + β|1〉 (no error) (14.32)

α|0〉 + β|1〉 X−→ α|0〉 − β|1〉 (phase flip error) (14.33)

α|0〉 + β|1〉 Z−→ α|1〉 + β|0〉 (bit flip error) (14.34)

α|0〉 + β|1〉 X·Z−→ α|1〉 − β|0〉 (simultaneous phase flip & bit flip error) (14.35)

where X · Z =−iY . Thus, essentially, the error afflicting the qubit can be thought
of as an “unwanted” evolution of the qubit under the action of one of the four Pauli
matrices. These correspond to no-error (1), a bit-flip error (X), a phase-flip error
(Z), and a joint bit-flip and phase-flip error (Y = iX · Z). In retrospect, this is not
surprising perhaps, because the Pauli matrices form a basis for all 2 × 2 matrices.

That is, any matrix
(
a b

c d

)
can be factored as:

(
a b

c d

)
= a + d

2
1+ b+ c

2
X+ i(b− c)

2
Y + a − d

2
Z (14.36)

2We say “loosely speaking” because we can only really adopt this interpretation when the states of
the environment are orthogonal to one another.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 583

We can extend the aforementioned error model to multiple qubits by assuming
the various error types afflict each qubit independently. Thus, the operators describ-
ing all possible independent errors that might afflict n-qubits are precisely those of
the Pauli group Pn—the group consisting of all direct products of the Pauli opera-
tors 1, X, X ·Z, and Z having overall phase±1 or±i. Thus, if we were interested in
encoding, say, one qubit into an entangled state of five qubits, there would (ignoring
overall phase) be 45 = 1024 distinct error operators formed from the direct product
of a single qubit error operator, 1, X, Z, X ·Z, for each qubit in all possible ways.
However, if we only wanted to guarantee the ability to correct up t errors amongst
any of these five qubits, then we need only consider a sub-group of these Pauli op-
erators that contained at most t Pauli terms (treating X · Z as one “Pauli” term as
X ·Z =−iY).

The error operators that make up the Pauli group possess certain properties that
will be of use to us later:

• The eigenvalues of Eα ∈ Pn are ±1 or ±i.
• Squaring an error operator is the identity up to a real phase factor of ±1, i.e.,
∀Eα ∈ Pn : E 2

α =±1
• The group is closed under the dot product of its elements, i.e., ∀Eα, Eβ ∈ Pn :

Eα · Eβ ∈ Pn

• Pairs of error operators either commute or anti-commute, i.e., ∀Eα, Eβ ∈ Pn :
[Eα, Eβ] = 0 (commute) or {Eα, Eβ} = 0 (anti-commute)

Later we will specialize our interest to sub-groups of these operators, e.g., the sub-
group of error operators that contain at most one Pauli error per operator.

14.3.4 Protecting Quantum Information via Encoding

Next we turn to the question of how to encode the logical state we want to protect
within a larger Hilbert space so that any errors that subsequently afflict our encoded
state can be guaranteed to be detectable and correctable.

The trick, as John Preskill says, is “to use entanglement to fight entanglement”.
The key idea is to entangle, in a special way, a logical qubit we want to protect with
n ancillae qubits such that a subsequent measurement, in the computational basis,
of just the n ancillae qubits will project the (now specially entangled) (n+ 1)-qubit
state into a different orthogonal subspace depending on which type of error (“bit-
flip”, “phase-flip” “joint bit-flip and phase-flip”, or “no-error”) has afflicted which
of the n + 1 qubits. The set of quantum states that span this encoding space are
called the “quantum codewords”, {|ψi〉}. The rationale for doing this is that, if the
right set of measurements on n of the (n+ 1) qubits can project the (n+ 1)-qubit
state into a different orthogonal subspace depending on what error occurred, we can
use the outcome of these measurements to serve as a so-called “error-syndrome”,
which diagnoses what error occurred. Once, the error has become known, it then
becomes easy to correct it by applying the appropriate unitary operator.

584 14 Quantum Error Correction

To ensure our quantum codewords will behave in the way need them to, they
must be designed with the type of error we want them to protect against in mind.
In fact, a little thought allows us to stipulate a criterion that the quantum codewords
will have to meet in order to guarantee that we can always detect an error [270].

Quantum Codewords: Criterion for Errors to Be Detectable For an error Eα ∈
E that afflicts a quantum codeword to be detectable then, for every pair of valid
quantum codewords |ψi〉 and |ψj 〉 that span the encoding space, we require:

〈ψj |Eα|ψi〉 = cαδij (14.37)

When this criterion is met, it will guarantee that an error-afflicted codeword, Eα|ψi〉,
will be distinguishable from all the valid codewords, |ψj 〉.

The aforementioned criterion tells us a property our codewords will need to pos-
sess to be able to detect errors. But what property must they possess to also be able
to correct errors? Well, what do we need to ensure to guarantee we can correct any
error? We have to be certain that we won’t confuse one error with another when act-
ing on different quantum codewords. Rather, the error syndrome has to be unique for
each of the different types of errors acting on the different possible quantum code-
words. This basic strategy is the foundation of all quantum error correcting codes
(QECCs).

Thus, to ensure our codewords will be useful for correcting errors, in addition
to detecting them, we therefore need them to satisfy the following correctability
criterion.

Quantum Codewords: Criterion for Errors to Be Correctable For an error
Eα ∈ E that afflicts a quantum codeword to be correctable, it needs to be distin-
guishable from all errors afflicting all other codewords. That is, if |ψi〉 and |ψj 〉 are
any pair of valid codewords, we require:

〈ψj |E †
β Eα|ψi〉 = cαβδij ∀Eα, Eβ ∈ E (14.38)

When this criterion is met, we can guarantee that an error Eα ∈ E afflicting one
codeword is distinguishable from an error Eβ ∈ E afflicting a different codeword. In
this case we would have 〈ψi |E †

β Eα|ψj 〉 = 0. Furthermore, the criterion also guaran-
tees that when different error operators afflict the same codeword, as described by
〈ψi |E †

β Eα|ψi〉, that the result is independent of the codeword. This means that nei-
ther the environment nor the decoding operation learns anything about the encoded
state during error detection and correction. This is an essential requirement to be
sure the error detection and correction procedures do not cause more damage to the
state we are trying to protect.

Thus, it should be apparent that the family of errors that we want to be able to de-
tect and correct, and the number of qubits into which we encode each logical qubit
we want to protect, will influence the options available to us for picking quantum

14.3 Principles of Quantum Error Correcting Codes (QECCs) 585

codewords that meet the detectability and correctability criteria. As we show be-
low, quantum codewords having the desired properties can be constructed, and we
will give examples of 9-qubit, 7-qubit, and 5-qubit coding schemes that are able to
correct a single Pauli error, 1, X, Z, X ·Z, afflicting any of their qubits.

14.3.5 Digitizing and Diagnosing Errors by Measuring Error
Syndromes

A striking aspect of such quantum error-correcting codes, is that the act of measur-
ing the ancillae qubits to obtain the error-syndrome can be viewed as determining
which error has afflicted which qubit. Prior to such measurements, which error (if
any) has occurred is undetermined. In fact, pre-measurement, the state may contain
a superposition of possible errors any of which are still possible outcomes. How-
ever, by making the error-syndrome measurements a particular error is determined.
Forcing such an error decision is a rational thing to do, because the error then be-
comes known, and a large known error is entirely correctable, whereas a small un-
known one is not. So the cleverness of quantum error-correcting codes is that they
exploit the superposition-destroying nature of quantum measurements to render an
unknown error known, and entanglement to link the measured error-syndrome to
the error-type afflicting the logical qubit.

14.3.6 Reversing Errors via Inverse Error Operators

Once the error becomes known, as a result of measuring the error syndrome, it can
be corrected by applying the inverse of the appropriate Pauli error operator.

14.3.7 Abstract View of Quantum Error Correcting Codes

The general approach to quantum error correcting codes outlined above, can be ab-
stracted into a theory based on the properties of operators and sub-spaces. Stepping
back a moment, the general idea is to encode a logical qubit whose state we want to
protect within a set of n-qubits, i.e., within a 2n-dimensional Hilbert space, such that
there is a special sub-space C , called the codespace, that is spanned by a set of quan-
tum states, span({|ψi〉}), i.e. the quantum codewords. The codewords are carefully
chosen so that we can guarantee, for a given set of error operators, E , that the error
detectability and error correctability criteria are met. That is, every error operator
Eα ∈ E takes a codeword into a state that is orthogonal to all other codewords, and
the errors induced by one error operator can be distinguished from those induced by
another. Thus every error is uniquely identifiable and hence correctable.

586 14 Quantum Error Correction

14.3.7.1 Minimal Distance of a Code

Our primary concern is how many errors a given code can correct? We approach
this by determining the distance of the code.

Let us start with the error operators. These are all direct products of 1-qubit
Pauli matrices and the identity matrix. Define the weight of such an operator to be
the number non-identity operators in its direct product representation. We can then
define the minimum distance of a code to be equal to the smallest weight of any
operator Eγ ∈ E such that the error correctability criterion (14.38) is violated.

What does this imply about the relationship between the distance of a code and
how many errors it can correct? Well, for a QECC to be useful, it has to be able
to distinguish between how different errors affect different codewords. So in the
correctability criterion we use the operator E †

β Eα . But if error operators Eα and Eβ

are in the group E , then so is the operator Eγ = E †
β Eα . If we are working with a sub-

group of error operators such that each operator contains at most t Pauli matrices,
then the operator E †

β Eα could have weight up to 2t . To guarantee correctability we
therefore require the minimum distance d to exceed this potential weight, i.e., d ≥
2t + 1. This implies that our code can only be guaranteed to correct up to at most
t = . d−1

2 / general errors, i.e., bit-flips, phase-flips, or joint bit-flips and phase flips.

14.3.7.2 (n,K,d) Quantum Error Correcting Code

Thus, the principal characteristics of a quantum code are the number of qubits used
in the encoding, n, the dimension of the codespace, K , and the minimum distances
of the code d , which is related to the maximum number of errors the code can be
guaranteed to correct, tmax, via tmax = . d−1

2 /. Quantum error correcting codes are
therefore often described using the notation (n,K,d). An (n,K,d) code can detect

up to (d − 1) errors, and correct up to . (d−1)
2 / general 1-qubit errors. The smallest

quantum error correcting code able to correct a single general error is a (5,2,3)
code. In this case, n= 5, K = 2, d = 3 and so tmax = . d−1

2 / = 1.

14.3.7.3 Additive (Stabilizer) Code Versus Non-additive Code

Within the class of quantum codes, the most important distinction is between the
additive codes and the non-additive ones. If the codespace of a quantum error
correcting code is specified by the joint +1 eigenspace of an Abelian sub-group
of local Pauli operators (i.e., operators writable as a direct product of Pauli ma-
trices that all commute with one another), then the code is said to be an “addi-
tive” or “stabilizer” code. That is if the errors are specified as an Abelian sub-
group of the Pauli group, and have the property that on the codewords {|ψi〉} that
∀Eα ∈ E ∈ Pn : Eα|ψi〉 = +1|ψi〉, then the code is an additive or stabilizer code.

If the aforementioned condition on the codespace does not hold, the code is “non-
additive”.

14.3 Principles of Quantum Error Correcting Codes (QECCs) 587

Table 14.4 Notation often used to describe classical and quantum error-correcting codes

Notation Name Meaning

(n,K,d) Classical code An n-bit classical code having a K-dimensional
codespace and distance d

(n,K,d) Quantum code An n-qubit quantum code having a K-dimensional
codespace and distance d. This class includes additive
and non-additive quantum codes. The latter have the
potential to be more efficient than additive codes. Note
that the codespace dimension of a non-additive code
need not be a power of two

[n, k, d] Quantum stabilizer code An additive (stabilizer) n-qubit quantum code having a
2k-dimensional codespace and distance d. This class of
quantum codes includes the 9-qubit Shor, 7-qubit
Steane, and 5-qubit Laflamme codes. The codespace
dimension of an additive code is always a power of two

The notation (n,K,d) is used to describe both additive and non-additive quan-
tum codes. However, the codespace dimension of additive codes is always a power
of two, i.e., K = 2k for some k, whereas this is not necessarily so for a non-additive
code. The additive (stabilizer) codes are often described in terms of a special nota-
tion [n, k, d] (where k = log2 K). Thus, whereas we can speak of an additive code
protecting k qubits within n-qubit quantum codewords, we cannot really say this for
a non-additive code since log2 K is not necessarily an integer. However, the greater
complexity of non-additive codes is offset by their potential to be more efficient than
additive codes. Table 14.4 summarizes the notation we just discussed.

Quantum codes have other characteristics that can be of interest including
whether they are pure or impure, degenerate or non-degenerate, and perfect or im-
perfect.

14.3.7.4 Pure Versus Impure Code

If distinct elements of E produce orthogonal results, the code is said to be pure.
Otherwise it is impure.

14.3.7.5 Degenerate Versus Non-degenerate Code

If linearly independent correctable errors acting on the codespace are guaranteed to
yield linearly independent states, the code is said to be non-degenerate. Thus, a non-
degenerate code assigns a unique linearly independent error-syndrome to each pos-
sible error. Most known quantum error correcting codes are non-degenerate additive
(stabilizer) codes. If a additive (stabilizer) code is also a pure code, it is guaranteed
to be non-degenerate, but the converse need not be true.

588 14 Quantum Error Correction

Conversely, if linearly independent correctable errors acting on the codeword
space can produce linearly dependent states, the code is said to be degenerate. De-
generate codes are interesting because they have the potential to be much more
efficient than non-degenerate codes.

Theorems placing bounds on non-degenerate quantum codes do not necessarily
apply to degenerate codes. Therefore, before applying a theorem, verify that the
theorem holds for the type of code with which you are working.

14.3.7.6 Perfect Versus Imperfect Code

If every error syndrome corresponds to a correctable error, the code is said to be
perfect otherwise it is imperfect.

Having re-considered quantum correcting codes in the abstract let us now turn
to a concrete example of the optimal additive quantum code able to correct a single
general error.

14.4 Optimal Quantum Error Correcting Code

A natural question to ask is how good a quantum error correcting code can be? That
is what are the tradeoffs between the number of qubits used in the codeword, the
number of qubits the code protects, and the number of general errors that such a
code can correct? The following simple argument suggests a [5,1,3] code is the
smallest code able to correct a single general error.

14.4.1 Laflamme-Miquel-Paz-Zurek’s 5-Qubit Code

Imagine a code that encodes one logical qubit into n qubits and we wish to protect
against a single error on any one of these n qubits. If we assume that errors are
sufficiently rare that at most one error can afflict one of the n qubits, then each
qubit can undergo one of three types of error so there are 3n ways the error can
be introduced. Add to this the possibility that none of the qubits have an error, we
obtain a total of (3n+1) possible error “diagnoses”. If we are to distinguish between
the possible (3n+ 1) error diagnoses by making measurements on n− 1 qubits, i.e.,
the ancillae, then these can index 2n−1 different states, and so the code has to satisfy
(3n+ 1)≤ 2n−1. The smallest integer satisfying this condition is n= 5. Hence, the
smallest code sufficient to correct a single general error must be at least a 5-qubit
code. Such a 5-qubit code was constructed by Raymond Laflamme, Cesar Miquel,
Pablo Paz, and Wojciech Zurek [297] in 1996.

14.4.2 Error Operators for the 5-Qubit Code

In the Laflamme-Miquel-Paz-Zurek 5-qubit code we wish to be able to correct a
general error amongst the five qubits in the encoded state. Hence, the only error

14.4 Optimal Quantum Error Correcting Code 589

operators we need consider are:

ENone = 1⊗ 1⊗ 1⊗ 1⊗ 1

EB5 = 1⊗ 1⊗ 1⊗ 1⊗X

EBP5 = 1⊗ 1⊗ 1⊗ 1⊗X ·Z
EP5 = 1⊗ 1⊗ 1⊗ 1⊗Z

EB4 = 1⊗ 1⊗ 1⊗X⊗ 1

EBP4 = 1⊗ 1⊗ 1⊗X ·Z⊗ 1

EP4 = 1⊗ 1⊗ 1⊗Z⊗ 1

EB3 = 1⊗ 1⊗X⊗ 1⊗ 1

EBP3 = 1⊗ 1⊗X ·Z⊗ 1⊗ 1

EP3 = 1⊗ 1⊗Z⊗ 1⊗ 1

EB2 = 1⊗X⊗ 1⊗ 1⊗ 1

EBP2 = 1⊗X ·Z⊗ 1⊗ 1⊗ 1

EP2 = 1⊗Z⊗ 1⊗ 1⊗ 1

EB1 = X⊗ 1⊗ 1⊗ 1⊗ 1

EBP1 = X ·Z⊗ 1⊗ 1⊗ 1⊗ 1

EP1 = Z⊗ 1⊗ 1⊗ 1⊗ 1

(14.39)

which includes, you notice, the possibility of there being no errors at all, i.e., ENone.

14.4.3 Encoding Scheme for the 5-Qubit Code

In the Laflamme-Miquel-Paz-Zurek code a single logical qubit is encoded in a 5-
qubit entangled state of the form:

|0〉L = 1

2
√

2

(|00000〉 + |00110〉 + |01001〉 − |01111〉
+ |10011〉 + |10101〉 + |11010〉 − |11100〉)

|1〉L = 1

2
√

2

(|11111〉 + |11001〉 + |10110〉 − |10000〉
− |01100〉 − |01010〉 − |00101〉 + |00011〉)

(14.40)

A general state of a qubit we want to protect, |ψ〉 = α|0〉 + β|1〉, is mapped into
an entangled state of the form |ψ〉L = α|0〉L + β|1〉L. Subsequently, if a single bit-
flip, phase-flip, or joint bit-flip and phase-flip afflicts any of these five qubits, there
is sufficient information in their entanglement to be able to determine, from the
measured error syndrome, the operation that must be performed on the unmeasured
qubit to restore it to its original state |ψ〉 = α|0〉 + β|1〉.

590 14 Quantum Error Correction

Figure 14.3 shows a quantum circuit for creating the entangled encoded state
used in the Laflamme-Miquel-Paz-Zurek quantum error-correcting code.This circuit
entangles a single qubit in an arbitrary state |ψ〉 with four ancillae qubits, each
initially in state |0〉, to create the encoded state |ψ〉L = α|0〉L+β|1〉L, having basis
vectors |0〉L and |1〉L as in (14.40), and single qubit gates L and L† defined by:

L = 1√
2

(
1 −1
1 1

)

L† = 1√
2

(
1 1
−1 1

) (14.41)

After such an encoding, the 5-qubit state may then be afflicted with a single
bit-flip, phase-flip, or joint bit-flip and phase-flip in the region marked “ERROR”
in Fig. 14.4. This would correspond to an error being introduced while an encoded
qubit was being stored in a quantum memory. For example, if a single bit-flip occurs

Fig. 14.3 Quantum circuit for encoding unknown quantum state |ψ〉 amongst the amplitudes of
a 5-qubit entangled state such that any subsequent bit flip, phase shift or joint bit flip/phase shift
error can be detected and corrected

Fig. 14.4 Quantum circuit implementing the Laflamme-Miquel-Paz-Zurek 5-qubit quantum error
correcting code. The left hand size of the circuit encodes a single logical qubit in an entangled
5-qubit state. In the encoded form, the state is protected against a single bit-flip, phase-flip, or
joint bit-flip and phase-flip acting on any of the five qubits. To diagnose and correct the error,
the encoded state must be decoded and the error syndrome measured. Depending on the outcome,
|a〉|b〉|c〉|d〉, a unitary operator Uabcd is applied to the top qubit which rotates it into the original
state of the logical qubit and hence the error is undone

14.4 Optimal Quantum Error Correcting Code 591

on the third qubit of the encoded state |ψ〉L, the state would change according to:

|ψ〉L EB3−→−β|01111〉 + α|11111〉 (14.42)

Likewise, if a single phase-flip occurs on the fourth qubit of the encoded state |ψ〉L,
the state would change according to:

|ψ〉L EP4−→ α|01110〉 − β|11110〉 (14.43)

Similar state changes are induced by a bit-flip, a phase-flip, or a joint bit-flip and
phase-flip on any of the qubits in the encoded state |ψ〉L.

Now that we know how an error changes the encoded state, we next need to
figure out how to diagnose what error has occurred and determine the appropriate
corrective action to undo that error and restore the logical qubit to its pristine state
|ψ〉 = α|0〉 + β|1〉. To do this, we will use the part of the circuit in Fig. 14.4 to the
right of the region marked “ERROR”.

14.4.4 Error Syndromes & Corrective Actions for the 5-Qubit Code

To diagnose what single error has afflicted the 5-qubit encoded state, we run the
buggy encoded state through the decoding circuit shown in Fig. 14.5. This is just
the encoding circuit run in the reverse direction. The decoding operation pro-
duces an output entangled state that can be factored as a superposition of the
form

∑1
a=0

∑1
b=0

∑1
c=0

∑1
d=0 αabcd |ϕabcd〉|abcd〉 where |abcd〉 is a 4-bit com-

putational basis vector, and the |ϕabcd〉 states are unitary rotations of state |ψ〉 =
α|0〉 + β|1〉. We can, given knowledge of the encoding-decoding circuitry and the
error-modes, build a lookup table that gives the required rotation to map each |ϕ〉
back into |ψ〉. Such rotation are shown in Table 14.5. Thus, by measuring the four
ancillae qubits, in the computational basis, in the output from the decoding circuit
we can project out a specific state |ϕabcd〉 state, and use Table 14.5 to determine
the corrective action needed to recover the correct state (|ψ〉 = α|0〉 + β|1〉) of the
logical qubit.

Fig. 14.5 Quantum circuit for decoding a (potentially corrupted) entangled state and measuring
its error syndrome to reveal whether or not an error had occurred, and if so, what action to apply
to the top qubit to undo the error

592 14 Quantum Error Correction

Table 14.5 To protect an unknown quantum state |ψ〉 while in storage in a quantum memory
register, we entangle |ψ〉 with four ancilla qubits each prepared initially in the state |0〉, using the
left hand side of the quantum circuit shown in Fig. 14.4. Once encoded, the state can be corrupted
by a single bit-flip, a single phase-flip or a single phase-flip followed by a bit-flip on any of the five
qubits. However, when we want to retrieve our protected state, we decode the entangled state by
running it through the right hand side of the circuit shown in Fig. 14.4 and then “measure the error
syndrome”, i.e., read the bit values of the four ancilla qubits. Based on the observed values we can
then look up corrective action to apply to the top qubit to restore it to its pristine (yet unknown)
state. In the table an error BPi means a phase flip followed by a bit flip on the i-th qubit

Error type State produced
|ψ〉|a〉|b〉|c〉|d〉

Error
syndrome

Corrective
action
Uabcd

Result

None −β|01011〉+α|11011〉 {1,0,1,1} Z ·X (α|0〉 + β|1〉)|1011〉
B1 β|01000〉 + α|11000〉 {1,0,0,0} X (α|0〉 + β|1〉)|1000〉
B2 −β|00010〉+α|10010〉 {0,0,1,0} Z ·X (α|0〉 + β|1〉)|0010〉
B3 −β|01111〉+α|11111〉 {1,1,1,1} Z ·X (α|0〉 + β|1〉)|1111〉
B4 −β|01001〉+α|11001〉 {1,0,0,1} Z ·X (α|0〉 + β|1〉)|1001〉
B5 −β|01010〉+α|11010〉 {1,0,1,0} Z ·X (α|0〉 + β|1〉)|1010〉
P1 α|00110〉 − β|10110〉 {0,1,1,0} Z (α|0〉 + β|1〉)|0110〉
P2 β|01101〉 + α|11101〉 {1,1,0,1} X (α|0〉 + β|1〉)|1101〉
P3 β|00011〉 + α|10011〉 {0,0,1,1} X (α|0〉 + β|1〉)|0011〉
P4 α|01110〉 − β|11110〉 {1,1,1,0} Z (α|0〉 + β|1〉)|1110〉
P5 α|00000〉 − β|10000〉 {0,0,0,0} Z (α|0〉 + β|1〉)|0000〉
BP1 −α|00101〉−β|10101〉 {0,1,0,1} Z ·X ·Z ·X (α|0〉 + β|1〉)|0101〉
BP2 β|00100〉 + α|10100〉 {0,1,0,0} X (α|0〉 + β|1〉)|0100〉
BP3 β|00111〉 + α|10111〉 {0,1,1,1} X (α|0〉 + β|1〉)|0111〉
BP4 α|01100〉 − β|11100〉 {1,1,0,0} Z (α|0〉 + β|1〉)|1100〉
BP5 α|00001〉 − β|10001〉 {0,0,0,1} Z (α|0〉 + β|1〉)|0001〉

14.4.5 Example: Correcting a Bit-Flip

Suppose the logical qubit we wish to protect is in state |ψ〉 = α|0〉+β|1〉. To protect
this qubit against error we augment |ψ〉 state with four ancillae qubits each prepared
in state |0〉 to give us the input state:

|Ψin〉 = α|00000〉 + β|10000〉 (14.44)

Encoding this state using the Laflamme-Miquel-Paz-Zurek 5-qubit encoding circuit
gives us the state:

|Ψmiddle〉 = 1

2
√

2

(
α|00000〉 + β|00011〉 − β|00101〉 + α|00110〉

+ α|01001〉 − β|01010〉 − β|01100〉 − α|01111〉
− β|10000〉 + α|10011〉 + α|10101〉 + β|10110〉
+ β|11001〉 + α|11010〉 − α|11100〉 + β|11111〉) (14.45)

14.5 Other Additive Quantum Error Correcting Codes 593

This is an entangled state that can now protect our logical qubit from error. For
example, imagine introducing a bit-flip error on the third qubit in this state creating
the buggy state:

|Ψbuggy〉 = 1

2
√

2

(
α|00100〉 + β|00111〉 − β|00001〉 + α|00010〉

+ α|01101〉 − β|01110〉 − β|01000〉 − α|01011〉
− β|10100〉 + α|10111〉 + α|10001〉 + β|10010〉
+ β|11101〉 + α|11110〉 − α|11000〉 + β|11011〉) (14.46)

Decoding the buggy state using the Laflamme-Miquel-Paz-Zurek decoding circuit
gives us the state:

|Ψout〉 = −β|01111〉 + α|11111〉 (14.47)

Reading ancillae state |abcd〉 then gives the error syndrome is 1111. Using the
lookup table, Table 14.5, the appropriate corrective action to apply to the top (un-
measured qubit) should be Z ·X. Applying this operation, we see that we do indeed
restore the top qubit to its error free state |ψ〉 = α|0〉 + β|1〉.

Quantum error correcting codes are therefore feasible even though we are unable
to read the encoded data directly without necessarily perturbing the state being read.
The proof of the feasibility of QECCs was one of the most important discoveries in
the development of quantum computing because their existence means that it is not
necessary to fabricate, initialize, and run quantum computers perfectly in order to
obtain correct results.

14.5 Other Additive Quantum Error Correcting Codes

The 5-qubit was not the first quantum error correcting code discovered that was able
to correct for a single general error amongst the encoded qubits. In fact, two other
codes pre-date it, but both require more qubits to encode the data being protected.

14.5.1 Shor’s 9-Qubit Code

The first quantum error-correcting code (QECC) was devised by Peter Shor in 1995
[456]. It encodes each logical qubit in nine physical qubits in such manner that a
single bit-flip, phase-flip, or joint bit-flip and phase flip, afflicting any of these nine
qubits can be identified, and undone by performing an appropriate unitary operation
which differs depending on the outcome of the ancilla measurements.

The encoding step in the 9-qubit code involves mapping each logical qubit to
encoded form according to:

|0〉L = 1

2
√

2
(|000〉 + |111〉)⊗ (|000〉 + |111〉)⊗ (|000〉 + |111〉)

|1〉L = 1

2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

(14.48)

594 14 Quantum Error Correction

Once in this form the encoded data is protected against a single error in any qubit
amongst any of the nine qubits.

14.5.2 Steane’s 7-Qubit Code

In 1996 Andrew Steane improved upon Peter Shor’s 9-qubit code with a 7-qubit
code [477, 478]. The encoding step in the 7-qubit code involves mapping each log-
ical qubit to encoded form according to:

|0〉L = 1

2
√

2

(|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉)

|1〉L = 1

2
√

2

(|1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+ |1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)

(14.49)

Once in this form the encoded data is protected against a single error in any qubit
amongst any of the seven qubits.

14.6 Stabilizer Formalism for Quantum Error Correcting Codes

The foregoing quantum error correcting codes were either constructed based on
analogies with pre-existing classical codes, or discovered via extensive computer
searches. As a result, each code was created in a somewhat makeshift fashion and
few, if any, general design principles for quantum codes were learned. One could
easily get the impression, therefore, that quantum error correcting codes are discov-
ered serendipitously rather than being constructed systematically to meet desired
criteria. Furthermore, one could also get the impression, from our description of the
5-qubit Laflamme-Miquel-Paz-Zurek code, that error correction requires that we pe-
riodically map the encoded (and therefore protected qubit) back to its (unprotected)
logical basis at which times the qubit is exposed to uncorrectable errors. Neither of
these impressions is correct.

In 1996 Daniel Gottesman invented a unified way to think about an important
sub-class of QECCs that allows them to be constructed in a more systematic fash-
ion and to perform error correction entirely within the encoded basis so we never
re-expose the protected quantum information during the error correction procedure.
The 9-qubit Shor, 7-qubit Steane, and 5-qubit Laflamme-Miquel-Paz-Zurek codes
as special cases of Gottesman’s formalism, which later became known as the “stabi-
lizer formalism” [207, 208]. Using the stabilizer formalism it becomes straightfor-
ward to design QECCs to protect against a given set of errors, and to find quantum
circuits that will perform the required error diagnosis and recovery operations while
staying entirely within the encoded (and therefore protected) basis.

Rather than discuss the stabilizer formalism in the abstract, we will use it to
re-analyze the 5-qubit Laflamme-Miquel-Paz-Zurek code, which is the best QECC
capable of correcting a single bit-flip, phase-flip, or joint bit-flip and phase-flip af-
flicting any one of five qubits.

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 595

14.6.1 Group Theory for Stabilizer Codes

As the stabilizer formalism relies upon ideas from group theory, we will begin with
a brief summary of the key ideas of group theory.

A “group”, G , is a collection of objects, g1, g2, . . . ∈ G , together with a multipli-
cation operation “·”, which possess the following properties:

Group Theory

• Closure: the group is closed under “·”, i.e., if gi, gj ∈ G then gi · gj ∈ G .
• Associativity: i.e., (gi · gj) · gk = gi · (gj · gk).
• Existence of Identity: the group contains an identity element, i.e., ∃e ∈ G such

that ∀gi ∈ G, e · gi = gi .
• Existence of Inverse: each member of the group has an inverse, i.e., ∀gi ∈ G ,
∃g−1

i ∈ G s.t. gi · g−1
i = e.

In the context of quantum error correcting codes, the following types of groups
and concepts are the most important.

Types of Groups

• Pauli group: the group consisting of tensor products of the Pauli matrices, 1, X,
Y , Z, with an overall phase of ±1 or ±i.

• Finite group: a group G is finite if the number of elements in it is finite, i.e.,
the group contains only the elements g1, g2, . . . , gn ∈ G for some finite positive
integer n.

• Abelian group: a group is “Abelian” iff ∀gi, gj ∈ G, gi · gj = gj · gi .
• Sub-group: S is a sub-group of G iff the elements s1, s2, . . . ∈ S are a subset of

the elements of g1, g2, . . . ∈ G , and obey the rules for a group in their own right
under the same group multiplication operator as that of G .

The final concept we shall need is that of a “group generator”. The generator,
{g1, g2, . . . , g�}, of a group G is the smallest subset of elements of G sufficient to
generate every member of G under the multiplication operation for G . That is we
can obtain any element of G from products of the elements in {g1, g2, . . . , g�} with
repetitions allowed.

We can now describe the basic machinery of the stabilizer formalism using these
group-theoretic concepts.

14.6.2 The Stabilizer

A “stabilizer” S = {S1, S2, . . . , SK } is a carefully chosen group of tensor products
of the Pauli operators, Si ∈ {1,X,Z}⊗n whose elements are required have a simul-
taneous eigenvalue of +1. That is, for some family of states |ψ〉L the stabilizer S is

596 14 Quantum Error Correction

a group of tensor products of Pauli operators such that:

S1|ψ〉L = +1|ψ〉L
S2|ψ〉L = +1|ψ〉L

...

SK |ψ〉L = +1 |ψ〉L

(14.50)

Furthermore, it is known from pure mathematics that a group of operators can only
share a simultaneous eigenvalue when the operators commute with one another.
This means that the stabilizer group has to be a finite Abelian sub-group of the Pauli
group. That is, for the operators in a valid stabilizer, Si · Sj = Sj · Si .

14.6.3 Example: A Stabilizer for the 5-Qubit Code

There are many sets of tensor products that we could pick as stabilizers, and different
choices would induce different quantum error correcting codes. If we focus on the
case of QECCs that involve just five physical qubits, then all the relevant stabilizers
must involve only five Pauli matrices. But remember, we don’t accept just any old
set of tensor products. We are specifically looking for sets of tensor products that
form an Abelian sub-group.

Of the many alternatives available to us, suppose we had picked the following set
of tensor products of Pauli, 1, X, and Z, matrices as our stabilizer:

S1 = X⊗X⊗Z⊗X⊗ 1

S2 = X⊗Z⊗X⊗ 1⊗X

S3 = Z⊗ 1⊗X⊗X⊗Z

S4 = Z⊗X⊗ 1⊗Z⊗X

S5 = 1⊗Z⊗Z⊗Z⊗Z

S6 = 1⊗ 1⊗ 1⊗ 1⊗ 1

This set of tensor products satisfies all the criteria for a group given above. More-
over, the group is Abelian because all its elements commute with one another. How-
ever, we can whittle this group down a little further and work just with its generators,
i.e. a minimal set of group elements sufficient to generate all members of the group
via their products, with repetitions allowed. In particular, we can immediately see
that we do not need the element S6 = 1⊗ 1⊗ 1⊗ 1⊗ 1 because the square of any
element of the stabilizer is S6. For example, in particular we have:

S1 · S1 = (X⊗X⊗Z⊗X⊗ 1)2 = (1⊗ 1⊗ 1⊗ 1⊗ 1)= S6

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 597

Likewise, we can drop any one of the remaining five group elements from this sub-
group too. For example, we do not need (say) S5 = 1⊗Z⊗Z⊗Z⊗Z because:

S1 · S2 · S3 · S4 = (X⊗X⊗Z⊗X⊗ 1) · (X⊗Z⊗X⊗ 1⊗X)

· (Z⊗ 1⊗X⊗X⊗Z) · (Z⊗X⊗ 1⊗Z⊗X)

= (1⊗Z⊗Z⊗Z⊗Z)= S5 (14.51)

Thus, to define the stabilizer, we need only work with the generators of the associ-
ated Abelian sub-group, namely the tensor products 〈S1, S2, S3, S4〉 where:

S1 = X⊗X⊗Z⊗X⊗ 1

S2 = X⊗Z⊗X⊗ 1⊗X

S3 = Z⊗ 1⊗X⊗X⊗Z

S4 = Z⊗X⊗ 1⊗Z⊗X

With these definitions, the tensor products in the generator {S1, S2, S3, S4} is an
Abelian sub-group of the Pauli group and therefore meets all the criteria needed to
be a stabilizer.

14.6.4 Using a Stabilizer to Find the Codewords It Stabilizes

Given a choice of stabilizer S = {S1, S2, . . . , SK } we can find the family of states
|ψ〉L it stabilizes quite easily. As the Sj are all hermitian, we can characterize the
states we seek as the +1 simultaneous eigenstates of the operators {S1, S2, S3, S4}.
These are the states spanned by the encoded basis vectors |0〉L and |1〉L that corre-
spond to the simultaneous +1 eigenstates of every element of the stabilizer, when
the inputs are |00000〉 and |11111〉 respectively.

In the case of the 5-qubit Laflamme-Miquel-Paz-Zurek code the stabilizer has
four elements {S1, S2, S3, S4}. We can measure the eigenvalue of each of these op-
erators individually using the circuit shown in Fig. 14.6. The encoded basis state
|0〉L is the output when the eigenvalues are all measured to be +1 (indicated by
finding the output in state |0〉) when the input state is |00000〉.

Likewise, the encoded basis state |1〉L is the output from the circuit in Fig. 14.7
when the eigenvalues are all measured to be +1 (again, indicated by finding the
output in state |0〉) when the input state is |11111〉.

Hence, the codespace that is invariant with respect to this stabilizer {S1, S2,

S3, S4} is the set of states spanned by:

|0〉L = 1

2
√

2

(|00000〉 + |00110〉 + |01001〉 − |01111〉
+ |10011〉 + |10101〉 + |11010〉 − |11100〉)

|1〉L = 1

2
√

2

(|11111〉 + |11001〉 + |10110〉 − |10000〉
− |01100〉 − |01010〉 − |00101〉 + |00011〉)

(14.52)

598 14 Quantum Error Correction

Fig. 14.6 Quantum circuit
for using the generators,
{S1, S2, S3, S4}, of a
stabilizer sub-group S to find
the corresponding logical 0
codeword, i.e., |0〉L. The
logical 0 has the property that
Sj |0〉L =+1|0〉L for all
Sj ∈ S and is therefore a +1
eigenstate of the stabilizer
sub-group S . As in the
eigenvalue estimation
algorithm, when the
measurement outcomes made
on the ancillae are all 0000
the state on the remaining
unmeasured five qubits will
be projected into a
simultaneous eigenstate of
the operators S1, S2, S3, and
S4 with eigenvalue +1

Fig. 14.7 Quantum circuit
for using the generators,
{S1, S2, S3, S4}, of a
stabilizer sub-group S to find
the corresponding logical 1
codeword, i.e., |1〉L. The
logical 1 has the property that
Sj |1〉L =+1|1〉L for all
Sj ∈ S and is therefore a +1
eigenstate of the stabilizer
sub-group S . As in the
eigenvalue estimation
algorithm, when the
measurement outcomes made
on the ancillae are all 0000
the state on the remaining
unmeasured five qubits will
be projected into a
simultaneous eigenstate of
the operators S1, S2, S3, and
S4 with eigenvalue +1

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 599

These “happen to be” exactly the logical qubits we used on our 5-qubit Laflamme-
Miquel-Paz-Zurek code! This means that any state of the form:

|ψ〉L = α|0〉L + β|1〉L (14.53)

such that |α|2 + |β|2 = 1 is stabilized by our stabilizer {S1, S2, S3, S4}.

14.6.5 How the Stabilizer is Related to the Error Operators

So far in our discussion I have treated a stabilizer as nothing more than an arbitrary
Abelian sub-group of the Pauli group, and I “happened to pick” a stabilizer whose
codewords matched those of Sam Braunstein and John Smolin’s version of the pre-
existing 5-qubit Laflamme-Miquel-Paz-Zurek code [79, 297]. This was intended to
make the connection between stabilizer codes and the 5-qubit code explicit. But,
clearly, this is cheating—as I had foreknowledge of the codewords sought, and
I worked backwards to find a stabilizer that produced those codewords! It would
be more honest to start with the error operators we want a quantum error correcting
code to correct, and use the error operators to derive a stabilizer code able to protect
against them. This is the purpose of this section.

In the case of the 5-qubit Laflamme-Miquel-Paz-Zurek code, our intention is to
encode a single logical qubit within an entangled 5-qubit state so that the encoded
qubit is protected against a single bit-flip, phase-flip, or joint bit-flip and phase flip
on any of these five qubits. In this case, the family of error operators we need to
protect against is, as we explained earlier, given by:

ENone = 1⊗ 1⊗ 1⊗ 1⊗ 1

EB5 = 1⊗ 1⊗ 1⊗ 1⊗X

EBP5 = 1⊗ 1⊗ 1⊗ 1⊗X ·Z
EP5 = 1⊗ 1⊗ 1⊗ 1⊗Z

EB4 = 1⊗ 1⊗ 1⊗X⊗ 1

EBP4 = 1⊗ 1⊗ 1⊗X ·Z⊗ 1

EP4 = 1⊗ 1⊗ 1⊗Z⊗ 1

EB3 = 1⊗ 1⊗X⊗ 1⊗ 1

EBP3 = 1⊗ 1⊗X ·Z⊗ 1⊗ 1

EP3 = 1⊗ 1⊗Z⊗ 1⊗ 1

EB2 = 1⊗X⊗ 1⊗ 1⊗ 1

EBP2 = 1⊗X ·Z⊗ 1⊗ 1⊗ 1

EP2 = 1⊗Z⊗ 1⊗ 1⊗ 1

EB1 = X⊗ 1⊗ 1⊗ 1⊗ 1

EBP1 = X ·Z⊗ 1⊗ 1⊗ 1⊗ 1

EP1 = Z⊗ 1⊗ 1⊗ 1⊗ 1

(14.54)

600 14 Quantum Error Correction

which includes the possibility of there being no errors at all, i.e., ENone.
Intuitively, it seems reasonable to expect that our error diagnosis and recovery

operations must somehow be related to these error operators. This intuition is indeed
correct. The connection is made by way of the stabilizer. Specifically, we want to
pick a stabilizer such that every error operator we want to protect against, Eα ∈ E ,
anti-commutes with at least one element of the stabilizer, Si ∈ S .

The motivation for this requirement is the following. If an error operator Eα ∈ E
commutes with an element of the stabilizer Si ∈ S , we have Si ·Eα = Eα ·Si and so:

Si · Eα|ψ〉L = Eα · Si |ψ〉L =+1 Eα|ψ〉L (14.55)

and thus has the eigenvalue +1. This means that when we measure the eigenvalue
of the operator Si whether the input state is pristine, i.e., |ψ〉L or error-afflicted, i.e.,
Eα|ψ〉L, the eigenvalue will be +1 either way. So a good input and a corrupted input
will not be distinguishable.

However, if an error operator Eα ∈ E anti-commutes with an element of the sta-
bilizer Si ∈ S , we have Si · Eα =−1 Eα · Si and so:

Si · Eα|ψ〉L =− Eα · Si |ψ〉L =−1 Eα|ψ〉L (14.56)

and thus has the eigenvalue −1. In this case, the presence of an error is signalled by
the fact that the eigenvalue of the operator Si has become −1.

Hence by measuring the eigenvalue of each element of the stabilizer we
can detect whether or not an error has occurred. Moreover, the pattern of anti-
commutativity over all the elements in the stabilizer is unique to each different type
of error. This allows the pattern of eigenvalues to be used as an error syndrome that
diagnoses what error occurred unambiguously.

14.6.6 Example: Stabilizers and Error Operators for the 5-Qubit
Code

Let us make this concrete in the case of the 5-qubit Laflamme-Miquel-Paz-Zurek
code. In this case the error operators we want to protect against are those de-
fined in (14.54). As we are interested in a 5-qubit code, the potential stabilizer ele-
ments are therefore all tensor products of any five Pauli matrices taken from the set
{1,X,Z}⊗5. There are 243 distinct possibilities, namely:

11111 1111X 1111Z 111X1 111XX 111XZ 111Z1 111ZX 111ZZ
11X11 11X1X 11X1Z 11XX1 11XXX 11XXZ 11XZ1 11XZX 11XZZ
11Z11 11Z1X 11Z1Z 11ZX1 11ZXX 11ZXZ 11ZZ1 11ZZX 11ZZZ
1X111 1X11X 1X11Z 1X1X1 1X1XX 1X1XZ 1X1Z1 1X1ZX 1X1ZZ
1XX11 1XX1X 1XX1Z 1XXX1 1XXXX 1XXXZ 1XXZ1 1XXZX 1XXZZ

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 601

1XZ11 1XZ1X 1XZ1Z 1XZX1 1XZXX 1XZXZ 1XZZ1 1XZZX 1XZZZ
1Z111 1Z11X 1Z11Z 1Z1X1 1Z1XX 1Z1XZ 1Z1Z1 1Z1ZX 1Z1ZZ
1ZX11 1ZX1X 1ZX1Z 1ZXX1 1ZXXX 1ZXXZ 1ZXZ1 1ZXZX 1ZXZZ
1ZZ11 1ZZ1X 1ZZ1Z 1ZZX1 1ZZXX 1ZZXZ 1ZZZ1 1ZZZX 1ZZZZ
X1111 X111X X111Z X11X1 X11XX X11XZ X11Z1 X11ZX X11ZZ
X1X11 X1X1X X1X1Z X1XX1 X1XXX X1XXZ X1XZ1 X1XZX X1XZZ
X1Z11 X1Z1X X1Z1Z X1ZX1 X1ZXX X1ZXZ X1ZZ1 X1ZZX X1ZZZ
XX111 XX11X XX11Z XX1X1 XX1XX XX1XZ XX1Z1 XX1ZX XX1ZZ
XXX11 XXX1X XXX1Z XXXX1 XXXXX XXXXZ XXXZ1 XXXZX XXXZZ
XXZ11 XXZ1X XXZ1Z XXZX1 XXZXX XXZXZ XXZZ1 XXZZX XXZZZ
XZ111 XZ11X XZ11Z XZ1X1 XZ1XX XZ1XZ XZ1Z1 XZ1ZX XZ1ZZ
XZX11 XZX1X XZX1Z XZXX1 XZXXX XZXXZ XZXZ1 XZXZX XZXZZ
XZZ11 XZZ1X XZZ1Z XZZX1 XZZXX XZZXZ XZZZ1 XZZZX XZZZZ
Z1111 Z111X Z111Z Z11X1 Z11XX Z11XZ Z11Z1 Z11ZX Z11ZZ
Z1X11 Z1X1X Z1X1Z Z1XX1 Z1XXX Z1XXZ Z1XZ1 Z1XZX Z1XZZ
Z1Z11 Z1Z1X Z1Z1Z Z1ZX1 Z1ZXX Z1ZXZ Z1ZZ1 Z1ZZX Z1ZZZ
ZX111 ZX11X ZX11Z ZX1X1 ZX1XX ZX1XZ ZX1Z1 ZX1ZX ZX1ZZ
ZXX11 ZXX1X ZXX1Z ZXXX1 ZXXXX ZXXXZ ZXXZ1 ZXXZX ZXXZZ
ZXZ11 ZXZ1X ZXZ1Z ZXZX1 ZXZXX ZXZXZ ZXZZ1 ZXZZX ZXZZZ
ZZ111 ZZ11X ZZ11Z ZZ1X1 ZZ1XX ZZ1XZ ZZ1Z1 ZZ1ZX ZZ1ZZ
ZZX11 ZZX1X ZZX1Z ZZXX1 ZZXXX ZZXXZ ZZXZ1 ZZXZX ZZXZZ
ZZZ11 ZZZ1X ZZZ1Z ZZZX1 ZZZXX ZZZXZ ZZZZ1 ZZZZX ZZZZZ

Next we determine which of these potential stabilizer elements anti-commute
with each error operator Eα ∈ E . Two operators anti-commute when {A,B} =
A ·B +B ·A= 0. Error operators that anti-commute with any element of the stabi-
lizer, correspond to errors that are detectable by the corresponding stabilizer code.
However, to be correctable, each error operator needs to have a different pattern of
anti-commutativity with the elements of the stabilizer. We can find the patterns of
anti-commutativity by computer search very easily. The result will look something
like:

ENone = 11111 anti-commutes with F1 = {}
EB5 = 1111X anti-commutes with F2 = {1111Z,111XZ,111ZZ,11X1Z, . . .}

EBP5 = 1111(XZ) anti-commutes with F3 = {1111X,1111Z,111XX,111XZ, . . .}
EP5 = 1111Z anti-commutes with F4 = {1111X,111XX,111ZX,11X1X, . . .}

...

EP1 = Z1111 anti-commutes with F15 = {X1111,X111X,X111Z,X11X1, . . .}
(14.57)

This gives us sets of tensor products of Pauli operators, {F1,F2, . . . ,F15}, that anti-
commute with the different error operators. The required stabilizer will then be a
minimum hitting set of the sets {F1,F2, . . . ,F15}. By minimum hitting set we mean
that the desired stabilizer {S1, S2, S3, S4} is the smallest set that intersects with
at least one element in every set F1,F2, . . . ,F15. Given the results of a computer

602 14 Quantum Error Correction

search shown in (14.57) a minimal hitting set is S is found to require only four
tensor products, {S1, S2, S3, S4}, where:

S1 = X⊗X⊗Z⊗X⊗ 1

S2 = X⊗Z⊗X⊗ 1⊗X

S3 = Z⊗ 1⊗X⊗X⊗Z

S4 = Z⊗X⊗ 1⊗Z⊗X

which coincides with the stabilizer we picked to generate codewords that match
those used in the 5-qubit Laflamme-Miquel-Paz-Zurek code.

The pattern of anti-commutativity between each error operator Eα ∈ E and the
elements of the stabilizer, Si ∈ S , is shown in Table 14.6. In the table a check mark
signifies Eα and Si anti-commute whereas a cross signifies they do not. As you can
see, each error operator anti-commutes with at least one element of the stabilizer.
Moreover, the pattern of anti-commutativity is unique to each error operator. We can
exploit this property to associate each error type with a different error syndrome.

So to sum up, we can either pick a stabilizer as a random finite Abelian sub-group
of the Pauli group and then see whatever errors it protects against. Alternatively,
we can fix the set of errors we want to protect against and use them to induce an

Table 14.6 Two operators anti-commute when {A,B} = A · B + B ·A= 0. Each error operator,
ENone, EB5, EBP5, . . . etc., describing a single error amongst five qubits, anti-commutes with at
least one element of the stabilizer {S1, S2, S3, S4}. Furthermore, the pattern of anti-commutativity
is unique to each operator. This property can be exploited to associate each type of error with a
unique error syndrome

Error type Error operator {Eα, S1} = 0? {Eα, S2} = 0? {Eα, S3} = 0? {Eα, S4} = 0?

ENone 1⊗ 1⊗ 1⊗ 1⊗ 1 × × × ×
EB5 1⊗ 1⊗ 1⊗ 1⊗X × × � ×
EBP5 1⊗ 1⊗ 1⊗ 1⊗X ·Z × � � �
EP5 1⊗ 1⊗ 1⊗ 1⊗Z × � × �
EB4 1⊗ 1⊗ 1⊗X⊗ 1 × × × �
EBP4 1⊗ 1⊗ 1⊗X ·Z⊗ 1 � × � �
EP4 1⊗ 1⊗ 1⊗Z⊗ 1 � × � ×
EB3 1⊗ 1⊗X⊗ 1⊗ 1 � × × ×
EBP3 1⊗ 1⊗X ·Z⊗ 1⊗ 1 � � � ×
EP3 1⊗ 1⊗Z⊗ 1⊗ 1 × � � ×
EB2 1⊗X⊗ 1⊗ 1⊗ 1 × � × ×
EBP2 1⊗X ·Z⊗ 1⊗ 1⊗ 1 � � × �
EP2 1⊗Z⊗ 1⊗ 1⊗ 1 � × × �
EB1 X⊗ 1⊗ 1⊗ 1⊗ 1 × × � �
EBP1 X ·Z⊗ 1⊗ 1⊗ 1⊗ 1 � � � �
EP1 Z⊗ 1⊗ 1⊗ 1⊗ 1 � � × ×

14.6 Stabilizer Formalism for Quantum Error Correcting Codes 603

acceptable stabilizer as the solution to a minimum hitting set problem. Given the
stabilizer, the quantum codewords it stabilizes, and the errors it protects against, can
be obtained automatically.

Next we see how the stabilizer formalism also simplifies the search for the re-
quired encoding and decoding circuits, and allows us to perform error correction
while staying entirely within the encoded basis.

14.6.7 Stabilizer-Based Error Correction: The Encoding Step

To protect a qubit |ψ〉 = α|0〉 + β|1〉 we encode it into the state |ψ〉L = α|0〉L +
β|1〉L using the Laflamme-Miquel-Paz-Zurek encoding circuit shown in Fig. 14.3.
Once in encoded form the logical qubit is protected against a single error amongst
any of the five qubits.

14.6.8 Stabilizer-Based Error Correction: Introduction of the
Error

We model the introduction of an error on our encoded state as the application of one
of the error operators, Eα ∈ E , our stabilizer is know to correct.

14.6.9 Stabilizer-Based Error Correction: Error Diagnosis &
Recovery

We use the same quantum circuit to perform the actual error correction as we use to
find the encoded basis states |0〉L and |1〉L. As illustrated in Fig. 14.8, we imagine
that we have an encoded state entering the circuit, which has been afflicted with an
unknown error, Eα ∈ E , where:

E = {ENone, EB5, EP5, EBP5, EB4, EP4, EBP4, EB3, EP3, EBP3, EB2, EP2, EBP2, EB1,

EP1, EBP1} (14.58)

which includes the possibly no error whatsoever. The circuit essentially measures
the eigenvalue of each element of the stabilizer, {S1, S2, S3, S4} with respect to
the incoming state Eα|ψ〉L. If the stabilizer element commutes with the (unknown)
error operator, the eigenvalue will be +1. But if the error-operator anti-commutes
with the element of the stabilizer, the eigenvalue will be −1. Thus, the pattern of
anti-commutativity can therefore be used as an error syndrome a b c d , which can
diagnose that the error afflicting |ψ〉L is Eα and hence the appropriate corrective
action needed to restore the state is E−1

α .

604 14 Quantum Error Correction

Fig. 14.8 Quantum circuit for error recovery based on the stabilizer formalism. An error-afflicted
encoded state, Eα |ψ〉L, enters the circuit. At this point we have no idea what error has occurred,
i.e., we do not know Eα . To discover the identity of Eα , we measure the eigenvalue of each element
of the stabilizer with respect to the state fed into the circuit. If the error-afflicted state commutes
with the element of the stabilizer, the eigenvalue is +1. If, on the other hand, the error-afflicted
state anti-commutes with the element of the stabilizer, the eigenvalue is −1. Hence, the pattern of
anti-commutativity revealed in the results a b c d , provides sufficient information diagnose what
error occurred. That is, after these measurements we now know Eα . It is then straightforward to
predict the error-restoration operation, E−1

α , needed to restore the encoded qubit to its pristine,
and still encoded, state |ψ〉L. Note that during this error-diagnosis and error-correction process
the single logical qubit remains in its encoded basis throughout. Hence, the stabilizer formalism is
especially good because we never need to re-expose the logical qubit in an unprotected form at any
time

Notice that, whereas in the original Laflamme-Miquel-Paz-Zurek scheme we pe-
riodically decoded the encoded state back to a single logical qubit, and thereby
exposed it to an uncorrectable error, in the stabilizer formalism once the state has
been encoded it is never re-exposed as a single logical qubit. Rather, in the stabi-
lizer formalism, the whole error-correction procedure takes place within the encoded
subspace. This is a very smart thing to do because it avoids having to periodically
re-expose the logical qubit in order to error correct it.

14.6.10 Stabilizers for Other Codes

An [n, k, d] quantum code (with square parentheses and a lowercase letter k) is a
special notation for quantum stabilizer codes. Such as code uses n physical qubits

14.7 Bounds on Quantum Error Correcting Codes 605

to encode k < n logical qubits within a K = 2k-dimensional codespace and has
minimum distance d . Hence, the number of 1-qubit changes needed to get from
one codeword to another is at least d , which means that the code can correct up to
t = . d−1

2 / single qubit errors.
The 9-qubit Shor, the 7-qubit Steane, and the 5-qubit Laflamme-Miquel-Paz-

Zurek codes are respectively [9,1,3], [7,1,3], and [5,1,3] stabilizer codes, which
can each correct at most t = .(3− 1)/2/ = 1 error within their respective blocks of
9, 7, and 5 physical qubits.

A stabilizer for Shor’s 9-qubit code is [141]:

S1 = ZZ1111111

S2 = Z1Z111111

S3 = 111ZZ1111

S4 = 111Z1Z111

S5 = 111111ZZ1

S6 = 111111Z1Z

S7 = XXXXXX111

S8 = XXX111XXX

(14.59)

and one for Steane’s 7-qubit code is [141]:

S1 = 111XXXX

S2 = X1X1X1X

S3 = 1XX11XX

S4 = 111ZZZZ

S5 = Z1Z1Z1Z

S6 = 1ZZ11ZZ

(14.60)

Notice that the stabilizers for the Shor and Steane codes have only X’s or only
Z’s within their respective stabilizer elements, making them so-called Calderbank-
Shor-Steane (“CSS”) codes. By comparison, the 5-qubit code is also a stabilizer
code but it is not a CSS code because some of its stabilizer elements mix Z’s and
X’s together.

14.7 Bounds on Quantum Error Correcting Codes

One can gain an intuition for the tradeoffs between the number of physical qubits
(n), the number of logical qubits (k), and the maximum number of correctable er-
rors t = . d−1

2 / by finding those tuples of values of n, k, and d that simultaneously
satisfy three important bounds on quantum codes: the quantum Hamming, Gilbert-
Varshamov and Singleton bounds.

606 14 Quantum Error Correction

14.7.1 Quantum Hamming Bound

The quantum Hamming bound was discovered by Artur Ekert and Chiara Macchi-
avello [168]. It places an upper bound on the number of codewords we can have in a
quantum code if the code has to be guaranteed to be able to encode k logical qubits
in n physical qubits and protect against up to t single qubit errors.

The bound is obtained via a counting argument on the number of buggy states
in comparison to the number of states we can fit in a Hilbert space of dimension
2n. The argument goes as follows. If a code is to correct up to t errors, then each
codeword must be able to tolerate up to t errors and yet still be distinct from every
other codeword and every other potentially corrupted codeword. We can therefore
imagine each codeword as being surrounded by a “cloud” of buggy states that have
anywhere from zero to t errors in them. All these states need to be distinct from the
other buggy states in similar clouds around all the other codewords. All these buggy
codewords have to fit within our Hilbert space of n qubits.

Making this argument more quantitative, consider a single codeword of length
n qubits. We can introduce i errors to this codeword by picking a particular subset
of i out of n qubits, and assign single qubit errors to those qubits in all possible

ways. There are
(
n

i

)
ways to pick a particular subset of i qubit locations, and there

are three types of error (X, Z, and (X · Z)) possible per location. Hence, there are

3i
(
n

i

)
states describing i errors to our codeword. But we want to protect against up

to t errors. Therefore, we can think of each codeword as being surrounded by a cloud

of
∑t

i=0 3i
(
n

i

)
“buggy” codewords. There are a total of 2k such codewords. And the

union of all these clouds of states needs to fit within the dimension of our n-qubit
Hilbert space. Hence, we arrive at the quantum Hamming bound which places an
upper bound on the number of codewords (2k) or equivalently the number of logical
qubits (k), that we can have in a quantum code that uses n physical qubits. Hence,
for a non-degenerate [n, k, d] code we must have:

2k
t∑

i=0

3i
(
n

i

)
≤ 2n (14.61)

where t = . d−1
2 /. Note that this bound gives a necessary condition for the existence

of a quantum code and is really no more than a generalization of the argument we
gave in Sect. 14.4.1 to deduce the allowed relationships between n, k and d for the
5-qubit Laflamme-Miquel-Paz-Zurek code.

14.7.2 Quantum Singleton Bound

The quantum Singleton bound was discovered by Raymond Laflamme and Manny
Knill [292]. This states that if a pure or impure [n, k, d] code exists then:

n− k ≥ 4.(d − 1)/2/ (14.62)

14.7 Bounds on Quantum Error Correcting Codes 607

The quantum Singleton bound for pure codes was strengthened, slightly, by Calder-
bank, Rains, Shor, and Sloane [95] to:

n− k ≥ 2(d − 1) (14.63)

This reduces to the Laflamme and Knill formula when d is odd, but is slightly
stronger when d is even. It is also a necessary condition for the existence of a quan-
tum code.

14.7.3 Quantum Gilbert-Varshamov Bound

The quantum Gilbert-Varshamov bound was discovered by Artur Ekert and Chiara
Macchiavello [168]. It states that for an [n, k, d] code:

2k
2t∑
i=0

3i
(
n

i

)
≥ 2n (14.64)

where the number of errors that can be corrected, t , is given by t = . d−1
2 /. This

bound gives a sufficient condition on the existence of a code but it is not necessary.
The bound states that the number of codewords times the number of buggy code-
words reachable in up to 2t errors must not be smaller than the dimension of the
Hilbert space for n physical qubits.

14.7.4 Predicting Upper and Lower Bounds on Additive Codes

The quantum Hamming, Singleton, and Gilbert-Varshamov bounds can be used to
find upper and lower bounds on the minimum distance d of feasible quantum codes.
This in turn bounds the maximum possible number of errors such codes can cor-
rect, t , because we have t = . d−1

2 /. Note that the quantum Hamming and Singleton
bounds gives us an upper bound on d , whereas the quantum Gilbert-Varshamov
bound gives us a (loose) lower bound on d . Nevertheless, the bounds are tight
enough that we can use them to gain a rough intuition for the tradeoffs between
the number of physical qubits, the number of logical qubits, the minimum distance
and hence the maximum number of correctable errors.

Table 14.7 shows the approximate upper and lower bounds on the minimal dis-
tance d in any [n, k, d] pure quantum error-correcting code as constrained by the
quantum Hamming, quantum Singleton and quantum Gilbert-Varshamov bounds.
The lower bounds are obtained from the quantum Gilbert-Varshamov inequal-
ity (14.64) and the upper bound is obtained from the lesser of the quantum Hamming
(14.61) and quantum Singleton bound for pure codes (14.63). In Table 14.7 when
a range of values is given these are lower and upper bounds on d . As the quan-
tum Hamming and quantum Singleton bound provide a necessary condition on d ,

608 14 Quantum Error Correction

Ta
bl

e
14

.7
A

pp
ro

xi
m

at
e

bo
un

ds
on

th
e

hi
gh

es
ta

ch
ie

va
bl

e
m

in
im

al
di

st
an

ce
d

fo
ra

ny
pu

re
[n

,
k
,
d
]

qu
an

tu
m

er
ro

r-
co

rr
ec

tin
g

co
de

.T
he

up
pe

rb
ou

nd
is

ob
ta

in
ed

by
fin

di
ng

th
e

sm
al

le
st

va
lu

e
of

di
st

an
ce

d
,f

or
gi

ve
n

va
lu

es
of

n
an

d
k

,a
bl

e
sa

tis
fy

th
e

qu
an

tu
m

H
am

m
in

g
bo

un
d

(1
4.

61
)

an
d

th
e

qu
an

tu
m

Si
ng

le
to

n
bo

un
d

(f
or

pu
re

co
de

s)
(1

4.
63

)
si

m
ul

ta
ne

ou
sl

y.
T

he
se

pr
ov

id
e

a
ne

ce
ss

ar
y

up
pe

r
bo

un
d

on
d

fo
r

th
e

ex
is

te
nc

e
of

an
[n

,
k
,
d
]

co
de

.H
en

ce
th

e
st

at
ed

up
pe

r
bo

un
d

on
d

is
a

ha
rd

co
ns

tr
ai

nt
.T

he
lo

w
er

bo
un

d
is

ob
ta

in
ed

by
fin

di
ng

th
e

la
rg

es
tv

al
ue

of
d

,f
or

gi
ve

n
va

lu
es

of
n

an
d
k

,a
bl

e
sa

tis
fy

th
e

qu
an

tu
m

G
ilb

er
t-

V
ar

sh
am

ov
bo

un
d.

T
he

la
tte

r
bo

un
d

is
su

ffi
ci

en
tt

o
gu

ar
an

te
e

th
e

ex
is

te
nc

e
of

an
[n

,
k
,
d
]

co
de

bu
ti

ti
s

no
tn

ec
es

sa
ry

.H
en

ce
,t

he
lo

w
er

bo
un

d
gi

ve
n

is
lo

os
e

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

3
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

4
3

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

5
3

3
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

6
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

7
3–

4
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
3–

4
3–

4
3–

4
3

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
5

3–
4

3–
4

3–
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

10
5–

6
5

3–
4

3–
4

3–
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

11
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

0

12
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0
0

13
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

0

14
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

15
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

0

16
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0
0

17
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

0

18
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0
0

19
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

0

20
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0
0

14.7 Bounds on Quantum Error Correcting Codes 609

Ta
bl

e
14

.7
(C

on
tin

ue
d)

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

21
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
1

1
0

0

22
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1
1

0

23
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1
1

24
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

1

25
7–

12
7–

12
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2
2

26
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

2

27
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2
2

28
7–

12
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

2

29
9–

14
7–

12
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4
2

30
9–

14
9–

14
7–

12
7–

12
7–

12
7–

10
7–

10
7–

10
7–

10
5–

8
5–

8
5–

8
5–

8
5–

8
5–

6
5–

6
5–

6
5–

6
5–

6
3–

4
3–

4
3–

4
3–

4
3–

4

610 14 Quantum Error Correction

Fig. 14.9 Plot of the
approximate upper bounds on
minimal distance d of an
[n, k, d] quantum error
correcting code for
1≤ n≤ 30 and 0≤ k ≤ 28.
The data correspond to the
upper bounds given in
Table 14.7, which come from
finding the largest value of d ,
for given values of n and k,
such that the quantum
Hamming bound, and
quantum Singleton bound are
satisfied simultaneously. This
is a necessary condition on
the existence of the
corresponding [n, k, d] code,
so this upper bound on the
minimal distance cannot be
beaten

Fig. 14.10 Plot of the
approximate (very loose)
lower bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1≤ n≤ 30 and
0≤ k ≤ 28. The data
correspond to the lower
bounds given in Table 14.7,
which come from finding the
smallest value of d , for given
values of n and k, such that
the quantum
Gilbert-Varshamov bound is
satisfied. This is only a
sufficient condition on the
existence of the
corresponding [n, k, d] code,
so this lower bound on the
minimal distance can be
beaten

whereas the quantum Gilbert-Varshamov bound provides a sufficient condition on d ,
the Hamming and Singleton bounds take precedence on upper bounding d .

The upper and lower bound data on predicted minimum distance in Table 14.7 is
visualized in Figs. 14.9 and 14.10.

14.8 Non-additive (Non-stabilizer) Quantum Codes 611

14.7.5 Tightest Proven Upper and Lower Bounds on Additive
Codes

It is naturally to ask whether it is possible that more efficient codes could exist,
i.e., codes that can correct more than one error per block. Indeed they can, but the
complexity of the quantum circuits needed to implement them grows rapidly.

Using far more sophisticated methods, one can obtain tighter upper bounds, as
well as proper lower bounds, on the highest achievable minimal distance d of any
[n, k, d] quantum error-correcting code (see Table 14.8). Comparing Table 14.8 with
(the much more easily obtained) Table 14.7 shows the estimated bounds on d from
necessary and sufficient conditions are pretty good.

Plots of the tightest proven upper and lower bounds on minimum distance are
shown in Figs. 14.11 and 14.12.

14.8 Non-additive (Non-stabilizer) Quantum Codes

The original 9-qubit Shor, 7-qubit Steane, and the 5-qubit Laflamme-Miquel-Paz-
Zurek codes were all additive (stabilizer) codes. However, it is possible to have
codes that possess a fundamentally different structure than the stabilizer codes.
These so-called “non-additive” codes may be harder to find, but they are potentially
more efficient than the stabilizer codes.

The first non-additive quantum error correcting code, that was provably better
than an additive (stabilizer) code was the (5,6,2) code discovered using numerical
techniques by E.M. Rains, R.H. Hardin, P.W. Shor, and N.J.A. Sloane in 1997 [407].
This generalizes to a family of codes of the form (2n + 1,3 × 22n−3,2). Thomas
Beth and Markus Grassl showed that the (5,6,2) code could be obtained from
union of additive codes [212]. That is, if C1 and C2 are respectively (n,K1, d1) and
(n,K2, d2) quantum codes, the union of these codes is an (n,K1+K2,min(d1, d2))
quantum code such that the set of errors the new code can correct is the intersection
of the sets of errors the old codes could correct. Note that, whereas the dimension
for the codespace of an additive code is always a power of two, the dimension of the
codespace of a non-additive code built from the union of two additive codes need
not be a power of two.

The first non-additive code found that can outperform the optimal [5,1,3]
(Laflamme-Miquel-Paz-Zurek) stabilizer code was the (9,12,3) non-additive code
found by Sixia Yu, Qing Chen, C. Lai, and C. Oh [554].

14.9 Fault-Tolerant Quantum Error Correcting Codes

The discussions of quantum error correcting codes given in the preceding sections
have made implicit assumptions about where and when errors occur. For example,

612 14 Quantum Error Correction

Ta
bl

e
14

.8
K

no
w

n
bo

un
ds

on
th

e
hi

gh
es

ta
ch

ie
va

bl
e

m
in

im
al

di
st

an
ce

d
fo

r
an

y
[n

,
k
,
d
]

qu
an

tu
m

er
ro

r-
co

rr
ec

tin
g

co
de

[2
11

]

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

3
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

4
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

5
3

3
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

6
4

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

7
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
4

3
3

3
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

9
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

10
4

4
4

3
3

2
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

11
5

5
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0

12
6

5
4

4
4

3
3

2
2

2
2

1
1

0
0

0
0

0
0

0
0

0
0

0

13
5

5
4

4
4

3–
4

3
3

2
2

2
1

1
1

0
0

0
0

0
0

0
0

0
0

14
6

5
5

4–
5

4
4

4
3

3
2

2
2

2
1

1
0

0
0

0
0

0
0

0
0

15
6

5
5

5
4

4
4

3
3

3
2

2
2

1
1

1
0

0
0

0
0

0
0

0

16
6

6
6

5
5

4–
5

4
4

3
3

3
2

2
2

2
1

1
0

0
0

0
0

0
0

17
7

7
6

5–
6

5
4–

5
4–

5
4

4
4

3
3

2
2

2
1

1
1

0
0

0
0

0
0

18
8

7
6

5–
6

5–
6

5
5

4
4

4
3

3
2

2
2

2
2

1
1

0
0

0
0

0

19
7

7
6

5–
6

5–
6

5–
6

5
4–

5
4

4
3–

4
3

3
2

2
2

2
1

1
1

0
0

0
0

20
8

7
6–

7
6–

7
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

2
1

1
0

0
0

14.9 Fault-Tolerant Quantum Error Correcting Codes 613

Ta
bl

e
14

.8
(C

on
tin

ue
d)

n
\k

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

21
8

7
6–

7
6–

7
6–

7
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

3
2

2
2

1
1

1
0

0

22
8

7–
8

6–
8

6–
7

6–
7

6–
7

5–
6

5–
6

5–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

2
1

1
0

23
8–

9
7–

9
7–

8
6–

8
6–

7
6–

7
5–

7
5–

6
5–

6
4–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2
1

1
1

24
8–

10
8–

9
7–

8
7–

8
6–

8
6–

7
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2
2

1

25
8–

9
9

7–
8

7–
8

7–
8

7–
8

6–
7

5–
7

5–
7

5–
6

5–
6

4–
6

4–
5

4–
5

4
4

3–
4

3
3

2
2

2
2

1

26
8–

10
9

8–
9

8–
9

8
7–

8
6–

8
6–

8
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

2

27
9–

10
9

9
9

8–
9

7–
8

6–
8

6–
8

6–
8

6–
7

5–
7

5–
6

5–
6

5
4–

5
4–

5
4

4
3–

4
3

3
2

2
2

28
10

10
10

9
8–

9
7–

9
6–

8
6–

8
6–

8
6–

8
6–

7
5–

7
5–

6
5–

6
5–

6
4–

5
4

4
4

3–
4

3
3

2
2

29
11

11
10

9–
10

8–
9

7–
9

7–
9

6–
8

6–
8

6–
8

6–
7

5–
7

5–
6

5–
6

5–
6

4–
5

4–
5

4
4

4
3–

4
3

3
2

30
12

11
10

9–
10

8–
10

8–
9

7–
9

7–
9

7–
8

6–
8

6–
8

6–
7

6–
7

5–
6

5–
6

5–
6

5
4–

5
4

4
4

3–
4

3
3

614 14 Quantum Error Correction

Fig. 14.11 Plot of the known
upper bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1≤ n≤ 30 and
0≤ k ≤ 28. The data
correspond to the upper
bounds given in Table 14.8,
which come from Markus
Grassl’s curated database of
code parameters [211]

Fig. 14.12 Plot of the known
lower bounds on minimal
distance d of an [n, k, d]
quantum error correcting
code for 1≤ n≤ 30 and
0≤ k ≤ 28. The data
correspond to the lower
bounds given in Table 14.8,
which come from Markus
Grassl’s curated database of
code parameters [211]

in the original formulation of the 5-qubit quantum error-correcting code, given in
Sect. 14.4, error correction required us to map the encoded (protected) logical qubit
back to its unprotected form periodically. Once error-free, the logical qubit would be

14.9 Fault-Tolerant Quantum Error Correcting Codes 615

re-encoded to protect it again. If the error occurs when the qubit is back in its logical
(unprotected) state the logical qubit will be vulnerable to irreversible corruption. For
this strategy to work, we must implicitly assume that no errors can arise while the
qubit is re-exposed in the unencoded basis. If this assumption holds, we will be able
to store the state of a logical qubit indefinitely without error. Unfortunately, such an
assumption is clearly unjustified by the physics of the situation. There is no good
reason to expect errors should only afflict encoded qubits. However, by using the
stabilizer formulation of the 5-qubit code, you will remember that error correction
can be performed entirely within the encoded basis, never needing to re-expose
the logical qubit to potential uncorrectable errors. Nevertheless, this is still not yet
a complete solution, because we don’t just want to protect quantum information
when in storage, but also during quantum computation itself. This means that we
need perform gate operations directly on the encoded data.

The second assumption we need to question is where do the errors occur? So
far, we have implicitly assumed that the gates implementing the error correction
operations are perfect. But what happens if they are imperfect? Can we error correct
a quantum computation using imperfect quantum gates?

These concerns prompted further research into quantum error correcting codes
that revealed how to them work even when the underlying error correction hardware
is itself imperfect. The result is so-called fault-tolerant quantum error correction
[209, 270, 400, 457].

A quantum circuit is deemed “fault-tolerant” when it can be made to output the
correct result even though errors arise during its operation. John Preskill of the Cal-
ifornia Institute of Technology has identified five principles of quantum circuit de-
sign, distilled from Peter Shor’s original paper on fault-tolerant quantum computa-
tion [457], which will make for fault-tolerant quantum circuits [399].

1. Don’t use the same ancilla qubit twice. The intuition behind this principle is
that if an ancilla qubit becomes corrupted, we want to limit the damage it can do
by limiting the number of other gate operations that rely on the same ancilla. Thus,
examples of good and bad quantum circuit structures that use ancillae are shown in
Fig. 14.13. Error propagation in quantum circuits is much more problematic than in
classical circuits because in controlled quantum gates errors can propagate in both
directions, i.e., from control qubits to targets (as happens classically) and from target

Fig. 14.13 The first principle
of fault-tolerant quantum
computing: “do not use the
same ancilla twice.” This
suppresses correlated error
propagation from bad ancillae

616 14 Quantum Error Correction

Fig. 14.14 The second principle of fault-tolerant quantum computing: “Copy the errors not the
data.” The ancillae measurements must not extract any information about the logical state of the
qubits being protected, only the errors that have afflicted them

qubits to controls (which does not happen classically). So quantum controlled gates
are especially susceptible to the spread of error.

2. Error syndrome measurements should reveal the error but not the data. We
need to be careful to prepare the ancilla qubit in such a way that when we measure
the ancilla to obtain an error-syndrome we do not learn anything about the state
we seek to protect, but only an error that may have afflicted it. This requires us to
prepare the ancilla in a special entangled state prior to linking it to the state we wish
to protect. A diagram of this is shown in Fig. 14.14.

3. Verify when encoding a known quantum state. The potential for corruption
is greatest when qubits are exposed in their raw state before they been protected
using some quantum error-correcting encoding. However, whenever we do know
the complete description of the quantum state with which we are dealing, and we
do know the operation we intend to perform on it, we have an opportunity to verify
that we synthesized the correct state before using it further. This situation can arise,
e.g, when we start off with some ancillae qubits in a known state, and we entangle
them in some prescribed way. In such circumstances it is worth taking the time to
verify the entangled state is correct before making use of it in subsequent quantum
computations. For example, if our intent is to encode three physical qubits |0〉|0〉|0〉
into some encoded block of three qubits, which we will call |0̄〉, we might perform
a test to convince ourselves that we synthesized the block |0̄〉 correctly before using
it in subsequent quantum computations. This idea is illustrated in Fig. 14.15.

4. Repeat operations. Figure 14.15 also illustrates a fourth principle of fault-
tolerant quantum computation. Just because we have verified the encoding of a state
once does not mean necessarily that it is correct as our error syndrome measure-
ment could be faulty. It would be just as disastrous to correct an error, or non-error,
in the wrong way as it would to miss an error in the first place. However, by re-
peating measurements, we can increase our confidence that the error syndrome is
actually what we think it is. Thus, repeating quantum measurements to a good habit
as illustrated in Fig. 14.15.

14.9 Fault-Tolerant Quantum Error Correcting Codes 617

Fig. 14.15 The third
principle of fault-tolerant
quantum computing: “Verify
when encoding a known
quantum state.” A known
state should be verified
(perhaps repeatedly) before
being deemed fit for use

5. Stay in the encoded basis. The 9-qubit, 7-qubit and 5-qubit quantum codes we
described above are, as presented thus far, geared towards error-correcting qubits
while they are inactive, i.e., merely stored in memory. However, typically, we want
to do more than merely store qubits—we want to compute with them. That is, we
anticipate needing to apply quantum logic gates in order to perform a purposeful
quantum computation. However, the theory of quantum error correcting codes out-
lined above, does not describe how to perform quantum gates on the encoded qubits.
Instead, when one wants to perform a quantum gate, one would need to map the en-
coded qubits back to the logical basis, apply the quantum gate, and then re-encode
the result back into the encoded basis. Such a strategy is at least cumbersome, and
worse, periodically exposes the qubits to corruption as the quantum gates are being
applied. To circumvent this problem Wojciech Zurek and Raymond Laflamme, and
Peter Shor independently devised a schemes for performing quantum gate opera-
tions on the encoded qubits directly, without removing them from the safety of the
encoded basis [457, 566].

Obeying these five principles of fault-tolerant quantum circuit design will help to
ensure that a quantum computer will operate reliably.

14.9.1 Concatenated Codes and the Threshold Theorem

So far, we have seen that quantum error codes are possible in principle, and codes
that can correct up an arbitrary number of errors exist. Moreover, we have seen it
is possible to use such codes in an intelligent way by employing a fault-tolerant
architecture. Unfortunately, there is still a problem. Although it is indeed possible
to devise more complex quantum codes that can correct up to t errors in a block, the
complexity of the quantum circuits needed to implement such codes rises rapidly.
In fact, before long, we have to use so many gates that the probability of making an
error within the error correcting circuitry becomes higher than the probability of the
original error. So merely increasing the code complexity to correct for more errors
per block is not necessarily the best way to improve reliability.

618 14 Quantum Error Correction

Julia Kempe has provided the following intuitive analysis of the tradeoffs be-
tween how many errors a quantum error correcting code can correct and the com-
plexity of its required quantum circuitry [270]. If the original probability of failure
per gate operation or per measurement is ε then in the t-error resilient code the
failure rate would change to εt+1, which is good. But the price we pay is that the
number of gates needed in the error correction circuitry grows too, typically as some
polynomial in t , ta , with a > 1. So overall, the probability of having t + 1 errors
occur before error correction has completed grows as (taε)t+1. This expression is

minimized when t = cε− 1
a , for some constant c, and the value of the failure prob-

ability is then pfail ≥ exp(−caε− 1
a). If we repeat t-error resilient error correction

N times, the failure probability will therefore become Npfail =N exp(−caε− 1
a)=

exp(−ca(logN)ε− 1
a). For this overall failure probability to be much less than 1, we

will therefore need ε to scale as 1/(logN)a . In other words, the longer the com-
putation, the smaller ε needs to be. Unfortunately, this is not practical. Instead we
need an error correction scheme that allows the error probability per gate operation
to be held constant whilst allowing longer and longer computations are performed
reliably.

An alternative way to improve the reliability is to concatenate the simpler quan-
tum codes we know about [7, 11]. The idea is that each logical qubit is encoded in n

physical qubits (to make a “level-1” encoding), and each of these n physical qubits
are themselves encoded in n other physical qubits (to make a “level-2” encoding),
and so on. The number of levels of concatenation can be chosen so as to achieve
any desired probability in the correctness of the final result. Figure 14.16 shows a
schematic illustrating the basic idea.

It is fairly involved to calculate the exact effects of concatenation on the overall
reliability of the circuit, although people have done so for different physical schemes
and quantum computer architectures [31, 291, 350, 479, 484, 486]. In part, this is

Fig. 14.16 Schematic view of concatenated coding: each qubit is encoded in several qubits, which
are each encoded in several qubits, which are each encoded in several qubits, etc.

14.9 Fault-Tolerant Quantum Error Correcting Codes 619

because the details of the calculation depend upon many factors such as the ac-
tual code used, the error model assumed, the degree to which fault-tolerant design
principles have been followed, the architectural assumptions made, and the extent
to which opportunities for gate-parallelism have been exploited. However, a simple
back-of-the-envelope argument is sufficient to convey the main idea, that the use of
concatenation is beneficial provided the error probability per qubit per gate is less
than a certain threshold.

Think of it this way. Suppose we are using a code that encodes each logical qubit
in n physical qubits. The quantum error-correcting codes we looked at earlier can
correct a single arbitrary error (bit-flip, phase-flip, or joint bit-flip and phase-flip)
in a coding block. So for the logical qubit to be in error at the end of some error-
correcting cycle we will have had to have had two or more errors introduced into
a block. If the probability of an error per qubit per gate operation is p, then (since
all the 1-qubit errors are fixable), by using the code the error probability becomes
plevel−1

fail = cp2 where c counts the number of ways pairs of errors can be inserted
amongst the physical qubits in a coding block.

Now concatenate this process. For each physical qubit in the coding block, imag-
ine using the same code to encode it into n more physical qubits. Now n2 phys-
ical qubits are involved in encoding one logical qubit. What will it take for our
logical qubit to be in error now? Let us call this the level-2 encoding. We have
plevel−2

fail = c(plevel−1
fail)2 = c3p4.

Repeating concatenation steps in this fashion we can write down the error prob-
ability as a function of the number of levels of concatenation as follows:

plevel−1
fail = cp2

plevel−2
fail = c(plevel−1

fail)2 = c3p4

plevel−3
fail = c(plevel−2

fail)2 = c7p8

...

plevel−k
fail = c(p

level−(k−1)
fail)2 = c2kp2k

c

(14.65)

Thus, successive levels of concatenation will tend to suppress the error in the logical
qubit provided c p < 1, where p is the probability of error per physical qubit per gate
operation. Hence, there is a threshold in error probability of:

p < pthreshold ≡ 1

c
(14.66)

in which case the error will be reduced with successive levels of concatenation.
Hence, provided this error probability per qubit per gate threshold is met, it will be
possible to implement quantum computations of arbitrary length to arbitrary accu-
racy. That is, one can quantum compute forever without error!

But what is the overhead in gate count we have to pay to achieve k levels of con-
catenation? Again following Julia Kempe’s intuitive argument [270], if the circuit

620 14 Quantum Error Correction

we wish to implement has N gates when done without error correction, and we de-
sire a final success probability of order 1 − p, then in such a circuit each gate has
to have a failure probability of less than or equal to p/N because errors compound.
Hence, if we concatenate k times we will require:

plevel-k
fail = c2kp2k

c
= pthreshold

(
p

pthreshold

)2k

≤ p

N
(14.67)

which implies

2k ≤ log(Nεth/p)

log(εth/ε)
(14.68)

So after k levels of concatenation, each gate turns into Gk gates where:

Gk = 2
k logG≤(

log(Nεth/p)
log(εth/ε)

)logG = poly(logN) (14.69)

and so its final size will be N poly(logN), which is only polylogarithmically larger.
Opinions as to actual values of this error threshold have varied widely over the

years. Initially, error rates per gate of around 10−4–10−7 were thought necessary,
but the threshold has steadily been climbing [31, 291, 350, 400, 479, 484, 486]. The
truth is, although we have talked about the threshold, in reality it is not unique: one
can obtain different thresholds if one specializes the theory to different quantum
computer architectures. Such considerations take into account the specific char-
acteristics of different physical embodiments of quantum information processing
wherein some error mechanisms are more prevalent than others. If one does this,
one can obtain different assessments of the error rate per gate operation needed to
sustain quantum computations of arbitrary length. Some recent studies suggest in
certain architectures and schemes, the threshold could be as high as 3% [291].

14.10 Errors as Allies: Noise-Assisted Quantum Computing

We end this chapter with an observation. The prevailing opinion of quantum com-
puter scientists is that quantum error correction is essential to achieving a useful
quantum computer. However, is this necessarily true? For certain computations,
such as factoring composite integers, where we seek an exact solution that is ei-
ther plainly right or plainly wrong, we are indeed obliged to imbue our quantum
computations with the ability to either avoid errors (e.g., using decoherence-free
or topological encodings we shall describe in Chap. 15) or undo errors (e.g., using
quantum error correcting codes). But there are many other computations in which
we seek not a right or wrong answer, but instead, a “pretty good” answer. For ex-
ample, in a maximum satisfiability problem, an ideal solution is one that satisfies
the greatest number of constraints. However, in practice, we might be content with a
solution that comes close to this ideal but not quite. In this case, the pragmatic mea-
sure of whether a quantum computer is better than a classical computer, is whether

14.11 Summary 621

it finds an equally good, i.e., equally sub-optimal, solution in less time, or whether
it finds a better, albeit still sub-optimal, solution in the same time as required by a
classical computer. Given the relative importance and ubiquity of such problems in
comparison to integer factorization, a greater degree of investigation is warranted.

Moreover, surprisingly, there are a handful of results that suggest that noise, dis-
sipation and decoherence can sometimes be an ally of quantum computation! For
example, noise can be harnessed productively in entangled state preparation [342,
551], to effect quantum gate operations [39–41], and to enhance quantum transport
in networks including, e.g., the light harvesting structures in plants [105, 359, 394,
413, 414]. It seems worthwhile to pursue such avenues to determine whether there is
a strategy for quantum computation that makes noise a friend rather than an enemy.

14.11 Summary

There is an inherent contradiction amongst the ideal requirements for a quantum
computing device. On the one hand the machine needs to be well isolated from the
external world to permit it to evolve unitarily while executing some desired quantum
computation. On the other hand, the machine needs to be strongly coupled to the ex-
ternal world to allow us to initialize it in an arbitrary starting state, or command it to
perform a particular sequence of unitary gate operations. Switching the interaction
with the external world on and off cleanly is extremely challenging experimentally.
Hence errors are likely to arise in real quantum computing hardware.

In this chapter we have looked at several approaches to dealing with errors in
quantum computations. We found that it is not as easy to detect an error in a quantum
computation as it is in a classical computation because errors may exist along a
continuum of possibilities and our ability and we are not even allowed to read a
corrupted state directly, because such direct observations would make matters worse
rather than better.

In the early days of quantum computing it was felt that such obstacles appeared
to preclude the possibility of error correcting codes for quantum information. How-
ever, it turns out that quantum error correcting codes are possible. The trick is to
entangle the qubit whose state we want to protect (the logical qubit) with several
other physical qubits (i.e., ancillae) in such a manner that subsequent measurements
on the ancillae qubits will reveal what error has afflicted the encoded data, and
hence the corrective action needed to restore the logical qubit to its correct state.
Crucially, these measurements on the ancillae only reveal information about the er-
ror and nothing about the state we wish to protect. Once the error is known it can be
undone using the appropriate inverse unitary operation.

Various families of quantum codes are now known. We can estimate the tradeoffs
different codes make regarding the number of logical qubits protected, the number
of physical qubits into which they are encoded, and the maximum number of er-
rors that can be corrected by way of the quantum Hamming, Singleton and Gilbert-
Varsharmov bounds. Sometimes tighter bounds have now been determined for many
codes using more sophisticated methods. A database of known results is maintained

622 14 Quantum Error Correction

by Markus Grassl. The best code able to protect a logical qubit against a single bit-
flip, phase-flip, or joint bit flip and phase flip, is the Laflamme-Miquel-Paz-Zurek
5-qubit code. This code saturates the quantum Hamming bound and is optimal. We
gave complete circuits for the encoding and decoding stages of the 5-qubit code. We
also showed the codewords used for less efficient codes that were discovered before
the 5-qubit code.

In our original formulation of the 5-qubit code, the encoded qubit had to be
mapped back to the unencoded (logical) basis periodically in order for he the error
correction to be performed. This exposes the logical qubit to uncorrectable errors
while it is back in the unencoded basis. We described how the stabilizer formalism
can combat this by performing error correction while staying entirely within the
encoded basis.

An obvious issue with quantum error correction is that the error-correcting cir-
cuitry may itself introduce more errors. For quantum error correction to be truly
viable, we need to be able to use imperfect error correction to achieve perfect com-
putation. Fortunately, through a combination of fault-tolerant circuit design prin-
ciples, and the use of concatenated coding, we showed that coding schemes can
be devised that, in principle, permit error-correctable quantum computations of ar-
bitrary length. We showed that to achieve such concatenated coding schemes the
error probability per qubit per gate operation needs to be below a critical threshold.
This threshold is sensitive to the error model, architecture, and physical embodiment
used. However, schemes now exist that suggest error rates as high as 3% might be
tolerable.

Two relatively new directions for handling errors in quantum computing are the
use of noise sources as an ally in quantum computation, and the use of decoherence-
free subspaces and topological quantum effects to make quantum hardware that is
immune to errors. We shall examine such topics in the next chapter in the context of
alternative models of quantum computation.

14.12 Exercises

14.1 Prove that any 2×2 matrix can be written as a weighted sum of Pauli matrices
according to:

(
a b

c d

)
= a + d

2
1+ b+ c

2
X+ i (b− c)

2
Y + a − d

2
Z (14.70)

See Sect. 2.4.1.1 for a definition of the Pauli matrices.

14.2 Write down the operators that describe the following errors afflicting a 5-qubit
state.

(a) A bit-flip on the first qubit.
(b) A phase-flip and the fifth qubit.

14.12 Exercises 623

(c) A joint bit-flip and phase-flip and the third qubit.
(d) A bit flip on the second qubit and phase-flip on the fourth qubit.

14.3 Consider a single logical qubit in a state |ψ〉 = α|0〉 + β|1〉 that interacts
with an environment describable using just two qubits—a simplification indeed.
Equation (14.31) says that the joint state of the qubit and its environment evolve as
follows:

U |ψ〉|E〉 = (α|0〉 + β|1〉)⊗ |E00〉 + |E11〉
2

(no error)

+ (α|0〉 − β|1〉)⊗ |E00〉 − |E11〉
2

(phase flip)

+ (α|1〉 + β|0〉)⊗ |E01〉 + |E10〉
2

(bit flip)

+ (α|1〉 − β|0〉)⊗ |E01〉 − |E10〉
2

(joint phase flip & bit flip)

Assuming the states |E00〉, |E01〉, |E10〉, and |E11〉 are orthonormal:

(a) Prove that the states of the environment |E00〉+|E11〉
2 , |E00〉−|E11〉

2 , |E01〉+|E10〉
2 , and

|E01〉−|E10〉
2 are orthonormal. What is the significance of this in terms of error

detection?
(b) Prove that the three qubit state U |ψ〉|E〉 is entangled? What is the significance

of this in terms of error determination?

14.4 The quantum circuit that encodes a single logical qubit in state |ψ〉 = α|0〉 +
β|1〉 within a 5-qubit entangled state according to Braunstein and Smolin’s version
of the Laflamme-Miquel-Paz-Zurek code is show in Fig. 14.3.

(a) Use the encoding circuit together with the fact that L = 1√
2

(1 −1
1 1

)
to compute

the unitary matrix corresponding to the Laflamme-Miquel-Paz-Zurek encoding
circuit.

(b) Verify that the circuit acting on input |ψ〉|0000〉 produces the state |ψ〉L =
α|0〉L + β|1〉L where the quantum codewords |0〉L and |1〉L are as given
by (14.40).

(c) Write down the state that results from a joint bit-flip and phase-flip on the fourth
qubit in the encoded state.

(d) Compute the unitary matrix corresponding to the Laflamme-Miquel-Paz-Zurek
decoding circuit. Note, this is the inverse of the encoding circuit.

(e) Use the decoding matrix of part (d) to error-correct the error-afflicted state of
part (c). What is the resulting state?

14.5 The quantum circuit that encodes a single logical qubit in state |ψ〉 = α|0〉 +
β|1〉 within a 5-qubit entangled state according to Braunstein and Smolin’s version
of the Laflamme-Miquel-Paz-Zurek code is show in Fig. 14.3. This circuit protects

624 14 Quantum Error Correction

against a single general error afflicting any of the five qubits in the encoded state.
However, to know a single general error has occurred we have to measure the error
syndrome. Prior to such measurements no error has yet occurred. Hence, so long
as we are not looking, multiple single qubit errors can afflict our state, but which
one is actually realized only becomes definite after we measure the error syndrome!
This is one of the amazing facts of quantum mechanics. This exercise will help you
appreciate this subtlety of quantum error correction:

(a) Determine the unitary matrix for Braunstein and Smolin’s version of the
Laflamme-Miquel-Paz-Zurek code.

(b) Use the unitary matrix of part (a) to compute the encoded form of the state
|ψ〉 = α|0〉 + β|1〉, i.e., |ψ〉L.

(c) Define two representative single qubit error operators as follows: Let EB1 be the
operator representing a bit-flip on the first qubit in the encoded state, and let
EP3 be the operator representing a phase shift on the third qubit in the encoded
state. Compute the state that results when both errors afflict the encoded qubit
equally.

(d) How many errors have afflicted the encoded qubit at this point? [Think carefully
before you answer].

(e) Now run the buggy state through the Laflamme-Miquel-Paz-Zurek decoding
circuit. What are the possible values for the error syndrome you can obtain?

(f) How does the measurement of the error syndrome affect the state of the unmea-
sured (top) qubit?

(g) Is it fair to say that the Laflamme-Miquel-Paz-Zurek code can correct multiple
errors? [Think carefully before you answer].

14.6 In the Laflamme-Miquel-Paz-Zurek 5-qubit code we allow joint bit flip and
phase flip errors to afflict a given qubit. However, does it make a difference whether
the bit flip or phase flip occurs first? To investigate this, answer the following ques-
tions:

(a) Show that a bit flip followed by a phase flip yields a strictly different result from
a phase flip followed by a bit flip.

(b) Show, however, that the error syndrome corresponding to a bit flip followed by
a phase flip on qubit i is the same as the error syndrome corresponding to a
phase flip followed by a bit flip on qubit i.

(c) Even though the error syndromes are the same, are the corrective actions needed
to restore the buggy qubit to its original state, the same? If not, does this means
that we cannot really error correct the qubit because we cannot distinguish be-
tween a bit flip followed by a phase flip from a phase flip followed by a bit
flip?

(d) Is there any measurement you could do that would tell you whether you had
restored a qubit to its original state |ψ〉 or whether you had restored it to −|ψ〉?

14.12 Exercises 625

14.7 Prove that the asymptotic form for the quantum Hamming bound (14.61) is
given by:

k

n
≤

(
1− t

n
log2 3−H

(
t

n

))
(14.71)

where H is the entropy H(x)=−x log2 x − (1− x) log2(1− x).

14.8 Prove that the asymptotic form for the quantum Gilbert-Varshamov bound
(14.64) is given by:

k

n
≥

(
1− 2t

n
log2 3−H

(
2t

n

))
(14.72)

where H is the entropy H(x)=−x log2 x − (1− x) log2(1− x).

14.9 Which of the following [n, k, d] codes are ruled out by the quantum Hamming,
quantum Gilbert-Varshamov, or quantum Singleton bounds?

(a) A [5,2,3] code
(b) A [7,2,3] code
(c) A [10,1,5] code
(d) A [10,5,3] code
(e) A [19,1,7] code
(f) A [20,1,11] code

14.1 Problem What is the “minimum length”, i.e., minimum value of n, of a k = 1
quantum error-correcting code that corrects t = 1,2,3,4,5,6,7,8,9 errors?

Chapter 15
Alternative Models of Quantum Computation

“New ideas pass through three periods: It can’t be done. It probably can be done, but it’s
not worth doing. I knew it was a good idea all along!”
– Arthur C. Clarke

Just as there are alternative models of classical computers, so too are there al-
ternative models of quantum computers. These models differ in the quantum phe-
nomena and resources they harness to perform quantum computation, and the ease
with which they can be implemented in different hardware schemes. Many equiva-
lences between these models have now been established, in the sense that it has been
proven that any quantum computation performed in one model can be performed in
another model with at most a polynomial cost overhead. Consequently, from the per-
spectives of complexity theory and computability theory, it does not matter which
model one uses. However, model equivalence is only a theoretical construct. In the
real world different models may be more or less easy to implement in a given hard-
ware scheme, even though they might be computationally equivalent. Thus, we end
the book with a survey of some competing models of quantum computation, and
ideas people have had for how they might be implemented. It is quite possible that
the first scalable universal quantum computer will be built according to one of these
“non-standard” models of quantum computation. In all cases though, they make use
of entanglement in one way of another. So one could say legitimately that there’s
more than one way to skin a Schrödinger cat!

15.1 Design Principles for a Quantum Computer

Throughout this book we have implicitly assumed that quantum computers will be
designed in accordance with the quantum circuit model of quantum computation.
However, quantum circuits can be realized in physical hardware in many different
ways. As one implementation proposal after another began to emerge in the late
1990’s it became increasingly difficult to compare and contrast the various hardware
schemes and to rank their relative merits. Worse, some proposals began to appear

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_15, © Springer-Verlag London Limited 2011

627

http://dx.doi.org/10.1007/978-1-84628-887-6_15

628 15 Alternative Models of Quantum Computation

that claimed to be sufficient for universal quantum computation, but which actually
harbored design flaws, that prevented them from scaling to arbitrary numbers of
qubits.

In an attempt to abstract away from hardware specifics to more general design
principles for quantum computers, in 2000 David DiVincenzo published a land-
mark paper that identified a minimal set of requirements needed for any hardware
scheme to be able to implement quantum computation [148]. These have since be-
come known as the “DiVincenzo Criteria” and have been of tremendous value in
sharpening thinking on the similarities and differences between different approaches
to quantum computation. In brief, the DiVincenzo Criteria can be stated as follows:

DiVincenzo Criteria

1. A scalable physical system with well characterized qubits.
2. The ability to initialize the state of the qubits to a simple fiducial state, such as
|000 . . .0〉.

3. Long relevant decoherence times, e.g., in the circuit model the states must deco-
here much slower than the gate operation time.

4. A “universal” set of quantum gates, or other primitive operations from which
arbitrary quantum computations can be built.

5. A qubit-specific measurement capability.

These criteria have proven to be a useful checklist for experimentalists devis-
ing novel hardware designs for quantum computation because they distill out the
essential functionality a hardware proposal needs to possess in order to be a plau-
sible contender as a basis for scalable universal quantum computation. As you read
the alternative models of quantum computation in this chapter, keep these criteria
in mind. Even though many of these models deviate significantly from the origi-
nal quantum circuit model the DiVincenzo Criteria, or minor tweaks thereon, still
remain surprisingly valid across radically different quantum computational models.

15.2 Distributed Quantum Computer

The first model we shall look at is a slight twist on the standard quantum circuit
model. In the standard circuit model there is no restriction on the number of qubits
allowed within a single quantum processor. However, this assumption might not
be valid for certain types of quantum computer hardware. For example, in super-
conducting quantum processors there is a practical limit to the number of control
lines that will fit into a dilution refrigerator, which limits the number of qubits, sit-
ting deep within the refrigerator, that can be addressed directly. Such practical con-
siderations led some people to devise distributed quantum computer architectures
wherein, instead of a single monolithic quantum processor, the distributed quan-
tum computer consisted of several simple quantum processors connected by com-
munications channels. Different models of distributed quantum computation arise

15.2 Distributed Quantum Computer 629

according to the type of communications channel that is allowed and whether there
is the assumption of shared prior entanglement between quantum processor nodes.

If the communications channels can carry arbitrary qubits, then the distributed
machine is, in principle, equivalent to the standard quantum circuit model. To effect
a gate operation on qubits residing on different quantum processor nodes one would
simply shuttle the qubits to a common processor node, perform the gate operation
and return them to their original processors.

Conversely, if the communications channels can carry only classical information,
then the distributed machine is a much weakened quantum computer because entan-
glement can be created within the individual quantum processors but not between
them. These are so-called Type-II quantum computers.

The most intriguing possibility is a hypothetical quantum computer that lies
somewhere between these extremes: this is a distributed quantum computer wherein
the individual quantum processors are assumed to be supplied with pairs of maxi-
mally entangled qubits each in state 1√

2
(|00〉 + |11〉). During operation, the only

communication allowed between the quantum processors is the exchange of classi-
cal information. How powerful would such a distributed quantum computer archi-
tecture be?

To answer this is it sufficient to determine whether it is possible to effect a uni-
versal set of gates on this architecture. We could take our target universal set of
gates to be CNOT and all 1-qubit gates. Clearly, the 1-qubit gates pose no problem
because they are guaranteed to involve a single qubit, which has to be wholly within
one quantum processor node. Likewise, a CNOT gate applied to a pair of qubits that
are both within the same quantum processor node pose no problem either. The only
difficulty is whether it is possible to perform a CNOT gate on a pair of qubits in
which the control qubit is within one quantum processor node and the target qubit
is within another. If such a gate operation is possible, then the distributed quantum
computer imbued with shared prior entanglement must be equivalent to the standard
circuit model.

Such a proof was given by J. Eisert, K. Jacobs, P. Papadopoulos and M. Plenio
[165]. Their solution is shown in Fig. 15.1. The control qubit is on the top rail
(inside processor A) and the target qubit is on the bottom rail (inside processor B).
In addition, there is an EPR pair, 1√

2
(|00〉 + |11〉), shared between processors A

and B on the second and third rails in the figure. Such EPR pairs are assumed to
be a shared prior resource in this computational model.1 The first CNOT gate and
measurement-outcome-controlled-X gate move the control qubit from processor A
to processor B , and the CNOT is effected. The Hadamard gate and the measurement-
outcome-controlled-Z gate return the control qubit to the top rail. Notice that there
have been two communicative acts between processors A and B , but these only
involved sending classical bits, which were then used to control 1-qubit gates. Thus,
only classical information is exchanged during the quantum computation. This fact

1One way to create such shared prior entanglement is to perform the quantum computation
(H ⊗ 1) · CNOT|00〉 and physically transport one member of the pair to processor A and the
other to processor B .

630 15 Alternative Models of Quantum Computation

Fig. 15.1 A CNOT gate can be effected on two qubits that reside on different quantum processor
nodes of a distributed quantum computer. In the figure, the vertical squiggle indicates that an EPR
pair has been shared between processor A and B prior to any computation taking place. This shared
prior entanglement is consumed during the computation of the distributed CNOT gate in order
to move the control qubit into the same processor as the target qubit whereupon the CNOT can
be effected. Thereafter the Hadamard gate and measurement-outcome-controlled-Z gate restores
the control qubit to the top rail. Note that the joint state of the control and target qubits prior to
the distributed CNOT can themselves be entangled due to prior computations and the distributed
CNOT works just as well

is emphasized Fig. 15.1 by the use of the double lines. The EPR pair is established
prior to the computation, i.e., “offline”.

Thus, a distributed quantum computer architecture consisting of several simple
quantum processors, that share fixed prior entanglement, and are coupled by classi-
cal communication channels, is sufficient to achieve arbitrary quantum computation.
These ideas have been extended to distributed QFT and distributed Shor’s algorithm
by Anocha Yimsiriwattana and Samuel Lomonaco [552, 553].

15.3 Quantum Cellular Automata Model

Cellular automata (CA) are hypothetical computing devices that consist of a spa-
tially infinite 1-, 2- or 3-dimensional lattice of “cells”, each of which can be in
one of finitely many states, to which the same update rule, with inputs from the
local neighborhood of each cell, is applied in parallel. They were first introduced
by John von Neumann as a possible answer to the question “What kind of logical
organization is sufficient for an automaton to reproduce itself?” [521]. They have
since found extensive application in many scientific fields and are the foundation
for Stephen Wolfram’s vision of a “New Kind of Science” [544].

In classical cellular automata, the value assigned to the cell at a particular index,
x say, at time step t + 1 depends on the values held by its neighbors, Nx , at time
step t . For example, in a one-dimensional CA (say), to update the cell at index x

one would read the contents of the cells at indices x − 1 and x + 1 and set cell x to
have a value that is some (fixed) function of the measured values. Hence, to update
the classical cellular automaton, it is necessary to maintain two registers: one that
records the instantaneous values of the neighbors at time t and the other that records
what the new cell values are about to become at time step t + 1 after all the updates

15.3 Quantum Cellular Automata Model 631

Fig. 15.2 A quantum cellular automaton (QCA). Each cell is initially assigned a starting value,
i.e., quantum state. Thereafter, a local-unitary update rule is applied in parallel to contiguous blocks
of nearest neighbor cells. In the figure a 1D QCA is shown together with the triplets of cells corre-
sponding to the center cell and its two nearest neighbors. These triplets of cells overlap one another
in the one-dimensional array of cells but, to visualize them clearly, we shown them stacked in the
figure. Unlike classical cellular automata no cells are read during the evolution. This allows the
quantum state of the whole QCA to evolve into a non-separable (entangled) superposition. Never-
theless, such an entangled state can be expressed as a sum over separable states each corresponding
to a different direct product of basis states in the cells. At the end of the evolution when the QCA
is in state ρABC the state of a particular subset of the cells is obtained by the partial trace over the
complementary subset of cells, e.g., ρB = trAC(ρABC). Although the QCA model is often defined
over an infinite lattice, in practical implementations finite-sized hardware is used having periodic
boundary conditions, or quiescent states, at the edges of the finite lattice

have been applied. Classically, this strategy can be implemented easily as reading
and copying pose no problems whatsoever. In practical applications, we usually
work with a finite lattice having either periodic boundary conditions (e.g., a torus
(or doughnut shape)—which is periodic in two dimensions) or quiescent states, i.e.,
states that do not change under an update operation.

Quantum cellular automata (QCA) are quantum generalizations of classical cel-
lular automata. Thus, we can regard them as hypothetical quantum computing de-
vices that consist of a spatially infinite 1-, 2- or 3-dimensional lattice of “cells”,
each of which can be in one of finitely many basis states, {|ψ(i)〉} say, to which the
same update rule, with inputs from the local neighborhood of each cell, is applied in
parallel (see Fig. 15.2). Unlike the classical case, where we actually read the values
held by the neighbors, in a QCA we do not. Instead, the “read” operation is replaced
by a fixed unitary operator, U say, applied uniformly across all cells. This unitary
operator needs to have the property of commuting with all lattice translations of
itself. That is, if Ux and Uy correspond to the same operation U centered on two
different cell indices, x and y, then we require [Ux,Uy] = 0 for all x and y. This
requirement ensures that the order in which the updates Ux and Uy are applied does
not change the end result of the update of the QCA as a whole. Note that, even if
each cell starts out in one of their allowed basis states, the dynamical evolution of
the QCA will quickly entangle the states of the cells. Nevertheless, such an entan-
gled state can be expressed as a sum over separable states each corresponding to
different direct product of basis states for the cells. This means that the overall QCA

632 15 Alternative Models of Quantum Computation

will become a non-separable (entangled) superposition of the form:

∑
i,j,k,...

· · · |ψ(i)
x−1〉|ψ(j)

x 〉|ψ(k)
x+1〉 · · · (15.1)

where |ψ(j)
x 〉 corresponds to the cell at index x being in basis state |ψ(j)〉 etc. Only

when a final measurement is made on some desired subset of cells is the final fate
of the computation actually determined. Otherwise the state of a particular subset of
cells would be given by the partial trace over the complementary subset of cells.

Although such a quantum generalization of cellular automata is intuitive, it turns
out to be problematic in the sense that one can imagine reasonable-sounding quan-
tum cellular automata, such as one that merely shifts the contents rightwards, that
cannot be achieved within such a model. The crux of the problem is that the oper-
ations of reading and updating the QCA cannot be done as one move in a QCA as
they can in a classical CA. To fix this, Carlos Perez-Delgado and Donny Cheung’s
have devised a local unitary quantum cellular automaton (LU-QCA) model [391],
which subsumes previous QCA proposals [158, 159, 216, 440, 508, 523], and yet
does not have this problem. The basic idea is as follows:

Quantum Cellular Automaton A QCA is a 5-tuple (L,Σ, N ,U0,V0) consisting
of:

1. a d-dimensional lattice of cells indexed by integers. L= Z
d ,

2. a finite set Σ of orthogonal basis states,
3. a finite neighborhood scheme N ⊆ Z

d ,
4. a local read function U0 : (HΣ)⊗N → (HΣ)⊗N such that any two lattice trans-

lations Ux and Uy must commute for all x, y ∈ L, and
5. a local update function V0 : HΣ → HΣ .

The key trick is to account for every operation the QCA needs to perform in a
physically allowed way. So in the QCA Perez-Delgado and Cheung use two opera-
tions: one, Ux , to compute the updated value to cell x and one, Vx , to perform the
actual cell update to cell x. Thus, the local update rule at cell index x is Rx = Vx ·Ux

and the global update rule is therefore:

R = V ·U =
(⊗

x

Vx

)
·
(⊙

x

Ux

)
(15.2)

Although real quantum cellular automata would be implemented directly in quan-
tum hardware such as optical lattices [62, 84, 140] (see Fig. 15.3), we can best grasp
idea of the local unitary QCA by looking at how it would be simulated (efficiently)
in a traditional quantum circuit as shown in Fig. 15.4: The update rule computes
what the new cell values will be in such a manner that the calculation for one cell
does not prevent the neighboring cell from computing its update too. Then a final
set of single qubit unitaries actually apply the updates.

15.4 Measurement I: Teleportation-Based Quantum Computer 633

Fig. 15.3 (a) An optical standing wave is formed by superimposing two counter-propagating laser
beams. The minima of the standing wave act as a perfectly periodic optical trap for cold atoms.
This create a structure mirroring that of a one-dimensional QCA. (b) If more counter-propagating
laser beams are added in directions orthogonal to the first, we can create two-dimensional and
three-dimensional optical lattices. Operations on nearest neighboring sites can then implement the
fundamental update rule of a QCA

Perez-Delgado and Cheung show that their QCA is universal for quantum com-
putation by proving it can implement any valid quantum circuit. Hence, if one
wanted to build a quantum computer, one could in principle build it in a local uni-
tary QCA architecture. Such a scheme has many advantages: it is very uniform,
only requires nearest neighbor interactions, and maps in a very natural way onto
certain types of quantum hardware such as optical lattices [62]. Moreover, the QCA
model itself is very close to certain physical systems such as Ising spin systems and
quantum lattice gases and so is likely to be ideally suited to simulating such sys-
tems. Thus the QCA is a very strong contender for a universal quantum computer
architecture that could actually be realized.

15.4 Measurement I: Teleportation-Based Quantum Computer

The standard quantum circuit model assumes the ability to perform any quantum
gate from a universal set of gates deterministically on demand. Various families of
such gates were given in Table 2.14. You will notice, however, that every case each
universal set of gates includes at least one 2-qubit gate. It turns out, however, that it
can very difficult to achieve such quantum gates deterministically on demand exper-
imentally. In many schemes when we attempt a particular gate operation, especially
a multi-qubit one, the operation may fail. If this were to happen in the midst of a
long quantum computation, it could easily corrupt the quantum state being acted
upon, and cause the computation go awry. While quantum error correction can of

634 15 Alternative Models of Quantum Computation

Fig. 15.4 Quantum circuit
simulating a quantum cellular
automaton (QCA). The dotted
area corresponds to the
“read” operation being
applied to each cell and its
immediate nearest neighbors.
This read operation does not
involve making any
measurements at all, but
instead involves applying the
same unitary operator U
across the whole array (in this
case a 1-dimensional array).
These U operators compute
the updated value of the i-th
cell and write it in an
ancillary memory location
(not shown). Then a
subsequent V operation
actually applies the update

course handle this, in principle, one wonders if there might not be some more fun-
damental way to change the computational model so that these kinds of gate failures
can be avoided.

In most implementation schemes the 1-qubit gates can be achieved more reliably
than the 2-qubit gate (or gates) needed in the particular universal gate family being
employed. Thus, if only we could eliminate the need to perform the 2-qubit gates
deterministically on demand during a quantum computation then perhaps quan-
tum computation would be easier to achieve experimentally. This is exactly what
Daniel Gottesman and Ike Chuang proposed in 1999 when they invented an alterna-
tive, measurement-based, model for quantum computation that requires only single
qubit gates, offline Bell-basis measurements, and the ability to make and store many

15.4 Measurement I: Teleportation-Based Quantum Computer 635

copies of a special entangled state we call |Φ〉 [210]. If we can achieve these opera-
tions as primitives then Gottesman and Chuang showed how to assemble them into
arbitrary quantum computations. These scheme has the attractive feature that only
single qubit operations and measurements are needed during the actual quantum
computation. All the hard work is pushed offline to the creation and storage of these
special entangled states |Φ〉. Thus was born first measurement-based model of quan-
tum computation. This treated quantum teleportation, and its associated Bell-basis
measurement, as computational primitives from which arbitrary quantum computa-
tions could be built. This work inspired the revolutionary paper by Knill, Laflamme,
and Milburn showing that it was possible to do universal quantum computation us-
ing only linear optical elements and photo-detectors. Prior to this, it was assumed
that optical quantum computers had to involve nonlinear optical elements, such as
a nonlinear Kerr medium, to achieve a CNOT gate [107]. However, the Gottes-
man and Chuang scheme essentially showed how to use the non-linearity implicit
in the quantum measurement process to achieve a CNOT gate, deterministically on
demand. This so-called “teleportation-based quantum computer” was further devel-
oped by Michael Nielsen [371] and Debbie Leung [310].

To understand how teleportation-based quantum computation works, we can pro-
ceed in stages. First realize that the original teleportation scheme we saw in Chap. 12
makes it possible to move a 1-qubit state from one place to another. In that case, you
will recall the critical role played by the Bell basis measurement operation. This
gives us a two-bit classical message that informs the receiver what operation they
need to perform on their entangled qubit in order to re-incarnate the original quan-
tum state being teleported. In the present context, it is most important to realize that,
although we often picture a Bell basis measurement in terms of a quantum circuit,
as illustrated in Figs. 15.5 and 15.6, as comprising a CNOT gate and Hadamard
gate followed by a measurement in the computational basis, we do not have to think
of it this way. Instead, a Bell basis measurement operation itself can be thought of
as a primitive operation in quantum computation, without any CNOT gate being
involved at all. Moreover, each Bell basis measurement can be regarded as a kind
of measurement based quantum gate, which can be inserted into a quantum circuit
in two possible orientations. The difference is apparent by comparing Figs. 15.5
to 15.6.

Fig. 15.5 A Bell-basis measurement gate. A Bell measurement gate can be described in terms of
a CNOT gate, a Hadamard gate, and a measurement in the computational basis. However, one does
not have to have CNOT gate available to implement a Bell basis measurement

636 15 Alternative Models of Quantum Computation

Fig. 15.6 A Bell measurement gate inserted “upside down”. A Bell-basis measurement gate can
be described in terms of a CNOT gate, a Hadamard gate, and a measurement in the computa-
tional basis. However, one does not have to have CNOT gate available to implement a Bell-basis
measurement

Fig. 15.7 Two mirror-image teleportation circuits succeed in teleporting a pair of qubits simul-
taneously. The input state is of the form |a〉|β00〉|β00〉|b〉 where |a〉 and |b〉 are arbitrary compu-
tational basis states and |β00〉|β00〉 is a pair of Bell states. In the middle of the circuit four Bell
basis measurements are made yield (classical) bit values {M1,M2,M3,M4}. These values are used
to control subsequent applications of X and Z gates. Regardless of the measurement outcomes
{M1,M2,M3,M4}, the output on the middle pair of qubits (i.e., qubits 3 and 4) is always |a〉|b〉,
i.e., the same as the input state on qubits and 6. Although non-obvious, the same circuit can teleport
an arbitrary (i.e., entangled and/or mixed) 2-qubit state split across qubits 1 and 6 too. The proof
of this is given as a guided exercise at the end of this chapter

Next consider what happens if we employ two such teleporters simultaneously.
In this case, we can move an arbitrary 2-qubit state from one place to another, as
illustrated in Fig. 15.7. Notice, in the figure, that the two Bell basis measurements

15.4 Measurement I: Teleportation-Based Quantum Computer 637

are inserted into the double teleporter upside down with respect to one another. This
makes the overall circuit more symmetric. The net result though is that we can now
teleport the state of two qubits from one place to another.

To see this, we have shown, in Fig. 15.7, the case in which the input 2-qubit
state is a product state fed into the circuit on qubits 1 and 6, i.e., |ψ1,6〉 = |a〉|b〉.
However, as you will confirm later in the exercises, the same double teleportation
circuit can successfully teleport any type of 2-qubit state, regardless of whether it is
entangled, i.e., |ψ1,6〉 = α|00〉+β|01〉+γ |10〉+δ|11〉 such that |α|2+|β|2+|γ |2+
|δ|2 = 1, or even mixed, i.e., ρ1,6. A simple way to approach this proof is to start with
|ψ〉|β00〉|β00〉 (on qubits 1 through 6 inclusive) and then permute the qubits using
SWAP1,6;6 ·Π26 · |ψ〉|β00〉|β00〉 to input |ψ〉 on qubits 1 and 6, |β00〉 on qubits 2
and 3, and |β00〉 on qubits 4 and 5. Then follow this input state through the circuit
to show the circuit transforms it correctly. The working steps are left as an exercise.

Given the ability to teleport a 2-qubit state, we can then insert a CNOT gate
immediately prior to the output from the double teleporter, and clearly be able to
achieve a CNOT of the input state, i.e., CNOT|a〉|b〉, in the output, as shown in
Fig. 15.8.

We can then insert a “no-op” operation in the form of two CNOTs back to back,
as illustrated in Fig. 15.9.

Now we can imagine re-grouping the gates in the circuit so that we associate one
of these new CNOT gates with the circuit to its left and the other new CNOT gate
with the circuit to its right. The result is shown in Fig. 15.10

Fig. 15.8 Circuit for teleporting a 2-qubit state followed by a CNOT operation. Clearly, as the
mirror image teleportation circuits merely teleport the joint state of qubits 1 and 6 to the joint state
of qubits 3 and 4, applying a CNOT gate to this output causes it to become CNOT|a〉|b〉. Again,
although shown for a separable input state, the same circuit also works for an arbitrary 2-qubit state
input on qubits 1 and 6

638 15 Alternative Models of Quantum Computation

Fig. 15.9 The same circuit as Fig. 15.8 except for the introduction of the identity matrix written
as a product of two back to back CNOT gates

Fig. 15.10 Re-interpretation of Fig. 15.9 by re-grouping the gates as implied by the dashed boxes.
The left hand dashed box is an operation that will produce some fixed entangled state independent
of the joint state input on qubits 1 and 6. The right hand dashed box corresponds to a quantum
circuit whose behavior is classically controlled by the bit values {M1,M2,M3,M4}. Note that, at
this point, the right hand dashed box contains two CNOT gates

15.4 Measurement I: Teleportation-Based Quantum Computer 639

Fig. 15.11 Quantum circuit identity showing that the quantum circuit fragment within the right
hand dashed box in Fig. 15.10 can be replaced with exclusively classically controlled gates pro-
vided the control logic is modified. Specifically, when the control values in the circuit involving
two CNOT gates are {M1,M2,M3,M4} the corresponding control values for the circuit devoid of
CNOT gates are {m1,m2,m3,m4}. The corresponding sets of control values needed to realize the
circuit fragment equivalence are shown in Table 15.1

The circuit inside the left hand dashed box in Fig. 15.10 generates the following
fixed entangled state:

|Φ〉 = (1⊗CNOT⊗ 1) · |β00〉|β00〉
= 1

2
|0000〉 + 1

2
|0011〉 + 1

2
|1101〉 + 1

2
|1110〉 (15.3)

Although the synthesis of |Φ〉 requires a CNOT gate we imagine doing these com-
putations offline, and storing many copies of |Φ〉 in a quantum memory of some
kind. Thereafter these pre-prepared entangled states are assumed to be available on
demand for input to the middle ports of the circuit shown in Fig. 15.10 after the
leftmost dashed box.

We are not quite done however, because it looks like the right hand dashed box in
Fig. 15.10 contains two CNOT gates, and as recall the whole point of us doing this
is to eliminate the need for any 2-qubit gates during active quantum computations.
However, the two CNOTs in this case are illusory. To see this, consider Fig. 15.11.
You are asked to verify these equivalences in Problem 15.4. This indicates we can
rewrite the sub-circuit to a form devoid of CNOT gates merely by changing the clas-
sical control values. Specifically, when the control values in the circuit involving two
CNOT gates are {M1,M2,M3,M4} the corresponding control values for the circuit
devoid of CNOT gates are {m1,m2,m3,m4}. The corresponding sets of control val-
ues needed to realize the circuit fragment equivalence are shown in Table 15.1.

Thus, the circuit identity shown in Fig. 15.11 proves the possibility of teleport-
ing a CNOT gate provided we can achieve Bell basis measurements, classically
controlled 1-qubit gates, and a supply of pre-prepared specially entangled states
|Φ〉 = (1 ⊗ CNOT ⊗ 1) · |β00〉|β00〉. In other words, provided we can create and
store many instances of the entangled state |Φ〉, no further entangling operation
is needed in order to perform any feasible quantum computation. The appeal of
this approach is that, in certain approaches to quantum computing hardware, this
teleportation-based scheme may prove easier to implement than arbitrary 1-qubit
gates and (deterministic) CNOT gates on demand. Indeed, it paved the way for the

640 15 Alternative Models of Quantum Computation

Table 15.1 Corresponding
pairs of control values for
quantum circuits shown in
Fig. 15.11. Specifically, when
the set of control values for
the circuit containing two
CNOT gates are
{M1,M2,M3,M4} the
corresponding control values
for the circuit devoid of
CNOT gates are
{m1,m2,m3,m4}. You are
asked to verify this in
Problem 15.4

M1 M2 M3 M4 m1 m2 m3 m4

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 1 0 1 1

0 1 0 0 0 1 1 0

0 1 0 1 1 1 1 1

0 1 1 0 0 1 0 0

0 1 1 1 1 1 0 1

1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1

1 0 1 0 1 0 1 0

1 0 1 1 0 0 1 1

1 1 0 0 1 1 1 0

1 1 0 1 0 1 1 1

1 1 1 0 1 1 0 0

1 1 1 1 0 1 0 1

proof by Manny Knill, Raymond Laflamme and Gerald Milburn that universal quan-
tum computation can be achieved using linear optical elements and photodetectors
[293].

15.5 Measurement II: One-Way Quantum Computer

In 2001 R. Raussendorf and H.J. Briegel proposed an alternate measurement-based
model of quantum computation [409]. Whereas in the teleportation-based scheme
one must perform joint (i.e., complete Bell-basis) measurements, in the one-way
scheme one need only use single-qubit measurements. This attribute of the one-way
quantum computer model is believed by many to enable much simpler implementa-
tions of universal quantum computers.

The basic idea behind the one-way quantum computer is as follows: first one
prepares the system in a highly entangled initial quantum state, called a “cluster-
state”, which is independent of whatever quantum computation one is to perform.
Next, one applies a sequence of single-qubit measurements on the qubits. The or-
der in which these measurements are performed, and the choice of basis for each
one, defines the quantum computation one performs. The measurements are “adap-
tive” in the sense that the measurement basis chosen for a given measurement can
be computed (classically) based on the prior measurement outcomes. The scheme
is called “one-way” because as a one-way quantum computation is performed the
measurements introduce a time-asymmetry in the dynamics that prevents it from

15.6 Topological Quantum Computer 641

being reversed unambiguously, so the computation can only be run forwards, i.e.,
“one-way”. Remarkably, it is possible to achieve universal quantum computation in
this manner [410, 411].

The great appeal of the one-way quantum computer model is that it shifts the bulk
of the technical challenge to the preparation of the initial (highly-entangled) cluster
states. Thereafter, the single qubit measurements are assumed to be relatively easy.
In practice, things are rarely so simple because the model does assume one can per-
form measurements on any qubit without it affecting nearby qubits. Depending on
the architecture of the one-way quantum computer, such individual qubit addressing
may or may not be so easy.

For example, the one-way model is especially popular with proponents of “opti-
cal lattice” quantum computers [82, 84, 140]. In such devices, once creates a stand-
ing wave potential using intersecting and counter-propagating laser beams. This cre-
ates a lattice of potential minima within which atoms can be cooled and trapped—
rather lake an egg-carton made from standing waves of light. Having confined the
atoms spatially on a scale of the order of the wavelength of laser light used, one
can then use the internal states of these atoms as qubits. Moreover, by fine tuning
the applied laser beams one can engineer entanglement between nearest neighbor
atoms and thereby build up the initial highly-entangled cluster states needed for the
one-way computer. Unfortunately, the atoms in the optical lattice turn out to be are
trapped so close together that it then becomes difficult to address them individually
in order to perform the single-qubit measurements needed to actually effect the de-
sired quantum computation. With effort this problem is expected to be solved. Nev-
ertheless, it does illustrate that hardware implementations of quantum computation
can be challenging even if the underlying physical model of quantum computation
appears relatively straightforward. Ideas from the one-way model of quantum com-
putation are now being combined with those of topological quantum computation
to conceive of a one-way quantum computer architecture that is resilient to noise
[412].

15.6 Topological Quantum Computer

“Topological quantum computation does not try to make the system noiseless, but instead
deaf – that is, immune to the usual sources of decoherence.”
– Sankar Das Sarma, Michael Freedman, and Chetan Nayak

The usual approach to combatting errors in quantum computations, which we ex-
plained in Chap. 14, is to reduce the error rate in quantum gate operations to below
a critical threshold such that fault tolerant concatenated quantum error correcting
codes can then be used to achieve error-correctable quantum computations of arbi-
trary length. By contrast, the idea behind topological quantum computation (TQC),
which was conceived of by Alexei Kitaev in 1997, is to encode quantum information
in topological degrees of freedom that are inherently immune to errors [285]. Thus,
rather than focussing on error correction, TQC focuses instead on error avoidance.
The rationale being that it is better to avoid errors rather than to allow them to occur

642 15 Alternative Models of Quantum Computation

and then have to correct them. For some good overviews of topological quantum
computing see [27, 81, 114, 365].

15.6.1 Topological Quantum Effects

Topology is concerned with those properties of geometry that are not affected by
stretching, shrinking, and twisting surfaces. Thus the common joke is that “A topol-
ogist cannot tell the difference between a donut and a coffee cup” [125] because one
surface can be smoothly deformed into another without having to cut anything.

The trick to achieving such error-immune quantum computation is to exploit cer-
tain topological states of matter to encode qubits. That topology can affect quantum
states is most commonly known from the example of the Aharonov-Bohm effect.
Here a charged particle is made to encircle a line of magnetic flux. In so doing it
accumulates a phase factor that depends only upon the number of times the charged
particle winds around the magnetic flux line but not on the geometry of the path
taken.

However, more exotic possibilities arise in the physics of particles confined to
move in only two dimensions. This is because certain operations on identical parti-
cles that are indistinguishable from one another in three dimensions become distin-
guishable when the particles are confined to move in only two dimensions.

To given a intuition for how this is possible, imagine a pair of hypothetical quasi-
particles, A and B say, that each carry charge and magnetic flux. If one such particle
is made to encircle the other the situation is reminiscent of the Aharonov-Bohm ef-
fect in which a charge is made to encircle a line of magnetic flux (see Fig. 15.12).
However, in three-dimensional space one can imagine looping the path of the mov-
ing quasi-particle, A, over the stationary quasi-particle, B , and shrinking the loop-
ing path down to a point co-located with the starting position of quasi-particle A.
If we do this, the trajectory of quasi-particle A that encircles quasi-particle B is
topologically equivalent to a path that did not encircle quasi-particle B! So in three
dimensions the geometrically distinct trajectories of quasi-particle A are topologi-
cally equivalent. However, if the quasi-particles A and B are confined to move only
on a two-dimensional surface containing them such that quasi-particle A is made to
encircle quasi-particle B , we won’t be able to deform this trajectory to one that does
not encircle quasi-particle B because we are not allowed to move quasi-particle A

in the direction normal to the surface. Hence, in two dimensions, there is no notion
of passing one particle “over” another. Thus, certain geometric trajectories that are
topologically equivalent in three dimensions are not equivalent in two dimensions.
Fundamentally, this gives rise to new physical possibilities.

For example, let us imagine a quantum system described initially by the quantum
state |ψ〉 = |ψA〉|ψB〉, and let S be the operator that swaps their spatial locations.
We can describe the effect of such an operator as:

S|ψA〉|ψB〉 = eiθ |ψB〉|ψA〉 (15.4)

15.6 Topological Quantum Computer 643

Fig. 15.12 When a charged
particle encircles a line of
magnetic flux it accumulates
a phase that depends only
upon the number of times the
particle winds around flux but
not the path taken. This is an
example of a topological
quantum effect

and so two consecutive swaps would give us:

S2|ψA〉|ψB〉 = e2iθ |ψA〉|ψB〉 (15.5)

such that the particles end up back where they started. Hence, S2 = 1, the identity
operator. Consequently, e2iθ = 1 and so eiθ =±1. Thus, if θ = 0 the particles pick
up a phase of +1 under particle exchange, and we call such particles bosons. How-
ever, if θ = π the particles pick up a phase of −1 under particle exchange, and we
call such particles fermions. In three dimensions these are the two basic kinds of
particles allowed.

15.6.2 Beyond Fermions and Bosons—Anyons

However, if the particles are confined to move on a two dimensional surface, another
possibility arises. In particular, at extremely low temperatures and in the presence
of very strong magnetic fields, aggregates of strongly interacting particles can form
that possess unusual properties, such as fractional electronic charges [15, 134]. The
aggregates behave collectively as if they are a new kind of particle, so they are
given the name “quasi-particles”. In three dimensions such quasi-particles are in-
variably bosons or fermions. However, in two-dimensions these are no longer the
only possibilities. It can happen that when such quasi-particles are made to encir-
cle one another on a two-dimensional surface, their quantum state can be made to
accumulate any phase between 0 and π . Consequently, such quasi-particles repre-
sent a fundamentally new type of object, distinct from bosons and fermions, called
anyons, because they can pick up any phase.

644 15 Alternative Models of Quantum Computation

Although anyons may seem like only a hypothetical possibility they do, in fact,
exist in, e.g., the fractional quantum Hall effect [15, 113, 134, 286]. When one type
of fractional quantum Hall state encircles another once it acquires a phase factor
of e2πi/3, and when it swaps positions with another (half an exchange) it acquires
a phase factor of eπi/3 independent of the geometric shape of the trajectory. Such
anyonic behavior was seen experimentally by Daniel Tsui, Horst Störmer and Art
Gossard in 1982 [497] and a theory accounting for how fractional charges can arise
was provide by Robert Laughlin in 1983 [305].

15.6.3 Abelian Versus Non-Abelian Anyons

From our discussion of quantum gates in Chap. 2, we can view such a change in
phase factor when one anyon encircles another as the application of a phase gate
to the quantum state of the anyon. Interpreting such topological braiding operations
as the application of quantum phase gates invites one to speculate on whether other
non-phase gate operations might also be implementable via similar braiding oper-
ations? It turns out that they can [123, 285, 373, 398]. However, the utility of such
braiding operations for quantum computation depends upon the type of anyon used.

If the quantum state of an anyon is changed according to a unitary matrix U

when its worldline is braided around those of other anyons, then the usefulness
of this for quantum computation depends upon whether this operation commutes
with preceding or succeeding braiding operations. Specifically, if the unitary matrix
describing the state change is a phase gate then the order in which a sequence of
braiding operations is performed is immaterial because all the resulting phases gates
commute with one another. However, if the state change of the anyon must instead
be described by some gate other than a phase gate, then the possibility arises that
the operations resulting from a sequence of braids do not commute. This is the key
to achieving non-trivial quantum computations. If the quantum gates corresponding
to braiding operations of the anyons do not commute they are called non-Abelian
anyons. Not surprisingly, it is these non-Abelian anyons that we require for quantum
computing.

15.6.4 Quantum Gates by Braiding Non-Abelian Anyons

In 1997 Alexei Kitaev was the first to realize how to achieve universal quantum
computation by braiding non-Abelian anyons. These ideas were later extended by
R. Walter Ogburn and John Preskill [373] and Mochon [357, 358]. In original Ki-
taev scheme measurements were needed to perform some quantum gates. However,
Freedman, Larsen and Wang showed that if you use the right kind of anyons then all
measurements can be postponed until the final readout at the end of the computation
[190].

15.6 Topological Quantum Computer 645

Fig. 15.13 By using braidings of the worldlines of non-Abelian anyons to achieve unitary quantum
gates, the geometric trajectories can be fairly irregular without it affecting the overall unitary gate
that is achieved. The non-Abelian anyons must nevertheless be kept sufficiently far apart during
the braiding operations to suppress certain effects that would introduce errors

When non-Abelian anyons are exchanged the change in state is described as a
unitary operation, i.e., as a quantum gate. Thus, certain unitary gates can be achieved
by braiding one anyon around another in a carefully orchestrated pattern. This idea
was developed in detail for Fibonacci anyons by Nicholas Bonesteel, Layla Hor-
mozi, and Georgios Zikos in 2005 [65] and generalized to a wider class of non-
Abelian anyons by Hormozi, Bonesteel, and Steve Simon in 2009 [238].

The basic idea behind topological quantum computing, as illustrated in
Fig. 15.13, is that quantum information is stored in so-called quasi-particles (non-
Abelian anyons) that are intrinsically immune to decoherence, and that quantum
gates can be effected by dragging these non-Abelian anyons around one another on
a two dimensional surface. We can visualize the trajectories the quasi-particles take
by drawing their worldlines in a 2 + 1 dimensional spacetime. The exact trajecto-
ries the quasi-particles take is unimportant provided they are not allowed to move
too close to one another. Thus, one does not need heroic control over the particle
trajectories in order to effect an accurate, and intrinsically error-immune, quantum
gate.

Fibonacci anyons possess a new kind of spin quantum number called q-spin.
Individual Fibonacci anyons have a “q-spin” of 1, but combinations of them can
have a q-spin of 0 or 1. We indicate the total q-spin when combining q-spin objects
with a subscript as in (•,•)a . Just as there are rules for determining the net spin
for composite particles built from ordinary fermions and bosons, so too are there
rules—called fusion rules—for determining the overall q-spin of combinations of
Fibonacci anyons. In particular, when a pair of Fibonacci anyons having q-spin 1
are combined the net q-spin can be either 0 or 1, but when a Fibonacci anyon with
q-spin s is combined with one of q-spin 1, the net q-spin is always s. These fusion
rules determine the dimensionality of the Hilbert space of n Fibonacci anyons. In
particular, if there are n Fibonacci anyons, the dimension of the Hilbert space is the
(n + 1)-st Fibonacci number (hence their name). This dimension grows exponen-
tially with the number of anyons as shown in Fig. 15.14, which allows plenty of
room for embedding quantum information processing operations. Thus, the Hilbert

646 15 Alternative Models of Quantum Computation

Fig. 15.14 The dimension,
dim(Hn), of the Hilbert
space, Hn, of n Fibonacci
anyons grows as (n+ 1)-st
Fibonacci number, i.e.,
exponentially in n. This
creates a very large Hilbert
space very quickly providing
ample room for embedding
quantum information
processing operations

space of two Fibonacci anyons is two dimensional with basis states |(•,•)0〉 and
|(•,•)1〉, and that of three Fibonacci anyons is three dimensional with basis states
|((•,•)0,•)1〉, |((•,•)1,•)1〉, and |((•,•)1,•)0〉. We take our logical qubits to be
those triples of Fibonacci anyons having a total q-spin of 1, i.e.,

|0L〉 = |((•,•)0,•)1〉 (15.6)

|1L〉 = |((•,•)1,•)1〉 (15.7)

and we disregard |((•,•)1,•)0〉 as an irrelevant “non-computational” state.
Quantum gate operations can be performed on these logical qubits’ by braiding

their component anyons around one another. As Fibonacci anyons are non-Abelian,
these braiding operations have the effect of applying unitary transformations more
complicated than mere phase shifts to the state of the logical qubits. As three anyons
make a single logical qubit, the two basic braiding operations involve either braid-
ing particles 1 and 2, or braiding particles 2 and 3 as shown in Fig. 15.15. To
interpret this figure, realize that the Fibonacci anyons are confined to move on a
two-dimensional surface, and we track how one anyon is made to encircle another
by plotting the braiding of their world lines in a 2+ 1 dimensional spacetime, with
time flowing from left to right in the figures. In particular, the operation σ1 describes
a braid between particles 2 and 3 in the clockwise direction along the worldline.
Similarly, σ2 describes a braid between particles 1 and 2 in the clockwise direction
along the worldline. The corresponding braids in the anti-clockwise direction are
described by σ−1

1 and σ−1
2 respectively.

These elementary braiding operations have the effect of applying the following
unitary transformations to the logical qubits [65]:

15.6 Topological Quantum Computer 647

Fig. 15.15 The two basic braids amongst the worldlines of three Fibonacci (non-Abelian) anyons.
σ1 describes a braid between particles 2 and 3, and σ2 describes a braid between particles 1 and
2, in the clockwise direction along the worldline. The corresponding braids in the anti-clockwise
direction along the wordlines of the particles are described by σ−1

1 and σ−1
2 respectively. In these

matrices, the constant τ = 1/φ where φ = 1
2 (1 +

√
5), i.e., the golden mean. This gives the irra-

tional angle needed to create a universal gate set from a finite set of angles

Fig. 15.16 A sequence of braiding operations is equivalent to a unitary transformation applied
to the logical qubits. If the braiding occurs in the order σ−1

1 → σ2 → σ2 → σ−1
1 → σ−1

2 →
σ1 → σ−1

2 , the unitary operator achieved is M−1 = σ−1
2 · σ1 · σ−1

2 · σ−1
1 · σ2 · σ2 · σ−1

1

σ1 =
⎛
⎜⎝
e−4πi/5 0 0

0 −e−2πi/5 0

0 0 −e−2πi/5

⎞
⎟⎠

σ2 =
⎛
⎜⎝

−τe−πi/5 −i
√
τe−πi/10 0

−i
√
τe−πi/10 −τ 0

0 0 −e−2πi/5

⎞
⎟⎠

(15.8)

Note that, in these matrices, the upper 2× 2 blocks define the computational space
(having total q-spin 1) and correspond to single qubit gates. The lower right element
in each case applies a phase factor on the non-computational state in the Hilbert
space, which we do not care about. By arranging for an irrational angle to appear
in these matrices we can obtain a finite set of fixed angle gates that are, when aug-
mented with a topological CNOT, universal for quantum computing.

To obtain other single qubit gates we can cascade the four elementary braid-
ing operations, σ1, σ−1

1 , σ2, and σ−1
2 , as illustrated in Fig. 15.16. For example, the

braiding sequence σ−1
1 → σ2 → σ2 → σ−1

1 → σ−1
2 → σ1 → σ−1

2 effects the uni-
tary operator corresponding to the dot product of the elementary braiding operators
in the reverse order. An explicit example is the topological identity gate. The braid
sequence for the topological identity operation and its corresponding unitary trans-

648 15 Alternative Models of Quantum Computation

formation is:

σ 3
2 → σ−2

1 → σ−4
2 → σ 2

1 → σ 4
2 → σ 2

1 → σ−2
2 → σ−2

1 → σ−4
2 → σ−4

1 → σ−2
2

→ σ 4
1 → σ 2

2 → σ−2
1 → σ 2

2 → σ 2
1 → σ−2

2 → σ 3
1 ≈

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (15.9)

This braid is illustrated in Fig. 15.17.
Similarly, the braid sequence for the NOT operation and its corresponding unitary

transformation is given by:

σ−2
1 → σ−4

2 → σ 4
1 → σ−2

2 → σ 2
1 → σ 2

2 → σ−2
1 → σ 4

2 → σ−2
1 → σ 4

2 → σ 2
1

→ σ−4
2 → σ 2

1 → σ−2
2 → σ 2

1 → σ−2
2 → σ−2

1 ≈
⎛
⎝0 i 0

i 0 0
0 0 1

⎞
⎠ (15.10)

and its corresponding braid diagram is shown in Fig. 15.18.
To achieve a universal gate set, we obviously need to have some kind of con-

ditional quantum gate too. These can be achieved topologically by weaving the
quasi-particles from a control qubit through those of a target qubit as illustrated
in Fig. 15.18. In the figure the top three Fibonacci anyons (which can move) form
the “control” qubit and the bottom three (which are static) the “target” qubit. By
physically dragging a pair of anyons from the control qubit around the three anyons
in the target qubit in a specific way, and then returning them to the control qubit,
we can achieve a CNOT operation between the pair of logical qubits. Such con-
structions can be made arbitrarily accurate by lengthening the braid sequences. It
is thought that such topological quantum operations could provide a viable route to
error-free quantum computation.

The final step in any quantum computation is to extract any answer, usually by
reading some quantum memory register in the computational basis. How are such
reading operations to be performed in the context of topological quantum comput-
ing? Well as we are working with logical qubits, our task is to distinguish between
the |0L〉 and |1L〉 as defined in (15.7). You will notice that these two logical states
differ in the total q-spin of the two leftmost quasi-particles in the triplet making up
the logical qubit. So to perform a measurement to decide if we have |0L〉 or |1L〉 we

Fig. 15.17 Braiding scheme for a topological identity operation using Fibonacci anyons

Fig. 15.18 Braiding scheme
for a topological NOT
operation using Fibonacci
anyons

15.7 Adiabatic Quantum Computing 649

attempt to “fuse” the two leftmost quasi-particles within the qubit. If the total q-spin
of the leftmost pair is 0 they can fuse back to the vacuum state. However, if their
total q-spin is 1 this is impossible. This will result in a measurable charge difference
in the final state between |0L〉 and |1L〉. By reading each logical qubit in this man-
ner we can essentially readout the answer from our topological quantum computer.
Thus, the “Prepare-Evolve-Measure” cycle of conventional quantum computing be-
comes an “Initialize-Braid-Probe” cycle in topological quantum computing.

15.6.5 Do Non-Abelian Anyons Exist?

Experimental evidence for Abelian anyons has been seen in a Laughlin quasi-
particle interferometer experiment conducted by Fernando Camino, Wei Zhou, and
Vladimir J. Goldman [96]. In this experiment quasi-particles of the 1/3 fractional
quantum Hall fluid were made to traverse a closed path around an island of the
2/5 fluid and thereby accumulate a phase, which was detected interferometrically
by inducing oscillations in conductance. These results constituted the first direct
experimental observation of fractional statistics of Laughlin quasi-particles.

Non-Abelian anyons are thought to exist in the fractional quantum Hall state
[548], in rotating Bose condensates [116, 238], in quantum spin systems [191] and in
superconductors. Bonesteel et al. have suggested that Fibonnaci anyons may exist in
an experimentally observed fractional quantum Hall state having filling fraction ν =
12/5 [548]. However, finding compelling experimental evidence for the existence
of non-Abelian anyons, including the Fibonacci and Read-Rezayi anyons, has been
challenging. However, there are now several detailed experimental proposals for
doing so [63, 64, 124, 481].

15.7 Adiabatic Quantum Computing

The models of quantum computing we have presented so far have leant heavily
on the ideas of quantum gates and circuits. An altogether different view of quan-
tum computation—called Adiabatic Quantum Computing (AQC)—was devised by
E. Farhi, J. Goldstone, S. Gutmann [177] and published in Science in 2001 [178].
Since that time concrete hardware designs have been proposed [265] and sophis-
ticated multi-qubit implementations have been achieved [229]. There is now good
evidence that these chips are harnessing genuine quantum mechanical phenomena
to effect computation [229, 303].

Adiabatic Quantum Computing is based on the “Adiabatic Theorem” of quantum
mechanics [434]. This states that if a quantum system is prepared in the ground state
of a time-independent Hamiltonian H0, and if we then cause the Hamiltonian to
change from H0 to H1 in time T , e.g., by driving it linearly according to

H(t)=
(

1− t

T

)
H0 + t

T
H1 (15.11)

650 15 Alternative Models of Quantum Computation

then the system will remain in the ground state of all the instantaneous Hamilto-
nians, H(t), passed through provided the change is made sufficiently slowly, i.e.,
adiabatically. Thus, if the final Hamiltonian, H1, can be made to encode a compu-
tational problem such that the ground state of H1 corresponds to a solution to this
problem, then the natural quantum mechanical evolution of the system under the
slowly changing Hamiltonian H(t) would carry the initial state (the ground state
of H0) into the final state (the ground state of H1), at which point a measurement
would reveal the ground state and hence a solution to the computational problem
encoded in H1.

This is perhaps a little abstract so let’s look at a concrete example. In particu-
lar, using an example developed by Richard Harris et al. [228] suppose we wish
to compute the vector of values 4s = {s1, s2, . . . , sN } that minimizes the objective
function

E(4s)=−
N∑
i=1

hisi +
∑
i<j

Kij sisj (15.12)

where si =±1, N is the length of 4s, and the values of hi and Kij are real numbers
that vary depending on the particular problem instance we wish to solve. This is an
example of a discrete combinatorial optimization problem, which is known to be
NP-hard, and hence, cannot be solved in worst case polynomial time in all cases.
Moreover, this type of problem is commonplace in many practical applications and
finding a way to solve it that is superior to conventional methods would be very
useful.

To pose this problem to an adiabatic quantum computer we need to pick a pair
of Hamiltonians, H0 and H1, such that the ground state of H0 is easy to obtain and
unbiased and the ground state of H1 encodes a solution to (15.12).

Let us begin by defining a set of qubits, {|q1〉, |q2〉, . . . , |qN 〉}, to hold the answer
to our computation. Without loss of generality we can assume the computational
basis for these qubits is aligned with the z-axis. We will interpret qi = 0 to mean
si = −1 and qi = 1 to mean si = +1 in the globally optimal solution to (15.12).
Initially, we do not know what value each qubit will take on in a solution so it is
reasonable to initialize each qubit in an equally weighted superposition of |0〉 and
|1〉, e.g., 1√

2
(|0〉 + |1〉). Thus, the initial state of all N qubits, |ψ(0)〉, is given by:

|ψ(0)〉 = 1√
2
(|0〉 + |1〉)⊗ 1√

2
(|0〉 + |1〉)⊗ · · · ⊗ 1√

2
(|0〉 + |1〉)

= 1√
2N

1∑
q1=0

1∑
q2=0

· · ·
1∑

qN=0

|q1〉|q2〉 · · · |qN 〉

= 1√
2N

2N−1∑
i=0

|i〉 (15.13)

in our standard notation. This state is to be the ground state of our initial Hamil-
tonian H0. A suitable Hamiltonian having |ψ(0)〉 as a ground state is H0 =

15.7 Adiabatic Quantum Computing 651

−∑N
i=1 σ

(i)
x where σ

(i)
x is the Pauli spin matrix

σ (i)
x = σx ⊗ · · · ⊗ σx︸ ︷︷ ︸

i−1 terms

⊗ 1⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸
N−i terms

(15.14)

Hence, let’s take our initial Hamiltonian H0 to be:

H0 =−
N∑
i=1

σ (i)
x (15.15)

Next we have to construct a Hamiltonian H1 such that its ground state encodes a
globally optimal solution to (15.12). Our particular problem instance can be mapped
onto a Hamiltonian in a straightforward way. Simply define H1 by replacing each
si in (15.12) with a corresponding Pauli spin matrix

σ (i)
z = σz ⊗ · · · ⊗ σz︸ ︷︷ ︸

i−1 terms

⊗ 1⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
N−i terms

(15.16)

This gives us:

H1 =−
N∑
i=1

hiσ
(i)
z +

∑
i<j

Kijσ
(i)
z σ

(j)
z (15.17)

which is immediately recognizable as the Hamiltonian of an Ising spin system in
which the spins have individual biases (given by hi) and pairwise couplings given
by Kij . Thus, in the computational-basis, the ground state of H1 corresponds to
a configuration of spins |q1q2 · · ·qN 〉 that minimizes the net energy. Thus, if the
ground state is found to be |q1q2 · · ·qN 〉 then substituting si = −1 if qi = 0 and
si =+1 if qi = 1 gives the vector of assignments 4s = {s1, s2, . . . , sN } that minimizes
the objective function of E(4s) shown in (15.12).

Thus, choosing the Hamilitonians H0 and H1 as:

H0 = −
N∑
i=1

σ (i)
x

H1 = −
N∑
i=1

hiσ
(i)
z +

∑
i<j

Kijσ
(i)
z σ

(j)
z (15.18)

and choosing the initial state to be |ψ(0)〉 = 1√
2N

∑2N−1
i=0 |i〉, then after a slow

enough interpolation lasting time T the state will evolve into |ψ(T)〉 = |q1q2 · · ·qN 〉.
Reading this state in the computational basis then reveals each bit value from which
the corresponding values of the si can be obtained.

Specialized adiabatic quantum computer hardware has been developed that
is able to solve discrete combinatorial optimization problems of type given

652 15 Alternative Models of Quantum Computation

above [229]. This hardware has been used to solved image matching [366] and ma-
chine learning problems [367, 368] by posing the problems in terms of minimizing
an objective function of the form given in (15.12).

A key question from a computational complexity perspective is how quickly one
can drive the interpolation between the initial and final Hamiltonians while keeping
the system in the ground state of the instantaneous Hamiltonians passed through.
If the shortest feasible interpolation time scales polynomially with increasing prob-
lem size, the quantum adiabatic algorithm would be deemed “efficient”, otherwise
it would be deemed “inefficient”. It is worth noting that even if the quantum adi-
abatic algorithm proves to be “inefficient” by this measure it may, nevertheless,
still be faster than any known classical algorithm, e.g., by admitting a polynomial
speedup. Indeed, it is known that an adiabatic quantum computer can solve unstruc-
tured search problems in square root of the time required classically [421]. This
echoes Grover’s result but in the context of adiabatic quantum computing.

To estimate the maximum feasible interpolation rate we can ask under what con-
ditions the passage from H0 and H1 can be performed adiabatically [434]. It is
found that if the minimum eigenvalue gap between the ground state E0 and first
excited state E1 of the instantaneous Hamiltonians H(t) is given by gmin, where

gmin = min
0≤t≤T

[
E1(t)−E0(t)

]
(15.19)

and the matrix element between the corresponding pair of eigenstates is
〈
dH
dt

〉
1,0

= 〈E1; t |dH
dt

|E0; t〉, (15.20)

then the Adiabatic Theorem asserts that the final state will be very close to the
ground state of H1(T) , i.e.,

|〈E0;T |ψ(T)〉|2 ≥ 1− ε2 (15.21)

provided that

|〈 dH
dt
〉1,0|

g2
min

≤ ε (15.22)

where ε (1. If this criterion is met, we can be sure the system will evolve into
the desired state, i.e., the ground state of H1 as desired. Thus the maximum rate at
which we can drive the Adiabatic Algorithm is dependent upon the gap size between
the ground state and first excited state of the instantaneous Hamiltonians passed
through.

Less is known about the formal complexity of the quantum adiabatic approach
than the quantum circuit approach applied to different computational problems. It
is known that an adiabatic version of the unstructured search algorithm exists [421]
and runs in O(

√
N) time, where N is the number of items in the database. This

matches the complexity of the standard Grover algorithm, but requires a non-
uniform interpolation rate between the initial and final Hamiltonians. Moreover, by

15.8 Encoded Universality Using Only Spin-Spin Exchange Interactions 653

nesting one adiabatic search within another, structured search problems may also
be sped up by a polynomial factor [422]. However, exponential speedups are harder
to come by [355, 427]. Initially, based on preliminary numerical evidence of the
scaling of the adiabatic algorithm used to solve small instances of NP-Complete
problems, the inventors of adiabatic quantum computing speculated that the run-
ning time might be polynomial. However, this was formally disproved for the case
of a linear interpolation path by Wim van Dam, Michele Mosca and Umesh Vazi-
rani [506]. They provided a counter-example that provably could not be solved in
polynomial time using the linear interpolation path. Farhi et al. later countered this
by showing an alternative interpolation path could work efficiently on cases when
the linear interpolation path did not [177]. Nevertheless, today there remains much
work to be done on developing a proper complexity theory for adiabatic quantum
computing. However, it remains an interesting model of quantum computation given
the relative ease of implementation compared to the circuit model, and the fact that
it seems naturally well suited to discrete combinatorial optimization type problems.
In these cases the “correctness” of the solution may not be the primary concern.
Rather one is interested in understanding the tradeoff between running time of the
algorithm and quality of solution obtained [417]. It is likely there are distinctions
between the quantum and classical cases here, but this is not well understood at this
time. Moreover, the theory of quantum error correction is much less well developed
for adiabatic quantum computing than it is for the circuit model [260, 313].

15.8 Encoded Universality Using Only Spin-Spin Exchange
Interactions

In quantum computing, the tradition has been to decompose any desired unitary
transformation into a quantum circuit containing only 1-qubit and 2-qubit quan-
tum logic gates. The most famous universal set of gates is the set of all 1-qubit gates
together with controlled-NOT (CNOT). However, many other universal sets are pos-
sible. In fact, almost any 2-qubit gate (alone) is universal for quantum computation
[147]. From a practical perspective, if we could find a particular universal 2-qubit
gate that was easy to make, this would greatly simplify the fabrication of large scale
quantum circuits.

15.8.1 The Exchange Interaction

Different physical implementations of quantum computation are able to achieve
some gates more easily than others. Spintronics is thought by many to provide a
viable path to scalable universal quantum computation [26].

In spintronic quantum computers, the simplest elementary operation is the 2-
qubit exchange interaction [26]. The Hamiltonian for the exchange interaction has

654 15 Alternative Models of Quantum Computation

the form:

H = σ (j) · σ (k) (15.23)

where

σ (j) = (σ
(j)
x , σ

(j)
y , σ

(j)
z) (15.24)

and

σ
(j)
x = 1⊗ 1⊗ · · ·⊗︸ ︷︷ ︸

j−1

σx ⊗· · · ⊗ 1⊗ 1︸ ︷︷ ︸
n−j

σ
(j)
y = 1⊗ 1⊗ · · ·⊗︸ ︷︷ ︸

i−1

σy ⊗· · · ⊗ 1⊗ 1︸ ︷︷ ︸
n−j

(15.25)

σ
(j)
z = 1⊗ 1⊗ · · ·⊗︸ ︷︷ ︸

j−1

σz ⊗· · · ⊗ 1⊗ 1︸ ︷︷ ︸
n−j

Thus, the exchange interaction induces the unitary evolution:

Uj,k(α)= e−iαH = e−iα(σ (j)·σ (k)) (15.26)

where i =√−1.

15.8.2 SWAPα via the Exchange Interaction

What kinds of gates can we make easily if we have access to only a spin-spin ex-
change interaction? Not surprisingly, we can achieve the 2-qubit SWAPα gate which
was introduced in Sect. 2.7.1. This gate is essentially as powerful as CNOT since the
set of all 1-qubit gates together with SWAPα is universal for quantum computing.

SWAPα =

⎛
⎜⎜⎝

1 0 0 0
0 1

2 (1+ eiπα) 1
2 (1− eiπα) 0

0 1
2 (1− eiπα) 1

2 (1+ eiπα) 0
0 0 0 1

⎞
⎟⎟⎠ (15.27)

The proof is by way of the following matrix identity. A U gate between the j -th and
k-th of n qubits is:

Uj,k;n(α) = e−iα(σ (j)·σ (k))

=

⎛
⎜⎜⎜⎝
e−iα 0 0 0

0 1
2e

−iα(1+ e4iα) − 1
2e

−iα(−1+ e4iα) 0

0 − 1
2e

−iα(−1+ e4iα) 1
2e

−iα(1+ e4iα) 0
0 0 0 e−iα

⎞
⎟⎟⎟⎠ (15.28)

15.8 Encoded Universality Using Only Spin-Spin Exchange Interactions 655

= e−iαSWAP
4α
π

j,k;n

Thus, if you can implement an exchange interaction between the j -th and k-th of
n qubits you can implement a SWAPα gate, up to an overall phase factor. Hence,
in spintronics, obtaining a powerful 2-qubit gate, SWAPα , appears to be relatively
straightforward.

15.8.3 Problem: Although SWAPα Is Easy 1-Qubits Gates Are
Hard

“Spintronic” implementations of quantum computing harness the quantum mechan-
ical spin of particles as the carriers of quantum information, and can make use of
spin-spin exchange interactions to achieve a useful 2-qubit gate such as SWAPα .
However, ironically, in such schemes it can be surprisingly difficult to achieve arbi-
trary one-qubit gates [92, 326]!

It occurred to people to wonder whether or not it might be possible to work in
a larger Hilbert space in which several spins were used to encode each qubit and
which used only the spin-spin exchange interaction to implement both the 1-qubit
and 2-qubit gates in this “encoded basis”. If this were possible it would mean that
the exchange interaction alone could be used as the basis for implementing universal
quantum computation.

15.8.4 Solution: Use an Encoded Basis

If one uses an encoded basis in which sets of three physical spins are used to en-
code the state of each logical qubit, Julia Kempe, Dave Bacon, Daniel Lidar and
Birgitta Whaley showed that, in principle, universal quantum computation was pos-
sible [271, 272] and in principle a decoherence free subspace can be formed [28, 29,
314–318, 520]. However, their proof was not constructive. Although later work by
Hsieh, Kempe, Mygren, and Whaley [240] demonstrated a constructive method to
achieve an explicit fixed universal set of gates in the encoded basis, the chosen set
gives very inefficient decompositions of arbitrary 1-qubit gates. Moreover, to date
there has only been numerical evidence that when exchange interactions are run se-
quentially (i.e., so that at most one exchange interaction is active at any time), then
four exchange gates appear sufficient to achieve an arbitrary 1-qubit gate.

In this section we improve upon these results. First we provide a constructive
scheme for mapping any 1-qubit gate in the logical basis into an equivalent se-
quence of at most four spin-spin exchange interactions in the physical (encoded)
basis. Second we provide a formal proof that four such exchange interactions are,
indeed, sufficient (as DiVincenzo et al. has suspected). Our results make it very easy
to map any quantum circuit consisting of standard 1-qubit gates and CNOT gates

656 15 Alternative Models of Quantum Computation

into an encoded, so-called “decoherence-free” form. This will be of use to hardware
experimentalists working on spintronic implementations of quantum logic.

Since the exchange interaction by itself is not a universal gate, we use the encod-
ing invented by David DiVincenzo, Dave Bacon, Julia Kempe, Guido Burkard, and
Birgitta Whaley to represent logical qubits [150]:

|0L〉 = 1√
2
(|010〉 − |100〉), (15.29)

|1L〉 =
√

2

3
|001〉 − 1√

6
|010〉 − 1√

6
|100〉. (15.30)

The vectors |0L〉 and |1L〉 generate a 2-dimensional subspace L of the 8-
dimensional Hilbert space C

⊗8. This subspace can be characterized as the set of
vectors (0, α,β,0, γ,0,0,0) such that α + β + γ = 0.

15.8.5 U
1,2
L , U

2,3
L , and U

1,3
L

The exchange interaction operations on the Hilbert space C
⊗8 can be written ex-

plicitly as follows:

U1,2(t) = exp
[−it (σx ⊗ σx ⊗ 12 + σy ⊗ σy ⊗ 12 + σz ⊗ σz ⊗ 12)

]
(15.31)

U1,3(t) = exp
[−it (σx ⊗ 12 ⊗ σx + σy ⊗ 12 ⊗ σy + σz ⊗ 12 ⊗ σz)

]
(15.32)

U2,3(t) = exp
[−it (12 ⊗ σx ⊗ σx + 12 ⊗ σy ⊗ σy + 12 ⊗ σz ⊗ σz)

]
(15.33)

15.1 Lemma The subspace L spanned by |0L〉 and |1L〉 is closed under each of the

unitary operations U1,2(t), U1,3(t), and U2,3(t).

We denote the unitary operations on the subspace L induced by U1,2(t), U1,3(t),
and U2,3(t) as U

1,2
L (t), U1,3

L (t), and U
2,3

L (t), respectively. Then the matrix repre-
sentations of these new unitary operations, with respect to the basis {|0L〉, |1L〉}, are
as follows:

U
1,2

L (t) =
(
e3it 0
0 e−it

)
(15.34)

U
1,3

L (t) = 1

4
e−it

(
3+ e4it

√
3(−1+ e4it)√

3(−1+ e4it) 1+ 3e4it

)
(15.35)

U
2,3

L (t) = σz ·U1,3
L (t) · σz. (15.36)

15.8 Encoded Universality Using Only Spin-Spin Exchange Interactions 657

15.8.6 Rz Gates in Encoded Basis

Therefore, the U
1,2

L (t) operation is equivalent to an Rz(·) gate up to an overall phase
factor. In particular, we have:

U
1,2

L (t)= ei tRz(−4t)= ei tRz(4 (π − t)) (15.37)

15.8.7 Rx Gates in Encoded Basis

To obtain an Rx(·) gate we recall:

Rx(t)=H ·Rz(t) ·H (15.38)

where H is the Walsh-Hadamard gate:

H =
⎛
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎠ (15.39)

However, the Walsh-Hadamard gate can be implemented using a sequence of three
exchange interactions as:

U
1,2

L (a) ·U2,3
L (b) ·U1,2

L (c)

=
(1

4e
i(3a−b+3c)(3+ e4ib) − 1

4

√
3ei(3a−b−c)(−1+ e4ib)

− 1
4

√
3e−i(a+b−3c)(−1+ e4ib) 1

4e
−i(a+b+c)(1+ 3e4ib)

)
(15.40)

Equating matrices and solving for a, b, and c we have:

(1
4e

i(3a−b+3c)(3+ e4ib) − 1
4

√
3ei(3a−b−c)(−1+ e4ib)

− 1
4

√
3e−i(a+b−3c)(−1+ e4ib) 1

4e
−i(a+b+c)(1+ 3e4ib)

)

=
⎛
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎠ (15.41)

which implies (as you will verify in Problem 15.8:

a = π

2
+ 1

8

(
3π + 2 cos−1

(√
2

3

))

b = 1

4
cos−1

(
−1

3

)
(15.42)

658 15 Alternative Models of Quantum Computation

c = 1

8

(
3π + 2 cos−1

(√
2

3

))

With these parameter values, direct substitution and simplification shows that the
Walsh-Hadamard gate can be obtained from:

H =U
1,2

L (a) ·U2,3
L (b) ·U1,2

L (c) (15.43)

Thus, using the exchange-only implementations of H and Rz(·) we can achieve an
arbitrary Rx(·) gate up to an overall phase factor too.

15.8.8 Ry Gates in Encoded Basis

Finally, an arbitrary Ry(·) can be obtained from:

Ry(t)=Rz

(
π

2

)
·H ·Rz(t) ·H ·Rz

(
−π

2

)
(15.44)

Thus we can use the exchange-only implementations of H and Rz(·) to achieve an
arbitrary Ry(·) gate up to an overall phase factor too.

As any general 1-qubit gate can be written in the form Rz(α) · Ry(β) · Rz(γ) ·
Ph(δ) it is clear that the exchange interaction alone can be used to achieve an arbi-
trary 1-qubit gate up to an overall phase factor.

15.8.9 CNOT in Encoded Basis

To complete the proof that the exchange interaction is sufficient to implement any
quantum computation up to an overall phase factor, we need to show how to imple-
ment the CNOT gate in the encoded basis. Luckily, this was done already by David
DiVincenzo, Dave Bacon, Julia Kempe, Guido Burkard, and Birgitta Whaley and is
shown in Fig. 15.19.

Hence, CNOT gates and arbitrary 1-qubit gates can be implemented using only
the exchange interaction by working in an encoded basis wherein three physical
qubits serve to represent the state of one logical qubit.

Universal quantum computation can be achieved in the encoded basis if we can
implement any 1-qubit gate and the CNOT gate in the encoded basis. Our aforemen-
tioned results show how to implement any 1-qubit gate in the encoded basis. Thus
by simply augmenting our constructive techniques for arbitrary 1-qubit gates with
the encoded construction of the CNOT gate given in [240] we can therefore con-
clude that it is possible to perform universal quantum computation in the encoded
basis. We also point out that our mapping from arbitrary 1-qubit gates to encoded
gates is far more efficient than an earlier mapping by Hsieh et al. [240]. In that work

15.9 Equivalences Between Alternative Models of Quantum Computation 659

Fig. 15.19 CNOT in encoded basis as derived by David DiVincenzo, Dave Bacon, Julia Kempe,
Guido Burkard, and Birgitta Whaley [150]. A sequence of exchange interactions can accomplish
a gate equivalent to a CNOT gate, up to 1-qubit gates, in the encoded basis. This, coupled with
exchange-only implementations of the 1-qubit gates, shows the exchange interaction is universal
for quantum computation

the authors showed how to map from a universal, but fixed, set of gates, namely
H, π

8 ,CNOT to an encoded basis. However, this fixed set of gates rarely gives effi-
cient decompositions of 1-qubit gates. In contrast, we give explicit constructions for
finding the exchange couplings in the physical basis needed to achieve any arbitrary
1-qubit gate. In addition, we given special cases of our result for the three standard
types of 1-qubit gates Rx , Ry , or Rz. Thus, we have provided a fully constructive
scheme for mapping any quantum computation into an encoded basis.

15.9 Equivalences Between Alternative Models of Quantum
Computation

The alternative models of quantum computation described in this chapter, and else-
where in the book, are noticeably different from one another. The Quantum Tur-
ing Machine Model, the Quantum Circuit Model, the Quantum Cellular Automata
Model, the Teleportation-based Model, the One-Way Model, the Encoded Univer-
sality Model, the Topological Model, and the Adiabatic Model could not appear
more different! It is therefore all the more surprising, therefore, that these disparate
models of quantum computation are provably equivalent to one another! That is,
we now know that the cost of mapping a quantum computation in any one of these
models into a corresponding computation in any of the alternative models is at most
polynomial in the size of the computation. The proofs appear in a handful of spe-
cialist papers scattered across the field.

The chain of equivalences was first begun by Andrew Yao in 1993 when he
proved the Quantum Circuit Model can simulate the Quantum Turing Machine
Model efficiently [550]. Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Lan-
dau, Seth Lloyd, Oded Regev, Alexei Kitaev and Stewart Siu proved that the Quan-
tum Adiabatic Model can simulate the Quantum Circuit Model efficiently [8, 273,

660 15 Alternative Models of Quantum Computation

461]. Raussendorf, Browne, and Briegel proved the One-Way model is equivalent
to standard Quantum Circuit Model [411]. Alexei Kitaev proved that non-Abelian
anyons can simulate a quantum circuit efficiently [285]. That is, universal quantum
computation is possible by braiding non-Abelian anyons. Freedman, Kitaev, and
Wang later showed a system of anyons can be simulated efficiently by a quantum
circuit [189]. Thus, topological quantum computing is provably no more and no less
powerful than the quantum circuit model.

Such proofs, and similar ones for the other models, means that it really does not
matter which model one picks as the basis for developing quantum computing hard-
ware, as they are all roughly as good as one another. In practice, of course, different
physical embodiments of quantum computational hardware may lend themselves
more easily to one model or another. But the equivalence between the models al-
lows the experimentalist to pick the model that best suits their scheme, without it
affecting, in principle, the overall performance of their hardware in a significant
way.

This equivalency between computational models is very reminiscent of what hap-
pened in classical computing when the Turing, Post, Church/Gödel models were all
proven to be equivalent. There the surprising equivalency led to speculation that the
essence of the computational process had been captured correctly, and provided the
basis for the Strong Church-Turing thesis. That turned out to be incorrect. Should
we feel more secure in the belief that the main features of quantum computing have
been captured given the equivalence between our models of quantum computing?

15.10 Summary

This chapter surveyed many superficially different models of quantum computation,
which turned out to be polynomially equivalent to one another. This equivalency
frees experimentalists to choose whichever model of quantum computation best fits
the quantum physical phenomena they have at their disposal and over which they
can exert control. We do not yet know which model of quantum computing will lead
to the first genuinely scalable universal quantum computer.

I hope you have enjoyed the book and found it useful, and that you are inspired
to go forth and make your contributions to this exciting field. There is plenty left to
discover!

15.11 Exercises

15.1 The circuit used to teleport a CNOT gate assumed that the input to the CNOT
gate was of the form |a〉|b〉, i.e., an unentangled product of two single qubit com-
putational basis states. Clearly this is not the most general input a CNOT gate
can accept. Prove that the circuit used to teleport a CNOT gate also works cor-
rectly when the input to the CNOT gate is a direct product of two arbitrary 1-qubit

15.11 Exercises 661

states, i.e., |ψab〉 = |ϕa〉|ϕb〉 where |ϕa〉 = α|0〉 + |β〉 such that |α|2 + |β|2 = 1 and
|ϕb〉 = γ |0〉 + |δ〉 such that |γ |2 + |δ|2 = 1.

15.2 The circuit used to teleport a CNOT gate assumed that the input to the CNOT
gate was of the form |a〉|b〉, i.e., an unentangled product of two single qubit com-
putational basis states. Clearly this is not the most general input a CNOT gate
can accept. Prove that the circuit used to teleport a CNOT gate also works cor-
rectly when the input to the CNOT gate is an arbitrary entangled state |ψab〉 =
α|00〉 + β|01〉 + γ |10〉 + δ|11〉 such that |α|2 + |β|2 + |γ |2 + |δ|2 = 1. In this case,
you need to think carefully about how to specify the 6-qubit input state to the double
teleportation circuit when the input to the CNOT gate is on the first and sixth qubits.
(Hint: Imagine starting with a 6-qubit state of the form |ψ〉|β00〉|β00〉 and think how
to permute the qubits so that the qubit ordering |j1j2j3j4j5j6〉 is mapped into the
qubit ordering |j1j3j4j5j6j2〉.)
15.3 The circuit used to teleport a CNOT gate assumed that the input to the CNOT
gate was of the form |a〉|b〉, i.e., an unentangled product of two single qubit com-
putational basis states. Clearly this is not the most general input a CNOT gate can
accept. Prove that the circuit used to teleport a CNOT gate also works correctly
when the input to the CNOT gate is an arbitrary 2-qubit mixed state?

15.4 A critical step in designing a quantum circuit capable of teleporting a CNOT
gate is to realize that both CNOT gates can be eliminated from the quantum circuit
shown in the left hand side of Fig. 15.11 merely by modifying control logic on the
remaining gates. In the text, we claimed that if the classical control values in the
circuit containing two CNOT gates were M1,M2,M3,M4 that the corresponding
control values in the circuit devoid of CNOT gates would be m1,m2,m3,m4 as
summarized in Table 15.1. Verify the corresponding sets of control values claimed
in Table 15.1 are indeed correct.

15.5 Given the exchange interaction U1,2(t)= exp[−i t (σx ⊗σx ⊗12 +σy ⊗σy ⊗
12 + σz ⊗ σz ⊗ 12)] prove:

U
1,2

L (t)=
(
e3it 0
0 e−it

)

15.6 Given the exchange interaction U1,3(t)= exp[−i t (σx ⊗12 ⊗σx +σy ⊗12 ⊗
σy + σz ⊗ 12 ⊗ σz)] prove:

U
1,3

L (t)= 1

4
e−it

(
3+ e4it

√
3(−1+ e4it)√

3(−1+ e4it) 1+ 3e4it

)

15.7 Given the exchange interaction U2,3(t)= exp[−it (12 ⊗ σx ⊗ σx + 12 ⊗ σy ⊗
σy + 12 ⊗ σz ⊗ σz)] prove:

U
2,3

L (t)= σzU
1,3

L (t)σz

662 15 Alternative Models of Quantum Computation

15.8 In the text we claimed a particular sequence of three exchange interactions
were sufficient to generate a Walsh-Hadamard gate in the logical basis. Verify this
claim as follows. First prove that:

U
1,2

L (a) ·U2,3
L (b) ·U1,2

L (c)

=
(

1
4e

i(3a−b+3c)(3+ e4ib) − 1
4

√
3ei(3a−b−c)(−1+ e4ib)

− 1
4

√
3e−i(a+b−3c)(−1+ e4ib) 1

4e
−i(a+b+c)(1+ 3e4ib)

)

then substitute in the following values for a, b, and c into U
1,2

L (a) ·U2,3
L (b) ·U1,2

L (c)

and simplify:

a = π

2
+ 1

8

(
3π + 2 cos−1

(√
2

3

))

b = 1

4
cos−1

(
−1

3

)

c = 1

8

(
3π + 2 cos−1

(√
2

3

))

Hence, verify:

H =U
1,2

L (a) ·U2,3
L (b) ·U1,2

L (c) (15.45)

References

1. D. S. Abrams and S. Lloyd, “Simulation of Many-Body Fermi Systems on a Universal Quan-
tum Computer,” Phys. Rev. Lett., Volume 79, Issue 13 (1997) pp. 2586–2589.

2. D. Abrams and S. Lloyd, “Quantum Algorithm Providing Exponential Speed Increase for
Finding Eigenvalues and Eigenvectors,” Phys. Rev. Lett., Volume 83, Issue 24 (1999) pp.
5162–5165.

3. D. S. Abrams and C. P. Williams, “Fast Quantum Algorithms for Numerical Integrals and
Stochastic Processes,” arXiv:quant-ph/9908083 (1999).

4. D. Achlioptas, A. Naor, and Y. Peres, “Rigorous Location of Phase Transitions in Hard Op-
timization Problems,” Nature, Volume 435 (2005) pp. 759–764.

5. L. Adleman and M. Huang, “Recognizing Primes in Random Polynomial Time,” in Proceed-
ings of ACM STOC’87 (1987) pp. 462–470.

6. M. Agrawal, N. Kayal, and N. Saxena, “PRIMES Is in P,” Annals of Mathematics, Volume
160 (2004) pp. 781–793.

7. D. Aharonov and M. Ben-Or, “Fault-Tolerant Quantum Computation with Constant Error,” in
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, (1997) pp. 176–
188.

8. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic Quan-
tum Computation is Equivalent to Standard Quantum Computation,” in Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), IEEE Com-
puter Society, Washington (2004) pp. 42–51.

9. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. Com-
puter, Volume C-23, Issue 1 (1974) pp. 90–93.

10. G. M. Akselrod, J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated Ultra-
bright Source of Entangled Photons: Erratum,” Opt. Express, Volume 15 (2007) pp. 5260–
5261.

11. P. Aliferis, “Level Reduction and the Quantum Threshold Theorem,” Ph.D. Thesis, California
Institute of Technology, Pasadena, CA, arXiv:quant-ph/0703230v1 (2007).

12. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital Angular
Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes,” Phys. Rev.
A, Volume 45, Issue 11 (1992) pp. 8185–8189.

13. J. B. Altepeter, E. Jeffrey, and P. G. Kwiat, “Phase-compensated Ultra-bright Source of En-
tangled Photons,” Opt. Express, Volume 13 (2005) p. 8951.

14. “A Mathematical Theory of Communication,” The Bell System Technical Journal, Vol-
ume 27, pp. 379–423, 623–656 (1948).

15. P. W. Anderson, “When the Electron Falls Apart,” Physics Today, Volume 50, Issue 10 (1997)
pp. 42–47.

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6, © Springer-Verlag London Limited 2011

663

http://arxiv.org/abs/arXiv:quant-ph/9908083
http://arxiv.org/abs/arXiv:quant-ph/0703230v1
http://dx.doi.org/10.1007/978-1-84628-887-6

664 References

16. “Announcing the Advanced Encryption Standard (AES),” United States Federal Informa-
tion Processing Standards Publication 197 (FIPS 197), 26th November (2001). Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

17. M. Arndt, M. Aspelmeyer, H. J. Bernstein, R. Bertlmann, C. Brukner, J. P. Dowling, J. Eisert,
A. Ekert, C. A. Fuchs, D. M. Greenberger, M. A. Horne, T. Jennewein, P. G. Kwiat, N. D.
Mermin, J.-W. Pan, E. M. Rasel, H. Rauch, T. G. Rudolph, C. Salomon, A. V. Sergienko,
J. Schmiedmayer, C. Simon, V. Vedral, P. Walther, G. Weihs, P. Zoller, and M. Zukowski,
“Quantum Physics from A to Z,” arXiv:quant-ph/0505187v4 (2005) p. 2.

18. M. Arndt, L. Hackermüller, K. Hornberger, and A. Zeilinger, “Coherence and Decoherence
Experiments with Fullerenes,” in Decoherence, Entanglement and Information Protection in
Complex Quantum Systems, Springer, Berlin (2005).

19. M. C. Arnesen, S. Bose, and V. Vedral, “Natural Thermal and Magnetic Entanglement in 1D
Heisenberg Model,” Phys. Rev. Lett., Volume 87 (2001) 017901.

20. S. Arora, “Nearly Linear Time Approximation Schemes for Euclidean TSP and other Ge-
ometric Problems,” in Proceedings of the International Workshop on Randomization and
Approximation Techniques in Computer Science,” Lecture Notes in Computer Science, Vol-
ume 1269, Springer, Berlin (1997) pp. 55–56.

21. A. Aspect, “Bell’s Inequality Test: More Ideal than Ever,” Nature, Volume 398 (1999) pp.
189–190.

22. A. Aspect, P. Grangier, and G. Roger, “Experimental Tests of Realistic Local Theories via
Bell’s Theorem,” Phys. Rev. Lett., Volume 47, Issue 7 (1981) pp. 460–463.

23. A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell’s Inequalities Using Time-
Varying Analyzers,” Phys. Rev. Lett., Volume 49, Issue 25 (1982) pp. 1804–1807.

24. A. Aspect, P. Grangier, and G. Roger, “Experimental Realization of Einstein-Podolsky-
Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities,” Phys. Rev. Lett.,
Volume 49, Issue 2 (1982) pp. 91–94.

25. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated Quantum Com-
putation of Molecular Energies,” Science, Volume 309 (2005) pp. 1704–1707.

26. D. Awschalom, D. Loss, and N. Samarth (eds.), Semiconductor Spintronics and Quantum
Computation, Springer, Berlin (2002) ISBN 3-540-42176-9.

27. D. Bacon, The Race to Build a Quantum Computer, Physics World (2009) pp. 26–31.
28. D. Bacon, D. A. Lidar, and K. B. Whaley, “Robustness of Decoherence-Free Subspaces for

Quantum Computation,” Phys. Rev. A, Volume 60 (1999) p. 1944.
29. D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, “Universal Fault-Tolerant Quantum

Computation on Decoherence-Free Subspaces,” Phys. Rev. Lett., Volume 85 (2000) p. 1758.
30. D. Bacon, A. Childs, and W. van Dam, “From Optimal Measurement to Efficient Quantum

Algorithms for the Hidden Subgroup Problem over Semidirect Product Groups,” in Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (2005)
pp. 469–478.

31. S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An Evaluation Framework and Instruc-
tion Set Architecture for Ion-Trap Based Quantum Micro-Architectures,” ACM SIGARCH
Computer Architecture News, Volume 33, Issue 2 (2005) pp. 186–196.

32. A. Barenco, “A Universal Two-Bit Gate for Quantum Computation,” Proc. R. Soc. Lond. A,
Volume 449, Issue 1937 (1995) pp. 679–683.

33. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. A. Smolin, and H. Weinfurter, “Elementary Gates for Quantum Computation,” Phys. Rev.
A, Volume 52 (1995) pp. 3457–3467.

34. A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, “Approximate Quantum Fourier Trans-
form and Decoherence,” Phys. Rev. A, Volume 54, Issue 1 (1996) pp. 139–146.

35. A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, “Stabili-
sation of Quantum Computations by Symmetrisation,” SIAM Journal on Computing (1997)
pp. 1541–1557.

36. H. Barnum, H. J. Bernstein, and L. Spector, “Quantum Circuits for OR and AND of ORs,”
Journal of Physics A: Mathematical and General, Volume 33, Issue 45 (2000) pp. 8047–
8057.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://arxiv.org/abs/arXiv:quant-ph/0505187v4

References 665

37. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the Channel Capacity Limit for Linear
Photonic Superdense Coding,” Nature Physics, Volume 4 (2008) pp. 282–286.

38. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer,
D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic Quantum Teleportation of Atomic
Qubits,” Nature, Volume 429 (2004) pp. 737–739.

39. A. Beige, “Quantum Computing Using Dissipation,” Inst. Phys. Conf. Ser., Volume 173
(2003) p. 35.

40. A. Beige, “Dissipation-Assisted Quantum Gates with Cold Trapped Ions,” Phys. Rev. A,
Volume 67 (2003) 020301(R).

41. A. Beige, H. Cable, and P. L. Knight, “Dissipation-Assisted Quantum Computation in Atom-
Cavity Systems,” in Proceedings of SPIE, Volume 5111 (2003) p. 370.

42. A. Ben-Kish, B. DeMarco, V. Meyer, M. Rowe, J. Britton, W. M. Itano, B. M. Jelenković,
C. Langer, D. Leibfried, T. Rosenband, and D. J. Wineland, “Experimental Demonstration of
a Technique to Generate Arbitrary Quantum Superposition States of a Harmonically Bound
Spin-1/2 Particle,” Phys. Rev. Lett., Volume 90 (2003) 037902.

43. P. Benioff, “The Computer as a Physical System: A Microscopic Quantum Mechanical
Hamiltonian Model of Computers as Represented by Turing Machines,” Journal of Statis-
tical Physics, Volume 22 (1980) pp. 563–591.

44. C. Bennett, “Logical Reversibility of Computation,” IBM Journal of Research and Develop-
ment, Volume 17 (1973) pp. 525–532.

45. C. Bennett, “Time-Space Tradeoff for Reversible Computation,” SIAM Journal on Comput-
ing, Volume 18 (1989) pp. 766–776.

46. C. H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev.
Lett., Volume 68 (1992) pp. 3121–3124.

47. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin
Tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and
Signal Processing, Bangalore, December (1984) pp. 175–179. A scanned PDF of this paper
is available at http://www.research.ibm.com/people/b/bennetc/bennettc198469790513.pdf.

48. C. H. Bennett and G. Brassard, “The Dawn of a New Era for Quantum Cryptography: The
Experimental Prototype is Working!” SIGACT News, Volume 20 (1989) pp. 78–82.

49. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting
an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,”
Phys. Rev. Lett., Volume 70 (1993) pp. 1895–1899.

50. C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, “Generalized Privacy Amplifica-
tion,” IEEE Transactions on Information Theory, Volume 41, Issue 6 (1995) pp. 1915–1923.

51. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating Partial En-
tanglement by Local Operations,” Phys. Rev. A, Volume 53, Issue 4 (1996) pp. 2046–2052.

52. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. K. Wooters,
“Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys.
Rev. Lett., Volume 76, Issue 5 (1996) pp. 722–725.

53. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters,
“Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys.
Rev. Lett., Volume 76, Issue 5 (1996) pp. 722–725.

54. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state Entangle-
ment and Quantum Error Correction,” Phys. Rev. A, Volume 54, Issue 5 (1996) pp. 3824–
3851.

55. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and Weaknesses of
Quantum Computing,” SIAM Journal on Computing, Volume 26, Issue 5 (1997) pp. 1510–
1523.

56. L. Berman and J. Hartmanis, “On Isomorphisms and Density of NP and Other Complete
Sets,” SIAM Journal on Computing, Volume 6, Issue 2 (1977) pp. 305–322.

57. E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” in Proceedings of the 25th
Annual ACM Symposium on the Theory of Computing (1993) pp. 11–20.

58. E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” SIAM Journal on Computing,
Volume 26 (1997) pp. 11–20.

http://www.research.ibm.com/people/b/bennetc/bennettc198469790513.pdf

666 References

59. A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, and O. Scegulnaja, Quantum Query
Complexity for Some Graph Problems, Lecture Notes in Computer Science, Volume 2932,
Springer, Berlin (2004) pp. 1–11.

60. H. A. Bethe, “Zur Theorie der Metalle: I. Eigenwerte und Eigenfunktionen der linearen Atom
Kette,” Zeitschrift für Physik, Volume 71 (1931) pp. 205–226.

61. D. Biron, O. Biham, E. Biham, M. Grassl, and D. A. Lidar, Generalized Grover Search
Algorithm for Arbitrary Initial Amplitude Distribution, Lecture Notes in Computer Science,
Volume 1509, Springer, Berlin (1999) pp. 140–147.

62. I. Bloch, “Quantum Coherence and Entanglement with Ultracold Atoms in Optical Lattices,”
Nature, Volume 453 (2008) pp. 1016–1022.

63. P. Bonderson, A. Kitaev, and K. Shtengel, “Detecting Non-Abelian Statistics in the ν = 5/2
Fractional Quantum Hall State,” Phys. Rev. Lett., Volume 96 (2006) 016803.

64. P. Bonderson, K. Shtengel, and J. K. Slingerland, “Probing Non-Abelian Statistics with
Quasiparticle Interferometry,” Phys. Rev. Lett., Volume 97 (2006) 016401.

65. N. E. Bonesteel, L. Hormozi, G. Zikos, and S. H. Simon, “Braid Topologies for Quantum
Computation,” Phys. Rev. Lett., Volume 95 (2005) 140503.

66. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental Realization
of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels,” Phys. Rev. Lett., Volume 80, Issue 6 (1998) pp. 1121–1125.

67. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental Realization
of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels,” Phys. Rev. Lett., Volume 80, Issue 6 (1998) pp. 1121–1125.

68. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experi-
mental Quantum Teleportation,” Nature, Volume 390 (1997) pp. 575–579.

69. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experi-
mental Quantum Teleportation,” Nature, Volume 390 (1997) pp. 575–579.

70. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight Bounds on Quantum Searching,”
Fortsch. Phys., Volume 46 (1998) pp. 493–506; Also in Proceedings of the Fourth Work-
shop on Physics and Computation (PhysComp’96), eds. T. Toffoli, M. Biafore, and J. Leao,
New England Complex Systems Institute, Boston (1996) pp. 36–43.

71. G. Brassard, “Searching a Quantum Phone Book,” Science, Volume 275 (1997) pp. 627–628.
72. G. Brassard and P. Høyer, “An Exact Polynomial-Time Algorithm for Simon’s Problem,” in

Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems, ISTCS, IEEE
Computer Society, Los Alamitos (1997) pp. 12–33.

73. G. Brassard and L. Salvail, “Secret Key Reconciliation by Public Discussion,” Advances in
Cryptology, Proceedings of Eurocrypt ’93 (1994) pp. 410–423.

74. G. Brassard, P. Høyer, and Alain Tapp, “Quantum Algorithm for the Collision Problem,”
ACM SIGACT News, Volume 28 (1997) pp. 14–19.

75. G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a Quantum Computation,”
Physica D, Volume 120, Issues 1–2 (1998) pp. 43–47.

76. G. Brassard, P. Høyer, and A. Tapp, “Quantum Counting,” arXiv:quant-ph/9805082v1
(1998).

77. G. Brassard, R. Cleve, and A. Tapp, “Cost of Exactly Simulating Quantum Entanglement
with Classical Communication,” Phys. Rev. Lett., Volume 83 (1999) pp. 1874–1877.

78. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum Amplitude Amplification and
Estimation,” arXiv:quant-ph/0005055v1 (2000).

79. S. L. Braunstein and J. A. Smolin, “Perfect Quantum Error Correction Coding in 24 Laser
Pulses,” Phys. Rev. A, Volume 55 (1997) pp. 945–950.

80. M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer,
M. A. Nielsen, and T. J. Osborne, “Practical Scheme for Quantum Computation with Any
Two-Qubit Entangling Gate,” Phys. Rev. Lett., Volume 89 (2002) 247902.

81. G. K. Brennen and J. K. Pachos, “Why Should Anyone Care about Computing with
Anyons?,” Proc. R. Soc. A, Volume 464 (2008) pp. 1–24.

82. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum Logic Gates in
Optical Lattices,” Phys. Rev. Lett., Volume 82 (1999) pp. 1060–1063.

http://arxiv.org/abs/arXiv:quant-ph/9805082v1
http://arxiv.org/abs/arXiv:quant-ph/0005055v1

References 667

83. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imper-
fect Local Operations in Quantum Communication,” Phys. Rev. Lett., Volume 81 (1998) pp.
5932–5935.

84. H. J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller, “Quantum Computing with
Neutral Atoms,” Journal of Modern Optics, Volume 47 (2000) pp. 415–451.

85. C. Brukner, V. Vedral, and A. Zeilinger, “A Crucial Role of Entanglement in Bulk Properties
of Solids,” Phys. Rev. A, Volume 73 (2006) 012110.

86. D. Bruß, “Optimal Eavesdropping in Quantum Cryptography with Six States,” Phys. Rev.
Lett., Volume 81, Issue 14 (1998) pp. 3018–3021.

87. H. Buhrman and R. Špalek, “Quantum Verification of Matrix Products,” in Proceedings of
the 17th ACM-SIAM Symposium on Discrete Algorithms (2006) pp. 880–889.

88. H. Buhrman, J. Tromp, and P. Vitányi, “Time and Space Bounds for Reversible Simulation,”
Journal of Physics A: Mathematical & General, Volume 34, Issue 35 (2001) pp. 6821–6830.

89. D. Bulger, “Quantum Basin Hopping with Gradient-based Local Optimisation,” arXiv:
quant-ph/0507193 (2005).

90. S. Bullock and I. Markov, “Arbitrary Two-qubit Computation in 23 Elementary Gates,” Phys.
Rev. A, Volume 68 (2003) 012318.

91. A. Bundy, The Computer Modelling of Mathematical Reasoning, Academic Press, London
(1983) ISBN 0-12-141352-0.

92. G. Burkard, D. Loss, and D. P. Di Vincenzo, “Coupled Quantum Dots as Quantum Gates,”
Phys. Rev. B, Volume 59 (1999) pp. 2070–2078.

93. V. Bužek and M. Hillery, “Quantum Copying: Beyond the No-cloning Theorem,” Phys. Rev.
A, Volume 54, Issue 3 (1996) pp. 1844–1852.

94. Z. Cai, K. Sendt, and J. Reimers, “Failure of Density-functional Theory and Time-dependent
Density-functional Theory for Large Extended Pi Systems,” Journal of Chemical Physics,
Volume 117, Issue 12 (2002) pp. 5543–5549.

95. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction
via Codes over GF(4),” IEEE Trans. Inform. Theory, Volume 44, Issue 4 (1998) pp. 1369–
1387.

96. F. E. Camino, W. Zhou, and V. J. Goldman, “Realization of a Laughlin Quasiparticle Inter-
ferometer: Observation of Fractional Statistics,” Phys. Rev. B, Volume 72 (2005) 075342.

97. A. Carlini and A. Hosoya, “Quantum Probabilistic Subroutines and Problems in Number
Theory,” Phys. Rev. A, Volume 62 (2000) 032312.

98. S. Cass, “Listening In,” IEEE Spectrum, April (2003) pp. 33–37.
99. N. Cerf, “Optical Quantum Cloning—a Review,” ed. E. Wolf, Progress in Optics, Volume 49,

Elsevier, Amsterdam (2006) p. 455.
100. N. J. Cerf, L. K. Grover, and C. P. Williams, “Nested Quantum Search and Structured Prob-

lems,” Phys. Rev. A, Volume 61 (2000) 032303.
101. P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the Really Hard Problems Are,” in

Proc. of International Joint Conference on Artificial Intelligence (IJCAI’91), Sydney, Mor-
gan Kauffman, San Mateo (1991) pp. 331–337.

102. D. Cheung, D. Maslov, J. Mathew, and D. K. Pradhan, On the Design and Optimization
of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography, Lecture Notes in
Computer Science, Volume 5106, Springer, Berlin (2008).

103. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant Quantum
Repeaters with Minimal Physical Resources and Implementations based on Single-photon
Emitters,” Phys. Rev. A, Volume 72 (2005) 052330.

104. A. Childs and W. van Dam, “Quantum Algorithms for Algebraic Problems,” Reviews of
Modern Physics, Volume 82, Issue 1 (2010) pp. 1–52.

105. A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-Assisted En-
ergy Transfer in Quantum Networks and Light-Harvesting Complexes,” arXiv:0910.4153v1
(2009).

106. C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kim-
ble, “Functional,” Quantum Nodes for Entanglement Distribution over Scalable Quantum
Networks,” Volume 316, Issue 5829 (2007) pp. 1316–1320.

http://arxiv.org/abs/arXiv:quant-ph/0507193
http://arxiv.org/abs/arXiv:quant-ph/0507193
http://arxiv.org/abs/arXiv:0910.4153v1

668 References

107. I. L. Chuang and Y. Yamamoto, “A Simple Quantum Computer,” Phys. Rev. A, Volume 52
(1995) pp. 3489–3496.

108. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entangle-
ment Distribution Among Distant Nodes in a Quantum Network,” Phys. Rev. Lett., Volume
78 (1997) p. 3221.

109. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, “Experimental Demonstration of Optimal
Unambiguous State Discrimination,” Phys. Rev. A, Volume 63 (2000) 040305.

110. R. Cleve, “Methodologies for Designing Block Ciphers and Cryptographic Protocols,” Ph. D.
Thesis, University of Toronto (1990).

111. R. Cleve, “Complexity Theoretic Issues Concerning Block Ciphers Related to DES,” in Pro-
ceedings of Advances in Cryptology (CRYPTO’90), Springer, Berlin (1991) pp. 530–544.

112. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, “Quantum Algorithms Revisited,” Proc.
R. Soc. Lond. A, Volume 454, Issue 1969 (1998) pp. 339–354.

113. G. P. Collins, “Fractionally Charged Quasiparticles Signal Their Presence with Noise,”
Physics Today, Volume 50, Issue 11 (1997) pp. 17–19.

114. G. P. Collins, Computing with Quantum Knots, Scientific American, New York (2006)
pp. 57–63.

115. S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of ACM
STOC’71 (1971) pp. 151–158.

116. N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, “Quantum Phases of Vortices in Rotating
Bose-Einstein Condensates,” Phys. Rev. Lett., Volume 87 (2001) 120405.

117. T. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York (1991) ISBN
0-471-06259-6.

118. R. Crandall, Topics in Advanced Scientific Computation, TELOS, Springer, New York (1996)
pp. 125–126.

119. P. Crescenzi and C. H. Papadimitriou, “Reversible Simulation of Space-bounded Computa-
tions,” Theoretical Computer Science, Volume 143, Issue 1 (1995) pp. 159–165.

120. J. A. Csirik, “Cost of Exactly Simulating a Bell Pair Using Classical Communication,” Phys.
Rev. A, Volume 66, Issue 1 (2002) 014302.

121. D. Curtis and D. A. Meyer, “Towards Quantum Template Matching,” in Quantum Commu-
nications and Quantum Imaging, eds. R. Meyers and Y. Shih, Proceedings of SPIE, Vol-
ume 5161 (2004) p. 134.

122. G. Cybenko, Reducing Quantum Computations to Elementary Unitary Operations, Comput-
ing in Science and Engineering, IEEE Computer Society, Los Alamitos (2001) pp. 27–32.

123. S. Das Sarma, M. Freedman, and C. Nayak, “Topologically Protected Qubits from a Possible
Non-Abelian Fractional Quantum Hall State,” Phys. Rev. Lett., Volume 94 (2005) 166802.

124. S. Das Sarma, M. Freedman, and C. Nayak, “Topologically Protected Qubits from a Possible
Non-Abelian Fractional Quantum Hall State,” Phys. Rev. Lett., Volume 94 (2005) 166802.

125. S. Das Sarma, M. Freedman, and C. Nayak, “Topological Quantum Computation,” Physics
Today, Volume 7 (2006) pp. 32–38.

126. I. Daubechies, “Discrete Sets of Coherent States and Their Use in Signal Analysis,” in Differ-
ential Equations and Mathematical Physics, Volume 1285, eds. I. W. Knowles and Y. Saito,
Springer, Berlin (1987) pp. 73–82.

127. I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Comm. Pure &
Appl. Math., Volume 41, Issue 7 (1988) pp. 909–996.

128. I. Daubechies, “Time-frequency Localization Operators: a Geometric Phase Space Ap-
proach,” IEEE Trans. Inf. Theory, Volume 34, Issue 4 (1988) pp. 605–612.

129. I. Daubechies, “Orthonormal Bases of Wavelets with Finite Support—Connection with Dis-
crete Filters,” in Proceedings of the 1987 International Workshop on Wavelets and Applica-
tions, Marseille, France, eds. J. M. Combes, A. Grossmann, and Ph. Tchamitchian, Springer,
Berlin (1989).

130. I. Daubechies, “The Wavelet Transform, Time-frequency Localization and Signal Analysis,”
IEEE Trans. Inf. Theory, Volume 36, Issue 5 (1990) pp. 961–1005.

References 669

131. I. Daubechies and T. Paul, “Wavelets—Some Applications,” in Proceedings of the Interna-
tional Conference on Mathematical Physics, eds. M. Mebkhout and R. Seneor, World Scien-
tific, Marseille (1987) pp. 675–686.

132. R. M. Davis, “The Data Encryption Standard in Perspective,” IEEE Comm. Soc. Magazine,
Volume 16 (1978) pp. 5–9.

133. M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving,”
Comm. ACM, Volume 5 (1962) p. 394.

134. B. Daviss, “Splitting the Electron,” New Scientist (1998) p. 36.
135. J. N. de Beaudrap, R. Cleve, and J. Watrous, “Sharp Quantum versus Classical Query Com-

plexity Separations,” Algorithmica, Volume 34, Issue 4 (2002) pp. 449–461.
136. D. Deutsch, “Quantum Theory, the Church-Turing Principle, and the Universal Quantum

Computer,” Proc. R. Soc. Lond. A, Volume 400 (1985) pp. 97–117.
137. D. Deutsch, “Quantum Computational Networks,” Proc. R. Soc. Lond. A, Volume 425, Is-

sue 1868 (1989) pp. 73–90.
138. D. Deutsch and R. Jozsa, “Rapid Solution of Problems by Quantum Computation,” Proc. R.

Soc. Lond. A, Volume 439, Issue 1907 (1992) pp. 553–558.
139. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum

Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels,”
Phys. Rev. Lett., Volume 77, Issue 2818 (1996) pp. 2818–2821.

140. I. H. Deutsch, G. K. Brennen, and P. S. Jessen, “Quantum Computing with Neutral Atoms in
an Optical Lattice,” Fortschritte der Physik, Volume 48 (2000) pp. 925–943.

141. S. J. Devitt, K. Nemoto, and W. J. Munro, “The Idiots Guide to Quantum Error Correction,”
arXiv:0905.2794v2 (2009).

142. D. Dieks, “Communication by EPR Devices,” Phys. Lett. A, Volume 92, Issue 6
(1982) pp. 271–271. Available at http://igitur-archive.library.uu.nl/phys/2006-1214-212615/
dieks_82_communication.pdf.

143. W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, Volume 22 (1976) pp. 644–654.

144. W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Trans. Info. Theory,
Volume IT-22 (1976) pp. 644–654.

145. P. Dirac, in Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, Volume 123, Issue 792, 6th April (1929).

146. D. P. DiVincenzo, “Quantum Computation,” Science, Volume 270 (1995) pp. 255–261.
147. D. P. DiVincenzo, “Two-Bit Gates are Universal for Quantum Computation,” Phys. Rev. A,

Volume 51 (1995) pp. 1015–1022.
148. D. P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschritte der

Physik, Volume 48, Issue 9–11 (2000) pp. 771–783.
149. D. P. DiVincenzo and J. Smolin, “Results on Two-Bit Gate Design for Quantum Computers,”

in Proceedings of the Workshop on Physics and Computation, IEEE Computer Society Press,
Dallas (1994) pp. 14–23.

150. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, “Universal Quantum
Computation with the Exchange Interaction,” Nature (London), Volume 408 (2000) pp. 339–
342.

151. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz Decoy
Quantum Key Distribution with 1 Mbit/s Secure Key Rate,” Opt. Express, Volume 16, Issue
23 (2008) pp. 18790–18979.

152. L. M. Duan and G. C. Guo, “Probabilistic Cloning and Identification of Linearly Independent
Quantum States,” Phys. Rev. Lett., Volume 80 (1998) pp. 4999–5002.

153. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance Quantum Communication
with Atomic Ensembles and Linear Optics,” Nature, Volume 414 (2001) pp. 413–418.

154. S. V. Dudiy and A. Zunger, “Searching for Alloy Configurations with Extreme Physical
Properties: Genetic Algorithm Inverse Band Structure of Ga(P, N),” Phys. Rev. Lett., Volume
97 (2006) 046401.

http://arxiv.org/abs/arXiv:0905.2794v2
http://igitur-archive.library.uu.nl/phys/2006-1214-212615/dieks_82_communication.pdf
http://igitur-archive.library.uu.nl/phys/2006-1214-212615/dieks_82_communication.pdf

670 References

155. Duncan Campbell in STOA (Scientific and Technological Options Assessment), 1999, Part
2/5, with reference to Baltimore Sun, “America’s Fortress of Spies,” by Scott Shane and
Tom Bowman, 3rd December 1995, and Washington Post, “Recent U.S. Coups in New Es-
pionnage,” by William Drozdiak.

156. Duncan Campbell in STOA (Scientific and Technological Options Assessment), 1999, Part
2/5, with reference to New York Times, “How Washington Inc. Makes a Sale,” by David
Sanger, 19th February 1995.

157. C. Durr and P. Høyer, “A Quantum Algorithm for Finding the Minimum,” arXiv:
quant-ph/9607014v2 (1996).

158. C. Dürr and M. Santha, “A Decision Procedure for Unitary Linear Quantum Cellular Au-
tomata,” SIAM Journal on Computing, Volume 31 (2002) pp. 1076–1089.

159. C. Dürr, H. LêThanh, and M. Santha, “A Decision Procedure for Well-formed Linear Quan-
tum Cellular Automata,” Random Struct. Algorithms, Volume 11 (1997) pp. 381–394.

160. W. Dürr, H. J. Briegel, J. I. Cirac, and P. Zoller, “Quantum Repeaters Based on Entanglement
Purification,” Phys. Rev. A, Volume 59, Issue 1 (1999) pp. 169–181.

161. C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla, “Quantum Query Complexity of Some
Graph Problems,” SIAM Journal on Computing, Volume 35, Issue 6 (2006) pp. 1310–1328.

162. M. Dyer, A. Frieze, and R. Kannan, “A Random Polynomial Time Algorithm for Approxi-
mating the Volume of Convex Bodies,” Journal of the Association of Computing Machinery,
Volume 38, Issue 1 (1991) pp. 1–17.

163. P. Echternach, C. P. Williams, S. C. Dultz, S. Braunstein, and J. P. Dowling, “Universal Quan-
tum Gates for Single Cooper Pair Box Based Quantum Computing,” Quantum Information
and Computation, Volume 1 (2001) pp. 143–150.

164. J. Eisert, “Entanglement in Quantum Information Theory,” Ph.D. thesis, University of Pots-
dam, February (2001). Available as arXiv:quant-ph/0610253.

165. J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, “Optimal Local Implementation of
Nonlocal Quantum Gates,” Phys. Rev. A, Volume 62 (2000) 052317.

166. J. Eisert, F. G. S. L. Brandão, and K. Audenaert, “Quantitative Entanglement Witnesses,”
New J. Phys., Volume 9 (2007) p. 46.

167. A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett., Volume
67 (1991) pp. 661–663.

168. A. Ekert and C. Macchiavello, “Quantum Error Correction for Communication,” Phys. Rev.
Lett., Volume 77, Issue 12 (1996) pp. 2585–2588.

169. C. Elektra quote http://www.nationalledger.com/cgi-bin/artman/exec/view.cgi?archive=5&
num=9028.

170. T. ElGamal, “A Public-key Cryptosystem and a Signature Scheme based on Discrete Loga-
rithms,” IEEE Transactions on Information Theory, Volume 31 (1985) pp. 469–472.

171. C. Elliot, “The DARPA Quantum Network,” in Quantum Communications and Cryptog-
raphy, ed. Alexander Sergienko, CRC Press/Taylor & Francis, Boca Raton/London (2005)
ISBN 9780849336843, pp. 83–102.

172. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blanken-
ship, and G. R. Fleming, “Evidence for Wavelike Energy Transfer through Quantum Coher-
ence in Photosynthetic Systems,” Nature, Volume 446 (2007) pp. 782–786.

173. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and Transfer
of Single Photons on a Photonic Crystal Chip,” Opt. Express, Volume 15 (2007) p. 5550.

174. “EU Investigates Mystery Buggings,” http://news.bbc.co.uk/2/hi/europe/2864063.stm.
175. B. Everett, “Tapping into Fibre Optic Cables,” Network Security, Volume 2007, Issue 5

(2007) pp. 13–16.
176. J. Fan, M. D. Eisaman, and A. Migdall, “Bright Phase-stable Broadband Fiber-based Source

of Polarization-entangled Photon Pairs,” Phys. Rev. A, Volume 76 (2007) 043836.
177. E. Farhi, J. Goldstone, and S. Gutmann, “Quantum Adiabatic Evolution Algorithms with

Different Paths,” arXiv:quant-ph/0208135v1 (2002).
178. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A Quantum

Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem,”
Science, Volume 292 (2002) pp. 472–475.

http://arxiv.org/abs/arXiv:quant-ph/9607014v2
http://arxiv.org/abs/arXiv:quant-ph/9607014v2
http://arxiv.org/abs/arXiv:quant-ph/0610253
http://www.nationalledger.com/cgi-bin/artman/exec/view.cgi?archive=5&num=9028
http://www.nationalledger.com/cgi-bin/artman/exec/view.cgi?archive=5&num=9028
http://news.bbc.co.uk/2/hi/europe/2864063.stm
http://arxiv.org/abs/arXiv:quant-ph/0208135v1

References 671

179. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-
quality Asynchronous Heralded Single-photon Source at Telecom Wavelength,” New J.
Phys., Volume 6 (2004) p. 163.

180. A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, “Monte Carlo Simulations: Hidden Errors
from “Good” Random Number Generators,” Phys. Rev. Lett., Volume 69, Issue 23 (1992)
pp. 3382–3384.

181. R. Feynman, “Simulating Physics with Computers,” International Journal of Theoretical
Physics, Volume 21, Issue 6–7 (1982) pp. 467–488.

182. R. P. Feynman, “There’s Plenty of Room at the Bottom,” transcript available at
http://media.wiley.com/product_data/excerpt/53/07803108/0780310853.pdf.

183. A. Fijany and C. P. Williams, Quantum Wavelet Transforms: Fast Algorithms and Complete
Circuits, Lecture Notes in Computer Science, Volume 1509, Springer, Berlin (1999) pp. 10–
33.

184. G. Fishman, Monte Carlo: Concepts, Algorithms, and Application, Springer, Berlin (1996),
p. 7.

185. Focus Issue “Focus on Single Photons on Demand,” New J. Phys. 6 (2004).
186. A. Franceschetti and A. Zunger, “The Inverse Band Structure Problem: Find the Atomic

Configuration with Given Electronic Properties,” Nature, Volume 402 (1999) pp. 60–63.
187. E. Fredkin and T. Toffoli, “Conservative Logic,” International Journal of Theoretical Physics,

Volume 21 (1982) pp. 219–253.
188. S. J. Freedman and J. F. Clauser, “Experimental Test of Local Hidden-Variable Theories,”

Phys. Rev. Lett., Volume 28, Issue 14 (1972) pp. 938–941.
189. M. H. Freedman, A. Kitaev, and Z. Wang, “Simulation of Topological Field Theories by

Quantum Computers,” Commun. Math. Phys., Volume 227 (2002) pp. 587–603.
190. M. H. Freedman, M. Larsen, and Z. Wang, “A Modular Functor Which is Universal for

Quantum Computation,” Communications in Mathematical Physics, Volume 227, Issue 3
(2002) pp. 605–622.

191. M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, “A Class of P,T-Invariant
Topological Phases of Interacting Electrons,” Ann. Phys., Volume 310, Issue 2 (2004)
pp. 428–492.

192. K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen, “Hidden Translation and Orbit
Coset in Quantum Computing,” in Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing (2003) pp. 1–9.

193. P. Fulde, Electron Correlations in Molecules and Solids, Third Edition, Springer, Berlin
(1995) ISBN 3540593640, p. 50.

194. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik,
“Unconditional Quantum Teleportation,” Science, Volume 282, Issue 5389 (1998) pp. 706–
709.

195. R. Gallant, R. Lambert, and S. Vanstone, “Improving the Parallelized Pollard Lambda Search
on Anomalous Binary Curves,” Mathematics of Computation, Volume 69 (2000) pp. 1699–
1705.

196. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, New York (1979).

197. A. Gepp and P. Stocks, “A Review of Procedures to Evolve Quantum Algorithms,” Genetic
Programming and Evolvable Machines, Volume 10, Issue 2 (2009) pp. 181–228.

198. J. Gill, “Computational Complexity of Probabilistic Turing Machines,” SIAM Journal on
Computing, Volume 6, Issue 4 (1977) pp. 675–695.

199. R. Gingrich and C. P. Williams, “Non-Unitary Probabilistic Quantum Computing,” in Pro-
ceedings of the Winter International Symposium on Information and Communication Tech-
nologies, Hyatt Regency Cancun, Mexico, 5th–8th January (2004).

200. R. M. Gingrich, C. P. Williams, and N. J. Cerf, “Generalized Quantum Search with Paral-
lelism,” Phys. Rev. A, Volume 61 (2000) 052313.

201. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys.,
Volume 74 (2002) p. 146.

http://media.wiley.com/product_data/excerpt/53/07803108/0780310853.pdf

672 References

202. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Decoherence
and the Appearance of a Classical World in Quantum Theory, Springer, Berlin (1996) ISBN
3-540-61394-3.

203. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally
Bright and Broad Fiber-based Heralded Single-photon Source,” Phys. Rev. A, Volume 78
(2008) 013844.

204. G. Golub and C. van Loan, Matrix Computations, Third Edition, Johns Hopkins University
Press, Baltimore (1996).

205. C. Gomes and B. Selman, “Satisfied with Physics,” Science, Volume 297 (2002) pp. 784–
785.

206. C. Gomes and B. Selman, “Can get Satisfaction,” Nature, Volume 435 (2005) pp. 751–752.
207. D. Gottesman, “Class of Quantum Error-Correcting Codes Saturating the Quantum Ham-

ming Bound,” Phys. Rev. A, Volume 54, Issue 3 (1996) pp. 1862–1868.
208. D. Gottesman, “Stabilizer Codes and Quantum Error Correction,” Ph.D. thesis, California

Institute of Technology, arXiv:quant-ph/9705052v1 (1997).
209. D. Gottesman, “An Introduction to Quantum Error Correction and Fault-Tolerant Quantum

Computation,” arXiv:0904.2557v1 (2009).
210. D. Gottesman and I. L. Chuang, “Demonstrating the Viability of Universal Quantum Com-

putation using Teleportation and Single-qubit Operations,” Nature, Volume 402 (1999) pp.
390–393.

211. M. Grassl, “Bounds on the Minimum Distance of Qubit Block Codes for Given Length and
Dimension,” online at http://www.codetables.de/ (2009).

212. M. Grassl and T. Beth, “A Note on Non-additive Quantum Codes,” arXiv:quant-ph/9703016
(1997).

213. R. B. Griffiths and C. Niu, “Semiclassical Fourier Transform for Quantum Computation,”
Phys. Rev. Lett., Volume 76 (1996) pp. 3228–3231.

214. F. Grosshans and P. Grangier, “Continuous Variable Quantum Cryptography Using Coherent
States,” Phys. Rev. Lett., Volume 88 (2002) 057902.

215. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum
Key Distribution using Gaussian-modulated Coherent States,” Nature, Volume 421 (2003)
pp. 238–241.

216. G. Grössing and A. Zeilinger, “Quantum Cellular Automata,” Complex Syst., Volume 2
(1988) pp. 197–208.

217. L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” in Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, ACM Press, New York,
(1996) pp. 212–219.

218. L. K. Grover, “A Fast Quantum Mechanical Algorithm for Estimating the Median,”
arXiv:quant-ph/9607024v1 (1996).

219. L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Phys.
Rev. Lett., Volume 79, Issue 2 (1997) pp. 325–328.

220. L. Grover, “A Framework for Fast Quantum Mechanical Algorithms,” in Proceedings of 30th
Annual ACM Symposium on Theory of Computing (STOC), May (1998), pp. 53–62.

221. L. K. Grover, “Quantum Computers can Search Rapidly by Using Almost any Transforma-
tion,” Phys. Rev. Lett., Volume 80, Issue 19 (1998) pp. 4329–4332.

222. L. K. Grover, “Synthesis of Quantum Superpositions by Quantum Computation,” Phys. Rev.
Lett., Volume 85, Issue 6 (2000) pp. 1334–1337.

223. L. K. Grover and T. Rudolph, “Creating Superpositions that Correspond to Efficiently Inte-
grable Probability Distributions,” arXiv:quant-ph/0208112v1 (2002).

224. L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, and
M. Arndt, “Wave Nature of Biomolecules and Fluorofullerenes,” Phys. Rev. Lett., Volume
91 (2003) 090408.

225. S. Hallgren, “Polynomial Time Quantum Algorithms for Pell’s Equation and the Principal
Ideal Problem,” in Proceedings of ACM STOC’02 (2002).

http://arxiv.org/abs/arXiv:quant-ph/9705052v1
http://arxiv.org/abs/arXiv:0904.2557v1
http://www.codetables.de/
http://arxiv.org/abs/arXiv:quant-ph/9703016
http://arxiv.org/abs/arXiv:quant-ph/9607024v1
http://arxiv.org/abs/arXiv:quant-ph/0208112v1

References 673

226. S. Hallgren, “Fast Quantum Algorithms for Computing the Unit Group, and Class Group
of a Number Field,” in Proceedings of the 37th ACM Symposium on Theory of Computing
(2005).

227. S. Haroche and J.-M. Raimond, “Quantum Computing: Dream of Nightmare?” Phys. Today
(1996) pp. 51–52.

228. R. Harris, A. J. Berkley, J. Johansson, M. W. Johnson, T. Lanting, P. Bunyk, E. Tolkacheva, E.
Ladizinsky, B. Bumble, A. Fung, A. Kaul, A. Kleinsasser, and S. Han, “Implementation of a
Quantum Annealing Algorithm Using a Superconducting Circuit,” arXiv:0903.3906 (2009).

229. R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva,
E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud, C. Rich, S.
Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson, K.
Karimi, B. Macready, C. J. S. Truncik, and G. Rose, “Experimental Investigation of an Eight
Qubit Unit Cell in a Superconducting Optimization Processor,” Phys. Rev. B, Volume 82,
(2010) 024511.

230. N. Hatano and M. Suzuki, “Finding Exponential Product Formulas of Higher Orders,”
in Quantum Annealing and Other Optimization Methods, Lecture Notes in Physics, Vol-
ume 679, Springer, Berlin (2005) pp. 37–68. ISBN 978-3-540-27987-7.

231. M. Heiligman, “Quantum Algorithms for Lowest Weight Paths and Spanning Trees in Com-
plete Graphs,” arXiv:quant-ph/0303131 (2003).

232. S. Hill and W. Wootters, “Entanglement of a Pair of Quantum Bits,” Phys. Rev. Lett., Volume
78, Issue 26 (1997) pp. 5022–5025.

233. P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller,
and J. E. Nordholt, “Long-distance Quantum Key Distribution in Optical Fibre,” New J.
Phys., Volume 8 (2006) p. 193.

234. T. Hogg, B. A. Huberman, and C. P. Williams, “Phase Transitions and the Search Problem,”
Artificial Intelligence, Volume 81, Issue 1–2 (1996) pp. 1–15.

235. L. Hollenberg, “Fast Quantum Search Algorithms in Protein Sequence Comparisons: Quan-
tum Bioinformatics,” Phys. Rev. E, Volume 62, Issue 5 (2000) pp. 7532–7535.

236. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe,
B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto,
“Long-distance Entanglement-based Quantum Key Distribution over Optical Fiber,” Optics
Express, Volume 16, Issue 23 (2008) pp. 19118–19126.

237. J. Hopcroft, Turing Machines, Scientific American, New York (1984) pp. 86–98.
238. L. Hormozi, N. E. Bonesteel, and S. H. Simon, “Topological Quantum Computing with

Read-Rezayi States,” Phys. Rev. Lett., Volume 103 (2009) 160501.
239. M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of Mixed States: Necessary

and Sufficient Conditions,” Phys. Lett. A, Volume 223, Issues 1–2 (1996) pp. 1–8.
240. M. Hsieh, J. Kempe, S. Myrgren, and K. B. Whaley, “An Explicit Universal Gate-Set for

Exchange-Only Quantum Computation,” Quantum Information Processing, Volume 2, Is-
sue 4 (2001) pp. 289–307.

241. http://cgi.cnn.com/2000/TECH/computing/03/17/brazil.nasa.hackers/index.html.
242. http://cgi.cnn.com/2000/TECH/space/06/30/nasa.hacker/index.html.
243. http://cgi.cnn.com/2000/TECH/space/07/03/nasa.hacker.02/.
244. http://cgi.cnn.com/TECH/computing/9905/24/nasa.idg/.
245. http://www.secoqc.net/downloads/pressrelease/SECOQC_english.pdf.
246. http://www.secoqc.net/downloads/pressrelease/SECOQC_PRESS%20RELEASE_english.

pdf.
247. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical Free-Space Quantum

Key Distribution Over 10 km in Daylight and at Night,” New J. Phys., Volume 4 (2002) p. 43.
248. B. Huttner, J. D. Gautier, A. Muller, H. Zbinden, and N. Gisin, “Unambiguous Quantum

Measurement of Nonorthogonal States,” Phys. Rev. A, Volume 54 (1996) pp. 3783–3789.
249. id Quantique (Switzerland), http://www.idquantique.com/.
250. idQuantique, “idQuantique on QKD Security,” see http://www.idquantique.com/network-

encryption/qkd-security.html

http://arxiv.org/abs/arXiv:0903.3906
http://arxiv.org/abs/arXiv:quant-ph/0303131
http://cgi.cnn.com/2000/TECH/computing/03/17/brazil.nasa.hackers/index.html
http://cgi.cnn.com/2000/TECH/space/06/30/nasa.hacker/index.html
http://cgi.cnn.com/2000/TECH/space/07/03/nasa.hacker.02/
http://cgi.cnn.com/TECH/computing/9905/24/nasa.idg/
http://www.secoqc.net/downloads/pressrelease/SECOQC_english.pdf
http://www.secoqc.net/downloads/pressrelease/SECOQC_PRESS%20RELEASE_english.pdf
http://www.secoqc.net/downloads/pressrelease/SECOQC_PRESS%20RELEASE_english.pdf
http://www.idquantique.com/
http://www.idquantique.com/network-encryption/qkd-security.html
http://www.idquantique.com/network-encryption/qkd-security.html

674 References

251. idQuantique, “Vulnerability in Commercial Quantum Cryptography Tackled by Interna-
tional Collaboration,” joint press release between idQuantique, Norwegian University of
Science and Technology, University of Erlangen-Nürnberg, and the Max Planck Institute for
the Science of Light (2010) http://www.idquantique.com/images/stories/PDF/press-releases/
pr-internationalcollaboration.pdf.

252. K. Inoue and Y. Iwai, “Differential Quadrature Phase Shift Quantum Key Distribution,” Phys.
Rev. A, Volume 79 (2009) 022319.

253. S. Ishizaka and M. B. Plenio, “Multiparticle Entanglement under Asymptotic Positive-
Partial-Transpose-Preserving Operations,” Phys. Rev. A, Volume 72 (2005) 042325.

254. I. D. Ivanovic, “How to Differentiate Between Nonorthogonal States,” Phys. Lett. A, Volume
123 (1987) pp. 257–259.

255. M. Jerrum, A. Sinclair, and E. Vigoda, “A Polynomial-Time Approximation Algorithm for
the Permanent of a Matrix with Non-Negative Entries,” University of Edinburgh preprint,
27th June (2003). Available at http://www.dcs.ed.ac.uk/home/mrj/PermanentRev.pdf.

256. S. Johnsen and K. J. Lohmann, “Magnetoreception in Animals,” Physics Today (2008)
pp. 29–35.

257. E. Joos and H. Zeh, “The Emergence of Classical Properties through Interaction with the
Environment,” Zeitschrift fur Physik B, Volume 59 (1985) pp. 223–243.

258. S. P. Jordan, “Fast Quantum Algorithm for Numerical Gradient Estimation,” Phys. Rev. Lett.,
Volume 95 (2005) 050501.

259. S. P. Jordan, “Fast Quantum Algorithms for Approximating the Irreducible Representations
of Groups,” arXiv:0811.0562 (2008).

260. S. P. Jordan, E. Farhi, and P. W. Shor, “Error Correcting Codes For Adiabatic Quantum
Computation,” Phys. Rev. A, Volume 74, (2006) 052322.

261. R. Jozsa, “Characterizing Classes of Functions Computable by Quantum Parallelism,” Proc.
R. Soc. Lond. A, Volume 435 (1991) pp. 563–574.

262. R. Jozsa, Quantum Factoring, Discrete Logarithms and the Hidden Subgroup Problem, Com-
puting in Science and Engineering, IEEE Computer Society, Los Alamitos (2001) pp. 34–43.

263. R. Jozsa, “Quantum Computation in Algebraic Number Theory: Hallgren’s Efficient Quan-
tum Algorithm for Solving Pell’s Equation,” Ann. Phys., Volume 306, Issue 2 (2003) pp.
241–279.

264. B. Kahr, J. Freudenthal, S. Phillips, and W. Kaminsky, “Herapathite,” Science, Volume 324,
Issue 5933 (2009) p. 1407.

265. W. M. Kaminsky and S. Lloyd, “Scalable Architecture for Adiabatic Quantum Computing of
NP-Hard Problems,” in Quantum Computing and Quantum Bits in Mesoscopic Systems, eds.
A. J. Leggett, B. Ruggiero, and P. Silvestrini, Springer, Berlin, (2003) pp. 229–236.

266. I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, “Polynomial-Time
Quantum Algorithm for the Simulation of Chemical Dynamics,” Proceedings of the National
Academy of Sciences, Volume 105 (2008) pp. 18681–18686.

267. P. Kaye and M. Mosca, “Quantum Networks for Generating Arbitrary Quantum States,” in
Proceedings of the International Conference on Quantum Information (ICQI), Rochester,
New York, USA (2001).

268. P. Kaye and M. Mosca, “Quantum Networks for Concentrating Entanglement,” J. Phys. A:
Math. Gen., Volume 34 (2001) pp. 6939–6948.

269. P. Kaye and C. Zalka, “Optimized Quantum Implementation of Elliptic Curve Arithmetic
over Binary Fields,” Quantum Information and Computation, Volume 5, Issue 6 (2005)
pp. 474–491.

270. J. Kempe, “Approaches to Quantum Error Correction,” Séminaire Poincaré, Volume 2 (2005)
pp. 1–29.

271. J. Kempe, D. Bacon, D. P. Di Vincenzo, and K. B. Whaley, “Encoded Universality from
a Single Physical Interaction,” Quantum Information and Computation, Volume 1 (2001)
pp. 33–55 (Special Issue).

272. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of Decoherence-Free Fault-
tolerant Universal Quantum Computation,” Phys. Rev. A, Volume 63 (2001) 042307.

http://www.idquantique.com/images/stories/PDF/press-releases/pr-internationalcollaboration.pdf
http://www.idquantique.com/images/stories/PDF/press-releases/pr-internationalcollaboration.pdf
http://www.dcs.ed.ac.uk/home/mrj/PermanentRev.pdf
http://arxiv.org/abs/arXiv:0811.0562

References 675

273. J. Kempe, A. Kitaev, and O. Regev, “The Complexity of the Local Hamiltonian Problem,”
SIAM Journal of Computing, Volume 35, Issue 5 (2006) pp. 1070–1097.

274. V. Kendon, “A Random Walk Approach to Quantum Algorithms,” Phil. Trans. R. Soc. A,
Volume 364 (2006) pp. 3407–3422.

275. V. Kendon and O. Maloyer, “Optimal Computation with Non-unitary Quantum Walks,” The-
oretical Computer Science, Volume 394, Issue 3 (2008) pp. 187–196.

276. L. G. Khachiyan, “A Polynomial Algorithm for Linear Programming,” Soviet Math Doklady,
Volume 20 (1979) pp. 191–194.

277. N. Khaneja, R. Brockett, and S. J. Glaser, “Time Optimal Control in Spin Systems,” Phys.
Rev. A, Volume 63 (2001) 032308.

278. Y. Kim, S. P. Kulik, and Y. Shih, “Quantum Teleportation of a Polarization State with a
Complete Bell State Measurement,” Phys. Rev. Lett., Volume 86, Issue 7 (2001) pp. 1370–
1373.

279. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum Teleportation of a Polarization State with a
Complete Bell State Measurement,” Phys. Rev. Lett., Volume 86, Issue 7 (2001) pp. 1370–
1373.

280. S. Kirkpatrick and B. Selman, “Critical Behavior in the Satisfiability of Random Boolean
Expressions,” Science, Volume 264 (1994) pp. 1297–1301.

281. S. Kirkpatrick and B. Selman, “Insights from Statistical Physics into Computational Com-
plexity,” in More is Different—Fifty Years of Condensed Matter Physics, eds. N. Ong and
R. Bhatt, Princeton Series in Physics (2001) pp. 331–339.

282. A. Kitaev, “Quantum Measurements and the Abelian Stabilizer Problem,” arXiv:quant-ph/
9511026 (1995).

283. A. Y. Kitaev, “Quantum Computations: Algorithms and Error Correction,” Russian Math.
Surveys, Volume 52, Issue 6 (1997) pp. 1191–1249.

284. A. Y. Kitaev, “Quantum Computations: Algorithms and Error Correction,” Russ. Math. Surv.,
Volume 52, Issue 6 (1997) pp. 1191–1249.

285. A. Yu. Kitaev, “Fault-Tolerant Quantum Computation by Anyons,” Ann. Phys., Volume 303,
Issue 1 (2003) pp. 2–30. Based on preprint arXiv:quant-ph/9707021v1 (1997).

286. S. Kivelson, D. H. Lee, and S. C. Zhang, Electrons in Flatland, Scientific American, New
York (1996) pp. 86–91.

287. A. Klappenecker and M. Roetteler, “Discrete Cosine Transforms on Quantum Computers,”
IEEE ISPA01, Pula, Croatia (2001).

288. A. Klappenecker and M. Roetteler, “On the Irresistible Efficiency of Signal Processing Meth-
ods in Quantum Computing,” arXiv:quant-ph/0111039v1 (2001).

289. A. Klappenecker and M. Rötteler, “Quantum Software Reusability,” International Journal of
Foundations of Computer Science, Volume 14, Issue 5 (2003) pp. 777–796.

290. A. Klappenecker and M. Rötteler, “Engineering Functional Quantum Algorithms,” Phys.
Rev. A, Volume 67 (2003) 010302.

291. E. Knill, “Quantum Computing with Realistically Noisy Devices,” Nature, Volume 434
(2005) pp. 39–44.

292. E. Knill and R. Laflamme, “A Theory of Quantum Error-correcting Codes,” Phys. Rev. A,
Volume 55 (1997) pp. 900–911.

293. E. Knill, R. Laflamme, and G. J. Milburn, “A Scheme for Efficient Quantum Computation
with Linear Optics,” Nature, Volume 409 (2001) pp. 46–52.

294. N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, Volume 48 (1987)
pp. 203–209.

295. P. Kok, C. P. Williams, and J. P. Dowling, “Construction of a Quantum Repeater with Linear
Optics,” Phys. Rev. A, Volume 68 (2003) 022301.

296. B. Kraus and J. I. Cirac, “Optimal Creation of Entanglement Using a Two-Qubit Gate,” Phys.
Rev. A, Volume 63 (2001) 062309.

297. R. Laflamme, C. Miquel, P. Paz, and W. Zurek, “Perfect Quantum Error Correcting Code,”
Phys. Rev. Lett., Volume 77 (1996) pp. 198–201.

http://arxiv.org/abs/arXiv:quant-ph/9511026
http://arxiv.org/abs/arXiv:quant-ph/9511026
http://arxiv.org/abs/arXiv:quant-ph/9707021v1
http://arxiv.org/abs/arXiv:quant-ph/0111039v1

676 References

298. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-
Switching Quantum Key Distribution using Broadband Modulated Coherent Light,” Phys.
Rev. Lett., Volume 95 (2005) 180503.

299. R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journal
of Research and Development, Volume 5 (1961) pp. 183–191.

300. R. Landauer, “Is Quantum Mechanics Useful?” Philosophical Transactions of the Royal So-
ciety, London, Series A, Volume 353 (1995) pp. 367–376.

301. R. Landauer, “The Physical Nature of Information,” Phys. Lett. A, Volume 217 (1996)
p. 188.

302. K. J. Lang, P. McKenzie, and A. Tapp, “Reversible Space Equals Deterministic Space,” Jour-
nal of Computers and System Science, Volume 60 (2000) pp. 354–367.

303. T. Lanting, R. Harris, J. Johansson, M. H. S. Amin, A. J. Berkley, S. Gildert, M. W. Johnson,
P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, E. M. Chapple,
C. Enderud, C. Rich, B. Wilson, M. C. Thom, S. Uchaikin, and G. Rose, “Cotunneling in
Pairs of Coupled Flux Qubits,” Phys. Rev. B, Volume 82, (2010) 060512(R).

304. B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin, M. P. Almeida, I. Kassal, J. D.
Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “To-
wards Quantum Chemistry on a Quantum Computer,” Nature Chemistry, Volume 2 (2009)
pp. 106–111.

305. R. B. Laughlin, “Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with
Fractionally Charged Excitations,” Phys. Rev. Lett., Volume 50, Issue 18 (1982) pp. 1395–
1398.

306. H. Lee, Y.-C. Cheng, and G. R. Fleming, “Coherence Dynamics in Photosynthesis: Protein
Protection of Excitonic Coherence,” Science, Volume 316 (2007) pp. 1462–1465.

307. H. W. Lenstra Jr., “Solving the Pell Equation,” Notices of the American Mathematical Soci-
ety, Volume 49, Issue 2 (2002) pp. 182–192.

308. A. K. Lenstra and H. W. Lenstra Jr., The Development of the Number Field Sieve, Lecture
Notes in Mathematics, Volume 1554, Springer, Berlin (1993).

309. A. K. Lenstra, H. W. Lenstra Jr., M. Manasse, and J. Pollard, “The Number Field Sieve,”
in Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing,
Baltimore (1990) pp. 564–572.

310. D. W. Leung, “Quantum Computation by Measurements,” Int. J. Quantum Inform., Volume 2
(2004) pp. 33–43.

311. R. Y. Levine and A. T. Sherman, “A Note on Bennett’s Time-space Tradeoff for Reversible
Computation,” SIAM Journal on Computing, Volume 19 (1990) pp. 673–677.

312. M. Li, J. Tromp, and P. Vitányi, “Reversible Simulation of Irreversible Computation,” Phys-
ica D, Volume 120 (1998) pp. 168–176.

313. D. A. Lidar, “Towards Fault Tolerant Adiabatic Quantum Computation,” Phys. Rev. Lett.,
Volume 100, (2008) 160506.

314. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-Free Subspaces for Quantum
Computation,” Phys. Rev. Lett., Volume 81 (1998) p. 2594.

315. D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating Decoherence-Free Subspaces with
Quantum Error Correcting Codes,” Phys. Rev. Lett., Volume 82 (1999) p. 4556.

316. D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, “Protecting Quantum Information
Encoded in Decoherence-Free States against Exchange Errors,” Phys. Rev. A, Volume 61
(2000) 052307.

317. D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, “Decoherence-Free Subspaces for
Multiple-Qubit Errors: II. Universal, Fault-Tolerant Quantum Computation,” Phys. Rev. A,
Volume 63 (2001) 022307.

318. D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, “Decoherence-Free Subspaces for
Multiple-Qubit Errors: I. Characterization,” Phys. Rev. A, Volume 63 (2001) 022306.

319. E. H. Lieb and F. Y. Wu, “The One-Dimensional Hubbard Model: A Reminiscence,”
arXiv:cond-mat/0207529v2 (2002).

320. S. Lloyd, “Quantum Mechanical Computers and Uncomputability,” Phys. Rev. Lett., Volume
71 (1993) pp. 943–946.

http://arxiv.org/abs/arXiv:cond-mat/0207529v2

References 677

321. S. Lloyd, “Universal Quantum Simulators,” Science, Volume 273 (1996) pp. 1073–1078.
322. H. K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett.,

Volume 94 (2005) 230504.
323. C. Lomont, “Quantum Convolution and Quantum Correlation Algorithms are Physically Im-

possible,” arXiv:quant-ph/0309070v2 (2003).
324. C. Lomont, “The Hidden Subgroup Problem—Review and Open Problems,” arXiv:quant-ph/

0411037v1 (2004).
325. S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous Variable Quantum Key Distribution

using Polarization Encoding and Post Selection,” Appl. Phys. B, Volume 79, Issue 3 (2004)
pp. 273–277.

326. D. Loss and D. P. Di Vincenzo, “Quantum Computation with Quantum Dots,” Phys. Rev. A,
Volume 57 (1998) pp. 120–126.

327. M. Lukac and M. Perkowski, “Evolving Quantum Circuits Using Genetic Algorithm,” in
Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), 15th–18th
July (2002) p. 177.

328. M. Lukac and M. Perkowski, “Evolutionary Approach to Quantum Symbolic Logic Synthe-
sis,” in Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC2008),
June (2008) pp. 3374–3380.

329. L. Lydersen and J. Skaar, “Security of Quantum Key Distribution with Bit and Basis Depen-
dent Detector Flaws,” Quantum Information and Computation, Volume 10 (2010) 0060.

330. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and C. Makarov, “Thermal Blind-
ing of Gated Detectors in Quantum Cryptography,” arXiv:1009.2663 [quant-ph] (2010).

331. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and C. Makarov, “Hacking Com-
mercial Quantum Cryptography Systems by Tailored Bright Illumination,” Nature Photonics,
Volume 4 (2010) p. 686.

332. I. Lynce and J. Marques-Silva, “Building State-of-the-Art SAT Solvers,” in Proc. of the Eu-
ropean Conference on Artificial Intelligence, IOS Press, Amsterdam (2002).

333. MagiQ Technologies (U.S.A.), http://www.magiqtech.com/.
334. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Mo-

mentum States of Photons,” Nature, Volume 412 (2001) pp. 313–316.
335. V. Makarov, “Exploiting the Saturation Mode of Passively Quenched Avalanche Photodiodes

to Attack Quantum Cryptosystems,” in Proceedings of the Optical Society of Korea Annual
Meeting ’08 (2008) pp. 417–418.

336. V. Makarov and J. Skaar, “Faked States Attack using Detector Efficiency Mismatch on
SARG04, Phase-Time, DPSK, and Ekert Protocols,” Quantum Information and Computa-
tion, Volume 8 (2008) 0622.

337. V. Makarov, A. Anisimov, and S. Sauge, “Quantum Hacking: Adding a Commercial
Actively-Quenched Module to the List of Single-Photon Detectors Controllable by Eve,”
arXiv:0809.3408 [quant-ph] (2008).

338. V. Makarov, A. Anisimov, and J. Skaar, “Effects of Detector Efficiency Mismatch on Se-
curity of Quantum Cryptosystems,” Phys. Rev. A, Volume 74 (2006) 022313. Erratum in
Volume 78 (2008) 019905.

339. S. Mancini, S. Lloyd, S. L. Braunstein, and S. Pirandola, “Continuous-variable Quantum
Cryptography using Two-way Quantum Communication,” Nature Physics, Volume 4 (2008)
pp. 726–730.

340. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-Distance Tele-
portation of Qubits at Telecommunication Wavelengths,” Nature, Volume 421 (2003) pp.
509–513.

341. Ø. Marøy, L. Lydersen, and J. Skaar, “Security of Quantum Key Distribution with Arbitrary
Individual Imperfections,” Phys. Rev. A, Volume 82 (2010) 032337.

342. C. Marr, A. Beige, and G. Rempe, “Entangled State Preparation via Dissipation-Assisted
Adiabatic Passages,” Phys. Rev. A, Volume 68 (2003) 033817.

343. D. Maslov and G. W. Dueck, “Reversible Cascades with Minimal Garbage,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits & Systems, Volume 23, Issue 11
(2004) pp. 1497–1509.

http://arxiv.org/abs/arXiv:quant-ph/0309070v2
http://arxiv.org/abs/arXiv:quant-ph/0411037v1
http://arxiv.org/abs/arXiv:quant-ph/0411037v1
http://arxiv.org/abs/arXiv:1009.2663
http://www.magiqtech.com/
http://arxiv.org/abs/arXiv:0809.3408

678 References

344. D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan, “An O(m2)-depth Quantum Algo-
rithm for the Elliptic Curve Discrete Logarithm Problem over GF(2m),” Quantum Informa-
tion and Computation, Volume 9, Issue 7–8 (2009) pp. 0610–0621.

345. P. Massey, J. A. Clark, and S. A. Stepney, “Human-Competitive Evolution of Quantum Com-
puting Artefacts by Genetic Programming,” Evolutionary Computation, Volume 14, Issue 1
(2006) pp. 21–40.

346. D. N. Matsukevich et al., “Bell Inequality Violation with Two Remote Atomic Qubits,” Phys.
Rev. Lett., Volume 100 (2008) 150404.

347. D. McCullagh and A. Broache, “NSA Eavesdropping: How it Might Work,” CNET
News.com, February 7 (2006).

348. D. McGloin, N. B. Simpson, and M. J. Padgett, “The Transfer of Orbital Angular Momentum
from a Stressed Fibre-optic Waveguide to a Light Beam,” Appl. Opt., Volume 37 (1998) pp.
469–472.

349. R. Merkle, “Secure Communication over an Insecure Channel,” Commun. Ass. Comp.
Mach., Volume 21 (1978) pp. 294–299.

350. T. Metodiev, A. Cross, D. Thaker, K. Brown, D. Copsey, F. T. Chong, and I. Chuang, “Pre-
liminary Results on Simulating a Scalable Fault Tolerant Ion-Trap System for Quantum Com-
putation,” in Third Workshop on Non-Silicon Computing (NSC-3), June (2004).

351. M. Mezard, G. Parisi, and R. Zecchina, “Analytic and Algorithmic Solution of Random
Satisfiability Problems,” Science, Volume 297 (2002) pp. 812–815.

352. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single-photon and Multipho-
ton Probabilities of a Single-photon On-demand Source,” Phys. Rev. A, Volume 66 (2002)
053805.

353. V. Miller, “Uses of Elliptic Curves in Cryptography,” in Advances in Cryptology
CRYPTO’85, Lecture Notes in Computer Science, Volume 218, Springer, Berlin (1986) pp.
417–426.

354. C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne, “Interpre-
tation of Tomography and Spectroscopy as Dual forms of Quantum Computation,” Nature,
Volume 418 (2002) pp. 59–62.

355. D. R. Mitchell, C. Adami, W. Lue, and C. P. Williams, “Random Matrix Model of Adiabatic
Quantum Computing,” Phys. Rev. A, Volume 71 (2005) 052324.

356. Y. Mitsumori, J. A. Vaccaro, S. M. Barnett, E. Andersson, A. Hasegawa, M. Takeoka, and
M. Sasaki, “Experimental Demonstration of Quantum Source Coding,” Phys. Rev. Lett., Vol-
ume 91 (2003).

357. C. Mochon, “Anyons from Nonsolvable Finite Groups are Sufficient for Universal Quantum
Computation,” Phys. Rev. A, Volume 67 (2003) 022315.

358. C. Mochon, “Anyon Computers with Smaller Groups,” Phys. Rev. A, Volume 69 (2004)
032306.

359. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-Assisted Quan-
tum Walks in Photosynthetic Energy Transfer,” Journal of Chemical Physics, Volume 129
(2008) 174106.

360. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the Angular Momentum of
Light: Preparation of Photons in Multidimensional Vector States of Angular Momentum,”
Phys. Rev. Lett., Volume 88 (2001) 013601.

361. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, “Determining the
Computational Complexity from Characteristic ‘Phase Transitions’,” Nature, Volume 400
(1999) pp. 133–137.

362. M. Mosca and A. Ekert, “The Hidden Subgroup Problem and Eigenvalue Estimation on a
Quantum Computer,” Lecture Notes in Computer Science, Volume 1509, Springer, Berlin
(1999) pp. 174–188.

363. M. Möttönen, J. Vartiainen, V. Bergholm, and M. Salomaa, “Quantum Circuits for General
Multiqubit Gates,” Phys. Rev. Lett., Volume 93 (2004) 130502.

364. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge (1997) ISBN 0-521-47465-5.

References 679

365. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian Anyons and
Topological Quantum Computation,” Rev. Mod. Phys., Volume 80, Issue 3 (2008) p. 1083.

366. H. Neven, G. Rose, and W. G. Macready, “Image Recognition with an Adiabatic Quantum
Computer I. Mapping to Quadratic Unconstrained Binary Optimization,” arXiv:0804.4457
(2008).

367. H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, “Training a Binary Classifier with
the Quantum Adiabatic Algorithm,” arXiv:0811.0416 (2008).

368. H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, “Training a Large Scale Classifier
with the Quantum Adiabatic Algorithm,” arXiv:0912.0779 (2009).

369. I. Newton, in Isaac Newton: Philosophical Writings, ed. A. Janiak, Cambridge University
Press, Cambridge (2004).

370. New Yorker article http://www.newyorker.com/fact/content/?040802fa_fact.
371. M. A. Nielsen, “Quantum Computation by Measurement and Quantum Memory,” Phys. Lett.

A, Volume 308 (2003) pp. 96–100.
372. “NSA Suite B Cryptography,” See http://www.nsa.gov/ia/programs/suiteb_cryptography/

index.shtml, 15th January (2009).
373. R. W. Ogburn and J. Preskill, Topological Quantum Computation, Lecture Notes in Computer

Science, Volume 1509, Springer, Berlin (1999) pp. 341–356.
374. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quan-

tum Teleportation Between Distant Matter Qubits,” Science, Volume 323, Issue 5913 (2009)
pp. 486–489.

375. G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Quantum Algorithms for Fermionic
Simulations,” Phys. Rev. A, Volume 64 (2001) 022319.

376. G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Erratum: Quantum Algorithms for
Fermionic Simulations [Phys. Rev. A, Volume 64 (2001) 022319],” Phys. Rev. A, Volume 65
(2002) 029902.

377. C. H. Papadimitriou, “The Euclidean Travelling Salesman Problem is NP-Complete,” Theor.
Comput. Sci., Volume 4, Issue 3 (1977) pp. 237–244.

378. C. Paterson, “Atmospheric Turbulence and Orbital Angular Momentum of Single Photons
for Optical Communications,” Phys. Rev. Lett., Volume 94 (2005) 153901.

379. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, “An Improved Exponential Time Algorithm
for k-SAT,” in Proc. IEEE 39th Symp. Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos (1998) pp. 628–637.

380. J. P. Paz and A. Roncaglia, “A Quantum Gate Array can be Programmed to Evaluate the
Expectation Value of any Operator,” Phys. Rev. A, Volume 68 (2003) 052316.

381. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto,
“Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,”
Phys. Rev. Lett., Volume 89 (2002) 233602.

382. C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B.
Wang, and J. W. Pan, “Experimental Long-Distance Decoy-State Quantum Key Distribution
Based on Polarization Encoding,” Phys. Rev. Lett., Volume 98 (2007) 010505.

383. J. M. Perdigues Armengol, B. Furch, C. J. de Matos, O. Minster, L. Cacciapuoti, M. Pfen-
nigbauer, M. Aspelmeyer, T. Jennewein, R. Ursin, T. Schmitt-Manderbach, G. Baister, J.
Rarity, W. Leeb, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Quantum Communications
at ESA: Towards a Space Experiment on the ISS,” in Proceedings of the 58th International
Astronautical Congress, Hyderabad, India, 24th–28th September, IAF/IAA (2007).

384. A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, and A. Aspuru-Guzik, “Construction
of Model Hamiltonians for Adiabatic Quantum Computation and its Application to Finding
Low-Energy Conformations of Lattice Protein Models,” Phys. Rev. A, Volume 78 (2008)
012320.

385. A. Peres, “Einstein, Gödel, Bohr,” Foundations of Physics, Volume 15 (1985) pp. 201–205.
386. A. Peres, “How to Differentiate Between Two Nonorthogonal States,” Phys. Lett. A, Volume

128 (1988) p. 19.
387. A. Peres, “Separability Criterion for Density Matrices,” Phys. Rev. Lett., Volume 77 (1996)

pp. 1413–1415.

http://arxiv.org/abs/arXiv:0804.4457
http://arxiv.org/abs/arXiv:0811.0416
http://arxiv.org/abs/arXiv:0912.0779
http://www.newyorker.com/fact/content/?040802fa_fact
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

680 References

388. A. Peres, “Error Symmetrization in Quantum Computers,” Int. J. Theor. Phys., Volume 38
(1999) pp. 799–805.

389. A. Peres, “How the No-Cloning Theorem Got its Name,” arXiv:quant-ph/0205076v1 (2002).
390. A. Peres and W. Zurek, “Is Quantum Theory Universally Valid?”, American Journal of

Physics, Volume 50 (1982) pp. 807–810.
391. C. A. Perez-Delgado and D. Cheung, “Local Unitary Quantum Cellular Automata,” Phys.

Rev. A, Volume 76 (2007) 032320.
392. N. A. Peters, K. J. Arnold, A. P. VanDevender, E. R. Jeffrey, R. Rangarajan, O. Hosten,

J. T. Barreiro, J. B. Altepeter, and P. G. Kwiat, “Towards a Quasi-deterministic Single-photon
Source,” Proc. SPIE, Volume 6305 (2006) 630507.

393. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single Photons on Pseudodemand from
Stored Parametric Down-conversion,” Phys. Rev. A, Volume 66 (2002) 042303.

394. M. B. Plenio and S. F. Huelga, “Dephasing Assisted Transport: Quantum Networks and
Biomolecules,” New J. Phys., Volume 10 (2008) 113019.

395. J. Pollard, “Monte Carlo Methods for Index Computation Mod p,” Mathematics of Compu-
tation, Volume 32 (1978) pp. 918–924.

396. C. Pomerance, “A Tale of Two Sieves,” Notices of the American Mathematical Society
(1996) pp. 1473–1485.

397. E. Post, “Finite Combinatory Processes—Formulation I,” J. Symb. Logic, Volume 1 (1936)
pp. 103–105.

398. J. Preskill, “Fault-Tolerant Quantum Computation,” in Introduction to Quantum Computation
and Information, eds. H. K. Lo, S. Popescu, and T. Spiller, World Scientific, Singapore (1998)
ISBN 981023399X, pp. 213–269.

399. J. Preskill, “Reliable Quantum Computers,” Proc. R. Soc. Lond. A, Volume 454 (1998) pp.
385–410.

400. J. Preskill, “Fault-Tolerant Quantum Computation,” in Introduction to Quantum Computation
and Information, eds. H.-K. Lo, S. Popescu, and T. P. Spiller, World Scientific, Singapore
(1998) pp. 213–269.

401. Press release “QuintessenceLabs Announces Partnership with Lockheed Martin Corpo-
ration,” http://www.quintessencelabs.com/global/docs/PRESS-090622-QuintessenceLabs-
LM-Alliance.pdf, 22nd June (2009).

402. Press release “SmartQuantum Beefs up its Development in North America,” http://
www.smartquantum.com/IMG/pdf/CPSMQ_PnP-UK-4.pdf, 9th February (2009).

403. J. Proos and C. Zalka, “Shor’s Discrete Logarithm Quantum Algorithm for Elliptic Curves,”
Quantum Information and Computation, Volume 3, Issue 4 (2003) pp. 317–344.

404. Public domain U.S. government report, “Critical Infrastructure Protection: Commercial
Satellite Security Should Be More Fully Addressed,” GAO-02-781, August (2002). Avail-
able at http://www.gao.gov/new.items/d02781.pdf.

405. “Quantis Quantum Random Number Generators,” Sold by idQuantique (www.
idquantique.com). See http://www.idquantique.com/products/quantis.htm.

406. Quintessence Laboratories (Australia), http://www.quintessencelabs.com/.
407. E. M. Rains, R. H. Hardin, P. W. Shor, and N. J. A. Sloane, “A Nonadditive Quantum Code,”

Phys. Rev. Lett., Volume 79 (1997) pp. 953–954.
408. T. C. Ralph, “Continuous Variable Quantum Cryptography,” Phys. Rev. A, Volume 61 (1999)

010303(R).
409. R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett., Vol-

ume 86 (2001) pp. 5188–5191.
410. R. Raussendorf and H. J. Briegel, “Computational Model Underlying the One-Way Quantum

Computer,” Quantum Information and Computation, Volume 2 (2002) pp. 443–486.
411. R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-Based Quantum Computa-

tion on Cluster States,” Phys. Rev. A, Volume 68 (2003) 022312.
412. R. Raussendorf, J. Harrington, and K. Goyal, “Topological Fault-Tolerance in Cluster State

Quantum Computation,” New J. Phys., Volume 9 (2007) p. 199.
413. P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, “Role of Quantum Coherence in Chro-

mophoric Energy Transport,” Journal of Physical Chemistry B, Volume 113 (2009) p. 9942.

http://arxiv.org/abs/arXiv:quant-ph/0205076v1
http://www.quintessencelabs.com/global/docs/PRESS-090622-QuintessenceLabs-LM-Alliance.pdf
http://www.quintessencelabs.com/global/docs/PRESS-090622-QuintessenceLabs-LM-Alliance.pdf
http://www.smartquantum.com/IMG/pdf/CPSMQ_PnP-UK-4.pdf
http://www.smartquantum.com/IMG/pdf/CPSMQ_PnP-UK-4.pdf
http://www.gao.gov/new.items/d02781.pdf
http://www.idquantique.com
http://www.idquantique.com
http://www.idquantique.com/products/quantis.htm
http://www.quintessencelabs.com/

References 681

414. P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, “Environment-
Assisted Quantum Transport,” New J. Phys., Volume 11 (2009) 033003.

415. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental Realization of any
Discrete Unitary Operator,” Phys. Rev. Lett., Volume 73, Issue 1 (1994) pp. 58–61.

416. O. Regev, “Quantum Computation and Lattice Problems,” SIAM Journal on Computing,
Volume 33, Issue 3 (2004) pp. 738–760.

417. A. T. Rezakhani, A. K. Pimachev, and D. A. Lidar, “Accuracy vs Run Time in Adiabatic
Quantum Search,” arXiv:1008.0863 (2010).

418. M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber,
C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic Quantum Telepor-
tation with Atoms,” Nature, Volume 429 (2004) pp. 734–737.

419. R. Rivest, A. Shamir, and L. Adleman, “On Digital Signatures and Public Key Cryptosys-
tems,” Commun. Ass. Comp. Mach., Volume 21 (1978) pp. 120–126.

420. T. Robb, “Animating Schrödinger’s Equation in Two Dimensions,” available at http://library.
wolfram.com/infocenter/MathSource/453/ (1993). Link verified January 2010.

421. J. Roland and N. J. Cerf, “Quantum Search by Local Adiabatic Evolution,” Phys. Rev. A,
Volume 65, (2002) 042308.

422. J. Roland and N. J. Cerf, “Adiabatic Quantum Search Algorithm for Structured Problems,”
Phys. Rev. A, Volume 68 (2003) 062312.

423. G. Rose and W. G. Macready, “An Introduction to Quantum Annealing,” DWave
Technical Document 0712, http://dwave.files.wordpress.com/2007/08/20070810_d-wave_
quantum_annealing.pdf.

424. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E.
Lita, S. W. Nam, and J. E. Nordholt, “Long-Distance Decoy-State Quantum Key Distribution
in Optical Fiber,” Phys. Rev. Lett., Volume 98 (2007) 010503.

425. M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications, Greenwich
(1999) ISBN 1-884777-69-4.

426. M. A. Rowe et al., “Experimental Violation of a Bell’s Inequality with Efficient Detection,”
Nature, Volume 409 (2001) pp. 791–794.

427. M. B. Ruskai, “Comments on Adiabatic Quantum Algorithms,” Contemporary Mathematics,
Volume 307 (2002) pp. 265–274.

428. N. Sangouard, R. Dubessy, and C. Simon, “Quantum Repeaters based on Single Trapped
Ions,” Phys. Rev. A, Volume 79 (2009) 042340.

429. M. Santha, “Introduction to Quantum Computing,” available at http://www.lri.fr/~santha/
Cours/quantum_intro.pdf.

430. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons
from a Quantum Dot,” Phys. Rev. Lett., Volume 86 (2001) p. 1502.

431. M. Sasaki, A. Carlini, and R. Jozsa, “Quantum Template Matching,” Phys. Rev. A, Vol-
ume 64, Issue 2 (2001) 022317.

432. S. Sauge, V. Makarov, and A. Anisimov, “Quantum Hacking: How Eve can Exploit Com-
ponent Imperfections to Control yet another of Bob’s Single-Photon Qubit Detectors,” pre-
sented at CLEO/Europe-EQEC 2009, Munich, Germany, June 14th–19th (2009).

433. V. Scarani, A. Acín, J. G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust
against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev.
Lett., Volume 92, Issue 5 (2004) 057901.

434. L. Schiff, Quantum Mechanics, McGraw–Hill, New York (1955).
435. E. Schillinger, “Money Changes Hands in Key Bank Transaction,” Nature, Volume 428

(2004) p. 883.
436. G. Schmid, “Report on the Existence of a Global System for the Interception of Private

and Commercial Communications (ECHELON interception system) (2001/2098(INI)),” A5-
0264/2001 PAR1, Temporary Committee on the ECHELON Interception System, July 11
(2001). Available at http://www.fas.org/irp/program/process/rapport_echelon_en.pdf.

437. A. Schmidt and U. Vollmer, “Polynomial Time Quantum Algorithm for the Computation of
the Unit Group of a Number Field,” in Proceedings of the 37th Symposium on the Theory of
Computing (2005) pp. 475–480.

http://arxiv.org/abs/arXiv:1008.0863
http://library.wolfram.com/infocenter/MathSource/453/
http://library.wolfram.com/infocenter/MathSource/453/
http://dwave.files.wordpress.com/2007/08/20070810_d-wave_quantum_annealing.pdf
http://dwave.files.wordpress.com/2007/08/20070810_d-wave_quantum_annealing.pdf
http://www.lri.fr/~santha/Cours/quantum_intro.pdf
http://www.lri.fr/~santha/Cours/quantum_intro.pdf
http://www.fas.org/irp/program/process/rapport_echelon_en.pdf

682 References

438. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl,
J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experi-
mental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km,”
Phys. Rev. Lett., Volume 98 (2007) 010504.

439. U. Schöning, “A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems,”
in 40th Annual Symposium on Foundations of Computer Science, IEEE Press, New York
(1999) pp. 17–19.

440. B. Schumacher and R. F. Werner, “Reversible Quantum Cellular Automata,” arXiv:
quant-ph/0405174, May (2004).

441. “Secrets, Lies, and Atomic Spies,” NOVA PBS television series, aired 5th February (2002).
442. See “National Information Assurance Policy for Space Systems used to Support National

Security Missions,” Committee on National Security Systems, CNSS Policy No. 12, 20th
March (2007) available at http://www.cnss.gov/Assets/pdf/CNSSP-12.pdf.

443. See PowerPoint presentation on “Vulnerability of Fiber Optic Infrastructure to Intrusion,”
http://www.certconf.org/presentations/2003/Tues/TG2.pdf.

444. See “RSA-200 is Factored!” http://www.rsa.com/rsalabs/node.asp?id=2879.
445. See “RSA-576 is Factored!” http://www.rsa.com/rsalabs/node.asp?id=2096.
446. B. Selman, H. J. Levesque, and D. G. Mitchell, “A New Method for Solving Hard Satisfia-

bility Problems,” in Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-92), AAAI Press/MIT Press, Menlo Park/Cambridge (1992) pp. 440–446.

447. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory, “The
British Nationality Act as a Logic Program,” Communications of the ACM, Volume 29,
Issue 5 (1986) pp. 370–386.

448. A. Shamir, Factoring Large Numbers with the TWINKLE Device, Lecture Notes in Computer
Science, Volume 1717, Springer, Berlin (1999) ISBN 978-3-540-66646-2.

449. A. Shamir and E. Tromer, “Factoring Large Numbers with the TWIRL Device,” in Proc.
Crypto 2003, Lecture Note in Computer Science, Volume 2729, Springer, Berlin (2003)
pp. 1–26.

450. S. Shapiro (ed.), Church’s Thesis, Encyclopedia of Artificial Intelligence, Wiley, New York
(1990) pp. 99–100.

451. V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of Reversible Logic
Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems,
Volume 22, Issue 6 (2003) pp. 710–722.

452. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal Universal Two-qubit Controlled-
NOT-based Circuits,” Phys. Rev. A, Volume 69 (2004) 062321.

453. V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of Quantum Logic Circuits,” IEEE
Trans. on Computer-Aided Design, Volume 25, Issue 6 (2006) pp. 1000–1010.

454. J. Sherson, H. Krauter, R. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. Polzik, “Quan-
tum Teleportation between Light and Matter,” Nature, Volume 443 (2006) pp. 557–560.

455. P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer,” in Proc. of the 35th Annual Symposium on Foundations of Com-
puter Science, ed. S. Goldwasser, IEEE Computer Society, New York (1994) pp. 124–134.

456. P. Shor, “Scheme for Reducing Decoherence in Quantum Computer Memory,” Phys. Rev. A,
Volume 52 (1995) pp. R2493–R2496.

457. P. Shor, “Fault-tolerant Quantum Computation,” in Proceedings of the 37th Annual Sympo-
sium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos (1996)
pp. 56–65.

458. P. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer,” SIAM Journal on Computing, Volume 26, Issue 5 (1997) pp. 1484–
1509.

459. Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous Variable Quantum
Cryptography: Beating the 3 dB Loss Limit,” Phys. Rev. Lett., Volume 89 (2002) 167901.

460. R. Silverman, “The Multiple Polynomial Quadratic Sieve,” Mathematical Computing, Vol-
ume 48 (1987) pp. 329–339.

http://arxiv.org/abs/arXiv:quant-ph/0405174
http://arxiv.org/abs/arXiv:quant-ph/0405174
http://www.cnss.gov/Assets/pdf/CNSSP-12.pdf
http://www.certconf.org/presentations/2003/Tues/TG2.pdf
http://www.rsa.com/rsalabs/node.asp?id=2879
http://www.rsa.com/rsalabs/node.asp?id=2096

References 683

461. M. S. Siu, “From Quantum Circuits to Adiabatic Algorithms,” Phys. Rev. A, Volume 71
(2005) 062314.

462. Smart Quantum (France), http://www.smartquantum.com.
463. D. Solenov and L. Fedichkin, “Nonunitary Quantum Walks on Hyper-Cycles,” Phys. Rev. A,

Volume 73 (2006) 012308.
464. R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Simulating Physical

Phenomena by Quantum Networks,” Phys. Rev. A, Volume 65 (2002) 042323.
465. L. Song and C. P. Williams, “Computational Synthesis of Any n-Qubit Pure or Mixed State,”

in Proceedings of SPIE, Volume 5105, Aerosense, 21st–22nd April 2003, Orlando, Florida,
April (2003), pp. 195–203.

466. A. T. Sornborger and E. D. Stewart, “Higher-Order Methods for Quantum Simulations,”
arXiv:quant-ph/9809009v1 (1998).

467. A. T. Sornborger and E. D. Stewart, “Higher-Order Methods for Simulations on Quantum
Computers,” Phys. Rev. A, Volume 60, Issue 3 (1999) pp. 1956–1965.

468. Spec sheet “Cerberis: the best of classical and quantum worlds. Symmetric encryption and
quantum key distribution,” http://www.idquantique.com/products/files/Cerberis-specs.pdf.

469. Spec sheet “MagiQ QPN 8505 Security Gateway: Uncompromising VPN Security,” http://
www.magiqtech.com/MagiQ/Products_files/8505_Data_Sheet.pdf.

470. L. Spector and H. J. Bernstein, “Communication Capacities of Some Quantum Gates, Dis-
covered in Part through Genetic Programming,” in Proceedings of the Sixth International
Conference on Quantum Communication, Measurement, and Computing (QCMC), eds. J. H.
Shapiro and O. Hirota, Rinton Press, Princeton (2003) pp. 500–503.

471. L. Spector and J. Klein, “Machine Invention of Quantum Computing Circuits by Means of
Genetic Programming,” AI-EDAM: Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, Volume 22, Issue 3 (2008) pp. 275–283.

472. L. Spector, H. Barnum, and H. J. Bernstein, “Genetic Programming for Quantum Comput-
ers,” in Genetic Programming 1998: Proceedings of the Third Annual Conference, eds. J. R.
Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. L. Riolo, Morgan Kaufmann, San Francisco (1998) pp. 365–374.

473. L. Spector, H. Barnum, and H. J. Bernstein, “Quantum Computing Applications of Ge-
netic Programming,” in Advances in Genetic Programming, Volume 3, eds. L. Spector,
U. O’Reilly, W. Langdon, and P. Angeline, MIT Press, Cambridge (1999) pp. 135–160.

474. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a Better-than-Classical
Quantum AND/OR Algorithm using Genetic Programming,” in Proceedings of the 1999
Congress on Evolutionary Computation, Piscataway, NJ, IEEE Press, New York (1999) pp.
2239–2246.

475. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, Quantum Computing Applications
of Genetic Programming, Complex Adaptive Systems Series, Advances in Genetic Program-
ming, Volume 3, MIT Press, Cambridge (1999) pp. 135–160.

476. F. M. Spedalieri, “Quantum Key Distribution Without Reference Frame Alignment: Ex-
ploiting Photon Orbital Angular Momentum,” Optics Communications, Volume 260, Issue 1
(2006) pp. 340–346.

477. A. M. Steane, “Multiple Particle Interference and Quantum Error Correction,” Proc. R. Soc.
Lond. A, Volume 452 (1996) pp. 2551–2577.

478. A. M. Steane, “Error Correcting Codes in Quantum Theory,” Phys. Rev. Lett., Volume 77
(1996) pp. 793–797.

479. A. M. Stephens, A. G. Fowler, and L. C. L. Hollenberg, “Universal Fault-Tolerant Quantum
Computation on Bilinear Nearest Neighbor Arrays,” Quantum Information and Computation,
Volume 8, Issue 3 & 4 (2008) pp. 330–344.

480. S. Stepney and J. A. Clark, “Searching for Quantum Programs and Quantum Protocols: a Re-
view,” J. Comput. Theor. Nanosci., Volume 5 (2008) pp. 942–969.

481. A. Stern and B. I. Halperin, “Proposed Experiments to Probe the Non-Abelian ν = 5/2 Quan-
tum Hall State,” Phys. Rev. Lett., Volume 96 (2006) 016802.

http://www.smartquantum.com
http://arxiv.org/abs/arXiv:quant-ph/9809009v1
http://www.idquantique.com/products/files/Cerberis-specs.pdf
http://www.magiqtech.com/MagiQ/Products_files/8505_Data_Sheet.pdf
http://www.magiqtech.com/MagiQ/Products_files/8505_Data_Sheet.pdf

684 References

482. Z.-K. Su, F.-Q. Wang, R.-B. Jin, R.-S. Liang, and S.-H. Liu, “A Simple Scheme for Quantum
Networks Based on Orbital Angular Momentum States of Photons,” Optics Communications,
Volume 281, Issue 19 (2008) pp. 5063–5066.

483. T. Sugimoto and K. Yamazaki, “A Study on Secret Key Reconciliation Protocol “CAS-
CADE”,” IEICE Trans. Fundamentals, Volume E83-A, Issue 10 (2000).

484. K. Svore, D. DiVincenzo, and B. Terhal, “Noise Threshold for a Fault-Tolerant Two-
Dimensional Lattice Architecture,” Quantum Information and Computation (QIC), Volume
7, Issue 4 (2007) pp. 297–318.

485. T. Szkopek, V. Roychowdhury, E. Yablonovitch, and D. S. Abrams, “Eigenvalue Estimation
of Differential Operators,” Phys. Rev. A, Volume 72 (2005) 062318.

486. T. Szkopek, P. O. Boykin, H. Fan, V. P. Roychowdhury, E. Yablonovitch, G. Simms,
M. Gyure, and B. Fong, “Threshold Error Penalty for Fault-Tolerant Quantum Computation
with Nearest Neighbor Communication,” IEEE Transactions on Nanotechnology, Volume 5,
Issue 1 (2006) pp. 42–49.

487. M. Tegmark and J. A. Wheeler, “100 Years of the Quantum,” arXiv:quant-ph/0101077v1
(2001).

488. H. Terashima and M. Ueda, “Nonunitary quantum circuit,” Int. J. Quantum Inform. Volume
3 (2005) pp. 633–647.

489. “The Elliptic Curve Cryptosystem: Remarks on the Security of the Elliptic Curve
Cryptosystem,” a Certicom Whitepaper, July (2000) available at http://www.comms.
scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf.

490. “The Story of Captain Midnight,” Available online at http://web.archive.org/web/
20070128101239/http://www.signaltonoise.net/library/captmidn.htm.

491. “The TWIRL Integer Factorization Device.” http://people.csail.mit.edu/tromer/twirl/—active
as of July (2009).

492. “Threats to Fiber Optic Infrastructures,” Opterna, 1st–2nd October (2003) available at
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-gross-up.pdf.

493. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons
More Than 10 km Apart,” Phys. Rev. Lett., Volume 81 (1998) pp. 3563–3566.

494. T. Toffoli, “Reversible Computing,” in Proceedings of Automata, Languages and Program-
ming, Seventh Colloquium, ed. de Bakker, Springer, Berlin (1980) pp. 632–644.

495. B. F. Toner and D. Bacon, “Communication Cost of Simulating Bell Correlations,” Phys.
Rev. Lett., Volume 91 (2003) 187904.

496. J. F. Traub and H. Wozniakowski, “Path Integration on a Quantum Computer,” Quantum
Information Processing, Volume 1, Issue 5 (2002) pp. 365–388.

497. D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the
Extreme Quantum Limit,” Phys. Rev. Lett., Volume 48, Issue 22 (1982) pp. 1559–1562.

498. R. R. Tucci, “A Rudimentary Quantum Compiler, Second Edition,” arXiv:quant-ph/
9902062v1 (1999).

499. R. R. Tucci, “Qubiter Algorithm Modification, Expressing Unstructured Unitary Matrices
with Fewer CNOTs,” arXiv:quant-ph/0411027v1 (2004).

500. L. Turin, “A Spectroscopic Mechanism for Primary Olfactory Reception,” Chemical Senses,
Volume 21, Issue 6 (1996) pp. 773–791.

501. A. Turing, “On Computable Numbers with an Application to the Entscheidungsproblem,”
Proceedings of the London Mathematical Society, Volume 42 (1937) pp. 230–265; Erratum
in Volume 43 (1937) pp. 544–546.

502. W. Unruh, “Maintaining Coherence in Quantum Computers,” Phys. Rev. A, Volume 51
(1995) pp. 992–997.

503. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and
A. Zeilinger, “Quantum Teleportation Link across the Danube,” Nature, Volume 430 (2004)
p. 849.

504. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal,
B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg,
J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement based quan-
tum communication over 144 km,” Nature Physics, Volume 3 (2007) pp. 481–486.

http://arxiv.org/abs/arXiv:quant-ph/0101077v1
http://www.comms.scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf
http://www.comms.scitech.susx.ac.uk/fft/crypto/EccWhite3.pdf
http://web.archive.org/web/20070128101239/http://www.signaltonoise.net/library/captmidn.htm
http://web.archive.org/web/20070128101239/http://www.signaltonoise.net/library/captmidn.htm
http://people.csail.mit.edu/tromer/twirl/
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-gross-up.pdf
http://arxiv.org/abs/arXiv:quant-ph/9902062v1
http://arxiv.org/abs/arXiv:quant-ph/9902062v1
http://arxiv.org/abs/arXiv:quant-ph/0411027v1

References 685

505. R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. As-
pelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, S. Cova, D. Giggenbach,
W. Leeb, R. H. Hadfield, R. Laflamme, N. Lütkenhaus, G. Milburn, M. Peev, T. Ralph, J. G.
Rarity, R. Renner, N. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, P. Villoresi, I. Walms-
ley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-QUEST. Experiments
with Quantum Entanglement in Space,” in Proceedings of the 2008 Microgravity Sciences
and Process Symposium (2008).

506. W. van Dam, M. Mosca, and U. Vazirani, “How Powerful is Adiabatic Quantum Computa-
tion?” in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science
(2001) pp. 279–287.

507. L. G. Valiant, “The Complexity of Computing the Permanent,” Theoretical Computer Sci-
ence, Volume 8 (1979) pp. 189–201.

508. W. van Dam, “Quantum Cellular Automata,” Master’s thesis, University of Nijmegen (1996).
509. W. van Dam, M. Mosca, and U. Vazirani, “How Powerful is Adiabatic Quantum Computa-

tion?,” in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science
(2001) pp. 279–287.

510. W. van Dam, S. Hallgren, and L. Ip, “Quantum Algorithms for Some Hidden Shift Problems,”
SIAM Journal on Computing, Volume 36, Issue 3 (2006) pp. 763–778.

511. J. Vartiainen, M. Möttönen, and M. Salomaa, “Efficient Decomposition of Quantum Gates,”
Phys. Rev. Lett., Volume 92 (2004) 177902.

512. F. Vatan and C. P. Williams, “Optimal Quantum Circuits for General Two-qubit Gates,” Phys.
Rev. A, Volume 69 (2004) 032315.

513. V. Vedral, “High Temperature Macroscopic Entanglement,” New J. Phys., Volume 6 (2004)
p. 102.

514. F. Verstraete, J. I. Cirac, and J. I. Latorre, “Quantum Circuits for Strongly Correlated Quan-
tum Systems,” Phys. Rev. A, Volume 79 (2009) 032316.

515. T. Vértesi and E. Bene, “Lower Bound on the Communication Cost of Simulating Bipartite
Quantum Correlations,” arXiv:0904.1390v2 (2009).

516. D. Verton, “Intelligence Ops in Baghdad Show Need for Physical Security Back Home,”
Computerworld, 8th April (2003).

517. G. Vidal and C. M. Dawson, “Universal Quantum Circuit for Two-qubit Transformations
with Three Controlled-NOT Gates,” Phys. Rev. A, Volume 69 (2004) 010301(R).

518. Video showing eight glass spheres executing the Scottish Split-the-Willow dance
driven by OAM states of light http://www.physics.gla.ac.uk/Optics/play/StripTheWillow/
StripTheWillowBIG.mp4.

519. P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele,
V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental Verification of the Fea-
sibility of a Quantum Channel Between Space and Earth,” New J. Phys., Volume 10 (2008)
033038.

520. L. Viola, E. Knill, and S. Lloyd, “Dynamical Generation of Noiseless Quantum Subsystems,”
Phys. Rev. Lett., Volume 85, Issue 16 (2000) pp. 3520–3523.

521. J. Von Neumann and A. W. Burks, Theory of Self-reproducing Automata, University of Illi-
nois Press, Urbana (1966).

522. H. Wang, S. Kais, A. Aspuru-Guzik, and M. Hoffmann, “Quantum Algorithm for Obtain-
ing the Spectrum of Molecular Systems,” Physical Chemistry Chemical Physics, Volume 10
(2008) pp. 5388–5393.

523. J. Watrous, “On One-dimensional Quantum Cellular Automata,” in Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, October (1995) pp. 528–537.

524. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum
Cryptography Without Switching,” Phys. Rev. Lett., Volume 93 (2004) 170504.

525. T. Wei, K. Nemoto, P. M. Goldbart, P. Kwiat, W. Munro, and F. Verstraete, “Maximal En-
tanglement versus Entropy for Mixed Quantum States,” Phys. Rev. A, Volume 67 (2003)
022110.

http://arxiv.org/abs/arXiv:0904.1390v2
http://www.physics.gla.ac.uk/Optics/play/StripTheWillow/StripTheWillowBIG.mp4
http://www.physics.gla.ac.uk/Optics/play/StripTheWillow/StripTheWillowBIG.mp4

686 References

526. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “A. Violation of Bell’s
Inequality under Strict Einstein Locality Conditions,” Phys. Rev. Lett., Volume 81 (1998) pp.
5039–5043.

527. E. W. Weisstein, “RSA-640 Factored,” MathWorld Headline News, 8th November (2005),
http://mathworld.wolfram.com/news/2005-11-08/rsa-640/. See also the closure of the fac-
toring challenge by RSA Laboratories at http://www.rsa.com/rsalabs/node.asp?id=2092.

528. D. Welsh, Codes and Cryptography, Oxford Science Publications/Clarendon, Oxford (1988),
ISBN 0-19-853287-3.

529. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and
G. Leuchs, “After-Gate Attack on a Quantum Cryptosystem,” arXiv:1009.2683 [quant-ph]
(2010).

530. M. Wiener and R. Zuccherato, “Faster Attacks on Elliptic Curve Cryptosystems,” in Selected
Areas in Cryptography, Lecture Notes on Computer Science, Volume 1556, Springer, Berlin
(1999) pp. 190–200.

531. S. Wiesner, “Conjugate Coding,” Special Issue on Cryptography, ACM SIGACT News, Vol-
ume 15, Issue 1 (1983) pp. 78–88.

532. S. Wiesner, “Simulations of Many-Body Quantum Systems by a Quantum Computer,”
arXiv:quant-ph/9603028v1 (1996).

533. F. Wilczek, From Electronics to Anyonics, Physics World (2006) pp. 22–23.
534. P. Willan, “E.U. Seeks Quantum Cryptography Response to Echelon,” Source

www.security.itworld.com, 17th May (2004).
535. C. P. Williams, “Probabilistic Non-unitary Quantum Computing,” in Quantum Information

and Computation II, eds. E. Donkor, A. R. Pirich, and H. E. Brandt, SPIE Proceedings,
Volume 5436 (2004) pp. 297–306.

536. C. P. Williams and A. Gray, Automated Design of Quantum Circuits,” in First NASA
International Conference on Quantum Computing and Quantum Communications, Palm
Springs, California, USA, February 17th–20th 1998, Lecture Notes in Computer Science,
Volume 1509, Springer, Berlin (1999) pp. 113–125.

537. C. P. Williams and T. Hogg, “Using Deep Structure to Locate Hard Problems,” in Proc.
10th National Conf. on Artificial Intelligence (AAAI’92), AAAI Press, Menlo Park (1992)
pp. 472–477.

538. C. P. Williams and T. Hogg, “Extending Deep Structure,” in Proc. 11th National Conf. on
Artificial Intelligence (AAAI’93), AAAI Press, Menlo Park (1993) pp. 152–157.

539. C. P. Williams and T. Hogg, “Expected Gains from Parallelizing Constraint Solving for Hard
Problems,” in Proc. 12th National Conf. on Artificial Intelligence (AAAI’94), AAAI Press,
Menlo Park (1994) pp. 1310–1315.

540. C. P. Williams and T. Hogg, “Exploiting the Deep Structure of Constraint Problems,” Artifi-
cial Intelligence, Volume 70 (1994) pp. 73–117.

541. R. Wilson, Four Colors Suffice: How the Map Problem Was Solved, Princeton University
Press, Princeton (2003) ISBN 0-691-11533-8.

542. T. Winograd, Understanding Natural Language, Academic Press, New York (1972).
543. P. Wocjan and J. Yard, “The Jones Polynomial: Quantum Algorithms and Applications in

Quantum Complexity Theory,” arXiv:quant-ph/0603069 (2006).
544. S. Wolfram, A New Kind of Science, Wolfram Media, Champaign (2002) ISBN: 1-57955-

008-8.
545. J. Wood, “Banking on Quantum Cryptography: Technology,” Materials Today, Volume 8,

Issue 7 (2005) p. 23.
546. J. Woolsey, Remarks at the Foreign Press Center, Transcript, 3rd July (2000), http://

cryptome.org/echelon-cia.htm.
547. W. K. Wooters and W. H. Zurek, “A Single Quantum Cannot be Cloned,” Nature, Volume 299

(1982) pp. 802–803.
548. J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S. Sullivan, H. L. Stormer, D. C. Tsui,

L. N. Pfeiffer, K. W. Baldwin, and K. W. West, “Electron Correlation in the Second Landau
Level: A Competition Between Many Nearly Degenerate Quantum Phases,” Phys. Rev. Lett.,
Volume 93 (2004) 176809.

http://mathworld.wolfram.com/news/2005-11-08/rsa-640/
http://www.rsa.com/rsalabs/node.asp?id=2092
http://arxiv.org/abs/arXiv:1009.2683
http://arxiv.org/abs/arXiv:quant-ph/9603028v1
http://www.security.itworld.com
http://arxiv.org/abs/arXiv:quant-ph/0603069
http://cryptome.org/echelon-cia.htm
http://cryptome.org/echelon-cia.htm

References 687

549. F. Xu, B. Qi, H.-K. Lo, “Experimental Demonstration of Phase-Remapping Attack in a Prac-
tical Quantum Key Distribution System,” arXiv:1005.2376v1 [quant-ph] (2010).

550. A. Yao, “Quantum Circuit Complexity,” in Proceedings of the 34th IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society, Los Alamitos (1993) pp. 352–
360.

551. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-Assisted Preparation of Entangled
Atoms,” Phys. Rev. A, Volume 68, Issue 5 (2003) 052304.

552. A. Yimsiriwattana and S. J. Lomonaco Jr., Generalized GHZ States and Distributed Quantum
Computing, CONM/381, American Mathematical Society, Providence (2005) pp. 131–147.

553. A. Yimsiriwattana and S. J. Lomonaco, “Distributed Quantum Computing: a Distributed
Shor Algorithm,” in Quantum Information and Computation II, eds. E. Donkor, A. R. Pirich,
H. E. Brandt, SPIE Proceedings, Volume 5436 (2004) pp. 360–372.

554. S. Yu, Q. Chen, C. H. Lai, and C. H. Oh, “Nonadditive Quantum Error-Correcting Code,”
Phys. Rev. Lett., Volume 101 (2008) 090501.

555. Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental
Demonstration of a BDCZ Quantum Repeater Node,” Nature, Volume 454 (2008) pp. 1098–
1101.

556. C. Zalka, “Simulating Quantum Systems on a Quantum Computer,” Proc. R. Soc. Lond. A,
Volume 454, Issue 1969 (1998) pp. 313–322.

557. C. Zalka, “Grover’s Quantum Searching Algorithm is Optimal,” Phys. Rev. A, Volume 60,
Issue 4 (1999) pp. 2746–2751.

558. C. Zalka, “Using Grover’s Quantum Algorithm for Searching Actual Databases,” Phys.
Rev. A, Volume 62 (2000) 052305.

559. P. Zanardi, C. Zalka, and L. Faoro, “Entangling Power of Quantum Evolutions,” Phys. Rev.
A, Volume 62 (2000) 30301(R).

560. A. Zeilinger, “Anton Zeilinger: From Quantum Puzzles to Quantum Information Tech-
nology,” Source: http://physicsnewsandpress.blogspot.com/2009/07/anton-zeilinger-from-
quantum-puzzles-to.html.

561. A. Zeilinger in an interview originally in German in Die Weltwoche on 3rd January (2006).
Source http://www.signandsight.com/features/614.html.

562. J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Geometric Theory of Nonlocal Two-qubit
Operations,” Phys. Rev. A, Volume 67 (2003) 042313.

563. Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmied-
mayer, and J.-W. Pan, “Experimental Quantum Teleportation of a Two-qubit Composite Sys-
tem,” Nature Physics, Volume 2 (2006) pp. 678–682.

564. R. Zoglin and J. Cramer, “Grounding Captain Midnight,” Time, Monday, Aug. 04, (1986).
Available online at http://www.time.com/time/magazine/article/0,9171,961911,00.html.

565. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event Ready Detectors: Bell
Experiment via Entanglement Swapping,” Phys. Rev. Lett., Volume 71 (1993) pp. 4287–
4290.

566. W. H. Zurek and R. Laflamme, “Quantum Logical Operations on Encoded Qubits,” Phys.
Rev. Lett., Volume 77 (1996) pp. 4683–4686.

567. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the Set of Sepa-
rable States,” Phys. Rev. A, Volume 58, Issue 2 (1998) pp. 883–892.

http://arxiv.org/abs/arXiv:1005.2376v1
http://physicsnewsandpress.blogspot.com/2009/07/anton-zeilinger-from-quantum-puzzles-to.html
http://physicsnewsandpress.blogspot.com/2009/07/anton-zeilinger-from-quantum-puzzles-to.html
http://www.signandsight.com/features/614.html
http://www.time.com/time/magazine/article/0,9171,961911,00.html

Index

(5,6,2) code, 611
(9,12,3) non-additive code, 611
(n,K,d) code, 586

D
(4)
2n quantum wavelet kernel, 154

circuit, 158
factorization, 157

GF(2m), 287
GF(p), 287
H(X), 409
I (X : Y), 409
P2n qubit reversal, 131
Q2n amplitude downshift, 137
Rx , 76
Ry , 76
SL(ρ)

as measure of mixedness, 420
SV (ρ)

as measure of mixedness, 421
XY -Hamiltonian, 341, 342
XY interaction Hamiltonian, 72
[n, k, d] code, 607
[n, k, d] stabilizer code, 604
[5,1,3] stabilizer code, 611
[5,1,3] code, 605
[7,1,3] code, 605
[9,1,3] code, 605
[
A,
B] commutator, 485

A, operator deviation, 484
Ω , big omega notation, 225, 226
Π2n qubit cyclic left shift, 135
Θ(·), big theta notation, 225, 226
�, Planck constant over 2π , 523
λ calculus, 207

√
NOT, 72

∨, 53
∧, 53
{
A,
B} anti-commutator, 485
k-COL, 301
k-SAT, 300
k-SAT, k-satisfiability, 222
O(·), big “O” notation, 225, 226
BPP complexity class, 226
BQP complexity class, 229
NP, 293, 294

integer factorization, 273
NP complexity class, 226
NP-Complete, 294

and naive quantum search, 303
graph coloring, 295
hardness, 297
importance, 295
polynomial interconversion, 296
quantum nested search, 302, 308
satisfiability, 295
subset sum, 295
travelling salesman, 295
ubiquity, 295

NP-Complete complexity class, 226
NP-Hard, 294
NP-Hard complexity class, 226
NP-Intermediate complexity class, 234
QP complexity class, 229
ZPP complexity class, 226
ZQP complexity class, 229
P, 294
5-qubit code, 588

decoding circuit, 591

C.P. Williams, Explorations in Quantum Computing,
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6, © Springer-Verlag London Limited 2011

689

http://dx.doi.org/10.1007/978-1-84628-887-6

690 Index

5-qubit code (cont.)
encoding circuit, 590

7-qubit code, 594
9-qubit code, 593

A
Abrams, D., 326, 339, 361
Abrams-Lloyd eigenvalue estimation

algorithm, 361
Adami, C., 303
Adleman, L., 267
AES, 520

re-keying via QKD, 550
Affinity, 349
Ajisai satellite, 550
Algebraic circuit design, 174

example, 179
limitation, 185

Algorithm
backtracking, 296
Davis-Putnam-Logemann-Loveland, 296
generate-and-test, 244
heuristic, 296
Lanczos, 351
Lloyd-Zalka-Wiesner quantum

simulation, 327
number field sieve, 223
Shor, 272, 273

worked example, 280
WalkSAT, 297

Amdahl’s law, 324
Amplitude amplification, 245–249

in quantum counting, 372
multiple solutions, 252
of selected eigenstate(s), 247
oracle, 250

Amplitude downshift permutation, 137
in controlled-two’s complement, 169

Amplitudes
cf. probabilities, 212

Ancilla, 575
in error correcting code, 583
in quantum error correction

measurements determine error, 585
measure for desired side effect, 576
measured to induce known error, 592

Ancilla-assisted readout, 330
circuit, 330, 331
using multiple ancillae, 330
using single ancilla, 328

AND gate, 53
AND gate from NAND gates, 56
Annihilation operator, 340
Anti-commutator, 485

of Hermitians is Hermitian, 485
Anti-symmetric state vector, 335, 336, 338,

339
Anti-symmetric wavefunction, 350
Anti-unitary matrix, 471
Antipodal state, 73
Anyons, 337
Application of

entanglement swapping, 443
Applications

quantum search, 255
Arnesen, M. C., 443
Arora, S., 206
Artificial mathematicians, 219
Aspect, A., 493
Aspuru-Guzik, A., 351
Atmospheric channel, 549
Atmospheric compensation, 550
Atomic ensemble quantum memories

in quantum repeaters, 548
Atoms

electronic structure, 338
Atoms per bit, 6
Attack on Coventry, 266, 267
Attacks on satellites

Captain Midnight, 551
denial of service, 554
Indonesia, 554
potential for terrorists, 553
Tonga, 554

Audio compression, 162
Augment-on-fail quantum data

compression, 449
Automata

classical, 630
quantum, 631

Automated circuit design, 172
algebraic, 174
applications, 173
choice of gates, 173
numerical, 180
re-use, 184, 187

Average case complexity, 222
Axioms, 203

Index 691

B
B92 QKD protocol, 539

potential security holes, 540
B92 QKD protocol:success-not-assured

polarization measurement, 539
Babylonian cuneiform, 264
Backtracking, 296
Bad index values, 252
Bank of England

interest in QKD, 547
Bass, A., 494
BB84 QKD protocol, 529, 531, 532

long range free space, 550
using orbital angular momentum states,

537
worked example

with eavesdropping, 536, 537
without eavesdropping, 534–536

BB84 QKD protocol: success-assured
polarization measurement, 532

BBN quantum network, 547
BBO crystal, 524
BDCZ quantum repeater, 548
Bell, J., 489
Bell state, 629

synthesis, 496
Bell state analyzer, 441, 442

experimental implementation, 443
Bell states, 431, 454, 496

definition, 454
interconversion, 454, 455
quantum circuit for synthesizing, 496
synthesis, 454

Bell-basis measurement, 634–636
Bell’s inequality, 489

application to QKD, 541
defined, 491
experimental tests, 492
thought experiment, 489
violated, 493
visual proof of violation, 492

Belt trick, 13
Benioff, P., 210, 230
Bennett, C., 210, 436, 486, 529, 539, 545
Bernstein, E., 213, 233
Bernstein, H., 436
Berthiaume, A., 230, 233
Beta barium borate crystal, 524
Beth, T., 611

Beyond Shannon compression, 453
at communication time, 453

Binary fraction, 146, 353
Birefringent crystal, 528, 532
Bit flip error, 568, 569, 583, 590

cause, 579
undoing, 593

Black-box function, 243, 244, 250
Bletchley Park, 265, 266
Bloch ball, 415

quantum clones on, 462
Bloch sphere, 11, 12, 73

cf. Bloch ball, 415
orthogonal states, 12
visualize states in BB84 QKD protocol,

531
Boeing 777

majority voting, 573
Bogoliubov transformation, 343
Boltzmann’s constant, 570
Bond angles, 349
Bose, S., 443
Bose-Einstein statistics, 337
Bosons, 336, 523

composite particles, 336
under particle interchange, 336

Bound
Nyquist, 144
quantum Gilbert-Varshamov, 607
quantum Hamming, 606, 607
quantum Singleton, 606, 607

Bouwmeester, D., 500
Bra vector, 10
Branciard, C., 494
Brassard, G., 230, 233, 252, 372, 486, 529,

545
Breaking ECC, 513
Breaking RSA, 513
Briegel, H., 548
British intelligence, 266

role in inventing public-key
cryptosystem, 267

British Nationality Act
as logic program, 219
logical inconsistencies, 219

British Post Office, 266
Broadcasting quantum information, 470
Brukner, C., 443
Bruss, D., 538

692 Index

Bruss’ 6-State QKD protocol, 538
enhances bit error rate of eavesdropper,

539
Bucky-ball molecules

interference of, 502
Bugging devices, 510
Buggy state

in error reduction by symmetrization,
575

Bullock, S., 130, 174
Bužek, V., 460

C
Caesar cipher, 264
Calcite crystal, 528

birefringence, 528, 529
double image, 528

Calcite crystals, 532
Calderbank, R., 607
Calderbank-Shor-Steane code, 605
California Institute of Technology, 615
Caltech, 615
Canary Islands

in free space QKD experiment, 550
Cantor diagonal slash, 216
Captain Midnight, 551

detective work, 553
identity revealed, 551
message, 552
motive for attack, 551

CASCADE protocol for error reconciliation,
544

Cattle problem of Archimedes, 375
Cauchy-Schwarz inequality

in Heisenberg Uncertainty Principle, 484
Causes of errors, 568

decoherence, 569
dissipation, 568
unwanted entanglement, 569

Cavity QED based quantum repeater, 548
resurgence, 548

CCSD(T), 350
Cellular automata, 630
Central Florida Teleport, 551
Central Intelligence Agency, 509
Certicom, 287
Change of basis, 32
Channel

memoryless, 409

Channel coding theorem, 403, 408
Characteristic polynomial, 465
Chebyshev polynomial

first kind, 249
second kind, 249

Cheeseman, P., 222, 316
Chen, Q., 611
Chen, Y.-A., 501
Cheung, D., 287, 632, 633
Chromatic number, 299
Chuang, I., 634, 635
Church, A., 207, 208
Church-Turing thesis, 208

cf. Deutsch’s thesis, 209
quantum challenge to, 209

Churchill, W., 266
Cirac, I., 342, 501, 548
Circuit complexity

arbitrary unitary, 173
Circuit design

algebraic, 174
numerical, 180
re-use, 184, 187

Circuit rewrite rules, 178
Circularly polarized light, 522
Circularly polarized photon, 523
Classical cellular automata, 630
Classical complexity classes, 225
Classical entropy, 405, 407
Classical error correction, 567

majority voting, 572
why it is easy, 571

Classical information, 404
Shannon view, 404

Classical information cf. quantum, 572
Classical (n,K,d) code, 587
Classical NOT cf. quantum NOT, 470
Classical simulation

ab initio, 321
density functional theory, 323
full configuration interaction, 322
Hartree-Fock, 323
inefficient for quantum systems, 326
of classical systems, 326
of quantum systems, 326
problem of entanglement, 321
problem of fidelity, 322
problem of memory, 321
quantum systems, 320
tight-binding, 322

Index 693

Classical-to-quantum encoding, 382
Classically controlled gates, 636, 639
Clauser, J., 493
Clip on coupler, 511
Clique number, 299
Cloning quantum information, 457
CNOT gate, 58

distributed, 629, 630
teleported, 638

Code
degenerate, 587
earliest, 264
imperfect, 588
impure, 587
minimal distance of a, 586
non-degenerate, 587
perfect, 588
pure, 587

Code-breaking, 263, 264
American, 266
British, 265, 266
elliptic curve cryptosystems, 285
Enigma, 265
RSA cryptosystems, 280

Code-making, 264
Babylonian, 264
Greek, 264
Roman, 264

Codespace dimension, 611
Codeword, 579, 605

quantum, 580
stabilizer code, 597

Coherence loss, 568
Colossus computer, 266
Command and control of satellites

concerns, 553
Commercial quantum cryptography

systems, 554, 555
Commonsense intuitions

confounded by logic, 218
Communication complexity, 221
Communications

reliable, 408
Commutator, 485

of Hermitians is anti-Hermitian, 485
Compactification, 174, 178
Complex number, 212
Complexity, 201, 202, 213

average case, 222, 312
based on cost scaling not absolute cost,

222
circuit, 230
communication, 221
computational, 221
multiplication cf. factoring, 223
physics-inspired view of, 316
quantum structured search, 312
query, 221
size of a number, 223
subexponential, 223
superpolynomial, 223
worst case, 222, 296

Complexity class
NP, 294
NP-Complete, 294
NP-Hard, 294
P, 294

Complexity classes
classical, 225
poor naming convention, 201
quantum, 229

Compressibility
of strings, 408

Compressing information
quantum, 444

Compression
message blocks, 447
quantum, 445

Compressor, 447
in terms of Q and TOFFOLI, 451
in terms of QFT, 451
unitary matrix, 450

Computability, 201, 202, 213
classical matches quantum, 215
quantum, 214

Computational basis, 16, 17
eigenstate, 18

Computational complexity, 221
Computational correctness, 206
Computational intractability

use of, 267
Computational material design, 324
Computational models, 202

equivalence, 208
Computational phase transition, 297, 299,

303, 316
Computational phase transitions, 201
Computational universality, 208
Computer science

foundations, 202

694 Index

Concatenated codes, 617, 619, 620
Concurrence, 433
Conditional entropy, 409
Conditional gate, 128

in error reduction via symmetrization,
575

Conjugate coding, 529
Conjunctive normal form, 301
Constrainedness, 300
Constraint satisfaction problems, 305
Constructive interference, 20
Controlled modular-add-one (C-MAO), 169
Controlled SWAP gate, 577
Controlled-add-one gate, 438
Controlled-controlled-NOT gate, 61
Controlled-modular add one (C-MAO)

in quantum cosine transform, 170
Controlled-one’s complement (C-OC), 168

in quantum cosine transform, 170
Controlled-SWAP gate, 61
Controlled-two’s complement (C-TC), 169

in quantum cosine transform, 170
Conversion

quantum circuit to unitary matrix, 124
unitary matrix to quantum circuit, 172

Cooper pairs, 336
Copying quantum information, 457
Corrective action

5-qubit code, 591
Correctness, 206
Correlation functions, 333
Cosine series, 163
Coupling to environment, 568

ambient thermal heat bath, 568
stray particles, 568
why hard to avoid, 568

Coventry attacked, 266, 267
Cover, T., 410
Crandall, R., 224
Creation operator, 340
Crepeau, C., 486
Critical ratio

clauses to variables, 300, 301
Critical temperature, 298
Crossed polarizers, 529
Cryptographic security

unconditional, 508
Cryptography, 264

ethical and legal considerations, 508

Cryptosystem
Diffie-Helman, 267
OTP, one time pad, 515
public key, 267
RSA, 267, 268
unconditionally secure, 515

Cryptosystems
approved for “top secret”, 513

CSS code, 594, 605

D
Dancing glass spheres, 537
DARPA quantum network, 547
Daubechies, I., 153
Daubechies wavelets, 154
David-Putnam-Logemann-Loveland

algorithm, 296
DCT, 162
Decidability, 215
Decision making

reliable, 573
Decision problem, 293
Decoherence, 568, 569

affect on density operator, 569
appears environment measures qubit, 569
appears to preclude arbitrarily long

quantum computations, 571
de-phasing, 569
induces phase shift, 569
max steps before succumbing, 570
mitigation, 570
pure state becomes mixed, 569
simplified model, 569
time scale, 569
undoing its affects, 571

Decoherence time
at temperature of liquid helium, 570
cf. dissipation, 570
defined, 569
estimated from Heisenberg Uncertainty

Principle, 570
examples, 570
of different physical systems, 570
pressure dependence, 570
temperature dependence, 570
typical at room temperature, 570

Decoherence times
factors affecting, 570

Decompressor, 448, 449

Index 695

Decoy pulses, 547
Definition

density operator, 412
entangled state, 423
entanglement concentration, 440
entanglement of distillation, 430
entanglement of formation, 430
linear entropy, 420
negativity, 430
partial transpose, 425
relative entropy of entanglement, 430
Schmidt decomposition, 433
separable state, 423

Degenerate code, 587, 588
efficiency cf. non-degenerate codes, 588

Dense coding, 453
Density functional theory, 323
Density matrix

transformed non-unitarily, 191
Density operator, 411

and Schrödinger’s equation, 416
as statement of partial ignorance, 417
as statement of partial knowledge, 411
definition, 412
diagonalize, 421
maximally entangled mixed states, 433
maximally mixed state, 422
mixed state, 412
non-uniqueness of, 416
properties of, 416
pure state, 414

Derkacs, D., 550
DES

vulnerable to quantum attack, 287
Design by re-use, 184

circuit template, 187
example (QFFT), 188
example (QHT), 188

Destructive interference, 20
Detector loophole closed, 494
Determinism, 218
Deterministic evolution, 573
Deterministic Turing machine, 204, 205

equivalence to modern computers, 205
Deutsch, D., 209, 214, 230, 231

quantum Turing machine, 211
wikiquote ranking, 210

Deutsch’s thesis, 209
Di Vincenzo, D., 172

Diagonalization, 421
Diagonally polarized photon, 523, 526, 532
Dieks, D., 458
Diffie-Helman public key cryptosystem, 267

basis of security, 267
Dimension of codespace, 611
Diophantine equation, 375
Diplomatic communiqués, 507
Dirac notation, 9, 10
Dirac’s belt trick, 13
Direct product, 19, 127, 574, 575
Direct sum, 128
Directional radio beams, 266
Discard-on-fail quantum data compression,

447
Disco ball in Earth-to-Space experiment,

550
Discrete cosine transform, 162

cf. discrete Fourier transform, 163
DCT-I to DCT-VIII, 163

Discrete logarithm problem, 285
elliptic curve, 286
possibility of better classical algorithm,

514
possibility of special purpose hardware,

514
Discrete logarithms, 272
Discrete-logarithm

in Diffie-Hellman cryptosystem, 267
Disruptions to aircraft communications

unintentional interference, 554
Disruptions to spacecraft communications

Captain Midnight, 554
NASA Space Shuttle, 554

Dissipation, 568
cf. decoherence time, 570
induces bit flip, 568
modelled by Pauli X, 568

Dissipation-assisted quantum computing,
621

Distance
between bit strings, 579
from entangled state to nearest separable

state, 430
Hamming, 579

Distinguishable versus not completely
distinguishable symbols, 421

Distributed CNOT gate, 629, 630
Distributed QFT, 630

696 Index

Distributed quantum computer, 628
Distributed quantum computing, 443
Distributed Shor’s algorithm, 630
DiVincenzo, D., 570, 627
DiVincenzo criteria, 627
DLCZ quantum repeater, 548
Dog urine, 527
Dot product, 126
Dowling, J. P., 263
Downconversion, 524
Downshift permutation, 137
DTM, 231

cf. QTM, 211
DTM, deterministic Turing machine, 205
Duan, L. M., 190
Duan, L.-M., 469
Durr, C., 632
Dürr, W., 548

E
E91 entanglement-based QKD protocol,

541, 542
long range free space, 550
novelty, 541

Earth to Space
QKD, 557
quantum key distribution, 548, 557

Earth-to-Space
quantum communications with

International Space Station, 550
quantum cryptography, 548
single photon exchange demonstrated,

550
Earth-to-Space QKD, 551
Earth-to-Space quantum cryptography, 549,

550
Eavesdropping

competitive disadvantages caused by,
510

detectable, 511
fiber-optic communications, 511
on fiber-optic communications, 510
on satellite communications, 508
on submarine fiber-optic cables, 511
undetectable, 511
with ECHELON, 509

Ebits, 453
ECC, 286, 507, 513

ECHELON electronic surveillance system,
508, 509

cell phone intercepts, 509
Effect of logical irreversibility, 57
Efficiency of simulation, 326
Efficient codes, 611
Eibl, M., 500
Eigenbasis

in partial transpose, 425
in Schmidt decomposition, 434

Eigenvalue estimation
importance of relative phase, 359
via Lanczos Algorithm, 351

Eigenvalue kick-back, 357, 361
Einstein, A., 488
Eisert, J., 629
Ekert, A., 442, 541, 542, 606, 607
Ekert’s entanglement-based QKD protocol

entangled photon source, 524, 525
El Gamal encryption scheme, 285
Electro-mechanical relay based computer,

266
Electromagnetic wave, 522
Electron in an atom, 338
Electron orbital, 338
Electron shells, 338
Electron-hole pairs, 336
Electronic communications

security, 508
Electronic structure, 349
Elliptic curve cryptosystem, 285, 286, 513
Elliptic curve discrete logarithm problem,

286
Elliptically polarized light, 522
Encoding a message as integers, 271
Encryption, 513
Energy eigenspectrum, 349
Energy loss to environment

dissipation, 568
Energy loss when information is erased, 57
Enigma code, 265, 266

broken by British, 265
broken by Polish, 265
intercept on Coventry attack, 266

Enigma machine, 265
deemed “unsuitable” for military use by

British, 265
patent, 265

Entangled
mixed state, 428

Index 697

Entangled (cont.)
pure state, 427

Entangled photon source, 524
iconic image, 525

Entangled state, 423
5-qubit code, 589, 597
7-qubit code, 594
9-qubit code, 593
as sum over direct product of states, 433
in error reduction via symmetrization,

575
Entangled states

interconversion, 454, 455
Entanglement, 422

3-way without 2-way, 429
concentration, 436
concentration cf. purification, 436
distillation, 436
in error correction, 573
in quantum repeaters, 548
in superdense coding, 453
in warm bulk matter, 443
inequivalent types of, 431
maximal mixed state, 432
maximal pure state, 431
monotones, 429
of outputs in quantum cloning, 465
persistence of, 443
proof via constraint solving, 423
proof via Peres-Horodecki criterion, 425
proof via witness, 423
purification, 441
quantifying, 429
specially designed, 573
swapping, 441

Entanglement concentration, 436
Entanglement distillation, 436

from mixed states, 441
from pure states, 436

Entanglement monotones, 430
desired properties, 429

Entanglement of distillation, 430
Entanglement of formation, 430
Entanglement purification, 441

in quantum repeaters, 548
mixed states, 548

Entanglement swapping, 441
applications, 443
circuit, 442
in quantum repeaters, 548

Entanglement witness, 423, 424
based on mean energy, 424

Entropy
cf. conditional entropy, 409
cf. joint entropy, 409
cf. mutual information, 409
classical, 405
H , 407
linear, 420
quantum, 421, 445
Shannon, 407
von Neumann, 421, 445, 446

Entropy of formation, 433
Entscheidungsproblem, 202, 203

reduced to halting problem, 216
resolution of, 215, 217

Environmental coupling, 568
ambient thermal heat bath, 568
stray particles, 568
why hard to avoid, 568

EPR effect, 488
EPR pair, 629
Equally weighted superposition

number of components not power of two,
576

of n factorial states, 576
Equivalence of computational models, 205,

208
Error correcting codes, 580
Error correction, 567

by symmetrization, 573–575
assumes errors are uncorrelated, 575

Error model, 581
bit flip error, 579, 581, 582
bit flip in 5-qubit code, 591
errors that arise during storage, 590
mathematical description, 581, 582, 623
multiple qubits, 583
no error, 581, 582
phase flip, 581, 582
phase flip in 5-qubit code, 591
qubit entangles with environment, 582
simultaneous bit flip and phase flip, 581,

582
spontaneous emission, 579

Error models
bit flip, 568, 569

Error operator
for 5-qubit code, 600

698 Index

Error processes, 568
decoherence, 569
dissipation, 568
model, 569

Error reconciliation, 542–544, 549
CASCADE protocol, 544

Error reduction by symmetrization, 575
circuit, 576
unitary matrix, 577
usefulness, 579
worked example, 577, 578

Error reduction via symmetrization, 574
Error syndrome, 585

5-qubit code, 591
corrective action, 591
of non-degenerate code, 587

Euclidean traveling salesman problem, 206,
222

European Parliament
allegations on improper use of intercepts,

509
concern about intercepts, 508, 509
report on ECHELON, 508

European Union
illegal telephone taps, 510

Exact probabilistic quantum cloning, 468
Expectation value, 424

of anti-Hermitian operator, 485
of Hermitian operator, 485

Expectation value of operator, 328, 329
Expectation value or observable

based on quantum clones, 467
worked example, 467

Exponential data compression, 452
Exponential growth, 221

cf. polynomial, 223
Exponential of a matrix, 345, 346
Exponentiation

in Diffie-Hellman cryptosystem, 267
Extending the range of QKD

in fiber, 547
Extracting joint properties, 211
Extracting results from quantum

simulations, 328
ancilla-assisted readout, 328, 330
multi-ancilla-assisted readout, 330

F
Factoring cf. multiplication, 223

Factoring feats, 269
Factoring in NP, 273
Factoring integers

largest factored to date, 513
possibility of better classical algorithm,

514
possibility of special purpose hardware,

514
Fault-tolerant quantum computing, 611

defined, 615
principles, 615

FCI, 322, 350
Fedichkin, L., 190
Fermi-Dirac statistics, 337, 338
Fermionic algebra simulated by Pauli

algebra, 341
Fermionic simulation, 339, 341
Fermionic systems simulation, 334
Fermions, 336, 338, 523

composite particles, 336
spinless, 340
under particle interchange, 336

Feynman, R., 209, 213, 325
problem of simulating fermions, 339
simulating physics with computers, 326
universal quantum simulator, 211
wikiquote ranking, 210

Feynman’s plate trick, 13
Fiber-optic cables, 510

capacity relative to satellite links, 510
splicing, 511
tapped, 510
tapping, 511
Verizon tapped, 511

Fiber-optic communications
eavesdropping on, 510

Fibonacci numbers, 408
recursive formula, 207

Fidelity, 460, 462
non-unitary quantum computation, 193
quantum data compressor, 449

Fijany, A., 172
Finite combinatory processes, 207
Fish code, 265
FLASH paper, 458
Foreknowledge of solutions not required,

251
Formal system

consistency unprovable within self, 218

Index 699

Formal system (cont.)
incomplete if consistent, 217

Formalist, 203
Four color theorem, 219

automated proof, 219
Fourier series, 141
Fredkin, E., 325
FREDKIN gate, 61

in error correction via symmetrization,
577

Free space QKD, 550
Free space quantum cryptography, 550
Freedman, M., 339
Frontier states in tangle-linear entropy

plane, 433
Full configuration interaction, 322, 350
Fullerenes, 502
Functions of matrices, 184, 185

G
Galaxy 1 satellite, 552

threats to, 553
Gate

controlled-add-one, 438
downshift permutation, 137
qubit cyclic left shift, 135
qubit reversal, 131
Rx , 76
Ry , 76
Rz, 76

Gates
teleporting, 633

GCHQ, 267
Generalized singular value decomposition,

174
Generate-and-test algorithm, 244

cf. quantum search, 248
described quantumly, 244

Genomics, 382
German military

use of Enigma machine, 265
Ghirardi, G. C., 458
GHZ state, 431
Giant component, 299
Gingrich, R., 190
Gisin, N., 494
Global phase

no measurable consequence, 12, 359
God

wikiquote ranking, 210

Gödel, K., 202, 207, 208
Gödel’s incompleteness theorem, 217
Gödel’s undecidability theorem

physical analog, 218
Goebel, A., 501
Good index values, 252
Goods, 306
Gottesman, D., 594, 604, 634
Gram-Schmidt orthogonalization, 383
Graph coloring, 295

critical point, 301, 302
Grassl, M., 611

database of quantum codes, 611
Green laser tracking system

atmospheric compensation, 550
Groups, 189
Grover, L., 230
Grover’s algorithm, 241, 245, 246

approximate analysis, 247
exact analysis, 249
for NP-Complete problems, 303
nested, 308, 309
optimal number of steps, 248
optimality, 254
oracle, 243, 250
oscillations in success probability, 249
speeding up randomized algorithms, 255
square root speedup, 249
state synthesis, 256
when number of solutions is unknown,

254
with multiple solutions, 251

GSVD, 174
Gubernatis, J.E., 329, 339
Guo, G.-C., 190, 469

H
Hadamard gate, 74
Hallgren, S., 375
Hallgren’s algorithm, 378, 379
Halting problem, 216, 217
Hamiltonian, 70, 72

built from non-unitary operator, 191
local easy to simulate, 327
maximally general too hard to simulate,

327
non-commuting, 327
Trotter formula, 327

700 Index

Hammerer, K., 501
Hamming distance, 579

defined, 579
Hamming weight, 440
Hardest problem instances, 300, 302
Hartree-Fock, 323
Hawking, S. W., 201
HBO interrupted by Captain Midnight, 551,

552
Heath-Robinson code-breaking machine,

266
Heisenberg Uncertainty Principle, 483, 484,

521
definition, 485
in energy and time, 570

Heralded single photon source, 524
Herapathite crystal, 527
Herbert, N., 458
Hermitian operators, 484
Heuristic, 296
Hidden variables, 488
Hijacking satellites, 550

Captain Midnight, 551
Hilbert, D.

mathematical challenges, 202
Hilbert’s Entscheidungsproblem, 215
Hillery, M., 460
Hogg, T., 307, 316
Horizontally polarized photon, 523
Horne, M., 442
How classical world arises from quantum

mechanics, 568
How the “No Cloning theorem” got its

name, 458
Høyer, P., 252, 372
Hubbard model, 324
Hughes, R., 550

I
Ideal quantum cloner, 459
IdQuantique, 526, 547
IdQuantique (Switzerland), 554
Illusion of language understanding, 219
Image compression, 162
Imperfect code, 588
Implementation

QKD, 545
Implicit assumptions, 235

about classical computation, 7
about classical information, 410

Impossibility of exact deterministic
quantum cloning, 458

Impure code, 587
Incompleteness theorem, 217
Incompressibility

of strings, 408
Indistinguishability, 334, 335
Industrial espionage, 509
Inference, 203
Information, 404

is physical, 410
Shannon view, 404

Information transmission, 408
Inner product, 10
Integer factorization, 272, 273

possibility of better classical algorithm,
514

possibility of special purpose hardware,
514

worked example, 280
Integer factorization in NP, 273
Integer factorization milestones, 224
Integer factorization records, 269
Intel, 4
Intelligence agencies

Australia, 508
Canada, 508
legitimate needs of, 508
New Zealand, 508
tapping fiber-optic cables, 511
United Kingdom, 508
USA, 508

Intelligence gathering, 510
Intercepts

fiber-optic communications, 510
satellite communications, 508, 509

Interchange of particles, 337
Interconversion between Bell states, 454,

455
Interference, 20, 213

of fullerenes, 502
Intractable, 221
Intractable problems, 267
Inverse circuit

in quantum error correction, 591
Inverse unitary matrix

in error reduction via symmetrization,
576

Is quantum cloning useful?, 464

Index 701

Ising Hamiltonian, 72
Ising model, 298
ISWAP gate, 173
Italian navy, 265

J
Jacobs, K., 629
Joint bit flip and phase flip, 583
Joint bit flip and phase flip error, 590

undoing, 593
Joint entropy, 409
Joint property functions

computable by quantum parallelism, 215
measurement of, 211

Jordan-Wigner transformation, 339, 340,
342

Jozsa, R., 215, 230, 231, 382, 445, 486
JPEG, 162
Julsgaard, B., 501
Jussy, Switzerland

in speed test of non-local influences, 495
Justus Lipsius building eavesdropping

incident, 510

K
Kaye, P., 287, 437
Kendon, V., 190, 386
Ket as column vector, 18
Ket vector, 10
Key distribution

via “trusted” couriers, 519
Key distribution problem, 519
Kick-back

eigenvalue, 357, 361
Killer ap, 233
Kim, Y.-H., 443
Kirkpatrick, S., 316
Kitaev, A., 339
Klappenecker, A., 184, 189
Knill, E., 329, 339, 606
Known error is fixable, 585
Knox, D., 265
Koblitz, N., 286
Kolmogorov complexity, 408
Kowalski, R., 219
Krauter, H., 501
Kroenecker product, 194, 574, 575
Kulik, S., 443
Kwiat, P., 538

L
La Palma

in free space QKD experiment, 550
Laflamme, R., 329, 339, 606
Laflamme-Miquel-Paz-Zurek’s 5-qubit

code, 588
decoding circuit, 591
encoding circuit, 590
is not a CSS code, 605
is stabilizer code, 605

Laguerre-Gaussian light beam, 537
Lai, C., 611
Lambda calculus, 207
Lanczos Algorithm, 351
Land, E., 527
Largest composite integer factored, 513
Latorre, J., 342
Lattice, 304, 305
Law

Amdahl’s, 324
Moore’s, 4

Law enforcement agencies
legitimate needs of, 508

Legal requirements for protecting
information, 512

satellite communications, 512
Letter frequencies in English, 406
Leung, D., 635
Light

as electromagnetic wave, 522
Light harvesting, 364
Linear entropy, 433

as measure of mixedness, 423
cf. von Neumann entropy, 422
definition, 420
for testing separability, 423

Linear optical quantum computers
for quantum repeaters, 548

Linear polarization, 33
Linearly polarized light, 522
Linearly polarized photon, 523
Lloyd, S., 218, 326, 339, 361

universal quantum simulator, 211
Lloyd-Zalka-Wiesner quantum simulation

algorithm, 327
Local interaction, 486

cf. non-local interaction, 488
defined, 487

Locality loophole closed, 494

702 Index

Logical conjunction, 53
Logical disjunction, 53
Logical inference, 203
Logical qubit, 593, 605, 614

cf. physical qubit, 605
Logical reversibility, 63
Lomonaco, S., 630
Long range quantum communication

in fiber-optics, 548
in free space, 549

Lorenz code, 265
Lorenz machine, 265, 266
Los Alamos National Laboratory, 550
Loss of coherence, 568
Low density parity check code, 453

M
Macchiavello, C., 606, 607
MacDougall, J.

a.k.a. “Captain Midnight”, 551
MagiQ Technologies, 547
MagiQ Technologies (USA), 554
Magnetic susceptibility

anomaly explained by entanglement, 443
Magnetization, 298
Magnons, 336
Mair, A., 501
Majority voting, 572

impossible quantumly in same way, 574
is advantageous when, 573
quantum analog, 573, 574
success of group versus individual, 573

Malicious commands uplinked to satellite,
551

Maloyer, O., 190
Markov, I., 130, 174
Maslov, D., 287
Materials

computational design of, 324
Materials science

role of entanglement, 443
Mathematical proofs, 219
Mathematical reasoning, 203
Mathew, J., 287
Matrix

direct product, 127
direct sum, 128
dot product, 126

Matrix exponential, 345, 346
application, 247

Matrix function, 184, 185
Matrix permanent, 222
Mattle, K., 500
Maximally entangled

mixed state, 432
pure state, 431

Maximally entangled pure states, 454
Maximally entangled qubits, 629
Maximum correctable errors, 605
Maxwell-Boltzmann statistics, 334, 337
Measure error syndrome, 591, 592
Measure of mixedness, 420, 421

linear entropy, 420
Measurement

of orthogonal states, 444
Measurement-based quantum computation

one way, 640
teleportation-based, 633

Measurements determine error, 585
Measuring

single qubit, 15
Measuring correlation functions, 333
Medical records, 507
Memoryless channel, 409
Merkle, R., 267
Message to integers, 271
Milestones in factoring integers, 224
Miller, V., 286
Miniaturization, 4

atoms per bit, 6
transistors per chip, 4

Minimal distance of a code, 586
Minimal distance of pure [n, k, d] code

approximate, 607
MIP-year, 224
Miquel, C., 329
Mitchell, D., 303
Mixed state

as part of larger pure state, 419
Bloch ball, 415
cf. pure state, 411
entangled, 428
from partial ignorance, 417
from partial knowledge, 411
maximally mixed, 415
non-maximally mixed, 415
purification, 419
quantifying mixedness, 420
separable, 427

Index 703

Mixed states, 444
Mixedness, 433
Model of errors, 569, 581

bit flip, 568, 569
bit flip error, 579, 581, 582
bit flip in 5-qubit code, 591
mathematical description, 581, 582, 623
multiple qubits, 583
no error, 581, 582
phase flip, 581, 582
phase flip in 5-qubit code, 591
phase shift, 569
qubit entangles with environment, 582
simultaneous bit flip and phase flip, 581,

582
simultaneous bit flip and phase shift, 570
spontaneous emission, 579

Models of computation, 202
equivalence, 213

Moore, G., 4
Mosca, M., 252, 437

adiabatic algorithm, 303
Most important quantum algorithm, 361
Mother wavelet, 153
MPEG, 162
Multi-ancilla-assisted readout, 330
Multiplication cf. factoring, 223
Munro, W., 433
Mutual information, 409

N
NAND gate, 55
NASA

error correcting codes, 580
National Security Agency, 263

approved cryptosystems, 513
tapping underwater fiber-optic cables,

511
Nature of reality, 493
Necessary and sufficient test for

entanglement, 425
Need for stronger cryptography, 508

fiber-optic cables tapped, 510
regulatory pressure, 512
retroactive vulnerability, 512
satellite communications tapped, 508

Negating a qubit, 73
Negating quantum information, 470

Negativity, 430
Negrevergne, C., 329
Nested quantum search, 308
New Yorker magazine, 553
Newman, M., 203
Nielsen, M., 635
NMAJORITY gate, 57
No cloning theorem, 458, 460

discovery, 458
precludes error correction via majority

voting, 572
No-Cloning theorem, 521
Nogoods, 306
Noise

in light harvesting, 364
Noise assisted quantum transport, 364
Noise-assisted quantum computing, 620
Noiseless source coding theorem, 403, 407
Noisy channel, 403
Noisy channel coding theorem, 403, 408
Non-additive code, 611

outperforms optimal stabilizer code, 611
union of additive codes, 611

Non-classical gate, 72
Non-commuting Hamiltonians, 327
Non-degenerate code, 587
Non-determinism, 16, 488
Non-local interaction

cf. local interaction, 488
defined, 488

Non-local interactions, 489
Non-locality, 486, 488
Non-stabilizer code, 611
Non-uniqueness of density operator, 416
Non-unitary quantum computation, 190

fidelity, 193
success probability, 193

Non-unitary transformation, 190
Nonlinear Kerr medium, 635
NOR gate, 55
Nordholt, J., 550
NOT gate, 58, 72
NOT gate from NAND gate, 56
NOT MAJORITY gate, 57
NSA, 263
Number field sieve, 263, 381, 514

complexity of, 513
Number field sieve algorithm, 223
Numerical circuit design, 180

example, 181, 182

704 Index

Numerical circuit design (cont.)
limitation, 185

Nyquist criterion, 144

O
OAM states of light, 537

Scottish dance, 537
superdense coding, 538
unsuitable for long distance QKD, 538

Observables, 484
mixed states, 424

Observing
single qubit, 15

Oh, C., 611
Olsson, R., 501
One time pad cryptosystem, 515
Operator

expectation value, 328, 329
Operator algebra, 339
Operators

mean square deviation, 484
Optical lattice, 633
Optical tweezers, 537
Optimality

Grover’s algorithm, 254
OR gate, 53
Oracle, 233, 243

in amplitude amplification, 250
in mythology, 250
in quantum search, 246

Orbital, 338, 350
Orbital angular momentum

photon, 537
Orbiting disco ball, 550
Orthogonal subspace, 583
Ortiz, G., 329, 339
Oscillations in success probability, 249
OTP cryptosystem, 515

courier key distribution, 519
example pad, 517
fixed alphabet, 516
impracticality of, 519
integers to message, 517
key pads must be protected, 518
loopholes if used improperly, 518
made practical by QKD, 521
message to integers, 516
needs true random numbers, 518
problem of key distribution, 519
protocol, 517

simplicity, 516
uses keys only once, 518
voracious consumer of keys, 519
worked example, 517

Outer product, 10
Over amplification, 249
Overlap, 247, 249

P
P complexity class, 226
Packet sniffer, 511
Pan, J.-W., 500, 501
Papadopoulos, P., 629
Parallelism

quantum, 211
Parametric downconversion, 524
Partial solutions lattice, 305
Partial trace, 417

over GHZ state, 432
over W state, 432
to analyze quantum cloning, 461
worked example, 418

Partial transpose, 465
definition, 425
example, 427–429

Particle statistics, 334
Pattern matching, 382
Pauli Exclusion Principle, 337, 338

applied to atoms, 338
applied to lattice of spinless fermions,

340
Pauli matrices

as a basis, 582
in modeling errors, 582

Pauli spin matrices, 71
Pauli X gate, 73
Pauli X not NOT for qubits, 74
Pauli X gate, 72, 568
Pauli Y gate, 570
Pauli Z gate, 569
Paz, J. P., 329
Pell’s equation, 375

significance, 381
why it is hard, 376

Peres, A., 218, 458, 486
Peres-Horodecki criterion, 425

applied in quantum cloning, 465
Perez-Delgado, C., 632, 633
Perfect code, 588

Index 705

Period 4π rotations, 13
Period finding

irrational period, 382
Periodic table of the elements, 338
Permanent of matrix, 222
Permutation

of states in direct product, 575, 576
Permutation matrix, 131

downshift, 137, 450
Q, 450
qubit cyclic left shift, 135
qubit reversal, 131

Peterson, C.G., 550
Phase factor

as binary fraction, 353, 355, 356
Phase flip error, 583, 590

undoing, 593
Phase fronts

in OAM states, 537
Phase inversion, 246, 247
Phase (of a wave), 522
Phase shift error, 569, 572
Phase state in eigenvalue estimation, 352
Phase transition

3-SAT, 300, 303
chromatic number, 299
clique number, 299
computational, 297, 299
graph connectivity, 299
size of giant component, 299

Photon
polarization, 522, 523

Photon angular momentum, 523
Photon orbital angular momentum, 537
Photon polarization states, 523
Photon source

entangled, 524
heralded, 443, 524
Poisson statistics, 524
polarized

via Pockels cell, 527
via polarizers, 527

single, 523
Physical analog

Gödel’s undecidability theorem, 218
Physical qubit, 593, 604

cf. logical qubit, 605
Physics experiment resolves philosophical

question, 489

Plasmons, 336
Plate trick, 13
Plenio, M., 629
Pockels cell, 527
Pockels cells

as polarized photon source, 527
Podolsky, B., 488
Polarization, 522

circular, 522, 523
diagonal, 523
elliptical, 522
horizontal, 523
linear, 522, 523
measurement via birefringent crystal,

528
measurement via polarizer, 529
photon, 523
quantum viewpoint, 523
rectilinear (horizontal or vertical), 522
vertical, 523

Polarization-entangled photons 144 km
apart, 550

Polarizers, 527
as polarized photon source, 527
crossed, 529

Polarizing filters, 539
Polarons, 336
Pollard rho algorithm, 289
Polynomial growth, 221

cf. exponential, 223
Polynomial in matrices, 186
Polzik, E., 501
Popescu, S., 436
Post, E., 202, 207, 208
Post Office, 266
Pottery glaze, 264
Pradhan, D., 287
Prepare-evolve-measure

efficiency in simulations, 326
Prepare-evolve-measure cycle, 70
Preskill, J., 615
Primality testing, 219
Privacy amplification, 542, 544, 545, 549
Privacy rights, 508, 509
Private key, 267, 268
Probabilistic algorithms, 206
Probabilistic non-unitary quantum

computation, 190
fidelity, 193
success probability, 193

706 Index

Probabilistic quantum cloning, 468, 469
only works for linearly independent

states, 469
optimal, 470
related to unambiguous state

discrimination, 470
Probabilistic Turing machine, 205
Problem constrainedness, 301, 307
Problem of key distribution, 519
Product

direct, 127
direct product versus direct sum, 128
dot, 126

Product state, 423
Projection

into symmetric subspace, 575
Proof versus truth, 217
Prooffeats, 219
Proos, J., 287
Proving versus providing proof, 218
PTM, 233

cf. QTM, 211
PTM, probabilistic Turing machine, 206,

207
Public key, 267, 268
Public key cryptosystem, 267, 268

Diffie-Helman, 267
retroactively vulnerable, 507
RSA, 267, 268, 270
vulnerable to quantum attack, 272, 507

Public key cryptosystems, 513
Pure code, 587

quantum Singleton bound, 607
Pure state

cf. mixed state, 411
density operator for, 416
entangled, 427
Schmidt decomposition, 433
separable, 426

Pure states
maximally entangled, 436
statistical mixture of, 444

Purification of a mixed state, 419

Q
Q gate, 450
QBER, 539
QCA, 631, 632
QCT, 162, 171

circuit, 166

definition, 165
matrix, 165

QECC, 593
QFFT, 186
QFT, 140

circuit, 150
matrix, 148
of computational basis state, 145

unentangled, 146
of superposition state, 147
symmetric peaks, 147
used in factoring, 273

QHT, 186
QinetiQ, 547
QKD, 520

and Heisenberg Uncertainty Principle,
521

and No-Cloning theorem, 521
Bank of England meeting, 547
banking transactions, 547
basis for security of, 520
Bennett and Brassard’s BB84 protocol,

521, 529, 531
Bennett’s B92 protocol, 521
Bruss’ 6-state protocol, 521
concept, 520
DARPA quantum network, 547
Earth-to-Space, 549, 550
Ekert’s entanglement-based protocol,

521
error reconciliation, 542–544
extending range in fiber, 547
free space, 549, 550
implementations, 545
in fiber-optics, 545

BBN, 547
makes OTP cryptosystem practical, 521
maximum key distribution rate, 547
maximum range in fiber, 547
multiple protocols for, 521
physical effects underpinning, 522
polarized photons, 522
practical for local area networks, 547
privacy amplification, 542, 544, 545
SECOQC quantum network, 547
stray background photons, 549
with coherent states, 521
with orbital angular momentum states,

521

Index 707

QRNG, 526
QST, 171
QTM, 230, 231

cf. DTM and PTM, 211
cf. PTM, 211

QTM, quantum Turing machine, 210–212
inability to see proof steps, 219

Quadrature mirror filter, 153
Quantifying entanglement, 429

of outputs in quantum cloning, 466
Quantifying mixedness, 420, 421

linear entropy, 420
Quantum algorithm

algebraic number theory, 375
eigenvalue estimation, 352, 361
for chemical dynamics, 364
for finding function collisions, 370
for maxima and minima, 370
for mean estimation, 370
for median estimation, 370
for NP-Complete problems, 302
for protein conformations, 364
in photosynthesis, 364
mean estimation, 370
pattern matching, 382
Pell’s equation, 375
phase estimation, 354
quantum counting, 371, 373
quantum image processing, 382
quantum walk, 385
sequence comparison, 382
Shor, 272, 273

worked example, 280
template matching, 382

Quantum bit error rate, 539
Quantum broadcasting

cf. cloning, 470
Quantum cellular automata, 630–632

local unitary, 632
universality, 633

Quantum chemistry, 349
Quantum circuit

augment-on-fail compression, 449
complexity of, 130
compressor, 452
determining spectral density, 333
discard-on-fail compression, 448
efficient, 130
eigenvalue estimation, 361
entanglement swapping, 442

equivalent unitary matrix, 124
error reduction via symmetrization, 576
extracting correlation functions, 334
for given unitary matrix, 172
for inverse operations, 450
inefficient, 130
multiple ancilla-assisted readout, 331
quantum counting, 374
quantum nested search, 312
quantum structured search, 312
quantum tree search, 312
Schumacher-Jozsa compressor, 450
Schumacher-Jozsa decompressor, 450
Shor’s algorithm, 273
single ancilla assisted readout, 330
spectroscopy, 332
superdense coding, 457
tomography, 332
universal approximate quantum cloning,

463
universal quantum NOT, 471
UNOT, 471

Quantum circuit complexity
arbitrary unitary, 173

Quantum circuit design
algebraic, 174
algebraic example, 179
applications, 173
automated, 172
choice of gates, 173
compactification, 178
genetic, 172
numerical, 180
numerical example, 181, 182
re-use, 184, 187

Quantum circuit diagrams, 123
Quantum circuits, 123

probabilistic non-unitary, 190
Quantum cloning, 457

cf. broadcasting, 470
cf. quantum universal NOT, 471
circuit, 463
degree of entanglement of clones, 466
entanglement of clones, 465
expectation value of observable of a

clone, 467
fidelity input independent, 460
historical roots, 457
ideal, 459
impossible exactly deterministically, 458

708 Index

Quantum cloning (cont.)
outputs are weakly entangled, 466
proof clones are entangled, 465
protocol, 460
universal approximate, 460
usability of clones, 464
usability of the clones, 467, 468
used for eavesdropping, 458

Quantum code-breaking, 263, 272
Quantum codebreaking

relative speedup breaking RSA cf. ECC,
287

Quantum codes
types, 593

Quantum complexity, 201
Quantum complexity classes, 229
Quantum compression, 444
Quantum compressor, 447
Quantum computability, 201, 214

cf. classical, 235
matches classical, 215

Quantum computation
alternative models, 627
distributed, 628

Quantum computers
topological, 507

Quantum computing
based on teleportation, 633
causes of errors, 568
distributed, 443
indefinitely without error, 617
noise-assisted, 620

Quantum cosine transform, 162, 171
circuit, 166
definition, 165
matrix, 165

Quantum counting, 371, 373
Quantum counting algorithm, 254
Quantum cryptography, 507

are foundations solid?, 556
banking transactions, 547
certification, 556
choice of classical cryptosystem affects

security, 558
commercially available systems, 554,

555
DARPA quantum network, 547
Earth-to-Space, 549, 550
European collaboration, 510
free space, 547, 549, 550

human factors, 558
implementations, 545
in fiber-optics, 545
is it needed?, 555
key distribution rate, 558
loopholes due to imperfections?, 556
man-in-the-middle attack, 557
maximum key distribution rate, 547
maximum range in fiber, 547
need for authenticated channel, 557
overkill?, 556
practical for local area networks, 547
QKD, 520
quantum key distribution, 520
range in fiber, 557
repeater, 557
SECOQC quantum network, 547
stray background photons, 549
wide area networks, 557
with satellites, 549

Quantum data compression, 445
augment-on-fail, 449
circuit, 448, 449, 452
discard-on-fail, 447
fidelity, 449
unitary matrix for compressor, 450

Quantum data processing, 382
Quantum eigenvalue estimation, 352, 361

Abrams-Lloyd circuit, 361
Abrams-Lloyd scheme, 361
Kitaev circuit, 362
Kitaev scheme, 361
phase state, 352
restoration of starting state, 363

Quantum entropy, 445
Quantum error correcting code, 584

bounds, 605
first, 593
Laflamme-Miquel-Paz-Zurek 5-qubit,

588
Laflamme-Miquel-Paz-Zurek 5-qubit

code
decoding circuit, 591
encoding circuit, 590

[n, k, d], 607
[n, k, d], 587
(n,K,d), 587
maximum number of correctable errors,

605
Shor 9-qubit, 593

Index 709

Quantum error correcting code (cont.)
stabilizer, 587
Steane 7-qubit, 594

Quantum error correcting codes
approximate bounds, 607
assumptions of when and where errors

occur, 611
correcting more than one error per block,

611
feasible despite skeptics, 593
imperfect error correction, 615
non-additive, 611
non-stabilizer, 611
proven bounds, 611
re-exposing the protected state, 614
stabilizer, 594
tighter bounds, 611

Quantum error correction, 567, 572
by coding, 579
by symmetrization, 573–575

assumes errors are uncorrelated, 575
circuit, 576
unitary matrix, 577
usefulness, 579
worked example, 577, 578

cf. classical, 571, 572
concatenated codes, 617, 619, 620
error model, 581, 582
fault tolerant, 611, 615
skepticism, 567
the trick, 573
threshold theorem, 617, 619, 620
why is it hard?, 571

Quantum error reduction by symmetrization,
575

circuit, 576
unitary matrix, 577
usefulness, 579
worked example, 577, 578

Quantum factoring, 272, 273
worked example, 280

Quantum Fourier transform, 140
circuit, 150
matrix, 148
of computational basis state, 145
of superposition state, 147
symmetric peaks, 147
used in factoring, 273

Quantum fractional Fourier transform, 186

Quantum gate
controlled modular-add-one (C-MAO),

169
noise-assisted, 620

Quantum gates
for classical reversible chips, 139

Quantum Gilbert-Varshamov bound, 605,
607

Quantum Hamming bound, 605–607
Quantum Hartley transform, 186
Quantum image processing, 382

two-dimensional transforms, 384
Quantum information, 403, 411

broadcasting, 470
cloning, 460
compression, 444
negation, 470
speed of non-local influences, 494

Quantum information cf. classical, 572
Quantum interference, 213
Quantum key distribution, 520

defined, 520
Quantum logic gates, 69
Quantum (n,K,d) code, 587
Quantum [n, k, d] code, 587
Quantum mean estimation, 370
Quantum memory, 501

in quantum repeaters, 548
Quantum memory register, 17
Quantum money, 530, 531
Quantum nested search, 302, 308, 309

circuit, 312
complexity analysis, 309

Quantum NOT gate, 73
Quantum numbers

interrelationships between, 338
Pauli Exclusion Principle, 338

Quantum parallelism, 211, 214, 230
class of functions computable by, 215

Quantum pattern matching, 382
Quantum permutation

downshift, 450
Q, 450

Quantum permutations, 131
Quantum phase estimation, 354
Quantum random number generator, 526

commercially available (idQuantique),
526

Quantum repeater, 443, 502
Briegel-Dürr-Cirac-Zoller scheme, 548

710 Index

Quantum repeater (cont.)
demonstrated, 548
diagram, 548

Quantum repeaters, 547
Quantum search, 241, 245, 246

approximate analysis, 247
exact analysis, 249
foreknowledge of solutions not required,

246
optimal number of steps, 248
optimality, 254
oracle, 243, 250
oscillations in success probability, 249
oscillatory success probability, 248
real databases, 260
speeding up randomized algorithms, 255
square root speedup, 249
state synthesis, 256
when number of solutions is unknown,

254
with multiple solutions, 251
with prior knowledge, 173

Quantum sequence comparison, 382
Quantum signal processing, 382
Quantum simulation, 325

ancilla-assisted readout, 328, 330
between operator algebras, 339, 340
bosons simulating fermions, 339
extracting correlation functions, 333
extracting result, 328
fermionic, 339
fermions, 326, 334
fermions versus bosons, 334
Lloyd-Zalka-Wiesner algorithm, 327
multi-ancilla-assisted readout, 330
non-interacting Hamiltonians, 341
of quantum systems, 326
tomography versus spectroscopy, 332
topological field theories, 339
via disentanglement, 342
via Jordan-Wigner transformation, 341
via mapping to non-interacting

Hamiltonians, 342
Quantum sine transform (QST), 171
Quantum Singleton bound, 605–607

tighter for pure codes, 607
Quantum source, 444, 453
Quantum speedup

Grover’s algorithm, 251

Quantum state
pure versus mixed, 411

Quantum state synthesis, 173
Quantum state tomography, 332

circuit, 332
computational cost, 424
inefficient, 328

Quantum structured search, 309
circuit, 312
complexity analysis, 309

Quantum teleportation, 496, 497
after measurement in Bell basis, 498
between objects of dissimilar type, 501
cf. cloning, 486
cf. faxing, 486
cf. science fiction teleportation, 486
circuit, 497
corrective actions, 498
experiment, 500
experiments, 486
in quantum repeaters, 502
initial state, 498
initial state rewritten, 498
larger objects, 501
multi-particle entangled state, 501
not superluminal, 499
protocol, 498
requires original is destroyed, 486
state vs. object, 486
working prototypes, 500

Quantum template matching, 382
Quantum tree search, 309

circuit, 312
complexity analysis, 309

Quantum Turing machine, 210–212
entangled states, 211
inability to see proof steps, 219

Quantum universal NOT, 470
cf. quantum cloning, 471
exact predictions from approximate

negated state, 472
ideal is impossible, 471
quantum circuit, 471
usability of negated state, 472

Quantum universality, 201
Quantum walk

bias, 390, 391
excluded locations, 390
one-dimensional, 387
rate of diffusion, 395

Index 711

Quantum walk (cont.)
unbiased, 393, 395
variance in position of walker, 396
worked example, 389, 391–393

Quantum walks, 385
Quantum wavelet transform, 151

circuit, 158
Daubechies, 153
factorization of D(4)

2n , 157
packet, 158
pyramidal, 160

Quantum-to-classical readout, 385
Quatum cloning

exact predictions based on approximate
clones, 468

Qubit, 9
ancilla, 575

Qubit cyclic left shift, 135
Qubit reversal, 131
Qudit

using OAM states of light, 537
Query complexity, 221
Quinine, 527
Quintessence Laboratories (Australia), 554
Quotation

Asimov, Isaac, 293
Aspuru-Guzik, Alan, 361
Babbage, Charles, 567
Bruguiere, Jean Louis

hijacking satellites, 553
Cerf, Nicolas, 470
Clarke, Arthur C., 554, 627
Deutsch, David, 3, 201
Dirac, Paul, 349
Einstein, Albert, 483
Ekert, Artur, 541
European Parliament on ECHELON, 509
Feynman, Richard, 51, 319, 410

simulating bosonic vs. fermionic
systems, 326

from Computerworld on tapping
fiber-optic cables, 511

Fuchs, Kristen, 241
Gisin, Nicolas, 403
Hardy, Godfrey Harold, 369
Hayes, Jim, 511
Knapp, Bruce, 123
Landauer, Rolf, 410
Newton, Isaac, 184, 488
on Feynman by Los Angeles Times, 326

Peres, Asher, 458
Pescatore, John, 511
Preskill, John, 583
Rose, Geordie, 319
Rutherford, Ernest, 429
Schrödinger, Erwin, 422
Shakespeare, William, 507
Shannon, Claude, 404
Shor, P., 375
Woolsey, James

on use of intelligence, 509
Zak, Michail, 263
Zeilinger, Anton, 404, 493

Quotation: Artur Ekert, 4
Quotation: Ekert, 4
Quotation: Feynman, 7
QWT, 151

circuit, 158
Daubechies, 153
factorization of D(4)

2n , 157
packet, 158
pyramidal, 160

R
Rains, E., 607, 611
Random graph, 299
Random walks

quantum, 385
Randomized algorithm

Euclidean traveling salesman, 206
Randomized algorithms, 222
Randomness

as incompressibility, 408
Range of QKD

in free space, 550
Range record for QKD, 547
Ratio of clauses to variables, 300
Re-use method of circuit design, 184

circuit template, 187
example (QFFT), 188
example (QHT), 188

Reactivity, 349
Read error syndrome, 591, 592
Reading

single qubit, 15
Reading a qubit, 16
Reading quantum memory register

disrupts state, 574
Reality, 493

is non-local, 493

712 Index

Record-setting factoring feats, 269
Rectilinearly polarized light, 522
Rectilinearly polarized photon, 523, 526,

532
Recursive functions, 207
Reduced density matrix, 468
Reductio ad absurdum, 215
Redundant information

in symmetrized state, 573, 574
used to boost reliability, 572

Regulator, 377
Hallgren’s algorithm, 378
period finding, 378

Relative entropy of entanglement, 430
Relative phase, 359, 572
Reliable communications, 408
Reliable computing, 573
Report on ECHELON, 508
Retroactive vulnerability, 507, 512, 514
Reversibility, 63
Reversible classical gates, 57
Reversible computers, 63
Reversible computing, 140, 210
Reversible gate, 131
Reversible gate as permutation matrix, 61
Reversible Turing machine, 210
Rewrite rules, 178

canonical, 178
Church-Rosser, 178
example, 179

Rivest, R., 267
Röettler, M., 184, 189
Rose, G., 319
Rosen, N., 488
Rotation gate, 76
Rotations with period 4π , 13
RSA, 507
RSA algorithm, 270
RSA cryptosystem, 513
RSA public key cryptosystem, 267, 268, 270

basis for security, 268
basis of security, 267
decryption algorithm, 268, 270
efficiency, 272
encryption algorithm, 268, 270
worked example, 271

RSA-100, 268
RSA-129, 224
RSA-200

factored, 269

factoring record, 513
RSA-576

change in naming convention, 269
factored, 269

RSA-640, 269

S
Salart, D., 494
Saraceno, M., 329
Satellite

Captain Midnight, 551
hacker attack, 550
potential loss of command and control,

550
Satellite communications

eavesdropping on, 508
to be made more secure, 512

Satigny, Switzerland
in speed test of non-local influences, 495

Satisfiability, 295–297
critical point, 300

Scherbius, A., 265
Schmidt decomposition, 433

worked example, 435
Schmiedmayer, J., 501
Schrödinger equation, 320

deterministic evolution, 573
molecular, 349
numerical solution, 320
time dependent many-electron, 349
time independent local Hamiltonian, 327

Schrödinger’s equation, 70
deterministic evolution, 574
in terms of density operator, 416

Schumacher, B., 436, 445
Schumacher-Jozsa quantum data

compression, 445
Scottish dance

split-the-willow, 537
Scumacher, B., 632
Scytale, 264
Search algorithm, 241, 245
Second World War, 265, 266

cooperation on intelligence, 508
SECOQC

demonstration, 547
SECOQC quantum cryptography system,

510
demonstration, 510

Index 713

Secure communications
Enigma, 265

Security
unconditional, 508

Security foundations of QKD, 520
Security of OTP cryptosystem

if used improperly, 518
Selman, B., 300, 303, 316
Separability

of mixed state, 423
Separable

mixed state, 427
pure state, 426

Separable state, 423
Sequence comparison, 382
Shamir, A., 267
Shannon, C., 403

noiseless source coding theorem, 403,
407

noisy channel coding theorem, 403, 408
view of information, 404

Shannon entropy, 405, 444
can equal von Neumann entropy, 453
definition of H , 407

Shannon limit, 452
Shared prior entanglement, 454, 629
Shell, 338
Shende, V., 130, 174
Sherson, J., 501
Shih, Y., 443
Shor, P., 230, 233, 263, 593, 607, 611
Shor’s 9-qubit code, 593
Shor’s algorithm, 263, 272, 273

discrete logarithms, 285
distributed, 630
quantum circuit, 273
relative speedup breaking RSA cf. ECC,

287
worked example, 280

SHRDLU robot, 219
Signal

as superposition, 144
cosine series, 163
discretization, 142
sampling, 142
sampling rate, 144

Signalling entanglement
via entanglement witness, 423
via Peres-Horodecki criterion, 425

Simon, D., 233
Simulating fermions, 334
Simulating physics with computers, 213

representing quantum states, 214
Single photon source, 523

exactly one photon per pulse, 524
heralded, 524
less than one photon per pulse, 524
Poisson statistics, 524

Singlet, 423
Singlet state, 496

special property of, 496
Singular value decomposition

in circuit design, 174
in Schmidt decomposition, 434

Size computational problem, 221
Skepticism for quantum error correction,

567
Sloane, N.J.A., 607, 611
SmartQuantum (France), 554
Smolin, J., 172
Solenov, D., 190
Somma, R., 329, 339
Source

classical, 405
quantum, 444, 445

Source coding theorem, 403, 407
cf. superdense coding, 453

Space Shuttle
communications hacked, 554
majority voting, 573
reliable computing, 573

Spacelike separated, 487
Spacelike separated entangled particles, 489
Special purpose factoring engine

TWINKLE, 514
TWIRL, 515

Special relativity
cf. non-local effects, 488

Spector, L., 172
Spectral density in vicinity of known

energies, 333
circuit, 333

Spectroscopy
circuit, 332

Spedalieri, F., 537, 538
Spedalieri’s orbital angular momentum

scheme for BB84, 537
Speed of non-local influences, 494

at least 10, 495

714 Index

Speedup
superpolynomial, 381

Spin, 523
bosons, 523
fermions, 523
in magnetism, 298

Spin-flip operator, 466
Spinless fermions, 340
Spintronics, 140
Splicing

fiber-optic cables, 511
Split-the-willow

OAM states of light, 537
Spontaneous emission

bit flip error, 579
Spooks, 263
Spooky action at a distance, 488
Square root of NOT, 72
Stabilizer

5-qubit code, 596
codewords, 597
error operators commute with, 601
for 5-qubit code, 600
tensor product of Pauli matrices, 595

Stabilizer code, 587, 594, 604, 611
advantage of, 594
if pure is non-degenerate, 587
Laflamme-Miquel-Paz-Zurek’s 5-qubit

code, 588
State

GHZ, 431
mixed entangled, 428
mixed separable, 427
pure entangled, 427
pure separable, 426
separable versus entangled, 422
singlet, 423
W, 431

State synthesis
applications, 383
via Grover’s algorithm, 257

Steane’s 7-qubit code, 594
Stirling’s formula, 307, 350
Stray photons in free space QKD, 549
String compressibility, 408
Strong Church-Turing thesis, 208

cf. Deutsch’s thesis, 209
quantum challenge to, 209

Strong cryptography, 515
need for, 508

Strong electron correlations, 341
Subexponential, 223
Submarines for eavesdropping, 511
Subset sum, 295
Substitution code, 271
Success probability

non-unitary quantum computation, 193
Superconductivity, 337
Superdense coding, 453

circuit, 457
does not violate Source Coding

Theorem, 453
of “maximally compressed” classical

message, 453
protocol, 455, 456

Superfluidity, 337
Superluminal communicator, 458
Superoperator, 424
Superpolynomial, 223, 273
Superpolynomial speedup, 381
Superposition, 9, 17

equally weighted, 576
number of components not power of two,

576
of n factorial states, 576

SWAP gate, 58
controlled a.k.a. “FREDKIN”, 577

SWAP gate from CNOT gates, 59
Symmetric private key cryptosystem, 515
Symmetric state vector, 335, 336
Symmetric subspace, 574, 575

projecting into, 575
Symmetrization, 573, 574

assumes errors are uncorrelated, 575
buggy state, 575
circuit, 576
operation, 575
unitary matrix, 577
usefulness, 579
worked example, 577, 578

Symmetrized state, 576
Synthesis of Bell states, 454
Synthesize mixed state, 398
Synthesize pure state, 383

T
Tangle, 429, 433

in analyzing quantum clones, 466
worked example, 466

Index 715

Tangle vs. linear entropy plane, 433
Tapp, A., 252, 372
Tapping

detectable, 511
fiber-optic cables, 510, 511
fiber-optic communications channels,

510
satellite communications channels, 508
underwater fiber-optic cables, 511

challenges, 512
undetectable, 511

Telephone traffic
mainly fiber-optic based, 510

Teleport
unknown quantum state, 486

Teleportation
circumvents apparent limitations, 486
CNOT gate, 638
in quantum computation, 633
in science fiction, 483
supposed impossibility, 483

Teleportation-based quantum computing,
633

Template matching, 382
Tenerife

in free space QKD experiment, 550
Tensor product, 194, 574, 575
Terashima, H., 190
Terror web article

New Yorker magazine, 553
Threshold theorem for concatenated codes,

617, 619, 620
Tight-binding, 322
Time scale

decoherence, 569
TOFFOLI gate, 61, 450
Tokyo teleport station, 486
Tomography versus spectroscopy, 332
Topological quantum computers, 507
Torque of a photon, 537
Toshiba Research Europe

QKD, 547
Trace

in expectation values, 424
Tractable, 221
Tradeoff between physical qubits, logical

qubits, and number of correctable
errors, 605

Tradeoffs in determinism, verifiability and
universality, 218

Transformation
Bogoliubov, 343
Jordan-Wigner, 339

Transistors per chip, 4
Traveling salesman problem, 206
Travelling salesman, 295
Tree search

analyzed using lattice, 305
quantum, 309

Tree-search, 304, 305
Trotter formula, 327, 328, 346

high order approximations, 328
True random number generator, 173, 532
True random numbers, 214, 518

creating, 525
quantum generator, 526

Truth or falsity of mathematical proposition,
203

Truth or falsity of mathematical
propositions, 215, 217

Truth table, 54
AND, 54
CNOT, 58
NAND, 56
NOT, 58
⊕, 55
OR, 54
SWAP, 58
XOR, 55

Truth versus proof, 217
TSP, traveling salesman problem, 206
Tucci, R., 172, 174
Turbo code, 453
Turbulence in free space QKD, 549
Turing, A., 202, 203, 265

Turing machine, 204, 205
view of mathematical reasoning, 203,

204
Turing bombes, 265, 266
Turing machine, 205, 215, 265

deterministic, 204
equivalence to modern computers, 205
fatal flaw, 209
probabilistic, 205
quantum, 210, 211
universal, 208

Turing machine, reversible, 210

716 Index

Turing’s halting problem, 216
Tute, B., 265
TWINKLE factoring engine, 514, 515
TWIRL factoring engine, 515
Twisting intertwined phase fronts, 537
Two electrons per orbital, 338
Two-dimensional quantum transforms, 384

U
U-boats

Enigma machine, 265
UK Department of Trade and Industry

interest in QKD, 547
Ueda, M., 190
UKUSA alliance, 508
Unambiguous state discrimination, 540
Unambiguously distinguishable states, 453
Uncertainty principle, 483, 484
Uncomputable, 213
Unconditional security, 508
Unconditionally secure cryptosystem, 515,

521
Uncorrelated errors, 575
Uncounterfeitable banknote, 530
Undetected monitoring

satellite communications, 509
Unique computational tasks, 235
Unitary evolution, 70
Unitary matrix

complexity to implement, 173
conversion to quantum circuit, 172
embedding non-unitary matrix, 191
equivalence to diagonal matrix, 185
error reduction via symmetrization, 577
for given quantum circuit, 124
inverse, 576

Unitary matrix: logical reversibility, 70
Universal approximate quantum cloning,

460
quantum circuit, 463

Universal gate: FREDKIN, 60
Universal gate: TOFFOLI, 60
Universal gates: reversible computing, 55
Universal NOT, 470

exact predictions from approximate
negated state, 472

quantum circuit, 471
usability of negated state, 472

Universal NOT gate, 73

Universal probabilistic quantum cloning,
468, 469

Universal quantum simulator, 211, 326
Universal Turing machine, 208
Universality, 201, 202, 208, 213, 218

distributed quantum computation, 630
quantum cellular automata, 633

UNOT, 470
exact predictions from approximate

negated state, 472
ideal is impossible, 471
quantum circuit, 471
usability of negated state, 472

Unsimulatable phenomena, 322
Unstructured quantum search, 241, 245, 246

approximate analysis, 247
exact analysis, 249
foreknowledge of solutions not required,

246
optimal number of steps, 248
optimality, 254
oracle, 243, 250
oscillations in success probability, 249
real databases, 260
speeding up randomized algorithms, 255
square root speedup, 249
state synthesis, 256
when number of solutions is unknown,

254
with multiple solutions, 251

Unstructured search problem, 242, 245
Unwanted entanglement with environment,

569
Urine of a dog fed quinine, 527
Usability of quantum clones, 464
Use entanglement to fight entanglement, 583
UTM, universal Turing machine, 208

V
Vacuum tube based computer, 266
Van Dam, W., 632

adiabatic algorithm, 303
Van der Waals forces, 323
Vazirani, U., 213, 230, 233

adiabatic algorithm, 303
Vec operation, 384
Vedral, V., 443
Verifiability, 218
Vernam cipher, 515

Index 717

Verstraete, F., 342
Vertically polarized photon, 523
Video compression, 162
Visualizing quantum clones, 462
Von Neumann, J., 630
Von Neumann entropy, 445, 446, 453

as measure of mixedness, 421, 422
can equal Shannon entropy, 446
cf. linear entropy, 422
of a maximally mixed state, 422
of a pure state, 422

W
W state, 431
Wagenknecht, C., 501
Wall Street Journal

on submarines for eavesdropping, 512
Walsh-Hadamard gate, 245
Wang, Z., 339
Watrous, J., 632
Wavefunction

anti-symmetric, 335, 336, 339, 350
symmetric, 335, 336
under interchange of electrons, 350

Wavelet filter coefficients, 153, 154, 157
Wavelet transforms, 152
Wavelets, 151
Weinfurter, H., 500
What can computers do, 213
Wiesner, S., 529
Williams, C.P., 172, 190, 307, 316

adiabatic algorithm, 303
where are the hard problems?, 222

Wired communications
insecurity, 510

Wireless communications
insecurity, 510

Witness, 423
Wolfram, S., 630
Woolsey, J., 509
Wootters, W., 458, 486
Worst case complexity, 222, 296
Wright, L.

terror web article, 553

X
Xerox PARC, 201

Y
Yamamoto, Y., 547, 635
Yang, T., 501
Yimsiriwattana, A., 630
Yu, S., 611

Z
Zalka, C., 254, 287
Zbinden, H., 494
Zeiliner, A., 500
Zeilinger, A., 442, 443, 493, 537, 632
Zhang, Q., 501
Zhao, B., 501
Zoller, P., 548
Zoo

classical complexity, 225
quantum complexity, 229

Zukowski, M., 442
Zurek, W., 218, 458

	Preface
	Contents
	What is Quantum Computing?
	Introduction
	Trends in Computer Miniaturization
	Implicit Assumptions in the Theory of Computation
	Quantization: From Bits to Qubits
	Ket Vector Representation of a Qubit
	Superposition States of a Single Qubit
	Bloch Sphere Picture of a Qubit
	Other Rotations Having Period 4pi

	Reading the Bit Value of a Qubit

	Multi-qubit Quantum Memory Registers
	The Computational Basis
	Direct Product for Forming Multi-qubit States
	Interference Effects
	Entanglement
	Entanglement and Quantum States in Different Number Bases

	Evolving a Quantum Memory Register: Schrödinger's Equation
	Schrödinger's Equation
	Hamiltonians
	Solution as a Unitary Evolution of the Initial State
	Computational Interpretation

	Extracting Answers from Quantum Computers
	Observables in Quantum Mechanics
	Observables as Hermitian Operators

	Observing in the Computational Basis
	Complete Readout
	Partial Readout

	Alternative Bases
	Change of Basis
	Change of Basis for a State
	Change of Basis for an Operator

	Observing in an Arbitrary Basis

	Quantum Parallelism and the Deutsch-Jozsa Algorithm
	The Problem: Is f(x) Constant or Balanced?
	Embedding f(x) in a Quantum Black-Box Function
	Moving Function Values Between Kets and Phase Factors
	Interference Reveals the Decision
	Generalized Deutsch-Jozsa Problem

	Summary
	Exercises

	Quantum Gates
	Classical Logic Gates
	Boolean Functions and Combinational Logic
	Irreversible Gates: AND and OR
	Universal Gates: NAND and NOR
	Reversible Gates: NOT, SWAP, and CNOT
	Universal Reversible Gates: FREDKIN and TOFFOLI
	TOFFOLI (a.k.a. "Controlled-Controlled-NOT")
	FREDKIN (a.k.a. "Controlled-SWAP")

	Reversible Gates Expressed as Permutation Matrices
	Will Future Classical Computers Be Reversible?
	Cost of Simulating Irreversible Computations Reversibly
	Ancillae in Reversible Computing

	Universal Reversible Basis
	Can All Boolean Circuits Be Simulated Reversibly?

	Quantum Logic Gates
	From Quantum Dynamics to Quantum Gates
	Properties of Quantum Gates Arising from Unitarity

	1-Qubit Gates
	Special 1-Qubit Gates
	Pauli Spin Matrices
	NOT Gate
	NOT Gate
	Is Pauli X a NOT Gate for Qubits?
	Hadamard Gate

	Rotations About the x-, y-, and z-Axes
	NOT, NOT, and Hadamard from Rotation Gates

	Arbitrary 1-Qubit Gates: The Pauli Decomposition
	Decomposition of Rx Gate

	Controlled Quantum Gates
	Meaning of a "Controlled" Gate in the Quantum Context
	Semi-Classical Controlled Gates
	Multiply-Controlled Gates
	Circuit for Controlled-U
	Flipping the Control and Target Qubits
	Control-on-|0> Quantum Gates
	Circuit for Controlled-Controlled-U

	Universal Quantum Gates
	Special 2-Qubit Gates
	CSIGN, SWAPalpha, iSWAP, Berkeley B
	CSIGN
	iSWAP
	SWAP
	SWAPalpha
	The Berkeley B Gate

	Interrelationships Between Types of 2-Qubit Gates
	CNOT from CSIGN
	CNOT from SWAP
	CNOT from iSWAP and one SWAP
	CNOT from Two iSWAPs

	Entangling Power of Quantum Gates
	"Tangle" as a Measure of the Entanglement Within a State
	"Entangling Power" as the Mean Tangle Generated by a Gate
	CNOT from any Maximally Entangling Gate
	The Magic Basis and Its Effect on Entangling Power

	Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition
	Entangling Power of an Arbitrary 2-Qubit Gate
	Circuit for an Arbitrary Real 2-Qubit Gate
	Case of USO(4)
	Case of UO(4)

	Circuit for an Arbitrary Complex 2-Qubit Gate
	Circuit for an Arbitrary 2-Qubit Gate Using SWAPalpha

	Summary
	Exercises

	Quantum Circuits
	Quantum Circuit Diagrams
	Computing the Unitary Matrix for a Given Quantum Circuit
	Composing Quantum Gates in Series: The Dot Product
	Composing Quantum Gates in Parallel: The Direct Product
	Composing Quantum Gates Conditionally: The Direct Sum
	Measures of Quantum Circuit Complexity

	Quantum Permutations
	Qubit Reversal Permutation: P2n
	Qubit Cyclic Left Shift Permutation: Pi2n
	Amplitude Downshift Permutation: Q2n
	Quantum Permutations for Classical Microprocessor Design?

	Quantum Fourier Transform: QFT
	Continuous Signals as Sums of Sines and Cosines
	Discrete Signals as Samples of Continuous Signals
	Discrete Signals as Superpositions
	QFT of a Computational Basis State
	QFT of a Superposition
	QFT Matrix
	QFT Circuit

	Quantum Wavelet Transform: QWT
	Continuous Versus Discrete Wavelet Transforms
	Daubechies Wavelets and Quadrature Mirror Filters

	Determining the Values of the Wavelet Filter Coefficients
	Factorization of Daubechies D(4)2n Wavelet Kernel
	Quantum Circuit for D(4)2n Wavelet Kernel
	Quantum Circuit for the Wavelet Packet Algorithm
	Quantum Circuit Wavelet Pyramidal Algorithm

	Quantum Cosine Transform: QCT
	Signals as Sums of Cosines Only
	Discrete Cosine Transform DCT-II and Its Relation to DFT
	QCTNII Transformation
	QCTNII Matrix
	QCTNII Circuit
	Controlled-One's Complement
	Controlled-Two's Complement
	Controlled-ModularAddOne
	Quantum Circuit for V2N Using C-OC2N
	Quantum Circuit for U2N† Using C-TC2N and C-MAO2N

	Circuits for a Arbitrary Unitary Matrices
	Uses of Quantum Circuit Decompositions
	Choice of Which Gate Set to Use
	Circuit Complexity to Implement Arbitrary Unitary Matrices
	Algebraic Method
	Simplification via Rewrite Rules
	Numerical Method
	Re-use Method
	Functions of Matrices
	Quantum Hartley Transform as a Polynomial in QFT
	Quantum Fractional Fourier Transform as a Polynomial in QFT
	Fixed Structure of the "Design by Re-use" Circuit
	Quantum Circuit for QHT via "Design-by-Re-use"
	Quantum Circuit for QFFT via "Design-by-Re-Use"

	Probabilistic Non-unitary Quantum Circuits
	Hamiltonian Built from Non-unitary Operator
	Unitary Embedding of the Non-unitary Operator
	Non-unitarily Transformed Density Matrix
	Success Probability
	Fidelity when Successful

	Summary
	Exercises

	Quantum Universality, Computability, & Complexity
	Models of Computation
	The Inspiration Behind Turing's Model of Computation: The Entscheidungsproblem
	Deterministic Turing Machines
	Probabilistic Turing Machines
	The Alternative Gödel, Church, and Post Models
	Equivalence of the Models of Computation

	Universality
	The Strong Church-Turing Thesis
	Quantum Challenge to the Strong Church-Turing Thesis
	Quantum Turing Machines

	Computability
	Does Quantum Computability Offer Anything New?
	Decidability: Resolution of the Entscheidungsproblem
	Proof Versus Truth: Gödel's Incompleteness Theorem
	Proving Versus Providing Proof

	Complexity
	Polynomial Versus Exponential Growth
	Big O, Theta and Omega Notation
	Classical Complexity Zoo
	Quantum Complexity Zoo

	What Are Possible "Killer-Aps" for Quantum Computers?
	Summary
	Exercises

	What Can You Do with a Quantum Computer?
	Performing Search with a Quantum Computer
	The Unstructured Search Problem
	Meaning of the Oracle

	Classical Solution: Generate-and-Test
	Quantum Solution: Grover's Algorithm
	How Does Grover's Algorithm Work?
	How Much Amplitude Amplification Is Needed to Ensure Success?
	An Exact Analysis of Amplitude Amplification
	The Oracle in Amplitude Amplification

	Quantum Search with Multiple Solutions
	Amplitude Amplification in the Case of Multiple Solutions

	Can Grover's Algorithm Be Beaten?
	Some Applications of Quantum Search
	Speeding Up Randomized Algorithms
	Synthesizing Arbitrary Superpositions

	Quantum Searching of Real Databases
	Summary
	Exercises

	Code Breaking with a Quantum Computer
	Code-Making and Code-Breaking
	Code-Breaking: The Enigma Code and Alan Turing

	Public Key Cryptosystems
	The RSA Public-Key Cryptosystem
	Example of the RSA Cryptosystem

	Shor's Factoring Algorithm for Breaking RSA Quantumly
	The Continued Fraction Trick at the End of Shor's Algorithm
	Example Trace of Shor's Algorithm

	Breaking Elliptic Curve Cryptosystems with a Quantum Computer
	Breaking DES with a Quantum Computer
	Summary
	Exercises

	Solving NP-Complete Problems with a Quantum Computer
	Importance and Ubiquity of NP-Complete Problems
	Worst Case Complexity of Solving NP-Complete Problems
	The Davis-Putnam-Logemann-Loveland Algorithm
	The WalkSAT Algorithm
	NP-Complete Problems Are Hard in the Worst Case

	Physics-Inspired View of Computational Complexity
	Phase Transition Phenomena in Physics
	Phase Transition Phenomena in Mathematics
	Computational Phase Transitions
	Approximate Analysis for k-SAT
	Approximate Analysis for GRAPH-COLORING

	Where Are the Really Hard Problems?

	Quantum Algorithms for NP-Complete Problems
	Quantum Solution Using Grover's Algorithm
	Structured Search Spaces: Trees and Lattices
	Computing the Lattice Parameters for a Constraint Satisfaction Problem
	Calculation of p(i)

	Quantum Solution Using Nested Grover's Algorithm
	The Core Quantum Algorithm
	Analysis of Quantum Structured Search
	Quantum Circuit for Quantum Structured Search
	Quantum Average-Case Complexity

	Summary
	Exercises

	Quantum Simulation with a Quantum Computer
	Classical Computer Simulations of Quantum Physics
	Exact Simulation and the Problem of Memory
	Exact Simulation and the Problem of Entanglement
	Approximate Simulation and the Problem of Fidelity
	Full Configuration Interaction
	Tight-Binding
	Hartree-Fock
	Density Functional Theory
	Limited Speedup via Parallelization: Amdahl's Law

	Quantum Computer Simulations of Quantum Physics
	Feynman Conceives of a Universal Quantum Simulator
	Quantum Systems with Local Interactions
	Lloyd-Zalka-Wiesner Quantum Simulation Algorithm

	Extracting Results from Quantum Simulations Efficiently
	Single Ancilla-Assisted Readout
	Multi-Ancilla-Assisted Readout
	Tomography Versus Spectroscopy
	Evaluating Correlation Functions

	Fermionic Simulations on Quantum Computers
	Indistinguishability and Implications for Particle Statistics
	Symmetric Versus Anti-Symmetric State Vectors
	Bosons and Fermions
	Bose-Einstein Statistics
	Pauli Exclusion Principle and Fermi-Dirac Statistics
	Fermionic Simulations via the Jordan-Wigner Transformation
	Fermionic Simulations via Transformation to Non-interacting Hamiltonians

	Summary
	Exercises

	Quantum Chemistry with a Quantum Computer
	Classical Computing Approach to Quantum Chemistry
	Classical Eigenvalue Estimation via the Lanczos Algorithm

	Quantum Eigenvalue Estimation via Phase Estimation
	The "Phase" State
	Binary Fraction Representation of the Phase Factor

	Quantum Phase Estimation
	Eigenvalue Kick-Back for Synthesizing the Phase State
	Quantum Eigenvalue Estimation Algorithms
	Abrams-Lloyd Eigenvalue Estimation Algorithm
	Kitaev Eigenvalue Estimation Algorithm

	Quantum Chemistry Beyond Eigenvalue Estimation
	Summary
	Exercises

	Mathematics on a Quantum Computer
	Quantum Functional Analysis
	Quantum Mean Estimation
	Quantum Counting

	Quantum Algebraic Number Theory
	The Cattle Problem of Archimedes and Pell's Equation
	Why Solving Pell's Equation Is Hard
	Solution by Finding the "Regulator"
	The Regulator and Period Finding
	Quantum Core of Hallgren's Algorithm
	Hallgren's Quantum Algorithm for Solving Pell's Equation
	What Is the Significance of Pell's Equation?

	Quantum Signal, Image, and Data Processing
	Classical-to-Quantum Encoding
	Quantum Image Processing: 2D Quantum Transforms
	Quantum-to-Classical Readout

	Quantum Walks
	One-Dimensional Quantum Walks
	Example: Biased Initial Coin State & Hadamard Coin
	Example: Symmetric Initial Coin State & Hadamard Coin
	Example: Chiral Initial Coin State & Hadamard Coin
	Example: Symmetric Initial Coin State & Non-Hadamard Coin
	Quantum Walks Can Spread Faster than Classical Walks

	Summary
	Exercises

	What Can You Do with Quantum Information?
	Quantum Information
	What is Classical Information?
	Classical Sources: The Shannon Entropy
	Maximal Compression (Source Coding Theorem)
	Reliable Transmission (Channel Coding Theorem)
	Unstated Assumptions Regarding Classical Information

	What is Quantum Information?
	Pure States cf. Mixed States
	Mixed States from Partial Knowledge: The Density Operator
	Density Operator for a Mixed State
	Density Operator for a Pure State
	The Bloch Ball
	Properties of Density Operators
	Non-unique Interpretation of Density Operators

	Mixed States from Partial Ignorance: The Partial Trace
	Example: Computing the Partial Trace

	Mixed States as Parts of Larger Pure States: "Purifications"
	Quantifying Mixedness
	Linear Entropy as a Measure of Mixedness
	von Neumann Entropy as a Measure of Mixedness

	Entanglement
	Separable States Versus Entangled States
	Signalling Entanglement via Entanglement Witnesses
	Example: Entanglement Witness

	Signalling Entanglement via the Peres-Horodecki Criterion
	Quantifying Entanglement
	Entanglement Monotones

	Maximally Entangled Pure States
	Maximally Entangled Mixed States
	The Schmidt Decomposition of a Pure Entangled State
	Example: Schmidt Decomposition

	Entanglement Distillation
	Distilling Entanglement from Pure States: Entanglement Concentration

	Entanglement Swapping
	Entanglement in "Warm" Bulk Matter

	Compressing Quantum Information
	Quantum Sources: The von Neumann Entropy
	Schumacher-Jozsa Quantum Data Compression
	"Discard-on-Fail" Quantum Data Compression Protocol
	"Augment-on-Fail" Quantum Data Compression Protocol
	Quantum Circuit for Schumacher-Jozsa Compressor
	Is Exponential Compression Possible?

	Superdense Coding
	Bell States
	Interconversion Between Bell States by Local Actions
	Superdense Coding Protocol

	Cloning Quantum Information
	Historical Roots and Importance of Quantum Cloning
	Impossibility of Exact Deterministic Quantum Cloning
	Universal Approximate Quantum Cloning
	Circuit for Quantum Cloning
	Usability of the Quantum Clones
	Are the Clones Entangled?
	How Entangled are the Clones?
	Expectation Value of an Observable Based on Ideal State
	Expectation Value of an Observable Based on a Clone

	Universal Probabilistic Quantum Cloning
	Broadcasting Quantum Information

	Negating Quantum Information
	Universal Quantum Negation Circuit
	Expectation Value of an Observable Based on the Negated State

	Summary
	Exercises

	Quantum Teleportation
	Uncertainty Principle and "Impossibility" of Teleportation
	Heisenberg Uncertainty Principle

	Principles of True Teleportation
	Local Versus Non-local Interactions
	Non-locality: Einstein's "Spooky Action at a Distance"
	Bell's Inequality

	Experimental Tests of Bell's Inequality
	Speed of Non-local Influences

	Quantum Teleportation Protocol
	Teleportation Does Not Imply Superluminal Communication

	Working Prototypes
	Teleporting Larger Objects
	Summary
	Exercises

	Quantum Cryptography
	Need for Stronger Cryptography
	Satellite Communications Can Be Tapped
	Fiber-Optic Communications Can Be Tapped
	Growing Regulatory Pressures for Heightened Security
	Archived Encrypted Messages Retroactively Vulnerable

	An Unbreakable Cryptosystem: The One Time Pad
	Security of OTP: Loopholes if Used Improperly
	Practicality of OTP: Problem of Key Distribution

	Quantum Key Distribution
	Concept of QKD
	Security Foundations of QKD
	OTP Made Practical by QKD
	Varieties of QKD

	Physics Behind Quantum Key Distribution
	Photon Polarization
	Quantum View of Polarized Photons

	Single Photon Sources
	Entangled Photon Sources
	Creating Truly Random Bits
	Encoding Keys in Polarized Photons
	Polarizers
	Pockels Cells

	Measuring Photon Polarization with a Birefringent Crystal
	Measuring Photon Polarization with a Polarizing Filter

	Bennett and Brassard's BB84 QKD Scheme
	The BB84 QKD Protocol
	Example: BB84 QKD in the Absence of Eavesdropping
	Example: BB84 QKD in the Presence of Eavesdropping
	Spedalieri's Orbital Angular Momentum Scheme for BB84
	Generalization of BB84: Bruss' 6-State Protocol

	Bennett's 2-State Protocol (B92)
	The B92 QKD Protocol
	Threat of "Discard-on-Fail" Unambiguous State Discrimination

	Ekert's Entanglement-Based Protocol
	The E91 Protocol

	Error Reconciliation and Privacy Amplification
	Error Reconciliation
	Privacy Amplification

	Implementations of Quantum Cryptography
	Fiber-Optic Implementations of Quantum Cryptography
	Extending the Range of QKD with Quantum Repeaters
	Earth-to-Space Quantum Cryptography
	Hijacking Satellites
	Commercial Quantum Cryptography Systems

	Barriers to Widespread Adoption of Quantum Cryptography
	Will People Perceive a Need for Stronger Cryptography?
	Will People Believe the Foundations of QKD Are Solid?
	Will People Trust the Warranties of Certification Agencies?
	Will Wide Area Quantum Cryptography Networks Be Practical?
	Will Key Generation Rate Be High Enough to Support OTP?
	Will Security Be the Dominant Concern?

	Summary
	Exercises

	Towards Practical Quantum Computers
	Quantum Error Correction
	How Errors Arise in Quantum Computing
	Dissipation-Induced Bit Flip Errors
	Decoherence-Induced Phase Shift Errors
	Natural Decoherence Times of Physical Systems
	What Makes Quantum Error Correction so Hard?

	Quantum Error Reduction by Symmetrization
	The Symmetrization Trick
	Quantum Circuit for Symmetrization
	Example: Quantum Error Reduction via Symmetrization

	Principles of Quantum Error Correcting Codes (QECCs)
	Classical Error Correcting Codes
	Issues Unique to Quantum Error Correcting Codes
	Modeling Errors in Terms of Error Operators
	Protecting Quantum Information via Encoding
	Digitizing and Diagnosing Errors by Measuring Error Syndromes
	Reversing Errors via Inverse Error Operators
	Abstract View of Quantum Error Correcting Codes
	Minimal Distance of a Code
	n, K, d Quantum Error Correcting Code
	Additive (Stabilizer) Code Versus Non-additive Code
	Pure Versus Impure Code
	Degenerate Versus Non-degenerate Code
	Perfect Versus Imperfect Code

	Optimal Quantum Error Correcting Code
	Laflamme-Miquel-Paz-Zurek's 5-Qubit Code
	Error Operators for the 5-Qubit Code
	Encoding Scheme for the 5-Qubit Code
	Error Syndromes & Corrective Actions for the 5-Qubit Code
	Example: Correcting a Bit-Flip

	Other Additive Quantum Error Correcting Codes
	Shor's 9-Qubit Code
	Steane's 7-Qubit Code

	Stabilizer Formalism for Quantum Error Correcting Codes
	Group Theory for Stabilizer Codes
	The Stabilizer
	Example: A Stabilizer for the 5-Qubit Code
	Using a Stabilizer to Find the Codewords It Stabilizes
	How the Stabilizer is Related to the Error Operators
	Example: Stabilizers and Error Operators for the 5-Qubit Code
	Stabilizer-Based Error Correction: The Encoding Step
	Stabilizer-Based Error Correction: Introduction of the Error
	Stabilizer-Based Error Correction: Error Diagnosis & Recovery
	Stabilizers for Other Codes

	Bounds on Quantum Error Correcting Codes
	Quantum Hamming Bound
	Quantum Singleton Bound
	Quantum Gilbert-Varshamov Bound
	Predicting Upper and Lower Bounds on Additive Codes
	Tightest Proven Upper and Lower Bounds on Additive Codes

	Non-additive (Non-stabilizer) Quantum Codes
	Fault-Tolerant Quantum Error Correcting Codes
	Concatenated Codes and the Threshold Theorem

	Errors as Allies: Noise-Assisted Quantum Computing
	Summary
	Exercises

	Alternative Models of Quantum Computation
	Design Principles for a Quantum Computer
	Distributed Quantum Computer
	Quantum Cellular Automata Model
	Measurement I: Teleportation-Based Quantum Computer
	Measurement II: One-Way Quantum Computer
	Topological Quantum Computer
	Topological Quantum Effects
	Beyond Fermions and Bosons-Anyons
	Abelian Versus Non-Abelian Anyons
	Quantum Gates by Braiding Non-Abelian Anyons
	Do Non-Abelian Anyons Exist?

	Adiabatic Quantum Computing
	Encoded Universality Using Only Spin-Spin Exchange Interactions
	The Exchange Interaction
	SWAPalpha via the Exchange Interaction
	Problem: Although SWAPalpha Is Easy 1-Qubits Gates Are Hard
	Solution: Use an Encoded Basis
	UL1,2, UL2,3, and UL1,3
	Rz Gates in Encoded Basis
	Rx Gates in Encoded Basis
	Ry Gates in Encoded Basis
	CNOT in Encoded Basis

	Equivalences Between Alternative Models of Quantum Computation
	Summary
	Exercises

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

