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Preface

Scotland had three important mathematicians who flourished during the first
half of the eighteenth century and whose names are still revered in the math-
ematical world today. They are of course Robert Simson (1687–1768), James
Stirling (1692–1770) and Colin MacLaurin (1698–1746). I have already been
privileged to write about certain works of Simson and Stirling in earlier vol-
umes in this Springer series (see [108, 109]). Now I am delighted to be able to
complete a trilogy with this account of MacLaurin’s MA dissertation and two
essays for which he was awarded prizes by the Royal Academy of Sciences,
Paris; these items are concerned principally with gravitation, collisions and
the tides.

As on previous occasions I am indebted to many people and institutions
for assistance, advice and encouragement. I would like to record my thanks
to the following in particular:

my colleagues, Dr. Brian Duffy and Professor Ian Murdoch, who read early
versions of parts of this work and provided guidance and information on
some ideas from physics;

my colleague, Dr. Ronnie Wallace, our Departmental Computer Officer,
for his assistance on many occasions with computing matters;

my former postgraduate student, Felipe Catalán, for discussions on the
translation of the Corollaries which appear at the end of MacLaurin’s MA
dissertation;

an undergraduate student, Julie Lindsay, who elected to do her honours
project (2005) on MacLaurin’s essay on the tides, thereby concentrating
my mind on producing for this purpose early versions of some of the
material in Part III of this book;

an anonymous reviewer who made a number of valuable suggestions for
improving presentation and developing various aspects of the work – I
acted on most of these, ignoring only a few which would have taken me
into areas where I did not feel competent to go;

the Department of Special Collections, Glasgow University Library, for
providing me with much of my material, and for permission to use it for
the present purpose;
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my wife, Grace, and my son, Edward, for their general support and en-
couragement; and

my employer, the University of Strathclyde, for providing me with office,
technical and library facilities.

MacLaurin’s diagrams which appear in my Appendices II.2 (p. 80) and III.6
(pp. 209–210) were scanned from photographic plates provided by Glasgow
University Library and are reproduced with permission. The source of the
material in my Appendix I.1 (p. 31) is a hand-written note in the copy of
MacLaurin’s MA dissertation which belongs to the Grace K. Babson Collec-
tion of the Works of Sir Isaac Newton (on permanent deposit at the Dibner
Institute and Burndy Library, Cambridge, Massachusetts); I am grateful for
permission to reproduce this note. I worked originally with a very old, faint
photocopy of this dissertation which is held in Glasgow University Library;
Cambridge University Library kindly provided me with a modern replace-
ment made from their copy of the dissertation.

Finally, it is a very great pleasure to record my appreciation of the work
done on my behalf by the editorial and production staff of Springer-Verlag. I
am particularly grateful to Mrs. Karen Borthwick, the Mathematics Editor at
Springer-Verlag London, with whom I have worked on all three of my books
in this series.

I.T.
Glasgow
September 2006
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General Introduction

The main purpose of the present volume is to discuss, and to make generally
accessible, three dissertations1 by the Scottish mathematician Colin MacLau-
rin (1698–1746), who was regarded both in Britain and in continental Europe
as one of the leading mathematicians of his time. These are:

(i) his MA dissertation at Glasgow University (1713), which is largely con-
cerned with gravity;

(ii) his essay on the collision of bodies, for which he was awarded the prize
by the Royal Academy of Sciences, Paris, in their competition of 1724;

(iii) his essay on the tides, which earned him a share of the prize in the
corresponding competition of 1740.

A brief review of MacLaurin’s life and career2 and of the plan of the present
book will help to put these items in context and give an idea of the importance
of MacLaurin’s work generally.

MacLaurin was born in February 1698 at Kilmodan, Glendaruel, Argyll-
shire, where his father was a minister of the Church of Scotland. Much of the
responsibility for MacLaurin’s upbringing fell to his uncle Daniel McLaurin,3

also a Church of Scotland minister, for his father died when Colin was just
six weeks old and his mother died in 1707. In 1709 MacLaurin enrolled at
the University of Glasgow with a view to studying for the ministry. How-
ever, he soon became fascinated by geometry, perhaps under the influence of
Robert Simson (1687–1768), who was appointed Professor of Mathematics at
Glasgow in 1711.

Following his graduation in 1713 MacLaurin appears to have returned to
his uncle’s home in Kilfinan, Argyllshire, where he continued to study mathe-

1 I have used dissertation as a convenient word to apply to all three works. The term
essay has usually been applied in the literature to items (ii) and (iii), although
treatise is also found, as well as the French mémoire and the Latin dissertatio.

2 The following account is based on my article [107]. For more detailed information
see [54, 70 (73), 95, 104, 110].

3 Various forms of the name are found: MacLaurin, Maclaurin, McLaurin, M’Laurin.
The first form was certainly used by the mathematician (see facsimile of the last
page of a letter of 7 December 1728 from MacLaurin to Stirling in [111], pp. 56–
57) and I prefer to use it for him. However, see Appendices I.2 (p. 32), I.3 (p. 33),
where McLaurin appears.
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matics and divinity. However, in 1717 he became established as a mathemati-
cian by his appointment to the Chair of Mathematics at Marischal College,
Aberdeen.4 In 1719 he spent several months in London; there he met Newton
and was elected a Fellow of the Royal Society. His first book Geometria Or-
ganica [65] was published in London in 1720, two related papers having been
published previously in the Philosophical Transactions in 1718 and 1719.

During 1722–1724 MacLaurin served as tutor to the eldest son of Lord
Polwarth,5 one of the British ambassadors at the Congress of Cambrai. For a
while they settled in Lorraine and it was during this period that MacLaurin
prepared his essay on the collision of bodies. It seems that MacLaurin had
left Aberdeen having neither sought permission nor made any arrangements
for the conduct of his classes during his absence. On his return, following
the death of his pupil, he was called to account but was apparently able to
give an explanation acceptable to the authorities. However, their good faith
was again abused: after some internal dispute, MacLaurin took up the post
of assistant to the ageing James Gregory (1666–1742)6 at the University of
Edinburgh, leaving his superiors at Aberdeen to learn of his new position from
the newspapers. Strong support from Newton had been an important factor
in securing MacLaurin’s appointment at Edinburgh. He remained there as
Professor of Mathematics till the end of his life. In 1737 he was instrumental
in forming the Edinburgh Philosophical Society,7 which developed into the
Royal Society of Edinburgh. His essay on the tides was communicated from
Edinburgh.

The principal testimonial to MacLaurin’s work is his Treatise of Fluxions,
which was published at Edinburgh in 1742. It was designed in part to answer
criticisms of Newtonian calculus: MacLaurin often provides two treatments
of a topic, one using geometrical methods, the other based on the “modern”
analytical approach. Here will be found, among a great many other top-

4 Concerning MacLaurin’s career at Aberdeen see [37, 90, 116, 117].
5 Alexander Hume Campbell (1675–1740), Lord Polwarth 1709, second earl of

Marchmont 1724 (see [54]). This son, Patrick Hume, died at Montpellier in 1724
from fever, much to MacLaurin’s distress (see [70] ([73]), p. iv).

6 This was the nephew of the great James Gregory (1638–1675). He retired in 1725
on a pension which was partly financed from MacLaurin’s salary [41].

7 Concerning this society and MacLaurin’s part in its development see [36]. Amongst
its publications are the Essays and Observations, Physical and Literary, also
known as the Edinburgh Physical Essays, in which MacLaurin’s papers [71] and
[72] appear. The first volume (1754) contains in its Preface the following tribute
to MacLaurin: “No sooner were public affairs composed [after the 1745 rebellion],
than we met with an irreparable loss in the death of Mr. MACLAURIN, one of our
secretaries. The great talents of that Gentleman are generally known and highly
esteemed in the literary world; but the society have, also, particular reason to
regrete in him the loss of those qualities, which form an excellent academician.
Indefatigable himself, he was a perpetual spur to the industry of others; and was
highly pleased with the promotion of knowledge, from whatever hands it came.”
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ics, detailed accounts of Taylor’s theorem and its applications,8 MacLaurin’s
contributions to the Euler–MacLaurin summation formulae, much geometry
(including ideas of projective geometry), and versions or developments of the
material contained in the second and third dissertations.9

MacLaurin was never one to avoid controversy: in the late 1720s and
early 1730s he became embroilled in two quite public disputes, which perhaps
damaged his reputation a little. The first of these was with George Campbell
over priority in the discovery of certain results on complex roots of equations;
to some extent Campbell was an innocent bystander, for MacLaurin’s main
grouse seems to have been that the Royal Society had published a paper
by Campbell, having already published a paper by MacLaurin on the same
topic, in which MacLaurin indicated that he would be providing a sequel
(see [78, 115]). The second was occasioned by a little book on geometry and
the description of curves published by William Braikenridge in 1733 [14].
MacLaurin claimed that he had shown some of the results contained in it
to the author in the 1720s and accused him of passing them off as his own;
one of the disputed results was a five-point construction of a conic, which
MacLaurin certainly had in 1722 (see [67, 79, 106]). As we will see, there is
a marked polemical thrust in the first two dissertations: Cartesian vortex
theory is dismissed in favour of Newtonian ideas in the first and the Leibniz–
Huygens concept of the “force of a moving body” being proportional to the
square of its velocity is severely criticised in the second. Some of the results
in the third dissertation overlap with the work of others, although MacLaurin
himself appears not to have been involved directly in any dispute concerning
priority on this occasion.

MacLaurin died at Edinburgh on 14 June 1746. In a sense he was a victim
of the Second Jacobite Rebellion (1745–46).10 Having been actively involved
in arranging the defences of Edinburgh, he fled to York when it became clear
that Edinburgh would fall to the rebels. He returned the following year in
poor health, from which he never recovered. No doubt MacLaurin would
have given much more to mathematics and natural philosophy had he lived
longer. However, we do have the benefit of his posthumous Account of Sir
Isaac Newton’s Philosophical Discoveries [70] ([73]), which was “Published
from the Author’s Manuscript” and “Printed for the Author’s Children.” It
has considerable relevance to the three dissertations under consideration here,
for it provides background and descriptive material pertinent to all of their

8 Contrary to what is asserted in many calculus books, MacLaurin was fully aware
of Taylor’s work, which he acknowledged in his book. As MacLaurin showed, the
special case of expansion about 0 is sufficient for applications, for it just requires
an initial change of origin.

9 The nature and importance of the Treatise of Fluxions are discussed in [42].
10It is perhaps of interest to note that MacLaurin had benefitted from the First

Jacobite Rebellion (1715). In its aftermath there was an almost total purge of
the faculty at Marischal College; this included MacLaurin’s predecessor, George
Liddell, who was dismissed in 1716 (see [37, 116, 117]).
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contents and it presents a mature and retrospective overview of Newtonian
philosophy.11 The work to be discussed below is founded very much on New-
ton’s Principia and so it is relevant to note that for his first, second, and third
dissertations MacLaurin would have had available to him its corresponding
editions (1687 [81], 1713 [84], 1726 [85]).

In the following pages I have provided translations of the three disserta-
tions. Each has its own introduction in which I have attempted to sketch the
historical and scientific background to the work. Further comment, analysis
and historical detail are given in the notes and appendices which follow each
translation. The notes become increasingly more extensive and more math-
ematical as we move through the work; perhaps this reflects the importance
of the individual dissertations: I have relatively little to say about the first,
while my account of the third far exceeds the original in length. The pres-
ence and location of a note on a particular item is indicated in the individual
contents pages and also by a page number in the margin beside the item;
a note on a Proposition or Lemma also discusses any Corollaries or Scholia
associated with the item. Occasionally a page contains footnotes from both
MacLaurin and me; mine are numbered consecutively throughout the text,
while those from MacLaurin are indicated by one of ∗, (a), (b), (c) (his own
symbols). I have redrawn MacLaurin’s figures in a form which I hope will
make them more helpful: while following the originals as closely as possible,
I have used dotted or dashed traces to separate out individual parts in the
more complicated diagrams representing three-dimensional objects. MacLau-
rin’s published diagrams are reproduced in Appendices II.2 (p. 80) and III.6
(pp. 209–210).

I first came upon MacLaurin’s MA dissertation in the Manuscript Collec-
tion at Glasgow University Library. A photocopy of the original is contained
among materials collected by J. C. Eaton (1915–1972), late of the University
of Strathclyde, for a proposed but unrealised work on MacLaurin; also in-
cluded is a draft translation by Eaton of this dissertation (MS Gen 1332).12

The present translation (Part I) has been made by me independently of this,
although I have compared parts of the two for general agreement. Since the
original seems to be quite rare13 I have reproduced the Latin text in Ap-
pendix I.4 (pp. 34–43). MacLaurin’s sentence structure is quite complicated
– perhaps he wanted to impress just as much with his Latin as with his sci-
entific knowledge; however, I have tried to retain his style except where I felt
that a literal translation was just too convoluted. The 15-year-old MacLaurin

11A detailed study of MacLaurin and Newtonianism will be found in [43].
12Concerning the importance of Eaton’s scholarship and of his contribution to the

development and expansion of higher education in Scotland, see the Foreword
and Preface to [77].

13The Biobibliography of British Mathematics and its Applications [114] shows just
two locations: Cambridge University Library and the Babson Institute. The latter
copy, which is the source of the Glasgow photocopy, is now at the Burndy Library,
MIT (see my Preface).
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demonstrates in his dissertation14 a confident understanding of Newtonian
ideas on gravity and of the arguments against Cartesian vortex theory. He
was later to make significant original contributions to many of the topics
discussed in it.

Accounts of MacLaurin usually tell us that in 1724 (or 1725) he was
awarded a prize for his essay on the ‘percussion of bodies’ but, as far as
I am aware, no account has informed us about its contents. I have tried
to fill this perceived gap with my translation and commentary presented in
Part II. Apart from his nice geometrical treatment of oblique collisions, there
is probably not a lot in this essay which is truly original; however, it does
represent a powerful contribution to the bitterly contested dispute which was
current at the time about whether the “force of a moving body” should be
measured by its momentum or, effectively, by its kinetic energy.

The final dissertation, or essay (Part III), which is concerned with the
tides, is certainly the most important. Its contents are rather better known,
albeit indirectly, for a version of it is contained in the Treatise of Fluxions.
However, the methods used there differ in some respects from those employed
in the essay and the emphasis is rather on the related problem of the figure of
the Earth, then a major topic of research, with the tides taking a subsidiary
role. The most significant and original part of MacLaurin’s essay is his dis-
cussion of the equilibrium of a fluid mass under the mutual attraction of its
particles and certain external forces, which applies equally to the study of
the tides and to the figure of the Earth. Some commentators have described
MacLaurin’s geometrical methods as “exact” (see, for example, [50]), in con-
trast to those of others such as Clairaut, who approximated the spheroidal
Earth by a sphere. However, MacLaurin’s treatment does involve many ap-
proximations, followed implicitly by limiting operations whose justification is
a nontrivial exercise. Nevertheless, MacLaurin achieved a remarkable degree
of completeness in his analysis, for which he fully merited his share of the
prize. This aspect of MacLaurin’s work was much admired by other mathe-
maticians whose own developments in the area were often influenced by what
he had done; such were Clairaut, Lagrange, Legendre and Laplace (see [103])
and in more recent times S. Chandrasekhar has given a rigorous account of
“Maclaurin spheroids” in [24].

Colin MacLaurin certainly ranks among the greatest of the historically
significant Scottish mathematicians, of whom there were not a few (Napier,
Gregory, Simson, Stirling, MacLaurin, among others (see [41])). I hope that
what I have attempted on the following pages will be seen as a worthy tribute
to him.

14This dissertation, as well as the third, brings in some ideas from astronomy, for
which the NASA website http://nssdc.gsfc.nasa.gov/planetary/ is a ready source
of data.
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MacLaurin on Gravity:

De Gravitate, aliisque viribus Naturalibus
(MA Dissertation, Glasgow 1713)
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Introduction to Part I

On 23 June 1713, at the age of 15, Colin MacLaurin graduated with the de-
gree of Master awarded by the Faculty of Arts of the University of Glasgow
[62]. As part of the requirements for this degree he presented and defended
in public his dissertation, De Gravitate, aliisque viribus Naturalibus, which is
the first item in this book. As far as I have been able to ascertain, candidates
were not required to submit their work in printed form. It is likely therefore
that MacLaurin had his dissertation printed with a view to its later use in the
advancement of his career; indeed, it was probably submitted in support of
his application for the Chair of Mathematics at Marischal College, Aberdeen,
which he successfully contested in August–September 1717.15 The disserta-
tion is affectionately dedicated to MacLaurin’s uncle, the Reverend Daniel
McLaurin, who was a father-figure to his growing nephew (see Appendix I.2,
p. 32).16

Much of MacLaurin’s dissertation is devoted to promoting the Newto-
nian theory of gravitation and planetary motion and dismissing the rival
vortex theory of René Descartes (1596–1650), which continued to attract
powerful advocates (see below). MacLaurin also took up theological or philo-
sophical aspects of his topic: Newton had identified a universal law by which
the observed phenomena could be explained, but the question of why bod-
ies attracted each other remained unresolved; for MacLaurin this was not a
problem, but rather an effect to be ascribed to God.17 Coincidentally, the
second edition of Newton’s Principia [84] was published in 1713; the date of
publication is given as 11–14 July by Koyré and Cohen [63], so it seems most

15MacLaurin’s dissertation was printed in 1713 at Edinburgh by Robert Freebairn,
Printer to the King. The copy in the Babson Collection includes a hand-written
note recording in Latin that MacLaurin had given the item to the writer as a
gift when they were “the contestants for the vacant mathematical Professorship
in the New College of Aberdeen” (see Appendix I.1, p. 31). The recipient must
therefore have been Walter Bowman, the unsuccessful candidate [90].

16Daniel sent the dissertation for comment to his colleague, the Rev. Colin Camp-
bell, minister at Ardchattan and a mathematician of some repute (see his entry
in [54]). Campbell’s enthusiastic reply, along with related correspondence, is con-
tained among the Colin Campbell papers at Edinburgh University Library. A
more accessible, typed copy of the reply is to be found among Eaton’s papers at
Glasgow University Library (MA Gen 1332, Box 1). See also Letter 116 in [77].

17See especially MacLaurin’s Propositions VI, XII, XIV below.
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unlikely that MacLaurin knew anything of the changes from the first edition
when he produced his dissertation. It is well known that in the Scholium
Generale added at the end of Book III Newton commented on the deficiences
he found in the vortex theory and on the nature of God and his control of
the system of planets and other celestial bodies.18 There are many points of
contact between MacLaurin’s assertions and the views propounded there by
Newton.19 In common with the essays to be discussed in Parts II and III,
MacLaurin’s MA dissertation has a motto; in this case it appears on the title
page and is appropriately a biblical quotation, namely, Proverbs 3, verse 19
(see Appendix I.3, p. 33): The Lord by wisdom hath founded the earth; by
understanding hath he established the heavens.

An alternative source of inspiration for MacLaurin may have been the
work of the cleric and scholar Samuel Clarke (1675–1729), who will also reap-
pear in connection with MacLaurin’s essay discussed in Part II. Clarke was
a confidant of Newton’s and had published in 1706 a translation into Latin
of Newton’s Opticks ([82, 83]). As Boyle lecturer, Clarke preached a series of
sermons in 1704 and 1705 which were subsequently published in 1705 ([28],
see also [30]); in A Demonstration of the Being and Attributes of God he
presented and argued 12 propositions, or theses, of which the sixth is rele-
vant here: “The Self-Existent Being, must of necessity be Infinite and Om-
nipresent.” The same idea is developed in Newton’s Scholium Generale and it
has been suggested that either Clarke or Newton assimilated it from the other,
or that possibly they formulated the concept through mutual discussion.20

Clarke also produced in 1697 an annotated translation into Latin of Jacques
Rohault’s Traité de Physique, a classic of Cartesian physics; later he became
critical of Cartesian principles and in the edition of 1710 presented Newto-
nian arguments against the vortex theories [93] (see also [94] and the Note
on Proposition XIII below).

To be validated, a theory has to be capable of explaining the observed
phenomena. In the case of terrestrial gravity, the immediate problem was
to explain why bodies apparently fell towards the centre of the Earth. For
planetary motions Kepler’s laws provided the touchstone:

(i) each planet moves in an elliptical orbit with the Sun at a focus;
18Roger Cotes, the editor of [84], also commented on these matters in his lengthy

Preface. There seems to be some dispute about why Newton added the Scholium
Generale. Was it just to defuse criticism of the Principia as a godless book?
Had he come to believe that his science and theology were inextricably linked?
Concerning such questions see, for example [56, 98].

19MacLaurin returned to the theological aspects in his Account of Sir Isaac Newton’s
Philosophical Discoveries [70] ([73]). See its Chapter IX, Of the Supreme Author
and Governor of the universe, the True and Living God.

20See the article at http://en.wikipedia.org/wiki/Samuel Clarke which was orig-
inally published in Encyclopaedia Britannica (1911). Newton had also touched
upon theology in Queries 20 and 23 which were added at the end of Clarke’s
translation [83] (Queries 28 and 31 in [87]) and this material would no doubt
have been familiar to MacLaurin.
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(ii) the radius vector from the Sun to the planet sweeps out equal areas in
equal times;

(iii) the square of the periodic time of a planet in its orbit is proportional to
the cube of the major axis of the orbit.

The inverse square law of attraction, given by Newton but partly anticipated
by others such as Robert Hooke (see [10], p. 98), was capable of explain-
ing these and other phenomena and gradually it became accepted as the
universal basis on which to investigate gravitational phenomena. It must
be remembered, however, that vortex theory, first published in 1644, had
attracted many distinguished physicists, who endeavoured with some suc-
cess to make it work through the introduction of various modifications or to
find a common ground on which both theories could be reconciled. Among
such were Huygens, Leibniz, even Newton in his early work, and Johann
and Daniel Bernoulli, who both received prizes from the Royal Academy of
Sciences in 1734 for essays which used a mixture of Cartesian and Newto-
nian ideas. The rival theories were debated with particular vigour in France,
some notable protagonists being Rohault, Malebranche, Mariotte, Roberval,
Villemot, Saurin, Saulmon, De Mairan, Maupertuis, Molières and Bouguer.
These are just a few of the distinguished names to be gleaned from the pages
of E. J. Aiton’s book [10], where the vortex and Newtonian theories are dis-
cussed along with their histories in considerable detail (see also Aiton’s papers
[6–9]).

In Cartesian theory, the planets float in a certain subtle fluid, also called
aether, and are carried around in it by a system of rigid vortices centred
on the Sun. Planets have their own individual systems of vortices in which
their satellites circulate. To explain terrestrial gravitation it was asserted
that the individual particles of aether, known as boules, circulate about the
Earth more rapidly than the Earth rotates, as a result of which they have
greater centrifugal force, therefore tend away from the surface of the Earth
and in consequence a heavy body above the surface effectively sinks in the
rising aether; arguments involving resultant forces were then needed to ex-
plain why the direction of downward motion is perpendicular to the Earth’s
surface rather than to its axis. This explanation is the topic of MacLaurin’s
Proposition II.21 The Cartesian idea that gravitational effects are brought
about by impulses from the particles of the circulating aether is taken up in
Proposition V.

A further attack is made on vortex theory in Proposition XIII. Here
MacLaurin points out that planets do not have circular orbits, as a sim-
ple vortex theory would require, and that attempts to allow elliptical rather
than circular vortices lead to results which are not compatible with obser-
vations. Here he is following Newton (cf. [81] ([88]), Book II, Scholium to

21MacLaurin used the Latin term thesis in referring to the individual articles of
his dissertation. I have translated this as proposition, its meaning in rhetoric and
logic.
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Proposition LIII; see also [10], p. 110): in the diagram below, aether circu-
lating between the inner elliptical vortex and the outer, more nearly circular
vortex would have to flow more rapidly as it crosses AD than it would when
crossing CP , because of the narrower passage; consequently, in an elliptical
vortex focused on the Sun S a planet would have greater speed at its aphelion
A than at its perihelion P ; this of course is inconsistent with observations
and with the analysis based on the inverse square law of attraction. (See also
my note on Proposition XIII, pp. 28–29.) The fact that the orbits of planets
and comets do not lie in the equatorial plane of the Sun is also put forward
as an argument against Cartesian theory.

C DP AS

Kepler’s second law is first mentioned in Proposition VIII and the third
law in Proposition XI. The inverse square law combining both masses and dis-
tances is stated in Proposition XII, following discussion of the distance aspect
in several of the preceding propositions. MacLaurin concludes in Proposition
XIV that the heavens can contain no material capable of affecting the motion
of the heavenly bodies in the way envisaged by the Cartesians. He observes
in Propositions XV and XVI that all the heavenly bodies attract each other,
so that their orbits are not determined by solar attraction alone; observed
deviations from what is predicted by taking into account only solar attraction
are to be explained in this way. The tides, which form the subject of the third
dissertation22 considered here, are touched upon in Proposition XVII.

The “other natural forces” mentioned in MacLaurin’s title are examined
in Propositions XVIII–XX. In these he is concerned with the cohesion of
small particles in solids and fluids, the action of solvents, surface tension and
capillary action, and the refraction, reflection and diffraction of light. There
is a reference in Proposition IV to the attraction of magnets; essentially
following Newton (Corollary 4 of Proposition VI in Book III of the Principia
[81] ([88]), MacLaurin observes that gravitational attraction cannot be similar
to the attraction of a magnet on a body. It is perhaps surprising that Newton
is not mentioned until the final Proposition and then only in connection with
optics. The dissertation ends with some rather obscure Corollaries, which, it
may be presumed, express some philosophical and theological principles held
by the author.

22Ideas of gravity are also reviewed in its Section II.



Translation of MacLaurin’s Dissertation

A Philosophical Dissertation,

Concerning Gravity, and other Natural Forces.

I. Among the various phenomena of corporeal nature, there are two, which,
as they are very greatly distinguished almost before all others, having been
examined in themselves, have occupied to a very great extent the philosophers
of all time. One of these is that general tendency towards its centre of all
bodies moving about the surface of the earth, which is commonly called
gravity; the other is the regular gyration of planets in their orbits, which recurs
with definite periods. Various hypotheses have been devised by various people
for the explanation in mechanical terms of those phenomena. An impartial
examination of these will prepare the way for explaining and developing that
general law of universal gravitation, to which, it will be established, those two
most noble effects are to be referred as a common foundation, even if at first
sight they seem to have nothing in common; from this we will also seize the
opportunity to consider along the way certain other forces of nature, which it
is necessary to put in place for the solution of certain other phenomena, which
philosophers have undertaken to explain likewise by mechanical theories.

II. To make a start from the gravity of terrestrial bodies, the opinion of
Descartes and of his followers deserves the first consideration. Among other
wonderful effects which they invent for the celestial matter, they also derive
gravity from its very rapid perpetual gyration about the earth; this gyration
necessarily imparts to that matter a violent impulse away from the centre of
the recessional motion, as a result of which terrestrial bodies, having much
less force, are pushed down towards the centre of the earth. In this way water,
or any other fluid, pushes upwards a body thrown into it which is specifically
lighter. However, this hypothesis operates with the obvious disadvantage that
it ascribes a really rapid, and even circular, motion to the celestial material
(no traces of which present themselves to us in the nature of things), and to
explain mechanically the origin and conservation of this material is a matter
of equally great labour and effort, as to give an explanation of gravity itself.
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Moreover, since necessarily this very material has to be supposed devoid of
all gravity, what can nevertheless restrain its centrifugal impulse, which is
continually so violent? It is not the pressure of another encompassing fluid,
for it would be necessary for the former to be restrained in turn by the
latter material, and for motion to be communicated to it; and since this fluid
has to be supposed to be restrained by some other encompassing fluid, that
will also restrain in turn: in this way it will come about that the motion of
this material decreases continually when extended to infinity, and is finally
reduced to nothing. Finally, since this material necessarily performs its orbits
in circles parallel to the equator, it will be necessary for all heavy bodies to
descend in the planes of those circles, and consequently in lines which do not
tend towards the centre of the earth, but are perpendicular to its axis; this
is entirely contrary to experience.

(p.27) III. Others assert that gravity arises from the pressure of the overlying
atmosphere, not noticing that the whole pressure of the atmosphere depends
on this very gravity: for its elastic force itself, without some force acting
against the elasticity, can cause no lasting pressure, since in this way the
whole atmosphere would be rendered rapidly much thinner, as can be easily
brought about in a pneumatic machine, in which we see clearly however that
thinness of the atmosphere causes certain destruction to most, if not to all,
animals. But this opinion is most effectively disproved from the fact that
the force of gravity is found to be much more powerful, when the pressure
of the atmosphere is removed, than when it remains: therefore it is so far
from being the case that that pressure is the cause of gravity, that on the
contrary it weakens the effect of this in all bodies, and in some it removes it
completely: for it takes away from the gravity of any given body just as much
as is equal to the gravity of the mass of air equal in volume to the given body;
moreover, where a negative amount is left, as happens with bodies which are
called light, the bodies do not descend but ascend.

IV. There are those who assert that gravity is an attraction of the same
type as that by which a magnet attracts another magnet or iron; and conse-
quently, if this can be explained mechanically, (which very many consider to
be possible), the philosophical reasoning must apply equally to the former.
However, a very brief comparison of both types of forces will show that the
truth of the matter is quite different. As a result of the force of gravity the
earth attracts in lines tending toward its centre, either exactly or approxi-
mately, any bodies which are moving round about it; and, as will be shown
later, that occurs with forces which, at equal distances from the centre, are
proportional to the amount of matter in the individual bodies, while at dif-
ferent distances they decrease in the ratio squared of the increased distances.
A magnet, on the other hand, does not attract in this way towards its centre,
but rather towards one or other of its poles; thus it does not attract equidis-
tant bodies with forces proportional to their quantity of matter, so that in
the case of equal bodies it attracts some with greater force, others with less
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force, and the greater part with none at all: in general it decreases in the
ratio of the distances to a higher power than the square.

(p.27) V. Not a few other arguments can be introduced, which overthrow some-
times only the proposed hypotheses, sometimes all other possible hypotheses,
offering a mechanical solution of gravity; so far they certainly show that the
descent of heavy bodies can result from no bodily impulse. In particular, since
the momenta of the motions are always as the quantities of matter whenever
the velocities are equal, and since heavy bodies at the same distance from
the centre of the earth tend towards it with equal velocity (if we ignore the
resistance from the atmosphere), it is clear that the impressed forces are di-
rectly as the quantities of matter in the bodies themselves, no account having
been taken of the shape, texture or bulk. But if gravity were to arise from
any impulse of a surrounding fluid, that impulse would consist either of a
percussion of the parts, freely moved, of the fluid towards the same region
to which the impelled body is driven, or of a pressure of the whole fluid
pressing more powerfully against an obstruction placed on the other side: in
the former case the force is impressed in proportion to the surface, in the
latter in proportion to the bulk of the impelled body; in neither case is it in
proportion to the quantity of matter. Moreover, every impulse pushes a body
at rest to a greater extent than a body set in motion, so that, the greater the
velocity by which the impelled body is moved, the less the impelling body
adds increment of velocity to it, until the whole impulse stops, as well as
the acceleration of the motion, the velocity of the impelled body and of the
impelling body having been made equal: but gravity (as has been ascertained
from very accurately set-up experiments) adds equal increments of velocity
in equal time both to a very rapidly descending body and to a body starting
at rest. It is therefore clear that gravity can arise from no corporeal impulse.

(p.27) VI. If to the Proposition now proved two others are joined, it will be clear
what is to be thought about the cause of gravity. One of these is as follows:
suppose that a body placed at rest is moved from its position, the motion to
be forced on it by some external cause, either corporeal or incorporeal; all the
more so if the body, having been projected towards one plane, is cast back
into the directly opposite plane; then that new and opposite motion is to be
considered as resulting from an external cause. The other is that no body
can move another body, unless by impulse, i.e., a body can exert no force at
a distance, in other words, it cannot act where it is not present. Therefore
let us mention that, whenever we are following the commonly accepted and
concise method of speaking of bodies attracting other bodies or repelling
them without impulse, we wish to indicate by such phrases, not the true and
properly named cause of the motion which is being discussed, but only the
purpose for whose effect the force is applied for such movement in accordance
with some general law of nature, and at the same time the boundary towards
which, or from which, that force is directed: let it suffice to have advised of
this once. The former shows that the gravity of terrestrial bodies arises from
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some external cause; the latter shows that its cause is not some corporeal
thing, if indeed it is proved by the above Proposition that it does not arise
from an impulse. Therefore it only remains for the cause of gravity to be
recognised as a will capable of some incorporeal and intelligent cause which
exercises its force uniformly according to a certain general law. But of what
type this intelligent cause may be, will easily be accessible to anyone who
considers that the whole structure of the globe of the earth is preserved
and strengthened by this very gravity; otherwise this would rapidly fall to
pieces, having been broken up by the centrifugal impulse. Gravity prevents
mountains, seas, cities, people, and other living beings thrown off the surface
of the earth from being scattered far through the vast region of the heavens.
The subsistence and nutrition of both humans and the other living beings
depend on gravity; thus it is that the lord of the earth and the preserver of
mankind is to be recognised most deservedly as the creator of gravity.

(p.27) VII. That the parts of the remaining planets and of the Sun are also
joined together by gravity of this type is shown by their rotations about
their axes, necessarily producing a centrifugal tendency, which would scatter
rapidly those parts unless they were held together by gravity: indeed, these
rotations in the Sun and very many of the planets are known through ob-
servations; moreover, in Jupiter especially they are known not only from the
occasional gyration of the spots but also from the spheroidal shape arising
from the same rotation, which is sufficiently discernable on account of the size
of the body and the rapidity of the motion. Moreover, it will be clear from
what is to be said later that this mutual gravity of the parts of individual
planets towards each other agrees in all respects with our terrestrial gravity.

VIII. But the effectiveness of this principle is not contained within these
boundaries; for a careful comparison of those effects will show quite clearly
that that force by which planets are held in their orbits is certainly of the
same type as that by which terrestrial bodies are pushed down towards the
centre of the earth. It was demonstrated long ago that a body which is moved
about another in such a way that, when radii have been drawn to the centre of
the latter, it describes areas which are proportional to the times, is held in its
orbit by a force which is constantly directed towards the centre of that other
one. Therefore, since it has been determined that this is in fact the case with
all primary planets and comets relative to the Sun and secondaries relative to
their primaries, it is thus established that the force by which planets are kept
in their curvilinear orbits has this in common with the gravity of terrestrial
bodies: they tend towards the centre of some large body. Their agreement in
other respects can be shown no less clearly.

(p.28) IX. And first of all, it is proved as follows that the centripetal force
of the Moon (by which it is pushed towards the centre of the Earth, as is
clear from what has just been said) is the same as our terrestrial gravity.
Gravity (according to very carefully set-up experiments with pendulums)
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drives terrestrial bodies down by 15 1
12 Parisian feet in one second, and thus

(since the distances traversed by heavy bodies are as the squares of the times)
by 60×60×15 1

12 feet in the first minute: in this same time the Moon is taken
away from the tangent, to be diverted towards the Earth through a length of
15 1

12 feet: for a comparison of the periodic time and the size of the orbit shows
clearly that the versed sine of the arc described in that time is of this size:
therefore the accelerating force of the Moon towards the centre of the Earth
is to the accelerating force of terrestrial bodies towards the same as 15 1

12 to
60 × 60 × 15 1

12 , or as 1 to 60 × 60. And since the mean distance of the Moon
from the centre of the Earth is sixty times the distance of terrestrial bodies
turning about its surface from the same, it is clear that terrestrial bodies, as
well as the Moon, are pushed towards the centre of the Earth by forces which
are reciprocally proportional to the squares of the distances from the same.
Further, since this is the nature of the centripetal forces of the Moon in the
various parts of its orbit, being an ellipse described about the Earth, which
is located at a focus, it is clear that terrestrial bodies as well as the Moon are
pushed towards the centre of the Earth by the same force, varied according
to the aforementioned law at the different distances.

(p.28) X. Moreover, since this same law, namely, that centripetal forces are
[reciprocally] as the squares of the distances, holds for all bodies describing
some conic section about another point located at a focus, and since the
orbits of all planets and comets are known to be of that type (if perhaps
you exclude the Jovian satellites, whose perfectly circular orbits, if viewed
separately, can be reconciled by means of some law of centripetal force), it is
clear that the centripetal forces of them all are of the same type as is that
force by which the Moon and terrestrial bodies are pushed towards the centre
of the Earth.

XI. This same law of centripetal forces holds no less for different planets
revolving about the same central body, as for the same planet at different
distances from the body towards which it tends: in fact it has been demon-
strated that, where several bodies revolve about the same central body in
such a way that the squares of the periodic times are in the ratio of the cubes
of the mean distances, they are all attracted to that central body by forces
which are reciprocally proportional to the squares of the distances from the
same body. Moreover, it has been ascertained from very accurate observa-
tions that all planets which revolve about the same central body, obey that
very ratio of distances and times.

XII. Therefore, since the accelerating force of terrestrial bodies towards
the Earth and of planets as well as comets towards their own central bodies
decreases in the square of the ratio of the increased distances, this force will
be equal in different bodies tending towards the same centre, at the same
distance from it; and so their inertial forces, or weights, will be proportional
to the quantities of matter in them. Moreover, since the reaction is always
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equal to the action, the tendency of that central body towards those other
bodies will be equal to their weight, and so proportional to the amount of
matter in them. It is therefore clear that universally the weights of bodies
are in the ratio compounded of the direct ratios of the quantities of matter of
the gravitating bodies and of the bodies into which they gravitate, and of the
reciprocal ratio of the squares of the distances. And so, since the centripetal
forces of planets and comets and the gravity of terrestrial bodies are clearly
of the same type, there is no reason why we should not think that the former
just as the latter are to be ascribed to the efficacious and uniformly acting
will of the wisest and most powerful creator as the single cause.

(p.28) XIII. Meanwhile the Cartesians undertook to solve mechanically this
phenomenon, as almost all others: the refutation of their hypotheses must
destroy all hope of a mechanical explanation. According to them, by rotating
about its axis, the Sun carries around a certain subtle fluid and the primary
planets, which are swimming in it; these also have individually their own
vortices, in several of which the secondaries are carried away. But first, since
planets do not describe circles, they cannot be carried around in vortices
which are infinitely extended or confined by a spherical vessel; but if the
bounds of a vortex are arranged otherwise, the planets will deviate more from
a circular path the further they are from the centre; and the aphelia of them
all will be found in the same celestial region: for otherwise the eccentricity
of the lower planets would be much greater than that of the higher planets;
the aphelia of Mars and Venus would be almost opposite; for their distance
at the beginning of Virgo is almost one and a half times the distance of the
same at the beginning of Pisces. This observation provides another argument
against the vortex hypothesis. For, since the motion of a fluid carried around
through unequally sized canals must be more rapid in narrower places, it is
clear, according to the Cartesian hypothesis, that a fluid in which the Earth
is swimming (and therefore the earth itself), intermediate to those two orbits,
must be carried more rapidly at the beginning of Pisces than at the beginning
of Virgo: this is clearly incompatible with observations. Furthermore, if the
vortices are homogeneous, the periodic times will be as the squares of the
distances; but if they are heterogeneous and the parts further away from the
centre are more dense, as Descartes maintained, and the theory requires, the
periodic times will be as some higher powers of the distances; however, the
periodic times of the planets are only in the ratio of the mean distances, raised
to the power one and a half. But the Cartesian vortices are most effectively
rebutted by the inclination of the planetary orbits to the axis of the Sun
and to one another, and by the motion of the comets, at one time directly
opposed to the movement of the planets, at another time perpendicular to
their orbits.

(p.29) XIV. Therefore, since the celestial material (if there is any) is not carried
around with the planets, and besides it will not have impeded their motion
to any noticeable extent over so many thousands of years, and since it opens
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up such an easy way for comets swimming very rapidly through it, it is clear
that the regions of the heavens are as free as possible and consequently no
material, which is sufficient to deflect regularly the continuous motion of
so many bodies, is to be found in them. Therefore the motion of planets
and comets in curvilinear orbits arises from no impulse of any imperceptible
small bodies, and so from no mechanical cause. And hence it adds much to
the magnificent idea, established by the 6th Proposition, of the creator of
gravity, who, it is now agreed, is master not only of the whole earth, but
also of heaven, and the protector of all its inhabitants; who preserves the
structure of all heavenly bodies; by whose powerful right hand the planets,
driven in perpetual orbits about a common central body, are saved from being
perpetually frozen and enveloped by the densest darkness and losing all other
things which are concerned with the preservation of vegetation or animals as a
result of having been carried away by a centrifugal impulse through the empty
vastness and deprived of every benefit which they now receive from the Sun.
But, just as this centrifugal impulse, if it were not restrained by gravity, would
cause to all planets certain damage, by carrying them away from the Sun, so
no less would gravity bring upon them certain destruction, by casting them
into the burning atmosphere of the Sun, if projectile motion had not been
impressed upon them: indeed, when these two forces have been combined,
it is necessary that they are carried about the Sun in some curved line; this
line will be circular if the direction of the projectile motion is perpendicular
to the radius drawn to the Sun, and its force will be equal to the force of
gravity: but if either of these conditions is lacking, that curve will be some
conic section. The things that are said here concerning the primaries with
respect to the Sun, are to be understood for the secondaries likewise with
respect to their primaries.

(p.29) XV. Now it has been shown that the primary planets gravitate towards
the Sun and the secondaries towards their primaries: moreover, since any
body which describes about another, however it is moved, areas which are
proportional to the times, is driven by all the accelerating force by which
that other is driven in addition to the force tending towards that other,
it is thus clear that the secondary planets, no less than the primaries, are
heavy towards the Sun. But it is clear from certain perturbations of their
motions, which can be derived from no other cause, that mutual gravitation
affects not only the primary planets in connection with the Sun, and the
secondaries in connection with the Sun and their primaries, but also planets
of the same order, e.g., the primaries among themselves; such effects are
the migrations of the apsides and the nodes, etc., which are quite perceptible
whenever they reveal themselves, especially those in Jupiter and Saturn round
about the heliocentric conjunctions of these planets, on account of their vast
size and distance from the Sun, and the simultaneous slowness of their motion.
Moreover, since the motions of their satellites are also found to be perturbed
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perceptibly in those conjunctions, it is clear that there is also an interaction
of gravitation between the primary planets and the secondaries of others.

(p.29) XVI. Indeed nothing demonstrates more clearly the effectiveness of that
universal law, according to which all bodies gravitate mutually towards each
other, than those variations which have so racked the minds of astronomers
of all time, namely, the irregularities of the lunar motion. For, if the law of
gravitation is assumed, the accelerating force towards the Sun of the Moon,
whose distance from the Earth is of significant magnitude (even when it is
compared with the distance of the Earth from the Sun), must sometimes be
greater and sometimes less than the accelerating force of the Earth towards
the Sun: this inequality will be greatest when the Moon is in the syzygies;
in the quadratures it will be least, or there will be none at all; as a result
of this it turns out that its motion from the quadratures to the syzygies
(other things being equal) is accelerated, while that from the syzygies to the
quadratures is retarded; and so the curvature of its orbit and the distance
from the primary (other things being equal) will be greater in the latter, than
in the former: hence the Moon also does not always describe areas about the
Earth which are exactly proportional to the times: these things all agree
very well with observations. In a word, whatever irregularities in the motion
of the Moon are detected by observations (indeed very many are detected),
they are explained a priori as a necessary consequence of the assumption
of what we have called the universal law of gravitation, which is therefore
to be considered as corroborated to a very great extent by them. Also from
the same law, and with equal clarity, is deduced the known precession of the
equinoxes and the oscillation of the axis of the Earth, which takes place twice
a year.

(p.30) XVII. Moreover, according to this law, the parts of any terrestrial fluid
gravitate towards the Moon or the Sun, perceptibly more when turned di-
rectly towards the Moon or the Sun, but less when turned away, than the
centre of the Earth, or its whole mass taken together; in this way such an
amount is consequently taken away from their gravity towards the Earth:
however something is added to the gravity towards the Earth of the parts
which are lateral or intermediate between the averted and obverse parts,
when the attraction of the Sun or of the Moon acts together with it a lit-
tle: hence it follows necessarily that, while the averted and obverse parts are
lighter, the lateral parts on the other hand are heavier, the former having
been pressed upwards by the latter, until they counterbalance through the
height of the columns, because there is a deficit in their accelerating gravity:
moreover, the forces of the Sun and of the Moon bring about the rise of the
terrestrial fluids (namely, the atmosphere and the sea), which is not a twofold
effect but a unique one to be determined from their combination; because of
the different distances of those luminaries from the Earth and their declina-
tions from the equator, this must vary, namely, in the cube of the inverse
ratio of those distances. And from this fact, and no other, all phenomena of
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the tide of the sea can be very easily deduced; these things therefore bring
the greatest confirmation to the principle of gravitation, which has now been
validated.

XVIII. In addition to that gravity, which we have been discussing so far, by
which all particles of matter tend mutually towards each other, without any
distinction of shapes, forms, circumstances or motions, the forces decreasing
in the square of the ratio of the distances, there is also a certain other force, by
which very small particles of matter which touch each other, or are very close
to contact, tend mutually towards each other more powerfully than according
to the law of gravitation just explained: this force is reduced in more than
the square of the ratio of the increased distance: and since this force acts only
where there is contact or almost contact, the cohesion of any two particles of
matter will be stronger according as their contact is greater; and so particles
which have larger surfaces which are flat, or at least mutually congruent,
adhere very firmly to each other; but those which are spherical, or else have
convex surfaces, adhere more weakly (if at all); particles of the former type
make up a moderately hard body, while those of the latter type form a fluid;
and from the various intermediate types of contact arise various cohesions:
thus, in a word, otherwise unsolvable phenomena, both of solidity and fluidity,
can easily be explained. But since this force reveals itself not a little at very
small distances, although the parts of the body may be separated somewhat
by some external force, as long as they coalesce no more closely with new
particles, then, when that external force has been taken away, they will revert
to their former contacts and cohesions; in this way the body will recover its
former shape, which otherwise it will necessarily lose completely. And the
nature of elasticity and flexibility is very well explained in this way. And from
these things it can be understood how a great difference of attractions arises
in different particles as a result of their different shape and texture; for on
this account some things tend mutually towards each other with scarcely any
force, while others do so with very great force: most notable among the latter
are the acid salts which generally predominate in solvents; for, having been
attracted by the particles of the body to be dissolved, they fall down into its
pores, as long as they are of suitable size, with such a large force that they
separate the particles unless they stick together very strongly. The solutions
of all bodies are easily explained in this way.

XIX. Also from this mutual attraction of very small particles of matter, an
exceedingly large number of phenomena of fluids, which would otherwise be
unsolvable, can be easily explained. For, from the fact that particles of water
attract particles of wood or glass more powerfully than each other, arises
that known phenomenon that water confined in a wooden or glass vessel
is higher near the sides of the vessel than in other places; and so in very
small tubes immersed a little in it the water is higher inside the tube than
outside; but since particles of mercury attract each other more powerfully
than particles of wood or glass, the effect is quite the reverse. Hence it may
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also be that, since they must fall under the force of gravity, tiny drops of
water and of other fluids are propped up by glass, wood and very many
other bodies. And just as a spherical figure of the planets necessarily arises
from the equal gravity of the parts in the planets mutually towards each
other, so from the equal centripetal force of the particles of water, mercury
and similar fluids, mutually approaching right up to each other, arises the
spherical shape of tiny droplets in those fluids. From what has just been said
the reason for the congruity of water with wood, glass and other bodies and
the incongruity of mercury with the same bodies can be understood; and with
equal ease all remaining phenomena of the congruity and incongruity of fluids
are resolved. Finally, it is clear from this why grains of sand and several other
tiny bodies which are specifically heavier than water nevertheless do not sink
in it: namely, the mutual attraction of particles of water, although it may be
very small, nevertheless produces some resistance, to the overcoming of which
the gravity of those small bodies is not equal. Most of these phenomena were
explained by very many people through the action of the atmosphere; their
error is shown by the fact that these phenomena are also found to occur in a
vacuum.

(p.30) XX. The same mutual attraction of the particles of matter having been
supposed, the phenomena of crystallisation, precipitation, the congealing of
fluids, electricity, and very many others can be explained very easily; it is
not possible to dwell on these matters. But the explanation of the refraction
of rays of light, which comes out from this, is a matter more worthy than
something which deserves to be passed by completely untouched. Tiny par-
ticles or rays of light are bent in their passage near the corners of bodies
(as is confirmed by the observations of the distinguished Newton), the effect
being greater the nearer they approach to the bodies: it is quite clear that
such a regular bending results from no impulse of particles flowing out from
the bodies, but from some completely unmechanical force, which is impressed
upon them by the Author of nature, according to a certain law, in proportion
to the various distances from the bodies, towards which they are directed,
or from which they are receding: a force of this type having been assumed,
the author who has just been extolled has shown that it necessarily follows
that the sine of refraction is always in a given ratio to the sine of incidence,
whatever the obliquity of the incidence; this he shows to be the case by exper-
iment. It is therefore necessary that the rays which fall obliquely from a rarer
medium into another, which is more dense or in some way more attracting,
having been attracted by this denser medium, are bent before they come in
contact with it, so that the line of direction of the ray after it has entered the
body makes a smaller angle with the perpendicular than before the bending:
and hence comes about refraction towards the perpendicular. But if the ray
of light falls obliquely from a denser medium into a rarer one, or one that
is at least less attracting, then, on account of the greater attraction of the
former, it will be curved towards it on or immediately after exit, so that the
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direction of the ray now makes a greater angle with the perpendicular than
before: and hence comes about refraction away from the perpendicular. But,
if in this case the angle of incidence is exceedingly large, refraction will be
changed into reflection, so that the angle of incidence is equal to the angle
of reflection: it is clear that meanwhile the motion of a particle of light is
accelerated in the former case but retarded in the latter; and hence it is that
the velocity of light is generally much greater in a denser medium than in a
rarer one. Moreover, when the ray is directed only towards the parts lying
perpendicularly below it, clearly the ray stays in the same plane perpendicu-
lar to the refracting surface throughout the whole period of bending. Again,
from the different forms of the rays of light, or perhaps from different ve-
locities, there arise different attractions among the rays of light and some
bodies and so different degrees of refractability. Also by some similar prin-
ciple may be explained those amazing alternations of easier reflection and
transmission, which the same most distinguished author has shown by very
many experiments to occur in rays of light.

COROLLARIES.

I. The simple and unordered nature of the mind does not allow it to exist
in any part of space in such a way that it is coextensive with it; nor indeed
does it prevent it from being present in one place, namely, where the body
is, in such a way that it is not present similarly in another place.

II. Although the real or absolute essences of substances are unknown to
us, it in no way follows from this that we can pronounce nothing certain
concerning their dispositions and mutual relationships.

III. Moral philosophy rests as it were on the necessary foundation of the
existence and providence of the greatest divine power, especially in so far as
this reveals itself in the dispensing of rewards and penalties.

IV. For the sake of preserving life or averting some serious injury, any laws
can be set aside, namely by actions indicating agreement, even if extorted
by the very unjust ferocity of the one in whose favour they are put forth,
until they are set aside; thus it can happen that as a result of such action
one man does not have the right to seek anything or to keep something in his
possession, while another, who has willingly committed himself to bringing
some law to the matter and thus to taking an obligation upon himself, is
bound entirely by trust.

THE END.



Notes on Part I

Note on Proposition III (p. 16). Newton makes similar observations in
the Scholium Generale, referring more specifically to “Mr.Boyle’s vacuum.”
At the end of the article MacLaurin applies the principle of Archimedes: the
body experiences an upthrust equal to the mass of the displaced air.

Note on Proposition V (p. 17). Concerning collisions, which are the topic
of the second dissertation discussed in this book, see my Introduction to Part
II, p. 49. For a body falling under gravity we have v = v0 +gt, where v0 is the
velocity at time t = 0; this is independent of the mass of the body and leads
to v2 −v1 = g(t2 −t1); thus, as MacLaurin asserts, there are equal increments
of velocity in equal times irrespective of the initial velocity.

Note on Proposition VI (pp. 17–18). The statement that “a body can
exert no force at a distance, in other words, it cannot act where it is not
present” was a much debated philosophical tenet. MacLaurin uses it to assert
that gravitational attraction cannot be an impulsive force. But it could also
be seen as denying the possibility of one body attracting another body at a
distance from it. It is perhaps of interest to note that the theological aspects of
MacLaurin’s Proposition VI share common ground with the ideas expressed
in Clarke’s sixth proposition, to which reference was made above.

Note on Proposition VII (p. 18). It is now believed that Jupiter’s spots
are caused by vortices, in the sense of cyclones and anticyclones in its atmo-
sphere, which are visible because of the material stirred up by them. These
storms can last for centuries, although it appears that in recent times spots
have been combining or even disappearing. Jupiter has a marked oblateness
due to its liquid composition and rapid rotation about its axis. About 1740
Maclaurin presented a paper to the Edinburgh Philosophical Society con-
cerning the surface of Jupiter; this was published posthumously in 1754 [72].
In it he speculates on the possibility of very large tidal effects on Jupiter
brought about by the conjunctions of its four known moons. He also observes
that, since Jupiter is noticeably spheroidal in shape, it is definitely wrong to
consider that particles gravitate towards its centre.
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Note on Proposition IX (pp. 18–19). Here MacLaurin is following New-
ton’s discussion in Proposition IV of Book III of the Principia [81] ([88]). A
Parisian foot was about .325 metres, which makes 15 1

12 Parisian feet about
4.9 metres. The distance travelled by a body falling under gravity is given by
s = 1

2gt2 + v0t, where v0 is the velocity at time t = 0. Thus, a body falling
under gravity from rest travels 1

2g units in the first second, where g is the
acceleration due to gravity; with g = 981 cm/s2 we have approximately the
figure quoted by MacLaurin.
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The versed sine of the arc PQ of the circle shown is the length TP ; in modern
notation this is R(1−cos θ), where R is the radius of the circle. It is also equal
to the length QS, which is what MacLaurin means by the diversion from the
tangent. The mean distance of the Moon from the Earth is 384,467 km and
the Earth’s volumetric mean radius is 6,371 km, which is consistent with the
assertion by MacLaurin (from Newton) of a factor of 60.

Note on Proposition X (p. 19). The word reciproce [reciprocally] was
written in by hand in the original. The Jovian satellites to which MacLaurin
refers are the Galilean satellites Io, Europa, Ganymede and Callisto, which
were discovered by Galileo in 1610. Their orbital eccentricities are 0.004,
0.0101, 0.0015 and 0.007 respectively, and so it would have been difficult in
MacLaurin’s time to distinguish their orbits from circles. By way of contrast
let us note that for the Earth and the Moon we have 0.0167 and 0.0549
respectively for the orbital eccentricity.

Note on Proposition XIII (p. 20). MacLaurin refers here to the zodiacal
calendar in which dates correspond to when the ecliptic crosses certain con-
stellations: in the present-day astronomical version the beginning of Virgo is
about 17 September and the beginning of Pisces is about 12 March. He uses
an argument which is an extension of that cited against the vortex theory
in my Introduction (pp. 13–14): the orbit of the Earth is intermediate to the
orbit of Venus (nearer the Sun) and the orbit of Mars (further away from the
Sun); if the Earth is carried around by aether circulating between the vortices
of Venus and Mars, then the speed of the Earth will be greatest where these
vortices are closest and least where they are furthest apart; again this is not
consistent with observations. This material appears to be drawn from New-
ton’s Scholium to Proposition LIII in Book II of [81] ([88]); it is also found
in Clarke’s notes in [93, 94] (see his note on Part II, Chapter 25, Article 22).
MacLaurin’s point about eccentricities may be based on the following: in a
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model in which each orbit has a focus at the Sun, semimajor axis of length
a + d and semiminor axis of length b + d, it is easily seen by elementary
calculus that the eccentricity decreases as d increases.

Note on Proposition XIV (pp. 20–21). The term projectile motion refers
to the initial conditions under which a planet was set in motion, its orbit being
determined thereafter by the inverse square law of attraction.

Note on Proposition XV (pp. 21–22). MacLaurin refers to the “helio-
centric conjunctions” of Jupiter and Saturn: these occur where the planets are
aligned with the Sun and are on the same side of it. Then the attraction of the
Sun on Saturn, the outer planet, is augmented by the attraction of Jupiter,
the inner planet, on Saturn, while the attraction of the Sun on Jupiter is
diminished by the attraction of Saturn on Jupiter. Significant forces are in-
volved here: the distances from the Sun to Jupiter and from Jupiter to Saturn
are comparable and these planets are massive, the mass ratios of Jupiter and
Saturn to the Earth being 317.83 and 95.159, respectively. The apsides of an
orbit are the points where the orbiting body is closest to or furthest from its
central body; the nodes are where the orbit crosses the ecliptic. These vary
due to the influence of other orbiting bodies.

Note on Proposition XVI (p. 22). Here MacLaurin comments on the
distortion of the Moon’s orbit about the Earth due to the attraction of the
Sun. In the syzygies the Sun, Moon and Earth are aligned, with the Sun
and Moon in conjunction (Sun–Moon–Earth) or in opposition (Sun–Earth–
Moon); in the quadratures the radius vector from the Earth to the Moon is
perpendicular to that from the Sun to the Earth.
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In the quadratures (M2, M4) the distances SM2, SE, SM4 are approximately
equal, so the accelerations of the Earth and the Moon towards the Sun are
approximately the same. However, in the syzygies (M1, M3) the acceleration
towards the Sun of the Moon at M1 will be greater than that of the Earth
and at M3 less than that of the Earth. Relative to the Earth the motion
of the Moon will be affected by an accelerating force towards the Sun as it
moves from quadrature to syzygy M1 and then there will be a retarding force
as it continues on to the next quadrature.

Newton discussed the precession of the equinoxes in Propositions XXI and
XXXIX of Book III of the Principia [81] ([88]). By “oscillation of the axis of
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the Earth” MacLaurin probably means the nutation of the axis referred to
by Newton in Proposition XXI: “the axis of the earth, by a nutation in every
annual revolution, twice vibrates towards the ecliptic, and as often returns
to its former position” [15].

Note on Proposition XVII (pp. 22–23). The roles of the Moon and the
Sun in bringing about the tides in the waters of the Earth, which is considered
in this Proposition, is of course the subject of the third of MacLaurin’s disser-
tations and more detailed discussion will be found in Part III. The clause “un-
til they counterbalance through the height of the columns” refers to a known
condition for the equilibrium of fluids: columns through the fluid meeting at a
point must exert equal pressures at the point. Concerning MacLaurin’s refer-
ence to “the cube of the inverse ratio of those distances,” see my Introduction
to Part III, p. 91.

Note on Proposition XX (pp. 24–25). Here Maclaurin is referring to
Newton’s Opticks ([82, 83], see also [87]). First he mentions the bending of
rays of light ‘near the corners of bodies’, which is known nowadays as diffrac-
tion; again it is an effect to be attributed to God. Then he gives the law of
refraction, which states in modern terminology:
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where θ1 is the angle of incidence, θ2 is the angle of refraction, and the ray of
light is passing from a medium with refractive index n1 into one with refrac-
tive index n2. MacLaurin appears to attribute this law to Newton, who gives
it in Proposition VI of Book I of [82]. However, it is generally known as Snell’s
law after the Dutch scientist Willebrord Snell (1580–1626), who formulated a
version of it about 1621; Newton certainly recognised Snell’s contribution in
the Scholium to Proposition XCVI in Book I of [81] ([88]). MacLaurin notes
that, in going from a rarer to a denser medium (n1 < n2), the refracted ray
makes a smaller angle with the normal (sin θ2 < sin θ1), while in passing from
a denser to a rarer medium (n2 < n1) the reverse will occur unless “the an-
gle of incidence is exceedingly large”: specifically, if n1n

−1
2 sin θ1 > 1, Snell’s

law cannot be satisfied and the ray of light must be reflected (total internal
reflection). The phrase “alternations of easier reflection and transmission”
found in the last sentence refers to Newton’s explanation for the formation
of the interference patterns, now known as Newton’s rings. At an interface a
ray of light could be reflected or transmitted – in Newton’s terminology ([87],
Book II, Part III, Definition): The returns of the disposition of any Ray to be
reflected I will call its Fits of easy Reflexion, and those of its disposition to
be transmitted its Fits of easy Transmission, and the space it passes between
every return and the next return, the Interval of its Fits.
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I.1. Hand-written note at the beginning of the copy of
MacLaurin’s MA dissertation in the Babson Collection23

Anno 1717 mense Augusto, cum Abraedoniae pro Professione mathematica in
Collegio Novo vacante, Ventilationem publicam in omnibus matheseos part-
ibus Aemuli pericularemur per duas continuas Hepdomadas, Hanc mihi dono
dedit, Benevolentiae et amicitiae pignus quam postea Lunevillae culti sumus
in Academia Equestri Lotharingiae Ducis anno 1724 cujus post obitum suum
non fui immemor. Anno 1746 nam cum Synopsis Philosophiae Newtonianae,
opus ejus posthumum, collatitia pecuniae ederetur, familiae suae gratia, vig-
inti quatuor Exemplaria inter amicos meos elocavi.

Translation

In the month of August of the year 1717, when we, the contestants for the
vacant mathematical Professorship in the New College of Aberdeen, were
examined during two uninterrupted weeks in all parts of mathematics, he
gave this to me as a gift, a token of good-will and friendship, which we
developed afterwards at Luneville in the Academy of the Order of Knights
of the Duke of Lorraine in the year 1724. I was not forgetful of him after
his death in the year 1746, for when the Synopsis of Newtonian Philosophy,
his posthumous work, was published by subscription, for the benefit of his
family, I lent out 24 copies among my friends.

23 The inscription is apparently by Walter Bowman, who was considered along
with MacLaurin for the Professorship [90]. He is probably the Walter Bowman
(1699–1782) recorded in [54] as a tutor and antiquary. The Synopsis of Newtonian
Philosophy mentioned is [70] ([73]); Bowman does appear on its subscription list.
This note is reproduced with permission (see my Preface).
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I.2. MacLaurin’s Dedication

Viro Reverendo,
Mro. DANIELI McLAURIN,

Ecclesiæ ad Cellam Finani Pastori fidelissimo,
Patruo suo spectatissimo,

Ob affectum curamque plane parentalem,
Patris charissimi loco semper honorando,
Dissertationem hancce Philosophicam,

studiorum suorum primitias,
In animi grati & perpetuum addicti tesseram,

D. D. C. q.
Colinus McLaurin, Auctor.

Translation

To the Reverend,
Mr. DANIEL McLAURIN,

Most faithful Minister of the Congregation
at the Church of St Finan,
His most esteemed Uncle,

For his love and wholly parental care,
In the place of his dearest Father,
which is always to be honoured,

Colin McLaurin, the Author
Gives, devotes and dedicates

This Philosophical Dissertation,
the first fruits of his studies,
As a token of a grateful soul

and of one who is perpetually indebted.
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I.3. Facsimile of MacLaurin’s Title Page

Dissertatio Philosophica Inauguralis,
DE

Gravitate, aliisque viribus Naturalibus,

QUAM
Cum annexis Corollariis,
Favente summo Numine,

Auctoritate Dignissimi Vice-cancellarii,
Joannis Stirling, V. D. M. SS. Th. Professoris Primarii;

NECNON

Amplissimi Senatus Academici consensu, & Celeberrimæ
FACUTATIS Artium Decreto:

Pro Gradu Magisterii, summisque in Philosophia & Artibus liberalibus
Privilegiis & Honoribus rite ac legitime consequendis,

In Auditorio publico Academiæ Glasguensis,
Ad diem Junii hora post meridiem,

Propugnabit COLINUS McLAURIN, Scotus.

Prov. 3. 19. Deus sapientia fundavit terram, stabilivit Cælos prudentia.
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I.4. MacLaurin’s Latin Text

Dissertatio Philosophica,
De Gravitate, aliisque viribus Naturalibus.

I. Inter varia naturae corporeae phaenomena, duo sunt, quae, uti in se
spectata prae caeteris fere omnibus maxime sunt insignia, ita omnis aevi
Philosophos plurimum exercuerunt. Alterum est, generalis illa omnium cor-
porum circa terrae superficiem versantium ad ejus centrum Tendentia, quae
vulgo Gravitas appellatur; alterum,regularis, certisque periodis recurrens,
Planetarum, in orbitis suis Gyratio. Ad mechanicam istorum phaenomenon
explicationem, hypotheses variae a variis excogitatae sunt. Harum aequuum
examen viam struet ad explicandam et adstruendam generalem illam univer-
salis Gravitatis legem, ad quam, tanquam commune principium, referendos
constabit duos istos effectus nobilissimos; tametsi prima specie nihil inter se
commune habere videantur: unde etiam occasionem arripiemus, alias quas-
dam naturae vires, ad aliorum quorundam phaenomenon solutionem, quae
rationibus pariter mechanicis explicare aggressi sunt Philosophi, necessario
supponendas, obiter considerandi.

II. Ut a corporum terrestrium gravitate initium fiat, primum examen
meretur Cartesii, ejusque sectatorum sententia. Illi, inter caeteros, quos ma-
teriae coelesti adfingunt, stupendos effectus, gravitatem quoque derivant a
perenni ejus circa terram gyratione rapidissima; quae violentum a centro mo-
tus recedendi conatum isti materiae necessario indit, quo corpora terrestria,
vim multo minorem habentia, versus terrae centrum detruduntur. Quemad-
modum aqua, vel quodvis aliud fluidum, sibi injectum corpus specifice levius
sursum pellit. Caeterum hoc obvio incommodo laborat haec hypothesis, quod
materiae coelesti, (cujus nulla nobis se produnt in rerum natura vestigia) mo-
tum valde rapidum, et quidem circularem, tribuat, cujus ortum et conserva-
tionem mechanice explicare, res aeque magni operis ac laboris est, atque ipsius
gravitatis rationem reddere. Praeterea, cum haec ipsa materia necessario sit
supponenda omnis gravitatis expers, quid tandem ejus conatum centrifugum,
usque adeo violentum, cohibere potest? Non alterius fluidi circumambientis
pressura; cum necesse sit illud ab hac materia vicissim premi, motumque ei
communicari; atque cum hoc fluidum ab alio aliquo superincumbente fluido
premi supponendum sit, illud etiam vicissim premet: quo pacto fiet, ut hujus
materiae motus in infinitum propagatus perpetuo decrescat, et tandem in ni-
hilum redigatur. Denique, cum haec materia suos gyros necessario perficiat in
circulis Aequatori parallelis, necesse erit omnia gravia in istorum circulorum
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planis descendere, et proinde in lineis non versus terrae centrum tendentibus,
sed ejus axi perpendicularibus; omnino contra experientiam.

III. Alii Gravitatem ab Aeris superincumbentis pressura oriri afferunt;
non advertentes omnem aeris pressuram ab hac ipsa gravitate dependere:
ipsa enim ejus vis elastica, sine aliqua vi elaterium tendente, nullam potest
diutinam pressuram efficere, utpote qua cito totus aer multo rarior reddere-
tur, quam in machina pneumatica facile reddi potest; in qua tamen aeris
raritatem, plerisque, si non omnibus animalibus, certam perniciem adferre
cernimus. Caeterum haec sententia ex eo efficacissime refutatur, quod gravi-
tatis vis multo deprehendatur validior, ubi aeris pressura aufertur, quam ea
manente: tantum igitur abest ut illa pressura sit causa gravitatis, ut contra
hujus effectum in omnibus corporibus imminuat, et in aliquibus penitus tollat:
tantundem enim dati cujusvis corporis gravitati detrahit, quantum aequale
est gravitati massae aeris dato corpori mole aequalis; ubi autem residuum
est quantitas negativa, uti res se habet in corporibus, quae Levia dicuntur,
corpora non descendunt sed ascendunt.

IV. Sunt qui Gravitatem afferunt esse Attractionem ejusdem generis, ac
est ea, qua magnes alium magnetem aut ferrum attrahit; et proinde, si haec
mechanice explicari possit, (quod plurimi fieri posse existimant) de illa pariter
esse philosophandum. Rem autem longe aliter se habere, ostendet breviuscula
utriusque generis virium comparatio. Terra, vi gravitatis, corpora quaelibet
circumambientia trahit in lineis ad ejus centrum tendentibus, vel accurate,
vel quam proxime; idque viribus (ut postea patebit) in paribus a centro dis-
tantiis, quantitati materiae in singulis corporibus proportionalibus; in diversis
vero intervallis, in duplicata auctarum distantiarum ratione decrescentibus.
Magnes, ex adverso, non tam versus centrum, quam alterutrum polorum,
attrahit; aequidistantia corpora adeo non attrahit viribus eorum materiae
quantitati proportionalibus, ut corporum aequalium alia majori, alia minori,
pleraque prorsus nulla vi attrahat: decrescit denique in ratione distantiarum
plusquam duplicata.

V. Alia adduci possunt argumenta non pauca, quae evertunt, tum modo
propositas, tum alias omnes possibiles hypotheses, mechanicam gravitatis so-
lutionem prae se ferentes; dum nempe evincunt gravium descensum a nullo
impulsu corporeo provenire posse. In primis, quandoquidem, ubi velocitates
sunt aequales, momenta motus sunt semper ut materiae quantitates; cumque
gravia, in eadem a terrae centro distantia, pari velocitate (abstrahendo ab
aeris resistentia) versus eam tendant; patet, vires impressas esse directe ut
materiae quantitates in ipsis corporibus, nulla figurae, texturae, aut molis
habita ratione. Si autem gravitas ab ullo ambientis fluidi impulsu proveniret,
ille impulsus vel consisteret in percussione partium fluidi, versus eandem
plagam, ad quam urgetur corpus impulsum, libere motarum; vel in pressura
totius fluidi, contra impedimentum in altera parte positum validius niten-
tis: in priore casu, vis imprimeretur pro ratione superficiei, in posteriore,
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pro ratione molis corporis impulsi; in neutro pro ratione quantitatis mate-
riae. Preaterea omnis impulsus corpus quiescens magis urget, quam corpus
in motu positum; ita ut quo majore velocitate moveatur corpus impulsum,
eo minus velocitatis incrementum ei addat corpus impellens, donec, corporis
impulsi atque impellentis velocitate aequali facta, omnis cesset impulsus, ac
motus acceleratio: gravitas autem (ut ex accuratissime institutis experimentis
compertum est) corpori celerrime descendenti, et quiescenti, aequali tempore,
aequalia addit velocitatis incrementa. Patet igitur gravitatem a nullo impulsu
corporeo provenire posse.

VI. Propositioni jam probatae si duae aliae jungantur, patebit, quid de
gravitatis causa sit sentiendum. Altera est, quando corpus in quiete positum
e loco suo movetur, motum ipsi imprimi ab aliqua causa externa, vel cor-
porea vel incorporea: multo magis, si corpus, versus unam plagam projectum,
in plagam directe contrariam retorqueatur, novus ille et contrarius motus a
causa externa procedere censendus est. Altera, nullum corpus posse movere
aliud, nisi impulsu, i. e. corpus nullam vim exerere posse in distans, sive non
agere, ubi non est. Sicubi igitur vulgo receptum et concisum loquendi modum
sequentes corporum alia corpora trahentium aut sine impulsu repellentium,
faciamus mentionem, indicare volumus istiusmodi phrasibus, non veram et
proprie sic dictam motus, de quo agitur, causam, sed occasionem duntaxat,
ad cujus praesentiam, secundum generalem aliquam naturae legem, vis ita
movendi imprimitur, simulque terminum ad quem, vel a quo, ea vis dirigitur:
quod semel monuisse sufficiat. Prior ostendit, corporum terrestrium gravi-
tatem ab aliqua externa causa oriri; posterior, ejus causam non esse rem
quamvis corpoream, siquidem superiore thesi probatum est, eam non oriri
ab impulsu. Quid superest igitur aliud, quam ut gravitatis causa agnoscatur
efficax alicujus causae incorporeae et intelligentis voluntas, secundum cer-
tam generalem legem, vim suam uniformiter exerentis. Qualis autem sit haec
causa intelligens, facile patebit cuivis consideranti, hac ipsa gravitate totam
orbis terrae compagem conservari ac firmari; quae alias impetu centrifugo
disrupta cito dilaberetur. Gravitas impedit, quo minus montes, maria, urbes,
homines, caeteraque animalia, a tellure excussa, per vasta coelorum spatia
longe dissipentur. A gravitate pendet tum hominum, tum reliquorum animan-
tium vita et nutritio; ita ut jure meritissimo gravitatis Auctor agnoscendus
sit terrae dominus et hominum conservator.

VII. Hujusmodi etiam gravitate, Planetarum reliquorum et Solis partes
inter se uniri, probant eorum circa axes suos rotationes, necessario produ-
centes conatum centrifugum, partes istas cito disjecturum, ni a gravitate co-
hiberentur: quae quidem rotationes, in Sole et plerisque Planetarum observa-
tionibus innotescunt; in Jove autem praecipue, non tantum per successivam
macularum gyrationem, sed et per figuram sphaeroidicam, ex eadem rota-
tione oriundam, qui ob corporis magnitudinem et motus rapiditatem satis
est sensibilis. Hanc autem partium singulorum Planetarum versus se mutuo
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gravitatem, in omnibus articulis cum nostra terrestri convenire, ex postea
dicendis patebit.

VIII. Sed neque his cancellis continetur hujus principii efficacia; vim enim
illam, qua Planetae in orbitis suis retinentur, ejusdem plane esse generis atque
illam, qua corpora terrestria versus terrae centrum detruduntur, accurata is-
torum effectuum collatio satis evidenter ostendet. Pridem demonstratum est,
corpus, quod circa alterum ita movetur, ut radiis ad ejus centrum ductis ar-
eas describat temporibus proportionales, in orbita sua retineri per vim versus
ejus alterius centrum perpetuo urgentem. Cum igitur compertum sit, rem ita
se habere in Planetis omnibus primariis, et Cometis respectu Solis, secun-
dariis vero respectu suorum primariorum; hinc constat, vi, qua Planetae in
orbitis suis curvilineis retinentur, cum corporum terrestrium gravitate, hoc
esse commune, quod versus alicujus magni corporis centrum tendant. Earum
in caeteris articulis convenientia non minus evidenter probari potest.

IX. Et primo, Lunae vim centripetam (qua eam versus Terrae centrum
urgeri ex modo dictis patet) eandem esse cum gravitate nostra terrestri ita
evincitur. Gravitas (secundum accuratissime instituta pendulorum experi-
menta) corpora terrestria depellit, uno temporis minuto secundo, per pedes
Parisienses 15 1

12 ; et proinde (cum spatia gravibus percursa sint ut quadrata
temporum) minuto primo per pedes 60×60×15 1

12 : quo eodem tempore Luna
deprehenditur a tangente, versus Terram deflecti per longitudinem pedum
15 1

12 : tantum enim esse arcus eo tempore descripti sinum versum, tempo-
ris periodici et orbitae amplitudinis collatio satis ostendit: vis igitur Lunae
acceleratrix versus Terrae centrum, est ad vim corporum terrestrium acceler-
atricem versus idem, ut 15 1

12 ad 60×60×15 1
12 , sive ut unum ad 60×60. Atque

cum Lunae distantia mediocris a Terrae centro sit corporum terrestrium
circa ejus superficiem versantium distantiae ab eodem sexagecupla; patet,
corpora terrestria, atque Lunam, ad Terrae centrum urgeri viribus, quae sunt
quadratis distantiarum ab eodem reciproce proportionales. Cum porro haec
ipsa sit ratio virium Lunae centripetarum, in diversis partibus ejus orbitae,
utpote Ellipticae, circa Terram in foco positam descriptae, patet corpora ter-
restria et Lunam, eadem vi, secundum dictam legem in diversis distantiis
variata, ad Terrae centrum urgeri.

X. Praeterea, cum haec eadem lex, nempe ut vires centripetae sint [re-
ciproce] ut quadrata distantiarum, obtineat in omnibus corporibus, sectionem
quamvis conicam, circa aliud in foco positum, describentibus; cumque ejus-
modi comperiantur esse orbitae omnium Planetarum et Cometarum (si forte
Joviales excipias, quorum orbitae perfecte circulares, si seorsum spectentur,
cum qualibet vis centripetae lege conciliari possunt;) patet eorum omnium
vires centripetas ejusdem esse generis ac est ea vis qua Luna et corpora ter-
restria versus Terrae centrum urgentur.

XI. Haec eadem virium centripetarum lex, non minus obtinet in diversis
Planetis circa idem centrale corpus revolventibus, quam in eodem Planeta in
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diversis a corpore, versus quod tendit, distantiis: quippe demonstratum est,
ubi plura corpora circa idem centrale corpus ita revolvuntur, ut quadrata
temporum periodicorum sint in triplicata ratione mediocrium distantiarum,
ea omnia ad istud corpus centrale viribus distantiarum quadratis ab eodem
reciproce proportionalibus urgeri. Planetas autem omnes, qui circa idem cen-
trale corpus revolvuntur, eam ipsam distantiarum et temporum rationem
servare accuratissimis observationibus compertum est.

XII. Cum igitur vis acceleratrix corporum terrestrium versus Terram, et
Planetarum simul ac Cometarum versus propria sua centralia corpora, de-
crescat in ratione distantiarum auctarum duplicata; erit haec vis in diversis
corporibus, versus idem centrum, in eadem ab eo distantia, tendentibus ae-
qualis; atque adeo eorum vires motrices, sive pondera erunt materiae quanti-
tatibus in iis proportionalia. Cum porro actioni semper aequalis sit reactio, is-
tius corporis centralis versus illa altera tendentia eorum ponderi erit aequalis;
atque adeo materiae quantitati in iis proportionalis. Patet igitur universaliter
pondera corporum esse in ratione composita ex directis rationibus quantita-
tum materiae corporum gravitantium, et corporum in quae gravitant, et re-
ciproca quadratorum distantiarum. Cum itaque Planetarum Cometarumque
vires centripetae, et corporum terrestrium gravitas ejusdem plane generis
sint, nulla est ratio cur non putemus illas aeque ac hanc, ad efficacem Auc-
toris sapientissimi potentissimique voluntatem uniformiter agentem, tanquam
unicam causam, referendas esse.

XIII. Interim hoc phaenomenon, ut alia fere omnia, mechanice solvere
aggressi sunt Cartesiani: quorum hypotheseos refutatio omnem mechanicae
explicationis spem debet perimere. Secundum eos, Sol rotando circa axem
suum fluidum quoddam subtile, eique innatantes primarios Planetas circum-
fert; qui singuli vortices quoque suos habent, in quorum nonnullis Secundarii
deferuntur. Sed primo, cum Planetae circulos non describant, in vorticibus in-
finite extensis, aut vase sphaerico inclusis, circumferri non possunt; si autem
vorticis limites aliter disponantur, Planetae tanto magis a via circulari de-
viabunt, quanto longius a centro distant; atque eorum omnium Aphelia in
eadem coeli regione reperientur: cum contra Planetarum inferiorum excen-
tricitas longe major sit quam superiorum; Martis Venerisque aphelia prope-
modum opposita sint; eorum enim distantia in principio Virginis est fere
sesquialtera eorundem distantiae in principio Piscium. Quae observatio al-
iud suppeditat argumentum contra hypothesin vorticosam. Cum enim fluidi
per canales inaequaliter amplos circumlati motus, in locis angustioribus ci-
tatior esse debeat; patet, secundum hypothesin Cartesianam, fluidum cui
Terra innatat (et proinde ipsam terram) duabus istis orbitis intermedium, in
principio Piscium, quam Virginis, velocius ferri debere: quod observationibus
plane repugnat. Adhaec si vortices sint homogenei, tempora periodica erunt
ut quadrata distantiarum; sin heterogenei sint, et partes a centro remotiores
sint crassiores, ut Cartesius voluit, et ratio suadet, tempora periodica erunt
ut altiores quaedam distantiarum potentiae; cum tamen Planetarum tempora
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periodica sint in sesquiplicata tantum mediocrium distantiarum ratione. Ef-
ficacissime autem vortices Cartesianos refellunt orbitarum planetariarum ad
Solis axem et ad se invicem inclinatio, et Cometarum motus, nunc Plane-
tarum cursui directe contrarius, nunc eorum orbitis perpendicularis.

XIV. Cum igitur Materia coelestis (si ulla sit) cum Planetis non circum-
feratur, et preaterea eorum motum per tot annorum millia sensibiliter non
impediverit, Cometisque per eam velocissime tranantibus adeo facilem ape-
riat viam; patet, coelorum spatia esse quam liberrima, et proinde materiam
nullam in iis reperiri, quae tantorum corporum motui continuo regulariter
inflectendo sufficiat. Planetarum igitur ac Cometarum motus in orbitis curvi-
lineis, a nullo imperceptibilium quorumvis corpusculorum impulsu, atque
adeo nulla mechanica causa oritur. Atque hinc multum accedit magnificae
ideae thesi 6ta stabilitae Auctoris gravitatis, quem jam constat, non solum
totius terrae, sed etiam coeli dominum, omniumque ejus incolarum Conser-
vatorem esse; qui omnium corporum coelestium compagem conservat; cujus
pollenti dextra Planetae, in perpetuos gyros circa commune centrale corpus
acti, prohibentur, quo minus impetu centrifugo per vastum inane abrepti,
omni, quod a Sole jam accipiunt, beneficio privati, perpetuo rigeant frigore,
et densissimis tenebris involvantur, atque alia amittant omnia quae ad vege-
tantium vel animantium conservationem pertinent. Sicut autem impetus hic
centrifugus, ni gravitate cohiberetur, omnibus Planetis certam cladem adfer-
ret, eas a Sole abripiendo, ita non minus certam perniciem iis inferret gravitas,
eos in ardentem Solis atmosphaeram praecipitando, ni ipsis impressus fuisset
motus projectilis: duabus vero istis viribus conjunctis, circa Solem in linea
aliqua curva ferantur necesse est; quae linea erit circularis, si motus projectilis
directio, radio ad Solem ducto sit perpendicularis, ejusque vis vi gravitatis
aequalis: sin alterutra harum conditionum desit, curva illa erit sectio aliqua
conica. Quae hic de Primariis dicuntur respectu Solis, de Secundariis item,
respectu suorum Primariorum, intelligenda sunt.

XV. Jam probatum est, Planetas Primarios in Solem, et Secundarios
in suos Primarios, gravitare: cum autem corpus quodvis, quod circa aliud,
utcunque motum, areas describit temporibus proportionales, praeter vim
versus illud aliud tendentem, urgeatur omni vi acceleratrice, qua illud al-
iud; hinc patet, Planetas Secundarios, non minus quam Primarios, versus
Solem graves esse. Caeterum non modo Planetis Primariis cum Sole, et Se-
cundariis cum Sole et suis Primariis; sed et Planetis etiam ejusdem ordi-
nis, Primariis ex. gr. inter se, mutuam gravitationem intercedere, liquet ex
quibusdam eorum motuum perturbationibus, a nulla alia causa deducendis;
quales sunt Apsidum Nodorumque migrationes, etc. quae sat sensibiles quan-
doque se reddunt, praesertim in Jove et Saturno circa conjunctiones istorum
Planetarum heliocentricas, ob vastam eorum magnitudinem, et a Sole dis-
tantiam, motusque simul tarditatem. Cum porro ipsorum Satellitum motus
sensibiliter etiam in illis conjunctionibus perturbari deprehendantur, patet,
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Planetis Primariis cum aliorum quoque Secundariis gravitationis commer-
cium intercedere.

XVI. Universalis vero illius legis, qua omnia corpora in se mutuo gravi-
tant, efficaciam nihil probat evidentius, quam variae illae, quae omnis aevi
Astronomos adeo torferunt, Lunaris motus inaequalitates. Supposita enim
gravitationis lege, Lunae, cujus distantia a Terra adeo magna est (etiam ubi
cum Terrae distantia a Sole confertur) vis acceleratrix versus Solem, Terrae
vi acceleratrice versus eundem aliquando major, aliquando minor, esse de-
bet: quae inequalitas, Luna versante in syzygiis, erit maxima; in quadraturis
minima, seu nulla; quo fiet ut ejus motus a quadraturis ad syzygias (cae-
teris paribus) acceleretur, a syzygiis vero ad quadraturas retardetur; atque
adeo orbitae ejus curvatura, ac a Primario distantia (caeteris paribus) in
his, quam in illis, major erit: unde etiam nec Luna semper circa Terram ar-
eas describit temporibus accurate proportionales: quae omnia cum observatis
optime conveniunt. Uno verbo, quaecunque irregularitates in Lunae motu
observationibus deprehenduntur, (deprehenduntur autem quamplurimae) il-
lae omnes necessaria consequentia a priori deducuntur ex supposita universali
quam diximus gravitationis lege; quae igitur plurimum ab iis confirmari existi-
manda est. Ex eadem etiam lege, ac pari evidentia, deducitur Aequinoctiorum
nota Praecessio, ac Telluris axis oscillatio, quae bis quotannis contingit.

XVII. Praeterea, secundum hanc legem, partes fluidi cujusvis terrestris,
Lunae vel Soli directe obversae, notabiliter magis, aversa vero minus, in Lu-
nam vel Solem gravitant, quam ipsum Terrae centrum, sive integra ejus moles
complexe sumpta; quo proinde tantum earum versus Terram gravitationi de-
trahitur: partium vero lateralium, seu aversis et obversis intermediarum, ver-
sus Terram gravitationi, Solis Lunaeve attractione cum ea aliquantulum con-
spirante, nonnihil additur: unde necessario sequitur, dum aversae et obversae
leviores, laterales autem graviores sunt, illas ab his sursum premi, donec
columnarum altitudine pensent, quod gravitati earum acceleratrici deest: So-
lis autem Lunaeque vires, fluidorum terrestrium (aeris scil. ac maris) aestum,
non duplicem, sed unicum, ex eorum compositione aestimandum, efficiunt;
qui, propter diversas istorum Luminarium a Terra distantias, et ab Aequatore
declinationes, diversus esse debet, idque in triplicata distantiarum istarum
ratione reciproca. Atque hinc, nec aliunde, omnia aestus marini Phaenom-
ena facillime deduci possunt; quae igitur jam probato gravitationis principio
summam adferunt confirmationem.

XVIII. Praeter illam, de qua hucusque egimus, gravitatem, qua omnes
materiae particulae, sine ullo figurarum, formarum, circumstantiarum, aut
motuum discrimine, versus se mutuo tendunt, viribus in duplicata distan-
tiarum ratione decrescentibus, est et alia quaedam vis, qua exiguae materiae
particulae, se mutuo contingentes, vel contactui proximae, validius quam se-
cundum gravitatis legem modo explicatam, ad se mutuo tendunt: quae vis
minuitur in plusquam duplicata ratione auctae distantiae: cumque haec vis,
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in contactu, vel prope contactum, se tantum exerat, eo validior erit duarum
quarumvis materiae particularum cohaesio, quo major sit earum contactus;
atque adeo particulae, quae ampliores habent superficies planas, vel saltem
sibi mutuo congruentes, firmissime sibi mutuo adhaerent; debilius vero (si
omnino) quae sphaericas, aliterve convexas habent superficies: prioris generis
particulae, corpus satis durum, posterioris autem, fluidum constituunt; atque
ex variis intermediis contactus rationibus, variae oriuntur cohaesiones: uno
verbo, hinc, alias insolubilia, Soliditatis ac Fluiditatis Phaenomena facile
solvi possunt. Cum autem haec vis in minimis distantiis aliquanter se ex-
erat, quamvis aliqua externa vi corporis partes nonnihil separentur, si modo
cum novis particulis non arctius coalescant; sublata illa externa vi, in priores
suos contactus et cohaesiones redibunt; quo pacto corpus pristinam suam fig-
uram recuperabit; quam secus necessario deperdet. Atque hinc Elasticitatis
et Mollitiei natura optime enucleatur. Atque ex his intelligi potest, quam
magna, in diversis particulis, ex diversa earum figura et textura, oriatur at-
tractionum diversitas; hinc enim quaedam vix ulla, alia maxima vi, versus se
mutuo tendunt: inter haec autem maxime notabilia sunt acida salia, quae in
menstruis fere dominantur; ista enim a corporis solvendi particulis attracta,
in ejus poros, si modo idoneae sint amplitudinis, adeo magna vi ruunt, ut par-
ticulas, ni nimis valide cohaereant, disjungant. Quo pacto omnium corporum
solutiones facile explicantur.

XIX. Ex hac etiam materiae minimarum particularum mutua attractione,
quam plurima fluidorum phaenomena, alias insolubilia, facile enodari pos-
sunt. Ex eo enim, quod aquae particulae, ligni aut vitri particulas validius
attrahant quam se invicem, oritur notum istud phaenomenon, quod aqua,
vase ligneo aut vitreo inclusa, altior sit prope vasis latera quam alibi; atque
adeo in tubis minimis ei aliquantulum immersis altior sit quam extra tubum;
cum autem argenti vivi particulae validius se invicem quam ligni aut vitri
particulas attrahant, res in illo prorsus contrario modo se habet. Hinc etiam
sit, quod aquae, aliorumque fluidorum guttulae, cum gravitatis vi cadere de-
berent, a vitro, ligno, aliisque plerisque corporibus, suspendantur. Atque ut
ex aequali partium in Planetis versus se invicem gravitate, sphaerica Plane-
tarum figura necessario oritur, ita ex aequali particularum aquae, argenti vivi,
et similium fluidorum, sibi mutuo admodum approximantium, vi centripeta,
oritur guttularum in istis fluidis figura sphaerica. Ex modo dictis etiam in-
telligi potest ratio congruitatis aquae cum ligno, vitro, aliisque corporibus,
et argenti vivi cum iisdem incongruitatis; ac pari facilitate omnia reliqua flu-
idorum congruitatis ac incongruitatis phaenomena solvuntur. Hinc denique
patet, quare arenulae, aliaque corpuscula nonnulla, aqua specifice graviora,
in ea tamen non demergantur: mutua scilicet aquae particularum attractio,
exiguam licet, aliquam tamen producit tenacitatem, cui superandae par non
est istorum corpusculorum gravitas. Horum phaenomenon pleraque a quam-
plurimis per aeris actionem explicabantur; quorum error ex eo evincitur, quod
haec phenomena etiam in vacuo obtinere deprehendantur.
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XX. Supposita eadem materiae particularum mutua attractione, fermen-
tationis, chrystallizationis, praecipitationis, fluidorum concretionis, electric-
itatis phaenomena, aliaque plurima, facillime explicari possunt, quibus im-
morari non licet. Explicatio autem refractionis radiorum lucis, quae hinc sup-
petit, nobilior est, quam ut eam prorsus intactam praeterire fas sit. Lucis ex-
iguae particulae sive radii (ut ex egregii Neutoni observationibus constat) in
transitu suo prope corporum angulos incurvantur, idque eo magis quo propius
ad corpora accedant: quam incurvationem adeo regularem a nullo effluviorum
impulsu provenire, satis est manifestum; sed ab aliqua vi prorsus amechan-
ica, quae ab Auctore naturae, juxta certam legem, iis imprimitur, pro variis
distantiis a corporibus, ad quae appellunt, vel a quibus recedunt: cujusmodo
vi supposita demonstravit modo laudatus Auctor, necessario sequi sinum re-
fractionis esse ad sinum incidentiae quaecunque sit incidentiae obliquitas, in
data semper ratione; quod ita se habere experientia docet. Necesse est igitur
ut radii, qui e medio rariore in aliud densius, aut quacunque ratione magis at-
tractivum, oblique incidunt, ab hoc densiore attracti, prius incurventur quam
illud attingant, ita ut linea directionis radii, postquam corpus intraverit, mi-
norem cum perpendiculo faciat angulum, quam ante incurvationem: atque
hinc oritur refractio ad perpendiculum. Si autem lucis radius e densiore medio
in rarius, aut certe minus attractivum, oblique incidat; ob majorem prioris
attractionem, versus id, in ipso exitu, vel statim post exitum, incurvabitur,
ita ut nunc majorem angulum cum perpendiculo faciat radii directio, quam
antea: atque hinc oritur refractio a perpendiculo. Si autem in hoc casu an-
gulus incidentiae sit valde magnus, refractio in reflexionem mutabitur; ita ut
angulus incidentiae sit aequalis angulo reflexionis: patet interim lucis partic-
ulae motum in priore casu accelerari, in posteriore autem retardari: atque
hinc sit quod lucis velocitas in medio densiori plerumque major sit, quam
in rariori. Praeterea cum radius versus partes tantum perpendiculariter sibi
subjectas impellatur, patet radium per totum incurvationis tempus versari in
eodem plano ad superficiem refringentem perpendiculari. Porro, ex diversis
ipsorum lucis radiorum formis, vel forte velocitatibus, diversae inter lucis ra-
dios aliaque corpora attractiones, atque adeo diversi refrangibilitatum gradus
oriuntur. Ex aliquo etiam simili principio arcessendae sunt stupendae istae
facilioris reflexionis et transmissionis vices; quas in luminis radiis obtinere
plurimis experimentis idem egregius Auctor demonstravit.
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COROLLARIA.

I. Mentis natura simplex et incomposita non patitur eam in ulla parte
spatii ita existere, ut cum ea coextendatur; nec tamen impedit, quo minus uni
loco, ei scil. ubi corpus est, ita sit praesens, ut in alio loco similiter praesens
non sit.

II. Quantumvis reales sive absolutae substantiarum essentiae sint nobis
ignotae, haudquaquam inde sequitur, nos de earum affectionibus et mutuis
relationibus nihil certi pronunciare posse.

III. Philosophia moralis tanquam necessario fundamento innititur summi
numinis existentiae et providentiae, praesertim quatenus haec in praemiis
poenisque dispensandis se exerit.

IV. Quaecunque jura, vitae servandae, vel gravis alicujus damni avertendi
causa, alienari possunt, ea per actus, consensum indicantes, licet injustissima
ejus in cujus favorem eduntur violentia extortos, eousque alienantur; ut licet
hic, vi talis actus, nihil jure petere, aut penes se tenere, queat, ille tamen qui
consensu suo aliquod jus ei conferre, atque adeo obligationem sibi contrahere
prae se tulit, omnino ex fidelitate teneatur.

FINIS.
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Introduction to Part II

The prize-essay topics proposed by the Royal Academy of Sciences in Paris
for the years 1724 and 1726 were concerned with the collision of bodies: in
the competition of 172424 the bodies were to be perfectly hard and the prize
was won by MacLaurin for his essay [66], with which this article is concerned;
elastic bodies were to be considered for 1726, when the winning essay was that
of Père Maziere, described as Prêtre de l’Oratoire [76]. In a Notice prefixed
to the published version of MacLaurin’s essay (see Appendix II.1, p. 79) it
was stated on behalf of the Academy that many of the submissions, while
excellent in themselves, had not dealt with the topic as proposed. Amongst
these was an extensive work by Jean Bernoulli, which had apparently been
submitted in both 1724 and 1726 and had been praised on both occasions.
Bernoulli’s essay [13] was also published in the volumes containing the prize
essays [1]; one reason for this may have been the desire to present both sides
of an on-going controversy concerning the force of a moving body (see below).
In fact, MacLaurin had also transgressed the limits of the proposed question,
dealing not only with the collision of perfectly hard bodies but also with cases
of elastic collisions.

The collision of elastic spherical bodies moving uniformly in the same
straight line is governed by the equations (see, for example, [102], pp. 276–
277)

m1v1 + m2v2 = m1u1 + m2u2 , (i)
v2 − v1 = −e(u2 − u1) , (ii)

where the bodies have masses, initial velocities and final velocities m1, m2,
u1, u2, v1, v2, respectively, and e is the coefficient of restitution (0 < e ≤ 1).
Equation (i) is the law of conservation of linear momentum and (ii) is the
law of restitution.

For perfectly hard (inelastic) bodies we have e = 0 in (ii), so that we
obtain v1 = v2 = v and then from (i)

24According to Jean Bernoulli ([13], p. 4, §2) the precise title was Quelles sont les
loix suivant lesquelles un corps parfaitement dur, mis en mouvement, en meut
un autre de même nature, soit en repos, soit en mouvement, qu’il rencontre, soit
dans la vuide, soit dans la plein, and the prize amounted to 2,500 livres.
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v =
m1u1 + m2u2

m1 + m2
. (iii)

When e = 1 the bodies are perfectly elastic. In this case equation (ii) becomes

v2 − v1 = u1 − u2 , (iv)

that is to say, the relative velocity of the two spheres has the same magnitude
before and after the collision, but the directions are opposite. From (i) and
(iv) we obtain

v1 =
m1u1 − m2u1 + 2m2u2

m1 + m2
, v2 =

m2u2 − m1u2 + 2m1u1

m1 + m2
. (v)

A simple calculation now yields

m1v
2
1 + m2v

2
2 = m1u

2
1 + m2u

2
2 , (vi)

which is equivalent to the assertion that kinetic energy is conserved. Equa-
tions (i), (iv) and (vi) are what Bernoulli refers to as the “three laws which
are constantly conserved in the direct collision of two bodies” ([13], Chapitre
X).

The above laws were essentially known well before the end of the sev-
enteenth century. For example, Newton gives the law of restitution in the
Scholium to the Laws of Motion in Book I of the Principia (see pp. 20–
23 of [81] ([88])). Newton also refers to the work of Huygens, Wallis and
Wren which was published in the Philosophical Transactions in 1668 and
1669 ([59, 112, 118]). The Royal Society had become interested in the colli-
sion of bodies in the mid-1660s and had invited these three, who were already
recognised authorities on the subject, to submit accounts of their discoveries.
We note in particular that Wren had dealt with perfectly elastic collisions,
his results being in agreement with corresponding results of Huygens, who
also gave equation (vi). In fact, Huygens had already completed a treatise on
motion and collision in 1656, although it was only published posthumously
in 1703 (see [57]); the rules which he presented in [59] were also published
about the same time in [58]. Wallis had apparently considered perfectly hard
bodies, for which he also touched upon oblique collisions; his celebrated Me-
chanica [113], whose third part deals with collisions, was published during
the period 1670–1671.25

The study of collisions was at the centre of a major controversy over what
should be understood as the force of a moving body. According to the Newto-
nian view, this force is (proportional to) the quantity of motion, namely, the
product of the body’s mass and its velocity. Against this was the Leibniz–
Huygens idea that this force is proportional to the product of the mass and

25An interesting account of these contributions of Huygens, Wallis and Wren to
the Philosophical Transactions and of related matters will be found in [52]. See
also [53], where correspondence concerning these publications can be found. Both
references contain a translation of Wren’s paper.
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the square of the velocity (Leibniz: vis viva; Huygens: vis ascendens). In the
former case we are dealing with momentum, a vector quantity, and in the
latter we are effectively concerned with the scalar quantity kinetic energy.26

Both, of course, have their separate roles to play in mechanics, but these
were not yet understood and the situation may have been confused further
by the fact that in the collision of perfectly elastic bodies both momentum
and kinetic energy are conserved (equations (i) and (vi)). MacLaurin, as one
might expect, was a fervent advocate of the Newtonian view, as was Père
Maziere in [76], while Bernoulli followed Leibniz in [13].

In 1722 the Dutch scientist and philosopher Willem Jacob ’sGravesande
(1688–1742) published his “Essai d’une nouvelle théorie du choc des corps”
[44, 45], in which he founded the study of collisions on the Leibniz–Huygens
concept of force. A substantial part of MacLaurin’s essay (its Section II) is
devoted to an attempt to demolish ’sGravesande’s work, starting with its
foundation. Although ’sGravesande recovered certain results that had previ-
ously been established on Newtonian principles and which appear in MacLau-
rin’s essay, MacLaurin argued that ’sGravesande’s derivations are based on a
Proposition for which he had given a deficient proof; for his part, ’sGravesande
explained the concordance of results as being due to compensating errors in
the Newtonian approach.

There was much criticism of ’sGravesande’s work in addition to that con-
tained in MacLaurin’s essay; in particular, a very public and somewhat scur-
rilous attack was made in the Philosophical Transactions by Samuel Clarke27

[29] (see also [31], pp. 737–740), who had already inveighed against Leibniz
on the same topic (see [11], pp. 121–125). To answer his critics ’sGravesande
produced his Supplément (1722) [45] and Remarques (1730) [46].28 A direct
reply was made to Clarke in the first part of [46]; otherwise, ’sGravesande
did not name his critics but concentrated on refuting their criticisms – parts
of [46] appear to deal with points from MacLaurin’s essay. It is interesting to
note that ’sGravesande was in other matters a promoter of Newtonian phi-
losophy. His Physices elementa mathematica, experimentis confirmata. Sive,
introductio ad philosophiam Newtonianem (Leiden, 1720, 1721) went through
many editions and was translated into English and French; in later editions he
converted to the Leibniz–Huygens concept of the force of a moving body and

26The interest appeared to be in comparing forces, so that the constants of pro-
portionality were largely irrelevant. The point is made in [16] that the 1

2 in the
definition of kinetic energy as 1

2mv2 only became significant with the later study
of work and power.

27Among the notes which Clarke supplied for Rohault’s Physica there is a discussion
of collisions of perfectly elastic spherical bodies. See [93], Part I, Chapter 11,
pp. 45–48.

28Part of the contents of [46] may be much earlier than 1730. Publication of the
Journal littéraire de la Haye, in which the article appeared, was interrupted in
1722 and only recommenced in 1729.
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included much material on collisions (see, for example, the French translation
[48], Chapitres IV–VIII in Tome I, Livre II, Partie II).

Reproduced in [49] (see Vol. 1, Part 1, pp. xxxvi–xlv) is a letter dated 31
October 1722 from Jean Bernoulli to ’sGravesande in which Bernoulli thanks
him for sending the first edition of his Physices, his essay on collisions and the
pamphlet [47]. In it Bernoulli chides ’sGravesande for his sycophantic praise
of Newton and unleashes an attack on “les Anglois,” which begins with the
following, translated from the French:29

But the English, whose sentiments it appears you have espoused and
have taken sides under their flag, at least in matters of Physics; the
English, I say, what will they say when they see that you have fallen
into one of the heresies of Mr. Leibnitz? For, among them everything
is a heresy which comes originally from this great man; it is a pity for
them, that the first discovery of the true estimation of forces has not
been made by Mr. Newton, they would not have failed to extract sub-
stance from it to glorify the perspicacity of their nation, and a reason
to gloat over the blindness of others; whereas at present it is an error,
a reverie, a childish absurdity to think along with Mr. Leibnitz that
the force of Bodies is proportional to the masses and to the squares of
the velocities and that the quantity of forces is therefore quite different
from what is commonly called the Quantity of Motion.

Thus we see that the matter was pursued with heated passion on both sides,
’sGravesande being something of an innocent victim who appears only to
have wanted to present his new theory and discuss it in a courteous manner.

MacLaurin’s essay was written during his sojourn in Lorraine.30 Its first
section contains a review of the known and generally accepted laws of motion.
As already noted, the second section is devoted to disputing, often in fairly
intemperate terms, ’sGravesande’s arguments and the Leibniz–Huygens con-
cept of force; it ends with a categorical statement of the Newtonian view.
In the third section MacLaurin deals with direct collisions of perfectly hard
bodies (Propositions I and II and their Corollaries) and of perfectly elastic
bodies (Proposition III and its Corollaries); in Proposition IV he notes the
necessary modification when the elasticity is not perfect (0 < e < 1). Also in
this section MacLaurin makes a further attack on ’sGravesande, this time for
his ideas on perpetual motion [47]. Finally, in the fourth section MacLaurin
presents a nice geometrical treatment of oblique collisions, which was possibly

29Perhaps, as a Scot, MacLaurin was not part of the target of Bernoulli’s attack!
The letter of course predates MacLaurin’s essay. However, he was already known
to Bernoulli at this time, for in the same letter Bernoulli mentions that he had
received MacLaurin’s book, presumably the Geometria Organica [65], makes some
criticisms of it and, curiously, asks ’sGravesande to thank MacLaurin if the op-
portunity should arise.

30For about two years from 1722 MacLaurin travelled in France as tutor and com-
panion to the son of Lord Polwarth. (See [70] ([73]), pp. iii–iv, and my General
Introduction, p. 2.)
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original. The essay is given in translation below. This is followed by a series
of notes in which aspects of the essay are discussed in detail. I have redrawn
MacLaurin’s diagrams for Section IV; the originals from [1] are reproduced
in Appendix II.2 (p. 80).

MacLaurin continued the study of collisions in his Treatise of Fluxions
(1742) (see [69], Book I, Chapter XII, Articles 511–520). In particular he
obtained there certain results of Huygens, including equation (vi) above,
and dealt with multiple collisions in which he extended results contained
in Bernoulli’s essy [13]; an important method was to study the motion of a
system of bodies in terms of that of its centre of gravity. MacLaurin tells us
that this material comes from a treatise he had written in 1728 as a sup-
plement to his essay but had not published, although it had been shown to
several persons. MacLaurin’s reason for not publishing, while uncharacteris-
tic, perhaps puts the whole controversy nicely in context: ‘I was unwilling to
engage in a dispute that was perplexed by such suppositions, and that after
all might seem to be in a great measure about words.’ Chapter IV in Book
II of [70] ([73]) is devoted to collisions and repeats some of this material.

On pp. 65–76 of [35] Desaguliers reproduces with his own annotations part
of a manuscript of MacLaurin’s entitled “A Treatise of Motion from Impulse.”
The relevant part consists of Articles 62–82, which deal with “The Measure
of the Force of Bodies in Motion.”31 Here MacLaurin is again concerned to
refute the Leibnitz–Huygens idea of the force of a moving body and Desag-
uliers’s notes are aimed at showing that the two theories are equally valid;
in his Preface he makes an observation similar to that in the last quotation
from MacLaurin above: “. . . the whole was only a Dispute about Words; the
contending Parties meaning different Things by the Word FORCE.”

31I do not know if this manuscript is MacLaurin’s 1728 treatise. Desaguliers had
been given it by a “Mr Charles, a Mathematician in London,” through whom
he sought and obtained MacLaurin’s approval for its publication. The omitted
Articles 1–61 are described as “foreign to our purpose.” See also the letter of
April 10th 1740 from Desaguliers to MacLaurin ([77], Letter 170, esp. pp. 334–
335).



Translation of MacLaurin’s Essay

DEMONSTRATION OF THE LAWS OF THE
COLLISION OF BODIES.

(p.69) SECTION I.

Where we present the Axioms and Principles which are in no
way disputed concerning the motion of bodies.

I.

Every body at rest remains in this state until some extraneous cause sets
it in motion; and every body in motion continues to move in a straight line,
without changing its velocity, as long as no extraneous cause acts on this
body.

II.

The change of force, that is to say, its increase or decrease, is always
proportional to the applied force, and takes place in the direction of this
force.

By applied force we mean that which is entirely used up in increasing or
decreasing the motion of the body.

III.

The action and the reaction are always equal, and have opposite direc-
tions; that is to say, the action and the reaction produce in bodies equal
changes of motion.

These three principles are demonstrated by an infinity of experiments.
We usually call them the Laws of motion.

IV.

The spaces travelled over by two bodies, whose motions are uniform, are
always in the ratio composed of those of their velocities and of the times that
they are in motion.
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V.

The forces of bodies, whose velocities are equal, are proportional to their
masses.

VI.

The force produced in a body can never be greater than that which the
agent, which transmits its own motion to it, has, if no elasticity enters into
their action.

VII.

All the motions, the forces and the collisions of bodies take place in a
space which moves forward with a uniform velocity, the same as if this space
were absolutely at rest. It is agreed that the motions and the collisions of
bodies take place in the same way, whether the Earth turns on its axis, or it
is immobile as in the Ptolomeian System. The collisions of bodies on a ship
which moves forward with an even motion, are the same as if the ship had
no motion.

(p.69) SECTION II.

Where we show that the forces of bodies are as the products of
their masses multiplied by their velocities; and where we examine
the opinion of those who claim that the forces are as the masses
multiplied by the squares of their velocities.

Since it is absolutely necessary to know how to determine the proportions
of forces of bodies in motion before investigating the Laws of their collisions,
and since it is disputed that the forces of bodies are as the rectangles or
products of their masses by their velocities, it seems to me essential to clarify
this matter, and to examine with care the opinion of Mr Leibnitz, explained
and supported recently in quite a coherent manner by Mr Sgravezande in
an essay which he has published on the collision of bodies. It is the most
fundamental question that one can consider in connection with the collision
of bodies; this is why I dwell more particularly on his discussion.

I. Mr Leibnitz and Mr Sgravezande claim that the forces of bodies are as
the products of their masses by the squares of their velocities, and that the
forces of equal bodies are as the squares of their velocities. For example, if
the velocities of two equal bodies are as 10 and 8, their forces must be as 100
and 64.

Let us suppose therefore that two persons, one on a ship, which moves
forward with a uniform motion and a velocity as 2, the other at rest on the
shore, throw two equal bodies A and B with equal efforts in the direction
of the motion of the ship, and that the body B which was at rest gains a
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velocity as 8. It is clear by the seventh Principle, that the body A will move
forward in the ship with a velocity as 8 also, and in the air with a velocity as
10, the sum of the velocity of the ship and of its relative velocity in the ship.
The force of the body A, before it had this increase, was as 4, according to
Mr Leibnitz, its velocity being as 2. The increase of force which it receives is
equal to that of the body B by the seventh Principle, that is to say, to 64:
thus its total force will be as 64 + 4 = 68. But because the velocity is as 10,
its force must be as 100, and these two forces are contradictory. Therefore
their forces cannot be as the squares of their velocities.

If we suppose that another body C equal to the bodies A and B is thrown
in the same direction and with the same effort on a ship which moves forward
with a velocity as 4, the total velocity of the body C will be as 12, and its
force in the air as 12 × 12 = 144. Taking away from this 16, which was its
force before the increase which it has received, the residue 128 is the force
added to the body C by the same effort which had added 96 degrees of force
to the body A, and 64 to the body B, according to the system of Mr Leibnitz.
However, it is clear that these increases must be equal, just as much by the
second as by the seventh Principle.

Again to give greater clarity to this reasoning, let us suppose that the two
bodies A and B come to strike against some invincible objects positioned one
on the ship, the other on the shore, and that the bodies have no elasticity;
it is clear that they will lose equal quantities of force, and that the collisions
will be the same by the seventh Principle. But the body B will lose 64 degrees
of force, which is everything that it had received. In losing 64, the body A
will therefore have the residue 100 − 64 = 36. But, as A loses all its velocity,
apart from the two degrees which it had in common with the ship from the
beginning, there only remain four degrees of force with it; and these two
forces are again contradictory.

Finally, if the system of these authors were true, the motions and the
collisions of bodies contained in a space which moves forward uniformly,
would be quite different from the motions and collisions of the same bodies
when the space remains at rest. In their system it would always have been
easy to distinguish relative motions from absolute motions, a task which has
been regarded on several occasions as one of the most difficult in Physics.

We extract a similar argument from the motion of elastic bodies. Let there
be two equal elastic bodies A and B, which go in the same direction with
velocities as 10 and 5; it is known that if they had no elasticity, they would
have after their collision a common velocity as 7 1

2 : but if they are perfectly
elastic, they will change their velocities, and the body A will have 5 and B
10 degrees of velocity. Mr Sgravezande agrees in his Prop. 25 that elasticity
acts on the bodies as if they were at rest: and because elasticity separates
them with 5 degrees of velocity, it is necessary that it applies 2 1

2 degrees of
velocity to each body, that is to say, 25

4 degrees of force. Without the action
of elasticity the force of the body A would have been the square of 7 1

2 , that
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is to say, 225
4 ; elasticity takes away 25

4 degrees from it: therefore it must retain
225−25

4 degrees of force, that is to say, 50 degrees; but since its velocity is
only 5, its force can only be 25. These two forces are contradictory: from
this we have to conclude that it is impossible to reconcile their principle with
experiments.

We could expand further on the arguments which could be extracted from
the motions of elastic bodies, but let us pass rather to that which proves more
directly that the force is as the mass multiplied by the velocity.

II. It is agreed that two bodies, whose velocities are in the inverse ratio of
their masses, and whose directions are opposite, remain at rest after collision.
Mr Sgravezande acknowledges this. We find that two bodies A and B, which
are as 3 and 1 with velocities as 1 and 3, remain at rest after their collision,
if they have no elasticity. Their forces, according to Mr Sgravezande, are as
9 to 3, or 3 to 1: but according to us their forces are as 3 to 3, or 1 to 1; that
is to say, they are equal. We have formerly regarded this experiment as proof
that the forces were as the velocities, and not as their squares multiplied
by the masses. We have believed that the forces of bodies which destroy
each other, must be equal, and as a consequence, that the forces were as the
masses multiplied by the velocities. In the other system it is necessary that
one force stops another force, of which it has only the third part, or even in
other examples, one force must stop an opposite force, of which it is only the
thousandth or ten-thousandth part. It is claimed that the larger force loses
all its advantage in breaking down the parts32 of the other. But this answer
does not remove the difficulty; it is said that these forces do not destroy each
other, but that they are used up in breaking down their parts mutually. Now
since these actions are mutual and opposite, and since they begin and end at
the same time, and since they continue without prevailing one on the other
while they act, I do not understand how they can produce such different
effects, one losing sometimes a thousand, or even ten-thousand times more
than the other.

In the system of Mr Sgravezande it would have been much more natural
to believe that, on meeting each other, two bodies, which are as 9 and 1
with velocities as 1 and 3 and have their masses in the inverse ratio of the
squares of their velocities and consequently their forces equal, would always
have to act with equal and opposite forces in order to break down their
parts mutually, and as a consequence would always have to lose equal forces
and both remain finally at rest; this is extremely contrary to experiment. To
resolve these difficulties, he is obliged to assert that, when two bodies meet
each other with velocities which are in the inverse ratio of their masses, the
big body resists the other, not only by its force, but also by its inertia; this
I regard as a tacit admission that the two forces of the bodies are effectively

32The French phrase here is ‘en enfonçant les parties’; other parts of the verb
enfoncer are encountered in the essay and have been translated in a corresponding
way.
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equal in this case: and I find that the author balances thereby the too large
force which he had given to the small body as a result of its velocity. In the
collisions of these two bodies all the resistance which the big body makes,
whatever it may be (and which is equal to the force which is used up in the
small body, according to the admission of the author) must diminish equally
the forces of the two bodies. Therefore, since in his system the force of the
big body is much smaller, it must be used up before the other: the latter,
finding no more resistance, must take away both bodies. That seems to me to
be an incontestable consequence of our third Principle, that the action and
the reaction are equal. To grant to the author his arguments on inertia and
the resistance of bodies, it would be necessary to change entirely our ideas
of force, inertia and motion, and to abandon what is clear enough in order
to adopt things which are very deeply obscure.

But if it is surprising that in his system a lesser force can stop a much
larger one, it seems even more extraordinary that a force which is only a
thousandth part of another can prevail and take it away on this other one.
The author answers that the larger force is used up in breaking down the
parts of the other body, which is the larger. But it is more natural to believe
that the force which supports the opposite action of the other and takes it
away again on itself at the end, is the larger, than to believe that it is only
its thousandth part.

III. Mr Sgravezande claims to deduce from his principle the same Laws for
the collisions of bodies which had already been found by our principle and by
experiment. His fourteenth Proposition is the basis of all those which follow,
and does not seem to have been sufficiently established. He asserts that “the
force lost in the collisions of two nonelastic bodies is the same whatever the
absolute velocities of these two bodies may be, provided their relative velocity
is the same.” We will see first of all that the demonstration which he gives
of it is not sufficient to establish one of the principal differences of the two
systems. He says: “The motion of the two bodies is composed of their common
motion and their relative motion. It is clear that the first, in whatever manner
it may be changed, cannot change the action of one body on the other; thus
this action is always the same as long as the relative velocity does not change.
It is on this action or effort of the bodies, the one on33 the other, that the
flattening or breaking down of the parts depends, which consequently will be
the same, if the relative velocity is the same.” We could believe, from the
manner in which he treats this Proposition, that it had been granted in both
systems. However, it is very definitely false in the usual system. It is clear
by his nineteenth Proposition34 that he is speaking of the loss of the sum
of the absolute forces of the two bodies, and not of that of the sum of their
motions in one direction. It is also established that in the usual system the
absolute motion which is lost in the collision of two nonelastic bodies, whose

33Here MacLaurin quotes “sur” whereas “contre” in found in the version in [49].
34See Note on Sections I and II, p. 70, for its statement.
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directions are opposite, is double the force of that body, which has the least.
This must therefore change if the relative velocity remains the same, when
the smaller force changes, and cannot change, although the relative velocity
becomes greater, if the smaller force remains the same. Let us suppose that
two bodies A and B have velocities V and u, and that the sum of their
absolute forces before the collision was AV + Bu; if the force of the body A
was the larger, and if they go in opposite directions, their force after their
collision will be AV − Bu, and the difference of these forces, or the force
lost, will be AV + Bu − AV + Bu = 2Bu, that is to say, equal to double the
smaller force. The author had said that the forces never destroy each other,
but that they use themselves up in breaking down the parts of the bodies
which are opposed to them, and which support themselves by their opposite
forces. We could extract from this that a force cannot lose much in breaking
down the parts of a body, if this body is not supported by an opposite force,
or some other obstacle. At least it seems reasonable to believe that the force
lost as a result of the collision of bodies which meet each other with opposite
directions, must be greater than when one of the two, with a velocity equal
to the sum of their velocities, falls on the other at rest; and neverthless the
relative velocity is equal in these two cases. It is certain that if the relative
velocity is unchanged, the forces of the bodies can change themselves, and as
a consequence the resistances which they will make in their collision, the one
against the other, their motions being opposite; it follows from this that the
breaking down of the parts, and the force lost can vary. If we find that this
Proposition is badly founded, we will upset his whole system: for without
this, he would never have reconciled his principle with the Laws of collision
established by experiment.

Mr Sgravezande tries to avoid the force of the experiment of two bodies,
whose velocities are in the inverse ratio of their masses, which remain at rest
after their collision, claiming that the forces lost by the breaking down of the
parts are unequal. But it is certain that two bodies of unequal masses which
pull each other with the same force (like two boats which pull each other
with the same rope) move forward with velocities which are in the inverse
ratio of their masses; and in this case it cannot be claimed that there is
any breaking down of the parts, for the bodies do not touch each other. We
could extract more and more arguments against his principle, from what has
been demonstrated about centrifugal forces, which always balance, when the
accelerating forces are in the inverse ratio of the masses of the bodies, about
centres of gravity and about the percussion of bodies; but that would lead us
too far off. We content ourselves with explaining those which are easiest.

IV. Finally, it is time to examine the reasoning and the experiments, by
which the author claims to establish his principle. He is correct in saying
“that it requires less effort to give a certain degree of velocity to a body,
than to increase by the same degree the velocity of an equal body, but in
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motion.”35 But it is also true that the effort in the second case does not
exercise completely, and does not lose more than in the first: it is clear from
this that there is no more increase of force in the second case than in the
first. Let us imagine two men A and B each holding a ball, A being at rest
while B is on a boat which is in motion: on throwing these balls with equal
efforts, the two men add equal velocities to them, if the balls are equal. It is
true that B is transported in the boat; but we see that the force with which
he is transported is not diminished, and that it has no effect on the ball
which he throws. On applying this reasoning to springs, we will find that the
author has not succeeded in the demonstration which he gives of the eighth
Proposition.36 It has to be denied that the effort of the springs, which he uses
to set the body in motion, is completely employed in moving the body; there
is a part which is employed to transport the springs with the velocity which
the body has already acquired. That is incontestable; and I am astonished
that the author adds at the end of this demonstration that he has disregarded
the inertia of the springs themselves. This comes after he had supposed that
an infinite number of springs relax in order to give to the last a velocity equal
to that which the body had already acquired.

As for the experiments from which he claims to deduce his principle, it
suffices to say that the penetrations of bodies in clay are measures which are
not sufficiently exact and geometrical for the determination of their forces.
It is impossible or very difficult to reduce to an exact calculation the de-
celerations of a body which falls on such ground. The author acknowledges
that only the weight of a body which has no force can sink it into this clay.
From this we see that the penetrations are not proportional to the forces,
and that when the former are equal, it does not follow that the latter are
also equal. It could indeed be useful to investigate how it might come about
that the penetrations are equal, the masses of the bodies being in the inverse
ratio of the squares of their velocities. But that experiment does not suffice
to establish a principle which cannot be reconciled with other incontestable
experiments, as we have demonstrated. Finally, after what we have just said,
it can be established for the eighth Principle that

VIII.

The forces of bodies are as their masses multiplied by their velocities.

35See Appendix II.3, p. 81.
36See Note on Sections I and II, p. 70, for its statement.
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(p.71) SECTION III.

Where we give the Laws of Direct Collision.

DEFINITION I.
We call the collision of bodies direct when their centres of gravity always

run along the same straight line, which passes through the spot where they
are going to collide, and furthermore is perpendicular to the parts of the
surfaces which collide.

DEFINITION II.
We call those bodies whose parts do not yield at all in the collision perfectly

hard.

DEFINITION III.
We call a body elastic when its parts yield in the collision, but afterwards

recover their original positions. If they recover with a force equal to that by
which they have been broken down, the body is perfectly elastic.

DEFINITION IV.

When the parts of a body yield without restoring themselves, we call it
soft.

Neither perfectly hard nor perfectly elastic bodies are to be found; but
that does not prevent us from considering them in Physics. There is no such
thing as a mathematical fluid; but that does not prevent us from investigating
the properties of such a fluid, and the resistances which it could cause to the
motions of bodies. We will begin with hard bodies without elasticity.

PROPOSITION I.
If two perfectly hard bodies go in the same direction, it is necessary to

divide the sum of their forces before the collision by the sum of their masses
to obtain their common velocity after the collision.

Everything which one of these bodies loses as a result of the collision, the
other gains; therefore the sum of their forces after the collision will be the
same as the sum of their forces before the collision. Since the bodies have
no elasticity, they will not separate after the collision, but will continue their
motion both in the same direction, as if they made only one mass with a
common velocity. It is clear from this that in order to have this common
velocity, it is necessary by the eighth Principle to divide the sum of their
forces by the sum of the masses of the two bodies.
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COROLLARY I.

If the two bodies are A and B and their velocities V and u, the sum of
their forces before the collision must be AV + Bu by the eighth Principle;
therefore their common velocity after the collision will be AV +Bu

A+B . The force
of the body A after the collision will therefore be AAV +ABu

A+B , and the force of
the body B after the collision will be BAV +BBu

A+B .

COROLLARY II.

The force which one of the bodies gains and the other loses is the force
produced from AB

A+B multiplied by the difference of the velocities of the two
bodies. If V is larger than u, then the body A will lose the force AB

A+B ×V −u .
For, since its force before the collision is AV and its force after the collision is
AAV +ABu

A+B , their difference AV − AAV +ABu
A+B = ABV −ABu

A+B = AB
A+B ×V −u gives the force

which the body A loses as a result of the collision; this is equal to the force
which the body B gains.

PROPOSITION II.
If the motions of the two bodies have opposite directions, the difference of

their forces before the collision has to be divided by the sum of their masses,
in order to obtain their common velocity after the collision.

After the collision the two bodies move together in the same direction; as
a consequence the larger force destroys the smaller, and, in destroying it, it
is itself reduced by a quantity equal to this small force by the third Principle.
What remains is the difference of the two forces: thus the sum of the forces
of the bodies after the collision is just the difference of the forces which they
had before the collision. Therefore this difference has to be divided by the
sum of the masses of the bodies in order to obtain their common velocity
after the collision.

COROLLARY I.

Let us suppose that the body A has the larger force; the common velocity
after the collision of the bodies A and B, whose velocities were V and u, will
be AV −Bu

A+B . The force of the body A will be AAV −ABu
A+B , and the force of B will

be ABV −BBu
A+B .

COROLLARY II.

The force which the body A loses is AV − AAV −ABu
A+B = AB

A+B ×V +u. The force
which the body B gains in the direction towards which both go after the
collision, is that which the body A loses, and these forces are the same when
the relative velocity V + u does not change, because AB

A+B ×V +u only changes
with V + u; but if we speak of losses of absolute forces, the body B loses
the difference of Bu and ABV −BBu

A+B , that is to say, 2BBu−ABV +ABu
A+B ; if to this
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we add the force lost by the body A, which is ABV +ABu
A+B , the sum 2Bu gives

the force lost as a result of the collision of the bodies A and B, just as we
have calculated it in the sixteenth article above:37 this quantity changes in
proportion to the force of the body B.

PROPOSITION III.
The action of elasticity in the collision of perfectly elastic bodies doubles

the changes of the forces which would be produced in the bodies, if they had
no elasticity.

The parts of elastic bodies are broken down by the collision, and always
yield until the two bodies move forward with a common velocity, as if there
had been no elasticity; the relative velocity, which compressed their spring,
no longer acting, they relax, and restoring themselves by the same degrees,
and with the same forces by which they had been broken down, they produce
the same effects, separating the bodies with a relative velocity, equal to that
with which they approached before the collision. There is therefore a double
increase produced in the force of the body which gains as a result of the
collision, and a double decrease in the force of that body which loses as a
result of the collision.

COROLLARY I.

Let A and B be two bodies which go in the same direction with velocities
V and u; and let B be the body which goes in front. By Corol. 2 of Prop. I
the change of force of each body would have been AB

A+B ×V −u. It is therefore
necessary to add 2AB

A+B ×V −u to the motion of B before the collision, to obtain
its motion after the collision; and it is necessary to take away the same
amount from the motion of the body A before the collision, to obtain its
force after the collision. Therefore the force of B after the collision will be
BBu+2ABV −ABu

A+B , and its velocity Bu+2AV −Au
A+B . The force of the body A will be

AAV −ABV +2ABu
A+B , and its velocity AV −BV +2Bu

A+B .

COROLLARY II.

If the bodies have opposite directions, it is necessary to take away again
from the force of the body A in Corol. 1 of Prop. 2 what it has lost AB

A+B ×V +u,
and we will find its force after the collision to be AAV −2ABu−ABV

A+B . But it
is necessary to add the same amount to the force of the body B, which
will therefore be after the collision 2ABV −BBu+ABu

A+B , and its velocity will be
2AV −Bu+Au

A+B . The velocity of the body A after the collision is AV −2Bu−BV
A+B ; and

when this expression becomes negative, the body A is knocked back towards
the opposite direction.

37 In the original there is a marginal numbering of paragraphs or groups of para-
graphs. The number 16 indicates the first paragraph in Article III of Section II.
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COROLLARY III.

If the body A strikes a larger body B at rest, this body B will have more
force after the collision, than the body A had before the collision. The force
of the body B will be 2ABV

A+B supposing that V is the velocity of the body A
before the collision: but it is clear that, since B is larger than A, the quantity
2ABV
A+B exceeds AV by the difference AV

A+B ×B−A. If the body B strikes another
larger body C at rest, the force of C will exceed that of B: and we find by
calculation, the details of which we cannot give here, that if eleven elastic
bodies in geometric progression of one to ten, were to strike one after the
other, the last would have 394 times more force than the smallest had. A
very learned author has recently based on this a proof of the possibility of
perpetual motion ∗ in the system which puts forces proportional to masses
multiplied by velocities, imagining that we could indeed use these 394 degrees
of force to give one of them to the first body, and beyond that to make
some machine, “for which we see easily,” he says, “that the motion would
be continued in perpetuity, if the materials do not wear away.” But we can
only be extremely astonished that the author does not remember that the
other ten bodies are knocked back in the opposite direction with 393 degrees
of force, and that the sum of all the forces, taking it in one direction, is only
one degree; this upsets entirely his reasoning. In this Corol. B gains the force

AV
A+B ×B−A ; but the body A is knocked back towards the opposite direction
with the same force: therefore the sum of the forces in one direction remains
always AV , as it was before the collision.

PROPOSITION IV.
To find the forces after the collision of bodies which are not perfectly elas-

tic, it is necessary to diminish the relative velocity with which they separate
after the collision in the ratio of the elastic force.

In the collisions of perfectly elastic bodies, the relative velocity after the
collision is equal to the relative velocity before the collision: in the case of
less elastic bodies it is less in the proportion by which the effort of the spring
which produces the relative velocity after the collision is less strong. The
celebrated Mr Newton testifies that he has found this principle to conform
with experiment. See his Scholium on the Laws of motion, in Book I of his
Principia. He found, for example, that two glass spheres always separate
after the collision with a relative velocity, which was to the relative velocity
of their meeting, as 15 to 16 approximately, and that the proportion between
these relative velocities was constant in bodies of the same nature, as long as
the collision did not disturb the parts of the body, in such a way that they
could not restore themselves to their initial positions. It follows from this

∗ See the remarks on the possibility of perpetual motion by Mr Sgravezande.
(MacLaurin’s marginal note.)
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observation that the velocity of the body A after the collision in the case of
Corol. 2 of Prop. 3 must be 16AV −31Bu−15BV

16A+16B if we suppose that this body is a
glass ball. We could argue in the same way about other bodies, when their
elastic force has been determined by experiments.

(p.74) SECTION IV.

Concerning indirect collision.

Problem.
The directions, the velocities and the diameters of two spherical bodies

being given along with their position in some instant before the collision, to
find the place where they will meet.

(Fig. 1.) Let the two bodies38 be A, B; and let us suppose that they start
off at the same time from the places marked A and B in the directions AC,
BC, and that the velocity of the body A is to the velocity of the body B
as AC is to BD. Draw the parallelogram ABHC and draw DH. With centre
C and radius equal to the sum of the semidiameters of the two bodies A
and B, draw a circular arc which cuts the straight line DH in L and l ; draw
LN parallel to CA, and NR parallel to CL. I say that the centres of the two
bodies will arrive at the same time at the points N and R, and that it is then
that the bodies will meet; for DN is to NL or CR, as DB is to BH or AC; and
by division BN is to AR as BD is to AC, or as the velocity of the body B
is to the velocity of the body A. These spaces BN and AR will therefore be
travelled over in the same time, and the centres of the bodies will arrive at
the same time at the points N and R; now since by assumption NR is equal
to CL, the sum of the semidiameters of the two bodies, the two bodies must
touch and collide at that time.

A

M

C

R

D

L

Q

lN

H

B

F

Fig. 1.

38In the original A, B are used to denote both the bodies and their positions. I have
used A, B for the former and A, B for the latter.
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COROLLARY I.

The circle drawn with centre C and radius CL, cuts the straight line DH
in two points L and l ; but when the bodies come to meet from the sides
marked A and B, the intersection l is of no use. If the body A comes from
the opposite side F, CF and CA being equal, and if the bodies leave from
the points F and B together, then in this case to find where they meet, it
would be necessary to use the other intersection l, to obtain the position of
the bodies in the collision.

COROLLARY II.

If the straight line DH does not enter inside the circle Ll, there will be no
point of collision; if the straight line DH touches the circle, the bodies will
touch in passing, but there will be no point of collision. If the sine of the
angle CDL is not less than the sum of the semidiameters of the bodies A and
B, taking DC as radius, there will be no point of collision.

PROPOSITION V.
(Fig. 1.) Let BM, AQ be perpendicular to NR; the actions of the bodies

one on the other will be the same as if the body A with a velocity as RQ
were to meet the body B with a velocity as MN in the straight line NR.

The velocities of the bodies A, B are proportional to the straight lines
AR, BN, and can be represented by these lines. It is known that a force as
AR can be resolved into two forces AQ and RQ, and a force as BN into two
forces BM and MN. The forces as AQ and BM, having parallel directions and
acting in the direction of the tangent of the two bodies, have no effect at all
in the collision. Therefore the two bodies will act one on the other as if they
were meeting in the direction NR with velocities as RQ and MN.

COROLLARY.

(Fig. 2.) It follows from this Proposition that in order to determine their
motions after the collision, it is necessary to suppose that the collision is
direct, and that the bodies A and B meet with velocities as QR and MN,
and we will find by the Propositions of the previous Section their velocities
after the collision in this same direction. Let us suppose that the velocity of
the body A after the collision must be Rg, and the velocity of the body B
equal to Nm; let Rq be equal and parallel to AQ, and Nl equal and parallel
to BM: let the parallelograms Rqag, Nlbm be drawn, and the bodies A and
B will continue their motion after the collision in the diagonals Ra and Nb
of these parallelograms with velocities as Ra and Nb. It is unnecessary to
explain all the special cases of indirect collision; it is easy to apply this general
construction always.
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A Q

G

NL

B

m

l

a

b

g

Fig. 2.

q

M

R

There are the Principles and the fundamental Laws of the collision of
bodies. In order to explain the more complicated cases of the collisions of
irregular bodies, it would be necessary to enter into a long account of deep
Geometry. But it is enough to have established the most essential principles
which will be able to serve as a foundation for those who wish to push their
researches further.

Ac veteres quidem Philosophi in Beatorum Insulis fingunt, qualis natura
sit vita Sapientium, quos cura omni liberatos . . . nihil aliud esse acturos
putant, nisi ut omne tempus in quaerendo, ac discendo, in naturae cognitione
consumant. Cic. de fin. lib. V.39

THE END.

39This quotation comes from Cicero’s De Finibus Bonorum et Malorum, Book V,
xix. It has been translated as, “The old philosophers picture what the life of the
Wise will be in the Islands of the Blest, and think that being released from all
anxiety and needing none of the necessary equipment or accessories of life, they
will do nothing but spend their whole time upon study and research in the science
of nature” (see [91], pp. 452–455).



Notes on Part II

Note on Sections I and II (pp. 55–61). MacLaurin’s seventh principle
(Section I) is concerned with inertial frames of reference. He attempts to show
in Article I of Section II that the Leibniz–Huygens concept of the force of a
moving body is not compatible with this principle, essentially on the grounds
that

m(v1 + v2)2 �= mv2
1 + mv2

2 .

MacLaurin’s example of the two men throwing objects, one on a ship, the
other on the shore, was taken up by ’sGravesande in his Remarques [46].40

In answer to this “difficulté spécieuse” ’sGravesande effectively pointed out
that, as a result of the reaction produced by the act of throwing, the ship
did not remain in its uniform motion. He replaced the passenger by a spring
fixed on the ship, which would propel the body, and after making various
assertions about the behaviour of the spring he attempted to show that the
“force” of the body is indeed 100 and not 68 as MacLaurin claimed. The
details of ’sGravesande’s analysis are given in translation in Appendix II.4
(pp. 81–83).41

In the last example of Article I, which involves elastic bodies, the final
velocities stated by MacLaurin follow from equations (iii) and (v) (Introduc-
tion, p. 50). He refers to ’sGravesande’s Proposition XXV, which states:

The relative velocity with which two elastic bodies separate after colli-
sion is equal to that with which they approached each other.

Here the elasticity is assumed to be perfect.
Referring to equation (iii) of the Introduction, if m1u1 = −m2u2, so that

the velocities have opposite directions and their magnitudes are inversely
proportional to the masses, we have 0 for the common velocity v after collision
in the case of perfectly hard bodies, that is to say, the bodies remain at rest
after collision. This is what MacLaurin asserts at the beginning of Article II in
Section II and proceeds to use as further grounds for denying ’sGravesande’s
arguments.

40In fact ’sGravesande had already employed these two men for another purpose in
[44]. See Appendix II.3, p. 81.

41An almost word-for-word quotation of the second paragraph of MacLaurin’s Ar-
ticle I is omitted from that Appendix.
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In Article III MacLaurin is concerned with ’sGravesande’s Proposition
XIV, which he states along with most of ’sGravesande’s proof (see Appendix
II.5 (p. 84) for the whole proof). MacLaurin seems to be arguing that the
Proposition is false if force means momentum. However, although he criticises
s’Gravesande’s proof, the Proposition is correct for perfectly hard bodies
under the Leibniz–Huygens concept of force, which ’sGravesande intended;
in this case, according to equation (iii), the loss of “force” is

m1v
2
1 + m2v

2
2 − m1u

2
1 − m2u

2
2

= (m1 + m2)
(

m1u1 + m2u2

m1 + m2

)2

− m1u
2
1 − m2u

2
2

=
(m1u1 + m2u2)2 − m2

1u
2
1 − m2

2u
2
2 − m1m2(u2

1 + u2
2)

m1 + m2

= −m1m2(u1 − u2)2

m1 + m2
. (2.1)

MacLaurin also refers to ’sGravesande’s Proposition XIX, which asserts:
The force lost in the collision of two bodies is proportional to the square
of the relative velocity multiplied by the product of the masses divided
by the sum of the same masses.

This is just equation (2.1)! In the last paragraph of Article III MacLaurin
criticises ’sGravesande’s treatment of the case where m1u1 = −m2u2 and,
consequently, the bodies are at rest after the collision (see above). In this
case both sides of (2.1) reduce to −m1u

2
1 − m2u

2
2, that is to say, all energy is

lost in the collision.
The statement of ’sGravesande’s Proposition VIII is as follows:
In equal bodies the forces are proportional to the squares of their ve-
locities.

This is the fundamental point of contention and MacLaurin attempts to refute
it in his Article IV. After the statement of his Proposition VIII ’sGravesande
adds, “As this proposition is contested, I shall prove it first by experiment
before giving the demonstration.” He then proceeds to describe the results
of dropping copper balls onto clay, which were apparently compatible with
Proposition VIII – certainly, the indentations would depend on energy rather
than momentum. MacLaurin’s objections on the grounds of exactness seem
to be unfounded. In the Supplément [45] ’sGravesande describes a further
experiment where ivory cylinders with hemispherical ends were dropped onto
a moistened marble surface and the imprints measured.42

42In [44] ’sGravesande refers to the use of an apparatus of Mariotte’s for his ex-
periments and in [46] he cites Mariotte’s treatise on collisions [74]. This work
was apparently quite influential. However, Huygens claimed that Mariotte had
taken the theory from him and in the late nineteenth century some further doubt
was cast on Mariotte’s originality by P.G. Tait in [101] following his investiga-
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Unlike ’sGravesande, Bernoulli and Maziere, MacLaurin appears not to
have been bothered about the mechanism of elasticity. References to the
“breaking down of the parts” and to springs relate to the idea that the
colliding surfaces are made up of tiny springs, some of which compress on
collision and relax as the bodies separate. It is interesting to note that as
well as the term élastique ’sGravesande uses equivalently flexible à ressort
(ressort ≡ spring, elasticity).

Note on Section III (pp. 62–66). MacLaurin’s definitions of perfectly
hard, elastic, perfectly elastic and soft bodies are quite clear. For ’sGravesande,
however, perfectly hard bodies, which he did not define formally, were to be
rejected on the grounds that none are known; on the other hand, he did study
the collision of perfectly elastic bodies, which was surely just as contentious.
His Article VII, containing Propositions XII–XXII, is entitled, “Concerning
the collision of bodies which are neither perfectly hard nor elastic.” Whatever
the physical distinction between such bodies and MacLaurin’s perfectly hard
bodies, they appear to obey the same laws of collision.

As noted in the Introduction (equation (iii), p. 50) the common velocity
of two perfectly hard bodies following direct collision is

v =
m1u1 + m2u2

m1 + m2
, (3.1)

where the bodies have masses, initial velocities and final velocities m1, m2,
u1, u2, v1, v2, respectively. This is the content of Propositions I and II. In the
first of these, u1 and u2 have the same sign, while in the second they have
opposite signs; MacLaurin’s u and V are magnitudes (speeds) which have to
be added or subtracted according as the directions are the same or opposite.
The corollaries are concerned with momentum and changes of momentum:

m1v1 − m1u1 = m1v − m1u1 =
m1(m1u1 + m2u2) − m1(m1 + m2)u1

m1 + m2

=
m1m2(u2 − u1)

m1 + m2
; (3.2)

m2v2 − m2u2 = m2v − m2u2 =
m1m2(u1 − u2)

m1 + m2
. (3.3)

In the final part of Corollary II of Proposition II, MacLaurin deals with the
“loss of absolute force”: by (3.1) this is

|m1v1| − |m1u1| + |m2v2| − |m2u2| = (m1 + m2)|v| − (|m1u1| + |m2u2|)
= |m1u1 + m2u2| − (|m1u1| + |m2u2|) . (3.4)

tion of a remark in Newton’s Principia. In connection with MacLaurin’s Section
IV, we note that Mariotte had considered some cases of oblique collisions (see
Proposition II in the second part of [74]).
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In this corollary u1 and u2 have opposite signs and |m1u1| ≥ |m2u2|, assuming
this condition from the first corollary, as MacLaurin apparently intends. The
last expression in (3.4) therefore becomes

|m1u1| − |m2u2| − (|m1u1| + |m2u2|) = −2|m2u2| ,
which corresponds to the loss of 2Bu stated by MacLaurin.

Proposition III and its corollaries are concerned with the collision of per-
fectly elastic bodies, for which we have the equations (Introduction, equations
(i) and (iv), pp. 49–50)

m1v1 + m2v2 = m1u1 + m2u2 ,

v2 − v1 = u1 − u2 ,

with solution

v1 =
m1u1 − m2u1 + 2m2u2

m1 + m2
, v2 =

m2u2 − m1u2 + 2m1u1

m1 + m2
. (3.5)

Hence for the changes of momentum we have

m1v1 − m1u1 =
m2

1u1 − m1m2u1 + 2m1m2u2 − m1(m1 + m2)u1

m1 + m2

=
2m1m2(u2 − u1)

m1 + m2
,

m2v2 − m2u2 =
2m1m2(u1 − u2)

m1 + m2
.

As MacLaurin notes in Proposition III, these changes are twice the corre-
sponding changes for the case of perfectly hard bodies, which are given in
(3.2) and (3.3).

Corollary III of Proposition III deals with the case where u2 = 0, for
which we obtain from (3.5)

v1 =
(m1 − m2)u1

m1 + m2
, v2 =

2m1u1

m1 + m2
. (3.6)

Moreover,

m2v2 − m1u1 =
2m1m2u1 − m1(m1 + m2)u1

m1 + m2
=

m1(m2 − m1)u1

m1 + m2
,

from which we see that, if m2 > m1, then |m2v2| > |m1u1|, that is to say,
the larger mass, which was at rest before the collision, now has momentum
with larger magnitude than the smaller mass had before the collision.

MacLaurin next states a result concerning successive collisions of eleven
perfectly elastic bodies with masses m0, 10m0, 102m0, . . . , 1010m0. They
are separated and arranged in this order in a row; all are at rest except for
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the first body, which moves towards the second with velocity u0. For the first
collision we have

m1 = m0 , m2 = 10m0 , u1 = u0 ,

so that by (3.6)

v2 =
2
11

u0 , v1 = − 9
11

u0 .

Then in the second collision

m1 = 10m0 , m2 = 102m0 , u1 =
2
11

u0 ,

which leads to

v2 =
(

2
11

)2

u0 , v1 = − 9
11

× 2
11

u0 ,

and for the third

m1 = 102m0 , m2 = 103m0 , u1 =
(

2
11

)2

u0 ,

giving

v2 =
(

2
11

)3

u0 , v1 = − 9
11

(
2
11

)2

u0 ,

and so on. After the final collision the eleventh body will have momentum

1010m0

(
2
11

)10

u0 =
(

20
11

)10

m0u0 = (394.796 . . .)m0u0 .

Note that, as MacLaurin points out, the sum of the momenta after all the
collisions have taken place is just the initial value m0u0:

− m0
9
11

u0 − 10m0
9
11

× 2
11

u0 − 102m0
9
11

(
2
11

)2

u0

. . . − 109m0
9
11

(
2
11

)9

u0 +
(

20
11

)10

m0u0

= m0u0

((
20
11

)10

− 9
11

(
1 +

20
11

+
(

20
11

)2

+ . . . +
(

20
11

)9
))

= m0u0

((
20
11

)10

− 9
11

× 1 − ( 20
11

)10

1 − 20
11

)
= m0u0 . (3.7)

The “very learned author” whose arguments concerning perpetual mo-
tion are now attacked by MacLaurin is as before ’sGravesande. Section 1
of his pamphlet Remarques touchant le mouvement perpétuel [47] is entitled
“Preuves de la possibilité du Mouvement perpétuel, en supposant que la
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force du corps en mouvement est proportionelle à la masse multipliée par la
vitesse.” It includes the example of the eleven balls, but also gives no details
of the calculations. He asserts that almost 800 degrees of force have been
generated by the application of just 1 degree of force to the first ball – this
corresponds to the sum of the moduli of the terms on the left-hand side of
(3.7), namely, 2(20

11 )10 − 1 ≈ 788.6; however, as MacLaurin points out, the
directions have to be taken into account. Convinced of the validity of his
arguments, ’sGravesande concludes by asserting:

The only means of answering the arguments which have just been
proposed for the possibility of perpetual motion is to deny, along with
Mr. Leibnitz, the principle on which they are founded, that the forces
of bodies are in the ratio of the products of their masses by their
velocities.

Thus he appears to be saying that, if perpetual motion is impossible, then
the laws of collisions based on momentum considerations cannot be valid.

In Proposition IV, the final result of this section, MacLaurin states the
law of restitution for general e. As an illustration he adds the resulting ex-
pression for our v1 in the case where the two bodies are moving towards each
other and e = 15

16 , which corresponds to an experiment of Newton’s involving
the collision of glass spheres (see p. 23 of [81] ([88]), p. 21 of [84]). Solving
equations (i) and (ii) (Introduction, p. 49) produces

v1 =
(m1 − em2)u1 + m2(1 + e)u2

m1 + m2
,

from which we obtain MacLaurin’s expression on putting

u1 = V , u2 = −u , m1 = A , m2 = B , e =
15
16

.

Note on Section IV (pp. 66–68). The following geometrical principle is
implicit in MacLaurin’s solution of the Problem and its Corollaries.
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Fig. 1a.
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Fig. 1b.
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In Fig. 1a we have a parallelogram ABHC and a given point D on BC
(cf. Fig. 1, p. 66). From any point H1 on DH draw H1B1 parallel to AC to
meet BC in B1 and from B1 draw B1A1 parallel to CH1 to meet AC in A1.
Considering similar triangles and opposite sides of parallelograms we obtain

DB1

DB
=

B1H1

BH
=

A1C
AC

, and so
DB − DB1

DB
=

AC − A1C
AC

,

that is43
B1B
DB

=
AA1

AC
, or equivalently

BB1

AA1
=

BD
AC

.

MacLaurin chooses D to be such that

velocity of body A

velocity of body B
=

AC
BD

,

and so it follows that A1 and B1 represent positions of the centres of the
bodies, which started at A and B, after the same time t unless the motion
has been disturbed by an earlier collision. We can therefore trace out the
motion up to collision by letting H1 vary along DH from H. The length of
CH1 is equal to the distance between the centres at time t, so the bodies will
meet when CH1 is equal to the sum s of their radii. To determine such a
point H1 MacLaurin draws a circular arc with centre C and radius equal to
s, obtaining the point L in Fig. 1 (p. 66) for H1 with A1 at R and B1 at N.

Corollary II is clear from the above analysis: if the circular arc does not
cut DH, then the distance between the centres is always greater than s and
so the bodies cannot meet; if DH is tangential to the arc, the bodies only
touch in passing. Referring to Fig. 1b in which P lies on the circle centre D
radius DC, we recall that in the standard terminology of the time the sine
of the angle CDP with DC as radius is the length PP1, or equivalently the
length CC1. If P lies on DH, then CC1 is just the perpendicular distance of
C from DH; if this is at least as big as s, then DH either misses the arc or is
tangential to it, so that, as MacLaurin states in this corollary, there will be
no collision when the sine “is not less than the sum of the semidiameters.”

The significance of the second point l in which the arc meets DH (Fig. 1,
p. 66) is also clear from the above. Referring to Fig. 1a we see that the min-
imum value of CH1 is the perpendicular distance of C from DH, which in
Fig. 1 is less than s; the point at which CH1 is first equal to s is L, after
which it decreases to its minimum and then increases, taking on the value
s again at l. The corresponding positions are shown in Fig. 1c below, but of
course this configuration cannot occur because of the earlier collision – the
distance between the centres cannot be less than s.

MacLaurin refers to the point l in Corollary I, a casual reading of which
might suggest that Fig. 1c in fact represents the collision when body A starts

43The operation here is referred to as “by division” in MacLaurin’s discussion. It is
the ratio operation of dividendo inverse: a : b = c : d ⇒ (b − a) : b = (d − c) : d.
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from the point F on AC produced such that AC = CF, its velocity now being
in the opposite direction.44 But this cannot be the case: in the figure, CD is
greater than s and, when the centre of body A is at C, the centre of body
B is at D; therefore, when the collision takes place, the centre of body B
must be to the right of D; however, the construction puts this at the point
N to the left of D. I believe that what MacLaurin intended in Corollary I
is the following. Consider Fig. 1d below, which is the diagram for the new
motion corresponding to Fig. 1a, except that the lengths have been halved.
The parallelogram ABHC is now replaced by the parallelogram FBHC.

C

H

B N
l

F

A

R

L

D

Fig. 1c.

C

A

B

H

F

H1

B1

D

A1

l

Fig. 1d.

In this case the point at which CH1 first becomes equal to s will be the upper
intersection (l) of DH with the arc, whereas in the previous situation it was
the lower intersection (L).

MacLaurin observes in Proposition V that if velocities are resolved into
components parallel and perpendicular to NR (Fig. 1, p. 66) it is only the
former which are affected by the collision; moreover, since by our discussion
above

44In MacLaurin’s published Fig. 1 the point F is located erroneously on BC
produced.
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AR
BN

=
velocity of body A

velocity of body B
,

and −→AR = −→AQ+−→QR and −→BN = −−→BM+−−→MN, we deduce that the collision takes
place with initial velocities such that

component of velocity of body A parallel to NR
component of velocity of body B parallel to NR

=
QR
MN

, (4.1)

component of velocity of body A perpendicular to NR
component of velocity of body B perpendicular to NR

=
AQ
BM

. (4.2)

The components of velocity parallel to NR after the collision are to be calcu-
lated using the results of Section III as if the bodies had been moving along
NR with the components described in (4.1) as initial velocities: the new com-
ponents are represented by Rg and Nm in MacLaurin’s terminology. Finally,
MacLaurin assumes that all these components are known in units which make
the initial velocity of the body A equal to −→AR. Then in MacLaurin’s notation
(see Fig. 2, p. 68), since the components in (4.2) do not change,

velocity of body A after collision = −→AQ + −→Rg = −→Rq + −→qa = −→Ra ,

velocity of body B after collision = −−→BM + −−→Nm = −→Nl + −→lb = −→Nb .

In this way the direction of motion after the collision is determined for both
bodies.

Note that the L and l in Fig. 2 are not the same as the points so labelled
in Fig. 1. Other aspects of Fig. 2 are also unsatisfactory. The angle between
the lines AR and BN is significantly different from the corresponding angle in
Fig. 1, as a result of which −→QR has opposite directions in the two figures. Also
the radii of the two bodies have been made the same in Fig. 2 (cf. Appendix
II.2, p. 80), which does not seem to be required in the discussion.

There is some confusion in the second paragraph of Proposition V when
MacLaurin goes from velocities represented by AR and BN to the resolution
of forces represented by these lines. Does he now mean momentum rather
than velocity, in which case he would require the bodies to be the same, as
suggested in Fig. 2, if the same lines could also represent momentum? We
note finally that ’sGravesande deals with oblique collisions in [48]; some of
his diagrams have a marked similarity to MacLaurin’s Fig. 2.
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II.1. Notice prefixed to the published version of MacLaurin’s
essay (translation)

NOTICE.

The Academy believes that it must draw attention to the fact that people
have not taken sufficient care to confine themselves within the bounds of the
question which it had proposed: there were even some authors who did not
discuss it, and who substituted another one for it. The Laws of the Collision
of perfectly hard Bodies were asked for, without consideration of whether these
bodies exist. However, it is only the Laws of the Collision of elastic Bodies
which have been given in some of the submitted Memoirs; amongst these
there are some of excellent quality, and above all one which has as a motto,
In magnis voluisse sat est,45 in which the author demonstrates much skill in
Geometry and much acuteness in the resolution of the most difficult problems.

Since the Laws of the Collision of Bodies and of the transmission of mo-
tions are not the same in elastic bodies as in bodies which are infinitely hard,
or inflexible, the estimation of the forces, which is at the present time a much
debated question, and where perhaps there has been some misconception up
till now, can also not be the same in the two cases. One author can have
done this estimation properly in the first case, while another can have given
a different but valid version of it in the second.

The work which has won the Prize is that of Mr MacLaurin, Professor of
Mathematics in the University of Aberdeen and Fellow of the Royal Society
of London.46

45This was the essay [13] by Jean Bernoulli to which reference was made above.
The quotation comes from Propertius, Elegies II.x.5 and may be translated as,
“in great endeavours even to have had the will is enough” ([89], p. 530:1).

46Corrections from the Errata are incorporated here; in particular, the author’s
name appears as Maclorrins in the text.
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II.2. MacLaurin’s diagrams from [1] (courtesy of Glasgow
University Library, reproduced with permission)
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II.3. Extract from ’sGravesande’s paper [44]: material between
the statement of Proposition IX and its proof (translation)

In order to show first of all that it requires less effort to give a certain degree
of velocity to a body, than to increase by the same degree the velocity of an
equal body but in motion, it suffices to remark that it would require the same
effort in the two cases, if in the second the moving cause were transported
with the velocity which the body had before the increase, which does not
happen without effort. Let us imagine two men A and B each holding a ball;
we suppose that the two balls are equal; A is at rest; B is on a boat with
which he is transported: this gives the velocity which the boat has to the ball
which B is holding. The two men throw their balls by making equal efforts;
then the increase in the velocity of the ball which B has thrown is equal to
the whole velocity of the ball which A has thrown. In order to give to this last
ball its velocity, the effort which A has made is enough, but to increase the
velocity of the other ball, over and above an equal effort by B, it is necessary
that B be transported.

II.4. Response by ’sGravesande to MacLaurin’s example in the
second paragraph of Article I of Section III (translation)

(See [46] or [49], Vol. I, Part I, pp. 262–265 for the original.)

This reasoning appears to be founded on very simple principles and would
be conclusive if these principles were indeed such; but it is necessary to ex-
amine if attention has been paid to everything which must be considered.

It is supposed as clear that the man who is on the ship communicates
8 degrees of velocity to the body A by making precisely the same effort as
the man on the shore, who gives the same velocity to the body B. This,
however, is not exactly true; if we put a man on a plank or in a small, light
launch, and if he throws some heavy mass, for example something of one
hundred or two hundred livres, it will be seen whether, with a specific effort,
he will be able to communicate to it as much velocity, as if he were located
on a fixed base.

It is true that the heavier the ship, the less the difference will be between
the efforts which give the velocity 8 to each of the bodies A and B; however
there will always be some: and this difference, however small we make it
by increasing the ship, will always be sufficiently large to remove from the
objection its entire force and to confirm the opinion which I am defending.

This is what we will try to prove after having presented some principles.
I. A spring which relaxes makes all its effort in one direction, provided it

cannot go back.
Proof from experiment. A compressed spring, which, when placed between

two equal bodies, communicates to each of them a certain degree of velocity,
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throwing one to the right and the other to the left, if, being fixed to an
immovable obstacle, it pushes the two bodies together in the same direction,
will communicate to each of them the same degree of velocity as in the first
case.

II. A spring which is transported while it relaxes communicates all its
effort in the direction towards which it is transported.

This is clear, since a transported spring is a spring which cannot go back.
III. The force, that is to say, the capacity to act, which a body acquires,

is equal to the action which communicates it.
The cause is proportional to the effect.
IV. In order to determine the total action which serves to give force to a

body, it is not sufficient just to consider the immediate action of the moving
cause on the body, but it is necessary to add to it that which serves to
transport the moving cause, if this last action has no other effect than to put
the moving cause in the state of acting with greater effectiveness.

Proof from experiment. The effect of two springs is the same, whether
they act together, one beside the other, or one pushes the other while the
latter relaxes.

V. A spring, at rest between two bodies, on relaxing communicates to
them velocities which are in the inverse ratio of the masses.

This is consistent with experiment and, besides, it is not contested.
Now that these principles have been set down, we suppose that the body

which is on the ship, instead of being thrown by a man, is pushed by a spring
attached to the ship in such a way that it cannot go back without causing
the whole ship to go back. This changes nothing in the reasoning which we
are examining, the action of the spring being analogous to that of the man;
but it is more regular and it serves to make the calculation more meaningful.

The body A applied to the taut spring has along with the ship 2 degrees
of velocity; it has 4 degrees of force. The spring relaxes and communicates
to the body 8 degrees of velocity in the ship, that is 64 degrees of force in
the ship. Up to here we are in agreement. In the air the body has 10 degrees
of velocity; it therefore has 100 degrees of force: this is what we again agree.
But, here is the difficulty; it is said that this is not possible, because the body,
which had 4 degrees of force, has only received 64. Now this is what I do not
see. Indeed the body has only received 64 degrees of force to act upon an
obstacle transported with 2 degrees of velocity; but, to consider everything,
the body has acquired 96 degrees of force, as we are going to try to prove.

In order to perform the calculation, it is necessary to know the mass of
the ship; but, whatever we put as this mass, the result of the calculation is
the same.

Let us suppose this mass to be a thousand times greater than that of the
body A: we can take the number as we want.

We have a spring between two bodies, between the ship to which it is
attached and between the body A; this spring is at rest with respect to these
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two bodies. Consequently, on relaxing, it communicates to them velocities
which are in the inverse ratio of the masses (V). It communicates 8 degrees
of velocity to A, which is why it communicates to the ship 8

1000 or 1
125 degrees

of it.
The effort of the spring must be measured by considering that it was at

rest between the two bodies if they had been at rest. Therefore I multiply 64,
the square of the velocity communicated to A, by its mass 1 and I have 64. I
multiply 64

1000000 , the square of the velocity communicated to the ship, by its
mass 1000 and I have 64

1000 or 8
125 , and the total action of the spring is equal

to 64 8
125 ; for this spring between the two bodies at rest would have produced

such a force.
We are concerned here with a transported spring, which makes all its effort

in the direction towards which it is pushed (II); this is why it communicates
to the body A a force which is equal to 64 8

125 .
The spring of which we are speaking is a transported moving cause, and

the action of the ship, which pushes the spring while it is acting, makes
it more capable of acting on the body, which, without that, would avoid
part of the action of the spring as a result of its own movement. For this
reason the action of the ship, by which the moving cause is transported,
also communicates itself to the body A (III, IV). It is therefore necessary to
determine this action, which is equal to the force which the ship has lost as
a result of this action, since the effect is proportional to its cause.

This lost force is found if the force after the action is subtracted from the
force before the action; what is left is the lost force and this added to 64 8

125 ,
which we have already, will give everything which the body gains as a result
of the actions of the ship and the spring combined together (IV).

The mass of the ship, 1000, multiplied by 4, the square of its velocity
before the spring relaxes, gives 4000 degrees of force before the action.

The velocity 1
125 , which the spring has communicated to the ship, has

direction opposite to that of the initial velocity, which consequently has been
diminished, and 1 124

125 is left, whose square 3 15126
15625 multiplied by the mass 1000

gives the force after the action, 3968 1000
15625 or 3968 8

125 ; when this has been
subtracted from 4000, it gives 31 117

125 for the effort of the ship on the spring,
to which must be added 64 8

125 , which is the effort of the spring, in order to
have the whole force which the body A has gained; if we add to this 4, the
force of the same body before the action of the spring, we will have the total
force; now the sum of these numbers is 100 and not 68.

If one wishes to take the trouble to carry out the calculation algebraically,
it will be seen that the demonstration is general and that the force acquired
is always proportional to the action which communicates it; this will not be
true if we use a different method of measuring the force, unless we call into
doubt a matter which is nevertheless consistent with experiment, as we have
seen above (IV); it is that the agent which transports and pushes the moving
cause during its action acts with it on the same body.
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II.5. Proposition XIV from ’sGravesande’s paper [44] along with
its proof (translation)

The force lost in the collision of two nonelastic bodies is the same whatever the
absolute velocities of these two bodies may be, provided their relative velocity
is the same.

The motion of the two bodies is composed of their common motion and
their relative motion. It is clear that the first, in whatever manner it may
be changed, cannot change the action of one body on the other; thus this
action is always the same as long as the relative velocity does not change. It
is on this action or effort of the bodies, the one against the other, that the
flattening or breaking down of the parts depends, which consequently will be
the same if the relative velocity is the same. This is consistent with known
experiments.

In the collision there is no force lost except that which is required to
flatten or break down the parts. Consequently, this lost force is the same
when the flattening or breaking down of the parts is the same, that is to say,
in all the cases in which the relative velocity of the two bodies is the same.
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Introduction to Part III

The prize topic proposed by the Royal Academy of Sciences for 1740 was
the tides: le Flux et Reflux de la Mer. The winners, in the order in which
their essays were published by the Academy, were Father Antoine Cavalleri
[23], Daniel Bernoulli [12], Colin MacLaurin [68] and Leonhard Euler [38].
Cavelleri’s work was based on the Cartesian idea of vortices;47 the other three
were founded on Newtonian principles and were subsequently reproduced in
the “Jesuit Edition” of the Principia (1739–1742) [86] as illustrations of the
Newtonian philosophy. Newton had already discussed in its earlier editions
the tidal forces on the Earth which resulted from the gravitational attraction
of the Sun and of the Moon; his work was of course the starting point for
MacLaurin’s investigations.

Intimately connected with the study of the tides is the problem of the
figure of the Earth, which was also discussed by Newton. For MacLaurin
the approach to both problems was the same, namely, the equilibrium of a
spheroidal48 fluid mass held together by the mutual attraction of its particles
according to the inverse square law of attraction and acted upon by certain
external forces: for the tides these are the attractions of the Sun and of
the Moon; for the figure of the Earth there is just one external force, the
centrifugal force resulting from the Earth’s rotation about its axis. In the case
of the tides the fluid sphere is elongated along an axis by the action of the
external forces, so we have an oblong spheroid, while for the figure of the Earth
the centrifugal force causes a flattening at the poles, producing an oblate
spheroid; the resulting mathematical formulae are significantly different in
the two cases.

Throughout the 1730s and early 1740s the study of the figure of the
Earth was a major topic which occupied many authors, including James

47According to [50] the judges had agreed that one of the prizes should be reserved
for an essay based on Cartesian principles. Cavalleri, a Jesuit professor of mathe-
matics and theology, had been awarded prizes in 1738 and 1739 by the Bordeaux
Academy for essays on other physical topics. Some discussion of his essay on the
tides will be found in §4 of [5].

48For MacLaurin a spheroid is the solid of revolution obtained by rotating an el-
lipse about one of its axes. The spheroid is oblong (sphaerois oblonga) or oblate
(sphaerois oblata) according as the rotation is about the major (transverse) or
the minor (conjugate) axis.
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Stirling [97], Alexis-Claude Clairaut [25–27], Colin MacLaurin [68, 69] and
Thomas Simpson [96]; their contributions are discussed by Todhunter [103]
and recently by Greenberg [50] (see also [105], Chapter 5 and Appendix B).
The theoretical work was supported by two expeditions organised by the
Royal Academy of Sciences to determine by surveying the lengths of a de-
gree of latitude in the polar region (Lapland, 1736–1737) and at the equator
(Ecuador (at that time part of Peru), 1735–1744) (see [103], Chapters VII
and XII); the very successful northern expedition was led by Maupertuis [75]
and included Clairaut, who communicated his first paper [25] on the figure
of the Earth to the Royal Society from the expedition’s base at Torneo.

MacLaurin was certainly working on the figure of the Earth by 1738; this is
known from the Stirling–MacLaurin correspondence (see, for example, three
letters of May 1738 ([111], pp. 80–88, [77], pp. 293–303)). Whether he had
applied his theory to the study of the tides prior to the announcement of the
prize topic does not seem to be known, although we can be sure that he was
already completely familiar with Newton’s contributions. Stirling, MacLaurin
and Simpson, and perhaps also Clairaut, each have some claim to priority in
the resolution of the problem of the figure of the Earth. Simpson asserts in
the Preface to [96]:

I must own that, since my first drawing up this Paper, the World
has been obliged with something very curious on this Head, by that
celebrated Mathematician Mr. Mac-Laurin, in which many of the same
Things, are demonstrated. But what I here offer was read before the
Royal Society ∗, and the greater Part of this Work printed off, many
Months before the Publication of that Gentleman’s Book; for which
Reason I shall think myself secure from any Imputations of Plagiarism,
especially as there is not the least likeness between our two Methods.

. . . . . .
∗ It was read before the Royal Society in March or April, 1741, and
had been printed in the Philosophical Transactions, had I not desired
the contrary.

Certainly, Simpson’s methods, based on clever manipulations of infinite se-
ries, are quite different from MacLaurin’s geometrical approach. However,
as noted by Todhunter [103, Article 247], the gist of MacLaurin’s work, in
particular his Fundamental Theorem on the equilibrium of fluid bodies, had
already appeared in his prize essay, predating the Treatise of Fluxions [69], to
which Simpson alludes. The editors of [86], Father Thomas Le Seur and Fa-
ther François Jacquier, gave MacLaurin special mention in their introduction
to the three winning entries reproduced there, pointing out that he had in fact
solved in his 1740 essay a problem which they had proposed in their Notes
on Newton’s Proposition XIX of Book III but had been unable to resolve:
this was the spheroidal shape of the Earth. Stirling’s claims were promoted
at the Royal Society, not by himself, but by John Machin; however, they are
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based on unpublished material, which is now probably lost.49 Clairaut wrote
the period’s definitive text on the figure of the Earth [27] (1743); in place
of the methods of his earlier papers he adopted in part those of MacLaurin,
which had greatly impressed him.50 Several letters from Clairaut to MacLau-
rin are extant (see [77]); from one of these (Letter 174 of [77]) we learn that
Clairaut had been one of the judges for the 1740 competition. In [69] MacLau-
rin went on to consider nonhomogeneous layered spheroids, which were also
investigated by Clairaut; this aspect of MacLaurin’s work and its influence
on Clairaut are discussed in [50] (see especially §8.2). Patrick Murdoch, who
was MacLaurin’s friend and the editor of his posthumous Account of Sir
Isaac Newton’s Philosophical Discoveries [70] ([73]), published [80], in which
he established by his own methods some of MacLaurin’s results. Many great
names make an appearance in the further study of the figure of the Earth, in-
cluding Lagrange, Legendre and Laplace, but let us note finally the continued
Scottish input represented by the highly regarded, if sometimes controversial,
19th-century work of James Ivory (1765–1842) (see [33, 34, 103]).

Newton’s law of gravitation effectively asserts that the force of attraction
between two particles of masses m1 and m2 and at distance r apart is given
by

Gm1m2

r2 , (1)

where G is a constant; the force of attraction on one particle acts in the
direction from that particle to the other. This law governs aspects of the
motion of the Moon about the Earth and of the Earth about the Sun. It also
determines, in part, the tidal forces on the Earth caused by the Sun and the
Moon. Although the gravitational attraction between the Sun and the Earth
is much greater than that between the Moon and the Earth, it turns out
nevertheless that the Moon has a greater influence than the Sun on the tides
of the Earth’s waters. This is because it is the variation of the attraction over
the Earth’s surface that determines the tides rather than its magnitude; the
variation, measured by differences, depends on∣∣∣∣ d

dr

(
Gm1m2

r2

)∣∣∣∣ =
2Gm1m2

r3 . (2)

The relevant quantities for the Earth, Moon and Sun are such that (1) is
greater for Earth–Sun than for Earth–Moon, while the reverse is true in the
case of (2) (for the calculations see, for example, [55], pp. 108–110). Newton
and MacLaurin both use the fact contained in (2) that, at the great distances

49See Chapter 5 of [105] for details and some relevant material extracted from
Stirling’s notebooks.

50Clairaut wrote: “. . . j’ai jugé à propos de traiter en particulier de la figure des
sphéröıdes homogènes, et d’abandonner ma méthode, quant à ces sphéröıdes, pour
suivre celle que M. MacLaurin vient de donner dans son excellent Traité des
fluxions. Cette méthode m’a paru si belle et si savante, que j’ai cru faire plaisir
à mes lecteurs de la mettre ici.”
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involved, tidal forces are approximately inversely proportional to the cubes
of the distances.

Now let us turn to a brief description of the contents of MacLaurin’s
1740 essay on the tides – detailed analyses of individual results and items
will be found in the Notes51 placed at the end of the translation. Section I
describes some of the observed phenomena associated with the tides and
Section II is largely an outline of how the Moon, the Sun and the motion of
the Earth appear to influence the tides. Also in Section II MacLaurin states
certain approximations which are implicit in the Principia and which form
the basis of some of his later applications; here the inverse square law (1) is
used: the lengths of the lines chosen to represent certain forces are taken in
inverse proportion to the squares of the distances involved (see Fig. 1 and the
associated discussion, pp. 102–103).

A number of technical terms arise in these two sections, some of which are
important later on. It is convenient to note the important ones here:52 the
syzygies occur when the Earth, Moon and Sun are aligned;53 in the quadra-
tures the line from the Earth to the Moon is perpendicular to the line from
the Earth to the Sun; the Moon’s declination is its angular height relative
to the Earth’s equatorial plane (measurement as for latitude). Concerning
the heights of tides we should note that these are generally given in the old
French units: 12 lignes = 1 pouce, 12 pouces = 1 pied ≈ 1.066 feet; the terms
pied and pouce are commonly written in English as Parisian (or Paris) foot
and inch.

Section III contains the main results of MacLaurin’s essay. Proposition I,
which MacLaurin also labels Theorema Fundamentale, is his famous theorem
on the equilibrium of a spheroidal mass of fluid. The proof which MacLaurin
presents glosses over some important points; nevertheless, MacLaurin does
go a considerable way towards justifying his result, which represented a sub-
stantial new insight into the problem. In the Corollaries he applies his Fun-
damental Theorem to obtain approximate expressions for the ratio of the
“difference of the height of the water” at the poles and at the equator to the
Earth’s mean diameter in the syzygies and the quadratures; this difference
is of course the difference in the lengths of the axes of the generating ellipse
for the spheroidal shape taken on by the fluid Earth under the combined
effects of the Moon and the Sun. Proposition I is preceded by four Lemmas
concerned with geometrical and gravitational matters which are required in
the development. Of these, Lemma IV is the most significant: here we find
MacLaurin ingeniously exploiting the geometry and symmetry of the spheroid
to determine components of attraction; in following through MacLaurin’s ar-

51References to notes are usually given in abbreviated form: for example, NLI in-
dicates the Note on Lemma I and NPIII denotes the Note on Proposition III.

52Distances between bodies are understood to go from centre to centre.
53In Corollary 4 of Proposition I MacLaurin distinguishes two separate cases of

syzygies: where the Moon is in conjunction with the Sun (they are on the same
side of the Earth), and where they are opposed or in opposition (on opposite sides).
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gument I have the distinct impression that he is essentially evaluating the
triple integrals by which these components are represented nowadays (see
Appendix III.3 (pp. 201–202)). This theme continues in Lemma V, which ex-
presses by means of a certain integral the attraction at the poles for a general
class of figures and compares this with the attraction of a related sphere. In
Proposition II MacLaurin applies this nicely to determine the attraction at
the poles of an oblong spheroid. Lemma VI and Proposition III deal in a
similar way with the attraction at the equator of an oblong spheroid, for
whose determination, as MacLaurin notes, the method is less obvious. The
results of Propositions II and III are combined in Proposition IV along with
MacLaurin’s earlier considerations of the ratio of the difference in the lengths
of the fluid Earth’s axes to its mean diameter to give an expression for this
ratio in terms of the tidal forces caused by the Sun and the Moon and the
mean gravity over the Earth’s surface; the effect of the Earth’s rotation is
ignored. The section ends with a discussion in Proposition V of the tidal
force due to the Sun alone; here MacLaurin quotes various results and data
from Newton. MacLaurin’s Fundamental Theorem applies to both oblong
and oblate spheroids but, as noted above, it is the oblong spheroid which is
relevant in the applications to the tides; however, in a series of Scholia to his
Propositions, MacLaurin states corresponding results for oblate spheroids, so
that, implicit in his essay, is an outline of aspects of his theory of the figure
of the Earth.54

Section IV begins with a discussion of the effect of the Earth’s rotation on
the tides and a calculation to determine where the height of the water is least
in the syzygies when the rotation is taken into account. In Proposition VI
MacLaurin applies his formula from Proposition IV to consider the tidal
forces on the Moon due to the effects of the Sun and to compare the ellipse
corresponding to the resulting shape of a fluid Moon with the observed ellipse
of the lunar orbit. Proposition VII points out that, since the velocity of
a place on the surface of the rotating Earth decreases as we move north
or south from the equator, the directions of tides will be affected as the
moving water changes latitude. MacLaurin now allows the Earth to have a
more general shape (Fig. 11, p. 131): all sections through the axis Aa have
to be elliptical, but the equatorial section ABab is now an ellipse and not
necessarily a circle. In Proposition VIII MacLaurin states a few terms of a
series giving the attraction at A from this solid and indicates how by use of
this series and a related series for the attraction at B the rise of the water
can be determined. However, he dismisses this approach as being of little use.
The section concludes in Proposition IX with some observations, partly from
Newton, concerning the tidal forces produced by the Moon and the possibility
of only one tide in a day at certain places.

54For MacLaurin’s proofs see [69], especially Articles 641 and 646. Some details are
also given in my Notes.
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At the end of the essay there is an appendix of three Remarks (Annotanda)
from MacLaurin. In the first of these he notes an error which he had made
in the expression given in Proposition IV for the ratio of the rise of water to
the mean diameter and gives an improved version. The second Remark gives
an indication of how he derived the series stated in Proposition VIII. Finally
he notes a variant of a procedure given by Newton for comparing the tidal
forces produced by the Moon with those produced by the Sun. I believe that
the Remarks did not form part of the original submission but were sent in
afterwards to be published as an appendix to it: there is a single diagram
(for Remark II) which is of poor quality in comparison with the carefully
engraved diagrams (Figs 1–11) elsewhere in the essay, suggesting that this
material may have arrived after the production process was underway.55

A number of typographical and other errors appear in the published ver-
sion [68] of MacLaurin’s essay; I have corrected without comment the obvious
typographical errors and in the case of the small number of more serious er-
rors, I have discussed these in my Notes. All seem to be easily remedied and
none has a detrimental effect on the general merit of the ideas put forward in
the essay. Patrick Murdoch tells us in An Account of the Life and Writings
of the Author, which is contained in [70] ([73]), that MacLaurin “happened
to have only ten days time to draw up this paper, and could not find time
to transcribe a fair copy, so that the Paris edition of it is incorrect; but he
afterwards revised the whole and inserted it in his Treatise of Fluxions.”56

We should also note that, while they claim to have corrected the errors ap-
pearing in the Paris edition, the editors of [86] have in fact allowed several
new errors to creep in to their version of MacLaurin’s text.

To some extent the essay and the discussion of the figure of the Earth
and the tides in [69] are complementary: the emphasis in [69] is on the figure
of the Earth and the applications to the tides are given in rather contracted
form; some items, however, are taken rather further than in the essay (see,
for example, Articles 690–691). The relevant material in [69] is contained in
its Chapter XIV, which begins with several Articles under the heading Of
the Ellipse considered as the Section of a Cylinder. Here MacLaurin derives
properties of the ellipse, some of which are required in the study of the
figure of the Earth and the tides, from corresponding properties of the circle
by means of a projection method; he also considers for his applications the
sections of spheroids by planes (Article 633). I have outlined the projection
method in Appendix III.1 (pp. 197–199) and I have indicated how it may
be applied at appropriate places in my Notes. Appendix III.2 (pp. 199–201)
contains a discussion of plane sections of spheroids using coordinates.

Of course there are points of contact as well as major differences among
the essays of MacLaurin, Euler and Bernoulli. The distinguishing features
of MacLaurin’s work would appear to be his Proposition I, or Fundamental

55Figs 1–11 from [2] are reproduced in Appendix III.6 (pp. 209–210).
56MacLaurin discusses the theory of the tides in Articles 686–696 of [69].
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Theorem, on the equilibrium of a spheroidal mass of fluid and his geometrical
methods. Bernoulli’s essay is discussed extensively in [64] by Lubbock, who
makes many references to MacLaurin’s work and deduces some of the results
of MacLaurin, Euler, Stirling and Clairaut in the second part of [64] (see also
[4, 50]). As a potentially useful application of his theory, Bernoulli produced
tables from which the heights of tides could be predicted when the Moon is
at its perigee, mean distance from the Earth or its apogee; the heights are
given as functions of the local spring and neap tides for angular separations
of the luminaries from 0◦ to 180◦ in steps of 10◦. Concerning Euler’s essay,
see the introduction to it by E. J. Aiton in [40] (also [4]) and Part II of the
Editor’s Introduction by C. Truesdell in [39], which also makes reference to
MacLaurin’s work. Aiton has in fact written extensively on the tides (see
[3–5]): particularly relevant here is [4], which discusses the contributions of
Newton, as well as those of Bernoulli and Euler. According to Aiton [4],
Euler’s main contribution to the study of the tides was his identification of
the horizontal component of the disturbing force as the main cause. The
Cartesian theory, including Cavalleri’s essay, is outlined in [5].



Translation of MacLaurin’s Essay

Concerning the Physical Cause

of the Flow and Ebb of the Sea.

by the most learned
Mr MacLaurin

Professor of Mathematics,
from the

Society of the Academy of Edinburgh.

Opinionum commenta delet dies, naturae judicia confirmat.57

(p.137) SECTION I.

Phenomena.

In times past the philosophers recognised a triple motion of the sea, ∗ daily,
monthly and annual; in the daily motion the sea rises up and flows away twice
each day, in the monthly motion the tides are increased during the syzygies
of the luminaries and are diminished at the quadratures, and finally in the
annual motion the tides become greater in winter than in summer: but these
phenomena require to be set down a little more accurately.

I. The daily motion of the sea is completed in about 24 solar hours and
48 first minutes,58 namely the interval of time in which the Moon, having left
from the meridian of some place, its motion being observed, comes back to the

57The quotation is from Cicero’s De Natura Deorum and has been translated as,
“The years obliterate the inventions of the imagination, but confirm the judge-
ments of nature” ([92], pp. 126–127).
∗ Pliny Book 2, Chapter 99.

58This means minutes in the usual sense, the first division of the hour into 60 parts;
likewise seconds, or second minutes, correspond to the second division into 60
parts.
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same place. Hence the greatest height of the sea is connected with the Moon
moving to a given position with respect to the meridian of a given place; but
the solar hour in which the tide occurs is delayed from day to day, by almost
the same interval by which the Moon’s arrival at the meridian of the place is
delayed. And this motion is so accurately adapted to the motion of the Moon,
that, in accordance with the observations reported by the celebrated Mr
Cassini, a calculation may be made of the hour in which the true conjunction
or opposition of the Sun takes place, and an equation deduced from the
motion of the Moon may be applied in order that the time when the sea
will rise up to its greatest height on the day of the New Moon or of the Full
Moon may be defined more accurately. Moreover, in estuaries various tides
arise seasonally, as Pliny says, which are not at variance with the scheme.
Two tides which are produced on individual days, are not always equal; for
the early morning tides are greater than the evening tides in winter time, but
smaller in summer time, especially at the syzygies of the luminaries.(a)

II. Concerning the monthly motion of the sea there are three things to
be noted in particular. (1) The tides become greatest in individual months
a little after the syzygies of the Sun and the Moon, they decrease in the
transit of the Moon to the quadratures, and they are least a little after. The
differences are such that the greatest rise of the entire water to its least rise in
the same month is, according to certain observations, as 9 to 5, and in some
cases the difference is observed to be somewhat greater. (2) The tides are
greater, other things being equal, the smaller the distance of the Moon from
the Earth, and that in a greater ratio than the inverse square of the distances,
as is inferred from various observations. For example, in the year 1713 the
rise of the water in the port of Brest,(b) according to the same distinguished
man, was 22 feet 5 inches on 26 February and 18 feet 2 inches on 13 March.
The declination of the Moon was almost the same in both cases; in the former
the distance of the Moon was 953 parts, in the latter 1032 parts, the mean
distance of which is 1000. Now the square of the number 1032 to the square
of the number 953 is as 22 feet 5 inches to 19 feet 1 2

5 inches; but the rise of the
water in the latter case was only 18 feet with 2 inches. (3) Other things being
equal, the tides are greater when the Moon stays in the equatorial circle, and
are reduced as the declination of the Moon from this circle grows.

III. The tides become greater, other things being equal, the smaller the
distance of the Sun from the Earth; and so they are greater in winter than
in summer, other things being equal. However, the difference is far less than
that which arises from the varying distances of the Moon. For example, the
perigeal distances of the Moon were equal on 19 June 1711 and on 28 Decem-
ber 1712; the rise of the water on the former date was 18 feet 4 inches, and

(a) Mém. de l’Acad. Royale, 1710, 1712 & 1713.
(b) Ibid.
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on the latter 19 feet 2 inches; but the declination of the Moon was a little
less in the latter than in the former observation.(a)

Moreover, the tides are different in different places, on account of the
different latitude of places, and their location with respect to the ocean from
which they are generated, because of the size of the ocean itself, and the
nature of the shores and straits, and for other various reasons.

(p.137) SECTION II.

Principles.

Now that the more distinguished phenomena of the tides of the sea have
been briefly reviewed, we proceed to the principles, from which their calcula-
tion is to be made. But let it be stated beforehand that this part of philosophy,
which investigates and explains the causes of phenomena, is indeed the most
noble but at the same time the most difficult. It is the subtlety of nature
that it is not to be wondered at if the primary causes escape the ingenuity of
philosophers for the most part. They have taken it upon themselves to reveal
the laws of all phenomena, and to show us the whole series of causes; they
have certainly failed in their great undertakings up to this time. Indeed, very
distinguished men have proposed to themselves the development of the most
complete philosophy, which, however, is such that it is right to doubt that it
is in agreement with human destiny. It is therefore preferable to follow cau-
tiously and slowly the traces of nature itself, having been thorougly informed
by the less fruitful success of so many men. For if we can reduce phenomena
to certain general principles, and subject their properties to calculation, we
will grasp as a result of these steps some part of the true philosophy; this will
indeed be defective or incomplete, if the causes of the principles themselves
are not revealed: however, so great is the beauty in the nature of things that
that part is far superior to the finest inventions of very acute men.

It is obvious to anyone, or rather to anyone who considers the matter a
little, that the motions of the sea are associated with and are similar to the
motions of the luminaries, especially those of the Moon. The period of the
daily motion of the sea is the same as that of the Moon at the meridian of the
place, and the period of the monthly motion is the same as that of the Moon
in relation to the Sun; the force of both luminaries in generating motion of
the sea in this way is apparent, because the smaller the distances of both
are from the Earth, the greater the tides are; and so there are no grounds
for doubting that the motion of the sea is connected by some relationship to
the motion of the Moon and the Sun. Moreover, we will affirm such things
to be forces propagated by the Moon and the Sun (or dependent on these
in some way) which raise and depress the water from day to day; they act

(a) Mém. de l’Acad. Royale, 1710, 1712 & 1713.
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together in the syzygies of the luminaries and oppose in the quadratures;
they are increased in the smaller distances of both and decreased in the larger
distances; they are stronger in a smaller declination of the Moon and weaker
in a large declination; and they sometimes cause a greater motion when the
Sun and the Moon are sunk below the horizon, than when both are dominant
in the upper meridian. There have been very distinguished men who believe
that the tide of the sea arises from a certain pressure of the Moon. But they
do not make known the cause and the measurement of this pressure, nor do
they explain sufficiently clearly how the various motions of the sea can arise
from this, much less have they taught (this principle having been laid down)
how to reduce those motions to calculation.

The most sagacious Kepler pointed out long ago that the sea gravitates
towards the Moon and hence the tide of the sea is set in motion. After he
had discovered the laws of gravitation, Newton found that the equilibrium
of the sea was disturbed less by its gravitation towards the Moon, than by
the unevenness of the force under which the particles of the sea tend to the
Moon and the Sun according to their different distances from the centres of
these, and he was the first to show how to reduce the motion of the sea to
certain laws and calculation. Certainly it has to be admitted that the cause
of gravity is not known, or at the very least it is obscure; however, bodies are
not less heavy on that account. There may be those who assert that bodies
try to reach each other not because of an impulse or an external force, but
as a result of a certain innate force; but it is not right to associate their
whims with the truth. Others steadfastly take refuge in the immediate power
of the supreme Author, but neither is the excessive haste of the latter to
be approved, nor the disdain of the former who do not take note of so many
testimonies of nature that the cause of gravity is obscure. The force of gravity
is so familiar to us, and its measurement held to be well-established, that we
almost always use this for the calculation of other forces; the distinguished
man has shown with such great clarity that this has dominion in the Heavens,
no less than on the Earth, and that it increases and decreases according to
a certain law, so that in vain may you seek a greater authority in this lofty
and difficult part of philosophy, which is concerned with the causes of things.

Newton showed by an exceptional argument that the Moon is attracted
towards the centre of the Earth by a force which (the ratio of the distances
having been obtained) agrees entirely with the gravity of terrestrial bodies;
thus it may be asserted with equal justification that the Earth is attracted
towards the Moon in equal measure. When one body is driven towards an-
other, it certainly does not follow from this that the latter is pushed at the
same time towards the former. But what is to be noticed about the gravity
of celestial bodies is very well discerned from those things which have been
found out about the gravity of terrestrial bodies (and other similar forces);
for we are led from the latter to an understanding of the former and the
phenomena are entirely similar. A mountain gravitates into the Earth, and if
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the Earth did not push the mountain with an equal and opposite force, the
Earth, pushed by the mountain, would go off to infinity with an accelerated
motion. On the other hand the status of any system of bodies (i.e., the mo-
tion of its centre of gravity) is necessarily disturbed by every action to which
there is no equal and opposite reaction, so that scarcely anything can be said
to be lasting or constant in the system if this law does not hold. And since
the parts of the Earth always act on each other mutually in such a way that
the motion of the centre of gravity of the Earth is not at all disturbed by
mutual collisions of bodies or any other forces, located either within or out-
side the surface, and since the same law holds in magnetic, electric and other
forces, as confirmed by experiment, Newton rightly concludes that not only
does the Moon gravitate towards the Earth, but the Earth also gravitates
towards the Moon, and that both are in motion about a common centre of
gravity, while this centre revolves continuously about the centre of gravity of
the whole system. (a)

Very accurate experiments show gravity to be proportional to the quantity
of matter of a solid body, other things being equal, and the same is confirmed
from the calculation of the gravity of celestial bodies; but it is established by
the celebrated principle and other arguments that gravity is also proportional
to the material of the body towards which it is directed. The relation of other
forces which predominate in nature is similar. For example, rays of light are
more refracted, other things being equal, the denser the bodies which they
enter. The parts of the Earth gravitate mutually towards each other and not
towards that contrived point which we call the centre of the Earth; not only
is this in the closest agreement with the scheme and analogy of nature, but it
is also confirmed in the most beautiful way by the very accurate experiments
which some most distinguished men from the Royal Academy of Paris have
recently conducted in the northern part of Europe. The cause of gravity
(whatever it may be precisely) dominates widely; and since it is different
at different distances, it is not surprising that its force depends also on the
magnitude of that body towards which it drives others. We acknowledge that
this force is attributed improperly to a central body; indeed it is convenient
for the sake of brevity to say so, but it is to be understood in the common
sense and not in the philosophical sense.

We only touch upon these things briefly here. After Newton had deter-
mined the force of the Sun for disturbing the waters from the difference of the
diameter of the equator and the axis of the Earth (which he had investigated
by a certain approximation of his) following the golden rule he briefly sought
the rise of the water resulting from the force of the Sun. But, whatever the

(a) It may be conjectured that some variation in the obliquity of the Ecliptic
arises from the motion of the Sun about the centre of the system; there is
discussion about this among the astronomers: it will be evidence that this
is the cause of the phenomenon, if it is established that a similar variation
occurs in the motion of Jupiter, the largest of the planets.
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elevation of the water which is produced in this way, it differs a little from the
true value, since nevertheless these problems are of a different type, the first
of which depends on the quadrature of the circle, while the latter depends
on that of the hyperbola or the logarithm, as we will see later; and there
may be reason for doubting whether a priori such a short transit is entirely
appropriate for the determination of the latter elevation, or also whether the
method by which he had determined the figure of the Earth is sufficiently
accurate; and since very subtle forces, which produce no other perceptible
effects, cause the motion of the sea, so that the slightest things can be of
some importance in this inquiry, I have consequently come to the conclusion
that I will have done something worthwhile if I make accessible some way by
which calculation in these problems can be undertaken very accurately from
genuine principles.

(p.138) First of all, a few things have to be repeated
from Newton; thereafter we will follow a different
path. Let L be the Moon, T the centre of the Earth,
Bb the plane perpendicular to the line LT , and P
any particle of the Earth; and let PM be perpen-
dicular to the plane Bb. Let LT represent the mean
gravity towards the Moon of the Earth or of the
particle positioned at the centre T , let LK to LT
be taken as LT 2 is to LP 2, and the line LK will
be the measure of the gravity of the particle P to-
wards the Moon. Let KG be drawn parallel to the
line PT , and let it meet LT , produced if necessary,
in G, and the force LK will be resolved into forces
KG and LG, the first of which pushes the particle
P towards the centre of the Earth and is almost
equal to PT itself; the part TL of the latter, being
common to all particles and always parallel to it,
does not affect the motion of the water; but the
other part TG is approximately equal to 3PM : ∗
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MacLaurin’s Fig. 1

First of all, therefore, it is required to investigate what may be the figure
of a fluid Earth whose particles gravitate mutually towards each other with
forces decreasing in the inverse ratio of the distances squared, and which are
acted upon at the same time by two external forces, one of which is directed
towards the centre T , and is always as PT , the distance of the particle from
the centre, while the other acts in a line parallel to TL and is to the first as
3PM to PT . Now we will show in the following Section that, if the Earth is
supposed to be uniformly dense, the figure of this fluid is exactly a spheroid
which is generated by the revolution of an ellipse about its transverse axis;

∗ This force is a little greater if the particle P is in the part of the Earth
turned towards the Moon, lesser if in the part turned away from the Moon,
whence it is rightly considered to be equal to 3PM .
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and hence we will endeavour to deduce the calculation of the motion of the
sea from the celestial motions.

Now it is to be noted that other causes act together with the unequal
gravity of the parts of the Earth towards the Moon and the Sun to produce
the motion of the sea. The daily motion of the Earth about its axis seems to
influence the tide of the sea in various ways, other than that noted by Newton,
in which the tide is delayed to the second or third lunar hour. (1) The tide
may be a little greater on account of the centrifugal force and the spheroidal
figure resulting from the motion of the Earth, since this force turns out a
little greater in the higher parts of the sea than in the lower lying parts.
(2) Since the tide of the sea is carried either from the meridian towards the
north, or in the opposite direction from the north towards the meridian, it
takes place in waters, which are revolved with a different velocity about the
axis of the Earth, and hence, necessarily, new motions are set up, as we will
describe later. Furthermore, according to the theory of gravity, the force by
which the particles of the sea are driven towards the solid Earth (which is far
denser than the water) exceeds the force by which they are pushed towards
the water. These forces are very small indeed; moreover, since the forces with
which the Moon and the Sun act on the waters produce no perceptible effects
in experiments with pendulums and in statics, yet they generate such great
motions in the waters of the Ocean, it may be suspected that such small
forces combine together to increase the motions of the water in some respect.

SECTION III.

Concerning the Figure which a uniformly dense fluid Earth
would take on from the unequal gravity of its particles

towards the Moon or the Sun.

Now that we have described the phenomena of the tide of the sea and
the general principles from which it seems appropriate to seek the theory of
the most celebrated phenomenon, we now pass to the determination of the
figure which the fluid Earth would take on when disturbed by the forces of
the Moon or the Sun described above; but there are certain Lemmas to be
set out in advance, by means of which this otherwise very difficult inquiry
can be made easily.

(p.141) LEMMA I.
Let ABab be an ellipse, C its centre, HI any diameter, and Mm the

ordinate to the diameter HI at the point u; from H and m let lines HP and
mx be drawn parallel to any two conjugate diameters and meeting each other
in q; let qu and PM be joined, and these lines will be parallel to each other.

Let the line HP meet the ordinate Mm in z and the line MQ (which
is parallel to mq) in Q. Let CG, CA and CB be semidiameters which are
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parallel to the lines Mm, mx and HP , respectively. Let GE be drawn parallel
to CB and let it be produced until it meets the semidiameter CI in g. From
the nature of the ellipse, the rectangle Mz×zm : Hz×zP :: CG2 : CB2 ; and
because of the parallel lines CG and Mm, there will be qz : zm :: GE : CG.
Hence Mz × qz : Hz × zP :: CG×GE : CB2. But Hz × zP : zu× zP :: Hz :
zu :: Gg : CG. Consequently, by equality Mz×zq : zu×zP :: Gg×GE : CB2.
Moreover, the rectangle formed by Gg and GE is equal to the square of the
semidiameter CB by a known property of the ellipse, since CI is conjugate
to the semidiameter CG, and CB to CA. Thus Mz × zq = zu × zP , and
zq : zu :: zP : zM , and so qu is parallel to the line PM . Q.E.D.
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MacLaurin’s Fig. 2

COR. 1. The line PQ is divided harmonically in q and z, or PQ : Pq ::
Qz : qz. For if ue is drawn parallel to mx, and meets the line HP in e, then
there will be

Pz : qz :: PM : qu (because of the parallels PM , qu) :: PQ : qe.

Hence
Pq : qz :: Pe : qe :: qe : ez ::
Pe + qe : qe + ez :: (since Qe, eq are equal) PQ : Qz.

COR. 2. Let the line mx meet the ellipse in x, and let Hx be joined, which
meets the line PM in r; the join ur will be parallel to mx. For if Ih is parallel
to the line HP and meets mx in o, then ox will be equal to the line qm and
Io : ox :: Pq : qm :: PQ : QM ; and so Ix will be parallel to PM . But since
IH is a diameter of the ellipse and the lines Ix, Hx have been drawn from the
extremities of the diameter IH to the point x located on the ellipse, these
two lines will be parallel to two conjugate diameters by the nature of the
ellipse. Consequently, since from the points H and M , respectively, the two
lines Hx and PM have been drawn parallel to the two conjugate diameters,
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and meet each other in r, the join ur will be parallel to the line xm by this
Lemma.
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Diagram for Lemma I Cor. 3
MacLaurin’s Fig. 3

COR. 3. Let the line HP now be parallel to the axis of the ellipse, and
the angle HPM will be equal to the angle HPm, since QM : qm :: Qz : qz ::
PQ : Pq by Cor. 1. Next let Hh and PI be drawn parallel to the other axis
Aa and let them meet the axis Bb in D and d; on the axis Dd let the ellipse
be described which is similar to the ellipse ABab and similarly positioned,
and let the line ur produced meet it in N and n; let ur meet the axis Dd in V ,
and V N or V n will be equal to the line er, and if Dn, DN are joined, these
lines will be parallel to the lines PM , Pm, respectively. For Pe : er :: Pq : qm
and He : er :: Hq : qx, hence

He × Pe : er2 :: Hq × qP : mq × qx :: CB2 : CA2.

But the rectangle DV × V d : V N2 :: CB2 : CA2; dV = He, DV = Pe, and
so DV × V d = He × Pe, hence V N2 = er2, and V N = er, PM is parallel to
the line DN and Pm to the line Dn.

COR. 4. Hence we have the following converse where Nn is an ordinate
from the interior ellipse to the axis Dd and DP , which is perpendicular to
the axis Dd, meets the exterior ellipse in P ; let DN and Dn be joined and
let PM , Pm, which are parallel to these lines, meet the exterior ellipse in
M and m; let PH be drawn parallel to the axis Dd, and let MQ and mq be
perpendicular to PH; then PQ + Pq (or 2Pe) will be equal to 2DV if the
points Q and q lie on the same side of the point P , and PQ − Pq = 2DV
when Q and q are on opposite sides of the point P .
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(p.145) LEMMA II.
Let the line PL which is normal to the ellipse ABab at P meet the axis Bb

in L, and let LZ be the perpendicular from the point L to the semidiameter
CP , and the rectangle CPZ contained by the semidiameter CP and the
intercept PZ is equal to the square of the semiaxis CA.
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Diagram for Lemma II
MacLaurin’s Fig. 4

Let Cp be a semidiameter conjugate to CP , let PD be drawn perpendic-
ular to the axis Bb and let it be produced until it meets the semidiameter Cp
in K, let KZ be joined, and let PT be the tangent to the ellipse at the point
P . Because of the right angles LDP , LZP , the circle LPZ will pass through
the four points L, D, P , and Z, and will touch the line PT at P , and so the
angle PDZ will be equal to the angle CPT or PCK. Thus a circle will pass
through the four points C, K, D and Z; the angle CZK will be equal to the
right angle CDK, KZ will pass through the point L and from the nature of
the circle CP × PZ = DP × PK = CA2. Q.E.D. (a)

(p.146) LEMMA III.
Let us assume that particles of bodies gravitate towards each other with

forces which decrease in the inverse ratio squared of the distances between
them, and let PAEa, PBFb be similar pyramids or cones made up of homo-
geneous material of this type, and the gravity of the particle P into the solid
PAEa to the gravity of the same particle into the solid PBFb will be as PA
to PB, or as any corresponding sides of these solids.

For the gravity of particle P into any surface AEaA concentric with the
point P is as this surface directly and the square of the radius PA inversely,

(a) The properties demonstrated in this and the preceding Lemmas are like-
wise easily carried over to the hyperbola.



Translation 107

and so it is always the same at any distance PA. Consequently, the gravity
of the particle P towards the whole solid PAEa will be to the gravity of the
same particle towards the whole solid PBFb as PA to PB.
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P E
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F

Diagram for Lemma III
MacLaurin’s Fig. 5

COR. 1. Hence the gravities by which particles which are similarly situated
with respect to similar homogeneous solids are pushed towards these solids,
are as the distances of the particles from similarly situated points in these
solids, or as any corresponding sides of the solids. For these solids can be
resolved into similar cones or pyramids, or similar parts of these, which will
have vertices at the gravitating particles.

COR. 2. Hence it also follows easily that, if an elliptic annulus which
is bounded by similar figures ABab, DndN is revolved about either of its
axes, the gravity towards this solid of a particle located inside the solid so
generated, or placed on its interior surface, vanishes; for if any line meets
these similar and similarly positioned ellipses, the extreme segments of the
line which are cut off by the ellipses will always be equal (as is easily shown
from the nature of these figures) and so in this case equal and opposite
forces will destroy each other. Indeed it follows from this that, if ABab is the
spheroid generated by the motion of an ellipse about either of its axes, and
if B and D are any particles located in the same semidiameter, the gravity
of the particle B towards the spheroid will be to the gravity of the particle
D as the distance CB to the distance CD, by the preceding Corollary.
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(p.150) LEMMA IV.
Let ABab be the spheroid generated by the motion of the semiellipse ABa

about the axis Aa, and for any particle P on the surface of the solid, let PK
be normal to the axis at K; and let PD, which is parallel to the axis, meet
the plane Bb (which is supposed normal to the axis) in D. Let the force with
which the particle P gravitates towards the spheroid be resolved into two
forces, one parallel to the axis, the other perpendicular to it, and the former
will be equal to the force with which the particle K located on the axis tends
to the centre of the solid, while the latter will be equal to the force by which
the particle D is pushed towards the same centre.

Let PK be produced until it meets the generating ellipse again in H, let
Hd be drawn parallel to the axis Aa and let it meet the axis Bb in d; let us
imagine described on the axis Dd the solid DndN which is similar to BAba
and similarly situated. Sections of these solids cut off by the same plane will
always be similar, similarly situated ellipses, as is known and easily shown.
Therefore let BAba, DndN be figures of this type cut off from these similar
solids by the plane PAbIBP , which is assumed always to pass through the
given line PDI. Let the plane PzZIT contain an exceedingly small angle with
the first plane and let it make similar, similarly positioned sections PzZIT ,
DrRD in the surfaces of the aforesaid solids. These things having been put in
place, we will show first of all that the force by which the particle P is pushed
towards the two parts which are contained by the planes PbI, PZI and by
the planes PBI, PTI, if it is reduced to the direction PK, will be equal to
the force by which the particle D is pushed towards the part bounded by the
planes DnND, DrRD.

For let Nn, N ′n′ be two ordinates from the internal ellipse to the axis Dd;
let (a) PM , Pm, PM ′ and Pm′ be parallel to the lines DN , Dn, DN ′ and
Dn′, respectively; furthermore, let the planes DNR, DN ′R′, Dnr, Dn′r′,
PMZ, PM ′Z ′, Pmz, Pm′z′ be perpendicular to the plane PbIB, and let
them meet the other plane PzZIT in the lines DR, DR′, Dr, Dr′, PZ, PZ ′,
Pz, Pz′, respectively. These things having been put in place, since the angles
NDN ′ and MPM ′, nDn′ and mPm′ are always put equal, and the lines
PM and DN , Pm and Dn are always equally inclined to PI, the common
intersection of the planes, if the angle NDN ′ and the inclination of the planes
PbIB, PZIT to each other be supposed to decrease continuously until they
vanish, the gravities of the particle D into the pyramids DNN ′R′R, Dnn′r′r
and of the particle P into the pyramids PMM ′Z ′Z, Pmm′z′z will be in the
limit as the lines DN , Dn, PM and Pm, respectively, by Lemma 3. And the
same forces determined along the lines perpendicular to the axis Aa will be

(a) In drawing this figure we have not drawn the lines NR, N ′R′, etc., ac-
cording to the rules of perspective, but in that manner by which they can be
most easily distinguished one from another.
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as the lines DV , DV , PQ, Pq, respectively. Hence, since PQ∓Pq = 2DV by
Cor. 4 of Lemma 1, it follows that the force by which the particle P is pushed
towards the axis Aa by its gravity into the pyramids PMM ′Z ′Z, Pmm′z′z,
is equal to the force by which the particle D is pushed by its gravity towards
the pyramids DNN ′R′R, Dnn′r′r. Consequently, if the planes DNR, PMZ
are moved everywhere about the points D and P , while always parallel to
each other and perpendicular to the plane PbIB (the lines DN , PM of course
going forward always in the plane PbIB, and the lines DR, Pz in the plane
PZIT ), the forces by which the particle P is pushed towards the axis by its
gravity into the parts thus described by the motion of the planes PMZ, Pmz,
will always be equal to the forces by which the particle D is pushed towards
the same axis by its gravity into the parts described by the motion of the
planes DNR, Dnr; hence it follows that the particle P is pushed by the same
force along the line PK, by its gravity into the parts contained by the planes
PbI, PzI, and by the planes PBI, PTI, as that with which the particle D
tends towards the parts bounded by the planes DnND, DrRD. Thus, since
these forces may also be calculated to be equal along lines perpendicular to
the axis of the whole solid, and the ratio of the forces by which the particles
P and D are pushed towards any other parts cut similarly from the solids
is the same, it follows that the particle P is pushed towards the axis by its
gravity into the exterior solid equally as the particle D is pushed likewise by
its gravity into the interior solid, or also into the exterior solid, since these
forces are the same by Cor. 2 of Lemma 3.

It is established in an entirely similar way that the force by which the
particle P is pushed along the line parallel to the axis is equal to the force
by which the particle K located in the axis is pushed towards the centre of
the solid.

COR. 1. Therefore any particles of a spheroid which are at equal distances
from the axis or the equator of the solid are pushed equally towards the axis
or the equator. And the forces by which any particles are pushed towards the
axis are as their distances from the axis, and the forces by which they are
pushed towards the plane of the equator are to each other as their distances
from this plane.

COR. 2. Let A represent the force with which the spheroid attracts a
particle located on the axis at the extremity A and B the force with which
the same solid attracts the particle B positioned between A and a on the
circumference of the middle circle; let KR to KC be taken as A

CA is to B
CB

and let PR be joined; and the particle P will tend towards the spheroid along
the line PR, with a force which is always proportional to this line. For the
force by which the particle D is pushed towards the centre of the solid, is
to B as CD to CB, by Cor. 2 of Lemma 3. Similarly the force by which the
particle K is pushed towards the centre of the solid is to A as CK to CA.
Consequently, by Lemma 4 the force by which the particle P is pushed along
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the line PK normal to the axis is to the force by which it is pushed along the
line PD parallel to the axis, as PK×B

CB to CK×A
CA ; and so this is as PK × KC

to CK × KR, i.e., as PK to KR by construction. Consequently the particle
P is pushed along the line PR when these forces have been put together and
the composite force is to B as PR to BC. In fact the forces A and B can be
computed in this way, as we will show later.
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Diagram for Lemma IV Cor. 2 and Prop. I
MacLaurin’s Fig. 7

(p.157) PROPOSITION I.

FUNDAMENTAL THEOREM.

Let the spheroid ABab be composed of fluid material, whose particles
are attracted towards each other mutually by forces which decrease in the
inverse ratio squared of the distances; and at the same time let two external
forces act on the individual particles of the fluid, one of which tends towards
the centre of the spheroid, and is always proportional to the distances of
the particles from this centre, while the other acts along lines parallel to the
axis of the solid, and is always proportional to the distances of the particles
from the plane Bb normal to the axis; and if the semiaxes CA, CB of the
generating ellipse are inversely proportional to the whole forces, which act
on equal particles located at the extreme points A, B of the axes, the entire
fluid will be in equilibrium.

In order that this our first Proposition may be demonstrated with the
greatest clarity, we will show first of all that the force composed of the gravity
of any particle P and the two external forces always acts in the line PL which
is always normal to the surface of the spheroid. (2) The fluid in any line PC
drawn from the surface to the centre is of the same weight everywhere. (3) The
fluid in any canals drawn from the surface to any given particle within the
solid always attracts that particle with the same force.

1. Let the total forces which act on the particles A and B be called M
and N , which by hypothesis are in the ratio of the axes CB and CA. Let the
first external force which acts in the line PC be resolved into two forces, one
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parallel to the axis, the other perpendicular to it; and these forces will always
be as the lines PK and KC. Hence, since the force with which the gravity
of the particle P pushes it along the line PK is also as PK, by the previous
Lemma, it follows that the total force with which the particle P is pushed
along the line PK is to N as PK to CB. Three forces act on the particle
P along the line PD which is parallel to the axis, namely, the gravity of the
particle and the two external forces, which vary individually in proportion to
the line PD or KC; and so the force resulting from these three forces will be
to M as CK to CA. Therefore the force with which the particle P is pushed
along the line PK is to the force with which it is pushed along the line PD as
N×PK

CB to M×KC
CA or (since M : N :: CB : CA) as PK × CA2 to CK × CB2,

i.e., (since if the normal PL to the generating ellipse meets the axis Aa in L,
then KC will be to KL as CA2 to CB2, by a known property of the ellipse)
as PK ×KC to KC ×KL, and so as PK to KL. Hence the composite force
pushes the particle in the line PL, which is positioned normal to the surface
of the fluid; and it is always as this line PL, since the forces along the lines
PK are always as PK.

2. Let LZ be perpendicular to the semidiameter CP , and the force with
which the particle P is pushed towards the centre will be as the line PZ by
the common principles of Mechanics, and the weight of fluid in the line PC
will be as the rectangle CP × PZ, which is always equal to the square of the
semiaxis CB by Lemma II. Therefore the centre is pushed equally from all
directions, and the fluid is in equilibrium at C.

3. Let p be any particle located anywhere in the solid, and Pp any line
drawn from the surface to the particle p; let PK, pl be perpendicular to the
axis Aa; and, by an easy calculation which I omit for the sake of brevity, the
force by which the particle p is pushed by the weight of fluid in the line Pp
in the direction of this line will be found to be equal to

N

2 CB
× PK2 − pl2 − M

2 CA
× Cl2 − CK2 = (since M : N :: CB : CA)

M × CA2 × PK2+M × CK2 × CB2−M × CA2 × pl2−M × CB2 × Cl2

2 CB2 × CA

=
M × CA2 − M × CG2

2CA
,

(since PK2 : CA2 − CK2 :: CB2 : CA2, and if CG is the semiaxis of the
ellipse drawn through p similar to the ellipse ABab and similarly situated,
then pl2 : CG2 − Cl2 :: CB2 : CA2) and so, since these quantites do not
depend on the location of the point P , this force is always the same, if the
position of the particle p is given; thus, since p is pushed equally from all
directions, the fluid will be in equilibrium everywhere.

COR. 1. As in Cor. 2 of Lemma IV let A be the force of gravity into the
spheroid at the place A, let B the the force of gravity into the spheroid at
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the place B, let V be the force KG (Fig. 1), shown in the upper section in
its mean value, by which the Moon or the Sun depresses the water of the
spheroid at the distance d which is put in the middle between CA and CB.
Let CA = a, CB = b, and the force N , with which the particle B is pushed
towards C, will be equal to B + bV

d , and

M = A +
aV

d
− 3aV

d
= A − 2aV

d
.

Hence by this Proposition, if a : b :: B + bV
d : A − 2aV

d , the fluid will be in
equilibrium. And hence if A, B and V are given, the type of the figure will
become known in terms of a and b. There is

Aa − Bb =
2a2V

d
+

b2V

d
.

L

T
Bb

P

G

K

M

A

a

From MacLaurin’s Fig. 1
(for the Corollaries)

COR. 2. Since the force V (let it arise either from the unequal gravity of
particles towards the Moon, or towards the Sun) is extremely small relative
to the forces A and B, and the difference between a and b is quite small, put
a = d + x and b = d − x, and there will be

Bd − Bx + V × (d − x)2

d
= Ad + Ax − 2V × (d + x)2

d
,

and, when terms have been neglected in which x2 is found,

Bd − Bx + V d − 2V x = Ad + Ax − 2V d − 4V x ,

hence
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Bd − Ad + 3V d = Ax + Bx − 2V x ;

and so
x : d :: B − A + 3V : B + A − 2V ;

and the difference of the height of the water at A and B (or 2x) is to the
mean semidiameter d as 2B − 2A + 6V to B + A − 2V , or approximately as
B − A + 3V to the mean gravity towards the spheroid.

COR. 3. In the preceding Corollaries we have supposed d = 1
2CA + 1

2CB;
but if d denotes some other distance where the force KG (Fig. 1) is put equal
to V , and there is e = 1

2CA + 1
2CB, then there will be

x : e :: B − A +
3eV

d
: B + A − 2eV

d
.

COR. 4. By the force V in these Corollaries we have understood the force
of either the Sun or the Moon, and we have considered the figure which a fluid
homogeneous Earth would take on if these forces act separately on it. Now
let the Moon be in conjunction with the Sun or opposed to it, and let them
act together on the Earth. In this case the forces of the luminaries conspire
together to raise the water at A and a, and to depress it at B and b, and
they observe the same laws everywhere. Hence in this case also the fluid will
be in equilibrium, if the total force which acts at the place A is to the total
force which acts at the place B as CB to CA; and so if V now denotes the
sum of the forces with which the Sun and the Moon depress the water in the
lines Tb, TB (Fig. 1) at the mean distance, the fluid will be in equilibrium if

b : a :: A − 2aV

d
: B +

bV

d
,

or x is to d as B − A + 3V is to B + A − 2V approximately, as before.

COR. 5. Now let the Moon be in the line Aa and the Sun in the line Bb;
and since the force of the Moon is more powerful, let the transverse axis of the
generating figure pass through the Moon and the conjugate axis through the
Sun; and if the total force which acts at the place A is to the total force which
acts at the place B as CB to CA, the fluid spheroid will be in equilibrium
also in this case. Let s be the force with which the Sun depresses the water
in the lines TA, Ta at the mean distance from the centre C, l the force with
which the Moon depresses the water in the lines TB, Tb at equal distance;
and the total force which acts at the place A will be equal to

A − 2al

d
+

as

d
,

and the total force which acts at the place B will be equal to
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B +
bl

d
− 2bs

d
.

Hence we put together as in Cor. 2

x : d :: B − A + 3l − 3s : B + A − 2l − 2s ::
(if l − s is now called V ) B − A + 3V : B + A − 2V,

as before.

SCHOL. It is shown in exactly the same way that if BabA is an oblate fluid
spheroid generated by the motion of the semiellipse BAb about its minor axis
Bb and this spheroid is turned about the same axis by a motion such that
the gravity towards this spheroid at the pole B is to the excess by which
the gravity at the place A exceeds the centrifugal force at A arising from
the motion of the spheroid about the axis as CA to CB, then the fluid will
be in equilibrium everywhere. Hence it follows that the figure of the Earth,
however it is altered by the centrifugal force arising from the daily motion, is
an oblate spheroid of the type generated by the motion of a semiellipse BAb
about the minor axis (if the material of the Earth is assumed to be equally
dense), the semidiameter of the equator is to the semiaxis as the gravity at
the pole on the Earth is to the excess of gravity over the centrifugal force
at the equator, a body at any place P tends towards the Earth with a force
which is always as the line PL normal to the generating ellipse and meeting
the major axis in L, and finally the measure of a degree in the meridian is
always as the cube of the same line PL. These things are all demonstrated
precisely from this Proposition; since they are of special use in the inquiry
into the figure of the Earth, it is only appropriate to mention them here in
passing.
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(p.166) LEMMA V.
Let there be any figure ABa: let the circle CNH be described with centre

A and any given radius AC; from A let any line AM be drawn meeting the
figure ABa in M and the circle in N ; let MQ and NR be perpendiculars
to the given axis Aa, let KR be always equal to the abscissa AQ, and the
force with which the particle A is attracted towards the solid generated by
the motion of the figure ABa about the axis Aa will be as the area which
the ordinate KR generates directly and the radius AC inversely.

Let another line drawn from A meet the figure in m and the circle in n,
and let mq and nr be perpendiculars to the axis Aa. Let AZza be another
section through the axis of the solid which the planes AMz, Amz, normal
to AMa, meet in the lines AZ, Az, which cut the circle drawn in the plane
AZza with radius AC in X and x; finally let the circular arc Mo drawn
with centre A meet Am in o. These things having been put in place, let the
angle contained by the planes AMa, AZa be decreased, and at the same
time the angle MAm, until they vanish and the ultimate ratio of the force
with which the particle A tends towards the pyramid AMZzm to the force
with which it is attracted towards the pyramid ANXxn will be the ratio of
the line AM to the line AN , or AQ to AR, by Lemma III. The force of this
pyramid is as the force of the surface NXxn multiplied by the line AN , and
so as NX×Nn

AN2 × AN = NX×Nn
AN , or as NR×Nn

AN (since NX is as NR) i.e., as
Rr; and the force of the same reduced in the direction of the axis will be as
Rr× AR

AN ; consequently, the force of the pyramid AMZzm reduced in the same
direction will be as Rr × AQ

AC = Rr×KR
AC . Therefore the force with which the

particle A is attracted towards the part of the solid contained by the planes
AMa, Aza is as the area which the ordinate KR generates directly and the
radius AC inversely; and since the solid is round, having been generated by
the motion of the figure about the axis Aa, the ratio of the force with which
the particle is attracted towards the whole solid will be the same.

COR. The force with which the particle A is attracted into the solid is to
the force with which it is attracted towards the sphere drawn on the diameter
Aa as the area which the ordinate KR generates to 2

3CA2. For if AMa is a
circle, there will be AQ to Aa as AQ2 to AM2, or AR2 to AN2. Hence, in
this case there will be KR = 2 AR2

AC , and the area ARK (which the ordinate
KR generates) = 2 AR3

3 AC , and so the whole area generated by the motion of
the ordinate RK will be 2

3CA2.
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(p.170) PROPOSITION II.
PROBLEM.

To find the gravity towards an oblong spheroid of a particle A
situated at an extremity of the transverse axis.

Other things remaining as in the preceding Lemma, let AMa be an ellipse,
Aa its transverse axis, C its centre, Bb its conjugate axis, and F a focus; let
any line AM be drawn from A meeting the ellipse in M , and let the line CV
parallel to it meet the ellipse in V ; from this point let the ordinate V L be
drawn to the axis, let the join aM meet the line CV in e, and there will be
AM = 2Ce: and since

AQ : CL :: AM (2 Ce) : CV :: 2CL : Ca ,

the quantities 1
2AQ, CL and CA will be in continued proportion. Let CA = a,

CB = b, CF = c, AR = x, CL = l, and since AR2 : NR2 :: CL2 : V L2 there
will be

x2 : a2 − x2 :: l2 : a2 − l2 × b2

a2 ;

and so

l2 =
a2b2x2

a4 − c2x2 and AQ or KR =
2l2

a
=

2ab2x2

a4 − c2x2 ,

and

area ARK =
∫

2ab2x2 dx

a4 − c2x2 = (if z : x :: c : a)
∫

2a2b2

c3 × z2 dz

a2 − z2 .

Consequently, let a be the quantity whose logarithm vanishes, or the modulus
of the logarithmic system, � the logarithm of the quantity a

√
a+z
a−z , and there

will be ARK = 2a2b2

c3 × � − z. Hence the force with which the particle A
gravitates towards the solid generated by the motion of the elliptic segment
AUMA about the axis Aa, will be to the force with which the same particle
gravitates towards the solid generated by the motion about the same axis of
the circular segment cut off from the circle drawn on the diameter Aa by the
same line AM as

2a2b2

c3 × � − z to
2x3

3a
;

and if L is the logarithm of the quantity a
√

a+c
a−c (or a

b × a + c ), the force
with which the particle A tends towards the whole spheroid will be to the
force with which it tends towards the whole sphere as 3b2 × L − c to c3.

SCHOL. In the same way the gravity towards an oblate spheroid of a
particle situated at the pole is found by investigating the area whose ordinate
is 2b2a2

c3 × z2

b2+z2 . Let BAba be the oblate spheroid generated by the motion
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of an ellipse BAb about its minor axis; with centre B and radius BC let the
circular arc CS be described, meeting the line BF in S, and the gravity into
this spheroid at the pole B will be to the gravity at the same place towards
the sphere drawn on the diameter Bb as 3 CA2×CF − CS to CF 3. However,
the method by which the gravity towards an oblong or an oblate spheroid
of a particle situated at the equator may be computed is less obvious, but it
comes out easily by use of the following Lemma.

(p.172) LEMMA VI.
Let two planes BMbaB, BZgeB cut each other in the line HBh, which

is a common tangent of the figures, and let them take off from the solid the
part BMbaBZgeB; let the semicircles HCh, Hch be the sections of these
planes and the surface of the sphere described with centre B and radius BC.
From the point B let any line BM be drawn in the first plane meeting the
figure BMba in M and the semicircle HCh in N ; and let MQ and NR be
perpendicular to Hh and let the ordinate KR be always equal to the line
MQ. These things having been put in place, if the angle CBc contained by
these planes is decreased indefinitely, the gravity of the particle B towards
the part BMbaBZgeB will be ultimately to the gravity of the same particle
towards the part of the sphere contained by the semicircles HBh, Hch as the
area HKdh generated by the motion of the ordinate KR to the semicircle
HCh.

d

k

K

Q

q

r

h

A

b

a

F

C g

e

M

m
VZ

z

c

N

x n
X

R

H

B L

Diagram for Lemma VI and Prop. III
MacLaurin’s Fig. 9

Let m be a point in the figure BMb very close to M and let Bm be
joined, which meets the circle HCh in n; and let nr be perpendicular to Hh.
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In addition, let the planes BMZ, Bmz be perpendicular to the plane BMba,
and let them cut the other plane BZge in the lines BZ, Bz, which meet
the circumference Hch in X and x. These things having been put in place,
the force with which the particle B gravitates into the pyramid BMZzm
will be ultimately to the force with which the same particle gravitates into
the pyramid BNXxn as the line BM to BN , or MQ to NR by Lemma
III. But the gravity into the latter pyramid is as NX×Nn

BN2 × BN , or (since
NX is as NR) as NR×Nn

BC , i.e., as Rr; and this gravity acts along the line Bb

with a force which is as Rr×RN
BC ; hence the gravity into the pyramid BMZzm

acts along the line Bb with a force which is as Rr×MQ
BC , or Rr×KR

BC . Thus the
ultimate ratio of the forces with which the particle B is attracted towards
the whole parts of the solid and of the sphere BC is the ratio of the area
HKdh (which the ordinate KR generates) to the semicircle HCh.

COR. The gravity into the part bounded by the planes BMba, BZge is to
the gravity into the spherical part contained by the circles described on the
diameters Bb, Bg as the area HKdh to 8

3CB2. For let BMbB be a circle,
and there will be MQ to Bb as RN2 to BC2, and

KR =
2 RN2

CB
=

2 BC2 − 2 BR2

CB
and areaHKdB =

4
3
CB2 ,

and so the total area HKdh = 8
3CB2.

(p.174) PROPOSITION III.
PROBLEM.

To find the gravity towards an oblong spheroid
of a particle situated at the equator.

By the equator we understand the circle generated by the conjugate axis
while the figure is rotated about the other axis. Let BMba in the figure of the
preceding Lemma represent any section of the spheroid normal to the plane
of the equator, and this figure will always be similar to the section of the solid
through the poles, or to the figure by whose rotation we suppose the solid to
be generated. For the sake of brevity I omit the demonstration of this, which
is easy and has been treated by others. Therefore let CA be a transverse
semiaxis of this section, CB a conjugate semiaxis and F a focus; let CB = b,
CA = a, CF = c, BR = x; let CV be a semidiameter parallel to the line BM ,
V L the ordinate to the axis Bb and CL = l. Then CB : CL :: CL : 1

2MQ as
in the preceding Proposition, and MQ = 2l2

b . But NR2 : BR2 :: CL2 : V L2,
i.e.

b2 − x2 : x2 :: l2 : b2 − l2 × a2

b2 , or a2 − a2x2

b2 : x2 :: l2 : b2 − l2 ,

and



Translation 121

l2 =
a2b2 × b2 − x2

a2b2 − c2x2 = (if z : x :: c : b)
b2a2

c2 × c2 − z2

a2 − z2 ,

and

KR = MQ =
2l2

b
=

2a2b

c2 × c2 − z2

a2 − z2 ,

and the area BdKR is equal to∫
2a2b2dz

c3 × c2 − z2

a2 − z2 =
2a2b2z

c3 −
∫

2a2b2

c3 × b2dz

a2 − z2 .

Therefore let � (as in the previous Proposition) be the logarithm of the quan-

tity a
√

a+z
a−z , and the area BdKR will be

2a2b2z

c3 − 2a2b2

c3 × b2�

a2 =
2b2

c3 × a2z − b2� .

Now let x = b, and so z = c, be substituted; and let L be the logarithm of
the quantity a

√
a+c
a−c , as before, and the whole area HKdh generated by the

motion of the ordinate KR will be equal to 4b2

c3 × a2c − b2L. Consequently
the gravity of the particle B towards the part bounded by the elliptic planes
BMba, BZge will be ultimately to the gravity into the part contained by
the same planes and cut off from the sphere described with centre C and
radius CB as a2c − b2L to 2

3c3 by the Corollary to Lemma VI. Let the circle
BPpb be the equator of the spheroid and BP , Bp any two chords of this
circle; sections of the spheroid perpendicular to the circle BPb will be ellipses
similar to the section which passes through the poles of the solid, of which
BP and Bp will be transverse axes; moreover, the sections by the same planes
of the sphere described on the diameter Bb will be circles whose diameters
will be the chords BP , Bp. Thus the ratio of the gravity of the particle B
into the elliptical part and into the spherical part bounded by these planes
will always be the same; and the gravity towards the whole spheroid will be
to the gravity towards the sphere as a2c − b2L to 2

3c3, where a denotes the
transverse semiaxis of the figure by whose motion the solid is generated, b
the conjugate semiaxis, c the distance of the focus from the centre, and L the
logarithm of a

√
a+c
a−c or a × a+c

b . Q.E.F.

COR. The ratio of the gravity towards any part of the spheroid and the
part of the sphere cut off by the same plane normal to the equator and on the
same side of the plane is always the same; or the gravity into the portion cut
off from the spheroid by this plane is to the gravity into the whole spheroid
as the gravity into the part of the sphere cut off by the same plane on the
same side to the gravity into the whole sphere.

SCHOL. In the same way, if BAba is the oblate spheroid generated by
the motion of the figure BAb about the minor axis Bb, the gravity into this
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spheroid at the place A will be to the gravity at the same place towards the
sphere described with centre C and radius CA as CA2 ×CS −CB2 ×CF to
2
3CF 3.

(p.177) PROPOSITION IV.
PROBLEM.

Given the forces with which the particles of the Earth gravitate towards
the Sun and the Moon, to find the figure which the Earth would take
on in the syzygies or the quadratures of the Sun and Moon under the
hypothesis that the Earth is made up of a homogeneous fluid and does
not move around its axis.
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MacLaurin’s Fig. 7

The gravity at the place A towards the oblong spheroid generated by the
motion of the figure ABa about the transverse axis Aa is to the gravity at
the same place towards the sphere described with centre C and radius CA as
3b2 ×L − c to c3 by Prop. II. Moreover, the latter gravity is to the gravity at
B towards the sphere described with centre C and radius CB as CA to CB
(by Cor. I of Lemma III), which is to the gravity at the place B towards the
spheroid as 2

3c3 to a2c − b2L by Prop. III. Let these ratios be put together
and the gravity at the place A towards the spheroid will be to the gravity at
the place B towards the same body as 2ab×L − c to a2c−b2L. Let A denote
the gravity at the place A, B the gravity at the place B, V the sum of the
forces by which the luminaries, in conjunction or opposed, depress the water
in the lines TB, Tb (Fig. 1) perpendicular to the line Aa which is supposed
to pass through the centres of the Earth and of the luminaries, as in Cor. 4 of
Prop. I, or the difference of the same forces in the quadratures of the Moon,
as in Cor. 5 of the same Prop. and by the things that are demonstrated in
Cor. 1 of Prop. I there will be

Aa − Bb =
2a2V + b2V

d
.

And so
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Aa − bA × a2c − b2L
2ab × L − c

=
2a2V + b2V

d
,

and
V : A :: 2a2L + b2L − 3a2c :

2a

d
× 2a2 + b2 × L − c .

And given the ratio of V to A or to B, or 1
2A+ 1

2B (which can be taken for G
the mean gravity at the circumference ABab), we will have an equation from
which the type of the figure and the difference of the semiaxes or the rise of
the water can be calculated.

Now the logarithm L of the quantity a
√

a+c
a−c is equal to

c +
c3

3a2 +
c5

5a4 +
c7

7a6 , &c.

by very well-known methods, and so

L − c =
c3

3c2 +
c5

5a4 +
c7

7a6 , &c.

Hence V is to A as59

2c2

15a2 +
4c4

35a4 +
6c6

63a6 , &c. to
L − c × a × 2a2 + b2

dc3 ,

and V is to 1
2A + 1

2B or G as

2c2

15a2 +
4c4

35a4 +
6c6

63a6 , &c. to
2a2 + b2

4bdc3 × 2abL − b2L + a2c − 2abc .

But if V is sufficiently small in relation to the gravity G (as in the present
case) the difference of the semidiameters CA, CB will be to the mean semidi-
ameter approximately as 15V to 8G, or a little more accurately, as 15V to
8G − 57 5

14 × V . For, as in Cor. 2 of Prop. I, let a = d + x, b = d − x, so that
c2 = a2 − b2 = 4dx, and there will be

A : B :: 2ab×L − c : a2c− b2L ::
b

3
+

bc2

5a2 +
bc4

7a4 , &c. :
a

3
+

ac2

15a2 +
ac4

35a4 , &c. ,

that is, as
d − x

3
+

4dx × d − x

5 × (d + x)2
+

16d2x2 × d − x

7 × (d + x)4
, &c.

to

59In the published essay [68] the second part of the expression for V/A is given as
(in different notation) (L − c)adc−3(2a2 + b2)−1 and in the second part of the
expression for V/ 1

2 (A + B) the 4 is replaced by 2. I believe that these expressions
in [68] are wrong; clearly there could be typographical errors. See NPIV, pp. 178–
179, for details of the calculations.
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d + x

3
+

4dx × d + x

15 × (d + x)2
+

16d2x2 × d + x

35 × (d + x)4
, &c. ,

and so (terms having been neglected where higher powers of x appear) as60

1
3

d +
17
15

x :
1
3

d +
19
15

x .

Thus there will be

B − A : B + A (= 2G) :: x : 5d + 18x

and
B − A : G :: 2x : 5d + 18x .

But by Cor. 2 of Prop. I, x is to d as B − A + 3V to B + A − 2V , and so, on
substituting the values of the quantities B − A and B + A, there will be

x : d ::
2Gx

5d + 18x
+ 3V : 2G − 2V .

Hence
2Gx − 2V x =

2Gdx + 15V d2 + 54V dx

5d + 18x
,

and

10Gdx − 10dV x + 36Gx2 − 36V x2 = 2Gdx + 15V d2 + 54V dx ,

and when all terms in which x2 is found have been omitted, there will be

8Gdx − 64dV x = 15V d2 and x : d :: 15V : 8G − 64V ,

and 2x is to d as 15V to 4G − 32V . Therefore the rise of all the water,
i.e., the difference of the semidiameters CA and CB (or 2x) is to the mean
semidiameter as 15V to 8G approximately; moreover, it will be easy to express
this ratio more accurately whenever the application will demand it, by taking
more terms of the value of the logarithm L and following the calculation
through; furthermore, in this way x to d comes out more accurately as 15V
to 8G − 57 5

14 × V .

COR. B − A is equal to 3V
4 and B − G = 3V

8 approximately. For

B − A : G :: 2x : 5d :: 30V : 40G and so B − A : V :: 3 : 4 .

SCHOL. It will be shown in the same way that the gravity at the pole
B towards an oblate spheroid will be to the gravity at any place A on the
equator, as

2CB × CA × CF − CS to CA2 × CS − CB2 × CF .

60MacLaurin’s expression for A/B appears to be correct, but I believe that the
approximation which he now gives is incorrect and that the subsequent deductions
from it have to be amended; the assertions of the Corollary remain valid (see
NPIV, pp. 180–181).
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(p.182) PROPOSITION V.
PROBLEM.

To find the force V which arises from the unequal gravity of the parts
of the Earth towards the Sun, and to determine the rise of the water
resulting from this.

Let S be the Sun, T the Earth, ABab the lunar
orbit, its eccentricity having been neglected, and B
and b the quadratures. Let S denote the periodic
time of the Earth about the Sun, L the periodic
time of the Moon about the Earth, l the time in
which the Moon would revolve about the Earth in
the circle at mean distance Td (= 1

2CA + 1
2CB) if

the motion of the Moon were not disturbed by its
gravity towards the Sun and were kept in orbit only
by its gravity towards the Earth. Further, let K
denote the mean gravity of the Moon or the Earth
towards the Sun, g the gravity of the Moon towards
the Earth at its mean distance, v the force which
the action of the Sun would add to this gravity in
the quadratures at the same distance. These things
having been put in place, there will be v : K :: dT :
ST ; and by the common doctrine of centripetal

a
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MacLaurin’s Fig. 10

forces K : g :: ST
S2 : dT

l2 ; hence v : g :: l2 : S2; and since l2 is a little less than
L2, because the Moon is drawn away somewhat from the Earth by its gravity
into the Sun, it is clear that the force v is to g in a ratio which is a little smaller
than L2 to S2. Now, so far no one (as far as I have found out) has accurately
determined this ratio of the force v to g; however, it seems to be more like
the ratio L2 to S2 +2L2, or perhaps the ratio L2 to S2 + 3

2L2, than the ratio
L2 to S2. In fact, mindful of the warning of the most illustrious Academy, I
consider it appropriate to omit here the arguments by which it is inferred,
since in this investigation it is of little importance which of these ratios is
used. Let us suppose therefore with Newton that61 v : g :: L2 : S2 :: (by the
astronomical calculations of the periods of the Sun and Moon) 1 : 178,725.
The force V which on the surface of the Earth corresponds to the force v, is to
v, as the mean semidiameter of the Earth to the mean distance of the Moon,
or as 1 to 60 1

2 . Moreover, the force g acts along lines which are concurrent at
the centre of gravity of the Earth and the Moon; when the ratio of this has
been obtained from the increment of gravity in the descent to the surface of
the Earth, it will be seen that the force V is to G (by which the mean gravity
at the surface of the Earth is denoted as above) as 1 to 38604600. Hence,

61The comma which appears in the final quantity 178,725 (and in some subsequent
expressions) represents in a common notation of the time a decimal point.
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since by Cor. 2 of Prop. I there is x : d :: 15V : 8G − 57 5
14V , there will be in

this case x : d :: 1 : 20589116. And since the mean semidiameter of the Earth
is 19615800 feet, it follows from this that the total rise of the water resulting
from the force of the Sun will be one Parisian foot along with 90545

100000 parts
of a foot, that is to say, one foot along with ten inches and 8654

10000 parts of an
inch; Newton found this briefly by his method to be one foot eleven inches
along with 1

30 th part of an inch, and this height differs from ours by only the
sixth part of one inch.

Now in this calculation the Earth is supposed to be spherical, except in
so far as the sea is raised up by the force of the Sun. But if we look for the
greatest rise of the water, it has to be assumed that the Sun moves about
the equator, and I have constructed the figure ABab in this plane, and the
force V has to be increased in the ratio of the mean semidiameter to the
greatest semidiameter of the Earth, and the force G has to be decreased
until it becomes equal to the gravity at the equator: that is to say, if we
suppose the figure of the Earth to be that which Newton found, the force
V will have to be increased in the ratio 459 to 460, and G will have to be
reduced in almost the same ratio, since the forces of gravity on the surface
of the Earth are inversely as the distance of the places from the centre; and
since the distance d has to be increased in the same ratio, the rise of the
water at the equator will have to be increased in the cube of the ratio of the
mean semidiameter to the maximum, and so it will be one foot eleven inches
along with about a 60th part of an inch. Now the Earth is higher at the
equator than comes out by Newton’s calculation under the hypothesis that
the Earth is uniformly dense from the surface all the way to the centre, as
is to be inferred from various observations of pendulums and especially from
the measurement of a meridional degree which the most distinguished men
have recently determined with the greatest accuracy at the polar circle.

SCHOL. 1. If we had taken the gravity to be equal at A and B, and of the
same force in the whole circumference ABab, then x would have turned out
to be equal to 3V d

2G only, and the rise of the water (or 2x) to one foot six inches
along with about a third of an inch. Of course under this hypothesis CA to
CB would have turned out to be as G + V to G − 2V , and so x to d would
have been as 3V

2 to G approximately. And hence the use of the preceding
Propositions is apparent, since the rise of the water according to the latter
less accurate hypothesis is less that the rise which we have determined in this
Proposition, the difference being 3V d

4G , namely, a quarter of the former rise.

SCHOL. 2. From this doctrine it is clear that the satellites of Jupiter must
cause huge motions in the Ocean of Jupiter (if there is any) when they are
in conjunction with or opposed to the Sun and each other, provided they are
not much smaller than our Moon; for the diameter of Jupiter to the distance
of any of its satellites has a much greater ratio than the diameter of the Earth
to the distance of the Moon. It is probable that the mutations of the spots of
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Jupiter, which have been observed by the astronomers, affect the rise at least
in some respect; for if these mutations are discovered to preserve that analogy
with the aspects of the satellites, which this doctrine requires, it will be proof
that their true cause is to be sought from this source. From this doctrine we
may also conjecture not without profit that the motions of satellites about
their axes and about the primaries are so made up that they always show
the same hemisphere to their primaries, according to the opinion of the most
celebrated astronomers. For it is probable that very great motions of the sea
must be caused in the satellites, if they were to revolve about their axes with
any other velocity; but the tides arising from the different distances of the
satellites from their primaries can suffice for setting in motion the waters in
these (if there are any).

SECTION IV.
Concerning the motion of the Sea, in so far as it is altered

by the daily motion of the Earth or by other causes.

(p.184) We showed in the preceding Section that a fluid Earth unequally heavy
towards the Sun or the Moon must take on the figure of an oblong spheroid;
its transverse axis would pass through the centre of the luminary, if the Earth
did not rotate about its axis with a daily motion; and we have determined
the rise of the water resulting from the force of the Sun under the hypothesis
that the Earth is at rest. But because of the motion of the Earth the system
of the tide of the sea is different. For consequently, the water may never be
in equilibrium, but is stirred up by uninterrupted motions. Let us suppose
the Sun and the Moon to be in conjunction or opposed in the equatorial
plane ABab; let Aa be the diameter which passes through their centres and
Bb the perpendicular diameter to this (Fig. 1). While the mass of water is
revolved by the daily motion, the forces by which its rise is brought about in
the transit of the water from the places b and B to A and a are increased,
and turn out to be greatest in the latter places; however, the rise of the water
is seen to be continued after these forces have begun to decrease almost up to
the places where these forces are equal to the forces by which it is depressed
below the height which it would attain naturally, if the motion of the water
were disturbed by no external force; thus the motion of the water can be
considered as more even, and it rises almost as much under the forces by
which it is raised while they are decreasing, as during their increase. And
since the centrifugal force produced by the daily motion is much less than
the gravity, the position of the place F where the previously mentioned forces
are equal at the equator, while the water crosses over from the place b to the
place A, seems able to be determined approximately as follows. Let Ff be
the perpendicular from the point F to Bb and let fz be perpendicular to
TF . Let V denote the sum of the forces with which the Sun and the Moon
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depress the water in the lines TB, Tb as above, and the force with which the
water is raised up at F will be

3V × Fz

d
=

3V × Ff2

d × TF
.

Let us suppose F to be the position of the water where
the height of the water is least, so that TF can be
taken for the conjugate semiaxis of the figure ABab,
the gravity at the extremity of this axis being called B
and the mean gravity in this figure G, as above; and
the force with which the water is depressed below its
natural position at the place F will be

B − G +
V × TF

d
.

Let these forces be put equal, and since TF is approx-
imately equal to the distance d, and B − G = 3V

8 by
the Cor. of Prop. IV, there will be

3V

8
+ V =

3V × Ff2

d2 ,

or
TF 2 : Ff2 :: 3 : 1 + 3

8 :: 24 : 11 ,

hence the angle FTb will be 42 degrees 37 minutes,
and it will occur almost at the middle point between
b and A. But we do not put forth this calculation as
accurate.
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(p.186) PROPOSITION VI.
PROBLEM.

To compare with each other the motion of the sea arising from the force
of the Sun, and the lunar motion in an orbit which is approximately
circular, and hence to estimate the rise of the water.

It is very well known to the astronomers that the mean distance of the
Moon in the syzygies is less than the mean distance in the quadratures. The
most illustrious Halley concluded from observations that the former distance
is to the latter as 44 1

2 to 45 1
2 . By a certain method of his own Newton found

the ratio of these to be 69 to 70: Prop. 28 of Book 3 of the Principia. The most
illustrious author of the Treatise on the Motions of the Moon according to
the Theory of Gravity, who was very well informed in this doctrine, deduced
it to be the number 69 to 70 without taking account of the decrease in gravity
while the Moon crosses from the syzygies to the quadratures. In order that the
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motion of the sea arising from the force of the Sun (its nature is determined
above in Prop. V) may be compared with the motion of the Moon, let us
suppose the lunar globe to be filled up with water and let us investigate the
rise of this water by means of Propositions IV and V. In Prop. V there was
force v to g as 1 to 178,725; consequently in this case there would be

x : d :: 15v : 8g − 57 5
14 × v :: 1 : 91,496 :

and so the semiaxis of the figure to the conjugate semiaxis (or d + x to
d−x) would be as 46,248 to 45,248, which almost coincides with the ratio of
the distances of the Moon in the quadratures and the syzygies which Halley
determined from observations; thus the figure of the lunar orbit is of a type
scarcely different from that which the quiescent aqueous globe of the Moon
would take on while completing its orbit under the force of the Sun; however,
they would be in different positions, since the minor axis of the former looks
back at the Sun, while the major axis of the latter is directed towards the
Sun. The ratio of the numbers 59 to 60 (whose difference62 is to the semisum
as 3v to g approximately) agrees well with the ratio of the semiaxes of the
figure which the water would take on as a result of the force of the Sun, if the
force of gravity were the same over the whole circumference ABab, as we have
shown in Schol. 1 of Prop. V. Moreover, the rise of the water determined in
Prop. V agrees with that which Halley determined from observations; hence
it may be conjectured that the difference of the diameters of the lunar orbit
is made a little greater as a result of the decrease of the gravity of the Moon
into the Earth while it crosses from the syzygies to the quadratures, in almost
the same ratio as the rise of water has come out larger in this Proposition on
account of the excess of the gravity of the water into the Earth at the place
B over its gravity at the place A and at other distances from the centre. But
whatever is to be decided about the ratio of the diameters of the lunar orbit,
it may be deduced from these things that the rise of the water determined
in Prop. V comes out scarcely larger on account of the daily motion of the
Earth about its axis. For let us suppose this motion to be increased until the
centrifugal force arising from this motion becomes equal to the gravity, and
the particles of the sea are revolved in the manner of satellites in orbits which
are almost circular and tangential to the Earth. These orbits will be ellipses
whose minor axes produced will pass through the Sun. And if the difference
of the semiaxes is to the mean semidiameter as 3V to G (according to those
things which the most acute man teaches concerning the lunar motions), it
will be less than the rise of the water determined above in Prop. V, in which
we found 2x to be to d as 15V to 4G. For if we investigate the difference
of these semiaxes from the figure of the lunar orbit, since it is known from
observations by the most distinguished Halley, it will exceed the rise of the
water determined above just a little. And it is not to be wondered at if they
do not agree accurately, since the gravity of the Moon towards the Earth

62The original has semidifferentia. See NPVI, footnote (83), p. 187.
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follows the inverse ratio squared of the distances, while the gravity of the
water is also greater at the smaller distance, but not in the same ratio. Since
these phenomena are analogous and shed some light on each other, it seemed
worthwhile to mention these things concerning their comparison with each
other. However, we suppose here that the motion of the water continues in
the same circle parallel to the equator, or the latitude is kept the same in
individual revolutions, and we do not consider the variation of the rise of the
water which results from the spheroidal figure of the Earth.

(p.187) PROPOSITION VII.
The motion of the water is disturbed by the unequal velocity with which

bodies are carried about the axis of the Earth by the daily motion.

Indeed, if a mass of water is carried by the tide, or some other cause,
to a greater or lesser distance from the equator, it will fall into water which
is carried with a different velocity about the axis of the Earth; hence the
motion of the former is necessarily disturbed. The difference of the velocities
with which bodies which are, for example, at a place located at 50◦ from the
equator and at a place located only 36 miles further north, is greater than
that which would be represented by 7 miles in individual hours, as will be
clear from an easy calculation. And since the motion of the sea is sometimes
so great that the tide will mark off 6 miles or even more in individual hours,
the effects that can arise from this are not to be regarded as insignificant.

If the water is carried away from the south towards the north by the
general motion of the tide, or by some other cause, the flow of the water
will consequently deflect a little towards the east, since the water was first
carried by the daily motion towards this region with a greater velocity than
that which corresponds to a place located more towards the north. On the
other hand, if the water is carried down from the north towards the south, the
flow of the water will be deflected towards the west for a similar reason. And
we suspect that various phenomena of the motion of the sea arise from this.
For example, this may be why the icebergs which come away from the Arctic
Ocean are more often observed in the western than in the eastern region of
the Atlantic Ocean. But it is probable that greater tides can also be set in
motion in many more places than those which result from a calculation of the
forces of the Sun and Moon when the latitude has been taken into account.
We suspect that the same cause serves for the generation of winds, especially
the more violent ones, and sometimes for increasing or decreasing them, and
for producing other phenomena both of the atmosphere and of the sea. But
it is not permitted to pursue these things individually at the present time.
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(p.188) PROPOSITION VIII
PROBLEM.

To find the change in the rise of the water determined in Prop. V,
which results from the spheroidal figure of the Earth.

Let PApa, PBpb be sections of the Earth through the poles P and p, the
first of which passes through the places A and a, where the height of the water
at the equator under the forces of the Sun and
Moon is greatest, while the latter passes through
the places B and b where it is least; let these
sections be ellipses, with F a focus of the figure
PApa, f a focus of the section PBpb, and g a
focus of the section ABab. And if all the sec-
tions of the solid which pass through the line Aa
are supposed to be elliptical we will find by a
calculation set up according to Lemma V that
the gravity at the place A towards this solid will
be to the gravity at the same place towards the
sphere with centre C described on the diameter
Aa as

P p

f

A

a

b

B

g

F

C

MacLaurin’s Fig. 11

1 +
3CF 2 + 3Cg2

10CA2 +
9CF 4 + 6CF 2 × Cg2 + 9Cg4

56CA4 , &c. to
CA2

CB × CP
;

and if the gravity at the place B is determined by a similar calculation, by
use of the same Lemma and the Schol. of Prop. II, the ratio of the gravity
at A to the gravity at B will be established, and by Cor. 2 of Prop. I the
difference of the semidiameters CA and CB, or the rise of the water, will be
determined. However we omit the calculation, which is rather extended, since
it is of little use. I only wished to show by this Proposition that Geometry
would not fail us in a very celebrated problem which requires to be examined
with the greatest accuracy. But there remains a particular difficulty in this
investigation, about which a few things require to be added.

(p.188) PROPOSITION IX.
To find the force of the Moon for moving the sea.

It is not possible to determine these things from the celestial motions, but
if the rise of the water in the syzygies of the luminaries, which is generated
by the sum of the forces of the Sun and Moon, is compared with the rise of
the water in the quadratures, which results from their difference, the force of
the Moon will be found from the force of the Sun which is given by Prop. V.
Newton investigates this from observations undertaken by Samuel Sturmy
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before the mouth of the River Avon, from which he concludes that the rise
of the water in the equinoctial syzygies is to the rise of the water in the same
quadratures, as 9 to 5. Then after various calculations he concludes that the
force of the Moon is to the force of the Sun as 4.4815 to 1, and that the rise of
the water resulting from both forces in the mean distances of the luminaries
will be 50 feet along with a half. We have investigated the ratio of these
forces from observations reported by the celebrated Cassini in the work cited
above. But since in addition to the general causes already mentioned, some
of which can scarcely be reduced to calculation, various others depending on
the location of places, the natural properties of the sea beds, the force of the
winds and the region make the tides of the sea sometimes greater, sometimes
smaller, it is not to be wondered at if the forces of the Moon which are
derived from observations set up at different places, or at the same place but
at different times, do not entirely agree. Therefore we will not spend time
at present in listing the calculations which we have undertaken concerning
the motion of the sea resulting from the force of the Moon. But after some
observations which we are awaiting concerning the tides of the sea on the
shores of America and the East Indies have come to hand, we may perhaps
make a more informed judgement about these matters. We observe only that
the tide seems to decrease in a ratio smaller than the square of the sine of the
complement of the declination; also the remaining general laws of the tide are
thrown into confusion by the forward and backward motion of the water. But
we are afraid that weariness may result if we repeat what has already been
treated by others long ago. Anomalous tides seem to depend for the most
part on the location of places and seas. However, it is to be observed that it
follows from the theory of gravity that only one tide must occur sometimes in
the space of 24 hours in places beyond 62 degrees of latitude, if reciprocation
of the motion of the water should permit it. ∗

Therefore if the analysis of the various causes which come together to
produce the phenomena of the tide could be set up accurately, it would
certainly contribute not a little to a more fruitful knowledge of the forces and
motions of the system of the World. For the location of the centre of gravity
of the Moon and the Earth and those things which concern the precession
of the equinoxes and other distinguished phenomena of nature, would thus
become known with greater certainty. For these reasons we have considered
the accurate determination and demonstration of the amount of the rise of
the water, as far as it may be understood from the celestial motions, under the
assumption of the laws of gravity which are deduced from observations (this
is not the place for an examination of its cause). We now willingly submit

∗ For let the declination of the Moon be 28 degrees and that of the place
beyond 62 degrees towards the same region, and it is clear that the Moon
comes into contact with the horizontal of this place only once in the space of
24 hours.
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these thoughts of whatever kind to the judgement of the most illustrious
ROYAL ACADEMY, which we always revere with all honour and respect.

REMARKS ON THE DISSERTATION
Concerning the Physical Cause of the Flow and Ebb of the Sea,

to which is prefixed the motto,
Opinionum commenta delet dies, Naturae judicia confirmat.

(p.189) I. In Prop. IV it was found that x = 15V d
8G approximately, which is

a sufficiently accurate value of x, and it does not require any correction
especially in the calculation of Prop. V. But it is more accurate that x is to
d as 15V to 8G − 88

7 V and not as 15V to 8G − 803
14 V or 8G − 57 5

14V as I
had written at the end of Prop. IV by some error of the pen or calculation,
which is certainly of little importance, and does not change the arguments
of the subsequent Propositions. However, let me add here the main steps of
the calculation. I had found in Prop. IV that B is to A as

1
3

+
c2

15a2 +
c4

35a4 , &c. to
b

a
×

(
1
3

+
c2

5a2 +
c4

7a4 , &c.
)

,

and so (on substituting in place of b
a its value

√
a2−c2

a , or 1 − c2

2a2 − c4

8a4 , &c.)
as

1
3

+
c2

15a2 +
c4

35a4 , &c. to
1
3

+
c2

30a2 +
c4

840a4 , &c. ,

from which it follows that B − A is to G (or 1
2B + 1

2A) as

c2

10a2 +
23c4

8 × 35a4 , &c. to 1 +
3c2

20a2 +
25c4

8 × 70a4 , &c. .

Moreover, c2 = 4dx, and a2 = d2 + 2dx + x2 from those things which are
supposed in the Proposition; hence

c2

4a2 =
x

d
− 2x2

d2 +
3x3

d3 , &c.

and on substituting in place of c2

a2 its value 4x
d − 8x2

d2 , &c. it will come out
that B −A is to G approximately as 14dx+18x2 to 35d2 +21dx−17x2. And
since by the Cor. of Prop. I

B − A × d + 3V d = 2Gx − 2V x − 3V x2

d
,

let the value of B −A be substituted and let the terms in which V x2 appears
be neglected (since V is very small relative to G) and there will be
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3 × 35V d2 = 56Gdx − 133V dx + 24Gx2 and x =
3 × 35V d2

56dG − 133V d + 24Gx
,

so that if for x in the denominator is written the value 15V d
8G , which is close

to the true value, the more accurate value

3 × 35V d

56G − 88V

will result, and there will be x : d :: 15V : 8G − 88
7 V approximately. By a

slightly different method there comes out

x =
15V d

8G
+

165V 2d

56G2 , &c. ,

a series which it is not difficult to continue, whenever it seems worth the
effort. In Prop. VI we investigated the figure of the water filling the lunar orb
which arises from the action of the Sun. When this correction has been used
and other things have been kept as before, the minor axis of the figure will
be to the major as 46.742 to 47.742, which differs little from the ratio which
we showed in that Proposition.

(p.191) II. The series which we showed in Prop. VIII is deduced by Lemma V
and Prop. II.

b

K

m

p

v

u

B
CV

M

f

g

P

A

F

k

Figure from end of “Remarks”

Let CA = a, CB = b, CP = e, CF = c, Cf = f , Cg = g. Let ACM ,
ACm be any sections of the solid which pass through the line AC (which is
normal to the plane BPbp). Let the arc mu drawn with centre C and radius
Cm meet the line CM in u, and let the ordinates MV , mv meet the axis
Bb in V and v, and the circle BKb in K and k. Let CA2 − CM2 = x2, or
x is the distance of the focus from the centre in the figure ACM , let L be
the logarithm of the quantity a

√
a+x
a−x , and the ultimate ratio of the gravity
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of the particle A into the part bounded by the planes ACM , ACm to the
gravity into the part of the sphere drawn with centre C and radius CA which
is bounded by the same planes, will be as 3CM2 × L − x to x3 by Prop. II.
Therefore the gravity of the particle A into the solid will be as∫

3CM2 × L − x

x3 × mu

CM
=

∫
3CM × mu

x3 × L − x

=
∫

3CK × Kk × CP

CK × x3 × L − x =
∫

3e × Kk

x3 × L − x .

Let CV = u. And there will be

u2 + (b2 − u2) × e2

b2 = CM2 = a2 − x2 .

Hence

e2+
b2 − e2

b2 u2 = a2−x2 , and u2 = a2 − e2 − x2× b2

b2 − e2 = c2 − x2× b2

f2 .

And so

KV 2 = b2 − u2 = b2 − b2

f2 × c2 − x2 = b2 × f2 + x2 − c2

f2 =
b2

f2 × x2 − g2 .

Moreover, Kk : V v :: CK : KV . Thus

Kk =
b du

KV
=

b2

f
× −x dx√

c2 − x2 × b
f

√
x2 − g2

=
−bx dx√

c2 − x2 ×
√

x2 − g2
.

Consequently, the gravity of the particle A towards the solid will be as∫ −3ebx dx

x3
√

c2 − x2 ×
√

x2 − g2
× L − x .

But

L − x =
x3

3a2 +
x5

5a4 , &c.

Consequently, that gravity will be as∫ −3ebx dx

3a2
√

c2 − x2 ×
√

x2 − g2
+

∫ −3ebx3 dx

5a4
√

c2 − x2 ×
√

x2 − g2
, &c.

Let z2 = x2 − g2, and the first integral will be∫ −eb dz

a2
√

c2 − g2 − z2
,

and the second will be
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∫ −3ebx2 dz

5a4
√

c2 − g2 − z2
=

∫ −3eb dz × z2 + g2

5a4
√

c2 − g2 − z2
.

Along with the subsequent integrals,63 these are easily reduced to circular
arcs. And hence the ratio of the gravity of the particle A towards this solid
to the gravity towards the sphere constructed on the semidiameter CA will
be as assigned in the Proposition, the terms of the series decreasing very
rapidly provided CF , Cf and CG are sufficiently small. If g vanishes, this
series will give the gravity towards the spheroid at the equator; but this is
investigated more elegantly in Prop. III.

(p.195) III. In Prop. IX we observed following Newton that the force of the
Moon for moving the sea could be compared with the force of the Sun, by
comparing the tides in the syzygies and the quadratures; the same ratio could
be obtained by comparing the tides which take place in the syzygies of the
luminaries at different distances of the Moon from the Earth, if the tides were
exactly proportional to the forces by which they are produced. Let L denote
the mean force of the Moon, S the mean force of the Sun, X and x two
different distances of the Moon from the Earth in the equinoctial syzygies, Z
and z the distances of the Sun from the Earth in the same syzygies, d and D
the mean distances of both; and if the declination of the Moon is zero, and
the tides are as the forces of the luminaries, or as

Ld3

X3 +
SD3

Z3 and
Ld3

x3 +
SD3

z3 ,

hence, by comparison of the tides the ratio L to S would be revealed. For let
the rise of the water in the former case be to the rise in the latter as m to n,
and L will be to S as

mD3

z3 − nD3

Z3 to
nd3

X3 − md3

x3 .

63The Latin here is cum subsequentibus summis.



Notes on Part III

Note on Section I (pp. 97–99). Maclaurin quotes various tidal measure-
ments reported by Jacques Cassini and cites for these the Mémoires de Math-
ematique et de Physique for the years 1710, 1712 and 1713. Six articles by
Cassini on this topic appear in these volumes [17–22]; however, all the quoted
data are to be found in the last article. I have reproduced and translated the
relevant parts of [22] in Appendix III.4 (pp. 202–205) in order to clarify what
is being measured and when. The heights are all given in the old French units
(see my Introduction, p. 92) and the distance of the Moon from the Earth is
expressed as d parts, where

Distance
Mean Distance

=
d

1,000
.

Note on Section II (pp. 99–103). Newton discusses the motion of plan-
ets, in particular the motion of the Moon and of the Earth, and the tidal
effects due to the Moon and the Sun on the Earth’s waters in Book III of the
Principia, “The System of the World” [85] ([15, 63]). MacLaurin refers specif-
ically to Newton’s argument concerning the attraction of the Moon towards
the Earth, with which Propositions III, IV, XXVI–XXVIII, in particular, are
concerned. He also mentions Newton’s determination of the Sun’s tidal ef-
fects, for which the relevant reference is Proposition XXXVI (see also items
(49–51) on pp. 590–592 of [15]).64 Proposition XXIV contains a general dis-
cussion of the tides and mentions the high tide taking place at the second or
third lunar hour, to which MacLaurin refers (see also item (38) on p. 581 of
[15]).

MacLaurin makes brief mention of the French expedition to Lapland,
which has already been noted with references in my Introduction, p. 90. In
a footnote he comments on the possible variation in the obliquity of the
Ecliptic, the Sun’s path across the celestial sphere (see [55]); it does not
seem relevant to pursue this here except to note that about 1740 MacLaurin
addressed the Edinburgh Philosophical Society on this topic and his paper

64The supplementary material included at the end of Book III in [15] and likewise
headed The System of the World is apparently an early version of Book III.
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was subsequently published by the Society [71]. MacLaurin suggested that
“its variations will principally depend on the position of Jupiter and Saturn
to the sun and earth,” the effect being greatest when Jupiter and Saturn
are aligned with and on the same side of the sun and so cause the greatest
displacement of the sun relative to the fixed centre of gravity of the planetary
system.

Just before he states some approximations from Newton, which are dis-
cussed separately in the next note, MacLaurin mentions the quadrature of
the circle and of the hyperbola in connection respectively with the figure of
the Earth and the rise of the water. In Propositions II and III, which relate
to the tides, he has to evaluate∫

1
a2 − z2 dz =

1
2a

(∫
1

a − z
dz +

∫
1

a + z
dz

)
;

the corresponding curves are the hyperbolas y(a−z) = 1 and y(a+z) = 1. In
the Scholia to these Propositions he states corresponding results which apply
to the figure of Earth; the corresponding integrals can be evaluated in terms
of the length of a circular arc (see NPII, NPIII).

Note on “a few things . . . from Newton” (pp. 102–103). The source
may be Propositions XXV and XXVI in Book III of Newton’s Principia,
where a related diagram appears and the approximation of TG by 3PM
is stated (in different notation) and applied (see pp. 428–432 in [85] ([63])
or pp. 440–444 in [15]; also Articles 472, 686 of [69]). The Earth is to be
regarded as a fluid sphere which is then elongated along one axis Aa as a
result of the attraction of the Moon (or the Sun); the resulting figure is a
spheroid generated by rotating a certain ellipse about the elongated axis.

L

T

P

G

K

M

A

a

b B x

y
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Under the inverse square law of attraction, if −→
TL is chosen to represent

the attraction of the Moon on a particle at the centre of the Earth and
|LK|
|LT | = |LT |2

|LP |2 , then −−→
KL will represent the attraction of the Moon at P . We

then have −−→
KL = −−→

KG + −→
GL = −−→

KG + −→
GT + −→

TL, where KG is parallel to
PT ; if P is at A or a then G has to be defined by continuity (see below).
MacLaurin states the approximations |KG| ≈ |PT | and |TG| ≈ 3|PM |. We
note for the application of Proposition I that −−→

KG represents a force which
acts at P towards the centre of the spheroid with magnitude approximately
proportional to the distance of P from the centre, while −→

GT represents a
force which acts at P parallel to the axis, but away from the centre, with
magnitude approximately proportional to three times the distance of P from
the equatorial plane. The force represented by −→

TL is ignored, since it is the
same everywhere and so affects all particles of the spheroid equally. The same
analysis will also apply when P lies inside the spheroid.

MacLaurin’s diagram suggests that the generating figure is a circle, but
it has to be an ellipse for the intended applications (see the Corollaries of
Proposition I). We can derive the approximations analytically as follows.
Introduce a coordinate system in MacLaurin’s diagram as shown, let P be

the point (x, y) on the lower semiellipse with equation y = −a
√

1 − x2

b2 , where
any one of a > b, a = b, a < b (a, b > 0) may hold, and let L, the centre of
the Moon, be the point (0, −l). Then

LP 2 = x2 +

(
−a

√
1 − x2

b2 + l

)2

= kx2 + a2 + l2 − 2al

√
1 − x2

b2 ,

where k = (b2 − a2)/b2. Now we have |LK|
|LT | = |LT |2

|LP |2 by construction, and so

|LK|
|LP | =

|LT |3
|LP |3 =

l3(
kx2 + a2 + l2 − 2al

√
1 − x2

b2

)3/2 ,

and |LP |
|PK| = |LT |

|TG| , since PT and KG are parallel, therefore

|TG| =
|LT | · |PK|

|LP | =
|LT | · ||LK| − |LP ||

|LP | = |LT |
∣∣∣∣ |LK|
|LP | − 1

∣∣∣∣

= l

∣∣∣∣∣∣l3
(

kx2 + a2 + l2 − 2al

√
1 − x2

b2

)−3/2

− 1

∣∣∣∣∣∣

= l

∣∣∣∣∣∣∣
l3

(a2 + l2)3/2

⎛
⎝1 −

2al
√

1 − x2

b2 − kx2

a2 + l2

⎞
⎠

−3/2

− 1

∣∣∣∣∣∣∣
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≈ l

∣∣∣∣∣∣
l3

(a2 + l2)3/2

⎛
⎝1 +

3(2al
√

1 − x2

b2 − kx2)

2(a2 + l2)

⎞
⎠ − 1

∣∣∣∣∣∣
=

∣∣∣∣∣ 3l5a

(a2 + l2)5/2

√
1 − x2

b2 + l

(
l3

(a2 + l2)3/2 − 1 − 3l3kx2

2(a2 + l2)5/2

)∣∣∣∣∣

=
∣∣∣∣ 3l5|PM |
(a2 + l2)5/2 + l

(
l3

(a2 + l2)3/2 − 1 − 3l3kx2

2(a2 + l2)5/2

)∣∣∣∣ .

It is clear that
3l5

(a2 + l2)5/2 → 3 as l → ∞

and it is not difficult to see that

l

(
l3

(a2 + l2)3/2 − 1 − 3l3kx2

2(a2 + l2)5/2

)
→ 0 as l → ∞ .

Thus, on the assumption that l � a and l � b, we may take

|TG| ≈ 3|PM | .
We also have

|KG|
|PT | =

|LG|
|LT | =

|LT | + |TG|
|LT | = 1 +

|TG|
|LT | ≈ 1 +

3|PM |
|LT | ≈ 1

provided l � a and l � b, which justifies MacLaurin’s assertion that KG “is
almost equal to PT itself.”

Similar arguments produce similar results when P is on the upper semi-

ellipse y = a
√

1 − x2

b2 . Note that there will be a point on the arc APb shown
where |LP | = |LT | and therefore |LK| = |LT |; as P moves round arc Aba
we will have |LK| > |LP | up to this point and |LK| < |LP | after it.

For the applications of these approximations we need to consider the
special cases where P coincides with A, a, B or b.
Case (i): P at A (x = 0).
The point K now lies on LT (produced) and −−→

KG, −→
GT have opposite direc-

tions. Moreover,

|TG| = l
(
l3(a2 + l2 − 2al)−3/2 − 1

)
= l

(
l3(l − a)−3 − 1

) ≈ 3a ,

so that
|LG| = |LT | + |TG| = l4(l − a)−3 ,

and

|LK| =
|LT |3
|LP |2 =

l3

(l − a)2
.
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Combining these, we obtain

|KG| = |LG| − |LK| =
l3a

(l − a)3
≈ a and |TK| = |TG| − |KG| ≈ 2a ,

provided l � a.
Case (ii): P at B or b (x = ±b).
The line KG is now perpendicular to LG, and we have

|LK| =
l3

kb2 + a2 + l2
=

l3

b2 + l2
,

|TG| = l
(
l3(kb2 + a2 + l2)−3/2 − 1

)
= l

(
l3(b2 + l2)−3/2 − 1

)
≈ −3b2

2l
,

|LG| = |LT | + |TG| = l4(b2 + l2)−3/2 ,

|KG|2 = |LK|2 − |LG|2 =
b2l6

(b2 + l2)3
.

Consequently,

|KG| =
bl3

(b2 + l2)3/2 ≈ b and |TG| ≈ 0 ,

provided l � b.
Finally:
Case (iii): P at a (x = 0).
Now we are on the upper semiellipse and

|TG| = l
(
1 − l3(a2 + l2 + 2al)−3/2

)
= l

(
1 − l3(l + a)−3) ≈ 3a ,

with G lying below the line Bb. The forces represented by −→
GT at A and a

therefore have approximately the same magnitudes but opposite directions.
Again |KG| ≈ a, but the direction of −−→

KG is opposite to that at A, and
|TK| ≈ 2a.

Note on Lemma I (pp. 103–105). In the proof of Lemma I MacLaurin
uses two properties of the ellipse, for which proofs can be found in his Treatise
of Fluxions. They are first established for the circle and then deduced for the
ellipse by projection (see Appendix III.1, pp. 197–199). Article 615 of [69]
contains the following result (Fig. 1).

Let GH, KL be parallel chords in an ellipse and let a chord V R meet
them in M and N , respectively. Then

GM · MH

KN · NL
=

V M · MR

V N · NR
. (1)
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V K

R

H

L

N

G

M

V

R

H

G

L

U N
M

S
C

K

Fig. 1 Fig. 2

If we now let KL be the diameter parallel to GH and introduce the
diameter US parallel to V R (Fig. 2), we can deduce the first property required
in the proof of Lemma I as follows. Apply the above result to the parallel
chords V R, US and the chord LK to get

V N · NR

UC · CS
=

KN · NL

KC · CL
. (2)

Then from (1) and (2) we deduce

GM · MH

V M · MR
=

KN · NL

V N · NR
=

KC · CL

UC · CS
=

CL2

CS2 . (3)

In words, the ratio of the rectangles formed by intersecting chords is equal to
the ratio of the squares of the semidiameters parallel to the respective chords.

The second property used is found in Article 612 of [69].

H

V Q

N
L

K

C

Let CK, CV and CH, CL be two pairs of conjugate semidiameters in an
ellipse. Let the line through H parallel to CK meet CL in Q and CV in N .
Then

NH · HQ = CK2 . (4)

The proof of Lemma I also makes use of the similarity of triangles qmz
and ECG and of triangles Hzu and gGC. Note that, although the Lemma is
stated and proved for an arbitrary pair of conjugate diameters, the diagram
(below) shows these as the axes of the ellipse, which is the situation required
in Corollaries 3 and 4.

The last line in Corollary 1 perhaps requires some amplification. We have
mu = uM since mM is an ordinate to diameter HI. The parallel lines mx,
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er, QM must therefore cut off equal segments from PQ; thus Qe = eq as
MacLaurin asserts. From Pz

qz = PQ
qe we obtain

Pq

qz
=

Pz − qz

qz
=

PQ − qe

qe
=

Pq + eQ

qe
=

Pq + qe

qe
=

Pe

qe
.

We now use the following property of ratios: if a
b = c

d then (where meaningful)
a+c
b+d = a−c

b−d = a
b = c

d . Thus,

Pq

qz
=

Pe

qe
=

Pe − Pq

qe − qz
=

qe

ze
=

Pe + qe

qe + ze
=

Pe + eQ

eQ + ze
=

PQ

zQ
,

as required.

m

M
h

a

x
o

z

re

H
Q

A

P

B
I

g

q

C

G

E

u

b

Diagram for Lemma I
MacLaurin’s Fig. 2

In the proof of Corollary 2 we get ox = qm because the semidiameter CB
bisects the chord mx, which is parallel to the conjugate semidiameter CA,
and also qo, since HP , CB, hI are parallel and C is the midpoint of HI. For
the ratios note that Io = Pq for similar reasons and by Corollary 1 and the
similarity of triangles qzm and QzM

Pq

qm
=

PQ

Qz
· qz

qm
=

PQ

Qz
· Qz

QM
=

PQ

QM
.

The triangles Iox and PQM are therefore similar, the angles at o and Q
being equal, and then, since Io ||PQ and ox ||QM , we must have Ix ||PM .

MacLaurin asserts next that the diameters parallel to Ix (and therefore
also to PM) and Hx are conjugate. This is another general property of the
ellipse which follows immediately from the corresponding property in the
circle on projection (see diagrams below). In the case of the circle the lines
corresponding to Ix and Hx must be at right angles and so the corresponding
diameters are also at right angles; on projection these become conjugate
diameters of the ellipse and parallel lines remain parallel (see Appendix III.1,
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pp. 197–199). The Corollary follows on applying the Lemma with HP , mx
replaced by Hx, MP , the lines qu, PM becoming ru, xm, respectively.

H

I

C
x

I H
C

x

Corollary 3 assumes the situation shown in its diagram below, namely, Bb
and Aa are the axes of the ellipse. It is required to show that V N = V n = er
and DN ||PM , Dn ||Pm. MacLaurin first uses the similarity of triangles
qmz and QMz along with Corollary 1 to show that triangles PQM and
Pqm are similar and consequently that the angles QPM , or HPM , and
qPm, or HPm, are equal. Using the similarity of triangles Pqm and Per
and of triangles Her and Hqx and then property (3) discussed above, he
obtains

He · Pe

er2 =
CB2

CA2 . (5)

m

b
M

a

x

H
Q

A

P

B

u r

I

N

q

D

C

d

e

hV
n

z

b

a

H

A

I

C

h

P

B mq

Q M

e
n

D

N

d

V

Diagram for Lemma I Cor. 3 Diagram for Lemma I Cor. 4
MacLaurin’s Fig. 3 Second Part

The second ellipse has centre C and Dd as one axis, the other axis being
along Aa and having length Aa× Dd

Bb . Since nN is parallel to the second axis
we have nV = V N . Applying (3) in this ellipse and using the proportionality
of the axes of the two ellipses, we get

DV · V d

V N2 =
DV · V d

nV · V N
=

CB2

CA2 . (6)
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Clearly, dV = He and DV = Pe, so we can deduce from (5) and (6) that
V N = er. The triangles Per and DV N are therefore congruent, from which
it follows that Pr and DN must be parallel. Finally, from

∠mPH = ∠HPM = ∠V DN = ∠V Dn ,

we obtain Pm ||Dn.
It is clear from the diagram for Corollary 3 that

PQ + Pq = Pe + eQ + Pe − qe = 2Pe = 2DV , (7)

since eQ = qe (see above). This is the first part of Corollary 4, where Q and
q lie on the same side of P , which is the situation while m lies between H
and P . When m coincides with P , the line Dn will be parallel to the tangent
to the ellipse at P ; the point q will then coincide with P and we will have
PQ = 2DV . As m continues round the ellipse between P and I we will have
the configuration shown in the last diagram above. Equation (7) has to be
changed to

PQ − qP = Pe + eQ − (qe − Pe) = 2Pe = 2DV , (8)

which is the second part of Corollary 4.
Corollary 4 is crucial for the proof of Lemma IV, which in turn provides

the basis for MacLaurin’s Fundamental Theorem. It is perhaps surprising
therefore that MacLaurin left the reader to verify it as a converse. The editors
of [86] apparently thought so for they included a proof “by analysis” in their
edition of MacLaurin’s essay. I have given their proof in translation along
with some explanatory notes in Appendix III.5, pp. 205–208.

Note on Lemma II (p. 106).

b

aA

P

B

T
Z

p

K
D

C

L

MacLaurin’s Fig. 4
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The circle on PL as diameter must pass through D and Z since ∠PDL and
∠PZL are right angles, and TP must be the tangent to this circle at P
since ∠TPL is a right angle. Then ∠PDZ = ∠PLZ since they are angles
subtended at the circumference of this circle by the same chord PZ and on
the same side of it. Next ∠PLZ = ∠TPZ because TP is the tangent at
P to the circle, and ∠TPZ = ∠PCK because PT ||CK. Now ∠PDZ and
∠ZDK add up to 180◦, so the same is true of ∠ZDK and ∠ZCK; since these
are opposite angles in the quadrilateral CKDZ, it must therefore be cyclic.
Then, being angles subtended at the circumference of the circle through C,
K, D, Z by the chord CK and on the same side of it, ∠CZK = ∠CDK, and
∠CDK is a right angle by construction; it follows that KZ passes through
L since both LZ and KZ are perpendicular to CP . Since PK, PC meet this
circle in D, K and Z, C respectively, we have PC · PZ = PK · PD. Finally,
PK · PD = CA2 by (4) in NLI, p. 142.

Note on Lemma III (pp. 106–107).

a

B

b

P E

A

F

MacLaurin’s Fig. 5

In the first instance, MacLaurin appears to be considering the intersection
of a right circular cone with spheres centred at the vertex of the cone. In
this case the area of the surface AEaA is 2π|PA|2(1 − cos α), where α is
the angle between the axis of the cone and any generator. Then, under the
inverse square law of attraction, the attraction of the surface AEaA acts
along the axis of the cone and for small α is approximately proportional to
2π(1−cos α), which is independent of |PA|. The attraction at P of the whole
conical figure bounded by the surface AEaA therefore acts along the axis of
the cone and its magnitude is proportional to∫ |PA|

0
2π(1 − cos α) dr = 2π(1 − cos α)|PA| ;

hence, with reference to MacLaurin’s figure,

|Attraction at P of “cone” PAEa|
|Attraction at P of “cone” PBFb| =

|PA|
|PB| ,

as MacLaurin has it. Integrating from |PB| to |PA|, we see more generally
that the attraction at P of the portion R of the “cone” bounded by the sur-
faces AEaA and BFbB acts along the axis of the cone and its magnitude
is proportional to 2π(1 − cos α)|BA|. In fact the dependence on α is a lit-
tle different: this attraction is given by (see equation (5) of Appendix III.3
(p. 202))
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k

∫ ∫ ∫
R

z

(x2 + y2 + z2)3/2 dx dy dz ,

where P is the origin and the z-axis is along the axis of the cone; transforming
to spherical polar coordinates (x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ)
or using equation (6) of Appendix III.3 gives

k

∫ α

0

∫ 2π

0

∫ |PA|

|PB|
sin φ cos φ dρ dθ dφ = kπ(|PA| − |PB|)

∫ α

0
sin 2φ dφ

=
kπ

2
|BA|(1 − cos 2α) .

Clearly, the above arguments can be adapted to the situation where cones
are replaced by right pyramids. As MacLaurin suggests in Corollary 1, he
applies this Lemma by approximating a given solid by finite unions of such
pyramidal figures, or portions of them (if, for example, the point P is not
on the surface), with certain parameters tending to zero to realise the solid
as the limit of these unions (see Lemmas IV–VI). Of course, the details are
rather sketchy as the pyramids are in general neither regular nor bounded by
spherical surfaces. The attraction at a point P from such a union will be the
vector sum of the attractions from the individual pyramids or parts of them
and the attraction at P of the solid will be the limit of these sums.

In the diagram below, S1, S2 represent similar homogeneous solids and
the points P1, P2 and Q1, Q2 are similarly situated with respect to S1, S2,
respectively; that is to say (in three dimensions), the second configuration
can be obtained from the first by scaling, translation and rotation.

V

Q P

Q

V

U

P

U

1

1

1

1

2
2

2

2S

S2

1

For each approximating solid for S1 there will be a similar, similarly situated
approximating solid for S2 and by the Lemma the ratio of the magnitudes
of the attractions at P2, P1 from the respective approximating solids will be
equal to the scaling factor; this will also hold in the limit so that

|Attraction at P2 from S2|
|Attraction at P1 from S1| =

|P2Q2|
|P1Q1| . (1)

The scaling factor can be determined from any corresponding lengths in S1
and S2, so if, for example, U1V1, U2V2 are corresponding edges in S1, S2,
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respectively, the last ratio will also be equal to |U2V2|/|U1V1|. This is the
content of Corollary 1.

In Corollary 2 MacLaurin first asserts that, if a hollow solid is formed by
rotating the region bounded between two similar, similarly situated ellipses65

about one of their axes, there is zero attraction from the solid at any point
P on the inner surface or in the hollow interior. This he derives from the fact
that, if RS is a chord in an ellipse and its intercepts with an interior, similar,
similarly situated ellipse are T , U as shown below, then RT = US; referring
to the diagram below, we can obtain this last property easily by noting that,
if KX is the semidiameter in the outer ellipse bisecting RS, then by similarity
KY must be the semidiameter in the interior ellipse bisecting TU .

R

S

T

U

X

Y

K

MacLaurin appears to consider only the generating ellipses, but in fact we
have to take into account all sections of the solid by planes through P which
are parallel to the axis of rotation or, equivalently, are perpendicular to the
equatorial plane (see first figure below). Now, as MacLaurin notes in Article
633 of [69], “the sections of two similar concentric spheroids similarly situated,
which are made by the same plane, are similar ellipses” (see Appendix III.2,
pp. 199–201). Thus the sections we have to consider always consist of the
region bounded by two similar, similarly situated ellipses as represented in
the second figure below.

C

P

V

W

V W

R

T

P

U
S

Effectively, two integrations produce the required result: we have as a limiting
case of the Lemma that the segments RT and US produce attractions at P

65Such elipses have the same centre, corresponding axes lie along the same line, and
the ratio of major axis to minor axis is the same in both cases.
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which have opposite directions and equal magnitudes and therefore cancel
each other out; consequently, considering all such chords RS through P , we
deduce that the whole section produces zero attraction at P ; then, taking all
such sections into consideration, we see that the spheroidal shell itself has
zero attraction at P .

We can easily make this precise by applying formula (3) of Appendix III.3
(p. 202) with the spheroidal shell as the region V and P (x0, y0, z0) any point
inside or on the inner surface, the z-axis being the axis of rotation. In this case
φ varies over [0, π], while θ varies independently over [0, 2π]. As noted above,
the spheroidal shell cuts off segments of equal length from a line through P
(RT = US); these segments correspond to the pairs (φ, θ) and (π −φ, θ +π).
Thus by formula (4) of Appendix III.3 the integrals with respect to ρ in (3)
for the pairs (φ, θ) and (π − φ, θ + π) cancel out. Pairing the integrals with
respect to ρ in this way as θ and φ vary independently over [0, π], we see that
the triple integral in (3) must have value zero.

Suppose now that B, D are points on the same semidiameter of an ellipse
and take ellipses through B and D which are similar and similarly situated
to the given ellipse.

B

C

D

Let E , EB , ED be the solid spheroids obtained by rotating these three ellipses
about the same axis. Since B, D are similarly situated on their corresponding
ellipses, we have from Corollary 1 that

|Attraction at B from EB |
|Attraction at D from ED| =

|CB|
|CD| ;

moreover, the first part of Corollary 2 shows that the attraction at B or D
from the outer spheroid E is equal to the attraction at the point from EB or
ED, respectively, since in both cases the remaining portion of E produces zero
attraction at the point. Thus

|Attraction at B from E|
|Attraction at D from E| =

|CB|
|CD| .

As noted by Todhunter, much of the content of Lemma III and its Corol-
laries is implicit in Newton’s Principia ([103], Articles 242–243, [85] ([15, 63])
Book I, Prop. XCI, Cor. III).



150 Part III. MacLaurin on the Tides

Note on Lemma IV (pp. 108–111). Note first of all that the axis of rota-
tion Aa may be either the major or the minor axis of the generating ellipse.
In the statement of the Lemma, MacLaurin resolves the force of attraction at
P from the spheroid into two components, one parallel to the axis of rotation,
the other perpendicular to it; of course, by the symmetry of the spheroid, the
component perpendicular to these two directions must be zero. Corollary 4
of Lemma I is applied in the argument, and for this we need to note that,
if two spheroids are generated by rotating similar, similarly situated ellipses
about one of their axes, any plane which meets both of them cuts off similar,
similarly situated ellipses from them. This is shown by MacLaurin in Article
633 of [69] (see Appendix III.2, pp. 199–201).

There is some notational confusion. In the statement of the Lemma, ABa
denotes the generating ellipse, but in the demonstration it becomes an arbi-
trary section of the spheroid by a plane containing the line PDI – this will
in fact be similar to the generating ellipse ([69], Article 633, see Appendix
III.2). The point C is the centre of this varying ellipse and not the centre of
the spheroid itself, which will be denoted by O below. In an attempt to clar-
ify MacLaurin’s diagram, lines and curves are drawn unbroken in one plane
and dashed in the other; curves going between the two planes are dotted (see
diagram opposite).

b B

W

Y

X

U

F
E

a

P, D, 

θ

A, O,

I

(Looking along axis of rotation)
Fig. 1

The spheroid is split up by planes through PDI (Fig. 1), which are per-
pendicular to the plane generated by the rotation of the axis Bb, the equato-
rial plane. MacLaurin considers the attraction at P of the wedges UWP and
XY P between successive planes. He compares this with the attraction at D
of the corresponding wedge FED of the interior spheroid. We take the angle
between successive planes to be π

2k .
The inner ellipse (see diagram opposite) is split up by a succession of lines

DN , DN ′ and Dn, Dn′, where ∠dDN = ∠dDn and ∠nDn′ = ∠NDN ′ = π
2k ,

and k pairs of pyramids are formed with vertices at D and bases NN ′R′R,
nn′r′r by taking planes through DN , DN ′, Dn, Dn′ which are perpendicular
to the plane of the ellipse. By Lemma III the attraction at D of such a pair
of pyramids will be approximately proportional to −−→

DN and −→
Dn, respectively,
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provided k is large; clearly −−→
DN + −→

Dn = 2−−→
DV . The union of the k pairs of

pyramids will be the inner wedge.

T

b

dH

DP I

B

C

a

n

n N

N

MM

m

z

Z
Z

R

R
r

K

A

r

m q

z

Q

V

Diagram for Lemma 4
MacLaurin’s Fig. 6
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Corresponding pairs of pyramids are formed with vertices at P and bases
MM ′Z ′Z, mm′z′z by taking PM , PM ′, Pm, Pm′ parallel to DN , DN ′,
Dn, Dn′, respectively. The union of the pyramids with bases MM ′Z ′Z will
be the portion of the wedge to the right of PH and below PI in MacLaurin’s
diagram, while the union of the pyramids with bases mm′z′z will be the
portion of the wedge to the left of PH together with the wedge above PI:
note that m, m′ will lie on the other side of P after the position in which
Dn is parallel to the tangent to the ellipse AbaB at P (cf. discussion at
the end of NLI, p. 145). Again, if k is large the attraction at P from these
pyramids is approximately proportional to −−→

PM + −−→
Pm. Now the component

of this attraction in the direction −→
Dd is PQ + Pq if M and m are on the

same side of P and PQ − Pq if they are on opposite sides; by Corollary 4 of
Lemma I these quantities are equal to 2DV in both cases.

Taking the sum of the attractions at D of the first set of pyramids and
the sum of the components in the direction −→

Dd of the attractions at P of the
second set of pyramids and letting k → ∞, we deduce that the attraction at
D of the inner elliptical section is equal to the component in the direction−→
Dd of the attraction at P of the outer elliptical section. Consequently, the
components of these attractions in the direction −−→

DO are equal. These com-
ponents are functions of the angle θ indicated in Fig. 1 above. If we integrate
over −π/2 ≤ θ ≤ π/2 we obtain in the case of D the attraction at D of the
whole interior spheroid, since this must act along −−→

DO by symmetry. In the
case of P we obtain the component in the direction −−→

DO of the attraction at
P from the whole spheroid. Finally, we note that by Corollary 2 of Lemma
III the attractions at D of the inner and outer spheroids are the same, since
the shell bounded by them has zero attraction at D.

A

a

O

P, K, H

Fig. 2

MacLaurin asserts that the component of the attraction which is parallel
to the axis of rotation is dealt with in the same way. In this case we form the
interior solid by rotating a similar, similarly situated ellipse passing through
K and consider sections with planes through the line PKH (Fig. 2). After
discussing the corollaries we will establish Maclaurin’s results by applying
formula (6) of Appendix III.3 (p. 202).
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O D

P

I

B

Fig. 3

It follows from Corollary 2 of Lemma III that all points on the line PI
(Fig. 3) have the same component of attraction in the direction −−→

DO. Conse-
quently, by symmetry, the magnitude of the component of the attraction at
a point in the spheroid along the perpendicular from the point to the axis
is the same for all points at the same distance from the axis. Moreover, this
magnitude is always proportional to the perpendicular distance: this follows
from the above and the final part of Corollary 2 of Lemma III, which implies
that |Attraction at D towards inner spheroid|

|Attraction at B towards outer spheroid| =
|DO|
|BO| ,

and therefore

|Attraction at D towards inner spheroid| = (constant) × |DO| .
This is part of Corollary 1 of Lemma 4. The corresponding assertions con-
cerning the component perpendicular to the equatorial plane are dealt with
similarly.

aC

P

b

RLK

B

A

D
Z

Diagram for Lemma IV Cor. 2
(from MacLaurin’s Fig. 7)

In Corollary 2 of Lemma IV the term middle circle denotes the equator,
the circle traced out by B as the ellipse is rotated about its axis Aa. From
the discussion of Corollary 1 we have that the attraction at P is made up of
two components:

(i) one along −−→
PK with magnitude

m1 =
|B|

|BC| × |PK| =
|B|

|BC| × |DC| ;
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(ii) the other along −−→
PD with magnitude

m2 =
|A|

|AC| × |PD| =
|A|

|AC| × |KC| .

These combine vectorially to give the attraction
at P . Thus the direction of the attraction at P
will be along −→

PR if we make triangle PKR sim-
ilar to the adjacent triangle with PK, KR cor-
responding to m1, m2, respectively, that is to
say, 2

1m

m

m

|PK|
|KR| =

m1

m2
=

|B| × |DC|
|BC| × |AC|

|A| × |KC| , or
|KR|
|KC| =

|A|
|AC| × |BC|

|B| ,

as MacLaurin has it. Moreover, by comparing the hypotenuses of the two
triangles, we see that, if m is the magnitude of the attraction at P , then

m

|PR| =
m1

|PK| =
m2

|KR| .

Finally, we show how Lemma IV may be established using formula (6) of
Appendix III.3 (p. 202); in fact we have precisely the limiting case of MacLau-
rin’s geometric argument which was discussed above. We may take for the
spheroid the equation

x2

α2 +
y2

α2 +
z2

β2 = 1 , (1)

where 0 < α ≤ β or 0 < β ≤ α. This represents the spheroid obtained by
rotating the ellipse y2/α2 + z2/β2 = 1 about the z-axis. By symmetry, or by
rotation of the coordinate axes, it is clearly enough to establish the Lemma
for a point P (0, y0, z0) with

y0 ≥ 0 , z0 ≥ 0 , and
y2
0

α2 +
z2
0

β2 = 1 . (2)

The appropriate unit vectors which are perpendicular to the axis and parallel
to it are (0, −1, 0) and (0, 0, −1), respectively, and so, from the cited formula,
we have to consider

−
∫ ∫ ∫

V ′

sin2 φ sin θ dρ dφ dθ and −
∫ ∫ ∫

V ′

sin φ cos φ dρ dφ dθ ;

here V ′ is the set of (ρ, φ, θ) values which describe the solid spheroid, where

x = ρ sin φ cos θ , y = y0 + ρ sin φ sin θ , z = z0 + ρ cos φ .

By substituting these in (1) and using (2) we obtain
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ρ = ρ(φ, θ) = −2(β2y0 sin φ sin θ + α2z0 cos φ)
β2 sin2 φ + α2 cos2 φ

. (3)

Note that the whole spheroid will be generated if we let ρ vary from 0 to
ρ(φ, θ) while φ and θ vary independently over [0, π] (this requires us to admit
negative values of ρ).

For the component perpendicular to the axis we have, for some constant k,

− k

∫ π

0

∫ π

0

∫ ρ(φ,θ)

0
sin2 φ sin θ dρ dφ dθ

= 2k

∫ π

0

∫ π

0

β2y0 sin φ sin θ + α2z0 cos φ

β2 sin2 φ + α2 cos2 φ
sin2 φ sin θ dφ dθ (by (3))

= 2k

∫ π

0

∫ π

0

β2y0 sin3 φ sin2 θ

β2 sin2 φ + α2 cos2 φ
dφ dθ

(the other part of the integrand is an odd function of φ about π/2 for each θ)

= 2kβ2y0

[
θ

2
− 1

4
sin 2θ

]π

0

∫ π

0

sin3 φ

β2 sin2 φ + α2 cos2 φ
dφ

= kπβ2y0

∫ π

0

sin3 φ

β2 sin2 φ + α2 cos2 φ
dφ . (4)

When y0 = α, so that z0 = 0, this becomes

kπαβ2
∫ π

0

sin3 φ

β2 sin2 φ + α2 cos2 φ
dφ . (5)

Now the similar, similarly situated spheroid through the point D(0, y0, 0) has
equation

x2

y2
0

+
y2

y2
0

+
α2z2

β2y2
0

= 1 , (6)

and so we deduce from (5), on replacing α with y0 and β with βy0/α, that
the corresponding component of the attraction at D from this spheroid is

kπy0
β2y2

0

α2

∫ π

0

sin3 φ
β2y2

0
α2 sin2 φ + y2

0 cos2 φ
dφ

= kπβ2y0

∫ π

0

sin3 φ

β2 sin2 φ + α2 cos2 φ
dφ ,

which is the same (4). By symmetry, the other components of attraction at
D due to the inner spheroid (6) are zero.

For the component parallel to the axis we have
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− k

∫ π

0

∫ π

0

∫ ρ(φ,θ)

0
sin φ cos φ dρ dφ dθ

= 2k

∫ π

0

∫ π

0

β2y0 sin φ sin θ + α2z0 cos φ

β2 sin2 φ + α2 cos2 φ
sin φ cos φ dφ dθ (by (3))

= 2kα2z0

∫ π

0

∫ π

0

sin φ cos2 φ

β2 sin2 φ + α2 cos2 φ
dφ dθ

(the other part of the integrand is an odd function of φ about π/2 for each θ)

= 2kπα2z0

∫ π

0

sin φ cos2 φ

β2 sin2 φ + α2 cos2 φ
dφ . (7)

When z0 = β, so that y0 = 0, this becomes

2kπα2β

∫ π

0

sin φ cos2 φ

β2 sin2 φ + α2 cos2 φ
dφ . (8)

Now the similar, similarly situated spheroid through the point K(0, 0, z0) has
equation

β2x2

α2z2
0

+
β2y2

α2z2
0

+
z2

z2
0

= 1 ,

and, as above with D , we deduce from (8), on replacing α with αz0/β and β
with z0, that the corresponding component of the attraction at K from this
spheroid is the same as that given in (7); again the other components at K
are necessarily zero.

In Propositions II and III and their associated Lemmas V and VI MacLau-
rin obtains versions of (5) and (8) and evaluates the integrals. To show the
connection with this later work let us conclude this Note by observing that
by means of the substitution u = β cos φ we obtain∫ π

0

sin φ cos2 φ

β2 sin2 φ + α2 cos2 φ
dφ =

2
β

∫ β

0

u2

β4 + (α2 − β2)u2 du , (9)

while u = α cos φ gives∫ π

0

sin3 φ

β2 sin2 φ + α2 cos2 φ
dφ =

2
α

∫ α

0

α2 − u2

α2β2 + (α2 − β2)u2 du . (10)

The transformed integral in (9) appears in Proposition II (case α < β) and its
Scholium (case α > β); that in (10) occurs in Proposition III (case α < β) and
its Scholium (case α > β). (See NPII (pp. 170–171), NPIII (pp. 174–177).)
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Note on Proposition I (pp. 111–115). As MacLaurin’s heading, Funda-
mental Theorem, suggests, Proposition I is the basis of much of the subsequent
material in the dissertation. The conditions on the external forces correspond
to those identified earlier for the representing vectors −−→

KG and −→
GT (see Note

on “a few things . . . from Newton,” pp. 138–139). Note, however, that a force
acting towards the centre with magnitude proportional to the distance from
the centre can be resolved into two forces, one acting parallel to the axis with
magnitude proportional to the distance from the equatorial plane, the other
acting perpendicular to the axis with magnitude proportional to the distance
from the axis. In the version in Articles 636–640 in [69] MacLaurin recasts
the external forces as forces parallel or perpendicular to the axis with mag-
nitudes proportional to the appropriate distances. Centrifugal force, which is
obviously important in the study of the figure of the Earth, is an example for
the perpendicular case. As Todhunter states ([103], Article 245) MacLaurin
only shows the possibility of equilibrium under his hypotheses by verifying
that certain necessary conditions are satisfied.

aFC

S

P

b

RLK

l

G

p

B

A

D
Z

Diagram for Prop. I
MacLaurin’s Fig. 7

The first condition to be satisfied is due to Huygens and is sometimes
referred to as the principle of the plumb-line ([103], Article 53). Now, at any
point P on the surface of the spheroid three forces are acting, the attrac-
tion of the spheroid at P and the two external forces. Each of these can be
resolved into components perpendicular to the axis Aa and parallel to it.
Each component perpendicular to the axis is proportional to |PK| and each
component parallel to the axis is proportional to |PD|: in the case of the
attraction this comes from Corollary 1 of Lemma 4, for the first external
force this has already been noted above, and for the second external force it
is given (its component perpendicular to the axis is always zero). Thus the
resultant force at P can be resolved into two components, F1 perpendicular
to the axis and proportional to |PK| and F2 parallel to the axis and propor-
tional to |PD|. At A (or a) these components are 0 and M , respectively, and
at B (or at any point on the equator) they are N and 0, respectively. Thus

F1

N
=

|PK|
|BC| and

F2

M
=

|PD|
|AC| .
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Moreover, by hypothesis, M × |CA| = N × |CB|. Thus, for P not at the
equator, we have66

F1

F2
=

N × |PK|
|BC| × |AC|

M × |PD| =
|AC|2
|BC|2 × |PK|

|KC| =
|KC|
|KL| × |PK|

|KC| =
|PK|
|KL| .

It follows that the resultant force at P acts along −→
PL, which is normal to the

surface. Moreover, since F1 = k|PK|, where the constant k = N/|BC|, we
deduce that

F2 =
|KL|
|PK|k|PK| = k|KL| ,

and the resultant force at P has magnitude√
F 2

1 + F 2
2 = k

√
|PK|2 + |KL|2 = k|PL| .

The above discussion can be applied at an interior point P if the spheroid is
replaced by the similar, similarly situated spheroid through P (Fig. 1) – recall
that the outer shell has no attraction at P (Lemma III, Cor. 2). Exactly the
same proportionality relationships will hold with the same value of k.

K L C

P

L L

Z Zi

C

P

i

Pi

Fig. 1 Fig. 2

The second condition is Newton’s principle of balancing columns ([85]
([15, 63]), Book III, Propositions XIX, XX, [103], Article 23). Here, a column
is a line from a point P on the surface of the spheroid to its centre C and the
object is to show that all such columns have the same “weight.” Consider an
arbitrary point Pi on PC (Fig. 2). As noted above, the resultant force at Pi

will be determined by the line PiLi which is normal to the similar, similarly
situated spheroid on whose surface Pi lies; moreover, PiLi will be parallel to
PL (the tangents at P and Pi must be parallel by similarity; alternatively,
apply the methods of Appendix III.1, pp. 197–199). Thus, if LZ, LiZi are the
perpendiculars from L, Li, respectively, to PC,

|PiZi|
|PZ| =

|PiLi|
|PL| =

|PiC|
|PC| and so |PiZi| =

|PZ|
|PC| × |PiC| .

66Here MacLaurin uses a general property of the ellipse, namely, that |KC|
|KL| = |CA|2

|CB|2
(see Diagram for Prop. I); this is easily established using the equations for the
ellipse and a normal to it.
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The component of the resultant force at P in the direction −−→
PC is therefore

k
|PZ|
|PC| × |PiC| ,

and the “weight” of the whole column is then the integral of this quantity
with respect to |PiC| over the range 0 to |PC|, that is,

k
|PZ|
|PC| × 1

2
|PC|2 =

1
2
k|PZ| × |PC| .

By Lemma II, |PZ| × |PC| = |CB|2 and so the “weight” is the same for all
columns from the surface to C.67

The third condition is a generalisation of the second: MacLaurin claims
that columns still balance if the centre C is replaced by any interior point
of the spheroid. He begins by stating that the “weight” of a column from a
point P on the surface to an interior point p is equal to (see MacLaurin’s
diagram for Prop. 1)

N

2CB
× PK2 − pl2 − M

2CA
× Cl2 − CK2 , (1)

asserting that this may be established “by an easy calculation” which is
omitted “for the sake of brevity.” MacLaurin gives his proof of the third
condition, including the derivation of the above expression, in Article 639 of
[69], but he only provides details for the case where p and P are in the same
meridian plane as in his diagram, claiming, “In like manner it is shown that
any other columns from the surface of the spheroid to the particle p press
equally upon it, and sustain each other.” According to Todhunter it is not
obvious how this could be done by MacLaurin’s methods ([103], Article 245);
it may therefore have been the case that MacLaurin did not have a convincing
general proof. The notation and diagram of Article 639 are different from
what we have here. I have adapted the argument to the present situation;
the details are given below and are followed by a general proof.

In Fig. 3 below (cf. Fig. 288 in [69]) P represents an arbitrary point on
the surface of the spheroid, Pf is an arbitrary line through P which lies in a
section of the spheroid by a plane containing the axis of rotation Aa, and p
is initially a varying point which lies in the spheroid and on the line; further,
the lines PD, pg are perpendicular to Bb and PK, pl are perpendicular
to Aa, while ge, lu are perpendicular to Pf . Now the resultant force at p
has components M × |pg|/|AC| in the direction −→pg and N × |pl|/|BC| in
the direction −→

pl . On projecting onto Pf we see that the component of the
resultant force at p in the direction −→

Pp is

N × |pu|
|BC| − M × |pe|

|AC| .

67The axes have been interchanged between Lemma II and Proposition I, so we
have |CB| rather than the |CA| of Lemma II.
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Now, since triangles peg and pgh are similar, we have

|pe|
|pg| =

|pg|
|ph| , so that |pe| =

|pg|2
|ph| ,

and, since triangles pul and pfl are similar, we obtain likewise

|pu| =
|pl|2
|pf | .

K
A

C

P
D
B

a

b

u

f l

e

h

g
p

Fig. 3

The component of the resultant force at p in the direction −→
Pp is therefore

N

|BC| × |pl|2
|pf |2 × |pf | − M

|AC| × |pg|2
|ph|2 × |ph|

=
N

|BC| × |pl|2
|pf |2 × (|Pf | − |Pp|) − M

|AC| × |pg|2
|ph|2 × (|Pp| + |Ph|) . (2)

Note that |pl|/|pf | and |pg|/|ph| remain constant as p varies on the given
line. To obtain the “weight” of the column from P to any point p which is
in the spheroid and on the line we integrate (2) with respect to |Pp| over the
range 0 to |Pp| to get

N

2|BC| × |pl|2
|pf |2 × (|Pf |2 − |pf |2) − M

2|AC| × |pg|2
|ph|2 × (|ph|2 − |Ph|2)

=
N

2|BC| × (|PK|2 − |pl|2) − M

2|AC| × (|lC|2 − |KC|2) ,

since

|Pf |
|pf | =

|PK|
|pl| , |pg| = |lC| , |Ph|

|ph| =
|PD|
|pg| , |PD| = |KC| .
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This corresponds to MacLaurin’s stated expression (1), which he simplifies
by using the relations

N = M × |CA|
|CB| ,

|PK|2
|CA|2 − |CK|2 =

|CB|2
|CA|2 ,

|pl|2
|CG|2 − |Cl|2 =

|CB|2
|CA|2 .

The first of these is a hypothesis, while the other two correspond to a variant
of the canonical equation of the ellipse: if the generating ellipse has equation

x2

a2 +
y2

b2 = 1 , then
y2

a2 − x2 =
y2

a2 × y2

b2

=
b2

a2 ,

which produces the second identity; the similar, similarly situated ellipse
through p has equation

x2

(λa)2
+

y2

(λb)2
= 1 ,

for some λ, giving

|GC| = |λa| , and
y2

(λa)2 − x2 =
(λb)2

(λa)2
=

b2

a2 ,

from which the third follows. The “weight” of the column Pp turns out to be

M(|CA|2 − |CG|2)
2|CA| ,

which is independent of P .68

To establish the result in general we may assume for the spheroid an
equation of the form

x2

b2 +
y2

b2 +
z2

a2 = 1 ;

here we are rotating the ellipse in the z, y-plane with equation y2/b2+z2/a2 =
1 about the z-axis. Let p(xp, yp, zp) be an interior point of the spheroid and let
P (xP , yP , zP ) lie on its surface. The line segment joining P to p has equation

(x, y, z) = (xP , yP , zP ) + t(xp − xP , yp − yP , zp − zP ) (0 ≤ t ≤ 1) .

Let T be the point on −→
Pp with parameter t and let T ′, T ′′ be its projections

on the axis of rotation and on the equatorial plane, respectively, so that
−−→
TT ′ = −(xP , yP , 0)−t(xp−xP , yp−yP , 0) ,

−−→
TT ′′ = −(0, 0, zP )−t(0, 0, zp−zP ) .

The resultant force at T is made up of the forces

68In the original the weight is given as (M × CA − M × CG)/2. This is either a
typographical error or an error in simplification, and I have corrected it in the
translation (see Part (3) of MacLaurin’s proof). MacLaurin’s previous, unsimpli-
fied expression is correct.
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M

a

(
− (0, 0, zP ) − t(0, 0, zp − zP )

)
,

which acts in the direction
−−→
TT ′′, and

N

b

(
− (xP , yP , 0) − t(xp − xP , yp − yP , 0)

)

=
aM

b2

(
− (xP , yP , 0) − t(xp − xP , yp − yP , 0)

)
,

which acts in the direction
−−→
TT ′. As suggested by the reference to integrals

above, the “weight” of the column Pp has to be interpreted as the work done
in going from P to p along the line segment −→

Pp. This is∫ 1

0

(
aM

b2

(
− (xP , yP , 0) − t(xp − xP , yp − yP , 0

)

+
M

a

(
− (0, 0, zP ) − t(0, 0, zp − zP )

))
· (xp − xP , yp − yP , zp − zP ) dt

=
∫ 1

0

aM

b2

(
− xP (xp − xP ) − yP (yp − yP ) − t

(
(xp − xP )2 + (yp − yP )2

) )

+
M

a

(−zP (zp − zP ) − t(zp − zP )2
)

dt

=
aM

b2

(
−xP (xp − xP ) − yP (yp − yP ) − 1

2

(
(xp − xP )2 + (yp − yP )2

))

+
M

a

(
−zP (zp − zP ) − 1

2
(zp − zP )2

)

=
aM

2b2

(
x2

P + y2
P − x2

p − y2
p

)
+

M

2a

(
z2
P − z2

p

)

=
aM

2

(
x2

P

b2 +
y2

P

b2 +
z2
P

a2 − x2
p

b2 − y2
p

b2 − z2
p

a2

)

=
aM

2

(
1 − x2

p

b2 − y2
p

b2 − z2
p

a2

)
,

which is independent of P . Finally, we note that, if |CG|/|CA| = λ, the
similar, similarly situated spheroid through p has equation

x2

(λb)2
+

y2

(λb)2
+

z2

(λa)2
= 1 ,



Note on Proposition I 163

so we may write the last expression as

M |CA|
2

(
1 − |CG|2

|CA|2
)

=
M(|CA|2 − |CG|2)

2|CA| ,

as before.
In Corollary 1 MacLaurin considers the effect of the lunar (or solar) at-

traction on the fluid Earth. As noted above, the external forces are those
forces represented by the vectors −−→

KG and −→
GT discussed in the Note on “a

few things . . . from Newton.”69 Since KG is approximately proportional to
the distance of P from the centre, if V denotes the magnitude of the corre-
sponding force when this distance is d = 1

2 (a + b), then at A this force has
magnitude aV/d approximately and acts in the direction −→

AC while at B its
magnitude is bV/d approximately and it acts in the direction −−→

BC. At A we
have |GT | ≈ 3a ≈ 3|KG|, so −→

GT represents a force acting in the direction−→
CA with magnitude 3aV/d approximately. At B we have |GT | ≈ 0. Thus, in
MacLaurin’s terminology and approximations,

M = A +
aV

d
− 3aV

d
= A − 2aV

d
, (3)

N = B +
bV

d
. (4)

According to Proposition I, we require for equilibrium that M/N = b/a;
hence

A − 2aV
d

B + bV
d

=
b

a
,

and so

bB +
b2V

d
= aA − 2a2V

d
, (5)

giving

aA − bB =
2a2V

d
+

b2V

d
, (6)

as MacLaurin has it.
For Corollary 2 we put a = d + x, b = d − x in (5) to obtain

(d − x)B +
(d − x)2V

d
= (d + x)A − 2(d + x)2V

d
. (7)

On neglecting terms in x2 this gives

d(B − A + 3V ) ≈ x(A + B − 2V ) , or
x

d
≈ B − A + 3V

B + A − 2V
.

69See pp. 138–141. Note that C now denotes the centre, which was previously T .
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The relevance of this to the tides is that 2x = a − b is the maximum possible
difference between the heights of the water at any point due to the attraction
of the Moon as it performs an orbit about the Earth.

Corollary 3 is just a variant of Corollaries 1 and 2 to deal with the situation
where the magnitude of the central force is specified at a distance other than
1
2 (a + b).

In Corollary 4 MacLaurin deals with the combined effects of the Moon
and the Sun when they are aligned with the Earth. The separate effects of
the Moon and the Sun combine to give approximately the same results as in
Corollaries 1 and 2 (in particular, (6) remains valid) if V now denotes the
magnitude of the combined central forces at distance d = 1

2 (a + b).
Corollary 5 is concerned with the quadratures, where the Sun is along

the axis Bb perpendicular to LT . Separately, the attraction of the Moon
elongates the axis Aa, while the attraction of the Sun elongates the axis Bb.
MacLaurin argues that the effect of the Moon dominates, so we will again
have a spheroid with axis of rotation Aa. The single force of magnitude V is
now replaced by two forces, namely, the central force at distance d = 1

2 (a+b)
due to the Moon, whose magnitude is denoted by l, and the corresponding
force due to the Sun with magnitude s. Note that the roles of A and B are
interchanged for the Moon and the Sun. Thus we now have

M = A − 2al

d
+

as

d
, (8)

N = B +
bl

d
− 2bs

d
. (9)

In (8) (resp. (9)) we have the attraction at A (resp. B), the effect of the Moon
at A (cf. (3)) (resp.B (cf. (4))) and the effect of the Sun at A (cf. (4)) (resp.B
(cf. (3))). According to Proposition I we now require for equilibrium

A − 2al
d + as

d

B + bl
d − 2bs

d

=
b

a
. (10)

Writing a = d + x, b = d − x and ignoring terms in x2 as in Corollary 2 leads
to

x

d
≈ B − A + 3(l − s)

B + A − 2(l − s) − 4s
≈ B − A + 3V

B + A − 2V
,

provided s  l, where V = l − s.
For later application in Proposition IV let us note that from (10) we

obtain

aA − bB =
2a2(l − s)

d
+

b2(l − s)
d

+
(a2 − b2)s

d
≈ 2a2V

d
+

b2V

d
,

provided (a2−b2)s
d is small. Thus equation (6) holds approximately in the

quadratures.
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In the Scholium70 MacLaurin states some consequences of Proposition I
which relate to the figure of the Earth. Rotation of a spheroid about its axis
with constant angular velocity produces at each point in it a centrifugal force
which is proportional to the distance of the point from the axis. In the case of
a fluid spheroid where the external forces are the corresponding centrifugal
forces we require for equilibrium

B
A − V

=
a

b
,

where V is the magnitude of the centrifugal force at the equator. The spheroid
must be rotating about the minor axis Bb of the generating ellipse and the
centrifugal force at any point on the axis is zero. This is discussed in Article
641 of [69]. The assertion about the measure of a degree in the meridian is
established in Article 657 by showing that the radius of curvature at a point
on the generating ellipse is proportional to the cube of the length of the
normal from the point to the major axis.

70In the translation I have corrected some errors in the labelling of points and lines
(cf. [68]).
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Note on Lemma V (pp. 116–117).
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Diagram for Lemma V and Proposition II
MacLaurin’s Fig. 8

As with the figure for Lemma IV, lines and curves in one plane are drawn
unbroken; those in the other are dashed, and curves going between the two
planes are shown as dotted. Although MacLaurin presents the Lemma as a
general result, the figure shows the intended application in Proposition II,
where ABab is an ellipse which is to be rotated about its major axis Aa and
C is its centre. However, the graph (RK over AC) shown in MacLaurin’s
original figure (see Appendix III.6, p. 210) is not correct for this case (cf. the
function obtained in Proposition II) and has been corrected

MacLaurin’s argument that the component in the direction −→
AC of the

attraction at A of the pyramid ANXxn is proportional to |Rr| seems to me
to require amplification. Certainly, by the ideas of Lemma III the magnitude
of the attraction at A of the pyramid is approximately equal to
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k × |NX| × |Nn|
|AN |2 × |AN | = k × |NX| × |Nn|

|AN | , (1)

for an appropriate constant k.71 Now the line segment |XN | has length ap-
proximately equal to |RN | tanα, where α is the angle between the planes.72

From calculus the length of an arc of the semicircle with equation y =√
ρ2 − x2 is given by

∫ √
1 + x2

ρ2−x2 dx = ρ
∫ 1

y dx over the appropriate range
of x values, so

arc Nn ≈ |AN | × 1
|RN | × |Rr| .

Substituting these expressions in (1) we obtain k|Rr| tanα as an approxima-
tion to the magnitude of the attraction at A of the pyramid ANXxn; the
magnitude of its component in the direction −→

AC will then be approximately

k

ρ
|AR||Rr| tanα (cos θ =

1
ρ
|AR|) .

By Lemma III the component of the attraction at A of the pyramid AMZzm
in the direction −→

AC therefore has approximate magnitude(
k

ρ
|AR||Rr| tanα

) |AQ|
|AR| =

k

ρ
|AQ||Rr| tanα =

k

ρ
|RK||Rr| tanα . (2)

The circular arc Mo plays no explicit role in MacLaurin’s proof after its
introduction. Presumably, he intended to use it to approximate the pyramid
AMZzm, which has spheroidal face, by one with spherical face which he can
then compare directly with the pyramid ANXxn (cf. MacLaurin’s Remarks
II and its Note, pp. 134–136, 191–195).

Now consider the spheroid to be sliced up by a succession of 4t half-planes
bounded by the axis of rotation, the angle between successive planes being
π
2t . The wedges formed by the pairs of successive planes will all have the same
component of attraction along −→

AC. Each wedge is then to be sliced up by t+1
lines through A (corresponding to AM , Am), the angle between successive
lines being π

2t , and the corresponding pyramids are to be constructed as
before. The whole spheroid is now the union of the pyramids formed in this
way. For a particular pair AM , Am take the corresponding pyramid from
each wedge. The sum of their individual components of attraction at A in

71This constant depends on the gravitational constant, the density of the material
and the units used.

72The arc XN has length

ρ cos−1

(
cos α√

sin2 θ + cos2 α cos2 θ

)
,

where ρ = |AC| and θ = ∠CAN . For small α we can show that this is approxi-
mately ρ tan α sin θ ≈ |RN | tan α.
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the direction −→
AC is the attraction at A of the solid obtained by rotating the

area AMm about the axis Aa (note that other components will cancel out
in pairs); from (2) this is approximately

4t × k

ρ
|RK||Rr| tan

π

2t
=

2kπ

ρ

(
tan π

2t
π
2t

)
|RK||Rr| .

An approximation to the attraction at A of the whole spheroid is then given
by the sum over each pair AM , Am, namely,

2kπ

ρ

(
tan π

2t
π
2t

) ∑
|RK||Rr| .

In the limit as t → ∞ we should have equality, in which case the attraction
at A of the whole spheroid will turn out to be

2kπ

ρ

∫
[A,C]

|RK| d|AR| =
2kπ

|AC|
∫

[A,C]
|RK| d|AR| . (3)

This appears to be the essence of MacLaurin’s argument.
Again MacLaurin has evaluated by a series of approximations what is in

effect a triple integral. The attraction at the origin A of the solid V formed
by rotating about the x-axis the graph y = f(x), where 0 ≤ x ≤ 2a, f(x) ≥ 0
and f(0) = f(2a) = 0, is given by (see equation (5) in Appendix III.3, p. 202)

k

∫ ∫ ∫
V

x

(x2 + y2 + z2)3/2 dx dy dz

= 4k

∫ 2a

0

∫ π/2

0

∫ f(x)

0

x

(x2 + r2)3/2 r dr dθ dx

= 2kπ

∫ 2a

0

[ −x√
x2 + r2

]r=f(x)

r=0
dx = 2kπ

∫ 2a

0
1 − x√

x2 + (f(x))2
dx

= 2kπ

(
2a −

∫ 2a

0

x√
x2 + (f(x))2

dx

)
. (4)

Now we show that (3) leads to the same expression. For this we assume in
addition that the expression x√

x2+(f(x))2
defines a strictly increasing function

on (0, 2a], for which a sufficient condition, obtained from the derivative, is
that xf ′(x) < f(x) on (0, 2a), and moreover that it has limit 0 as x tends
to 0 from the right. These assumptions will be true in the application in
Proposition II. Referring to MacLaurin’s diagram, we put |AR| = t, |AQ| = x,
|AC| = ρ, so that

t

ρ
=

|AR|
|AN | =

|AQ|
|AM | =

x√
x2 + (f(x))2

and
∫

[A,C]
|RK| d|AR| =

∫ ρ

0
x dt .
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Now we apply the formula73

∫ α

0
h(u) du +

∫ β

0
h−1(v) dv = αβ ,

where h is a continuous, strictly increasing function on [0, α] with h(0) = 0
and h(α) = β, to get ∫ 2a

0
t dx +

∫ ρ

0
x dt = 2aρ ,

from which we obtain∫
[A,C]

|RK|d|AR| = ρ

(
2a −

∫ 2a

0

x√
x2 + (f(x))2

dx

)
.

Substituting this in (3) produces the result in (4).

Q

M

N

aA

H

CR

B

b

Diagram for the Corollary

The Corollary is concerned with the case where the curve ABab is a circle
with centre C. Now we have

|AQ|
|Aa| =

|AQ|
|AM | · |AM |

|Aa| =
|AQ|
|AM | · |AQ|

|AM | =
|AR|2
|AN |2 =

|AR|2
|AC|2 ,

and so
|RK| = |AQ| =

2
|AC| × |AR|2 .

Then for the sphere∫
[A,C]

|RK| d|AR| =
2

|AC|
∫ |AC|

0
x2 dx =

2
3
|AC|2 ,

and by (3) the attraction at A (or at any point on the surface) is 4
3kπa. Taking

the ratio of the respective quantities given by (3) for the general figure of the
Lemma and the sphere with Aa as diameter leads to the stated result.

73This elementary formula, which is obvious from a diagram, does not seem to be
well known nowadays.
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Note on Proposition II (pp. 118–119). Here MacLaurin determines the
attraction at a pole of a spheroid formed by rotating an ellipse about its
major axis (oblong spheroid). His argument begins with two geometrical ob-
servations. First, |AM | = 2|Ce| since Ce is parallel to AM and bisects Aa.
Less trivial is the assertion that |Ce|

|CV | = |CL|
|Ca| . This is easily seen in the case of

a circle (see diagram below) because of the right-angles, for then |CV | = |Ca|
of course, and |Ce| = |CL| since triangles CLV and Cea are congruent; the
result may then be deduced for the ellipse by projection (see Appendix III.1,
pp. 197–199).

M

aA
C

B

b

L

e
V

Note that c = ae, where e is the eccentricity of the ellipse, and c2 = a2−b2;
also, |V L|2 = b2(1−|CL|2/a2) by the canonical equation of the ellipse. From

x2

a2 − x2 =
l2

(a2 − l2) × b2

a2

(1)

MacLaurin obtains

|RK| = |AQ| =
2l2

a
=

2ab2x2

a4 − c2x2 ,

so that in the notation of NLV (equation (3), p. 168)∫
[A,C]

|RK| d|AR| = 2ab2
∫ a

0

x2

a4 − c2x2 dx (put z = c
ax, dz = c

adx)

=
2a2b2

c3

∫ c

0

z2

a2 − z2 dz =
2a2b2

c3

∫ c

0
−1 +

a

2

(
1

a − z
+

1
a + z

)
dz

=
2a2b2

c3

[
−z +

a

2
ln

a + z

a − z

]c

0
=

2a2b2

c3

(
a ln

√
a + c

a − c
− c

)
. (2)

To obtain the result given by MacLaurin we have to note that by the loga-
rithm of a quantity t in the system with modulus a MacLaurin means the
quantity a ln(t/a), so he has

� = a ln
√

a + z

a − z
and L = a ln

√
a + c

a − c
= a ln

a + c√
a2 − c2

= a ln
a + c

b
.
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Finally, by the Corollary to Lemma 5 we have

|Attraction at A of spheroid|
|Attraction at A of sphere| =

2a2b2

c3 (L − c) × 1
2
3a2

=
3b2

c3 (L − c) . (3)

MacLaurin’s use of calculus and the integral sign in his proof of Propo-
sition II (see also Proposition III (p. 121) and Remarks II (pp. 135–136)) is
striking. As pointed out by Todhunter, the corresponding parts of [69] use
geometric and fluxional arguments; perhaps MacLaurin felt that the version
presented in the essay would be more in tune with continental tastes.

In the Scholium MacLaurin states corresponding results for the attraction
at the pole of an oblate spheroid. His discussion will be found in Article 646 of
[69]. In fact we just follow the same steps with a and b interchanged, which
brings about a significant change in the integral to be evaluated. We now
have in place of (1)

x2

b2 − x2 =
�2

(b2 − l2) × a2

b2

,

which leads to
�2 =

a2b2x2

b4 + c2x2 ,

where we have used a2 = b2 + c2, and consequently

|RK| =
2
b

× a2b2x2

b4 + c2x2 =
2a2bx2

b4 + c2x2 .

Then∫
[B,C]

|RK| d|AR| = 2a2b

∫ b

0

x2

b4 + c2x2 dx (put z = c
bx, dz = c

bdx)

=
2a2b2

c3

∫ c

0

z2

b2 + z2 dz =
2a2b2

c3

∫ c

0
1 − b2

b2 + z2 dz

=
2a2b2

c3

[
z − b tan−1 z

b

]c

0
=

2a2b2

c3

(
c − b tan−1 c

b

)
.

The required ratio is then the result of dividing this by 2
3b2 (Corollary to

Lemma V), namely,
3a2

c3

(
c − b tan−1 c

b

)
. (4)

MacLaurin expresses this in terms of lengths. Referring to his Fig. 7 (pp. 115,
157), we see that ∠CBF has tangent |CF |

|BC| = c
b , so b tan−1 c

b is the length of
the circular arc CS. We may therefore write (4) as

3|CA|2
|CF |3 (|CF | − |arc CS|) . (5)

Newton dealt with the attraction of a spheroid at any point on its axis
produced in Corollary 2 of Proposition XCI of the Principia [85] ([15, 63]).
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Note on Lemma VI (pp. 119–120). Lemma VI does not appear to apply
as generally as Lemma V, so let us assume in this discussion that we are
dealing with the situation in the intended application of Proposition III,
where we have a spheroid through which we are slicing with planes normal to
its equatorial plane and containing a given point on its equator. The section
of the spheroidal surface by such a plane is an ellipse; moreover, this ellipse
is always similar to the generating ellipse, a fact which is important in the
intended application (see Appendix III.2, pp. 199–201). Note that the ellipse
BAba shown in MacLaurin’s diagram below is the section by such a plane,
and is not necessarily the generating ellipse.

d

k

K

Q

q

r

h

A

b

a

F

C g

e

M

m
VZ

z

c

N

x n
X

R

H

B L

Diagram for Lemma VI and Prop. III
MacLaurin’s Fig. 9

Exactly as in Lemma V (see NLV, p. 167) we obtain the approximation

k

|BC| |RK||Rr| tanα

for the component in the direction −→
Bb of the attraction at B of the pyramid

BMZzm; the quantities k and α are as before and

cos ∠bBM = sin∠MBQ = sin∠NBR =
|NR|
|BC| .

Now let α = π/t, where t is an arbitrary positive integer, and partition the
wedge between the planes by taking t + 1 half-lines from B (such as BM ,
Bm), the angle between successive lines being π/t, and constructing the
corresponding pyramids. We obtain as an approximation to the magnitude
of the attraction at B from the spheroidal wedge



Note on Lemma VI 173

k

|BC| tan
π

t

∑
|RK||Rr| , (1)

and as an approximation to the magnitude of the attraction at B from the
spherical wedge

k

|BC| tan
π

t

∑
|RN ||Rr| . (2)

The ratio of the quantity in (1) to the quantity in (2), that is to say,∑ |RK||Rr|/∑ |RN ||Rr|, has limit as t → ∞∫
[H,h] |RK| d|HR|∫
[H,h] |RN | d|HR| . (3)

The denominator is just the area of the semicircle with radius |BC|, that is,
1
2π|BC|2. See also the further remarks in NPIII (p. 176) on the interpretation
of these integrals.

We note for the application in Proposition III that this limit is indepen-
dent of the particular sectioning plane, since we always have similar sections.
The direction −→

Bb, however, does depend on the plane, but by the symmetry
of the spheroid the attraction at B will be perpendicular to the axis, so we
need only consider the components perpendicular to the axis of the two at-
tractions above, which will still have the same limiting ratio as that given in
(3).

The Corollary is concerned with the case where the generating ellipse is
a circle.

M

bB

H

C

A

a
h

N

Q

R

Diagram for the Corollary

We now have

|QM |
|RN | =

|BM |
|BN | =

|BM |
|Bb| × |Bb|

|BN | =
|RN |
|BN | × |Bb|

|BN | ,

so that
|QM |
|Bb| =

|RN |2
|BN |2 =

|RN |2
|BC|2

and

|RK| = |QM | =
2|RN |2
|BC| =

2(|BC|2 − |RB|2)
|BC| .
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Then ∫
[H,h]

|RK| d|HR| =
2

|BC|
∫ |BC|

−|BC|
|BC|2 − x2 dx

=
2

|BC|
[
|BC|2x − x3

3

]|BC|

−|BC|
=

8
3
|BC|2 .

Now suppose we use two particular planes as above to form a wedge of the
spheroid and a wedge of the sphere with the same equator. Then, applying
(3) to both wedges, we see that, when we let α → 0 keeping one of the planes
fixed, the limiting value of

|Attraction at B of spheroidal wedge|
|Attraction at B of spherical wedge|

is the ratio of the quantity
∫
[H,h] |RK| d|HR| for the spheroidal wedge to

8
3 |BC|2, where C is the centre for the fixed plane. Again this limit is inde-
pendent of the particular sectioning plane, and we can replace each attraction
by its component perpendicular to the axis of the spheroid.

Note on Proposition III (pp. 120–122). The argument of Proposition III
is similar to that of Proposition II. Again MacLaurin uses without comment
a result concerning the ellipse which perhaps requires some justification:

|CB|
|CL| =

|CL|
1
2 |QM | .

This is easily established in the case of a circle:

M

bB
C

A

a

L

VT

Q

if T is the midpoint of BM we have that triangles BTC and CLV are con-
gruent and

|CB|
|CL| =

|CV |
|CL| =

|BM |
|QM | =

|BT |
1
2 |QM | =

|CL|
1
2 |QM | .

The result for the ellipse can now be deduced by projection (see Appendix
III.1, pp. 197–199). Then we obtain easily
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|RK| = |QM | =
2l2

b
=

2a2b(b2 − x2)
a2b2 − c2x2 ,

and so∫
[H,h]

|RK| d|HR| = 2a2b

∫ b

−b

b2 − x2

a2b2 − c2x2 dx (put z = c
bx, dz = c

bdx)

=
2a2b2

c3

∫ c

−c

c2 − z2

a2 − z2 dz =
4a2b2

c3

∫ c

0
1 +

c2 − a2

2a

(
1

a − z
+

1
a + z

)
dz

=
4a2b2

c3

[
z − b2

2a
ln

a + z

a − z

]c

0
=

4a2b2

c3

(
c − b2

2a
ln

a + c

a − c

)

=
4b2

c3

(
a2c − b2L)

,

where L = a ln
√

a+c
a−c as before.

Now we partition the spheroid by means of a succession of t + 1 half-
planes, each normal to the equatorial plane and containing the point B; the
angle between successive planes is π/t and the first and last form the tangent
plane to the spheroid at B. The attraction at B of the whole spheroid is the
vector sum of the attractions at B of each of the wedges formed by successive
planes and, because the direction of the attraction must be perpendicular to
the axis by symmetry, this is the sum of the components perpendicular to
the axis of these attractions. Next we note that for large t, according to the
Corollary to Lemma VI, any one of these components is approximately equal
to the same component of the attraction at B from the corresponding wedge
of the sphere with the same equator, multiplied by the invariant ratio of the
quantity

∫
[H,h] |RK| d|HR| to 8

3 |BC|2. Adding these we get the magnitude
of the attraction at B of the sphere multipled by the same invariant ratio.
Thus in the limit we should have

|Attraction at B of spheroid|
|Attraction at B of sphere| =

∫
[H,h] |RK| d|HR|

8
3 |BC|2 =

4b2

c3 (a2c − b2L)
8
3b2

=
a2c − b2L

2
3c3

. (1)

Here, a, b, c can be the quantites corresponding to any of the plane sections
considered, in particular the section through B containing the axis, for which
a, b, c are the appropriate parameters for the generating ellipse.74

74Note that the final expression in (1) is indeed unaffected if we replace a, b, c by
λa, λb, λc, respectively (λ �= 0).
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The Corollary is concerned with the attraction at B of the portions of the
spheroid and of the sphere which lie on the same side of a sectioning half-
plane of the above type. It is established in the same way as the Proposition
by considering the wedges that make up the relevant parts.

Let us justify briefly MacLaurin’s procedure by means of equation (6) of
Appendix III.3 (p. 202) (cf. discussion in NLIV, pp. 154–156). We are con-
cerned with the spheroid with equation x2

b2 + y2

b2 + z2

a2 = 1 and we want the
attraction at a point on the equator; by symmetry it is enough to consider
(−b, 0, 0). The attraction is given by

k

∫ π

0

∫ π

0

∫ ρ(θ,φ)

0
sin2 φ cos θ dρ dφ dθ , (∗)

where ρ(θ, φ) turns out to be

2a2b sin φ cos θ

a2 sin2 φ + b2 cos2 φ
.

We therefore have

k

∫ π

0

∫ π

0

2a2b sin3 φ cos2 θ

a2 sin2 φ + b2 cos2 φ
dφ dθ

= k

∫ π

0

2a2b sin3 φ

a2 sin2 φ + b2 cos2 φ
dφ

∫ π

0
cos2 θ d θ

= kπa2b

∫ π

0

sin3 φ

a2 sin2 φ + b2 cos2 φ
dφ .

For
∫
[H,h] |RK| d|HR| above, MacLaurin has to evaluate

∫ b

−b

b2 − x2

a2b2 − c2x2 dx ;

under the substitution x = b cos φ this transforms to a multiple of the previous
integral. Effectively, in Lemma VI MacLaurin is just setting up in geometric
terms the double integral with respect to ρ and φ in (∗). Its dependence
on θ is the factor cos θ, which produces the constant factor π/2 in the final
expression; these cancel out when he compares the spheroidal case with the
spherical case.

In the Scholium MacLaurin states a corresponding result for the attraction
of an oblate spheroid at any point on its equator; MacLaurin’s discussion will
be found in Article 646 of [69]. Again the analysis is very similar to that for
the oblong spheroid except that the roles of a and b are interchanged (cf.
discussion of the Scholium in NPII). We sketch some details. The initial
relation is now

a2 − x2

x2 =
l2

(a2 − l2) × b2

a2

,
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which leads to

l2 =
a2b2(a2 − x2)
a2b2 + c2x2 ,

and therefore

|RK| = |MQ| =
2l2

a
=

2ab2(a2 − x2)
a2b2 + c2x2 .

Then∫
[H,h]

|RK| d|HR| = 2ab2
∫ a

−a

a2 − x2

a2b2 + c2x2 dx (put z = c
ax, dz = c

adx)

=
2a2b2

c3

∫ c

−c

c2 − z2

b2 + z2 dz =
4a2b2

c3

∫ c

0
−1 +

b2 + c2

b2 + z2 dz

=
4a2b2

c3

[
−z +

a2

b
tan−1 z

b

]c

0
=

4a2b2

c3

(
a2

b
tan−1 c

b
− c

)
.

The analogue of (1) then turns out to be75

4a2b2

c3

(
a2

b tan−1 c
b − c

)
8
3a2

=
|CA|2|arcCS| − |CB|2|CF |

2
3 |CF |3 . (2)

MacLaurin notes in Article 647 of [69] that the determination of the at-
traction at the equator was first resolved by Stirling (see also the MacLaurin–
Stirling correspondence, especially the letter from MacLaurin dated 6 Decem-
ber 1740 ([77], Letter 171; [111], pp. 90–92)).

Note on Proposition IV (pp. 122–124). MacLaurin makes use of three
ratios which he has already determined:

(i) (Proposition II; see equation (3) of NPII, p. 171)

|Attraction at A of spheroid|
|Attraction at A of sphere with diameter Aa| =

3b2(L − c)
c3 ;

(ii) (Corollary 1 of Lemma III; see equation (1) of NLIII, p. 147)

|Attraction at A of sphere with diameter Aa|
|Attraction at B of sphere with diameter Bb| =

a

b
;

(iii) (Proposition III; see equation (1) of NPIII, p. 175)

|Attraction at B of sphere with diameter Bb|
|Attraction at B of spheroid| =

2
3c3

a2c − b2L .

75See MacLaurin’s Fig. 7 (pp. 115, 157) and NPII (p. 171).
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Multiplying these together gives

A
B =

|Attraction at A of spheroid|
|Attraction at B of spheroid| =

2ab(L − c)
a2c − b2L . (1)

Since we are treating the Earth as a fluid spheroid in equilibrium under
the attractions of the Moon and the Sun, the conditions of Proposition I must
hold. Thus we have76

Aa − Bb =
2a2V + b2V

d
. (2)

Substituting in this for B from (1) leads to

V

A =
2a2L + b2L − 3a2c
2a
d (2a2 + b2)(L − c)

. (3)

Now, since 0 ≤ c
a < 1, we have

L =
a

2
ln

a + c

a − c
=

a

2
ln

1 + c
a

1 − c
a

= a

∞∑
n=0

c2n+1

(2n + 1)a2n+1 ,

and therefore

L − c = a
∞∑

n=1

c2n+1

(2n + 1)a2n+1 . (4)

MacLaurin uses the series for L to derive further versions of equations (1)
and (3). For the numerator in (3) we have

2a2L + b2L − 3a2c = (3a2 − c2)L − 3a2c

= 3a3
∞∑

n=1

c2n+1

(2n + 1)a2n+1 − ac2
∞∑

n=0

c2n+1

(2n + 1)a2n+1

= 3c3
∞∑

n=1

c2n−2

(2n + 1)a2n−2 − c3
∞∑

n=0

c2n

(2n + 1)a2n

= c3
∞∑

n=1

(
3

2n + 1
− 1

2n − 1

) ( c

a

)2n−2

= 4c3
∞∑

n=2

n − 1
4n2 − 1

( c

a

)2n−2
= 4c3

∞∑
n=1

n

(2n + 1)(2n + 3)

( c

a

)2n

,

and so77

76See NPI, equation (6), and subsequent comments in relation to Corollaries 4 and 5
(pp. 163–164).

77The denominator is given incorrectly in [68].
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V

A =

2
∞∑

n=1

n

(2n + 1)(2n + 3)

( c

a

)2n

a

c3d
(2a2 + b2)(L − c)

. (5)

Using (1) we deduce from (5)

V

B =

2
∞∑

n=1

n

(2n + 1)(2n + 3)

( c

a

)2n

1
2bc3d

(2a2 + b2)(a2c − b2L)
, (6)

and then from (5) and (6) we obtain for 1
2 (A + B)/V the expression

(
4

∞∑
n=1

n

(2n + 1)(2n + 3)

( c

a

)2n
)−1

2a2 + b2

c3d

(
a(L − c) +

1
2b

(a2c − b2L)
)

,

which simplifies to give MacLaurin’s expression

V
1
2 (A + B)

=

2
∞∑

n=1

n

(2n + 1)(2n + 3)

( c

a

)2n

2a2 + b2

4bc3d

(
2abL − b2L + a2c − 2abc

) .

For the denominator in (1) we have

a2c − b2L = a2c − ab2
∞∑

n=0

c2n+1

(2n + 1)a2n+1

= (a2 − b2)c − a(a2 − c2)
∞∑

n=1

c2n+1

(2n + 1)a2n+1

= c3 −
∞∑

n=1

c2n+1

(2n + 1)a2n−2 +
∞∑

n=1

c2n+3

(2n + 1)a2n

=
∞∑

n=0

(
1

2n + 1
− 1

2n + 3

)
c2n+3

a2n
= 2

∞∑
n=0

c2n+3

(2n + 1)(2n + 3)a2n
. (7)

Then from (1), (4) and (7) we obtain
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A
B =

a2b

∞∑
n=1

c2n+1

(2n + 1)a2n+1

∞∑
n=0

c2n+3

(2n + 1)(2n + 3)a2n

=

b

a

∞∑
n=1

c2n−2

(2n + 1)a2n−2

∞∑
n=0

c2n

(2n + 1)(2n + 3)a2n

=

b

∞∑
n=0

c2n

(2n + 3)a2n

a

∞∑
n=0

c2n

(2n + 1)(2n + 3)a2n

,

as given by MacLaurin. For small c this is approximately

b
(

1
3 + c2

5a2

)
a

( 1
3 + c2

15a2

) ,

and if we write a = d + x, b = d − x, so that c2 = (d + x)2 − (d − x)2 = 4xd,
this becomes

(d − x)
(

1
3 + 4x

5d

(
1 + x

d

)−2
)

(d + x)
(

1
3 + 4x

15d

(
1 + x

d

)−2
) ≈ (d − x)

( 1
3 + 4x

5d

)
(d + x)

( 1
3 + 4x

15d

)

≈
1
3d +

( 4
5 − 1

3

)
x

1
3d +

( 4
15 + 1

3

)
x

=
1
3d + 7

15x
1
3d + 9

15x
. (8)

This is not the approximation given by MacLaurin, namely, 1
3d + 17

15x : 1
3d +

19
15x, which I believe is wrong. MacLaurin continues his investigations by
applying his ratio to determine x

d . However, he takes up the matter again
in Remarks I at the end of his dissertation (p. 133), where he obtains an
improved version and refers to an earlier “error of the pen or calculation.” I
will therefore use (8) in the subsequent discussion; it does give values which
are closer to those obtained in the Remarks.

Taking
A
B =

1
3d + 7

15x
1
3d + 9

15x
leads to

B − A
G

=
B − A

1
2 (A + B)

=
2
15x

1
3d + 8

15x
=

2x

5d + 8x
. (9)

Now, according to Corollary 2 of Proposition I (see NPI, p. 163),

x

d
≈ B − A + 3V

B + A − 2V
,

which, on substitution from (9), produces
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x

d
≈

2Gx
5d + 8x

+ 3V

2G − 2V
=

2Gx + 15V d + 24V x

2(G − V )(5d + 8x)
,

and so
2(G − V )(5xd + 8x2) ≈ 2Gxd + 15V d2 + 24V xd .

Ignoring the term in x2, which is small, leads to the approximation

(8G − 34V )xd ≈ 15V d2 ,

that is to say,
x

d
≈ 15V

8G − 34V
. (10)

Since V is small in comparison with G, we may even take

x

d
≈ 15V

8G
, (11)

which also follows from MacLaurin’s version and is applied by him. We note
for the application in Proposition V that the results are valid for the effects
of the Sun and the Moon separately with appropriate interpretation of V .

For the Corollary we use (9) and (11):

B − A
G

≈ 2x

5d + 8x
=

2x

5d

(
1 +

8x

5d

)−1

≈ 2x

5d
≈ 2

5
× 15V

8G
=

3V

4G
,

so
B − A ≈ 3V

4
and B − G =

1
2
(B − A) ≈ 3V

8
.

The result stated in the Scholium concerning an oblate spheroid is estab-
lished by multiplying together the following three ratios:
(i)′ (Scholion to Proposition II; see equation (5) of NPII, p. 171)

|Attraction at pole B of spheroid|
|Attraction at B of sphere with diameter Bb|

=
3|CA|2
|CF |3 (|CF | − |arc CS|) ;

(ii)′ (Corollary 1 of Lemma III; see equation (1) of NLIII, p. 147)

|Attraction at B of sphere with diameter Bb|
|Attraction at A of sphere with diameter Aa| =

|CB|
|CA| ;

(iii)′ (Scholium to Proposition III; see equation (2) of NPIII, p. 177)

|Attraction at A of sphere with diameter Aa|
|Attraction at A of spheroid|

=
2
3 |CF |3

|CA|2|arcCS| − |CB|2|CF | .



182 Part III. MacLaurin on the Tides

The result is established in Article 646 of [69].

Note on Proposition V (pp. 125–127). Here MacLaurin’s chief purpose
is to use his results in conjunction with values given in Newton’s Principia
to calculate the quantity 2x, the maximum difference in the heights of the
water due to the effect of the Sun. Certain formulae are stated which perhaps
require some explanation. First there is

v

K
=

dT

ST
. (1)

S

d

K
T

u
v

Referring to the above diagram, we have

v = u sin ∠TSd ≈ u tan∠TSd ≈ K tan∠TSd = K × |dT |
|ST | .

Next MacLaurin requires

K

g
=

(
ST

S2

)
/

(
dT

l2

)
. (2)

If a particle of mass m is moving with uniform angular velocity ω in a circle
of radius r under a centripetal force with magnitude F , then the period of
the motion is τ = 2π/ω and F = mrω2. Thus F = 4π2mr/τ2 and the force
per unit mass is 4π2r/τ2. Applying this to the motion of the Earth about
the Sun and the motion of the Moon about the Earth, we obtain

K

g
≈ 4π2|ST |

S2 × l2

4π2|dT | =
|ST |
S2 × l2

|dT | .

Then
v

g
=

l2

S2 ≤ L2

S2 (3)

follows on multiplying (1) and (2) and noting that l2 ≤ L2.
The values

L2

S2 =
1

178 29
40

=
1

178.725
and

V

v
=

1
60 1

2

are given by Newton in Propositions XXV and XXXVI, respectively, of Book
III of the Principia (see [85] ([15, 63])). MacLaurin also requires the value of
g/G but does does not give this explicitly; Newton has
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v

G
=

60 1
2

60 × 60 × 60 × 178 29
40

=
1

638092.6

(Book III, Proposition XXV [85] ([15, 63])), which, combined with (3), gives

g

G
=

g

v
× v

G
≈ 178

29
40

× 60 1
2

60 × 60 × 60 × 178 29
40

=
60 1

2

60 × 60 × 60
.

Then he calculates V/G apparently by

V

G
=

V

v
× v

g
× g

G
=

1
60 1

2

× 1
178.725

× 60 1
2

60 × 60 × 60
=

1
38604600

,

which is the value given by Newton in Proposition XXXVI of Book III of the
Principia [85] ([15, 63]).

MacLaurin now uses this value of V/G to calculate x/d from the expres-
sion given in Corollary 2 of Proposition I and developed in Proposition IV
(see NPI (p. 163) and NPIV (p. 180–181)):78

x

d
=

15V

8G − 57 5
14V

=
15

8G
V − 57 5

14

.

However, as already noted, MacLaurin corrects this to

x

d
=

15V

8G − 88
7 V

=
15

8G
V − 88

7

(4)

in Remarks I at the end of the dissertation (pp. 133–134). With79 d =
19615800 we obtain from (4)

2x = 1.90545 . . . ≈ 1 90545
100000 ≈ 1′ 10 8654

10000
′′

,

which is the same as the value given by MacLaurin.
An attempt is now made to allow for the fact that the solid Earth is not

a sphere. According to Newton (Proposition XIX of Book III [85] ([15, 63])),
if a, b denote the equatorial and polar radii, respectively, then a

b = 230
229 and

so
α =

a

d
=

2a

a + b
=

2
1 + b

a

=
460
459

,

as MacLaurin states. Accordingly, the expression for x/d given in his Remarks
is to be replaced by

x

αd
=

15αV

8G
α − 88

7 αV
, giving

x

d
= α3 × 15

8G
V − 88

7 α2
≈ α3 × 15

8G
V − 88

7

;

78In the original, MacLaurin cites Cor. 2 of Prop. III here, which is clearly wrong.
79This measurement in Parisian feet, which is also used by Newton, is due to Picard

(see [103], Article 32).
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consequently, the previous value obtained for 2x has to be multiplied by α3,
producing

2x ≈ 1.91793 . . . ≈ 1 9179
10000 ≈ 1′ 11 152

10000
′′ ≈ 1′ 11 1

60
′′

,

as given by MacLaurin. The final reference is to the expedition to Lapland
(1736–1737) which the Royal Academy of Sciences sent out under Maupertuis
to determine the length of the arc corresponding to a degree of latitude in
the region of the Arctic circle (see [103], Chapter VII and [75]).

In Scholium 1 MacLaurin compares the result of Proposition V with what
would have arisen from the hypothesis that A = B = G. From Corollary 1 of
Proposition I (see NPI, p. 163) we would then have

a

b
=

G + bV
d

G − 2aV
d

≈ G + V

G − 2V
,

and so

aG − 2aV ≈ bG + bV , hence (a − b)G ≈ (2a + b)V ,

from which it follows that

2x = a − b ≈ (2a + b)
V

G
≈ 3V d

G
. (5)

Equation (4) gives

2x ≈ 15V d

4G
, (6)

which exceeds the approximation in (5) by 3V d
4G . Scholium 2 refers to Jupiter’s

spots and contains some speculations about tides on Jupiter caused by its
Moons (see [72] and Part I, Note on Proposition VII, p. 27).

Note on the Preamble of Section IV (pp. 127–128). Here MacLau-
rin appears to be using the material from Newton (p. 102) and the ideas of
Corollary 4 of Proposition I (see Notes pp. 138–141, 164). At F there are two
forces caused by the combined effects of the Moon and the Sun, one act-
ing along −→

FT with magnitude approximately proportional to |FT |, the other
acting parallel to −→

aA with magnitude approximately proportional to 3|Ff |.
If V denotes the magnitude of the resultant force at the mean distance d
as in Corollary 4 of Proposition I, then these forces will have approximate
magnitudes |FT | × V

d and 3|Ff | × V
d , respectively. The component of the

latter force in the direction −→
TF will then be approximately

3|Ff | × V

d
× |Fz|

|Ff | =
3V

d
|Fz| ,
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and since it acts away from T , it will raise the water. Now suppose that F is
the position of least height; that is to say, F is an extremity of the conjugate
(minor) axis of the figure. Then against this component there is the first force
together with the excess of the gravitational attraction B at F over the mean
attraction G. For equilibrium we require, using these approximations,80

B − G +
V

d
|FT | =

3V

d
|Fz| . (1)

Now B − G ≈ 3V
8 by the Corollary to Proposition IV (see NPIV, p. 181),

|FT | ≈ d and by similar triangles

|Fz|
|Ff | =

|Ff |
|FT | .

Using these in (1) leads to the approximate relation

3V

8
+ V ≈ 3V

|Ff |2
|FT |2 ,

and therefore

sin ∠FTb =
|Ff |
|FT | ≈

√
1
8

+
1
3

=

√
11
24

;

thus ∠FTb ≈ 42◦ 37′ as MacLaurin has it.

L

T
Bb

P

G

K

M

A

a

F
f z

MacLaurin’s Fig. 1

80The two published versions of (1) have A in place of G. It seems clear from what
follows in MacLaurin’s text that G is intended.
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Note on Proposition VI (pp. 128–130). MacLaurin applies the results of
Proposition IV to deduce that the shape taken on by the Moon, supposed to
be fluid, under the attraction of the Sun is a spheroid whose generating ellipse
is approximately similar to the ellipse in which the Moon orbits the Earth.
For the latter, MacLaurin cites observations made by Edmund Halley. In the
quadratures the Moon will be approximately at its greatest distance from
the Earth, while in the syzygies, assuming the orbit to be nearly circular, the
distance of the Moon from the Earth will be approximately the length of the
semiminor axis of the orbit. According to Halley’s observations, for the lunar
orbit81

b

a
=

44.5
45.5

= 0.9780 and
a

b
= 1.0225. (1)

MacLaurin also quotes Newton’s value of 69/70 for b/a and refers to New-
ton as “Clarissimus Auctor Tractatus de Motibus Lunae secundum Theoriam
gravitatis.” The treatise identified is a rare pamphlet of Newton’s entitled, A
New and most Accurate Theory of the Moon’s Motion, which was published
in 1702; David Gregory included a Latin version in [51]. The pamphlet is re-
produced and discussed in [32]. The ratio 70 to 69 appears in it in connection
with the horizontal parallax of the Moon in a lunar eclipse (see [32], p. 119).

With the notation and values of Proposition V we have on applying Propo-
sition IV (last line of its proof; see NPIV, pp. 180–181) to the Moon and the
Sun82

x

d
=

15v

8g − 57 5
14v

=
15

8 g
v − 57 5

14

=
15

8 × 178.725 − 57 5
14

=
1

91.496
,

and so
a

b
=

d + x

d − x
=

92.496
90.496

= 1.0221 , (2)

which is close to the value in (1) given by Halley’s observations. No doubt
MacLaurin would have wished to repeat the calculation using the analogue
of the corrected formula from Remarks I (see pp. 133–134, 190), namely,

x

d
=

15v

8g − 88
7 v

,

which produces
x

d
=

1
94.482

and
a

b
= 1.0214. (3)

81Modern tables give e = 0.0549 for the eccentricity of the lunar orbit and therefore
b
a

=
√

1 − e2 = 0.9985 and a
b

= 1.0015.
82The quantity g is “the gravity of the Moon towards the Earth at its mean dis-

tance.” MacLaurin takes this as the analogue of the Earth’s G, presumably since
the attractions of the Earth and the Moon must balance at the surface for equi-
librium of the fluid.
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According to Scholium 1 of Proposition V (see NPV, p. 184), under the
hypothesis of uniform gravity over the lunar surface we would have83

b

a
≈ g − 2v

g + v
=

g
v − 2
g
v + 1

=
176.725
179.725

= 0.9833 ≈ 59
60

and
a

b
≈ 1.0170. (4)

The disparity in the values in (4) compared with those in (1), (2), and (3)
led MacLaurin to conjecture that the orbit is flattened due to a decrease
in the attraction of the Earth on the Moon between the syzygies and the
quadratures (see Part I, Note on Proposition XVI, p. 29); presumably, the
ratio to which he refers is (15V d

4G )/( 3V d
G ) = 5/4 (see equations (5) and (6) in

NPV, p. 184).
The observations at the end of the Proposition concerning the effects of

the Earth’s rotation on the tides are expanded in Articles 690 and 691 of [69];
MacLaurin finds the height of the water is now approximately two thirds of
that previously calculated.

Note on Proposition VII (p. 130). Consider the Earth as a sphere of
radius r = 3,956.5 miles (the average of its polar and equatorial radii) rotating
about its axis with constant angular velocity π/12 radians/hour. The velocity
on the surface at latitude 50◦ and the velocity at a position 36 miles further
north will have respective magnitudes in miles/hour

πr

12
cos 50◦ and

πr

12
cos

(
50 +

36 × 180
πr

)◦
;

this represents a decrease at the latter position of

πr

6
sin

(
50 +

36 × 180
2πr

)◦
sin

(
36 × 180

2πr

)◦
≈ 7.25 miles/hour ,

which is consistent with MacLaurin’s assertion. Generally, in the northern
hemisphere, if the tide moves away from the equator, there must be a dis-
placement of the water to the east, since the initial west-east component of
velocity of the moving water is greater than the velocity due to the rotation
of the Earth at higher latitudes. Correspondingly, if the tide moves water
towards the equator, there will be a displacement towards the west.

83MacLaurin also notes that 3v
g

= 1
59.575 ≈ 1

1
2 (59+60)

. In the original [68] he asserts

(in Latin) that for the numbers 59 and 60 the “semidifference is to the semisum
as 3v to g approximately.” I have changed semidifference to difference in the
translation.
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Note on Proposition VIII (p. 131). Since the equator ABab is almost
circular, g, a focus of the equator, will be close to the centre C as shown in
MacLaurin’s diagram. The series stated in the Proposition is discussed by
MacLaurin in his Remarks II (pp. 134–136); it therefore seems preferable to
delay our analysis of it until the Note on MacLaurin’s Remarks (see pp. 191–
195).

Note on Proposition IX (pp. 131–132). Here MacLaurin is largely quot-
ing material contained in Proposition XXXVII of Book III of Newton’s Prin-
cipia [85] ([15, 63]). I suspect that the rise of 50 1

2 feet stated by MacLaurin is
a typographical error: in Corollary 1 of this Proposition, Newton gives a rise
of 10 1

2 feet, which is based on a rise of 1 foot 11 1
30 inches due to the Sun and a

corresponding rise of 4.4815 times this brought about by the Moon, namely,
8 feet 7 5

22 inches. Newton makes several references to the tidal measurements
of Samuel Sturmy (1633–1669), which were published in the Philosophical
Transactions [99].84 MacLaurin’s earlier citations of Cassini’s observations
occur in the three subsections of Section I (see Appendix III.4, pp. 202–205).

The possibility of just one tide in a day at certain places, which MacLaurin
justifies in a brief footnote, seems to to be concerned with the following
situation.

P Q

C

In the above diagram the three indicated angles are all equal to 28◦, the angle
assumed by MacLaurin for the Moon’s declination, and consequently P has
latitude 62◦. The Moon’s attraction acts approximately along the parallel
lines indicated and at Q this attraction is perpendicular to the radius CQ.
Thus, when the rotation of the Earth moves P round to the position of Q,
where it is furthest from the Moon, there is no component of force to raise
the water. If the lesser effect of the Sun and other factors affecting tides
are ignored, in the simple gravitational model the high tides at a place will
normally occur when it is closest to the Moon and also when it is furthest
away; thus in the situation described above the second high tide could not
occur.

84See also Sturmy’s The Mariners Magazine [100]. Chapter 2 of Book I is entitled,
“Of the Moons Motion, and the Ebbing and Flowing of the Sea.”
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Note on MacLaurin’s Remarks

Remark I (pp. 133–134). Here MacLaurin returns to the calculation of
x/d and gives a corrected and improved version of the result he obtained in
Proposition IV (see NPIV, pp. 180–181). He begins with the following formula
which was established there:

B
A =

1
3 + c2

15a2 + c4

35a4 + . . .
b
a

( 1
3 + c2

5a2 + c4

7a4 + . . .
) .

Now
b

a
=

1
a

√
a2 − c2 =

(
1 − c2

a2

)1/2

=
∞∑

n=0

(
1/2
n

) (
− c2

a2

)n

= 1 − c2

2a2 − c4

8a4 − . . . ,

so that, on multiplying the series, we obtain for the denominator

1
3

+
(

1
5

− 1
6

)
c2

a2 +
(

1
7

− 1
10

− 1
24

)
c4

a4 + . . . =
1
3

+
c2

30a2 +
c4

840a4 + . . . .

Thus
B
A =

1
3 + c2

15a2 + c4

35a4 + . . .
1
3 + c2

30a2 + c4

840a4 + . . .
,

and therefore85

B − A
G

= 2 × B − A
A + B = 2 ×

c2

30a2 +
( 1

35 − 1
840

)
c4

a4 + . . .
2
3 + c2

10a2 +
( 1

840 + 1
35

)
c4

a4 + . . .

=
c2

10a2 + 23c4

8×35a4 + . . .

1 + 3c2

20a2 + 25c4

8×70a4 + . . .
. (1)

Next we obtain from86

a2 = (d + x)2 = d2
(

1 +
2x

d
+

x2

d2

)
and c2 = 4dx

that

c2

4a2 =
x

d

(
1 +

2x

d
+

x2

d2

)−1

=
x

d

(
1 −

(
2x

d
+

x2

d2

)
+

(
2x

d
+

x2

d2

)2

− . . .

)

=
x

d

(
1 − 2x

d
− x2

d2 +
4x2

d2 + terms of higher degree in x

)

=
x

d
− 2x2

d2 +
3x3

d3 + . . . .

85In [68] 24 occurs in place of 8 in the numerator of the final expression.
86See Proposition IV and NPIV, p. 180.
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Substituting this in (1) produces87

B − A
G

=
1
10

(
4x
d − 8x2

d2 + . . .
)

+ 23
8×35

( 4x
d − . . .

)2 + . . .

1 + 3
20

( 4x
d − 8x2

d2 + . . .
)

+ 25
8×70

( 4x
d − . . .

)2 + . . .

=
2x
5d +

(
23×16
8×35 − 4

5

)
x2

d2 + . . .

1 + 3x
5d +

(
25×16
8×70 − 6

5

)
x2

d2 + . . .
≈

2
5xd + 18

35x2

d2 + 3
5xd − 17

35x2

=
14xd + 18x2

35d2 + 21xd − 17x2 . (2)

Now, from Corollary 2 of Proposition I (see equation (7) of NPI, p. 163), we
have

Bd − Bx +
V

d
(d2 − 2dx + x2) = Ad + Ax − 2V

d
(d2 + 2dx + x2) ,

that is,

(B − A)d + 3V d = 2Gx − 2V x − 3V x2

d
.

Substituting in this for B − A from (2) and ignoring the term involving V x2,
we obtain the approximate relation(

14xd + 18x2

35d2 + 21xd − 17x2

)
Gd + 3V d ≈ 2Gx − 2V x ,

which leads to

x ≈ 3 × 35V d2

56Gd − 133V d + 24Gx
,

where the terms in V x2, V x3 and Gx3 have been neglected. Finally we use
the approximation x

d ≈ 15V
8G (see Proposition IV and equation (11) of NPIV,

p. 181) in the term 24Gx to produce MacLaurin’s revised expression

x ≈ 3 × 35V d2

56Gd − 133V d + 45V d
=

3 × 35V d

56G − 88V
. (3)

In Article 687 of [69] MacLaurin gives the approximation (in different
notation)

x

d
≈ 15V

8A − 9 4
7V

, (4)

which he obtains from the relation (again in different notation)

2a2 + b2

ad
× V

A =
2c2

5a2 + 12c4

35a4 + . . .

1 + 3c2

5a2 + . . .
. (5)

87In [68] there is +17x2 in place of −17x2 in the final expression.
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Equation (5) is implicit in MacLaurin’s demonstration of Proposition IV (see
NPIV, equations (4) and (5), pp. 178–179). However, he gives no details for
the derivation of (4) from (5); it does come out if we proceed as we did above
in obtaining (3) from (1), but use the approximation x

d ≈ 15V
8A in place of

that used in the final step above.

Remark II (pp. 134–136). Let us first note the important relations

a2 − e2 = c2 , b2 − e2 = f2 , a2 − b2 = g2 , (3)

where (see diagrams below) a = |CA|, b = |CB|, c = |CF |, e = |CP |,
f = |Cf | and g = |Cg|. The first of these comes from the fact that F is a
focus of the ellipse PApa; likewise for the second we have that f is a focus
of the ellipse PBpb and for the third that g is a focus of the ellipse ABab.

P p

f

A

a

b

B

g

F

C

Diagram for
Proposition VIII

MacLaurin’s Fig. 11

b

K

m

p

v

u

B
CV

M

f

g

P

A

F

k

Figure from end of “Remarks”

Referring to the discussion in NLV (pp. 166–169) we note that∫
[A,C]

|RK| d|AR|

is no longer the same for each section. The expression for the attraction which
is given in equation (3) of NLV (p. 168) now becomes

k

|AC|
∫ 2π

0

∫
[A,C]

|RK(θ)| d|AR| dθ ,

where θ denotes the angle bCM , and by symmetry this is

4k

a

∫ π/2

0

∫
[A,C]

|RK(θ)| d|AR| dθ .
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Now we can evaluate
∫
[A,C] |RK(θ)| d|AR| for any given θ by means of the

procedure of Proposition II to get from equation (2) of NPII (p. 170) its value

2a2|CM |2
(a2 − |CM |2)3/2

(
a ln

√
a + (a2 − |CM |2)1/2

a − (a2 − |CM |2)1/2 −
√

a2 − |CM |2
)

=
2a2(a2 − x2)

x3

(
a ln

√
a + x

a − x
− x

)
,

and so the required attraction is

8ka

∫ π/2

0

(a2 − x2)
x3

(
a ln

√
a + x

a − x
− x

)
dθ .

If we compare this as usual with the attraction at A of the sphere on Aa as
diameter,88 we get (cf. equation (3) of NPII, p. 171)

|Attraction at A of figure|
|Attraction at A of sphere| =

6
π

∫ π/2

0

(a2 − x2)
x3

(
a ln

√
a + x

a − x
− x

)
dθ .

(4)
This corresponds to MacLaurin’s∫

3CM2 × L − x

x3 × mu

CM
.

Note that, if we put δθ = ∠mCu, then arcmu = |Cm| × δθ ≈ |CM | × δθ ; in
the limit (arcmu)/CM becomes dθ.

We need to determine the relationship between x and θ (0 ≤ θ ≤ π/2).
For this we have a2 − x2 = |CM |2 and so

|CV | =
√

a2 − x2 cos θ , |V M | =
√

a2 − x2 sin θ ;

the equation for the ellipse PBpb then gives

a2 − x2

b2 cos2 θ +
a2 − x2

e2 sin2 θ = 1 ,

from which we obtain, after some manipulation and use of equations (3),

θ = sin−1

(
e

f

√
x2 − g2

a2 − x2

)
, therefore

dθ

dx
=

ebx

(a2 − x2)
√

c2 − x2
√

x2 − g2
.

Note also that the quantity x =
√|CA|2 − |CM |2 takes on values between√

a2 − b2 = g and
√

a2 − e2 = c as θ varies between 0 and π/2. Thus, changing
the variable from θ to x in the integral in (4), we obtain for it

88As noted at the end of NLV (p. 169), |Attraction at A of sphere| = 4
3kπa.
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6
π

∫ c

g

(a2 − x2)
x3

(
a ln

√
a + x

a − x
− x

)
ebx

(a2 − x2)
√

c2 − x2
√

x2 − g2
dx

=
6eb

π

∫ c

g

1

x2
√

c2 − x2
√

x2 − g2

(
a ln

√
a + x

a − x
− x

)
dx .

Now we expand the logarithm and integrate term-by-term; we need one term
more than MacLaurin considers in his Remarks II in order to produce the
expression given in Proposition VIII:

a ln
√

a + x

a − x
− x =

1
2
a ln

1 + x
a

1 − x
a

− x =
x3

3a2 +
x5

5a4 +
x7

7a6 + . . . ,

and the integral becomes

6eb

π

(
1

3a2

∫ c

g

x√
c2 − x2

√
x2 − g2

dx +
1

5a4

∫ c

g

x3
√

c2 − x2
√

x2 − g2
dx

+
1

7a6

∫ c

g

x5
√

c2 − x2
√

x2 − g2
dx + . . .

)
.

Following MacLaurin, we substitute z =
√

x2 − g2 with dz
dx = x√

x2−g2
to get

|Attraction at A of figure|
|Attraction at A of sphere|

=
6eb

π

(
1

3a2

∫ √
c2−g2

0

1√
c2 − g2 − z2

dz +
1

5a4

∫ √
c2−g2

0

z2 + g2√
c2 − g2 − z2

dz

+
1

7a6

∫ √
c2−g2

0

(z2 + g2)2√
c2 − g2 − z2

dz + . . .

)
. (5)

To evaluate these integrals we can use the standard formulae (for α �= 0)∫
1√

α2 − u2
du = sin−1 u

α
+ constant ,

∫ √
α2 − u2 du =

u

2

√
α2 − u2 +

α2

2

∫
1√

α2 − u2
du ,

∫
(α2 − u2)3/2 du =

u

4
(α2 − u2)3/2 +

3α2

4

∫ √
α2 − u2 du .

Then the first integral in (5) is
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∫ √
c2−g2

0

1√
c2 − g2 − z2

dz =

[
sin−1 z√

c2 − g2

]√
c2−g2

0

=
π

2
;

the second is∫ √
c2−g2

0

z2 + g2√
c2 − g2 − z2

dz

=
∫ √

c2−g2

0
−

√
c2 − g2 − z2 +

c2√
c2 − g2 − z2

dz

=

[
−z

2

√
c2 − g2 − z2 +

1
2
(c2 + g2) sin−1 z√

c2 − g2

]√
c2−g2

0

=
1
2
(c2 + g2)

π

2
=

π

4
(|CF |2 + |Cg|2) ;

and the third is∫ √
c2−g2

0

(z2 + g2)2√
c2 − g2 − z2

dz =
∫ √

c2−g2

0

(
(c2 − g2 − z2) − c2

)2√
c2 − g2 − z2

dz

=
∫ √

c2−g2

0
(c2 − g2 − z2)3/2 − 2c2

√
c2 − g2 − z2 +

c4√
c2 − g2 − z2

dz

=
[
z

4
(c2 − g2 − z2)3/2 +

(
3
4
(c2 − g2) − 2c2

)
× z

2

√
c2 − g2 − z2

+
((

3
4
(c2 − g2) − 2c2

)
(c2 − g2)

2
+ c4

)
sin−1 z√

c2 − g2

]√
c2−g2

0

=
π

16
(
(−5c2 − 3g2)(c2 − g2) + 8c4) =

π

16
(3c4 + 2c2g2 + 3g4)

=
π

16
(3|CF |4 + 2|CF |2|Cg|2 + 3|Cg|4) .

Substituting these values into (5), we find that

|Attraction at A of figure|
|Attraction at A of sphere|

=
|CB| × |CP |

|CA|2
(

1 +
3|CF |2 + 3|Cg|2

10|CA|2

+
9|CF |4 + 6|CF |2|Cg|2 + 9|Cg|4

56|CA|4 + . . .

)
,
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precisely as MacLaurin asserts in Proposition VIII.

Remark III (p. 136). MacLaurin brings in another idea from Newton,
namely, that tidal forces are inversely proportional to the cubes of the dis-
tances (see Propositions XXXVI and XXXVII of Book III of the Principia
[85] ([15, 63]) and my Introduction, p. 91); the stated expressions for the
forces come immediately from this. Then, from

Ld3

X3 +
SD3

Z3

Ld3

x3 +
SD3

z3

=
m

n
,

we obtain
nLd3

X3 +
nSD3

Z3 =
mLd3

x3 +
mSD3

z3 ,

or equivalently
L

S

(
nd3

X3 − md3

x3

)
=

mD3

z3 − nD3

Z3 ;

MacLaurin’s expression for the ratio L/S now follows.
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III.1. Concerning Ellipses

Diameters of ellipses have an important role to play in MacLaurin’s discus-
sions. A diameter is a chord which passes through the centre, so the diameter
from the point (a cos θ, b sin θ) on the ellipse with equation x2/a2 +y2/b2 = 1
has equation

bx sin θ − ay cos θ = 0 .

This diameter meets the ellipse again where

x = −a cos θ = a cos(θ + π) , y = −b sin θ = b sin(θ + π) ,

that is, at the point with parameter θ+π. The gradient (slope) of the tangent
at both extremities of the diameter is

b cos θ

−a sin θ
= − b

a
cot θ ,

unless sin θ = 0, in which case the tangents are perpendicular to the x-axis.
The conjugate diameter for a given diameter may be defined as the diam-

eter which is parallel to the tangents at the extremities of the given diameter.
Thus in the present case the conjugate diameter has equation

bx cos θ + ay sin θ = 0 , that is, bx sin(θ +
π

2
) − ay cos(θ +

π

2
) = 0 ;

its extremities are the points with parameters θ + π
2 and θ + 3π

2 and its
conjugate diameter has equation

bx sin(θ + π) − ay cos(θ + π) = 0 , that is, bx sin θ − ay cos θ = 0 .

Thus the conjugate of the conjugate is just the original diameter. We may
therefore speak of a pair of conjugate diameters (see Fig. 1 below). A semidi-
ameter is a line from the centre to a point on the ellipse; conjugate semidi-
ameters occur when the corresponding whole diameters are conjugate. In the
case of a circle, conjugate (semi)diameters are (semi)diameters which are at
right angles to each other.

As a preparation for his study of the figure of the Earth in [69] MacLaurin
develops various properties of ellipses in Articles 609–627. The method used
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is to deduce these by means of a projection method from corresponding, more
easily proved, properties of circles.

C

Fig. 1

P

Q

Fig. 2

The section of a right circular cylinder by a plane which is not parallel to its
axis is an ellipse (a circle if the plane is normal to the axis of the cylinder) (see
Fig. 2); this of course requires proof, which MacLaurin gives in Article 610.
Clearly, any ellipse can be generated in this way by taking the diameter of
the circle equal to the length of the minor axis and choosing the appropriate
inclination of the plane to produce the desired length of major axis. Having
chosen a plane normal to the axis of the cylinder and a sectioning plane to
produce an ellipse, we project points from the first plane into the second
plane (and reciprocally) by means of lines parallel to the axis of the cylinder.
Among the properties of this projection are the following, which are more or
less obvious:

(i) parallel lines project onto parallel lines (Article 611);
(ii) ratios of segments of the same line or of parallel lines are preserved on

projection (Article 611);
(iii) a tangent to the circle projects onto a tangent to the ellipse (Article

612);
(iv) diameters of the circle which are at right angles to each other project

onto conjugate diameters of the ellipse (see above) (Article 612).

As a simple illustration of this method we prove that a diameter of an ellipse
bisects all chords parallel to its conjugate – these chords are called ordinates
to the diameter. But this is obvious in a circle – a diameter bisects any chord
at right angles to it – and the result for the ellipse then follows from (iv), (i)
and (ii).
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In his essay MacLaurin quotes several properties of ellipses which can
be established easily in this way (see NLI pp. 141–143, NPII p. 170, NPIII
p. 174). Some further discussion will be found in Section 3 of [106].

III.2. Sections of Spheroids

By a spheroid MacLaurin means the solid formed by rotating an ellipse about
one of its axes; its equatorial plane is the plane through the centre which is
perpendicular to the axis of rotation. He applies to great effect the following
two properties of spheroids; these are stated without proof in his essay but
proofs are given in Article 633 of [69].

(i) If a plane meets two similar, similarly situated spheroids,89 then the
sections are similar ellipses.

(ii) If a plane perpendicular to the equatorial plane of a spheroid meets the
spheroid, then the section is similar to the generating ellipse.

Because of the importance of these results to MacLaurin’s arguments it seems
desirable to establish them here. The analytic proofs below may be more
accessible to the modern reader than those given by MacLaurin.

M

z z

y y

Fig. 1 Fig. 2

We may assume for the spheroid an equation of the form

x2

a2 +
y2

a2 +
z2

b2 = 1 .

This represents the spheroid generated by rotating the ellipse in the z, y-plane
with equation y2/a2 + z2/b2 = 1 about the z-axis; here we may have a < b,
a = b or a > b (a, b > 0). Clearly, any plane which cuts the spheroid and is
parallel to the x, y-plane does so in a circular section, so (i) is trivial in this
case. We now consider planes which are not parallel to the x, y-plane. Because
of the symmetry of the spheroid it is enough to consider planes which are

89That is to say, they are generated by rotating about the same axis two ellipses
which have the same centre, corresponding axes along the same line, and the same
ratio of major axis to minor axis.
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perpendicular to the y, z-plane, since any other situation can be brought to
this by rotation. Such a plane has an equation of the form

y = kz + c (1)

for suitable constants k and c. Now (Fig. 1) the straight line in the y, z-plane
with the same equation meets the generating ellipse where

(kz + c)2

a2 +
z2

b2 = 1 ,

that is, where (
k2

a2 +
1
b2

)
z2 +

2kc

a2 z +
c2

a2 − 1 = 0 .

The sum of the roots is

−2kc

a2

(
k2

a2 +
1
b2

)−1

=
−2kcb2

k2b2 + a2 ,

and so M , the midpoint of the line segment joining the points of intersection,
is given by

z =
−kcb2

k2b2 + a2 , y =
−k2cb2

k2b2 + a2 + c =
a2c

k2b2 + a2 .

We now use the following parametric representation of the plane:

r =
(

0,
a2c

k2b2 + a2 ,
−kcb2

k2b2 + a2

)
+ ξ(1, 0, 0) +

η√
k2 + 1

(0, k, 1) .

Note that (1, 0, 0) and (k2 +1)−1/2(0, k, 1) are orthogonal unit vectors which
are orthogonal to (0, 1, −k), a normal to the plane, and the first triple is just
the point M in the x, y, z-system. The plane therefore meets the spheroid
where

ξ2

a2 +
1
a2

(
a2c

k2b2 + a2 +
kη√

k2 + 1

)2

+
1
b2

( −kcb2

k2b2 + a2 +
η√

k2 + 1

)2

= 1 ,

that is,

ξ2

a2 +
(

k2

a2(k2 + 1)
+

1
b2(k2 + 1)

)
η2 = 1 − a2c2

(k2b2 + a2)2
− k2c2b2

(k2b2 + a2)2

= 1 − c2

k2b2 + a2 ,

or,
ξ2

a2
(
1 − c2

k2b2+a2

) +
η2

a2b2(k2+1)
k2b2+a2

(
1 − c2

k2b2+a2

) = 1 . (2)

Thus, provided
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c2

k2b2 + a2 < 1 ,

the section of the spheroid by the plane is an ellipse with centre M and axes
parallel to (1, 0, 0) and (0, k, 1); moreover, the ratio of its ξ-axis to its η-axis
is √

k2b2 + a2

b2(k2 + 1)
=

1√
k2 + 1

(
k2 +

a2

b2

)1/2

.

Since this depends only on the ratio a
b for given k, it follows that, if the plane

meets any other similar, similarly situated spheroid, the two sections will be
similar ellipses. Note that, if

c2

k2b2 + a2 = 1 ,

the plane is tangential to the spheroid and, if it is greater than 1, there is no
intersection.

Suppose now for (ii) that the plane is normal to the equatorial plane
(Fig. 2), so that (1) becomes y = c and k = 0. Equation (2) reduces to

ξ2

a2
(
1 − c2

a2

) +
η2

b2
(
1 − c2

a2

) = 1 .

The ratio of the axes is now a/b, so we have an ellipse which is similar to the
generating ellipse (provided c2/a2 < 1).

III.3. Attraction

Newton’s law of gravitation asserts that the force of attraction between two
particles of masses m1 and m2 and at distance r apart is given by

Gm1m2

r2 ,

where G is a constant, and it acts along the line joining the particles. It
follows from this that the attraction at a point P (x0, y0, z0) from a uniform
body V is proportional to∫ ∫ ∫

V

1
(x − x0)2 + (y − y0)2 + (z − z0)2

r̂ dx dy dz , (1)

provided the integral converges; here r̂ is the unit vector in the direction from
P to the varying point (x, y, z), that is to say,

r̂ =
(x − x0, y − y0, z − z0)√

(x − x0)2 + (y − y0)2 + (z − z0)2
.
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We may therefore write (1) as∫ ∫ ∫
V

(x − x0, y − y0, z − z0)

((x − x0)2 + (y − y0)2 + (z − z0)2)
3/2 dx dy dz . (2)

If we make the change of variables

x = x0 + ρ sin φ cos θ , y = y0 + ρ sin φ sin θ , z = z0 + ρ cos φ

(spherical polar coordinates with origin (x0, y0, z0)), we obtain∫ ∫ ∫
V ′

sin φ (sin φ cos θ, sin φ sin θ, cos φ) dρ dφ dθ , (3)

where V ′ is the corresponding region in the (ρ, φ, θ)-system. We note for
application (see NL3, p. 149) that the integrand h(φ, θ) in (3) is independent
of ρ and it satisfies the identity

h(π − φ, θ + π) = −h(φ, θ) . (4)

If u = (u1, u2, u3) is a unit vector, the component of (2) in the direction of u
is ∫ ∫ ∫

V

u1(x − x0) + u2(y − y0) + u3(z − z0)

((x − x0)2 + (y − y0)2 + (z − z0)2)
3/2 dx dy dz ; (5)

the equivalent version from (3) is∫ ∫ ∫
V ′

u1 sin2 φ cos θ + u2 sin2 φ sin θ + u3 sin φ cos φ dρ dφ dθ . (6)

Several of MacLaurin’s calculations involve these equations implicitly (see,
for example, NLIII pp. 146–147, 149, NLIV pp. 154–156, NLV pp. 168–169,
NPIII p. 176).

III.4. Extract from “Reflexions sur les Observations des Marées” (1713)
by J. Cassini [22]

(pp. 286–288)
Nous avons remarqué dans les Memoires précedents que les diverses dis-

tances de la Lune à la Terre causent une trés grande varieté dans la hauteur
de Marées. Cela se confirme par ces dernieres Observations, car le 28. De-
cembre 1712. jour de la Pleine Lune, la distance de cette Planette à la Terre,
étant de 936. parties dont le rayon est 1000, c’est-à-dire, la Lune étant fort
prés de son Perigée, on observa le 30. Decembre au matin, jour de la plus
grande Marée, la hauteur de la Pleine Mer de 19. pieds 2. pouces au-dessus
du point fixe, et celle de la Basse Mer de 1. pied 8. pouces au-dessous de ce



Appendix III 203

point, de sorte que la Mer avoit monté ce jour-là de la hauteur de 20. pieds
10. pouces.

. . .
Il faut remarquer que dans la Nouvelle Lune Perigée du 28. Decembre

1712. sa déclinaison étoit de 23 d 0 ′ Meridionale, fort éloignée de l’Equinoct-
ial, & par consequent sa pression sur la Terre devoit être moins grande que
lorsque la Lune étant à peu prés à égale distance de la Terre, elle se trouve
en même temps plus prés de l’Equateur.

En effet nous trouvons que le 24. Fevrier 1713. jour de la Nouvelle Lune,
sa distance à la Terre étant de 953. c’est-à-dire, prés de son Perigée, & sa
déclinaison de 5 d Meridionale prés de l’Equateur, la hauteur de la Pleine
Mer fut observée le 26. Fevrier au matin de 21. pieds 2. pouces, qui est la
plus Haute Marée que l’on ait observé à Brest dans l’espace de prés de deux
années. La Basse Mer suivante fut observée de 1. pied 3. pouces au-dessous
du point fixe, de sorte que la Mer monta ce jour-là de la hauteur de 22. pieds
5. pouces.

Le 12. Mars suivant, jour de la Pleine Lune, sa distance à la Terre étant
de 1032. assés prés de son Apogée & sa déclinaison Meridionale d’un degré,
c’est-à-dire, prés de l’Equateur, on observa le 13. Mars suivant, jour de la
plus grande Marée, la hauteur de la Pleine Mer de 18. pieds 2. pouces, & celle
de la Basse Mer de 0. pied 0. pouce, de sorte que l’élevation de la Mer n’a
été ce jour-là que de 18. pieds 2. pouces, moindre de 4. pieds trois pouces
que dans l’Observation précedente où la Lune étoit prés de son Perigée,
mais plus grande de 1. pied 9. pouces que dans l’Observation du 11. Janvier
1713. raportée ci-devant, où la Lune étant prés de son Apogée, sa déclinaison
Septemtrionale étoit de 20. degrés.

(pp. 289–290)
À l’égard de la distance du Soleil à la Terre, comme elle est plus petite vers
le Solstice d’Hyver où le Soleil est presentement prés de son Perigée, qu’au
Solstice d’Eté où il est prés de son Apogée, les Marées doivent être plus
grandes en Hyver qu’en Eté, toutes choses égales, comme on l’observe en
effet. Car le 30. Juin90 1711. jour de la Pleine Lune, la distance de la Lune
à la Terre étant de 960. & sa déclinaison de 25 d 29 ′; le Soleil étant aussi dans
son Apogée, on observa le premier Juillet au soir la hauteur de la plus grande
Marée de 17. pieds 10. pouces. Le 8. Janvier suivant, jour de la Nouvelle
Lune, la distance de la Lune à la Terre étant de 951. & sa déclinaison de
23 d 0 ′ à peu prés de même que le 30. Juin; le Soleil étant alors prés de son
Perigée, on observa le 10. Janvier au matin, la hauteur de la plus grande
Marée de 19. pieds 10. pouces plus haute de 2. pieds que dans l’Observation
précedente, où le Soleil étoit dans son Apogée. Le 19. Juin suivant la distance
de la Lune à la Terre étant de 936. & sa déclinaison Meridionale de 24 d 50 ′,

90The version in [22] has “Juillet” here, which does not seem right as the next date
mentioned is 1 July.



204 Part III. MacLaurin on the Tides

le Soleil étant alors prés de son Apogée, la hauteur de la plus grande Marée
fut observé le 21. Juin au soir de 18. pieds 4. pouces plus petite d’un pied
six pouces que dans l’Observation précedente. Enfin le 28. Decembre 1712.
le Soleil étant dans son Perigée, la distance de la Lune à la Terre étant de
936. & sa déclinaison Meridionale de 23. degrés, la hauteur de la plus grande
Marée fut observée le 30. Decembre de 19. pieds 2. pouces, plus grande de
10. pouces que le 19. Juin où le Soleil étoit prés de son Apogée, & la Lune à
peu prés à égale distance de la Terre.

(Translation)

(pp. 286–288)

We have noted in the preceding Memoirs that the different distances from
the Moon to the Earth bring about a very great variation in the height of
the tides. That is confirmed by these recent observations, for on 28 December
1712, the day of the Full Moon, the distance from this planet to the Earth
being 936 parts of which the radius is 1000, that is to say, the Moon being
very near to its perigee, it was observed on the morning of 30 December, the
day of the greatest tide, that the height of the high tide was 19 pieds 2 pouces
above the fixed point, and that of the low water was 1 pied 8 pouces below
this point, so that the sea had risen by a height of 20 pieds 10 pouces on that
day.

. . .
It must be noted that in the New Moon perigee of 28 December 1712 its

declination was 23◦ 0′ of the meridian, far removed from the equator, and
in consequence its pressure on the Earth must be less great than when the
Moon, being at approximately equal distance from the Earth, is at the same
time nearer to the equator.

In fact, we find that on 24 February 1713, the day of the New Moon,
its distance to the Earth being 953, that is to say, near its perigee, and its
declination 5◦ of the meridian near the equator, the height of the high tide
was observed on the morning of 26 February at 21 pieds 2 pouces, which is
the highest tide which has been observed at Brest in the space of nearly two
years. The low water following was observed at 1 pied 3 pouces below the
fixed point, so that the sea rose by a height of 22 pieds 5 pouces on that day.

On 12 March following, the day of the Full Moon, its distance from the
Earth being 1032, quite close to its apogee, and its meridional declination
one degree, that is to say, near the equator, it was observed on 13 March
following, the day of the greatest tide, that the height of the high tide was
18 pieds 2 pouces, and that of the low water 0 pied 0 pouce, so that the rise of
the sea on that day was only 18 pieds 2 pouces, less by 4 pieds three pouces
than in the preceding observation where the Moon was near its perigee, but
larger by 1 pied 9 pouces than in the observation of 11 January 1713 reported
previously, where its northern declination was 20 degrees, the Moon being
near its apogee.
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(pp. 289–290)

Concerning the distance from the Sun to the Earth, since it is smaller
towards the winter solstice, where the Sun is at present near its perigee, than
at the summer solstice, where it is near its apogee, the tides must be larger
in winter than in summer, other things being equal, as is indeed observed.
For on 30 June91 1711, the day of the Full Moon, the distance from the Moon
to the Earth being 960 and its declination 25◦ 29′ and the Sun being also
in its apogee, on the evening of the first of July the height of the greatest
tide was observed at 17 pieds 10 pouces. On 8 January following, the day
of the New Moon, the distance from the Moon to the Earth being 951 and
its declination 23◦ 0′, approximately the same as on 30 June and the Sun
being then near its perigee, on the morning of 10 January it was observed
that the height of the largest tide was 19 pieds 10 pouces, higher by 2 pieds
than in the previous observation, where the Sun was in its apogee. On 19
June following, the distance from the Moon to the Earth being 936 and
its meridional declination 24◦ 50′, the Sun being then near its apogee, the
height of the greatest tide was observed on the evening of 21 June at 18 pieds
4 pouces, smaller by one pied six pouces than in the preceding observation.
Finally, on 28 December 1712, the Sun being in its perigee, the distance from
the Moon to the Earth being 936 and its meridional declination 23 degrees,
the height of the greatest tide was observed on 30 December at 19 pieds
2 pouces, greater by 10 pouces than on 19 June when the Sun was near its
apogee and the Moon at approximately equal distance from the Earth.

III.5. Proof of Corollary 4 of Lemma I from [86]

The following Theorem and its proof were added by the editors as a footnote
to MacLaurin’s Lemma I in the version of his essay in [86]. I have redrawn
the original diagrams, which are not very accurate, and have added some
explanatory notes at the end, which are referenced by Greek letters inserted
in the text.

This Lemma is proposed for demonstrating the 4th Corollary; this Corol-
lary is reduced to the following Proposition, which can be demonstrated very
easily by analysis.

THEOREM.

From any point on an ellipse let three lines PH, PM , Pm be drawn to
the ellipse, the first of which PH is parallel to the axis, while the others PM ,
Pm make any equal angles MPH, mPH (α) with it; from the points P , H,
M and m let PD, Hd, QMR, mqr be drawn perpendicular to PH and to

91The version in [22] has “Juillet” (July) here, which does not seem right as the
next date mentioned is 1 July.
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the axis and on Dd let an ellipse similar to the first be described, and from
the point D let lines DN , Dn parallel to the lines Pm, PM be drawn to
the ellipse, and finally let Nn be drawn which cuts the axis in V ; I say that
2DV = PQ + Pq = DR + Dr, if the points Q and q lie on the same side of
the point P , or that 2DV = PQ − Pq = DR − Dr, if the points Q and q lie
on opposite sides of the point P .

Q H
m

P

BDr
Nd

M

b b

M

d

N

n

V D r B

m
qP

R V

n

q

Q H

R

(First case) (Second case)

First, since by construction the lines DN , Dn make equal angles with the
axis Dd, it is easily deduced that the line NV n is perpendicular to the axis
and so, if the radius is to the tangent of angle QPM as 1 to t, and DV is
called z, there will be NV = tz; and likewise, if PQ or Pq or their equals
DR or Dr are called x, then MQ or mq will be given by tx.

Let the major axis be to the minor axis in both ellipses as a to b and let
BD = f , Db = g, DP = h and Dd = g − f = l; by the nature of the ellipse
(β) a2 : b2 = fg : h2, and likewise there will be a2 : b2 = z × l − z : t2z2 =
l − z : t2z, hence a2 : b2

t2 = l − z : z and by composition (γ)

t2a2 + b2

t2
:

b2

t2
= a2t2 + b2 : b2 = l : z and so

b2l

a2t2 + b2 = DV .

Moreover, in the first case, in which Q and q are on the same side of the
point P , there will be (δ) RM = h− tx, or tx−h, and rm = h+ tx, and BR
or Br will be f +x, and Rb or rb will be g −x; hence, from the nature of the
ellipse there will be (β)

a2 : b2 = f + x × g − x : h ∓ tx
2

= fg + gx − fx − x2 : h2 ∓ 2htx + t2x2

= lx − x2 : ∓2htx + t2x2

(the terms fg : h2, which are in the same ratio, having been taken away
from both terms, respectively (ε), and l having been put in place of g − f)

= l − x : ∓2ht + t2x, and hence is obtained a2t2x ∓ 2a2ht = b2l − b2x

and, following transposition and reduction of the terms,

x =
b2l ± 2a2ht

a2t2 + b2 .

Consequently, if the sum of the two lines DR, Dr, which are given by the
individual values of x, is taken, there will be
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DR + Dr = PQ + Pq =
2b2l

a2t2 + b2 ,

twice the value found previously for DV .
But in the other case, in which Q and q lie on opposite sides of the point

P , there will be (ζ) RM = tx − h, and rm = h − tx, and there will be
BR = f + x and Br = f − x, Rb = g − x and rb = g + x. Hence, from the
nature of the ellipse there will be (β)

a2 : b2 = f ± x × g ∓ x : h2 − 2htx + t2x2

= fg ± gx ∓ fx − x2 : h2 − 2htx + t2x2 = ±lx − x2 : −2htx + t2x2

(the terms fg : h2 having been taken away (ε) and l having been used in

place of g − f) = ±l − x : −2ht + t2x, and hence is obtained

a2t2x − 2hta2 = ±b2l − b2x

and, following transposition and reduction of the terms,

x =
±b2l + 2hta2

a2t2 + b2 .

Consequently, if the difference of the two lines DR, Dr, which are given by
the individual values of x, is taken, there will be (η)

DR − Dr = PQ − Pq =
2b2l

a2t2 + b2 ,

twice the value found previously for DV ; therefore, 2DV = PQ ∓ Pq ac-
cording as Q and q are on the same or opposite sides of the point P (θ).
Q.E.D.

Notes

(α). The angles should be described as MPQ and mPq to cover both cases.

(β). From the canonical equation for an ellipse,
ξ2

a2 +
η2

b2 = 1, we obtain

η2

b2 =
a2 − ξ2

a2 and so
(a − ξ)(a + ξ)

η2 =
a2

b2 (η �= 0).

This is the version of the equation which is used in the proof; a− ξ and a+ ξ
represent the distances of a point on the major axis from its two extremities.
(γ). The ratio operation componendo is being used:

S

T
=

U

V
⇒ S + T

T
=

U + V

V
.

(δ). The expressions for RM , BR, Rb have x = DR, while x = Dr in those
for rm, Br, rb.
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(ε). Here we are using another ratio operation:

S

T
=

U

V
⇒ S − U

T − V
=

S

T
(T �= V ) .

(ζ). The expressions for RM , BR have x = DR, while x = Dr in those for
rm, Br. In fact, RM = ±(tx − h) and rm = ±(h − tx), but this does not
affect the subsequent argument since we use only their squares.
(η). Strictly, it is the modulus of the difference in general.
(θ). If we read ∓ as “minus or plus,” then “same” and “opposite” should be
interchanged.
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III.6. MacLaurin’s diagrams from [2] (courtesy of Glasgow
University Library, reproduced with permission)
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(III.6. MacLaurin’s diagrams from [2], ctd.)



References

1. Académie des Sciences: Recueil des pièces qui ont remporté les prix. Paris,
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