20

The Triana Workflow Environment:
Architecture and Applications

Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison

20.1 Introduction

In this chapter, the Triana workflow environment is described. Triana focuses
on supporting services within multiple environments, such as peer-to-peer
(P2P) and the Grid, by integrating with various types of middleware toolkits.
This approach differs from that of the last chapter, which gave an overview
of Taverna, a system designed to support scientists using Grid technology to
conduct in silico experiments in biology. Taverna focuses workflow at the Web
services level and addresses concerns of how such services should be presented
to its users.

Triana [429] is a workflow environment that consists of an intuitive
graphical user interface (GUI) and an underlying subsystem, which allows
integration with multiple services and interfaces. The GUI consists of two main
sections, as shown in Figure 20.1: a tool browser, which employs a conventional
file browser interface — the structure representing toolboxes analogous to
directories in a standard file browser and the leaves (normally representing
files) representing tools; and a work surface, which can be used to graphically
connect tools to form a data-flow diagram. A user drags a desired tool (or
service) from the tool browser, drops it onto the work surface, and connects
tools together by dragging from an output port on one tool to an input port
on the other, which results in cables being drawn to reflect the resulting data
pipeline. Tools can be grouped to create aggregate or compound components
(called Group Units in Triana) for simplifying the visualization of complex
workflows, and groups can contain groups for recursive representation of the
workflow.

The underlying subsystem consists of a collection of interfaces that bind
to different types of middleware and services, including the Grid Application
Toolkit (GAT) [13] and, in turn, its multiple bindings to Grid middleware,
such as Grid Resource Allocation Manager (GRAM), GridFTP, and GridLab
Resource Management System (GRMS); the Grid Application Prototype
(GAP) interface [408] and its bindings to JXTA [64], P2PS [460], and

20 The Triana Workflow Environment 321

Triana

JI/SNEIRN S

0]

All Packages (default)
(.3 TrianaTools
|4 Audio

|/ Demos

| Editing

i ceo

|3 Grid

! ImagePrac
[Math
SignalProc

AYVYYVYYYYYY

| 1 Algorithms

| 1 Converters

| DataParam

| ! Filtering

| Injection

|3 Input
Output

|4 Time

YYYYYYYYY

|+ Timefreq
P |) websServices v

Figure 20.1: A mixed-component Triana workflow consisting of Grid file and
job operations through proxies and Java components.

WSPeer [187]; and integration to Web services, WS-RF [100], and OGSA-
DAI. The resulting integration means that Triana tools on the work surface
can represent any service or primitives exposed by such middleware, and
these tools can be interconnected to create mixed-component workflows. An
illustration of this is provided in Figure 20.1, where we show a workflow that
integrates job and file proxy components that interact with the GAT interface
to access job submission (i.e., GRAM) and file transfer operations (GridF'TP)
and local Java components that provide editing and visualization capabilities.
In this example, the local Java components are used to edit a parameter
file, which is then staged on the Grid using the file proxy components and
specified as an input file for a Grid job submission, which in this case happens
to be a Cactus simulation (see Chapter 25). Local Java components are
used to visualize the results from this job. Although this example shows the
interaction between Grid jobs and local Java units, we have other scenarios
that interconnect WS-RF services, P2P services, and local Java units.

In this chapter, we will take a detailed look at the Triana environment
and discuss its components for interacting with Grids and P2P networks. We
also focus on application examples and describe two specific examples of how
workflows are generated, refined, and executed within the environment. The
rest of this chapter is organized in the following way. In the next section,
we relate Triana to other frameworks described in this book and elsewhere.
We then give an overview of the main Triana components and illustrate the
types of distributed component interactions that Triana facilitates. In Section

322 Taylor et al.

20.5, we discuss the workflow representations Triana uses, and in Section 20.6
how it has been used in a number of different ways by listing some projects
that are using Triana and the functionality that they employ. In Sections 20.7
and 20.8, we present two case studies, which illustrate how Triana workflows
are generated, modified, and executed within P2P environments and the Grid.

20.2 Relation to Other Frameworks

As we can see from some of the other chapters in this book, the Grid
workflow sector is relatively crowded, with a number of different frameworks,
languages, and representations for similar concepts. Part of the reason for
this is that existing Grid workflow engines are often tied to the technologies
employed by their parent projects and are not necessarily able to integrate
new technologies effectively. Many of these projects contain elements very
similar to Triana, albeit with a different terminology; for example, Triana
tasks are conceptually the same as Kepler actors and Taverna processors.
The Kepler project (Chapter 7) for supporting scientific workflows is a cross-
project collaboration based on the Ptolemy II system [366]. The approach in
Kepler/Ptolemy II is very similar to that of Triana in that the workflow is
visually constructed from Java components, called actors, which can either
be local processes or can invoke remote services such as Web services or a
GridFTP transfer.

Taverna (Chapter 19) is a workbench for workflow composition and
enactment developed as part of the myGrid [396] project, the focus of
which is bioinformatic applications. Originally designed to execute Web
service based workflows, Taverna can now interact with arbitrary services.
ICENI (Chapter 24) is an environment for constructing applications using
a graphical workflow tool together with distributed component repositories
on computational Grids. ICENI employs coarser grained components than
many of the other environments, generally focusing on large Grid-enabled
application components.

The Chimera Virtual Data System (VDS) (Chapter 23) is a system for
deriving data rather than generating them explicitly from a workflow. It
combines a virtual data catalog, for representing data derivation procedures
and derived data, with a virtual data language interpreter that translates user
requests into data definition and query operations on the database. The user
specifies the desired end result, and a workflow capable of generating that
result is derived. If intermediate results are available, then these are used
directly rather than being regenerated. Pegasus takes the abstract workflow
generated by the Chimera system and maps it onto a Grid. Workflows are
expressed in Chimera’s Virtual Data Language (VDL) and are converted into
Condor’s DAGMan format for execution.

The current release of The Globus Alliance’s CoG Kit includes a workflow
tool called the Karajan Workflow Engine (Chapter 21). The workflow language

20 The Triana Workflow Environment 323

Karajan uses is an XML-based scripting language that includes declarative
concurrency, support for control structures such as for...next and while loops,
conditionals such as if...then, and support for all CoG-supported services, such
as GridFTP or Globus job submission. The toolkit comes with a workflow
editor for composing Karajan scripts and a workflow engine for executing
them. Karajan workflow is aimed specifically at executing jobs in a Grid
environment and does not have capabilities for local processes such as those
available in Triana’s local toolboxes. The main operations with which it
concerns itself are job submission and file transfer, and these are represented
as nodes in the script. The BPEL4AWS (Chapter 14) language is a workflow
language for choreographing the interaction between Web services. It is used
in many projects in business workflow but is less common in scientific workflow
systems.

20.3 Inside The Triana Framework

Triana was initially designed as a quick-look data analysis tool for the
GEO 600 project [158] but has been subsequently extended into a number
of arenas within the scientific community. Originally, workflows in Triana
were constructed from Java tools and executed on the local machine or
remotely using RMI. A large suite of over 500 Java tools has been developed,
with toolboxes covering problem domains as diverse as signal, image, and
audio processing and statistical analysis. More recently, Triana components
have evolved into flexible proxies that can represent a number of local and
distributed primitives. For example, a Triana unit can represent a Java object,
a legacy code, a workflow, a WS-RF, P2P, or Web service, a Grid job, or a
local or distributed file.

In essence, Triana is a data-flow system (see Chapter 11) for executing
temporal workflows, where cables connecting the units represent the flow
of data during execution. Control flow is also supported through special
messages that trigger control between units. The cables can be used to
represent different functionalities and can provide a convenient method for
implementing plug-ins. For example, in our GAT implementation, described
in Section 20.4.2, the cables represent GAT invocations, and the content
of adjoining units provides the arguments to these calls. Therefore, two
connected file units would result in a GAT fileCopy invocation, and the actual
locations and protocols specified within the units indicate which GAT adapter
should be used to make this transfer (e.g., HTTP, GridF TP, and so on).

Triana integrates components and services (see Chapter 12) as Triana
units and therefore users visually interact with components that can be
connected regardless of their underlying implementation. In a somewhat
simplified perspective, Triana components are used to specify a part of a
system rather than to imply a specific implementation methodology and its
obvious object-oriented connotations. Triana components are simply units of

324 Taylor et al.

execution with defined interactions, which don’t imply any notion of state or
defined format for communication.

The representation of a Triana workflow is handled by specific Java reader
and writing interfaces, which can be used to support multiple representations
through a plug-in mechanism. This means that the actual workflow composi-
tion is somewhat independent of workflow language constraints and currently
we have implementations for VDL (see Chapter 17) and DAG workflows (see
Chapter 22). Such plug-ins can be dynamically activated at runtime, which
means that Triana could be used as a translator between such representations
to provide syntactic compatibility between systems.

20.4 Distributed Triana Workflows

Triana workflows are comprised of Triana components that accept, process,
and output data. A component may be implemented as a Java method call on
a local object or as an interface to one of a range of distributed processes
or entities such as Grid jobs or Web services. We call components that
represent a remote entity distributed components without suggesting that the
remote entity represented describes itself as a component. These distributed
components fall into two categories:

e Grid-oriented components. Grid-oriented components represent applica-
tions that are executed on the Grid via a Grid resource manager (such
as GRAM, GRMS, or Condor/G) and the operations that support these
applications, such as file transfer.

e Service-oriented components. Service-oriented components represent enti-
ties that can be invoked via a network interface, such as Web services or
JXTA services.

Triana uses simplified APIs as its base for programming within both
service-oriented and Grid-oriented environments. Specifically, the Grid Ap-
plication Toolkit (GAT) API [13] developed during the GridLab project [175]
is used for Grid-oriented components. The GAT is capable of implementing
a number of different bindings to different types of middleware, and these
can be dynamically switched at runtime to move across heterogeneous
Grid environments without changing the application implementation. Section
20.4.2 discusses in detail our core interface to Grid-oriented software toolkits
and services using the GAT. For our service-oriented components, we use the
Grid Application Prototype (GAP) interface described in the next section.
The GAT and GAP interfaces can be used simultaneously within a Triana
application instance, enabling users to compose Triana components into
workflows that represent elements from both traditional toolkits such as
Globus 2.x and Web, WS-RF, or P2P services.

20 The Triana Workflow Environment 325
20.4.1 Service-Oriented Components

The Grid Application Prototype Interface (GAP Interface) is a simple
interface for advertising and discovering entities within dynamic service-
oriented networks. See [408] for a full description of the GAP. Essentially,
the GAP uses a P2P-style pipe-based mechanism for communication. The
pipe abstraction allows arbitrary protocols to be implemented as bindings to
the GAP as long as they can fulfill the basic operations of publish, find, and
bind. The GAP currently provides bindings to three different infrastructures:

e P2PS. P2PS [460] is lightweight P2P middleware capable of advert-
isement, discovery, and communication within ad hoc P2P networks.
P2PS implements a subset of the functionality of JXTA using the pipe
abstraction employed by JXTA but tailored for simplicity, efficiency, and
stability.

o Web services. This binding allows applications to host and invoke Web
services using standard discovery protocols such as UDDI [430] or dynamic
P2P oriented discovery mechanisms such as P2PS.

e JXTA. JXTA [64] is a set of open protocols for discovery and communi-
cation within P2P networks. Originally developed by Sun Microsystems,
JXTA is aimed at enabling any connected device, from a PDA to a server,
to communicate in a P2P manner.

The GAP abstracts away the implementation detail of the various
bindings. For example, service description takes different forms in the existing
bindings — Web services use Web Service Definition Language (WSDL) [482],
JXTA uses service descriptors, and P2PS simply uses named pipes. Likewise,
transport and transfer protocols vary — Web services usually use HTTP
over TCP/IP, while JXTA and P2PS are transport agnostic, allowing
communication to traverse different protocols via the pipe abstraction. These
peculiarities do not filter up through the GAP. From a user’s perspective, a
service is simply made available that provides some capability and can be
invoked via the GAP. Furthermore, the use of the GAP as an umbrella to
differing service-oriented infrastructures means that it is possible to seamlessly
use applications developed on top of the GAP Interface across different
networks just by switching the GAP binding used.

The most common GAP binding we use is the Web service binding. This is
largely because of its support for Grid-based security, currently via the Grid
Security Infrastructure (GSI), and because of the confluence of Web and Grid
services, which means many Grid service interfaces are now being defined
using Web service standards.

Web Service Integration

The GAP Web service binding is implemented using WSPeer [187]. WSPeer is
focused on enabling simple, lightweight Web service management and does not

326 Taylor et al.

require the usual infrastructure associated with service hosting, such as a Web
server and a service container. Furthermore, it allows an application to expose
functionality as a Web service on the fly. As a result, WSPeer can operate
under diverse conditions, making its binding to a P2P-oriented interface, such
as the GAP, a straightforward task.

StringViewer
Value = [Bppend valued
Genesis 1:1-7 Al

1 In the beginning God created the heaven and ‘
the earth,

2 And the earth was without Form, and void; and
darkniess was upon the face of the deep. And
‘the Spirit of God moved upon the Face of the
‘waters.

w|

v

StringViewer

Figure 20.2: Web service and local tools on the Triana desktop.

From the perspective of Triana, the GAP enables diverse service
infrastructures to be viewed in a common way. By wrapping a GAP service
as a Triana component, the service is made available to the graphical
workspace displaying optional input and output ports. Connections are drawn
between components with cables, which usually denote data streams. On the
workspace, local tools, remote services, and Grid jobs can coexist and be
connected to one another. Figure 20.2 shows a combination of local Java
tools interacting with a remote Web service. The local tools provide a means
for inputting data into and reading output from the service component. The
example in Figure 20.2 shows a simple string generator tool that passes Bible
book, chapter, and verse information to the service, read_bible. The service
returns the text from the specified section of the Bible, which is displayed
using a simple string viewer tool. From the user’s perspective, there is no
difference between the components — they are simply visual components on
the workspace.

WS-RF Integration

Triana interacts with its distributed resources by using the GAT and
the GAP interfaces, which draw a clear distinction between Grid-based

20 The Triana Workflow Environment 327

and service-oriented interactions. This distinction divides our distributed
interactions between simple application-level interfaces, like the GAT, where
clear standardization efforts are currently under way (e.g., the SAGA GGF
Research Group [374]) and service-based interfaces. Such a distinction,
however, may well become less pronounced as service orientation is more
widely adopted by Grid middleware in general.

Therefore, from a Grid service perspective, WSPeer also incorporates Web
Service Resource Framework (WS-RF) [100] capabilities that enable Triana
to handle stateful resources via services as well as employ the event-driven
notification patterns supported by WS-Notification [316].

The WS-RF suite of specifications is based on the concept of a WS-
Resource [319]. This is the combination of a resource identifier and an endpoint
to a Web service that understands the identifier and can map it to some
resource. The resource can be anything — a table in a database, a job, a
subscription to a published topic, or a membership in a group of services.
The aim of WS-RF is to allow this underlying resource to be made accessible
and potentially be modified across multiple message exchanges with a Web
service without associating the service itself with the state of the resource.
In practice, this is achieved by placing the WS-Resource, serialized as a WS-
Addressing [184] EndpointReference, into the header of the Simple Object
Access Protocol (SOAP) message. Queries for properties of the underlying
resource are implicitly mapped to the resource referenced in the WS-Resource.
A WS-RF service advertises the type of resource it can handle through
a schema document in the WSDL definition of the service. This schema
document describes the properties (keys) that the resource type exposes and
that can therefore be accessed or modified. When a client is in possession of
a WS-Resource, it uses the properties keys declared in the WSDL to retrieve
the associated values. These values in turn represent the state of the resource.

Although the underlying infrastructure to manage WS-RF and WS-
Notification message exchange patterns is quite complex, Triana makes the
process simple from a user’s perspective. A WS-RF service can be discovered
and imported in the same way ordinary Web services are. When a WS-
RF service arrives in the user’s toolbox, it is made up of the usual Web
service operations that can be dragged onto the Triana worktop to be invoked.
However, Triana allows an additional context to be associated with these WS-
RF service operations in the workflow through a simple GUI. This context is
not itself a WS-Resource, but the name associated at workflow design time
with a WS-Resource that will be created or imported into the workflow at
runtime. As WS-RF does not specify the mechanism for how a WS-Resource
is created or returned to a client, it is impossible to write an all-purpose tool
for creating/importing WS-Resources within a Triana workflow. A typical
approach, however, is to employ a factory service. In this case, the factory
service can become part of the workflow, feeding the WS-Resource into the
context that is used as part of the invocation of a WS-RF service.

328 Taylor et al.
WS-RF Workflow

The application of WS-RF compliant services to workflows opens up certain
possibilities. In particular, the WS-Resource construct can be used to reduce
the need for sending large data sets as SOAP attachments or, worse, encoded
as XML. Because the use of WS-Resources allows arbitrary resources to be
exposed via a Web service, this can also pertain to data generated by a service
(that is, output), allowing a service to return a WS-Resource to a service
requester, as opposed to actual data. As a simple example, one can imagine
an executable that has been wrapped as a Web service, that takes a file as
input, and outputs another file after execution. Using standard Web services
mechanisms, one could imagine this service with an operation that takes a
byte array, or a SOAP attachment, as input and returns some similar data
structure as output. In the case of large files, this can be expensive, especially
if the file is being returned to the workflow enactment engine merely to be sent
to the next node in the workflow thereafter. If this service is WS-RF compliant,
however, then it can return a WS-Resource exposing the file as a resource and
itself as the service from which properties of the file can be retrieved. There
are a number of ways clients could be given access to the file resource; for
example, the resource type may expose a property consisting of a URI that
can be connected to directly, in order to read from a data stream. This is
far more efficient that transferring data along with the XML and also allows
the data to be pulled when (if) needed. If we extend this model to service
operation inputs, then it allows us to create workflows in which references to
data are passed directly between workflow components, bypassing the need to
send data via the enactment engine. Further optimizations can be achieved
by defining the properties of the file resource to reflect application-specific
requirements. For example, certain services may only need to process parts
of the file, in which case a property is exposed that returns just the relevant
portion.

From a more general perspective, the widespread adoption of the WS-
Addressing specification and the EndpointReference structure is potentially
useful in terms of workflow. Although not fully standardized as yet, the use
of WS-Addressing could pave the way for a generic means for services to
reference each other — similar to the anchor tag in HTML — even services
that are not specifically Web services. This in turn could lead to mechanisms
for describing and deploying heterogeneous workflows — the kind of workflows
Triana is capable of building — which are autonomous, running independently
of continual controller intervention. Currently, workflows involving arbitrary
services still require control and data to pass through the enactment engine at
every stage of the workflow because there are no universally accepted means
of transferring control or data directly to the next process in the flow.

While the widespread adoption of WS-Addressing should be considered a
positive, its use is not always suitable for all situations. In fact, this criticism
can be leveled at WS-RF. By combining an endpoint address with a resource

20 The Triana Workflow Environment 329

identifier, one is tightly coupling a service with a resource. This model can
lead to an object-oriented approach in which WS-Resources are used as global
pointers to specific resources located at certain addresses. Furthermore, it
encourages the explicit modeling of entities that should be hidden behind
the service interface. Both these conditions can lead to complex and fragile
systems [261]. Specifically in the context of workflow, managing references that
are explicitly tied to service endpoints can become cumbersome as the number
of services involved grows. As a result, we are exploring other Web service
frameworks, such as the Web Services Composite Application Framework
(WS-CAF) [317] and the WS-Context [67] specification in particular, for the
generation and enactment of Web service based workflows. WS-Context does
not couple state with service endpoints. Instead, context is shared between
multiple parties as a stateful conversation, and the interpretation of the
context by individual services is left to the invisible implementation of the
service.

Web service specification is a rapidly evolving area of development,
making it almost impossible to develop code with confidence that it will
have any longevity. In fact, we believe it is unlikely that WS-RF will survive
in any meaningful form beyond 2007, although some of its ideas may be
subsumed into other emerging standards. However, the experience gained with
implementing it has left both WSPeer and Triana with flexible architectures
for handling contextual message information in general, making them well
suited for easily integrating new Web service specifications quickly.

20.4.2 Grid-Oriented Components

Components supporting the execution of code on Grid resources are provided
within Triana using the GridLab GAT. The GridLab GAT is a simple API for
accessing Grid services and resources. It enables applications to perform Grid
tasks such as job submission and file transfer while remaining independent of
the Grid middleware used to execute these tasks. The GridLab GAT employs
an adapter-based architecture that allows different Grid middleware bindings
to be plugged into the GAT, thereby enabling applications written to the
GAT API to operate over a range of current and future Grid technologies. The
application programmer also benefits from only having to learn a single Grid
API, an idea currently being developed further through the SAGA Research
Group [374].

At the core of the GAT is the concept of a job, the execution of code on
a computational resource. The resource used to execute a job can be local or
remote, depending on the GAT adapter used to create the job instance. As
essential as job execution is the ability to interact with and relocate files, for
example to prestage files in the execution directory of a job and to retrieve
output files from a job. Different protocols for accessing and moving files,
for example GridFTP and HTTP, can be handled via different GAT adapter
instances.

330 Taylor et al.

The Visual GAT is the representation of GridLab GAT primitives as
components within Triana workflows and the visualization of the data are
dependencies between these components. The key Visual GAT components
are:

e Job component. A job component represents the submission of a GAT job
description to a resource broker. This job description includes information
on the executable and arguments to be run, plus optional information such
as the resource on which the job should be executed.

e File component. A file component represents a GAT-accessible file. The
file is identified by a URI, which specifies the protocol used to access that
file and its network location.

As with standard Triana components, the cables linking Visual GAT
components represent data flow between those components. The semantics of
this data flow depend on the context of the linked components. For example,
the cable between two file components represents data flow from one file
location to another; in other words, a file copy operation. Similarly, a cable
from a file component to a job component indicates a prestaged file, and a
cable from a non-Visual GAT component to a file component indicates a file
write.

In Figure 20.1 we show a simple job submission workflow using a mixture
of Visual GAT and standard Triana components. In this workflow, local
Java components are used to create and view the data, while Visual GAT
components are used to represent the prestaging and poststaging of these
data and job submission. An equivalent workflow could be created without
Visual GAT components; for example, by having specific GridFTP and Globus
job submission components. However, although this approach is used within
most visual workflow environments, the resulting workflow less accurately
models the data flow between workflow components. Furthermore, non-Visual
GAT workflows are often more complex and contain more redundancy than
equivalent workflows employing Visual GAT components. These issues are
discussed in much greater depth in [407].

20.5 Workflow Representation and Generation

A component in Triana is the unit of execution. It is the smallest granularity
of work that can be executed and typically consists of a single algorithm,
process, or service. Component structure in Triana, in common with many
component-based systems such as the CCA, has a number of properties
such as an identifying name, input and output “ports,” a number of
optional name/value parameters, and a proxy/reference to the part of the
component that will actually be doing the work. In Triana, each component
has a definition encoded in XML that specifies the name, input/output
specifications, and parameters. The format is similar to WSDL [482], although

20 The Triana Workflow Environment 331

more succinct. These definitions are used to represent instance information
about a component within the workflow language and component repositories.
An example component definition can be seen below.

<tool>

<name>Tangent</name>

<description>Tangent of the input data</description>

<inportnum>1</inportnum>

<outportnum>1</outportnum>

<input>
<type>triana.types.GraphType</type>
<type>triana.types.Const</type>

</input>
<output>...</output>
<parameters>

<param name="normPhaseReal" value="0.0"
type="userAccessible"/>
<param name='"normPhaseImag" value="0.0"
type="userAccessible"/>
</parameters>
</tool>

The external representation of a Triana workflow is a simple XML
document consisting of the individual participating component specifications
and a list of parent/child relationships representing the connections.
Hierarchical groupings are allowed, with subcomponents consisting of a
number of assembled components and connections. A simple example
taskgraph consisting of just two components can be seen below.

<tool>
<toolname>taskgraph</toolname>
<tasks>
<task>
<toolname>Sqrt</toolname>
<package>Math.Functions</package>
<inportnum>1</inportnum>
<outportnum>1</outportnum>
<input>
<type>triana.types.GraphType</type>
<type>triana.types.Const</type>

</input>
<output>...</output>
<parameters>
</parameters>
</task>
<task>

<toolname>Cosine</toolname>
<package>Math.Functions</package>

332 Taylor et al.

</task>
<connections>
<connection>
<source taskname="Cosine" node="0" />
<target taskname="Sqrt" node="0" />
</connection>
</connections>
</tasks>
</tool>

Triana can use other external workflow language representations, such as
VDL, that are available through “pluggable” language readers and writers.
These external workflow representations are mapped to Triana’s internal
object representation for execution by Triana. As long as a suitable mapping
is available, the external representation will largely be a matter of preference
until a standards-based workflow language has been agreed upon. Triana’s
XML language is not dissimilar to those used by other projects such as
ICENTI [153], Taverna/FreeFluo [326], and Ptolemy II [366] and should be
interoperable.

A major difference between the Triana workflow language and other
languages, such as BPEL4WS; is that our language has no explicit support for
control constructs. Loops and execution branching in Triana are handled by
specific components; i.e., Triana has a specific loop component that controls
repeated execution over a subworkflow and a logical component that controls
workflow branching. We believe that this approach is both simpler and more
flexible in that it allows for a finer-grained degree of control over these
constructs than can be achieved with a simple XML representation. Explicit
support for constraint-based loops, such as while or an optimization loop, is
often needed in scientific workflows but very difficult to represent. A more
complicated programming language style representation would allow this but
at the cost of ease-of-use considerations.

20.6 Current Triana Applications

This section outlines some of the projects currently using Triana and its
related technologies, such as GAP Interface and P2PS. Triana itself is
currently being developed as part of the GridOneD project.! The GridOneD
project is in its second phase of funding. The initial focus of GridOneD was to
develop components within Triana to support gravitational wave searches in
collaboration with the GEO600 project [158], and this led to the development
of GAP, P2PS, and other middleware. The second phase aims to extend
Triana’s support for gravitational wave searches and also to develop support
for pulsar searches in collaboration with Manchester University and Jodrell

! http://www.gridoned.org/

20 The Triana Workflow Environment 333

Bank. This support will employ Visual GAT components within Triana to
submit data-analysis jobs across Grid resources.

Triana and its related technologies are being used in a range of external
projects. The majority of these projects are using Triana to choreograph
Web services. An example of this is Biodiversity World (Chapter 6), a
collaboration between Cardiff, Reading, and Southampton universities and the
Natural History Museum. The goal of Biodiversity World is to create a Grid-
based problem-solving environment for collaborative exploration and analysis
of global biodiversity patterns. Triana is providing the visual interface for
connecting and enacting the services created by this project. Other examples
of projects using Triana to choreograph Web services include Data Mining
Grid [107], a project developing tools and services for deploying data-mining
applications on the Grid; FAEHIM [8], a second data-mining-based project;
and DIPSO [119], an environment for distributed, complex problem solving.

In terms of related technologies, the DARRT (Distributed Audio
Rendering using Triana) project [105] at the Louisiana Center for Arts and
Technology is exploring the use of Grid computing technologies towards
sound computation and music synthesis, in particular using P2P workflow
distribution within Triana. The SRSS (Scalable Robust Self-organizing Sensor
networks) project [393] has been using the GAP and P2PS in simulating P2P
networks within NS2 for researching lightweight discovery mechanisms. Triana
is also being used for workflow generation and editing within the GENIUS
Grid portal [157], part of the EGEE project.

20.7 Example 1: Distributing GAP Services

The GAP is an interface to a number of distributed services (e.g. P2PS,
JXTA, WS-RF, or Web services). Services can be choreographed into Triana
workflows for managing the control or data flow and dependencies between
distributed services. However, Triana can also be used to locate and utilize a
number of distributed Triana service deployers by using a distribution policy
that enables the dynamic rewiring of the taskgraph at runtime in order to
connect to these services. We have implemented two such distribution policies
for parallel and pipelined execution. In both scenarios, on the client, a set
of Triana units is selected and grouped to create a compound unit, and
a distribution policy is applied to this group. In the parallel scenario, the
subworkflow contained within the group is distributed across all available
service deployers in order to duplicate that group capability across the
resources. When data arrive they are farmed out to the various distributed
services for parallel execution. In the pipelined scenario, the taskgraph is
spliced vertically and parts of the group are distributed across the available
resources.

These scenarios are based on the P2P-style discovery mechanisms that are
exposed by the GAP interface, with implementations of these mechanisms

334 Taylor et al.

provided by the different GAP bindings. These scenarios can therefore work
over WS-RF and Web services in the same way as for P2PS, as described in
Section 20.4.1. We have used this mechanism in a number of scenarios [91,
406,410,411] for high-throughput applications, typically on local networks or
clusters where we have control of the resources. Each application generally has
a fixed set of data that are input into a group unit, which implements a data-
processing algorithm, perhaps for searching a parameter space. Typically, the
algorithms are CPU intensive and the parameter sets being searched can be
divided and sent to parallel instances of the algorithm. We use the parallel
distribution policy to discover and distribute the data to available resources
for processing.

20.7.1 Workflow Generation

For these types of service-based scenarios, workflows are typically constructed
from local units (Java or C) representing the algorithm for importing the data
and for performing the parameter search. Such workflows are constructed and
prototyped in a serial fashion and then distributed at runtime. The serial
version of these algorithms can be complex. In one example [91], a template-
matching algorithm for matching inspiral binaries in gravitational wave signals
was constructed from more than fifty local Java units with a number of
processing pipelines consisting of specific algorithms (e.g., FFT, correlation,
complex conjugate, etc.) that were combined and processed further to give
the desired result.

Once the algorithm is composed, the user can visually select the processing
(CPU-intensive) section of the workflow and group it. This group can then be
assigned the parallel distribution policy to indicate that it should be task-
farmed to available resources. When data arrive at the group unit, they
are passed out across the network to the discovered distributed services one
data segment at a time. In this way, the individual services can process data
segments in parallel.

20.7.2 Workflow Refinement

In this case, workflows are mapped from their locally specified serial version
into a distributed workflow that connects to the available resources. This
workflow refinement happens at runtime after the client has discovered
the available services it can utilize. The workflow is annotated with proxy
components to represent the available distributed services, and the workflow
is rewired to direct data to these components. This results in the connectivity
to the single local group being replaced by one-to-many connectivity from the
client to the available remote services.

20 The Triana Workflow Environment 335
20.7.3 Workflow Execution

The distributed workflow created during the dynamic refinement process is
used by the execution engine in order to be aware of the available services it
can use during the execution phase of the workflow. The current algorithm
simply passes the data out in parallel to the services and thereafter it passes
data to services once they have completed their current data segment. This
ensures a simple load-balancing mechanism during execution.

20.8 Example 2: The Visual GAT

In this section, we outline how Triana can be used to implement complex
Grid workflows that combine the GridLab GAT capabilities discussed
in Section 20.4.2 with interactive legacy application monitoring (using
gridMonSteer, described in Section 20.8.1). The two scenarios presented below
illustrate a fundamental shift in the perception of how legacy applications can
be run on the Grid in that the workflow in each example as a whole is the Grid
application rather than a monolithic legacy code. The legacy code is typically
deployed multiple times within the workflow to conduct parameter sweeps or
similar actions, and we allow interactive control in the wider context of the
complete workflow.

In the examples presented in this section, we employ the use of a wrapper
for integrating distributed legacy applications into complex Visual GAT
workflows. In these workflows, decisions are made based on the current output
state of the legacy application to steer the workflow (or application) to support
the appropriate analysis required.

20.8.1 Integrating Legacy Applications

We have implemented a simple, nonintrusive legacy code or application
wrapper, called gridMonSteer (GMS), which allows us to integrate noncustom-
ized distributed applications within a workflow. GMS monitors the legacy
application as it is executing and further allows application and/or workflow-
level steering. GMS emerged from an ongoing collaboration investigating the
integration of distributed Cactus simulations [167] (Chapter 25 within Triana
workflows. Initially, a Grid-friendly Cactus thorn was developed to provide
the distributed connectivity from Cactus to a Triana workflow component
[168]. This component detected files output by Cactus and passed these into
a running Triana workflow, which was used to visualize the simulation as
it progressed (this was demonstrated in SuperComputing 2004). GMS is a
generalization of this architecture, that allows the same kind of file detection
for any application rather than one that is Cactus-specific.

GMS consists of an application wrapper that executes a legacy application
and monitors specified directories for files that it creates and an application

336 Taylor et al.

controller, which is any application that exposes a defined Web service
interface, enabling it to receive input from one or more application wrappers.
The controller, in our case Triana, uses the dynamic deployment capabilities of
WSPeer to expose a Web service interface that implements the gridMonSteer
protocol for notification and delivery of the distributed files. The wrapper
notifies the controller about new files that have been detected. The controller
then selects files of interest and returns this list to the wrapper. Thereafter,
the wrapper sends these files if and when they are rewritten or updated by
the legacy application to the controller. Within the context of the Grid, the
wrapper is typically the job submitted to the resource manager, with the
executable of the actual legacy application that will be monitored being
an argument of this job. Once started, the wrapper executes the legacy
application and begins monitoring; for example, in the case of output files, it
polls the output directory of the legacy application.

Communication between the wrapper and controller is always initiated
by the wrapper. In other words, the controller plays the role of server by
opening a listening port and the wrapper that of client in that it opens a per-
request outgoing connection, thereby circumventing many NAT and firewall
problems that exist within Grid environments. The principal benefit of the
gridMonSteer architecture is that the wrapper executes in the same directory
as the legacy application, allowing it to constantly monitor the application
output files and immediately notify the controller of changes to these files. This
approach allows the controller to monitor and respond to intermediate results
for the legacy application in a timely manner not possible with other coarse-
grained wrapping architectures, such as GEMCLA [229] and SOAPLab [381].

The next two sections describe a brief overview of the two scenarios that
use GMS to integrate Cactus within a Triana workflow via the Visual GAT
job submission component, described in Section 20.4.2. The breakdown of the
process is illustrated through its generation, refinement and execution steps,
described in Sections 20.8.4 — 20.8.6.

20.8.2 Executing and Monitoring Dynamic Legacy Applications

This first example was the final project review for the GridLab project. It
demonstrated a wrapped GMS Cactus job that was executed within a Triana
workflow. Triana was used to stage the files onto the Grid as input to the job,
coordinate the job submission, and then interact with the running simulation
by visualizing the results and steering it accordingly. The full demonstration
is illustrated in Figure 20.3 and is described at length in [407].

Briefly, the scenario involves the following. The WaveToy-medium.par,
represented using a Visual GAT file component, specifies the location of a
Cactus parameter file from a Web server by using an HTTP address. This unit
is connected to a local Java component, which results in the HT'TP adapter
being invoked by the GAT to make the HTTP-to-local transfer. (Conceptually,
the GAT invocation is made at the cable level when both protocols on each

20 The Triana Workflow Environment 337

D e Ty b (e
E’mm;n‘l—l cactus_wavetoy_seria hi

8 G weseaiah #— | T

GridLab GAT
‘ File CPI ‘ ‘ Resource Broker CPI ‘

=
0]
Zz||&% 2o 2 2
3|85 |28 €5 g
§v||84||3°%||8¢ g
S Sv g S S

WaveToy.par
Data
vmen

WWW.
gridlab.
org

WaveToy.par1

Figure 20.3: Graphical Grid programming through monitoring and steering a
deployed Cactus simulation running.

side are defined.) The string editor unit displays this file for minor editing
and then passes the contents to another GAT file component that represents
a Grid-accessible location (a gsiftp address) for the parameter file. The data
flow that results used the GridF'TP GAT to write the file to a machine in
Amsterdam. This file represents the first of two file dependencies for the
Cactus job that is specified in the cactus_wavetoy_serial.sh1 job component.
The second dependency is the script that starts Cactus on the remote machine,
cactus_wavetoy_serial.sh.

The job component in the GridLab review used the GRMS adapter
to allow it to make the decision about where the actual job was run.
This involved a number of other Gridlab services, including the GridLab
Authentication Service (GAS), iGrid, Delphoi, and Mercury, and the
GridLab Data Management service, resulting in the WaveToy.par and
cactus-wavetoy_serial.sh files being copied into the location that GRMS
chooses to execute the job, as illustrated in Figure 20.3. During execution,
we used a custom unit, called WaveToySteering, to interact with the Cactus
HTTP steering mechanism for changing run-time parameters. We visualized
the output files gathered by GMS using the Triana ImageViewer tool to
display the JPEG files of the simulation, the SGTGrapher Triana tool for
viewing the wave amplitude of the signal against time from the live Cactus

338 Taylor et al.

simulation as it progressed, and the StringViewer tool to display standard
output (stdout) from the simulation.

20.8.3 Dynamic Data-Dependent Simulations

Building from this simple scenario, we are currently in the process of defining
more complex Cactus—Triana scenarios that adapt during execution depending
on the analyses of data within the workflow. One scenario we are currently
implementing involves monitoring a single Cactus simulation much like the
scenario above, but instead of steering this Cactus simulation directly, we
would monitor its data to watch out for specific features, such as an apparent
horizon from a coalescing black hole binary system. Upon such a detection,
rather than steering the application directly, we make a decision based on the
stimuli or evolution of the application and dynamically instantiate a workflow
to aid in the further investigation of this aspect.

Since this typically involves searching a parameter space, we want to
perform multiple parallel job submissions of Cacti across the Grid of available
resources to perform a distributed search across the parameter range. This
could be implemented by dynamically writing a Visual GAT workflow to
submit a number of Cacti across the Grid. When the Cacti finish their
individual runs, they return the results to the main application, which enables
it to steer the main Cactus simulation in the optimal direction and to visualize
the results.

20.8.4 Workflow Generation

In both of these cases, the workflows can be specified graphically using simple
Visual GAT primitives. In each case, the initial workflows are quite simple
and hide the complexity of the multiple levels of refinement that can happen
during execution.

20.8.5 Workflow Refinement

In both of these scenarios, Triana can refine the workflows in a number of
different ways. In the first case, there are two levels of refinement, which
were outlined during the scenario. The first involves converting the abstract
Visual GAT workflow into a set of invocations that are appropriate for
deployment. We described two mechanisms in the scenario for file transfer and
job submission. The virtual GAT invocations result in runtime level refinement
by dynamically choosing the appropriate Grid tool for the capability. So, for
HTTP-to-local file transfer, an HTTP file adapter was used, and for Grid
staging, a GridFTP file adapter was used. Similarly, for job submission, GRMS
was chosen for its discovery and resource brokering capabilities.

A second-level refinement was made at application steering by allowing the
location of the simulation to be dynamically fed into the WaveToySteering

20 The Triana Workflow Environment 339

unit, which could, in turn, tune the parameters in the simulation. The
application-level refinement allows a user to alter the behavior of the
simulation which in the case of the first scenario can result in different internal
workflows taking place. In the second scenario, however, this is more apparent.
Here, the result from one simulation is used to drive the workflow as a whole.
The initial workflow is simple, but as events are detected, more workflows
are spawned to analyze these events further and are then fed back into the
workflow in order to steer the Cactus simulation.

20.8.6 Workflow Execution

The execution of both of these workflows uses the underlying GAT engine
to coordinate the execution of the components and stage the files for
the necessary transfer. Triana simply acts as a graphical interface to this
underlying engine for the distributed functionality connecting these stages to
the default local scheduler for execution of the local units where appropriate.
Triana can also mix and match distributed services, local units, and GAT
constructs and therefore acts as a manager or a bridge between the different
engines for execution of the components.

20.9 Conclusion

In this chapter, we described the Triana workflow environment, which
is capable of acting in heterogeneous Grid and P2P environments
simultaneously. This is accomplished through the use of two lightweight
application-level interfaces, called the GAP and the GAT, that allow
integration with distributed services and Grid capabilities. The underlying
bindings for these interfaces allow interaction through the GAP to JXTA,
P2PS, and WSPeer (with its integration to Web services and WS-RF) and
through the GAT to a host of Grid tools, such as GRAM, GridFTP, and
GRMS. We described each of these bindings and outlined the underlying
workflow language on which Triana is based. Finally, we presented two service-
based and Grid-based examples to show how the workflow is generated,
refined, and executed in each case.

20.10 Acknowledgments

Triana was originally developed within the GEO 600 project funded by
PPARC but recent developments have been supported through GridLab, an
EU IST three-year project and GridOneD (PPARC), which has funded Grid
and P2P Triana developments for the analysis of one-dimensional astrophysics
data sets. GridOneD, initially a three-year project, has recently been renewed
for a further two years.

