
19

Taverna/myGrid: Aligning a Workflow System
with the Life Sciences Community

Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis, Mark
Greenwood, Duncan Hull, Robert Stevens, Daniele Turi, and
Jun Zhao

19.1 Introduction

Bioinformatics is a discipline that uses computational and mathematical
techniques to store, manage, and analyze biological data in order to answer
biological questions. Bioinformatics has over 850 databases [154] and numer-
ous tools that work over those databases and local data to produce even more
data themselves. In order to perform an analysis, a bioinformatician uses one
or more of these resources to gather, filter, and transform data to answer a
question. Thus, bioinformatics is an in silico science.

The traditional bioinformatics technique of cutting and pasting between
Web pages can be effective, but it is neither scalable nor does it support
scientific best practice, such as record keeping. In addition, as such methods
are scaled up, slips and omissions are more likely to occur. A final human
factor is the tedium of such repetitive tasks [397].

Doing these tasks programmatically is an obvious solution, especially
for the repetitive nature of the tasks. Some bioinformaticians have the
programming skills to wrap these distributed resources. Such solutions are,
however, not easy to disseminate, adapt, and verify. Moreover, one of the
consequences of the autonomy of bioinformatics service providers is massive
heterogeneity within those resources. The advent of Web services has brought
about a major change in the availability of bioinformatics resources from Web
pages and command-line programs to Web services [395], though much of the
structural, value-based, and syntactic heterogeneity remains. The consequent
lack of a common type system means that services are difficult to join together
programmatically, and any technical solution to in silico experiments in
biology has to address this issue.

Many scientific computing projects within the academic community
have turned to workflows as a means of orchestrating complex tasks (in
silico experiments) over a distributed set of resources. Examples include
DiscoveryNet [373] for molecular biology and environmental data analysis,



19 Taverna/myGrid 301

SEEK for ecology [19, 20], GriPhyn for particle physics [110], and SCEC/IT
for earthquake analysis and prediction [236].

Workflows offer a high-level alternative for encoding bioinformatics
in silico experiments. The high-level nature of the encoding means a broader
community can create templates for in silico experiments. They are also
easier to adapt or repurpose by substitution or extension. Finally, workflows
are less of a black box than a script or traditional program; the experimental
protocol captured in the workflow is displayed in such a way that a user can
see the components, their order, and inputs and outputs. Such a workflow
can be seen in Figure 19.1.

myGrid is a project to build middleware to support workflow-based in silico
experiments in biology. Funded by the United Kingdom’s e-Science Pro-
gramme since 2001, it has developed a set of open-source components that can
be used independently and together. These include a service directory [267],
ontology-driven search tools over semantic descriptions of external resources
and data [267], data repositories and semantically driven metadata stores for
recording the provenance of a workflow and the experimental life cycle [494],
and other components, such as distributed query processing [16] and event
notification.1

myGrid’s workflow execution and development environment, Taverna, links
together and executes external remote or local, private or public, third-party
or home-grown, heterogeneous open services (applications, databases, etc.).
The Freefluo workflow enactment engine2 enacts the workflows. The Taverna
workbench is a GUI-based application for bioinformaticians to assemble,
adapt, and run workflows and manage the generated data and metadata.
myGrid components are Taverna plug-ins (for results collection and browsing,
provenance capture, service publication, and discovery) and services (such as
specialist text mining). Thus the workbench is the user-facing application for
the myGrid middleware services. At the time of writing, Taverna 1.3 has been
downloaded over 14,000 times3 and has an estimated user base of around
1500 installations. Taverna has been used in many different areas of research
throughout Europe and the United States for functional genomics, systems
biology, protein structure analysis, image processing, chemoinformatics, and
simulation coordination. Since 2006, myGrid has been incorporated into the
United Kingdom’s Open Middleware Infrastructure Institute to be “hardened”
and developed to continue to support life scientists.

19.1.1 A Bioinformatics Case Study

An exemplar Taverna workflow currently being used for systems biology is
shown in Figure 19.1. This workflow uses data stored in distributed databases

1 http://www.mygrid.org.uk.
2 http://freefluo.sourceforge.net.
3 See http://taverna.sourceforge.net/index.php?doc=stats.php.



302 Oinn, Li, et al.

to automate the reconstruction of biological pathways that represent the rela-
tionships between biological entities such as genes, proteins, and metabolites.

The interaction pathways generated by the workflow are in the form of a
data model, which is specified by the XML-based Systems Biology Markup
Language (SBML) [201]. A core SBML workflow is responsible for generating
an SBML model. This is then populated, through the SBML API, by the
supplementary workflows that gather data for the model (see Figure 19.1).
The SBML model can then be used to perform biological simulations.

These workflows typify the needs of bioinformatics analyses. It is a
typically datacentric workflow, gathering many kinds of data from a variety
of locations and from services of a variety of technology types. As will be seen
throughout the chapter, many types of resources are used, and all of these can
be incorporated into Taverna. The workflows have to be run repeatedly, and
such an analysis would be long and tedious to perform manually.

Figure 19.1: An SBML model construction workflow. This workflow retrieves
protein interactions from the BIND database, which are then used to populate
an SBML model using the core SBML workflow. Four types of processors are
used in this example: WSDL, consumer API, local Java, and nested workflow
processors. These processors are joined together by data links (arrows) and
coordination links.



19 Taverna/myGrid 303

The rest of this chapter is organized as follows. Section 19.2 further
elaborates on the background to Taverna and then Section 19.3 outlines
requirements in detail. Section 19.4 introduces the major Taverna components,
and architecture. Section 19.5 concentrates on the workflow design and
Section 19.6 on executing and monitoring workflows. Section 19.7 completes
the workflow life cycle with metadata and provenance associated with
managing and sharing results and the workflows themselves. Section 19.8
discusses related work and Section 19.9 reflects on our experiences and
showcases future developments in Taverna 2.0.

19.2 The Bioinformatics Background

Life scientists are accustomed to making use of a wide variety of Web-
based resources. However, building applications that integrate resources
with interfaces designed for humans is difficult and error-prone [395]. The
emergence of Web services [58], along with the availability of suitable tool
support, has seen a significant number of bioinformatics Web resources become
publicly available and described with a Web Services Description Language
(WSDL) interface.

There are currently over 3000 services accessible to a myGrid user.
Although the majority involve complex interaction patterns or specific
messaging formats, or use different protocols and paradigms, they actually
follow a small number of stereotyped patterns. The users’ lack of middleware
knowledge means they should not be expected to deal with the differences
between these patterns. In addition, given the number and distribution of
services, users cannot be expected to have existing knowledge of what services
are available, where they are, or what they do.

The data produced by these services are mostly semistructured and
heterogeneous. There are a large number of data formats, including those for
gene sequences and protein sequences, as well as bespoke formats produced by
many analysis tools. These are rarely encoded in XML, and there is usually no
formal specification that describes these formats. Interpreting or reconciling
these data as they are passed between different databases and analysis tools
is therefore difficult.

This situation is in contrast with data in other scientific workflow projects
that have much more centralized control of data formats. For example, the
SEEK project provides tools for ecologists to describe their data using XML
schema and ontologies and so support middleware-driven data integration [59].

DiscoveryNet [373] requires each application service to be wrapped,
allowing data to adhere to a common format. Other projects are more uniform
than myGrid in the way applications on distributed resources are accessed.
For example, abstract Pegasus workflows used in the SCEC/IT project are
first compiled into concrete workflows. Each step of a concrete workflow
corresponds to a job to be scheduled on a Condor cluster [111].



304 Oinn, Li, et al.

Taverna differs from these projects by placing an emphasis on coping
with an environment of autonomous service providers and a corresponding
“open world” model for the underlying Grid and service-oriented architecture.
Taverna’s target audience of life scientists wants easy access and composition
of as wide a range of services as feasible, and this reinforces the need for an
open access policy for services, despite the obvious difficulties.

19.3 Aligning with Life Science

From the background and introduction, we can define the key requirements
for the Taverna workflow system that drive us to align with life science:

• Ease of use. The target end users for Taverna are not necessarily expert
programmers.

• Dataflow centric. Bioinformaticians are familiar with the notion of
dataflow centric analysis. We want to enhance how biologists perform
their models of analysis, not change their model of analysis.

• Open world assumption. We want to be able to use any service as presented
rather than require service providers to implement services in a prescribed
manner and thus create a barrier to adoption.

• Easy and rapid user-driven ad hoc workflow design. Quickly and easily
finding services and adapting previous workflows is key to effective
workflow prototyping.

• Fault tolerant . Any software operating in a networked, distributed envir-
onment is required to cope gracefully with failure.

Figure 19.2: The e-Science life cycle.



19 Taverna/myGrid 305

• Support for the e-Science life cycle. Workflows are not a complete solution
for supporting in silico experiments. They exist in a wider context of
scientific data management, as illustrated in Figure 19.2. It is essential
that data produced by a workflow carry some record of how and why they
were produced, i.e., the provenance of the data.

19.4 Architecture of Taverna

The requirements described have led to several major design lessons. Fig-
ure 19.3 illustrates how Taverna takes a layered approach to its overall
architecture. This is driven by the need to present a useful, high-level
presentation in which biologists can coordinate a variety of resources. Our user
base neither knows nor cares about such things as port types, etc. We have a
requirement both to present a straightforward perspective to our users and yet
cope with the heterogeneous interfaces of our services. A major consequence
of this for the workflow system architecture has been to provide a multitiered
approach to resource discovery and execution that separates application and
user concerns from operational and middleware concerns.

Scufl, a workflow language for linking applications [326], is at the
abstraction level of the user; an extensible processor plug-in architecture for
the Freefluo enactor manages the low-level “plumbing” invocation complexity
of different families of services. In between lies an execution layer interpreting
the Taverna Data Object Model that handles user-implied control flows such
as implicit iteration over lists and a user’s fault-tolerance policies.

Figure 19.3 shows how the myGrid components are divided between the
three layers of myGrid’s design.

• The Application Data Flow layer is aimed at the user and is characterized
by a User-Level workflow object model. The purpose is to present the
workflows from a problem-oriented view, hiding the complexity of the
interoperation of the services. When combining services into workflows,
users think in terms of (see Figure 19.4) the data consumed and produced
by logical services and connecting them together. They are not interested
in the implementation styles of the services.

• The Execution Flow layer relieves the user of most of the details of the
execution flow of the workflow and expands on control-flow assumptions
that tend to be made by users. This layer is characterized by the
Enactor Internal Object Model and by the myGrid Contextual Information
Model. The layer manages list and tree data structures, implicitly iterates
over collections of inputs, and implements fault recovery strategies on
behalf of the user. This saves the user explicitly handling these at the
application layer and avoids mixing the mechanics of the workflow with its
conceptual purpose. A drawback is that an expert bioinformatician needs



306 Oinn, Li, et al.

Figure 19.3: An overview of Taverna in layers.

to understand the behavioral semantics of this layer to avoid duplicating
the implicit behavior.

• The Processor Invocation layer is aimed at interacting with and invok-
ing concrete services. Bioinformatics services developed by autonomous
groups can be implemented in a variety of different styles even when they
are similar logical services from a scientist’s perspective. This layer is
characterized by the Enactor Internal Object Model and is catered to by
an extensible processor plug-in architecture for the Freefluo enactment
engine.

myGrid is designed to have a framework that can be extended at three levels:

• The first level provides a plug-in framework to add new GUI panels
to facilitate user interaction for deriving and managing the behavioral
extensions incorporated into Taverna. This extensibility is made available
at the workbench layer.

• The second level allows for new processor types to be plugged in to enable
the enactment engine to recognize and invoke new types of services (which
can be both local and external services). This permits a wider variety of
workflows to be constructed and executed. This level of extensibility is
provided at the workflow execution layer.

• The third level is provided for loosely integrating external components via
an event–observer interface. The workflow enactor generates events during
critical state changes as it executes the workflow, exposing snapshots of
important parts of its internal state via event objects (i.e., messages).
Those event objects are then intercepted and processed by observer plug-



19 Taverna/myGrid 307

ins that can interact with external services. This level of extensibility is
made available at the workflow execution layer.

Figure 19.4: The Taverna workbench showing a tree structure explorer (a) and
a graphical diagram view (b) of a Scufl workflow. The results of this workflow
are shown in the enactor invocation window in the foreground (c). A service
palette showing the range of operations that can be used in the composition
of a workflow is also shown (d).

The Scufl language [326] is essentially a dataflow centric language,
defining a graph of data interactions between different services (or, more
strictly, processors). Scufl is designed to reflect the user’s abstraction of the
in silico experiment rather than the low-level details of the enactment of that
experiment.

Internally to Taverna, Scufl is represented using a Workflow Object Model
along with additional information gained from introspecting over the services.
A typical workflow developed in the systems biology use case is shown in
Figure 19.1.



308 Oinn, Li, et al.

The components of a Scufl workflow are:

• A set of inputs that are entry points for the data for the workflow.
• A set of outputs that are exit points for the data for the workflow.
• A set of processors, each of which represents a logical service — an

individual step within a workflow. A processor includes a set of input
ports and a set of output ports. From the user’s perspective, the behavior
of a processor is to receive data on its input ports (processing the data
internally) and to produce data on its output ports.

• A set of data links that link data sources to data destinations. The data
sources can be inputs or processor output ports, and data destinations
can be outputs or processor input ports.

• A set of coordination links that enable running order dependencies to be
expressed where direct data flow is not required by providing additional
constraints on the behavior of the linked processors. For example, in
Figure 19.1, the coordination links are defined so that one processor will
not process its data until another processor completes, even though there
is no direct data connection between them.

Part of the complexity of workflow design is when the user needs to deal with
collections, control structures such as iterations, and error handling. Scufl is
simplified to the extent that these are implicit. This layer fills in these implicit
assumptions by interpreting an Internal Object Model that encodes the data
that passes through a workflow. This data model is lightweight; it contains
some basic data structures, such as lists and trees, and enables the decoration
of data with MIME types and semantic descriptions to enable later discovery
or viewing of the data.

The addition of data structures such as lists to the data object model
brings about an added complexity. There are a number of ways in which the
list could be handled by the service. Taverna uses an implicit, but configurable,
iteration mechanism, as shown in Figure 19.5. Where a processor takes a single
list as inputs, the enactment engine will invoke the processor multiple times
and collate the results into a new list. Where a processor takes two (or more)
list inputs, the service will be invoked with either the cross or dot product of
the two lists.

Taverna supports fault tolerance through a configurable mechanism;
processors will retry a failed service invocation a number of times, often
with increasing delays between retry attempts before finally reporting failure.
Users can specify alternative services for any Scufl processor in the order in
which they should be substituted. Alternative services are typically either
an identical service supplied by an alternative service provider or, rarely, a
completely different service that the user deems to be substitutable without
damaging the workflow’s intention.

While the Scufl language defines the data flow, it does not fully describe
the service interactions to enable this data flow.



19 Taverna/myGrid 309

Figure 19.5: Configurable iteration. For example, a processor implements a
function f — it takes one input a and produces result f(a). If this processor
is given a list of inputs [a1,a2,a3], the implicit iteration will produce a list of
results, one for each input. This is equivalent to “map f [a1,a2,a3].” Where
a processor has more than one input, the default is to apply the function to
the cross product of all the input lists, however, sometimes the dot product
is required. The configurable iterators allow users to specify how the lists of
input values should be combined using these cross and dot operators.

It would be impossible to describe the interaction with all of the different
service interfaces within a language like Scufl. Instead, Scufl is designed to
be extensible through the use of processor types. We define a set of processor
plug-ins that manage service interaction by presenting a common abstraction
over these different styles. Current processors include:

• A WSDL Scufl processor implemented by a single Web service operation
described in a WSDL file.

• A local Java function processor, where services are provided directly
through a Java implementation with parameters as input ports and results
as output ports (Figure 19.1).

• A Soaplab processor, implemented through a CORBA-like stateful pro-
tocol of the Web service operations in a Soaplab service.

• A nested workflow processor, implemented by a Scufl workflow (Fig-
ure 19.1).

• A BioMOBY processor (Figure 19.6). Several smaller groups have ad-
opted the BioMOBY project’s conventions for publishing Web services.
BioMOBY provides a registry and messaging format for bioinformatics
services [469].

• A SeqHound processor that manages a representational state trans-
fer (REST) style interface, where all information required for the service



310 Oinn, Li, et al.

invocation is encoded in a single HTTP GET or POST request (Fig-
ure 19.6).

• A BioMart processor that directly accesses predefined queries over a
relational database using a JDBC connection (Figure 19.6).

• A Styx processor that executes a workflow subgraph containing streamed
services using peer-to-peer data transfer based on the Styx Grid service
protocol [357].

The Freefluo engine is responsible for the enactment of the workflow. The
core of the engine is workflow language independent, with specific extensions
that specialize Freefluo to enable it to enact Scufl.

19.5 Discovering Resources and Designing Workflows

Workflow construction is driven by the domain expert, that is, the scientist.
This corresponds to designing a suitable laboratory protocol for their investi-
gation. The life cycle of an in silico experiment (see Figure 19.2) has the
following stages:

• Hypothesis formation. First, the scientist determines the overall intention
of the experiment. This informs a top-level design, and would be the
overall “shape” of the workflow, including its inputs and desired outputs.

• Workflow design. Second, this design is translated into a concrete plan.
In the laboratory, this translation would consist of choosing appropriate
experimental protocols and conditions. In an e-Science workflow, this
maps to the choice and configuration of data and analysis services.

• Collecting. The workflow needs to be run, the services invoked, data
coordinated, etc (See Section 19.6). In the laboratory, this is handled
by protocols for entering results in laboratory books. As the workflow
is executed, the results have to be collected and coordinated to record
their derivation path. To comply with scientific practice, records need to
be kept on where these data came from, when they were acquired, who
designed and who ran the workflow, and so forth. This is the provenance
of the workflow and is described more fully in Section 19.7.

• Analyzing and sharing. As in a laboratory experiment, results are analyzed
and then shared.

19.5.1 Service Discovery

In this section, we describe the service discovery and service choice aspects
of running in silico experiments in Taverna.

Taverna uses a variety of different mechanisms for discovery of services and
populates the service list using an incremental approach. Flexible approaches
to discovering available resources are an essential part of supporting the
experimental life cycle:



19 Taverna/myGrid 311

• Public registries such as UDDI [430]. We are in favor of registries, but their
limited usefulness is due to the lack of widespread deployment. They are
generally perceived by the community to be a heavyweight solution [430].

• GRIMOIRES. An enriched prototype UDDI registry service developed by
myGrid, with the ability to store semantic metadata about services.

• URL submission. Users can add new services by directly pointing to a URL
containing WSDL files. The workbench will introspect over the description
and add the described services to a palette of services.

• Workflow introspection. Users can exploit existing experience by loading
existing workflows, observing how services have been used in context, and
adding those services to the available services palette.

• Processor-specific mechanisms. Many of the service types Taverna sup-
ports through its processor plug-ins provide their own methods for service
discovery.

• Scavenging. Local disks are scavenged for WSDL files that are introspected
over, or users create a Web page containing links to service descriptions
and, when pointed at this page, Taverna explores all available service
descriptions, extracts services, and makes them available. While crude,
this works well and gives users considerable flexibility in loading the
palette of available services that fits their current requirements.

Taverna’s access to 3000 services means that service selection is increas-
ingly important. Figure 19.6 is grouped according to the service locations,
which means that services of the same type are grouped together and color
coded. In addition, there is a simple search by name facility.

A common task is to locate a new service based on some conceptual
description of the service semantics. To enable service selection by bioinfor-
maticians, we must represent their view of the services and domain [480].
We have investigated a number of different mechanisms to drive the search
process, including an RDF-based metadata-enriched UDDI registry [269], and
a domain ontology [481] described in the W3C Web Ontology Language OWL.

Feta is our third and most recent version of a component for semantically
searching for candidate services that takes a user-oriented approach to service
discovery [268], a path also being trodden by the BioMOBY project. In
practice, this means we describe an abstraction over the services—provided
by the Taverna processors—rather than the services themselves. We have
relatively shallow descriptions of the services. Although richer descriptions
might enable more refined searching and sophisticated reasoning, they are
expensive and time consuming to provide. In practice, search results do not
have to be precise, as the final choice is made by the workflow designer
(a biologist), not automatically by a machine. Finally, the use of shallow
descriptions enables us to use simpler technologies to answer queries.



312 Oinn, Li, et al.

Figure 19.6: An example palette of local (BeanShell scripts, Java widgets)
and remote (Biomart, Soaplab, BioMOBY, Seqhound) services that can be
used for the construction of workflows in Taverna. libSBML methods made
available as local services via the API consumer and that were used for the
construction of the exemplar systems biology workflow are also shown.

19.5.2 Service Composition

Most workflow design packages have adopted a view analogous to electric
circuit layout, with services represented as “chips” with pins for input and
output [20,409]. However, from a user interface point of view, this arrangement
can become less understandable as complexity increases. If the layout of
service components onscreen is left under the user’s control, then the user
can tailor the workflow appearance, but this can result in a large amount
of time being spent effectively doing graph layout rather than e-Science. In
Taverna, the graphical view of a workflow is read-only; it is generated from
the underlying workflow model. One advantage of this is that it is easy to



19 Taverna/myGrid 313

generate different graphical views of the workflow, showing more or less detail
as required.

When composing workflows in an open world, we have no control over
the data types used by the component services. A service identified by a
scientist as being suitable may not use the same type as the preceding service
in the workflow, even if the data match at a conceptual level. Consequently,
many of the bioinformatics workflows created in Taverna contain numerous
“shim” services [202] that reconcile the inevitable type mismatches between
autonomous third-party services. We are currently building libraries of
shims for dereferencing identifiers, syntax and semantic translation, mapping,
parsing, differencing, and so on.

19.6 Executing and Monitoring Workflows

Execution of a workflow is largely an unseen activity, except for monitoring
the process and reviewing records of an experimental run (see Section 19.7). A
critical requirement of myGrid’s service approach is that workflow invocation
behavior should be independent of the workflow enactment service used. To
facilitate peer review of novel results, it is important that other scientists be
able to reproduce in silico experiments in their context and verify that their
results confirm the reported novel results.

Executing workflows using different enactment services is given less
emphasis in business workflows, which will typically be carefully negotiated
and agreed by the businesses involved and executed in a fixed, known context.
In contrast, a scientific workflow will be shared and evolved by a community
and executed by many individual scientists using their favored workflow
enactment service.

19.6.1 Reporting

Reporting the progress of a workflow is a complex task. Information about
service invocation is unavailable in the general case. Defining how far a service
is through a given invocation, so progress can be displayed, is nontrivial
without the explicit modeling and monitoring of state. The migration of
application services to the Grid’s Web Service Resource Framework [100] is a
solution that we are investigating.

The reporting mechanism in Taverna is a stream of events for each
processing entity, with these events corresponding to state transitions of the
service component. For example, a message is emitted when the service is first
scheduled, when it has failed for the third time and is waiting to retry, etc.
These message streams are collated into an XML document format and the
results presented to the user in tabular form as shown in Figure 19.7.

The introduction of reporting in Taverna does not alter the workflow
results. What it does alter is users’ understanding of what is going on and



314 Oinn, Li, et al.

Figure 19.7: Status information. When running a workflow, the Taverna
workbench displays status information from the workflow enactor. For each
Scufl processor, the last event is displayed along with the appropriate time
and additional detail if available. This additional detail can include progress
through an iteration (e.g. “item 2 of 6”) and retry information. The status
information also allows the selection of a processor and viewing of the relevant
intermediate inputs and outputs. Each data item has been assigned a Life
Science Identifier (LSID). More detailed trace information is also available
using the “Process report” tab.

therefore their confidence that the system is doing what they want. Overall,
the feedback from Taverna’s initial users was that workflow execution without
suitable monitoring was not acceptable. They were willing to accept workflows
that occasionally failed; their experience with form-based Web services was
that these were unreliable. However, workflow execution could not be a “black-
box” service, users need feedback on what is happening, whether the workflow
completed successfully or failed, and they need this recorded in logging
records.

When a workflow may contain 50 or more processing components (e.g.
Scufl processors), and each of these components can be retrying, using
alternative implementations, etc., the complete state of a workflow is highly
complex. Users require a visualization that allows them to see at a glance what
is happening, acquire intermediate results where appropriate, and control the
workflow progress manually should that be required.



19 Taverna/myGrid 315

19.7 Managing and Sharing Workflows and Their
Results

As the use of workflows increases the ability to gather and generate data
in large quantities, the storage of these data in an organized manner
becomes essential for analysis within and between experiments. For scientists,
workflows are the means to an end; their primary interest is in the results
of experiments. This interest, however, goes beyond examining the results
themselves and extends to the context within which those results exist.
Specifically, the scientist will wish to know from where a particular result
was derived, which key process was used, and what parameters were applied
to that process. Thus, in addition to the raw data, we have devised a model
of meta data describing the provenance of all aspects of the experiment: the
data’s derivation path, an audit trail of the services invoked, the context of
the workflow, and the evidence of the knowledge outcomes as a result of its
execution [494]. Another view is that it is the traditional who, where, when,
what, and how questions applied to in silico science. These different aspects
of provenance can be used for life scientists in different scenarios:

• to repeat a workflow execution by retrieving the “recipe” recorded in the
provenance;

• to reproduce a data product by retrieving the intermediate results or
inputs from which these data were derived;

• to assess the performance of a service that is invoked in different
experiment runs at different times;

• to debug the failure of a workflow run, e.g. which service failed, when and
why it failed etc.;

• to analyze the impacts of a service/database update on the experiment
results, by comparing the provenance of repeated runs;

• to “smartly” rerun a workflow if a service is updated by using provenance
to compute which part of a workflow is required to be rerun as a
consequence of the update; and

• to aggregate provenance of a common data product that is produced in
multiple runs.

We have adopted two key technologies for provenance collection:

• Life Science Identifiers. The description of the derivation of data neces-
sitates reference to the data sets both inside and outside the control of
myGrid. Bioinformatics has adopted view standards for the identification
of data instead of using an ad hoc system of accession numbers. The
recent Life Science Identifier (LSID) standard [93] provides a migration
path from the legacy accession numbers to an identification scheme based
on URIs.

• Resource Description Framework (RDF). The Dako data store has a fixed
schema that reflects the common entities used in an e-Science experimental



316 Oinn, Li, et al.

life cycle not tied to any scientific discipline. The use of a fixed schema
provides performance benefits. However, RDF’s basic graph data model
is well suited to the task of representing data derivation. The Knowledge
Annotation and Verification of Experiments (KAVE) meta data store has
a flexible schema due to its use of RDF. This allows statements to be
added outside the fixed schema of the Dako data store, as is needed when
providing subject-specific information. KAVE enables other components
in myGrid to store statements about resources and later query those
statements.

One can distinguish between provenance of the data and provenance of the
process, although the two are linked. The primary task for data provenance is
to allow the exploration of results and the determination of the derivation path
for the result itself in terms of input data and intermediate results en route
to the final value. “Side effect” information about how intermediate and final
results have been obtained is generated and stored during workflow invocation.
Thus the workflow engine produces not just results but also provenance meta
data about those results. Side effect information is anything that could be
recorded by some agent observing the workflow invocation, and it implicitly
or explicitly links the inputs and outputs of each service operation within
the workflow in some meaningful fashion. The associated component RDF
Provenance Plug-in listens to the events of workflow execution and stores
relevant statements using KAVE; for example, a name for a newly created
data item or a meaningful link between the output of a service and the inputs
that were used in its creation.

Process provenance is somewhat simpler than data provenance and is
similar to traditional event logging. Knowledge provenance is the most
advanced and contextual of the meta data results. Often a user does not need
to see a full “blow by blow” account of the processes that executed during
the workflow or a full account of the complete data-derivation path. Instead
they wish to relate data outcomes across a group of processes annotating
the relationships between outcomes with more semantically meaningful terms
than “derived by.” As each such provenance fingerprint is unique to the
workflow and the user, a provenance template accompanies the Scufl document
to be populated by the provenance capture component and stored in the
KAVE.

19.8 Related Work

In life sciences there are many scientists who want an easy way of rapidly
pulling together third-party services into prototypical in silico experiments.
This contrasts with fields such as physics and astronomy, where the prime
scenario involves carefully designed workflows linking applications to exploit
computational Grid resources for in silico experiments that were previously
impractical due to resource constraints.



19 Taverna/myGrid 317

Scientific workflow systems vary in terms of their intended scientific scope
(the kinds of analyses supported), their technical scope (the kinds of resources
that can be composed), their openness to incorporating new services, and
whether or not they are open source. The strengths of Taverna are its ability
to link together a significant range of autonomous bioinformatics services and
its flexibility, particularly in terms of the metadata generated to help manage
and share workflow results.

The Kepler workflow system [19, 20] has been developed for ecologists,
geologists and biologists and is built on Ptolemy II, a mature application
from electrical engineering [366]. Kepler’s strengths include its library of
Actors, which are mainly local applications, and its suite of Directors
that provide flexible control strategies for the composition of Actors. The
Triana [409] system was originally developed as a data analysis environment
for a gravitational wave detection project. Like Taverna and Kepler, Triana
is also data-flow oriented. It is aimed at CPU intensive applications, allowing
scientists to compose their local applications and distribute the computation.

DiscoveryNet uses a proprietary workflow engine, and all services are
wrapped to conform to a standard tabular data model. DiscoveryNet scientific
workflows are used to allow scientists to plan, manage, share, and execute
knowledge discovery and data analysis procedures [373]. In the Pegasus
system [160], users provide a workflow template and artificial intelligence
planning techniques are used to coordinate the execution of applications on
a heterogeneous and changing set of computational resources. The emphasis
is on the scheduling large numbers of jobs on a computational Grid, where
there may be alternative strategies for calculating a user’s result set.

The use of workflows for “programming in the large” to compose web
services has led to significant interest in a standard workflow language,
with BPEL1 [24] a strong candidate, created through the agreed merge of
IBM’s WSFL [254] and Microsoft’s XLANG [416]. One reason why Taverna
workflows use Scufl rather than a potential standard is historical. In the
initial stages of the myGrid project in 2001, BPEL did not exist. The more
significant reason is conceptual. Initial experiments showed IBM’s WSFL
language did not match how our target users wanted to describe their in silico
experiments [7]. WSFL forced users to think in terms of Web service ports
and messages rather than passing data between bioservices.

1 BPEL was originally termed BPEL4WS and is being promoted as a standard
called WSBPEL through OASIS (Organization for the Advancement of
Structured Information Standards), an international consortium for e-business
standards.



318 Oinn, Li, et al.

19.9 Discussion and Future Directions

myGrid set out to build a workflow environment to allow scientists to perform
their current bioinformatics tasks in a more explicit, repeatable, and shareable
manner:

• Making tacit procedural knowledge explicit. For at least the last 250 years,
this has been recognized as essential in science. Each experiment must
carry with it a detailed “methods” description to allow others both
to validate the results and also reuse the experimental method. Our
experience suggests that workflows allow this to be achieved for in silico
experiments. They are formal, precise, and explicit, yet straightforward
to explain to others.

• Ease of automation. Many of the analyzes we support have already
been undertaken by scientists who orchestrate their applications by
hand. Workflows can drastically reduce analysis time by automation. For
example, Taverna workflows developed by the Williams–Beuren Syndrome
team have reduced a manual task that took two weeks to be an automated
task that typically takes just over two hours [397].

• Appropriate level of abstraction. Bioinformaticians have traditionally
automated analyzes through the use of scripting languages such as PERL.
These are notoriously difficult to understand, often because they can
conflate the high-level orchestration at the application level with low-level
“plumbing.”

Taverna and the myGrid suite enables users to rapidly interoperate services.
It does not support the semantic integration of the data outcomes of those
services. We underestimated the amount of data integration and visualization
provided by the existing Web-delivered applications. They often integrate
information from many different analysis tools and provide cross-references to
other resources. Accessing the analysis tool directly as a service circumvents
this useful functionality. Although the scientist is presented with results in
hours, not weeks, it now takes significant time to analyze the large amount
of often fragmented results. A solution is complicated by the fact that
the workflow environment does not “understand” the data and so cannot
perform the data integration necessary. We have provided integration steps
within workflows, written as scripts that integrate and render results, but
these are specific to each workflow design. We are currently investigating a
multi-pronged approach: (i) the use of Semantic Web technology to provide
more generic solutions that can be reused between related workflows; (ii)
appropriate workflow designs using shims and services under the control of
the user to build data objects; and (iii) closing off the open world in situations
where the workflows are known to orchestrate a limited number of services
and will be permanent in nature, so it is worth the effort to build a more
strongly typed model.



19 Taverna/myGrid 319

Since January 2006, the myGrid suite, including Taverna 2.0, has moved to
a new phase. As part of the United Kindom’s Open Middleware Infrastructure
Institute (OMII-UK)(http://www.omii.ac.uk), myGrid is to be integrated
with a range of Grid services and deployed in a common container with job
submission services, monitoring services, and large-scale data management
services. Focus is placed on the following:

• Grid deployment. Deploying the Taverna architecture within a Grid
container, making the enactor a stateful service, and a server-side
distributed service, and supporting stateful data repositories.

• Improved security. Authentication and authorization management for
data, metadata and implementation of credentials for access control of
services.

• Revised execution and processor models. Support of interactive applica-
tions, long running processes, control-based workflows, data flows with
large data throughput, enhanced provenance collection, and credential
handling. We already have a user interaction service that allows users to
participate interactively with workflows.

• Improved data and metadata management. Incorporating better user-
oriented result viewers and incorporating SRB and OGSA-DAI data
implementations.

• Integration with third-party platforms. Examples are Toolbus and EGEE.
We also plan to continue to interoperate with other workflow systems,
specifically Kepler and the ActiveBPEL system emerging from UCL.

• Extending services. To execute over more domain services, such as the R
suite, and over generic services such as GridSAM job submission.

The field of scientific workflows is rapidly evolving, and as a project in this
area myGrid must also evolve. We engage different user communities (such as
biological simulation), and new applications become available, as do novel
service frameworks for deploying them. By working closely with our users,
service providers, and other workflow projects, we continue to extend the
basic core functionality to fulfill a wide range of uses.

Acknowledgments

This work is supported by the UK e-Science programme myGrid grants EPSRC
GR/R67743, EP/D044324/1, EP/C536444/1, and the Link-Up e-Science
sisters project. The authors would like to acknowledge the myGrid team.
Peter Li is funded by the BBSRC. Hannah Tipney developed workflows for
investigating Williams–Beuren Syndrome and is supported by The Wellcome
Foundation (G/R:1061183). We also thank our industrial partners: IBM, Sun
Microsystems, GlaxoSmithKline, AstraZeneca, Merck KgaA, geneticXchange,
Epistemics Ltd, and Cerebra.


