
17

Virtual Data Language: A Typed Workflow
Notation for Diversely Structured
Scientific Data

Yong Zhao, Michael Wilde, and Ian Foster

17.1 Introduction

When constructing workflows that operate on large and complex data sets,
the ability to describe the types of both data sets and workflow procedures can
be invaluable, enabling discovery of data sets and procedures, type checking
and composition of procedure calls, and iteration over composite data sets.

Such typing should in principle be straightforward because of the hier-
archical structure of most scientific data sets. For example, in the functional
magnetic resonance imaging (fMRI) applications in cognitive neuroscience
research that we use for illustrative purposes in this chapter, we find a
hierarchical structure of studies, groups, subjects, experimental runs, and
images. A typical application might build a new study by applying a program
to each image in each run for each subject in each group in a study.

Unfortunately, we find that such clean logical structures are typically
represented in terms of messy physical constructs (e.g., metadata encoded
in directory and file names) employed in ad hoc ways. For example, the fMRI
physical representation with which we work here is a deeply nested directory
structure, with ultimately a single 3D image (“volume”) represented by two
files located in the same directory, distinguished only by filename suffix. The
members of a data set are typically distinguished by identifiers embedded in
filenames using diverse, ad hoc conventions.

Such nonuniform physical representations make program development,
composition, and execution unnecessarily difficult. While we can incorporate
knowledge of file system layouts and file formats into application programs
and scripts, the resulting code is hard to write and read, cannot easily be
adapted to different representations, and is not clearly typed.

We have previously proposed that these concerns be addressed by sep-
arating abstract structure and physical representation [149]. (Woolf et
al. [477] have recently proposed similar ideas.) We describe here the design,
implementation, and evaluation of a notation that achieves this separation.

17 Virtual Data Language 259

We call this notation a virtual data language (VDL) because its declarative
structure allows data sets to be defined prior to their generation and without
regard to their location and representation. For example, consider a VDL
procedure “foo run” with the signature “Run Y =foo run(Run X)” and with
an implementation that builds and returns a new run Y by applying a program
“foo” to each image in the run supplied as argument X (X and Y being
data set variables of type Run). We can then specify via the VDL procedure
invocation “run2=foo run(run1)” that data set “run2” is to be derived from
data set “run1.” Independence from location and representation is achieved
via the use of XML Data Set Typing and Mapping (XDTM) [303] mechanisms,
which allow the types of data sets and procedures to be defined abstractly in
terms of XML schema. Separate mapping descriptors then define how such
abstract data structures translate to physical representations. Such descriptors
specify, for example, how to access the physical files associated with “run1”
and “run2.”

VDL’s declarative and typed structure makes it easy to build up in-
creasingly powerful procedures by composition. For example, a procedure
“Subject Y = foo subject(Subject X)” might apply the procedure “foo run”
introduced earlier to each run in a supplied subject. The repeated application
of such compositional forms can ultimately define large directed acyclic
graphs (DAGs) comprising thousands or even millions of calls to “atomic
transformations,” each of which operates on just one or two image files.

The expansion of data set definitions expressed in VDL into DAGs, and the
execution of these DAGs as workflows in uni- or multiprocessor environments,
is the task of an underlying virtual data system (VDS) [148], which is
comprised of workflow translators, planners, and interfaces to enactment
engines.

We have applied our techniques to fMRI data analysis problems [439]. We
have modeled a variety of data set types (and their corresponding physical
representations) and constructed and executed numerous computational
procedures and workflows that operate on those data sets. Quantitative
studies of code size in a previous paper [496] suggest that VDL and VDS
facilitate easier workflow expression and hence may improve productivity.

This chapter describes:

1. the design of a practical workflow notation and system that separate
logical and physical representation to allow the construction of complex
workflows on messy data using cleanly typed computational procedures;

2. the VDL type system, as well as the interfaces for mapping specification
and program invocation; and

3. a demonstration and evaluation of a prototype of the technology via
the encoding and execution of large fMRI workflows in a distributed
environment.

This chapter is organized as follows. In Section 17.2, we review related
work. In Section 17.3, we introduce the XDTM model, and in Sections 17.4 and

260 Yong Zhao, Michael Wilde, and Ian Foster

17.5 we describe VDL, using a simplified science application for illustration.
In Section 17.6, we apply this model to a real example drawn from procedures
used to prepare fMRI study data for analysis. In Section 17.7, we describe our
prototype implementation, and in Section 17.8 we conclude with an assessment
of this approach.

17.2 Related Work

The Data Format Description Language (DFDL) [42], like XDTM, uses
XML schema to describe abstract data models that specify data structures
independent from their physical representations. DFDL is concerned with
describing legacy data files and complex binary formats, while XDTM focuses
on describing data that span files and directories. Thus, the two systems can
potentially be used together.

In MIX (Mediation of Information using XML) [40], each data source is
also treated as an XML source, and its structural information is represented by
an XML DTD. Queries are expressed in a high-level declarative XML query
language called XMAS (XML Matching and Structuring Language), which
allows object fusion and pattern matching and supports construction of new
integrated XML objects from existing ones. MIX’s query evaluation takes a
virtual approach, where XML queries expressed in XMAS are unfolded and
rewritten at runtime and sent to corresponding sources.

The IBM virtual XML garden project [208] provides virtual XML views
on diverse data sources such as file systems, zip archives, and databases. It
supports XML access and processing on these data sources by writing thin, on-
demand adapters that wrap arbitrary data structures into a generic abstract
XML interface corresponding to the XML Infoset as well as the XPath and
XQuery Data Model.

XML Process Description Language (XPDL) [485], BPEL, and WSDL
also use XML schema to describe data or message types but assume that
data are represented in XML; in contrast, XDTM can describe “messy”
real-world data by mapping from a logical XML view to arbitrary physical
representations. Ptolemy [130] and Kepler [19] provide a static typing system;
Taverna [326] and Triana [91] do not mandate typing. XDTM’s ability to
map logical types from/to physical representations is not provided by these
languages and systems.

When composing programs into workflows, we must often convert logical
types and/or physical representations to make data accessible to downstream
programs. XPDL employs scripting languages such as JavaScript to select
subcomponents of a data type, and BPEL uses XPath expressions in Assign
statements for data conversion. VDL permits the declarative specification
of a rich set of mapping operations on composite data structures and
substructures.

17 Virtual Data Language 261

Many workflow languages allow sequential, parallel, and recursive patterns
but do not directly support iteration. Taverna relies on its workflow engine
to run a process multiple times when a collection is passed to a singleton-
argument process. Kepler uses a “map” operator to apply a function that
operates on singletons to collections. VDL’s typing supports flexible iteration
over data sets — and also type checking, composition, and selection.

17.3 XDTM Overview

XDTM defines a data set’s logical structure via a subset of XML schema,
which defines primitive scalar data types, such as Boolean, integer, string,
float, and date, and also allows for the definition of complex types via the
composition of simple and complex types.

A data set’s physical representation is defined by a mapping descriptor,
which defines how each element in the data set’s logical schema is stored in,
and fetched from, physical structures such as directories, files, and database
tables. The original XDTM description [303] indicated that a mapping
descriptor groups together a set of mapping functions, each associated with an
XML schema type, but did not specify exactly how these mapping functions
would be defined. In this chapter, we describe an approach to defining and
applying these mapping functions.

In order to permit reuse for different data sets, mapping functions may
be parameterized for such things as data set locations. Thus, in order to
access a data set, we need to know three things: its type schema, its mapping
descriptor, and the value(s) of any parameter(s) associated with the mapping
descriptor. These three components are grouped to form a data set handle.

Note that multiple mappings may be defined for the same logical schema
(i.e., for a single logical type). For example, an array of numbers might be
physically represented, in different contexts, as a set of relations, a text file,
a spreadsheet, or an XML document.

17.4 Physical and Logical Structure: An Example

We use a simple example to illustrate the relationship between physical
and logical structure. This example concerns the analysis of data collected
from portable cosmic ray detectors. Such detectors are increasingly used in
secondary-level physics education through projects such as QuarkNet [36].

As in many scientific experiments, the nature of the data collection
process determines the data’s physical representation. Students are organized
into groups; each group installs a few detectors and collects data from the
detectors. Data from detectors are sent to PCs in the form of simple text files
that describe the sampling of A/D converter levels on the multiple channels
of the instrument (Figure 17.1). (We can think of these “raw data files”

262 Yong Zhao, Michael Wilde, and Ian Foster

as describing potential cosmic ray events in the form of digitized waveform
descriptions.) Analysis then consists of processing these raw waveforms to
eliminate noise, extracting a signal, and then searching for correlations in the
data from multiple channels, multiple instruments at varying locations, and
multiple runs.

Figure 17.1: Cosmic ray detector.

As depicted in Figure 17.2, a suitable physical data set organization for
this application is a hierarchical directory structure that provides for multiple
experimental groups, each with data from one or more detectors. (Note that
directories are distinguished from files by a trailing “/”.) Observations consist
of raw data from the instruments along with metadata about the time period
of the recording and the physical location and orientation of the detector
(“geometry”). One metadata file per detector (“detector info”) is also present
in the structure. Derived data produced via various data analysis procedures
are stored in the same structure. Pulse files are an example of an output data
set added to the observation following the application of a reconstruction
procedure to the raw events.

To illustrate how “messy” a physical representation can be, consider that
in this application we could represent the start date/time of an observation
using the creation time of the rawdata file and the end time of the observation
by the modification time of that file.

In contrast to these ad hoc physical encodings, the logical structure of such
a physical data set representation can be uniformly and explicitly described
by XML schema, as illustrated in Figure 17.3.

17.5 Virtual Data Language

XDTM specifies how we define XML structures and associate physical
representations with them. However, it does not address how we write
programs that operate on XDTM-defined data. That is the focus of the

17 Virtual Data Language 263

XDTM-based Virtual Data Language (VDL). This language, derived loosely
from an earlier VDL [148] that dealt solely with untyped files, allows users
to define procedures that accept, return, and operate on data sets with type,
representation, and location defined by XDTM. We introduce the principal
features of VDL via a tutorial example.

17.5.1 Representing Logical Structure: The VDL Type System

VDL uses a C-like syntax to represent XML schema complex types, as
illustrated in Figure 17.4, which shows VDL type definitions corresponding
to the XML schema of Figure 17.3. The Detector type contains information
about the detector hardware — such as serial number, installation date,
and firmware revision (DetectorInfo) — and a set of Observations. Each
Observation contains the time range for which the raw data are gathered
(ostart, oend), the raw data themselves, some geometry information, and a
derived data type Pulse. The conversion from this notation to XML schema is
straightforward: The VDL data model of named member fields (“structures”
or “records”) and arrays is mapped to XML schema constructs for sequences
and element cardinality (occurrence).

17.5.2 Accessing Physical Structure: Mapping Functions

The process of mapping, as defined by XDTM, converts between a data set’s
physical representation (typically in persistent storage) and a logical XML
view of those data. VDL programs operate on this logical view, and mapping
functions implement the actions used to convert back and forth between the
XML view and the physical representation.

Associated with each logical type is a mapping descriptor, which provides
access to a set of mapping functions that the VDL implementation may invoke
during program execution. A mapping descriptor must include the following
four functions:

/quarknet/
/quarknet/group1/
/quarknet/group1/detector1/
/quarknet/group1/detector1/detector_info
/quarknet/group1/detector1/observation1/
/quarknet/group1/detector1/observation1/geometry
/quarknet/group1/detector1/observation1/rawdata
/quarknet/group1/detector1/observation1/pulse
/quarkent/group1/detector1/observation2/
...
/quarknet/group1/detector2/
...

Figure 17.2: Physical directory structure of detector data.

264 Yong Zhao, Michael Wilde, and Ian Foster

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://quarknet.org/schema/cosmic.xsd"

xmlns="http://quarknet.org/schema/cosmic.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="Observation">
<xs:sequence>
<xs:element name="ostart" type="xs:date"/>
<xs:element name="oend" type="xs:date"/>
<xs:element name="rawdata" type="RawData"/>
<xs:element name="geo" type="Geometry"/>
<xs:element name="pulse" type="Pulse"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Detector">
<xs:sequence>
<xs:element name="info" type="DetectorInfo"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="ob" type="Observation"/>

</xs:sequence>
</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 17.3: XML schema of detector data.

type Detector {
DetectorInfo info;
Observation ob[];

}

type Observation {
Date ostart, oend;
RawData rawdata;
Geometry geo;
Pulse pulse; /* a derived file: pulses reconstructed from raw */

}

type DetectorInfo {
Int serialNum;
Date installDate;
String swRev;

}

Figure 17.4: VDL type definition for detector data.

• create data set: creates a physical data set conforming to the desired
physical representation;

• store member: stores a specific element of the logical structure into its
physical storage;

• get member: gets a specific logical child element from the data set’s
physical storage;

• get member list: gets a list of child elements from the physical storage.

17 Virtual Data Language 265

In addition, a mapping descriptor often includes additional mapping functions
that provide access to various components of the physical data representation.
For example:

• filename: provides access to the file or directory name of a data set
member’s physical representation.

To realize the mapping model in VDL, we formalize the concept of the XDTM
logical XML view by defining a construct much like an XML store [435], which
we call the xview. The xview is managed by the VDL runtime implementation,
which we refer to abstractly as the virtual data machine, or VDM.

As a VDL program executes, the VDM performs VDL expression
evaluation by invoking the appropriate mapping functions to move data back
and forth between physical data representations and the xview. When a
mapping function maps a data set’s representation into the xview, it creates
the XML representation of the physical data structure, in which each field
(or member) of a data set type becomes either an atomic value or a handle
to the corresponding physical data set component. VDL variables that are
defined as local to a VDL procedure (i.e., “stack variables” in a procedure’s
activation record [363]) are represented in a similar manner.

The xview can be implemented in many ways (for instance, in an XML
database) and has the desirable features that (a) it can be processed by
standard XML tools such as XPath and XQuery and (b) it can operate
as a cache, logically representing an entire physical data set but physically
“faulting in” data sets as they are referenced in a “lazy evaluation” mode
and swapping out data sets that are not currently being referenced on a least
recently used basis.

17.5.3 Procedures

Data Sets are operated on by procedures, which take data sets described by
XDTM as input, perform computations on those data sets, and produce data
sets described by XDTM as output.

A VDL procedure can be either an atomic procedure or a named workflow
template defining a DAG of multiple nodes (compound procedure). An atomic
procedure definition specifies an interface to an executable program or service
(more on this topic below), while a compound procedure composes calls to
atomic procedures, other compound procedures, and/or control statements.

VDL procedure definitions specify formal parameters; procedure calls
supply the actual argument values. For example, consider an atomic procedure
reconstruct that performs reconstruction of pulse data from raw data. The
following interface specifies that this procedure takes Raw and Geometry as
input data set types and produces Pulse as an output type:

(Pulse pulse) reconstruct (Raw raw, Geometry geo) {
/* procedure body */

}

We present the corresponding procedure body in Section 17.5.4.

266 Yong Zhao, Michael Wilde, and Ian Foster

17.5.4 Atomic Procedures

An atomic procedure defines an interface to an external executable program
or Web service and specifies how logical data types are mapped to and from
application program or service arguments and results.

Invoking Application Programs

An atomic procedure that defines an interface to an external program must
specify:

• The interpreter that will be used to execute the program
• The name of the program to be executed
• The syntax of the command line that must be created to invoke the

program
• The data context in which the program is to execute (i.e., the physical

data sets that need to be available to the program when it executes)

An atomic procedure has a header that specifies its interface in terms
of data set types, but its body operates on data set representations. Thus,
expressions in the data set body must be able to use mapping functions
(Section 17.5.2) to map between types and representations.

The header of an atomic procedure that defines an interface to an
external program specifies the name of the program to be invoked (the
atomic procedure call), the data to be passed to the procedure’s execution
site (the atomic procedure’s input arguments), and the resulting data to be
returned back from the procedure’s execution site (the atomic procedure’s
return arguments).

The body of such an atomic procedure specifies how to set up its execution
environment and how to assemble the call to the procedure. For example, the
following procedure reconstruct defines a VDL interface to a cosmic ray data-
processing application of the same name. The statements in the body assemble
the command to invoke the program, with the “bash” statement indicating
that invocation is to occur by using the bash shell command interpreter.
The @ notation is used to invoke a mapping function. In this example, the
mapping function “filename” is called to extract filenames from the data set
representation so they can be passed to the shell.

(Pulse pulse) reconstruct (Raw raw, Geometry geo) {
bash {
reconstruct
@filename(raw)
@filename(geo)
@filename(pulse)

}
}

This atomic procedure may be invoked by a procedure call such as
Pulse p1 = reconstruct (raw1, geo);

17 Virtual Data Language 267

which takes a raw data set raw1 and a geometry data set geo as inputs
and generates as output a pulse data set p1. The data sets raw1, geo, and
p1 are defined as data set handles, which include the typing and mapping
specifications for these data sets.
RawData raw1 <file_mapper;

location="/quarknet/group1/detector1/observation1/rawdata">
Geometry geo <file_mapper;

location="/quarknet/group1/detector1/observation1/geometry">
Pulse p1 <file_mapper;

location="/quarknet/group1/detector1/processed/pulse/p1">

The procedure call is compiled into the execution of the following command
line:

reconstruct /quarknet/group1/detector1/observation1/rawdata \
/quarknet/group1/detector1/observation1/geometry \
/quarknet/group1/detector1/processed/pulse/p1

If this command is executed on a remote host that does not share a file
system, then VDS must ensure that the physical representations of data sets
passed as input arguments are transferred to the remote site, enabling the
executing application to access the required physical files. For example, in the
call just shown, the physical representations of the data sets raw1 and geo
must be transferred to the remote site.

Similarly, output data (e.g., p1 in the example call) must be made
accessible to other program components. To this end, the existence of the
physical data on the remote site is recorded. In addition, the data are
optionally copied to a specified site to create an additional replica (which
often serves as an archival copy). Finally, the xview itself must be updated to
be brought back in sync with the physical representation.

Invoking Web Services

We envision that atomic procedure definitions could also specify Web service
interfaces. Such procedures would have the same procedure prototype header
as an application program interface but provide a different body. The following
example defines a Web service implementation of the same reconstruct
procedure that was defined above as an executable application.

(Pulse pulse) reconstruct (Raw raw, Geometry geo)
{

service {
wsdlURI = "http://quarknet.org/cosmic.wsdl";
portType = "detectorPT";
operation = "reconstruct";
soapRequestMsg = { rawdata = raw;

geometry = geo};
soapResponseMsg = { pulsedata = pulse};

}
}

Not shown here is the specification of how arguments such as raw, geo, and
pulse are to be passed to and from the Web service. For this, data transport
options such as the following will be required:

268 Yong Zhao, Michael Wilde, and Ian Foster

1. File reference: A reference to a file is passed in the Web service message
in the form of a URI.

2. File content: The content of a file is encoded into an XML element and
passed in the message body.

3. SOAP attachment: The content of a file is passed as a SOAP attachment.

17.5.5 Compound Procedures

A compound procedure contains a set of calls to other procedures. Variables
in the body of a compound procedure specify data dependencies and thus
the directed arcs for the DAG corresponding to the compound procedure’s
workflow. For example:

(Shower s) showerstudy (Observation o1, Observation o2) {
Pulse p1 = thresholdPulse (o1.pulse);
Pulse p2 = thresholdPulse (o2.pulse);
Pulse p = correlateEvents (p1, p2);
s = selectEvents (p);

}

In the procedure showerstudy, which computes the correlation between two
observations, the pulse events from each observation are first filtered by
a thresholding procedure, then the results of the thresholding procedures
are combined by a correlation procedure, and finally interesting shower
events are selected from the combined events. In this compound procedure,
data dependencies dictate that the two invocations of thresholdPulse can be
executed in parallel, after which the calls to correlateEvents and selectEvents
must execute in sequence.

Arbitrary workflow DAGs can be specified in this manner, with the nodes
of the DAGs being procedure calls and the edges represented by variables,
which are employed to pass the output of one procedure to the input of
another.

17.5.6 Control-Flow Constructs

Control-flow constructs are special control entities in a workflow that control
the direction of execution. VDL provides if, switch, foreach, and while
constructs, with syntax and semantics similar to comparable constructs in
high-level languages. We illustrate the use of the foreach construct in the
following example:

genPulses (Detector det) {
foreach Observation o in det.ob {

o.pulse = reconstruct (o.raw, o.geo);
}

}

This example applies the atomic procedure reconstruct to each of the
observations associated with a specific detector det and generates the pulse
data for each observation from the raw data. All of the calls to reconstruct
can be scheduled to run in parallel.

17 Virtual Data Language 269

17.6 An Application Example: Functional MRI

VDL provides an effective way to specify the preprocessing and analysis of the
terabytes of data contained in scientific archives such as the fMRI Data Center
(fMRIDC: www.fmridc.org), based at Dartmouth College. This publicly
available repository includes complete data sets from published studies of
human cognition using functional magnetic resonance imaging (fMRI). Data
Sets include 4D functional image-volume time-course data, high-resolution
images of brain anatomy, study metadata, and other supporting data collected
as part of the study. The fMRIDC curates and packages these data sets for
open dissemination to researchers around the world, who may use the data
to conduct novel analyses, test alternative hypotheses, explore new means of
data visualization, or for education and training.

17.6.1 Overview of fMRI Data Sets

fMRI data sets are derived by scanning the brains of subjects as they perform
cognitive or manual tasks. The raw data for a typical study might consist of
three subject groups with 20 subjects per group, five experimental runs per
subject, and 300 volume images per run, yielding 90,000 volumes and over 60
GB of data. A fully processed and analyzed study data set can contain over
1.2 million files. In a typical year at the Dartmouth Brain Imaging Center,
about 60 researchers preprocess and analyze about 20 concurrent studies.

Experimental subjects are scanned once to obtain a high-resolution image
of their brain anatomy (“anatomical volume”) and then scanned with lower
resolution at rapid intervals to observe the effects of blood flow from the
“BOLD” (blood oxygenated level dependent) signal while performing some
task (“functional runs”). These images are preprocessed and subjected to
intensive analysis that begins with image processing and concludes with a
statistical analysis of correlations between stimuli and neural activity.

Figure 17.5 illustrates some of the conventions that are frequently used in
the physical representation of such fMRI data sets. The logical representation
on the left shows the hierarchy of objects in a hypothetical study, while the
physical representation on the right indicates the typical manner in which
the objects in the logical view are physically represented in a hierarchical file
system directory, making heavy use of the encoding of object identifiers into
the names of files and directories.

The VDL examples in the next subsections are based on a workflow,
AIRSN, that performs spatial normalization for preprocessing raw fMRI data
prior to analysis. AIRSN normalizes sets of time series of 3D volumes to a
standardized coordinate system and applies motion correction and Gaussian
smoothing.

270 Yong Zhao, Michael Wilde, and Ian Foster

DBIC Archive
Study #’2004 0521 hgd’
Group #1

Subject #’2004 e024’
Anatomy
high-res volume

Functional Runs
run #1

volume #001
...
volume #275

...
run #5

volume #001
...
volume #242

Group #5
...

Study #...

DBIC Archive
Study_2004.0521.hgd

Group 1
Subject_2004.e024

volume_anat.img
volume_anat.hdr
bold1_001.img
bold1_001.hdr
...
bold1_275.img
bold1_275.hdr
...

bold5_001.img
...

snrbold*_*
...air*

...
Group 5
...

Study ...

Figure 17.5: fMRI structure — logical (left) and physical (right).

17.6.2 fMRI Data Set Type Definitions

Figure 17.6 shows the VDL types that represent the data objects of Figure
17.5. A Volume contains a 3D image of a volumetric slice of a brain image,
represented by an Image (voxels) and a Header (scanner metadata). As we
do not manipulate the contents of those objects directly within this VDL
program, we do not further decompose their structure. A time series of
volumes taken from a functional scan of one subject, doing one task, forms a
Run. In typical experiments, each Subject has an anatomical data set, Anat,
and multiple input and normalized runs.

Specific output formats involved in processing raw input volumes and
runs may include outputs from various image-processing tools, such as the
automated image registration (AIR) suite [475]. The type Air corresponds to
one of the data set types created by these tools (and it, too, needs no finer
decomposition).

type Volume { Image img; Header hdr; }
type Run { Volume v[]; }
type Anat Volume;
type Subject { Anat anat; Run run []; Run snrun []; }
type Group { Subject s[]; }
type Study { Group g[]; }
type AirVector { Air a[]; }
type NormAnat { Anat aVol; Warp aWarp; Volume nHires; }

Figure 17.6: VDL type definition for fMRI data.

17 Virtual Data Language 271

17.6.3 VDL Procedures for AIRSN

Figure 17.7 shows a subset of the VDL procedures for AIRSN. The procedure
functional() expresses the steps in Figure 17.8; airsn subject() calls this
procedure once per each component and anatomical() (not shown) to process
a Subject. airsn subject() creates in the Subject data set a new spatially
normalized Run for each raw Run. Such procedures define how the workflow
is expanded to process the members of a data set, as in Figure 17.9.

(Run snr) functional(Run r, NormAnat a, Air shrink) {
Run yroRun = reorientRun(r , "y");
Run roRun = reorientRun(yroRun , "x");
Volume std = roRun[0];
Run rndr = random_select(roRun, .1); //10% sample
AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");
Volume meanRand = softmean(reslicedRndr, "y", null);
Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, [81,3,3]);
Volume mnQA = reslice(meanRand, mnQAAir, "o", "k");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);
Run nr = reslice_warp_run(boldNormWarp, roRun);
Volume meanAll = strictmean (nr, "y", null)
Volume boldMask = binarize(meanAll, "y");
snr = gsmoothRun(nr, boldMask, 6, 6, 6);

}

airsn_subject(Subject s, Volume atlas, Air ashrink, Air fshrink) {
NormAnat a = anatomical(s.anat, atlas, ashrink);
Run r, snr;

int i;
foreach (r,i) in s.run {

snr = functional(r, a, fshrink);
s.snrun[i] = snr;

}
}

Figure 17.7: VDL fMRI procedure examples.

17.6.4 The AIRSN Workflow

Figures 17.8 and 17.9 show two views of the most data-intensive segment of
the AIRSN workflow, which processes the data from the functional runs of a
study. Figure 17.8 is a high-level representation in which each oval represents
an operation performed on an entire Run. Figure 17.9 expands the workflow
to the Volume level for a data set of ten functional volumes. (Note that the
random select call is omitted in Figure 17.9). In realistic fMRI experiments,
Runs might include hundreds or thousands of Volumes.

272 Yong Zhao, Michael Wilde, and Ian Foster

Figure 17.8: AIRSN workflow high-level representation.

Figure 17.9: AIRSN workflow expanded to show all atomic file operations for
a ten volume run.

17 Virtual Data Language 273

17.7 VDL Implementation

We have developed a prototype system that can process VDL type definitions
and mappings, convert a typed workflow definition into an executable DAG,
expand DAG nodes dynamically to process subcomponents of a compound
data set, and submit and execute the resulting DAG in a Grid environment.
The separation of data set type and physical representation that we achieve
with VDL can facilitate various runtime optimizations and graph-rewriting
operations [112]. The prototype implements the runtime operations needed to
support typed VDL data set processing and execution, which is the principal
technical challenge of implementing VDL. We have also verified that we can
invoke equivalent services and applications from the same VDL.

The prototype extends an earlier VDS implementation with features to
support data typing and mapping. We use the VDS graph traversal mechanism
to generate an abstract DAG in which transformations are not yet tied to
specific applications or services and data objects are not yet bound to specific
locations and physical representations. The extended VDS also enhances
the DAG representation by introducing “foreach” nodes (in addition to the
existing “atomic” nodes) to represent foreach statements in a VDL procedure.
These nodes are expanded at runtime (see Section 17.7.2), thus enabling data
sets to have a dynamically determined size.

The resulting concrete DAG is executed by the DAGMan (“DAG man-
ager”) tool. DAGMan provides many necessary facilities for workflow ex-
ecution, such as logging, job status monitoring, workflow persistence, and
recursive fault recovery. DAGMan submits jobs to Grid sites via the Globus
GRAM protocol.

17.7.1 Data Mapping

Our prototype employs a table-driven approach to implement XDTM mapping
for data sets stored on file systems. Each table entry specifies

name: the data object name
pattern: the pattern used to match filenames
mode:FILE (find matches in directory)

RLS (find matches via replica location service)
ENUM (data set content is enumerated)

content: used in ENUM mode to list content

When mapping an input data set, this table is consulted, the pattern is
used to match a directory or replica location service according to the mode,
and the members of the data set are enumerated in an in-memory structure
that models the behavior of the xview. This structure is then used to expand
foreach statements and to set command-line arguments.

For example, in Figure 17.5, a Volume is physically represented as an
image/header file pair, and a Run as a set of such pairs. Furthermore, multiple
Runs may be stored in the same directory, with different Runs distinguished
by a prefix and different Volumes by a suffix. To map this representation to

274 Yong Zhao, Michael Wilde, and Ian Foster

the logical Run structure, the pattern “boldN∗” is used to identify all pairs
in Run N at a specified location. Thus, the mapper, when applied to the
following eight files, identifies two runs, one with three Volumes (Run 1) and
the other with one (Run 2).

bold1_001.img bold1_001.hdr
bold1_002.img bold1_002.hdr
bold1_003.img bold1_003.hdr
bold2_007.img bold2_007.hdr

17.7.2 Dynamic Node Expansion

A node containing a foreach statement must be expanded dynamically into a
set of nodes: one for each member of the target data set specified in the foreach.
This expansion is performed at runtime: When a foreach node is scheduled
for execution, the appropriate mapper function is called on the specified data
set to determine its members, and for each member of the data set identified
(e.g., for each Volume in a Run), a new job is created in a “sub-DAG.”

The new sub-DAG is submitted for execution, and the main job waits
for the sub-DAG to finish before proceeding. A postscript for the main job
takes care of the transfer and registration of all output files and the collection
of those files into the output data set. This workflow expansion process
may recurse further if the subcomponents themselves also include foreach
statements. DAGMan provides workflow persistence in the event of system
failures during recursion.

The process of dynamic node expansion can be performed in a cursor-like
manner to efficiently navigate large data sets. Large data sets behave as if
the entire data set is expanded in the xview. A näıve implementation would
do exactly that, but a more sophisticated implementation can yield better
performance by taking advantage of operations that “close” members after
they are mapped and that scroll through large sequences of members in a
cursor-like fashion to enable arbitrarily large data sets to be mapped.

17.7.3 Optimizations and Graph Transformation

Since data set mapping and node expansion are carried out at runtime, we can
use graph transformations to apply optimization strategies. For example, in
the AIRSN workflow, some processes, such as the reorient of a single Volume,
only take a few seconds to run. It is inefficient to schedule a distinct process
for each Volume in a Run. Rather, we can combine multiple such processes to
run as a single job, thus reducing scheduling and queuing overhead.

As a second example, the softmean procedure computes the mean of all
Volumes in a Run. For a data set with a large number of Volumes, this stage
is a bottleneck, as no parallelism is engaged. There is also a practical issue:
The executable takes all Volume filenames as command-line arguments, which
can exceed limits defined by the Condor and UNIX shell tools used within our

17 Virtual Data Language 275

VDS implementation. Thus, we transform this node into a tree in which leaf
nodes compute over subsets of the data set. The process repeats until we get
a single output. The shape of this tree can be tuned according to the available
computing nodes and data set sizes to achieve optimal parallelism and avoid
command-line length limitations.

17.8 Conclusion

We have designed a typed workflow notation and system that allows workflows
to be expressed in terms of declarative procedures that operate on XML
data types and are then executed on diverse physical representations and
distributed computers. We have shown, via studies that compare program
sizes with and without our notation [496], that this notation and system can
be used to express large amounts of distributed computation easily.

The productivity leverage of this approach is apparent: A small group of
developers can define VDL interfaces to the application programs and utilities
used in a scientific domain and then create a library of data set types, mappers,
and data set iteration functions. Such a “virtual data library” encapsulates
low-level details concerning how data are grouped, transported, cataloged,
passed to applications, and collected as results. Other scientists can then
use such libraries to construct workflows without needing to understand the
details of physical representation and furthermore are protected by the XDTM
type system from forming workflows that are not type compliant. The data
management conventions of a research group can be encoded and uniformly
maintained with XDTM mapping functions, thus making it easier to curate
data set collections that may include many tens of millions of files.

We next plan to automate the compilation steps that were performed
manually in our prototype and to create a complete workflow development and
execution environment for our XDTM-based VDL. We will also investigate
support for services, automation of type coercions between differing physical
representations, and recording of provenance for large data collections.

Acknowledgments

This work was supported by the National Science Foundation GriPhyN Pro-
ject, grant ITR-800864; the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy; and the National Institutes of Health,
grants NS37470 and NS44393. We are grateful to Jed Dobson and Scott
Grafton of the Dartmouth Brain Imaging Center, and to our colleagues on the
Virtual Data System team, Ewa Deelman, Carl Kesselman, Gaurang Mehta,
Doug Scheftner, Karan Vahi, and Jens Voeckler, for discussion, guidance, and
assistance.

