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Foreword

This collection of articles on ‘Workflows for e-Science’ is very timely and im-
portant. Increasingly, to attack the next generation of scientific problems,
multidisciplinary and distributed teams of scientists need to collaborate to
make progress on these new ‘Grand Challenges’. Scientists now need to access
and exploit computational resources and databases that are geographically
distributed through the use of high speed networks. ‘Virtual Organizations’ or
‘VOs’ must be established that span multiple administrative domains and/or
institutions and which can provide appropriate authentication and authoriz-
ation services and access controls to collaborating members. Some of these
VOs may only have a fleeting existence but the lifetime of others may run
into many years. The Grid community is attempting to develop both stand-
ards and middleware to enable both scientists and industry to build such VOs
routinely and robustly.

This, of course, has been the goal of research in distributed computing for
many years; but now these technologies come with a new twist service orient-
ation. By specifying resources in terms of a service description, rather than
allowing direct access to the resources, the I'T industry believes that such an
approach results in the construction of more robust distributed systems. The
industry has therefore united around web services as the standard technology
to implement such service oriented architectures and to ensure interoperability
between different vendor systems.

The Grid community is also now uniting in developing ‘Web Service Grids’
based on an underlying web service infrastructure. In addition to the security
services of VOs, scientists require services that allow them to run jobs on
remote computers and to access and query databases remotely. As these data
analysis operations become more and more complex and repetitive, there is
a need to capture and coordinate the orchestrated operations that access the
resources of a VO or Grid.

Scientific workflows have therefore emerged and been adapted from the
business world as a means to formalize and structure the data analysis and
computations on the distributed resources. Such scientific workflows in fact
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now encapsulate scientific intellectual property and enable the sharing of
knowledge between researchers.

This is the first book to provide a comprehensive survey of the present
state of the art and include descriptions of all the major scientific workflow
systems. From these accounts it is clear that there is much overlap in the
functionality of the different systems and it is to be hoped that this collection
will be a first step on the road to the consolidation of key workflow services.
As such this book may well be a landmark collection heralding a step change
in the level of abstraction for scientific workflows.

Tony Hey

16th May 2006
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1

Introduction

Dennis Gannon, Ewa Deelman, Matthew Shields, and Ian Taylor

Workflows for e-Science is divided into four parts, which represent four broad
but distinct areas of scientific workflows. In the first part, Background, we in-
troduce the concept of scientific workflows and set the scene by describing
how they differ from their business workflow counterpart. In Part II, Applic-
ation and User Perspective, we provide a number of scientific examples that
currently use workflows for their e-Science experiments. In Workflow Repres-
entation and Common Structure (Part III), we describe core workflow themes,
such as control flow or dataflow and the use of components or services. In this
part, we also provide overviews for a number of common workflow languages,
such as Petri Nets, the Business Process Execution Language (BPEL), and
the Virtual Data Language (VDL), along with service interfaces. In Part IV,
Frameworks and Tools, we take a look at many of the popular environments
that are currently being used for e-Science applications by paying particular
attention to their workflow capabilities. The following four sections describe
the chapters in each part and therefore provide a comprehensive summary of
the book as a whole.

1.1 Background

Over the past 25 years, we have seen a revolution in the way science and engin-
eering has been conducted. Specifically, computation became an established
third branch of science alongside theory and experiment. The first phase of
this change came with the use of supercomputers to simulate large, physically
complex systems modeled by partial differential equations. The adoption of
these computational tools soon led to other applications that involved complex
data analysis and visualization steps. The task of moving data to a supercom-
puter for analysis or simulation and then managing the storage of the output
results was often repeated many times, and it was left to the persistence and
creativity of the user to make sure things were done correctly. At the same
time, the business community was also faced with the problem of automating
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their business processing steps and the computer industry began supplying
tools to help them. What emerged was a primitive science of workflow design.
Within the business world, workflow orchestration is a term that refers to the
activity of defining the sequence of tasks needed to manage a business or com-
putational science or engineering process. A workflow is a template for such an
orchestration. A workflow instance is a specific instantiation of a workflow for
a particular problem. Within the scientific and engineering community these
terms have a slightly broader meaning, which we will discuss below once we
have set more historical context.

The earliest workflows in both business and science were encoded and man-
aged by complex job-control language and shell scripts that were used to stage
input data to the computer and then move output results to tapes or work-
stations. Frequently these scripts involved substantial preprocessing to bring
data into a form for the analysis tools and postprocessing to put them into a
form appropriate for human understanding. The scripting approach became
more sophisticated as the processes became more demanding. However, two
additional major changes in the computing landscape drove a fundamental
shift in the evolution of workflow technology.

The second major change in computing came with the use of computational
resources that were distributed over a network. Simple scripts could not con-
trol the execution and coordination of task execution on machines elsewhere
on the network. This job required distributed computing technology to solve
problem such as synchronization between remote concurrent tasks, fault re-
covery, distributed logging, and remote data management. To deal with this
problem, workflow systems had to evolve beyond simple scripting into systems
built around remote procedure calls, distributed object technology, and dis-
tributed file systems and databases. These approaches to distributed systems
have now evolved into Grid technology and Web-service-oriented architec-
tures. Workflow tools that operate in this domain are described extensively
throughout this book.

The third change that has influenced the way the scientific community
has approached workflow is use of component-based tools to program large
systems. Some of this work evolved from Petri Net models, while other work
came from dataflow concepts. As a model for workflow, it was first seen in
early visualization tools, such as AVS [266]. In computer graphics and visual-
ization, where it is not uncommon for a single rendering job to require many
separate transformation steps to produce the final image, a dataflow model
provides an excellent means to automate the schedule of tasks. These tools
provided a compositional programming model based on a graphical layout
tool where tasks are boxes and arrows between boxes indicate the control and
data dependencies between them. This programming metaphor has proven to
be extremely popular and is a common component of most scientific workflow
systems described here.

We conclude this chapter with an overview of the contents of the remainder
of this volume.
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1.2 Application and User Perspective

As science today becomes more complex and relies on the analysis of large-
scale data sets, it is becoming necessary to manage the data and the data pro-
cessing in an automated and scalable way. Workflows have recently emerged as
a way of formalizing and structuring the data analysis in a way that makes it
easy to define the analysis, execute the necessary computations on distributed
resources, collect information about the derived data products, and if neces-
sary repeat the analysis. Worfklows also enable the definition and sharing of
the analysis definitions within scientific collaborations. In the Application and
User Perspective section of this book, we have compiled a set of cutting-edge
applications that rely on workflow technologies to advance the state of the
art in a variety of fields from astronomy, gravitational wave science, ecology,
meteorology, earthquake science, and neuroscience.

Chapter 3 describes the use of workflow technologies in generating large-
scale image mosaics of the sky. The authors describe how the workflows de-
scribing the process of mosaic generation can be used in a variety of applic-
ations depending on the data sources used in the mosaic construction. The
chapter also describes the technologies used in managing the workflows, such
as Pegasus (Chapter 23) and DAGMan (Chapter 22) and contrast them with
implementations based on the Message Passing Interface (MPI) standard.

Two chapters (Chapter 4 and Chapter 5) deal with issues of supporting
gravitational wave science using workflow technologies. Chapter 4 focuses on
providing scientists with tools that allow for easy workflow construction and
leveraging workflow management tools to schedule the workflows in Grid en-
vironments. Chapter 5 focuses on issues of obtaining good overall workflow
performance by optimizing critical workflow portions.

There are also two chapters (Chapter 6 and Chapter 7) that address is-
sues of providing ecologists with a means of easily defining complex work-
flows. The authors of both chapters recognize the need to provide an interface
that enables the users to describe the workflows using high-level, scientifically
meaningful concepts without exposing details of the workflow management
and execution. Chapter 6 discusses the use of Triana (Chapter 20) in workflow
design and management, whereas the authors of Chapter 7 use the Kepler [19]
system to provide that functionality.

Neuroscientists impose similar requirements on the worfklow tools, requir-
ing ease of use and operation at high levels of abstraction. The authors of
Chapter 8 describe how portals can be used to provide custom interfaces for
a broad community of users. Behind the portal, they use technologies such as
Pegasus and Condor to manage the workflows.

Chapter 9 describes how workflows are used in simulations of the weather
events such as tornadoes and hurricanes. The chapter addresses issues of work-
flow adaptivity, where the analysis adapts to the changes in the physical en-
vironment (in this case the weather), to the simulation results, and to the
changes in the computational environment.
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Workflows have also been a useful tool for earthquake scientists who need
to analyze Terabytes of data in an automated manner. Chapter 10 describes
how workflow technologies can be used to manage the large-scale computations
with hundreds of thousands of individual tasks and leverage a number of
distributed resources.

The applications described in Part I rely on a variety of workflow techno-
logies, such as Kepler, Triana, Pegasus, Condor, and others, some of which
are described in the Frameworks Part (Part III).

1.3 Workflow Representation and Common Structure

In this Part, we examine some of the common elements and ideas that oc-
cur in scientific workflow languages and environments. Although the tools
and frameworks described in this book are all very different, there are of-
ten concepts and techniques that get repeated or reused. Business workflow
methods have been in use for far longer than scientific workflows, and con-
sequently many of the ideas have migrated from the business domain to the
scientific domain. In some cases, BPEL (Chapter 14), the business domain
workflow language, is being used directly for scientific workflows. In others,
it is merely concepts such as dependencies, data or not, that are borrowed
from the earlier field. This chapter compares some very different formalisms
for workflow representation from the fairly typical graphs through Petri Nets
(Chapter 13) to m-calculus and the Soap Service Description Language (SSDL)
(Chapter 15). It also includes a chapter on the use of semantics in scientific
workflows (Chapter 16) and the use of a virtual data language (Chapter 17)
to separate physical representations from logical typing.

The argument of control flow versus dataflow representations is outlined in
Chapter 11. Control flow, with its history in scripting languages, and dataflow,
with its history in the data-processing arenas of image and signal processing,
are both widely used within the tools and frameworks described in this book.

Chapter 12 considers the impact of reusable software components and com-
ponent architectures on scientific workflows as we move from object-oriented
component systems to service-based workflows. There are several different
representations for workflows: Many of the tools in this book use graph rep-
resentations, typically either directed acyclic graphs (DAGs) or directed cyclic
graphs (DCGs) depending upon whether or not loop connections are allowed.

Petri Nets are a formalism for describing distributed processes by extend-
ing state machines with concurrency. Chapter 13 covers a brief introduction
to Petri Net theory and then explains how this can be applied to the choreo-
graphy, orchestration, and enactment of scientific workflows. Issues such as
synchronization, persistence, transactional safety, and fault management are
examined within this workflow formalism.

BPEL is a well-known leading workflow language for composing business
domain Web services. In Chapter 14 the author examines how the language
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meets the needs for a scientific workflow language in a Grid environment.
Some of the dynamic aspects of scientific workflows that are not common in
business workflows are used to show how BPEL can be adapted to this use.

Chapter 15 describes SSDL, an interesting approach to workflow repres-
entation based upon the “service” and “message” abstraction. Workflows are
described using the interaction of Simple Object Access Protocol (SOAP)
messages between services, from simple request-response to multiservice ex-
changes. One of the SSDL protocols, the Sequential Constraints protocol, is in-
troduced, which can be used to describe multiservice, multimessage exchanges
between Web services using notations based upon the m-calculus. The formal
model basis for this protocol allows the authors to make assertions about
certain properties of the composed workflows.

Semantics is the study of meaning. In Chapter 16, the author explains
how semantic representations can be used to automate and assist in work-
flow composition and to manage complex scientific processes. The chapter
discusses separating levels of abstraction in workflow descriptions, using se-
mantic representations of workflows and their components, and supporting
flexible automation through reuse and automatic completion of user specific-
ations for partial workflows.

The final chapter in this Part, Chapter 17, also covers the use of abstrac-
tion in workflow representations. The tasks of describing, composing, and
executing workflows are often complicated by heterogeneous storage formats
and ad hoc file system structures. The authors show how these difficulties can
be overcome via a typed, compositional virtual data language (VDL), where
issues of physical representation are cleanly separated from logical typing. Lo-
gical types are represented as Extensible Markup Language (XML) schema,
and the relationship between logical and physical types is specified as type-
specific mapping operations, with workflows defined as compositions of calls
to logically typed programs or services.

1.4 Frameworks and Tools: Workflow Generation,
Refinement and Execution

The general theme of this Part is workflow generation, refinement, and exe-
cution, which reflects the broad stages of how workflows are represented and
converted into an executable format, and how such workflows are executed
through the use of an execution engine or enactment subsystem. The various
frameworks within this section take different approaches to these stages and,
furthermore, these terms mean different things to different frameworks. For
example, in the Virtual Data System (see Chapter 23), refinement might in-
volve using their Virtual Data Catalog to transform the requested files into
workflows that can be used to generate them. This process involves modi-
fying the workflow by inserting subworkflows that generate the various data
dependencies. In contrast, however, refinement within the Triana workflow
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system (see Chapter 20) generally involves dynamic switching at runtime of
the Grid services that are used to execute the specific parts of the workflow.
Triana uses the Grid Application Toolkit (GAT) interface, which can switch
between different low-level Grid functionalities. This results in refinements be-
ing made based on the current execution environment. These themes therefore
reflect a“look and feel” for the chapters so that each framework can organize
its content with a format familiar to the reader. Each chapter therefore is part
of a series rather than a disconnected set of papers, which as editors we tried
hard to avoid.

In Chapter 18, the authors distinguish between two different techniques
for managing job submissions: task-based and service-based. They argue that
in complex control flows for considering data and computationally intensive
scientific applications, these techniques exhibit significant differences for rep-
resenting data flows, parametric input data, and efficient exploitation of the
distributed infrastructures. They introduce a service-based workflow manager
called MOTEUR, and discuss its integration with both the P-GRADE portal
and DAGMan workflow manager, and show how these can represent and ex-
ecute parametric data intensive applications.

The Taverna workbench discussed in Chapter 19 was developed for ™ Grid
to support in silico experiments in biology and to provide scientists with
user-friendly access to underlying services that they wish to use. Taverna
is based on Web services and uses the ™ Grid Simple Conceptual Unified
Flow Language (SCUFL) for workflow choreography. Taverna enables users
to construct, share, and enact workflows using a customized fault-tolerant
enactment engine for execution.

Triana (Chapter 20) is a graphical workflow environment that consists of a
simple drag-and-drop style Graphical User Interface (GUI) for composing ap-
plications and an underlying subsystem for workflow enactment across P2P,
service-based, and Grid environments. Components can be grouped to cre-
ate aggregate or compound components (called Group Units in Triana) for
simplifying the visualization of complex workflows and groups can contain
groups for recursive representation of the workflow. Triana employs the use
of two generic interfaces, called the Grid Application Prototype (GAP) and
GAT, which can interact with services or Grid tools, respectively, for interac-
tion with JXTA, P2PS, Web services, WS-RF services, or Grid tools like the
Globus Resource Allocation Manager (GRAM), Grid File Transfer Protocol
(GridFTP), and Grid Resource Management and Brokering Service (GRMS),
etc. The authors discuss these bindings and provide use cases showing how
the various stages are accomplished.

The Java CoG Kit, discussed in Chapter 21, focuses on workflow solutions
in the Karajan workflow framework. Karajan can specify workflows using
XML, and can support hierarchical workflows based on DAGs with control
structures and parallel constructs. Workflows can be visualized and tracked
through an engine and modified at runtime through interaction with a work-
flow repository or schedulers for dynamic association of resources to tasks.
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Karajan has been demonstrated to scale to hundreds of thousands of jobs due
to its efficient scalability-oriented threading mechanisms.

Condor (Chapter 22) began in 1988 and focused on reliable access to com-
puting over long periods of time instead of highly tuned, high-performance
computing over short periods. This chapter discuss two components: DAG-
Man, for submission and management of complex workflows; and Stork, a
batch scheduler for data placement. Job dependencies are specified as arbit-
rary directed acyclic graphs (DAGs), and DAGMan supports a rich array of
features, including pre- and postscripting, throttling, fault tolerance, and can
scale up to 100,000 nodes. Stork implements techniques for queuing, schedul-
ing, and the optimization of data placement, and supports a number of data
transport protocols (FTP, GridFTP, HTTP, and DiskRouter) and data stor-
age systems (SRB, UniTree, NeST, dCache, and CASTOR).

Pegasus (Chapter 23) can map large-scale workflows onto Grid resources
and along with VDL (see Chapter 17) forms part of the Virtual Data System
(VDS) released with the Virtual Data Toolkit. Pegasus supports a wide range
of functionality, including catalog interfacing, workflow reduction, resource
selection (based on the available resources, characteristics, and location of
data), task clustering (to cluster jobs at the same resource), executable staging
(at the remote site), pre- and poststaging and interfacing with an execution
subsystem’s workflow languages, (e.g., DAG for DAGMan). For execution,
Pegasus supports failure recovery, optimization of workflow performance, and
debugging capabilities, and it has been used in scientific domains ranging from
bioinformatics to high-energy physics.

The Imperial College e-Science Networked Infrastructure (ICENI) system
(Chapter 24) is a service-based software architecture to enable end-to-end,
high-level workflow processing in a heterogeneous Grid environment. The
authors distinguish between an e-Scientists conceptual workflow to describe
tasks to be performed with dependencies and a middleware workflow for exe-
cution on the Grid. The architecture of ICENI supports deployment, perform-
ance, reliability, and charging for resource use. The current ICENT architecture
is derived from previous work and experiences with e-Science projects, such
as the Grid Enabled Integrated Earth system model (GENIE), e-Protein, and
RealityGrid, which are described in this chapter.

Cactus, discussed in Chapter 25, is a framework designed for tightly
coupled, high-performance simulations. This chapter provides a brief intro-
duction to the framework and its component model, with an emphasis on the
workflow aspects, and provides some illustrative examples. The chapter then
examines current and future work to use Cactus for high-throughput distrib-
uted simulations and the use of Cactus within other component architectures.

The Sedna environment in Chapter 26 works on BPEL, which being stand-
ardized has strong industrial support, and many tools and middleware exist.
However, being primarily targeted at business workflows, it does not necessar-
ily provide abstractions that are suitable for use in scientific workflows. Sedna
creates domain-independent as well as domain-specific language abstractions
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that are more suitable for use by application scientists, while achieving com-
pliance with the standard BPEL specification. ASKALON (27), on the other
hand, supports workflow composition and modeling using the Unified Mod-
eling Language (UML) standard and provides an XML-based Abstract Grid
Workflow Language (AGWL) for application developers to use. The AGWL
is given to a WSRF-based runtime system for scheduling and execution.
ASKALON contains a resource manager (GridARM) that provides resource
discovery, advanced reservation and virtual organization-wide authorization
along with a dynamic registration framework for activity types and activity
deployments.



2

Scientific versus Business Workflows

Roger Barga and Dennis Gannon

The formal concept of a workflow has existed in the business world for a long
time. An entire industry of tools and technology devoted to workflow man-
agement has been developed and marketed to meet the needs of commercial
enterprises. The Workflow Management Coalition (WfMC) has existed for
over ten years and has developed a large set of reference models, documents,
and standards. Why has the scientific community not adopted these existing
standards? While it is not uncommon for the scientific community to reinvent
technology rather than purchase existing solutions, there are issues involved
in the technical applications that are unique to science, and we will attempt
to characterize some of these here. There are, however, many core concepts
that have been developed in the business workflow community that directly
relate to science, and we will outline them below.

In 1996, the WIMC defined workflow as “the automation of a business
process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of pro-
cedural rules.” [478] While this definition predates the currently evolving
models of workflow based on service oriented architectures, it does provide a
window on the original workflow concepts, which are based on Business Pro-
cess Management (BPM). The book, “Production Workflows: Concepts and
Techniques” by Leymann and Roller [255] provides an excellent overview of
the entire field. A business process is an instance of any well-defined task
that is often repeated as part of a standard enterprise task. For example, it
may be the steps required to complete a purchase order, or it may be re-
lated to internal business tasks such as internal audits or corporate database
management. Those parts of a business process that relate to the computer
automation of business processes are the domain of workflow management.

Leyman and Roller [255] characterize four basic types of workflows en-
countered in business, and most have direct counterparts in science and en-
gineering. They define collaborative workflows as those that have high business
value to the company and involve a single large project and possibly many
individuals. For example, the production, promotion, documentation, and re-
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lease of a major product fall into this category. The workflow is usually specific
to the particular project, but it may follow a standard pattern used by the
company. Within the engineering disciplines, this corresponds to the tracking
of tasks and subsystem integration required to design and release a new micro-
processor. Within the scientific community, it can refer to the management of
data produced and distributed on behalf of a large scientific experiment such
as those encountered in high-energy physics. Another example may be the
end-to-end tracking of the steps required by a biotech enterprise to produce
and release a new drug.

The second type of workflow they describe is ad hoc. These activities are
less formal in both structure and required response; for example, a notifica-
tion that a business practice or policy has changed that is broadcast to the
entire workforce. Any required action is up to the individual receiving the no-
tification. Within science, notification-driven workflows are common. A good
example is an agent process that looks at the output of an instrument. Based
on events detected by the instrument, different actions may be required and
subworkflow instances may need to be created to deal with them. The third
type of workflow is administrative, which refers to enterprise activities such
as internal bookkeeping, database management, and maintenance scheduling,
that must be done frequently but are not tied directly to the core business
of the company. On the other hand, the fourth type of workflow, referred to
as production workflow, is involved with those business processes that define
core business activities. For example, the steps involved with loan processing
are one of the central business processes of a bank. These are tasks that are
repeated frequently, and many such workflows may be concurrently processed.
Both the administrative and production forms of workflow have obvious coun-
terparts in science and engineering. For example, the routine tasks of man-
aging data coming from instrument streams or verifying that critical monit-
oring services are running are administrative in nature. Production workflows
are those that are run as standard data analyses and simulations by users on
a daily basis. For example, doing a severe storm prediction based on current
weather conditions within a specific domain or conducting a standard data-
mining experiment on a new, large data sample are all central to e-Science
workflow practice.

There are however, areas where business workflows seem, at first glance,
to be substantially different from their scientific counterparts. For example,
a central concern about business workflows is the security and integrity of
a sequence of actions. Paying customers demand that when they pay for a
service, that service must be guaranteed complete and the results exactly as
advertised. Customers demand service. They do not conduct experiments that
may or may not succeed. This concept of the integrity of a sequence of actions
in embodied in the concept of transaction and is central to understanding
workflows in business.

An import class of transactions are those that are long running. Among
these long running transactions are those that satisfy the ACID test. An
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ACID transaction represents a logical unit of work that is composed of a set
of operations. It is an activity that is completed in its entirety or not at all.
ACID is an acronym where

A stands for atomicity, which is an “all or nothing” execution guarantee
C refers to the fact that the database is always in a consistent state

I means the actions of each transaction are isolated, i.e. they are not seen
and do not effect other operations that are not part of the transaction

D is for durability. Once a transaction completes, its effect will survive
even if the entire system crashes

The important point of an ACID transaction is that if some subtask fails,
the entire transaction can be rolled back so that the entire state of the world is
as it was prior to the start of the transaction. And the effect of the transaction
is not visible until all subtasks have completed and the entire set of operations
is committed. The application of this concept is clear. It is essential that any
workflow that carries out the terms of a contract shall either complete the
contract or the entire activity is aborted, and that fact is clear to all parties.
For example, customers of a bank want to know when they have transferred
funds from one account to another that the money was not lost along the way.

Unfortunately, not every workflow can be characterized as an ACID trans-
action. A long-running workflow is one that may involve many subworkflows
each of which is an ACID transaction, but it may not be possible to com-
pletely rollback the entire workflow with a single rollback operation. Parts of
the workflow may have already completed, and the state of the world may
have been altered in various ways. In this case, a failure is something that
requires a sequence of new workflows that involve compensating transactions.
A typical example of a long-running workflow may involve multiple businesses
engaged in a long-running collaboration to produce a product. One company
may have been contracted to supply parts to another company producing the
final product. The specific details of the interaction with the subcontractor
may be governed by one subworkflow. But suppose the subcontractor is unable
to deliver the goods. A compensating subworkflow may be to void the original
contract and search for a secondary supplier and engage in a negotiation for
a replacement service.

Both ACID and long-running workflows have their counterparts in e-
Science. The concept of the ACID workflow is essential for any activity that
involves building and maintaining a database. and increasingly databases are
becoming an essential tool for scientific data analysis. Databases store our
collective knowledge in areas such as biological and chemical informatics. Any
workflow that could potentially corrupt such a database is one that must be
ACID in nature. Long-running workflows also play a role in scientific work-
flows. A scientist may divide up the overall task into smaller subtasks, each
of which can be considered an individual step in the experiment. The results
obtained from each such step are either analyzed and/or stored for dissem-
ination to other sites or individuals, used as an input to the next step in an
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experiment or exploration, or both. If the scientist later decides an experiment
step was faulty, he or she can compensate the subtask, possibly deleting the
result and notifying others. Such a together chaining smaller tasks to achieve
a desired result from an experiment or exploration, using various data and
analysis services, is easily captured as a long-running transaction.

The business workflow industry has had to deal with the increasing com-
plexity of the business processes that have come about because of the distrib-
uted nature of enterprises. The corporate information technology landscape
has become very heterogeneous. This is a result of many factors, including
corporate mergers and piecemeal software and hardware upgrades to different
divisions of the company. In addition, there is an increasing need to improve
efficiency across the entire organization, and this implies different parts of the
organization must work in close alignment. The corporate workflows have to
become more corporation-wide.

To address these problems, the workflow industry has been aggressive in
its pursuit of technology that improves the time to completion of a workflow
design process, reliability of the result, and interoperability across a wide range
of platforms. Object-oriented technology has been widely adopted within the
industry, and distributed object systems such as the Common Object Request
Broker Architecture (CORBA) were a major step forward. The concept of
programming by scripting the composition of software components is central
to many workflow tools. Leymann and Roller note that to be used as an
effective workflow tool, scripts must obey a strict set of rules. For example, it
must be possible to interrupt a script at any point and resume its execution
later. This implies that the script’s state must be saved in a persistent store.
Likewise, scripts must be recoverable. If something goes wrong, we should
be able to stop the script and roll back any ACID subworkflows and replay
the script from a point prior to the failure. It is assumed that the script is
orchestrating remotely deployed and executing components and that these
components may run in parallel if there are no dependencies preventing it.
An important property of any component system is that the implementation
technology of the individual components is not exposed. The only thing the
script and other components see are interfaces. Leyman and Roller observe
that the exploitation of components requires data flow facilities; for example,
the input parameters of a component are constructed from the output of
several preceding components.

Businesses are also under competitive pressure to rapidly integrate existing
applications and business processes to react to changing business conditions.
Process integration has always been a challenge and is only complicated fur-
ther by the fact that business processes today often span multiple internal and
external systems. Historically, custom integration solutions have addressed
point-to-point integration, in which integration comes at a great cost. The
most recent response to the integration challenge is service-oriented architec-
tures (SOAs) [135] and Web service technologies. The promise of SOA is that
application components can be assembled with little effort into a network of
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loosely coupled services to create a business process that spans organizations
and computing platforms. SOA is supported by a range of emerging stand-
ards that make it possible to define, implement, and deliver a service in a
uniform way so it can be reused in different contexts. The dominant set of
standards are those known as WS-*. Included in this set of standards are
the Web Service Description Language (WSDL) for service description), the
Universal Description, Discovery and Integration (UDDI) protocol for service
discovery, the Simple Object Access Protocol (SOAP) for service communica-
tion, and the Web Service Business Process Execution Language (WS-BPEL)
for workflow.

The essence of SOA lies in independent services that are interconnected
with messaging. Each service is a self-contained chunk of code and data that
is private to that service, and can be described, published, discovered, or-
chestrated, and deployed across networks such as the Internet. Services com-
municate with each other exclusively through messages. No knowledge of the
partner service is shared other than the message formats and the sequences
of messages that are expected. The bottom-up view of the SOA is that dif-
ferent applications expose their functionalities through Web services. Thus,
programmers can access different functionalities of different legacy and newly
developed applications in a standard way through Web services.

However, Web services by themselves do not address the need to com-
pose and coordinate a process. WS-BPEL, or BPEL for short, is the de facto
standard for the combination and orchestration of Web services. Orchestra-
tion, and therefore BPEL, enables a user to specify how existing services
should be chained together in various ways to design an executable workflow.
The new workflow can then be presented as a new service, which is why BPEL
is often described as a language for recursive composition.

BPEL offers a rich language for orchestrating both business and scientific
workflows. A BPEL process specifies the exact order in which participating
services should be invoked. This can be done sequentially or in parallel. A pro-
grammer can express conditional behavior; for example, a Web service invoca-
tion can depend on the value of a previous invocation. One can also construct
loops, declare variables, copy and assign values, define fault handlers, and so
on. By combining all these constructs, the programmer can define a complex
scientific experiment in an algorithmic manner. BPEL also provides support
for both ACID and long running transactions. Most BPEL implementations
can cause the state of a process instance to persist, allowing a user to in-
terrupt a running workflow and reactivate it later when necessary. Moreover,
workflows specified in BPEL are fully executable and portable across BPEL-
conformant environments, which is an important step toward workflow reuse
and exchange.

Today, scientists face many of the same challenges found in enterprise com-
puting, namely integrating distributed and heterogeneous resources. Scientists
no longer use just a single machine, or even a single cluster of machines, or
a single source of data. Research collaborations are becoming more and more
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geographically dispersed and often exploit heterogeneous tools, compare data
from different sources, and use machines distributed across several institutions
throughout the world. And as the number of scientific resources available on
the Internet increases, scientists will increasingly rely on Web technology to
perform in silico experiments. However, the task of running and coordinating a
scientific application across several administrative domains remains extremely
complex.

One reason BPEL is an attractive candidate for orchestrating scientific
workflows is its strong support for Web services. With scientific resources
now available as Web and Grid services, scientists can transition from copy-
ing and pasting data through a sequence of Web pages offering those resources
to the creation and use of a workflow for experiment design, data analysis,
and discovery. Many types of in silico genomics analyses, such as promoter
identification, start with an initial set of data, perhaps acquired in a more
mechanical way such as through fast sequencing equipment or from a mi-
croarray chip. This is followed by an ordered sequence of database queries,
data transformations, and complex functional, statistical, and other analyses.
Such work may require computing power ranging from a desktop computer
to a remote supercomputer but is relatively loosely coupled and in many in-
stances asynchronous. By defining a workflow to automatically invoke and
analyze more routine parts of the process, multiple data sets can be processed
in parallel without requiring a significant amount of additional effort from the
scientist and can considerably increase productivity. With the proper tools,
scientists with limited programming skills can use BPEL to construct a work-
flow that carries out an experiment or that retrieves data from remote data
services.

There are other advantages to be gained from adapting BPEL for scientific
workflows. Since BPEL workflows are designed to act as a Web service, a
workflow can be published as a Web service and easily combined with other
Web services. Capturing an in silico experiment or data transformation as a
reusable workflow that can be defined, published, and easily reused is essential
in sharing scientific best practice.

Using BPEL to orchestrate an experiment also enables fault tolerance.
Because scientists are allowed to select and employ services from a UDDI
registry into the workflow, they also have the ability to use an alternative
service with similar functionality from the registry in case the original service
fails. This ensures that no experiment terminates unexpectedly because of the
failure of one particular service in the flow.

Furthermore, a BPEL workflow is specified in terms of service invocations.
This allows all aspects of the workflow, such as service execution, message flow,
data and process management, fault handling, etc., to be specified as a single
integrated process rather than handled separately. The result is a workflow
in which each step is explicit, no longer buried in Java or C code. Since the
workflow is described in a unified manner, it is much easier to comprehend,
providing the opportunity to verify or modify an experiment.
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There is a clear case for the role of workflow technology in e-Science;
however, there are technical issues unique to science. Business workflows are
typically less dynamic and evolving in nature. Scientific workflows tend to
change more frequently and may involve very voluminous data translations.
In addition, while business workflows tend to be constructed by professional
software and business flow engineers, scientific workflows are often constructed
by scientists themselves. While they are experts in their domains, they are not
necessarily experts in information technology, the software, or the network-
ing in which the tools and workflows operate. Therefore, the two cases may
require considerably different interfaces and end-user robustness both during
the construction stage of the workflows and during their execution.

In composing a workflow, scientists often incorporate portions of existing
workflows, making changes where necessary. Business workflow systems do
not currently provide support for storing workflows in a repository and then
later searching this repository during workflow composition.

The degree of flexibility that scientists have in their work is usually much
higher than in the business domain, where business processes are usually pre-
defined and executed in a routine fashion. Scientific research is exploratory
in nature. Scientists carry out experiments, often in a trial-and-error manner
wherein they modify the steps of the task to be performed as the experiment
proceeds. A scientist may decide to filter a data set coming from a measuring
device. Even if such filtering was not originally planned, that is a perfectly
acceptable option. The ability to run, pause, revise, and resume a workflow is
not exposed in most business workflow systems.

Finally, the control flow found in business workflows may not be expressive
enough for highly concurrent workflows and data pipelines found in leading-
edge simulation studies. Current BPEL implementations, and indeed most
business workflow languages, require the programmer to enumerate all con-
current flows. Scientific workflows may require a new control flow operator to
succinctly capture concurrent execution and data flow.

Over the last 20 years, there has been a great deal of interest in both re-
search and industry in systematically defining, reasoning about, and enacting
processes and workflows. With so many driving forces at work, it is clear that
workflow systems are here to stay and will have a major role to play in the
future IT strategies of business and scientific organizations, both large and
small. The current focus is on the use of Web services and a move toward a
new paradigm of service oriented architecture in which many loosely-coupled
Web services are composed and coordinated to carry out a process, and or-
chestrated using an execution language such as BPEL.

It is genuinely hard to build a robust and scalable orchestration engine
and associated authoring tools, and few groups have succeeded in doing so.
The emergence of BPEL as the de facto industry standard for Web service
orchestration is significant because it means that a number of commercial-
grade BPEL engines will be readily available.
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The strength of BPEL for orchestrating scientific workflows is its strong
support for seamless access to remote resources through Web services. As
scientific applications and curated data collections are published as Web ser-
vices, as will increasingly be the case with the emergence of service-based Grid
infrastructures, commercial BPEL engines will be an attractive execution en-
vironment for scientific workflows.
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3.1 Introduction

Astronomy has a rich heritage of discovery using image data sets that cover
the full range of the electromagnetic spectrum. Image data sets in one fre-
quency range have often been studied in isolation from those in other fre-
quency ranges. This is mostly a consequence of the diverse properties of the
data collections themselves. Images are delivered in different coordinate sys-
tems, map projections, spatial samplings, and image sizes, and the pixels
themselves are rarely co-registered on the sky. Moreover, the spatial extent
of many astronomically important structures, such as clusters of galaxies and
star formation regions, is often substantially greater than that of individual
images.

Astronomy thus has a need for image mosaic software that delivers mosaics
that meet end users’ image parameters (size, coordinates, spatial sampling,
projection, rotation) while preserving the astrometric and photometric integ-
rity of the original images. The Montage [299] software package! has been
designed to meet this need. A driver in the design of Montage has been
the requirement that Montage be usable without modification on end users’
desktops, clusters, computational Grids, and supercomputers. This design
goal has been achieved by delivering Montage as a toolkit in which the pro-
cessing tasks in computing a mosaic are performed in independent modules
that can be controlled through simple executables. The processing is easily
performed in parallel computing environments with the processing of images
performed on as many processors as are available. This approach has been suc-
cessfully demonstrated with two instances of parallel technology—MPI (Mes-
sage Passing Interface) [389] and Pegasus (Chapter 23). An on-demand image
mosaic service has been built on the TeraGrid [412] and is currently under
evaluation by astronomers, who simply submit a request for a mosaic using a
Web form; the TeraGrid architecture is hidden from them. Montage can be

! http://montage.ipac.caltech.edu.
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considered an enabling technology in that the mosaics it generates will widen
avenues of astronomical research, including deep source detection by combin-
ing data over multiple wavelengths and studying the wavelength-dependent
structure of extended sources, and image differencing to detect faint features.

The execution of complex workflows that produce image mosaics requires
an understanding of the design philosophy of Montage and the algorithms
implemented in it. Therefore we preface the discussion of parallelization and
workflows with this topic.

3.2 The Architecture of Montage

3.2.1 Architectural Components

Montage employs the following four steps to compute a mosaic:

e Reprojection of input images to a common spatial scale, coordinate sys-
tem, and World Coordinate System (WCS) projection

e Modeling of background radiation in images to achieve common flux scales
and background levels by minimizing the interimage differences

e Rectification of images to a common flux scale and background level

e Co-addition of reprojected, background-corrected images into a final mo-
saic

Montage accomplishes these computing tasks in independent modules writ-
ten in ANSI C for portability; they are listed in Table 3.2.1 and shown as a par-
allelized workflow in Figure 3.1. This “toolkit” approach controls testing and
maintenance costs and provides considerable flexibility to users. They can, for
example, use Montage simply to reproject sets of images and co-register them
on the sky, or implement a custom background-removal algorithm without
impact on the other steps, or define a specific processing flow through custom
scripts.

3.2.2 A General Reprojection Algorithm

To support the broadest range of applications, the basic Montage reprojection
and image-flux redistribution algorithm works on the surface of the celestial
sphere. All pixel vertices from both input and output images are projected
onto this sphere; if necessary, a coordinate system transform is applied to
the input pixel vertices to put their sky coordinates in the same frame as
the output. Then, for overlapping pixels, the area of overlap (in steradians)
is determined. This overlap, as a fraction of the input pixel area, is used to
redistribute the input pixel “energy” to the output pixels. In this way, total
energy is conserved for those input pixels that do not extend beyond the
bounds of the output image area. Even when a pixel has “undefined” vertices,
such as at the boundaries of an Aitoff All-sky projection, the same process can
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Component [Description
Mosaic Engine Components
mlimgtbl Extracts the FITS header geometry information from a set of

files and creates an ASCII image metadata table from it used
by several of the other programs.

mProject Reprojects a single image to the scale defined in a pseudo-FITS
header template file. Produces a pair of images: the reprojected
image and an “area” image consisting of the fractional input
pixel sky area that went into each output pixel.

mProjExec A simple executable that runs mProject for each image in an
image metadata table.
mAdd Coadds the reprojected images using the same FITS header

template and working from the same image metadata table.

Background Rectification Components

mOverlaps Analyzes an image metadata table to determine a list of over-
lapping images.
mDiff Performs a simple image difference between a single pair of’

overlapping images. This is meant for use on reprojected im-
ages where the pixels already line up exactly.

mDiffExec Runs mDiff on all the pairs identified by mOverlaps.

mFitplane Fits a plane (excluding outlier pixels) to an image. Meant for
use on the difference images generated above.

mFitExec Runs mFitplane on all the mOverlaps pairs. Creates a table of
image-to-image difference parameters.

mBgModel Modeling/fitting program that uses the image-to-image differ-

ence parameter table to interactively determine a set of cor-
rections to apply to each image to achieve a “best” global fit.

mBackground Removes a background from a single image (planar has proven
to be adequate for the images we have dealt with).
mBgExec Runs mBackground on all the images in the metadata table

Table 3.1: The design components of Montage.

be applied by determining an edge pixel’s outline on the sky, described in the
general case as a spherical polygon. The co-addition engine then creates the
final mosaic by reading the reprojected images from memory and weighting
each pixel’s flux by the total input area [48].

This approach is completely general and preserves the fidelity of the in-
put images. A comparison of sources extracted from the mosaics with those
extracted from the original images shows that, in general, Montage preserves
photometric accuracy to better than 0.1% and astrometric accuracy to better
than 0.1 pixels [301]. Generality in reprojection is achieved at the expense of
processing speed. For example, reprojection of a 512 x 1024 pixel Two Micron
All Sky Survey (2MASS) [387] image takes 100 seconds on a machine equipped
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Figure 3.1: Montage workflow.

with a 2.26 GHz Intel processor and 1 GB memory running Red Hat Linux
8.0.

The algorithm described above was deployed in the first public distribution
of the Montage software, version 1.7 [300]. Two further drawbacks inherent
in this distribution are that the maximum image-mosaic size is limited by the
available computer memory, and co-addition of flux in the reprojected pixels
only supports weighting by area coverage.

The Montage team has taken advantage of the software’s modular design
to address these limitations in subsequent distributions. These improvements
have taken the following forms:

e A general co-addition algorithm (Section 3.2.3)

e Custom, fast reprojection algorithms applicable to commonly used astro-
nomical projections that bypass projection of pixels onto a sphere and
transform input pixel flux directly into output pixel space (Section 3.2.4)

e Exploitation of the parallelization inherent in the design—many of the
steps needed to compute a mosaic can be performed in parallel (Section
3.3)

The following sections describe these optimizations in more detail.
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3.2.3 A General Co-addition Algorithm for Montage

The limitations of the available memory on the processing machine have been
simply overcome by reading the reprojected images a single line at a time from
files that reside on disk. Assuming that a single row of the output file does not
fill the memory, the only limitation on file size is imposed by the file system.
Images of up to 30 GB have been built with the new software. The algorithm
has also been developed further to support quite general co-addition methods.
For each output line, the co-addition module determines which input files will
be contributing pixel values and opens only those files. Each contributing pixel
value is read from the flux and area coverage files, and the value of each of
these pixels is stored in an array until all contributing pixels have been read
for the corresponding output row. This array constitutes a “stack” of input
pixel values; a corresponding stack of area coverage values is also preserved.
The contents of the output row are then calculated one output pixel (i.e., one
input stack) at a time by averaging the flux values from the stack. Different
algorithms to perform this average can be trivially inserted at this point in
the program. The greater flexibility of the new software comes at the modest
expense of 30% in speed.

Currently, Montage supports mean and median co-addition, with or without
weighting by area. The mean algorithm (default) accumulates flux values con-
tributing to each output pixel and then scales them by the total area coverage
for that pixel. The median algorithm ignores any pixels whose area coverage
falls below a specific threshold and then calculates the median flux value from
the remainder of the stack. This median input pixel is scaled by its corres-
ponding area coverage and written as the output pixel. If there are no area
files, then the algorithm gives equal weight to all pixels. This is valuable for
science data sets where the images are already projected into the same pixel
space. An obvious extension of the algorithm is to support outlier rejection,
and this is planned for a future release as an enhancement.

3.2.4 Performance Improvements through Custom
Reprojection Algorithms

In its general form, the Montage reprojection algorithm transforms pixel co-
ordinates in the input image to coordinates on the sky and then transforms
that location to output-image pixel space. Under certain circumstances, this
can be replaced by a much faster algorithm that uses a set of linear equations
(though not a linear transform) to transform directly from input pixel coordin-
ates to output pixel coordinates. This alternative approach is limited to cases
where both the input and output projections are “tangent plane” (Gnomonic,
orthographic, etc.), but since these projections are by far the most commonly
used in astronomy, it is appropriate to treat them as a special case.

This “plane-to-plane” approach is based on a library developed at the
Spitzer Science Center [302]. When both images are tangent plane, the geo-
metry of the system can be viewed as in Figure 3.2, where a pair of Gnomonic
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projection planes intersects the coordinate sphere. A single line connects the
center of the sphere, the projected point on the first plane, and the projected
point on the second plane. This geometric relationship results in transform-
ation equations between the two planar coordinate systems that require no
trigonometry or extended polynomial terms. As a consequence, the transform
is a factor of 30 or more faster than using the normal spherical projection.

A bonus to the plane-to-plane approach is that the computation of pixel
overlap is much easier, involving only clipping constraints of the projected
input pixel polygon in the output pixel space.

Celestial Sphere

Figure 3.2: The principle of plane-to-plane reprojection.

This approach excludes many commonly used projections such as “Cartesian”
and “zenithal equidistant” and is essentially limited to small areas of a few
square degrees. Processing of all-sky images, as is almost always the case with
projections such as Aitoff, generally requires the slower plane-to-sky-to-plane
approach.

There is, however, a technique that can be used for images of high resolu-
tion and relatively small extent (up to a few degrees on the sky). Rather than
use the given image projection, we can often approximate it to a very high
degree of accuracy with a “distorted” Gnomonic projection. A distorted space
is one in which the pixel locations are slightly offset from the locations on the
plane used by the projection formulas, as happens when detectors are slightly
misshapen, for instance. This distortion is modeled by pixel-space polynomial
correction terms that are stored as parameters in the image FITS (Flexible
Image Transport System) [142] header.

While this approach was developed to deal with physical distortions caused
by telescope and instrumental effects, it is applicable to Montage in augment-
ing the plane-to-plane reprojection. Over a small, well-behaved region, most
projections can be approximated by a Gnomonic (TAN) projection with small
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distortions. For instance, in terms of how pixel coordinates map to sky co-
ordinates, a two-degree “Cartesian” (CAR) projection is identical to a TAN
projection with a fourth-order distortion term to within about 1% of a pixel
width. Figure 3.3 shows this in exaggerated form for clarity, with the arrows
showing the sense of the distortion.
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Figure 3.3: Representation of a WCS projection as a distorted Gnomonic
(TAN) projection, exaggerated for clarity. The arrows indicate the sense of
the distortions.

In this example, the curved coordinate Grid is an undistorted TAN and
the rectangular Grid is both a CAR and the equivalent distorted TAN. This
polynomial “correction” plus the plane-to-plane transform is still much faster
than the normal reprojection. While this still does not cover all the possible
transformations, it does include all those used for very large data collections.

3.3 Grid-Enabled Montage

3.3.1 Parallelism in Montage

Because the Montage components can require a large amount of time to com-
plete a mosaic of reasonable size, various means of speeding up the calculations
were examined. The slow speed of the calculations is due to three factors: the
CPU speed, the compilers and memory systems limit how much of the CPU’s
peak performance can be obtained; and the I/O system limits how fast input
images can be loaded from remote archives and also how the local disk stores
intermediate and final results. Each of these limitations can be addressed, but
addressing each adds complexity. The rest of this section will discuss potential
solutions.

The simple solution to the limit of a CPU’s performance is to use multiple
CPUs. Currently, the market and commodity choice is to use multiple PC
CPUs in a cluster, where each CPU was designed as an individual machine,
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and to use some collective software and hardware, including networking, to
make the system appear to be a single system in many ways.

To deal with the limits on what fraction of the peak performance of the
CPUs Montage can exploit, it uses standard libraries where possible, as the
libraries can be optimized by their developers better than standard code can
be optimized by a compiler. Montage uses simple C code rather than C++
code around the libraries, as C can often be compiled into better-performing
code than C++. C remains more portable than C++, though this is not a
factor with modern hardware and compilers.

Finally, on the question of I/O limits to performance, the Montage design
is kept as flexible as possible so that it can take best advantage of the network
and disk systems that are available. In particular, Montage will benefit from
parallel file systems where they exist.

Given a system of hardware consisting of multiple individual systems
(nodes) that sometimes appear as a single system, C code and standard librar-
ies, and a lack of dependence on the choice of I/O system, the question that is
left to be answered is how to make all of these choices work together to solve
the problem for which Montage was intended, construction of astronomical
image mosaics, where parallelism is inherent, as seen in Figure 3.1.

The design of a set of simple applications connected by scripts lets us
take advantage of a number of processing environments, including a single
processor; a cluster of multiple processors with a shared file system; multiple
clusters, each with a shared file system; a set of processors, each with its
own file system; or any Grid-enabled hardware. For the single processor, the
simple executables and scripts are sufficient. For the other cases, two different
solutions have been implemented: an MPI approach and a Grid approach.

3.3.2 MPI Approach

MPI, the Message Passing Interface [389], is a standard that defines how vari-
ous processes can work together to solve a single problem through exchanging
messages. Messages can include data or can be used for synchronization. Two
common programming paradigms are used in MPI programs: single program
multiple data (SPMD) and master-worker. The Montage design provides a
master—worker-like structure for many of the modules in the form of ex-
ecutables (such as mProjExec and mProject), and so the generation of MPI
master—worker code would have been quite simple. Nevertheless, the SPMD
model was adopted because master—worker applications scale with the num-
ber of workers, not the number of processors, and scaling with the number
of processors was an explicit requirement from the sponsor. In general, the
structure of the executables is similar in that each has some initialization that
involves determining a list of files on which a worker module will be run, a
loop in which the worker is called for each file, and some finalization work
that includes reporting on the results of the worker runs. The executables are
parallelized very simply in the SPMD paradigm, with all processes of a given
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executable being identical to all the other processes of that executable. All
the initialization is duplicated by all processors. A line is added at the start of
the main loop, so that each processor only calls a worker module on its own
processor if the remainder of the loop count divided by the number of pro-
cessors equals the MPI rank. All processors then participate in global sums to
find the total statistics of how many worker modules succeeded, failed, etc., as
each processor initially keeps track of only its own statistics. After the global
sums, only the processor with rank 0 prints out the global statistics.

mAdd, however, is different, as it writes to the output mosaic a single line
at a time, reading from its input files as needed. The sequential mAdd writes
the FITS header information into the output file before starting the loop on
output lines. In the parallel mAdd, only the processor with rank 0 writes
the FITS header information; then it closes the file. Now, each processor can
carefully seek to the correct part of the output file and then write data, without
danger of overwriting another processor’s work. While the other executables
were written to divide the main loop operations in a round-robin fashion, it
makes more sense to parallelize the main mAdd loop by blocks since it is likely
that a given row of the output file will depend on the same input files as the
previous row, and this can reduce the amount of I/O for a given process.

Note that Montage includes two modules that can be used to build the final
output mosaic, mAdd (to write a single output file) and mAddExec (to write
tiled output files), and both can be parallelized as discussed in the previous
two paragraphs. Currently, Montage runs one or the other, but it would be
possible to combine them in a single run.

Some parts of the MPI-based Montage code, such as mImgtbl, will only
use one processor, and other parts, such as mProjExecMPI, will use all the
processors. Overall, most of the processors are in use most of the time. There
is a small amount of overhead in launching multiple MPI jobs on the same
set of processors. One might change the shell script into a parallel program,
perhaps written in C or Python, to avoid this overhead, but this has not been
done for Montage.

The timing results of the MPI version of Montage are shown in Figure 3.4.
The total times shown in this figure include both the parallel modules (the
times for which are also shown in the figure) and the sequential modules (the
times for which are not shown in the figure but are relatively small).

MPI parallelization reduces the one-processor time of 453 minutes down
to 23.5 minutes on 64 processors for a speedup of 19 times. Note that with
the exception of some small initialization and finalization code, all of the
parallel code is nonsequential. The main reason the parallel modules fail to
scale linearly as the number of processors is increased is I/O. On a system
with better parallel I/O, one would expect to obtain better speedups; the
situation where the amount of work is too small for the number of processors
has not been reached, nor has the Amdahl’s law limit.

Note that there is certainly some variability inherent in these timings due
to the activity of other users on the cluster. For example, the time to run
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Figure 3.4: Performance of the MPI version of Montage building a 6 x 6 degree
mosaic on the “Phase 2” TeraGrid [412] cluster at NCSA using dual 1.5 GHz
Itanium-2 processors with at least 4 GB of memory.

mlmgtbl should be the same in all cases since it is always run on a single
processor. However, the measured results vary from 0.7 to 1.4 minutes. Also,
the time for mDiffExec on 64 processors is fairly different from that on 16 and
32 processors. This appears to be caused by I/O load from other jobs run-
ning simultaneously with Montage. Additionally, since some of the modules’
timings are increasing as the number of processors is increased, one would
actually choose the fastest timing and run the module on only the number
of processors that were used for that timing. For example, mBgExec on this
machine should only be run on 16 processors, no matter how many are used
for the other modules.

These MPI timings are probably close to the best that can be achieved on
a single cluster and can be thought of as a lower bound on any parallel im-
plementation. The MPI approach is suitable for a set of processors that share
a file system, as there is implicit communication from one module to another
through files, and these files must be visible to all processors. Additionally,
if any processor fails in the MPI run, the entire MPI job and any remaining
part of the Montage job will also fail. A more general solution to the problem
of making use of multiple processors is to use a Grid approach.

3.3.3 Grid Approach

In the Grid approach, we create a workflow that describes the process of cre-
ating a mosaic using the Montage modules and use Pegasus (Chapter 23) for
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executing the workflow over the Grid resources. Pegasus [110-112,116], which
stands for Planning for Execution in Grids, is a framework that enables the
mapping of complex workflows onto distributed resources such as the Grid.
Pegasus maps an abstract workflow to a form that can be executed on a vari-
ety of computational platforms, from single hosts, to Condor pools [262], to
compute clusters, to the TeraGrid. While the MPI-based approach focuses on
running the Montage computations on a set of processors on a particular re-
source, such as a TeraGrid cluster, Pegasus takes a more generic approach by
including mechanisms for resource and data discovery, mapping of the compu-
tations to the appropriate resources, orchestration of data transfers between
the computations as needed, publication of the results in Grid catalogs, and
other runtime optimizations in order to improve the execution efficiency.

In order to use the Pegasus approach, an abstract workflow is generated
that describes the various tasks and the order in which they should be ex-
ecuted in order to generate the mosaic. The abstract workflow for Montage
consists of the various application components as shown in Figure 3.1. The
tasks in the abstract workflow represent the logical transformations such as
mProject, mDiff, and others. The edges of the workflow represent the data de-
pendencies between the transformations. For example, mConcatFit requires all
the files generated by all the previous mFitplane steps. The rationale for choos-
ing this particular workflow structure was to exploit the inherent parallelism
in the Montage modules. Other workflow structures for Montage are also pos-
sible, such as the one consisting of Montage executables (e.g., mProjExec, etc).
Even the previous MPI-based version of Montage could be represented as a
workflow.

Pegasus queries Grid information services to find the location of compute
and storage resources and to locate the physical replicas of the required input
data for the workflow. It then maps each task in the abstract workflow to a
compute resource based on a scheduling policy such as round-robin, random,
etc. The MPI approach used a shared file system for sharing data between
the Montage modules. In addition, Pegasus can transfer data using GridFTP
[9] between the various tasks based on the dependencies in the workflow,
where such shared file systems are not available. It transfers the input data
required by the tasks to the compute resources and then transfers the created
mosaic to a predefined location. These transfers are orchestrated by adding
data transfer tasks to the workflow at the appropriate places. This results in
the creation of a concrete workflow that can be executed using the Condor
DAGMan (Chapter 22) [97] workflow engine. DAGMan submits tasks to the
remote resources, monitors their execution, maintains the dependencies in the
workflow, and retries in case of failures.

Pegasus can be used to generate concrete workflows that can execute on
Grid resources that present a Globus Resource Allocation Manager (GRAM)
[102] interface or on a local Condor [262] pool. The Condor pool can consist
of dedicated or opportunistically shared resources. It can be constructed from
remote Grid resources using a Condor feature known as glide-in [96]. Glide-in
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can temporarily allocate a certain number of processors from a resource such
as the TeraGrid, create a Condor pool from these allocated processors, and
execute the workflow on this pool. Note that in both of these approaches, the
resources used can be local or remote, dedicated or shared. The key difference
is in the protocol used for submitting tasks to the resources and monitoring
their execution.

There are overheads associated with execution of workflows on Grids due
to the distributed nature of the resources, heterogeneity of the software com-
ponents that need to interact, the scale and structure of the workflows, etc.
These overheads are absent or minimal in the case of the MPI-based approach,
and hence the mosaic creation time using the MPI-based approach can be con-
sidered to be the lower bound on the time taken to create the mosaic using
the Grid approach. We have created a set of optimizations that reduce the
overheads and improve the execution efficiency of the workflow. These optim-
izations include task clustering techniques that increase the computational
granularity of the workflow and hence reduce the impact of the execution
overhead on the workflow runtime. Experiments done using these optimiz-
ations have shown that the mosaic creation time using the Grid approach
compares favorably with the MPI approach when the number of processors
allocated is less than 64 (Figure 3.5) [234].
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Figure 3.5: Times for building and executing the concrete workflow for creating
a 6 x 6 degree mosaic of the M16 region.
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3.4 Supporting a Community of Users

The Montage software is available! through a free “clickwrap” license issued
by the California Institute of Technology. Users of the software fall into two
groups: those who wish to order a mosaic from a third party and download the
resulting mosaic, and those who download and install the software on desktops
or incorporate it into processing environments. Section 3.4.1 describes the
architecture and operation of a portal for users who wish to request mosaics
online, and Section 3.4.2 describes examples of how Montage is being used
within processing environments to generate science and education and public
outreach products.

3.4.1 A Grid Portal for Montage

This section illustrates how to combine application-specific services and Grid-
based services to provide users with a Montage portal. An advanced prototype
of the architecture described below has been developed. When fully deployed,
this portal will be publicly accessible and will operate on a 24/7 basis. The
service is likely to process roughly 20,000 requests per month, based on sim-
ilar requests for 2MASS images at the NASA /TPAC Infrared Science Archive
(IRSA).

The Montage TeraGrid portal has a distributed architecture, as illustrated
in Figure 3.6. The portal is comprised of the following five main components,
each having a client and server: (i) User Portal, (ii) Abstract Workflow service,
(iii) 2MASS Image List service, (iv) Grid Scheduling and Execution service,
and (v) User Notification service. These components are described in more
detail below.

User Interface

Users on the Internet submit mosaic requests by filling in a simple Web form
with parameters that describe the mosaic to be constructed, including an ob-
ject name or location, mosaic size, coordinate system, projection, and spatial
sampling. After request submission, the remainder of the data access and mo-
saic processing is fully automated, with no user intervention. The server side
of the user portal includes a CGI program that receives the user input via
the Web server, checks that all values are valid, and stores the validated re-
quests to disk for later processing. A separate daemon program with no direct
connection to the Web server runs continuously to process incoming mosaic
requests. The processing for a request is done in two main steps:

1. Call the Abstract Workflow service client code
2. Call the Grid Scheduling and Execution service client code and pass to it
the output from the Abstract Workflow service client code

! http://montage.ipac.caltech.edu/docs/download.html.
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Figure 3.6: The distributed architecture of the Montage TeraGrid portal.

Abstract Workflow service

The Abstract Workflow service takes as input a celestial object name or loc-
ation on the sky and a mosaic size and returns a ziped archive file containing
the abstract workflow as a directed acyclic graph (DAG) in XML and a num-
ber of input files needed at various stages of the Montage mosaic processing.
The abstract workflow specifies the jobs and files to be encountered during
the mosaic processing and the dependencies between the jobs.

Image List service

The Image List service takes as input a data-set identifier, celestial object
name or location on the sky (which must be specified as a single argument
string), and a mosaic size. The astronomical images from the specified data-set
(e.g., 2MASS) that intersect the specified location on the sky are returned in a
table, with columns that include the filenames and other attributes associated
with the images.
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Grid Scheduling and Ezecution service

The Grid Scheduling and Execution service takes as input the ziped archive
generated by the Abstract Workflow service, which contains the abstract work-
flow and all of the input files needed to construct the mosaic. The service
authenticates users, schedules the job on the Grid using Pegasus, and then
executes the job using Condor’s DAGMan.

Users are authenticated on the TeraGrid using their Grid security cre-
dentials. Users first need to save their proxy credential on the MyProxy
server [314]. MyProxy is a credential repository for the Grid that allows a
trusted server (such as our Grid Scheduling and Execution service) to access
Grid credentials on the user’s behalf. This allows the appropriate credentials
to be retrieved by the portal using the user’s username and password.

Once authentication is completed, Pegasus schedules the Montage work-
flow onto the TeraGrid or other clusters managed by PBS and Condor. Upon
completion, the final mosaic is delivered to a user-specified location and the
User Notification service, described below, is contacted.

User Notification service

The last step in Grid processing is to notify the user of the URL where the
mosaic may be downloaded. This notification is done by a remote User Notific-
ation service so that a new notification mechanism can be used later without
having to modify the Grid Scheduling and Execution service. Currently the
user notification is done with a simple email, but a later version could provide
more sophisticated job monitoring, query, and notification capabilities.

Our design exploits the parallelization inherent in the Montage architec-
ture. The Montage Grid portal is flexible enough to run a mosaic job on
a number of different cluster and Grid computing environments, including
Condor pools and TeraGrid clusters. We have demonstrated processing on
both a single cluster configuration and on multiple clusters at different sites
having no shared disk storage.

3.4.2 Applications of Montage in Dedicated Processing
Environments

One application of Montage is as a general reprojection engine to derive large-
scale or full-sky images. Figure 3.7 shows an image of the 100 pm map of the
sky by Schlegel, Finkbeiner, and Davis [379] that aggregates the sky maps pro-
duced by the Diffuse Infrared Background Experiment (DIRBE) aboard the
Cosmic Background Explorer (COBE) and the Infrared Astronomical Satel-
lite (IRAS), shown transformed from the Zenithal Equal Area projection to
the Cartesian projection. This map is a science product that can be made ac-
cessible to astronomers online either as a single file for download or through a
cutout Web service, which will deliver image subsets of arbitrary size centered
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on a target position. The NASA /Infrared Processing and Analysis Center
(IPAC) Infrared Science Archive (IRSA) is including this image as part of a
broader science service that is required by the Herschel mission for observation
planning. It will return estimates of the dust emission galactic emission and
extinction along a line of sight, and when fully developed will return fluxes
extrapolated to other wavelengths. The Spitzer/IPAC E/PO group is plan-
ning to deliver E/PO products made from such mosaics, including fold-out
icosahedrons of the sky that will be distributed online.

Figure 3.7: The 100 pum sky represented in Cartesian projection, computed by
Montage from composite DIRBE and TRAS skymaps of Schlegel, Finkbeiner,
and Davis [379].

Figure 3.8: A section of the Galactic plane, 44 ° by 8 °, measured by 2MASS
in the J-band and shown in Cartesian projection. The full-resolution image
contains 4800 Megapixels.

A second application is generation of large-scale image mosaics, which can
also be served as products either for download or through spatial subsetting
services. Figure 3.8 shows a mosaic of a section of the Galactic plane in the
2MASS J-band [1], 44 " long and 8 * wide, centered on the Galactic Center and
shown in Cartesian projection. The production of this mosaic was intended
as a pilot project to provide resource estimates for generation of a full-sky
2MASS mosaic to be computed on the San Diego Supercomputer Center’s



3 Generating Complex Astronomy Workflows 35

IBM DataStar supercomputer when fully commissioned. The mosaic was pro-
duced on a cluster of four 1.4 GHz Linux processors that processed the input
images in parallel. By taking advantage of the algorithmic improvements de-
scribed in Sections 2.3 and 2.4, the map was generated in 4 hours wall-clock
time from 16,000 2MASS images in sine projection and containing 512 x 1024
pixels each.

Montage has found particular application to the Spitzer Space Telescope,
and this is described in the remainder of this section.

LZh3Bm 12536

12h34m 12h36m

Figure 3.9: Footprints of Hubble Space Telescope (HST) Advanced Camera
System (ACS) images in the Hubble Deep Field North supporting the Great
Observatories Origins Deep Survey (GOODS), shown on a backdrop 2MASS
K-band mosaic computed with Montage. The GOODS data query service is
accessible at http://irsa.ipac.caltech.edu/data/GOODS.

Backdrops for Rendering Spatial Coverage of Spitzer Ancillary Observa-
tions. On behalf of the Spitzer Science Center, IRSA is serving ancillary,
ground-based data supporting the Spitzer First Look Survey and Legacy pro-
jects. The data generally consist of collections of images, spectra, and source
catalogs covering target areas that are generally several degrees on a side.
These targets include the Lockman Hole, the ELAIS Fields, and the Hubble
Deep Fields. Montage has been used to create mosaics, generally from 2MASS
all-sky images, that act as background images that render the sky coverage
of results of spatial searches for data. An example is shown in Figure 3.9.

Support for Data Production and Validation by Spitzer Space Telescope
Legacy Teams. Two Spitzer Legacy teams, the Spitzer Wide-area InfraRed
Extragalactic (SWIRE) survey [264] and the Galactic Legacy Infrared Mid-
Plane Survey Extraordinaire (GLIMPSE) [163], are using Montage to support
their processing pipelines, quality assurance, and mission planning. SWIRE is
using the Infrared Array Camera (IRAC) and the MIPS (Millions of Opera-
tions Per Second) to trace the evolution of extragalactic populations at mod-
erate redshifts. GLIMPSE is generating a four-color multiwavelength infrared
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atlas of the Galactic plane with IRAC. Both projects are actively delivering
scientific data products to the Spitzer Science Center (SSC).

SWIRE has been using Montage on Solaris platforms as a fast reprojection
and co-addition engine to build sky simulations at a common spatial sampling
that model the expected behavior of the sky, including galaxies, stars, and cir-
rus. These simulations have been used to validate the processing pipeline and
source extraction. Predictions of the expected source populations and appear-
ance of the sky have been used to plan the observing strategy. Following the
launch of Spitzer, SWIRE is using Montage as an engine for co-registering
images from different instruments, delivered with differing sampling frequen-
cies, coordinate systems, and map projections, on a common spatial sampling
scale and with common instrument parameters, and placing the backgrounds
of each set of images on a common level. Figure 3.10 shows part of a 2.5 GB
mosaic generated from images obtained with IRAC; the bright galaxy left of
center is the Tadpole Galaxy. Montage was used here as a background recti-
fication and co-addition engine applied to mosaic images generated as part of
the Spitzer pipeline. The SWIRE project! has compiled a list of over 30 (as
of March 2006) scientific publications that exploit SWIRE data products.

Figure 3.10: Part of a three-color
mosaic of Spitzer Infrared Array Figure 3.11: Four-color IRAC mo-

Camera (IRAC) images. The com- saic of the Galactic star formation
plete mosaic is 10,000 pixels on a region RCW 49 measured at 3.6 pm,
side. 4.5 pm, 5.8 um, and 8 pm.

The GLIMPSE team has also integrated Montage into their Linux cluster-
based pipeline. As part of their quality assurance program, they have used
mosaics of the entire GLIMPSE survey region at J, H, K and MSX 8 pm [164].
They provide quick-look comparisons for quality assurance of the IRAC mo-
saics. An example of the early science data products is shown in Figure 3.11.

! http://swire.ipac.caltech.edu/swire/astronomers/publications.html
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These data products are leading to a new understanding of the star form-
ation in the plane of the Galaxy, in which star formation is proceeding at
a much higher rate than previously thought, and have led to the discovery
that the bar in the center of the Galaxy is some 7500 parsecs long, substan-
tially longer than previously thought [44,92]. The GLIMPSE team Web site
(http://www.astro.wisc.edu/sirtf/glimpsepubs.html) has listed over 20 peer-
reviewed papers (as of March 2006) that use the GLIMPSE data products.

Figure 3.12: Continuum-subtracted Ha image of the supernova remnant S147.
This is a very large-scale image, built by computing a mosaic of a large number
of overlapping IPHAS fields. The total imaged area is roughly 5 x 3.5 square
degrees.

The INT/WFC Photometric H-alpha Survey (IPHAS) is performing a
deep Ha survey of the Southern Galactic Plane in the red (Sloan R and I
bands). The project surveys short-lived phases of stellar evolution to signific-
antly advance our knowledge of the extreme phases of stellar evolution, and as
part of its operations is generating large-scale mosaics (5 x 5 square degrees)
of regions of the Galactic plane. Figure 3.12 shows a sample image; more can
be seen in [216,217].
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4.1 Introduction

Modern scientific experiments acquire large amounts of data that must be ana-
lyzed in subtle and complicated ways to extract the best results. The Laser
Interferometer Gravitational Wave Observatory (LIGO) is an ambitious effort
to detect gravitational waves produced by violent events in the universe, such
as the collision of two black holes or the explosion of supernovae [37,258]. The
experiment records approximately 1 TB of data per day, which is analyzed by
scientists in a collaboration that spans four continents. LIGO and distributed
computing have grown up side by side over the past decade, and the analysis
strategies adopted by LIGO scientists have been strongly influenced by the
increasing power of tools to manage distributed computing resources and the
workflows to run on them. In this chapter, we use LIGO as an application
case study in workflow design and implementation. The software architecture
outlined here has been used with great efficacy to analyze LIGO data [2-5]
using dedicated computing facilities operated by the LIGO Scientific Collabor-
ation, the LIGO Data Grid. It is just the first step, however. Workflow design
and implementation lies at the interface between computing and traditional
scientific activities. In the conclusion, we outline a few directions for future
development and provide some long-term vision for applications related to
gravitational wave data analysis.

4.2 Gravitational Waves

Although Einstein predicted the existence of gravitational waves in 1916, the
challenge in directly observing them is immense because of the extremely weak
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coupling between matter and gravitation. Small amounts of slowly moving
electric charge can easily produce detectable radio waves, but the generation
of detectable amounts of gravitational radiation requires extremely massive,
compact objects, such as black holes, to be moving at speeds close to the speed
of light. The technology to detect the waves on Earth only became practical in
the last decade of the twentieth century. The detection of gravitational waves
will open a new window on the universe and allow us to perform unprecedented
tests of general relativity. Almost all of our current knowledge about the
distant universe comes from observations of electromagnetic waves, such as
light, radio and X-ray. Gravitational waves, unlike electromagnetic waves,
travel through matter and dust in the universe unimpeded. They can be used
to see deep into the cores of galaxies or probe the moment when space and
time came into being in the Big Bang.

Gravitational waves are ripples in the fabric of space-time; their effect on
matter is to stretch it in one direction and squeeze it in the perpendicular di-
rection. To detect these waves, LIGO uses three laser interferometers located
in the United States. Two interferometers are at the Hanford Observatory in
southeastern Washington and one is at the Livingston Observatory in south-
ern Louisiana. The purpose of the multiple detectors is to better discriminate
signal from noise, as a gravitational wave signal should be detectable by all
three interferometers. Each interferometer consists of a vacuum pipe arranged
in the shape of an L with 4 kilometer arms. At the vertex of the L and at the
end of each of its arms are mirrors that hang from wires. Laser beams travers-
ing the vacuum pipes accurately measure the distance between the mirrors in
the perpendicular arms. By measuring the relative lengths of the two arms,
LIGO can measure the effect of gravitational waves. These changes in length
are minute, typically 10~ meters over the 4 kilometer arms—much less than
the size of a proton. To measure such small distances requires ultrastable
lasers and isolation of the mirrors from any environmental disturbances. Any
difference in the lengths of the arms, due to detector noise or gravitational
waves, is detected as a change in the amount of light falling on a photode-
tector at the vertex of the L. Figure 4.1 shows a schematic diagram of a LIGO
detector. In a perfect detector and in the absence of a gravitational wave, no
light would fall on the photodetector. In practice, however, random fluctu-
ations in the interferometer cause some light to fall on the detector. Among
other sources, these fluctuations come from seismic noise from ground motion
coupling into the mirrors, thermal noise from vibrations in the mirrors and
their suspensions, and shot noise due to fluctuations in the photons detec-
ted by the photodetector. LIGO data analysis is therefore a classic problem
in signal processing: determining if a gravitational wave signal is present in
detector noise.

Data from the LIGO detectors are analyzed by the LIGO Scientific Col-
laboration (LSC), an international collaboration of scientists. The searches for
gravitational waves in LIGO data fall broadly into four classes: compact bi-
nary inspiral, continuous waves from rotating neutron stars, unmodeled burst
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Figure 4.1: Schematic diagram of a LIGO detector. Laser light is incident on
a partially reflective mirror or beamsplitter. Half the light is transmitted into
one arm of the interferometer and half is reflected into the other arm. The light
in each arm resonates between two mirrors that act as test masses and change
position in response to a gravitational wave. The light is recombined at the
beamsplitter, and the light incident on the photodiode contains information
about the position of the mirrors and hence about any gravitational waves
incident on the detector.

sources, and stochastic gravitational wave backgrounds. In this chapter we fo-
cus on the workflows used in the search for gravitational waves from compact
binary inspirals. For details on the other searches, we refer the reader to [37].

The gravitational waves arising from coalescing compact binary systems
consisting of binary neutron stars and black holes are one of the best under-
stood sources for gravitational wave detectors such as LIGO [427]. Neutron
stars and black holes are the remnants produced by the collapse of massive
stars when they reach the end of their lives. If two stars are in a binary system,
the compact bodies orbit around each other and lose energy in the form of
gravitational waves. The loss of energy causes their orbit to shrink and their
velocities to increase. The characteristic “inspiral” signal emitted increases in
frequency and amplitude until the bodies finally plunge toward each other
and coalesce, terminating the waveform. Figure 4.2 shows a time—frequency
spectrogram of a simulated inspiral signal. It is expected that there will be
approximately one binary neutron star coalescence every three years in the
volume of the universe accessible to LIGO [231].

The shape of the inspiral waveform depends on the masses of the binary
components. When both components are below approximately three solar
masses, the waveform is well modeled by theoretical calculations and we can
use matched filtering to find the signals in detector noise. For higher-mass
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Figure 4.2: A time—frequency spectrogram of a simulated binary inspiral sig-
nal. The waveform increases in amplitude and frequency as time increases.
The well-defined shape of the waveform makes matched filtering a suitable
data-analysis technique.

waveforms, such as black hole binaries, uncertainties in the waveforms grow,
but in practice we may continue to use matched filtering, albeit with a modi-
fied template family [68,69]. These templates are not exact representations of
the signals but are designed to capture the essential features of the waveforms.
The first science run of LIGO focused attention on the search for binary neut-
ron stars [2]. The second science run refined the binary neutron star search [3]
and extended the analysis to include searches for binary black hole systems
with higher masses [5] and subsolar-mass binary black hole systems that may
be components of the Milky Way Halo [4].

Analysis of the LIGO data for binary inspirals is performed using the LIGO
Data Grid (LDG) [256]. In this chapter, we describe the LDG infrastructure,
the software used to construct data analysis workflows for the LDG, and the
components and execution of the inspiral analysis pipeline. Finally, we discuss
the use of these tools by other gravitational wave searches and the extension
of the workflows to other Grids, such as the Open Science Grid (OSG) [328].

4.3 The LIGO Data Grid Infrastructure

LSC scientists conducting gravitational wave data analysis need to analyze
many terabytes of data. The scientists have access to a large number of dis-
tributed computing resources, including resources external to the collabora-
tion. To fully leverage the distributed resources in an integrated and seamless
way, infrastructure and middleware have been deployed to structure the re-
sources as a Grid. The LIGO Data Grid infrastructure includes the LSC Linux
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clusters, the networks that interconnect them to each other, Grid services run-
ning on the LSC Linux clusters, a system for replicating LIGO data to LSC
computing centers, DOE Grids certificate authority authentication [120], and
a package of client tools and libraries that allow LSC scientists to leverage the
LIGO Data Grid services.

The LDG hardware consists of Linux clusters for data analysis and Linux
and Sun Solaris servers used for data replication and metadata services. The
hardware is distributed among the LIGO observatories, the LIGO Laborat-
ories at the California Institute of Technology (Caltech), the Massachusetts
Institute of Technology (MIT), and various LSC member institutions, as de-
tailed below. The middleware software that supports Grid services and users
is known as the LDG server package. The LDG server package itself is built on
top of the Virtual Data Toolkit (VDT) [440] as provided by the international
Virtual Data Grid Laboratory (iVDGL) [215] and OSG [328] projects. A sub-
set of the LDG server software is distributed as the LDG client package and
contains only the tools needed to access the computing clusters and discover
LIGO data across the LDG. The LDG also uses some proprietary software,
such as the Sun StorEdge SAM-QFS [401] software and the IBM DB2 [209]
database. In this section, we describe the LDG hardware and software infra-
structures in more detail.

4.3.1 Management of the Raw Detector Data

The LIGO detectors are sensitive to gravitational waves with frequencies
between approximately 40 Hz and 4 kHz. The output signal from each of
the three detectors is digitized as a 16 bit signal at a sample rate of 16384 Hz.
In addition to the output photodiode signal, many other detector data chan-
nels are recorded at various sample rates between 8 Hz and 16384 Hz. These
channels monitor the performance of the detector and its environment. The
total output data rate of the observatories is 8 MB per second for Hanford and
4 MB per second for Livingston. The many channels are written to a high-
performance file system, each individual file or frame containing 32 seconds of
data. Approximately 10000 frame files are written per day at each observatory.

Distribution of these data is managed by the LIGO Data Replicator (LDR)
[257], which provides robust replication and data discovery services. The LDR
service is built on top of the Globus Replica Location Service (RLS) [88], Glo-
bus GridFTP [9], and a metadata catalog service. Each of these services is
deployed separately from the other services in the LDG server package. To-
gether, these services are used for replicating data. Data at the observatories
are published into LDR and then replicated to the LIGO Laboratory at Cal-
tech, which is responsible for permanent data storage and archiving of data.
Other LDG sites deploy LDR to replicate particular subsets of LIGO data to
the local site for data analysis. The subsets of LIGO data that are replicated
can be configured by each site’s local policy, and each site stores the data
in accordance with its own local policies in terms of the directory structure.
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Note that the LDR service replicates data in bulk to sites, independently of
the demands of any particular data analysis job. In order to execute analysis
workflows, LSC scientists need to be able to discover the location of specific
LIGO data files across the LIGO Data Grid. The LSCdataFind tool included
in the LDG client package allows LSC scientists to discover LIGO data based
on gravitational wave detector specific metadata rather than discovery based
on filenames. Typical metadata attributes used for finding LIGO data include
a start and end time describing the epoch of data to be analyzed, the ob-
servatory at which the data were collected, and the class of LIGO data files
(different classes or frame types contain different sets of data channels from
the detectors).

The LSCdataFind tool by default returns a list of physical filenames
(PFNs) or URLs for the location of LIGO data files at a particular LDG site.
These PFNs can then be used directly by tools building a LIGO workflow,
tailoring it for use at that particular site. In order to support the more so-
phisticated planning of the LIGO workflows detailed below, LSCdataFind also
supports returning only the logical filenames (LFNSs) of the data files meeting
the user’s metadata constraints. The LFNs are just the simple filenames and
do not contain any location information.

4.3.2 Management of Detector Metadata

In addition to the access to raw detector data, LSC scientists need additional
metadata, known as data quality information, which describe the state of the
interferometers, when the data are suitable for analysis, and records informa-
tion about periods of unusual behavior. These metadata are stored in the LSC
segment database, which allows storage, retrieval, and replication of the data.
The segment database uses the IBM DB2 database to provide the underlying
relational-database engine. The publication scripts used to publish the data
into LDR also publish detector state information into the segment database.

The segment databases at Caltech and the observatories are connec-
ted together by low-latency peer-to-peer database replication using the “Q-
replication” service provided by DB2. Any metadata inserted at one of the
three databases will be replicated to the two other databases with a latency
of a few seconds to a couple of minutes. Replication time varies depending on
the load on the databases. IBM WebSphere MQ [210] is used as the transport
layer for replication between the databases. Message queues are set up between
each of the servers that take part in the replication, and these are used by the
replication programs to send and receive data and control messages.

Client and server tools written on top of the LDG server middleware al-
low scientists to connect to the database, query information, and insert new
metadata based on detector characterization investigations. Segment discov-
ery services are provided by the LSCsegFind server, which runs at each site
and responds to user requests for segment and data-quality information. It
constructs the SQL needed to service the user’s request, executes the query
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on the database, and returns the results to the user. The client and server
communicate over a Globus GSI [72] authenticated connection. The server
runs on the same machine as the DB2 database, and queries can be issued by
remote clients, which are distributed as part of the LDG client bundle.

Metadata are exchanged in the LSC as XML data, with the LSC-specific
schema called LIGO lightweight XML. The Lightweight Database Dumper
(LDBD) provides a generic interface between the segment database and LIGO
lightweight XML representations of table data in the database. The LDBD
server can parse the contents of a LIGO lightweight XML document containing
table data and insert them into the database. It can also execute SQL queries
from a client and return the results as LIGO lightweight XML data. Data
quality information is generated as LIGO lightweight XML by various data-
monitoring tools and inserted via the LDBD server. This generic framework
allows construction of metadata services specific to the various requirements
of gravitational wave data analysis. Again, communication between the cli-
ent and server is performed over a GSI-authenticated socket connection. The
server runs on the same machine as the DB2 database, and queries can be
issued by remote clients. The LDBD server is also capable of inserting LFN to
PFN maps into an RLS server, if desired, to allow metadata to be associated
with specific files.

4.3.3 Computing Resources

LSC scientists have access to a number of computing resources on which to
analyze LIGO data. Some resources are dedicated Linux clusters at LSC sites,
others are Linux clusters available via LSC partnership in large Grid collabor-
ations such as the international Virtual Data Grid Laboratory (iVDGL) [215]
and its successor the Open Science Grid [328], and still other resources are
available via more general arrangements with the host institution. The vast
majority of available computing resources are Intel [214] or AMD [21] based
clusters running some version of the Linux operating system.

LSC Linux Clusters

The LSC itself has available as dedicated computing resources Linux clusters
hosted at the LIGO observatories at Hanford and Livingston, at the LIGO host
institutions Caltech and MIT [258], and at LSC computing sites hosted at the
Pennsylvania State University (PSU) [342] and the University of Wisconsin—
Milwaukee (UWM) [434]. In addition there are Linux clusters dedicated for
gravitational wave data analysis made available by the British-German GEO
600 [470] gravitational wave detector, which is also a member of the LSC.
Each dedicated LSC Linux cluster and its related data storage hardware
is categorized as a Tier 1, 2, or 3 site depending (in a rough way) on the
amount of computing power and data storage capacity available at the site.
The LIGO Caltech Linux cluster, with over 1.2 teraflops (TFlop) of CPU
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and 1500 terabytes (TB) of data storage, serves as the Tier 1 site for the
collaboration. All LIGO data are archived and available at the Tier 1 site. The
detector sites at Hanford and Livingston, although the LIGO data originate
there, are considered to be Tier 2 sites. The Hanford site has available 750
gigaflops (GFlop) of CPU and 160 TB of data storage, while the Livingston
site has available 400 GFlops of CPU and 150 TB of data storage. The LIGO
MIT site is also considered a Tier 2 site, with 250 GFlops of CPU and 20 TB
of data storage. The PSU and UWM sites are operated as Tier 2 sites. The
PSU site includes 1 TFlop of CPU and 35 TB of storage. The UWM site has
operated in the past with 300 GFlops of CPU and 60 TB of storage, although
it is currently being upgraded to 3 TFlops and 350 TB of storage.

Each of the Linux clusters within the LIGO Data Grid deploys a set of
standard Grid services, including Globus GRAM [147] for submitting jobs and
resource management, a Globus GridFTP server for access to storage, and a
GSI-enabled OpenSSH server [182] for login access and local job submission.
All of these services authenticate via digital certificate credentials. The mid-
dleware software that supports these and other Grid services is deployed using
the LDG server package.

Other Computing Resources

Through LSC membership in large Grid computing projects and organiza-
tions, LSC scientists have access to a large number of computing resources
outside of the dedicated LSC computing resources. The LSC was a founding
contributor to iVDGL, and much of the development and prototyping of the
effort described here was done as part of an effort to allow LSC scientists to
leverage iVDGL resources not owned by the LSC. In particular, the initial
prototyping of the LIGO inspiral workflow management that leverages the
use of Condor DAGMan (see Chapter 22, and reference [97]) and Pegasus
(see Chapter 23 and references [111], [112], [116]) was driven by the desire to
leverage the Grid3+ [172] resources made available by the iVDGL collabora-
tion. The more recent work done to run LIGO inspiral workflows on non-LSC
resources is targeted at running on the Open Science Grid. In addition, LSC
scientists (in particular those running inspiral workflows) have access to the
large computing resources from the Center for Computation and Technology
at Louisiana State University [85].

4.3.4 Batch Processing

All of the LSC Linux clusters, with the exception of the cluster at PSU, use
Condor (see Chapter 22) as the local batch scheduler. As discussed in detail
below, this has allowed LSC scientists to begin developing complex workflows
that run on a single cluster and are managed by Condor DAGMan. To run
workflows across LSC clusters running Condor and leverage geographically
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distinct resources as part of a single workflow, the LSC has investigated using
Condor-only solutions such as Condor Flocking [133].

The Linux clusters at PSU and LSU, however, use the Portable Batch Sys-
tem (PBS) [339] for managing batch jobs, and since these resources represent
a significant fraction of the resources available to LSC scientists, it is impor-
tant that the workflows also be able to leverage those resources. In addition,
a majority of the resources available outside the LDG use a tool other than
Condor for managing compute jobs. While recent development work from the
Condor group involves providing access to non-Condor managed resources
directly from a Condor-only environment, the workflow management work
described here has focused on using a blended approach that involves tools
beyond Condor and Condor DAGMan.

4.3.5 LIGO Data Grid Client Package

LIGO Data Grid users install the LDG client package on their workstations.
The LDG client package is also built on top of the VDT but only includes a
subset of the client tools and libraries. No Grid services are deployed as part
of the client package. In addition to the client tools from the VDT, a number
of client tools specifically for use in creating and managing LIGO workflows
are included in the client package. The most significant of these are the tools
LSCdataFind, used for data discovery, and LSCsegFind, used for data quality
information retrieval across the LIGO Data Grid.

4.4 Constructing Workflows with the Grid/LSC
User Environment

In the previous section, we described the hardware and middleware infrastruc-
ture available to LSC scientists to analyze LIGO data. In this section, we de-
scribe the Grid/LSC User Environment (Glue), a toolkit developed to allow
construction of gravitational wave data analysis workflows. These workflows
can be executed on LSC Linux clusters using the Condor DAGMan workflow
execution tool or planned and executed on wider Grids, such as the OSG,
using the Pegasus workflow planner, Condor DAGMan, and Globus GRAM.

4.4.1 Overview of LIGO Workflows

LIGO data analysis is often referred to as “embarrassingly parallel,” meaning
that although huge quantities of data must be analyzed over a vast parameter
space of possible signals, parallel analysis does not require interprocess com-
munication. Analysis can be broken down into units that perform specific tasks
that are implemented as individual programs, usually written in the C pro-
gramming language or the Matlab processing language/environment. Work-
flows may be parallelized by splitting the full parameter space into smaller
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blocks or parallelizing over the time intervals being analyzed. The individual
units are chained together to form a data analysis pipeline. The pipeline starts
with raw data from the detectors, executes all stages of the analysis, and re-
turns the results to the scientist. The key requirements that must be satisfied
by the software used to construct and execute the pipelines:

1. Ensure that all data are analyzed and that the various steps of the work-
flow are executed in the correct sequence

2. Automate the execution of the workflow as much as possible

3. Provide a flexible pipeline construction toolkit for testing and tuning work-
flows

4. Allow easy, automated construction of complex workflows to analyze large
amounts of data

5. Have a simple reusable infrastructure that is easy to debug

In order to satisfy the first two requirements, we implement a data analysis
pipeline as a directed acyclic graph (DAG) that describes the workflow (the
order in which the programs must be called to perform the analysis from be-
ginning to end). A DAG description of the workflow can then be submitted to
a batch processing system on a computing resource or to a workflow planner.
The pipeline construction software must maintain an internal representation
of the DAG, which can then be written out in the language that a batch
processing system or a workflow planner can understand. By abstracting the
representation of the workflow internally, the workflow may be written out
using different syntaxes, such as a Condor DAGMan input file or the XML
syntax (known as DAX) used by the Pegasus workflow planner. To simplify
the construction of DAGs for gravitational wave data analysis, the LSC has
developed the Grid/LSC User Environment, or Glue, a collection of modules,
written in the Python language, developed especially for LSC scientists to
help build workflows.

The components of a DAG are its nodes and edges. The nodes are the
individual analysis units and the edges are the relations between the nodes
that determine the execution order. Each node is assumed to be an instance of
a job that performs a specific task in the workflow. Glue contains three basic
abstract classes that represent DAGs, jobs, and nodes. The DAG class provides
methods to add nodes and write out the workflow in various formats. The job
class provides methods to set the name of the executable and any options or
arguments common to all instances of this job in the DAG. The node class,
which inherits from the job class, provides methods to set arguments specific
to a node, such as the start and stop time to be analyzed, or the required input
files. The node class also has a method to add parent nodes to itself. The edges
of the DAG are constructed by successive calls to add_parent for the nodes
in the workflow. The executables to be run in the DAG read their arguments
from the command line and read and write their input from the directory
in which they are executed. This constraint is enforced to allow portability
to Grid environments, discussed below. Glue also knows about other LIGO-
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Glue Pipeline Modules

Figure 4.3: The Glue pipeline modules are used by LSC scientists to write
pipeline generation scripts. Pipeline scripts take as input analysis parameters
and metadata describing the raw data and output workflows as DAGMan
DAG files or Pegasus DAX files, which can be used to execute the pipeline.
If Glue is generating a Pegasus DAX, the pipeline modules can query the
LDR data location service to obtain LFNs for the input data, as described in
Section 4.4.4.

specific concepts, such as science segments (time epochs of LIGO data suitable
for analysis) and the methods that are used to split these segments into blocks
or subunits of science segments used to parallelize workflows. By providing
iterators for these classes, it is simple to loop over segments and blocks in the
construction of a workflow.

To address the specific needs of different analysis tasks, the user writes a
pair of classes that describe the task to Glue: a job class and a node class
that inherit from the base classes. The user may extend or override the base
methods to allow the pipeline construction scripts to set options particular
to the task being described. In this way, the components of the workflow are
abstracted, and it is straightforward to write pipeline scripts that construct
complex workflows. The Glue method of constructing data analysis pipelines
has been used in the binary inspiral analysis, the search for gravitational
wave bursts from cosmic strings, excess power burst analysis, and stochastic
gravitational wave background analysis. Figure 4.3 shows how Glue is used in
workflow construction, with metadata and analysis parameters taken as input
and different workflow styles written as output. Below we give an example of
a script to construct a simple workflow, and Section 4.5 describes how this is
used in practice for the inspiral analysis pipeline.
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from glue import pipeline
import gwsearch

data = pipeline.ScienceData()
data.read(’segments.txt’,2048)
data.make_chunks (2048)

dag = pipeline.CondorDAG(’myworkflow’)

datafind_job = pipeline.LSCDataFindJob()
datafind_job.add option(’data-type’,’raw’)
previous_df = None

gwsearch_job = analysis.GWSearchJob()

for seg in data:

df = pipeline.LSCDataFindNode ()

df .set_start(seg.start())

df .set_end(seg.end())

for chunk in seg:
insp = gwsearch.GWSearchNode ()
insp.set_start (chunk.start())
insp.set_end(chunk.end())
insp.add_parent (df)

if previous_df:
df .add_parent (previous_df)

previous_df = df

dag.write_dag()

Figure 4.4: Example code showing the construction of a workflow using Glue.
The input data times are read from the file segments.txt. For each interval
in the file, an LSCdataFind job is run to discover the data and a sequence
of inspiral jobs are also run to analyze the data. The workflow is written
to a Condor DAG file called myworkflow.dag, which can be executed using
DAGMan.

4.4.2 Constructing a Workflow with Glue

In this example, an LSC scientist wishes to analyze data from a single LIGO
detector through a program called G WSearch, which analyzes data in blocks
of 2048 seconds duration. Figure 4.4 shows the Python code necessary to
construct this workflow using Glue. The user has written a pair of classes
that describe the job and nodes for the GWSearch program, as described in
the previous section, and the script imports them along with the pipeline
generation module from Glue. The user has requested a list of times from the
segment database that are suitable for analysis and stored them in a text file
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LSCdataFind
LSCdataFind
LSCdataFind

Figure 4.5: The workflow constructed by the sample code shown in Figure 4.4.
In this case, there are three segments used as input, the first of which contains
three 2048 second blocks and the second and third containing two 2048 second
blocks. The resulting workflow has ten nodes.

named segments.txt. This file contains a list of start and stop times in GPS
seconds, which may vary in length between several seconds and many hours.
The user’s pipeline script creates a representation of these intervals using the
Glue ScienceData class. The segments are parsed from the file by the read
method, which is told to discard any segments shorter than 2048 seconds. The
segments are then split into blocks of length 2048 seconds by the make_chunks
method.

To construct a workflow, the script first creates a representation of the
workflow itself using the CondorDAG class. Instances of the LSCDataFindJob
and GWSearchJob classes are then created to describe the programs that will
be used in the workflow. Next the script iterates over all segments in the data
class and constructs a node in the workflow that performs an LSCdataFind job
to find the data for each segment. There is then a second loop over the 2048
second blocks within each segment and a node to execute the GWSearch pro-
gram on each block. A dependency is created between the LSCdataFind and
the GWSearch jobs by using the add_parent method of the GWSearch nodes.
This ensures that the GWSearch jobs do not execute until the LSCdataFind
job is complete. Finally, a relation is created between the LSCdataFind jobs,
so that only one job executes at a time; this is a technique used in real work-
flows to reduce the load on the server. The final workflow constructed by this
example is shown in Figure 4.5 for a segment file that contains segments of
lengths 6144, 4192, and 4192 seconds.

4.4.3 Direct Execution Using Condor DAGMan

Once the script to generate an analysis pipeline has been written, the resulting
workflow must be executed on an LSC computing cluster. As described previ-
ously, most of the LSC clusters run the Condor batch processing system. The
write_dag method of the Glue DAG class creates a DAG in Condor DAGMan
format, as well as the necessary Condor submit files to execute the jobs. DAGs
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for LSC data analysis range in size from a few tens of nodes to over 100000
nodes. The DAG written by the pipeline script is submitted to Condor, which
ensures that all the nodes are executed in the correct sequence. If any node
fails, for example due to transient errors on cluster nodes, a rescue DAG is
created containing only the nodes that failed or were unable to execute due
to failures. This rescue DAG can be resubmitted to Condor and in this way
LSC scientists can ensure that all data have been correctly and completely
analyzed.

4.4.4 Planning for Grids with Pegasus

To complete a search for gravitational waves, it is necessary to run many
large-scale Monte Carlo simulations with simulated signals added to the data.
The results of these simulations are used to measure the efficiency and tune
the parameters of the search. This requires a great deal of computing power,
and Glue has been extended to write workflows in the abstract DAG (DAX)
format so they can be planned for grid execution with Pegasus.

When running data on the Grid, it is no longer guaranteed that the LIGO
data are present on the computing cluster on which the job will execute. Glue
has been modified so that when it is instructed to write a DAX it does not
add any requested LSCdataFind nodes to the workflow. Instead it queries the
LDR data discovery service to find the logical filenames (LFNs) of the input
data needed by each node and adds this information to the DAX. When the
workflow is planned by Pegasus on a given list of potential Grid sites, it queries
the Globus RLS servers deployed on the LIGO Data Grid to determine the
physical filenames or URLs of the input data. Pegasus then adds transfer nodes
to the workflow to stage data to sites that do not have the input data and uses
local replicas of the data on those sites that already have the necessary input
data available. In addition to the LFNs of the input data, Glue also writes the
LFNs of all intermediate data products in the DAX so that Pegasus may plan
the workflow across multiple sites. One of the key features of Glue is that this
is transparent to the user. Once users have written their workflow generation
script, they may simply add a command-line switch that calls the write_dax
method rather than write_dag, and Glue will produce a DAX description of
the workflow suitable for use with Pegasus.

4.5 The Inspiral Analysis Workflow

In the previous sections, we have described the infrastructure of the LIGO
Data Grid and the construction of workflows using Glue. In this section, we
describe the use of these tools to implement the search for compact binary
inspirals in LIGO data, with practical examples of the workflow.

The signal from a true gravitational wave should be present in all the
LIGO detectors. It should occur at the same time in the two detectors at the
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Hanford Observatory, and no later than the light-travel time of 10 ms at the
Livingston Observatory. The actual time delay between observatories varies,
depending on where on the sky the signal originates. Triggers are said to be
coincident if they have consistent start times. The triggers must also be in the
same waveform template and may be required to pass additional tests, such
as amplitude consistency. The triggers that survive all coincidence tests are
the output of the inspiral analysis pipeline and are known as event candidates.
Further manual follow-up analysis is used to determine if the triggers are truly
due to gravitational waves.

If one detector is more sensitive than the two other detectors, as was
the case in the second LIGO science run, we may only wish to analyze data
from the less sensitive detectors when there is a trigger in the most sensitive
detector. If the detectors are equally sensitive, as is presently the case, we may
wish to demand that a trigger from the matched filter be present in all three
detectors before computing computationally expensive signal-based vetoes.

4.5.1 Components of the Inspiral Analysis

The inspiral workflow is divided into blocks that perform specific tasks, which
are summarized in Table 4.1. Each task is implemented as a separate program
written in the C programming language. The core of the workflow, and the
most computationally intensive task, is the computation of the matched filter
signal-to-noise ratio and a time—frequency test, known as the x? veto [10,
11]. There are several other components of the workflow, however, which we
describe briefly here. A detailed description of the components may be found
in [65].

Data from the three LIGO detectors must first be discovered and then split
into blocks of length 2048 seconds for analysis by the inspiral program. The
workflow uses the LSCdataFind program to discover the data and the methods
of the Glue pipeline module described above to subdivide the data into blocks.
For each block, and for each detector, a template bank must be generated
for the matched filtering code. The template bank is a discrete subset of
the continuous family of waveforms that belong to the parameter space. The
placement of the templates in the bank is determined by the mismatch of
the bank, which is the maximum fractional loss of signal-to-noise ratio that
can occur by filtering a true signal with component masses my, mo, with the
“nearest” template waveform for a system with component masses m/}, m).
The construction of an appropriate template bank is discussed in [329,330].

The bank is then read in by the inspiral program, which reads in the
detector data and computes the output of the matched filter for each template
in the bank. In the presence of a binary inspiral, the signal-to-noise ratio p of
the matched filter will peak, as shown in Figure 4.6. The inspiral program may
also compute the x? time—frequency veto, which tests that the signal-to-noise
ratio has been accumulated in a manner consistent with an inspiral signal and
not as the result of a “glitch” or other transient in the detector data. If the
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Table 4.1: The components of the inspiral analysis workflow.

Component |Description

tmpltbank Produces a bank of waveform parameters for use by the
matched filtering code. The bank is chosen so that the loss of
signal-to-noise ratio between a signal anywhere in the desired
parameter space and the nearest point in the bank is less than
some specified value, which is typically 3%.

inspiral For each template in a bank, compute the matched filter and
x? veto algorithms on a given block of data. Generates a list
of inspiral triggers, which are times when the matched filter
signal-to-noise ratio and the value of the x? veto exceed user-
defined thresholds.

trigbank Converts a list of triggers coming from the inspiral program
into a template bank that is optimized to minimize the com-
putational cost in a follow-up stage.

inca Performs several tests for consistency between triggers pro-
duced by the inspiral program from analyzing data from two
detectors.
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Figure 4.6: The output of the matched filter in the presence of a simulated
signal. The signal is injected into the data at time ¢ = 0. The signal-to-noise
ratio generated by the filter peaks at the time of the injected signal.

value of the signal-to-noise and x? veto pass defined thresholds at any given
time, the inspiral code outputs a trigger for this time with the parameter of
the template and filter output. These triggers must then be confronted with
triggers from other detectors to look for coincidences.

The trigbank program can convert a list of triggers from the inspiral pro-
gram into a template bank that is optimized to minimize the computational
cost of a follow-up stage. We describe the optimization in detail in Section
4.5.2. The inspiral coincidence analysis program, or inca, performs several
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tests for consistency between triggers produced by inspiral output from ana-
lyzing data from two or more detectors and generates event candidates.

4.5.2 Inspiral Workflow Applications
The Second LIGO Science Run

In LIGO’s second science run (S2), we performed a triggered search for pri-
mordial binary black holes and neutron stars [3,4]. Since we require that a
trigger occur simultaneously and consistently in at least two detectors located
at different sites in order for it to be considered as a detection candidate,
we save computational effort by analyzing data from the Livingston detector
(the most sensitive detector at the time) first and then performing follow-up
analyses of Hanford data only when specific triggers are found. We describe
the tasks and their order of execution in this triggered search as our detection
pipeline (workflow).

Figure 4.7 shows the workflow in terms of these basic tasks. Epochs of
simultaneous Livingston—-Hanford operation are processed differently depend-
ing on which interferometer combination is operating. Thus, there are several
different sets of data: L1 N (H1 U H2) is when the Livingston detector L1 is
operating simultaneously with either the 4 km Hanford detector H1 or the
2 km Hanford detector H2 (or both)—this is all the data analyzed by the
S2 inspiral analysis—while L1 N H1 is when L1 and H1 are both operating,
L1N(H2—H1) is when L1 and H2 but not H1 are operating, and LINHINH2
is when all three detectors are operating. A full L1 template bank is generated
for the L1N(H1UH2) data, and the L1 data are filtered with inspiral. Triggers
resulting from these filter operations are then used to produce triggered banks
for follow-up filtering of H1 and/or H2 data. However, if both H1 and H2 are
operating, then filtering of H2 is suspended until coincident L1-H1 triggers are
identified by inca. The workflow used to execute this pipeline is generated by
a script called inspiral_pipe, which is written using the Glue library described
in the previous section. The script is given the list of times suitable for ana-
lysis and generates a Condor DAG that is used to execute the pipeline. Figure
4.8 shows a small subset of the workflow created by the pipeline generation
script.

The Fifth LIGO Science Run

As the complexity of the analysis pipeline increases and the amount of data
to be analyzed grows, the size of the inspiral workflow increases also. To
illustrate this, we give a brief description of the binary neutron star search
in the fifth LIGO science run (S5). The S5 run is presently under way (as of
April 2006) and will record a year of coincident data from the LIGO detectors.
We will not describe the S5 inspiral pipeline in detail here, suffice it to say
that the analysis uses a workflow topology different from that of the second
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Figure 4.7: Structure of the S2 triggered search pipeline.

science run. To analyze a small subset of S5 consisting of 1564 hours of data for
binary neutron star inspirals requires a workflow with 44537 nodes. To execute
this workflow required 3000 CPU-days on the LIGO Caltech cluster, which
consists of 1000 2.2 GHz dual-core AMD Opteron processors. A complete
analysis of these data will require approximately 3—6 additional executions of
the workflow.

4.5.3 Using Pegasus to Plan Inspiral Workflows

Since the inspiral pipeline workflows are produced using Glue, it is trivial
to create Pegasus abstract DAX descriptions of the workflow (see Chapter
23). To run the inspiral analysis on the Penn State LSC cluster, which uses
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Figure 4.8: A subset of the workflow used to analyze data from the second
LIGO science run for binary inspirals. The full workflow has 6986 nodes.

PBS as the scheduler rather than Condor, a DAX is created that describes the
workflow. Using this method, we conducted a Monte Carlo based computation
that analyzed 10% of the data from the fourth LIGO science run (S4), a
total of 62 hours of data. The DAX created by the inspiral pipeline script
contained 8040 nodes with 24082 LFNs listed as input files, 7582 LFNs listed
as intermediate data products generated by the workflow, and 458 final data
products. Once the DAX was planned by Pegasus, the executable concrete
DAG used to execute the workflow had 12728 nodes, which included the jobs
necessary to stage the input data to the remote cluster and transfer the output
back to the user’s local system. Execution of the workflow took 31 hours on
the PSU cluster, described in Section 4.3.3.

Pegasus has also been used to parallelize inspiral workflows across multiple
Grid sites. For a demonstration at the SC 2004 conference a typical LIGO
inspiral analysis workflow was planned using Pegasus to run across the LSC
Linux clusters at Caltech and UWM as well as a Linux cluster operated by
the Center for Compuation and Technology at LSU. The effort demonstrated:

1. Running a LIGO inspiral analysis workflow internally within the LIGO
Data Grid

2. Running a LIGO inspiral analysis workflow externally to the LIGO Data
Grid on the LSU resource

3. Running across multiple types of cluster batch systems (Condor at Caltech
and UWM and PBS at LSU)

4. Running at sites where LIGO data were prestaged using the LIGO Data
Replicator (the LSC sites)

5. Running at sites where LIGO data needed to be staged to the compute
resource as part of the workflow (the LSU Linux cluster)
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All of the work planned by Pegasus and executed across the Grid sites ran to
completion, and all of the output was staged back to the machine from which
the workflow was launched.

4.6 Concluding Remarks

The workflow tools described in this chapter provide an extensible architecture
for rapid workflow development and deployment and continue to be used and
extended by the LIGO Scientific Collaboration. There are areas of the current
framework that need to be strengthened, however, which we discuss in this
section.

A key challenge is better integration of the pipeline development tools and
workflow planning middleware. The LSC has successfully used the Pegasus
workflow planner to leverage computing power at remote Grid sites, but there
is still a substantial burden on the scientific end user to integrate this into
the execution of a workflow. There is a need to develop the interfaces between
data management, planning, and batch processing tools so that the use of
large, distributed Grid computing resources appears to be as simple to the
end user as submitting a DAG to a single LDG cluster running Condor.

Gravitational wave detectors generate large data sets that need to be ac-
cessed by various elements of the analysis workflows. In order to transparently
execute jobs at remote locations, it is important to have seamless management
of jobs and data transfer. In the work described above, Pegasus has been used
to provide data staging to remote sites using GridF'TP. Additional develop-
ment will be needed to take advantage of Grid storage management technolo-
gies, such as dCache [109], and to accommodate any storage constraints that
may be placed by non-LDG computing centers.

LIGO workflows also typically consist of a mixture of computationally
intensive and short-running jobs. This information is not presently taken into
account when planning a workflow. The Glue environment could be extended
to provide additional job metadata to the workflow planner to allow it to
make better use of available resources. For example, the user may only wish
to run long-running jobs on remote Grid sites and execute short follow-up jobs
locally. Furthermore, only minimal information about the Grid on which the
workflow is to be executed is presently incorporated at the workflow planning
stage. Metadata services need to be better integrated into the workflow design
and implementation to allow efficient planning and execution.

Finally, the user interfaces to all of these computing resources must be
simplified if they are to become truly powerful scientific tools. Users must
easily be able to monitor the activity of their jobs using simple tools such as
the Unix command top, they must be easily able to access their data products
or input data sets, and they must be able to prototype and deploy applica-
tion workflows with ease. From the perspective of the user—an application
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scientist—quick and easy access to this information is of paramount import-
ance.
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Workflows in Pulsar Astronomy

John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

5.1 Introduction

In this chapter, we describe the development of methods that operate on the
output of the signal of a radio telescope to detect the characteristic signals
of pulsars. These signals are much weaker than the noise in the signal at any
given wavelength, and therefore algorithms for combining the signals in dif-
ferent wavelength bands must be applied. This is heavily expensive in terms
of CPU power. Early versions of distributed algorithms ran on a distributed
network of supercomputers connected by Internet-aware Message Passing In-
terface (MPI) during the period 1999-2001. Today such techniques are being
integrated into workflows that automate the search process and enable soph-
isticated astronomical knowledge to be captured via the construction of the
workflow. In particular, we address issues of parallelism within components
of the workflow. Parallelism is necessary due to two constraints on workflow
performance. One is the application of the workflow in real time as the signal
is being processed to enable very precise measurements to be carried out on
known pulsars. The other is the use of the workflow to explore large regions
of parameter space in search of previously undetected pulsars. There are very
severe restraints on the degree of abstraction that can currently be applied in
this work since details of the architecture of the computing resource (parallel
cluster or computational Grid) on which the workflows are to be run cannot
be ignored in the construction of the workflow.

5.2 Pulsars and Their Detection

Pulsars are rapidly rotating, highly magnetized neutron stars, emitting beams
of radio waves (in the manner of a lighthouse) that permit the detection of
characteristic, regularly spaced “pulse profiles” by radio telescopes on the
Earth’s surface (Figure 5.1). The fastest pulsars have rotational periods of
only a few milliseconds and, as massive, essentially frictionless flywheels, make
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superb natural clocks. These millisecond pulsars permit a wide variety of fun-
damental astrophysical and gravitational experiments. Examples include the
study of neutron stars, the interstellar medium, and binary system evolu-
tion, and stringent tests of the predictions of general relativity and cosmology
(see [274] for an overall description of pulsar astronomy).

Rotation
Axis

Radiation
\ Beam

Radiation
Beam

Figure 5.1: The radio beams of a pulsar. The highly condensed neutron star at
the center has a powerful magnetic field, O(10*?) Gauss. Concentrated beams
of electromagnetic radiation emerge at the magnetic poles. If the magnetic
axis is not aligned with the rotation axis, they rotate like the beam of a
lighthouse, giving a pulse of radiation as they cross the line of sight of the
pulsar seen from the Earth.

The observed radio signal from pulsars manifests itself at the telescope as a
periodic increase in broadband radio noise. In order to observe the pulse with
a high signal-to-noise ratio, we need to observe across a wide band of radio
frequencies. As the space between the Earth and the pulsar (the interstellar
medium) is slightly charged, it is dispersive, and therefore different frequencies
propagate at different velocities. The practical result of this effect is that the
pulse is detected at the high-frequency end of the band before it arrives at the
low-frequency end. If we do not correct for this propagation effect, the pulse
profile is not observable, as it is broadened by this “dispersive delay.” The
amount of broadening a particular pulsar observation will display is directly
related to our distance from the pulsar and the charge density along the signal
path and is characterized by the “dispersion measure,” or DM.

In addition, the sensitivity of radio telescopes means that the signal from
the area of sky to which the antenna is pointing is contaminated with signals of
terrestrial origin. These frequencies are not affected by the interstellar disper-
sion described above. Thus they can in principle be detected and eliminated.
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The problem is that as more of the radio frequency spectrum is excised, the
higher is the risk that signals from pulsars will also be lost. This means that
we can have the situation (unusual in astronomy) that older observations may
be better than newer ones, at least so far as the detection of new pulsars is
concerned. Thus storing and reanalyzing the signal with improved algorithms
for detecting pulsar signals and the use of increasing amounts of computing
power are major factors in the search for pulsars. This makes the problem
of great interest from the point of view of scientific workflows since there are
several stages in the cleaning and processing of the recorded signal. For more
details of the observational aspects of pulsar astronomy, see [270].

5.3 Workflow for Signal Processing

5.3.1 Astronomical Determinants of the Workflow

We summarize very briefly the important stages of a workflow for processing
radio telescope signals used in searching for or observing pulsars. The works
quoted in the previous section give fuller details and Jodrell Bank has collec-
ted information and software on its Web pages.! The signal gathered at the
antenna of the telescope when pointed at a given region of the sky is known as
a pointing. The pointing contains one or more beams whose signal has a range
of frequencies with an upper limit given by the smoothness of its surface in
relation to the wavelength of the radio waves (electromagnetic waves). If the
surface is rough at the scale of a particular wavelength, it will be scattered
rather than focused by the dish. The beam contains radiation from all signals
that arrive in such a direction as to be focused at the antenna or are part
of the noise intrinsic to the antenna. This needs processing in different ways
according to what is observed.

In Figure 5.2, we show a workflow for analyzing data that have previously
been recorded from a radio telescope signal after some cleaning (to remove
interference) and after digital sampling of the analog signal. We observe that
there is a natural parallelism introduced into the workflow at different stages.
Data stored from the radio telescope signal are extracted from a data archive.
The data are divided into sections (currently separate files) representing a par-
ticular beam of radiation. Then several stages of processing may be applied to
each beam, with multiple parallel processes for each stage. In observing distant
sources, the effects of the interstellar conducting medium on the electromag-
netic signals need to be compensated. These effects cause the signal velocity
to depend on frequency, this is known as dispersion and it can be useful in
eliminating terrestrial interference since this has zero dispersion. We may not
know the dispersion a priori for unknown objects and thus have to apply a
trial-and-error process. In Figure 5.2, different dispersion measures (DMs) are

! http://www.jb.man.ac.uk/research/pulsar
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Figure 5.2: The inherent parallelism of a pulsar workflow. Data are stored in an
archive as a collection of beams, each representing radiation from a particular
direction in the sky. Dedispersion processing must be applied to each beam
and, for each dedispersed beam, processing via Fourier transforms is carried
out for a range of corrections for orbital acceleration. The raw results from
each of these corrections for each dedispersed signal are then subject to post-
workflow analysis. In the figure, full rectangles refer to stages in processing,
and those with curved bottoms represent intermediate data sets.

applied to each beam. Then, for each dedispersed beam signal, multiple fast
Fourier transforms are applied to represent various search parameters. For ex-
ample, for pulsars in a binary star system, a correction in Fourier space needs
to be applied to correct for the Doppler shifting of frequency caused by the
orbital motion. However, since during the pulsar search the desired correction
is not known ahead of time, a range of possible corrections need to be applied.
To complicate things further, different search methods are applied for different
types of orbits; e.g., those where the orbital period is long compared with the
pulsar period, those where it is short, and those in between. Thus, without
methods for intelligently exploiting the parallelism at different stages of the
workflow, the flow of the data through to the eventual postprocessing stage,
where potential candidates are examined by interactive and visual methods,
can stall.

Our methodology in this chapter will be to examine in detail how paral-
lelism is handled at the dedispersion stage of processing. We have detailed
results for this stage and can present a general analysis for methods to estim-
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ate the computational resources needed per unit of data. We consider that
as workflows are increasingly applied to very large volumes of data, requir-
ing large amounts of data processing, such quantitative analysis will become
indispensable in the investigation of methods of workflow construction.

5.3.2 Coherent and Incoherent Methods of Dedispersion

In Figure 5.3, we see how dispersion caused the arrival time of the wavefront
to be delayed by progressively longer times at different radio frequencies. In
order to get a sufficiently strong signal, either to detect a new pulsar against
background noise or else to determine very accurately the timing and shape
of the pulse, we must sum across the radio frequencies. The simplest method
to compensate for dispersion is to split the frequency band into independent
frequency channels and apply appropriate time delays to each channel so that
they all arrive at the output of the channel at the same time. In this process,
knowledge of the phase of the voltage from the telescope is lost; hence the
method is known as incoherent phase dispersion. The splitting into channels
and the application of the time corrections was formerly done by hardware
but now is increasingly being carried out by software on computer processors
working in parallel. For very accurate measurements, such as timing of the

Amplitude Radio frequency  Amplitude Radio frequency

1
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Figure 5.3: Pulse dispersion and the process of dedispersion. The radio fre-
quency band is divided into channels, and time-delay corrections are applied
to each channel. The flattened-out pulse of the original signal has a restored
profile, and the signal-to-noise ratio is increased.
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pulsar signals, incoherent dedispersion is insufficient. The method of coherent
phase dispersion applies a phase-only filter. This is most simply applied in
the frequency domain. Now the signal must undergo a Fourier transform,
and then the application of the filter in frequency space before the inverse
Fourier transform is applied to give the dedispersed signal in the time domain.
This involves far more processing power if it is to be carried out by software.
If the dedispersion must be applied in real time, or if a large number of
trial dedispersion measures must be performed (in a situation where the real
dedispersion is not known), there are severe constraints on the parallelism of
the dedispersion component of the workflow.

Two major constraints come into play when considering how workflows
should be parallelized. First, in real-time observation, the processing needs
to keep pace with the signal capture. Second, in searching for new pulsars,
especially those in binary orbits, where we have to search over considerable
volumes of a multiparameter space, we need to obtain results in a reasonable
amount of time. The methods of parallelism can be different in these two
cases. We illustrate this by considering the coherent dedispersion stage in a
signal-processing workflow both in the case of a parameter space search and
in the real-time processing of a signal.

5.3.3 Workflow of the Search in Parameter Space

The workflow is parallelized across data sections; essentially it is a pipeline
workflow. We proceed by first breaking up the data into segments, which have
to be at least twice as long as the dispersive delay time across the observing
bandwidth. Each segment is then subjected to a Fourier transform and mul-
tiplied by the Fourier transform of the inverse filter, and the resultant data
length is then transformed back into the time domain and processed to pro-
duce a dedispersed time series. The next segment is then processed, and the
resultant series are then concatenated together. In practical terms, the input
data set only has to be forward transformed once but has to transformed back
into the time domain as many times as we have trial DMs. One complication
of dividing the time series in this manner and applying a Fourier transform
is that we create boundary effects at the beginning and end of each segment,
which appear as spurious frequencies in the transform. Thus we have to com-
municate duplicated parts of the time series at the start and end of each
segment. These are called “wings.” The size of these wings is given by the
range of frequency bandwidth, and thus it is fixed by the observational signal.
This means that if we divide the time series into small units for the purposes
of parallelism (see Section 5.3.4), we have to communicate increasing propor-
tions of repeated redundant data. In effect, we send more than the original
data owing to this redundancy. In Grid applications where bandwidth may be
a constraint, this can be a highly important restriction.

The result of the dedispersion is a time series for each trial dispersion meas-
ure. These time series are then subject to various analytical methods whose
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alm is to determine the presence of periodic signals. This analysis produces
a list of candidate periods, which may be pulsars or local radio interference
or simply artifacts of the data collection hardware and subsequent software
processing. These candidates can then be confirmed or rejected by further
observations.

5.3.4 Work Distribution Model

The original intention was to adopt a master—slave model in which one (or
more) master processes read the disk and distribute work to slave processes.
This approach is highly attractive because it naturally furnishes an effect-
ive method of load—balancing. The main drawback is that, in the absence of
complicated and time-consuming preventative steps, no one processor would
get two contiguous chunks of the global time series. This would make more
difficult the process of collecting the distributed data for the next stage in the
workflow process, in which algorithms for the detection of periodic pulses are
applied to each dedispersed signal. Instead, we adopt a client—server model.
This illustrates how considerations of the total workflow affect the parallelism
of a stage in the workflow process. A handful of server nodes poll requests for
data from clients, and the bulk of the intelligence resides with the clients who
do the actual work.

By allocating a single contiguous portion of the global data set to each
worker, gaps occur only at a processor boundary, just as in the original non-
distributed application. By letting each processor keep track of the portion
of the global data set for which it is responsible, the impact on the logic and
structure of the code is minimized. We give a diagrammatic representation
of the client—server work distribution in Figure 5.4. Here the stages of the
workflow run downward from the data-reading stage, and in the horizontal
direction we show the parallelism produced by the “chunking” of the total
pulsar observational data. The data are read in chunks by the server and
sent to the clients as they request them. Since our execution environment
is modeled as a small number of clusters with a large number of nodes, we
observe that there is a pipeline effect with a start-up cost that is half the sum of
the time needed to send data to each requesting processor in the cluster. Each
processor then spends a certain amount of time processing before it requests
its next chunk of work. The disadvantage of the client—server model adopted
here is that we are compelled to tackle the load-balancing problem statically,
taking into account estimates of the MPI bandwidth, processor speed, disk
performance, and so on. The algorithm used is described below in Section 5.4.
In general terms, it permits the analysis to be extended to clusters of differing
numbers and types of host machines.
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Figure 5.4: Client-server parallelism. The server process reads the data from
the disk and the clients request as they finish processing each chunk of work.
The key at the bottom indicates the processes occurring at each stage in the
workflow, which proceeds from top to bottom for each chunk of the original
series.

5.4 Use of Metacomputing in Dedispersion

5.4.1 Issues of Heterogeneity

Metacomputing refers to the running of applications in an environment where
there is a significant degree of heterogeneity. The motivation for using meta-
computing is that different stages of the workflow require different amounts
of processing power. On a Grid, for example, different numbers of processors
can be dynamically accessed to compensate for this imbalance and to keep
data flowing through the workflow. Heterogeneous computing introduces some
problems that are similar to those well known from cluster computing and
some that are very specific [371].

We need to send data between the different computing resources that
will be used to perform the dedispersion processing. This requires message-
passing systems that can work between parallel machines and clusters as well
as within such clusters. We used PACX-MPI [66], a version of MPI that al-
lowed us to couple big systems into a single resource from the communication
point of view. The layout of the metacomputing architecture used is shown
in Figure 5.5. Essentially this is a hierarchical cluster with two levels of the
hierarchy. At the host level, we have a tightly coupled cluster with many pro-
cessors connected by a rich interconnect topology and with processor speeds
and interconnect bandwidth rates being uniform within the host. The second
level of the hierarchy is a serial interconnect between hosts. In the original
work, the hosts were Cray T3E supercomputers with a three dimensional
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Figure 5.5: The metacomputing network for the pulsar search. Host 1 is close
to either a live feed or (as was actually implemented) a signal stored on disk.
For processing, data need to be sent to the remote nodes via serial Internet
connections. Within each host the connectivity is much richer, with a 3D
bidirectional torus in the case of the T3E machines used.

torus interconnect running at speeds on the order of 50 MB per second [354].
The serial interconnect was arranged in a star topology with connections of a
maximum bandwidth on the order of 1 MB per second. Today we have Grids
that have a similar hierarchical model but are connected via high-bandwidth
dedicated links at speeds of 125 MB/s (1 Gbps network links).

5.4.2 The Algorithm for Parallelization of the Dedispersion

We now describe the algorithm that is represented graphically in Figure 5.4 to
be run on a metacomputer of the star topology structure shown in Figure 5.5.
Let Ny, be the number of hosts, and let n; be the number of client processors
to use on host 7, discounting the extra two processors required by PACX-
MPI and those processors on host 1 that have been assigned to server duties.
Referring to Figure 5.5, we have Ny, = 3, and n; had a maximum of 512 on
each host in the experiments. Denote the bandwidth, in MB/s, from host 1
(where the input data reside) to host ¢ by w;. The rate, in MB/s, at which data
can be read from disk on host 1 is denoted by r; it is assumed that this rate
is approximately independent of the number of processors accessing the disk
at any one time. The bandwidth within the hosts is assumed instantaneous
since it is so much greater than w;.

The size of one record is denoted by u, and this is determined by the need
to secure phase coherence. The computational time required to process one
record of data on host 1 is determined experimentally and denoted by t;.
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The time to process the same quantity of data on other hosts is estimated
by multiplying ¢; by the ratio p;/p;, where p; is the peak speed in Mflops of
the processors on host 7. This approximation is justified in a metacomputer
whose hosts have the same architecture. In a more heterogeneous architecture,
processing speeds for the data would have to be determined by experiment on
each host.

The amount of processing per record can be determined by the parameter
Ng, which gives the number of dispersion slopes to be evaluated. ¢; is now to
be reinterpreted as the average compute time per record per unit slope in the
regime where Ny is large enough that the compute time per megabyte can be
well approximated by 7 x Ny.2 We define a job as a task that processes a total
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data flow
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Processor Np £

Case 2

data flow
Processor 1
Processor 2

Processor Np E

£ time to request data
time to transfer data

L] time to process data

Figure 5.6: Data flow. In case 1, processors have dead time to wait for the
next processing. In case 2, processors carry out the successive work quickly,
without dead time.

of V' records, and hence Vu MB of data. The load-balancing problem is to
determine the proportion

! This assumes that all the processors on any given host are clocked at the same
speed.

2 The forward FFTs are computed only once, but the inverse FFTs must be com-
puted for each slope.
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in which to distribute data to the hosts. Here V is fixed by the amount of
data in the observations (the sum of all the “Read” rectangles in Figure 5.4),
and v; is the amount to be sent to each host.

Now the essence of our problem is that the remote hosts cannot process
faster than they receive the data. From this we can see that the most advan-
tageous situation would be where the metacomputing problem was mapped
onto a single host since the intrahost bandwidth was over one hundred times
larger than the interhost bandwidth (but see also Section 5.6). Our only justi-
fication for using the “Grid” approach would be if V' and N were sufficiently
large and/or if we require processing within a wall-clock time constraint 7.

The elapsed wall-clock time t; to process v; records on host ¢ is estimated
by

t; = Uitproc (Z) /ni + Nitwait (Z) s (51)
where tyait (i) = w(1/w; +1/r) is the time that a client processor has to
wait for a single work unit. The time that it takes the client to process it
is tproc (1) = NgTp1/p;. If we substitute this expression in (5.1), we have the
processor performance and the number of processors, giving the total rate of
processing for each unit record u.

Since we are using a pipelining algorithm, each node on the host starts up
immediately after the previous one (we can use the MPI ordering for this).
The time to get all the nodes processing is essentially half the time to send
all of the data and is given by twait (i) = u(1/w; + 1/7). The reason for this
can be seen in Figure 5.6, where there is also a run-down time as each node
stops working. If the diagonal “staircases” representing the start-up and run-
down times are joined, they give a rectangle whose area represents tyait (7),
and hence each staircase is half the time to send the data. This term will be
dominated by communications bandwidth on remote hosts and by disk access
speed on the local host. In the original experiments, the latter was neglible,
but as wide-area networks increase in speed, this will not always be a valid
approximation.

The condition used to balance the workload is that all hosts finish at the
same time. This is a sensible condition in a parallel algorithm and essentially
states that all the hosts contribute equally to the speedup, t; =to = ... =1y,
Using these equations leads to a linear system with Ny+1 equations and N, +1
unknowns (v1, ..., Un,t).

ay 0--- 0 -1 (% bl
0 ag - .- 0 —1 (%] b2
00 an, -1 UNy bNh
11 1 0 t v
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Here a; = (t1p1)/(nip;) and b; = —n;u(1/w; +1/r). The validity of this
method depends on the implicit assumption that no client processor experi-
ences dead time waiting for other clients to receive their data. A global condi-
tion that expresses this is the inequality ¢; > v;u (1/w; + 1/r) . More carefully,
we may define tqse (1) = (n; — 1) twait (¢) as the time that it takes all the other
processors on host i to receive their work units. Then the dead time tgeaq (7)
that is lost between work units is expressed as tgead (1) = telse () — tproc (7)
for teise (1) > tproc (1) or else tgeaq (1) = 0. Figure 5.6 shows the relationship
of time to request/transfer/process data and data flow. The processors have
spent dead time waiting for the next processing unit in case 1 because Ny is too
small. In case 2, Ny is sufficiently large that processors can do the successive
work quickly without dead time.

A drawback of this approach, when coupled with the FIFO processing of
requests by servers, is that in practice the run-down time is usually longer
than the start-up time. Typically there will be some clients on a given host
with one more work unit than other clients on the same host, but there is
no guarantee that the more heavily loaded clients will be served before the
others.

5.5 Workflows of Online Pulsar Searches

5.5.1 Real-Time Constraints

In 2002, Jodrell Bank acquired a 180 processor Beowulf cluster with ten dedi-
cated data-capture cards each of which can receive a different frequency range
of the broadband spectrum. The network bandwidth problem is now even
easier to solve since the whole distributed metacomputer is realized within the
cluster interconnect. However, the concept of the metacomputer still remains.
Thus the work in analyzing the behavior of the distributed metacomputer
provides a basis for a cluster-based solution. This is currently working at
Jodrell under the name of COBRA (Coherent On-Line Baseband Receiver for
Astronomy).

The total signal-processing workflow (Figure 5.7) currently being employed
is of great interest from a computer science as well as an astronomical per-
spective. We see that the actual computational workflow running on COBRA
is only a stage in a total workflow process involving multiple electronic and
observational devices. The workflow itself is fed by data originating from a
natural process of radio emission from distant objects. The signal-processing
workflow has two branches. In the left-hand branch, the dedispersion stage
is done via dedicated electronic components (hardware filterbanks and ded-
ispersers). They represent the traditional method of observation when data
would eventually be recorded onto tapes that were shipped elsewhere for com-
putational processing. The right-hand branch represents the replacement of
dedicated hardware by a Beowulf cluster (COBRA). The advantage of the
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software method is that it can be reprogrammed to deal with different ob-
servational radio frequency windows and the processing power is available
for other purposes when not used for observing. However, the requirement
that COBRA replace dedicated hardware leads to an architecture for the
cluster. Thus our metacomputing analysis for pulsar workflow processing re-
mains applicable, only now we apply metacomputing solutions within a ded-
icated tightly coupled architecture. Computational Grids are in this sense
generalizations of the metacomputing concept, with the added complexity of
crossing administrative and security domains. The 180 COBRA processors are
grouped in crates, and the first ten processors in crate 1 have access to the
data-capture cards. The instantiation of the workflow must be aware of this
underlying metacomputing architecture and must place data-reading tasks on
the processors with the data-capture cards. There may also be considerations
of efficiency in the grouping of data-processing components of the workflow
to limit bottlenecks in message passing that can lead to overflows in buffers.
Figure 5.8 is a conceptual diagram of the workflow process without such aware-
ness. Each data server is associated with a process that receives data from a
particular data-capture card, and other workflow tasks are placed arbitrar-
ily on the COBRA processors. In actual instantiation, this leads to disorder
in the topology of message passing, which has the consequence of message
buffers overflowing and stalling the application. This breaks the total signal
processing workflow, which needs to keep pace in real time with the data rate
dictated by the telescope signal.

Based on early experiments with COBRA, a revised and ordered map-
ping of the workflow process onto the architecture was developed, and it is
shown in Figure 5.9. As before, each data server is associated with a particular
data-capture card, but now the other tasks in the workflow associated with
its master—slave algorithm are placed on a dedicated group of physical pro-
cessors. In effect, the machine is virtually partitioned to enact the workflow
parallelism. Therefore, the engine that enacts the workflow must be able to
handle logical numbering of the physical processors. This is exactly what the
Message Passing Interface (MPI) does, and it is the underlying software used
for the workflow. This is of some theoretical interest since MPI is not generally
regarded as a workflow language; however, it has features that make the effi-
cient mapping of signal processing workflows to metacomputing architectures
possible. We return to this discussion later (Section 5.6).

5.5.2 Data-Processing Aspects of Online Processing

If the dedispersion method is to be used for real-time observations, our pre-
vious data-processing method of a scheduled service described in Section 5.4
cannot be applied. Instead, a hybrid of master—slave and pipelining is re-
quired. Figure 5.10 shows the essence of this revised workflow. Following the
workflow from the top, we have the data being captured at a rate dictated by
telescopic observation and subsequent electronic processing. The data are sent
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Figure 5.7: The signal processing workflow used in pulsar timing measure-
ments on COBRA. The actual computational workflow is only a component
in a workflow that includes multiple electronic devices fed by signals arriving
from natural processes from distant astronomical objects.

to a particular master in one of the logical machine partitions of Figure 5.9.
The master has a number of slave processors associated with it as well as other
logical processes associated with the bookkeeping of the algorithm. The mas-
ter has to send data to the subcollector associated with each data-processing
slave in turn. We have an overhead of a start-up for all of the slave processes
represented by the diagonal “staircase,” which is the same as in the previous
section. However, at the end of the dedispersion processing on each slave, the
processed data are sent to one of a smaller number of processors that are doing
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Figure 5.8: An unordered method of instantiating a COBRA workflow. The
data servers placed on processors associated in the machine with data-capture
cards distribute their data-processing tasks to other processors anywhere in
the machine.

the postprocessing as the dedispersion is progressing. When this is done, the
slave receives the next chunk of data for the application of the dedispersion
measure.

In this model, we assume that the postprocessing work for a given unit
of data requires less time than the dedispersion processing. Thus the post-
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Figure 5.9: An ordered method of instantiating a COBRA workflow. Each
data-server process now has a dedicated group of data-processing slaves placed
on processors in ordered groups and only sends data processing to this physical
group of processors.

processor nodes can receive data from several of the dedispersion slaves. The
data that remain after the post-processing are similar in size to the original
data since only one dedispersion measure is chosen. In the analysis presented
in Section 5.4, there was an order nslopes as much data as the original data
set. Clearly, it is not an effective use of bandwidth to send data corresponding
to each slope back to the server to then be redistributed. Thus, even in offline
processing, the postprocessing step must also be distributed.

In the online processing via COBRA, we can assume that the networks that
carry the data have dedicated bandwidth. Thus the need for the algorithms
to respond to differing bandwidths is no longer present, and the distributed
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Figure 5.10: Master—slave parallelism for online processing of a radiotelescope
signal. The postdedispersion steps of the processing are now specifically rep-
resented in the parallel workflow. This figure should be compared with Fig-
ure 5.4.

metacomputer can be balanced between capture nodes (master nodes), with a
fixed number of slaves depending on the number of dedispersion slopes to be
tested. Similarly, the number of postprocessing nodes can also be fixed in this
case. This methodology is now being applied in real pulsar data processing
involved in very precise timing measurements of known pulsars with known
dispersion measures. Such timing measurements are vital in testing predic-
tions of fundamental physical theories such as general relativity. Already the
coherent dedispersion method has produced an increase in accuracy.

5.6 Future Work: Toward a Service-Oriented Approach

The GridOneD project! has been using Triana to process signals from grav-
itational wave detectors (see Chapter 20 for details of Triana). Since 2005,
GridOneD has received funding to investigate the inclusion of search al-
gorithms for processing pulsar data. A topic of current interest is the detection
of pulsars in binary systems [75]. New methods have led to the most successful
search for pulsars, using data from the Parkes radio telescope [139]. Modern
Grids, such as the TeraGrid in the United States, the National Grid Service
(NGS) in the United Kingdom, and DEISA in Europe,? have a hierachical
structure to which our metacomputing analysis maps very well. The major

! GridOneD at http://www.gridoned.org
2 http://www.teragrid.org, http://www.ngs.ac.uk, http://www.deisa.org .
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difference is that the intercluster interconnect is now on the order of gigabits
per second.

In all the work described here, the workflow processes have been enacted
by methods not considered to be workflow languages in the conventional sense.
Features of MPI have been successfully used to instantiate the workflows
on metacomputing architectures that rely on either wide-area networks or
tightly coupled interconnects. In GridOneD, we are now in the process of
examining how the metacomputing approach could be updated to make use
of current work on Grid middleware. A particularly useful feature of current
Grid methodology is the adoption of a service-oriented architecture approach.
By representing various stages of the data-processing workflow as services, we
can hope to represent the workflow as a successive invocation of services. These
services must be resource-aware since we are dealing with large amounts of
data flowing through the workflow in parallel, and if resources are insufficient,
overflows of several kinds will occur and the whole process will fail or stall.
In this sense, the proposed WSRF, standard [321], where each service can
be associated with resource properties meets our requirements. In this case,
our resource requirements estimate for each stage in the workflow can be
implemented via the resource properties.

We are currently exploring these issues in the context of the National
Grid Service in the United Kingdom. This Grid has a structure similar to the
metacomputer described in Section 5.4; namely, it has 4 clusters, with head
nodes that are addressable from the Internet, each being a gateway to a much
larger number of backend processors that can only be accessed via internal
message passing. We have utilized a lightweight implementation of the WSRF
standard, WSRF::Lite [483]. Being based on Perl rather than Java, this has
a small footprint in terms of utilization of scarce resources (chiefly processor
memory) for a general-purpose Grid hosting many users. Our approach is to
have an overall master scheduling service implemented as part of the applica-
tion that acts like the server in Figure 5.4. Each cluster can have its own local
scheduler;, with a queue of work tasks that are sent to worker processes on
the backend nodes. With this approach, we can overcome the problem that
access to the Grid resources is controlled by batch queuing methodologies that
do not allow us to reserve resources on demand. Essentially, the workers are
launched by the native batch queuing system and receive work units from the
application-level queue. We mark the worker progress by milestones, and as
these are attained messages are sent to the local manager, which can thus keep
the master scheduler informed of the total progress in the data processing. In
effect, this allows us to use the abstraction of a worker as the addition of a
processor to the Grid, representing one of the horizonal strips of Figure 5.4. In
our batch job request, we can indicate the number of workers to be created on
behalf of the local manager. We are currently implementing this on the NGS.
If successful, it will represent the transition of our methodology to Grids. We
note that some of the more awkward features of the actual implementation are
caused by the fact that WSRF is not yet a stable standard and that the NGS
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(like many working Grids) is based on pre-SOA Grid middleware (Globus 2.4).
Thus the SOA is created on top of non-SOA components.

This pragmatic compromise is essential since the pulsar astronomers wish
to explore Grid processing of pulsar data and develop their signal-processing
algorithms. For reasons of performance, it currently very difficult to employ
workflow languages such as Triana, Kepler (Chapter 7, Taverna (Chapter 19),
BPEL [24], etc. to orchestrate the pulsar workflows. Moreover, such languages
are not designed to work within tightly coupled clusters such as COBRA. The
ability of MPI to logically order and group the physical processors is absolutely
essential for these types of architectures. Moreover, given the severe temporal
constraints of real-time processing, a message-passing interface that has been
specifically engineered for performance is critical. This is not the case with the
workflow languages mentioned. Therefore, although not considered a workflow
language, MPI can be used to implement a high-performance data-processing
workflow, especially when this is integrated with electronic components in a
hybrid digital-analog workflow process.

If we consider other types of Grids that are more peer-to-peer in nature
(e.g., by aggregating spare cycles on machines used normally for other tasks),
then the algorithms described here would not be appropriate. We consider
resource utilization to be an important factor. Thus, in Section 5.3.4 we are
concerned with minimizing dead time on expensive processing units. In P2P
Grids, processor time is a resource that is cheap, and therefore the algorithmic
constraints are much more concerned with maintaining coherence and using
replicated computation to compensate for the unreliability of the processing
hosts. The einstein@home [129] project is adopting this approach. It will be
an interesting task for future work to gather and classify different search al-
gorithms and relate these to the types of Grid or metacomputing environments
to be used for each search. Our aim in this chapter has been to expose one such
methodology in a way where its methods can be evaluated in a quantitative
manner and mapped to the structure and dynamics of the Grid. We need to
extend our work in terms of adaptation to variable processing rates since our
previous work focused on dedicated processors. We also need to consider vary-
ing network bandwidths since we made the modeling assumption of constant
bandwidth (using measurements that showed network turbulence timescales
were short compared with data-processing timescales).
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Workflow and Biodiversity e-Science

Andrew C. Jones

6.1 Introduction

Biodiversity e-Science is characterized by the use of a wide range of differ-
ent kinds of data and by performing complex analyses on these data. In this
chapter, we discuss the use of workflow systems to assist biodiversity research-
ers and consider how such systems can provide repeatability of experiments
and other benefits. We argue that nevertheless there are also limitations to this
kind of approach, and we discuss how more flexibility in a more exploratory
environment could be achieved.

In the remainder of this chapter, we commence by describing the interrela-
tionship between biodiversity and e-Science, contrasting biodiversity e-Science
with other kinds of bioinformatics. Next we describe the Biodiversity World
project, which is a major example of the use of workflows in biodiversity e-
Science. The choice of BiodiversityWorld as the main example is partially
due to the author’s involvement in, and familiarity with, this project. But
this chapter is not intended to be restricted to the requirements and achieve-
ments of Biodiversity World: In the following section, we discuss related work
aimed at providing access to, and providing tools to manipulate, biodiversity
resources. We then consider how a workflow-oriented environment might be
extended in order to support more exploratory modes of use. We conclude
with a summary and suggestions for future work.

6.2 Background: Biodiversity and e-Science

Biodiversity informatics differs considerably from bioinformatics, both in the
kinds of data being used and typical tasks to be performed. In biodiversity
research, it would ideally be possible for scientists to work collaboratively
and simultaneously on research tasks, with support provided for “wet lab”
experiments and for use of data from these and other sources in complex
analyses.
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Biodiversity has been defined as: “the variability among living organisms
from all sources ...and the ecological complexes of which they are part: this
includes diversity within species, between species, and of ecosystems” [83].
It follows that a scientist needs access to many different kinds of data when
researching biodiversity-related phenomena. Examples include

e species catalogs (which include lists of species names and synonyms);

e species information sources (including species geography; distribution
data comprised of individual specimen observations; descriptive data—
both of individual specimens and of scientific groups such as species);

e geographical data (e.g., country boundaries); and

e climate data (e.g., maximum/minimum temperatures from various obser-
vation stations).

A significant problem at present is that typically a scientist may need to
perform a number of distinct kinds of analyses using data such as we have
enumerated above but will often need to perform these analyses using a
number of distinct tools, manipulating the results of one analysis by hand
before submitting them to another analysis process. (We shall give specific
examples in the next section.) This is a major problem, particularly because
in many cases the data standards are proprietary and incompatible. These
difficulties have arisen because many of the data sets of interest were originally
created for the use of an individual or small group. The data are designed for
the original users’ needs, perhaps with unusual data structures, representation,
etce.

This is in contrast with more traditional bioinformatics research, in which
significant standardization efforts have been made, leading to widely adopted
standards for representing sequence data! and significant efforts to standardize
metadata terms.?

Because of the diversity and breadth of data and tasks associated with
biodiversity research, there is a need to support researchers with an integ-
rated environment that minimizes the attention they need to give to manual,
mundane tasks. In the next section, we shall see that BiodiversityWorld ap-
proaches this problem primarily by defining an interoperation environment in
which heterogeneity is accommodated by wrapping and conversion software
that allows the user to specify complex tasks as workflows.

! The EMBL/GenBank/DDBJ repositories are a good example of this.
http://www.ebi.ac.uk/embl/.

2 For example, The Gene Ontology.
http://wuw.geneontology.org/.
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6.3 BiodiversityWorld as an e-Biodiversity Environment

6.3.1 BiodiversityWorld Exemplars

The aim of BiodiversityWorld is to explore the design and creation of a
problem-solving environment for global biodiversity. There is both a computer
science and a biological aspect to the project: It was seen as important for the
project to be biology-led so that the computing technologies developed would
be designed very much with practical application in mind. Three exemplars
were chosen on which to base our investigations:

1. Bioclimatic and ecological niche modeling, in which predictions are made
about the suitability of the climate in a given region for the organisms
of interest—either in present conditions or in hypothetical past or future
conditions. This entails producing a climate preference profile by cross-
referencing the known localities of a species with present-day climate data.
This climatic preference is then used to locate other areas where a similar
climate exists, indicating areas that are climatically suitable for the spe-
cies. Present-day climate data may be used (e.g., to identify areas under
threat from invasion by invasive species), or climate model predictions for
either the future or the past may be used instead (e.g., to predict the
possible effects of global climate change on the species distribution).

2. Biodiversity modeling and the prioritization of conservation areas, in
which species distribution data are analyzed in order to produce a species
richness map, which can then be used as a basis for proposing priority
areas for biodiversity conservation.

3. Phylogeny and paleoclimate modeling, in which phylogenetic analysis and
bioclimatic modeling are combined. The purpose of phylogenetic analysis
is to reconstruct the most likely model of historical relationships among
species and to use this to explore scenarios that have led to the diversity
we see. This involves using DNA sequence data, and so at this point there
is some overlap between our scenarios and tasks more typical of bioinfor-
matics. Phylogenetic analysis generates large numbers of trees containing
tara' and their hypothesized relationships. The distinctive aspect of this
part of the BiodiversityWorld research is that we gather distribution data
for these taxa and fit climate models to each taxon. This allows expli-
cit scientific interpretation of the role of climate in the development of
biodiversity.

At present, tasks such as these require substantial manual work on the part
of the scientist in preparing data sets, running stand-alone analysis tools,
performing further data preparation, etc. This, combined with the fact that
there are a good number of cases in which a standard analytic sequence can

! Such as species.
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be defined, has led us to adopt a workflow-oriented approach in Biodiversity-
World. It will be noted that exemplar (1) addresses a problem that is covered
in more depth in Chapter 7.

6.3.2 Workflows in Biodiversity World

For each of the three exemplars chosen for Biodiversity World, it has been pos-
sible to devise a standard workflow for a single analysis, the variation in use of
each workflow being in the choice of data sources and analytic tools for a given
instance. Moreover, these workflows have a certain amount of commonality
in the resources used and tasks performed: e.g., species distribution data and
a “taxonomic verification” task are common to all three exemplars. The ease
with which these workflows could be defined on paper, combined with the ease
with which possible extensions and modifications could be identified, implied
that a user interface based upon the workflow metaphor was a suitable start-
ing point for the design of the Biodiversity World system. A simple example of
a possible workflow extension is to “batch process” a group of related species
instead of performing computation relating to each one individually.

In this section, we shall concentrate on one particular example—bioclimatic
and ecological niche modeling. As explained earlier, the purpose of this task
is to predict the suitability of climate in a given region for the organism of
interest. Figure 6.1 illustrates in schematic form a typical workflow for this
task. The task involves using records of where the species has been observed
and combining this information with climate data to produce a model of
climatic conditions that characterize these locations. To this end, we need:

Submit scientific
name; retrieve
accepted name
& synonyms

for species

Present or recent
climate surfaces

Retrieve
distribution data
for species of
interest

Model of climatic conditions
where species is currently
found

Prediction of suitable
regions for species
of interest

Possibly different
climate surfaces
(e.g. predicted
climate)

World or

regional
maps

Projection of predicted
distribution onto base
map

Figure 6.1: A Biodiversity World workflow.
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o A mechanism for specifying the species of interest. Due to the nature of
biological nomenclature, and differences of opinion among experts, more
than one scientific name may be used to identify a given record. Thus, a
catalogue of names, such as Species 2000!, is used to retrieve synonyms
[224].

e A means of deriving a model relating to the climate and species data
provided. Various algorithms can be used, such as GARP [399] and CSM
[372].

This model is then used to predict potential distribution, combining it with
climate data to determine which geographical regions fall within the climatic
model derived. This could be present-day climate data (to predict regions not
currently occupied by the species but that might be able to sustain it) or
historical or predicted future climates, as explained in Section 6.3.1. This can
then be overlaid onto map data in order to produce a graphical representation
of the predicted distribution.

Various workflow systems were considered as the basis for the Biodiversity-
World user interface. Although many of these would have been reasonably
suitable, the Triana (Chapter 20) system was selected primarily because of its
attractive user interface and the direct access we have to Triana developers
at Cardiff University.

Triana provides a means for categorizing resources hierarchically and com-
posing them into workflows. Figure 6.2 illustrates a workflow that has been
created using units from the palette displayed on the left-hand side to per-
form the task we have been describing above. It should be noted that in this
realization of our conceptual workflow, climate space modeling, prediction and
projection have been combined into a single unit in this example, using the
same climate layers for modeling and prediction. Also, some additional units
are needed, such as PopupStringInput, for user interaction. Figures 6.3 and
6.4 illustrate two stages in executing our workflow: selecting a species and
displaying a map of predicted distribution. The GetMapFromDataCollection
unit is included in consequence of the BiodiversityWorld architecture, which
we shall describe below.

6.3.3 Triana and the BiodiversityWorld Architecture

The BiodiversityWorld architecture has been described in detail elsewhere
[223]. For the purpose of this chapter, the main features of relevance are:

1. An abstraction layer has been defined, the BiodiversityWorld-Grid Inter-
face (BGI), which defines an API that resources must implement in or-
der to be usable in the BiodiversityWorld environment. DataCollection,
referred to above, encapsulates data for communication between units:
Units pack and unpack their data into and out of this representation to

! http://www.sp2000.o0rg/ .
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Figure 6.2: Triana/BiodiversityWorld environment.

reduce the knowledge that the middleware must have at a syntactical level
about data types.

2. Initial implementations of this layer were proprietary in nature and il-
lustrated the flexibility of this architecture for use with various kinds of
Grid [145] and Grid-like middleware. Triana units were implemented that
were able to communicate directly using the various BGI implementations.

3. More recently, we have concentrated upon providing Web and Grid ser-
vices [325], for which the Triana Grid Application Toolkit is more directly
suitable.

4. Performance of the BiodiversityWorld middleware has not been a major
concern because interoperability has been seen as more important than
high throughput for many of our tasks. Nevertheless, we are currently
exploring the use of Condor pools [262] for some of the more data-intensive
tasks within our workflows. For example, for ecological niche modeling,
we have recently performed 1700 modeling jobs over a period of 52 hours,
with data sets of the order of seven MB being used in each job, using our
existing architecture. It would be desirable to perform these jobs much
faster or over a larger number of iterations: This is the main motivation
for our interest in Condor.
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Figure 6.3: Selecting a species.

Thus it has been possible to use Triana as a front end to the Biodiversity World
system with reasonably little effort. Nevertheless, there are some refinements
that would be desirable, as we shall discuss further in Section 6.5.

6.4 Related Work

A number of other projects are using workflows for application areas related
to our own. In this section, we briefly outline two of the most important ones:
SEEK! and myGrid?.

Among other things, the SEEK project aims to support acquisition, in-
tegration and analysis of ecological and biodiversity data. The aims of SEEK
therefore overlap with those of BiodiversityWorld, but SEEK has used the
Kepler workflow system [19] and concentrated particularly on some specific
issues that, due to limited resources, we have not been able to give much at-
tention to within BiodiversityWorld. One of the most notable of these issues
is semantic mediation [60]: Techniques are being developed to support auto-
mated transformation of data and analytical components within a workflow to

! http://seek.ecoinformatics.org. See Chapter 7.
2 http://www.mygrid.org.uk/. See Chapter 19.
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Open Modeller Model Output

Figure 6.4: Display of results.

provide compatibility between workflow elements. In contrast, in Biodiversity-
World, transformation units must at present be manually incorporated into
workflows. However, there is a metadata repository that provides the infor-
mation needed to determine the nature of the transformation needed.

The myGrid [396] project aims to support more general bioinformatics
requirements, providing an environment for data and application integration.
As in the SEEK project, particular attention is being given to a number
of important issues that arise: In the case of myGrid, these include proven-
ance, personalization, and change notification. The Taverna [326] tool is be-
ing developed to support the creation and enactment of workflows. Careful
consideration was given to the possibility of using Taverna within the Bio-
diversityWorld system. One of the main reasons that it was not adopted was
because it provided a lower-level view of workflow composition than we con-
sidered appropriate for our needs; for example, in the version we evaluated,
separate units were required to represent starting and finishing a given pro-
cess. The less finely grained approach provided by Triana more closely met
our understanding of the users’ concept of a workflow.

A distinctive feature of BiodiversityWorld, in comparison with the pro-
jects above, is our creation of a middleware architecture that is intended to
be insulated from the underlying Grid software. This was important at the
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time the Biodiversity World project commenced, as Grid software was evolving
rapidly. With the advent of Grid services and WSRF [461], this concern is per-
haps not as serious now as it was when we commenced the project.

6.5 Toward an Exploratory Workflow Environment

Current workflow-based approaches to e-Science are proving to be of value
for biodiversity science and other related disciplines. However, the simple ap-
proach that is currently typical has serious limitations: A designer may be
provided with little more than a palette of units/actors from which to compose
a workflow, perhaps aided by some resource discovery tools. These limitations
are particularly in the areas of

e resource discovery,
e reuse of workflows, and
e exploratory experimentation.

The first two of these limitations are addressed, to a greater or lesser extent,
in existing systems. For example, a prototype “intelligent unit” has been im-
plemented for BiodiversityWorld: This can be queried for resources matching
criteria supplied by the user. In regard to the second limitation, some sys-
tems maintain metadata relating to specific workflow enactments and some—
notably Kepler—allow “smart reruns” in which modified workflows are not
necessarily fully executed: Results from previous runs are used wherever
possible.

The problem with even a reasonably sophisticated workflow environment,
incorporating features such as those listed above, is that workflow construction
requires a level of planning that may restrict the user’s freedom to explore
readily, find information of interest, perform tentative analyses, etc. This is in
sharp contrast with widely used software such as Microsoft Internet Explorer,
which allows users to navigate freely, maintaining a history of sites visited,
and provides a facility (albeit primitive) to search previously used pages for
keywords of interest.

In an exploratory environment of this kind, if all interactions were logged
transparently and automatically annotated with appropriate metadata, mech-
anisms could be devised to find and reuse ephemeral workflow fragments as
parts of a larger task. This mechanism could be supported by a knowledge-
based system to assist in selecting resources and workflow fragments, antici-
pating ways in which the user might wish to recombine them. Three simple
scenarios that could serve as a partial specification for this environment are:

1. The user runs the same task on multiple data sets and selects those
having interesting derived properties. For example, a set of tests may be
performed on a large number of databases and the user then selects those
having certain properties as a base set for use in subsequent analyses. For
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this we need, at the very least, to be able to store a list of data sets on
completion of the tests. Preferably the user would also be able to browse
back through the history of interactions and do a filtered search of this
history.

2. The user does a sequence of operations manually (not by constructing a
workflow) and then wants to backtrack and try some alternatives. Having
found paths of particular interest among those explored, the user then
wishes to construct one or more workflows for reuse, possibly in modified
form. To support this, an automatically constructed graph of alternative
dataflows could be provided from which the user could select the parts of
interest.

3. The user wishes to generalize a specific workflow. For example, a knowledge-
based system could allow a user to replace a very specific task such as Run
version 3.14159 of phylogenetic tree-generating tool X by (for example)
Select and run a phylogenetic tree-generating tool.

These scenarios are clearly not fully specified at present. We have merely tried
to present our vision of how a workflow-based environment could be enhanced
to support more exploratory modes of interaction. We suggest that the most
significant difficulties that need to be overcome if an environment of this sort
is to be created successfully are as follows:

e Design of a suitable user interface, and trialing prototypes with suitable
users

e Automating the generation of suitable log metadata—any significant in-
volvement of the user in annotating his or her actions is a potential distrac-
tion from the experimental approach we are arguing should be supported
(although perhaps some retrospective annotation may be useful)

e Related to the above, the design of suitable metadata and inference mech-
anisms to support exploration, deduce appropriate workflow generaliza-
tions, etc.

6.6 Conclusions

We have illustrated how biodiversity e-Science can be supported by the use
of workflows, discussing particularly their use within the Biodiversity World
project. Although the workflow metaphor is a powerful one in this context,
we have explained our concern that a scientist’s creativity may be potentially
hindered by the workflow design/enactment cycle, and we have discussed ways
in which more flexibility could be introduced. To explore these ideas, we would
like to augment Triana with a browser-like mode, supporting exploration of
data sets and performance of individual tasks and incorporating logging, re-
play, and automated workflow-construction features.
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Ecological Niche Modeling Using the Kepler
Workflow System
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Matthew B. Jones, Bertram Ludéascher, and Shawn Bowers

7.1 Introduction

Changes in biodiversity have been linked to variations in climate and human
activities [295]. These changes have implications for a wide range of socially
relevant processes, including the spread of infectious disease, invasive species
dynamics, and vegetation productivity [27,70,203,291,294,376,426]. Our un-
derstanding of biodiversity patterns and processes through space and time,
scaling from genes to continents, is limited by our ability to analyze and syn-
thesize multidimensional data effectively from sources as wide-ranging as field
and laboratory experiments, satellite imagery, and simulation models.

Because of the range of data types used, biodiversity analyses typically
combine multiple computing environments: statistical, mathematical, visual-
ization, and geographic information systems (GIS), as well as application-
specific code that may be written in any programming language. A mix of
proprietary and open-source software is typically cobbled together by manual,
scripted, and programmed procedures that may or may not be well designed,
documented, and repeatable. Legacy FORTRAN programs written decades
ago, as well as more recent C/C++ programs are commonly modified and
used, and Unix scripts abound. The details from the entire range of analyses
conducted are either unavailable or hidden within complex code that com-
bines many tasks and is not robust to alternative uses without comprehensive
user knowledge of the code. Some procedures are computationally intensive,
but parallelized approaches are not in widespread use for lack of access to
high-end computing resources and lack of knowledge about how to make use
of those resources.

Hence, challenges in biodiversity analyses include data-intensive,
computation-intensive, and knowledge-intensive components. Scientific work-
flows in general and the Kepler Workflow System in particular [19, 20, 272]
provide an opportunity to address many of these challenges. Here we examine
the details of a specific analysis within Kepler to illustrate the challenges,
workflow solutions, and future needs of biodiversity analyses. The example
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Table 7.1: Challenges from ecological niche modeling and workflow solutions

Challenge ‘Workflow Solution

Model complexity Hierarchical decomposition

Exploratory modeling |Modular components for models can be substituted
Distributed data Integrated data access via EcoGrid

Heterogeneous data Rich transformation components (including spatial

operations) and emerging semantically based data-
integration tools

Computational intensity |[Support for Grid computing (e.g., Nimrod) and
emerging peer-to-peer support

analysis is drawn from a general approach called ecological niche model-
ing [391], which has a number of technical challenges relevant to scientific
workflow solutions that are summarized in Table 7.1. Analyses are complex,
incorporating many computational steps in diverse software environments.
Within a given segment of the analysis, multiple approaches may be used,
sometimes in tandem for comparison between approaches. Hence, the same
analysis may be conducted with some variation many times. Input data are
drawn from a variety of distributed sources and represent different data cat-
egories: observational data from the field, derived data from digital elevation
models, and simulation output, each of which has its own semantics. These
characteristics lend themselves readily to workflow approaches.

In the following sections, we briefly review ecological niche modeling from
the domain perspective and then address each of the challenges and workflow
solutions listed in Table 7.1 in detail.

7.2 Approaches in Ecological Niche Modeling

Ecological niche modeling is a conceptual framework for understanding and
anticipating geographic and ecological phenomena related to biodiversity
[391]. The ecological niche of a species can be defined as the conjunction of
conditions within which it can maintain populations without input via immig-
ration [177,178]. Extensive research by diverse investigators has built the case
that niches can be estimated based on associations between known geographic
occurrences of species and features of landscapes summarized in digital GIS
data layers [28,205,340,345] (see Figure 7.1a).

The ability to predict ecological and geographic phenomena using eco-
logical niche modeling generates many opportunities for investigators. The
simplest applications, of course, are those of characterizing distributions of
species in ecological space, which offers a view of the ecological requirements
of species [99] (Figure 7.1a). A second level of prediction comes from projecting
the ecological model onto geographic space to interpolate a predicted potential
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Figure 7.1: Ecological niche modeling approach and applications: (a) species’
occurrence data are analyzed with environmental data to develop a model of
the species’ occurrence in ecological space; (b) the model is applied across
geographic space to predict the spatial distribution of suitable habitat on the
species’ native range; (c) the model is used to predict suitable habitat in a
new distributional area in the case of species’ invasions; and (d) the model is
applied against changed environmental conditions, such as climate change, to
predict the distribution of suitable habitat under the new conditions.

geographic distribution—effectively filling gaps in knowledge between known
sampling locations to provide a more complete picture of a species’ geographic
distribution [79,253,313,346] (Figure 7.1b).

Further levels of prediction results under the assumption of conservative
evolution of ecological niches. This assumption now has considerable sup-
port, both from theoretical considerations [196,197] and from empirical evid-
ence [204, 280, 349]. If ecological niches change only rarely and under limited
circumstances, then the ecological potential of species remains relatively con-
stant even under scenarios of change, e.g., transplantation to another contin-
ent as invasive species (Figure 7.1c), or distributions of species in changing
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climates (Figure 7.1d). Ecological niche modeling has seen extensive applica-
tion to these situations. Numerous studies [43,190,345,350] have confirmed the
predictability of potential distributions as invasive species on other continents
or in other regions as well as potential distributional shifts under scenarios of
climate change [28,281]. As such, the suite of situations in which ecological
niche modeling is informative is quite broad.

Numerous conceptual approaches and software tools can be used in eco-
logical niche modeling. In the simplest sense, an ecological niche model is
just a description of the ecological conditions present across a specie’s range
[177,178], and as such some very simple tools have seen very broad applica-
tion [313]. Beyond these simplest tools, however, a number of improvements
have been made—first, a suite of methodologies improved on the simple range
rule approach [313] to develop more flexible depictions of species’ ecological
niches [79,459].

Further developments of niche modeling tools proceeded along two main
lines: (1) multivariate statistical tools beginning with logistic regression [297]
and progressing through generalized linear and generalized additive models
[131]; and (2) evolutionary computing applications such as genetic algorithms
[399], neural networks [340], and maximum entropy approaches [353]. Each
of these two classes has its advantages and disadvantages for niche modeling,
but the basic message is that many computational options exist for modeling
ecological niches.

Many recent studies have addressed likely effects of global climate change
on distributions of species. The general approach is one of modeling and val-
idation of basic model predictions based on present-day ecological and geo-
graphic distributions of species and then projection of niche-model rule sets
onto future changed climate conditions drawn from general circulation models
of global climates [361]. Although the number of studies using this approach
is large—see a recent review and meta-analysis [426]—most have been lim-
ited by practical and technical limitations to between a few dozen and a few
hundred species. The largest such study to date [348] reviewed approximately
1800 species of Mexican birds, mammals, and butterflies.

We are conducting a prototype project using the Kepler Workflow Sys-
tem designed both to demonstrate the power of scientific workflows in solving
large-scale computational problems and to shed light on a still-open ques-
tion: What is the magnitude of likely climate change effects on biodiversity
across the Americas? We are using the data resources of the distributed Mam-
mal Networked Information System (MaNIS) [394] to carry out a review of
likely climate change effects on the over 2000 mammal species of the Amer-
icas, constructing maps of potential species distributions under future climate
scenarios. Not only will this analysis be the broadest in taxonomic and geo-
graphic scope carried out to date, but the computational approach involved
(the workflow) will be completely scalable and extensible to any region and
any suite of taxa of interest.
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7.3 Data Access via EcoGrid

In Kepler, distributed data access is provided through the set of EcoGrid in-
terfaces [225,343]. EcoGrid allows data and computation nodes to interoperate
through a standardized high-level programmatic API. Resources are added to
the EcoGrid through a distributed registry. The registry is also used to locate
resources and to choose among alternative versions when they exist.

The ENM (Ecological Niche Modeling) workflow uses data from three
sources on the EcoGrid: (a) mammal occurrence data from MaNIS, (b)
modeled present and future climate data from the Intergovernmental Panel
on Climate Change! (IPCC), and (c) Hydro-1k digital elevation data from the
U.S. Geological Survey.? MaNIS consists of a consortium of 17 North Amer-
ican mammal collections developed using the Distributed Generic Information
Retrieval (DiGIR) protocol, an open source client/server protocol for retriev-
ing distributed information using HTTP, XML, and Universal Description,
Discovery, and Integration (UDDI).®> MaNIS outputs mammal point occur-
rence data in the form of tables of species name and requested attributes,
which include longitude and latitude. IPCC provides gridded global maps of
present and future climate data predicted using a number of different climate
change models. Data include cloud cover, diurnal temperature range, ground
frost frequency, maximum annual monthly temperature, minimum annual
monthly temperature, precipitation, radiance, vapor pressure, wet day fre-
quency, and wind speed. The present-day data are available worldwide with a
resolution of 0.5°. Future modeled climate predictions have variable resolution
but considerably lower resolution than historical data. Hydro-1k data were de-
veloped by the USGS EROS Data Center.* These spatial grids were created
using the 30” digital elevation model (DEM) of the world (GTOPO30), re-
cently released by the USGS, and provide a standard suite of georeferenced
data sets at a resolution of 1 km. Hydro-1k data include such derived fea-
tures of landscapes as aspect, slope, and elevation, with the data divided by
continent. Total data size is roughly 10 GB.

7.4 Hierarchical Decomposition of the ENM Workflow

The ENM conceptual workflow is divided logically into three separate parts
(Figure 7.2): (1) data preparation; (2) model construction, including predic-
tion on the environmental layers used to construct the model; and (3) applic-
ation of the model to changed climate conditions and comparison of model
output. These three parts are captured within Kepler as a set of hierarchical,

! nttp://www.ipcc.ch/

2 http://edcdaac.usgs.gov/gtopo30/hydro/

3 http://digir.net

4 http://lpdaac.usgs.gov/gtopo30/hydro/readme .asp
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nested subworkflows (Figure 7.3). Subworkflows are used to wrap the func-
tionality of multiple components that form logical groupings. The three parts
of the conceptual workflow are captured by six subworkflows, four of which
are necessary just for the first part.

7.4.1 Data Preparation

Data preprocessing and transformation (Figure 7.2a) is incorporated into four
subworkflows within Kepler (Figure 7.3: subworkflows I through IV): (1) Cre-
ate Species Occurrence List, (2) Create Spatial Data Layers, (3) Create Con-
vex Hull Mask, and (4) Revise Spatial Layers. This portion of the workflow
includes analytical components carried out by the EcoGrid query interface,
Geographic Information System (GIS) processing, Java and C++ programs,
and statistical functionality provided by the open-source R package. The data
are manipulated into compatible formats for integration, including restruc-
turing and rescaling the data and changing their syntax (Figure 7.2a). The
MaNIS occurrence points are used to construct a buffered convex hull around
the area of known occurrence; areas outside of this are masked out during the
model training phase.

7.4.2 Model Development

Data sampling, division into training and testing sets, model training, and
model testing (Figure 7.2b) occur within the Calculate Rulesets composite
actor (Figure 7.3 subworkflow V). Each known species occurrence from MaNIS
is used to query the climate and topographic data sets at that location (Fig-
ure 7.2b). Sampled data are divided into two sets, one of which is used to
train the algorithm used to model the data and the other of which is used
to test the predictive model generated by the algorithm and calculate the
predictive error. For the ENM workflow, we are using the Genetic Algorithm
for Rule-set Production (GARP) model, developed specifically for ecological
niche modeling applications [398,399]. GARP is a stochastic model, so each
run generates a different result. For each species, GARP is run many times
(typically 100 to 1000, averaging 10 to 20 seconds per iteration), predictions
are made for each run, and the distribution of model error results is used to
select the best subset of models. Models with high omission error (those that
fail to predict known presence points) are excluded, either through a hard
threshold (e.g., omission error < 10%) or as a soft threshold (e.g., the 10% of
models with the lowest omission errors). Models passing this first filter will
range from very small to very large areas, each of which are predicted present.
Because areas of overprediction are difficult to detect with presence-only data,
indirect methods are used to select from the remaining models. A commis-
sion index is calculated as the proportional area predicted to be present by
the model [23]. A user-defined number of low-omission models closest to the
median commission index are then selected as the “best subset” of the models.
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Figure 7.2: Conceptual workflow for the mammal project: (a) data prepro-
cessing, where distributed data are obtained from the EcoGrid and manipu-
lated into the required formats; (b) model development, including training,
testing, and prediction on present climate scenarios; (c¢) model prediction on
future climate scenarios and comparison of output. Final output consists of
predicted distribution maps for each species and climate scenario.

7.4.3 Model Application and Comparison

Application of the model and comparison between predictions (Figure 7.2¢)
occurs within the Calculate Best Rulesets subworkflow (Figure 7.3: subwork-
flow VI). Once a best subset of models has been selected, they are used to
predict the specie’s future distributions for the many possible future climate
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scenarios available (Figure 7.4). Because the best subset of models generates
multiple predicted distributions for each present and future scenario, they are
combined for each scenario to produce an occurrence probability map. Error
for the model set as a whole is evaluated using threshold-independent re-
ceiver operating characteristic (ROC) plots [468]. ROC analysis evaluates the
specificity (absence of commission error) and sensitivity (absence of omission
error) of a model set in comparison with a random prediction using a z test.
The results of the ROC analysis are used to validate the predictive ability of
a model for a particular species; for those species passing the validation test,
we construct a final map of the specie’s predicted distribution under present
and numerous versions of future conditions. This distribution may then be
further limited by the use of spread (contagion) algorithms, which evaluate
the ability of the species to colonize new areas under different assumptions.

For each species, the ENM workflow results in predictive maps of the
current distribution and of potential future distributions under different cli-
matic scenarios that can be compared to analyze effects of climate change on
each species. Collectively, results for all species can be analyzed for current
biodiversity patterns and effects of climate change on biodiversity. Additional
workflows will be developed to conduct these analyses. The derived data, and
all workflows associated with the analysis, are archived to the EcoGrid.

7.5 Modular Component Substitution

Each actor or subworkflow of the ecological niche modeling workflow can be
replaced easily and as needed. For instance, a scientist may want to run the
workflow using all of the data preparation, sampling, and postprocessing on
the model output but using a different niche modeling algorithm. Such func-
tionality would require an actor substitution. Alternatively, the scientist may
wish to run the same workflow but using different data sources, requiring
construction of a new data-preparation workflow, conversion of that workflow
into a subworkflow, and substitution of the new subworkflow for the existing
one that it is replacing. As any number of variations on the workflow might be
needed, modular construction of the workflow allows individual components
or sections of the workflow to be substituted readily. Actor and subworkflow
substitutions are illustrated below.

7.5.1 Actor Substitution
The ecological niche modeling workflow was originally designed to make use

of the GARP model, available in Desktop GARP.! Desktop GARP is written
in C code and includes three parts, which we subdivided into separate Kepler

! http://www.lifemapper.org/desktopgarp/
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Figure 7.3: Hierarchical decomposition of the ecological niche modeling work-
flow in Kepler. Each of these subworkflows consists of a nested workflow, which
itself may contain subworkflows and further nesting.

actors: (1) GARP Presample, (2) GARP Algorithm, and (3) GARP Predic-
tion (Figure 7.4). The decision to subdivide these modules was based on the
consensus that each could be reused independently from the others.

Actor substitution could occur by simply deleting any of these three act-
ors and replacing it with the new desired actor, which might be a differ-
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ent sampling routine or a different algorithm with which to construct the
model. Numerous issues arise during actor substitution regarding the syn-
tactic, structural, and semantic compatibility of the replacement actor. In this
particular instance, the GARP algorithm requires input in a specific format,
namely a comma-delimited ASCII text file, with each row containing the loc-
ation <latitude, longitude> where the species is known to occur and a vector
of numeric data summarizing environmental characteristics at that location.
All attributes, with the exception of <latitude, longitude>, must be integers
between 1 and 254. Substitution of a different actor requires either that the
new actor have the same input requirements or that additional actors be in-
corporated into the workflow to transform the output from the GARP Pres-
ample actor into the required input format for the new algorithm. Likewise,
the output from the new actor may require transformation to meet the input
requirements of the GARP Prediction actor.

Additionally, actor substitution may entail major changes to the overall
workflow design. For instance, the GARP algorithm is stochastic rather than
deterministic—it is run many times for a given experiment, and each run
produces a different model. The workflow is designed to iterate many times
over the GARP algorithm for each species. Substitution of the GARP al-
gorithm with another stochastic algorithm would not require major changes
to the workflow structure, but substitution with a deterministic model would.
Hence, actor substitution, while simple conceptually, requires additional effort
that could range from minimal (the actors are completely compatible and just
need to be rewired) to quite extensive (the workflow must be redesigned and
new portions constructed). In any case, the workload involved is less than if
the entire design was reworked from scratch.

7.5.2 Subworkflow Substitution

The GARP Presample actor requires that all of the input environmental layers
be spatial raster grids with a custom binary format that must have identical
extent and resolutions. Substitution of a different sampling algorithm may
require a different preprocessing workflow. Alternatively, rather than Hydro-
1k data, the user may wish to use a different data source that has its own
preprocessing requirements. In either case, one or more subworkflows would
have to be replaced, substituting major portions of the workflow. Since Kepler
is designed with hierarchical components, these kinds of substitutions can be
handled more readily than if no logical grouping of components existed.
Multiple subworkflows are used to put the data in required formats (Fig-
ure 7.3 subworkflows II, III, and IV). Embedded within the subworkflows
are complex data-processing workflows for IPCC present climate data, IPCC
future climate data, and Hydro-1k topographic data (see Figure 7.5 for the
Hydro-1k workflow). If, for instance, the Hydro-1k data source were replaced
with another, this specific subworkflow could be deleted and replaced with
a new one without modifying the subworkflows that handle the other data
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Figure 7.4: The GARP workflow, consisting of the Desktop GARP soft-
ware subdivided into three actors (GARP Presample, GARP Algorithm, and
GARP Prediction), and an image display actor to display output. The three
GARP actors together constitute the GARP model training box shown on
the conceptual workflow (Figure 7.2b). Input data must be preprocessed (not
shown). Output data are in the form of an image showing the predicted dis-
tribution of the species.

sources. The primary issue to address is that of ensuring that the output from
the replacement workflow is compatible with the input requirements of the
next step.

7.6 Transformation and Data Integration

A comparison of the research design for integrating species occurrence data
and environmental data (Figure 7.1a) with the corresponding conceptual
workflow (Figure 7.2) and with the details of execution (Figures 7.3 and 7.5)
illustrates the tremendous expansion of computational detail required to pre-
process and integrate biodiversity data, even when the conceptual research
design is relatively simple. Much of the expansion occurs early in the workflow,
as the source data are being manipulated and transformed into formats re-
quired by the first analytical step (Figure 7.2b—Sample Data). These prepro-
cessing steps require substantial time and effort in most biodiversity analyses.
One goal of Kepler is to reduce the amount of effort required by scientists
to accomplish such tasks through a rich set of transformation components,
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Figure 7.5: The Kepler workflow for preprocessing of Hydro-1k environmental
layers for North and South America.

and eventually, automatic or semiautomatic data integration and transform-
ation [46].

7.6.1 Transformation Components

Historically, data preprocessing has required extensive manual effort because
of the diverse set of functions needed. Syntactic and structural transform-
ations have most often been accomplished through cutting and pasting in
a spreadsheet application. Kepler provides a range of transformation com-
ponents that can automate many of these conversions. It also includes some
simple semantic conversions, such as standard unit conversions. As the library
of Kepler components expands, a rich set of transformations will be provided.

In ecological niche modeling analyses, manual data-preparation steps may
require six or more months of labor, much of which is done within a GIS.
However, most ecological niche modeling studies use only a small subset of GIS
functions, typically those that allow for integration of multiple data sources
(projection, resampling, clipping, rasterization), changing grid values (map
algebra), and sampling grids or polygons from point data. Kepler provides
a way for ecological modelers, often not GIS specialists, to access and use
transparently the geospatial functionality that they need.

We have implemented geospatial actors using the Geospatial Data Ab-
straction Library! (GDAL) and Geographic Resources Analysis Support Sys-

! http://www.remotesensing.org/gdal/



7 Ecological Niche Modeling Using the Kepler Workflow System 103

tem! (GRASS) because they are open-source, free software packages with
powerful and proven raster, topological vector, image processing, and graphics
production functionalities. We have also implemented some spatial function-
ality with Java-based ImagelJ.? Lastly, we have implemented several Environ-
mental Systems Research Institute (ESRI) ArcGIS functions as Web services
that can be invoked through Kepler (our collaborators have a license from
ESRI for such services). We are adding geospatial functionality as needed for
our applications, with plans to develop the geospatial functionality base more
broadly in the future. We do not intend to duplicate a full GIS; complex geo-
spatial analyses are best carried out within existing software systems. The
goal in Kepler is to provide functionality that will allow the products of a
geospatial analysis to be integrated more easily with other types of data and
software through standard transformations in batch mode.

7.6.2 Semiautomatic Data Integration.

Given a set of transformation components in Kepler, it is possible to annotate
them in such a way as to enable partially automated transformations by the
system. To illustrate this nontrivial task, we use the Sample Data step (Fig-
ure 7.6). At the conceptual level, the Sample Data step requires three input
types (Figure 7.6a): (1) species presence points, (2) environmental layers, and
(3) user-defined parameters that specify the kind of sampling to be conducted,
the number of desired sample sets, and the number of samples within each set.
The algorithm itself is designed to perform spatial integration of point data
with grid data. All steps prior to this one are syntactic, structural, and se-
mantic transformations to place the point and grid data in the correct format
for input into the “sample data” step. At the syntactic level (Figure 7.6b),
the input point data must be a single comma-delimited plain text file. Point
data retrieved from MaNIS consist of multiple tables that must be combined
into a single table and written to an ASCII file.

Both IPCC and Hydro-1k data begin in an ASCII format but must be
rewritten into the binary format required by the sample data algorithm. At
the structural level (Figure 7.6¢), columns within the point file must be re-
structured into the expected order (longitude, latitude). Numerous structural
transformations must occur on the environmental layers. The climate data
occur as a single global map; the Hydro-1k data are subdivided by continent.
Either the Hydro-1k data must be merged or the climate data can be clipped,
depending on the spatial extent of the specific point data being used in the
analysis. Grids must be in comparable cartographic projections to be com-
bined. The Sample Data algorithm requires that spatial extent and resolution
be identical, requiring spatial clipping and resampling to change resolution.
Lastly, layers must be submitted together as a set that is formally a list of

! http://grass.itc.it
2 http://rsb.info.nih.gov/ij/
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vectors, where the z and y locations can be inferred from the position of the z
value in the vector and metadata regarding the spatial extent and resolution.

The required syntactic and structural transformations may be automated
by the system if sufficient data and algorithm annotation is available, and if
the semantics of the transformations are known. For example, the sample data
actor could be annotated to specify the syntactic and structural requirements
of the input data where these are not already formalized through the input
type. Semantic annotations can be made that specify that the input grid data
are spatial rasters, must be spatially equal, and must spatially contain the in-
put point data (Figure 7.6d). If ontologies exist that formally define spatially
equal for raster data as having equivalent projections, extent, and resolution,
and annotated actors exist that perform those tasks, then the system could
infer that those steps are necessary and perform them without their being
specified within the workflow. If the sample data actor is annotated as requir-
ing geographic longitude and latitude, the rescale step could automatically
select that projection without user input.

Likewise, if ontologies exist that formally define the spatially contains re-
lationship between raster and point data, a point is formally defined as con-
sisting of a composite of longitude and latitude, and the input longitude and
latitude data are annotated as a point composite, then (given a specific input
point data set) the system could infer the appropriate extent of the raster
data for the rescale step. The only remaining parameter for the rescale step
is the desired resolution (grain), which would still either need to be specified
by the user or a default value could be determined if associated with another
knowledge base such as a decision support system. There may still remain
some initial processing of any data set that is collected for purposes other
than use in a given workflow, but automation of those syntactic, structural,
and semantic steps for which information is available to the system would
be an exciting step forward toward allowing scientists to focus on the sci-
entific portion of the analysis (Figure 7.2b) rather than the transformation
and conversion portion (Figure 7.2a).

7.7 Grid and Peer-to-Peer Computing

Currently, Kepler downloads all data sets to a cache and executes locally, but
we will soon be incorporating distributed computing. We estimate that there
are several thousand species of mammals in MaNIS that might be considered
in this prototype application. If we can do all the calculations needed for a
single species in an hour, there is a need for several thousand hours of com-
puting time for the entire list. Thus, there is clearly a need for distributing
calculations over numerous computers. These might be specially designed par-
allel clusters, but since Kepler will run on standard desktop PCs, one could
also consider other, less specialized methods for distributing the calculations.
Peer-to-peer networking among Kepler clients is a technique for parallel pro-
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Figure 7.6: Description of input data to the Sample Data actor at (a) con-
ceptual, (b) syntactic, (c¢) structural, and (d) semantic levels, illustrating the
complexity of transformations that must be made during preprocessing of

source data.

cessing that is being considered. Dividing the problem at the species level (i.e.,
running all the calculations for a single species on one machine) seems to be
reasonable, but results would have to be saved, perhaps to the EcoGrid, for

later integration.

7.8 Opportunities for Biodiversity Science Using

Scientific Workflows

The ENM workflow is being developed as a prototype application. Once com-
plete, it may be reused for many comparable analyses simply by changing the
taxa and/or geographic location of interest, or changing the input biodiversity
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and environmental data sources. Substitution of algorithms such as general-
ized additive models or neural networks for the GARP algorithm provides the
opportunity to reuse the workflow with minor modification. We are currently
evaluating options for additional workflow development. Our intention is to
construct workflows that will (1) be of most use in improving the efficiency of
complex biodiversity and ecological analyses, (2) link practically with existing
workflows to form even more complex analyses, and (3) complement existing
workflows conceptually.

The ecological niche modeling approach deliberately neglects the effects
of dispersal on geographic distributions [391]. That is, the niche models sum-
marize the ecological suitability but do not attempt to establish whether the
species will be able to disperse to and colonize a given site that may be suit-
able. The likelihood of successful dispersal is an independent question and
has been the subject of numerous development efforts in distinct lines of in-
quiry [49,186].

For any future-climate effects on biodiversity modeling efforts, incorpor-
ation of dispersal considerations is key—suitable areas may exist but may
be out of reach for many species [347]. Most such analyses to date have used
simple dispersal assumptions such as "no dispersal,” ”universal dispersal,” and
”contiguous dispersal” [426], but have not made attempts to decide which of
these scenarios is most likely or most realistic. Clearly, this aspect of the ques-
tion merits considerable additional effort and thought by the niche modeling
community.

In the mammal project, we will implement a series of layers of complexity
in dealing with dispersal considerations. At the simplest level, we will apply
the no, universal, and contiguous dispersal criteria—this approach has the
important advantage of permitting direct comparisons with previous studies
[426]. However, the workflow approach will permit a much more interactive
assessment of the effects of these different assumptions.

The mammal project will result in grid layers representing many altern-
ative future potential distributions for more than 2000 species. Analyses of
these voluminous data will take several forms. Data exploration, reduction,
and graphical visualization workflows are needed. For a given species, we need
to compare alternative distributions, both in terms of amounts of suitable hab-
itat and spatial arrangement of that habitat. Some species require large blocks
of contiguous habitat to survive, whereas others require a heterogeneous mix
of habitats. Complex spatial analyses within a given distribution and com-
paring between distributions are needed. Comparisons between species that
allow the delineation of response groups (groups of species that respond to
climate change scenarios in similar ways) are needed. Workflows that analyze
alternative community structures and the effect of interactions between spe-
cies will be needed. Error detection and uncertainty analysis of results both
within and between scenarios will also be important.
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7.9 Advantages of Automated Workflows for
Biodiversity and Ecological Science

The benefits of scientific workflows for biodiversity scientists are many: In-
creased efficiency, replicability, and reusability are obvious. Less obvious, but
of no less importance, is the explicit documentation of methods used in an ana-
lysis. Historically, analytical methods have been recorded in free-text “Meth-
ods” sections of publications. Typically, only the conceptual steps are recor-
ded. The multitude of computational details imposed on the data to enable
execution are typically not recorded, yet these may have significant effects on
the results of the analysis.

Scientific workflows provide the opportunity to formally document every
detail of the analysis within the system. Indeed, methodologies can be “pub-
lished” explicitly in the form of workflows as part of scientific papers. This
enables replication of analyses as mentioned above but also enables scient-
ists to scrutinize their own and other scientists’ analytical methods carefully,
identify differences in methodology that have significant effects, and compare
results given those differences. Additionally, it presents an opportunity to
refine a given workflow collaboratively based on group consensus of best prac-
tices. By agreeing on and standardizing the details of an analysis wherever
possible, truly innovative differences in approaches that occur at the cutting
edge of science will be highlighted, and we may focus more readily on analyt-
ical outcomes that result from those differences rather than obscuring them
through differences in execution.

Science is about exploring those areas of knowledge where no consensus
exists and where no established methodologies guide the investigator. By auto-
mating analyses, efforts can be concentrated where they are most needed. For-
tunately for scientists, many parts of a scientific analysis provide a wealth of
technical challenges for computer scientists and software engineers, and emer-
ging technologies such as workflows hold great promise. The single biggest
hurdle preventing widespread adoption of workflow technology by the biod-
iversity science community is the level of technical expertise required to con-
struct executable workflows. Most have limited or no programming back-
ground and little knowledge about fundamental technical issues such as data
types, structures, and information handling. Nor should they be expected to
become technical professionals—domain scientists should be doing domain
science! Until the system is populated with a wide variety of components and
many reusable workflows, each new workflow will necessitate programming of
custom actors. Additionally, the workflow design process itself is not intuitive
to scientists who are used to making decisions about their analytical methods
on the fly as they conduct their work. We will have to find a way to simplify
Kepler for less sophisticated users while still enabling complex functionality.
It is quite a challenge to provide the range of functionality envisioned while
maintaining a reasonably simple interface that will be intuitive to the do-
main scientists. Concurrently, we must also develop more sophisticated tools
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to enable rapid workflow construction by high-end workflow engineers who
may be working in collaboration with a domain scientist. Balancing these or-
thogonal needs will continue to be a challenge. Ultimately we envision a day
when Kepler evolves into a hierarchical system that fully supports users with
a wide range of technical capabilities from a wide range of scientific discip-
lines, presents the appropriate set of interfaces and functionality based on user
group, and enables better collaboration between the disciplines.
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Case Studies on the Use of Workflow
Technologies for Scientific Analysis: The
Biomedical Informatics Research Network and
the Telescience Project
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Mark H. Ellisman

8.1 Introduction

The advent of “Grids,” or Grid computing, has led to a fundamental shift
in the development of applications for managing and performing computa-
tional or data-intensive analyses. A current challenge faced by the Grid com-
munity entails modeling the work patterns of domain or bench scientists and
providing robust solutions utilizing distributed infrastructures. These chal-
lenges spawned efforts to develop “workflows” to manage programs and data
on behalf of the end user. The technologies come from multiple scientific fields,
often with disparate definitions, and have unique advantages and disadvan-
tages, depending on the nature of the scientific process in which they are used.
In this chapter, we argue that to maximize the impact of these efforts, there is
value in promoting the use of workflows within a tiered, hierarchical structure
where each of these emerging workflow pieces are interoperable. We present
workflow models of the Telescience™ Project! and BIRN? architectures as
frameworks that manage multiple tiers of workflows to provide tailored solu-
tions for end-to-end scientific processes.

Utilization models for first-generation Grids (and their supercomputing
center predecessors) were akin to the hub-and-spoke model utilized by the
airline industry. User data environments were treated as the “hub,” and at
every step, the user was required to login and data were passed (often with
a binary executable) to one of the few virtual organizations (VO) [147], or
spokes, across the country to execute their computational jobs (Figure 8.1).
Initial implementations required users to coordinate the execution of their
data-processing tasks using command-line interfaces. They further required
users to maintain their own security credentials on each of the resources tar-
geted for their jobs. Today, single sign-on authentication and login mechan-

! http://telescience.ucsd.edu
2 http://www.nBIRN.net
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isms have been realized through the use of Grid portals. Instead of logging
into specific resources via a command prompt, users are directed to a single
Web page, where their authenticated login provides access to the VO or other
organizations where a shared-use relationship has been established.

Through the use of Grid portals, complex command-line arguments and
syntax are easily replaced with radio-buttons and checkboxes, thereby simpli-
fying the syntactical interface to the use of distributed resources. Even with
these simplified interfaces, however, first-generation Grid implementations still
operated on a “hub-and-spoke” model. Modern Grid portals, coupled with
maturing workflow tools have begun to enable a point-to-point research model
that more closely mirrors scientific research.

User manually
handles data
transfers

User monitors process, data is
handled automatically

Figure 8.1: Hub-and-spoke versus point-to-point scientific processes. Solid
lines indicate data transfer and hashed lines indicate user monitoring tools.

Through the use of Web-based environments, researchers can now access
a fully integrated cyberinfrastructure in a nearly ubiquitous manner, with
little to no administrative overhead. In current systems, experiment workflows
are represented by Web interfaces that provide centralized access to a static
collection of sequentially ordered application pipelines, tools for launching
batch jobs, or tools for visualizing or analyzing the data at key points in the
end-to-end process.

While the advantages of these computational portals are evident, there re-
mains a need for additional flexibility. The natural working paradigm for most
scientific experiments requires a level of interactivity that is difficult to cap-
ture in a static workflow. Users really require a balanced environment where
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they can interactively create, replicate, and reuse workflows or “pipelines”
for application components from the larger scientific process without need-
ing to manage the complexities of their planning or execution on end-line
physical resources. While there are a number of technologies emerging to en-
able interactive “plan” creation and/or scalable plan execution on Grids, few
if any provide a balanced and unified capability on both fronts. Most offer
unique capabilities, with strengths and weaknesses that need to be combined
and tailored to meet the requirements of scientific experiments. This model
of interoperability is essential for projects such as Telescience [260,341] and
BIRN [169].

8.2 Framework for Integrated Workflow Environments

As described in Part IIT of this book, a number of technologies have emerged
to redefine the workflow concept by providing frameworks for interactive pro-
cess construction, execution, and replication. Leading efforts such as Kepler!
and Taverna? offer pipelining operations that provide users with a real-time
interactive and/or visual environment for constructing and executing end-
to-end data-analysis plans (for more information regarding Kepler and Tav-
erna, see chapter 19). Other classes of workflow technologies, such as Pegasus
(Chapter 23) and DataCutter®, excel at the planning and execution of such
plans onto heterogeneous resource environments or Grids. The challenge is
that workflows, as defined by domain scientists, typically represent the dy-
namic end-to-end application process that often includes a heterogeneous mix
of experimental processes and the corresponding collection of distinct work-
flows (information gathering, bench/laboratory experimentation, computa-
tion, analysis, visualization, etc.) that may require a reconfigurable mixture
of the workflow classes described above.

In an era of growing complexity, it is a daunting task for scientists to
manually traverse these different workflow classes to complete their multiple
experiments. The Telescience and BIRN projects are structured to effectively
manage these different classes of workflows and to represent them to the user
in a simple sign-on Web portal with a seamless end-to-end data flow. The
portal in this case serves as the unifying fabric within which the disparate
workflow technologies are integrated and where the state between technologies
is brokered on behalf of the user. In the classic model of the Grid, users and
applications are connected to physical resources via Grid middleware. The
Telescience v2.0 system architecture (Figure 8.2) is a mature embodiment of
this concept that consists of four primary layers:

e User interface: portal and applications

! http://www.kepler-project.org/
2 http://www.mygrid.org.uk
3 http://datacutter.osu.edu/
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e ATOMIC: Application to Middleware Interaction Component Services
e Middleware/cyberinfrastructure: collective and local Grid services
e Physical resources: computing, storage, visualization, and instrumentation

Telescience Portal

/ATOMIC

Middleware

b

Globally Distributed Resources:
Databases, Storage, Instruments, Computing

Figure 8.2: Telescience architecture. The portal presents a simplified interface
to data, services, and collaboration tools to end users and transparently man-
ages access to cyberinfrastructure. ATOMIC insulates application developers
from the heterogeneity and volatility of the middleware cyberinfrastructure,
streamlining the linkage of client-side resources to distributed physical re-
sources.

Figure 8.2 shows the overall Telescience architecture, which maps directly
to the base architecture of BIRN. User interaction occurs via a Web portal
interface that ultimately traverses a series of layers to the required phys-
ical resources. Telescience and BIRN have deployed a user portal based on
the GridSphere framework!. GridSphere, being a JSR168 compliant portlet
framework [419], allows for the development of portlets that can be utilized
in numerous compliant portal frameworks. The Web portal may launch one
or more applications that must also navigate the same services to access the
physical resources. These portal and application components interact with
Grid resources via ATOMIC [259]. ATOMIC is a set of services that organize
middleware technologies into thematic bundles with stable and unified pro-

! http://www.gridsphere.org
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grammer interfaces to simplify the process of integrating tools with the Grid
for the domain applications developer.

Within this framework, however, there is still a temptation to build com-
plicated software that captures all necessary functionality (across layers) in a
single program. Workflow tools aim to reduce that tendency by working across
layers to link together disparate codes, modules, and applications (some pre-
existing) into a single virtual environment, all without significant changes to
the original source code.

ATomIC

|(Middleware

Globally Distributed Resources

'

Figure 8.3: Workflow integration across scales and classes of tools. In the con-
text of workflows, the Telescience portal curates and manages user inform-
ation and session state. ATOMIC delivers that information to downstream
applications and workflows.

Within the Telescience and BIRN architectures, those workflow tools fall
into the following classes:

1. Process management workflows: Frame highest-level scientific (labora-
tory) process and provide policy, process, state management, and ad-
ministrative tools, including the coordination and management of lower-
level workflows/pipelines that may comprise a scientific study (or instance
within that study)

2. Inter-application workflows: Pipeline or plan-building tools to streamline
computational operations

3. Intra-application workflows: Planners and execution engines to optimize
the execution of these plans on heterogeneous physical resources.
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As shown in Figure 8.3, the BIRN and Telescience approach is to facil-
itate coordination and sharing of state-full information between these three
workflow layers. Each layer has unique abilities and requirements. Process
and state management tools (typically portal-based) are necessary to pre-
serve and delegate the contextual information with regard to the user. This
information includes management of the scientific process, authentication and
authorization, and high-level state information. Within the Telescience Pro-
ject, much of this information is delivered to the lower level workflows via the
ATOMIC toolkit. Inter-application tools create process pipelines, which are
subcomponents of the highest-level experimental process management work-
flow. These tools are typically user-driven GUI environments that are either
ordered within the process management workflow or presented as a general
tool to serve the process management workflow as needed. The lowest-level
“intra-application” workflows are composed of the executable plans that have
been mapped to heterogeneous pools of physical resources.

8.3 Scientific Process Workflows: Process and State
Management Tools

The laboratory process is the end-to-end process that a scientist embarks
upon. This process is defined as all the steps between the conception of an
experiment and the final discoveries that are made based upon experimental
findings, including but not limited to any initial planning, information gath-
ering, data collection, analysis, and potentially many iterations of this process
at one or many decision points. In fact, the laboratory process is not simply a
linear stovepipe process, but rather it is a dynamic and highly iterative pro-
cess with multiple points of user interaction, data visualization, and feedback
(see 8.4). In the context of workflows, the laboratory process is the first-order
workflow in the hierarchy of workflow tools and is the first workflow level
that directly interacts with the end-user. Within an interoperable hierarchy
of workflow technologies, these laboratory processes utilize Grid portals in
the role for which they were originally intended, to provide a stable base
structure for the process as a whole, to broker security credentials, to man-
age the secure flow of information (through disjointed processes that often
involve multiple forks or decision points), to monitor/audit the progress of
the overall scientific process (including bench processes that are experimental
and non-computational), and to serve as the controller of workflow state in-
formation. It is no surprise that portals have emerged as a dominant source
of application and information delivery. The Gartner Group' has championed
the portal as a mechanism that provides access to and interaction with rel-
evant information, applications, business processes and human resources by

! http://www.gartner. com
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select targeted audiences in a highly personalized manner. According to Gart-
ner, the enterprise portal has become the most desired user interface in Global
2000 enterprises and is ranked as one of the top ten areas of technology fo-
cus by CIOs. Translated to the scientific process, portals provide the tools
to transparently manage the contextual information that is required for the
different workflow classes to interoperate. Some of this information includes
authentication and authorization, data and resource management, and session
notifications.

Linear Stovepipe Feedback-Driven
Process Iterative Process

sTelemicroscopy

=Processing

«Manual Assessment

sAutomated Assessment

. Referancing
«Final Results Knowledge Bases

+Feedback

$89201d odideao]g 1esul] 21BIS

Cyberinfrastructure
Accelerates
Throughput

Figure 8.4: Portals are critical to the workflow landscape as scientific workflows
move from linear stovepipe processes to dynamic feedback-driven processes.

8.4 The Role of Portals as Workflow Controllers

As we move from a hub-and-spoke model to a dynamic “point-to-point” pro-
cess, the role of the portal as workflow controller becomes more important. In
this role, the portal is utilized more for process workflow management, where
more emphasis is placed on the management of state and persistence informa-
tion of the different components and less emphasis is placed on the mechanics
of launching application components. While not traditionally thought of as
“workflow” tools, we have found portals to be critical to applications and
workflow information delivery.
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In the Telescience model, the portal environment is required to curate
all the pertinent information regarding the user and session state that is re-
quired by lower-level workflow classes. While the portal serves as the curator
of user information and state, ATOMIC serves as the delivery vehicle, provid-
ing downstream applications and workflows with access to the appropriate
information necessary for a given process. This abstraction of the session
information is not only necessary to maintain a seamless user environment
during the transition between different workflow classes but also scales to the
needs of future workflow technology developments. Recently, two import-
ant standards have emerged to address the scalable development of session
management across scales: Web Services for Remote Portlets Specification
(WSRP) [484]and Java Specification Request 168 Portlet Specification (JSR
168). Independent of programming languages and platforms, WSRP defines
Web Services Description Language (WSDL) [482] interfaces and semantics
for presentation-oriented Web services. JSR168 meanwhile, defines a stand-
ard Java portlet API, a portlet container, and the contract between the API
and the container. Armed with these standards, portlets have become one of
the most exciting areas for presenting applications and workflows to the end
user, with the number of vendors (and open-source projects) that support
portlets serve as evidence. These include IBM WebSphere, Sun One Portal
Server, Oracle 9iAS, the Jakarta Jetspeed project, and the GridSphere pro-
ject. These two emerging standards have enabled the development of tools
to systematically manage persistent contextual information on behalf of the
user.

Currently the Telescience and BIRN projects are utilizing these standard-
izing portlet framework tools to develop an administrative system to allow
for the rapid creation and deployment of a process management controller
portlet. These controller portlets provide high-level structure to end-to-end
experimental processes, framing the logical steps that may then expand into
multiple layers of successive workflows and tools.

Application-centric portals, such as Telescience and BIRN, take advantage
of not only the portable presentation layers of portlets but also the persistence
and management of logic and state information between portal components
and lower-level workflow tools. It is this vital information that makes a unified,
point-to-point Grid interface possible.

8.5 Interapplication Workflows: Pipeline-Building Tools

A major area of development in workflow technologies has been the devel-
opment of systems (i.e., application pipeline environments) that allow the
management and execution of analysis processes. The utilization of such en-
vironments enables not only the initial analysis of the experimental data but
also the recalculation for verification of the results and the exploration of the
parameter space of the results. Additionally, the use of such environments al-
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Figure 8.5: Screenshot of the laboratory process workflow (highlighted in solid
rectangle). This workflow portlet closely interacts with the data Grid and ap-
plication selection portlets (highlighted in hashed rectangles) and is configur-
able by portal administrators.

lows for the processing of scientific data to be well documented so that studies
may be explored and analyzed further at a later time by interested researchers.
These requirements are found in many scientific communities and have resul-
ted in the development of many such environments across these communities.
Some examples of environments developed in different communities are:

e Neuroscience - LONI Pipeline! is a graphical environment for constructing
analysis pipelines.

e Bioinformatics - Taverna is an environment that merged with the myGrid
Project? and allows the researchers to access collections of bioinformatics
Web services and Grid services hosted by the European Bioinformatics
Institute.

! http://www.loni.ucla.edu/twiki/bin/view/Pipeline/
2 http://www.mygrid.org.uk
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e Ecological and Geological Sciences - Kepler! is a workflow environment
based on the Ptolemy II system for heterogeneous, concurrent modeling
and design.

While it may be impossible to standardize on a single application pipeline
environment due to the requirements of a specific research community or
study, it has become increasingly important to provide an environment in
which users can build and utilize preconstructed application workflows via
a unified portal interface. As communities develop conventions for the pro-
cessing of certain data (e.g. quality assurance measures for functional MRI
data developed within BIRN), it will be important for the process manage-
ment workflow to be able to integrate these components into the overall sci-
entific process, thereby increasing the interoperability of application workflows
across communities and projects.

8.6 Intrapipeline Workflow: Planners and
Execution Engines

Typically, each application (or intra-application pipeline components) can be
broken down to individual module components that no longer require user
intervention. At this level, the component codes are well suited for large-scale
computation. Unlike first-generation Grid codes that were large and mono-
lithic, these component modules are small and dynamic. Also unlike early
codes, which tended to be “pleasantly parallel,” these modern codes are het-
erogeneously parallel, often requiring more than one precursor component to
be completed before computation can begin. With this parallel heterogen-
eity, mixed with resource heterogeneity, sophisticated workflow planning and
execution tools are required to first abstractly plan and then execute the work-
flow. As with the interworkflow pipeline tools, these requirements are found
in many scientific communities and have resulted in the development of many
such environments across these communities. Some examples of environments
developed in different communities include:

e Physics: The GriPhyN virtual data system? provides tools for executing
workflows and for the tracking of provenance of all data derived from the
workflow.

e Astronomy: The Pegasus® (Chapter 23) environment provides a flexible
framework for the mapping of scientific workflows onto Grid-based re-
sources.

e Geology: DataCutter? is a middleware tool for filtering large archival sci-
entific datasets in a Grid environment.

! http://www.kepler-project.org/
2 http://vds.isi.edu

3 http://pegasus.isi.edu

4 http://datacutter.osu.edu
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8.7 Use Cases

The Telescience and BIRN projects provide a framework for the integration
and interoperation of all of these different workflow classes within the context
of an end-to-end scientific process. More than offering yet another one-size
fits all solution, the goal is to introduce a model for interoperability that en-
ables disparate but complementary technologies (process management, inter-
application, and intra-application workflows) to work in synchrony. The hier-
archal organization of workflows tools is not only aimed at processing more
data faster, but to also increase the rate at which native scientific applications
be deployed in order to take advantage of the services from different workflow
tools.

8.8 The Telescience Project

Imagine an environment where available computing cycles are dynamic-
ally gathered for real-time on-demand computing directly from the data-
generating instruments themselves (instead of user-managed monolithic large-
scale, batch-oriented computation). In this unified, on-demand Grid, data are
automatically curated and flow freely from instrument to computation to ana-
lysis. In this model, the results of that analysis interface directly with the
instrument, providing automated feedback that can constantly refine data-
collection parameters and techniques. In this world, the Grid provides more
than just a means for faster results; it provides a foundation for the collection
of higher fidelity raw data. This is the vision of the Telescience Project.

To monitor that point-to-point data flow, the core functionality of the
Telescience portal is the user managed microscopy workflow, where the se-
quence of steps required for planning experiments and acquiring, processing,
visualizing, and extracting useful information from both 3D electron and laser-
scanning light microscopy data is presented to the user in an intuitive, single-
signon Web environment. Beyond facilitating the execution of these steps,
however, the Telescience system audits progress through the workflow and
interfaces each component within the workflow with federated databases to
collect and manage all of the metadata generated across the entire process.

As with all first generation portals, a major accomplishment for Teles-
cience v1.0 (circa 1999-2004) was to create simple Web accessible interfaces
to a heterogeneous set of middleware via a single user name and password.
Telescience v1.0, for example, users could browse the data Grid via a custom
interface or launch jobs via web wrapped middleware commands. These in-
terfaces, however, were designed in autonomy for singular interactions whose
capabilities were developed by mirroring a command line interface to the par-
ticular middleware tools. Due to limitations in the infrastructure, first gener-
ation portals moved from the original purpose of monitoring the process to
also being responsible for the execution of the process.
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The Telescience v2.0 infrastructure is designed to move beyond interfaces
with singular actions and integrate them into a richer user environment; that
is automated and dictated by the process and not by the Grid middleware.
This capability is accomplished with the development of a workflow portlet
that manages and monitors the highest-level scientific process (see Figure 8.5).
Similarly to many scientific processes, the highest-level process remains rel-
atively static to the end user (while the pipeline subcomponents are much
more variable/dynamic). The Telescience workflow portlet, however, is amen-
able to other types of processes (beyond multiscale microscopy) because the
persistence and intraportlet logic is separate from the interface layer. Adapt-
ing the workflow portlet to another scientific discipline is simply a matter of
substituting appropriate headings in the portlet.

Figure 8.6 is a high-level outline of a typical multiclass workflow that is
initiated by the enduser. From the main scientific process workflow controller
portlet, the user launches an external application (in this example, a Telemi-
croscopy control session). Session information (i.e., authentication and data-
management parameters) that is curated by the portal upon login is passed
to the application at runtime via ATOMIC tools and services. Using those
parameters, the application initiates a lower-class workflow, in this example a
Pegasus planned workflow for parallel tomographic volume reconstruction that
is executed by a Condor DAGMAN [97]. Next generation ATOMIC Web/Grid
service-based implementations will also further allow dynamic notifications of
progress at both the level of the external application and the main portal
workflow. All of this takes place in a seamless user environment where the
typical overhead of transitioning between different workflow classes is passed
neither to the end user nor to the application developers. For example, we
anticipate the inclusion of more robust resource and network discovery tools
within Pegasus without modification of current applications.

This requirement will be particularly relevant as more complex, real-world
workflows are enabled. The example in Figure 8.7 illustrates an end-to-end
feedback-driven data-collection scenario that has been requested from the mi-
croscopy community. This requirement clearly amplifies the need for extensive
coordination of different classes of workflow tools, from high-level workflow-
management tools (i.e., portal) to low-level planners (Pegasus). In particular,
this example illustrates the requirement for a coordinated mixture of resource
usage models, including on-demand, traditional batch, and large memory.

8.9 The Biomedical Informatics Research Network
(BIRN)

The Biomedical Informatics Research Network (BIRN) is an infrastructure
project of the National Institutes of Health. A main objective of BIRN is
to foster large-scale collaborations in biomedical science by utilizing the ca-
pabilities of the emerging cyberinfrastructure. Currently, the BIRN involves
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Figure 8.6: Telescience portal. The Telescience portal is a rich user envir-
onment, where generalized session information and persistence logic allow
actions in the scientific-process-driven workflow management portlets to be
reflected in other portlets (i.e., data management portlets). The session in-
formation and logic can also be preserved and further delegated to downstream
workflow controllers and external applications while retaining notifications for
all components.

a consortium of more than 20 universities and 30 research groups participat-
ing in testbed projects centered around brain imaging of human neurological
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1. User logs into Telescience Portal using username and password
2. User GSI proxy credential is created on TeleAuth Server
«  Telescience credentials are accepted by the following organizations:
o TeraGrid (computation)
o  OptlPuter ing and vi
o Telemi py (remote and ive i on)
o  Cell Centered Database/CCDB (federated metadata / data management)
3. User builds/registers new project from Portal (transparently interacting with CCDB)
*  After project registration, metadata is collected, auto-parsed, and deposited into CCDB (at every step), from both within the Portal and external applications
User uses Portal based digital lab to "record" n( ional process parently interacting with CCDB)
User (and possibly remote ) launches i ion control session (Telemicroscopy), user information and credentials are passed
to Telemicroscopy software
a. Preliminary/Preview data is acquired in i I-time (during instrum for a particular region of interest (ROI)
*  Total data size is < 500MB

o

*  Telemicroscopy provisions primarily local resources based on network speed
*  Simple processing workflow plan (DAX) is at i for reconstruction (i.e., TxBR \cite{Lawrence01})
. Preview data is reconstructed (DAX -> DAG) into 3D volume using selected resources
*  Data flows directly from i to {
b.  Preliminary/Preview 3D volume is segmented for visual inspection
*  Telemicroscopy provisions primarily local resources based on network speed

Simple processing workflow (DAX) plan is for and ization (i.e., using ITK and VTK filters — Watershed, Level Set,
etc.)
. 3D volume is segmented and visualized (DAX -> DAG) using local resource
. Data flows directly from previous step to currently selected computational resources
c. Datais visualized by user (and remote ) via Portal vi: ization i
d. Decision is made to continue searching for specimen of interest (preview data possibly collected again), tune instrument parameters, or to acquire full
resolution data from current ROl
e. Fully automated, full resolution data collection is executed
. Collected data is automatically routed to appropriate data grid location and permissions are set accordingly
Users ends Telemicroscopy session
Users launches Portal tools for image pre-processing
*  Total data size is ~10GB
*  Portal provisions resources based primarily on available computational horsepower. Both local and external resources (i.e. TeraGrid) are utilized.
. Pre-processing task(s) are selected by user and processing plan (DAX) is automatically generated by Portal
. Processing plan is converted to DAG and executed
«  Data flows directly from data grid to computational resources
3D volume from full re ion, pre-p! data is computed
*  Total data size is ~50GB
. Portal provisions resources based primarily on available computational horsepower. Both local and external resources (i.e. TeraGrid) are utilized.
.
.
3l
.

No

Desired Tomography algorithm(s) is selected by user and ing plan is (DAX) by Portal
Processing plan is converted to DAG and executed

Data flows directly from data grid to computational resources
D volume is segmented for visualization

Portal provisions resources based primarily on available ional s i selected from both local and external resources (i.e.
TeraGrid)

*  Desired segmentation methods (i i.e., using ITK and VTK filters — Watershed, Level Set, etc.) are selected by user and processing plan(s) is automatically
generated (DAX) by Portal

. Processing plan is converted to DAG and executed

*  Data flows directly from data grid to computation resources

10. Data is visualized by user (and remote via Portal visualizati ications targeted at high-memory resources
«  Data flows directly from data grid to high-memory visualization resources
* Datais i refined and/or

11. CCDB project maintenance is performed

12. Select data is "published" and available for communities at large (i.e. BIRN)

Figure 8.7: End-to-end feedback-driven data-collection scenario.

disease and associated animal models. The promise of the BIRN is the ability
to test new hypotheses through the analysis of larger patient populations and
unique multiresolution views of animal models through data sharing and the
integration of site independent resources for collaborative data refinement.
In order to support the collaborative nature of scientific workflows from
BIRN, a critical component is the collaborative project management portlet
that allows for the creation of multiple independent projects, each able to have
its own process management workflow (workflow controller portlets) managing
the project’s experimental process. The first step in the experimental process
(a typical use case is portrayed in Figure 8.8) is the collection of the primary
research data. Within the BIRN testbeds, these data are collected and stored
at distributed sites where researchers maintain local control over their own
data. Once the imaging data has been stored within the BIRN data Grid,
authorized users from any collaborating site must be able to process, refine,
analyze, and visualize the data. In order to satisfy these requirements, BIRN
researchers are utilizing multiple interapplication pipeline environments such
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Figure 8.8: Use case scenario for a collaborative experiment within the BIRN
cyberinfrastructure. The use case follows the data flow all the way from data
collection, to the BIRN data Grid, through interactive processing stages,
which is then followed by a query through the data integration layer.

as Kepler and the LONI pipeline. BIRN users are currently able to trans-
parently access and process data through the BIRN portal, a workflow and
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application integration environment where applications can interact with the
BIRN data Grid allowing researchers to visualize and perform analysis on data
stored anywhere within the BIRN data Grid. However, an important object-
ive of the BIRN initiative is to provide the researcher with seamless access to
the computational power required to perform large-scale analyses through the
use of complex interactive workflows. The sequence of steps within a typical
analysis pathway can consist of multiple workflows (e.g., there might be separ-
ate application pipelines for the data pre-processing and post-processing) and
interactive procedures (e.g., manual verification of the data pre-processing).
This complex interactive workflow may be required to utilize distributed com-
puting resources (e.g., to expedite the processing of multiple data sets) while
also allowing the researcher to perform any interactive procedures that are re-
quired. However, the translation of these workflows from current application
pipeline environments to workflows that are able to take advantage of distrib-
uted resources is not always straightforward. The current portal environment
allows for the management and execution of individual application pipelines
that utilize their own execution models. For example, workflows developed in
the LONI pipeline or Kepler environment will execute on a specified server
or cluster environment, however, they are not able to take full advantage of
a distributed and heterogeneous pool of resources. In order to fully enable
these application pipelines to access distributed Grid resources, the workflows
defined by these pipeline environments are being extended to facilitate inter-
operability with intra-application workflow planners. As data are processed,
intermediary data and ultimately the final results are stored back in the BIRN
data Grid along with metadata describing the full history (provenance) of the
data files. Much of the metadata information, along with results from statis-
tical analyses, are stored in databases being deployed at all testbed sites.

Similarly to the Telescience use case, BIRN researchers require the co-
ordination and interoperability of workflow tools of many classes. In addition,
due to the increased interactivity requirements of their research, many pipelin-
ing/workflow tools have already been developed. BIRN must therefore, also
ensure that all the pipeline tools interoperate with each other as well as the
different classes of workflow tools. The portal (and ATOMIC) play a critical
role in the interoperability of pipelining tools by ensuring that the contextual
information is compatible and deliverable to each unique pipeline tool. Simi-
larly to the Telescience case, these pipeline/workflow applications are capable
of launching large-scale analyses via workflow planner and execution engines.
As the BIRN cyberinfrastructure matures, the application integration and
workflow environment interoperation must also be enhanced and extended so
that researchers are able to more efficiently perform large-scale analyses of
their data.



8 Workflow Technologies in the Telescience Project 125

8.10 Discussion

If we define an end-to-end scientific workflow to encompass all the steps that
take place between data or information acquisition and the final discoveries
that take place as a result of the initial data acquisition, it is clear that no
single workflow tool or system is adequate to address this need. It can only
be addressed through the integration of several different interoperable tools.

The Telescience and BIRN projects demonstrate this integration (and in-
teraction) of components from different perspectives of the entire end-to-end
workflow spectrum. Telescience-based workflows require minimal user inter-
activity and control but require the coordination of many heterogeneous com-
putational and data resources across several VOs. The majority of the BIRN-
based workflow tools, however, are highly interactive but are launched across
a more enclosed set of physical resources. In both cases, the portals are critical
to the presentation of a unified workflow management environment.

More important than integration of different workflow tools, however, is
the development of systems that will maintain interoperability of state and
process information between the different workflow classes. Future develop-
ment will move beyond simple integration to the development of tools to
maintain that interoperability in a generalized manner. This is critical as new
workflow tools continue to emerge. Within this vision, the portal will continue
to serve as the unifying fabric where these integrated workflow technologies
will be organized and made to interoperate with the various high-level inter-
action tools for experimental /bench processes (including database and digital
lab notebooks) and also with interactive visualization and/or analysis tools
for user intervention at decision points.
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Dynamic, Adaptive Workflows for
Mesoscale Meteorology

Dennis Gannon, Beth Plale, Suresh Marru, Gopi Kandaswamy,
Yogesh Simmhan, and Satoshi Shirasuna

9.1 Introduction

The Linked Environments for Atmospheric Discovery (LEAD) [122] is a Na-
tional Science Foundation funded! project to change the paradigm for meso-
scale weather prediction from one of static, fixed-schedule computational fore-
casts to one that is adaptive and driven by weather events. It is a collaboration
of eight institutions,? led by Kelvin Droegemeier of the University of Ok-
lahoma, with the goal of enabling far more accurate and timely predictions of
tornadoes and hurricanes than previously considered possible. The traditional
approach to weather prediction is a four-phase activity. In the first phase, data
from sensors are collected. The sensors include ground instruments such as
humidity and temperature detectors, and lightning strike detectors and atmo-
spheric measurements taken from balloons, commercial aircraft, radars, and
satellites. The second phase is data assimilation, in which the gathered data
are merged together into a set of consistent initial and boundary conditions
for a large simulation. The third phase is the weather prediction, which ap-
plies numerical equations to measured conditions in order to project future
weather conditions. The final phase is the generation of visual images of the
processed data products that are analyzed to make predictions. Each phase
of activity is performed by one or more application components.

The entire linear processing of these four phases is done at fixed time
intervals, which are not necessarily connected to what is happening with the

! LEAD is funded by the National Science Foundation under the following Cooper-
ative Agreements: ATM-0331594 (Oklahoma), ATM-0331591 (Colorado State),
ATM-0331574 (Millersville), ATM-0331480 (Indiana), ATM0331579 (Alabama in
Huntsville), ATM03-31586 (Howard), ATM-0331587 (UCAR), and ATM-0331578
(Illinois at Urbana-Champaign).

2 University of Oklahoma, Indiana University, University of Illinois at Urbana-
Champaign, University Corporation for Atmospheric Research (UCAR), Univer-
sity of Alabama in Huntsville, University of North Carolina, Howard University,
and Colorado State University.
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weather. The orchestration of the four phases of the process is done with large,
complex scripts that are nearly impossible to maintain and enhance, except
by very few experts or the original authors.

The LEAD vision is to introduce adaptivity into every aspect of this pro-
cess. In fact, there are four different dimensions to adaptivity that are import-
ant to LEAD:

e Adaptivity in the way the simulation computation uses a multilevel coarse-
to-fine forecasting mesh (to improve resolution)

e Adaptivity in the way the instruments gather data based on the needs of
the simulation

e Adaptivity in the way the entire assimilation and simulation workflow
uses computational resources to its advantage

e Adaptivity in the way the individual scientist can interact with the pre-
diction workflow

To understand these concepts as they relate to the LEAD mission, we
discuss them briefly below, and then in later sections of this chapter, we
describe how these goals impact the workflow system.

Adaptivity in the Computation

In the simulation phase of the prediction cycle, it is essential to introduce ad-
aptivity in the spatial resolution to improve the accuracy of the result. This
involves introducing finer computational meshes in areas where the weather
looks more interesting. These may be run as secondary computations that
are triggered by interesting activities detected in geographic subdomains of
the original simulation. Or they may be part of the same simulation process
execution if it has been reengineered to use automatic adaptive mesh refine-
ment. In any case, it is essential that the fine meshes track the evolution of
the predicted and actual weather in time. The location and extent of a fine
mesh should evolve and move across the simulated landscape in the same way
the real weather is constantly moving.

The Adaptive Data Collection

If we attempt to increase the resolution of a computational mesh in a local
region, it is also likely that we will need more resolution in the data gathered
in that region. Fortunately, the next generation of radars will be lightweight
and remotely steerable [121]. That means it will be possible to have a control
service that a workflow can use to retask the instruments to gain finer resolu-
tion in a specific area of interest. In other words, the simulation will have the
ability to close the loop with the instruments that defined its driving data.
If more resolution in an area of interest is needed, then more data can be
automatically collected to make the fine mesh computationally meaningful.
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Resource Adaptivity

There are two important features of these storm prediction computations that
must be understood. First, the prediction must occur before the storm hap-
pens. This better-than-real-time constraint means that very large computa-
tional resources must be allocated as predicated by severe weather. If addi-
tional computation is needed to resolve potential areas of storm activity, then
even more computation power must be allocated. Second, the computations
in these predictions often require ensembles of simulation runs that perform
identical tasks but start from slightly different initial conditions. As the simu-
lations evolve, the computations that fail to track the evolving weather can be
eliminated, freeing up computational resources. These resources in turn may
then be used by a simulation instance that needs more power. An evaluation
thread must be examining the results from each computation and performing
the ensemble analysis needed to gather a prediction. In all cases, the entire
collection of available resources must be carefully brokered and adaptively
managed to make the predictions work.

The Experiment: Adapting to Scientific Inquiry

The final point at which LEAD attempts to depart from tradition and to
change the paradigm of meteorology research is the way the project intends
to allow the research scientists and students to interact with the components
of the system. The philosophy of LEAD is to allow users to access weather
data and to launch workflows through a portal. From the portal, the user can
select data and then instantiate a workflow from a precomposed library of
workflows to analyze the data, or the user may create new workflows on the
fly by composing existing analysis and simulation components. The LEAD
workflow system needs to be completely integrated into a framework for con-
ducting scientific experiments. The experiments should be repeatable, and
consequently every step that a workflow takes must be recorded and all in-
termediate data must be saved. A scientist should also be able to interact
directly with the workflow, allowing the execution path to be interrupted and
sent in a new direction.

To completely understand LEAD as a platform for research, it is essential
to understand the LEAD data architecture, so we devote the next section
of this chapter to an overview of that topic. In the sections that follow, we
will describe the requirements that this litany of data and adaptability re-
quirements places on the LEAD workflow system. This will be followed by a
discussion of the current approach to meeting these requirements and finally
an analysis of challenges that lie ahead.

9.2 The LEAD Data and Service Architecture

Every aspect of the LEAD project is dominated by data: capturing it, storing
it, moving it, cataloging it, transforming it, and visualizing it.
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The data products used in LEAD experiments arrive from a variety
of sources (Figure 9.1). These include surface observations of temperat-
ure, wind, and precipitation from Meteorological Aviation Weather Reports
(METAR); upper air soundings data on temperature, pressure, and humid-
ity from balloon-borne instruments; Doppler data from NEXt generation
RADars (NEXRAD); image data from Geostationary Operational Environ-
mental Satellites (GOES); and North American Meso (NAM) forecast model
data from the National Center for Environmental Prediction (NCEP). These
data products are cataloged and stored in servers based on Thematic Real-
time Environmental Distributed Data Services (THREDDS) [108] and can be
accessed using the OPeNDAP and Common Data Model (CDM) protocols.
The local THREDDS catalog at each site provides the basic metadata about
products that reside at that site. If a user knows what to look for, there are
tools to locate a site and download a specific data set.

NCEP NAM Weamher Forecast
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"> GOES Satelite Image b P =
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NEXRAD Radar Data

3
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Figure 9.1: Collection and management of observational data in LEAD.

The philosophy of LEAD is to provide the ability for users to discover data
based on queries about their content rather than name and location. This is
analogous to being able to use a search engine to find information rather than
having to know all possible URLs and filenames of the files that contain what
you seek. Where it differs from a Web search engine is that LEAD queries are
based on metadata that conform to a metadata schema specifically designed
for LEAD. Hence queries do not return unrelated hits.

To start the search for data, the user interfaces with the LEAD portal. The
portal contains several tools, including the Geo Reference Interface (GeoGUI),
which allows the user to select a rectangular region of the map, a date range,
and other attributes of the data. This forms the user query, which is sent to
the Query service. Another Web service, called the Resource Catalog [385],
keeps track of many important LEAD resources. Among others, it contains
an index of the contents of all the THREDDS catalogs it knows about. This
index is built by crawling the THREDDS catalogs and capturing metadata
in the same way a Web search engine crawler indexes Web page content. A
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third service that is important to the LEAD data architecture is the Noesis
Ontology service. The Query service uses the Ontology service to map the
terms in a query to those that conform to the LEAD schema vocabulary and
uses this to interrogate the Resource Catalog for the sought-after data.

The LEAD architecture dictates that every data object selected upon
searching shall be saved on the LEAD Grid for the users’ future use. A unique
ID is created for the data objects and they are archived for future use. Sub-
sequently, a name resolver service is used to materialize the data when reques-
ted. LEAD is built on the basis of service oriented architecture (SOA) based
on Web services. It is organized into three layers. At the bottom level are
fundamental services that provide access capability to Grid resources. These
include the Grid Resource Allocation Manager (GRAM) and the GridF TP file
transfer service provided by Globus [144], security services for authentication
and authorization, and data location and access services such as the Data
Replication Service (DRS) and Open Grid Service Architecture’s Data Access
and Integration service (OGSA-DAI) [233].

The middle tier of services provide data and metadata management for
users, notification services, and workflow execution and monitoring capability.
The myLEAD [359] service is a flexible, personalized data-management tool
that is used to record metadata about data products generated and used dur-
ing scientific investigations and education activities. MyLEAD helps tie mul-
tiple components of the SOA together. As a user runs an experiment, resulting
generated data are stored on the LEAD Grid and cataloged by myLEAD in the
user’s space. Notification messages generated during the course of workflow
execution are captured as metadata and stored as provenance for the experi-
mental run. The notification system is based on WS-Eventing [62] and allows
mediation between WS-Notification (used by Globus) and the WS-Eventing
standard.

At the top level of the SOA stack are the application services that form the
building blocks for the scientific investigation and wrap scientific tasks such as
FORTRAN executables. These Web services are composed into workflows for
execution. LEAD workflows and application services are described in greater
detail in the following section.

9.3 LEAD Workflow

Workflows in LEAD model the scientific experiment being simulated by the
meteorologist. The workflow framework used to compose and execute these
experiments needs to support adaptive computation, instrument control, dy-
namic resource provisioning, and user intervention in order to meet the re-
quirements described in Section 9.1. These properties are explored in greater
detail below:

e Workflows are driven by external events. For example, an event from a
data-mining agent monitoring a collection of instruments for significant
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patterns must be able to trigger a storm prediction. When such a pattern
is detected, the miner may send a signal to a specific workflow associated
with the particular storm configuration. This should instantiate the ne-
cessary workflow or redirect a running workflow to adapt to the changing
conditions. External events may also be triggered by changes in resource
availability that may significantly alter the number of possible computa-
tions in an ensemble run or change the degree to which adaptive refinement
may take place.

e Workflows may be long-running. While tornadoes come and go in a mat-
ter of hours, hurricanes are tracked over a period of days. A researcher
may preemptively launch an experimental workflow to be triggered by an
external condition that may take weeks to occur. Therefore, the execution
engine for the workflow must be robust and capable of storing the work-
flow state in persistent storage for long periods of time, and activating it
in a timely manner upon the occurrence of the event.

e Workflows should exhibit fault tolerance. In addition to handling event
streams, the workflow system should also deal with exceptions that may
occur during the workflow execution. Application services in LEAD work-
flows run FORTRAN programs, which may fail due to, for example, a
parameter misconfiguration. In such a case, there should be a proviso to
approximate the incorrect parameter or, if possible, identify an alternate
application that can execute with the specified configuration and continue
with the workflow execution.

e Workflows should be recoverable. Related to exception handling is the
ability of the workflow to adaptively recover from a fatal error or a drastic
change in requirements. This may mean rolling back to a previous state
in the workflow. This capability would also enable users to interact with a
running workflow and to dynamically fork a new execution path starting
from an intermediate state of the workflow.

e Workflows must be user-friendly. The workflow templates must be com-
posable by the scientist so that they may be easily instantiated by mem-
bers of the research and educational community having different levels of
expertise.

As part of a LEAD experiment, users build a workflow through the XBaya
graphical composer [382], which represents application interactions as a flow
diagram as shown in Figure 9.2. Each node in this flow graph is an application
service that accepts certain data products and configuration files as paramet-
ers and generates output data products that may potentially be used as input
by other services in the workflow. Edges connecting nodes in the workflow
graph represent the flow of the output data of one service to the input of
another, forming a virtual data-flow graph. The application service is capable
of fetching the input data products using the unique ID assigned to them
by the data services. When an application is launched by its corresponding
application service, the service monitors the execution of the application and
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publishes a notification on its status to an event channel. This event stream
is subscribed by myLEAD and other monitoring tools, such as the XBaya
composer (which doubles as a workflow monitor) and the Karma provenance
service [384]. Users can follow the progress of the workflow by watching the
arriving notifications. When the application completes its task, the output
data products it produces are registered with the data services by the con-
trolling application services and logged in the user’s myLEAD space. The
unique ID assigned to the data is passed as input to other services connec-
ted to the completed service. Since each data product is saved and cataloged
within myLEAD), a workflow can be reexecuted starting at any step in its ex-
ecution trace. LEAD users also have the option of using Kepler (see Chapter
8) as the composition tool. Plug-ins developed for Kepler [344] allow compos-
ition of workflows from LEAD application services, and this is suitable for
orchestrating short workflows through Kepler’s graphical interface.
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Figure 9.2: A basic simulation workflow showing event output.

Figure 9.2 shows an example workflow that has been executed using the
LEAD system. It simulated the devastating hurricane Katrina that occurred
in the United States in the summer of 2005. The final output products of the
simulation include the visualizations shown in Figure 9.3
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Figure 9.3: On the left is a Katrina simulation of the sea level as the storm
approaches. On the right is a 3-D view of simulation data using the Unidata
Integrated Data Visualizer (IDV) [306].

9.3.1 Wrapping Tasks as Application Services

The complex weather forecasting applications used in LEAD are first wrapped
as Web services. Wrapping an application as a Web service refers to the pro-
cess of creating a web service interface to invoke and manage an application.
This service layer is referred to as an application service. All clients and end
users interact with the application through its application service. When an
application service is invoked with a set of input parameters, it launches the
underlying application with those parameters and returns the output results
as part of the service invocation response. The use of application services al-
lows LEAD scientists to leverage the benefits of an SOA and easily compose,
monitor, and run complex weather forecasting workflows from the convenience
of the LEAD portal [156]. Although writing an application service wrapper
for a given application is not difficult for a Web services specialist, it forms
a high barrier of entry for most scientists. The Generic Service Toolkit [232]
makes this task much easier by allowing scientists to provide a high-level
description of the application from the LEAD portal and by automatically
generating a service for it. This description is in the form of an XML doc-
ument called the ServiceMap document and includes the input and output
parameters of the application, the security restrictions for accessing the ap-
plication, and the soft-state lifetime-management policies of the application
service. The Generic Service Toolkit automatically maps these specifications
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to elements within a Web Services Description Language (WSDL) document
that it creates for the application service. The Abstract WSDL or AWSDL
(abstract because the WSDL does not refer to a service instance yet) and the
ServiceMap document form a template for creating a service instance and are
registered with the Resource Catalog in support of subsequent instantiations.

Once the AWSDLs for all application services required for a workflow
are available with the Resource Catalog, scientists can proceed to compose
the weather forecasting workflows from the portal using the graphical XBaya
workflow composer. It should be noted that to compose workflows from ap-
plication services, running instances of the services are not required and the
service templates suffice. However, to execute a workflow, all the application
services in the workflow need to be running and accessible by the workflow
engine that executes the workflow.

9.3.2 Sample LEAD Workflow

A typical ensemble weather forecasting workflow used within LEAD is shown
in Figure 9.4 and illustrates the complexity and dynamic nature of such work-
flows. There are four logical stages to the workflow when seen from a meteoro-
logical perspective: preprocessing of static and terrain files for the geographical
region, analysis and mining of current observational weather data, running the
forecast model, and visualizing the prediction. These four stages and the 15
services involved in the ensemble workflow are discussed below.
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Figure 9.4: A Typical LEAD workflow.

e Preprocessing. Service 1, the terrain preprocessor, stage extracts static
terrain data and service 2, the static preprocessor, extracts the surface
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data, such as soil and vegetation type, within the forecast prediction re-
gion and pre-processes them into a format compatible with the Advanced
Regional Prediction System (ARPS) [486].

e Analysis. Static data from preprocessing are interpolated with current
NAM forecast model data into a 3D grid for the prediction region is done
by service 3, the 3D model interpolator. Dynamic observational data from
radars are processed by services 4 and 5, the Level II and Level ITI Radar
data remappers and for satellites by service 6, the satellite data remapper.
All these data products are assimilated into the ARPS Data Analysis
System, or ADAS in service 7. ADAS performs a 3D gridded analysis
of the current atmosphere by combining the observed information from
radars, wind profilers, satellites, surface observation networks, and aircraft
with a background field created by the 3D model data interpolator. This
analysis is performed hourly and examined by a data miner looking for
storm signatures in service 8, the Algorithm Development and Mining,
or ADAM. When a storm is detected in a certain region, it triggers the
subsequent ensemble forecast with pertinent configuration information.

e Forecast. The output from the data-mining tool is used in service 10, the
ARPS Ensemble Generator, to build the configuration required for the en-
semble forecast run. Static terrain data, the ADAS analysis output, and
the configuration information are ingested and transformed by service 11,
the ARPS to WRF interpolator, into the Weather Research and Forecast-
ing (WRF) model input files. The 3D model data interpolation takes place
once again in service 9, the 3D model interpolator, with current weather
data and lateral boundary conditions. All of these are used to launch mul-
tiple simultaneous runs of service 12,the WRF forecast model, each tuned
with slightly different physics to increase the forecast accuracy. The num-
ber of parallel ensemble runs can range in the hundreds. The WRF runs
perform storm, mesoscale, and synoptic weather prediction that can be
used to study convection, baroclinic waves, boundary layer turbulence,
and real-time weather phenomena.

e Visualization. Visualization and postprocessing tools require that the
WRF forecast output to be converted back into the ARPS data format.
this is done by service 13, the WRF to ARPS Interpolator. The output
is used in service 14, ARPS plot, to automatically generate contour and
vector plots of 2D cross sections and vertical profiles. Users can also inter-
actively view the output in 3D using the Integrated Data Viewer (IDV)
client tool. An IDV bundle of all relevant data from the forecast is created
for this purpose by service 15, IDV bundle generator.

Once composed within the XBaya workflow composer, this flow diagram
can be translated into a Business Process Execution Language (BPEL) [24]
document, which is executed by a BPEL engine. The composer can also com-
pile the same graphical workflow into a Jython script that can be run as a
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stand-alone workflow script. As mentioned earlier, the workflows can also be
composed and executed by Kepler.

9.3.3 Configuring Workflow and Application Service Parameters

Large meteorological applications have large and complex parameter sets that
are encoded as FORTRAN namelist input files. Services such as ADAS and
WRF may have several hundred parameters, only a few of which users may
wish to modify frequently. Depending on the user’s expertise and require-
ments, a different subset of parameters may need to be modified. To efficiently
support changes to a subset of parameters, default values are assigned to the
parameters of an application service. When invoking the service, a document
containing only the changes relative to the defaults is sent as the parameter.

LEAD users have been divided into four categories based on their domain
skill level and the flexibility they require in reconfiguring the research applic-
ations. Category I users are modelers and application scientists who primarily
conduct research on improving a model’s capability. These users intend to
change the application source code and run their modified applications in the
LEAD environment. Category II users are atmospheric scientists, graduate
students, and operational weather forecasting personnel, who will compose
and launch workflows from available applications services. These users will
experiment with different sets of input conditions for workflows. Category 111
users are primarily educational users who will perform simulations to under-
stand and learn atmospheric phenomena and will run pre-composed workflows
with minimal if any changes in their input configuration. Category IV users
are casual browsers who will only browse through and visualize completed
workflow results.

The majority of the LEAD users and much of the general atmospheric
community are Category II users who rarely change the application source
code and are content to run the executables in different modes by changing
the configuration parameters in the FORTRAN namelist files. These changes
in parameters force changes in input observational data and resource require-
ments at run time.

The namelist parameters in LEAD applications can be classified into five
sets:

e The first set of parameters is a mandatory set of user-provided parameters
that are present in most input files of meteorological services. Examples
of such parameters include forecast domain size, its location, and the res-
olution of the forecasting grid, among others. These parameters play an
important role in determining the resource requirements for the workflow
execution.

e The second set of parameters is an optional set of user-supplied para-
meters, most of which are service-specific configurations. Default values
of these parameters are provided by the application developers, and users
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may view and modify them. A model’s physics is an example of these para-
meters. The number of optional parameters presented to the user varies
with each category of users. Advanced users familiar with the application
are presented with a broad range of parameters, while novice users have
a minimal set of parameters to modify.

e The third set of parameters relates to file handling. FORTRAN applica-
tions read in input data filenames and locations from namelist files, and
the applications can only read files locally available in the compute ma-
chine. After the required input data files for a service are staged on the
compute servers, these input parameters are modified to reflect the data
file locations and names.

e The fourth set of parameters are used to assist with resource scheduling.
An MPI-enabled application, for example, may indicate the processor dis-
tribution in the X and Y directions of the forecasting grid to make the
computations optimally faster. These parameters are configured after the
user has selected the forecast domain and the workflow has been allocated
resources it can use.

e The final set of parameters are those that are always defaulted but non-
etheless need to be supplied to the application.

The various sets of parameters present certain challenges to the LEAD
workflow system. First, the user-editable and cross-cutting parameters have
to be extracted from the workflow dependency graph after the user creates or
modifies a workflow. Care has to be taken to keep the cross-cutting parameters
consistent; otherwise the workflow may produce incorrect results or not run
at all. Second, each user category has to be presented with a different set
of modifiable parameters. User interfaces have to be dynamically generated
based on user category and the workflow graph. Third, these parameters have
to be modified at multiple stages of workflow creation and execution, and
propagate through to the different layers of the SOA. Finally, given the rapid
evolution of different versions of an application, the parameter schema has to
adapt to the changing application parameter set.

When a service provider defines an application service, in addition to the
ServiceMap document, they need to register a set of defaulted namelist files
for each user category that is stored in the Resource Catalog. As we shall
see in the next section, the Experiment Builder portlet in the LEAD portal
provides a rich interface for different categories of users to easily specify the
input parameters and data required to run the workflow.

9.3.4 Executing LEAD Workflows

There are several steps that take place before a composed workflow can be
executed by the workflow engine: The parameters for the application ser-
vices need to be configured, the resources required by the services need to
be provisioned, and the services themselves need to be instantiated if needed.
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When a user selects a workflow to launch, the Workflow Configuration Service
(WCS) extracts the cross-cutting parameter dependencies by contacting an
Input Parameter Library and identifies user-modifiable input parameters by
analyzing the workflow dependency graph. WCS then downloads the template
namelist files relevant to the user category from the Resource Catalog, assim-
ilates input-parameters that need to be configured by the user, and presents
the parameters through a portlet interface generated dynamically. Once the
user has modified and verified the parameters of the workflow, the updated
template parameter files are merged into a single input parameter file for each
application service and are stored in the user’s myLEAD space for that work-
flow (experiment). These parameters form metadata in myLEAD that can be
used to search for experiments.

After the input parameters and data are specified, the resource require-
ments for the applications in the workflow have to be determined. The need for
“faster than real time” prediction by the workflow challenges the responsive-
ness of resource allocation to the dynamic behavior of Grid resources during
the workflow’s life cycle. As seen earlier, an ensemble workflow can have any-
where from a few to hundreds of services being simultaneously invoked as
it progresses. Unique constraints such as large data transfers, real-time data
streams, huge computational demands, strict deadlines for workflow comple-
tion, the need to steer external radars to collect new data, and responsiveness
to weather phenomena drive the need for an adaptive Resource Provision-
ing Service (RPS) that can coordinate across different types of resources to
meet soft real-time guarantees. The service needs to dynamically analyze the
behavior of applications and workflows to predict resource requirements and
track the availability of computational, network, and data resources on the
Grid to schedule resource coallocations. Performance and reliability metrics
may be used to establish a simple performance contract for a workflow and
enable on-demand execution and guaranteed completion of workflows within
a specified time range.

Currently, resources are statically allocated “by hand” within LEAD. We
are developing a dynamic resource allocation and scheduling strategy as illus-
trated in Figure 9.5. In step 1, the Experiment Builder portlet in the LEAD
portal provides the WCS with the selected workflow, its parameters (previ-
ously configured and saved in the myLEAD space), and the location of input
data products. Next, the WCS contacts an Application Performance Modeling
service to obtain a performance model for each application in the workflow
(step 2). The WCS then determines the resource requirements for each applic-
ation based on the input configurations and data sets provided by the user.
Once the application resource requirements are established, the WCS requests
that the RPS allocate the required resources (step 3). Based on the resource
requirements and availability, RPS reserves resources for each application in
the workflow. Running application instances register their Concrete WSDL
(CWSDL) with the Resource Catalog, and the WCS can determine if applic-
ation services required by the workflow are already created (step 4). If so, the
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WCS reconfigures them to use the new set of resources reserved for them by
RPS. This is done by updating the resource requirement namelist parameters
for that application. If the required application services were not available,
WCS requests the generic application factory, or GFac (discussed in Section
9.3.5), to create an instance of the application service (step 5). GFac instanti-
ates and returns the CWSDL for the newly created application service to the
WCS, which then configures the service (step 6). After the necessary applica-
tion service instances for the workflow have been selected and configured, the
WCS returns their CWSDLs to the Experiment Builder portlet (step 7). The
portlet uses the CWSDLs, the application namelist parameters, and the in-
put data products to request that the Workflow Engine execute the workflow
(step 8).

Warkflow, AWSDLs, . o Application 1D [
LEAD Portal Input Hamelist File
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Figure 9.5: The architecture of workflow scheduling and execution.

9.3.5 Creating Application Services On-Demand

When an application service is invoked with a set of input parameters, it in-
vokes the underlying application with those input parameters and returns the
output results. By wrapping applications as application services, scientists can
easily compose, monitor, and run complex workflows consisting of scientific
applications. However, these workflows require their constituent application
services to be available at the time of workflow execution. At the same time,
in large scientific communities such as LEAD, it is unrealistic to keep a large
number of persistent application services that entail a significant commitment
of resources and support infrastructure. However, it is possible to support a
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small number of persistent generic application factory services (GFacs) [232]
that can can create instances of any application service on-demand (just in
time) during a workflow execution in a way that is completely transparent to
the users. This provides highly available application services without actually
requiring them to be persistent. Before GFac creates an application service
instance on a host, it first starts a generic service instance on that host by
calling a generic service binary that is preinstalled on that host. The installa-
tion of the generic service binary is a one-time process executed on potential
application service hosts. GFac then provides the generic service instance with
the ServiceMap configuration document for the application service retrieved
from the Resource Catalog. Using service ports defined in the ServiceMap doc-
ument, the generic service instance configures itself to become the application
service. The generic service instance (now application service) then generates
its CWSDL and registers it with the Resource Catalog. Figure 9.6 illustrates
the process above. In step 1, the WCS sends a message to GFac containing
the fully qualified name of the application service. In step 2, GFac gets the
ServiceMap document for the application service from the Resource Catalog.
In step 3, GFac creates a generic service instance on the remote host using
Globus GRAM [102]. In step 4, the generic service instance configures itself
using the ServiceMap document to become the application service instance,
generates its CWSDL, and registers it with the Resource Catalog. In step 5,
GFac obtains the application service instance’s CWSDL from the Resource
Catalog, and returns it to WCS in step 6. In step 7, the workflow engine
uses the CWSDL passed to it by the WCS to invoke the application service
instance directly.
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rkflow . Generic Application —{ R
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Figure 9.6: Interaction with the factory service.

The application services created by GFac can be reconfigured at runtime
(i.e., during a workflow execution). This is done through the configure opera-
tion, which accepts a Web service call with details of the resources on which
the application service should run its application. The details are provided as
an XML document called a Resource Specification Document (RSD), which
contains information such as
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the host on which to run the application,

the end point reference to the job scheduler,

the batch queue for running the application,

the number of processes to start,

a list of the nodes on this cluster for running the application,
the number of processors per node for running the application,
the maximum wall clock time for running the application,

the maximum CPU time for running the application, and

the maximum memory in kilobytes allowed per process.

Once an application service instance receives an RSD, it reconfigures itself ac-
cordingly and returns a new CWSDL to the client that contains the Resource
Specification that the application service will use to run its application. The
client can then use the new WSDL to invoke the run operation on the ap-
plication service instance that invokes the application and return the results
to the client. It is important to note that the application service supports
multiple simultaneous configurations, and different clients can configure the
same application service instance differently. Each client will receive a dif-
ferent CWSDL that it can use to run the application according to its own
Resource Specification. This allows the same application service instance to
be used simultaneously not only indifferent workflows with varying resource
requirements but also within a dynamic workflow with constantly changing
resource requirements.

9.4 Conclusions

Workflows in the LEAD project have several characteristics that set them
apart from many other e-Science workflow problems. First, they are driven
by natural events such as severe storms. Second, because storms such as tor-
nadoes and hurricanes are so destructive, it is essential that the forecasts
that are the output of the workflows be extremely accurate and that they be
produced prior to the storm’s impact on human life and property. Finally,
LEAD must have workflows that are extremely adaptive. Resource demands
can change as the storm changes. There is also a natural feedback that takes
place between the workflow services and the instruments that gather data: As
a simulation becomes more specific about the nature of an emerging storm,
future generations of radars can be automatically targeted to gather more
detailed data for the simulation to use to increase prediction accuracy.
LEAD also shares many characteristics with other large-scale e-Science
workflow systems. LEAD is based on a service-oriented architecture that is
becoming a standard model in e-Science. Yet, LEAD workflows are still com-
posed of community FORTRAN applications that must run in parallel on su-
percomputers. These applications have enormously complex parameters and
large numbers of input files that are difficult to manage. Consequently, simple
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data-flow concepts can only be applied at a very high level of abstraction,
and the underlying workflow system must manage a great deal of complexity
involving resource allocation, application configuration, and parameter man-
agement. Security is also a critical component of every project that deals with
expensive resources organized into a Grid. LEAD has adopted Grid standards
to solve this problem. Finally, like any other modern science, LEAD is very
data-intensive. Every aspect of the workflow generates data products that
must be cataloged with the LEAD data subsystem. Metadata must be cre-
ated and made searchable; data provenance must be tracked and cataloged;
and quality input and derived data should be maintained. This chapter has
not addressed these issues, but several other papers consider these problems in
greater depth [122,123,200,360]. While the LEAD project is only in its third
year, the team has learned a great deal. Many ideas that seemed practical in
theory failed in practice and had to be replaced by more robust models.
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10.1 Introduction to SCEC CyberShake Workflows

The Southern California Earthquake Center (SCEC) is a community of more
than 400 scientists from over 54 research organizations that conducts geophys-
ical research in order to develop a physics-based understanding of earthquake
processes and to reduce the hazard from earthquakes in the Southern Califor-
nia region [377].

SCEC researchers are integrating physics-based models into a scientific
framework for seismic hazard analysis and risk management. This research
requires both structural geological models, such as fault models and three-
dimensional Earth density models, and a variety of earthquake simulation
programs, such as earthquake wave-propagation simulation codes and dy-
namic fault-rupture simulation applications. The goal of this model-oriented
approach to earthquake science is to transform seismology into a predictive
science with forecasting capabilities similar to those of climate modeling and
weather forecasting.

SCEC research has several common characteristics. The science is
collaborative—a wide variety of organizations and disciplines work together.
The science is integrative—techniques and approaches from different discip-
lines are combined in new ways. The science is physics-based—the scientists
are continuously trying to incorporate more physics into their models and to
ensure that their simulations are consistent with physical laws. The science is
model-driven—theoretical results are incorporated into predictive computa-
tional models. The science is validated—predictive model results are compared
with observation and with each other for validation.

The output data for many SCEC earthquake simulations are predicted
ground motions for a specific earthquake. For example, a researcher can model
a “scenario” earthquake on the San Andreas Fault and predict the ground
motions that will be produced in Los Angeles if that earthquake actually
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occurs. While ground motion predictions for a particular earthquake are of
significant interest, they are not a solid basis for understanding the earthquake
hazards in an area.

To characterize the earthquake hazards in a region, seismologists and
engineers utilize a technique called Probabilistic Seismic Hazard Analysis
(PSHA). PSHA attempts to quantify the peak ground motions from all pos-
sible earthquakes that might affect a particular site and to establish the prob-
abilities that the site will experience a given ground motion level over a par-
ticular time frame. An example of a PSHA hazard curve at a specific site in
Los Angeles is shown in Figure 10.1. Because Los Angeles has widely vary-
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Figure 10.1: Probabilistic Seismic Hazard Curve for the site of Los Angeles
City Hall. This curve predicts that this site will experience a Peak Ground
Accelaration of 0.5 G about every 500 years.

ing geological regions (mountains, deserts, and sedimentary basins), hazard
curves for sites fairly close together can differ significantly. PSHA information
is used by city planners and building engineers to estimate seismic hazards
prior to the construction of significant buildings, and PSHA results are often
the basis for building codes in a region.

Probabilistic seismic hazard curves can be combined into probabilistic seis-
mic hazard maps [278]. To construct a hazard map, one of the two variables
used in the curve (either the ground motion level or the probability of ex-
ceedance) is fixed, and then color variations indicate how the other parameter
varies by location on the map. A set of hazard curves, typically from a set
of regularly spaced sites, can be combined into a hazard map by interpol-
ating the site-specific data values and plotting the resulting contours. In the
United States, the United States Geological Survey (USGS), as well as several
state agencies, publish hazard maps. An example PSHA map, produced by
the USGS, and the California Geological Survey (CGS) is shown in Figure
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10.2. This map fixes the probability of exceedance at 10% in 50 years, and
the color variations indicate predicted levels of peak accelerations, with the
darker-colored regions predicted to experience stronger ground motions than
the lighter-colored regions.

Peak Acceleration (%g) with 10% Probability of Exceedance in 50 Years
site: NEHRP B-C boundary
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For California portion: U.S. Geological Survey - California Divison of Mines and Geology

For Nevada and surrounding states: USGS

Figure 10.2: This USGS and CGS PSHA map for California and Nevada is
based on a large number of PSHA hazard curves. This map fixes the probab-
ility of exceedance at 10% in 50 years, and uses color variations to indicate
expected peak ground-motion levels throughout the mapped region.

Because of the significant role PSHA information has in public safety,
improvements in PSHA techniques are of great interest to seismologists, pub-
lic safety officials, building engineers, and emergency management groups.
PSHA researchers recognize that current PSHA techniques have not fully in-
tegrated recent advances in earthquake simulation capabilities. As a result,
researchers working on the SCEC Community Modeling Environment Pro-
ject (SCEC/CME) [226, 378] recently initiated the CyberShake Project to
develop new techniques for calculating PSHA seismic hazard curves. The goal
of the CyberShake Project is to utilize earthquake wave-propagation simula-
tions to produce the ground motion estimates used in PSHA hazard curves.
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The geoscientists and computer scientists working on CyberShake have suc-
cessfully calculated probabilistic seismic hazard curves for several sites in the
Los Angeles area using peak ground-motion values produced by earthquake
wave-propagation simulations. This new class of PSHA hazard curves has
the potential to transform probabilistic seismic hazard analysis because the
earthquake wave-propagation simulations used to produce these new curves
generate more physically realistic peak ground-motion values than the tech-
niques used to calculate peak ground motions used in earlier hazard curve
calculations.

We refer to all the steps in the CyberShake hazard curve calculation pro-
cess, including preparation, simulation, postprocessing, and analysis, as the
CyberShake computational pathway. The CyberShake computational pathway
can be divided into two main computational phases; (1) a high performance,
MPI-based, finite-difference earthquake wave-propagation simulation phase;
and (2) a postprocessing phase, in which thousands of serial data-analysis
jobs must be executed.

We model the CyberShake computational pathway as a scientific workflow
to be executed within the SCEC Grid-based computing environment. In the
following sections, we describe the CyberShake computational pathway and
our efforts to convert this conceptual sequential processing into an executable
scientific workflow. We outline issues related to the modeling of computations
as workflows and describe where we gained significant benefits from workflow
technology.

10.2 The SCEC Hardware and Software
Computing Environment

The CyberShake scientific workflows were implemented within the distrib-
uted SCEC computing environment that was developed as a part of the
SCEC/CME Project [276]. The SCEC/CME computing environment uses a
Grid-based architecture that allows us to share heterogeneous computing re-
sources with other collaborating organizations in a consistent and secure man-
ner. The SCEC/CME computing environment is composed of the local SCEC
computer resources, including a variety of Linux and Solaris servers, the Uni-
versity of Southern California (USC) Center for High Performance Computing
and Communications (USC HPCC) [432]—a large academic Linux cluster—
and the National Science Foundation (NSF) TeraGrid [413], a collection of
national academic supercomputing facilities.

The SCEC, USC HPCC, and TeraGrid sites are linked into an extensible
Grid-based computing environment through the NSF National Middleware
Initiative software stack [277]. Grid security is managed using Grid Security
Infrastructure (GSI) [463]. Certificate policy was negotiated between the three
organizations, allowing acceptance of each other’s host and user Grid-security
certificates.
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The SCEC computing environment provides both computational cycles
and significant data storage. Disk storage in excess of 10 TB is available at
all sites, including SCEC’s local cluster. In addition, the TeraGrid facilities
provide more than 100 TB of tape-based data storage for a variety of SCEC
data collections.

The SCEC/CME computational system has implemented a workflow soft-
ware layer based on the Virtual Data Toolkit (VDT) [440] . The Virtual Data
Toolkit, in turn, includes the Virtual Data System (VDS) which includes Chi-
mera [148] and Pegasus (Chapter 23). VDT also includes data management
tools such as the Replica Location Service (RLS) [88]. An overview of the
Grid-based hardware and software used in the CyberShake calculations is
shown in Figure 10.3.

SCEC application workflows/ NMI(Globus)
Custom Visualizations
TeraGrid
Virtual Data Toolkit (Pegasus,
other VDS tools)
Resource Provisioning
(Condor Glide-in)
NMI(Globus)

NMI( Condor, DAGMan)

USC HPCC system

Local System

Workflow Management

Figure 10.3: The SCEC/CME workflow system software stack, based on the
Virtual Data Toolkit, provides SCEC workflows with secure access to a dis-
tributed, heterogeneous, Grid-based computing environment.

10.3 SCEC Probabilistic Seismic Hazard
Analysis Research

Prior to the start of the CyberShake Project, SCEC researchers outlined a con-
ceptual and computational framework for probabilistic seismic hazard analysis
(PSHA) (shown in Figure 10.4). The two primary computational elements in
this PSHA model are Earthquake Rupture Forecasts (ERFs) and Intensity
Measure Relationships (IMRs).

An ERF is a program that, given a specific region, can produce a list
of earthquakes that may occur in the region in the future. An ERF will
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also provide a description of each earthquake, including the magnitude of
the earthquake, the fault surface that will be involved, and the probability
that the earthquake will occur. The list of earthquakes produced by an ERF
is based on the active faults in the region, the sizes of the faults, the historical
earthquake record in the region, known slip rates for the faults, and other
geological and geophysical information.

An IMR can be thought of as an algorithm that defines how earthquake
waves decay with distance. Given a specific earthquake and a site some dis-
tance away, an IMR will indicate the level of ground motion that will be
produced at the site by the earthquake. In more technical terms, an IMR
gives the conditional probability that an intensity measure (some function of
ground shaking found by engineers to correlate with damage) will be exceeded
at a site given the occurrence of a specified earthquake rupture.

Currently, PSHA research uses empirically derived attenuation relation-
ships as IMRs in PSHA. Recently, well-validated 3D wave-propagation simu-
lations have been developed, and the PSHA community has great interest in
replacing attenuation-relationship—based IMRs with waveform-based IMRs.

The SCEC CyberShake Project is, we believe, the first project to develop
an IMR based on 3D wave-propagation simulations rather than on attenuation
relationships. Waveform-based IMRs have not been implemented previously
because they require levels of computational, data management, and data
analysis that exceed the capabilities of most research groups working in the
field.

One of the SCEC/CME Project’s working groups has developed a
component-based software suite, called OpenSHA [140], that implements
standard PSHA models, such as ERFs and IMRs, within a common frame-
work. OpenSHA is a stable and robust suite of software that allows researchers
to combine PSHA components in ways never before possible. The CyberShake
work uses OpenSHA tools both to produce input data and as to analyze the
CyberShake results. OpenSHA implementations of ERFs are used to create
the list of ruptures for each CyberShake site. OpenSHA is also used to gener-
ate attenuation-relationship—based hazard curves against which we evaluate
the CyberShake hazard curves.

10.4 Computational Requirements of CyberShake

SCEC geophysical computing has traditionally been done without using sci-
entific workflow technology. Thus it was not a given that the CyberShake
Project needed scientific workflow tools. However, as the scale of the Cyber-
Shake computational and data management challenge emerged, we began to
recognize that traditional computing methods may not be sufficient.

In order to implement the CyberShake 3D waveform-based IMR, a large
number of earthquakes must be simulated. For sites near Los Angeles, cur-
rent ERF's produce a list of over 20,000 earthquakes within 200 km. Applying
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Seismic Hazard Calculation

Prob(IMT=IML)

Figure 10.4: The SCEC/CME conceptual model for probabilistic seismic haz-
ard analysis (PSHA) identifies Intensity Measure Relationships (IMRs) and
Earthquake Rupture Forecasts (ERFs) as two major computational compon-

ents involved in PSHA. The CyberShake Project is implementing a new type
of IMR.

an attenuation relationship to 20,000 earthquakes is a fairly modest compu-
tational challenge, within the capabilities of a desktop computer. However,
running state-of-the-art wave-propagation simulations for 20,000 earthquakes
is prohibitively expensive in CPU-hours and wall-clock time. The exact com-
putational time required to run an earthquake wave-propagation simulation
varies by the size of the volume, the length of time the wave-propagation is
simulated, and the frequencies supported by the simulation. Earthquake sim-
ulations of approximately the required size and resolution, such as SCEC’s
Pathway 2 TeraShake simulation [327], require approximately 15,000 CPU-
hours and approximately 3 days of wall-clock time. Thus, for the 20,000 ERF
ruptures, it would require 300 million CPU-hours and well over 100 years to
complete all the simulations needed to calculate a PSHA hazard curve.
While these processing requirements are well beyond the scale of the com-
puter resources available to SCEC, we have not yet represented the full scale
of the problem. The numbers underestimate the required calculation because
the ERF list of 20,000 earthquakes does not represent the full list of earth-
quakes that must be simulated. An ERF indicates only the fault surface and
the magnitude of the earthquakes that are likely to occur. This is sufficient
when using an attenuation relationship. However, when using waveform mod-
eling, one must consider how the earthquake rupture occurs. For example, if
the earthquake rupture starts at the bottom of the fault and propagates up-
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ward toward the surface, the ground motions at the surface will be larger than
if the earthquake starts near the surface and propagates downward into the
ground. For a given fault, there are many ways that earthquakes can occur.
Each possible, or somewhat likely, earthquake variation must be simulated in
order to properly perform the PSHA analysis.

To capture the possible differences between earthquakes in the PSHA ana-
lysis, one or more variations of each earthquake mentioned in the ERF must
be simulated. For small earthquakes (e.g., magnitude 5.0 or smaller), typically
only one variation will be considered. But for large faults there are many ways
the fault may rupture, and a reasonable number of rupture variations must
be simulated. There is no widely accepted approach for identifying all reason-
able rupture variations; however, some basic heuristics have been developed
for creating a reasonable number of them. When the heuristics are applied to
the ERF list for the Los Angeles area sites, the total number of earthquakes
that must be simulated to create a probabilistic seismic hazard curve is over
100,000. At 15,000 CPU-hours per simulation, a fully probabilistic hazard
curve calculation would require approximately 1,500,000,000 CPU-hours.

The computation time is not the only challenge; there are also significant
data management issues. Each rupture variation will produce two seismograms
(horizontal components only), which, depending on the data storage format,
may result in one or more seismogram files. These seismogram files and their
associated metadata must be managed to support the analysis of the results.

The key to reducing the computational demands of CyberShake PSHA
hazard curve calculations to a manageable level was the introduction of a
nonintuitive scientific technique for calculating synthetic seismograms called
reciprocity. Typically, synthetic seismograms are created through what are
termed “forward calculations.” Motions are introduced in a volume at the
point of the earthquake and the resulting waves are propagated throughout
the volume. An alternative method for calculating synthetic seismograms,
called reciprocity, can be used [495]. A reciprocity-based approach places a
unit force at the site of interest. Then the waves from this force are propag-
ated throughout the volume to “illuminate the volume.” The response of the
volume to the unit force is saved as strain Green’s Tensors (SGTs). Given
the SGT data for a volume, it is very computationally inexpensive to calcu-
late a synthetic seismogram for an earthquake located anywhere within the
“illuminated” volume using a technique called representation theory or, more
informally, seismogram synthesis.

Using a reciprocity-based approach, the computational estimate for cal-
culating a probabilistic seismic hazard curve for a single site is approxim-
ately 25,000 CPU-hours. This includes the two unit-force SGT simulations,
and the reciprocity-based seismogram synthesis for 100,000 earthquakes. This
reciprocity-based technique brings the computational cost of a waveform-
based PSHA hazard curve within reach of SCEC computing resources.

There is, as might be expected, a trade-off involved in using a reciprocity-
based approach. Reciprocity-based calculations only produce seismograms for
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one site and, consequently, only one hazard curve. Since each hazard curve
requires approximately 25,000 CPU-hours, producing a small 50 km x 50
km hazard map that requires 625 hazard curves will require approximately
15,625,000 CPU-hours using this approach. The estimates indicate that even
using a reciprocity-based approach, it is still prohibitively computationally
expensive to produce a waveform-based PSHA hazard map.

10.5 SCEC Workflow Solutions to Key
Workflow Requirements

Scientific workflows may be modeled, in general terms, as a set of tasks with
data dependencies between them. Scientific workflow tools must then meet
three essential requirements: (1) user definition of the tasks and their data
dependencies; (2) an execution engine for running the tasks in an appropriate
order; and (3) tools for managing the data and metadata that are input and
output by the tasks in the workflow.

The SCEC workflow system satisfies the first essential requirement (user
definition of workflow tasks and data dependencies) by allowing the user to
describe workflows in an abstract form called an abstract Directed Acyclic
Graph (DAG). An abstract workflow captures the programmatic and data
dependencies in the workflow, but it also imposes some limitations on the
workflow, such as no looping. An abstract workflow describes both the pro-
gram names and filenames in logical, not physical, terms. For example, when
an abstract workflow refers to a file, it uses a file ID rather than a physical
path to the file. Later, programs in the workflow system will convert the file ID
to a physical file pathname. In this workflow definition stage, the SCEC work-
flow system uses the Pegasus planner (Chapter 23) and Condor’s DAGMan
(Chapter 22) for mapping and executing the workflows.

To convert an abstract workflow to an executable form, Pegasus (Chapter
23) requires a collection of appropriate configuration files or catalogs, such
as those describing the available computer resources (the Site Catalog) and a
list of executable programs (the Transformation Catalog). Once this inform-
ation and the abstract DAG are available, Pegasus can be invoked to do the
conversion. Once the executable DAG is available, it can be submitted to the
Condor DAGMan (Chapter 22) for execution.

The SCEC workflow system satisfies the second essential workflow require-
ment (an execution engine for running the tasks) with a series of Globus and
Condor tools. Globus GRAM [102] is used as an interface to local resource
schedulers. Condor-G [152] manages the remote job submissions by interact-
ing with the GRAM job managers. Condor’s DAGMan ensures that the jobs
expressed in the DAG are executed in the correct order.

The SCEC workflow system satisfies the third essential workflow require-
ment (data and metadata management) by using the Replica Location Ser-
vice (RLS) [88] software to maintain a mapping between logical and physical
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file names. Logical File Names (LFNs) are basically ID numbers assigned to
files used in SCEC workflows. Physical File Names (PFNs) used in SCEC
workflows are typically GridFTP accessible URL’s [9]. Metadata are man-
aged through the use of the Metadata Catalog Service (MCS) [386]. The RLS
and MCS systems are modular and Grid-enabled. We also utilize a second file
preservation system, the Storage Resource Broker (SRB) [41], for long-term
storage of valuable data sets.

10.6 Benefits of Modeling CyberShake as Workflows

Implementing the CyberShake workflow on top of a Grid-based architecture
provides distributed computing capabilities and the ability to add or remove
computing resources from the environment without significant changes to soft-
ware. The Grid layer provides secure management of job submission and data
transfers. The Grid architecture also provides standardized service interfaces
to security, job management, resource monitoring, and communication for a
heterogeneous environment. This allows our workflows to utilize the stand-
ardized interfaces in a heterogeneous computing environment.

As we define our workflow, Pegasus allows us to express the workflow at
a high level of abstraction. When the user expresses the workflow and its
dependencies, either using VDL (Chapter 17, or in an XML DAG format
(DAX), the workflow is specified by referring to logical programs (transform-
ations) and logical files. A significant amount of information can be omitted
at the workflow specification stage. For example, the computers and the loca-
tion of the files to be used are not needed at the workflow specification stage.
These details are provided by Pegasus as the abstract workflow is converted
to an executable workflow. In addition, Pegasus will augment the workflow
with implied but unspecified processing steps. Thus that it can execute within
a distributed, Grid-based computing environment. Processing steps such as
directory creation, registration of created files into the RLS, and file transfers
to and from the program execution hosts are automatically added into the
workflow by the Pegasus planner.

Condor DAGMan can analyze the dependencies in a workflow and can run
jobs in parallel if there are no dependencies between them. This capability is
particularly valuable in a distributed Grid-based environment where there are
multiple computing resources available for job execution.

The Condor-G and DAGMan job management tools provide other signific-
ant capabilities, such as failure recovery. Condor supports retries of individual
failed jobs and provides rescue DAGSs in cases where the workflow cannot pro-
gress any further. The rescue DAG represents the portions of the workflow
that have not yet executed, and the DAG can be modified and resubmitted
at a later time.

The SCEC workflow system utilizes the common data management prac-
tice of separating the logical filename from the physical filename. This tech-
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nique helps in two main ways. First, references to the file are not tied to the
physical location of the file. When the file is moved, workflow references to the
file do not need to be changed (only the mappings in the RLS do). Second,
this technique supports copies of files, or file replicas. For each file, multiple
versions can be maintained, and the workflow system has the opportunity to
select the most appropriate copy.

10.7 Cost of Using the SCEC Workflow System

While the SCEC workflow offers a number of clear benefits, it also imposes
a number of requirements, or costs, on system developers and users. These
costs are distinct from the costs of personnel or hardware.

First, establishing and maintaining a widely distributed, Grid-based com-
puting environment requires a significant amount of work, involving issues
such as security agreements, certificate exchange, software version coordin-
ation, installation, operations, and maintenance. A Grid-based environment
provides an outstanding foundation on which to build a workflow system, but
it also requires significant investment in system and software maintenance.

The SCEC workflow system requires a significant amount of configuration
before a workflow can be executed. Pegasus’s ability to work at a high level
of abstraction is implemented by utilizing data stores that map between ab-
stractions and actual computing resources. This means that before a workflow
can be executed, a series of data stores must be developed and populated. For
example, computing resources are defined in a site catalog that defines the
available computing resources and describes their capabilities. This needs to
be done by hand or with the use of information systems deployed on the re-
sources. Also, each executable program or script used in a workflow (along
with its runtime environment information) must be defined in a Transforma-
tion Catalog.

Also, all files to be used in workflows must be registered into the RLS
and staged at a URL that is accessible by a GridFTP server. This creates
a fairly sharp distinction between files “in the system” and files “not in the
system.” The need to register files in RLS before using them in a workflow
puts a burden on users who want to create new files by hand or want to
import files into the system. While the data management tools such as RLS
provide interfaces for registering files, it has been necessary for us to write
user-oriented tools to help users with the data registration tasks.

The SCEC workflow system is designed to execute programs with file-
oriented inputs and outputs. Programs that support the standard “Unix”
computing model work well within the SCEC workflow system. These pro-
grams have common characteristics such as file or piped inputs, quiet execu-
tion unless there are problems, zero return on success, and nonzero return on
problems. The SCEC workflow system is not designed to execute programs
with GUIs or with interactive user inputs.
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The SCEC workflow system imposes specific requirements on the programs
that will be used in the workflow. To integrate with the data management
tools, programs used in workflows should not use hardcoded input or output
filenames. The workflow system will dynamically assign LFNs to files as they
are created. Many of the SCEC programs used hardcoded filenames. In some
cases, we modified the programs so that both input and output filenames could
be specified as input parameters at runtime. If this modification was difficult,
we developed wrapper scripts that would accept arbitrary input and output
filenames. The wrapper script would then rename the files to the hardcoded
filenames, call the SCEC programs, and then rename the output file to the
file name assigned by the workflow system.

One additional requirement for using the SCEC workflow system is the
need to create an abstract workflow (the DAX) before the workflow can be
run. In order to create a DAX, the user is faced with a couple of options: (a)
use VDL to describe the workflow and then use Chimera to convert the VDL
to a DAX; or (b) write code that can construct a DAX directly. Because the
SCEC CyberShake workflows were fairly static, we chose to develop a DAX
generator program and output our DAXs directly. The other option, using
VDL, may be the more general solution. Both of these approaches require
training and investment of time by users. Often users are not willing to invest
significant training time until the benefit to their science is obvious. In the
future, we hope that technologies such as Wings and CAT (Chapter 16) can
make it easier to create the large and complex abstract workflows we need.

10.8 From Computational Pathway to
Abstract Workflow

A CyberShake hazard curve calculation can be described algorithmically in
seven steps, as shown in Table 10.1. We refer to this sequence of seven steps
as the CyberShake computational pathway. Each processing step has specific
computational and workflow implications.

We began our modeling of CyberShake as a workflow by assembling our
programs end-to-end and identifying the data dependencies between them.
Figure 10.5 shows the programs involved in the CyberShake hazard curve
calculation and their data dependencies.

Our intention was to model our CyberShake computational pathway as an
abstract workflow, then model the abstract workflow as a DAX, and then use
our workflow tools to convert our DAX into an executable workflow and run
it until a hazard curve was completed. However, our workflow eventually was
reduced to a small portion of this processing chain.

CyberShake Step 1: Select a Site

Probabilistic seismic hazard curves are site-specific, and thus a natural and
meaningful unit of work on the CyberShake Project is a site. We perform a
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Processing CyberShake Simulation Algorithm Description

Step Number

1 Select a site for which a hazard curve is of interest.

2 Use an earthquake rupture forecast (ERF) to identify all prob-
able ruptures within 200 km of the site of interest.

3 For each rupture, convert the rupture description from the ERF
into a suite of rupture variations with slip-time history.

4 Calculate Strain Green’s Tensors (SGTs) for the two horizontal

components for a volume containing all the ruptures and save
the volume data.

5 Using a reciprocity-based approach, calculate synthetic seismo-
grams for each rupture variation.

6 Calculate the peak intensity measure of interest, such as peak
spectral acceleration, for each synthetic seismogram.

7 Using the peak intensity measures for each rupture and the
probabilities of the rupture, calculate a probabilistic hazard
curve.

Table 10.1: Steps in the CyberShake salculations.

series of calculations, and at the end we can calculate one or more hazard
curves for one particular site.

Sites selected for our initial CyberShake hazard curve calculations must
be in a region for which both a 3D velocity model and an earthquake rupture
forecast have been defined. These items are available for most parts of South-
ern California. Also, to facilitate the comparison with other types of IMRs,
we selected sites for which hazard curves currently exist. The selection of sites
is currently manual.

CyberShake Step 2: Identify Probable Ruptures

Given a particular site, an ERF is used to create a list of all probable ruptures
(and the magnitude and probability of each rupture) within 200 km of the
site. Table 10.2 shows six of the initial CyberShake sites and the number of
ruptures that an ERF identified within 200 km of each site.

Site Name Number of Ruptures in ERF
within 200 km of Site
USC 24,421
Pasadena 24 870
Downtown Los Angeles 24,620
Port of Long Beach 24,484
Santa Ana Business District 25,363
Whittier Narrows Golf Course 25,056

Table 10.2: Initial CyberShake sites.
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Figure 10.5: The CyberShake computational pathway is an end-to-end com-
putation of a CyberShake Hazard Curve.

In this stage in the CyberShake processing, an OpenSHA implementation
of an ERF is used. The ERF is the first computational step in our scientific
workflow. The OpenSHA ERF is a GUI-based Java program that requires
user interactions during execution. The operator uses a series of drop-down
menus and text boxes to enter information about the site, such as the loca-
tion, the cutoff distance, and other configurable parameters. Then the ERF
program is run once to create the list of ruptures that might affect the site
being considered. We did not want to integrate a GUI-based program into
the workflow, and thus we excluded this processing step from the CyberShake
workflow.

CyberShake Step 3: Calculate Rupture Variations

Rupture descriptions produced by current ERFs are static descriptions
of earthquakes that indicate the fault surface and the magnitude of each
earthquake. However, the earthquake wave-propagation simulations used by
CyberShake require more detailed information about the ruptures in order
to produce realistic seismograms. Also, several variations of each earthquake
rupture must be considered. As a general rule, the larger the earthquake in
the ERF, the larger the number of rupture variations that will be used in the
CyberShake calculation. For each earthquake in the ERF, the CyberShake
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system will calculate a series of rupture variations using a heuristic-based
method developed by SCEC scientists.

Table 10.3 shows an example of how the CyberShake processing expands
the original ERF rupture list into a larger list of rupture variations (for the
USC site). The differences between rupture variations include hypocentral
locations and slip distributions. Larger earthquakes require more variations
because there are presumably more possible hypocentral locations and slip
distributions that must be considered.

Table 10.3 shows that the ERF rupture list for this site contains a large
number of small earthquakes, which result in many variations. The table also
shows that the ERF rupture list contains only a small number of very large
earthquakes for this site. However, for each of the very large earthquakes,
CyberShake produces a large number of variations. The result is that the
CyberShake processing must produce seismograms for over 100,000 ruptures.
Other sites have a similar distribution of ruptures by magnitude, so each
CyberShake hazard curve calculation must simulate over 100,000 ruptures.

Site USC Ruptures By|Rupture Vari-

Magnitude ations By Mag-
nitude

Magnitude < 5.0 0 0

Magnitude > 5 and < 6.0 20,450 64,320

Magnitude > 6 and < 7.0 2524 14,600

Magnitude > 7.0 and < 8.0 1435 47,066

Magnitude > 8 12 12,864

Totals 24,421 109,806

Table 10.3: Ruptures and Rupture Variations for the USC site.

In order to produce all the rupture variations needed by CyberShake, we
run a serial FORTRAN program called a rupture generator. This program
is run only once to create a master list of all possible ruptures in Southern
California. Since this program is run only once, and we do not need to run it
for each site, we decided to exclude it from our workflow.

CyberShake Step 4: Calculate Strain Green’s Tensors

The next step in the CyberShake computational pathway is to calculate strain
Green’s tensors for the site of interest. A strain tensor quantifies the strain of
an object (e.g., the Earth) undergoing a 3D deformation (e.g. the deformation
caused by an earthquake). For small deformations, the strain tensor can be
described by a strain Green’s tensor (SGT).

This part of the CyberShake computational pathway uses three different
programs: a regular mesh maker, a velocity mesh maker, and the SGT cal-
culation. These three programs are run to create a large SGT data set. SGT
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calculations are the high-performance, MPI-based computing aspect of the
CyberShake simulation. Before the SGT code can be run, an input velocity
mesh must be generated. This is done in two steps. First, a regular mesh
with the appropriate dimensions and grid spacing is created. Then a 3D velo-
city model program is run to assign properties such as P-wave velocity, S-wave
velocity, density, and attenuation to each mesh point. The velocity mesh prop-
erties vary by location in the mesh. For example, the P-wave velocity, S-wave
velocity, and density values all typically increase with depth.

The current SGT computation is a fourth-order, finite-difference code.
One SGT calculation is run for each horizontal component of motion. Thus,
two SGT simulations are run per site. The SGT calculations used in the
CyberShake simulations require approximately 140 GB of RAM at runtime.
On our target clusters, we can utilize approximately 500 MB of RAM per
processor. In order to run the SGT successfully, we must divide the 140 GB
across approximately 280 processors, or about 140 nodes on dual-processor
systems such as the TeraGrid [A-64 or USC HPCC clusters.

Scheduling large MPI-based programs onto a cluster often has interactive
aspects that are not easily managed by a workflow system. For example, the
CPU-hours allocation available to the workflow should be verified prior to
running. Sufficient disk space must be available in the output storage location.
In some cases, a specialized queue, or a reservation for a set of computation
nodes, is used, in which case the job should be run in a specific queue or at
a specific time. Although it is possible to include these constraints into the
workflow system, we decided to leave the MPI-based calculations out of the
workflow for now since they are run only twice per site. We do plan to make
them a part of the abstract workflow in the near future.

The SCEC workflow system has the capability to automatically restart
jobs that fail. However, we recognized that special care must be taken when
restarting large, multiday, 280-processor jobs. One way to address the restart
capability is to model the SGT calculation as a series of smaller steps with
checkpoint files. Then a failure would get restarted from the last checkpoint
rather than from the beginning. However, to accomplish this we needed to
elaborate our definition of the workflow to identify a series of restart-able
calculations. This added complexity into our workflow that, in our judgment,
did not add sufficient value.

CyberShake Step 5: Synthesize Synthetic Seismograms

The CyberShake reciprocity-based seismogram synthesis processing stage gen-
erates thousands or hundreds of thousands of seismograms for a site. To do
this, we must run the seismogram synthesis code for each rupture, which
amounts to tens of thousands of times. The seismogram synthesis program will
generate output files containing the synthetic seismograms. Metadata must be
maintained for each output file so that we can associate the seismogram with
the ruptures that it represents.
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This stage in the workflow must be executed once for every rupture. Seis-
mograms for all the rupture variations are calculated during the same invoc-
ation. For ruptures that have a large number of variations (in some cases a
rupture may have more than 1000 rupture variations), the runtime for this
program can be many hours. In other cases, where there are few variations,
the runtime can be minutes. This stage was included in the workflow.

CyberShake Step 6: Calculate Peak Intensity Measure

Once one or more seismograms have been calculated, the next step is to extract
a peak ground-motion value from the synthetic seismograms. SCEC scientists
have decided that spectral acceleration at 3.0 seconds (SA3.0) is a ground
motion intensity measure type that is consistent with the frequency content
of the synthetic seismograms generated by the CyberShake workflow. To cal-
culate peak SA3.0 values from our synthetic seismograms, we use codes that
can filter the seismograms, differentiate the acceleration, and then calculate
peak SA3.0.

The seismogram synthesis stage produces a binary seismogram file that
includes all the seismograms for a given rupture, including both hozizontal
components for each rupture variation. Thus, the peak SA3.0 calculation pro-
gram must be executed once for every rupture in the workflow. Our SA3.0
calculation program is invoked once for each rupture and processes all com-
ponents, and all rupture variations, in the specified file. This stage was also
included in the workflow.

CyberShake Step 7: Calculate Hazard Curve

When all the peak SA3.0 values have been calculated, the final step is to
calculate a hazard curve. To do this, the peak SA3.0 values for each rupture are
read and a geometric average of the horizontal components is calculated. Then,
the peak SA3.0 values are associated with the probability of the given rupture.
These calculations are done for each rupture, the results are combined, and a
hazard curve is calculated.

We excluded this final step from our workflow primarily because it uses
a GUl-based OpenSHA program. However, the final processing step raised
another important issue, which we refer to as delayed execution of programs.
Based on the time required to execute all the jobs that lead up to this last
summary stage, the execution time for this final job could be days, or even
weeks, after the workflow is submitted. When a job in a workflow has an
expected execution time that is days or weeks in the future, there is a reas-
onable possibility that the computing environment will change between now
and then. Currently many of the Grid systems we target in our work do not
provide an easy way of programmatically accessing up-to-date system inform-
ation and thus make it impossible for workflow management systems to make
good scheduling decisions over time. This leads to lower reliability that the
workflow will execute to successful completion.
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By the end of the CyberShake abstract workflow generation process, the
workflow consisted of only two steps: a seismogram synthesis program and a
peak spectral acceleration program. These two steps are shown in Figure 10.6.
In our workflows, we had approximately 25,000 processing nodes for each step
in the data flow, and this was before any needed data transfer jobs were added
to support the Grid-based execution. The corresponding executable workflows
generated by Pegasus contained tens of thousands of tasks.

Processing for Processing for
Rupture N = 1 Rupture N = 25,000

Seismogram Seismogram
Synthesis Synthesis

Peak Peak
Spectral Spectral
Acceleration Acceleration

A two-stage CyberShake workflow to process 25,000
ruptures requires a DAG with at least 50,000 nodes.

Figure 10.6: The CyberShake abstract workflow has two processing steps.
These two processing steps must be repeated approximately 25,000 times each
to produce a single PSHA hazard curve.

10.9 Resource Provisioning in the CyberShake
Workflows

Once the CyberShake abstract workflows were developed and we prepared to
execute them, a new issue emerged that was related to resource provision-
ing. In the context of CyberShake workflows, provisioning means reserving
computer resources for our use during the workflow execution. We used the
Condor glide-in [96] capabilities to provision the computing resources and to
overcome the fact that our workflow requirements do not match the scheduling
policies of the underlying computing resources.

To understand this issue, we must examine the requirements of the work-
flow and characteristics of the execution environment. Once our abstract work-
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flow was converted to an executable workflow and all the data movement jobs,
directory creation jobs, and data registration jobs were added, the total num-
ber of jobs in the workflow exceeded 80,000. While some of these are long
running, I/O-intensive programs, all of them are single-processor, sequential
programs. The only available computing resources that will run this number
of jobs within a reasonable amount of time are the high-performance clusters
at the TeraGrid and USC HPCC. However, neither of these computational
clusters are configured to run a large number of sequential jobs. Instead, they
are configured to run a few large parallel jobs. Supercomputer sites implement
this policy in a couple of ways.

First, the job submission managers at these sites will typically allow a
single user to submit less than 100 jobs at a time. None of the supercomputer
sites we use will allow us to send 100,000 jobs to their job submission queues all
at one time. This issue can be addressed to some extent by the job submission
throttling capabilities of Condor, but the number of jobs we need to schedule
represents a real issue for the CyberShake workflows.

Second, the supercomputer facilities give preference to large parallel jobs
through the job priorities used by the underlying job scheduling systems. The
sites prefer to support the very large jobs that could only run on the large
supercomputer clusters. Thus job scheduling algorithms are set up so that
large, highly parallel, long running-jobs (that is, supercomputer class jobs)
received scheduling priority.

SCEC researchers recognized that the CyberShake computations were su-
percomputer class computations even though they were not written as MPI-
based jobs. Rather than rewrite all the CyberShake programs as parallel codes,
our workflow system was able to work around these scheduling policy prob-
lems by using provisioning techniques offered by the Condor glide-in system.
The Condor tools allow us to run placeholder jobs on one or many cluster
computation nodes (in our work, we used 50 to 100 placeholders at any one
time). Once the placeholder programs are running, we can send CyberShake
jobs from our Condor-G job submission host directly to the placeholders for
execution. Once a CyberShake job completes on a compute node, Condor-G
sends another job to the placeholder.

10.10 CyberShake Workflow Results

The analysis, software development, configuration, testing, and validation
work that led up to the first full-scale CyberShake workflows was performed
over approximately six months. The first two full-scale CyberShake workflows
were run over a period of approximately one month. Subsequently, the com-
putational rate increased dramatically. Eight additional CyberShake curves
have now been calculated, at a rate of approximately one a week.

During our first two full-scale CyberShake workflow runs, we executed
over 261,000 separate jobs at four different computing centers (SCEC, SDSC,
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NCSA, and USC), and we used over 1.8 CPU-years of processing time. Over
80,000 separate files were created and registered into our data management
system. We are still collecting statistics on the subsequent eight site calcula-
tions, but the numbers are expected to be similar.

The CyberShake workflows made good use of our Grid-based environment.
SCEC computers were used as job submission hosts and as the storage loc-
ation for the resulting seismograms, spectral acceleration, and hazard curve
data files. The SCEC workflow system allowed us to create file replicas at two
TeraGrid sites and then to divide our workflows across two different super-
computer facilities, with the results ending up back at SCEC. This flexible
use of available computing resources underscores the value of specifying work-
flows in a resource-independent manner. It also underscores the capabilities
that can be built on top of a Grid-based infrastructure.

10.11 Conclusions

The first ten CyberShake probabilistic seismic hazard curves are currently
under analysis. The CyberShake results are so new that conclusions regarding
the scientific benefits of using 3D waveform-based intensity-measure relation-
ships in probabilistic seismic hazard analysis are still pending. Regardless of
the final judgment on this new class of PSHA hazard curves, CyberShake rep-
resents an important research effort that has provided SCEC scientists with
results needed to evaluate this widely anticipated new approach to PSHA.

Our scientific workflow tools provided scalability of calculation through
automation. These tools allow us to work at a computational scale that would
be very difficult to achieve otherwise. However, we recognize that the com-
putational demands of SCEC science are increasing just as quickly as our
computational capabilities.

In order to meet the computational requirements of SCEC science in the
near future, we need to improve our workflow automation. We plan to begin
by increasing the number of programs executed as a part of the CyberShake
workflow. At this point, it appears that the portions of our computational
pathway that benefit from modeling as a workflow share two characteristics:
high repetitiveness and low interactivity. We believe that these characteristics
may be used to identify which parts of a series of scientific calculations can
be most readily expressed as a scientific workflow regardless of the underlying
workflow technology.

We believe that scientific workflow tools provide the current best tech-
nology for working at the computational scale needed to perform SCEC’s
transformative seismic hazard analysis research. If SCEC research goals are
required only one or two hazard curves, it may have been faster to calculate
them without the use of a workflow system. However, since SCEC researchers
wanted to calculate hundreds or thousands of these hazard curves, we needed
a system that would allow us to scale up the large CyberShake computational
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pathway calculation by one or two orders of magnitude. We believe that as
SCEC workflow tools evolve and improve, they will make this level of scientific
processing and data management possible.

Acknowledgments

This work was performed by a large group of people at SCEC, ISI, the USC
Center for High Performance Computing and Communications Center (USC
HPCC), the San Diego Supercomputer Center (SDSC), the National Center
for Supercomputing Applications (NCSA), the USGS, and URS Corporation.
USC HPCC contributors include Maureen Dougherty, Garrick Staples, and
Brian Mendenhall. SDSC contributors include Amit Majumdar, Don Fred-
erick, Christopher Jordan, and Reagan Moore. NCSA contributors include
Randy Butler, Tim Cockerill, John Towns, and Dan Lapine. This work was
supported by the National Science Foundation (NSF) under contract EAR-
0122464—The SCEC Community Modeling Environment (SCEC/CME): An
Information Infrastructure for System-Level Earthquake Research. This re-
search was also supported by the Southern California Earthquake Center.
SCEC is funded by NSF Cooperative Agreement EAR-0106924 and USGS Co-
operative Agreement 02HQAGO0008. The SCEC contribution number for this
chapter is 972. Some of the computation for the work described in this chapter
was supported by the University of Southern California Center for High Per-
formance Computing and Communications (www.usc.edu/hpce). Some of the
computation for the work described in this chapter was supported by TeraGrid
allocation TG-BCS050002S.



Part 11

Workflow Representation and
Common Structure



11

Control- Versus Data-Driven Workflows

Matthew Shields

11.1 Introduction

Workflow is typically defined as a sequence of operations or tasks needed to
manage a business process or computational activity (Chapter 1). The rep-
resentation of the sequence of operations or tasks is handled in many different
ways by different people and varies from simple scripting languages, through
graphs represented in textual or graphical form, to mathematical representa-
tions such as Petri Nets (Chapter 13) or w-calculus (Chapter 15).

Most groups agree that there are two simple classes of workflow structure
into which most of the representations of workflow languages used in this book
fall: control and data flows. The two classes are similar in that they specify the
interaction between individual activities within the group that comprise the
workflow, but they differ in their methods of implementing that interaction.

In control-driven workflows, or control flows, the connections between the
activities in a workflow represent a transfer of control from the preceding task
to the one that follows. This includes control structures such as sequences,
conditionals, and iterations. Data-driven workflows, or data flows, are designed
mostly to support data-driven applications. The dependencies represent the
flow of data between workflow activities from data producer to data consumer.

There is also a smaller set of hybrid workflow representations based on a
combination of control and data flows. These hybrids use both types of de-
pendencies as appropriate but are normally biased toward either data flow or
control flow, using the other to better handle certain conditions. For instance,
in a data-flow system such as Triana (Chapter 20), there are situations where
a downstream task needs to be activated but the upstream task produces no
output. In this case, a trigger is used to switch the flow of control. In hybrid
control-flow systems, such as the CoG Kit’s Karajan workflow (Chapter 21),
data dependencies can be represented by a future, the concept of data that
has not yet been produced, which can block the control flow with a data flow.

This chapter will examine the differences, and indeed similarities, between
control flow, data flow, and hybrid representations, with examples of each type
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and the applications and frameworks that use them. We will start with a dis-
cussion of different workflow representations and some common concepts and
conclude with some of the pitfalls and some possible solutions to the problems
associated with heterogeneous workflow languages in Grid environments.

11.2 Workflow Representations

The data-driven versus control-driven workflow argument has run for as long
as workflow techniques have been in use and can be as evangelical as the
choice of editor, Vi or Emacs, or programming language, C++ or Java. Both
sides are convinced that the structure they use is the correct one, but there
are cases for the use of both workflow representations, and as we edge toward
interoperability and a common workflow language, mixed usage. The choice
of which is used in any given framework usually comes down to the original
application domain that drove the framework development, as we will see
when we examine some examples.

11.2.1 Common Workflow Terminology

It is worth mentioning here some of the common workflow terminology that
gets used within the various representations and frameworks. Workflow by its
definition has a number of common concepts; however, these are often known
by different names.

By definition, a workflow is a sequence of operations or tasks needed to
manage a computational activity. These are typically represented graphically
as a node on a graph or in a script as a process or a job. In Chapter 12, the
author describes component and service-based workflows, so we also have the
terms components and services used as a name for the computational processes
in the workflow. Different workflow frameworks also have different names for
this concept: in Kepler (Chapter 7) they are called actors; in Petri Net theory
(Chapter 13), transitions; in Virtual Data Language (VDL) (Chapter 17), pro-
cedures; in Cactus (Chapter 25), thorns; in Askalon (Chapter 27), activities; in
the CoG Kit’s Karajan (Chapter 21), elements; and in Triana (Chapter 20),
units. Although all of these terms hide different mechanisms and technolo-
gies, the basic concept of an operation or task holds, and we can think of each
of these as a “black box” process that performs some computation or other
operation.

The connections between operations are also known by different names:
vertices in a graph, edges in Petri Nets, pipes in data-flow systems, and mes-
sages in service-based systems. They all, however, represent an order to the
execution of the operations in the workflow. This order may be a data de-
pendency, where the product of the first operation in a connection must be
available for the execution of the second operation to start, or a control de-
pendency, where the flow of execution passes from the first operation to the



11 Control- Versus Data-Driven Workflows 169

second in the connection, or in a more complex case control is passed from
one operation to another based upon a control-flow structure such as if...then
or while.

11.2.2 Classifying Workflow Types

A useful way of classifying whether a representation is control flow, data flow,
or some hybrid of both is to look at the connections or dependencies between
any two given operations or activities in the workflow. If the connection is
a data dependency, such as a data file that must be complete and in place
before a succeeding activity can execute, or a socket-based data pipeline, then
the workflow is data driven and probably data flow. If the dependency is one
of timing, such as task a must complete before b can start, then the workflow
is more than likely a control flow.

Another way of looking at the difference between control flow and data
flow is to examine the main artifact with which each representation concerns
itself, or the terms in which the main concept of the representation is defined.
In a control-driven workflow system, the main artifact is a process. Control
flow concerns itself mainly with the execution and coordination of processes.
The workflow representation will be defined in terms of those processes (i.e.,
execute process a then execute process b). In a data-driven workflow system,
it is units of data and data products that become the main artifacts; the
processes or activities in the workflow are merely data transformations of
some description. Thus the workflow representation will be centered around
the data products (i.e., transform input a into product b).

11.2.3 External Workflow Representations

Most workflow tools and frameworks have two forms of representation an
internal one that is used to manipulate the workflow inside an editor or ex-
ecution engine, for instance, and an external one used for storing workflows
and communicating them between participants in the workflow “generation
to execution” life cycle.

External representations for workflow instances, whether they are based on
control flow or data flow, are often very similar, and in a large number of cases
these external forms of representation are stored as XML documents. One of
the most common forms is that of a directed acyclic or cyclic graph (DAG
or DCG) with nodes and vertices. Whether nodes represent processes and
activities or data and data products depends largely on the type of workflow
and also the problem domain and methodology.

Petri Nets are another popular representation medium for workflow and
can model workflow by representing data as tokens and processes as tran-
sitions. Other representations include scripting languages that model the re-
lationships between tasks as a series of ordered function calls and Unified
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Modeling Language (UML) diagrams that use the standard diagrams and
representations to model the relationships.

In the Triana workflow language (Chapter 20), a predominantly data-flow
language, the external representation is an XML-based DCG. The main arti-
facts are processes, so the nodes in the graph represent processes, and since
we are dealing with a data-flow model, the vertices in this case represent data
dependencies or transfers. The XML representation specifies the processes in
a WSDL-like format and the vertices as a series of parent—child relationships.

SSDL-SC protocol (Chapter 15) expresses its workflow as a sequence of
messages exchanged between participants in the workflow. The order of these
messages, the participants in the exchange, and the direction in which the
message travel define the workflow and hence the interaction between the
services. The external representation as the framework’s name, Soap Service
Description Language suggests, takes the form of a series of SOAP messages,
together with XML, that specify the participant services and the message
interactions between them.

The Java CoG Kit’s Karajan workflow language (Chapter 21) is an ex-
ample of a hybrid control flow. The main artifacts are Grid processes and
file transfers. The external representation is a parallel extensible scripting
language with both XML and native representations. The script specifies the
process and file transfers and the order in which they are executed. It includes
support for parallel execution and control constructs such as looping.

Petri Nets are another popular representation medium for workflow. Grid
Workflow Definition Language (GWorkflowDL) (Chapter 13) is based on Petri
Net Markup Language (PNML), an XML dialect for representing Petri Nets.
PNML can describe Petri Nets together with information about their graph-
ical layout; GWorkflowDL provides extensions to relate transitions with real
services or components and tokens with concrete data. Petri Nets can model
both control and data flows since both data and process artifacts are repres-
ented with equal weight. Control constructs such as loops and conditionals are
supported implicitly by the language, so the correct classification is probably
as a hybrid control flow.

11.3 Control-Driven Workflows

In a typical control-driven workflow, the workflow or program consists of a
sequence of operations. An operator reads inputs and writes outputs into
common store such as a file system. In the simplest case, the operators run
sequentially, with the control dependency in the workflow defining the suc-
cessor once the predecessor has completed.

Control-driven workflow originated in the scripting community, where fine-
grained small applications such as Unix processes can be chained together
with some shell script or similar high-level language “glue” to form more
complex programs. Each process is executed from the script in turn with
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control passing from the script to the individual process and back to the
script again upon completion. Movement of data is typically handled in this
situation by a dedicated file or data transfer process that is called between
two compute processes.

Control flow can simulate data flow with data transfers and monitors. In
the CoG kit’s Karajan, there is a concept called futures that allows a data
dependency to be established for data that have not yet been produced by an
operation. A future will cause the execution of certain parts of the workflow
to be suspended until the data are available.

11.3.1 Control Structures

Most control-flow languages provide support not only for simple flows of con-
trol between components or services in the workflow but also for more complex
control interactions such as loops and conditionals. Sometimes this support is
implicit, as is the case with Petri Nets, and sometimes explicit, as in languages
such as Karajan from the CoG kit.

It is obvious that users of workflow systems will often want more than
the simple control constructs available to them. The ability to branch work-
flow based on conditions and loop over subsections of the workflow repeatedly
is important for all but the simplest of applications. The argument is not
whether these facilities should exist but how to represent them in the work-
flow language and to what degree the language should support them. For
instance, is a single simple loop construct enough, or should the language
support all loop types (i.e. while, for...next, repeat...until)? In the case of
conditional behavior, the problem is determining whether the incoming value
and the conditional value are equivalent. For simple cases where we are com-
paring integers or simple strings, checking the condition is straightforward
and unambiguous. The problem comes when we have to compare complex,
structured scientific data in scientific workflows. This type of data often needs
domain-specific knowledge in order to perform comparisons. If the condition
is coded in the language, then the implementation of the comparison must
be coded in the execution engine. The result is that we end up with com-
plex domain-specific information encoded in the framework itself, or we limit
conditionals to simple comparisons.

To take this argument to its extreme conclusion, we could include sup-
port for all programming constructs and make the language Turing complete.
However, at this stage we have to ask ourselves why we have written another
high-level programming language rather than use an existing one and develop
a graphical front end.

The whole ethos of workflows is power and simplicity. Workflow systems
must be capable of performing all the functions a user requires; otherwise users
just won’t use them. But the same systems should be simple to use, hiding
complexity where appropriate. I would argue that although control constructs
are necessary, extending the workflow language itself to cover all possibilities
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is against the principles of workflow. As we will see in the next section, there
are alternatives.

11.4 Data-Driven Workflows

In a typical data-driven workflow, the workflow or program is a graph of op-
erators with the vertices specifying data dependencies. An operator consumes
data or tokens and produces data or tokens. All operators can run concur-
rently, with unfulfilled data dependencies causing an operator to block until its
dependencies are completed. Data-driven workflows originated in applications
where digital processing pipelines are common; for example, image processing
and signal processing. These fields are inherently datacentric and often real-
time, where processing pipelines are connected to measuring devices.

Most data-flow representations are very simple in nature, and unlike their
control-flow counterparts, most contain nothing apart from component or ser-
vice descriptions and the data dependencies between them; control constructs
such as loops are generally not included. The SSDL workflow representa-
tion consists of services, with communication via messages. The dependencies
between services are messages or patterns of messages, just another form of
data, so this representation is a true data flow. While the SSDL-SC protocol
does support “choices,” in effect conditional branching, there is no loop con-
struct.

In Triana’s workflow language, there are no control constructs at all; the
dependencies between tasks are data dependencies, ensuring the data producer
has finished before the consumer may start. It has some control functionality
in that a control dependency can be defined between two tasks where there is
no data relationship; however, this is a simulated control, as the behavior is
implemented as a control “message” passing from sender to receiver triggering,
the transfer of control. Looping and conditional behavior is performed through
the use of specific components; a branch component with two or more output
connections will output data on different connections, depending upon some
condition. Loops are handled by making a circular connection in the workflow
and having a conditional component break the loop upon a finishing condition,
outputting to continue normal workflow execution.

The benefit of both of these solutions to control behavior in data flows
is that the language representations remain simple. The downside is that the
potential for running the workflow on different systems is reduced since the
other system must have access not only to the workflow but to the components
or services that perform the control operations.

11.5 Toward a Common Workflow Language

A major goal for both the scientific and business workflow communities is
common workflow languages, or at the very least a degree of interoperability
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between workflow tools. Frameworks and tools need to be able to interop-
erate, and specifically for scientific workflows, the execution of a workflow
within a Grid environment would benefit from being independent of the tool
that created the workflow. Current proprietary solutions mean that it is not
possible to share workflows across groups using different tools or execute on
Grids where those tools are not installed.

The GGF Workflow Management Research Group [464] is examining vari-
ous workflow languages with a view toward coming up with a common agreed
standard. Any common workflow language will almost certainly have to in-
clude elements of both control flows and data flows and will probably start
as a superset of the current main workflow languages used in the tools in this
book. A mixed solution such as this, containing both data-flow and control
constructs, would at least provide a metalanguage into which the other rep-
resentations could be translated for sharing or execution and would begin the
progression toward a common workflow language. The super setwould have to
be pruned, as to include every extension or optimization, such as Karajan’s,
would make the language enormous.

As outlined in Section 11.3.1, adding every programming construct that
might ever be needed to a workflow language representation will, eventually,
turn what should be a relatively simple domain-specific language into a high-
level general-purpose programming language. Designers of workflow languages
should bear this in mind as they consider whether to add a new feature to
their particular tool. There are alternatives such as designing components or
services for performing given control tasks. If these are designed clearly, then
they should be easy to replicate on other systems that want to execute the
workflow. If the workflow is service-based, then common services that perform
these tasks would make the execution even easier.

It is clear that both control- and data-flow techniques are needed for sci-
entific workflow languages. Limiting the language to one or the other limits
the usefulness of the tools built to use the language. It is also clear that con-
stantly extending the language to include every programming construct will
bloat the language and increase the complexity of the engines needed to ex-
ecute it. Simple hybrid data-flow languages with limited control constructs
will stand the best chance of being interoperable with the most tools and
frameworks but still contain enough functionality to be able to represent real
scientific workflows.
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Component Architectures and Services:
From Application Construction to
Scientific Workflows

Dennis Gannon

12.1 Introduction

The idea of building computer applications by composing them out of re-
usable software components is a concept that emerged in the 1970s and 1980s
as developers began to realize that the complexity of software was evolving
so rapidly that a different approach was needed if actual software develop-
ment was going to keep pace with the demands placed upon it.! This fact
had already been realized by hardware designers. By the mid 1970s, it was
standard practice to build digital systems by composing them from stand-
ard, well-tested integrated circuits that encapsulated sophisticated, powerful
subsystems that we easily reused in thousands of applications. By the 1990s,
even the designers of integrated circuits such as microprocessors were building
them by composing them from standard cell libraries that provided compon-
ents such as registers and floating-point units that could be arranged on the
chip and easily integrated to form a full processor. Now, multiple processor
cores can be assembled on a single chip as components of larger systems.
Unfortunately, the world of software has been much slower to adopt com-
ponent techniques. There are many reasons for this. Part of the problem lies
with the 1970s software design practices that dictated that every application
was built by deciding upon a central family of data structures and then adapt-
ing algorithms to work on those data structures. This implied that code for
the algorithms was intimately tied to the design of a few global application-
specific data structures, and reuse was difficult. In some subdisciplines, the
data structures were obvious and mature, well-tested libraries became the re-
usable components of software. The best example of this is numerical linear
algebra, where there were obvious data structures (arrays) for matrices.
Object-oriented design made a substantial contribution to software reuse
because it forced designers to think in terms of encapsulation and interfaces

! The first reference to the concept of software components is thought to have been
by M. D. Mcllroy in 1968 [290].
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rather than algorithms that crawl exposed data structures. For example, in
1975, a programmer who needed to maintain a linked list would create the
data structure and write the routines to insert and delete items. By 2000,
the standard approach had evolved to using the generic list package available
in your language of choice. Programming languages such as Java, C#, C+—+,
and Python now have very large and impressive class libraries that provide
an extensive set of “components” for the application designer. The richness of
this library has enabled the programmer to accomplish much more with less
work than at any time in the past. For example, building portable interactive
graphics applications, a networked application that uses advanced security, or
an application that is deeply integrated with a relational database would have
required a substantial development and testing team twenty years ago. Today,
an application that needs all three of these capabilities may only require a
relatively modest effort by a single programmer.

It took a while for these modern libraries to achieve their current degree
of success. Object-oriented design was originally thought to be the solution to
the software reusability “problem,” but it only got us part of the way. While
the core OO concepts such as encapsulation, inheritance, and polymorphism
are elegant and powerful, they do not guarantee that a class built for one
application can be easily reused in another. To build truly reusable software,
one must design the software as part of a component architecture that defines
rules and contracts for deployment and reuse.

In the following sections of this chapter, we will explore several different
definitions of software component architectures and how they have been used
in scientific computing. We shall describe how this concept relates to the
current model for Web services and how scientific workflow systems can be
seen as an instance of software construction by component composition.

12.2 Component Architectures: General Concepts

The exact definitions of software component and software component archi-
tecture have not been formally established and agreed upon. However, a defin-
ition of a software component by Szyperski and Pfister is frequently cited and
provides an excellent starting point:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to compo-
sition by third parties. [402,403]

By contractually specified interfaces, we mean that a component is an en-
capsulation of software functionality that is accessed by invoking an interface
method or by sending a typed message. The precise interface language and
type signature of the interface method or message schema is part of the con-
tract. The other part of the contract is the behavior of the component when
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it was invoked. For example, is the interface method invocation a procedure
call that always returns the result of the component’s action? Or does it re-
turn immediately with the component’s response delivered by a subsequent
callback? What are the rules for component failure? How does the component
communicate exceptions?

By context dependencies, we refer to the conditions that must be satis-
fied by the host environment in order to operate properly. For example, does
the component require a specific version of the Java Virtual Machine? Must
the host operating system provide that certain libraries be installed for the
component to operate?

A software component architecture is the framework of contracts and con-
text dependencies that provide the ecosystem in which a family of software
components may be composed into an application. This framework often takes
the form of a runtime environment or application container that satisfies all
the context dependencies for the target family of components. The individual
components are deployable software modules that can be loaded into this
framework and composed by a third party to build applications. A component
instance is the specific realization of the component as a runtime entity in an
application.

12.2.1 Composition and the Inversion of Control Principle

A critical feature of component frameworks is that applications can be built
by composing components and, because the components are designed to follow
a specific set of behavior rules, the composed application works as expected.
For example, an important feature of component frameworks that differs from
many standard programming models is the use of a design pattern called
Inversion of Control (IOC) [275]. This idea is central to the way in which
we think about component composition. In the simplest terms, think of two
components implemented as Java classes. Call one class User and the other
class Provider. Suppose each instance of the User class needs an instance of
the Provider class to operate. The standard way to do this is

class User {
Provider p;
public void initializeUser(){
p = new Provider();

}
}

The problem with this is that it makes the implementation of User completely
dependent upon the implementation of Provider because we assume Provider
is a class and that it has a null constructor. Inversion of Control states that
the specific instance of the Provider should be instantiated elsewhere and
“injected” into the state of the User. For example,
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interface Provider;

Class User{
Provider p;
public void setProvider(Provider p){
this.p = p;
}
}

allows a “third party” to create an instance of User and an instance of anything
that satisfies the Provider interface and compose them with a call of the form

User u;
Provider p;

u.setProvider(p) ;

In its purest form, IOC also implies that a component instance has a
life cycle and environment that are completely managed by the framework.
Everything the component needs is supplied by the framework. One aspect
of this idea, as argued by Fowler [275], involves dependency injection, which
is the concept that an application invokes a service but the instantiation of
the component that implements this service is determined by the framework
at runtime. In other words, the dependency of one component instance upon
another is injected into the system at the latest possible moment.

Another type of behavior rule that many component systems enforce is a
standard way for a framework to learn about a component at runtime. This
type of component introspection is what allows a framework to discover that
a component actually implements an interface required by an application.

The earliest component frameworks with many of these properties included
Microsoft COM [61], the Java bean model. More recently, the complexity of
the Enterprise Java Bean framework [298] has spawned other frameworks,
such as Spring [392], to simplify its programming model. Pico [356] and the
Apache Avalon [34], which is a server-side framework for Apache, are also
important component frameworks based on some form of IOC.

12.2.2 Web Services as Software Components

If we consider Szyperski’s definition of a software component, it is important
to ask whether a Web service fits this definition. The standard definition of
a Web service instance is as a network endpoint that accepts messages (and
optionally returns results) in a manner specified by a Web Services Description
Language (WSDL) document. The Web service in its abstract form (without a
specific network endpoint binding) describes a software component. The form
of context dependency is usually based on the selected WS profile that the
Web service supports. For example, it is common to consider Web services that
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support WSDL 2.0, SOAP 1.2, WS-Security, WS-Addressing, and WS-BPEL
as a standard component framework. However, it should be noted that there
are two models of SOAP interaction: request/response, which corresponds to
a remote procedure call (RPC) style where an operation takes arguments and
returns a result, and doc-literal messaging, where the Web service takes an
XML document as input (and optionally) returns an XML document as a
result.

12.3 Models of Composition

The relationship of software component models to the hardware systems that
inspired them has also had a large impact on the way component frameworks
allow users to compose components. There are two general models, each having
multiple variations.

12.3.1 Direct Composition

If we think of a component literally the same way we think of an integrated
circuit, we can envision it as having two basic types of interfaces: input ports
and output ports. Data and requests for service flow into the input ports and
results flow out of the output ports. A typical “graphical programming” envi-
ronment will allow users to select components from a pallet and arrange them
into component graphs where output ports of one component are connected
to the input port of another. As illustrated in Figure 12.1, each component is
represented by an icon with input and output ports clearly identified. Placing
the icon for a component on the pallet represents an instance of the compo-
nent. Dragging a mouse from an output to an input represents the IOC action
to link these two instances together. The types of graphs that can be built
using this approach are a function of the semantics of the component model.

In some systems, the graphs are limited to directed acyclic graphs (DAGS)
or even to trees. In the most general case, the graphs can be cyclic, with com-
ponents that have more than one input port and output ports that can be
connected to more than one input. In this general case, the model of com-
position seems, at first, obvious; the output ports of one component can be
connected to the input ports of another component as long as they have the
same type signature. In this way, users can build an application as a full data-
flow graph. This is an extremely attractive model for application scientists,
and many of them would like to build applications using this concept.

Unfortunately, having an elegant picture of the graph of connectivity does
not fully explain the semantics of the component interaction. There are two
standard cases to consider:

1. Components that have functional or method interfaces
2. Components that have interfaces based on sending and receiving one-way
messages
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Figure 12.1: The basic forms of direct composition. a) An icon representing
a component with one input port and one output port, b) a general cyclic
graph, and c¢) a tree as a special case of a directed acyclic graph.

The easiest of these to map to this graphical representation is the one-
way message-based component model because the act of sending a message
provides the data-driven component of the data-flow graphical metaphor.
However, there are several other issues that must be addressed to make the
picture semantically consistent. Let us assume that the framework uses an
IOC pattern that allows the component to be designed so that it can be
viewed as an idle process waiting for a message to be received at one or more
of its input ports. The first issue that must be addressed is the meaning of two
or more input ports. Do the semantics of the component allow it to respond
to any input on either port? Or is there a data-flow rule that requires and
input message on all ports prior to causing the action of the component to
start? If it does follow this data-flow model, what happens if the component
receives two inputs on one port but none on another? This implies that each
input port must maintain a queue or have the ability to block upstream out-
put ports from sending data until the current data at an input port have been
consumed.
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Unfortunately, having queues is not sufficient to make the full data-flow
model work. A more difficult problem that every data-flow system must deal
with is matching the correct inputs with each other. For example, suppose
there are two input ports for a component. It is usually the case that if an
input is received on port 1, the semantically matching input on port 2 is
already there or will be the next to arrive. However, if there are many loops
and possible branch conditions, it may be possible for the values that arrive at
port 2 to arrive out of order. This requires a mechanism that uniquely labels
messages according to the “iteration” with which they are associated. The
easiest way out of this problem is to limit components to have a single input
port or to eliminate cycles and restrict the composition to a DAG structure.

The next issue that must be resolved in such a component model is the
meaning of output ports. In most of these systems, an output port is repre-
sented as a channel endpoint that the component writer can use to push out
typed messages. Typically, the IOC pattern for the component model allows
this channel to be connected to one or more input ports on other components.
If more than one input port is connected to an output port, it is the job of the
component framework to duplicate the message for delivery to each input.

There are several significant examples of this style of composition in a
component framework. Ptolemy II [130] is a toolkit for the modeling and
design of digital and analog systems and for the construction of embedded
systems. The components in Ptolemy II are called actors and are composed
together to form data-flow graphs that can support a variety of semantic
behaviors. (The Kepler framework described in this book is built on top of
Ptolemy.)

Mapping Composition Graphs to Components with
Functional Interfaces

Many component frameworks are designed with functional procedure-call in-
terfaces, and users of these systems also demand some form of graphical or
scripted composition tool in order to use them.

There are substantial semantic barriers to mapping a graphical compo-
sitional model onto software components that have procedure-call semantics
for their external interfaces. The first of these involves the meaning of input
and output ports. Suppose a component supports an interface of type F' with a
method of type signature 7' m('S) (meaning it takes an argument of type S and
returns a value of type T'). Then it is natural to represent that interface as an
input port, which expects to receive messages of the form m(S-type-value). The
problem is that this is not a one-way message because a value is returned to
the caller. There is a standard solution for embedding such a component into
a data-flow style of message-oriented system. We can automatically generate
or compile a message-style proxy component, as illustrated in Figure 12.2,
that gathers inputs, invokes the interface method, and converts the returned
result to a message.
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Figure 12.2: A proxy component can be automatically constructed from a
procedure-call-based component that allows it to be inserted into a data-flow
system.

This approach is used in Kepler, Triana, and Taverna (described in this
volume) to integrate RPC-style Web services into a composition tool based
on data flow concepts.

In the case where all the software components are Web services that under-
stand WS-Addressing, there is another solution. WS-Addressing gives us the
ability to pass a message to a Web service with a special tag in the header that
says reply to another. This allows us to specify that the output of a component
should be routed to a third party and a proxy need not be defined.

Graphs that are not data-flow oriented. There are other approaches for dir-
ect composition that are used rather than data flow. For example, Petri Nets
provide a similar compositional model and a rich semantic platform for build-
ing a component architecture. Another approach is to base the composition
on a realization of the Unified Modeling Language (UML).

The Common Object Request Broker Architecture (CORBA) Component
Model [98] has components that have facets that correspond directly to input
and output ports. In the domain of scientific computing, the CORBA Com-
ponent model inspired the Common Component Architecture (CCA) [30,84].
In the CCA model, each component communicates with other components by
a system of ports. Ports are defined by a type system, which is expressed in
Scientific Interface Definition Language (SIDL). SIDL provides a simple way
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to describe a method interface in terms of the data types common in scientific
computing. There are two types of CCA ports:

1. Provides ports are the services offered by the component. Each Provides
port implements an interface defined in IDL.

2. Uses ports are component features that implement the use of a service
provided by another component. They are bound to the stubs that a
component uses to invoke the services of another port provided by another
component. Uses ports are also defined by IDL.

A Uses port on one component can be connected to the Provides port of
another component as long as they implement the same SIDL interface. The
connection is made by the framework operation “connect” at runtime. When
a component wants to use a service connected to one of its Uses ports, it
executes a framework “getPort” operation. This provides an implementation
of the port or blocks the invocation until one is available. When the component
is finished, it issues a “releasePort” operation. This feature allows components
to be replaced at runtime when not in use.

A Provides port is actually an interface of typed methods with typed res-
ults, and hence it is not a true data-flow model. However, CCA may be used
in a way that emulates the single-input-port style data-flow by making all
method calls have return type wvoid and viewing an invocation of the Uses
port as a push of data arguments to any connected Provides port. Several im-
plementations of the basic CCA model exist, and they cover a wide spectrum
of semantics. SciRun II [492] is one implementation of CCA that is designed
for both distributed and concurrent execution and is used for high-end visu-
alization. XCAT3 [245] is an implementation of CCA where the components
have Provides ports that are implemented as Web services. Both SciRun II
and XCAT3 support an actor style of data-flow graph similar to Ptolemy II,
Kepler, and Triana.

But the standard model of CCA usage is not to emulate data flow. The
types of graphs that typical CCA applications support are component control-
flow call graphs, as illustrated in graph c of Figure 12.1. The emphasis in CCA
is to provide a collection of language-neutral libraries of SPMD parallel com-
ponents that can be composed at runtime and that can execute as efficiently as
any parallel library. The standard CCA application has a root “driver” com-
ponent. This driver component uses its Uses ports to invoke services provided
by other components. The interaction is based entirely on a single thread of
control. When a component invokes a method on a Uses port, control passes
to the method implementing the interface on the Provides port of the com-
ponent that is connected. This component may invoke methods on its own
Uses ports, and the control is passed to the next connected component.

In most of the component systems we have described, concurrency is sup-
ported by the fact that one-way messages enable each component to run its
own thread of control. When a component sends a message to another compo-
nent, it may not need to stop and wait for a reply. The standard CCA model
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exploits parallelism in a completely orthogonal manner. A Single Program
Multiple Data parallel program is one where the data for the computation
have been divided into some number, say N, of pieces. Rather than running
the program with the entire data set, one copy of the program with one piece
of the data is executed on each of N processors. Because most problems cannot
be easily divided into N pieces that can be solved independently, the program
has to be modified so that information that is part of one part of the solution
can be shared with other parts. This is done with a standard message-passing
library such as MPI.

A standard model CCA SPMD parallel component is one that runs in par-
allel on a distributed memory cluster computer. It uses MPI message passing
to share data needed to complete its work, but this message passing is not
visible from outside the component. As illustrated in Figure 12.3, the CCA
program using this model is a sequential composition of these parallel com-
ponents.

Figure 12.3: A standard model CCA program is a sequential composition of
parallel SPMD components. All of the message passing in the computation is
contained within the components. With a sufficiently powerful library of such
components, programmers can build applications with little need to write
explicit message-passing code.

These are not the only examples of component architectures for scientific
computing. Important early examples include the Model and CODE frame-
works [312]. In visualization applications, the most important early example
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is the AVS system [266]. Webflow [51] was an early component model for dis-
tributed systems for scientific applications, and, more recently, the Discover
project [50] considers the problem in the context of Grid systems.

12.3.2 Bus-Based Composition

Another model for component composition is based on a different metaphor
from hardware design: Software components can be designed so that they
can be “plugged into a message bus.” The concept is simple and elegant.
The message bus is supplied by the component framework and is respon-
sible for delivering addressed messages to components. It does this by simply
broadcasting each message to each component. The components listen to the
message stream. The components that have a need to respond to messages
of a particular type or address can take a copy of that message and respond
by placing a new message on the bus. Many desktop graphical user interface
systems work on this model. Sun’s JXTA [64] is a good example of this model
in the distributed system case.

There are several different ways such a bus-based system can be organized.
One approach is to give each component a unique identifier that represents its
address on the bus. A message that is tagged with that address is delivered
to that component and no other. This approach makes it difficult for more
than one component to receive a message unless a copy is created for each,
but it does make it possible to build a family of components that are easily

message bus

LIT

Figure 12.4: Bus-based composition configures components as agents which
listen to messages broadcast over a message bus.
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assembled into applications that can be easily scripted. For example, suppose
you have three components A, B, and C. FEach is capable of reading a data
file, transforming it in some manner, and writing a new data file as a result.
One invokes the component by sending it a message with the address of the
input data file and the address of another component. When it completes, it
posts a message on the bus addressed to the other component. The applic-
ation can then be “programmed” with a fourth component S, which runs a
simple script which uses two primitives: one to send a message on the message
bus, outputPort.send(address, return-address, message), and one to wait for
a message to be delivered, message = inputPort. Read(). A Python-like script
to couple the three components together in a linear chain would look like:

outputPort.send("A", "S", "input_file_1_url")
outputFromA = inputPort.Read()
outputPort.send("B", "S", ouptutFromA)
outputFromB = inputPort.Read()
outputPort.send("C", "S", outputFromB)
outputFromC = inputPort.Read()

Using the full power of a full scripting language, one can easily build compo-
nent applications of arbitrary complexity.

Publish—Subscribe Composition

A more common approach to the design of message-based component systems
is based on a publish—subscribe (pub—sub) notification system. In these sys-
tems, each message has a topic, which is often just a string, but it may also
be a more structured object such as a path hierarchy. For example, a topic
may be userAction.mouseMove or userAction. ButtonPress. Once connected
to the framework bus, a component may then subscribe to events by topic
or topics. For example, a component may subscribe to timerEvents to receive
all events with this topic, or if a hierarchy is supported, a subscription to the
topic userAction.* would deliver all messages that begin with the userAction
prefix.

Application construction in a publish—subscribe component framework is
usually based on a more implicit form of control. One can add a component
to an application because there is a need to respond to an event. For example,
one component may occasionally publish an event signaling a special situation
such as a resource going offline. Responding to that event may require a special
action that must be taken by another component. In this example, this may
be a component that alerts an operator and finds a substitute resource.

12.4 Stateful and Stateless Components

A frequently debated issue regarding software component systems involves
when it is appropriate for a component instance to have state that is visible
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and persists between client invocations. By state, we mean invoking the com-
ponent instance may cause its behavior to change on subsequent invocations.
For example, suppose a component has an internal variable int x; that can be
accessed with a method int incrementAndReturn( ) that does z=x+1; return
x;. This has several problems. First, a client component may need to know the
history of prior calls to this component in order for the returned result to have
meaning. However, this is not always the case. If z is initialized to zero, then
the value returned is some measure of the number of previous invocations, or
it can be considered a “unique key” provided to the client. Is this a problem?

To answer this question, consider Web services as components. A service
is a stateless entity because it provides an abstract capability defined by a
document such as an abstract WSDL specification. A service instance is a
concrete binding of a service to a specific network endpoint. A service may be
provided by multiple service instances through a resolution mechanism that
resolves, at request time, a service URI to one of the instances that implement
the service. Therefore, if a client made multiple requests to a service, it would
not know which instance it was talking to from one invocation to the next.
Consequently, having state in the service instances would not be possible
unless that state was somehow shared between multiple instances. In fact,
this is a very common situation. For example, consider a service that provides
the current temperature at the airport in Bloomington, Indiana. The current
state of the temperature is held by an instrument that resides at the airport.
This instrument is an example of a resource managed by the service. Multiple
service instances can interrogate this resource and report the value as the
current temperature at the time of invocation.

Another example is a service that is an interface to your bank account.
The service may allow you to transfer funds between accounts or simply report
the balance in an account. Clearly, we all hope that our bank maintains an
accurate accounting of the state of our accounts. And we would insist that the
Web service instances that access and update our account do so with the most
reliable multiphase transaction protocols. We would not want the state of our
transactions to persist in the service instance because that would expose them
to fraud or loss. We never want a deposit to be lost because a service instance
crashed! If a deposit failed, we would want the transaction to be aborted and
the failure reported back to us. There are three important points here:

1. There is long-term state associated with the component, but it is not kept
by the component instance. The state is held by the resource.

2. To access this state, we must provide context, such as an account number.

3. The component instance may require an internal state to complete a mul-
tiphase commit protocol with the back-end resource, but this state is not
visible to the client and it does not persist between invocations.

In the Web services world, the concept of providing context to access the
resource state is one that has received considerable attention. WS-Context
and WS-Coordination provide protocols for establishing context for ordered
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transactions between groups of services. WS-Resource Framework is a family
of specs designed to provide a framework for modeling and accessing stateful
resources using Web services. This includes mechanisms to describe views on
the state, to support management of the state through properties associated
with the Web service, and to describe how these mechanisms are extensible
to groups of Web services.

12.5 Space and Time and the Limits to the Power of
Graphical Expression

The component design metaphor of laying out icons representing software
components onto a plane and connecting them together like electronic devices
so that they may interact with each other in response to external controls is a
powerful concept. As a metaphor, it is also very spatial in nature, and it allows
us to see how complex systems can be decomposed into comprehensible units
much better than trying to read through the linear source code that actually
represents the reality of a large system.

It is often argued that this composition-in-space model is not appropri-
ate for building large systems because a two-dimensional graph of a “real”
application would be too hard to read. But component architectures are also
naturally hierarchical. Most allow you to wrap up a network of components
and encapsulate it in a new component. This allows systems of great com-
plexity to be built from two-dimensional diagrams.

12.5.1 Workflow as Composition in Time

The concepts of a component architecture and workflow systems are obviously
closely related. While software component methods are applied to the entire
spectrum of software application development, the connection to scientific
workflow is very clear. If we take the definition of workflow orchestration to
be the activity of organizing the sequences of interdependent tasks that are
needed to manage a business or a scientific or engineering process, we can
see that this clearly relates to the composition of components in a component
framework. Each task is a component, and the composition of one component
with another in an output-to-input order is an acknowledgment of a temporal
ordering that is based on some type of dependency. A workflow instance rep-
resents the active plan to sequence a specific set of tasks to accomplish a single
goal. But the workflow template from which instance was derived from can be
applied to an entire set of independent enactments that may run concurrently
or in a pipelined or data-flow style.

Whereas the composition of software components into a single-program
executable address space is the domain of many software component systems,
workflow comes from the domain of automating human-scale processes that
are scheduled over time. Another difference between direct connection style
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component composition and most workflow systems is the way control is man-
aged. Connecting software components into explicit data-flow graphs that are
executed within a single system allows the control to be implicit and defined
by the local exchanges between components. This type of distributed, asyn-
chronous local control is a defining characteristic of a composition-in-space
model. However, if a system is physically distributed and composed of a het-
erogeneous collection of elements that interoperate over the Internet, then
completely distributing control is problematic because it is much more dif-
ficult to recover from faults. Hence workflow systems tend to be managed
by a central workflow engine that executes a control script (which may have
been compiled from a graphical representation). This central control script
interprets the component composition graph. It initiates the interaction with
each component and waits for its response. When the response is received, the
control script can proceed with the next action as determined by the inter-
component dependencies that define the workflow. If the completion of one
component interaction enables the invocation of more than one succeeding
component, then the control script can invoke them concurrently (either by
using a separate thread for each or by making nonblocking requests).

Having a centralized enactment engine that does all of the direct invocation
of component services may seem inefficient compared with distributed control.
But for most scientific workflows, which may run for very long periods of time,
this inefliciency is small compared with the advantage of having a single point
that can report on the status of the application and change the course of the
workflow enactment if necessary.

12.5.2 Limits to the Power of Graphical Expression

Many of the scientific workflow tools described in this volume are based on
providing users with a graphical composition tool. This is an extremely at-
tractive paradigm for programming scientific workflows, and it always raises
questions. How powerful is this concept? Is graphical composition of compon-
ents all that is needed for programming? In computer science terms, we are
asking whether these graphical programming systems are Turing complete. In
general, the answer to this question is “no.” There are many programming
activities that are impossible with most graphical systems. For example, most
graphical systems are unable to express exception-handling conditions. A more
fundamental limitation of many systems is the lack of facilities to create new
data types. The fact is that components and services are encapsulation mech-
anisms and what they encapsulate is either another workflow or component
graph or conventional computer code.

A complete component programming system requires not only mechanisms
to compose components but also ways to describe their interfaces and behavi-
ors. This may be an Interface Definition Language of some type, or it may be
an XML schema. For Web services, it is the Web Services Description Lan-
guage (WSDL). But to be truly useful, a system must have a way to build
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new components and a tool that can convert important legacy applications
into components that can be effectively reused.
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Petri Nets

Andreas Hoheisel and Martin Alt

In 1962, C.A. Petri introduced in his Ph.D. thesis [351] a formalism for de-
scribing distributed processes by extending state machines with a notion of
concurrency. Due to the simple and intuitive, but at the same time formal and
expressive, nature of his formalism, Petri Nets became an established tool for
modelling and analyzing distributed processes in business as well as the IT
sector. This chapter gives a brief introduction to the theory of Petri Nets and
shows how Petri Nets can be applied for effective workflow management with
regard to the choreography, orchestration, and enactment of e-Science applic-
ations. While choreography deals with the abstract modelling of applications,
orchestration deals with the mapping onto concrete software components and
the infrastructure. During the enactment of e-Science applications, runtime
issues, such as synchronization, persistence, transaction safety, and fault man-
agement, are examined within the workflow formalism.

13.1 Introduction

E-Science applications are usually composed of several distributed services
that are part of a specific process. The user or application developer has to
decide which services should be used in the application and has to specify the
data and control flow between them. We will use the term workflow to refer
to the automation of both control flows and data flows of the application.

In order to simplify the composition of workflows, it is mandatory to de-
scribe an application workflow in a simple, intuitive way. This section gives a
brief overview and classification of common approaches for describing work-
flows and compares these approaches with the notion of Petri Nets.

Existing workflow description languages can be grouped roughly into two
classes: Script-like workflow descriptions specify the workflow by means of a
textual “programming language” that often possesses complex semantics and
an extensive syntax, while graph-based workflow description languages specify
the workflow with only a few basic graph elements. Examples of script-based
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workflow descriptions are GridAnt [446] and Karajan (refer to Chapter 21).
These languages explicitly contain a set of specific workflow constructs, such
as sequence or while/do, in order to build up the workflow. Purely graph-
based workflow descriptions have been proposed (e.g., for Symphony [265]
or Condor’s DAGMan tool [97]) that are mostly based on directed acyclic
graphs (DAGs). Compared with script-based descriptions, DAGs are easier
to use and more intuitive for the unskilled user: Communications between
different services are represented as arcs going from one service to another.
However, as DAGs are acyclic, they offer only a limited expressiveness, so that
it is often hard to describe complex workflows (e.g., loops cannot be expressed
directly).

Another commonly used script-based approach to describe workflows is the
Business Process Execution Language (BPEL) and its recent version for Web
Services (BPEL4WS) that builds on IBM’s WSFL (Web Services Flow Lan-
guage) and Microsoft’s XLANG (Web Services for Business Process Design).
BPEL is described in more detail in Chapter 14. In comparison with Petri
Nets, BPEL has two main disadvantages. First, BPEL possesses complex and
rather informal semantics, which makes it more difficult to use formal ana-
lysis methods and to model workflows, especially for the unskilled end user.
Second, it has a limited expressiveness (in the sense of suitability); i.e., it does
not directly support some workflow patterns, such as arbitrary cycles [436].

13.1.1 Petri Nets

A Petri Net is one of several mathematical representations of discrete distrib-
uted systems. As a modelling language, it graphically depicts the structure of
a distributed system as a directed bipartite graph with annotations. As such,
a Petri Net has place nodes, transition nodes, and directed arcs connecting
places with transitions [467]. If one abstracts from capacity constraints, Petri
Nets are Turing complete.

There exist several different types of Petri Nets. A common classification
is based on a survey by [47], who distinguishes between three levels of Petri
Nets:

e Level 1: Petri Nets characterized by places that can represent Boolean
values; i.e., a place is marked by at most one unstructured token. Examples
of level 1 nets are Condition/Event (C/E) systems, Elementary Net (EN)
systems, and State Machines (SMs).

e Level 2: Petri Nets characterized by places that can represent integer
values; i.e., a place is marked by a number of unstructured tokens. Ex-
amples of level 2 nets are Place/Transition (P/T) Nets, ordinary Petri
Nets (PNs), and Free Choice Nets.

e Level 3: Petri Nets characterized by places that can represent high-level
values; i.e., a place is marked by a multiset of structured tokens. Examples
of level 3 nets are Colored Petri Nets (CPNs) and High-Level Petri Nets
(HLPNs).
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In order to model workflows in e-Science, it is very useful to relate the Petri
Net tokens with the real data that are passed from the previous to the fol-
lowing activity. The tokens of a level 1 or level 2 net are unstructured (not
distinguishable), so they do not carry any information besides their existence
and number. These nets are used to describe basic control and data flows but
are not suitable to model the data themselves. The tokens of a level 3 net,
however, can be used directly in order to store the exit status (control data) or
to model the input and output data (real data) of the previous activity, which
are then evaluated by a following activity or the condition of a transition. In
the following, we will introduce the basic Place/Transition Net (level 1 net)
and two commonly used extensions called Stochastic Petri Net and High-Level
Petri Net (level 2 net).

13.1.2 Place/Transition Net (P/T Net)

The basic Petri Net—also known as a Place/Transition Net or P/T Net—
consists of places (p, denoted by circles), transitions (t, represented by thick
vertical lines or rectangles), and directed edges (arcs) connecting places and
transitions or transitions with places, but not places and places or transitions
and transitions. An edge from a place p to a transition ¢ is called an incoming
edge of t, and p is called an input place. Outgoing edges and output places
are defined accordingly. Each place can hold a number of indistinguishable
tokens. The maximum number of tokens on a place is denoted by its capacity.
A distribution of tokens over the places of a net is called marking, which
represents the current state of the workflow. A transition is enabled if there
is a token present at each of its input places and if all output places have
not reached their capacity. Enabled transitions can fire, consuming one token
from each of the input places and producing a new token on each of the output
places. Consecutive markings are obtained by firing transitions. In P/T Nets,
each edge may be labeled with a weight that expresses how many tokens flow
through them at each occurrence of the transitions involved .

It should be noted that the Petri Net state transformation is local in the
sense that it involves only the places connected to a transition by input and/or
output arcs. This is one of the key features of Petri Nets, which allows the easy
description of distributed systems [279]. The execution of P/T Nets may be
nondeterministic since multiple transitions can be enabled at the same time.
If every transition in a Petri Net has exactly one input place and exactly one
output place, the net is in effect a state machine.

Developers often use P/T Nets to model the dynamic behavior of complex
systems. The places are related with certain Boolean state information (e.g.,
open, close, done, failed), and the state is regarded “true” if the corresponding
place contains a token. In level 2 nets, the tokens themselves do not carry any
additional information, so they model the existence of data or specific side
effects. P/T Nets are a good choice if you want to model the data and control
the flow of applications but not the data itself. In case the data flow explicitly
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Figure 13.1: Place/Transition Net that models a producer/consumer system
with unstructured tokens [369].

depends on the contents of the data, we recommend the use of High-Level
Petri Nets instead (refer to Section 13.1.4).

Figure 13.1 shows a P/T Net representation of a producer/consumer sys-
tem. The producer and consumer are connected via a buffer that has a capacity
of 100 tokens. At each iteration, the producer puts three tokens into the buffer
while the consumer removes two of them in a concurrent process.

13.1.3 Stochastic Petri Net (SPN)

Stochastic Petri Nets (SPNs) associate a firing delay, represented as a ran-
dom distribution function, with each transition. Different types of transitions
can be classified depending on their associated delay; for instance, immediate
transitions (no delay), exponential transitions (the delay is an exponential
distribution), and deterministic transitions (the delay is fixed).

Stochastic Petri Nets are mostly used to statistically analyze running sys-
tems (e.g., for probabilistic performance measures) and less to describe single
workflows. SPN performance evaluation is the modelling of the given sys-
tem using SPNs and generating the stochastic process that governs the sys-
tem’s behavior. This stochastic process is then further analyzed using known
techniques such as Markov chain models and Semi-Markov chain models. In
the context of e-Science frameworks, SPNs are used in complex workflow
scheduling problems. Detailed insights into Stochastic Petri Nets can be found
in [279].

13.1.4 High-Level Petri Net (HLPN)

One approach to using Petri Nets for the description of distributed workflows
in the context of Grid computing is to relate the tokens of a level 3 net with
classes and instances of real data by means of High-Level Petri Nets (HLPNs)
[18]. HLPNs allow for nondeterministic and deterministic choice simply by
connecting several transitions to the same input place and annotating edges
with conditions. HLPNs also make the state of the program execution explicit
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with tokens flowing through the net that represent the input and output
data as well as side effects. In contrast, DAGs only have a single node type,
and therefore data flowing through the net cannot be modelled easily. Using
the concept of edge expressions, a particular service can be assigned to a
transition, and conditions—also known as transition guards—may be used as
an additional control flow. The resulting workflow description can be analyzed
for certain properties such as conflicts, deadlocks, and liveness using standard
algorithms for HLPNs. High-Level Petri Nets are Turing complete because
they overcome the capacity constraints (unbounded places) and therefore can
do anything we can define in terms of an algorithm [437].
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a a a a
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Figure 13.2: High-Level Petri Net that models a producer/consumer system
for data objects of type a [369].

Figure 13.2 shows an example of an HLPN that models a produ-
cer/consumer system similar to that in Figure 13.1 but also capable of mod-
elling data types. This Petri Net specifies the control flow using unstructured
tokens (places “ready to produce,” “buffer empty,” and “ready to remove”)
and the data flow using tokens of type a (places “ready to deliver a,” “buffer
full” and “ready to consume a”).

Sections 13.2, 13.3, and 13.4 are based on the concept of High-Level Petri
Nets that is currently being used as the nucleus for workflow management in
several projects, such as the K-Wf Grid project [420], the Fraunhofer Resource
Grid [150,193], and Instant-Grid [213].

13.2 Choreography—Using Petri Nets for Modelling
Abstract Applications

Choreography—also known as dance composition—is the art of making struc-
tures in which movements occur, and it may also refer to the navigation or
connection of these movement structures [465]. Translated to the world of dis-
tributed e-Science applications, the choreography models and describes the
“movement” within applications on an abstract level. This section introduces
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the basic theory of Petri Nets and describes how they can be used in order to
assist the choreography of distributed e-Science applications.

A workflow description based on graphs does not necessarily mean that a
graphical user interface is required in order to compose workflows. Petri Nets
are in principle just mathematically well-defined entities that possess the nice
feature of having an intuitive visual representation that the user could, but
does not necessarily have to, use. In some cases, the user will actually never
be confronted with the visual representation of the graph; e.g., when the
abstract workflow description is composed automatically or if the Petri Net-
based workflow description is the result of an automatic mapping from another
workflow description format (e.g., performed by the BPEL2PN tool [191]).

13.2.1 Basics

In this chapter, we focus on High-Level Petri Nets (HLPNs), which were intro-
duced informally in Section 13.1.4. For a formal definition of HLPNs, please
refer to [370] or [222]. To model the workflow of a distributed application that
consists of a certain number of coupled software components or services is
fairly simple:

e Transitions represent software components and services or embedded sub-
Petri Nets.

e Places are placeholders for data tokens or control tokens.

e Tokens symbolize real data or control tokens. Control tokens represent
the state of the service and its side effects.

e Edges (arcs) define the data and control flow between the services and
software components.

e Fdge expressions specify the names of the service parameters. For ex-
ample, within a service-oriented architecture (SOA) based on Web Ser-
vices, edge expressions define a mapping between the input and output
tokens and their corresponding SOAP message parts.

e Conditions (transition guards) define additional preconditions that must
be fulfilled before the software component or the service is invoked. Nor-
mally, a condition is a function that maps input tokens onto a Boolean
value. The transition fires only if all its conditions are “true.” Conditions
are also used to resolve conflicts and decisions in nondeterministic work-
flows (see below).

With these few language elements, the Petri Net concept is suitable for mod-
elling the inputs outputs preconditions as well as the side effects for each
software component or service, as shown in Figure 13.3.

Figure 13.4 shows three simple examples of how to use Petri Nets for
modelling applications. In the first example (Figure 13.4a), the transition
represents a single service with two input parameters (z and y) and one output
parameter (result). The transition possesses a condition that depends on the
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input parameters x and y. The result of the service invocation will be placed
on the output place.

The second example (Figure 13.4b) shows how to build an if/then/else
construct: Each transition represents one branch of the decision. In the sense
of the Petri Net theory, the two transitions are in conflict because they com-
pete for the same token, as they share the same input place. This conflict is
solved by introducing two disjunctive conditions (condition and !condition).
If condition is true, then service f(x) will be invoked; if condition is false,
then service g(z) will be invoked.

A loop is shown in the third example (Figure 13.4c). The upper place
holds the token that represents the data to be passed from each iteration to
the next iteration. The token on the lower place contains the number ¢ that
is incremented after each iteration (i 4+ 1). If the initial value of this token is
i =0, then the service [(x) will be invoked N times.

Further information about how to express common workflow patterns us-
ing Petri Nets is available in [305] and [370].

begin sort outputData
C : input condition | gutput O
>
hasBeenSorted

Figure 13.3: Example Petri Net that models the input, output, precondition,
and effect (IOPE) of a sort transition.

r=f(x)
result=service(x,y)
% con mon
result
y r= g(x)
condition(x,y)
/condzzwn
@ (b) ©

Figure 13.4: HLPNs for single services (a), if/then/else branches (b), and loops
(c)-
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13.2.2 Case Study

In the following, we demonstrate the Petri Net approach using a real-world
example from the e-Science community. The Barnes—Hut (BH) algorithm [39]
is a widely used approach to compute force interactions of bodies (particles)
based on their mass and position in space; e.g., in astrophysical simulations. At
each timestep, the pairwise interactions of all bodies have to be calculated,
which implies a computational complexity of O(n?) for n bodies. The BH
algorithm reduces the complexity to O(n-logn) by grouping distant particles:
For a single particle in the BH algorithm, distant groups of particles are
considered as a single object if the ratio between the spatial extent of the
particle group and the distance to the group is smaller than a simulation-
specific coefficient 6 (chosen by the user).

For efficient access to the huge amount of possible groups in a simulation
space with a large number of objects, the BH algorithm subdivides the 3D
simulation space using a hierarchical octree with eight child cubes for each
node (or quadtree for the 2D case). The tree’s leaves contain single particles,
and parental nodes represent the particle group of all child nodes and contain
the group’s center and aggregated mass. The force calculation of a single
particle then is performed by a depth-first traversal of the tree. Figure 13.5
depicts an example partition and the resulting quadtree for the 2D case (see
[39] for further details and complexity considerations).

0, ©
° 0

Figure 13.5: Example of a typical e-Science application: The Barnes—Hut al-
gorithm and its octree partition of the simulation space.

We will now show how the workflow of this complex Grid application can
be expressed easily as an HLPN.

The computations for one timestep of the algorithm are decomposed into
a workflow containing six services, as shown in Fig. 13.6, which correspond to
the following steps of the algorithm:

1. Calculation of the spatial boundary of the simulation space. In order to
build the tree, it is necessary to know the boundaries of the universe to
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be simulated. This is done using the service compBB, which produces a
bounding box bb as output. Note that this bounding box is copied to two
output places for use by two other services. Also, the array of particles
part received as input is copied to a third output place, as it is also used
by the next service.

2. Indexing. In order to group particles that are nearby in space, the particle
array must be sorted so that nearby particles are also at nearby positions
in the particle array. As a first step for sorting, an index is computed for
each particle, based on its spatial location, using service index. The result
tPart is a particle array, where each particle has an index associated with
it.

3. Sorting. The particles are then sorted in ascending order of the index
computed in the previous step using the service sort. The resulting sorted
particle array sPart is used as input for two other services and thus copied
to two different output places.

4. Building the octrees. This step builds the octree representation of the
universe using the service treebuild. The resulting tree is used to group
particles for efficient access.

5. Force computation. In this step, the interaction of each particle with all
others is computed by the service interact. For each particle in sPart, the
octree tree is traversed and the force effect of the current node is added
to the velocity vector of the particle if the node represents a group that
is small enough or far enough away. If this criterion is not yet met, then
the eight child nodes are processed recursively.

6. Particle update. Finally, in the update service, for each particle, the current
particle’s position is updated according to the forces computed in the
previous step.

Each of the services can be executed remotely on parallel high-performance
Grid servers; e.g., as described in [17].

The workflow for a single timestep described above is executed iteratively
to evolve the simulated universe for a user-defined amount of time. The cor-
responding workflow is shown in Fig. 13.7.

O] @ ®

compBB index sort treebmld zntemct update

bb bb iPart C part @sPart art tree Clree iPart C part My, urt
bb E
) art

Figure 13.6: This Petri Net specifies the workflow for a single timestep of the
Barnes-Hut algorithm.
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part=loadParticles()

@—»IL result
part @Itgr uPart “\save(result)
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Figure 13.7: This Petri Net specifies the outer loop of the Barnes—Hut al-
gorithm. The transition bhlter represents the embedded sub-Petri Net shown
in Figure 13.6.

The single-iteration workflow is encapsulated in a composite transition
bhIter, which is executed in a bounded loop. Before the algorithm starts, initial
particle positions and velocities are loaded using the service loadParticles.
Also, the iteration counter is initialized with 0 using a transition that places
a 0 on its output place when executed. Finally the transition save is used to
save the result after N timesteps.

13.2.3 Workflow Description Languages Based on Petri Nets

The concepts, definitions, and graphical notations of High-Level Petri Nets
are standardized within the ISO/IEC 15909-1 standard [220]. Part 2 of this
standard (ISO/IEC 15909-2) [221] is currently available as a working draft and
specifies a so-called Petri Net Markup Language (PNML) [228] in order to es-
tablish an XML-based interchange format for exchanging Petri Nets between
different Petri Net tools. The PNML is a language for describing a pure Petri
Net together with its graphical layout; however, it is not possible with this
language to relate transitions with services or software components, or tokens
with concrete data, as is required for modelling and controlling real e-Science
applications. Therefore, Fraunhofer FIRST developed a Grid Job Definition
Language (GJobDL) that is based on PNML and possesses additional lan-
guage elements required in a Grid computing environment. The GJobDL has
been used extensively in the Fraunhofer Resource Grid [150] as a general Grid
workflow description language since 2002.

Based on the GJobDL, Fraunhofer FIRST and the University of Miinster
recently developed the Grid Workflow Description Language (GWorkflowDL)
in the context of the European project “Knowledge-Based Workflow System
for Grid Applications” (K-Wf Grid) and the European Network of Excel-
lence “CoreGRID.” Besides the XML schema, there are also Java tools for
creating, parsing, editing, and analyzing GWorkflowDL documents under de-
velopment [421].

Figure 13.8 graphically represents the XML schema of the GWorkflowDL.
The root element is called <workflow>: It contains the optional element
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Figure 13.8: Graphical representation of the GWorkflowDL XML schema (“?”

= 0...1 elements, “x” = 0...n elements, “4+” = 1...n elements, rectangle with
dashed line = attribute, rectangle with solid line = element).

<description> with a human-readable description of the workflow and sev-
eral occurrences of the elements <transition> and <place> that define the
Petri Net of the workflow. The element <transition> contains the child ele-
ment <operation>, which may be extended by platform-specific child ele-
ments, such as <WSRFExtension> and <JavaRMIExtension>, representing spe-
cial mappings of transitions onto particular Grid platforms. The elements
<inputPlace> and <outputPlace> define the edges of the net. Edge ex-
pressions are represented as attribute edgeExpression of InputPlace and
OutputPlace tags.

The XML document listed below specifies a workflow according to the
example represented graphically in Figure 13.3:

<workflow xsi:noNamespaceSchemalocation=
"http://www.gridworkflow.org/kwfgrid/src/xsd/
gworkflowdl_0_9.xsd">
<place ID="begin">
<token>
<soap>
<datal xsd:type="xsi:string">1 3 17 4 5</datal>
</soap>
</token>
<token>
<soap>
<data2 xsd:type="xsi:string">5 13 4 5 100</data2>
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</soap>
</token>
</place>
<place ID="outputData"/>
<place ID="hasBeenSorted"/>
<transition ID="sort">
<description>sorts strings or numbers</description>
<inputPlace placeID="begin" edgeExpression="input"/>
<outputPlace placeID="outputData" edgeExpression="output"/>
<outputPlace placeID="hasBeenSorted"/>
<condition>string-length($input/token)&gt;0</condition>
<operation>
<WSClassOperation>
<WSOperation owl="http://kwfgrid.net/services/Sort"
selected="true"/>
</WSClassOperation>
</operation>
</transition>
</workflow>

13.3 Orchestration—Using Petri Nets for Mapping
Abstract Workflows onto Concrete Resources

In the noncomputational world, the term “orchestration” stands for deciding
which instruments should play which notes in a piece of music. Orchestration
includes, in addition to instrumentation, the handling of groups of instru-
ments and their balance and interaction [466]. If you now replace instrument
by resource, play note by invoke operation, and piece of music by e-Science
application, then you get a nice definition of the term orchestration in the
context of e-Science. This section shows how Petri Nets can be used when
mapping abstract workflows onto concrete resources.

Figure 13.9 shows an example of such a mapping. Each workflow may pos-
sess a different abstraction level, ranging from an abstract user request to the
concrete workflow, which can be invoked directly on the available resources.
All these abstraction levels are represented by Petri Nets within a single work-
flow description language. The mapping itself is done by refining the Petri Net
(e.g., replacing a transition by a sub-Petri Net). The example in Figure 13.9
depicts the abstraction levels that are supported within the service-oriented
architecture (SOA) of the K-WT Grid project, as in the following list.

e Abstract operation. The user request represents a single abstract opera-
tion that still has not been mapped onto potential workflows. The output
places of the transition are linked to some metadata, which specify the
workflow result (data and side effects) requested by the user.
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e Web Service classes. The user request is mapped onto an abstract work-
flow, which consists of operations of Web Service classes. This abstract
workflow is independent from the concrete resources and represents the
functionality of the workflow. The automation of the composition of ab-
stract workflows is an ongoing research topic. Gubala et al. [183] used
matching of ontologically described resources in order to find classes of
Web Services that provide the desired output data and side effects.

o Web Service candidates. Each Web Service class is mapped onto matching
Web Service candidates that are currently available within the distributed
e-Science environment. An expert system could assist this matching pro-
cess [125].

o Web Service operations. From each list of matching Web Service candid-
ates, one concrete instance of Web Service operation has to be selected
and invoked. This is normally delegated to a scheduler, which optimizes
the selection of concrete Web Service instances according to a user-defined
policy, such as “fastest” or “cheapest.” In state-of-the-art e-Science envi-
ronments, the scheduling decision is based on performance prediction and
detailed monitoring data, such as computational load and network traffic.

It is worth mentioning that one workflow may possess different abstraction
levels at the same time— for example, if the refinement of the workflow is done
during runtime. In this case, only currently enabled transitions are mapped
onto concrete Grid resources, while the rest of the workflow remains abstract.
This is mandatory if a consecutive refinement decision depends on an inter-
mediate workflow result. In this case, it is not possible to build the concrete
workflow from the beginning—the orchestration is then an iterative or even
interactive process.

Figure 13.10 shows how the case study in Section 13.2.2 can be mapped
onto a service-oriented architecture (SOA). Each specific service of the
Barnes—Hut algorithm is deployed on a dedicated host, and it is up to the
workflow enactment service to synchronize the invocation of the remote Web
Service operations and to transfer the data from one service to the next, as
described in the next section.

13.4 Enactment—Using Petri Nets for Executing and
Controlling e-Science Applications

Petri Nets are used not only for modelling coupled and distributed applications
but also for executing the workflow directly on underlying middleware. In
order to enact a workflow due to its description, a service is required that
parses the abstract workflow description, maps it onto real resources (refer to
Section 13.3), and coordinates the execution of the corresponding activities.
The Workflow Management Coalition [479] uses the term workflow engine for
such a software service that provides the runtime execution environment for
interpreting workflows.
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Figure 13.9: Workflow abstraction levels as supported by the K-Wf Grid pro-
ject. All abstraction levels are represented as Petri Nets within a single work-
flow description language.

The development of a workflow engine based on Petri Nets is quite easy,
as it is a straightforward implementation of the Petri Net rules. Figure 13.11
shows the kernel process of the Grid Workflow Execution Service (GWES)
developed within the K-Wf Grid project. First, the workflow engine parses,
verifies, and analyzes the incoming workflow description. Next, the engine
collects all enabled transitions according to the mathematical definition of the
term enabled (refer to Section 13.1.2). For each enabled transition, a condition
checker evaluates the attached conditions (also known as transition guards). If
the condition is true and if the transition references a concrete activity, then
this activity is started (e.g., invoking a remote Web Service operation). If the
activity completes, then the corresponding transition fires; i.e., one token is
removed from each input place and the activity results (data, side effects)
are placed as new tokens on the output places. If the transition refers to
an abstract activity, then the transition has to be refined first as described in
Section 13.3. The new marking of the Petri Net enables subsequent transitions
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Figure 13.10: Example of the Barnes—Hut algorithm mapped onto a service-
oriented architecture (SOA).

and their corresponding activities. If there are no more enabled transitions, nor
active activities remaining in the workflow, then the workflow is completed.

A big advantage of Petri Net-based workflow engines is that they can pro-
cess almost every workflow pattern without modification of the software. The
Petri Net concept is very expressive and simple at the same time, and there
is no need to implement special functionality for workflow constructs, such
as loops, if/then clauses, and synchronization points. All these workflow con-
structs are supported implicitly by the Petri Net approach, and the workflow
engine itself does not have to bother about them if it implements the basic
Petri Net rules.

Figure 13.12 shows the Petri Net workflow enactment front end of the
Fraunhofer Resource Grid. The right panel gives a graphical representation of
the current workflow. The upper left panel depicts the XML document of the
workflow description. The lower left panel shows the geographical distribution
of the workflow on a map (here with four Fraunhofer Institutes involved in the
workflow). The user interface can be used either as a stand-alone application
or as a set of Java applets, which communicate with the workflow engine using
Web Service technology.

After having introduced the basic execution mechanism of a Petri Net
workflow engine, in the following we discuss further runtime issues, such as
workflow persistence, transactional workflows, and fault management.

In a nonreliable environment, workflows should be persistent; i.e., they
should be stored on nonvolatile storage during and after their execution. This
is required, for example, to reproduce workflow results or to checkpoint the in-
termediate workflow state in order to recover a workflow after a system failure.
Using the Petri Net approach, it is easy to achieve persistence, as the mark-



13 Petri Nets 205

’

verify/analyze workflowJ

v

collect enabled transitions J

§ ) no enabled transition: J

refine workflow
(resource mapping,
scheduler, user)

workflow completed

check condition

transition == abstract

\/

transition != abstract

start activity
(invoke Web Service operation)

if activity completed: fire transition |

Figure 13.11: The kernel process of a Petri Net-based workflow enactment
machine with automatic refinement.

ing of a Petri Net fully describes the state on the workflow level. Therefore
it is enough just to store the current workflow description document together
with the contents of the tokens in order to get a nonvolatile snapshot of the
workflow state. As there is no principal difference between the descriptions
of an initial and a running workflow, it is possible to just reload the stored
workflow description in order to recover a terminated or aborted workflow.

Transactional workflows are workflows that are either entirely completed
or aborted in order to guarantee the integrity of the workflow management
system. In general, this can only be achieved if each of the workflow’s activities
is transactional itself. In traditional database systems, transactions are spe-
cified according to the ACID properties (atomicity, consistency, isolation, and
durability) [219]. The ACID properties, however, are very difficult to guaran-
tee in a distributed environment with long-running transactions, so here the
so-called compensation transaction is often used instead, with limited roll-
back and isolation capabilities [56]. A Petri Net-based workflow engine could
support transactional workflows by recording the whole workflow history and
implementing a mechanism that calls the underlying compensation mechan-
isms of the invoked activities in order to roll back the workflow.

Petri Nets are appropriate to support implicit as well as explicit fault man-
agement mechanisms. Implicit fault management can be inherently included
in the middleware and is invoked either by lower-level services regarding fault
management of single activities or by higher-level services considering the
workflow of the e-Science application. This type of implicit fault management
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Figure 13.12: The Petri Net-based workflow enactment front end of the
Fraunhofer Resource Grid.

can be achieved by Petri Net refinement; e.g., by automatically introducing
a sub-Petri Net that restarts the activity if the submission or execution fails.
Explicit fault management in our definition refers to user-defined fault man-
agement. Within the Petri Net workflow model, the user defines the fault
management explicitly by including user-defined fault management tasks in
the Petri Net of the application. Hoheisel and Der [194] give more details
about how to model and enable fault management using Petri Nets.

13.5 Conclusions

Petri Nets are a well-established approach in computer science for modelling
and analyzing distributed processes, whereas many workflow management sys-
tems in the e-Science domain use other workflow formalisms, such as BPEL
and DAG. The reasons for this are on the one hand the strong influence of
industrial groups enforcing their own standards (e.g., BPEL) and on the other
hand the wish to keep things very simple (DAG). The Petri Net approach is,
nevertheless, a good candidate for becoming a vendor-independent standard
for graph-based modelling of e-Science workflows, as it has formal semantics—
which offer a profound theory background—and provides advanced analysis
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methods. An encouraging alternative is to base the workflow engine on Petri
Nets and to map other high-level workflow formalisms (e.g., BPEL, UML)
onto Petri Nets just before the workflow enactment. It is worth mentioning
that many commercial workflow management systems in the business process
domain are based on Petri Nets and that the semantics of UML 2.0 activity
diagrams have been strongly influenced by them.

There exist several classes of Petri Nets that are suitable for different pur-
poses. In order to apply the Petri Net approach to the choreography, orches-
tration, and enactment of real-world e-Science workflows, High-Level Petri
Nets (HLPNs) provide an adequate solution. However, we propose to extend
the classical definition of HLPN for this purpose. We introduce a special nota-
tion for conditions (using the XPath 1.0 standard) to facilitate reactive work-
flow management in addition to the control and data flows that are explicitly
modeled by the edges of the Petri Net. Transitions do not fire instantaneously,
as they represent the invocation of real-world software components or services.
The content of data tokens represents the real data that are produced by ex-
ternal software components or services. We use edge expressions to link places
with specific software component or service parameters.

One drawback of the Petri Net approach is the fact that the graph may
become very huge for complex and fine-grained systems. One solution to this
problem is the use of hierarchical Petri Nets, where one transition represents
a whole sub-Petri Net. The main application area for Petri Nets is in loosely
coupled systems that exhibit a certain granularity of components.
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Adapting BPEL to Scientific Workflows

Aleksander Slominski

14.1 Introduction

In this chapter, we examine the degree to which a de facto standard busi-
ness Web services workflow language, Business Process Execution Language
for Web Services (BPEL4WS), can be used to compose Grid and scientific
workflows. As the Grid application models, such as Open Grid Services Archi-
tecture (OGSA) [146], move toward Web services and service-oriented archi-
tecture (SOA) [135], supporting Web services is becoming a requirement for
a Grid workflow language.

There is a great potential value in leveraging an established workflow lan-
guage standard from the business domain, as it allows for a productive shar-
ing of workflow definition documents using commercial and open-source tools,
leveraging existing training and support, documentation, books, etc. BPEL,
even if it is not a primary workflow language in scientific projects, is a very
good candidate for a common language for sharing workflows between different
projects. (This can be achieved by allowing a workflow to export and import
BPEL workflows in scientific projects.) A high-level overview and more details
about differences between scientific and business workflows can be found in
Chapter 2.

In this chapter, we identify the requirements that we have found to be
important for scientific and Grid workflows that are not yet common in busi-
ness workflows and some that may never become commonplace in business
workflows (such as an experimental approach to constructing workflows). To
this end, we propose a set of additional capabilities that are needed in Grid
workflows and show how they can be implemented with a concrete example.

14.2 Short Overview of BPEL

The following is not meant to be a comprehensive treatment of the BPEL lan-
guage. Instead, our goal is to highlight key features and describe parts of BPEL



14 Adapting BPEL to Scientific Workflows 209

that are particularly important in the context of scientific workflows. Addi-
tional information can be easily obtained from many online sources, books,
and articles, and the BPEL specification itself is the best resource for all the
details.

14.2.1 Origins of BPEL

Business Process Execution Language for Web Services (BPEL4WS), when
created in 2002, replaced two workflow languages created earlier by IBM and
Microsoft. IBM’s Web Services Flow Language (WSFL) had a graph-oriented
view on how to describe workflows, and Microsoft’s XLANG represented a
more block-structured approach. BPEL merged both views and added ex-
tensive support for structural handling of errors with try/catch constructs
and compensation handlers. The initial 1.0 release of BPEL was followed in
2003 by version 1.1 [24], which clarified and improved several parts of BPEL
1.0. Later that year, BPEL was submitted to the Organization for the Ad-
vancement of Structured Information Standards (OASIS), and since 2004 it
has been standardized as WS-BPEL 2.0 [315]. The major change in version
number and changed name reflect that OASIS WS-BPEL 2.0 will be a major
revision and not fully compatible with 1.x versions. In this overview, we will

concentrate on BPEL4WS 1.1.

14.2.2 BPEL Capabilities

BPEL4WS is designed from the ground up to work with Web services, and
each BPEL workflow is a Web Service as well. This makes BPEL an easy fit
into Web services middleware and allows for easy composition of hierarchical
workflows: A BPEL workflow is a Web Service that can be used inside another
BPEL workflow that may again be used as a Web Service inside yet another
BPEL workflow.

BPEL allows one to describe a blueprint of a workflow (called an “abstract
BPEL”) that highlights important behaviors without specifying all details.
The intention is to allow the definition of publicly visible behaviors of a work-
flow, hiding details that may differ between implementations of a blueprint.
This is like an interface or a contract in programming languages. The abstract
BPEL is then implemented by a BPEL workflow that has all details filled in
(called “executable BPEL”).

BPEL mandates support for XPath 1.0 as an expression language to ma-
nipulate XML. XML schemas are supported as a type system that is mainly
used in Web Service Description Language documents (WSDLs) referenced by
BPEL workflows. WS-Addressing and asynchronous conversations are suppor-
ted with the ability to use message correlations to flexibly relate messages that
are part of a workflow execution. Those specifications provide a solid set of
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tools to manipulate XML messages, extract and combine parts of XML mes-
sages, describe and validate the content of XML messages, and route messages
to Web services.

BPEL has a strong set of control structures (loops, conditions, etc.) and
good support for catching and handling exceptions (faults) and reversing
changes by using compensations. Compensations are particularly important
for long-running workflows that need to “undo” changes in case there are un-
recoverable errors in services used by a workflow and global consistency must
be restored before a workflow is finished. Using traditional transactions may
not be an option, as long-running workflows could lead to transactional locks
being held for a very long time. BPEL is a control-driven workflow, but mod-
eling data-driven workflows that are translated to BPEL is possible (for more
details on the differences between the approaches, see Chapter 11).

14.2.3 Structure of The BPEL Workflow

The overall structure of the BPEL workflow is shown in Figure 14.1. A BPEL
workflow definition is inside a <process> element. This element is a container
for a set of other elements, such as <partnerLinks> and <variables>, and
one activity that is an entry point to a workflow (typically a <sequence>).

XML is a very verbose language, so in the interest of keeping examples
readable, we will use a simplified notation instead of XML. In this notation,
text indentation indicates a level of nesting of an XML element, and XML
attributes are simply listed after an element name as name=value pairs (pos-
sibly on multiple lines). We will also omit details that are not important for
a given example, such as “messageType” attributes for variables.

By using this compact notation, the example from Figure 14.1 can be
rewritten in a shorter form as shown in Figure 14.2.

14.2.4 The Most Common BPEL Activities
Basic Activities.

BPEL provides a set of simple constructs for sending and receiving messages.
A typical BPEL workflow will start with a <receive> activity and end with
a <reply> activity that sends a reply message to whoever sent initial mes-
sages that were received. It is easy to send a message to other Web services
(they are called partners in BPEL) by using the <invoke> activity. There
are two versions of <invoke>: the one-way version, when only inputVariable
is present; and the request-response version, when both inputVariable and
outputVariable are present in <invoke>.

Data Manipulation.

All messages in BPEL are contained in variables. Variables are passed between
BPEL activities. To copy and change the content of variables, <assign> activ-
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<process name="BpelProcessName" targetNamespace="..."
xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">
<partnerLinks>
<partnerLink name="partnerA"
partnerLinkType="wsdl:partnerALinkType"
myRole="myRoleInRelationToPartnerA"/>

</partnerLinks>
<variables>
<variable name="varA" messageType="wsdl:MessageA"/>

</variables>
<!-- this is executable part of workflow -->
<sequence>
<receive partnerLink="partnerA" portType="wsdl:partnerALinkType"
operation="doSomething" variable="varA" />
<assign>
<copy>
<from>$varA.someParameter</from>
<to>$varB.anotherInfo</to>
</copy>
</assign>
<invoke partnerLink="partnerB" portType="pb:anotherPartnerPT"
operation="doSomethingElse" inputVariable="varB"
outputVariable="varC" />
. <!-- here something more happens -->
<reply partnerLink="partnerA" portType="wsdl:partnerALinkType"
operation="doSomething" variable="results"/>
</sequence>
</process>

Figure 14.1: Outline of a BPEL process in XML.

ity can be used — it supports the XPath language to select and modify XML
content (other data-manipulation languages may be used as extensions to
BPEL, but only XPath is required).

Structured Activities.

BPEL has a set of structural activities similar to what is available in proced-
ural languages. Loops (<while>) and conditions (<switch> and <if> in BPEL
2.0) are supported. In addition to a block-level construct — <sequence> —
BPEL also supports starting multiple threads of execution in parallel by using
<flow>.
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process mname="BpelProcessName"
variables $varA, $varB,

partnerLinks "partnerA", "partnerB",
# this is executable part of workflow
sequence

receive partnerLink="partnerA"
operation="doSomething" variable="varA"

assign copy from $varA.someParameter
to $varB.anotherInfo

invoke partnerLink="partnerB"
operation="doSomethingElse" inputVariable="varB"
outputVariable="varC"

# here something more may be added

reply partnerLink="partnerA"
operation="doSomething" variable="results"

Figure 14.2: Outline of a BPEL process without XML.

Graph-Based- Workflows.

This last capability is a key to supporting graph-based composition. It is easy
to start many activities in parallel with <flow>, and BPEL allows one to
define graph-like dependencies between activities. Each activity (a node in
a graph) may have a set of incoming and outgoing links. For an activity to
start its execution, all incoming links must be enabled. When an activity is
finished, all of its outgoing links will be enabled, and that will enable related
incoming links for other activities and so on (additional details can be found
in the BPEL specification). This capability allows one to build any graph in
BPEL, and the interesting part is that BPEL allows the programmer to mix
structured and graph approaches in one workflow.

14.2.5 Limitations of BPEL

BPEL does not have a parallel loop. This is particularly important for sci-
entific code. If the number of iterations is constant, it is possible to use <flow>
to start multiple activities in parallel, but this approach does not work if the
number of iterations depends on an input to a workflow. A parallel loop can
be simulated with nonblocking invocations of a Web Service (that is, a BPEL
subworkflow), but such invocations are hard to track, and in general estab-
lishing communication channels between subworkflows and the main workflow
may be difficult (such as detecting when all subworkflows finished execution
successfully).

This and some other limitations of BPEL 1.1 (such as limited capabilities
of the <assign> activity) may be fixed in the upcoming OASIS WS-BPEL
2.0 when work on it is finished.
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14.3 Goals and Requirements for Scientific Workflows
in Grids

Based on our experience, we identified a set of requirements that are desir-
able for a scientific workflow language and a workflow execution environment
(typically called a “workflow engine”) for Grids. Those requirements can be
used to evaluate any Grid workflow language, and later we will use them to
see how BPEL meets requirements for a scientific workflow language in Grids.
However, they will vary in different domains. For example, see Chapter 16,
where requirements for semantic workflows are discussed, and Chapter 26,
with requirements identified in the SEDNA scientific modeling environment.

Generic Design Goals

Use of Standards. Standards help to increase the reuse of workflows and
help share parts of whole workflows. We believe that using an industry stan-
dard Web services workflow language is beneficial to scientific workflows. Be-
sides greater reuse and sharing of tooling, it also allows to leverage existing
knowhow in tutorials, documentation, and other resources available on the In-
ternet. Only when a standard workflow language does not meet requirement
of a scientific workflow (either for a generic or a specific scientific domain)
and such a language cannot be extended to meet requirements (or extensions
are too complicated) should a new workflow language be created. BPEL is
the current de facto standard for Web services based workflows in business
environments and therefore is a good candidate for a standard-based scientific
workflow language for Grids that use Web services.

Integration with Web Architecture. In addition to running workflows, a
Grid workflow engine should follow the general design of a Web Architec-
ture [428,455]. In particular, using URIs simplifies integration of information
resources maintained in a workflow engine with portals, scientific notebooks,
data management systems, and any other scientific or Grid tools. Using URIs
allows to reference workflows (and their parts) already stored in a workflow
engine. In particular, this makes it easier to integrate a workflow engine with
emerging Semantic Web standards [454] that use URIs to identify everything
and makes such semantically enriched information machine-understandable.

Integration with portals. A workflow engine should be easy to integrate into
an existing scientific portal. At a minimum, a workflow engine should expose
a set of monitoring and administrative operations that can be accessed by
portals as Web services. It would also be beneficial if a workflow engine used
Semantic Web data standards [454] and was easy to integrate with scientific
data management systems such as myGrid [308] and myLEAD [359].

Requirements Specific to Scientific Workflows

Integration with legacy code. In scientific workflows, it should be easy to use
components that are not Web services. This requirement can be met by either
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directly adding support for specific legacy or special execution capabilities or
by taking advantage of WSDL’s flexibility. Both choices are common. How-
ever, using WSDL as a common abstraction to describe a “service” that is
not necessarily a Web Service provides a uniform and elegant abstraction. A
service accessed from a workflow can be anything from a “real” SOAP-based
Web Service over HTTP to a service that is just an executable running loc-
ally. This is advantageous, as it simplifies a workflow language — it needs
only to describe the orchestration of services described in WSDLs. Also, us-
ing WSDLs makes a workflow description more abstract and resilient to minor
changes and allows the service implementation and location to be determined
at the moment when the workflow needs to access a WSDL-described service.
Apache Web Services Invocation Framework (WSIF [124]) is an example of
a runtime environment that allows seamless access to any service that is de-
scribed in WSDL and available over SOAP/HTTP, SOAP/JMS, as a local
Java object, EJB, and even as embedded scripts. The other possibility is to
embed actual code that interacts with legacy functionality into BPEL as an
extension (for example, the proposed BPELJ [207], which allows one to embed
Java code snippets into BPEL).

Experimental flexibility. A scientific workflow language and a work-
flow runtime environment should support a scientific laboratory notebook
paradigm. They should allow a user to construct and develop a workflow in-
crementally, add and remove steps in a running workflow, modify existing
workflow activities, allow repeat execution of workflow parts, modify work-
flow structure during execution, allow “branching” of a running workflow by
cloning its state, and other operations that may come up when creating and
running experiments. The exact set of capabilities depends on what is expec-
ted by the particular group of users that will be using Grid workflows.

History and provenance. A workflow execution environment for scientific
workflows should automatically record the history of a workflow execution. A
history log should have enough information to reproduce the workflow exe-
cution. That may include, but is not limited to, a time-ordered list of what
services were executed (with enough information to uniquely identify the ser-
vice instances used), what input and output messages were passed, or a record
of any modifications to the workflow state. This information should be used
to construct a full provenance record by an external service. It is also help-
ful if a workflow execution environment can use external provenance tracking
services.

Reuse and hierarchical composition. To encourage workflow reuse, it is
important that workflows be able to be used as parts in bigger workflows.
This can be enabled if workflows are Web services themselves that can be
part of other workflows. A workflow engine should support such composition
by exposing each workflow as a Web or Grid Service.

Support very long-running processes. We expect that some workflows will
be used to orchestrate Web and Grid services that may take very long periods
of time to complete. Therefore, it is very important that a workflow engine
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not only run and store the state of such workflows (so they can survive inter-
mittent failures) but that it will also be easy to find, monitor, and manage
such workflows.

Support running a very large number of workflows. In some scientific do-
mains, running experiments involves starting a very large number of short-
lived workflows. A workflow engine must provide capabilities to track all work-
flows started and make it easy to control them.

Grid-Specific Requirements

Accessing Grid resources. As it was mentioned before (in case of the legacy
code), it is possible to use WSDL abstraction to hide implementation details
of a service. The same approach can be applied to accessing Grid services
from a workflow language. In the case where a WSDL abstraction is not
used, a workflow language needs to have Grid-specific extensions to interact
with specific grid protocols to use Grid resources. Emerging standards such as
WSRF [100] provide a promising set of common and reusable WSDL protocol
bindings specifically geared for Grids.

Dynamic resources. Support for on-demand creation of resources such as
Grid services is essential. In addition to using WSDL abstractions to hide
access protocols, one should be able to dynamically create Grid services when
they are needed (for example, GFac [232]).

Designed for scalability. Nothing in the language design should prevent a
scalable implementation of a workflow engine.

Integration with Grid security One of the most important and fundamental
aspects of Grids is a requirement for strong and flexible authentication and au-
thorization. There are many approaches that are popular. Therefore, a work-
flow language and engine should not mandate one particular security model
but be flexible and open so that they can incorporate security capabilities as
extensions.

14.4 Tllustrative Grid Workflow Example

The LEAD (Linked Environments for Atmospheric Discovery [249]) is a Na-
tional Science Foundation large information technology research (ITR) pro-
ject that is creating an integrated, scalable cyberinfrastructure for mesoscale
meteorology research and education. Crucial to the success of LEAD is the
ability to not only compose services and data sources into applications but
make them dynamically adaptive. This requirement is described in LEAD as
Workflow Orchestration for On-Demand, Real-Time, Dynamically Adaptive
Systems (WOORDS [250]). Some of the desired capabilities include the abil-
ity to change configuration rapidly and automatically in response to weather,
continually be steered by new data, respond to decision-driven inputs from
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users, initiate other processes automatically, and steer remote observing tech-
nologies to optimize data collection for the problem at hand. Those goals
can be expressed as a more generic capability: Workflows that are driving
LEAD applications must be responsive to events and be able to adapt their
future execution paths (more details on workflows in LEAD can be found in
Chapter 9).

Many typical scientific workflows are long-running and are composed of
many steps, such as data acquisition, decoding, processing, and visualization.
Those steps may need to be repeated and run in parallel for many hours or
days before final results are available.
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Data Mining Event g Handler
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Figure 14.3: Persistent workflow that is monitoring data-mining events.

As an example, we take two workflows that illustrate types of workflows
that LEAD plans to use and describe them in a simple scenario. Let us assume
that we have a data-mining service that monitors real-time data streams and
detects potentially interesting patterns such as the formation of a tornado.
When such an interesting condition is detected, the mining service publishes
an event to a message bus service (that may support standards such as WS-
Eventing or WS-Notification). A user may choose to run a permanent and
persistent workflow that subscribes to data-mining events. A simplified graph
of such a workflow is shown in Figure 14.3, and in Figure 14.4 we show an
outline of a BPEL process for that workflow. The BPEL document has a list
of declared variables and a list of partner links. Each partner link represents
a Web Service that is either using the workflow or is used by the workflow (or
both). BPEL does not specify how the location of the partner is established,
and typically this is done statically in a workflow deployment phase. However,
more dynamic behavior to determine location of partners is possible (either
when a new workflow instance is created or even during workflow execution —
this is discussed in more detail later when the workflow life-cycle is described).
When an instance of this sample workflow is created and starts running, the
first activity executed is <sequence>. Then each activity inside sequence is
executed, beginning with the first assignment. We have used short notation
for <assign> ($running = true) to show that true is assigned to a variable
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process name="PersistentMonitoringWorkflowForUserFoo"
variables $running, $stopMsg, $workflowName, $subscribeMsg,
partnerLinks "WorkflowUser", "EventBus", "DataMining",
sequence
$running = true
assign from partnerLink="DataMining"
endpointReference="workflowEventConsumer"
to "$subscribeMsg/wse:DeliveryTo/wse:NotifyTo"
invoke name="SubscribeToEventService" partnerLink="EventBus"
portType="wse:EventSource" operation="subscribe"
inputVariable="subsrcibeMsg" outputVariable="subscribeResponse"
flow # two parallel sequences
sequence
receive name="ReceiveStopMessage" partnerLink="WorkflowUser"
variable="stopMsg"
$running := false
sequence name="RunSequence"
while $running is true do
sequence
$workflowName := "EventHandlingWorkflow"
receive name="ReceiveEv" partnerLink="DataMining"
variable="event"
invoke name="StartEventHandlerWf" partnerLink="WorkflowEngine"
portType="wse:EventSource"
operation="startNewWorkflowInstance"
inputVariable="workflowName"
outputVariable="workflowLocation"
assign from $workflowLocation
to partner "EventHandlerWorkflow"
invoke name="InvokeEventHandlerWorkflow"
portType="wse:UserWorkflow" operation="processEvent"
inputVariable="event"
exit # quit workflow

Figure 14.4: Outline of BPEL document describing example workflow.

named “running.” The second <assign> in the sequence is used to copy the
location (“endpoint reference”) of the workflow Web Service (as mentioned
before, when a BPEL workflow is started it becomes a Web Service) to the
“subscribeMsg” variable. This variable holds the content of a message that is
sent to the data-mining service to subscribe for events. Sending the message
is accomplished by the <invoke> operation. This is request-response invoca-
tion (it has both input and output variables) and is a blocking operation; i.e.,
further workflow execution of this thread is stopped until a response arrives.
The response may be either a response message, in which case its content is
copied to the output variable, or it may be a fault message. BPEL has soph-
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isticated support for handling faults, but in this example it is not needed and
the default behavior works well. By default, if a fault happens, the workflow
instance is terminated with an error and the workflow execution environment
may notify a user about an abnormal termination of the workflow.

The next activity executed in the sequence is <flow>. It splits execution
into two parallel threads. The first one will immediately block on <receive>.
When this workflow Web service receives “stopMsg” then this thread will
unblock and set the “running” variable to false. Since this is the last activity
in the flow sequence, this thread will be terminated. The other thread started
in the flow is more persistent. We have a <while> that keeps executing until
the “running” variable becomes false. In this loop, the <receive> will block
until an event is received from the data-mining service. If more than one
event is received and the workflow is busy, then events are put into a queue
and no event is lost. The next activity in the loop creates a new workflow
instance by calling a workflow execution service (workflow engine) to create a
workflow instance identified by the “EventHandlingWorkflow” string. When
the workflow instance is created, it may be further configured (as explained
later in the description of workflow life-cycle), but in this example we just
use the new workflow location to invoke it. This invocation is one-way (no
output variable), so there is no need to wait for the result of the invocation
and the loop can continue. When the “running” variable becomes false (after
receiving the stop message in the other thread), the loop will be exited. This is
not an optimal solution, as the loop may still be blocked, waiting to receive an
event. Unfortunately, BPEL does not have the capability to interrupt blocking
waits (still, some BPEL implementations may allow one to configure timeouts
for blocking receive/invoke, and, in such a case, a workflow will eventually
finish). For simplicity, we could just use <exit> in the thread that received
a stop message (as shown in Figure 14.3), but in this example we show how
multiple threads inside a BPEL workflow instance can communicate by using
shared variables (as it is an interesting capability to have in more complex
workflows).

When an event is received, the workflow will start other workflows (“Event-
HandlingWorkflow”) such as the one depicted in Figure 14.5. This event hand-
ler workflow may finish quickly (when the event is deemed “uninteresting”),
or it may continue running a for long time to determine if anything interest-
ing happens. That may lead to generation of other events that may trigger
execution of other workflows and eventually sending of an urgent notification
to a user that something like a tornado is happening with a high probability.

In Figure 14.6, we have an example of BPEL code to implement the work-
flow graph shown in Figure 14.5. As we see in those examples, BPEL is capable
of describing complex workflows, but more than a workflow language is needed.
An important part of a workflow execution is monitoring. Users should be able
to determine the state of the workflows they started. Users may want to know
what workflows are waiting for services, what the intermediary results are,
ete.
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Figure 14.5: Workflow instance launched in response to a data-mining event.

When something interesting is noticed in a workflow, a user should be
able not only to steer the workflow execution (start, stop, pause) but also to
modify either the state of one particular workflow or a whole group of similar
workflows. This is an important requirement for a workflow execution envi-
ronment in LEAD: Workflows are built incrementally and can be modified by
a user even when they are running (we depict some possible modifications in
the second workflow by drawing them with dashed lines in Figure 14.5). The
user can add new steps or rearrange existing steps to meet new requirements.
Workflows are frequently changing, reflecting what the user wants to get done.
This experimental flexibility fits well in the scientific lab notebook paradigm
mentioned under requirements. For example the user may add a new visu-
alization step to the second workflow or modify the first workflow to launch
another experimental workflow on a dedicated resource in response to events
under some conditions. This experimental capability is part of a workflow en-
gine and not a workflow language (BPEL) but nonetheless is important for
running scientific workflows in Grids.

14.5 Workflow Life-Cycle on an Example of a GPEL
Engine

We will now continue to delve into our example to see how aforementioned
goals and requirements can be met. To make the description very con-
crete, we use the Grid Process Execution Language For Scientific Workflows
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process name="EventHandlingWorkflow"
sequence
receive name="ReceiveEvent" partnerLink="WorkflowCaller"
variable="event"
if condition $event.probability < 50.0 then
sequence
invoke name="WeatherSim" partnerLink="WeatherSimulationExecution"
portType="fw:FastWeatherSim" operation="runFastCheck"
inputVariable="event" outputVariable="runResults"
invoke name="SendResults" partnerLink="DataMiningService"
portType="dm:DataMining" operation="runDataMining"
inputVariable="runResults" outputVariable="sendStatus"
else
flow # start 3 parallel activities
invoke name="ModelVerification" partnerLink="ModelVerification"
portType="fw:ModelVerification" operation="verify"
inputVariable="event" outputVariable="verificationResults"
invoke name="WeatherSim" partnerLink="WeatherSimulationExecution"
portType="fw:WeatherSim" operation="runExtensiveModel"
inputVariable="event" outputVariable="runModelResults"
sequence
$notifyMsg/userName = "foo"
$notifyMsg/event = $event
invoke name="NotifyUser" partnerLink="NotificationService"
portType="dm:UserNotificationService"
operation="notifyUser" inputVariable="notifyMsg"
exit

Figure 14.6: Outline of BPEL document describing example event-handling
workflow.

(GPEL4SW) environment developed at Indiana University. Following the re-
quirements for standards and reuse, we use BPEL. GPEL4WS consists of two
parts. The first part is the GPEL language, defined as a subset of the BPEL
1.1 language. We are gradually expanding the supported subset with the goal
of supporting the final version of the OASIS WS-BPEL 2.0 standard in future
versions of GPEL. However, as BPEL is still under a standardization process
in OASIS, for now we provide a stable set of semantics by freezing the set of
BPEL constructs in GPEL namespace.

When compared with BPEL4WS, GPEL4SW adds support for Grid-
oriented life-cycle and workflow management operations (those were inten-
tionally left out of the BPEL4AWS standardization scope). The GPEL4WS
API has a set of standard XML messages that can be used to find capabilities
of a workflow engine, deploy workflows, start them, and control their execu-
tion. This workflow life-cycle is described in detail in the following sections.
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14.5.1 Workflow Composition

There are many tools that can be used to prepare BPEL workflows. They
range from simple or advanced XML editors (sometimes with XML schema
support to assist in XML creation) to graphical tools that provide an intu-
itive GUI to compose workflows by connecting Web services in a graphical
way by hiding from users the XML text of the BPEL process and generat-
ing XML automatically when needed. Because graphical tools operate on a
higher level of abstraction, they usually support only a subset of the BPEL
language and provide functionality that is specialized for certain groups of
users. For example, Sedna (see Chapter 26) provides a convenient GUI to
manipulate high-level abstractions such as an indexed flow construct (a rep-
resentation of a parallel loop construct that is not available in BPEL) and
supports visual macros and plug-ins to reuse fragments of BPEL code. In
LEAD, we developed XBaya Workflow Composer [382], which provides an
intuitive GUI tool to compose Web services and generate BPEL or GPEL
workflows. XBaya provides an extensible library of LEAD services and allows
a user to drag-and-drop services and connect them together. In addition to
workflow composition, XBaya allows monitoring and visualizing workflow ex-
ecution (for example, visual cues, such as colors, are used to show the state
of services during execution).

14.5.2 Workflow Engine Introspection

The way a client discovers the capabilities of a workflow engine differs greatly
from one implementation to another. Typically there is no mechanism to dis-
cover capabilities of a workflow engine, but the capabilities of a particular
workflow runtime installation are known beforehand. In the GPEL4SW API,
we specified the discovery process by defining an extensible way to do a work-
flow engine introspection. This makes it easier for clients to interact with
different GPEL implementations and to discover additional capabilities. The
discovery is performed by obtaining (typically using HTTP) an introspection
XML document. This document describes capabilities of a GPEL engine. For
example, one of the capabilities is a location where new documents can be
created inside the GPEL engine. When a workflow deployment tool (such as
the XBaya Workflow Composer) is deploying a workflow to a GPEL engine,
it must first obtain an introspection document to find a location where the
deployment documents can be created (see Section 14.5.3 for details). The
location of the introspection document can be found in multiple ways. It can
be hard-coded into the client software, but a more flexible approach is to allow
a user to specify the location of a workflow engine. This location may point to
a Web page that contains a link to the actual GPEL introspection document.
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14.5.3 Workflow Deployment

Before a workflow can be started it needs first to be deployed. The deploy-
ment process defines how to associate Web services (described in WSDLs) and
the actual workflow process definition (BPEL/GPEL) together. There may be
additional deployment-specific options, such as security (who can start work-
flows), that must be specified. This process is not standardized in the BPEL
specification, as it was declared out of the scope of BPEL. As a consequence,
the way the deployment is accomplished in different BPEL engines varies
greatly between implementations. This is actually good for Grids, as it allows
us to define a deployment process that fits the dynamic requirements of Grid
environments.

<entry xmlns="http://www.w3.org/2005/Atom">
<title>GPEL template for Workflow Foo</title>
<summary>GPEL template for Workflow Foo.</summary>
<content type="application/x-gpel+xml">
<template xmlns="http://schemas.gpel.org/2005/grid-process/" />
</content>
<link rel="http://schemas.gpel.org/2005/wsdl"
href="http://gpel.example.org/foo.wsdl"/>
<link rel="http://schemas.gpel.org/2005/gpel"
href="http://gpel.example.org/foo.gpel"/>
</entry>

Figure 14.7: An example GPEL workflow template.

The deployment process in BPEL engines is implemented by sending a
set of XML documents, which includes, at a minimum, a definition of BPEL
workflow, but also typically includes WSDL files for all partners and related
partner link types. Sometimes, instead of sending documents, only their loca-
tions (URLs), are sent during deployment. There are many protocols that can
be used in a BPEL engine for deployment, and they range from simple HTTP
POST and SOAP over HTTP to specialized binary protocols. A particular
BPEL engine may provide a programmatic API to do the deployment, but
there may also be no way to do programmatic deployment if the deployment
is done from a GUI application or a servlet that uses proprietary mechanisms
for deploying workflows.

We believe there is a very simple way to do BPEL workflow deployment
and that it may have a chance to be supported in multiple BPEL implemen-
tations eventually. It seems that the simplest way to do deployment is to use
HTTP POST and send all workflow-related documents to the workflow en-
gine. That is how we defined deployment for GPEL. First, a client application
needs to send all documents to a GPEL engine (i.e., WSDL and BPEL/GPEL
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process definitions). The documents are stored in the GPEL engine, and each
one gets a unique URL. Using URLs simplifies the linking of documents (and
is consistent with the requirement of using Web Architecture). When the doc-
ument is stored in the GPEL engine, it is validated (so no invalid BPEL or
GPEL workflow definitions can be executed, and errors should be reported as
early as possible). The last step of the deployment is to create a simple XML
document that describes how to link different documents into a workflow tem-
plate (see Figure 14.7). The GPEL workflow template has all the information
that is necessary to create workflow instances. The GPEL engine will check
that inside the template document there is a link to the workflow document
(BPEL or GPEL) and will validate that all required WSDL port types and
partner link types are present (actual service bindings and locations can be
set later during workflow instance creation). This step finishes deployment.

14.5.4 Workflow Instance Creation

We recommend separating the workflow creation step from actual workflow
execution. This is different from what is described in the BPEL specifica-
tion, where workflow instances are created implicitly when a message marked
as “createlnstance” is received. Making the process explicit allows for fine-
grained control over a workflow instance execution environment. However,
both approaches can be supported in one workflow engine.

The separate step of workflow instance creation allows one to set up the
workflow instance to use specific Grid or Web Service instances. This is very
important in Grid environments where a workflow instance may be part of a
bigger application and will run on dedicated Grid resources requiring a special
workflow setup for each execution (such as creation of security credentials and
allocation of cluster nodes).

The GPEL workflow instance document, similarly to the GPEL template
document, is deployed by using HTTP POST and essentially contains a set
of links. The most important link in the workflow instance document is to the
workflow template that this workflow instance “implements.” A user must
replace abstract WSDLs (if any) with concrete WSDLs and can replace any
WSDL used in deployment with a new version that points to a service instance
to use just for this workflow instance.

Workflow Instance State

A workflow when running is stateful, and its state is similar to a state in
a typical program: There is a set of threads, and each thread has a set of
variables. A BPEL engine needs to maintain a set of variables that are scoped
(and in this way similar to local variables in a thread), list of active threads
of execution, and what each thread is doing: What activity is executing? Is it
blocked waiting for a response? What messages are in outgoing and incoming
queues? And so on (see Figure 14.8).
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Figure 14.8: GPEL workflow instance state.

Using XML is a very convenient way to expose the workflow state. This
not only allows to monitor the state of a workflow instance execution, but a
user or an automatic tool (such as a case-based reasoning system or a semantic
agent) may modify a running workflow simply by modifying XML documents
describing the workflow state. If both the workflow process definitions (BPEL
document) and a workflow instance state document are modified by a user,
then this is not just a simple modification of variables or what activity the
workflow is executing (as in a debugger) but can be a structural change to
the workflow (such as adding new activities).

14.5.5 Workflow Execution

At this point, after a workflow composition, deployment, and creation of a
workflow instance, we have a running workflow. The workflow execution is the
part that is the most important for taking full advantage of Grid resources.
A Grid workflow engine must be able to request and create Grid resources
on-demand. This can be accomplished by leaving the decision about what
service to use to the very moment when the workflow engine needs to send a
message to a Grid service. At that point, the service may be created on the
best available resource and used by the Grid workflow engine.

Workflow Instance Control

The workflow instance state document contains all information pertaining to
a workflow execution. An interesting consequence is that a user is able to go
back in time to any previous state of workflow and continue execution from
that moment by requesting that the GPEL engine use a previously stored
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workflow instance state document. This is particularly useful to allow “clon-
ing” of workflow execution: A user can explore possible execution paths by
storing a workflow instance document and creating a workflow instance clone
to experiment with an alternative execution path. This capability is limited
by the level of support from services used by workflow instances — in par-
ticular, services used by the workflow may need to support checkpointing. In
a more traditional sense, the workflow state can be monitored to do debug-
ging and, in particular, to request a step-by-step execution of the workflow
instance. This is a very useful capability that can be used even by nonpro-
grammers when a suitable high level user interface is provided. For example,
the metaphor of VCR remote start/pause/resume/stop buttons may be used.
In our example, the persistent workflow (Figure 14.3) when started will con-
tinue running until a stop message is received. At any point, a user can request
the workflow engine to pause the workflow execution and then examine the
workflow state, make modifications, and either resume or step through the
workflow execution.

The state of a workflow execution is not complete without knowing what
messages were received and sent to Web services used during a workflow exe-
cution. A user should be able to view and modify messages and the location of
Web services used in a workflow instance and request resending of a message
to a failing service.

In our example, the second workflow that is launched to handle a data-
mining event is more experimental in its nature. The intention is that a user
may tailor a workflow execution to particular needs related to an event re-
ceived by that workflow instance. As an example, a user may want to steer
what the workflow instance is doing or even add new activities to the workflow
(such as invoking a visualization service).

14.6 Challenges in Using BPEL in Grids

BPEL meets the generic requirements identified in Section 14.3 quite well: It
is becoming a leading standard for Web services workflows and can be well
integrated with Web Architecture and with portals. The current limitations
of BPEL, such as poor support for running a large number of parallel sub-
workflows, are either addressed in OASIS WS-BPEL or can be overcome by
providing a higher-level language that is then translated into BPEL XML for
workflow execution.

Other goals and requirements are independent of the choice of BPEL as a
scientific workflow language — they have more to do with actual implementa-
tion of a workflow engine. First there are performance goals (such as scalabil-
ity, clustering, administrative interface, etc.) that are generally desirable and
become even more important in Grid environments that require support for
dynamic resources and Grid security. As many scientific workflows may take a
long time to complete and scientific experiments may require running a large



226 Aleksander Slominski

number of workflows, persistence is a desirable feature of a workflow engine
implementation. A scientist should be able to start workflows and not worry
that if a machine running the workflow engine is rebooted all work will be
lost (and may need to be redone).

Some requirements are specific to scientific workflows. One is supporting
history and provenance tracking. The other is experimental flexibility — many
scientific workflows may never be “finalized” but need to be incrementally
refined and modified during their execution. This capability is particularly
important for long-running workflows where restarting (and losing all results)
is not a good way to make changes in a workflow.

We hope that we showed that BPEL is a viable choice for a Grid work-
flow language but a BPEL workflow engine needs additional capabilities to
meet requirements common in Grids. To this extent, we have shown, using the
GPEL4SW as an example, how to define a set of simple XML documents that
can be used to control the life-cycle of a workflow and, in particular, allow
monitoring and steering of a running workflow instance. By defining a set of
simple XML documents, we hope to increase the chances that such a work-
flow engine API will be used in different middleware applications (including
portals) and that it may be implemented by other scientific workflow engines
used in Grids.

The main challenges are in the area of interactions with legacy scientific
code and Grid services. Approaches such as WSIF or BPELJ can help make
BPEL workflows interact with non-Web services, but only time will tell
how well they meet the requirements of scientific workflows. BPEL supports
extensibility, so it is possible that in the future some extensions may become
de facto standards for scientific BPEL in Grids.
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Protocol-Based Integration Using SSDL and
w-Calculus

Simon Woodman, Savas Parastatidis, and Jim Webber

A “service” has become the contemporary abstraction around which modern
distributed applications are designed and built. A service represents a piece
of functionality that is exposed on the network. The “message” abstraction
is used to create interaction patterns or protocols to represent the messaging
behavior of a service. In the Web services domain, SOAP is the preferred
model for encoding, transferring, and processing such messages.

The SOAP Service Description Language (SSDL) is a SOAP-centric con-
tract description language for Web services. SSDL provides the base concepts
on top of which frameworks for describing protocols are built. Such protocol
frameworks can capture a range of interaction patterns from simple request—
response message exchange patterns to entire multiservice workflows within a
composite application.

In this chapter, we will introduce the main features of SSDL and its sup-
ported protocol frameworks. We will focus on the Sequential Constraints (SC)
SSDL protocol framework for capturing the messaging behavior of Web ser-
vices acting as part of a composite application or multiparty workflow. The SC
SSDL protocol framework can be used to describe multiservice, multi message
exchange protocols using notations based on the m-calculus. By building on a
formal model, we can make assertions about certain properties (e.g., liveness,
lack of starvation, agreed termination, etc.) of workflows involving multiple
Web services. We will also provide a use case detailing how SSDL can be used
in partnership with Windows Workflow Foundation.

15.1 Introduction

SOAP is the standard message transfer protocol for Web services. However,
the default description language for Web services, Web services Description
Language (WSDL) [457], does not explicitly target SOAP but instead provides
a generic framework for the description of network-exposed software artifacts.
WSDL’s protocol independence makes describing SOAP message transfers
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more complex than if SOAP had been assumed from the outset. WSDL’s
focus on the “interface” abstraction for describing services makes it difficult
to escape the object-oriented or remote procedure call mindset and focus on
message orientation as the means through which integration is achieved.

The SOAP Service Description Language (SSDL) [336-338] is an XML-
based vocabulary for writing message-oriented contracts for Web services.
SSDL focuses on the use of messages combined into protocols (arbitrary
message-exchange patterns) to describe a SOAP-based Web service and is
intended to provide a natural fit with the SOAP model.!

The SOAP processing model [390] in turn provides the fundamental archi-
tectural constraints for the Web services stack, as shown in Figure 15.1. While
the stack itself is unremarkable, it serves to make the strong point that all Web
services must support SOAP and that services interact through the transfer of
SOAP messages. That is, in a Web services based environment (which includes
workflows composed from Web services) we assume that other communication
means, such as Remote Method Invocation (RMI) [400] and Common Object
Request Broker Architecture (CORBA) [322], are merely transport protocols
for the transfer of SOAP messages. Such protocols are thus out of scope and
do not impact the transfer of messages within the Web services domain.

The work presented in this chapter is specifically bounded by the SOAP,
metadata, and process choreography layers from the diagram in Figure 15.1.
While the SOAP layer provides the fundamental architectural constraints to
a service, the process choreography layer orchestrates the workflow at a global
(or application) level. However, it is the introduction of SSDL at the metadata
level that enables choreographies to enlist SOAP-based Web services and be
able to determine in advance whether the message exchanges supported by
the chosen services will lead to workflows that complete in consistent, safe
states.

The remainder of this chapter shows how SSDL, and particularly the Se-
quential Constraints SSDL protocol framework, achieve the goal of support-
ing the description of a contract for services involved in multiparty workflows,
where the capabilities of a service in one part of the workflow must be matched
by capabilities of other services in that workflow. Section 15.2 defines the basic
service-oriented model that is espoused by the SOAP processing model. Sec-
tion 15.3 introduces SSDL contracts and how they can be extended through
protocol frameworks. Section 15.4 provides an in-depth look at the Sequential
Constraints (SC) SSDL protocol framework and highlights its relationship to
the m-calculus. Section 15.5 presents a use case of how SSDL and the SC
protocol framework can be used in a typical multiservice e-Science scenario,
while Section 15.6 relates the N-way contract framework that SC provides to
emerging Web services middleware technology. Final remarks and conclusions
about the utility of SC are provided in Section 15.7.

1 Tt is assumed that a “Web service” by definition must support SOAP as its native
message-transfer protocol.
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Figure 15.1: The Web services stack (adapted from [292]).

15.2 Service Orientation

While service orientation is not a new architectural paradigm, the advent
of Web services has reinvigorated interest in the approach. It is a common
misconception that Web services are a form of software magic that automat-
ically corrals an application architect toward a scalable, robust, dependable,
and loosely coupled solution. Certainly it is possible to build service-oriented
applications using Web services protocols and toolkits to meet such quality-
of-service requirements, but, as with any approach and suite of technologies,
this is possible only after carefully considering the solution’s design and by fol-
lowing the right architectural principles. Furthermore, the use of Web services
technologies does not implicitly lead to a service-oriented solution; indeed Web
services based distributed applications could be architected according to the
principles of other paradigms, such as resource or object orientation.

As researchers and developers have rebranded their work to be in vogue
with the latest buzzwords, the terms “service” and “service-oriented archi-
tecture” (SOA) have become overloaded. In what follows, we treat a service
as the logical manifestation of some application logic that is exposed on the
network. Such a service may encapsulate and provide access to any number of
physical or logical resources (such as databases, programs, devices, humans,
etc.). A service’s boundaries are explicit, it is autonomous, it exposes message
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schema information, and its compatibility with other services is determined
through metadata information such as policies and protocol description con-
tracts [292]. The interaction between services is facilitated through the explicit
exchange of messages. We treat the message abstraction as a first-class citizen
of service-oriented architectures and we promote message orientation as the
paradigm of choice for enabling the composition of services into workflows.

A service such as that shown in Figure 15.2 consists of some resources
(e.g., data, programs, or devices), service logic, and a layer responsible for the
processing of incoming and outgoing messages. Messages arrive at the service
and are acted on by the service logic, utilizing the service’s resources (if any)
as required. Services may be of any scale, from a single operating system
process to enterprise-wide business processes.
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Figure 15.2: The typical structure of a service.

Services may be hosted on devices of arbitrary size (e.g., workstations,
databases, printers, phones, personal digital assistants, etc.), providing differ-
ent types of functionality to a network application. This promotes the concept
of a connected world in which no single device and /or service is isolated. Inter-
esting applications and workflows are built through the composition of services
and the exchange of messages.

15.2.1 Messages

A message is the unit of communication between services. Service-oriented sys-
tems do not expose abstractions such as classes, objects, methods, or remote
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procedures. Instead, services bind to messages transferred between them. A
number of such message transfers can be logically grouped to form message
exchange patterns (e.g., an incoming and a related outgoing message may
form a “request—response”). Such multimessage interactions can be grouped
to form protocols to represent well-defined behaviors.

15.2.2 Protocols, Policies, and Contracts

The messaging behavior of a service in a distributed application is specified by
a set of messages and the order in which they are sent and received (i.e., the
supported protocols). This is a departure from the traditional object-oriented
world, where behavioral semantics are associated with types, exposed through
methods, and coupled with particular endpoints.

Protocols and other metadata are usually described in contracts to which
services must adhere. A contract is a description of the policy (e.g., quality of
service characteristics such as security, support for reliable messaging, etc.),
along with a syntactic description of the message structure and protocols that
a service supports.

15.3 SSDL Overview

The primary goal of an SSDL contract is to provide the mechanisms for ser-
vice architects to describe the structure of the SOAP messages that a Web
service supports. Once the messages of a Web service have been described,
any of the currently available (or future) protocol frameworks can be used
to combine the messages into protocols that expose the messaging behavior
of that Web service. To that end, SSDL defines an extensible mechanism for
various protocol frameworks to be used.

SSDL contracts communicate the supported messaging behavior of a Web
service in terms of messages and protocols, so that architects and developers
can create systems that can meaningfully participate in conversations between
them. SSDL contracts may be dynamically discovered (e.g., from registries
or equivalent mechanisms) and the protocol descriptions compared against
an application’s or workflow’s requirements in order to determine whether a
multimessage interaction can sensibly take place.

An SSDL contract is defined in a namespace that uniquely identifies it and
consists of four major sections, as shown in Figure 15.3.

15.3.1 Schemas

The “schemas” section is used to define the structure of all the elements that
will be used for the description of the SOAP messages. Any schema language
may be used to define schema elements, though XML schema is the default
choice.
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Figure 15.3: The structure of an SSDL contract.

15.3.2 Messages

The “messages” section is where the messages that a Web service supports
are declared. There can be many groups of messages defined in different
namespaces. However, irrespective of the namespace in which they are defined,
the messages included in the SSDL document are all part of the same con-
tract. SOAP messages are described in terms of header and body elements
and are named so that protocol frameworks can reference them.

1 <ssdl:messages targetNamespace="uri">

2 <ssdl:message name="msg">

3 <ssdl:header ref="elements:headerl" mustUnderstand="true" />

4 <ssdl:header ref="elements:header2" role="urn:ssdl:example:role"/>
5 <ssdl:body ref="elements:bodyl" />

6 <ssdl:body ref="elements:body2" />

7 </ssdl:message>

8

9 <ssdl:fault name="fault">

10 <ssdl:code role="http://wuw.w3.org/.../role/ultimateReceiver">
11 <ssdl:value>Sender</ssdl:value>

12 </ssdl:code>

13 </ssdl:fault>

14 </ssdl:messages>

Figure 15.4: An example of a message and a fault message.

In Figure 15.4, a message msg is defined to have two header elements
(children of soap:Header) and two body (children of soap:Body) elements.
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Note that while the SOAP processing model permits it, the WS-I Basic Profile
1.0a [35] mandates a single element as a child of soap:Body. However, SSDL
does not enforce that restriction. Figure 15.4 also demonstrates how a SOAP
fault message could be declared.

The header element provides the mustUnderstand, role, and relay at-
tributes, which correspond to the equivalent attributes defined by the SOAP
processing model (not all of which are shown in Figure 15.4). This makes it
possible and straightforward to describe Web services infrastructure protocols.

15.3.3 Protocols and Endpoints

Once the messages in a contract have been defined, we can move on to describe
how they may relate to each other. SSDL provides an extensible mechanism
based on the concept of protocol frameworks.

A protocol framework uses messages declared in a contract to describe
the simple message-exchange patterns or multimessage interactions that are
observed by other services. A protocol framework is an XML-based model for
capturing relationships between message exchanges in a workflow and may or
may not be supported by an underlying formal model.

It may be possible for the same protocol to be defined in multiple ways
using the same or different protocol frameworks. It is up to the designers
to choose which protocol framework is best for their needs. Also, it may be
possible to translate the description of a service’s messaging behavior from
one protocol framework to another without losing any semantics, depending
on the source and target frameworks.

Some protocol frameworks may be associated with the semantics of a
formal model (e.g., CSP, Rules, SC). As a result, it may be possible to use
model checkers, such as SPIN [198], Failure Divergence Refinement (FDR)
[143], and Mobility Workbench (MWB) [441] to verify the safety (e.g., absence
of starvation and agreed termination) and liveness (e.g., eventual termination
guarantee) properties of the defined protocols.

The initial release of SSDL comes with four protocol frameworks:

e The MEP (Message Exchange Pattern) SSDL Protocol Framework is
defined to be a representation of the MEPs defined by the WSDL 2.0 spe-
cification [457]. The MEP specification defines the semantics and structure
of XML elements representing several message-exchange patterns of two
messages at most (excluding faults).

e The CSP SSDL Protocol Framework is based on the Communicating Se-
quential Processes [334] semantics. A protocol is defined in terms of one or
more sequential processes that may communicate with each other. Mes-
sages that are sent or received represent the events in the described CSP
processes [192].

e The Rules SSDL Protocol Framework uses preconditions on “send” and
“receive” events as the means to describe messaging behaviour. As with
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the CSP SSDL Protocol Framework, it is possible to use model checkers
to verify that a protocol is free from deadlock and race conditions.

e The SC (Sequential Constraints) SSDL Protocol Framework is used to
describe multiservice interactions, and its semantics are based on the 7-
calculus [296]. The next section of this chapter discusses this protocol
framework in more detail.

An SSDL contract may also define endpoints, such as WS-Addressing En-
dpoint References (EPRs), of Web services that are known to support the
defin