

Workflows for e-Science

Scientific Workflows for Grids

Editors: Ian J. Taylor, Ewa Deelman,

Dennis Gannon and Matthew S. Shields

To my fan base: Peter, Caroline, Nicholas,
Teresa, Wojtek, Adam and Alicja — Ewa

For Ruth whose support keeps me going, and my father Martin,

who would have enjoyed seeing this book — Matthew

To Adina and the making of ART — Ian

Foreword

This collection of articles on ‘Workflows for e-Science’ is very timely and im-
portant. Increasingly, to attack the next generation of scientific problems,
multidisciplinary and distributed teams of scientists need to collaborate to
make progress on these new ‘Grand Challenges’. Scientists now need to access
and exploit computational resources and databases that are geographically
distributed through the use of high speed networks. ‘Virtual Organizations’ or
‘VOs’ must be established that span multiple administrative domains and/or
institutions and which can provide appropriate authentication and authoriz-
ation services and access controls to collaborating members. Some of these
VOs may only have a fleeting existence but the lifetime of others may run
into many years. The Grid community is attempting to develop both stand-
ards and middleware to enable both scientists and industry to build such VOs
routinely and robustly.

This, of course, has been the goal of research in distributed computing for
many years; but now these technologies come with a new twist service orient-
ation. By specifying resources in terms of a service description, rather than
allowing direct access to the resources, the IT industry believes that such an
approach results in the construction of more robust distributed systems. The
industry has therefore united around web services as the standard technology
to implement such service oriented architectures and to ensure interoperability
between different vendor systems.

The Grid community is also now uniting in developing ‘Web Service Grids’
based on an underlying web service infrastructure. In addition to the security
services of VOs, scientists require services that allow them to run jobs on
remote computers and to access and query databases remotely. As these data
analysis operations become more and more complex and repetitive, there is
a need to capture and coordinate the orchestrated operations that access the
resources of a VO or Grid.

Scientific workflows have therefore emerged and been adapted from the
business world as a means to formalize and structure the data analysis and
computations on the distributed resources. Such scientific workflows in fact

viii Foreword

now encapsulate scientific intellectual property and enable the sharing of
knowledge between researchers.

This is the first book to provide a comprehensive survey of the present
state of the art and include descriptions of all the major scientific workflow
systems. From these accounts it is clear that there is much overlap in the
functionality of the different systems and it is to be hoped that this collection
will be a first step on the road to the consolidation of key workflow services.
As such this book may well be a landmark collection heralding a step change
in the level of abstraction for scientific workflows.

Tony Hey

16th May 2006

Contents

Foreword . vii

List of Contributors . xiii

1 Introduction
Dennis Gannon, Ewa Deelman, Matthew Shields, and Ian Taylor 1

2 Scientific versus Business Workflows
Roger Barga and Dennis Gannon . 9

Part I Application and User Perspective

3 Generating Complex Astronomy Workflows
G. Bruce Berriman, Ewa Deelman, John Good, Joseph C.
Jacob, Daniel S. Katz, Anastasia C. Laity, Thomas A. Prince,
Gurmeet Singh, and Mei-Hui Su . 19

4 A Case Study on the Use of Workflow Technologies for
Scientific Analysis: Gravitational Wave Data Analysis
Duncan A. Brown, Patrick R. Brady, Alexander Dietz, Junwei Cao,
Ben Johnson, and John McNabb . 39

5 Workflows in Pulsar Astronomy
John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer 60

6 Workflow and Biodiversity e-Science
Andrew C. Jones . 80

x Contents

7 Ecological Niche Modeling Using the Kepler
Workflow System
Deana D. Pennington, Dan Higgins, A. Townsend Peterson,
Matthew B. Jones, Bertram Ludäscher, and Shawn Bowers 91

8 Case Studies on the Use of Workflow Technologies for
Scientific Analysis: The Biomedical Informatics Research
Network and the Telescience Project
Abel W. Lin, Steven T. Peltier, Jeffrey S. Grethe, and
Mark H. Ellisman . 109

9 Dynamic, Adaptive Workflows for
Mesoscale Meteorology
Dennis Gannon, Beth Plale, Suresh Marru, Gopi Kandaswamy,
Yogesh Simmhan, and Satoshi Shirasuna . 126

10 SCEC CyberShake Workflows—Automating Probabilistic
Seismic Hazard Analysis Calculations
Philip Maechling, Ewa Deelman, Li Zhao, Robert Graves,
Gaurang Mehta, Nitin Gupta, John Mehringer, Carl Kesselman,
Scott Callaghan, David Okaya, Hunter Francoeur, Vipin Gupta,
Yifeng Cui, Karan Vahi, Thomas Jordan, and Edward Field 143

Part II Workflow Representation and
Common Structure

11 Control- Versus Data-Driven Workflows
Matthew Shields . 167

12 Component Architectures and Services:
From Application Construction to
Scientific Workflows
Dennis Gannon . 174

13 Petri Nets
Andreas Hoheisel and Martin Alt . 190

14 Adapting BPEL to Scientific Workflows
Aleksander Slominski . 208

15 Protocol-Based Integration Using SSDL and π-Calculus
Simon Woodman, Savas Parastatidis, and Jim Webber 227

16 Workflow Composition: Semantic Representations for
Flexible Automation
Yolanda Gil . 244

Contents xi

17 Virtual Data Language: A Typed
Workflow Notation for Diversely Structured
Scientific Data
Yong Zhao, Michael Wilde, and Ian Foster . 258

Part III Frameworks and Tools: Workflow Generation, Refinement,
and Execution

18 Workflow-Level Parametric Study Support by MOTEUR
and the P-GRADE Portal
Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, and
Peter Kacsuk . 279

19 Taverna/myGrid: Aligning a Workflow System with the
Life Sciences Community
Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis,
Mark Greenwood, Duncan Hull, Robert Stevens, Daniele Turi, and
Jun Zhao . 300

20 The Triana Workflow Environment:
Architecture and Applications
Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison 320

21 Java CoG Kit Workflow
Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina 340

22 Workflow Management in Condor
Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger 357

23 Pegasus: Mapping Large-Scale Workflows to Distributed
Resources
Ewa Deelman, Gaurang Mehta, Gurmeet Singh, Mei-Hui Su, and
Karan Vahi . 376

24 ICENI
A. Stephen McGough, William Lee, Jeremy Cohen, Eleftheria Katsiri,
and John Darlington . 395

25 Expressing Workflow in the Cactus Framework
Tom Goodale . 416

26 Sedna: A BPEL-Based Environment for Visual Scientific
Workflow Modeling
Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick
Cameron, Liang Chen, Jignesh Patel . 428

xii Contents

27 ASKALON: A Development and Grid Computing
Environment for Scientific Workflows
Thomas Fahringer, Radu Prodan, Rubing Duan, Jürgen Hofer,
Farrukh Nadeem, Francesco Nerieri, Stefan Podlipnig,
Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon, and
Marek Wieczorek . 450

Part IV Future Requirements

Looking into the Future of Workflows: The Challenges Ahead
Ewa Deelman . 475

References . 483

Index . 514

List of Contributors

Martin Alt
Westfälische Wilhelms–Universität

Münster
Institut für Informatik
Einsteinstr. 62
D-48149 Münster, Germany
mnalt@uni-muenster.de

Roger Barga
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
barga@microsoft.com

G. Bruce Berriman
Infrared Processing and Analysis

Center
California Institute of Technology
Pasadena, CA 91125, USA
gbb@ipac.caltech.edu

Shawn Bowers
UC Davis Genome Center
Department of Computer Science
University of California
Davis, CA 95616, USA
sbowers@ucdavis.edu

Patrick R. Brady
Department of Physics
University of Wisconsin–Milwaukee

P.O. Box 413
Milwaukee, WI 53201, USA
patrick@gravity.phys.uwm.edu

John Brooke
Manchester Computing
The University of Manchester
Oxford Road
Manchester, M13 9PL, UK
j.m.brooke@manchester.ac.uk

Duncan A. Brown
LIGO Laboratory
California Institute of Technology
Pasadena, CA 91125, USA
dbrown@ligo.caltech.edu

Ben Butchart
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
B.Butchart@cs.ucl.ac.uk

Scott Callaghan
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
scottcal@usc.edu

xiv List of Contributors

Nick Cameron
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
N.Cameron@cs.ucl.ac.uk

Junwei Cao
LIGO Laboratory
Massachusetts Institute of Technol-

ogy
Cambridge, MA 02139, USA
jcao@ligo.mit.edu

Paul Carr
Jodrell Bank Observatory
The University of Manchester
Macclesfield
Cheshire SK11 9DL, UK
pcarr@jb.man.ac.uk

Liang Chen
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
L.Chen@cs.ucl.ac.uk

Jeremy Cohen
London e-Science Centre
Department of Computing
Imperial College
London SW7 2AZ, UK
jhc02@doc.ic.ac.uk

Peter Couvares
University of Wisconsin–Madison
Computer Sciences Department
1210 West Dayton Street
Madison, WI 53706–1685, USA
pfc@cs.wisc.edu

Yifeng Cui
San Diego Supercomputing Center
La Jolla, CA 92093, USA
yfcui@sdsc.edu

John Darlington
London e-Science Centre
Department of Computing
Imperial College
London SW7 2AZ, UK
jd@doc.ic.ac.uk

Ewa Deelman
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
deelman@isi.edu

Alexander Dietz
Department of Physics
Louisiana State University
Baton Rouge, LA 70803, USA
dietz@phys.lsu.edu

Rubing Duan
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
rubing@dps.uibk.ac.at

Mark H. Ellisman
National Center for Microscopy and

Imaging Research
University of California, San Diego
9500 Gilman Drive, BSB 1000
La Jolla, CA 92093-0608, USA
mark@ncmir.ucsd.edu

Wolfgang Emmerich
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
W.Emmerich@cs.ucl.ac.uk

List of Contributors xv

Thomas Fahringer
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
tf@dps.uibk.ac.at

Zoltan Farkas
MTA SZTAKI
H-1132 Budapest
Victor Hugo 18-22, Hungary
zfarkas@sztaki.hu

Edward Field
US Geological Survey
Pasadena, CA 91106, USA
field@caltech.edu

Ian Foster
Computation Institute and

Department of Computer Science
University of Chicago
Chicago, IL 60637, USA
and
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL 60439, USA
foster@mcs.anl.gov

Hunter Francoeur
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
francoeu@usc.edu

Dennis Gannon
Department of Computer Science
Indiana University
Bloomington, IN 47405, USA
gannon@cs.indiana.edu

Yolanda Gil
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
gil@isi.edu

Tristan Glatard
CNRS, I3S Laboratory
BP121, 06903 Sophia Antipolis
France
glatard@i3s.unice.fr

Carole Goble
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
carole@cs.man.ac.uk

Antoon Goderis
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
goderisa@cs.man.ac.uk

John Good
Infrared Processing and Analysis

Center
California Institute of Technology
Pasadena, CA 91125, USA
jcg@ipac.caltech.edu

Tom Goodale
School of Computer Science
Cardiff University
Queen’s Buildings, The Parade
Cardiff CF24 3AA, UK
and
Center for Computation and

Technology
Louisiana State University
Baton Rouge, LA 70803, USA
t.r.goodale@cs.cardiff.ac.uk

Robert Graves
URS Corporation
Pasadena, CA 91101, USA
robert graves@urscorp.com

xvi List of Contributors

Mark Greenwood
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
markg@cs.man.ac.uk

Jeffrey S. Grethe
National Center for Microscopy and

Imaging Research
University of California, San Diego
9500 Gilman Drive, BSB 1000
La Jolla, CA 92093-0608, USA
jgrethe@ncmir.ucsd.edu

Nitin Gupta
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
niting@usc.edu

Vipin Gupta
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
vgupta@usc.edu

Andrew Harrison
School of Computer Science
Cardiff University
Queen’s Buildings, The Parade
Cardiff CF24 3AA, UK
a.harrison@cs.cardiff.ac.uk

Mihael Hategan
University of Chicago
Research Institute, Suite 405
South Ellis Avenue
Chicago, IL 60637, USA
hategan@mcs.anl.gov

Tony Hey
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052, USA
tonyhey@microsoft.com

Dan Higgins
National Center for Ecological

Analysis and Synthesis (NCEAS)
University of California, Santa

Barbara
Santa Barbara, CA 93101, USA
higgins@nceas.ucsb.edu

Jürgen Hofer
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
juergen@dps.uibk.ac.at

Andreas Hoheisel
Fraunhofer FIRST
Kekulestr. 7
D-12489 Berlin, Germany
andreas.hoheisel@

first.fraunhofer.de

Duncan Hull
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
duncan.hull@cs.man.ac.uk

Joseph C. Jacob
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109, USA
Joseph.C.Jacob@jpl.nasa.gov

Ben Johnson
LIGO Hanford Observatory
Richland, WA 99352, USA
bjohnson@ligo-wa.caltech.edu

Andrew C. Jones
School of Computer Science
Cardiff University
Queen’s Buildings, The Parade
Cardiff CF24 3AA, UK
Andrew.C.Jones@cs.cardiff.ac.uk

List of Contributors xvii

Matthew B. Jones
National Center for Ecological

Analysis and Synthesis (NCEAS)
University of California, Santa

Barbara
Santa Barbara, CA 93101, USA
jones@nceas.ucsb.edu

Thomas Jordan
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
tjordan@usc.edu

Peter Kacsuk
MTA SZTAKI
H-1132 Budapest
Victor Hugo 18-22, Hungary
kacsuk@sztaki.hu

Gopi Kandaswamy
Renaissance Computing Institute
University of North Carolina at

Chapel Hill
100 Europa Drive Suite 540,
Chapel Hill, NC 27715, USA
gopi@renci.org

Eleftheria Katsiri
London e-Science Centre
Department of Computing
Imperial College
London SW7 2AZ, UK
ek@doc.ic.ac.uk

Daniel S. Katz
Louisiana State University and Jet

Propulsion Laboratory
California Institute of Technology
Baton Rouge, LA 70803, USA
d.katz@ieee.org

Douglas B. Kell
Bioanalytical Sciences
School of Chemistry
University of Manchester
Manchester M13 9PL, UK
dbk@manchester.ac.uk

Carl Kesselman
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
carl@isi.edu

Deepti Kodeboyina
University of Chicago
Research Institute, Suite 405
South Ellis Avenue
Chicago, IL 60637, USA
dkodeboy@mcs.anl.gov

Tevfik Kosar
Louisiana State University
Department of Computer Science
and
Center for Computation & Techno-

logy
Baton Rouge, LA 70803, USA
kosar@cct.lsu.edu

Michael Kramer
Jodrell Bank Observatory
The University of Manchester
Macclesfield
Cheshire SK11 9DL, UK
mkramer@jb.man.ac.uk

Anastasia C. Laity
Infrared Processing and Analysis

Center
California Institute of Technology
Pasadena, CA 91125, USA
laity@ipac.caltech.edu

Gregor von Laszewski
Argonne National Laboratory
Argonne, IL 60430, USA
and
University of Chicago
Research Institute, Suite 405
5640 South Ellis Avenue
Chicago, IL 60637, USA
gregor@mcs.anl.gov

xviii List of Contributors

William Lee
London e-Science Centre
Department of Computing
Imperial College
London SW7 2AZ, UK
wwhl@doc.ic.ac.uk

Peter Li
Bioanalytical Sciences
School of Chemistry
University of Manchester
Manchester M13 9PL, UK
Peter.Li@manchester.ac.uk

Abel W. Lin
National Center for Microscopy and

Imaging Research
University of California, San Diego
9500 Gilman Drive, BSB 1000
La Jolla, CA 92093-0608, USA
awlin@ncmir.ucsd.edu

Bertram Ludäscher
UC Davis Genome Center
Department of Computer Science
University of California
Davis, CA 95616, USA
ludaesch@ucdavis.edu

Philip Maechling
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
maechlin@usc.edu

Suresh Marru
Department of Computer Science
Indiana University
Bloomington, IN, USA
smarru@cs.indiana.edu

Andrew Stephen McGough
London e-Science Centre
Department of Computing
Imperial College
London SW7 2AZ, UK
asm@doc.ic.ac.uk

John McNabb
The Pennsylvania State University
University Park, PA 16802, USA
mcnabb@gravity.psu.edu

John Mehringer
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
jmehring@usc.edu

Gaurang Mehta
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
gmehta@isi.edu

Johan Montagnat
CNRS, I3S Laboratory
BP121, 06903 Sophia Antipolis
France
johan@i3s.unice.fr

Farrukh Nadeem
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
farrukh@dps.uibk.ac.at

Francesco Nerieri
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
nero@dps.uibk.ac.at

Tom Oinn
EMBL European Bioinformatics

Institute
Hinxton, Cambridge CB10 1SD, UK
tmo@ebi.ac.uk

List of Contributors xix

David Okaya
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
okaya@usc.edu

Savas Parastatidis
School of Computing Science
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU,

UK
savas@parastatidis.name

Jignesh Patel
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
J.Patel@cs.ucl.ac.uk

Steven T. Peltier
National Center for Microscopy and

Imaging Research
University of California, San Diego
9500 Gilman Drive, BSB 1000
La Jolla, CA 92093-0608, USA
peltier@ncmir.ucsd.edu

Deana D. Pennington
Long Term Ecological Research

Network (LTER) Office
University of New Mexico
Albuquerque, NM, 87131, USA
dpennington@LTERnet.edu

A. Townsend Peterson
Natural History Museum and

Biodiversity Research Center
University of Kansas
Lawrence, KS 66045, USA
town@ku.edu

Stephen Pickles
Manchester Computing
The University of Manchester
Oxford Road
Manchester, M13 9PL, UK
stephen.pickles@manchester.ac.uk

Beth Plale
Department of Computer Science
Indiana University
Bloomington, IN, USA
plale@cs.indiana.edu

Stefan Podlipnig
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
spodlipn@dps.uibk.ac.at

Thomas A. Prince
Division of Physics, Mathematics,

and Astronomy,
California Institute of Technology
Pasadena, CA 91125, USA
prince@caltech.edu

Radu Prodan
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
radu@dps.uibk.ac.at

Jun Qin
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
jerry@dps.uibk.ac.at

Alain Roy
University of Wisconsin–Madison
Computer Sciences Department
1210 West Dayton Street
Madison, WI 53706–1685, USA
roy@cs.wisc.edu

xx List of Contributors

Matthew Shields
School of Physics and Astronomy
Cardiff University
Queens Buildings, The Parade
Cardiff CF24 3AA, UK
m.s.shields@cs.cardiff.ac.uk

Satoshi Shirasuna
Department of Computer Science
Indiana University
Bloomington, IN, USA
sshirasu@cs.indiana.edu

Mumtaz Siddiqui
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
mumtaz@dps.uibk.ac.at

Yogesh Simmhan
Department of Computer Science
Indiana University
Bloomington, IN, USA
ysimmhan@cs.indiana.edu

Gurmeet Singh
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
gurmeet@isi.edu

Gergely Sipos
MTA SZTAKI
H-1132 Budapest
Victor Hugo 18-22, Hungary
sipos@sztaki.hu

Aleksander Slominski
Department of Computer Science
Indiana University
Bloomington, IN 47405, USA
aslom@cs.indiana.edu

Robert Stevens
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
robert.stevens@manchester.ac.uk

Mei-Hui Su
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
mei@isi.edu

Ian Taylor
School of Computer Science
Cardiff University
Queen’s Buildings, The Parade
Cardiff CF24 3AA, UK
and
Center for Computation and

Technology
Louisiana State University
Baton Rouge, LA 70803, USA
Ian.J.Taylor@cs.cardiff.ac.uk

Hong-Linh Truong
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
truong@dps.uibk.ac.at

Daniele Turi
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
dturi@cs.man.ac.uk

Karan Vahi
Information Sciences Institute
University of Southern California
Marina Del Rey, CA 90292, USA
vahi@isi.edu

Alex Villazon
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
avt@dps.uibk.ac.at

List of Contributors xxi

Ian Wang
School of Physics and Astronomy
Cardiff University
Queen’s Buildings, The Parade
Cardiff CF24 3AA, UK
i.n.wang@cs.cardiff.ac.uk

Bruno Wassermann
Software Systems Engineering Group
Department of Computer Science
University College London
Gower Street
London, WC1E 6BT, UK
B.Wassermann@cs.ucl.ac.uk

Jim Webber
Thoughtworks
Level 7
16 O’Connell Street
Sydney, NSW 2000
Australia
jim@webber.name

Jeff Weber
University of Wisconsin–Madison
Computer Sciences Department
1210 West Dayton Street
Madison, WI 53706–1685, USA
weber@cs.wisc.edu

R. Kent Wenger
University of Wisconsin–Madison
Computer Sciences Department
1210 West Dayton Street
Madison, WI 53706–1685, USA
wenger@cs.wisc.edu

Marek Wieczorek
Institute of Computer Science
University of Innsbruck
Technickerstraße 21a
A-6020 Innsbruck, Austria
marek@dps.uibk.ac.at

Michael Wilde
Computation Institute
University of Chicago
Chicago, IL 60637, USA
and
Mathematics and Computer Science

Division
Argonne National Laboratory
Argonne, IL 60439, USA
wilde@mcs.anl.gov

Simon Woodman
School of Computing Science
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU,

UK
s.j.woodman@ncl.ac.uk

Jun Zhao
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
zhaoj@cs.man.ac.uk

Li Zhao
Southern California Earthquake

Center
University of Southern California
Los Angeles, CA 90089, USA
zhaol@usc.edu

Yong Zhao
Computation Institute and

Department of Computer Science
University of Chicago
Chicago, IL 60637, USA
yongzh@cs.uchicago.edu

1

Introduction

Dennis Gannon, Ewa Deelman, Matthew Shields, and Ian Taylor

Workflows for e-Science is divided into four parts, which represent four broad
but distinct areas of scientific workflows. In the first part, Background, we in-
troduce the concept of scientific workflows and set the scene by describing
how they differ from their business workflow counterpart. In Part II, Applic-
ation and User Perspective, we provide a number of scientific examples that
currently use workflows for their e-Science experiments. In Workflow Repres-
entation and Common Structure (Part III), we describe core workflow themes,
such as control flow or dataflow and the use of components or services. In this
part, we also provide overviews for a number of common workflow languages,
such as Petri Nets, the Business Process Execution Language (BPEL), and
the Virtual Data Language (VDL), along with service interfaces. In Part IV,
Frameworks and Tools, we take a look at many of the popular environments
that are currently being used for e-Science applications by paying particular
attention to their workflow capabilities. The following four sections describe
the chapters in each part and therefore provide a comprehensive summary of
the book as a whole.

1.1 Background

Over the past 25 years, we have seen a revolution in the way science and engin-
eering has been conducted. Specifically, computation became an established
third branch of science alongside theory and experiment. The first phase of
this change came with the use of supercomputers to simulate large, physically
complex systems modeled by partial differential equations. The adoption of
these computational tools soon led to other applications that involved complex
data analysis and visualization steps. The task of moving data to a supercom-
puter for analysis or simulation and then managing the storage of the output
results was often repeated many times, and it was left to the persistence and
creativity of the user to make sure things were done correctly. At the same
time, the business community was also faced with the problem of automating

2 Gannon, Deelman, Shields, Taylor

their business processing steps and the computer industry began supplying
tools to help them. What emerged was a primitive science of workflow design.
Within the business world, workflow orchestration is a term that refers to the
activity of defining the sequence of tasks needed to manage a business or com-
putational science or engineering process. A workflow is a template for such an
orchestration. A workflow instance is a specific instantiation of a workflow for
a particular problem. Within the scientific and engineering community these
terms have a slightly broader meaning, which we will discuss below once we
have set more historical context.

The earliest workflows in both business and science were encoded and man-
aged by complex job-control language and shell scripts that were used to stage
input data to the computer and then move output results to tapes or work-
stations. Frequently these scripts involved substantial preprocessing to bring
data into a form for the analysis tools and postprocessing to put them into a
form appropriate for human understanding. The scripting approach became
more sophisticated as the processes became more demanding. However, two
additional major changes in the computing landscape drove a fundamental
shift in the evolution of workflow technology.

The second major change in computing came with the use of computational
resources that were distributed over a network. Simple scripts could not con-
trol the execution and coordination of task execution on machines elsewhere
on the network. This job required distributed computing technology to solve
problem such as synchronization between remote concurrent tasks, fault re-
covery, distributed logging, and remote data management. To deal with this
problem, workflow systems had to evolve beyond simple scripting into systems
built around remote procedure calls, distributed object technology, and dis-
tributed file systems and databases. These approaches to distributed systems
have now evolved into Grid technology and Web-service-oriented architec-
tures. Workflow tools that operate in this domain are described extensively
throughout this book.

The third change that has influenced the way the scientific community
has approached workflow is use of component-based tools to program large
systems. Some of this work evolved from Petri Net models, while other work
came from dataflow concepts. As a model for workflow, it was first seen in
early visualization tools, such as AVS [266]. In computer graphics and visual-
ization, where it is not uncommon for a single rendering job to require many
separate transformation steps to produce the final image, a dataflow model
provides an excellent means to automate the schedule of tasks. These tools
provided a compositional programming model based on a graphical layout
tool where tasks are boxes and arrows between boxes indicate the control and
data dependencies between them. This programming metaphor has proven to
be extremely popular and is a common component of most scientific workflow
systems described here.

We conclude this chapter with an overview of the contents of the remainder
of this volume.

1 Introduction 3

1.2 Application and User Perspective

As science today becomes more complex and relies on the analysis of large-
scale data sets, it is becoming necessary to manage the data and the data pro-
cessing in an automated and scalable way. Workflows have recently emerged as
a way of formalizing and structuring the data analysis in a way that makes it
easy to define the analysis, execute the necessary computations on distributed
resources, collect information about the derived data products, and if neces-
sary repeat the analysis. Worfklows also enable the definition and sharing of
the analysis definitions within scientific collaborations. In the Application and
User Perspective section of this book, we have compiled a set of cutting-edge
applications that rely on workflow technologies to advance the state of the
art in a variety of fields from astronomy, gravitational wave science, ecology,
meteorology, earthquake science, and neuroscience.

Chapter 3 describes the use of workflow technologies in generating large-
scale image mosaics of the sky. The authors describe how the workflows de-
scribing the process of mosaic generation can be used in a variety of applic-
ations depending on the data sources used in the mosaic construction. The
chapter also describes the technologies used in managing the workflows, such
as Pegasus (Chapter 23) and DAGMan (Chapter 22) and contrast them with
implementations based on the Message Passing Interface (MPI) standard.

Two chapters (Chapter 4 and Chapter 5) deal with issues of supporting
gravitational wave science using workflow technologies. Chapter 4 focuses on
providing scientists with tools that allow for easy workflow construction and
leveraging workflow management tools to schedule the workflows in Grid en-
vironments. Chapter 5 focuses on issues of obtaining good overall workflow
performance by optimizing critical workflow portions.

There are also two chapters (Chapter 6 and Chapter 7) that address is-
sues of providing ecologists with a means of easily defining complex work-
flows. The authors of both chapters recognize the need to provide an interface
that enables the users to describe the workflows using high-level, scientifically
meaningful concepts without exposing details of the workflow management
and execution. Chapter 6 discusses the use of Triana (Chapter 20) in workflow
design and management, whereas the authors of Chapter 7 use the Kepler [19]
system to provide that functionality.

Neuroscientists impose similar requirements on the worfklow tools, requir-
ing ease of use and operation at high levels of abstraction. The authors of
Chapter 8 describe how portals can be used to provide custom interfaces for
a broad community of users. Behind the portal, they use technologies such as
Pegasus and Condor to manage the workflows.

Chapter 9 describes how workflows are used in simulations of the weather
events such as tornadoes and hurricanes. The chapter addresses issues of work-
flow adaptivity, where the analysis adapts to the changes in the physical en-
vironment (in this case the weather), to the simulation results, and to the
changes in the computational environment.

4 Gannon, Deelman, Shields, Taylor

Workflows have also been a useful tool for earthquake scientists who need
to analyze Terabytes of data in an automated manner. Chapter 10 describes
how workflow technologies can be used to manage the large-scale computations
with hundreds of thousands of individual tasks and leverage a number of
distributed resources.

The applications described in Part I rely on a variety of workflow techno-
logies, such as Kepler, Triana, Pegasus, Condor, and others, some of which
are described in the Frameworks Part (Part III).

1.3 Workflow Representation and Common Structure

In this Part, we examine some of the common elements and ideas that oc-
cur in scientific workflow languages and environments. Although the tools
and frameworks described in this book are all very different, there are of-
ten concepts and techniques that get repeated or reused. Business workflow
methods have been in use for far longer than scientific workflows, and con-
sequently many of the ideas have migrated from the business domain to the
scientific domain. In some cases, BPEL (Chapter 14), the business domain
workflow language, is being used directly for scientific workflows. In others,
it is merely concepts such as dependencies, data or not, that are borrowed
from the earlier field. This chapter compares some very different formalisms
for workflow representation from the fairly typical graphs through Petri Nets
(Chapter 13) to π-calculus and the Soap Service Description Language (SSDL)
(Chapter 15). It also includes a chapter on the use of semantics in scientific
workflows (Chapter 16) and the use of a virtual data language (Chapter 17)
to separate physical representations from logical typing.

The argument of control flow versus dataflow representations is outlined in
Chapter 11. Control flow, with its history in scripting languages, and dataflow,
with its history in the data-processing arenas of image and signal processing,
are both widely used within the tools and frameworks described in this book.

Chapter 12 considers the impact of reusable software components and com-
ponent architectures on scientific workflows as we move from object-oriented
component systems to service-based workflows. There are several different
representations for workflows: Many of the tools in this book use graph rep-
resentations, typically either directed acyclic graphs (DAGs) or directed cyclic
graphs (DCGs) depending upon whether or not loop connections are allowed.

Petri Nets are a formalism for describing distributed processes by extend-
ing state machines with concurrency. Chapter 13 covers a brief introduction
to Petri Net theory and then explains how this can be applied to the choreo-
graphy, orchestration, and enactment of scientific workflows. Issues such as
synchronization, persistence, transactional safety, and fault management are
examined within this workflow formalism.

BPEL is a well-known leading workflow language for composing business
domain Web services. In Chapter 14 the author examines how the language

1 Introduction 5

meets the needs for a scientific workflow language in a Grid environment.
Some of the dynamic aspects of scientific workflows that are not common in
business workflows are used to show how BPEL can be adapted to this use.

Chapter 15 describes SSDL, an interesting approach to workflow repres-
entation based upon the “service” and “message” abstraction. Workflows are
described using the interaction of Simple Object Access Protocol (SOAP)
messages between services, from simple request-response to multiservice ex-
changes. One of the SSDL protocols, the Sequential Constraints protocol, is in-
troduced, which can be used to describe multiservice, multimessage exchanges
between Web services using notations based upon the π-calculus. The formal
model basis for this protocol allows the authors to make assertions about
certain properties of the composed workflows.

Semantics is the study of meaning. In Chapter 16, the author explains
how semantic representations can be used to automate and assist in work-
flow composition and to manage complex scientific processes. The chapter
discusses separating levels of abstraction in workflow descriptions, using se-
mantic representations of workflows and their components, and supporting
flexible automation through reuse and automatic completion of user specific-
ations for partial workflows.

The final chapter in this Part, Chapter 17, also covers the use of abstrac-
tion in workflow representations. The tasks of describing, composing, and
executing workflows are often complicated by heterogeneous storage formats
and ad hoc file system structures. The authors show how these difficulties can
be overcome via a typed, compositional virtual data language (VDL), where
issues of physical representation are cleanly separated from logical typing. Lo-
gical types are represented as Extensible Markup Language (XML) schema,
and the relationship between logical and physical types is specified as type-
specific mapping operations, with workflows defined as compositions of calls
to logically typed programs or services.

1.4 Frameworks and Tools: Workflow Generation,
Refinement and Execution

The general theme of this Part is workflow generation, refinement, and exe-
cution, which reflects the broad stages of how workflows are represented and
converted into an executable format, and how such workflows are executed
through the use of an execution engine or enactment subsystem. The various
frameworks within this section take different approaches to these stages and,
furthermore, these terms mean different things to different frameworks. For
example, in the Virtual Data System (see Chapter 23), refinement might in-
volve using their Virtual Data Catalog to transform the requested files into
workflows that can be used to generate them. This process involves modi-
fying the workflow by inserting subworkflows that generate the various data
dependencies. In contrast, however, refinement within the Triana workflow

6 Gannon, Deelman, Shields, Taylor

system (see Chapter 20) generally involves dynamic switching at runtime of
the Grid services that are used to execute the specific parts of the workflow.
Triana uses the Grid Application Toolkit (GAT) interface, which can switch
between different low-level Grid functionalities. This results in refinements be-
ing made based on the current execution environment. These themes therefore
reflect a“look and feel” for the chapters so that each framework can organize
its content with a format familiar to the reader. Each chapter therefore is part
of a series rather than a disconnected set of papers, which as editors we tried
hard to avoid.

In Chapter 18, the authors distinguish between two different techniques
for managing job submissions: task-based and service-based. They argue that
in complex control flows for considering data and computationally intensive
scientific applications, these techniques exhibit significant differences for rep-
resenting data flows, parametric input data, and efficient exploitation of the
distributed infrastructures. They introduce a service-based workflow manager
called MOTEUR, and discuss its integration with both the P-GRADE portal
and DAGMan workflow manager, and show how these can represent and ex-
ecute parametric data intensive applications.

The Taverna workbench discussed in Chapter 19 was developed for myGrid
to support in silico experiments in biology and to provide scientists with
user-friendly access to underlying services that they wish to use. Taverna
is based on Web services and uses the myGrid Simple Conceptual Unified
Flow Language (SCUFL) for workflow choreography. Taverna enables users
to construct, share, and enact workflows using a customized fault-tolerant
enactment engine for execution.

Triana (Chapter 20) is a graphical workflow environment that consists of a
simple drag-and-drop style Graphical User Interface (GUI) for composing ap-
plications and an underlying subsystem for workflow enactment across P2P,
service-based, and Grid environments. Components can be grouped to cre-
ate aggregate or compound components (called Group Units in Triana) for
simplifying the visualization of complex workflows and groups can contain
groups for recursive representation of the workflow. Triana employs the use
of two generic interfaces, called the Grid Application Prototype (GAP) and
GAT, which can interact with services or Grid tools, respectively, for interac-
tion with JXTA, P2PS, Web services, WS-RF services, or Grid tools like the
Globus Resource Allocation Manager (GRAM), Grid File Transfer Protocol
(GridFTP), and Grid Resource Management and Brokering Service (GRMS),
etc. The authors discuss these bindings and provide use cases showing how
the various stages are accomplished.

The Java CoG Kit, discussed in Chapter 21, focuses on workflow solutions
in the Karajan workflow framework. Karajan can specify workflows using
XML, and can support hierarchical workflows based on DAGs with control
structures and parallel constructs. Workflows can be visualized and tracked
through an engine and modified at runtime through interaction with a work-
flow repository or schedulers for dynamic association of resources to tasks.

1 Introduction 7

Karajan has been demonstrated to scale to hundreds of thousands of jobs due
to its efficient scalability-oriented threading mechanisms.

Condor (Chapter 22) began in 1988 and focused on reliable access to com-
puting over long periods of time instead of highly tuned, high-performance
computing over short periods. This chapter discuss two components: DAG-
Man, for submission and management of complex workflows; and Stork, a
batch scheduler for data placement. Job dependencies are specified as arbit-
rary directed acyclic graphs (DAGs), and DAGMan supports a rich array of
features, including pre- and postscripting, throttling, fault tolerance, and can
scale up to 100,000 nodes. Stork implements techniques for queuing, schedul-
ing, and the optimization of data placement, and supports a number of data
transport protocols (FTP, GridFTP, HTTP, and DiskRouter) and data stor-
age systems (SRB, UniTree, NeST, dCache, and CASTOR).

Pegasus (Chapter 23) can map large-scale workflows onto Grid resources
and along with VDL (see Chapter 17) forms part of the Virtual Data System
(VDS) released with the Virtual Data Toolkit. Pegasus supports a wide range
of functionality, including catalog interfacing, workflow reduction, resource
selection (based on the available resources, characteristics, and location of
data), task clustering (to cluster jobs at the same resource), executable staging
(at the remote site), pre- and poststaging and interfacing with an execution
subsystem’s workflow languages, (e.g., DAG for DAGMan). For execution,
Pegasus supports failure recovery, optimization of workflow performance, and
debugging capabilities, and it has been used in scientific domains ranging from
bioinformatics to high-energy physics.

The Imperial College e-Science Networked Infrastructure (ICENI) system
(Chapter 24) is a service-based software architecture to enable end-to-end,
high-level workflow processing in a heterogeneous Grid environment. The
authors distinguish between an e-Scientists conceptual workflow to describe
tasks to be performed with dependencies and a middleware workflow for exe-
cution on the Grid. The architecture of ICENI supports deployment, perform-
ance, reliability, and charging for resource use. The current ICENI architecture
is derived from previous work and experiences with e-Science projects, such
as the Grid Enabled Integrated Earth system model (GENIE), e-Protein, and
RealityGrid, which are described in this chapter.

Cactus, discussed in Chapter 25, is a framework designed for tightly
coupled, high-performance simulations. This chapter provides a brief intro-
duction to the framework and its component model, with an emphasis on the
workflow aspects, and provides some illustrative examples. The chapter then
examines current and future work to use Cactus for high-throughput distrib-
uted simulations and the use of Cactus within other component architectures.

The Sedna environment in Chapter 26 works on BPEL, which being stand-
ardized has strong industrial support, and many tools and middleware exist.
However, being primarily targeted at business workflows, it does not necessar-
ily provide abstractions that are suitable for use in scientific workflows. Sedna
creates domain-independent as well as domain-specific language abstractions

8 Gannon, Deelman, Shields, Taylor

that are more suitable for use by application scientists, while achieving com-
pliance with the standard BPEL specification. ASKALON (27), on the other
hand, supports workflow composition and modeling using the Unified Mod-
eling Language (UML) standard and provides an XML-based Abstract Grid
Workflow Language (AGWL) for application developers to use. The AGWL
is given to a WSRF-based runtime system for scheduling and execution.
ASKALON contains a resource manager (GridARM) that provides resource
discovery, advanced reservation and virtual organization-wide authorization
along with a dynamic registration framework for activity types and activity
deployments.

2

Scientific versus Business Workflows

Roger Barga and Dennis Gannon

The formal concept of a workflow has existed in the business world for a long
time. An entire industry of tools and technology devoted to workflow man-
agement has been developed and marketed to meet the needs of commercial
enterprises. The Workflow Management Coalition (WfMC) has existed for
over ten years and has developed a large set of reference models, documents,
and standards. Why has the scientific community not adopted these existing
standards? While it is not uncommon for the scientific community to reinvent
technology rather than purchase existing solutions, there are issues involved
in the technical applications that are unique to science, and we will attempt
to characterize some of these here. There are, however, many core concepts
that have been developed in the business workflow community that directly
relate to science, and we will outline them below.

In 1996, the WfMC defined workflow as “the automation of a business
process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of pro-
cedural rules.” [478] While this definition predates the currently evolving
models of workflow based on service oriented architectures, it does provide a
window on the original workflow concepts, which are based on Business Pro-
cess Management (BPM). The book, “Production Workflows: Concepts and
Techniques” by Leymann and Roller [255] provides an excellent overview of
the entire field. A business process is an instance of any well-defined task
that is often repeated as part of a standard enterprise task. For example, it
may be the steps required to complete a purchase order, or it may be re-
lated to internal business tasks such as internal audits or corporate database
management. Those parts of a business process that relate to the computer
automation of business processes are the domain of workflow management.

Leyman and Roller [255] characterize four basic types of workflows en-
countered in business, and most have direct counterparts in science and en-
gineering. They define collaborative workflows as those that have high business
value to the company and involve a single large project and possibly many
individuals. For example, the production, promotion, documentation, and re-

10 Roger Barga and Dennis Gannon

lease of a major product fall into this category. The workflow is usually specific
to the particular project, but it may follow a standard pattern used by the
company. Within the engineering disciplines, this corresponds to the tracking
of tasks and subsystem integration required to design and release a new micro-
processor. Within the scientific community, it can refer to the management of
data produced and distributed on behalf of a large scientific experiment such
as those encountered in high-energy physics. Another example may be the
end-to-end tracking of the steps required by a biotech enterprise to produce
and release a new drug.

The second type of workflow they describe is ad hoc. These activities are
less formal in both structure and required response; for example, a notifica-
tion that a business practice or policy has changed that is broadcast to the
entire workforce. Any required action is up to the individual receiving the no-
tification. Within science, notification-driven workflows are common. A good
example is an agent process that looks at the output of an instrument. Based
on events detected by the instrument, different actions may be required and
subworkflow instances may need to be created to deal with them. The third
type of workflow is administrative, which refers to enterprise activities such
as internal bookkeeping, database management, and maintenance scheduling,
that must be done frequently but are not tied directly to the core business
of the company. On the other hand, the fourth type of workflow, referred to
as production workflow, is involved with those business processes that define
core business activities. For example, the steps involved with loan processing
are one of the central business processes of a bank. These are tasks that are
repeated frequently, and many such workflows may be concurrently processed.
Both the administrative and production forms of workflow have obvious coun-
terparts in science and engineering. For example, the routine tasks of man-
aging data coming from instrument streams or verifying that critical monit-
oring services are running are administrative in nature. Production workflows
are those that are run as standard data analyses and simulations by users on
a daily basis. For example, doing a severe storm prediction based on current
weather conditions within a specific domain or conducting a standard data-
mining experiment on a new, large data sample are all central to e-Science
workflow practice.

There are however, areas where business workflows seem, at first glance,
to be substantially different from their scientific counterparts. For example,
a central concern about business workflows is the security and integrity of
a sequence of actions. Paying customers demand that when they pay for a
service, that service must be guaranteed complete and the results exactly as
advertised. Customers demand service. They do not conduct experiments that
may or may not succeed. This concept of the integrity of a sequence of actions
in embodied in the concept of transaction and is central to understanding
workflows in business.

An import class of transactions are those that are long running. Among
these long running transactions are those that satisfy the ACID test. An

2 Scientific versus Business Workflows 11

ACID transaction represents a logical unit of work that is composed of a set
of operations. It is an activity that is completed in its entirety or not at all.
ACID is an acronym where

• A stands for atomicity, which is an “all or nothing” execution guarantee
• C refers to the fact that the database is always in a consistent state
• I means the actions of each transaction are isolated, i.e. they are not seen

and do not effect other operations that are not part of the transaction
• D is for durability. Once a transaction completes, its effect will survive

even if the entire system crashes

The important point of an ACID transaction is that if some subtask fails,
the entire transaction can be rolled back so that the entire state of the world is
as it was prior to the start of the transaction. And the effect of the transaction
is not visible until all subtasks have completed and the entire set of operations
is committed. The application of this concept is clear. It is essential that any
workflow that carries out the terms of a contract shall either complete the
contract or the entire activity is aborted, and that fact is clear to all parties.
For example, customers of a bank want to know when they have transferred
funds from one account to another that the money was not lost along the way.

Unfortunately, not every workflow can be characterized as an ACID trans-
action. A long-running workflow is one that may involve many subworkflows
each of which is an ACID transaction, but it may not be possible to com-
pletely rollback the entire workflow with a single rollback operation. Parts of
the workflow may have already completed, and the state of the world may
have been altered in various ways. In this case, a failure is something that
requires a sequence of new workflows that involve compensating transactions.
A typical example of a long-running workflow may involve multiple businesses
engaged in a long-running collaboration to produce a product. One company
may have been contracted to supply parts to another company producing the
final product. The specific details of the interaction with the subcontractor
may be governed by one subworkflow. But suppose the subcontractor is unable
to deliver the goods. A compensating subworkflow may be to void the original
contract and search for a secondary supplier and engage in a negotiation for
a replacement service.

Both ACID and long-running workflows have their counterparts in e-
Science. The concept of the ACID workflow is essential for any activity that
involves building and maintaining a database. and increasingly databases are
becoming an essential tool for scientific data analysis. Databases store our
collective knowledge in areas such as biological and chemical informatics. Any
workflow that could potentially corrupt such a database is one that must be
ACID in nature. Long-running workflows also play a role in scientific work-
flows. A scientist may divide up the overall task into smaller subtasks, each
of which can be considered an individual step in the experiment. The results
obtained from each such step are either analyzed and/or stored for dissem-
ination to other sites or individuals, used as an input to the next step in an

12 Roger Barga and Dennis Gannon

experiment or exploration, or both. If the scientist later decides an experiment
step was faulty, he or she can compensate the subtask, possibly deleting the
result and notifying others. Such a together chaining smaller tasks to achieve
a desired result from an experiment or exploration, using various data and
analysis services, is easily captured as a long-running transaction.

The business workflow industry has had to deal with the increasing com-
plexity of the business processes that have come about because of the distrib-
uted nature of enterprises. The corporate information technology landscape
has become very heterogeneous. This is a result of many factors, including
corporate mergers and piecemeal software and hardware upgrades to different
divisions of the company. In addition, there is an increasing need to improve
efficiency across the entire organization, and this implies different parts of the
organization must work in close alignment. The corporate workflows have to
become more corporation-wide.

To address these problems, the workflow industry has been aggressive in
its pursuit of technology that improves the time to completion of a workflow
design process, reliability of the result, and interoperability across a wide range
of platforms. Object-oriented technology has been widely adopted within the
industry, and distributed object systems such as the Common Object Request
Broker Architecture (CORBA) were a major step forward. The concept of
programming by scripting the composition of software components is central
to many workflow tools. Leymann and Roller note that to be used as an
effective workflow tool, scripts must obey a strict set of rules. For example, it
must be possible to interrupt a script at any point and resume its execution
later. This implies that the script’s state must be saved in a persistent store.
Likewise, scripts must be recoverable. If something goes wrong, we should
be able to stop the script and roll back any ACID subworkflows and replay
the script from a point prior to the failure. It is assumed that the script is
orchestrating remotely deployed and executing components and that these
components may run in parallel if there are no dependencies preventing it.
An important property of any component system is that the implementation
technology of the individual components is not exposed. The only thing the
script and other components see are interfaces. Leyman and Roller observe
that the exploitation of components requires data flow facilities; for example,
the input parameters of a component are constructed from the output of
several preceding components.

Businesses are also under competitive pressure to rapidly integrate existing
applications and business processes to react to changing business conditions.
Process integration has always been a challenge and is only complicated fur-
ther by the fact that business processes today often span multiple internal and
external systems. Historically, custom integration solutions have addressed
point-to-point integration, in which integration comes at a great cost. The
most recent response to the integration challenge is service-oriented architec-
tures (SOAs) [135] and Web service technologies. The promise of SOA is that
application components can be assembled with little effort into a network of

2 Scientific versus Business Workflows 13

loosely coupled services to create a business process that spans organizations
and computing platforms. SOA is supported by a range of emerging stand-
ards that make it possible to define, implement, and deliver a service in a
uniform way so it can be reused in different contexts. The dominant set of
standards are those known as WS-*. Included in this set of standards are
the Web Service Description Language (WSDL) for service description), the
Universal Description, Discovery and Integration (UDDI) protocol for service
discovery, the Simple Object Access Protocol (SOAP) for service communica-
tion, and the Web Service Business Process Execution Language (WS-BPEL)
for workflow.

The essence of SOA lies in independent services that are interconnected
with messaging. Each service is a self-contained chunk of code and data that
is private to that service, and can be described, published, discovered, or-
chestrated, and deployed across networks such as the Internet. Services com-
municate with each other exclusively through messages. No knowledge of the
partner service is shared other than the message formats and the sequences
of messages that are expected. The bottom-up view of the SOA is that dif-
ferent applications expose their functionalities through Web services. Thus,
programmers can access different functionalities of different legacy and newly
developed applications in a standard way through Web services.

However, Web services by themselves do not address the need to com-
pose and coordinate a process. WS-BPEL, or BPEL for short, is the de facto
standard for the combination and orchestration of Web services. Orchestra-
tion, and therefore BPEL, enables a user to specify how existing services
should be chained together in various ways to design an executable workflow.
The new workflow can then be presented as a new service, which is why BPEL
is often described as a language for recursive composition.

BPEL offers a rich language for orchestrating both business and scientific
workflows. A BPEL process specifies the exact order in which participating
services should be invoked. This can be done sequentially or in parallel. A pro-
grammer can express conditional behavior; for example, a Web service invoca-
tion can depend on the value of a previous invocation. One can also construct
loops, declare variables, copy and assign values, define fault handlers, and so
on. By combining all these constructs, the programmer can define a complex
scientific experiment in an algorithmic manner. BPEL also provides support
for both ACID and long running transactions. Most BPEL implementations
can cause the state of a process instance to persist, allowing a user to in-
terrupt a running workflow and reactivate it later when necessary. Moreover,
workflows specified in BPEL are fully executable and portable across BPEL-
conformant environments, which is an important step toward workflow reuse
and exchange.

Today, scientists face many of the same challenges found in enterprise com-
puting, namely integrating distributed and heterogeneous resources. Scientists
no longer use just a single machine, or even a single cluster of machines, or
a single source of data. Research collaborations are becoming more and more

14 Roger Barga and Dennis Gannon

geographically dispersed and often exploit heterogeneous tools, compare data
from different sources, and use machines distributed across several institutions
throughout the world. And as the number of scientific resources available on
the Internet increases, scientists will increasingly rely on Web technology to
perform in silico experiments. However, the task of running and coordinating a
scientific application across several administrative domains remains extremely
complex.

One reason BPEL is an attractive candidate for orchestrating scientific
workflows is its strong support for Web services. With scientific resources
now available as Web and Grid services, scientists can transition from copy-
ing and pasting data through a sequence of Web pages offering those resources
to the creation and use of a workflow for experiment design, data analysis,
and discovery. Many types of in silico genomics analyses, such as promoter
identification, start with an initial set of data, perhaps acquired in a more
mechanical way such as through fast sequencing equipment or from a mi-
croarray chip. This is followed by an ordered sequence of database queries,
data transformations, and complex functional, statistical, and other analyses.
Such work may require computing power ranging from a desktop computer
to a remote supercomputer but is relatively loosely coupled and in many in-
stances asynchronous. By defining a workflow to automatically invoke and
analyze more routine parts of the process, multiple data sets can be processed
in parallel without requiring a significant amount of additional effort from the
scientist and can considerably increase productivity. With the proper tools,
scientists with limited programming skills can use BPEL to construct a work-
flow that carries out an experiment or that retrieves data from remote data
services.

There are other advantages to be gained from adapting BPEL for scientific
workflows. Since BPEL workflows are designed to act as a Web service, a
workflow can be published as a Web service and easily combined with other
Web services. Capturing an in silico experiment or data transformation as a
reusable workflow that can be defined, published, and easily reused is essential
in sharing scientific best practice.

Using BPEL to orchestrate an experiment also enables fault tolerance.
Because scientists are allowed to select and employ services from a UDDI
registry into the workflow, they also have the ability to use an alternative
service with similar functionality from the registry in case the original service
fails. This ensures that no experiment terminates unexpectedly because of the
failure of one particular service in the flow.

Furthermore, a BPEL workflow is specified in terms of service invocations.
This allows all aspects of the workflow, such as service execution, message flow,
data and process management, fault handling, etc., to be specified as a single
integrated process rather than handled separately. The result is a workflow
in which each step is explicit, no longer buried in Java or C code. Since the
workflow is described in a unified manner, it is much easier to comprehend,
providing the opportunity to verify or modify an experiment.

2 Scientific versus Business Workflows 15

There is a clear case for the role of workflow technology in e-Science;
however, there are technical issues unique to science. Business workflows are
typically less dynamic and evolving in nature. Scientific workflows tend to
change more frequently and may involve very voluminous data translations.
In addition, while business workflows tend to be constructed by professional
software and business flow engineers, scientific workflows are often constructed
by scientists themselves. While they are experts in their domains, they are not
necessarily experts in information technology, the software, or the network-
ing in which the tools and workflows operate. Therefore, the two cases may
require considerably different interfaces and end-user robustness both during
the construction stage of the workflows and during their execution.

In composing a workflow, scientists often incorporate portions of existing
workflows, making changes where necessary. Business workflow systems do
not currently provide support for storing workflows in a repository and then
later searching this repository during workflow composition.

The degree of flexibility that scientists have in their work is usually much
higher than in the business domain, where business processes are usually pre-
defined and executed in a routine fashion. Scientific research is exploratory
in nature. Scientists carry out experiments, often in a trial-and-error manner
wherein they modify the steps of the task to be performed as the experiment
proceeds. A scientist may decide to filter a data set coming from a measuring
device. Even if such filtering was not originally planned, that is a perfectly
acceptable option. The ability to run, pause, revise, and resume a workflow is
not exposed in most business workflow systems.

Finally, the control flow found in business workflows may not be expressive
enough for highly concurrent workflows and data pipelines found in leading-
edge simulation studies. Current BPEL implementations, and indeed most
business workflow languages, require the programmer to enumerate all con-
current flows. Scientific workflows may require a new control flow operator to
succinctly capture concurrent execution and data flow.

Over the last 20 years, there has been a great deal of interest in both re-
search and industry in systematically defining, reasoning about, and enacting
processes and workflows. With so many driving forces at work, it is clear that
workflow systems are here to stay and will have a major role to play in the
future IT strategies of business and scientific organizations, both large and
small. The current focus is on the use of Web services and a move toward a
new paradigm of service oriented architecture in which many loosely-coupled
Web services are composed and coordinated to carry out a process, and or-
chestrated using an execution language such as BPEL.

It is genuinely hard to build a robust and scalable orchestration engine
and associated authoring tools, and few groups have succeeded in doing so.
The emergence of BPEL as the de facto industry standard for Web service
orchestration is significant because it means that a number of commercial-
grade BPEL engines will be readily available.

16 Roger Barga and Dennis Gannon

The strength of BPEL for orchestrating scientific workflows is its strong
support for seamless access to remote resources through Web services. As
scientific applications and curated data collections are published as Web ser-
vices, as will increasingly be the case with the emergence of service-based Grid
infrastructures, commercial BPEL engines will be an attractive execution en-
vironment for scientific workflows.

Part I

Application and User Perspective

3

Generating Complex Astronomy Workflows

G. Bruce Berriman, Ewa Deelman, John Good, Joseph C. Jacob, Daniel S.
Katz, Anastasia C. Laity, Thomas A. Prince,
Gurmeet Singh, and Mei-Hui Su

3.1 Introduction

Astronomy has a rich heritage of discovery using image data sets that cover
the full range of the electromagnetic spectrum. Image data sets in one fre-
quency range have often been studied in isolation from those in other fre-
quency ranges. This is mostly a consequence of the diverse properties of the
data collections themselves. Images are delivered in different coordinate sys-
tems, map projections, spatial samplings, and image sizes, and the pixels
themselves are rarely co-registered on the sky. Moreover, the spatial extent
of many astronomically important structures, such as clusters of galaxies and
star formation regions, is often substantially greater than that of individual
images.

Astronomy thus has a need for image mosaic software that delivers mosaics
that meet end users’ image parameters (size, coordinates, spatial sampling,
projection, rotation) while preserving the astrometric and photometric integ-
rity of the original images. The Montage [299] software package1 has been
designed to meet this need. A driver in the design of Montage has been
the requirement that Montage be usable without modification on end users’
desktops, clusters, computational Grids, and supercomputers. This design
goal has been achieved by delivering Montage as a toolkit in which the pro-
cessing tasks in computing a mosaic are performed in independent modules
that can be controlled through simple executables. The processing is easily
performed in parallel computing environments with the processing of images
performed on as many processors as are available. This approach has been suc-
cessfully demonstrated with two instances of parallel technology—MPI (Mes-
sage Passing Interface) [389] and Pegasus (Chapter 23). An on-demand image
mosaic service has been built on the TeraGrid [412] and is currently under
evaluation by astronomers, who simply submit a request for a mosaic using a
Web form; the TeraGrid architecture is hidden from them. Montage can be

1 http://montage.ipac.caltech.edu.

20 Berriman et al.

considered an enabling technology in that the mosaics it generates will widen
avenues of astronomical research, including deep source detection by combin-
ing data over multiple wavelengths and studying the wavelength-dependent
structure of extended sources, and image differencing to detect faint features.

The execution of complex workflows that produce image mosaics requires
an understanding of the design philosophy of Montage and the algorithms
implemented in it. Therefore we preface the discussion of parallelization and
workflows with this topic.

3.2 The Architecture of Montage

3.2.1 Architectural Components

Montage employs the following four steps to compute a mosaic:

• Reprojection of input images to a common spatial scale, coordinate sys-
tem, and World Coordinate System (WCS) projection

• Modeling of background radiation in images to achieve common flux scales
and background levels by minimizing the interimage differences

• Rectification of images to a common flux scale and background level
• Co-addition of reprojected, background-corrected images into a final mo-

saic

Montage accomplishes these computing tasks in independent modules writ-
ten in ANSI C for portability; they are listed in Table 3.2.1 and shown as a par-
allelized workflow in Figure 3.1. This “toolkit” approach controls testing and
maintenance costs and provides considerable flexibility to users. They can, for
example, use Montage simply to reproject sets of images and co-register them
on the sky, or implement a custom background-removal algorithm without
impact on the other steps, or define a specific processing flow through custom
scripts.

3.2.2 A General Reprojection Algorithm

To support the broadest range of applications, the basic Montage reprojection
and image-flux redistribution algorithm works on the surface of the celestial
sphere. All pixel vertices from both input and output images are projected
onto this sphere; if necessary, a coordinate system transform is applied to
the input pixel vertices to put their sky coordinates in the same frame as
the output. Then, for overlapping pixels, the area of overlap (in steradians)
is determined. This overlap, as a fraction of the input pixel area, is used to
redistribute the input pixel “energy” to the output pixels. In this way, total
energy is conserved for those input pixels that do not extend beyond the
bounds of the output image area. Even when a pixel has “undefined” vertices,
such as at the boundaries of an Aitoff All-sky projection, the same process can

3 Generating Complex Astronomy Workflows 21

Component Description

Mosaic Engine Components

mImgtbl Extracts the FITS header geometry information from a set of
files and creates an ASCII image metadata table from it used
by several of the other programs.

mProject Reprojects a single image to the scale defined in a pseudo-FITS
header template file. Produces a pair of images: the reprojected
image and an “area” image consisting of the fractional input
pixel sky area that went into each output pixel.

mProjExec A simple executable that runs mProject for each image in an
image metadata table.

mAdd Coadds the reprojected images using the same FITS header
template and working from the same image metadata table.

Background Rectification Components

mOverlaps Analyzes an image metadata table to determine a list of over-
lapping images.

mDiff Performs a simple image difference between a single pair of
overlapping images. This is meant for use on reprojected im-
ages where the pixels already line up exactly.

mDiffExec Runs mDiff on all the pairs identified by mOverlaps.

mFitplane Fits a plane (excluding outlier pixels) to an image. Meant for
use on the difference images generated above.

mFitExec Runs mFitplane on all the mOverlaps pairs. Creates a table of
image-to-image difference parameters.

mBgModel Modeling/fitting program that uses the image-to-image differ-
ence parameter table to interactively determine a set of cor-
rections to apply to each image to achieve a “best” global fit.

mBackground Removes a background from a single image (planar has proven
to be adequate for the images we have dealt with).

mBgExec Runs mBackground on all the images in the metadata table

Table 3.1: The design components of Montage.

be applied by determining an edge pixel’s outline on the sky, described in the
general case as a spherical polygon. The co-addition engine then creates the
final mosaic by reading the reprojected images from memory and weighting
each pixel’s flux by the total input area [48].

This approach is completely general and preserves the fidelity of the in-
put images. A comparison of sources extracted from the mosaics with those
extracted from the original images shows that, in general, Montage preserves
photometric accuracy to better than 0.1% and astrometric accuracy to better
than 0.1 pixels [301]. Generality in reprojection is achieved at the expense of
processing speed. For example, reprojection of a 512×1024 pixel Two Micron
All Sky Survey (2MASS) [387] image takes 100 seconds on a machine equipped

22 Berriman et al.

Figure 3.1: Montage workflow.

with a 2.26 GHz Intel processor and 1 GB memory running Red Hat Linux
8.0.

The algorithm described above was deployed in the first public distribution
of the Montage software, version 1.7 [300]. Two further drawbacks inherent
in this distribution are that the maximum image-mosaic size is limited by the
available computer memory, and co-addition of flux in the reprojected pixels
only supports weighting by area coverage.

The Montage team has taken advantage of the software’s modular design
to address these limitations in subsequent distributions. These improvements
have taken the following forms:

• A general co-addition algorithm (Section 3.2.3)
• Custom, fast reprojection algorithms applicable to commonly used astro-

nomical projections that bypass projection of pixels onto a sphere and
transform input pixel flux directly into output pixel space (Section 3.2.4)

• Exploitation of the parallelization inherent in the design—many of the
steps needed to compute a mosaic can be performed in parallel (Section
3.3)

The following sections describe these optimizations in more detail.

3 Generating Complex Astronomy Workflows 23

3.2.3 A General Co-addition Algorithm for Montage

The limitations of the available memory on the processing machine have been
simply overcome by reading the reprojected images a single line at a time from
files that reside on disk. Assuming that a single row of the output file does not
fill the memory, the only limitation on file size is imposed by the file system.
Images of up to 30 GB have been built with the new software. The algorithm
has also been developed further to support quite general co-addition methods.
For each output line, the co-addition module determines which input files will
be contributing pixel values and opens only those files. Each contributing pixel
value is read from the flux and area coverage files, and the value of each of
these pixels is stored in an array until all contributing pixels have been read
for the corresponding output row. This array constitutes a “stack” of input
pixel values; a corresponding stack of area coverage values is also preserved.
The contents of the output row are then calculated one output pixel (i.e., one
input stack) at a time by averaging the flux values from the stack. Different
algorithms to perform this average can be trivially inserted at this point in
the program. The greater flexibility of the new software comes at the modest
expense of 30% in speed.

Currently, Montage supports mean and median co-addition, with or without
weighting by area. The mean algorithm (default) accumulates flux values con-
tributing to each output pixel and then scales them by the total area coverage
for that pixel. The median algorithm ignores any pixels whose area coverage
falls below a specific threshold and then calculates the median flux value from
the remainder of the stack. This median input pixel is scaled by its corres-
ponding area coverage and written as the output pixel. If there are no area
files, then the algorithm gives equal weight to all pixels. This is valuable for
science data sets where the images are already projected into the same pixel
space. An obvious extension of the algorithm is to support outlier rejection,
and this is planned for a future release as an enhancement.

3.2.4 Performance Improvements through Custom
Reprojection Algorithms

In its general form, the Montage reprojection algorithm transforms pixel co-
ordinates in the input image to coordinates on the sky and then transforms
that location to output-image pixel space. Under certain circumstances, this
can be replaced by a much faster algorithm that uses a set of linear equations
(though not a linear transform) to transform directly from input pixel coordin-
ates to output pixel coordinates. This alternative approach is limited to cases
where both the input and output projections are “tangent plane” (Gnomonic,
orthographic, etc.), but since these projections are by far the most commonly
used in astronomy, it is appropriate to treat them as a special case.

This “plane-to-plane” approach is based on a library developed at the
Spitzer Science Center [302]. When both images are tangent plane, the geo-
metry of the system can be viewed as in Figure 3.2, where a pair of Gnomonic

24 Berriman et al.

projection planes intersects the coordinate sphere. A single line connects the
center of the sphere, the projected point on the first plane, and the projected
point on the second plane. This geometric relationship results in transform-
ation equations between the two planar coordinate systems that require no
trigonometry or extended polynomial terms. As a consequence, the transform
is a factor of 30 or more faster than using the normal spherical projection.

A bonus to the plane-to-plane approach is that the computation of pixel
overlap is much easier, involving only clipping constraints of the projected
input pixel polygon in the output pixel space.

Figure 3.2: The principle of plane-to-plane reprojection.

This approach excludes many commonly used projections such as “Cartesian”
and “zenithal equidistant” and is essentially limited to small areas of a few
square degrees. Processing of all-sky images, as is almost always the case with
projections such as Aitoff, generally requires the slower plane-to-sky-to-plane
approach.

There is, however, a technique that can be used for images of high resolu-
tion and relatively small extent (up to a few degrees on the sky). Rather than
use the given image projection, we can often approximate it to a very high
degree of accuracy with a “distorted” Gnomonic projection. A distorted space
is one in which the pixel locations are slightly offset from the locations on the
plane used by the projection formulas, as happens when detectors are slightly
misshapen, for instance. This distortion is modeled by pixel-space polynomial
correction terms that are stored as parameters in the image FITS (Flexible
Image Transport System) [142] header.

While this approach was developed to deal with physical distortions caused
by telescope and instrumental effects, it is applicable to Montage in augment-
ing the plane-to-plane reprojection. Over a small, well-behaved region, most
projections can be approximated by a Gnomonic (TAN) projection with small

3 Generating Complex Astronomy Workflows 25

distortions. For instance, in terms of how pixel coordinates map to sky co-
ordinates, a two-degree “Cartesian” (CAR) projection is identical to a TAN
projection with a fourth-order distortion term to within about 1% of a pixel
width. Figure 3.3 shows this in exaggerated form for clarity, with the arrows
showing the sense of the distortion.

Figure 3.3: Representation of a WCS projection as a distorted Gnomonic
(TAN) projection, exaggerated for clarity. The arrows indicate the sense of
the distortions.

In this example, the curved coordinate Grid is an undistorted TAN and
the rectangular Grid is both a CAR and the equivalent distorted TAN. This
polynomial “correction” plus the plane-to-plane transform is still much faster
than the normal reprojection. While this still does not cover all the possible
transformations, it does include all those used for very large data collections.

3.3 Grid-Enabled Montage

3.3.1 Parallelism in Montage

Because the Montage components can require a large amount of time to com-
plete a mosaic of reasonable size, various means of speeding up the calculations
were examined. The slow speed of the calculations is due to three factors: the
CPU speed, the compilers and memory systems limit how much of the CPU’s
peak performance can be obtained; and the I/O system limits how fast input
images can be loaded from remote archives and also how the local disk stores
intermediate and final results. Each of these limitations can be addressed, but
addressing each adds complexity. The rest of this section will discuss potential
solutions.

The simple solution to the limit of a CPU’s performance is to use multiple
CPUs. Currently, the market and commodity choice is to use multiple PC
CPUs in a cluster, where each CPU was designed as an individual machine,

26 Berriman et al.

and to use some collective software and hardware, including networking, to
make the system appear to be a single system in many ways.

To deal with the limits on what fraction of the peak performance of the
CPUs Montage can exploit, it uses standard libraries where possible, as the
libraries can be optimized by their developers better than standard code can
be optimized by a compiler. Montage uses simple C code rather than C++
code around the libraries, as C can often be compiled into better-performing
code than C++. C remains more portable than C++, though this is not a
factor with modern hardware and compilers.

Finally, on the question of I/O limits to performance, the Montage design
is kept as flexible as possible so that it can take best advantage of the network
and disk systems that are available. In particular, Montage will benefit from
parallel file systems where they exist.

Given a system of hardware consisting of multiple individual systems
(nodes) that sometimes appear as a single system, C code and standard librar-
ies, and a lack of dependence on the choice of I/O system, the question that is
left to be answered is how to make all of these choices work together to solve
the problem for which Montage was intended, construction of astronomical
image mosaics, where parallelism is inherent, as seen in Figure 3.1.

The design of a set of simple applications connected by scripts lets us
take advantage of a number of processing environments, including a single
processor; a cluster of multiple processors with a shared file system; multiple
clusters, each with a shared file system; a set of processors, each with its
own file system; or any Grid-enabled hardware. For the single processor, the
simple executables and scripts are sufficient. For the other cases, two different
solutions have been implemented: an MPI approach and a Grid approach.

3.3.2 MPI Approach

MPI, the Message Passing Interface [389], is a standard that defines how vari-
ous processes can work together to solve a single problem through exchanging
messages. Messages can include data or can be used for synchronization. Two
common programming paradigms are used in MPI programs: single program
multiple data (SPMD) and master–worker. The Montage design provides a
master–worker-like structure for many of the modules in the form of ex-
ecutables (such as mProjExec and mProject), and so the generation of MPI
master–worker code would have been quite simple. Nevertheless, the SPMD
model was adopted because master–worker applications scale with the num-
ber of workers, not the number of processors, and scaling with the number
of processors was an explicit requirement from the sponsor. In general, the
structure of the executables is similar in that each has some initialization that
involves determining a list of files on which a worker module will be run, a
loop in which the worker is called for each file, and some finalization work
that includes reporting on the results of the worker runs. The executables are
parallelized very simply in the SPMD paradigm, with all processes of a given

3 Generating Complex Astronomy Workflows 27

executable being identical to all the other processes of that executable. All
the initialization is duplicated by all processors. A line is added at the start of
the main loop, so that each processor only calls a worker module on its own
processor if the remainder of the loop count divided by the number of pro-
cessors equals the MPI rank. All processors then participate in global sums to
find the total statistics of how many worker modules succeeded, failed, etc., as
each processor initially keeps track of only its own statistics. After the global
sums, only the processor with rank 0 prints out the global statistics.

mAdd, however, is different, as it writes to the output mosaic a single line
at a time, reading from its input files as needed. The sequential mAdd writes
the FITS header information into the output file before starting the loop on
output lines. In the parallel mAdd, only the processor with rank 0 writes
the FITS header information; then it closes the file. Now, each processor can
carefully seek to the correct part of the output file and then write data, without
danger of overwriting another processor’s work. While the other executables
were written to divide the main loop operations in a round-robin fashion, it
makes more sense to parallelize the main mAdd loop by blocks since it is likely
that a given row of the output file will depend on the same input files as the
previous row, and this can reduce the amount of I/O for a given process.

Note that Montage includes two modules that can be used to build the final
output mosaic, mAdd (to write a single output file) and mAddExec (to write
tiled output files), and both can be parallelized as discussed in the previous
two paragraphs. Currently, Montage runs one or the other, but it would be
possible to combine them in a single run.

Some parts of the MPI-based Montage code, such as mImgtbl, will only
use one processor, and other parts, such as mProjExecMPI, will use all the
processors. Overall, most of the processors are in use most of the time. There
is a small amount of overhead in launching multiple MPI jobs on the same
set of processors. One might change the shell script into a parallel program,
perhaps written in C or Python, to avoid this overhead, but this has not been
done for Montage.

The timing results of the MPI version of Montage are shown in Figure 3.4.
The total times shown in this figure include both the parallel modules (the
times for which are also shown in the figure) and the sequential modules (the
times for which are not shown in the figure but are relatively small).

MPI parallelization reduces the one-processor time of 453 minutes down
to 23.5 minutes on 64 processors for a speedup of 19 times. Note that with
the exception of some small initialization and finalization code, all of the
parallel code is nonsequential. The main reason the parallel modules fail to
scale linearly as the number of processors is increased is I/O. On a system
with better parallel I/O, one would expect to obtain better speedups; the
situation where the amount of work is too small for the number of processors
has not been reached, nor has the Amdahl’s law limit.

Note that there is certainly some variability inherent in these timings due
to the activity of other users on the cluster. For example, the time to run

28 Berriman et al.

Figure 3.4: Performance of the MPI version of Montage building a 6×6 degree
mosaic on the “Phase 2” TeraGrid [412] cluster at NCSA using dual 1.5 GHz
Itanium-2 processors with at least 4 GB of memory.

mImgtbl should be the same in all cases since it is always run on a single
processor. However, the measured results vary from 0.7 to 1.4 minutes. Also,
the time for mDiffExec on 64 processors is fairly different from that on 16 and
32 processors. This appears to be caused by I/O load from other jobs run-
ning simultaneously with Montage. Additionally, since some of the modules’
timings are increasing as the number of processors is increased, one would
actually choose the fastest timing and run the module on only the number
of processors that were used for that timing. For example, mBgExec on this
machine should only be run on 16 processors, no matter how many are used
for the other modules.

These MPI timings are probably close to the best that can be achieved on
a single cluster and can be thought of as a lower bound on any parallel im-
plementation. The MPI approach is suitable for a set of processors that share
a file system, as there is implicit communication from one module to another
through files, and these files must be visible to all processors. Additionally,
if any processor fails in the MPI run, the entire MPI job and any remaining
part of the Montage job will also fail. A more general solution to the problem
of making use of multiple processors is to use a Grid approach.

3.3.3 Grid Approach

In the Grid approach, we create a workflow that describes the process of cre-
ating a mosaic using the Montage modules and use Pegasus (Chapter 23) for

3 Generating Complex Astronomy Workflows 29

executing the workflow over the Grid resources. Pegasus [110–112,116], which
stands for Planning for Execution in Grids, is a framework that enables the
mapping of complex workflows onto distributed resources such as the Grid.
Pegasus maps an abstract workflow to a form that can be executed on a vari-
ety of computational platforms, from single hosts, to Condor pools [262], to
compute clusters, to the TeraGrid. While the MPI-based approach focuses on
running the Montage computations on a set of processors on a particular re-
source, such as a TeraGrid cluster, Pegasus takes a more generic approach by
including mechanisms for resource and data discovery, mapping of the compu-
tations to the appropriate resources, orchestration of data transfers between
the computations as needed, publication of the results in Grid catalogs, and
other runtime optimizations in order to improve the execution efficiency.

In order to use the Pegasus approach, an abstract workflow is generated
that describes the various tasks and the order in which they should be ex-
ecuted in order to generate the mosaic. The abstract workflow for Montage
consists of the various application components as shown in Figure 3.1. The
tasks in the abstract workflow represent the logical transformations such as
mProject, mDiff, and others. The edges of the workflow represent the data de-
pendencies between the transformations. For example, mConcatFit requires all
the files generated by all the previous mFitplane steps. The rationale for choos-
ing this particular workflow structure was to exploit the inherent parallelism
in the Montage modules. Other workflow structures for Montage are also pos-
sible, such as the one consisting of Montage executables (e.g., mProjExec, etc).
Even the previous MPI-based version of Montage could be represented as a
workflow.

Pegasus queries Grid information services to find the location of compute
and storage resources and to locate the physical replicas of the required input
data for the workflow. It then maps each task in the abstract workflow to a
compute resource based on a scheduling policy such as round-robin, random,
etc. The MPI approach used a shared file system for sharing data between
the Montage modules. In addition, Pegasus can transfer data using GridFTP
[9] between the various tasks based on the dependencies in the workflow,
where such shared file systems are not available. It transfers the input data
required by the tasks to the compute resources and then transfers the created
mosaic to a predefined location. These transfers are orchestrated by adding
data transfer tasks to the workflow at the appropriate places. This results in
the creation of a concrete workflow that can be executed using the Condor
DAGMan (Chapter 22) [97] workflow engine. DAGMan submits tasks to the
remote resources, monitors their execution, maintains the dependencies in the
workflow, and retries in case of failures.

Pegasus can be used to generate concrete workflows that can execute on
Grid resources that present a Globus Resource Allocation Manager (GRAM)
[102] interface or on a local Condor [262] pool. The Condor pool can consist
of dedicated or opportunistically shared resources. It can be constructed from
remote Grid resources using a Condor feature known as glide-in [96]. Glide-in

30 Berriman et al.

can temporarily allocate a certain number of processors from a resource such
as the TeraGrid, create a Condor pool from these allocated processors, and
execute the workflow on this pool. Note that in both of these approaches, the
resources used can be local or remote, dedicated or shared. The key difference
is in the protocol used for submitting tasks to the resources and monitoring
their execution.

There are overheads associated with execution of workflows on Grids due
to the distributed nature of the resources, heterogeneity of the software com-
ponents that need to interact, the scale and structure of the workflows, etc.
These overheads are absent or minimal in the case of the MPI-based approach,
and hence the mosaic creation time using the MPI-based approach can be con-
sidered to be the lower bound on the time taken to create the mosaic using
the Grid approach. We have created a set of optimizations that reduce the
overheads and improve the execution efficiency of the workflow. These optim-
izations include task clustering techniques that increase the computational
granularity of the workflow and hence reduce the impact of the execution
overhead on the workflow runtime. Experiments done using these optimiz-
ations have shown that the mosaic creation time using the Grid approach
compares favorably with the MPI approach when the number of processors
allocated is less than 64 (Figure 3.5) [234].

 10

 100

 1000

 1 2 4 8 16 32 64

W
a

ll
C

lo
c
k
 T

im
e

(m
in

u
te

s
)

No. of nodes (1 Processor per node)

453.3

230.1

119.8

77.6

50.9
40.9

23.5

285.9

142.6

79.5

51.3

36.2

26.8

28.5

MPI
Pegasus

Figure 3.5: Times for building and executing the concrete workflow for creating
a 6 × 6 degree mosaic of the M16 region.

3 Generating Complex Astronomy Workflows 31

3.4 Supporting a Community of Users

The Montage software is available1 through a free “clickwrap” license issued
by the California Institute of Technology. Users of the software fall into two
groups: those who wish to order a mosaic from a third party and download the
resulting mosaic, and those who download and install the software on desktops
or incorporate it into processing environments. Section 3.4.1 describes the
architecture and operation of a portal for users who wish to request mosaics
online, and Section 3.4.2 describes examples of how Montage is being used
within processing environments to generate science and education and public
outreach products.

3.4.1 A Grid Portal for Montage

This section illustrates how to combine application-specific services and Grid-
based services to provide users with a Montage portal. An advanced prototype
of the architecture described below has been developed. When fully deployed,
this portal will be publicly accessible and will operate on a 24/7 basis. The
service is likely to process roughly 20,000 requests per month, based on sim-
ilar requests for 2MASS images at the NASA/IPAC Infrared Science Archive
(IRSA).

The Montage TeraGrid portal has a distributed architecture, as illustrated
in Figure 3.6. The portal is comprised of the following five main components,
each having a client and server: (i) User Portal, (ii) Abstract Workflow service,
(iii) 2MASS Image List service, (iv) Grid Scheduling and Execution service,
and (v) User Notification service. These components are described in more
detail below.

User Interface

Users on the Internet submit mosaic requests by filling in a simple Web form
with parameters that describe the mosaic to be constructed, including an ob-
ject name or location, mosaic size, coordinate system, projection, and spatial
sampling. After request submission, the remainder of the data access and mo-
saic processing is fully automated, with no user intervention. The server side
of the user portal includes a CGI program that receives the user input via
the Web server, checks that all values are valid, and stores the validated re-
quests to disk for later processing. A separate daemon program with no direct
connection to the Web server runs continuously to process incoming mosaic
requests. The processing for a request is done in two main steps:

1. Call the Abstract Workflow service client code
2. Call the Grid Scheduling and Execution service client code and pass to it

the output from the Abstract Workflow service client code
1 http://montage.ipac.caltech.edu/docs/download.html.

32 Berriman et al.

Figure 3.6: The distributed architecture of the Montage TeraGrid portal.

Abstract Workflow service

The Abstract Workflow service takes as input a celestial object name or loc-
ation on the sky and a mosaic size and returns a ziped archive file containing
the abstract workflow as a directed acyclic graph (DAG) in XML and a num-
ber of input files needed at various stages of the Montage mosaic processing.
The abstract workflow specifies the jobs and files to be encountered during
the mosaic processing and the dependencies between the jobs.

Image List service

The Image List service takes as input a data-set identifier, celestial object
name or location on the sky (which must be specified as a single argument
string), and a mosaic size. The astronomical images from the specified data-set
(e.g., 2MASS) that intersect the specified location on the sky are returned in a
table, with columns that include the filenames and other attributes associated
with the images.

3 Generating Complex Astronomy Workflows 33

Grid Scheduling and Execution service

The Grid Scheduling and Execution service takes as input the ziped archive
generated by the Abstract Workflow service, which contains the abstract work-
flow and all of the input files needed to construct the mosaic. The service
authenticates users, schedules the job on the Grid using Pegasus, and then
executes the job using Condor’s DAGMan.

Users are authenticated on the TeraGrid using their Grid security cre-
dentials. Users first need to save their proxy credential on the MyProxy
server [314]. MyProxy is a credential repository for the Grid that allows a
trusted server (such as our Grid Scheduling and Execution service) to access
Grid credentials on the user’s behalf. This allows the appropriate credentials
to be retrieved by the portal using the user’s username and password.

Once authentication is completed, Pegasus schedules the Montage work-
flow onto the TeraGrid or other clusters managed by PBS and Condor. Upon
completion, the final mosaic is delivered to a user-specified location and the
User Notification service, described below, is contacted.

User Notification service

The last step in Grid processing is to notify the user of the URL where the
mosaic may be downloaded. This notification is done by a remote User Notific-
ation service so that a new notification mechanism can be used later without
having to modify the Grid Scheduling and Execution service. Currently the
user notification is done with a simple email, but a later version could provide
more sophisticated job monitoring, query, and notification capabilities.

Our design exploits the parallelization inherent in the Montage architec-
ture. The Montage Grid portal is flexible enough to run a mosaic job on
a number of different cluster and Grid computing environments, including
Condor pools and TeraGrid clusters. We have demonstrated processing on
both a single cluster configuration and on multiple clusters at different sites
having no shared disk storage.

3.4.2 Applications of Montage in Dedicated Processing
Environments

One application of Montage is as a general reprojection engine to derive large-
scale or full-sky images. Figure 3.7 shows an image of the 100 μm map of the
sky by Schlegel, Finkbeiner, and Davis [379] that aggregates the sky maps pro-
duced by the Diffuse Infrared Background Experiment (DIRBE) aboard the
Cosmic Background Explorer (COBE) and the Infrared Astronomical Satel-
lite (IRAS), shown transformed from the Zenithal Equal Area projection to
the Cartesian projection. This map is a science product that can be made ac-
cessible to astronomers online either as a single file for download or through a
cutout Web service, which will deliver image subsets of arbitrary size centered

34 Berriman et al.

on a target position. The NASA/Infrared Processing and Analysis Center
(IPAC) Infrared Science Archive (IRSA) is including this image as part of a
broader science service that is required by the Herschel mission for observation
planning. It will return estimates of the dust emission galactic emission and
extinction along a line of sight, and when fully developed will return fluxes
extrapolated to other wavelengths. The Spitzer/IPAC E/PO group is plan-
ning to deliver E/PO products made from such mosaics, including fold-out
icosahedrons of the sky that will be distributed online.

Figure 3.7: The 100 μm sky represented in Cartesian projection, computed by
Montage from composite DIRBE and IRAS skymaps of Schlegel, Finkbeiner,
and Davis [379].

Figure 3.8: A section of the Galactic plane, 44˚by 8˚, measured by 2MASS
in the J-band and shown in Cartesian projection. The full-resolution image
contains 4800 Megapixels.

A second application is generation of large-scale image mosaics, which can
also be served as products either for download or through spatial subsetting
services. Figure 3.8 shows a mosaic of a section of the Galactic plane in the
2MASS J-band [1], 44˚long and 8˚wide, centered on the Galactic Center and
shown in Cartesian projection. The production of this mosaic was intended
as a pilot project to provide resource estimates for generation of a full-sky
2MASS mosaic to be computed on the San Diego Supercomputer Center’s

3 Generating Complex Astronomy Workflows 35

IBM DataStar supercomputer when fully commissioned. The mosaic was pro-
duced on a cluster of four 1.4 GHz Linux processors that processed the input
images in parallel. By taking advantage of the algorithmic improvements de-
scribed in Sections 2.3 and 2.4, the map was generated in 4 hours wall-clock
time from 16,000 2MASS images in sine projection and containing 512× 1024
pixels each.

Montage has found particular application to the Spitzer Space Telescope,
and this is described in the remainder of this section.

Figure 3.9: Footprints of Hubble Space Telescope (HST) Advanced Camera
System (ACS) images in the Hubble Deep Field North supporting the Great
Observatories Origins Deep Survey (GOODS), shown on a backdrop 2MASS
K-band mosaic computed with Montage. The GOODS data query service is
accessible at http://irsa.ipac.caltech.edu/data/GOODS.

Backdrops for Rendering Spatial Coverage of Spitzer Ancillary Observa-
tions. On behalf of the Spitzer Science Center, IRSA is serving ancillary,
ground-based data supporting the Spitzer First Look Survey and Legacy pro-
jects. The data generally consist of collections of images, spectra, and source
catalogs covering target areas that are generally several degrees on a side.
These targets include the Lockman Hole, the ELAIS Fields, and the Hubble
Deep Fields. Montage has been used to create mosaics, generally from 2MASS
all-sky images, that act as background images that render the sky coverage
of results of spatial searches for data. An example is shown in Figure 3.9.

Support for Data Production and Validation by Spitzer Space Telescope
Legacy Teams. Two Spitzer Legacy teams, the Spitzer Wide-area InfraRed
Extragalactic (SWIRE) survey [264] and the Galactic Legacy Infrared Mid-
Plane Survey Extraordinaire (GLIMPSE) [163], are using Montage to support
their processing pipelines, quality assurance, and mission planning. SWIRE is
using the Infrared Array Camera (IRAC) and the MIPS (Millions of Opera-
tions Per Second) to trace the evolution of extragalactic populations at mod-
erate redshifts. GLIMPSE is generating a four-color multiwavelength infrared

36 Berriman et al.

atlas of the Galactic plane with IRAC. Both projects are actively delivering
scientific data products to the Spitzer Science Center (SSC).

SWIRE has been using Montage on Solaris platforms as a fast reprojection
and co-addition engine to build sky simulations at a common spatial sampling
that model the expected behavior of the sky, including galaxies, stars, and cir-
rus. These simulations have been used to validate the processing pipeline and
source extraction. Predictions of the expected source populations and appear-
ance of the sky have been used to plan the observing strategy. Following the
launch of Spitzer, SWIRE is using Montage as an engine for co-registering
images from different instruments, delivered with differing sampling frequen-
cies, coordinate systems, and map projections, on a common spatial sampling
scale and with common instrument parameters, and placing the backgrounds
of each set of images on a common level. Figure 3.10 shows part of a 2.5 GB
mosaic generated from images obtained with IRAC; the bright galaxy left of
center is the Tadpole Galaxy. Montage was used here as a background recti-
fication and co-addition engine applied to mosaic images generated as part of
the Spitzer pipeline. The SWIRE project1 has compiled a list of over 30 (as
of March 2006) scientific publications that exploit SWIRE data products.

Figure 3.10: Part of a three-color
mosaic of Spitzer Infrared Array
Camera (IRAC) images. The com-
plete mosaic is 10,000 pixels on a
side.

Figure 3.11: Four-color IRAC mo-
saic of the Galactic star formation
region RCW 49 measured at 3.6 μm,
4.5 μm, 5.8 μm, and 8 μm.

The GLIMPSE team has also integrated Montage into their Linux cluster-
based pipeline. As part of their quality assurance program, they have used
mosaics of the entire GLIMPSE survey region at J, H, K and MSX 8 μm [164].
They provide quick-look comparisons for quality assurance of the IRAC mo-
saics. An example of the early science data products is shown in Figure 3.11.
1 http://swire.ipac.caltech.edu/swire/astronomers/publications.html

3 Generating Complex Astronomy Workflows 37

These data products are leading to a new understanding of the star form-
ation in the plane of the Galaxy, in which star formation is proceeding at
a much higher rate than previously thought, and have led to the discovery
that the bar in the center of the Galaxy is some 7500 parsecs long, substan-
tially longer than previously thought [44, 92]. The GLIMPSE team Web site
(http://www.astro.wisc.edu/sirtf/glimpsepubs.html) has listed over 20 peer-
reviewed papers (as of March 2006) that use the GLIMPSE data products.

Figure 3.12: Continuum-subtracted Hα image of the supernova remnant S147.
This is a very large-scale image, built by computing a mosaic of a large number
of overlapping IPHAS fields. The total imaged area is roughly 5× 3.5 square
degrees.

The INT/WFC Photometric H-alpha Survey (IPHAS) is performing a
deep Hα survey of the Southern Galactic Plane in the red (Sloan R and I
bands). The project surveys short-lived phases of stellar evolution to signific-
antly advance our knowledge of the extreme phases of stellar evolution, and as
part of its operations is generating large-scale mosaics (5 × 5 square degrees)
of regions of the Galactic plane. Figure 3.12 shows a sample image; more can
be seen in [216,217].

Acknowledgments

Montage is supported by the NASA Earth Sciences Technology Office Com-
puting Technologies (ESTO-CT) program under Cooperative Agreement No-
tice NCC 5-6261. Pegasus is supported by NSF under grants ITR-0086044
(GriPhyN), ITR AST0122449 (NVO), and EAR-0122464 (SCEC/ITR).

Part of this research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration. Reference herein to any specific commer-
cial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not constitute or imply its endorsement by the United States

38 Berriman et al.

Government or the Jet Propulsion Laboratory, California Institute of Tech-
nology.

Use of TeraGrid resources for the work in this chapter was supported by the
National Science Foundation under the following NSF programs: Partnerships
for Advanced Computational Infrastructure, Distributed Terascale Facility
(DTF), and Terascale Extensions: Enhancements to the Extensible Terascale
Facility.

4

A Case Study on the Use of Workflow
Technologies for Scientific Analysis:
Gravitational Wave Data Analysis

Duncan A. Brown, Patrick R. Brady, Alexander Dietz, Junwei Cao, Ben
Johnson, and John McNabb

Keywords: Gravitational wave data analysis, signal processing, data access,
grid computing.

4.1 Introduction

Modern scientific experiments acquire large amounts of data that must be ana-
lyzed in subtle and complicated ways to extract the best results. The Laser
Interferometer Gravitational Wave Observatory (LIGO) is an ambitious effort
to detect gravitational waves produced by violent events in the universe, such
as the collision of two black holes or the explosion of supernovae [37,258]. The
experiment records approximately 1 TB of data per day, which is analyzed by
scientists in a collaboration that spans four continents. LIGO and distributed
computing have grown up side by side over the past decade, and the analysis
strategies adopted by LIGO scientists have been strongly influenced by the
increasing power of tools to manage distributed computing resources and the
workflows to run on them. In this chapter, we use LIGO as an application
case study in workflow design and implementation. The software architecture
outlined here has been used with great efficacy to analyze LIGO data [2–5]
using dedicated computing facilities operated by the LIGO Scientific Collabor-
ation, the LIGO Data Grid. It is just the first step, however. Workflow design
and implementation lies at the interface between computing and traditional
scientific activities. In the conclusion, we outline a few directions for future
development and provide some long-term vision for applications related to
gravitational wave data analysis.

4.2 Gravitational Waves

Although Einstein predicted the existence of gravitational waves in 1916, the
challenge in directly observing them is immense because of the extremely weak

40 Brown et. al.

coupling between matter and gravitation. Small amounts of slowly moving
electric charge can easily produce detectable radio waves, but the generation
of detectable amounts of gravitational radiation requires extremely massive,
compact objects, such as black holes, to be moving at speeds close to the speed
of light. The technology to detect the waves on Earth only became practical in
the last decade of the twentieth century. The detection of gravitational waves
will open a new window on the universe and allow us to perform unprecedented
tests of general relativity. Almost all of our current knowledge about the
distant universe comes from observations of electromagnetic waves, such as
light, radio and X-ray. Gravitational waves, unlike electromagnetic waves,
travel through matter and dust in the universe unimpeded. They can be used
to see deep into the cores of galaxies or probe the moment when space and
time came into being in the Big Bang.

Gravitational waves are ripples in the fabric of space-time; their effect on
matter is to stretch it in one direction and squeeze it in the perpendicular di-
rection. To detect these waves, LIGO uses three laser interferometers located
in the United States. Two interferometers are at the Hanford Observatory in
southeastern Washington and one is at the Livingston Observatory in south-
ern Louisiana. The purpose of the multiple detectors is to better discriminate
signal from noise, as a gravitational wave signal should be detectable by all
three interferometers. Each interferometer consists of a vacuum pipe arranged
in the shape of an L with 4 kilometer arms. At the vertex of the L and at the
end of each of its arms are mirrors that hang from wires. Laser beams travers-
ing the vacuum pipes accurately measure the distance between the mirrors in
the perpendicular arms. By measuring the relative lengths of the two arms,
LIGO can measure the effect of gravitational waves. These changes in length
are minute, typically 10−19 meters over the 4 kilometer arms—much less than
the size of a proton. To measure such small distances requires ultrastable
lasers and isolation of the mirrors from any environmental disturbances. Any
difference in the lengths of the arms, due to detector noise or gravitational
waves, is detected as a change in the amount of light falling on a photode-
tector at the vertex of the L. Figure 4.1 shows a schematic diagram of a LIGO
detector. In a perfect detector and in the absence of a gravitational wave, no
light would fall on the photodetector. In practice, however, random fluctu-
ations in the interferometer cause some light to fall on the detector. Among
other sources, these fluctuations come from seismic noise from ground motion
coupling into the mirrors, thermal noise from vibrations in the mirrors and
their suspensions, and shot noise due to fluctuations in the photons detec-
ted by the photodetector. LIGO data analysis is therefore a classic problem
in signal processing: determining if a gravitational wave signal is present in
detector noise.

Data from the LIGO detectors are analyzed by the LIGO Scientific Col-
laboration (LSC), an international collaboration of scientists. The searches for
gravitational waves in LIGO data fall broadly into four classes: compact bi-
nary inspiral, continuous waves from rotating neutron stars, unmodeled burst

4 Gravitational Wave Data Analysis 41

Figure 4.1: Schematic diagram of a LIGO detector. Laser light is incident on
a partially reflective mirror or beamsplitter. Half the light is transmitted into
one arm of the interferometer and half is reflected into the other arm. The light
in each arm resonates between two mirrors that act as test masses and change
position in response to a gravitational wave. The light is recombined at the
beamsplitter, and the light incident on the photodiode contains information
about the position of the mirrors and hence about any gravitational waves
incident on the detector.

sources, and stochastic gravitational wave backgrounds. In this chapter we fo-
cus on the workflows used in the search for gravitational waves from compact
binary inspirals. For details on the other searches, we refer the reader to [37].

The gravitational waves arising from coalescing compact binary systems
consisting of binary neutron stars and black holes are one of the best under-
stood sources for gravitational wave detectors such as LIGO [427]. Neutron
stars and black holes are the remnants produced by the collapse of massive
stars when they reach the end of their lives. If two stars are in a binary system,
the compact bodies orbit around each other and lose energy in the form of
gravitational waves. The loss of energy causes their orbit to shrink and their
velocities to increase. The characteristic “inspiral” signal emitted increases in
frequency and amplitude until the bodies finally plunge toward each other
and coalesce, terminating the waveform. Figure 4.2 shows a time–frequency
spectrogram of a simulated inspiral signal. It is expected that there will be
approximately one binary neutron star coalescence every three years in the
volume of the universe accessible to LIGO [231].

The shape of the inspiral waveform depends on the masses of the binary
components. When both components are below approximately three solar
masses, the waveform is well modeled by theoretical calculations and we can
use matched filtering to find the signals in detector noise. For higher-mass

42 Brown et. al.

Figure 4.2: A time–frequency spectrogram of a simulated binary inspiral sig-
nal. The waveform increases in amplitude and frequency as time increases.
The well-defined shape of the waveform makes matched filtering a suitable
data-analysis technique.

waveforms, such as black hole binaries, uncertainties in the waveforms grow,
but in practice we may continue to use matched filtering, albeit with a modi-
fied template family [68,69]. These templates are not exact representations of
the signals but are designed to capture the essential features of the waveforms.
The first science run of LIGO focused attention on the search for binary neut-
ron stars [2]. The second science run refined the binary neutron star search [3]
and extended the analysis to include searches for binary black hole systems
with higher masses [5] and subsolar-mass binary black hole systems that may
be components of the Milky Way Halo [4].

Analysis of the LIGO data for binary inspirals is performed using the LIGO
Data Grid (LDG) [256]. In this chapter, we describe the LDG infrastructure,
the software used to construct data analysis workflows for the LDG, and the
components and execution of the inspiral analysis pipeline. Finally, we discuss
the use of these tools by other gravitational wave searches and the extension
of the workflows to other Grids, such as the Open Science Grid (OSG) [328].

4.3 The LIGO Data Grid Infrastructure

LSC scientists conducting gravitational wave data analysis need to analyze
many terabytes of data. The scientists have access to a large number of dis-
tributed computing resources, including resources external to the collabora-
tion. To fully leverage the distributed resources in an integrated and seamless
way, infrastructure and middleware have been deployed to structure the re-
sources as a Grid. The LIGO Data Grid infrastructure includes the LSC Linux

4 Gravitational Wave Data Analysis 43

clusters, the networks that interconnect them to each other, Grid services run-
ning on the LSC Linux clusters, a system for replicating LIGO data to LSC
computing centers, DOE Grids certificate authority authentication [120], and
a package of client tools and libraries that allow LSC scientists to leverage the
LIGO Data Grid services.

The LDG hardware consists of Linux clusters for data analysis and Linux
and Sun Solaris servers used for data replication and metadata services. The
hardware is distributed among the LIGO observatories, the LIGO Laborat-
ories at the California Institute of Technology (Caltech), the Massachusetts
Institute of Technology (MIT), and various LSC member institutions, as de-
tailed below. The middleware software that supports Grid services and users
is known as the LDG server package. The LDG server package itself is built on
top of the Virtual Data Toolkit (VDT) [440] as provided by the international
Virtual Data Grid Laboratory (iVDGL) [215] and OSG [328] projects. A sub-
set of the LDG server software is distributed as the LDG client package and
contains only the tools needed to access the computing clusters and discover
LIGO data across the LDG. The LDG also uses some proprietary software,
such as the Sun StorEdge SAM-QFS [401] software and the IBM DB2 [209]
database. In this section, we describe the LDG hardware and software infra-
structures in more detail.

4.3.1 Management of the Raw Detector Data

The LIGO detectors are sensitive to gravitational waves with frequencies
between approximately 40 Hz and 4 kHz. The output signal from each of
the three detectors is digitized as a 16 bit signal at a sample rate of 16384 Hz.
In addition to the output photodiode signal, many other detector data chan-
nels are recorded at various sample rates between 8 Hz and 16384 Hz. These
channels monitor the performance of the detector and its environment. The
total output data rate of the observatories is 8 MB per second for Hanford and
4 MB per second for Livingston. The many channels are written to a high-
performance file system, each individual file or frame containing 32 seconds of
data. Approximately 10000 frame files are written per day at each observatory.

Distribution of these data is managed by the LIGO Data Replicator (LDR)
[257], which provides robust replication and data discovery services. The LDR
service is built on top of the Globus Replica Location Service (RLS) [88], Glo-
bus GridFTP [9], and a metadata catalog service. Each of these services is
deployed separately from the other services in the LDG server package. To-
gether, these services are used for replicating data. Data at the observatories
are published into LDR and then replicated to the LIGO Laboratory at Cal-
tech, which is responsible for permanent data storage and archiving of data.
Other LDG sites deploy LDR to replicate particular subsets of LIGO data to
the local site for data analysis. The subsets of LIGO data that are replicated
can be configured by each site’s local policy, and each site stores the data
in accordance with its own local policies in terms of the directory structure.

44 Brown et. al.

Note that the LDR service replicates data in bulk to sites, independently of
the demands of any particular data analysis job. In order to execute analysis
workflows, LSC scientists need to be able to discover the location of specific
LIGO data files across the LIGO Data Grid. The LSCdataFind tool included
in the LDG client package allows LSC scientists to discover LIGO data based
on gravitational wave detector specific metadata rather than discovery based
on filenames. Typical metadata attributes used for finding LIGO data include
a start and end time describing the epoch of data to be analyzed, the ob-
servatory at which the data were collected, and the class of LIGO data files
(different classes or frame types contain different sets of data channels from
the detectors).

The LSCdataFind tool by default returns a list of physical filenames
(PFNs) or URLs for the location of LIGO data files at a particular LDG site.
These PFNs can then be used directly by tools building a LIGO workflow,
tailoring it for use at that particular site. In order to support the more so-
phisticated planning of the LIGO workflows detailed below, LSCdataFind also
supports returning only the logical filenames (LFNs) of the data files meeting
the user’s metadata constraints. The LFNs are just the simple filenames and
do not contain any location information.

4.3.2 Management of Detector Metadata

In addition to the access to raw detector data, LSC scientists need additional
metadata, known as data quality information, which describe the state of the
interferometers, when the data are suitable for analysis, and records informa-
tion about periods of unusual behavior. These metadata are stored in the LSC
segment database, which allows storage, retrieval, and replication of the data.
The segment database uses the IBM DB2 database to provide the underlying
relational-database engine. The publication scripts used to publish the data
into LDR also publish detector state information into the segment database.

The segment databases at Caltech and the observatories are connec-
ted together by low-latency peer-to-peer database replication using the “Q-
replication” service provided by DB2. Any metadata inserted at one of the
three databases will be replicated to the two other databases with a latency
of a few seconds to a couple of minutes. Replication time varies depending on
the load on the databases. IBM WebSphere MQ [210] is used as the transport
layer for replication between the databases. Message queues are set up between
each of the servers that take part in the replication, and these are used by the
replication programs to send and receive data and control messages.

Client and server tools written on top of the LDG server middleware al-
low scientists to connect to the database, query information, and insert new
metadata based on detector characterization investigations. Segment discov-
ery services are provided by the LSCsegFind server, which runs at each site
and responds to user requests for segment and data-quality information. It
constructs the SQL needed to service the user’s request, executes the query

4 Gravitational Wave Data Analysis 45

on the database, and returns the results to the user. The client and server
communicate over a Globus GSI [72] authenticated connection. The server
runs on the same machine as the DB2 database, and queries can be issued by
remote clients, which are distributed as part of the LDG client bundle.

Metadata are exchanged in the LSC as XML data, with the LSC-specific
schema called LIGO lightweight XML. The Lightweight Database Dumper
(LDBD) provides a generic interface between the segment database and LIGO
lightweight XML representations of table data in the database. The LDBD
server can parse the contents of a LIGO lightweight XML document containing
table data and insert them into the database. It can also execute SQL queries
from a client and return the results as LIGO lightweight XML data. Data
quality information is generated as LIGO lightweight XML by various data-
monitoring tools and inserted via the LDBD server. This generic framework
allows construction of metadata services specific to the various requirements
of gravitational wave data analysis. Again, communication between the cli-
ent and server is performed over a GSI-authenticated socket connection. The
server runs on the same machine as the DB2 database, and queries can be
issued by remote clients. The LDBD server is also capable of inserting LFN to
PFN maps into an RLS server, if desired, to allow metadata to be associated
with specific files.

4.3.3 Computing Resources

LSC scientists have access to a number of computing resources on which to
analyze LIGO data. Some resources are dedicated Linux clusters at LSC sites,
others are Linux clusters available via LSC partnership in large Grid collabor-
ations such as the international Virtual Data Grid Laboratory (iVDGL) [215]
and its successor the Open Science Grid [328], and still other resources are
available via more general arrangements with the host institution. The vast
majority of available computing resources are Intel [214] or AMD [21] based
clusters running some version of the Linux operating system.

LSC Linux Clusters

The LSC itself has available as dedicated computing resources Linux clusters
hosted at the LIGO observatories at Hanford and Livingston, at the LIGO host
institutions Caltech and MIT [258], and at LSC computing sites hosted at the
Pennsylvania State University (PSU) [342] and the University of Wisconsin—
Milwaukee (UWM) [434]. In addition there are Linux clusters dedicated for
gravitational wave data analysis made available by the British–German GEO
600 [470] gravitational wave detector, which is also a member of the LSC.

Each dedicated LSC Linux cluster and its related data storage hardware
is categorized as a Tier 1, 2, or 3 site depending (in a rough way) on the
amount of computing power and data storage capacity available at the site.
The LIGO Caltech Linux cluster, with over 1.2 teraflops (TFlop) of CPU

46 Brown et. al.

and 1500 terabytes (TB) of data storage, serves as the Tier 1 site for the
collaboration. All LIGO data are archived and available at the Tier 1 site. The
detector sites at Hanford and Livingston, although the LIGO data originate
there, are considered to be Tier 2 sites. The Hanford site has available 750
gigaflops (GFlop) of CPU and 160 TB of data storage, while the Livingston
site has available 400 GFlops of CPU and 150 TB of data storage. The LIGO
MIT site is also considered a Tier 2 site, with 250 GFlops of CPU and 20 TB
of data storage. The PSU and UWM sites are operated as Tier 2 sites. The
PSU site includes 1 TFlop of CPU and 35 TB of storage. The UWM site has
operated in the past with 300 GFlops of CPU and 60 TB of storage, although
it is currently being upgraded to 3 TFlops and 350 TB of storage.

Each of the Linux clusters within the LIGO Data Grid deploys a set of
standard Grid services, including Globus GRAM [147] for submitting jobs and
resource management, a Globus GridFTP server for access to storage, and a
GSI-enabled OpenSSH server [182] for login access and local job submission.
All of these services authenticate via digital certificate credentials. The mid-
dleware software that supports these and other Grid services is deployed using
the LDG server package.

Other Computing Resources

Through LSC membership in large Grid computing projects and organiza-
tions, LSC scientists have access to a large number of computing resources
outside of the dedicated LSC computing resources. The LSC was a founding
contributor to iVDGL, and much of the development and prototyping of the
effort described here was done as part of an effort to allow LSC scientists to
leverage iVDGL resources not owned by the LSC. In particular, the initial
prototyping of the LIGO inspiral workflow management that leverages the
use of Condor DAGMan (see Chapter 22, and reference [97]) and Pegasus
(see Chapter 23 and references [111], [112], [116]) was driven by the desire to
leverage the Grid3+ [172] resources made available by the iVDGL collabora-
tion. The more recent work done to run LIGO inspiral workflows on non-LSC
resources is targeted at running on the Open Science Grid. In addition, LSC
scientists (in particular those running inspiral workflows) have access to the
large computing resources from the Center for Computation and Technology
at Louisiana State University [85].

4.3.4 Batch Processing

All of the LSC Linux clusters, with the exception of the cluster at PSU, use
Condor (see Chapter 22) as the local batch scheduler. As discussed in detail
below, this has allowed LSC scientists to begin developing complex workflows
that run on a single cluster and are managed by Condor DAGMan. To run
workflows across LSC clusters running Condor and leverage geographically

4 Gravitational Wave Data Analysis 47

distinct resources as part of a single workflow, the LSC has investigated using
Condor-only solutions such as Condor Flocking [133].

The Linux clusters at PSU and LSU, however, use the Portable Batch Sys-
tem (PBS) [339] for managing batch jobs, and since these resources represent
a significant fraction of the resources available to LSC scientists, it is impor-
tant that the workflows also be able to leverage those resources. In addition,
a majority of the resources available outside the LDG use a tool other than
Condor for managing compute jobs. While recent development work from the
Condor group involves providing access to non-Condor managed resources
directly from a Condor-only environment, the workflow management work
described here has focused on using a blended approach that involves tools
beyond Condor and Condor DAGMan.

4.3.5 LIGO Data Grid Client Package

LIGO Data Grid users install the LDG client package on their workstations.
The LDG client package is also built on top of the VDT but only includes a
subset of the client tools and libraries. No Grid services are deployed as part
of the client package. In addition to the client tools from the VDT, a number
of client tools specifically for use in creating and managing LIGO workflows
are included in the client package. The most significant of these are the tools
LSCdataFind, used for data discovery, and LSCsegFind, used for data quality
information retrieval across the LIGO Data Grid.

4.4 Constructing Workflows with the Grid/LSC
User Environment

In the previous section, we described the hardware and middleware infrastruc-
ture available to LSC scientists to analyze LIGO data. In this section, we de-
scribe the Grid/LSC User Environment (Glue), a toolkit developed to allow
construction of gravitational wave data analysis workflows. These workflows
can be executed on LSC Linux clusters using the Condor DAGMan workflow
execution tool or planned and executed on wider Grids, such as the OSG,
using the Pegasus workflow planner, Condor DAGMan, and Globus GRAM.

4.4.1 Overview of LIGO Workflows

LIGO data analysis is often referred to as “embarrassingly parallel,” meaning
that although huge quantities of data must be analyzed over a vast parameter
space of possible signals, parallel analysis does not require interprocess com-
munication. Analysis can be broken down into units that perform specific tasks
that are implemented as individual programs, usually written in the C pro-
gramming language or the Matlab processing language/environment. Work-
flows may be parallelized by splitting the full parameter space into smaller

48 Brown et. al.

blocks or parallelizing over the time intervals being analyzed. The individual
units are chained together to form a data analysis pipeline. The pipeline starts
with raw data from the detectors, executes all stages of the analysis, and re-
turns the results to the scientist. The key requirements that must be satisfied
by the software used to construct and execute the pipelines:

1. Ensure that all data are analyzed and that the various steps of the work-
flow are executed in the correct sequence

2. Automate the execution of the workflow as much as possible
3. Provide a flexible pipeline construction toolkit for testing and tuning work-

flows
4. Allow easy, automated construction of complex workflows to analyze large

amounts of data
5. Have a simple reusable infrastructure that is easy to debug

In order to satisfy the first two requirements, we implement a data analysis
pipeline as a directed acyclic graph (DAG) that describes the workflow (the
order in which the programs must be called to perform the analysis from be-
ginning to end). A DAG description of the workflow can then be submitted to
a batch processing system on a computing resource or to a workflow planner.
The pipeline construction software must maintain an internal representation
of the DAG, which can then be written out in the language that a batch
processing system or a workflow planner can understand. By abstracting the
representation of the workflow internally, the workflow may be written out
using different syntaxes, such as a Condor DAGMan input file or the XML
syntax (known as DAX) used by the Pegasus workflow planner. To simplify
the construction of DAGs for gravitational wave data analysis, the LSC has
developed the Grid/LSC User Environment, or Glue, a collection of modules,
written in the Python language, developed especially for LSC scientists to
help build workflows.

The components of a DAG are its nodes and edges. The nodes are the
individual analysis units and the edges are the relations between the nodes
that determine the execution order. Each node is assumed to be an instance of
a job that performs a specific task in the workflow. Glue contains three basic
abstract classes that represent DAGs, jobs, and nodes. The DAG class provides
methods to add nodes and write out the workflow in various formats. The job
class provides methods to set the name of the executable and any options or
arguments common to all instances of this job in the DAG. The node class,
which inherits from the job class, provides methods to set arguments specific
to a node, such as the start and stop time to be analyzed, or the required input
files. The node class also has a method to add parent nodes to itself. The edges
of the DAG are constructed by successive calls to add parent for the nodes
in the workflow. The executables to be run in the DAG read their arguments
from the command line and read and write their input from the directory
in which they are executed. This constraint is enforced to allow portability
to Grid environments, discussed below. Glue also knows about other LIGO-

4 Gravitational Wave Data Analysis 49

Figure 4.3: The Glue pipeline modules are used by LSC scientists to write
pipeline generation scripts. Pipeline scripts take as input analysis parameters
and metadata describing the raw data and output workflows as DAGMan
DAG files or Pegasus DAX files, which can be used to execute the pipeline.
If Glue is generating a Pegasus DAX, the pipeline modules can query the
LDR data location service to obtain LFNs for the input data, as described in
Section 4.4.4.

specific concepts, such as science segments (time epochs of LIGO data suitable
for analysis) and the methods that are used to split these segments into blocks
or subunits of science segments used to parallelize workflows. By providing
iterators for these classes, it is simple to loop over segments and blocks in the
construction of a workflow.

To address the specific needs of different analysis tasks, the user writes a
pair of classes that describe the task to Glue: a job class and a node class
that inherit from the base classes. The user may extend or override the base
methods to allow the pipeline construction scripts to set options particular
to the task being described. In this way, the components of the workflow are
abstracted, and it is straightforward to write pipeline scripts that construct
complex workflows. The Glue method of constructing data analysis pipelines
has been used in the binary inspiral analysis, the search for gravitational
wave bursts from cosmic strings, excess power burst analysis, and stochastic
gravitational wave background analysis. Figure 4.3 shows how Glue is used in
workflow construction, with metadata and analysis parameters taken as input
and different workflow styles written as output. Below we give an example of
a script to construct a simple workflow, and Section 4.5 describes how this is
used in practice for the inspiral analysis pipeline.

50 Brown et. al.

from glue import pipeline

import gwsearch

data = pipeline.ScienceData()

data.read(’segments.txt’,2048)

data.make chunks(2048)

dag = pipeline.CondorDAG(’myworkflow’)

datafind job = pipeline.LSCDataFindJob()

datafind job.add option(’data-type’,’raw’)

previous df = None

gwsearch job = analysis.GWSearchJob()

for seg in data:

df = pipeline.LSCDataFindNode()

df.set start(seg.start())

df.set end(seg.end())

for chunk in seg:

insp = gwsearch.GWSearchNode()

insp.set start(chunk.start())

insp.set end(chunk.end())

insp.add parent(df)

if previous df:

df.add parent(previous df)

previous df = df

dag.write dag()

Figure 4.4: Example code showing the construction of a workflow using Glue.
The input data times are read from the file segments.txt. For each interval
in the file, an LSCdataFind job is run to discover the data and a sequence
of inspiral jobs are also run to analyze the data. The workflow is written
to a Condor DAG file called myworkflow.dag, which can be executed using
DAGMan.

4.4.2 Constructing a Workflow with Glue

In this example, an LSC scientist wishes to analyze data from a single LIGO
detector through a program called GWSearch, which analyzes data in blocks
of 2048 seconds duration. Figure 4.4 shows the Python code necessary to
construct this workflow using Glue. The user has written a pair of classes
that describe the job and nodes for the GWSearch program, as described in
the previous section, and the script imports them along with the pipeline
generation module from Glue. The user has requested a list of times from the
segment database that are suitable for analysis and stored them in a text file

4 Gravitational Wave Data Analysis 51

Figure 4.5: The workflow constructed by the sample code shown in Figure 4.4.
In this case, there are three segments used as input, the first of which contains
three 2048 second blocks and the second and third containing two 2048 second
blocks. The resulting workflow has ten nodes.

named segments.txt. This file contains a list of start and stop times in GPS
seconds, which may vary in length between several seconds and many hours.
The user’s pipeline script creates a representation of these intervals using the
Glue ScienceData class. The segments are parsed from the file by the read
method, which is told to discard any segments shorter than 2048 seconds. The
segments are then split into blocks of length 2048 seconds by the make chunks
method.

To construct a workflow, the script first creates a representation of the
workflow itself using the CondorDAG class. Instances of the LSCDataFindJob
and GWSearchJob classes are then created to describe the programs that will
be used in the workflow. Next the script iterates over all segments in the data
class and constructs a node in the workflow that performs an LSCdataFind job
to find the data for each segment. There is then a second loop over the 2048
second blocks within each segment and a node to execute the GWSearch pro-
gram on each block. A dependency is created between the LSCdataFind and
the GWSearch jobs by using the add parent method of the GWSearch nodes.
This ensures that the GWSearch jobs do not execute until the LSCdataFind
job is complete. Finally, a relation is created between the LSCdataFind jobs,
so that only one job executes at a time; this is a technique used in real work-
flows to reduce the load on the server. The final workflow constructed by this
example is shown in Figure 4.5 for a segment file that contains segments of
lengths 6144, 4192, and 4192 seconds.

4.4.3 Direct Execution Using Condor DAGMan

Once the script to generate an analysis pipeline has been written, the resulting
workflow must be executed on an LSC computing cluster. As described previ-
ously, most of the LSC clusters run the Condor batch processing system. The
write dag method of the Glue DAG class creates a DAG in Condor DAGMan
format, as well as the necessary Condor submit files to execute the jobs. DAGs

52 Brown et. al.

for LSC data analysis range in size from a few tens of nodes to over 100000
nodes. The DAG written by the pipeline script is submitted to Condor, which
ensures that all the nodes are executed in the correct sequence. If any node
fails, for example due to transient errors on cluster nodes, a rescue DAG is
created containing only the nodes that failed or were unable to execute due
to failures. This rescue DAG can be resubmitted to Condor and in this way
LSC scientists can ensure that all data have been correctly and completely
analyzed.

4.4.4 Planning for Grids with Pegasus

To complete a search for gravitational waves, it is necessary to run many
large-scale Monte Carlo simulations with simulated signals added to the data.
The results of these simulations are used to measure the efficiency and tune
the parameters of the search. This requires a great deal of computing power,
and Glue has been extended to write workflows in the abstract DAG (DAX)
format so they can be planned for grid execution with Pegasus.

When running data on the Grid, it is no longer guaranteed that the LIGO
data are present on the computing cluster on which the job will execute. Glue
has been modified so that when it is instructed to write a DAX it does not
add any requested LSCdataFind nodes to the workflow. Instead it queries the
LDR data discovery service to find the logical filenames (LFNs) of the input
data needed by each node and adds this information to the DAX. When the
workflow is planned by Pegasus on a given list of potential Grid sites, it queries
the Globus RLS servers deployed on the LIGO Data Grid to determine the
physical filenames or URLs of the input data. Pegasus then adds transfer nodes
to the workflow to stage data to sites that do not have the input data and uses
local replicas of the data on those sites that already have the necessary input
data available. In addition to the LFNs of the input data, Glue also writes the
LFNs of all intermediate data products in the DAX so that Pegasus may plan
the workflow across multiple sites. One of the key features of Glue is that this
is transparent to the user. Once users have written their workflow generation
script, they may simply add a command-line switch that calls the write dax
method rather than write dag, and Glue will produce a DAX description of
the workflow suitable for use with Pegasus.

4.5 The Inspiral Analysis Workflow

In the previous sections, we have described the infrastructure of the LIGO
Data Grid and the construction of workflows using Glue. In this section, we
describe the use of these tools to implement the search for compact binary
inspirals in LIGO data, with practical examples of the workflow.

The signal from a true gravitational wave should be present in all the
LIGO detectors. It should occur at the same time in the two detectors at the

4 Gravitational Wave Data Analysis 53

Hanford Observatory, and no later than the light-travel time of 10 ms at the
Livingston Observatory. The actual time delay between observatories varies,
depending on where on the sky the signal originates. Triggers are said to be
coincident if they have consistent start times. The triggers must also be in the
same waveform template and may be required to pass additional tests, such
as amplitude consistency. The triggers that survive all coincidence tests are
the output of the inspiral analysis pipeline and are known as event candidates .
Further manual follow-up analysis is used to determine if the triggers are truly
due to gravitational waves.

If one detector is more sensitive than the two other detectors, as was
the case in the second LIGO science run, we may only wish to analyze data
from the less sensitive detectors when there is a trigger in the most sensitive
detector. If the detectors are equally sensitive, as is presently the case, we may
wish to demand that a trigger from the matched filter be present in all three
detectors before computing computationally expensive signal-based vetoes.

4.5.1 Components of the Inspiral Analysis

The inspiral workflow is divided into blocks that perform specific tasks, which
are summarized in Table 4.1. Each task is implemented as a separate program
written in the C programming language. The core of the workflow, and the
most computationally intensive task, is the computation of the matched filter
signal-to-noise ratio and a time–frequency test, known as the χ2 veto [10,
11]. There are several other components of the workflow, however, which we
describe briefly here. A detailed description of the components may be found
in [65].

Data from the three LIGO detectors must first be discovered and then split
into blocks of length 2048 seconds for analysis by the inspiral program. The
workflow uses the LSCdataFind program to discover the data and the methods
of the Glue pipeline module described above to subdivide the data into blocks.
For each block, and for each detector, a template bank must be generated
for the matched filtering code. The template bank is a discrete subset of
the continuous family of waveforms that belong to the parameter space. The
placement of the templates in the bank is determined by the mismatch of
the bank, which is the maximum fractional loss of signal-to-noise ratio that
can occur by filtering a true signal with component masses m1, m2, with the
“nearest” template waveform for a system with component masses m′

1, m
′
2.

The construction of an appropriate template bank is discussed in [329,330].
The bank is then read in by the inspiral program, which reads in the

detector data and computes the output of the matched filter for each template
in the bank. In the presence of a binary inspiral, the signal-to-noise ratio ρ of
the matched filter will peak, as shown in Figure 4.6. The inspiral program may
also compute the χ2 time–frequency veto, which tests that the signal-to-noise
ratio has been accumulated in a manner consistent with an inspiral signal and
not as the result of a “glitch” or other transient in the detector data. If the

54 Brown et. al.

Table 4.1: The components of the inspiral analysis workflow.

Component Description

tmpltbank Produces a bank of waveform parameters for use by the
matched filtering code. The bank is chosen so that the loss of
signal-to-noise ratio between a signal anywhere in the desired
parameter space and the nearest point in the bank is less than
some specified value, which is typically 3%.

inspiral For each template in a bank, compute the matched filter and
χ2 veto algorithms on a given block of data. Generates a list
of inspiral triggers, which are times when the matched filter
signal-to-noise ratio and the value of the χ2 veto exceed user-
defined thresholds.

trigbank Converts a list of triggers coming from the inspiral program
into a template bank that is optimized to minimize the com-
putational cost in a follow-up stage.

inca Performs several tests for consistency between triggers pro-
duced by the inspiral program from analyzing data from two
detectors.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

Seconds from Injection Time

ρ

Figure 4.6: The output of the matched filter in the presence of a simulated
signal. The signal is injected into the data at time t = 0. The signal-to-noise
ratio generated by the filter peaks at the time of the injected signal.

value of the signal-to-noise and χ2 veto pass defined thresholds at any given
time, the inspiral code outputs a trigger for this time with the parameter of
the template and filter output. These triggers must then be confronted with
triggers from other detectors to look for coincidences.

The trigbank program can convert a list of triggers from the inspiral pro-
gram into a template bank that is optimized to minimize the computational
cost of a follow-up stage. We describe the optimization in detail in Section
4.5.2. The inspiral coincidence analysis program, or inca, performs several

4 Gravitational Wave Data Analysis 55

tests for consistency between triggers produced by inspiral output from ana-
lyzing data from two or more detectors and generates event candidates.

4.5.2 Inspiral Workflow Applications

The Second LIGO Science Run

In LIGO’s second science run (S2), we performed a triggered search for pri-
mordial binary black holes and neutron stars [3, 4]. Since we require that a
trigger occur simultaneously and consistently in at least two detectors located
at different sites in order for it to be considered as a detection candidate,
we save computational effort by analyzing data from the Livingston detector
(the most sensitive detector at the time) first and then performing follow-up
analyses of Hanford data only when specific triggers are found. We describe
the tasks and their order of execution in this triggered search as our detection
pipeline (workflow).

Figure 4.7 shows the workflow in terms of these basic tasks. Epochs of
simultaneous Livingston–Hanford operation are processed differently depend-
ing on which interferometer combination is operating. Thus, there are several
different sets of data: L1 ∩ (H1 ∪ H2) is when the Livingston detector L1 is
operating simultaneously with either the 4 km Hanford detector H1 or the
2 km Hanford detector H2 (or both)—this is all the data analyzed by the
S2 inspiral analysis—while L1 ∩ H1 is when L1 and H1 are both operating,
L1∩(H2−H1) is when L1 and H2 but not H1 are operating, and L1∩H1∩H2
is when all three detectors are operating. A full L1 template bank is generated
for the L1∩(H1∪H2) data, and the L1 data are filtered with inspiral. Triggers
resulting from these filter operations are then used to produce triggered banks
for follow-up filtering of H1 and/or H2 data. However, if both H1 and H2 are
operating, then filtering of H2 is suspended until coincident L1-H1 triggers are
identified by inca. The workflow used to execute this pipeline is generated by
a script called inspiral pipe, which is written using the Glue library described
in the previous section. The script is given the list of times suitable for ana-
lysis and generates a Condor DAG that is used to execute the pipeline. Figure
4.8 shows a small subset of the workflow created by the pipeline generation
script.

The Fifth LIGO Science Run

As the complexity of the analysis pipeline increases and the amount of data
to be analyzed grows, the size of the inspiral workflow increases also. To
illustrate this, we give a brief description of the binary neutron star search
in the fifth LIGO science run (S5). The S5 run is presently under way (as of
April 2006) and will record a year of coincident data from the LIGO detectors.
We will not describe the S5 inspiral pipeline in detail here, suffice it to say
that the analysis uses a workflow topology different from that of the second

56 Brown et. al.

L1 GW Data
L1 E (H1 e H2)

Template Bank
Generation

Matched Filter
ρ2, χ2 threshold

H1 GW Data
L1 E H1

H2 GW Data
L1 E (H2 - H1)

L1 Beam Splitter
Pickoff ChannelTriggers to

Template Bank

Matched Filter
ρ2, χ2 threshold

Matched Filter
ρ2, χ2 threshold

Triggers to
Template Bank

Matched Filter
ρ2, χ2 threshold

L1/H1 Trigger
Coincidence

L1/H2 Trigger
Coincidence

Triggers to
Template Bank

L1/H1
Triggers

H2 GW Data
L1 E H1 E H2

H1/H2 Trigger
Coincidence

Glitch Monitor

Veto Times

L1/H1/H2
Triggers

L1/H2
Triggers

+ + +− − −

Figure 4.7: Structure of the S2 triggered search pipeline.

science run. To analyze a small subset of S5 consisting of 1564 hours of data for
binary neutron star inspirals requires a workflow with 44537 nodes. To execute
this workflow required 3000 CPU-days on the LIGO Caltech cluster, which
consists of 1000 2.2 GHz dual-core AMD Opteron processors. A complete
analysis of these data will require approximately 3–6 additional executions of
the workflow.

4.5.3 Using Pegasus to Plan Inspiral Workflows

Since the inspiral pipeline workflows are produced using Glue, it is trivial
to create Pegasus abstract DAX descriptions of the workflow (see Chapter
23). To run the inspiral analysis on the Penn State LSC cluster, which uses

4 Gravitational Wave Data Analysis 57

datafind_L_1

tmplt_L1_1 tmplt_L1_2 tmplt_L1_3 tmplt_L1_4 tmplt_L1_5 tmplt_L1_6 datafind_L_2

insp_L1_1

trigbank_H2_1

insp_L1_2

trigbank_H1_1trigbank_H2_2

inca_L1H2_1

insp_L1_3

trigbank_H1_2

inca_L1H1_3

insp_L1_4

trigbank_H1_3

insp_L1_5

trigbank_H1_4

inca_L1H1_1

insp_L1_6 tmplt_L1_7 tmplt_L1_8 tmplt_L1_9datafind_L_3

insp_L1_7

trigbank_H1_5 trigbank_H1_6

inca_L1H1_2

insp_L1_8

trigbank_H2_3trigbank_H2_4

inca_L1H2_2

insp_L1_9tmplt_L1_10tmplt_L1_11datafind_H_1

insp_L1_10

trigbank_H1_7trigbank_H1_8

inca_L1H1_4

insp_L1_11insp_H1_1 insp_H1_2 insp_H1_3 insp_H1_4 datafind_H_2

insp_H1_5 insp_H1_6datafind_H_3

insp_H1_7insp_H1_8datafind_H_4

insp_H2_1 insp_H2_2 datafind_H_5

insp_H2_3insp_H2_4datafind_H_6

trigbank_H2_5

trigbank_H2_6

trigbank_H2_7

inca_H1H2_1

inca_L1H1_5

trigbank_H2_8

trigbank_H2_9

inca_H1H2_2

inca_L1H1_6

insp_H2_9 insp_H2_5 insp_H2_6 datafind_H_7

insp_H2_7insp_H2_8

Figure 4.8: A subset of the workflow used to analyze data from the second
LIGO science run for binary inspirals. The full workflow has 6986 nodes.

PBS as the scheduler rather than Condor, a DAX is created that describes the
workflow. Using this method, we conducted a Monte Carlo based computation
that analyzed 10% of the data from the fourth LIGO science run (S4), a
total of 62 hours of data. The DAX created by the inspiral pipeline script
contained 8040 nodes with 24082 LFNs listed as input files, 7582 LFNs listed
as intermediate data products generated by the workflow, and 458 final data
products. Once the DAX was planned by Pegasus, the executable concrete
DAG used to execute the workflow had 12728 nodes, which included the jobs
necessary to stage the input data to the remote cluster and transfer the output
back to the user’s local system. Execution of the workflow took 31 hours on
the PSU cluster, described in Section 4.3.3.

Pegasus has also been used to parallelize inspiral workflows across multiple
Grid sites. For a demonstration at the SC 2004 conference a typical LIGO
inspiral analysis workflow was planned using Pegasus to run across the LSC
Linux clusters at Caltech and UWM as well as a Linux cluster operated by
the Center for Compuation and Technology at LSU. The effort demonstrated:

1. Running a LIGO inspiral analysis workflow internally within the LIGO
Data Grid

2. Running a LIGO inspiral analysis workflow externally to the LIGO Data
Grid on the LSU resource

3. Running across multiple types of cluster batch systems (Condor at Caltech
and UWM and PBS at LSU)

4. Running at sites where LIGO data were prestaged using the LIGO Data
Replicator (the LSC sites)

5. Running at sites where LIGO data needed to be staged to the compute
resource as part of the workflow (the LSU Linux cluster)

58 Brown et. al.

All of the work planned by Pegasus and executed across the Grid sites ran to
completion, and all of the output was staged back to the machine from which
the workflow was launched.

4.6 Concluding Remarks

The workflow tools described in this chapter provide an extensible architecture
for rapid workflow development and deployment and continue to be used and
extended by the LIGO Scientific Collaboration. There are areas of the current
framework that need to be strengthened, however, which we discuss in this
section.

A key challenge is better integration of the pipeline development tools and
workflow planning middleware. The LSC has successfully used the Pegasus
workflow planner to leverage computing power at remote Grid sites, but there
is still a substantial burden on the scientific end user to integrate this into
the execution of a workflow. There is a need to develop the interfaces between
data management, planning, and batch processing tools so that the use of
large, distributed Grid computing resources appears to be as simple to the
end user as submitting a DAG to a single LDG cluster running Condor.

Gravitational wave detectors generate large data sets that need to be ac-
cessed by various elements of the analysis workflows. In order to transparently
execute jobs at remote locations, it is important to have seamless management
of jobs and data transfer. In the work described above, Pegasus has been used
to provide data staging to remote sites using GridFTP. Additional develop-
ment will be needed to take advantage of Grid storage management technolo-
gies, such as dCache [109], and to accommodate any storage constraints that
may be placed by non-LDG computing centers.

LIGO workflows also typically consist of a mixture of computationally
intensive and short-running jobs. This information is not presently taken into
account when planning a workflow. The Glue environment could be extended
to provide additional job metadata to the workflow planner to allow it to
make better use of available resources. For example, the user may only wish
to run long-running jobs on remote Grid sites and execute short follow-up jobs
locally. Furthermore, only minimal information about the Grid on which the
workflow is to be executed is presently incorporated at the workflow planning
stage. Metadata services need to be better integrated into the workflow design
and implementation to allow efficient planning and execution.

Finally, the user interfaces to all of these computing resources must be
simplified if they are to become truly powerful scientific tools. Users must
easily be able to monitor the activity of their jobs using simple tools such as
the Unix command top, they must be easily able to access their data products
or input data sets, and they must be able to prototype and deploy applica-
tion workflows with ease. From the perspective of the user—an application

4 Gravitational Wave Data Analysis 59

scientist—quick and easy access to this information is of paramount import-
ance.

Acknowledgments

We would like to thank Stuart Anderson, Kent Blackburn, Ewa Deelman,
Stephen Fairhurst, Gaurang Mehta, Adam Mercer, David Meyers and Karan
Vahi for comments and suggestions. This work has been supported in part
by the National Science Foundation grants 0086044, 0122557, 0200852, and
0326281, and by the LIGO Laboratory cooperative agreement 0107417. Patrick
Brady is also grateful to the Alfred P. Sloan Foundation and the Research
Corporation Cotrell Scholars Program for support.

5

Workflows in Pulsar Astronomy

John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

5.1 Introduction

In this chapter, we describe the development of methods that operate on the
output of the signal of a radio telescope to detect the characteristic signals
of pulsars. These signals are much weaker than the noise in the signal at any
given wavelength, and therefore algorithms for combining the signals in dif-
ferent wavelength bands must be applied. This is heavily expensive in terms
of CPU power. Early versions of distributed algorithms ran on a distributed
network of supercomputers connected by Internet-aware Message Passing In-
terface (MPI) during the period 1999–2001. Today such techniques are being
integrated into workflows that automate the search process and enable soph-
isticated astronomical knowledge to be captured via the construction of the
workflow. In particular, we address issues of parallelism within components
of the workflow. Parallelism is necessary due to two constraints on workflow
performance. One is the application of the workflow in real time as the signal
is being processed to enable very precise measurements to be carried out on
known pulsars. The other is the use of the workflow to explore large regions
of parameter space in search of previously undetected pulsars. There are very
severe restraints on the degree of abstraction that can currently be applied in
this work since details of the architecture of the computing resource (parallel
cluster or computational Grid) on which the workflows are to be run cannot
be ignored in the construction of the workflow.

5.2 Pulsars and Their Detection

Pulsars are rapidly rotating, highly magnetized neutron stars, emitting beams
of radio waves (in the manner of a lighthouse) that permit the detection of
characteristic, regularly spaced “pulse profiles” by radio telescopes on the
Earth’s surface (Figure 5.1). The fastest pulsars have rotational periods of
only a few milliseconds and, as massive, essentially frictionless flywheels, make

5 Workflows in Pulsar Astronomy 61

superb natural clocks. These millisecond pulsars permit a wide variety of fun-
damental astrophysical and gravitational experiments. Examples include the
study of neutron stars, the interstellar medium, and binary system evolu-
tion, and stringent tests of the predictions of general relativity and cosmology
(see [274] for an overall description of pulsar astronomy).

Figure 5.1: The radio beams of a pulsar. The highly condensed neutron star at
the center has a powerful magnetic field, O(1012) Gauss. Concentrated beams
of electromagnetic radiation emerge at the magnetic poles. If the magnetic
axis is not aligned with the rotation axis, they rotate like the beam of a
lighthouse, giving a pulse of radiation as they cross the line of sight of the
pulsar seen from the Earth.

The observed radio signal from pulsars manifests itself at the telescope as a
periodic increase in broadband radio noise. In order to observe the pulse with
a high signal-to-noise ratio, we need to observe across a wide band of radio
frequencies. As the space between the Earth and the pulsar (the interstellar
medium) is slightly charged, it is dispersive, and therefore different frequencies
propagate at different velocities. The practical result of this effect is that the
pulse is detected at the high-frequency end of the band before it arrives at the
low-frequency end. If we do not correct for this propagation effect, the pulse
profile is not observable, as it is broadened by this “dispersive delay.” The
amount of broadening a particular pulsar observation will display is directly
related to our distance from the pulsar and the charge density along the signal
path and is characterized by the “dispersion measure,” or DM.

In addition, the sensitivity of radio telescopes means that the signal from
the area of sky to which the antenna is pointing is contaminated with signals of
terrestrial origin. These frequencies are not affected by the interstellar disper-
sion described above. Thus they can in principle be detected and eliminated.

62 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

The problem is that as more of the radio frequency spectrum is excised, the
higher is the risk that signals from pulsars will also be lost. This means that
we can have the situation (unusual in astronomy) that older observations may
be better than newer ones, at least so far as the detection of new pulsars is
concerned. Thus storing and reanalyzing the signal with improved algorithms
for detecting pulsar signals and the use of increasing amounts of computing
power are major factors in the search for pulsars. This makes the problem
of great interest from the point of view of scientific workflows since there are
several stages in the cleaning and processing of the recorded signal. For more
details of the observational aspects of pulsar astronomy, see [270].

5.3 Workflow for Signal Processing

5.3.1 Astronomical Determinants of the Workflow

We summarize very briefly the important stages of a workflow for processing
radio telescope signals used in searching for or observing pulsars. The works
quoted in the previous section give fuller details and Jodrell Bank has collec-
ted information and software on its Web pages.1 The signal gathered at the
antenna of the telescope when pointed at a given region of the sky is known as
a pointing. The pointing contains one or more beams whose signal has a range
of frequencies with an upper limit given by the smoothness of its surface in
relation to the wavelength of the radio waves (electromagnetic waves). If the
surface is rough at the scale of a particular wavelength, it will be scattered
rather than focused by the dish. The beam contains radiation from all signals
that arrive in such a direction as to be focused at the antenna or are part
of the noise intrinsic to the antenna. This needs processing in different ways
according to what is observed.

In Figure 5.2, we show a workflow for analyzing data that have previously
been recorded from a radio telescope signal after some cleaning (to remove
interference) and after digital sampling of the analog signal. We observe that
there is a natural parallelism introduced into the workflow at different stages.
Data stored from the radio telescope signal are extracted from a data archive.
The data are divided into sections (currently separate files) representing a par-
ticular beam of radiation. Then several stages of processing may be applied to
each beam, with multiple parallel processes for each stage. In observing distant
sources, the effects of the interstellar conducting medium on the electromag-
netic signals need to be compensated. These effects cause the signal velocity
to depend on frequency, this is known as dispersion and it can be useful in
eliminating terrestrial interference since this has zero dispersion. We may not
know the dispersion a priori for unknown objects and thus have to apply a
trial-and-error process. In Figure 5.2, different dispersion measures (DMs) are

1 http://www.jb.man.ac.uk/research/pulsar

5 Workflows in Pulsar Astronomy 63

Figure 5.2: The inherent parallelism of a pulsar workflow. Data are stored in an
archive as a collection of beams, each representing radiation from a particular
direction in the sky. Dedispersion processing must be applied to each beam
and, for each dedispersed beam, processing via Fourier transforms is carried
out for a range of corrections for orbital acceleration. The raw results from
each of these corrections for each dedispersed signal are then subject to post-
workflow analysis. In the figure, full rectangles refer to stages in processing,
and those with curved bottoms represent intermediate data sets.

applied to each beam. Then, for each dedispersed beam signal, multiple fast
Fourier transforms are applied to represent various search parameters. For ex-
ample, for pulsars in a binary star system, a correction in Fourier space needs
to be applied to correct for the Doppler shifting of frequency caused by the
orbital motion. However, since during the pulsar search the desired correction
is not known ahead of time, a range of possible corrections need to be applied.
To complicate things further, different search methods are applied for different
types of orbits; e.g., those where the orbital period is long compared with the
pulsar period, those where it is short, and those in between. Thus, without
methods for intelligently exploiting the parallelism at different stages of the
workflow, the flow of the data through to the eventual postprocessing stage,
where potential candidates are examined by interactive and visual methods,
can stall.

Our methodology in this chapter will be to examine in detail how paral-
lelism is handled at the dedispersion stage of processing. We have detailed
results for this stage and can present a general analysis for methods to estim-

64 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

ate the computational resources needed per unit of data. We consider that
as workflows are increasingly applied to very large volumes of data, requir-
ing large amounts of data processing, such quantitative analysis will become
indispensable in the investigation of methods of workflow construction.

5.3.2 Coherent and Incoherent Methods of Dedispersion

In Figure 5.3, we see how dispersion caused the arrival time of the wavefront
to be delayed by progressively longer times at different radio frequencies. In
order to get a sufficiently strong signal, either to detect a new pulsar against
background noise or else to determine very accurately the timing and shape
of the pulse, we must sum across the radio frequencies. The simplest method
to compensate for dispersion is to split the frequency band into independent
frequency channels and apply appropriate time delays to each channel so that
they all arrive at the output of the channel at the same time. In this process,
knowledge of the phase of the voltage from the telescope is lost; hence the
method is known as incoherent phase dispersion. The splitting into channels
and the application of the time corrections was formerly done by hardware
but now is increasingly being carried out by software on computer processors
working in parallel. For very accurate measurements, such as timing of the

Figure 5.3: Pulse dispersion and the process of dedispersion. The radio fre-
quency band is divided into channels, and time-delay corrections are applied
to each channel. The flattened-out pulse of the original signal has a restored
profile, and the signal-to-noise ratio is increased.

5 Workflows in Pulsar Astronomy 65

pulsar signals, incoherent dedispersion is insufficient. The method of coherent
phase dispersion applies a phase-only filter. This is most simply applied in
the frequency domain. Now the signal must undergo a Fourier transform,
and then the application of the filter in frequency space before the inverse
Fourier transform is applied to give the dedispersed signal in the time domain.
This involves far more processing power if it is to be carried out by software.
If the dedispersion must be applied in real time, or if a large number of
trial dedispersion measures must be performed (in a situation where the real
dedispersion is not known), there are severe constraints on the parallelism of
the dedispersion component of the workflow.

Two major constraints come into play when considering how workflows
should be parallelized. First, in real-time observation, the processing needs
to keep pace with the signal capture. Second, in searching for new pulsars,
especially those in binary orbits, where we have to search over considerable
volumes of a multiparameter space, we need to obtain results in a reasonable
amount of time. The methods of parallelism can be different in these two
cases. We illustrate this by considering the coherent dedispersion stage in a
signal-processing workflow both in the case of a parameter space search and
in the real-time processing of a signal.

5.3.3 Workflow of the Search in Parameter Space

The workflow is parallelized across data sections; essentially it is a pipeline
workflow. We proceed by first breaking up the data into segments, which have
to be at least twice as long as the dispersive delay time across the observing
bandwidth. Each segment is then subjected to a Fourier transform and mul-
tiplied by the Fourier transform of the inverse filter, and the resultant data
length is then transformed back into the time domain and processed to pro-
duce a dedispersed time series. The next segment is then processed, and the
resultant series are then concatenated together. In practical terms, the input
data set only has to be forward transformed once but has to transformed back
into the time domain as many times as we have trial DMs. One complication
of dividing the time series in this manner and applying a Fourier transform
is that we create boundary effects at the beginning and end of each segment,
which appear as spurious frequencies in the transform. Thus we have to com-
municate duplicated parts of the time series at the start and end of each
segment. These are called “wings.” The size of these wings is given by the
range of frequency bandwidth, and thus it is fixed by the observational signal.
This means that if we divide the time series into small units for the purposes
of parallelism (see Section 5.3.4), we have to communicate increasing propor-
tions of repeated redundant data. In effect, we send more than the original
data owing to this redundancy. In Grid applications where bandwidth may be
a constraint, this can be a highly important restriction.

The result of the dedispersion is a time series for each trial dispersion meas-
ure. These time series are then subject to various analytical methods whose

66 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

aim is to determine the presence of periodic signals. This analysis produces
a list of candidate periods, which may be pulsars or local radio interference
or simply artifacts of the data collection hardware and subsequent software
processing. These candidates can then be confirmed or rejected by further
observations.

5.3.4 Work Distribution Model

The original intention was to adopt a master–slave model in which one (or
more) master processes read the disk and distribute work to slave processes.
This approach is highly attractive because it naturally furnishes an effect-
ive method of load–balancing. The main drawback is that, in the absence of
complicated and time-consuming preventative steps, no one processor would
get two contiguous chunks of the global time series. This would make more
difficult the process of collecting the distributed data for the next stage in the
workflow process, in which algorithms for the detection of periodic pulses are
applied to each dedispersed signal. Instead, we adopt a client–server model.
This illustrates how considerations of the total workflow affect the parallelism
of a stage in the workflow process. A handful of server nodes poll requests for
data from clients, and the bulk of the intelligence resides with the clients who
do the actual work.

By allocating a single contiguous portion of the global data set to each
worker, gaps occur only at a processor boundary, just as in the original non-
distributed application. By letting each processor keep track of the portion
of the global data set for which it is responsible, the impact on the logic and
structure of the code is minimized. We give a diagrammatic representation
of the client–server work distribution in Figure 5.4. Here the stages of the
workflow run downward from the data-reading stage, and in the horizontal
direction we show the parallelism produced by the “chunking” of the total
pulsar observational data. The data are read in chunks by the server and
sent to the clients as they request them. Since our execution environment
is modeled as a small number of clusters with a large number of nodes, we
observe that there is a pipeline effect with a start-up cost that is half the sum of
the time needed to send data to each requesting processor in the cluster. Each
processor then spends a certain amount of time processing before it requests
its next chunk of work. The disadvantage of the client–server model adopted
here is that we are compelled to tackle the load-balancing problem statically,
taking into account estimates of the MPI bandwidth, processor speed, disk
performance, and so on. The algorithm used is described below in Section 5.4.
In general terms, it permits the analysis to be extended to clusters of differing
numbers and types of host machines.

5 Workflows in Pulsar Astronomy 67

Figure 5.4: Client–server parallelism. The server process reads the data from
the disk and the clients request as they finish processing each chunk of work.
The key at the bottom indicates the processes occurring at each stage in the
workflow, which proceeds from top to bottom for each chunk of the original
series.

5.4 Use of Metacomputing in Dedispersion

5.4.1 Issues of Heterogeneity

Metacomputing refers to the running of applications in an environment where
there is a significant degree of heterogeneity. The motivation for using meta-
computing is that different stages of the workflow require different amounts
of processing power. On a Grid, for example, different numbers of processors
can be dynamically accessed to compensate for this imbalance and to keep
data flowing through the workflow. Heterogeneous computing introduces some
problems that are similar to those well known from cluster computing and
some that are very specific [371].

We need to send data between the different computing resources that
will be used to perform the dedispersion processing. This requires message-
passing systems that can work between parallel machines and clusters as well
as within such clusters. We used PACX-MPI [66], a version of MPI that al-
lowed us to couple big systems into a single resource from the communication
point of view. The layout of the metacomputing architecture used is shown
in Figure 5.5. Essentially this is a hierarchical cluster with two levels of the
hierarchy. At the host level, we have a tightly coupled cluster with many pro-
cessors connected by a rich interconnect topology and with processor speeds
and interconnect bandwidth rates being uniform within the host. The second
level of the hierarchy is a serial interconnect between hosts. In the original
work, the hosts were Cray T3E supercomputers with a three dimensional

68 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

Figure 5.5: The metacomputing network for the pulsar search. Host 1 is close
to either a live feed or (as was actually implemented) a signal stored on disk.
For processing, data need to be sent to the remote nodes via serial Internet
connections. Within each host the connectivity is much richer, with a 3D
bidirectional torus in the case of the T3E machines used.

torus interconnect running at speeds on the order of 50 MB per second [354].
The serial interconnect was arranged in a star topology with connections of a
maximum bandwidth on the order of 1 MB per second. Today we have Grids
that have a similar hierarchical model but are connected via high-bandwidth
dedicated links at speeds of 125 MB/s (1 Gbps network links).

5.4.2 The Algorithm for Parallelization of the Dedispersion

We now describe the algorithm that is represented graphically in Figure 5.4 to
be run on a metacomputer of the star topology structure shown in Figure 5.5.
Let Nh be the number of hosts, and let ni be the number of client processors
to use on host i, discounting the extra two processors required by PACX-
MPI and those processors on host 1 that have been assigned to server duties.
Referring to Figure 5.5, we have Nh = 3, and ni had a maximum of 512 on
each host in the experiments. Denote the bandwidth, in MB/s, from host 1
(where the input data reside) to host i by wi. The rate, in MB/s, at which data
can be read from disk on host 1 is denoted by r; it is assumed that this rate
is approximately independent of the number of processors accessing the disk
at any one time. The bandwidth within the hosts is assumed instantaneous
since it is so much greater than wi.

The size of one record is denoted by u, and this is determined by the need
to secure phase coherence. The computational time required to process one
record of data on host 1 is determined experimentally and denoted by t1.

5 Workflows in Pulsar Astronomy 69

The time to process the same quantity of data on other hosts is estimated
by multiplying t1 by the ratio p1/pi, where pi is the peak speed in Mflops of
the processors on host i.1 This approximation is justified in a metacomputer
whose hosts have the same architecture. In a more heterogeneous architecture,
processing speeds for the data would have to be determined by experiment on
each host.

The amount of processing per record can be determined by the parameter
Ns, which gives the number of dispersion slopes to be evaluated. t1 is now to
be reinterpreted as the average compute time per record per unit slope in the
regime where Ns is large enough that the compute time per megabyte can be
well approximated by τ ×Ns.2 We define a job as a task that processes a total

Figure 5.6: Data flow. In case 1, processors have dead time to wait for the
next processing. In case 2, processors carry out the successive work quickly,
without dead time.

of V records, and hence V u MB of data. The load-balancing problem is to
determine the proportion

1 This assumes that all the processors on any given host are clocked at the same
speed.

2 The forward FFTs are computed only once, but the inverse FFTs must be com-
puted for each slope.

70 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

v1 : . . . : vn,

Nh∑
i=1

vi = V,

in which to distribute data to the hosts. Here V is fixed by the amount of
data in the observations (the sum of all the “Read” rectangles in Figure 5.4),
and vi is the amount to be sent to each host.

Now the essence of our problem is that the remote hosts cannot process
faster than they receive the data. From this we can see that the most advan-
tageous situation would be where the metacomputing problem was mapped
onto a single host since the intrahost bandwidth was over one hundred times
larger than the interhost bandwidth (but see also Section 5.6). Our only justi-
fication for using the “Grid” approach would be if V and Ns were sufficiently
large and/or if we require processing within a wall-clock time constraint T .

The elapsed wall-clock time ti to process vi records on host i is estimated
by

ti = vitproc (i) /ni + nitwait (i) , (5.1)

where twait (i) = u (1/wi + 1/r) is the time that a client processor has to
wait for a single work unit. The time that it takes the client to process it
is tproc (i) = Nsτp1/pi. If we substitute this expression in (5.1), we have the
processor performance and the number of processors, giving the total rate of
processing for each unit record u.

Since we are using a pipelining algorithm, each node on the host starts up
immediately after the previous one (we can use the MPI ordering for this).
The time to get all the nodes processing is essentially half the time to send
all of the data and is given by twait (i) = u(1/wi + 1/r). The reason for this
can be seen in Figure 5.6, where there is also a run-down time as each node
stops working. If the diagonal “staircases” representing the start-up and run-
down times are joined, they give a rectangle whose area represents twait (i),
and hence each staircase is half the time to send the data. This term will be
dominated by communications bandwidth on remote hosts and by disk access
speed on the local host. In the original experiments, the latter was neglible,
but as wide-area networks increase in speed, this will not always be a valid
approximation.

The condition used to balance the workload is that all hosts finish at the
same time. This is a sensible condition in a parallel algorithm and essentially
states that all the hosts contribute equally to the speedup, t1 = t2 = . . . = tNh .
Using these equations leads to a linear system with Nh+1 equations and Nh+1
unknowns (v1, . . . , vn, t).

⎛
⎜⎜⎜⎜⎜⎝

a1 0 · · · 0 −1
0 a2 · · · 0 −1
...

...
. . .

...
...

0 0 · · · aNh −1
1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

...
vNh

t

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

b1

b2

...
bNh

v

⎞
⎟⎟⎟⎟⎟⎠ .

5 Workflows in Pulsar Astronomy 71

Here ai = (t1p1)/(nipi) and bi = −niu (1/wi + 1/r) . The validity of this
method depends on the implicit assumption that no client processor experi-
ences dead time waiting for other clients to receive their data. A global condi-
tion that expresses this is the inequality ti > viu (1/wi + 1/r) . More carefully,
we may define telse (i) = (ni − 1) twait (i) as the time that it takes all the other
processors on host i to receive their work units. Then the dead time tdead (i)
that is lost between work units is expressed as tdead (i) = telse (i) − tproc (i)
for telse (i) > tproc (i) or else tdead (i) = 0. Figure 5.6 shows the relationship
of time to request/transfer/process data and data flow. The processors have
spent dead time waiting for the next processing unit in case 1 because Ns is too
small. In case 2, Ns is sufficiently large that processors can do the successive
work quickly without dead time.

A drawback of this approach, when coupled with the FIFO processing of
requests by servers, is that in practice the run-down time is usually longer
than the start-up time. Typically there will be some clients on a given host
with one more work unit than other clients on the same host, but there is
no guarantee that the more heavily loaded clients will be served before the
others.

5.5 Workflows of Online Pulsar Searches

5.5.1 Real-Time Constraints

In 2002, Jodrell Bank acquired a 180 processor Beowulf cluster with ten dedi-
cated data-capture cards each of which can receive a different frequency range
of the broadband spectrum. The network bandwidth problem is now even
easier to solve since the whole distributed metacomputer is realized within the
cluster interconnect. However, the concept of the metacomputer still remains.
Thus the work in analyzing the behavior of the distributed metacomputer
provides a basis for a cluster-based solution. This is currently working at
Jodrell under the name of COBRA (Coherent On-Line Baseband Receiver for
Astronomy).

The total signal-processing workflow (Figure 5.7) currently being employed
is of great interest from a computer science as well as an astronomical per-
spective. We see that the actual computational workflow running on COBRA
is only a stage in a total workflow process involving multiple electronic and
observational devices. The workflow itself is fed by data originating from a
natural process of radio emission from distant objects. The signal-processing
workflow has two branches. In the left-hand branch, the dedispersion stage
is done via dedicated electronic components (hardware filterbanks and ded-
ispersers). They represent the traditional method of observation when data
would eventually be recorded onto tapes that were shipped elsewhere for com-
putational processing. The right-hand branch represents the replacement of
dedicated hardware by a Beowulf cluster (COBRA). The advantage of the

72 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

software method is that it can be reprogrammed to deal with different ob-
servational radio frequency windows and the processing power is available
for other purposes when not used for observing. However, the requirement
that COBRA replace dedicated hardware leads to an architecture for the
cluster. Thus our metacomputing analysis for pulsar workflow processing re-
mains applicable, only now we apply metacomputing solutions within a ded-
icated tightly coupled architecture. Computational Grids are in this sense
generalizations of the metacomputing concept, with the added complexity of
crossing administrative and security domains. The 180 COBRA processors are
grouped in crates, and the first ten processors in crate 1 have access to the
data-capture cards. The instantiation of the workflow must be aware of this
underlying metacomputing architecture and must place data-reading tasks on
the processors with the data-capture cards. There may also be considerations
of efficiency in the grouping of data-processing components of the workflow
to limit bottlenecks in message passing that can lead to overflows in buffers.
Figure 5.8 is a conceptual diagram of the workflow process without such aware-
ness. Each data server is associated with a process that receives data from a
particular data-capture card, and other workflow tasks are placed arbitrar-
ily on the COBRA processors. In actual instantiation, this leads to disorder
in the topology of message passing, which has the consequence of message
buffers overflowing and stalling the application. This breaks the total signal
processing workflow, which needs to keep pace in real time with the data rate
dictated by the telescope signal.

Based on early experiments with COBRA, a revised and ordered map-
ping of the workflow process onto the architecture was developed, and it is
shown in Figure 5.9. As before, each data server is associated with a particular
data-capture card, but now the other tasks in the workflow associated with
its master–slave algorithm are placed on a dedicated group of physical pro-
cessors. In effect, the machine is virtually partitioned to enact the workflow
parallelism. Therefore, the engine that enacts the workflow must be able to
handle logical numbering of the physical processors. This is exactly what the
Message Passing Interface (MPI) does, and it is the underlying software used
for the workflow. This is of some theoretical interest since MPI is not generally
regarded as a workflow language; however, it has features that make the effi-
cient mapping of signal processing workflows to metacomputing architectures
possible. We return to this discussion later (Section 5.6).

5.5.2 Data-Processing Aspects of Online Processing

If the dedispersion method is to be used for real-time observations, our pre-
vious data-processing method of a scheduled service described in Section 5.4
cannot be applied. Instead, a hybrid of master–slave and pipelining is re-
quired. Figure 5.10 shows the essence of this revised workflow. Following the
workflow from the top, we have the data being captured at a rate dictated by
telescopic observation and subsequent electronic processing. The data are sent

5 Workflows in Pulsar Astronomy 73

Figure 5.7: The signal processing workflow used in pulsar timing measure-
ments on COBRA. The actual computational workflow is only a component
in a workflow that includes multiple electronic devices fed by signals arriving
from natural processes from distant astronomical objects.

to a particular master in one of the logical machine partitions of Figure 5.9.
The master has a number of slave processors associated with it as well as other
logical processes associated with the bookkeeping of the algorithm. The mas-
ter has to send data to the subcollector associated with each data-processing
slave in turn. We have an overhead of a start-up for all of the slave processes
represented by the diagonal “staircase,” which is the same as in the previous
section. However, at the end of the dedispersion processing on each slave, the
processed data are sent to one of a smaller number of processors that are doing

74 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

Figure 5.8: An unordered method of instantiating a COBRA workflow. The
data servers placed on processors associated in the machine with data-capture
cards distribute their data-processing tasks to other processors anywhere in
the machine.

the postprocessing as the dedispersion is progressing. When this is done, the
slave receives the next chunk of data for the application of the dedispersion
measure.

In this model, we assume that the postprocessing work for a given unit
of data requires less time than the dedispersion processing. Thus the post-

5 Workflows in Pulsar Astronomy 75

Figure 5.9: An ordered method of instantiating a COBRA workflow. Each
data-server process now has a dedicated group of data-processing slaves placed
on processors in ordered groups and only sends data processing to this physical
group of processors.

processor nodes can receive data from several of the dedispersion slaves. The
data that remain after the post-processing are similar in size to the original
data since only one dedispersion measure is chosen. In the analysis presented
in Section 5.4, there was an order nslopes as much data as the original data
set. Clearly, it is not an effective use of bandwidth to send data corresponding
to each slope back to the server to then be redistributed. Thus, even in offline
processing, the postprocessing step must also be distributed.

In the online processing via COBRA, we can assume that the networks that
carry the data have dedicated bandwidth. Thus the need for the algorithms
to respond to differing bandwidths is no longer present, and the distributed

76 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

Figure 5.10: Master–slave parallelism for online processing of a radiotelescope
signal. The postdedispersion steps of the processing are now specifically rep-
resented in the parallel workflow. This figure should be compared with Fig-
ure 5.4.

metacomputer can be balanced between capture nodes (master nodes), with a
fixed number of slaves depending on the number of dedispersion slopes to be
tested. Similarly, the number of postprocessing nodes can also be fixed in this
case. This methodology is now being applied in real pulsar data processing
involved in very precise timing measurements of known pulsars with known
dispersion measures. Such timing measurements are vital in testing predic-
tions of fundamental physical theories such as general relativity. Already the
coherent dedispersion method has produced an increase in accuracy.

5.6 Future Work: Toward a Service-Oriented Approach

The GridOneD project1 has been using Triana to process signals from grav-
itational wave detectors (see Chapter 20 for details of Triana). Since 2005,
GridOneD has received funding to investigate the inclusion of search al-
gorithms for processing pulsar data. A topic of current interest is the detection
of pulsars in binary systems [75]. New methods have led to the most successful
search for pulsars, using data from the Parkes radio telescope [139]. Modern
Grids, such as the TeraGrid in the United States, the National Grid Service
(NGS) in the United Kingdom, and DEISA in Europe,2 have a hierachical
structure to which our metacomputing analysis maps very well. The major
1 GridOneD at http://www.gridoned.org
2 http://www.teragrid.org, http://www.ngs.ac.uk, http://www.deisa.org .

5 Workflows in Pulsar Astronomy 77

difference is that the intercluster interconnect is now on the order of gigabits
per second.

In all the work described here, the workflow processes have been enacted
by methods not considered to be workflow languages in the conventional sense.
Features of MPI have been successfully used to instantiate the workflows
on metacomputing architectures that rely on either wide-area networks or
tightly coupled interconnects. In GridOneD, we are now in the process of
examining how the metacomputing approach could be updated to make use
of current work on Grid middleware. A particularly useful feature of current
Grid methodology is the adoption of a service-oriented architecture approach.
By representing various stages of the data-processing workflow as services, we
can hope to represent the workflow as a successive invocation of services. These
services must be resource-aware since we are dealing with large amounts of
data flowing through the workflow in parallel, and if resources are insufficient,
overflows of several kinds will occur and the whole process will fail or stall.
In this sense, the proposed WSRF, standard [321], where each service can
be associated with resource properties meets our requirements. In this case,
our resource requirements estimate for each stage in the workflow can be
implemented via the resource properties.

We are currently exploring these issues in the context of the National
Grid Service in the United Kingdom. This Grid has a structure similar to the
metacomputer described in Section 5.4; namely, it has 4 clusters, with head
nodes that are addressable from the Internet, each being a gateway to a much
larger number of backend processors that can only be accessed via internal
message passing. We have utilized a lightweight implementation of the WSRF
standard, WSRF::Lite [483]. Being based on Perl rather than Java, this has
a small footprint in terms of utilization of scarce resources (chiefly processor
memory) for a general-purpose Grid hosting many users. Our approach is to
have an overall master scheduling service implemented as part of the applica-
tion that acts like the server in Figure 5.4. Each cluster can have its own local
scheduler, with a queue of work tasks that are sent to worker processes on
the backend nodes. With this approach, we can overcome the problem that
access to the Grid resources is controlled by batch queuing methodologies that
do not allow us to reserve resources on demand. Essentially, the workers are
launched by the native batch queuing system and receive work units from the
application-level queue. We mark the worker progress by milestones, and as
these are attained messages are sent to the local manager, which can thus keep
the master scheduler informed of the total progress in the data processing. In
effect, this allows us to use the abstraction of a worker as the addition of a
processor to the Grid, representing one of the horizonal strips of Figure 5.4. In
our batch job request, we can indicate the number of workers to be created on
behalf of the local manager. We are currently implementing this on the NGS.
If successful, it will represent the transition of our methodology to Grids. We
note that some of the more awkward features of the actual implementation are
caused by the fact that WSRF is not yet a stable standard and that the NGS

78 John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer

(like many working Grids) is based on pre-SOA Grid middleware (Globus 2.4).
Thus the SOA is created on top of non-SOA components.

This pragmatic compromise is essential since the pulsar astronomers wish
to explore Grid processing of pulsar data and develop their signal-processing
algorithms. For reasons of performance, it currently very difficult to employ
workflow languages such as Triana, Kepler (Chapter 7, Taverna (Chapter 19),
BPEL [24], etc. to orchestrate the pulsar workflows. Moreover, such languages
are not designed to work within tightly coupled clusters such as COBRA. The
ability of MPI to logically order and group the physical processors is absolutely
essential for these types of architectures. Moreover, given the severe temporal
constraints of real-time processing, a message-passing interface that has been
specifically engineered for performance is critical. This is not the case with the
workflow languages mentioned. Therefore, although not considered a workflow
language, MPI can be used to implement a high-performance data-processing
workflow, especially when this is integrated with electronic components in a
hybrid digital–analog workflow process.

If we consider other types of Grids that are more peer-to-peer in nature
(e.g., by aggregating spare cycles on machines used normally for other tasks),
then the algorithms described here would not be appropriate. We consider
resource utilization to be an important factor. Thus, in Section 5.3.4 we are
concerned with minimizing dead time on expensive processing units. In P2P
Grids, processor time is a resource that is cheap, and therefore the algorithmic
constraints are much more concerned with maintaining coherence and using
replicated computation to compensate for the unreliability of the processing
hosts. The einstein@home [129] project is adopting this approach. It will be
an interesting task for future work to gather and classify different search al-
gorithms and relate these to the types of Grid or metacomputing environments
to be used for each search. Our aim in this chapter has been to expose one such
methodology in a way where its methods can be evaluated in a quantitative
manner and mapped to the structure and dynamics of the Grid. We need to
extend our work in terms of adaptation to variable processing rates since our
previous work focused on dedicated processors. We also need to consider vary-
ing network bandwidths since we made the modeling assumption of constant
bandwidth (using measurements that showed network turbulence timescales
were short compared with data-processing timescales).

Acknowledgments

First, this work would have been impossible without the collaboration of
pulsar astronomers (past and present) at Jodrell Bank. We particularly
acknowledge informative discussions with Duncan Lorimer, Andrew Lyne,
Stephen Ord, Ingrid Stairs, and Michael Keith. The collaboration of the
PACX-MPI development team at HLRS Stuttgart was essential for the suc-
cessful operation of the metacomputer, and we thank Edgar Gabriel, Matthias

5 Workflows in Pulsar Astronomy 79

Müller, and Michael Resch. Fumie Costen of the University of Manchester de-
veloped the original diagram explaining the pipelining algorithm (Figure 5.6)
and contributed to the publication of the research results. Colleagues at the
supercomputing services at Pittsburgh (PSC), Stuttgart (HLRS), Manchester
(CSAR), and Farnborough (CSC) worked to make the network and operations
work together at a time when this required “heroic effort.” Finally, we mention
all the network engineers who maintained the intercontinental links between
Europe, the United States and Japan. The work described here was partially
funded by JISC in the project “Establishing a Global Supercomputer” and
PPARC Project PP/000653/1 (GridOneD).

6

Workflow and Biodiversity e-Science

Andrew C. Jones

6.1 Introduction

Biodiversity e-Science is characterized by the use of a wide range of differ-
ent kinds of data and by performing complex analyses on these data. In this
chapter, we discuss the use of workflow systems to assist biodiversity research-
ers and consider how such systems can provide repeatability of experiments
and other benefits. We argue that nevertheless there are also limitations to this
kind of approach, and we discuss how more flexibility in a more exploratory
environment could be achieved.

In the remainder of this chapter, we commence by describing the interrela-
tionship between biodiversity and e-Science, contrasting biodiversity e-Science
with other kinds of bioinformatics. Next we describe the BiodiversityWorld
project, which is a major example of the use of workflows in biodiversity e-
Science. The choice of BiodiversityWorld as the main example is partially
due to the author’s involvement in, and familiarity with, this project. But
this chapter is not intended to be restricted to the requirements and achieve-
ments of BiodiversityWorld: In the following section, we discuss related work
aimed at providing access to, and providing tools to manipulate, biodiversity
resources. We then consider how a workflow-oriented environment might be
extended in order to support more exploratory modes of use. We conclude
with a summary and suggestions for future work.

6.2 Background: Biodiversity and e-Science

Biodiversity informatics differs considerably from bioinformatics, both in the
kinds of data being used and typical tasks to be performed. In biodiversity
research, it would ideally be possible for scientists to work collaboratively
and simultaneously on research tasks, with support provided for “wet lab”
experiments and for use of data from these and other sources in complex
analyses.

6 Workflow and Biodiversity e-Science 81

Biodiversity has been defined as: “the variability among living organisms
from all sources . . . and the ecological complexes of which they are part: this
includes diversity within species, between species, and of ecosystems” [83].
It follows that a scientist needs access to many different kinds of data when
researching biodiversity-related phenomena. Examples include

• species catalogs (which include lists of species names and synonyms);
• species information sources (including species geography; distribution

data comprised of individual specimen observations; descriptive data—
both of individual specimens and of scientific groups such as species);

• geographical data (e.g., country boundaries); and
• climate data (e.g., maximum/minimum temperatures from various obser-

vation stations).

A significant problem at present is that typically a scientist may need to
perform a number of distinct kinds of analyses using data such as we have
enumerated above but will often need to perform these analyses using a
number of distinct tools, manipulating the results of one analysis by hand
before submitting them to another analysis process. (We shall give specific
examples in the next section.) This is a major problem, particularly because
in many cases the data standards are proprietary and incompatible. These
difficulties have arisen because many of the data sets of interest were originally
created for the use of an individual or small group. The data are designed for
the original users’ needs, perhaps with unusual data structures, representation,
etc.

This is in contrast with more traditional bioinformatics research, in which
significant standardization efforts have been made, leading to widely adopted
standards for representing sequence data1 and significant efforts to standardize
metadata terms.2

Because of the diversity and breadth of data and tasks associated with
biodiversity research, there is a need to support researchers with an integ-
rated environment that minimizes the attention they need to give to manual,
mundane tasks. In the next section, we shall see that BiodiversityWorld ap-
proaches this problem primarily by defining an interoperation environment in
which heterogeneity is accommodated by wrapping and conversion software
that allows the user to specify complex tasks as workflows.

1 The EMBL/GenBank/DDBJ repositories are a good example of this.
http://www.ebi.ac.uk/embl/.

2 For example, The Gene Ontology.
http://www.geneontology.org/.

82 Andrew C. Jones

6.3 BiodiversityWorld as an e-Biodiversity Environment

6.3.1 BiodiversityWorld Exemplars

The aim of BiodiversityWorld is to explore the design and creation of a
problem-solving environment for global biodiversity. There is both a computer
science and a biological aspect to the project: It was seen as important for the
project to be biology-led so that the computing technologies developed would
be designed very much with practical application in mind. Three exemplars
were chosen on which to base our investigations:

1. Bioclimatic and ecological niche modeling, in which predictions are made
about the suitability of the climate in a given region for the organisms
of interest—either in present conditions or in hypothetical past or future
conditions. This entails producing a climate preference profile by cross-
referencing the known localities of a species with present-day climate data.
This climatic preference is then used to locate other areas where a similar
climate exists, indicating areas that are climatically suitable for the spe-
cies. Present-day climate data may be used (e.g., to identify areas under
threat from invasion by invasive species), or climate model predictions for
either the future or the past may be used instead (e.g., to predict the
possible effects of global climate change on the species distribution).

2. Biodiversity modeling and the prioritization of conservation areas, in
which species distribution data are analyzed in order to produce a species
richness map, which can then be used as a basis for proposing priority
areas for biodiversity conservation.

3. Phylogeny and paleoclimate modeling, in which phylogenetic analysis and
bioclimatic modeling are combined. The purpose of phylogenetic analysis
is to reconstruct the most likely model of historical relationships among
species and to use this to explore scenarios that have led to the diversity
we see. This involves using DNA sequence data, and so at this point there
is some overlap between our scenarios and tasks more typical of bioinfor-
matics. Phylogenetic analysis generates large numbers of trees containing
taxa1 and their hypothesized relationships. The distinctive aspect of this
part of the BiodiversityWorld research is that we gather distribution data
for these taxa and fit climate models to each taxon. This allows expli-
cit scientific interpretation of the role of climate in the development of
biodiversity.

At present, tasks such as these require substantial manual work on the part
of the scientist in preparing data sets, running stand-alone analysis tools,
performing further data preparation, etc. This, combined with the fact that
there are a good number of cases in which a standard analytic sequence can

1 Such as species.

6 Workflow and Biodiversity e-Science 83

be defined, has led us to adopt a workflow-oriented approach in Biodiversity-
World. It will be noted that exemplar (1) addresses a problem that is covered
in more depth in Chapter 7.

6.3.2 Workflows in BiodiversityWorld

For each of the three exemplars chosen for BiodiversityWorld, it has been pos-
sible to devise a standard workflow for a single analysis, the variation in use of
each workflow being in the choice of data sources and analytic tools for a given
instance. Moreover, these workflows have a certain amount of commonality
in the resources used and tasks performed: e.g., species distribution data and
a “taxonomic verification” task are common to all three exemplars. The ease
with which these workflows could be defined on paper, combined with the ease
with which possible extensions and modifications could be identified, implied
that a user interface based upon the workflow metaphor was a suitable start-
ing point for the design of the BiodiversityWorld system. A simple example of
a possible workflow extension is to “batch process” a group of related species
instead of performing computation relating to each one individually.

In this section, we shall concentrate on one particular example—bioclimatic
and ecological niche modeling. As explained earlier, the purpose of this task
is to predict the suitability of climate in a given region for the organism of
interest. Figure 6.1 illustrates in schematic form a typical workflow for this
task. The task involves using records of where the species has been observed
and combining this information with climate data to produce a model of
climatic conditions that characterize these locations. To this end, we need:

Figure 6.1: A BiodiversityWorld workflow.

84 Andrew C. Jones

• A mechanism for specifying the species of interest. Due to the nature of
biological nomenclature, and differences of opinion among experts, more
than one scientific name may be used to identify a given record. Thus, a
catalogue of names, such as Species 20001, is used to retrieve synonyms
[224].

• A means of deriving a model relating to the climate and species data
provided. Various algorithms can be used, such as GARP [399] and CSM
[372].

This model is then used to predict potential distribution, combining it with
climate data to determine which geographical regions fall within the climatic
model derived. This could be present-day climate data (to predict regions not
currently occupied by the species but that might be able to sustain it) or
historical or predicted future climates, as explained in Section 6.3.1. This can
then be overlaid onto map data in order to produce a graphical representation
of the predicted distribution.

Various workflow systems were considered as the basis for the Biodiversity-
World user interface. Although many of these would have been reasonably
suitable, the Triana (Chapter 20) system was selected primarily because of its
attractive user interface and the direct access we have to Triana developers
at Cardiff University.

Triana provides a means for categorizing resources hierarchically and com-
posing them into workflows. Figure 6.2 illustrates a workflow that has been
created using units from the palette displayed on the left-hand side to per-
form the task we have been describing above. It should be noted that in this
realization of our conceptual workflow, climate space modeling, prediction and
projection have been combined into a single unit in this example, using the
same climate layers for modeling and prediction. Also, some additional units
are needed, such as PopupStringInput, for user interaction. Figures 6.3 and
6.4 illustrate two stages in executing our workflow: selecting a species and
displaying a map of predicted distribution. The GetMapFromDataCollection
unit is included in consequence of the BiodiversityWorld architecture, which
we shall describe below.

6.3.3 Triana and the BiodiversityWorld Architecture

The BiodiversityWorld architecture has been described in detail elsewhere
[223]. For the purpose of this chapter, the main features of relevance are:

1. An abstraction layer has been defined, the BiodiversityWorld-Grid Inter-
face (BGI), which defines an API that resources must implement in or-
der to be usable in the BiodiversityWorld environment. DataCollection,
referred to above, encapsulates data for communication between units:
Units pack and unpack their data into and out of this representation to

1 http://www.sp2000.org/.

6 Workflow and Biodiversity e-Science 85

Figure 6.2: Triana/BiodiversityWorld environment.

reduce the knowledge that the middleware must have at a syntactical level
about data types.

2. Initial implementations of this layer were proprietary in nature and il-
lustrated the flexibility of this architecture for use with various kinds of
Grid [145] and Grid-like middleware. Triana units were implemented that
were able to communicate directly using the various BGI implementations.

3. More recently, we have concentrated upon providing Web and Grid ser-
vices [325], for which the Triana Grid Application Toolkit is more directly
suitable.

4. Performance of the BiodiversityWorld middleware has not been a major
concern because interoperability has been seen as more important than
high throughput for many of our tasks. Nevertheless, we are currently
exploring the use of Condor pools [262] for some of the more data-intensive
tasks within our workflows. For example, for ecological niche modeling,
we have recently performed 1700 modeling jobs over a period of 52 hours,
with data sets of the order of seven MB being used in each job, using our
existing architecture. It would be desirable to perform these jobs much
faster or over a larger number of iterations: This is the main motivation
for our interest in Condor.

86 Andrew C. Jones

Figure 6.3: Selecting a species.

Thus it has been possible to use Triana as a front end to the BiodiversityWorld
system with reasonably little effort. Nevertheless, there are some refinements
that would be desirable, as we shall discuss further in Section 6.5.

6.4 Related Work

A number of other projects are using workflows for application areas related
to our own. In this section, we briefly outline two of the most important ones:
SEEK1 and myGrid2.

Among other things, the SEEK project aims to support acquisition, in-
tegration and analysis of ecological and biodiversity data. The aims of SEEK
therefore overlap with those of BiodiversityWorld, but SEEK has used the
Kepler workflow system [19] and concentrated particularly on some specific
issues that, due to limited resources, we have not been able to give much at-
tention to within BiodiversityWorld. One of the most notable of these issues
is semantic mediation [60]: Techniques are being developed to support auto-
mated transformation of data and analytical components within a workflow to
1 http://seek.ecoinformatics.org. See Chapter 7.
2 http://www.mygrid.org.uk/. See Chapter 19.

6 Workflow and Biodiversity e-Science 87

Figure 6.4: Display of results.

provide compatibility between workflow elements. In contrast, in Biodiversity-
World, transformation units must at present be manually incorporated into
workflows. However, there is a metadata repository that provides the infor-
mation needed to determine the nature of the transformation needed.

The myGrid [396] project aims to support more general bioinformatics
requirements, providing an environment for data and application integration.
As in the SEEK project, particular attention is being given to a number
of important issues that arise: In the case of myGrid, these include proven-
ance, personalization, and change notification. The Taverna [326] tool is be-
ing developed to support the creation and enactment of workflows. Careful
consideration was given to the possibility of using Taverna within the Bio-
diversityWorld system. One of the main reasons that it was not adopted was
because it provided a lower-level view of workflow composition than we con-
sidered appropriate for our needs; for example, in the version we evaluated,
separate units were required to represent starting and finishing a given pro-
cess. The less finely grained approach provided by Triana more closely met
our understanding of the users’ concept of a workflow.

A distinctive feature of BiodiversityWorld, in comparison with the pro-
jects above, is our creation of a middleware architecture that is intended to
be insulated from the underlying Grid software. This was important at the

88 Andrew C. Jones

time the BiodiversityWorld project commenced, as Grid software was evolving
rapidly. With the advent of Grid services and WSRF [461], this concern is per-
haps not as serious now as it was when we commenced the project.

6.5 Toward an Exploratory Workflow Environment

Current workflow-based approaches to e-Science are proving to be of value
for biodiversity science and other related disciplines. However, the simple ap-
proach that is currently typical has serious limitations: A designer may be
provided with little more than a palette of units/actors from which to compose
a workflow, perhaps aided by some resource discovery tools. These limitations
are particularly in the areas of

• resource discovery,
• reuse of workflows, and
• exploratory experimentation.

The first two of these limitations are addressed, to a greater or lesser extent,
in existing systems. For example, a prototype “intelligent unit” has been im-
plemented for BiodiversityWorld: This can be queried for resources matching
criteria supplied by the user. In regard to the second limitation, some sys-
tems maintain metadata relating to specific workflow enactments and some—
notably Kepler—allow “smart reruns” in which modified workflows are not
necessarily fully executed: Results from previous runs are used wherever
possible.

The problem with even a reasonably sophisticated workflow environment,
incorporating features such as those listed above, is that workflow construction
requires a level of planning that may restrict the user’s freedom to explore
readily, find information of interest, perform tentative analyses, etc. This is in
sharp contrast with widely used software such as Microsoft Internet Explorer,
which allows users to navigate freely, maintaining a history of sites visited,
and provides a facility (albeit primitive) to search previously used pages for
keywords of interest.

In an exploratory environment of this kind, if all interactions were logged
transparently and automatically annotated with appropriate metadata, mech-
anisms could be devised to find and reuse ephemeral workflow fragments as
parts of a larger task. This mechanism could be supported by a knowledge-
based system to assist in selecting resources and workflow fragments, antici-
pating ways in which the user might wish to recombine them. Three simple
scenarios that could serve as a partial specification for this environment are:

1. The user runs the same task on multiple data sets and selects those
having interesting derived properties. For example, a set of tests may be
performed on a large number of databases and the user then selects those
having certain properties as a base set for use in subsequent analyses. For

6 Workflow and Biodiversity e-Science 89

this we need, at the very least, to be able to store a list of data sets on
completion of the tests. Preferably the user would also be able to browse
back through the history of interactions and do a filtered search of this
history.

2. The user does a sequence of operations manually (not by constructing a
workflow) and then wants to backtrack and try some alternatives. Having
found paths of particular interest among those explored, the user then
wishes to construct one or more workflows for reuse, possibly in modified
form. To support this, an automatically constructed graph of alternative
dataflows could be provided from which the user could select the parts of
interest.

3. The user wishes to generalize a specific workflow. For example, a knowledge-
based system could allow a user to replace a very specific task such as Run
version 3.14159 of phylogenetic tree-generating tool X by (for example)
Select and run a phylogenetic tree-generating tool.

These scenarios are clearly not fully specified at present. We have merely tried
to present our vision of how a workflow-based environment could be enhanced
to support more exploratory modes of interaction. We suggest that the most
significant difficulties that need to be overcome if an environment of this sort
is to be created successfully are as follows:

• Design of a suitable user interface, and trialing prototypes with suitable
users

• Automating the generation of suitable log metadata—any significant in-
volvement of the user in annotating his or her actions is a potential distrac-
tion from the experimental approach we are arguing should be supported
(although perhaps some retrospective annotation may be useful)

• Related to the above, the design of suitable metadata and inference mech-
anisms to support exploration, deduce appropriate workflow generaliza-
tions, etc.

6.6 Conclusions

We have illustrated how biodiversity e-Science can be supported by the use
of workflows, discussing particularly their use within the BiodiversityWorld
project. Although the workflow metaphor is a powerful one in this context,
we have explained our concern that a scientist’s creativity may be potentially
hindered by the workflow design/enactment cycle, and we have discussed ways
in which more flexibility could be introduced. To explore these ideas, we would
like to augment Triana with a browser-like mode, supporting exploration of
data sets and performance of individual tasks and incorporating logging, re-
play, and automated workflow-construction features.

90 Andrew C. Jones

Acknowledgments

The BiodiversityWorld project is funded by a grant from the UK BBSRC
research council. It is a partnership comprising members of The University
of Reading School of Plant Sciences (the project leader), Cardiff University
School of Computer Science, and The Natural History Museum, London. We
would like to express our gratitude to those who have provided data and other
resources for this project. It would not be possible to enumerate all those upon
whom we are in some measure dependent, but we would particularly like to
thank the Global Biodiversity Information Facility (GBIF) for the use of data
to which it has access. We would also like to thank Ian Taylor and Matthew
Shields, of the Triana project, for their interest, support, and useful advice.

7

Ecological Niche Modeling Using the Kepler
Workflow System

Deana D. Pennington, Dan Higgins, A. Townsend Peterson,
Matthew B. Jones, Bertram Ludäscher, and Shawn Bowers

7.1 Introduction

Changes in biodiversity have been linked to variations in climate and human
activities [295]. These changes have implications for a wide range of socially
relevant processes, including the spread of infectious disease, invasive species
dynamics, and vegetation productivity [27,70,203,291,294,376,426]. Our un-
derstanding of biodiversity patterns and processes through space and time,
scaling from genes to continents, is limited by our ability to analyze and syn-
thesize multidimensional data effectively from sources as wide-ranging as field
and laboratory experiments, satellite imagery, and simulation models.

Because of the range of data types used, biodiversity analyses typically
combine multiple computing environments: statistical, mathematical, visual-
ization, and geographic information systems (GIS), as well as application-
specific code that may be written in any programming language. A mix of
proprietary and open-source software is typically cobbled together by manual,
scripted, and programmed procedures that may or may not be well designed,
documented, and repeatable. Legacy FORTRAN programs written decades
ago, as well as more recent C/C++ programs are commonly modified and
used, and Unix scripts abound. The details from the entire range of analyses
conducted are either unavailable or hidden within complex code that com-
bines many tasks and is not robust to alternative uses without comprehensive
user knowledge of the code. Some procedures are computationally intensive,
but parallelized approaches are not in widespread use for lack of access to
high-end computing resources and lack of knowledge about how to make use
of those resources.

Hence, challenges in biodiversity analyses include data-intensive,
computation-intensive, and knowledge-intensive components. Scientific work-
flows in general and the Kepler Workflow System in particular [19, 20, 272]
provide an opportunity to address many of these challenges. Here we examine
the details of a specific analysis within Kepler to illustrate the challenges,
workflow solutions, and future needs of biodiversity analyses. The example

92 Pennington et al.

Table 7.1: Challenges from ecological niche modeling and workflow solutions

Challenge Workflow Solution

Model complexity Hierarchical decomposition

Exploratory modeling Modular components for models can be substituted

Distributed data Integrated data access via EcoGrid

Heterogeneous data Rich transformation components (including spatial
operations) and emerging semantically based data-
integration tools

Computational intensity Support for Grid computing (e.g., Nimrod) and
emerging peer-to-peer support

analysis is drawn from a general approach called ecological niche model-
ing [391], which has a number of technical challenges relevant to scientific
workflow solutions that are summarized in Table 7.1. Analyses are complex,
incorporating many computational steps in diverse software environments.
Within a given segment of the analysis, multiple approaches may be used,
sometimes in tandem for comparison between approaches. Hence, the same
analysis may be conducted with some variation many times. Input data are
drawn from a variety of distributed sources and represent different data cat-
egories: observational data from the field, derived data from digital elevation
models, and simulation output, each of which has its own semantics. These
characteristics lend themselves readily to workflow approaches.

In the following sections, we briefly review ecological niche modeling from
the domain perspective and then address each of the challenges and workflow
solutions listed in Table 7.1 in detail.

7.2 Approaches in Ecological Niche Modeling

Ecological niche modeling is a conceptual framework for understanding and
anticipating geographic and ecological phenomena related to biodiversity
[391]. The ecological niche of a species can be defined as the conjunction of
conditions within which it can maintain populations without input via immig-
ration [177,178]. Extensive research by diverse investigators has built the case
that niches can be estimated based on associations between known geographic
occurrences of species and features of landscapes summarized in digital GIS
data layers [28, 205,340,345] (see Figure 7.1a).

The ability to predict ecological and geographic phenomena using eco-
logical niche modeling generates many opportunities for investigators. The
simplest applications, of course, are those of characterizing distributions of
species in ecological space, which offers a view of the ecological requirements
of species [99] (Figure 7.1a). A second level of prediction comes from projecting
the ecological model onto geographic space to interpolate a predicted potential

7 Ecological Niche Modeling Using the Kepler Workflow System 93

Develop

model

Native

distribution

prediction

Invasive

area

prediction

Environmental

change

prediction

Environmental

characteristics

of surrounding

geographic area

Environmental

characteristics

of different

geographic area

Environmental

characteristics

from gridded

GIS layers

Known

species occurrences

A

B C D

Temperature layer

Many other layers

Future scenarios

of environmental

characteristics

Multidimensional

ecological space

Temperature

Pre
cip

ita
tio

n

S
o
la

r
ra

d
ia

ti
o
n

Develop

model

Native

distribution

prediction

Invasive

area

prediction

Environmental

change

prediction

Environmental

characteristics

of surrounding

geographic area

Environmental

characteristics

of different

geographic area

Environmental

characteristics

from gridded

GIS layers

Known

species occurrences

A

B C D

Temperature layer

Many other layers

Future scenarios

of environmental

characteristics

Multidimensional

ecological space

Temperature

Pre
cip

ita
tio

n

S
o
la

r
ra

d
ia

ti
o
n

Figure 7.1: Ecological niche modeling approach and applications: (a) species’
occurrence data are analyzed with environmental data to develop a model of
the species’ occurrence in ecological space; (b) the model is applied across
geographic space to predict the spatial distribution of suitable habitat on the
species’ native range; (c) the model is used to predict suitable habitat in a
new distributional area in the case of species’ invasions; and (d) the model is
applied against changed environmental conditions, such as climate change, to
predict the distribution of suitable habitat under the new conditions.

geographic distribution—effectively filling gaps in knowledge between known
sampling locations to provide a more complete picture of a species’ geographic
distribution [79,253,313,346] (Figure 7.1b).

Further levels of prediction results under the assumption of conservative
evolution of ecological niches. This assumption now has considerable sup-
port, both from theoretical considerations [196,197] and from empirical evid-
ence [204, 280, 349]. If ecological niches change only rarely and under limited
circumstances, then the ecological potential of species remains relatively con-
stant even under scenarios of change, e.g., transplantation to another contin-
ent as invasive species (Figure 7.1c), or distributions of species in changing

94 Pennington et al.

climates (Figure 7.1d). Ecological niche modeling has seen extensive applica-
tion to these situations. Numerous studies [43,190,345,350] have confirmed the
predictability of potential distributions as invasive species on other continents
or in other regions as well as potential distributional shifts under scenarios of
climate change [28, 281]. As such, the suite of situations in which ecological
niche modeling is informative is quite broad.

Numerous conceptual approaches and software tools can be used in eco-
logical niche modeling. In the simplest sense, an ecological niche model is
just a description of the ecological conditions present across a specie’s range
[177, 178], and as such some very simple tools have seen very broad applica-
tion [313]. Beyond these simplest tools, however, a number of improvements
have been made—first, a suite of methodologies improved on the simple range
rule approach [313] to develop more flexible depictions of species’ ecological
niches [79, 459].

Further developments of niche modeling tools proceeded along two main
lines: (1) multivariate statistical tools beginning with logistic regression [297]
and progressing through generalized linear and generalized additive models
[131]; and (2) evolutionary computing applications such as genetic algorithms
[399], neural networks [340], and maximum entropy approaches [353]. Each
of these two classes has its advantages and disadvantages for niche modeling,
but the basic message is that many computational options exist for modeling
ecological niches.

Many recent studies have addressed likely effects of global climate change
on distributions of species. The general approach is one of modeling and val-
idation of basic model predictions based on present-day ecological and geo-
graphic distributions of species and then projection of niche-model rule sets
onto future changed climate conditions drawn from general circulation models
of global climates [361]. Although the number of studies using this approach
is large—see a recent review and meta-analysis [426]—most have been lim-
ited by practical and technical limitations to between a few dozen and a few
hundred species. The largest such study to date [348] reviewed approximately
1800 species of Mexican birds, mammals, and butterflies.

We are conducting a prototype project using the Kepler Workflow Sys-
tem designed both to demonstrate the power of scientific workflows in solving
large-scale computational problems and to shed light on a still-open ques-
tion: What is the magnitude of likely climate change effects on biodiversity
across the Americas? We are using the data resources of the distributed Mam-
mal Networked Information System (MaNIS) [394] to carry out a review of
likely climate change effects on the over 2000 mammal species of the Amer-
icas, constructing maps of potential species distributions under future climate
scenarios. Not only will this analysis be the broadest in taxonomic and geo-
graphic scope carried out to date, but the computational approach involved
(the workflow) will be completely scalable and extensible to any region and
any suite of taxa of interest.

7 Ecological Niche Modeling Using the Kepler Workflow System 95

7.3 Data Access via EcoGrid

In Kepler, distributed data access is provided through the set of EcoGrid in-
terfaces [225,343]. EcoGrid allows data and computation nodes to interoperate
through a standardized high-level programmatic API. Resources are added to
the EcoGrid through a distributed registry. The registry is also used to locate
resources and to choose among alternative versions when they exist.

The ENM (Ecological Niche Modeling) workflow uses data from three
sources on the EcoGrid: (a) mammal occurrence data from MaNIS, (b)
modeled present and future climate data from the Intergovernmental Panel
on Climate Change1 (IPCC), and (c) Hydro-1k digital elevation data from the
U.S. Geological Survey.2 MaNIS consists of a consortium of 17 North Amer-
ican mammal collections developed using the Distributed Generic Information
Retrieval (DiGIR) protocol, an open source client/server protocol for retriev-
ing distributed information using HTTP, XML, and Universal Description,
Discovery, and Integration (UDDI).3 MaNIS outputs mammal point occur-
rence data in the form of tables of species name and requested attributes,
which include longitude and latitude. IPCC provides gridded global maps of
present and future climate data predicted using a number of different climate
change models. Data include cloud cover, diurnal temperature range, ground
frost frequency, maximum annual monthly temperature, minimum annual
monthly temperature, precipitation, radiance, vapor pressure, wet day fre-
quency, and wind speed. The present-day data are available worldwide with a
resolution of 0.5◦. Future modeled climate predictions have variable resolution
but considerably lower resolution than historical data. Hydro-1k data were de-
veloped by the USGS EROS Data Center.4 These spatial grids were created
using the 30′′ digital elevation model (DEM) of the world (GTOPO30), re-
cently released by the USGS, and provide a standard suite of georeferenced
data sets at a resolution of 1 km. Hydro-1k data include such derived fea-
tures of landscapes as aspect, slope, and elevation, with the data divided by
continent. Total data size is roughly 10 GB.

7.4 Hierarchical Decomposition of the ENM Workflow

The ENM conceptual workflow is divided logically into three separate parts
(Figure 7.2): (1) data preparation; (2) model construction, including predic-
tion on the environmental layers used to construct the model; and (3) applic-
ation of the model to changed climate conditions and comparison of model
output. These three parts are captured within Kepler as a set of hierarchical,

1 http://www.ipcc.ch/
2 http://edcdaac.usgs.gov/gtopo30/hydro/
3 http://digir.net
4 http://lpdaac.usgs.gov/gtopo30/hydro/readme.asp

96 Pennington et al.

nested subworkflows (Figure 7.3). Subworkflows are used to wrap the func-
tionality of multiple components that form logical groupings. The three parts
of the conceptual workflow are captured by six subworkflows, four of which
are necessary just for the first part.

7.4.1 Data Preparation

Data preprocessing and transformation (Figure 7.2a) is incorporated into four
subworkflows within Kepler (Figure 7.3: subworkflows I through IV): (1) Cre-
ate Species Occurrence List, (2) Create Spatial Data Layers, (3) Create Con-
vex Hull Mask, and (4) Revise Spatial Layers. This portion of the workflow
includes analytical components carried out by the EcoGrid query interface,
Geographic Information System (GIS) processing, Java and C++ programs,
and statistical functionality provided by the open-source R package. The data
are manipulated into compatible formats for integration, including restruc-
turing and rescaling the data and changing their syntax (Figure 7.2a). The
MaNIS occurrence points are used to construct a buffered convex hull around
the area of known occurrence; areas outside of this are masked out during the
model training phase.

7.4.2 Model Development

Data sampling, division into training and testing sets, model training, and
model testing (Figure 7.2b) occur within the Calculate Rulesets composite
actor (Figure 7.3 subworkflow V). Each known species occurrence from MaNIS
is used to query the climate and topographic data sets at that location (Fig-
ure 7.2b). Sampled data are divided into two sets, one of which is used to
train the algorithm used to model the data and the other of which is used
to test the predictive model generated by the algorithm and calculate the
predictive error. For the ENM workflow, we are using the Genetic Algorithm
for Rule-set Production (GARP) model, developed specifically for ecological
niche modeling applications [398, 399]. GARP is a stochastic model, so each
run generates a different result. For each species, GARP is run many times
(typically 100 to 1000, averaging 10 to 20 seconds per iteration), predictions
are made for each run, and the distribution of model error results is used to
select the best subset of models. Models with high omission error (those that
fail to predict known presence points) are excluded, either through a hard
threshold (e.g., omission error < 10%) or as a soft threshold (e.g., the 10% of
models with the lowest omission errors). Models passing this first filter will
range from very small to very large areas, each of which are predicted present.
Because areas of overprediction are difficult to detect with presence-only data,
indirect methods are used to select from the remaining models. A commis-
sion index is calculated as the proportional area predicted to be present by
the model [23]. A user-defined number of low-omission models closest to the
median commission index are then selected as the “best subset” of the models.

7 Ecological Niche Modeling Using the Kepler Workflow System 97

IPCC future

climate scenarios

(S = 21)

GARP model training

& prediction of

present distribution (P)

Sample

Data

partition

data into

2 sets

Calculate

model

omission/

commission

error

Select

best

models

(m)

Testing data sample set

Combine

prediction

results =>

probability

map

Generate

binary

presence/

absence

map

Dispersal

analysis

For

each

S

integrated

with T

2

2

Predict

future

distribution

(F) from

model

For

each

P & F

prediction

from

models (m)

= 22

For

each

model

in m

For

i =

1 to n

n = #

of models

MaNIS

Species

Locations

(L)

Hydro1k

topographic

layers (T)

n = 4

Convex

Hull

Mask
IPCC

present

climate

layers (C)

n = 7 Restructure

Restructure

Rescale

Projection

Extent

Grain

Input

Parameters

Append

layers

Append

datasets

Store points

as ASCII

For

each

T

For

each

C

Rescale

values

For

each

C, S & T

EcoGrid query

through Kepler

Legend

1

1

Restructure
For

each

S

B

A
Filter out
If n < X,
where n = count of occurrences

X is user defined

Convert

layers

to binary

C

Calculate

ROC

probability

threshold

IPCC future

climate scenarios

(S = 21)

GARP model training

& prediction of

present distribution (P)

Sample

Data

partition

data into

2 sets

Calculate

model

omission/

commission

error

Select

best

models

(m)

Testing data sample set

Combine

prediction

results =>

probability

map

Generate

binary

presence/

absence

map

Dispersal

analysis

For

each

S

integrated

with T

2

2

Predict

future

distribution

(F) from

model

For

each

P & F

prediction

from

models (m)

= 22

For

each

model

in m

For

i =

1 to n

n = #

of models

MaNIS

Species

Locations

(L)

Hydro1k

topographic

layers (T)

n = 4

Convex

Hull

Mask
IPCC

present

climate

layers (C)

n = 7 Restructure

Restructure

Rescale

Projection

Extent

Grain

Input

Parameters

Append

layers

Append

datasets

Store points

as ASCII

For

each

T

For

each

C

Rescale

values

For

each

C, S & T

EcoGrid query

through Kepler

Legend

EcoGrid query

through Kepler

Legend

1

1

Restructure
For

each

S

B

A
Filter out
If n < X,
where n = count of occurrences

X is user defined

Convert

layers

to binary

C

Calculate

ROC

probability

threshold

Figure 7.2: Conceptual workflow for the mammal project: (a) data prepro-
cessing, where distributed data are obtained from the EcoGrid and manipu-
lated into the required formats; (b) model development, including training,
testing, and prediction on present climate scenarios; (c) model prediction on
future climate scenarios and comparison of output. Final output consists of
predicted distribution maps for each species and climate scenario.

7.4.3 Model Application and Comparison

Application of the model and comparison between predictions (Figure 7.2c)
occurs within the Calculate Best Rulesets subworkflow (Figure 7.3: subwork-
flow VI). Once a best subset of models has been selected, they are used to
predict the specie’s future distributions for the many possible future climate

98 Pennington et al.

scenarios available (Figure 7.4). Because the best subset of models generates
multiple predicted distributions for each present and future scenario, they are
combined for each scenario to produce an occurrence probability map. Error
for the model set as a whole is evaluated using threshold-independent re-
ceiver operating characteristic (ROC) plots [468]. ROC analysis evaluates the
specificity (absence of commission error) and sensitivity (absence of omission
error) of a model set in comparison with a random prediction using a z test.
The results of the ROC analysis are used to validate the predictive ability of
a model for a particular species; for those species passing the validation test,
we construct a final map of the specie’s predicted distribution under present
and numerous versions of future conditions. This distribution may then be
further limited by the use of spread (contagion) algorithms, which evaluate
the ability of the species to colonize new areas under different assumptions.

For each species, the ENM workflow results in predictive maps of the
current distribution and of potential future distributions under different cli-
matic scenarios that can be compared to analyze effects of climate change on
each species. Collectively, results for all species can be analyzed for current
biodiversity patterns and effects of climate change on biodiversity. Additional
workflows will be developed to conduct these analyses. The derived data, and
all workflows associated with the analysis, are archived to the EcoGrid.

7.5 Modular Component Substitution

Each actor or subworkflow of the ecological niche modeling workflow can be
replaced easily and as needed. For instance, a scientist may want to run the
workflow using all of the data preparation, sampling, and postprocessing on
the model output but using a different niche modeling algorithm. Such func-
tionality would require an actor substitution. Alternatively, the scientist may
wish to run the same workflow but using different data sources, requiring
construction of a new data-preparation workflow, conversion of that workflow
into a subworkflow, and substitution of the new subworkflow for the existing
one that it is replacing. As any number of variations on the workflow might be
needed, modular construction of the workflow allows individual components
or sections of the workflow to be substituted readily. Actor and subworkflow
substitutions are illustrated below.

7.5.1 Actor Substitution

The ecological niche modeling workflow was originally designed to make use
of the GARP model, available in Desktop GARP.1 Desktop GARP is written
in C code and includes three parts, which we subdivided into separate Kepler

1 http://www.lifemapper.org/desktopgarp/

7 Ecological Niche Modeling Using the Kepler Workflow System 99

Figure 7.3: Hierarchical decomposition of the ecological niche modeling work-
flow in Kepler. Each of these subworkflows consists of a nested workflow, which
itself may contain subworkflows and further nesting.

actors: (1) GARP Presample, (2) GARP Algorithm, and (3) GARP Predic-
tion (Figure 7.4). The decision to subdivide these modules was based on the
consensus that each could be reused independently from the others.

Actor substitution could occur by simply deleting any of these three act-
ors and replacing it with the new desired actor, which might be a differ-

100 Pennington et al.

ent sampling routine or a different algorithm with which to construct the
model. Numerous issues arise during actor substitution regarding the syn-
tactic, structural, and semantic compatibility of the replacement actor. In this
particular instance, the GARP algorithm requires input in a specific format,
namely a comma-delimited ASCII text file, with each row containing the loc-
ation <latitude, longitude> where the species is known to occur and a vector
of numeric data summarizing environmental characteristics at that location.
All attributes, with the exception of <latitude, longitude>, must be integers
between 1 and 254. Substitution of a different actor requires either that the
new actor have the same input requirements or that additional actors be in-
corporated into the workflow to transform the output from the GARP Pres-
ample actor into the required input format for the new algorithm. Likewise,
the output from the new actor may require transformation to meet the input
requirements of the GARP Prediction actor.

Additionally, actor substitution may entail major changes to the overall
workflow design. For instance, the GARP algorithm is stochastic rather than
deterministic—it is run many times for a given experiment, and each run
produces a different model. The workflow is designed to iterate many times
over the GARP algorithm for each species. Substitution of the GARP al-
gorithm with another stochastic algorithm would not require major changes
to the workflow structure, but substitution with a deterministic model would.
Hence, actor substitution, while simple conceptually, requires additional effort
that could range from minimal (the actors are completely compatible and just
need to be rewired) to quite extensive (the workflow must be redesigned and
new portions constructed). In any case, the workload involved is less than if
the entire design was reworked from scratch.

7.5.2 Subworkflow Substitution

The GARP Presample actor requires that all of the input environmental layers
be spatial raster grids with a custom binary format that must have identical
extent and resolutions. Substitution of a different sampling algorithm may
require a different preprocessing workflow. Alternatively, rather than Hydro-
1k data, the user may wish to use a different data source that has its own
preprocessing requirements. In either case, one or more subworkflows would
have to be replaced, substituting major portions of the workflow. Since Kepler
is designed with hierarchical components, these kinds of substitutions can be
handled more readily than if no logical grouping of components existed.

Multiple subworkflows are used to put the data in required formats (Fig-
ure 7.3 subworkflows II, III, and IV). Embedded within the subworkflows
are complex data-processing workflows for IPCC present climate data, IPCC
future climate data, and Hydro-1k topographic data (see Figure 7.5 for the
Hydro-1k workflow). If, for instance, the Hydro-1k data source were replaced
with another, this specific subworkflow could be deleted and replaced with
a new one without modifying the subworkflows that handle the other data

7 Ecological Niche Modeling Using the Kepler Workflow System 101

Figure 7.4: The GARP workflow, consisting of the Desktop GARP soft-
ware subdivided into three actors (GARP Presample, GARP Algorithm, and
GARP Prediction), and an image display actor to display output. The three
GARP actors together constitute the GARP model training box shown on
the conceptual workflow (Figure 7.2b). Input data must be preprocessed (not
shown). Output data are in the form of an image showing the predicted dis-
tribution of the species.

sources. The primary issue to address is that of ensuring that the output from
the replacement workflow is compatible with the input requirements of the
next step.

7.6 Transformation and Data Integration

A comparison of the research design for integrating species occurrence data
and environmental data (Figure 7.1a) with the corresponding conceptual
workflow (Figure 7.2) and with the details of execution (Figures 7.3 and 7.5)
illustrates the tremendous expansion of computational detail required to pre-
process and integrate biodiversity data, even when the conceptual research
design is relatively simple. Much of the expansion occurs early in the workflow,
as the source data are being manipulated and transformed into formats re-
quired by the first analytical step (Figure 7.2b—Sample Data). These prepro-
cessing steps require substantial time and effort in most biodiversity analyses.
One goal of Kepler is to reduce the amount of effort required by scientists
to accomplish such tasks through a rich set of transformation components,

102 Pennington et al.

Figure 7.5: The Kepler workflow for preprocessing of Hydro-1k environmental
layers for North and South America.

and eventually, automatic or semiautomatic data integration and transform-
ation [46].

7.6.1 Transformation Components

Historically, data preprocessing has required extensive manual effort because
of the diverse set of functions needed. Syntactic and structural transform-
ations have most often been accomplished through cutting and pasting in
a spreadsheet application. Kepler provides a range of transformation com-
ponents that can automate many of these conversions. It also includes some
simple semantic conversions, such as standard unit conversions. As the library
of Kepler components expands, a rich set of transformations will be provided.

In ecological niche modeling analyses, manual data-preparation steps may
require six or more months of labor, much of which is done within a GIS.
However, most ecological niche modeling studies use only a small subset of GIS
functions, typically those that allow for integration of multiple data sources
(projection, resampling, clipping, rasterization), changing grid values (map
algebra), and sampling grids or polygons from point data. Kepler provides
a way for ecological modelers, often not GIS specialists, to access and use
transparently the geospatial functionality that they need.

We have implemented geospatial actors using the Geospatial Data Ab-
straction Library1 (GDAL) and Geographic Resources Analysis Support Sys-
1 http://www.remotesensing.org/gdal/

7 Ecological Niche Modeling Using the Kepler Workflow System 103

tem1 (GRASS) because they are open-source, free software packages with
powerful and proven raster, topological vector, image processing, and graphics
production functionalities. We have also implemented some spatial function-
ality with Java-based ImageJ.2 Lastly, we have implemented several Environ-
mental Systems Research Institute (ESRI) ArcGIS functions as Web services
that can be invoked through Kepler (our collaborators have a license from
ESRI for such services). We are adding geospatial functionality as needed for
our applications, with plans to develop the geospatial functionality base more
broadly in the future. We do not intend to duplicate a full GIS; complex geo-
spatial analyses are best carried out within existing software systems. The
goal in Kepler is to provide functionality that will allow the products of a
geospatial analysis to be integrated more easily with other types of data and
software through standard transformations in batch mode.

7.6.2 Semiautomatic Data Integration.

Given a set of transformation components in Kepler, it is possible to annotate
them in such a way as to enable partially automated transformations by the
system. To illustrate this nontrivial task, we use the Sample Data step (Fig-
ure 7.6). At the conceptual level, the Sample Data step requires three input
types (Figure 7.6a): (1) species presence points, (2) environmental layers, and
(3) user-defined parameters that specify the kind of sampling to be conducted,
the number of desired sample sets, and the number of samples within each set.
The algorithm itself is designed to perform spatial integration of point data
with grid data. All steps prior to this one are syntactic, structural, and se-
mantic transformations to place the point and grid data in the correct format
for input into the “sample data” step. At the syntactic level (Figure 7.6b),
the input point data must be a single comma-delimited plain text file. Point
data retrieved from MaNIS consist of multiple tables that must be combined
into a single table and written to an ASCII file.

Both IPCC and Hydro-1k data begin in an ASCII format but must be
rewritten into the binary format required by the sample data algorithm. At
the structural level (Figure 7.6c), columns within the point file must be re-
structured into the expected order (longitude, latitude). Numerous structural
transformations must occur on the environmental layers. The climate data
occur as a single global map; the Hydro-1k data are subdivided by continent.
Either the Hydro-1k data must be merged or the climate data can be clipped,
depending on the spatial extent of the specific point data being used in the
analysis. Grids must be in comparable cartographic projections to be com-
bined. The Sample Data algorithm requires that spatial extent and resolution
be identical, requiring spatial clipping and resampling to change resolution.
Lastly, layers must be submitted together as a set that is formally a list of

1 http://grass.itc.it
2 http://rsb.info.nih.gov/ij/

104 Pennington et al.

vectors, where the x and y locations can be inferred from the position of the z
value in the vector and metadata regarding the spatial extent and resolution.

The required syntactic and structural transformations may be automated
by the system if sufficient data and algorithm annotation is available, and if
the semantics of the transformations are known. For example, the sample data
actor could be annotated to specify the syntactic and structural requirements
of the input data where these are not already formalized through the input
type. Semantic annotations can be made that specify that the input grid data
are spatial rasters, must be spatially equal, and must spatially contain the in-
put point data (Figure 7.6d). If ontologies exist that formally define spatially
equal for raster data as having equivalent projections, extent, and resolution,
and annotated actors exist that perform those tasks, then the system could
infer that those steps are necessary and perform them without their being
specified within the workflow. If the sample data actor is annotated as requir-
ing geographic longitude and latitude, the rescale step could automatically
select that projection without user input.

Likewise, if ontologies exist that formally define the spatially contains re-
lationship between raster and point data, a point is formally defined as con-
sisting of a composite of longitude and latitude, and the input longitude and
latitude data are annotated as a point composite, then (given a specific input
point data set) the system could infer the appropriate extent of the raster
data for the rescale step. The only remaining parameter for the rescale step
is the desired resolution (grain), which would still either need to be specified
by the user or a default value could be determined if associated with another
knowledge base such as a decision support system. There may still remain
some initial processing of any data set that is collected for purposes other
than use in a given workflow, but automation of those syntactic, structural,
and semantic steps for which information is available to the system would
be an exciting step forward toward allowing scientists to focus on the sci-
entific portion of the analysis (Figure 7.2b) rather than the transformation
and conversion portion (Figure 7.2a).

7.7 Grid and Peer-to-Peer Computing

Currently, Kepler downloads all data sets to a cache and executes locally, but
we will soon be incorporating distributed computing. We estimate that there
are several thousand species of mammals in MaNIS that might be considered
in this prototype application. If we can do all the calculations needed for a
single species in an hour, there is a need for several thousand hours of com-
puting time for the entire list. Thus, there is clearly a need for distributing
calculations over numerous computers. These might be specially designed par-
allel clusters, but since Kepler will run on standard desktop PCs, one could
also consider other, less specialized methods for distributing the calculations.
Peer-to-peer networking among Kepler clients is a technique for parallel pro-

7 Ecological Niche Modeling Using the Kepler Workflow System 105

parameters

Environmental Layers

(temperature, vegetation, etc.)

Species presence

points
Sample

Data

Sample

Data

Sample

Data

Sample

Data

106.789098, 33.454606;

106.789097, 33.454606;

…

33.454606, 106.789098, 56.25;

33.454606, 106.789097, 56.37;

…

33.454606, 106.789098, 56.25;

33.454606, 106.789097, 56.37;

…

56.25 57.23 54.66 55.56 53.25

56.37 52.29 53.52 53.55 56.21

…

Data as

comma-delimited,

plain text file

Syntactic Level

Conceptual Level

Semantic Level

Structural Level

matrix[y, x]2-dimensional matrix

List of 1-dimensional

vectors, one vectpr per

environmental layer

x & y inferred from position in vector

Spatial
Ontology:

point

Taxonomic
Ontology:
species

Spatial
Ontology:

raster
Spatial

Ontology:
spatially-equal

Spatial
Ontology:

spatially-contains
Spatial

Ontology:
raster

A

B

C

D

Spatial
Ontology:
longitude

Spatial
Ontology:
latitude

Data Type
Ontology:

rescaled byte

Observation
Ontology:
property

Data as

binary

list(vector[z])

parameters

Environmental Layers

(temperature, vegetation, etc.)

Species presence

points
Sample

Data

Sample

Data

Sample

Data

Sample

Data

Sample

Data

Sample

Data

Sample

Data

Sample

Data

106.789098, 33.454606;

106.789097, 33.454606;

…

33.454606, 106.789098, 56.25;

33.454606, 106.789097, 56.37;

…

33.454606, 106.789098, 56.25;

33.454606, 106.789097, 56.37;

…

56.25 57.23 54.66 55.56 53.25

56.37 52.29 53.52 53.55 56.21

…

Data as

comma-delimited,

plain text file

Syntactic Level

Conceptual Level

Semantic Level

Structural Level

matrix[y, x]2-dimensional matrix

List of 1-dimensional

vectors, one vectpr per

environmental layer

x & y inferred from position in vector

Spatial
Ontology:

point

Taxonomic
Ontology:
species

Spatial
Ontology:

raster
Spatial

Ontology:
spatially-equal

Spatial
Ontology:

spatially-contains
Spatial

Ontology:
raster

A

B

C

D

Spatial
Ontology:
longitude

Spatial
Ontology:
latitude

Data Type
Ontology:

rescaled byte

Observation
Ontology:
property

Data as

binary

list(vector[z])

Figure 7.6: Description of input data to the Sample Data actor at (a) con-
ceptual, (b) syntactic, (c) structural, and (d) semantic levels, illustrating the
complexity of transformations that must be made during preprocessing of
source data.

cessing that is being considered. Dividing the problem at the species level (i.e.,
running all the calculations for a single species on one machine) seems to be
reasonable, but results would have to be saved, perhaps to the EcoGrid, for
later integration.

7.8 Opportunities for Biodiversity Science Using
Scientific Workflows

The ENM workflow is being developed as a prototype application. Once com-
plete, it may be reused for many comparable analyses simply by changing the
taxa and/or geographic location of interest, or changing the input biodiversity

106 Pennington et al.

and environmental data sources. Substitution of algorithms such as general-
ized additive models or neural networks for the GARP algorithm provides the
opportunity to reuse the workflow with minor modification. We are currently
evaluating options for additional workflow development. Our intention is to
construct workflows that will (1) be of most use in improving the efficiency of
complex biodiversity and ecological analyses, (2) link practically with existing
workflows to form even more complex analyses, and (3) complement existing
workflows conceptually.

The ecological niche modeling approach deliberately neglects the effects
of dispersal on geographic distributions [391]. That is, the niche models sum-
marize the ecological suitability but do not attempt to establish whether the
species will be able to disperse to and colonize a given site that may be suit-
able. The likelihood of successful dispersal is an independent question and
has been the subject of numerous development efforts in distinct lines of in-
quiry [49,186].

For any future-climate effects on biodiversity modeling efforts, incorpor-
ation of dispersal considerations is key—suitable areas may exist but may
be out of reach for many species [347]. Most such analyses to date have used
simple dispersal assumptions such as ”no dispersal,” ”universal dispersal,” and
”contiguous dispersal” [426], but have not made attempts to decide which of
these scenarios is most likely or most realistic. Clearly, this aspect of the ques-
tion merits considerable additional effort and thought by the niche modeling
community.

In the mammal project, we will implement a series of layers of complexity
in dealing with dispersal considerations. At the simplest level, we will apply
the no, universal, and contiguous dispersal criteria—this approach has the
important advantage of permitting direct comparisons with previous studies
[426]. However, the workflow approach will permit a much more interactive
assessment of the effects of these different assumptions.

The mammal project will result in grid layers representing many altern-
ative future potential distributions for more than 2000 species. Analyses of
these voluminous data will take several forms. Data exploration, reduction,
and graphical visualization workflows are needed. For a given species, we need
to compare alternative distributions, both in terms of amounts of suitable hab-
itat and spatial arrangement of that habitat. Some species require large blocks
of contiguous habitat to survive, whereas others require a heterogeneous mix
of habitats. Complex spatial analyses within a given distribution and com-
paring between distributions are needed. Comparisons between species that
allow the delineation of response groups (groups of species that respond to
climate change scenarios in similar ways) are needed. Workflows that analyze
alternative community structures and the effect of interactions between spe-
cies will be needed. Error detection and uncertainty analysis of results both
within and between scenarios will also be important.

7 Ecological Niche Modeling Using the Kepler Workflow System 107

7.9 Advantages of Automated Workflows for
Biodiversity and Ecological Science

The benefits of scientific workflows for biodiversity scientists are many: In-
creased efficiency, replicability, and reusability are obvious. Less obvious, but
of no less importance, is the explicit documentation of methods used in an ana-
lysis. Historically, analytical methods have been recorded in free-text “Meth-
ods” sections of publications. Typically, only the conceptual steps are recor-
ded. The multitude of computational details imposed on the data to enable
execution are typically not recorded, yet these may have significant effects on
the results of the analysis.

Scientific workflows provide the opportunity to formally document every
detail of the analysis within the system. Indeed, methodologies can be “pub-
lished” explicitly in the form of workflows as part of scientific papers. This
enables replication of analyses as mentioned above but also enables scient-
ists to scrutinize their own and other scientists’ analytical methods carefully,
identify differences in methodology that have significant effects, and compare
results given those differences. Additionally, it presents an opportunity to
refine a given workflow collaboratively based on group consensus of best prac-
tices. By agreeing on and standardizing the details of an analysis wherever
possible, truly innovative differences in approaches that occur at the cutting
edge of science will be highlighted, and we may focus more readily on analyt-
ical outcomes that result from those differences rather than obscuring them
through differences in execution.

Science is about exploring those areas of knowledge where no consensus
exists and where no established methodologies guide the investigator. By auto-
mating analyses, efforts can be concentrated where they are most needed. For-
tunately for scientists, many parts of a scientific analysis provide a wealth of
technical challenges for computer scientists and software engineers, and emer-
ging technologies such as workflows hold great promise. The single biggest
hurdle preventing widespread adoption of workflow technology by the biod-
iversity science community is the level of technical expertise required to con-
struct executable workflows. Most have limited or no programming back-
ground and little knowledge about fundamental technical issues such as data
types, structures, and information handling. Nor should they be expected to
become technical professionals—domain scientists should be doing domain
science! Until the system is populated with a wide variety of components and
many reusable workflows, each new workflow will necessitate programming of
custom actors. Additionally, the workflow design process itself is not intuitive
to scientists who are used to making decisions about their analytical methods
on the fly as they conduct their work. We will have to find a way to simplify
Kepler for less sophisticated users while still enabling complex functionality.
It is quite a challenge to provide the range of functionality envisioned while
maintaining a reasonably simple interface that will be intuitive to the do-
main scientists. Concurrently, we must also develop more sophisticated tools

108 Pennington et al.

to enable rapid workflow construction by high-end workflow engineers who
may be working in collaboration with a domain scientist. Balancing these or-
thogonal needs will continue to be a challenge. Ultimately we envision a day
when Kepler evolves into a hierarchical system that fully supports users with
a wide range of technical capabilities from a wide range of scientific discip-
lines, presents the appropriate set of interfaces and functionality based on user
group, and enables better collaboration between the disciplines.

Acknowledgments

This work is supported by the National Science Foundation under grant num-
bers 0225665 for SEEK and 0072909 for NCEAS. Special thanks to the SEEK
and Kepler teams for all of their collaborative efforts that resulted in this
chapter.

8

Case Studies on the Use of Workflow
Technologies for Scientific Analysis: The
Biomedical Informatics Research Network and
the Telescience Project

Abel W. Lin, Steven T. Peltier, Jeffrey S. Grethe, and
Mark H. Ellisman

8.1 Introduction

The advent of “Grids,” or Grid computing, has led to a fundamental shift
in the development of applications for managing and performing computa-
tional or data-intensive analyses. A current challenge faced by the Grid com-
munity entails modeling the work patterns of domain or bench scientists and
providing robust solutions utilizing distributed infrastructures. These chal-
lenges spawned efforts to develop “workflows” to manage programs and data
on behalf of the end user. The technologies come from multiple scientific fields,
often with disparate definitions, and have unique advantages and disadvan-
tages, depending on the nature of the scientific process in which they are used.
In this chapter, we argue that to maximize the impact of these efforts, there is
value in promoting the use of workflows within a tiered, hierarchical structure
where each of these emerging workflow pieces are interoperable. We present
workflow models of the TelescienceTM Project1 and BIRN2 architectures as
frameworks that manage multiple tiers of workflows to provide tailored solu-
tions for end-to-end scientific processes.

Utilization models for first-generation Grids (and their supercomputing
center predecessors) were akin to the hub-and-spoke model utilized by the
airline industry. User data environments were treated as the “hub,” and at
every step, the user was required to login and data were passed (often with
a binary executable) to one of the few virtual organizations (VO) [147], or
spokes, across the country to execute their computational jobs (Figure 8.1).
Initial implementations required users to coordinate the execution of their
data-processing tasks using command-line interfaces. They further required
users to maintain their own security credentials on each of the resources tar-
geted for their jobs. Today, single sign-on authentication and login mechan-

1 http://telescience.ucsd.edu
2 http://www.nBIRN.net

110 Abel W. Lin et al.

isms have been realized through the use of Grid portals. Instead of logging
into specific resources via a command prompt, users are directed to a single
Web page, where their authenticated login provides access to the VO or other
organizations where a shared-use relationship has been established.

Through the use of Grid portals, complex command-line arguments and
syntax are easily replaced with radio-buttons and checkboxes, thereby simpli-
fying the syntactical interface to the use of distributed resources. Even with
these simplified interfaces, however, first-generation Grid implementations still
operated on a “hub-and-spoke” model. Modern Grid portals, coupled with
maturing workflow tools have begun to enable a point-to-point research model
that more closely mirrors scientific research.

Figure 8.1: Hub-and-spoke versus point-to-point scientific processes. Solid
lines indicate data transfer and hashed lines indicate user monitoring tools.

Through the use of Web-based environments, researchers can now access
a fully integrated cyberinfrastructure in a nearly ubiquitous manner, with
little to no administrative overhead. In current systems, experiment workflows
are represented by Web interfaces that provide centralized access to a static
collection of sequentially ordered application pipelines, tools for launching
batch jobs, or tools for visualizing or analyzing the data at key points in the
end-to-end process.

While the advantages of these computational portals are evident, there re-
mains a need for additional flexibility. The natural working paradigm for most
scientific experiments requires a level of interactivity that is difficult to cap-
ture in a static workflow. Users really require a balanced environment where

8 Workflow Technologies in the Telescience Project 111

they can interactively create, replicate, and reuse workflows or “pipelines”
for application components from the larger scientific process without need-
ing to manage the complexities of their planning or execution on end-line
physical resources. While there are a number of technologies emerging to en-
able interactive “plan” creation and/or scalable plan execution on Grids, few
if any provide a balanced and unified capability on both fronts. Most offer
unique capabilities, with strengths and weaknesses that need to be combined
and tailored to meet the requirements of scientific experiments. This model
of interoperability is essential for projects such as Telescience [260, 341] and
BIRN [169].

8.2 Framework for Integrated Workflow Environments

As described in Part III of this book, a number of technologies have emerged
to redefine the workflow concept by providing frameworks for interactive pro-
cess construction, execution, and replication. Leading efforts such as Kepler1

and Taverna2 offer pipelining operations that provide users with a real-time
interactive and/or visual environment for constructing and executing end-
to-end data-analysis plans (for more information regarding Kepler and Tav-
erna, see chapter 19). Other classes of workflow technologies, such as Pegasus
(Chapter 23) and DataCutter3, excel at the planning and execution of such
plans onto heterogeneous resource environments or Grids. The challenge is
that workflows, as defined by domain scientists, typically represent the dy-
namic end-to-end application process that often includes a heterogeneous mix
of experimental processes and the corresponding collection of distinct work-
flows (information gathering, bench/laboratory experimentation, computa-
tion, analysis, visualization, etc.) that may require a reconfigurable mixture
of the workflow classes described above.

In an era of growing complexity, it is a daunting task for scientists to
manually traverse these different workflow classes to complete their multiple
experiments. The Telescience and BIRN projects are structured to effectively
manage these different classes of workflows and to represent them to the user
in a simple sign-on Web portal with a seamless end-to-end data flow. The
portal in this case serves as the unifying fabric within which the disparate
workflow technologies are integrated and where the state between technologies
is brokered on behalf of the user. In the classic model of the Grid, users and
applications are connected to physical resources via Grid middleware. The
Telescience v2.0 system architecture (Figure 8.2) is a mature embodiment of
this concept that consists of four primary layers:

• User interface: portal and applications
1 http://www.kepler-project.org/
2 http://www.mygrid.org.uk
3 http://datacutter.osu.edu/

112 Abel W. Lin et al.

• ATOMIC: Application to Middleware Interaction Component Services
• Middleware/cyberinfrastructure: collective and local Grid services
• Physical resources: computing, storage, visualization, and instrumentation

Figure 8.2: Telescience architecture. The portal presents a simplified interface
to data, services, and collaboration tools to end users and transparently man-
ages access to cyberinfrastructure. ATOMIC insulates application developers
from the heterogeneity and volatility of the middleware cyberinfrastructure,
streamlining the linkage of client-side resources to distributed physical re-
sources.

Figure 8.2 shows the overall Telescience architecture, which maps directly
to the base architecture of BIRN. User interaction occurs via a Web portal
interface that ultimately traverses a series of layers to the required phys-
ical resources. Telescience and BIRN have deployed a user portal based on
the GridSphere framework1. GridSphere, being a JSR168 compliant portlet
framework [419], allows for the development of portlets that can be utilized
in numerous compliant portal frameworks. The Web portal may launch one
or more applications that must also navigate the same services to access the
physical resources. These portal and application components interact with
Grid resources via ATOMIC [259]. ATOMIC is a set of services that organize
middleware technologies into thematic bundles with stable and unified pro-

1 http://www.gridsphere.org

8 Workflow Technologies in the Telescience Project 113

grammer interfaces to simplify the process of integrating tools with the Grid
for the domain applications developer.

Within this framework, however, there is still a temptation to build com-
plicated software that captures all necessary functionality (across layers) in a
single program. Workflow tools aim to reduce that tendency by working across
layers to link together disparate codes, modules, and applications (some pre-
existing) into a single virtual environment, all without significant changes to
the original source code.

Figure 8.3: Workflow integration across scales and classes of tools. In the con-
text of workflows, the Telescience portal curates and manages user inform-
ation and session state. ATOMIC delivers that information to downstream
applications and workflows.

Within the Telescience and BIRN architectures, those workflow tools fall
into the following classes:

1. Process management workflows: Frame highest-level scientific (labora-
tory) process and provide policy, process, state management, and ad-
ministrative tools, including the coordination and management of lower-
level workflows/pipelines that may comprise a scientific study (or instance
within that study)

2. Inter-application workflows: Pipeline or plan-building tools to streamline
computational operations

3. Intra-application workflows: Planners and execution engines to optimize
the execution of these plans on heterogeneous physical resources.

114 Abel W. Lin et al.

As shown in Figure 8.3, the BIRN and Telescience approach is to facil-
itate coordination and sharing of state-full information between these three
workflow layers. Each layer has unique abilities and requirements. Process
and state management tools (typically portal-based) are necessary to pre-
serve and delegate the contextual information with regard to the user. This
information includes management of the scientific process, authentication and
authorization, and high-level state information. Within the Telescience Pro-
ject, much of this information is delivered to the lower level workflows via the
ATOMIC toolkit. Inter-application tools create process pipelines, which are
subcomponents of the highest-level experimental process management work-
flow. These tools are typically user-driven GUI environments that are either
ordered within the process management workflow or presented as a general
tool to serve the process management workflow as needed. The lowest-level
“intra-application” workflows are composed of the executable plans that have
been mapped to heterogeneous pools of physical resources.

8.3 Scientific Process Workflows: Process and State
Management Tools

The laboratory process is the end-to-end process that a scientist embarks
upon. This process is defined as all the steps between the conception of an
experiment and the final discoveries that are made based upon experimental
findings, including but not limited to any initial planning, information gath-
ering, data collection, analysis, and potentially many iterations of this process
at one or many decision points. In fact, the laboratory process is not simply a
linear stovepipe process, but rather it is a dynamic and highly iterative pro-
cess with multiple points of user interaction, data visualization, and feedback
(see 8.4). In the context of workflows, the laboratory process is the first-order
workflow in the hierarchy of workflow tools and is the first workflow level
that directly interacts with the end-user. Within an interoperable hierarchy
of workflow technologies, these laboratory processes utilize Grid portals in
the role for which they were originally intended, to provide a stable base
structure for the process as a whole, to broker security credentials, to man-
age the secure flow of information (through disjointed processes that often
involve multiple forks or decision points), to monitor/audit the progress of
the overall scientific process (including bench processes that are experimental
and non-computational), and to serve as the controller of workflow state in-
formation. It is no surprise that portals have emerged as a dominant source
of application and information delivery. The Gartner Group1 has championed
the portal as a mechanism that provides access to and interaction with rel-
evant information, applications, business processes and human resources by

1 http://www.gartner.com

8 Workflow Technologies in the Telescience Project 115

select targeted audiences in a highly personalized manner. According to Gart-
ner, the enterprise portal has become the most desired user interface in Global
2000 enterprises and is ranked as one of the top ten areas of technology fo-
cus by CIOs. Translated to the scientific process, portals provide the tools
to transparently manage the contextual information that is required for the
different workflow classes to interoperate. Some of this information includes
authentication and authorization, data and resource management, and session
notifications.

Figure 8.4: Portals are critical to the workflow landscape as scientific workflows
move from linear stovepipe processes to dynamic feedback-driven processes.

8.4 The Role of Portals as Workflow Controllers

As we move from a hub-and-spoke model to a dynamic “point-to-point” pro-
cess, the role of the portal as workflow controller becomes more important. In
this role, the portal is utilized more for process workflow management, where
more emphasis is placed on the management of state and persistence informa-
tion of the different components and less emphasis is placed on the mechanics
of launching application components. While not traditionally thought of as
“workflow” tools, we have found portals to be critical to applications and
workflow information delivery.

116 Abel W. Lin et al.

In the Telescience model, the portal environment is required to curate
all the pertinent information regarding the user and session state that is re-
quired by lower-level workflow classes. While the portal serves as the curator
of user information and state, ATOMIC serves as the delivery vehicle, provid-
ing downstream applications and workflows with access to the appropriate
information necessary for a given process. This abstraction of the session
information is not only necessary to maintain a seamless user environment
during the transition between different workflow classes but also scales to the
needs of future workflow technology developments. Recently, two import-
ant standards have emerged to address the scalable development of session
management across scales: Web Services for Remote Portlets Specification
(WSRP) [484]and Java Specification Request 168 Portlet Specification (JSR
168). Independent of programming languages and platforms, WSRP defines
Web Services Description Language (WSDL) [482] interfaces and semantics
for presentation-oriented Web services. JSR168 meanwhile, defines a stand-
ard Java portlet API, a portlet container, and the contract between the API
and the container. Armed with these standards, portlets have become one of
the most exciting areas for presenting applications and workflows to the end
user, with the number of vendors (and open-source projects) that support
portlets serve as evidence. These include IBM WebSphere, Sun One Portal
Server, Oracle 9iAS, the Jakarta Jetspeed project, and the GridSphere pro-
ject. These two emerging standards have enabled the development of tools
to systematically manage persistent contextual information on behalf of the
user.

Currently the Telescience and BIRN projects are utilizing these standard-
izing portlet framework tools to develop an administrative system to allow
for the rapid creation and deployment of a process management controller
portlet. These controller portlets provide high-level structure to end-to-end
experimental processes, framing the logical steps that may then expand into
multiple layers of successive workflows and tools.

Application-centric portals, such as Telescience and BIRN, take advantage
of not only the portable presentation layers of portlets but also the persistence
and management of logic and state information between portal components
and lower-level workflow tools. It is this vital information that makes a unified,
point-to-point Grid interface possible.

8.5 Interapplication Workflows: Pipeline-Building Tools

A major area of development in workflow technologies has been the devel-
opment of systems (i.e., application pipeline environments) that allow the
management and execution of analysis processes. The utilization of such en-
vironments enables not only the initial analysis of the experimental data but
also the recalculation for verification of the results and the exploration of the
parameter space of the results. Additionally, the use of such environments al-

8 Workflow Technologies in the Telescience Project 117

Figure 8.5: Screenshot of the laboratory process workflow (highlighted in solid
rectangle). This workflow portlet closely interacts with the data Grid and ap-
plication selection portlets (highlighted in hashed rectangles) and is configur-
able by portal administrators.

lows for the processing of scientific data to be well documented so that studies
may be explored and analyzed further at a later time by interested researchers.
These requirements are found in many scientific communities and have resul-
ted in the development of many such environments across these communities.
Some examples of environments developed in different communities are:

• Neuroscience - LONI Pipeline1 is a graphical environment for constructing
analysis pipelines.

• Bioinformatics - Taverna is an environment that merged with the myGrid
Project2 and allows the researchers to access collections of bioinformatics
Web services and Grid services hosted by the European Bioinformatics
Institute.

1 http://www.loni.ucla.edu/twiki/bin/view/Pipeline/
2 http://www.mygrid.org.uk

118 Abel W. Lin et al.

• Ecological and Geological Sciences - Kepler1 is a workflow environment
based on the Ptolemy II system for heterogeneous, concurrent modeling
and design.

While it may be impossible to standardize on a single application pipeline
environment due to the requirements of a specific research community or
study, it has become increasingly important to provide an environment in
which users can build and utilize preconstructed application workflows via
a unified portal interface. As communities develop conventions for the pro-
cessing of certain data (e.g. quality assurance measures for functional MRI
data developed within BIRN), it will be important for the process manage-
ment workflow to be able to integrate these components into the overall sci-
entific process, thereby increasing the interoperability of application workflows
across communities and projects.

8.6 Intrapipeline Workflow: Planners and
Execution Engines

Typically, each application (or intra-application pipeline components) can be
broken down to individual module components that no longer require user
intervention. At this level, the component codes are well suited for large-scale
computation. Unlike first-generation Grid codes that were large and mono-
lithic, these component modules are small and dynamic. Also unlike early
codes, which tended to be “pleasantly parallel,” these modern codes are het-
erogeneously parallel, often requiring more than one precursor component to
be completed before computation can begin. With this parallel heterogen-
eity, mixed with resource heterogeneity, sophisticated workflow planning and
execution tools are required to first abstractly plan and then execute the work-
flow. As with the interworkflow pipeline tools, these requirements are found
in many scientific communities and have resulted in the development of many
such environments across these communities. Some examples of environments
developed in different communities include:

• Physics: The GriPhyN virtual data system2 provides tools for executing
workflows and for the tracking of provenance of all data derived from the
workflow.

• Astronomy: The Pegasus3 (Chapter 23) environment provides a flexible
framework for the mapping of scientific workflows onto Grid-based re-
sources.

• Geology: DataCutter4 is a middleware tool for filtering large archival sci-
entific datasets in a Grid environment.

1 http://www.kepler-project.org/
2 http://vds.isi.edu
3 http://pegasus.isi.edu
4 http://datacutter.osu.edu

8 Workflow Technologies in the Telescience Project 119

8.7 Use Cases

The Telescience and BIRN projects provide a framework for the integration
and interoperation of all of these different workflow classes within the context
of an end-to-end scientific process. More than offering yet another one-size
fits all solution, the goal is to introduce a model for interoperability that en-
ables disparate but complementary technologies (process management, inter-
application, and intra-application workflows) to work in synchrony. The hier-
archal organization of workflows tools is not only aimed at processing more
data faster, but to also increase the rate at which native scientific applications
be deployed in order to take advantage of the services from different workflow
tools.

8.8 The Telescience Project

Imagine an environment where available computing cycles are dynamic-
ally gathered for real-time on-demand computing directly from the data-
generating instruments themselves (instead of user-managed monolithic large-
scale, batch-oriented computation). In this unified, on-demand Grid, data are
automatically curated and flow freely from instrument to computation to ana-
lysis. In this model, the results of that analysis interface directly with the
instrument, providing automated feedback that can constantly refine data-
collection parameters and techniques. In this world, the Grid provides more
than just a means for faster results; it provides a foundation for the collection
of higher fidelity raw data. This is the vision of the Telescience Project.

To monitor that point-to-point data flow, the core functionality of the
Telescience portal is the user managed microscopy workflow, where the se-
quence of steps required for planning experiments and acquiring, processing,
visualizing, and extracting useful information from both 3D electron and laser-
scanning light microscopy data is presented to the user in an intuitive, single-
signon Web environment. Beyond facilitating the execution of these steps,
however, the Telescience system audits progress through the workflow and
interfaces each component within the workflow with federated databases to
collect and manage all of the metadata generated across the entire process.

As with all first generation portals, a major accomplishment for Teles-
cience v1.0 (circa 1999-2004) was to create simple Web accessible interfaces
to a heterogeneous set of middleware via a single user name and password.
Telescience v1.0, for example, users could browse the data Grid via a custom
interface or launch jobs via web wrapped middleware commands. These in-
terfaces, however, were designed in autonomy for singular interactions whose
capabilities were developed by mirroring a command line interface to the par-
ticular middleware tools. Due to limitations in the infrastructure, first gener-
ation portals moved from the original purpose of monitoring the process to
also being responsible for the execution of the process.

120 Abel W. Lin et al.

The Telescience v2.0 infrastructure is designed to move beyond interfaces
with singular actions and integrate them into a richer user environment; that
is automated and dictated by the process and not by the Grid middleware.
This capability is accomplished with the development of a workflow portlet
that manages and monitors the highest-level scientific process (see Figure 8.5).
Similarly to many scientific processes, the highest-level process remains rel-
atively static to the end user (while the pipeline subcomponents are much
more variable/dynamic). The Telescience workflow portlet, however, is amen-
able to other types of processes (beyond multiscale microscopy) because the
persistence and intraportlet logic is separate from the interface layer. Adapt-
ing the workflow portlet to another scientific discipline is simply a matter of
substituting appropriate headings in the portlet.

Figure 8.6 is a high-level outline of a typical multiclass workflow that is
initiated by the enduser. From the main scientific process workflow controller
portlet, the user launches an external application (in this example, a Telemi-
croscopy control session). Session information (i.e., authentication and data-
management parameters) that is curated by the portal upon login is passed
to the application at runtime via ATOMIC tools and services. Using those
parameters, the application initiates a lower-class workflow, in this example a
Pegasus planned workflow for parallel tomographic volume reconstruction that
is executed by a Condor DAGMAN [97]. Next generation ATOMIC Web/Grid
service-based implementations will also further allow dynamic notifications of
progress at both the level of the external application and the main portal
workflow. All of this takes place in a seamless user environment where the
typical overhead of transitioning between different workflow classes is passed
neither to the end user nor to the application developers. For example, we
anticipate the inclusion of more robust resource and network discovery tools
within Pegasus without modification of current applications.

This requirement will be particularly relevant as more complex, real-world
workflows are enabled. The example in Figure 8.7 illustrates an end-to-end
feedback-driven data-collection scenario that has been requested from the mi-
croscopy community. This requirement clearly amplifies the need for extensive
coordination of different classes of workflow tools, from high-level workflow-
management tools (i.e., portal) to low-level planners (Pegasus). In particular,
this example illustrates the requirement for a coordinated mixture of resource
usage models, including on-demand, traditional batch, and large memory.

8.9 The Biomedical Informatics Research Network
(BIRN)

The Biomedical Informatics Research Network (BIRN) is an infrastructure
project of the National Institutes of Health. A main objective of BIRN is
to foster large-scale collaborations in biomedical science by utilizing the ca-
pabilities of the emerging cyberinfrastructure. Currently, the BIRN involves

8 Workflow Technologies in the Telescience Project 121

Figure 8.6: Telescience portal. The Telescience portal is a rich user envir-
onment, where generalized session information and persistence logic allow
actions in the scientific-process-driven workflow management portlets to be
reflected in other portlets (i.e., data management portlets). The session in-
formation and logic can also be preserved and further delegated to downstream
workflow controllers and external applications while retaining notifications for
all components.

a consortium of more than 20 universities and 30 research groups participat-
ing in testbed projects centered around brain imaging of human neurological

122 Abel W. Lin et al.

1. User logs into Telescience Portal using username and password
2. User GSI proxy credential is created on TeleAuth Server

• Telescience credentials are accepted by the following organizations:
o TeraGrid (computation)
o OptIPuter (advanced networking and visualization)
o Telemicroscopy (remote and collaborative instrumentation)
o Cell Centered Database/CCDB (federated metadata / data management)

3. User builds/registers new project from Portal (transparently interacting with CCDB)

• After project registration, metadata is collected, auto-parsed, and deposited into CCDB (at every step), from both within the Portal and external applications
4. User uses Portal based digital lab notebooks to "record" non-computational process (transparently interacting with CCDB)
5. User (and possibly remote collaborators) launches collaborative instrumentation control session (Telemicroscopy), user information and credentials are passed

to Telemicroscopy software
a. Preliminary/Preview data is acquired in semi-real-time (during instrument operation) for a particular region of interest (ROI)

• Total data size is < 500MB

• Telemicroscopy provisions primarily local resources based on network speed

• Simple processing workflow plan (DAX) is automatically generated for tomography reconstruction (i.e., TxBR \cite{Lawrence01})

• Preview data is reconstructed (DAX -> DAG) into 3D volume using selected resources

• Data flows directly from instrument to computational resources
b. Preliminary/Preview 3D volume is segmented for visual inspection

• Telemicroscopy provisions primarily local resources based on network speed

• Simple processing workflow (DAX) plan is generated for segmentation and visualization (i.e., using ITK and VTK filters – Watershed, Level Set,
etc.)

• 3D volume is segmented and visualized (DAX -> DAG) using local resource

• Data flows directly from previous step to currently selected computational resources
c. Data is visualized by user (and remote collaborators) via Portal visualization applications
d. Decision is made to continue searching for specimen of interest (preview data possibly collected again), tune instrument parameters, or to acquire full

resolution data from current ROI
e. Fully automated, full resolution data collection is executed

• Collected data is automatically routed to appropriate data grid location and permissions are set accordingly
6. Users ends Telemicroscopy session
7. Users launches Portal tools for image pre-processing

• Total data size is ~10GB

• Portal provisions resources based primarily on available computational horsepower. Both local and external resources (i.e. TeraGrid) are utilized.

• Pre-processing task(s) are selected by user and processing plan (DAX) is automatically generated by Portal

• Processing plan is converted to DAG and executed

• Data flows directly from data grid to computational resources
8. 3D volume from full resolution, pre-processed data is computed.

• Total data size is ~50GB

• Portal provisions resources based primarily on available computational horsepower. Both local and external resources (i.e. TeraGrid) are utilized.

• Desired Tomography algorithm(s) is selected by user and processing plan is automatically generated (DAX) by Portal

• Processing plan is converted to DAG and executed

• Data flows directly from data grid to computational resources
9. 3D volume is segmented for visualization

• Portal provisions resources based primarily on available computational horsepower, automatically selected from both local and external resources (i.e.
TeraGrid)

• Desired segmentation methods (i i.e., using ITK and VTK filters – Watershed, Level Set, etc.) are selected by user and processing plan(s) is automatically
generated (DAX) by Portal

• Processing plan is converted to DAG and executed

• Data flows directly from data grid to computation resources
10. Data is visualized by user (and remote collaborators) via Portal visualization applications targeted at high-memory resources

• Data flows directly from data grid to high-memory visualization resources

• Data is collaboratively refined and/or annotated
11. CCDB project maintenance is performed
12. Select data is "published" and available for communities at large (i.e. BIRN)

Figure 8.7: End-to-end feedback-driven data-collection scenario.

disease and associated animal models. The promise of the BIRN is the ability
to test new hypotheses through the analysis of larger patient populations and
unique multiresolution views of animal models through data sharing and the
integration of site independent resources for collaborative data refinement.

In order to support the collaborative nature of scientific workflows from
BIRN, a critical component is the collaborative project management portlet
that allows for the creation of multiple independent projects, each able to have
its own process management workflow (workflow controller portlets) managing
the project’s experimental process. The first step in the experimental process
(a typical use case is portrayed in Figure 8.8) is the collection of the primary
research data. Within the BIRN testbeds, these data are collected and stored
at distributed sites where researchers maintain local control over their own
data. Once the imaging data has been stored within the BIRN data Grid,
authorized users from any collaborating site must be able to process, refine,
analyze, and visualize the data. In order to satisfy these requirements, BIRN
researchers are utilizing multiple interapplication pipeline environments such

8 Workflow Technologies in the Telescience Project 123

Figure 8.8: Use case scenario for a collaborative experiment within the BIRN
cyberinfrastructure. The use case follows the data flow all the way from data
collection, to the BIRN data Grid, through interactive processing stages,
which is then followed by a query through the data integration layer.

as Kepler and the LONI pipeline. BIRN users are currently able to trans-
parently access and process data through the BIRN portal, a workflow and

124 Abel W. Lin et al.

application integration environment where applications can interact with the
BIRN data Grid allowing researchers to visualize and perform analysis on data
stored anywhere within the BIRN data Grid. However, an important object-
ive of the BIRN initiative is to provide the researcher with seamless access to
the computational power required to perform large-scale analyses through the
use of complex interactive workflows. The sequence of steps within a typical
analysis pathway can consist of multiple workflows (e.g., there might be separ-
ate application pipelines for the data pre-processing and post-processing) and
interactive procedures (e.g., manual verification of the data pre-processing).
This complex interactive workflow may be required to utilize distributed com-
puting resources (e.g., to expedite the processing of multiple data sets) while
also allowing the researcher to perform any interactive procedures that are re-
quired. However, the translation of these workflows from current application
pipeline environments to workflows that are able to take advantage of distrib-
uted resources is not always straightforward. The current portal environment
allows for the management and execution of individual application pipelines
that utilize their own execution models. For example, workflows developed in
the LONI pipeline or Kepler environment will execute on a specified server
or cluster environment, however, they are not able to take full advantage of
a distributed and heterogeneous pool of resources. In order to fully enable
these application pipelines to access distributed Grid resources, the workflows
defined by these pipeline environments are being extended to facilitate inter-
operability with intra-application workflow planners. As data are processed,
intermediary data and ultimately the final results are stored back in the BIRN
data Grid along with metadata describing the full history (provenance) of the
data files. Much of the metadata information, along with results from statis-
tical analyses, are stored in databases being deployed at all testbed sites.

Similarly to the Telescience use case, BIRN researchers require the co-
ordination and interoperability of workflow tools of many classes. In addition,
due to the increased interactivity requirements of their research, many pipelin-
ing/workflow tools have already been developed. BIRN must therefore, also
ensure that all the pipeline tools interoperate with each other as well as the
different classes of workflow tools. The portal (and ATOMIC) play a critical
role in the interoperability of pipelining tools by ensuring that the contextual
information is compatible and deliverable to each unique pipeline tool. Simi-
larly to the Telescience case, these pipeline/workflow applications are capable
of launching large-scale analyses via workflow planner and execution engines.
As the BIRN cyberinfrastructure matures, the application integration and
workflow environment interoperation must also be enhanced and extended so
that researchers are able to more efficiently perform large-scale analyses of
their data.

8 Workflow Technologies in the Telescience Project 125

8.10 Discussion

If we define an end-to-end scientific workflow to encompass all the steps that
take place between data or information acquisition and the final discoveries
that take place as a result of the initial data acquisition, it is clear that no
single workflow tool or system is adequate to address this need. It can only
be addressed through the integration of several different interoperable tools.

The Telescience and BIRN projects demonstrate this integration (and in-
teraction) of components from different perspectives of the entire end-to-end
workflow spectrum. Telescience-based workflows require minimal user inter-
activity and control but require the coordination of many heterogeneous com-
putational and data resources across several VOs. The majority of the BIRN-
based workflow tools, however, are highly interactive but are launched across
a more enclosed set of physical resources. In both cases, the portals are critical
to the presentation of a unified workflow management environment.

More important than integration of different workflow tools, however, is
the development of systems that will maintain interoperability of state and
process information between the different workflow classes. Future develop-
ment will move beyond simple integration to the development of tools to
maintain that interoperability in a generalized manner. This is critical as new
workflow tools continue to emerge. Within this vision, the portal will continue
to serve as the unifying fabric where these integrated workflow technologies
will be organized and made to interoperate with the various high-level inter-
action tools for experimental/bench processes (including database and digital
lab notebooks) and also with interactive visualization and/or analysis tools
for user intervention at decision points.

Acknowledgments

This work was supported in part by grants from the National Institutes
of Health (NINDS NS046068, P41 RR004050, P41 RR008605, NCRR U24
RR019701) and the National Science Foundation (ANI0225642).

9

Dynamic, Adaptive Workflows for
Mesoscale Meteorology

Dennis Gannon, Beth Plale, Suresh Marru, Gopi Kandaswamy,
Yogesh Simmhan, and Satoshi Shirasuna

9.1 Introduction

The Linked Environments for Atmospheric Discovery (LEAD) [122] is a Na-
tional Science Foundation funded1 project to change the paradigm for meso-
scale weather prediction from one of static, fixed-schedule computational fore-
casts to one that is adaptive and driven by weather events. It is a collaboration
of eight institutions,2 led by Kelvin Droegemeier of the University of Ok-
lahoma, with the goal of enabling far more accurate and timely predictions of
tornadoes and hurricanes than previously considered possible. The traditional
approach to weather prediction is a four-phase activity. In the first phase, data
from sensors are collected. The sensors include ground instruments such as
humidity and temperature detectors, and lightning strike detectors and atmo-
spheric measurements taken from balloons, commercial aircraft, radars, and
satellites. The second phase is data assimilation, in which the gathered data
are merged together into a set of consistent initial and boundary conditions
for a large simulation. The third phase is the weather prediction, which ap-
plies numerical equations to measured conditions in order to project future
weather conditions. The final phase is the generation of visual images of the
processed data products that are analyzed to make predictions. Each phase
of activity is performed by one or more application components.

The entire linear processing of these four phases is done at fixed time
intervals, which are not necessarily connected to what is happening with the

1 LEAD is funded by the National Science Foundation under the following Cooper-
ative Agreements: ATM-0331594 (Oklahoma), ATM-0331591 (Colorado State),
ATM-0331574 (Millersville), ATM-0331480 (Indiana), ATM0331579 (Alabama in
Huntsville), ATM03-31586 (Howard), ATM-0331587 (UCAR), and ATM-0331578
(Illinois at Urbana-Champaign).

2 University of Oklahoma, Indiana University, University of Illinois at Urbana-
Champaign, University Corporation for Atmospheric Research (UCAR), Univer-
sity of Alabama in Huntsville, University of North Carolina, Howard University,
and Colorado State University.

9 Adaptive Workflows for Mesoscale Meteorology 127

weather. The orchestration of the four phases of the process is done with large,
complex scripts that are nearly impossible to maintain and enhance, except
by very few experts or the original authors.

The LEAD vision is to introduce adaptivity into every aspect of this pro-
cess. In fact, there are four different dimensions to adaptivity that are import-
ant to LEAD:

• Adaptivity in the way the simulation computation uses a multilevel coarse-
to-fine forecasting mesh (to improve resolution)

• Adaptivity in the way the instruments gather data based on the needs of
the simulation

• Adaptivity in the way the entire assimilation and simulation workflow
uses computational resources to its advantage

• Adaptivity in the way the individual scientist can interact with the pre-
diction workflow

To understand these concepts as they relate to the LEAD mission, we
discuss them briefly below, and then in later sections of this chapter, we
describe how these goals impact the workflow system.

Adaptivity in the Computation

In the simulation phase of the prediction cycle, it is essential to introduce ad-
aptivity in the spatial resolution to improve the accuracy of the result. This
involves introducing finer computational meshes in areas where the weather
looks more interesting. These may be run as secondary computations that
are triggered by interesting activities detected in geographic subdomains of
the original simulation. Or they may be part of the same simulation process
execution if it has been reengineered to use automatic adaptive mesh refine-
ment. In any case, it is essential that the fine meshes track the evolution of
the predicted and actual weather in time. The location and extent of a fine
mesh should evolve and move across the simulated landscape in the same way
the real weather is constantly moving.

The Adaptive Data Collection

If we attempt to increase the resolution of a computational mesh in a local
region, it is also likely that we will need more resolution in the data gathered
in that region. Fortunately, the next generation of radars will be lightweight
and remotely steerable [121]. That means it will be possible to have a control
service that a workflow can use to retask the instruments to gain finer resolu-
tion in a specific area of interest. In other words, the simulation will have the
ability to close the loop with the instruments that defined its driving data.
If more resolution in an area of interest is needed, then more data can be
automatically collected to make the fine mesh computationally meaningful.

128 Gannon et al.

Resource Adaptivity

There are two important features of these storm prediction computations that
must be understood. First, the prediction must occur before the storm hap-
pens. This better-than-real-time constraint means that very large computa-
tional resources must be allocated as predicated by severe weather. If addi-
tional computation is needed to resolve potential areas of storm activity, then
even more computation power must be allocated. Second, the computations
in these predictions often require ensembles of simulation runs that perform
identical tasks but start from slightly different initial conditions. As the simu-
lations evolve, the computations that fail to track the evolving weather can be
eliminated, freeing up computational resources. These resources in turn may
then be used by a simulation instance that needs more power. An evaluation
thread must be examining the results from each computation and performing
the ensemble analysis needed to gather a prediction. In all cases, the entire
collection of available resources must be carefully brokered and adaptively
managed to make the predictions work.

The Experiment: Adapting to Scientific Inquiry

The final point at which LEAD attempts to depart from tradition and to
change the paradigm of meteorology research is the way the project intends
to allow the research scientists and students to interact with the components
of the system. The philosophy of LEAD is to allow users to access weather
data and to launch workflows through a portal. From the portal, the user can
select data and then instantiate a workflow from a precomposed library of
workflows to analyze the data, or the user may create new workflows on the
fly by composing existing analysis and simulation components. The LEAD
workflow system needs to be completely integrated into a framework for con-
ducting scientific experiments. The experiments should be repeatable, and
consequently every step that a workflow takes must be recorded and all in-
termediate data must be saved. A scientist should also be able to interact
directly with the workflow, allowing the execution path to be interrupted and
sent in a new direction.

To completely understand LEAD as a platform for research, it is essential
to understand the LEAD data architecture, so we devote the next section
of this chapter to an overview of that topic. In the sections that follow, we
will describe the requirements that this litany of data and adaptability re-
quirements places on the LEAD workflow system. This will be followed by a
discussion of the current approach to meeting these requirements and finally
an analysis of challenges that lie ahead.

9.2 The LEAD Data and Service Architecture

Every aspect of the LEAD project is dominated by data: capturing it, storing
it, moving it, cataloging it, transforming it, and visualizing it.

9 Adaptive Workflows for Mesoscale Meteorology 129

The data products used in LEAD experiments arrive from a variety
of sources (Figure 9.1). These include surface observations of temperat-
ure, wind, and precipitation from Meteorological Aviation Weather Reports
(METAR); upper air soundings data on temperature, pressure, and humid-
ity from balloon-borne instruments; Doppler data from NEXt generation
RADars (NEXRAD); image data from Geostationary Operational Environ-
mental Satellites (GOES); and North American Meso (NAM) forecast model
data from the National Center for Environmental Prediction (NCEP). These
data products are cataloged and stored in servers based on Thematic Real-
time Environmental Distributed Data Services (THREDDS) [108] and can be
accessed using the OPeNDAP and Common Data Model (CDM) protocols.
The local THREDDS catalog at each site provides the basic metadata about
products that reside at that site. If a user knows what to look for, there are
tools to locate a site and download a specific data set.

Figure 9.1: Collection and management of observational data in LEAD.

The philosophy of LEAD is to provide the ability for users to discover data
based on queries about their content rather than name and location. This is
analogous to being able to use a search engine to find information rather than
having to know all possible URLs and filenames of the files that contain what
you seek. Where it differs from a Web search engine is that LEAD queries are
based on metadata that conform to a metadata schema specifically designed
for LEAD. Hence queries do not return unrelated hits.

To start the search for data, the user interfaces with the LEAD portal. The
portal contains several tools, including the Geo Reference Interface (GeoGUI),
which allows the user to select a rectangular region of the map, a date range,
and other attributes of the data. This forms the user query, which is sent to
the Query service. Another Web service, called the Resource Catalog [385],
keeps track of many important LEAD resources. Among others, it contains
an index of the contents of all the THREDDS catalogs it knows about. This
index is built by crawling the THREDDS catalogs and capturing metadata
in the same way a Web search engine crawler indexes Web page content. A

130 Gannon et al.

third service that is important to the LEAD data architecture is the Noesis
Ontology service. The Query service uses the Ontology service to map the
terms in a query to those that conform to the LEAD schema vocabulary and
uses this to interrogate the Resource Catalog for the sought-after data.

The LEAD architecture dictates that every data object selected upon
searching shall be saved on the LEAD Grid for the users’ future use. A unique
ID is created for the data objects and they are archived for future use. Sub-
sequently, a name resolver service is used to materialize the data when reques-
ted. LEAD is built on the basis of service oriented architecture (SOA) based
on Web services. It is organized into three layers. At the bottom level are
fundamental services that provide access capability to Grid resources. These
include the Grid Resource Allocation Manager (GRAM) and the GridFTP file
transfer service provided by Globus [144], security services for authentication
and authorization, and data location and access services such as the Data
Replication Service (DRS) and Open Grid Service Architecture’s Data Access
and Integration service (OGSA-DAI) [233].

The middle tier of services provide data and metadata management for
users, notification services, and workflow execution and monitoring capability.
The myLEAD [359] service is a flexible, personalized data-management tool
that is used to record metadata about data products generated and used dur-
ing scientific investigations and education activities. MyLEAD helps tie mul-
tiple components of the SOA together. As a user runs an experiment, resulting
generated data are stored on the LEAD Grid and cataloged by myLEAD in the
user’s space. Notification messages generated during the course of workflow
execution are captured as metadata and stored as provenance for the experi-
mental run. The notification system is based on WS-Eventing [62] and allows
mediation between WS-Notification (used by Globus) and the WS-Eventing
standard.

At the top level of the SOA stack are the application services that form the
building blocks for the scientific investigation and wrap scientific tasks such as
FORTRAN executables. These Web services are composed into workflows for
execution. LEAD workflows and application services are described in greater
detail in the following section.

9.3 LEAD Workflow

Workflows in LEAD model the scientific experiment being simulated by the
meteorologist. The workflow framework used to compose and execute these
experiments needs to support adaptive computation, instrument control, dy-
namic resource provisioning, and user intervention in order to meet the re-
quirements described in Section 9.1. These properties are explored in greater
detail below:

• Workflows are driven by external events. For example, an event from a
data-mining agent monitoring a collection of instruments for significant

9 Adaptive Workflows for Mesoscale Meteorology 131

patterns must be able to trigger a storm prediction. When such a pattern
is detected, the miner may send a signal to a specific workflow associated
with the particular storm configuration. This should instantiate the ne-
cessary workflow or redirect a running workflow to adapt to the changing
conditions. External events may also be triggered by changes in resource
availability that may significantly alter the number of possible computa-
tions in an ensemble run or change the degree to which adaptive refinement
may take place.

• Workflows may be long-running. While tornadoes come and go in a mat-
ter of hours, hurricanes are tracked over a period of days. A researcher
may preemptively launch an experimental workflow to be triggered by an
external condition that may take weeks to occur. Therefore, the execution
engine for the workflow must be robust and capable of storing the work-
flow state in persistent storage for long periods of time, and activating it
in a timely manner upon the occurrence of the event.

• Workflows should exhibit fault tolerance. In addition to handling event
streams, the workflow system should also deal with exceptions that may
occur during the workflow execution. Application services in LEAD work-
flows run FORTRAN programs, which may fail due to, for example, a
parameter misconfiguration. In such a case, there should be a proviso to
approximate the incorrect parameter or, if possible, identify an alternate
application that can execute with the specified configuration and continue
with the workflow execution.

• Workflows should be recoverable. Related to exception handling is the
ability of the workflow to adaptively recover from a fatal error or a drastic
change in requirements. This may mean rolling back to a previous state
in the workflow. This capability would also enable users to interact with a
running workflow and to dynamically fork a new execution path starting
from an intermediate state of the workflow.

• Workflows must be user-friendly. The workflow templates must be com-
posable by the scientist so that they may be easily instantiated by mem-
bers of the research and educational community having different levels of
expertise.

As part of a LEAD experiment, users build a workflow through the XBaya
graphical composer [382], which represents application interactions as a flow
diagram as shown in Figure 9.2. Each node in this flow graph is an application
service that accepts certain data products and configuration files as paramet-
ers and generates output data products that may potentially be used as input
by other services in the workflow. Edges connecting nodes in the workflow
graph represent the flow of the output data of one service to the input of
another, forming a virtual data-flow graph. The application service is capable
of fetching the input data products using the unique ID assigned to them
by the data services. When an application is launched by its corresponding
application service, the service monitors the execution of the application and

132 Gannon et al.

publishes a notification on its status to an event channel. This event stream
is subscribed by myLEAD and other monitoring tools, such as the XBaya
composer (which doubles as a workflow monitor) and the Karma provenance
service [384]. Users can follow the progress of the workflow by watching the
arriving notifications. When the application completes its task, the output
data products it produces are registered with the data services by the con-
trolling application services and logged in the user’s myLEAD space. The
unique ID assigned to the data is passed as input to other services connec-
ted to the completed service. Since each data product is saved and cataloged
within myLEAD, a workflow can be reexecuted starting at any step in its ex-
ecution trace. LEAD users also have the option of using Kepler (see Chapter
8) as the composition tool. Plug-ins developed for Kepler [344] allow compos-
ition of workflows from LEAD application services, and this is suitable for
orchestrating short workflows through Kepler’s graphical interface.

Figure 9.2: A basic simulation workflow showing event output.

Figure 9.2 shows an example workflow that has been executed using the
LEAD system. It simulated the devastating hurricane Katrina that occurred
in the United States in the summer of 2005. The final output products of the
simulation include the visualizations shown in Figure 9.3

9 Adaptive Workflows for Mesoscale Meteorology 133

Figure 9.3: On the left is a Katrina simulation of the sea level as the storm
approaches. On the right is a 3-D view of simulation data using the Unidata
Integrated Data Visualizer (IDV) [306].

9.3.1 Wrapping Tasks as Application Services

The complex weather forecasting applications used in LEAD are first wrapped
as Web services. Wrapping an application as a Web service refers to the pro-
cess of creating a web service interface to invoke and manage an application.
This service layer is referred to as an application service. All clients and end
users interact with the application through its application service. When an
application service is invoked with a set of input parameters, it launches the
underlying application with those parameters and returns the output results
as part of the service invocation response. The use of application services al-
lows LEAD scientists to leverage the benefits of an SOA and easily compose,
monitor, and run complex weather forecasting workflows from the convenience
of the LEAD portal [156]. Although writing an application service wrapper
for a given application is not difficult for a Web services specialist, it forms
a high barrier of entry for most scientists. The Generic Service Toolkit [232]
makes this task much easier by allowing scientists to provide a high-level
description of the application from the LEAD portal and by automatically
generating a service for it. This description is in the form of an XML doc-
ument called the ServiceMap document and includes the input and output
parameters of the application, the security restrictions for accessing the ap-
plication, and the soft-state lifetime-management policies of the application
service. The Generic Service Toolkit automatically maps these specifications

134 Gannon et al.

to elements within a Web Services Description Language (WSDL) document
that it creates for the application service. The Abstract WSDL or AWSDL
(abstract because the WSDL does not refer to a service instance yet) and the
ServiceMap document form a template for creating a service instance and are
registered with the Resource Catalog in support of subsequent instantiations.

Once the AWSDLs for all application services required for a workflow
are available with the Resource Catalog, scientists can proceed to compose
the weather forecasting workflows from the portal using the graphical XBaya
workflow composer. It should be noted that to compose workflows from ap-
plication services, running instances of the services are not required and the
service templates suffice. However, to execute a workflow, all the application
services in the workflow need to be running and accessible by the workflow
engine that executes the workflow.

9.3.2 Sample LEAD Workflow

A typical ensemble weather forecasting workflow used within LEAD is shown
in Figure 9.4 and illustrates the complexity and dynamic nature of such work-
flows. There are four logical stages to the workflow when seen from a meteoro-
logical perspective: preprocessing of static and terrain files for the geographical
region, analysis and mining of current observational weather data, running the
forecast model, and visualizing the prediction. These four stages and the 15
services involved in the ensemble workflow are discussed below.

Figure 9.4: A Typical LEAD workflow.

• Preprocessing. Service 1, the terrain preprocessor, stage extracts static
terrain data and service 2, the static preprocessor, extracts the surface

9 Adaptive Workflows for Mesoscale Meteorology 135

data, such as soil and vegetation type, within the forecast prediction re-
gion and pre-processes them into a format compatible with the Advanced
Regional Prediction System (ARPS) [486].

• Analysis. Static data from preprocessing are interpolated with current
NAM forecast model data into a 3D grid for the prediction region is done
by service 3, the 3D model interpolator. Dynamic observational data from
radars are processed by services 4 and 5, the Level II and Level III Radar
data remappers and for satellites by service 6, the satellite data remapper.
All these data products are assimilated into the ARPS Data Analysis
System, or ADAS in service 7. ADAS performs a 3D gridded analysis
of the current atmosphere by combining the observed information from
radars, wind profilers, satellites, surface observation networks, and aircraft
with a background field created by the 3D model data interpolator. This
analysis is performed hourly and examined by a data miner looking for
storm signatures in service 8, the Algorithm Development and Mining,
or ADAM. When a storm is detected in a certain region, it triggers the
subsequent ensemble forecast with pertinent configuration information.

• Forecast. The output from the data-mining tool is used in service 10, the
ARPS Ensemble Generator, to build the configuration required for the en-
semble forecast run. Static terrain data, the ADAS analysis output, and
the configuration information are ingested and transformed by service 11,
the ARPS to WRF interpolator, into the Weather Research and Forecast-
ing (WRF) model input files. The 3D model data interpolation takes place
once again in service 9, the 3D model interpolator, with current weather
data and lateral boundary conditions. All of these are used to launch mul-
tiple simultaneous runs of service 12,the WRF forecast model, each tuned
with slightly different physics to increase the forecast accuracy. The num-
ber of parallel ensemble runs can range in the hundreds. The WRF runs
perform storm, mesoscale, and synoptic weather prediction that can be
used to study convection, baroclinic waves, boundary layer turbulence,
and real-time weather phenomena.

• Visualization. Visualization and postprocessing tools require that the
WRF forecast output to be converted back into the ARPS data format.
this is done by service 13, the WRF to ARPS Interpolator. The output
is used in service 14, ARPS plot, to automatically generate contour and
vector plots of 2D cross sections and vertical profiles. Users can also inter-
actively view the output in 3D using the Integrated Data Viewer (IDV)
client tool. An IDV bundle of all relevant data from the forecast is created
for this purpose by service 15, IDV bundle generator.

Once composed within the XBaya workflow composer, this flow diagram
can be translated into a Business Process Execution Language (BPEL) [24]
document, which is executed by a BPEL engine. The composer can also com-
pile the same graphical workflow into a Jython script that can be run as a

136 Gannon et al.

stand-alone workflow script. As mentioned earlier, the workflows can also be
composed and executed by Kepler.

9.3.3 Configuring Workflow and Application Service Parameters

Large meteorological applications have large and complex parameter sets that
are encoded as FORTRAN namelist input files. Services such as ADAS and
WRF may have several hundred parameters, only a few of which users may
wish to modify frequently. Depending on the user’s expertise and require-
ments, a different subset of parameters may need to be modified. To efficiently
support changes to a subset of parameters, default values are assigned to the
parameters of an application service. When invoking the service, a document
containing only the changes relative to the defaults is sent as the parameter.

LEAD users have been divided into four categories based on their domain
skill level and the flexibility they require in reconfiguring the research applic-
ations. Category I users are modelers and application scientists who primarily
conduct research on improving a model’s capability. These users intend to
change the application source code and run their modified applications in the
LEAD environment. Category II users are atmospheric scientists, graduate
students, and operational weather forecasting personnel, who will compose
and launch workflows from available applications services. These users will
experiment with different sets of input conditions for workflows. Category III
users are primarily educational users who will perform simulations to under-
stand and learn atmospheric phenomena and will run pre-composed workflows
with minimal if any changes in their input configuration. Category IV users
are casual browsers who will only browse through and visualize completed
workflow results.

The majority of the LEAD users and much of the general atmospheric
community are Category II users who rarely change the application source
code and are content to run the executables in different modes by changing
the configuration parameters in the FORTRAN namelist files. These changes
in parameters force changes in input observational data and resource require-
ments at run time.

The namelist parameters in LEAD applications can be classified into five
sets:

• The first set of parameters is a mandatory set of user-provided parameters
that are present in most input files of meteorological services. Examples
of such parameters include forecast domain size, its location, and the res-
olution of the forecasting grid, among others. These parameters play an
important role in determining the resource requirements for the workflow
execution.

• The second set of parameters is an optional set of user-supplied para-
meters, most of which are service-specific configurations. Default values
of these parameters are provided by the application developers, and users

9 Adaptive Workflows for Mesoscale Meteorology 137

may view and modify them. A model’s physics is an example of these para-
meters. The number of optional parameters presented to the user varies
with each category of users. Advanced users familiar with the application
are presented with a broad range of parameters, while novice users have
a minimal set of parameters to modify.

• The third set of parameters relates to file handling. FORTRAN applica-
tions read in input data filenames and locations from namelist files, and
the applications can only read files locally available in the compute ma-
chine. After the required input data files for a service are staged on the
compute servers, these input parameters are modified to reflect the data
file locations and names.

• The fourth set of parameters are used to assist with resource scheduling.
An MPI-enabled application, for example, may indicate the processor dis-
tribution in the X and Y directions of the forecasting grid to make the
computations optimally faster. These parameters are configured after the
user has selected the forecast domain and the workflow has been allocated
resources it can use.

• The final set of parameters are those that are always defaulted but non-
etheless need to be supplied to the application.

The various sets of parameters present certain challenges to the LEAD
workflow system. First, the user-editable and cross-cutting parameters have
to be extracted from the workflow dependency graph after the user creates or
modifies a workflow. Care has to be taken to keep the cross-cutting parameters
consistent; otherwise the workflow may produce incorrect results or not run
at all. Second, each user category has to be presented with a different set
of modifiable parameters. User interfaces have to be dynamically generated
based on user category and the workflow graph. Third, these parameters have
to be modified at multiple stages of workflow creation and execution, and
propagate through to the different layers of the SOA. Finally, given the rapid
evolution of different versions of an application, the parameter schema has to
adapt to the changing application parameter set.

When a service provider defines an application service, in addition to the
ServiceMap document, they need to register a set of defaulted namelist files
for each user category that is stored in the Resource Catalog. As we shall
see in the next section, the Experiment Builder portlet in the LEAD portal
provides a rich interface for different categories of users to easily specify the
input parameters and data required to run the workflow.

9.3.4 Executing LEAD Workflows

There are several steps that take place before a composed workflow can be
executed by the workflow engine: The parameters for the application ser-
vices need to be configured, the resources required by the services need to
be provisioned, and the services themselves need to be instantiated if needed.

138 Gannon et al.

When a user selects a workflow to launch, the Workflow Configuration Service
(WCS) extracts the cross-cutting parameter dependencies by contacting an
Input Parameter Library and identifies user-modifiable input parameters by
analyzing the workflow dependency graph. WCS then downloads the template
namelist files relevant to the user category from the Resource Catalog, assim-
ilates input-parameters that need to be configured by the user, and presents
the parameters through a portlet interface generated dynamically. Once the
user has modified and verified the parameters of the workflow, the updated
template parameter files are merged into a single input parameter file for each
application service and are stored in the user’s myLEAD space for that work-
flow (experiment). These parameters form metadata in myLEAD that can be
used to search for experiments.

After the input parameters and data are specified, the resource require-
ments for the applications in the workflow have to be determined. The need for
“faster than real time” prediction by the workflow challenges the responsive-
ness of resource allocation to the dynamic behavior of Grid resources during
the workflow’s life cycle. As seen earlier, an ensemble workflow can have any-
where from a few to hundreds of services being simultaneously invoked as
it progresses. Unique constraints such as large data transfers, real-time data
streams, huge computational demands, strict deadlines for workflow comple-
tion, the need to steer external radars to collect new data, and responsiveness
to weather phenomena drive the need for an adaptive Resource Provision-
ing Service (RPS) that can coordinate across different types of resources to
meet soft real-time guarantees. The service needs to dynamically analyze the
behavior of applications and workflows to predict resource requirements and
track the availability of computational, network, and data resources on the
Grid to schedule resource coallocations. Performance and reliability metrics
may be used to establish a simple performance contract for a workflow and
enable on-demand execution and guaranteed completion of workflows within
a specified time range.

Currently, resources are statically allocated “by hand” within LEAD. We
are developing a dynamic resource allocation and scheduling strategy as illus-
trated in Figure 9.5. In step 1, the Experiment Builder portlet in the LEAD
portal provides the WCS with the selected workflow, its parameters (previ-
ously configured and saved in the myLEAD space), and the location of input
data products. Next, the WCS contacts an Application Performance Modeling
service to obtain a performance model for each application in the workflow
(step 2). The WCS then determines the resource requirements for each applic-
ation based on the input configurations and data sets provided by the user.
Once the application resource requirements are established, the WCS requests
that the RPS allocate the required resources (step 3). Based on the resource
requirements and availability, RPS reserves resources for each application in
the workflow. Running application instances register their Concrete WSDL
(CWSDL) with the Resource Catalog, and the WCS can determine if applic-
ation services required by the workflow are already created (step 4). If so, the

9 Adaptive Workflows for Mesoscale Meteorology 139

WCS reconfigures them to use the new set of resources reserved for them by
RPS. This is done by updating the resource requirement namelist parameters
for that application. If the required application services were not available,
WCS requests the generic application factory, or GFac (discussed in Section
9.3.5), to create an instance of the application service (step 5). GFac instanti-
ates and returns the CWSDL for the newly created application service to the
WCS, which then configures the service (step 6). After the necessary applica-
tion service instances for the workflow have been selected and configured, the
WCS returns their CWSDLs to the Experiment Builder portlet (step 7). The
portlet uses the CWSDLs, the application namelist parameters, and the in-
put data products to request that the Workflow Engine execute the workflow
(step 8).

Figure 9.5: The architecture of workflow scheduling and execution.

9.3.5 Creating Application Services On-Demand

When an application service is invoked with a set of input parameters, it in-
vokes the underlying application with those input parameters and returns the
output results. By wrapping applications as application services, scientists can
easily compose, monitor, and run complex workflows consisting of scientific
applications. However, these workflows require their constituent application
services to be available at the time of workflow execution. At the same time,
in large scientific communities such as LEAD, it is unrealistic to keep a large
number of persistent application services that entail a significant commitment
of resources and support infrastructure. However, it is possible to support a

140 Gannon et al.

small number of persistent generic application factory services (GFacs) [232]
that can can create instances of any application service on-demand (just in
time) during a workflow execution in a way that is completely transparent to
the users. This provides highly available application services without actually
requiring them to be persistent. Before GFac creates an application service
instance on a host, it first starts a generic service instance on that host by
calling a generic service binary that is preinstalled on that host. The installa-
tion of the generic service binary is a one-time process executed on potential
application service hosts. GFac then provides the generic service instance with
the ServiceMap configuration document for the application service retrieved
from the Resource Catalog. Using service ports defined in the ServiceMap doc-
ument, the generic service instance configures itself to become the application
service. The generic service instance (now application service) then generates
its CWSDL and registers it with the Resource Catalog. Figure 9.6 illustrates
the process above. In step 1, the WCS sends a message to GFac containing
the fully qualified name of the application service. In step 2, GFac gets the
ServiceMap document for the application service from the Resource Catalog.
In step 3, GFac creates a generic service instance on the remote host using
Globus GRAM [102]. In step 4, the generic service instance configures itself
using the ServiceMap document to become the application service instance,
generates its CWSDL, and registers it with the Resource Catalog. In step 5,
GFac obtains the application service instance’s CWSDL from the Resource
Catalog, and returns it to WCS in step 6. In step 7, the workflow engine
uses the CWSDL passed to it by the WCS to invoke the application service
instance directly.

Figure 9.6: Interaction with the factory service.

The application services created by GFac can be reconfigured at runtime
(i.e., during a workflow execution). This is done through the configure opera-
tion, which accepts a Web service call with details of the resources on which
the application service should run its application. The details are provided as
an XML document called a Resource Specification Document (RSD), which
contains information such as

9 Adaptive Workflows for Mesoscale Meteorology 141

• the host on which to run the application,
• the end point reference to the job scheduler,
• the batch queue for running the application,
• the number of processes to start,
• a list of the nodes on this cluster for running the application,
• the number of processors per node for running the application,
• the maximum wall clock time for running the application,
• the maximum CPU time for running the application, and
• the maximum memory in kilobytes allowed per process.

Once an application service instance receives an RSD, it reconfigures itself ac-
cordingly and returns a new CWSDL to the client that contains the Resource
Specification that the application service will use to run its application. The
client can then use the new WSDL to invoke the run operation on the ap-
plication service instance that invokes the application and return the results
to the client. It is important to note that the application service supports
multiple simultaneous configurations, and different clients can configure the
same application service instance differently. Each client will receive a dif-
ferent CWSDL that it can use to run the application according to its own
Resource Specification. This allows the same application service instance to
be used simultaneously not only indifferent workflows with varying resource
requirements but also within a dynamic workflow with constantly changing
resource requirements.

9.4 Conclusions

Workflows in the LEAD project have several characteristics that set them
apart from many other e-Science workflow problems. First, they are driven
by natural events such as severe storms. Second, because storms such as tor-
nadoes and hurricanes are so destructive, it is essential that the forecasts
that are the output of the workflows be extremely accurate and that they be
produced prior to the storm’s impact on human life and property. Finally,
LEAD must have workflows that are extremely adaptive. Resource demands
can change as the storm changes. There is also a natural feedback that takes
place between the workflow services and the instruments that gather data: As
a simulation becomes more specific about the nature of an emerging storm,
future generations of radars can be automatically targeted to gather more
detailed data for the simulation to use to increase prediction accuracy.

LEAD also shares many characteristics with other large-scale e-Science
workflow systems. LEAD is based on a service-oriented architecture that is
becoming a standard model in e-Science. Yet, LEAD workflows are still com-
posed of community FORTRAN applications that must run in parallel on su-
percomputers. These applications have enormously complex parameters and
large numbers of input files that are difficult to manage. Consequently, simple

142 Gannon et al.

data-flow concepts can only be applied at a very high level of abstraction,
and the underlying workflow system must manage a great deal of complexity
involving resource allocation, application configuration, and parameter man-
agement. Security is also a critical component of every project that deals with
expensive resources organized into a Grid. LEAD has adopted Grid standards
to solve this problem. Finally, like any other modern science, LEAD is very
data-intensive. Every aspect of the workflow generates data products that
must be cataloged with the LEAD data subsystem. Metadata must be cre-
ated and made searchable; data provenance must be tracked and cataloged;
and quality input and derived data should be maintained. This chapter has
not addressed these issues, but several other papers consider these problems in
greater depth [122,123,200,360]. While the LEAD project is only in its third
year, the team has learned a great deal. Many ideas that seemed practical in
theory failed in practice and had to be replaced by more robust models.

9.5 Acknowledgments

The LEAD team is much larger than this list of authors suggests. We are in-
debted to our other LEAD colleagues at Indiana: Marcus Christie, Aleksander
Slominski, Scott Jensen, Yiming Sun, Ning Liu, Sangmi Lee Pallickara, Nithya
Vijayakumar, Liang Fang, Chathura Herath, Srinath Perera, and Yi Huang.
In addition none of this would be possible without the LEAD team at OU
(Kelvin Droegemeier, Keith Brewster and Dan Weber), the team at UAH
(Sara Graves and Rahul Ramachandran), Dan Reed and Lavanya Ramakrish-
nan at RENCI, the Unidata team (Mohan Ramamurthy, Anne Wilson, and
Tom Baltzer), Bob Wilhelmson and Jay Alameda at NCSA, and our educa-
tional and atmospheric science partners, Everette Joseph at Howard and Rich
Clark and Sepi Yalda at Millersville.

10

SCEC CyberShake Workflows—Automating
Probabilistic Seismic Hazard Analysis
Calculations

Philip Maechling, Ewa Deelman, Li Zhao, Robert Graves,
Gaurang Mehta, Nitin Gupta, John Mehringer, Carl Kesselman,
Scott Callaghan, David Okaya, Hunter Francoeur, Vipin Gupta,
Yifeng Cui, Karan Vahi, Thomas Jordan, and Edward Field

10.1 Introduction to SCEC CyberShake Workflows

The Southern California Earthquake Center (SCEC) is a community of more
than 400 scientists from over 54 research organizations that conducts geophys-
ical research in order to develop a physics-based understanding of earthquake
processes and to reduce the hazard from earthquakes in the Southern Califor-
nia region [377].

SCEC researchers are integrating physics-based models into a scientific
framework for seismic hazard analysis and risk management. This research
requires both structural geological models, such as fault models and three-
dimensional Earth density models, and a variety of earthquake simulation
programs, such as earthquake wave-propagation simulation codes and dy-
namic fault-rupture simulation applications. The goal of this model-oriented
approach to earthquake science is to transform seismology into a predictive
science with forecasting capabilities similar to those of climate modeling and
weather forecasting.

SCEC research has several common characteristics. The science is
collaborative—a wide variety of organizations and disciplines work together.
The science is integrative—techniques and approaches from different discip-
lines are combined in new ways. The science is physics-based—the scientists
are continuously trying to incorporate more physics into their models and to
ensure that their simulations are consistent with physical laws. The science is
model-driven—theoretical results are incorporated into predictive computa-
tional models. The science is validated—predictive model results are compared
with observation and with each other for validation.

The output data for many SCEC earthquake simulations are predicted
ground motions for a specific earthquake. For example, a researcher can model
a “scenario” earthquake on the San Andreas Fault and predict the ground
motions that will be produced in Los Angeles if that earthquake actually

144 Philip Maechling, et al.

occurs. While ground motion predictions for a particular earthquake are of
significant interest, they are not a solid basis for understanding the earthquake
hazards in an area.

To characterize the earthquake hazards in a region, seismologists and
engineers utilize a technique called Probabilistic Seismic Hazard Analysis
(PSHA). PSHA attempts to quantify the peak ground motions from all pos-
sible earthquakes that might affect a particular site and to establish the prob-
abilities that the site will experience a given ground motion level over a par-
ticular time frame. An example of a PSHA hazard curve at a specific site in
Los Angeles is shown in Figure 10.1. Because Los Angeles has widely vary-

Ground motion that will be exceeded every year
Exceeded every year

Ground motion that a person can expect to
be exceeded during their lifetime

Exceeded 1 time in
10 years

Exceeded 1 time in
100 years

Exceeded 1 time in
1000 years

Exceeded 1 time in
10,000 years A

n
n
u
al

 f
re

q
u
en

cy
 o

f
ex

ce
ed

an
ce

Ground Motion – Peak Ground Acceleration

0.1 0.2 0.3 0.4 0.5 0.6

Minor damage Moderate damage

10% probability of
exceedance in 50 years

Figure 10.1: Probabilistic Seismic Hazard Curve for the site of Los Angeles
City Hall. This curve predicts that this site will experience a Peak Ground
Accelaration of 0.5 G about every 500 years.

ing geological regions (mountains, deserts, and sedimentary basins), hazard
curves for sites fairly close together can differ significantly. PSHA information
is used by city planners and building engineers to estimate seismic hazards
prior to the construction of significant buildings, and PSHA results are often
the basis for building codes in a region.

Probabilistic seismic hazard curves can be combined into probabilistic seis-
mic hazard maps [278]. To construct a hazard map, one of the two variables
used in the curve (either the ground motion level or the probability of ex-
ceedance) is fixed, and then color variations indicate how the other parameter
varies by location on the map. A set of hazard curves, typically from a set
of regularly spaced sites, can be combined into a hazard map by interpol-
ating the site-specific data values and plotting the resulting contours. In the
United States, the United States Geological Survey (USGS), as well as several
state agencies, publish hazard maps. An example PSHA map, produced by
the USGS, and the California Geological Survey (CGS) is shown in Figure

10 SCEC CyberShake Workflows 145

10.2. This map fixes the probability of exceedance at 10% in 50 years, and
the color variations indicate predicted levels of peak accelerations, with the
darker-colored regions predicted to experience stronger ground motions than
the lighter-colored regions.

-124˚

-124˚

-122˚

-122˚

-120˚

-120˚

-118˚

-118˚

-116˚

-116˚

-114˚

-114˚

32˚ 32˚

34˚ 34˚

36˚ 36˚

38˚ 38˚

40˚ 40˚

42˚ 42˚

2
3

4 5 10 10

10

30

30

30

30

30

30

30

30

40

40

40

40

40

40

40

40

40

50

50

50

50

50

50

50

50

50

50

Peak Acceleration (%g) with 10% Probability of Exceedance in 50 Years

site: NEHRP B-C boundary

%g

For California portion: U.S. Geological Survey - California Divison of Mines and Geology

For Nevada and surrounding states: USGS

0
1
2
3
4
5
6
7
8
9

10
15
20
25
30
40
60
80

100
180

Nov. 1996

Figure 10.2: This USGS and CGS PSHA map for California and Nevada is
based on a large number of PSHA hazard curves. This map fixes the probab-
ility of exceedance at 10% in 50 years, and uses color variations to indicate
expected peak ground-motion levels throughout the mapped region.

Because of the significant role PSHA information has in public safety,
improvements in PSHA techniques are of great interest to seismologists, pub-
lic safety officials, building engineers, and emergency management groups.
PSHA researchers recognize that current PSHA techniques have not fully in-
tegrated recent advances in earthquake simulation capabilities. As a result,
researchers working on the SCEC Community Modeling Environment Pro-
ject (SCEC/CME) [226, 378] recently initiated the CyberShake Project to
develop new techniques for calculating PSHA seismic hazard curves. The goal
of the CyberShake Project is to utilize earthquake wave-propagation simula-
tions to produce the ground motion estimates used in PSHA hazard curves.

146 Philip Maechling, et al.

The geoscientists and computer scientists working on CyberShake have suc-
cessfully calculated probabilistic seismic hazard curves for several sites in the
Los Angeles area using peak ground-motion values produced by earthquake
wave-propagation simulations. This new class of PSHA hazard curves has
the potential to transform probabilistic seismic hazard analysis because the
earthquake wave-propagation simulations used to produce these new curves
generate more physically realistic peak ground-motion values than the tech-
niques used to calculate peak ground motions used in earlier hazard curve
calculations.

We refer to all the steps in the CyberShake hazard curve calculation pro-
cess, including preparation, simulation, postprocessing, and analysis, as the
CyberShake computational pathway. The CyberShake computational pathway
can be divided into two main computational phases; (1) a high performance,
MPI-based, finite-difference earthquake wave-propagation simulation phase;
and (2) a postprocessing phase, in which thousands of serial data-analysis
jobs must be executed.

We model the CyberShake computational pathway as a scientific workflow
to be executed within the SCEC Grid-based computing environment. In the
following sections, we describe the CyberShake computational pathway and
our efforts to convert this conceptual sequential processing into an executable
scientific workflow. We outline issues related to the modeling of computations
as workflows and describe where we gained significant benefits from workflow
technology.

10.2 The SCEC Hardware and Software
Computing Environment

The CyberShake scientific workflows were implemented within the distrib-
uted SCEC computing environment that was developed as a part of the
SCEC/CME Project [276]. The SCEC/CME computing environment uses a
Grid-based architecture that allows us to share heterogeneous computing re-
sources with other collaborating organizations in a consistent and secure man-
ner. The SCEC/CME computing environment is composed of the local SCEC
computer resources, including a variety of Linux and Solaris servers, the Uni-
versity of Southern California (USC) Center for High Performance Computing
and Communications (USC HPCC) [432]—a large academic Linux cluster—
and the National Science Foundation (NSF) TeraGrid [413], a collection of
national academic supercomputing facilities.

The SCEC, USC HPCC, and TeraGrid sites are linked into an extensible
Grid-based computing environment through the NSF National Middleware
Initiative software stack [277]. Grid security is managed using Grid Security
Infrastructure (GSI) [463]. Certificate policy was negotiated between the three
organizations, allowing acceptance of each other’s host and user Grid-security
certificates.

10 SCEC CyberShake Workflows 147

The SCEC computing environment provides both computational cycles
and significant data storage. Disk storage in excess of 10 TB is available at
all sites, including SCEC’s local cluster. In addition, the TeraGrid facilities
provide more than 100 TB of tape-based data storage for a variety of SCEC
data collections.

The SCEC/CME computational system has implemented a workflow soft-
ware layer based on the Virtual Data Toolkit (VDT) [440] . The Virtual Data
Toolkit, in turn, includes the Virtual Data System (VDS) which includes Chi-
mera [148] and Pegasus (Chapter 23). VDT also includes data management
tools such as the Replica Location Service (RLS) [88]. An overview of the
Grid-based hardware and software used in the CyberShake calculations is
shown in Figure 10.3.

Figure 10.3: The SCEC/CME workflow system software stack, based on the
Virtual Data Toolkit, provides SCEC workflows with secure access to a dis-
tributed, heterogeneous, Grid-based computing environment.

10.3 SCEC Probabilistic Seismic Hazard
Analysis Research

Prior to the start of the CyberShake Project, SCEC researchers outlined a con-
ceptual and computational framework for probabilistic seismic hazard analysis
(PSHA) (shown in Figure 10.4). The two primary computational elements in
this PSHA model are Earthquake Rupture Forecasts (ERFs) and Intensity
Measure Relationships (IMRs).

An ERF is a program that, given a specific region, can produce a list
of earthquakes that may occur in the region in the future. An ERF will

148 Philip Maechling, et al.

also provide a description of each earthquake, including the magnitude of
the earthquake, the fault surface that will be involved, and the probability
that the earthquake will occur. The list of earthquakes produced by an ERF
is based on the active faults in the region, the sizes of the faults, the historical
earthquake record in the region, known slip rates for the faults, and other
geological and geophysical information.

An IMR can be thought of as an algorithm that defines how earthquake
waves decay with distance. Given a specific earthquake and a site some dis-
tance away, an IMR will indicate the level of ground motion that will be
produced at the site by the earthquake. In more technical terms, an IMR
gives the conditional probability that an intensity measure (some function of
ground shaking found by engineers to correlate with damage) will be exceeded
at a site given the occurrence of a specified earthquake rupture.

Currently, PSHA research uses empirically derived attenuation relation-
ships as IMRs in PSHA. Recently, well-validated 3D wave-propagation simu-
lations have been developed, and the PSHA community has great interest in
replacing attenuation-relationship—based IMRs with waveform-based IMRs.

The SCEC CyberShake Project is, we believe, the first project to develop
an IMR based on 3D wave-propagation simulations rather than on attenuation
relationships. Waveform-based IMRs have not been implemented previously
because they require levels of computational, data management, and data
analysis that exceed the capabilities of most research groups working in the
field.

One of the SCEC/CME Project’s working groups has developed a
component-based software suite, called OpenSHA [140], that implements
standard PSHA models, such as ERFs and IMRs, within a common frame-
work. OpenSHA is a stable and robust suite of software that allows researchers
to combine PSHA components in ways never before possible. The CyberShake
work uses OpenSHA tools both to produce input data and as to analyze the
CyberShake results. OpenSHA implementations of ERFs are used to create
the list of ruptures for each CyberShake site. OpenSHA is also used to gener-
ate attenuation-relationship—based hazard curves against which we evaluate
the CyberShake hazard curves.

10.4 Computational Requirements of CyberShake

SCEC geophysical computing has traditionally been done without using sci-
entific workflow technology. Thus it was not a given that the CyberShake
Project needed scientific workflow tools. However, as the scale of the Cyber-
Shake computational and data management challenge emerged, we began to
recognize that traditional computing methods may not be sufficient.

In order to implement the CyberShake 3D waveform-based IMR, a large
number of earthquakes must be simulated. For sites near Los Angeles, cur-
rent ERFs produce a list of over 20,000 earthquakes within 200 km. Applying

10 SCEC CyberShake Workflows 149

Figure 10.4: The SCEC/CME conceptual model for probabilistic seismic haz-
ard analysis (PSHA) identifies Intensity Measure Relationships (IMRs) and
Earthquake Rupture Forecasts (ERFs) as two major computational compon-
ents involved in PSHA. The CyberShake Project is implementing a new type
of IMR.

an attenuation relationship to 20,000 earthquakes is a fairly modest compu-
tational challenge, within the capabilities of a desktop computer. However,
running state-of-the-art wave-propagation simulations for 20,000 earthquakes
is prohibitively expensive in CPU-hours and wall-clock time. The exact com-
putational time required to run an earthquake wave-propagation simulation
varies by the size of the volume, the length of time the wave-propagation is
simulated, and the frequencies supported by the simulation. Earthquake sim-
ulations of approximately the required size and resolution, such as SCEC’s
Pathway 2 TeraShake simulation [327], require approximately 15,000 CPU-
hours and approximately 3 days of wall-clock time. Thus, for the 20,000 ERF
ruptures, it would require 300 million CPU-hours and well over 100 years to
complete all the simulations needed to calculate a PSHA hazard curve.

While these processing requirements are well beyond the scale of the com-
puter resources available to SCEC, we have not yet represented the full scale
of the problem. The numbers underestimate the required calculation because
the ERF list of 20,000 earthquakes does not represent the full list of earth-
quakes that must be simulated. An ERF indicates only the fault surface and
the magnitude of the earthquakes that are likely to occur. This is sufficient
when using an attenuation relationship. However, when using waveform mod-
eling, one must consider how the earthquake rupture occurs. For example, if
the earthquake rupture starts at the bottom of the fault and propagates up-

150 Philip Maechling, et al.

ward toward the surface, the ground motions at the surface will be larger than
if the earthquake starts near the surface and propagates downward into the
ground. For a given fault, there are many ways that earthquakes can occur.
Each possible, or somewhat likely, earthquake variation must be simulated in
order to properly perform the PSHA analysis.

To capture the possible differences between earthquakes in the PSHA ana-
lysis, one or more variations of each earthquake mentioned in the ERF must
be simulated. For small earthquakes (e.g., magnitude 5.0 or smaller), typically
only one variation will be considered. But for large faults there are many ways
the fault may rupture, and a reasonable number of rupture variations must
be simulated. There is no widely accepted approach for identifying all reason-
able rupture variations; however, some basic heuristics have been developed
for creating a reasonable number of them. When the heuristics are applied to
the ERF list for the Los Angeles area sites, the total number of earthquakes
that must be simulated to create a probabilistic seismic hazard curve is over
100,000. At 15,000 CPU-hours per simulation, a fully probabilistic hazard
curve calculation would require approximately 1,500,000,000 CPU-hours.

The computation time is not the only challenge; there are also significant
data management issues. Each rupture variation will produce two seismograms
(horizontal components only), which, depending on the data storage format,
may result in one or more seismogram files. These seismogram files and their
associated metadata must be managed to support the analysis of the results.

The key to reducing the computational demands of CyberShake PSHA
hazard curve calculations to a manageable level was the introduction of a
nonintuitive scientific technique for calculating synthetic seismograms called
reciprocity. Typically, synthetic seismograms are created through what are
termed “forward calculations.” Motions are introduced in a volume at the
point of the earthquake and the resulting waves are propagated throughout
the volume. An alternative method for calculating synthetic seismograms,
called reciprocity, can be used [495]. A reciprocity-based approach places a
unit force at the site of interest. Then the waves from this force are propag-
ated throughout the volume to “illuminate the volume.” The response of the
volume to the unit force is saved as strain Green’s Tensors (SGTs). Given
the SGT data for a volume, it is very computationally inexpensive to calcu-
late a synthetic seismogram for an earthquake located anywhere within the
“illuminated” volume using a technique called representation theory or, more
informally, seismogram synthesis.

Using a reciprocity-based approach, the computational estimate for cal-
culating a probabilistic seismic hazard curve for a single site is approxim-
ately 25,000 CPU-hours. This includes the two unit-force SGT simulations,
and the reciprocity-based seismogram synthesis for 100,000 earthquakes. This
reciprocity-based technique brings the computational cost of a waveform-
based PSHA hazard curve within reach of SCEC computing resources.

There is, as might be expected, a trade-off involved in using a reciprocity-
based approach. Reciprocity-based calculations only produce seismograms for

10 SCEC CyberShake Workflows 151

one site and, consequently, only one hazard curve. Since each hazard curve
requires approximately 25,000 CPU-hours, producing a small 50 km × 50
km hazard map that requires 625 hazard curves will require approximately
15,625,000 CPU-hours using this approach. The estimates indicate that even
using a reciprocity-based approach, it is still prohibitively computationally
expensive to produce a waveform-based PSHA hazard map.

10.5 SCEC Workflow Solutions to Key
Workflow Requirements

Scientific workflows may be modeled, in general terms, as a set of tasks with
data dependencies between them. Scientific workflow tools must then meet
three essential requirements: (1) user definition of the tasks and their data
dependencies; (2) an execution engine for running the tasks in an appropriate
order; and (3) tools for managing the data and metadata that are input and
output by the tasks in the workflow.

The SCEC workflow system satisfies the first essential requirement (user
definition of workflow tasks and data dependencies) by allowing the user to
describe workflows in an abstract form called an abstract Directed Acyclic
Graph (DAG). An abstract workflow captures the programmatic and data
dependencies in the workflow, but it also imposes some limitations on the
workflow, such as no looping. An abstract workflow describes both the pro-
gram names and filenames in logical, not physical, terms. For example, when
an abstract workflow refers to a file, it uses a file ID rather than a physical
path to the file. Later, programs in the workflow system will convert the file ID
to a physical file pathname. In this workflow definition stage, the SCEC work-
flow system uses the Pegasus planner (Chapter 23) and Condor’s DAGMan
(Chapter 22) for mapping and executing the workflows.

To convert an abstract workflow to an executable form, Pegasus (Chapter
23) requires a collection of appropriate configuration files or catalogs, such
as those describing the available computer resources (the Site Catalog) and a
list of executable programs (the Transformation Catalog). Once this inform-
ation and the abstract DAG are available, Pegasus can be invoked to do the
conversion. Once the executable DAG is available, it can be submitted to the
Condor DAGMan (Chapter 22) for execution.

The SCEC workflow system satisfies the second essential workflow require-
ment (an execution engine for running the tasks) with a series of Globus and
Condor tools. Globus GRAM [102] is used as an interface to local resource
schedulers. Condor-G [152] manages the remote job submissions by interact-
ing with the GRAM job managers. Condor’s DAGMan ensures that the jobs
expressed in the DAG are executed in the correct order.

The SCEC workflow system satisfies the third essential workflow require-
ment (data and metadata management) by using the Replica Location Ser-
vice (RLS) [88] software to maintain a mapping between logical and physical

152 Philip Maechling, et al.

file names. Logical File Names (LFNs) are basically ID numbers assigned to
files used in SCEC workflows. Physical File Names (PFNs) used in SCEC
workflows are typically GridFTP accessible URL’s [9]. Metadata are man-
aged through the use of the Metadata Catalog Service (MCS) [386]. The RLS
and MCS systems are modular and Grid-enabled. We also utilize a second file
preservation system, the Storage Resource Broker (SRB) [41], for long-term
storage of valuable data sets.

10.6 Benefits of Modeling CyberShake as Workflows

Implementing the CyberShake workflow on top of a Grid-based architecture
provides distributed computing capabilities and the ability to add or remove
computing resources from the environment without significant changes to soft-
ware. The Grid layer provides secure management of job submission and data
transfers. The Grid architecture also provides standardized service interfaces
to security, job management, resource monitoring, and communication for a
heterogeneous environment. This allows our workflows to utilize the stand-
ardized interfaces in a heterogeneous computing environment.

As we define our workflow, Pegasus allows us to express the workflow at
a high level of abstraction. When the user expresses the workflow and its
dependencies, either using VDL (Chapter 17, or in an XML DAG format
(DAX), the workflow is specified by referring to logical programs (transform-
ations) and logical files. A significant amount of information can be omitted
at the workflow specification stage. For example, the computers and the loca-
tion of the files to be used are not needed at the workflow specification stage.
These details are provided by Pegasus as the abstract workflow is converted
to an executable workflow. In addition, Pegasus will augment the workflow
with implied but unspecified processing steps. Thus that it can execute within
a distributed, Grid-based computing environment. Processing steps such as
directory creation, registration of created files into the RLS, and file transfers
to and from the program execution hosts are automatically added into the
workflow by the Pegasus planner.

Condor DAGMan can analyze the dependencies in a workflow and can run
jobs in parallel if there are no dependencies between them. This capability is
particularly valuable in a distributed Grid-based environment where there are
multiple computing resources available for job execution.

The Condor-G and DAGMan job management tools provide other signific-
ant capabilities, such as failure recovery. Condor supports retries of individual
failed jobs and provides rescue DAGs in cases where the workflow cannot pro-
gress any further. The rescue DAG represents the portions of the workflow
that have not yet executed, and the DAG can be modified and resubmitted
at a later time.

The SCEC workflow system utilizes the common data management prac-
tice of separating the logical filename from the physical filename. This tech-

10 SCEC CyberShake Workflows 153

nique helps in two main ways. First, references to the file are not tied to the
physical location of the file. When the file is moved, workflow references to the
file do not need to be changed (only the mappings in the RLS do). Second,
this technique supports copies of files, or file replicas. For each file, multiple
versions can be maintained, and the workflow system has the opportunity to
select the most appropriate copy.

10.7 Cost of Using the SCEC Workflow System

While the SCEC workflow offers a number of clear benefits, it also imposes
a number of requirements, or costs, on system developers and users. These
costs are distinct from the costs of personnel or hardware.

First, establishing and maintaining a widely distributed, Grid-based com-
puting environment requires a significant amount of work, involving issues
such as security agreements, certificate exchange, software version coordin-
ation, installation, operations, and maintenance. A Grid-based environment
provides an outstanding foundation on which to build a workflow system, but
it also requires significant investment in system and software maintenance.

The SCEC workflow system requires a significant amount of configuration
before a workflow can be executed. Pegasus’s ability to work at a high level
of abstraction is implemented by utilizing data stores that map between ab-
stractions and actual computing resources. This means that before a workflow
can be executed, a series of data stores must be developed and populated. For
example, computing resources are defined in a site catalog that defines the
available computing resources and describes their capabilities. This needs to
be done by hand or with the use of information systems deployed on the re-
sources. Also, each executable program or script used in a workflow (along
with its runtime environment information) must be defined in a Transforma-
tion Catalog.

Also, all files to be used in workflows must be registered into the RLS
and staged at a URL that is accessible by a GridFTP server. This creates
a fairly sharp distinction between files “in the system” and files “not in the
system.” The need to register files in RLS before using them in a workflow
puts a burden on users who want to create new files by hand or want to
import files into the system. While the data management tools such as RLS
provide interfaces for registering files, it has been necessary for us to write
user-oriented tools to help users with the data registration tasks.

The SCEC workflow system is designed to execute programs with file-
oriented inputs and outputs. Programs that support the standard “Unix”
computing model work well within the SCEC workflow system. These pro-
grams have common characteristics such as file or piped inputs, quiet execu-
tion unless there are problems, zero return on success, and nonzero return on
problems. The SCEC workflow system is not designed to execute programs
with GUIs or with interactive user inputs.

154 Philip Maechling, et al.

The SCEC workflow system imposes specific requirements on the programs
that will be used in the workflow. To integrate with the data management
tools, programs used in workflows should not use hardcoded input or output
filenames. The workflow system will dynamically assign LFNs to files as they
are created. Many of the SCEC programs used hardcoded filenames. In some
cases, we modified the programs so that both input and output filenames could
be specified as input parameters at runtime. If this modification was difficult,
we developed wrapper scripts that would accept arbitrary input and output
filenames. The wrapper script would then rename the files to the hardcoded
filenames, call the SCEC programs, and then rename the output file to the
file name assigned by the workflow system.

One additional requirement for using the SCEC workflow system is the
need to create an abstract workflow (the DAX) before the workflow can be
run. In order to create a DAX, the user is faced with a couple of options: (a)
use VDL to describe the workflow and then use Chimera to convert the VDL
to a DAX; or (b) write code that can construct a DAX directly. Because the
SCEC CyberShake workflows were fairly static, we chose to develop a DAX
generator program and output our DAXs directly. The other option, using
VDL, may be the more general solution. Both of these approaches require
training and investment of time by users. Often users are not willing to invest
significant training time until the benefit to their science is obvious. In the
future, we hope that technologies such as Wings and CAT (Chapter 16) can
make it easier to create the large and complex abstract workflows we need.

10.8 From Computational Pathway to
Abstract Workflow

A CyberShake hazard curve calculation can be described algorithmically in
seven steps, as shown in Table 10.1. We refer to this sequence of seven steps
as the CyberShake computational pathway. Each processing step has specific
computational and workflow implications.

We began our modeling of CyberShake as a workflow by assembling our
programs end-to-end and identifying the data dependencies between them.
Figure 10.5 shows the programs involved in the CyberShake hazard curve
calculation and their data dependencies.

Our intention was to model our CyberShake computational pathway as an
abstract workflow, then model the abstract workflow as a DAX, and then use
our workflow tools to convert our DAX into an executable workflow and run
it until a hazard curve was completed. However, our workflow eventually was
reduced to a small portion of this processing chain.

CyberShake Step 1: Select a Site

Probabilistic seismic hazard curves are site-specific, and thus a natural and
meaningful unit of work on the CyberShake Project is a site. We perform a

10 SCEC CyberShake Workflows 155

Processing
Step Number

CyberShake Simulation Algorithm Description

1 Select a site for which a hazard curve is of interest.

2 Use an earthquake rupture forecast (ERF) to identify all prob-
able ruptures within 200 km of the site of interest.

3 For each rupture, convert the rupture description from the ERF
into a suite of rupture variations with slip-time history.

4 Calculate Strain Green’s Tensors (SGTs) for the two horizontal
components for a volume containing all the ruptures and save
the volume data.

5 Using a reciprocity-based approach, calculate synthetic seismo-
grams for each rupture variation.

6 Calculate the peak intensity measure of interest, such as peak
spectral acceleration, for each synthetic seismogram.

7 Using the peak intensity measures for each rupture and the
probabilities of the rupture, calculate a probabilistic hazard
curve.

Table 10.1: Steps in the CyberShake salculations.

series of calculations, and at the end we can calculate one or more hazard
curves for one particular site.

Sites selected for our initial CyberShake hazard curve calculations must
be in a region for which both a 3D velocity model and an earthquake rupture
forecast have been defined. These items are available for most parts of South-
ern California. Also, to facilitate the comparison with other types of IMRs,
we selected sites for which hazard curves currently exist. The selection of sites
is currently manual.

CyberShake Step 2: Identify Probable Ruptures

Given a particular site, an ERF is used to create a list of all probable ruptures
(and the magnitude and probability of each rupture) within 200 km of the
site. Table 10.2 shows six of the initial CyberShake sites and the number of
ruptures that an ERF identified within 200 km of each site.

Site Name Number of Ruptures in ERF
within 200 km of Site

USC 24,421

Pasadena 24,870

Downtown Los Angeles 24,620

Port of Long Beach 24,484

Santa Ana Business District 25,363

Whittier Narrows Golf Course 25,056

Table 10.2: Initial CyberShake sites.

156 Philip Maechling, et al.

Figure 10.5: The CyberShake computational pathway is an end-to-end com-
putation of a CyberShake Hazard Curve.

In this stage in the CyberShake processing, an OpenSHA implementation
of an ERF is used. The ERF is the first computational step in our scientific
workflow. The OpenSHA ERF is a GUI-based Java program that requires
user interactions during execution. The operator uses a series of drop-down
menus and text boxes to enter information about the site, such as the loca-
tion, the cutoff distance, and other configurable parameters. Then the ERF
program is run once to create the list of ruptures that might affect the site
being considered. We did not want to integrate a GUI-based program into
the workflow, and thus we excluded this processing step from the CyberShake
workflow.

CyberShake Step 3: Calculate Rupture Variations

Rupture descriptions produced by current ERFs are static descriptions
of earthquakes that indicate the fault surface and the magnitude of each
earthquake. However, the earthquake wave-propagation simulations used by
CyberShake require more detailed information about the ruptures in order
to produce realistic seismograms. Also, several variations of each earthquake
rupture must be considered. As a general rule, the larger the earthquake in
the ERF, the larger the number of rupture variations that will be used in the
CyberShake calculation. For each earthquake in the ERF, the CyberShake

10 SCEC CyberShake Workflows 157

system will calculate a series of rupture variations using a heuristic-based
method developed by SCEC scientists.

Table 10.3 shows an example of how the CyberShake processing expands
the original ERF rupture list into a larger list of rupture variations (for the
USC site). The differences between rupture variations include hypocentral
locations and slip distributions. Larger earthquakes require more variations
because there are presumably more possible hypocentral locations and slip
distributions that must be considered.

Table 10.3 shows that the ERF rupture list for this site contains a large
number of small earthquakes, which result in many variations. The table also
shows that the ERF rupture list contains only a small number of very large
earthquakes for this site. However, for each of the very large earthquakes,
CyberShake produces a large number of variations. The result is that the
CyberShake processing must produce seismograms for over 100,000 ruptures.
Other sites have a similar distribution of ruptures by magnitude, so each
CyberShake hazard curve calculation must simulate over 100,000 ruptures.

Site USC Ruptures By
Magnitude

Rupture Vari-
ations By Mag-
nitude

Magnitude < 5.0 0 0

Magnitude ≥ 5 and < 6.0 20,450 64,320

Magnitude ≥ 6 and < 7.0 2524 14,600

Magnitude ≥ 7.0 and < 8.0 1435 47,066

Magnitude ≥ 8 12 12,864

Totals 24,421 109,806

Table 10.3: Ruptures and Rupture Variations for the USC site.

In order to produce all the rupture variations needed by CyberShake, we
run a serial FORTRAN program called a rupture generator. This program
is run only once to create a master list of all possible ruptures in Southern
California. Since this program is run only once, and we do not need to run it
for each site, we decided to exclude it from our workflow.

CyberShake Step 4: Calculate Strain Green’s Tensors

The next step in the CyberShake computational pathway is to calculate strain
Green’s tensors for the site of interest. A strain tensor quantifies the strain of
an object (e.g., the Earth) undergoing a 3D deformation (e.g. the deformation
caused by an earthquake). For small deformations, the strain tensor can be
described by a strain Green’s tensor (SGT).

This part of the CyberShake computational pathway uses three different
programs: a regular mesh maker, a velocity mesh maker, and the SGT cal-
culation. These three programs are run to create a large SGT data set. SGT

158 Philip Maechling, et al.

calculations are the high-performance, MPI-based computing aspect of the
CyberShake simulation. Before the SGT code can be run, an input velocity
mesh must be generated. This is done in two steps. First, a regular mesh
with the appropriate dimensions and grid spacing is created. Then a 3D velo-
city model program is run to assign properties such as P-wave velocity, S-wave
velocity, density, and attenuation to each mesh point. The velocity mesh prop-
erties vary by location in the mesh. For example, the P-wave velocity, S-wave
velocity, and density values all typically increase with depth.

The current SGT computation is a fourth-order, finite-difference code.
One SGT calculation is run for each horizontal component of motion. Thus,
two SGT simulations are run per site. The SGT calculations used in the
CyberShake simulations require approximately 140 GB of RAM at runtime.
On our target clusters, we can utilize approximately 500 MB of RAM per
processor. In order to run the SGT successfully, we must divide the 140 GB
across approximately 280 processors, or about 140 nodes on dual-processor
systems such as the TeraGrid IA-64 or USC HPCC clusters.

Scheduling large MPI-based programs onto a cluster often has interactive
aspects that are not easily managed by a workflow system. For example, the
CPU-hours allocation available to the workflow should be verified prior to
running. Sufficient disk space must be available in the output storage location.
In some cases, a specialized queue, or a reservation for a set of computation
nodes, is used, in which case the job should be run in a specific queue or at
a specific time. Although it is possible to include these constraints into the
workflow system, we decided to leave the MPI-based calculations out of the
workflow for now since they are run only twice per site. We do plan to make
them a part of the abstract workflow in the near future.

The SCEC workflow system has the capability to automatically restart
jobs that fail. However, we recognized that special care must be taken when
restarting large, multiday, 280-processor jobs. One way to address the restart
capability is to model the SGT calculation as a series of smaller steps with
checkpoint files. Then a failure would get restarted from the last checkpoint
rather than from the beginning. However, to accomplish this we needed to
elaborate our definition of the workflow to identify a series of restart-able
calculations. This added complexity into our workflow that, in our judgment,
did not add sufficient value.

CyberShake Step 5: Synthesize Synthetic Seismograms

The CyberShake reciprocity-based seismogram synthesis processing stage gen-
erates thousands or hundreds of thousands of seismograms for a site. To do
this, we must run the seismogram synthesis code for each rupture, which
amounts to tens of thousands of times. The seismogram synthesis program will
generate output files containing the synthetic seismograms. Metadata must be
maintained for each output file so that we can associate the seismogram with
the ruptures that it represents.

10 SCEC CyberShake Workflows 159

This stage in the workflow must be executed once for every rupture. Seis-
mograms for all the rupture variations are calculated during the same invoc-
ation. For ruptures that have a large number of variations (in some cases a
rupture may have more than 1000 rupture variations), the runtime for this
program can be many hours. In other cases, where there are few variations,
the runtime can be minutes. This stage was included in the workflow.

CyberShake Step 6: Calculate Peak Intensity Measure

Once one or more seismograms have been calculated, the next step is to extract
a peak ground-motion value from the synthetic seismograms. SCEC scientists
have decided that spectral acceleration at 3.0 seconds (SA3.0) is a ground
motion intensity measure type that is consistent with the frequency content
of the synthetic seismograms generated by the CyberShake workflow. To cal-
culate peak SA3.0 values from our synthetic seismograms, we use codes that
can filter the seismograms, differentiate the acceleration, and then calculate
peak SA3.0.

The seismogram synthesis stage produces a binary seismogram file that
includes all the seismograms for a given rupture, including both hozizontal
components for each rupture variation. Thus, the peak SA3.0 calculation pro-
gram must be executed once for every rupture in the workflow. Our SA3.0
calculation program is invoked once for each rupture and processes all com-
ponents, and all rupture variations, in the specified file. This stage was also
included in the workflow.

CyberShake Step 7: Calculate Hazard Curve

When all the peak SA3.0 values have been calculated, the final step is to
calculate a hazard curve. To do this, the peak SA3.0 values for each rupture are
read and a geometric average of the horizontal components is calculated. Then,
the peak SA3.0 values are associated with the probability of the given rupture.
These calculations are done for each rupture, the results are combined, and a
hazard curve is calculated.

We excluded this final step from our workflow primarily because it uses
a GUI-based OpenSHA program. However, the final processing step raised
another important issue, which we refer to as delayed execution of programs.
Based on the time required to execute all the jobs that lead up to this last
summary stage, the execution time for this final job could be days, or even
weeks, after the workflow is submitted. When a job in a workflow has an
expected execution time that is days or weeks in the future, there is a reas-
onable possibility that the computing environment will change between now
and then. Currently many of the Grid systems we target in our work do not
provide an easy way of programmatically accessing up-to-date system inform-
ation and thus make it impossible for workflow management systems to make
good scheduling decisions over time. This leads to lower reliability that the
workflow will execute to successful completion.

160 Philip Maechling, et al.

By the end of the CyberShake abstract workflow generation process, the
workflow consisted of only two steps: a seismogram synthesis program and a
peak spectral acceleration program. These two steps are shown in Figure 10.6.
In our workflows, we had approximately 25,000 processing nodes for each step
in the data flow, and this was before any needed data transfer jobs were added
to support the Grid-based execution. The corresponding executable workflows
generated by Pegasus contained tens of thousands of tasks.

Seismogram

Synthesis

Peak

Spectral

Acceleration

Seismogram

Synthesis

Peak

Spectral

Acceleration

A two-stage CyberShake workflow to process 25,000

ruptures requires a DAG with at least 50,000 nodes.

Processing for

Rupture N = 1

Processing for

Rupture N = 25,000

Figure 10.6: The CyberShake abstract workflow has two processing steps.
These two processing steps must be repeated approximately 25,000 times each
to produce a single PSHA hazard curve.

10.9 Resource Provisioning in the CyberShake
Workflows

Once the CyberShake abstract workflows were developed and we prepared to
execute them, a new issue emerged that was related to resource provision-
ing. In the context of CyberShake workflows, provisioning means reserving
computer resources for our use during the workflow execution. We used the
Condor glide-in [96] capabilities to provision the computing resources and to
overcome the fact that our workflow requirements do not match the scheduling
policies of the underlying computing resources.

To understand this issue, we must examine the requirements of the work-
flow and characteristics of the execution environment. Once our abstract work-

10 SCEC CyberShake Workflows 161

flow was converted to an executable workflow and all the data movement jobs,
directory creation jobs, and data registration jobs were added, the total num-
ber of jobs in the workflow exceeded 80,000. While some of these are long
running, I/O-intensive programs, all of them are single-processor, sequential
programs. The only available computing resources that will run this number
of jobs within a reasonable amount of time are the high-performance clusters
at the TeraGrid and USC HPCC. However, neither of these computational
clusters are configured to run a large number of sequential jobs. Instead, they
are configured to run a few large parallel jobs. Supercomputer sites implement
this policy in a couple of ways.

First, the job submission managers at these sites will typically allow a
single user to submit less than 100 jobs at a time. None of the supercomputer
sites we use will allow us to send 100,000 jobs to their job submission queues all
at one time. This issue can be addressed to some extent by the job submission
throttling capabilities of Condor, but the number of jobs we need to schedule
represents a real issue for the CyberShake workflows.

Second, the supercomputer facilities give preference to large parallel jobs
through the job priorities used by the underlying job scheduling systems. The
sites prefer to support the very large jobs that could only run on the large
supercomputer clusters. Thus job scheduling algorithms are set up so that
large, highly parallel, long running-jobs (that is, supercomputer class jobs)
received scheduling priority.

SCEC researchers recognized that the CyberShake computations were su-
percomputer class computations even though they were not written as MPI-
based jobs. Rather than rewrite all the CyberShake programs as parallel codes,
our workflow system was able to work around these scheduling policy prob-
lems by using provisioning techniques offered by the Condor glide-in system.
The Condor tools allow us to run placeholder jobs on one or many cluster
computation nodes (in our work, we used 50 to 100 placeholders at any one
time). Once the placeholder programs are running, we can send CyberShake
jobs from our Condor-G job submission host directly to the placeholders for
execution. Once a CyberShake job completes on a compute node, Condor-G
sends another job to the placeholder.

10.10 CyberShake Workflow Results

The analysis, software development, configuration, testing, and validation
work that led up to the first full-scale CyberShake workflows was performed
over approximately six months. The first two full-scale CyberShake workflows
were run over a period of approximately one month. Subsequently, the com-
putational rate increased dramatically. Eight additional CyberShake curves
have now been calculated, at a rate of approximately one a week.

During our first two full-scale CyberShake workflow runs, we executed
over 261,000 separate jobs at four different computing centers (SCEC, SDSC,

162 Philip Maechling, et al.

NCSA, and USC), and we used over 1.8 CPU-years of processing time. Over
80,000 separate files were created and registered into our data management
system. We are still collecting statistics on the subsequent eight site calcula-
tions, but the numbers are expected to be similar.

The CyberShake workflows made good use of our Grid-based environment.
SCEC computers were used as job submission hosts and as the storage loc-
ation for the resulting seismograms, spectral acceleration, and hazard curve
data files. The SCEC workflow system allowed us to create file replicas at two
TeraGrid sites and then to divide our workflows across two different super-
computer facilities, with the results ending up back at SCEC. This flexible
use of available computing resources underscores the value of specifying work-
flows in a resource-independent manner. It also underscores the capabilities
that can be built on top of a Grid-based infrastructure.

10.11 Conclusions

The first ten CyberShake probabilistic seismic hazard curves are currently
under analysis. The CyberShake results are so new that conclusions regarding
the scientific benefits of using 3D waveform-based intensity-measure relation-
ships in probabilistic seismic hazard analysis are still pending. Regardless of
the final judgment on this new class of PSHA hazard curves, CyberShake rep-
resents an important research effort that has provided SCEC scientists with
results needed to evaluate this widely anticipated new approach to PSHA.

Our scientific workflow tools provided scalability of calculation through
automation. These tools allow us to work at a computational scale that would
be very difficult to achieve otherwise. However, we recognize that the com-
putational demands of SCEC science are increasing just as quickly as our
computational capabilities.

In order to meet the computational requirements of SCEC science in the
near future, we need to improve our workflow automation. We plan to begin
by increasing the number of programs executed as a part of the CyberShake
workflow. At this point, it appears that the portions of our computational
pathway that benefit from modeling as a workflow share two characteristics:
high repetitiveness and low interactivity. We believe that these characteristics
may be used to identify which parts of a series of scientific calculations can
be most readily expressed as a scientific workflow regardless of the underlying
workflow technology.

We believe that scientific workflow tools provide the current best tech-
nology for working at the computational scale needed to perform SCEC’s
transformative seismic hazard analysis research. If SCEC research goals are
required only one or two hazard curves, it may have been faster to calculate
them without the use of a workflow system. However, since SCEC researchers
wanted to calculate hundreds or thousands of these hazard curves, we needed
a system that would allow us to scale up the large CyberShake computational

10 SCEC CyberShake Workflows 163

pathway calculation by one or two orders of magnitude. We believe that as
SCEC workflow tools evolve and improve, they will make this level of scientific
processing and data management possible.

Acknowledgments

This work was performed by a large group of people at SCEC, ISI, the USC
Center for High Performance Computing and Communications Center (USC
HPCC), the San Diego Supercomputer Center (SDSC), the National Center
for Supercomputing Applications (NCSA), the USGS, and URS Corporation.
USC HPCC contributors include Maureen Dougherty, Garrick Staples, and
Brian Mendenhall. SDSC contributors include Amit Majumdar, Don Fred-
erick, Christopher Jordan, and Reagan Moore. NCSA contributors include
Randy Butler, Tim Cockerill, John Towns, and Dan Lapine. This work was
supported by the National Science Foundation (NSF) under contract EAR-
0122464—The SCEC Community Modeling Environment (SCEC/CME): An
Information Infrastructure for System-Level Earthquake Research. This re-
search was also supported by the Southern California Earthquake Center.
SCEC is funded by NSF Cooperative Agreement EAR-0106924 and USGS Co-
operative Agreement 02HQAG0008. The SCEC contribution number for this
chapter is 972. Some of the computation for the work described in this chapter
was supported by the University of Southern California Center for High Per-
formance Computing and Communications (www.usc.edu/hpcc). Some of the
computation for the work described in this chapter was supported by TeraGrid
allocation TG-BCS050002S.

Part II

Workflow Representation and
Common Structure

11

Control- Versus Data-Driven Workflows

Matthew Shields

11.1 Introduction

Workflow is typically defined as a sequence of operations or tasks needed to
manage a business process or computational activity (Chapter 1). The rep-
resentation of the sequence of operations or tasks is handled in many different
ways by different people and varies from simple scripting languages, through
graphs represented in textual or graphical form, to mathematical representa-
tions such as Petri Nets (Chapter 13) or π-calculus (Chapter 15).

Most groups agree that there are two simple classes of workflow structure
into which most of the representations of workflow languages used in this book
fall: control and data flows. The two classes are similar in that they specify the
interaction between individual activities within the group that comprise the
workflow, but they differ in their methods of implementing that interaction.

In control-driven workflows, or control flows, the connections between the
activities in a workflow represent a transfer of control from the preceding task
to the one that follows. This includes control structures such as sequences,
conditionals, and iterations. Data-driven workflows, or data flows, are designed
mostly to support data-driven applications. The dependencies represent the
flow of data between workflow activities from data producer to data consumer.

There is also a smaller set of hybrid workflow representations based on a
combination of control and data flows. These hybrids use both types of de-
pendencies as appropriate but are normally biased toward either data flow or
control flow, using the other to better handle certain conditions. For instance,
in a data-flow system such as Triana (Chapter 20), there are situations where
a downstream task needs to be activated but the upstream task produces no
output. In this case, a trigger is used to switch the flow of control. In hybrid
control-flow systems, such as the CoG Kit’s Karajan workflow (Chapter 21),
data dependencies can be represented by a future, the concept of data that
has not yet been produced, which can block the control flow with a data flow.

This chapter will examine the differences, and indeed similarities, between
control flow, data flow, and hybrid representations, with examples of each type

168 Matthew Shields

and the applications and frameworks that use them. We will start with a dis-
cussion of different workflow representations and some common concepts and
conclude with some of the pitfalls and some possible solutions to the problems
associated with heterogeneous workflow languages in Grid environments.

11.2 Workflow Representations

The data-driven versus control-driven workflow argument has run for as long
as workflow techniques have been in use and can be as evangelical as the
choice of editor, Vi or Emacs, or programming language, C++ or Java. Both
sides are convinced that the structure they use is the correct one, but there
are cases for the use of both workflow representations, and as we edge toward
interoperability and a common workflow language, mixed usage. The choice
of which is used in any given framework usually comes down to the original
application domain that drove the framework development, as we will see
when we examine some examples.

11.2.1 Common Workflow Terminology

It is worth mentioning here some of the common workflow terminology that
gets used within the various representations and frameworks. Workflow by its
definition has a number of common concepts; however, these are often known
by different names.

By definition, a workflow is a sequence of operations or tasks needed to
manage a computational activity. These are typically represented graphically
as a node on a graph or in a script as a process or a job. In Chapter 12, the
author describes component and service-based workflows, so we also have the
terms components and services used as a name for the computational processes
in the workflow. Different workflow frameworks also have different names for
this concept: in Kepler (Chapter 7) they are called actors; in Petri Net theory
(Chapter 13), transitions ; in Virtual Data Language (VDL) (Chapter 17), pro-
cedures; in Cactus (Chapter 25), thorns ; in Askalon (Chapter 27), activities; in
the CoG Kit’s Karajan (Chapter 21), elements; and in Triana (Chapter 20),
units. Although all of these terms hide different mechanisms and technolo-
gies, the basic concept of an operation or task holds, and we can think of each
of these as a “black box” process that performs some computation or other
operation.

The connections between operations are also known by different names:
vertices in a graph, edges in Petri Nets, pipes in data-flow systems, and mes-
sages in service-based systems. They all, however, represent an order to the
execution of the operations in the workflow. This order may be a data de-
pendency, where the product of the first operation in a connection must be
available for the execution of the second operation to start, or a control de-
pendency, where the flow of execution passes from the first operation to the

11 Control- Versus Data-Driven Workflows 169

second in the connection, or in a more complex case control is passed from
one operation to another based upon a control-flow structure such as if...then
or while.

11.2.2 Classifying Workflow Types

A useful way of classifying whether a representation is control flow, data flow,
or some hybrid of both is to look at the connections or dependencies between
any two given operations or activities in the workflow. If the connection is
a data dependency, such as a data file that must be complete and in place
before a succeeding activity can execute, or a socket-based data pipeline, then
the workflow is data driven and probably data flow. If the dependency is one
of timing, such as task a must complete before b can start, then the workflow
is more than likely a control flow.

Another way of looking at the difference between control flow and data
flow is to examine the main artifact with which each representation concerns
itself, or the terms in which the main concept of the representation is defined.
In a control-driven workflow system, the main artifact is a process. Control
flow concerns itself mainly with the execution and coordination of processes.
The workflow representation will be defined in terms of those processes (i.e.,
execute process a then execute process b). In a data-driven workflow system,
it is units of data and data products that become the main artifacts; the
processes or activities in the workflow are merely data transformations of
some description. Thus the workflow representation will be centered around
the data products (i.e., transform input a into product b).

11.2.3 External Workflow Representations

Most workflow tools and frameworks have two forms of representation an
internal one that is used to manipulate the workflow inside an editor or ex-
ecution engine, for instance, and an external one used for storing workflows
and communicating them between participants in the workflow “generation
to execution” life cycle.

External representations for workflow instances, whether they are based on
control flow or data flow, are often very similar, and in a large number of cases
these external forms of representation are stored as XML documents. One of
the most common forms is that of a directed acyclic or cyclic graph (DAG
or DCG) with nodes and vertices. Whether nodes represent processes and
activities or data and data products depends largely on the type of workflow
and also the problem domain and methodology.

Petri Nets are another popular representation medium for workflow and
can model workflow by representing data as tokens and processes as tran-
sitions. Other representations include scripting languages that model the re-
lationships between tasks as a series of ordered function calls and Unified

170 Matthew Shields

Modeling Language (UML) diagrams that use the standard diagrams and
representations to model the relationships.

In the Triana workflow language (Chapter 20), a predominantly data-flow
language, the external representation is an XML-based DCG. The main arti-
facts are processes, so the nodes in the graph represent processes, and since
we are dealing with a data-flow model, the vertices in this case represent data
dependencies or transfers. The XML representation specifies the processes in
a WSDL-like format and the vertices as a series of parent–child relationships.

SSDL-SC protocol (Chapter 15) expresses its workflow as a sequence of
messages exchanged between participants in the workflow. The order of these
messages, the participants in the exchange, and the direction in which the
message travel define the workflow and hence the interaction between the
services. The external representation as the framework’s name, Soap Service
Description Language suggests, takes the form of a series of SOAP messages,
together with XML, that specify the participant services and the message
interactions between them.

The Java CoG Kit’s Karajan workflow language (Chapter 21) is an ex-
ample of a hybrid control flow. The main artifacts are Grid processes and
file transfers. The external representation is a parallel extensible scripting
language with both XML and native representations. The script specifies the
process and file transfers and the order in which they are executed. It includes
support for parallel execution and control constructs such as looping.

Petri Nets are another popular representation medium for workflow. Grid
Workflow Definition Language (GWorkflowDL) (Chapter 13) is based on Petri
Net Markup Language (PNML), an XML dialect for representing Petri Nets.
PNML can describe Petri Nets together with information about their graph-
ical layout; GWorkflowDL provides extensions to relate transitions with real
services or components and tokens with concrete data. Petri Nets can model
both control and data flows since both data and process artifacts are repres-
ented with equal weight. Control constructs such as loops and conditionals are
supported implicitly by the language, so the correct classification is probably
as a hybrid control flow.

11.3 Control-Driven Workflows

In a typical control-driven workflow, the workflow or program consists of a
sequence of operations. An operator reads inputs and writes outputs into
common store such as a file system. In the simplest case, the operators run
sequentially, with the control dependency in the workflow defining the suc-
cessor once the predecessor has completed.

Control-driven workflow originated in the scripting community, where fine-
grained small applications such as Unix processes can be chained together
with some shell script or similar high-level language “glue” to form more
complex programs. Each process is executed from the script in turn with

11 Control- Versus Data-Driven Workflows 171

control passing from the script to the individual process and back to the
script again upon completion. Movement of data is typically handled in this
situation by a dedicated file or data transfer process that is called between
two compute processes.

Control flow can simulate data flow with data transfers and monitors. In
the CoG kit’s Karajan, there is a concept called futures that allows a data
dependency to be established for data that have not yet been produced by an
operation. A future will cause the execution of certain parts of the workflow
to be suspended until the data are available.

11.3.1 Control Structures

Most control-flow languages provide support not only for simple flows of con-
trol between components or services in the workflow but also for more complex
control interactions such as loops and conditionals. Sometimes this support is
implicit, as is the case with Petri Nets, and sometimes explicit, as in languages
such as Karajan from the CoG kit.

It is obvious that users of workflow systems will often want more than
the simple control constructs available to them. The ability to branch work-
flow based on conditions and loop over subsections of the workflow repeatedly
is important for all but the simplest of applications. The argument is not
whether these facilities should exist but how to represent them in the work-
flow language and to what degree the language should support them. For
instance, is a single simple loop construct enough, or should the language
support all loop types (i.e. while, for. . .next, repeat. . .until)? In the case of
conditional behavior, the problem is determining whether the incoming value
and the conditional value are equivalent. For simple cases where we are com-
paring integers or simple strings, checking the condition is straightforward
and unambiguous. The problem comes when we have to compare complex,
structured scientific data in scientific workflows. This type of data often needs
domain-specific knowledge in order to perform comparisons. If the condition
is coded in the language, then the implementation of the comparison must
be coded in the execution engine. The result is that we end up with com-
plex domain-specific information encoded in the framework itself, or we limit
conditionals to simple comparisons.

To take this argument to its extreme conclusion, we could include sup-
port for all programming constructs and make the language Turing complete.
However, at this stage we have to ask ourselves why we have written another
high-level programming language rather than use an existing one and develop
a graphical front end.

The whole ethos of workflows is power and simplicity. Workflow systems
must be capable of performing all the functions a user requires; otherwise users
just won’t use them. But the same systems should be simple to use, hiding
complexity where appropriate. I would argue that although control constructs
are necessary, extending the workflow language itself to cover all possibilities

172 Matthew Shields

is against the principles of workflow. As we will see in the next section, there
are alternatives.

11.4 Data-Driven Workflows

In a typical data-driven workflow, the workflow or program is a graph of op-
erators with the vertices specifying data dependencies. An operator consumes
data or tokens and produces data or tokens. All operators can run concur-
rently, with unfulfilled data dependencies causing an operator to block until its
dependencies are completed. Data-driven workflows originated in applications
where digital processing pipelines are common; for example, image processing
and signal processing. These fields are inherently datacentric and often real-
time, where processing pipelines are connected to measuring devices.

Most data-flow representations are very simple in nature, and unlike their
control-flow counterparts, most contain nothing apart from component or ser-
vice descriptions and the data dependencies between them; control constructs
such as loops are generally not included. The SSDL workflow representa-
tion consists of services, with communication via messages. The dependencies
between services are messages or patterns of messages, just another form of
data, so this representation is a true data flow. While the SSDL-SC protocol
does support “choices,” in effect conditional branching, there is no loop con-
struct.

In Triana’s workflow language, there are no control constructs at all; the
dependencies between tasks are data dependencies, ensuring the data producer
has finished before the consumer may start. It has some control functionality
in that a control dependency can be defined between two tasks where there is
no data relationship; however, this is a simulated control, as the behavior is
implemented as a control “message” passing from sender to receiver triggering,
the transfer of control. Looping and conditional behavior is performed through
the use of specific components; a branch component with two or more output
connections will output data on different connections, depending upon some
condition. Loops are handled by making a circular connection in the workflow
and having a conditional component break the loop upon a finishing condition,
outputting to continue normal workflow execution.

The benefit of both of these solutions to control behavior in data flows
is that the language representations remain simple. The downside is that the
potential for running the workflow on different systems is reduced since the
other system must have access not only to the workflow but to the components
or services that perform the control operations.

11.5 Toward a Common Workflow Language

A major goal for both the scientific and business workflow communities is
common workflow languages, or at the very least a degree of interoperability

11 Control- Versus Data-Driven Workflows 173

between workflow tools. Frameworks and tools need to be able to interop-
erate, and specifically for scientific workflows, the execution of a workflow
within a Grid environment would benefit from being independent of the tool
that created the workflow. Current proprietary solutions mean that it is not
possible to share workflows across groups using different tools or execute on
Grids where those tools are not installed.

The GGF Workflow Management Research Group [464] is examining vari-
ous workflow languages with a view toward coming up with a common agreed
standard. Any common workflow language will almost certainly have to in-
clude elements of both control flows and data flows and will probably start
as a superset of the current main workflow languages used in the tools in this
book. A mixed solution such as this, containing both data-flow and control
constructs, would at least provide a metalanguage into which the other rep-
resentations could be translated for sharing or execution and would begin the
progression toward a common workflow language. The super setwould have to
be pruned, as to include every extension or optimization, such as Karajan’s,
would make the language enormous.

As outlined in Section 11.3.1, adding every programming construct that
might ever be needed to a workflow language representation will, eventually,
turn what should be a relatively simple domain-specific language into a high-
level general-purpose programming language. Designers of workflow languages
should bear this in mind as they consider whether to add a new feature to
their particular tool. There are alternatives such as designing components or
services for performing given control tasks. If these are designed clearly, then
they should be easy to replicate on other systems that want to execute the
workflow. If the workflow is service-based, then common services that perform
these tasks would make the execution even easier.

It is clear that both control- and data-flow techniques are needed for sci-
entific workflow languages. Limiting the language to one or the other limits
the usefulness of the tools built to use the language. It is also clear that con-
stantly extending the language to include every programming construct will
bloat the language and increase the complexity of the engines needed to ex-
ecute it. Simple hybrid data-flow languages with limited control constructs
will stand the best chance of being interoperable with the most tools and
frameworks but still contain enough functionality to be able to represent real
scientific workflows.

12

Component Architectures and Services:
From Application Construction to
Scientific Workflows

Dennis Gannon

12.1 Introduction

The idea of building computer applications by composing them out of re-
usable software components is a concept that emerged in the 1970s and 1980s
as developers began to realize that the complexity of software was evolving
so rapidly that a different approach was needed if actual software develop-
ment was going to keep pace with the demands placed upon it.1 This fact
had already been realized by hardware designers. By the mid 1970s, it was
standard practice to build digital systems by composing them from stand-
ard, well-tested integrated circuits that encapsulated sophisticated, powerful
subsystems that we easily reused in thousands of applications. By the 1990s,
even the designers of integrated circuits such as microprocessors were building
them by composing them from standard cell libraries that provided compon-
ents such as registers and floating-point units that could be arranged on the
chip and easily integrated to form a full processor. Now, multiple processor
cores can be assembled on a single chip as components of larger systems.

Unfortunately, the world of software has been much slower to adopt com-
ponent techniques. There are many reasons for this. Part of the problem lies
with the 1970s software design practices that dictated that every application
was built by deciding upon a central family of data structures and then adapt-
ing algorithms to work on those data structures. This implied that code for
the algorithms was intimately tied to the design of a few global application-
specific data structures, and reuse was difficult. In some subdisciplines, the
data structures were obvious and mature, well-tested libraries became the re-
usable components of software. The best example of this is numerical linear
algebra, where there were obvious data structures (arrays) for matrices.

Object-oriented design made a substantial contribution to software reuse
because it forced designers to think in terms of encapsulation and interfaces

1 The first reference to the concept of software components is thought to have been
by M. D. McIlroy in 1968 [290].

12 Component Architectures and Services 175

rather than algorithms that crawl exposed data structures. For example, in
1975, a programmer who needed to maintain a linked list would create the
data structure and write the routines to insert and delete items. By 2000,
the standard approach had evolved to using the generic list package available
in your language of choice. Programming languages such as Java, C#, C++,
and Python now have very large and impressive class libraries that provide
an extensive set of “components” for the application designer. The richness of
this library has enabled the programmer to accomplish much more with less
work than at any time in the past. For example, building portable interactive
graphics applications, a networked application that uses advanced security, or
an application that is deeply integrated with a relational database would have
required a substantial development and testing team twenty years ago. Today,
an application that needs all three of these capabilities may only require a
relatively modest effort by a single programmer.

It took a while for these modern libraries to achieve their current degree
of success. Object-oriented design was originally thought to be the solution to
the software reusability “problem,” but it only got us part of the way. While
the core OO concepts such as encapsulation, inheritance, and polymorphism
are elegant and powerful, they do not guarantee that a class built for one
application can be easily reused in another. To build truly reusable software,
one must design the software as part of a component architecture that defines
rules and contracts for deployment and reuse.

In the following sections of this chapter, we will explore several different
definitions of software component architectures and how they have been used
in scientific computing. We shall describe how this concept relates to the
current model for Web services and how scientific workflow systems can be
seen as an instance of software construction by component composition.

12.2 Component Architectures: General Concepts

The exact definitions of software component and software component archi-
tecture have not been formally established and agreed upon. However, a defin-
ition of a software component by Szyperski and Pfister is frequently cited and
provides an excellent starting point:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to compo-
sition by third parties. [402,403]

By contractually specified interfaces, we mean that a component is an en-
capsulation of software functionality that is accessed by invoking an interface
method or by sending a typed message. The precise interface language and
type signature of the interface method or message schema is part of the con-
tract. The other part of the contract is the behavior of the component when

176 Dennis Gannon

it was invoked. For example, is the interface method invocation a procedure
call that always returns the result of the component’s action? Or does it re-
turn immediately with the component’s response delivered by a subsequent
callback? What are the rules for component failure? How does the component
communicate exceptions?

By context dependencies, we refer to the conditions that must be satis-
fied by the host environment in order to operate properly. For example, does
the component require a specific version of the Java Virtual Machine? Must
the host operating system provide that certain libraries be installed for the
component to operate?

A software component architecture is the framework of contracts and con-
text dependencies that provide the ecosystem in which a family of software
components may be composed into an application. This framework often takes
the form of a runtime environment or application container that satisfies all
the context dependencies for the target family of components. The individual
components are deployable software modules that can be loaded into this
framework and composed by a third party to build applications. A component
instance is the specific realization of the component as a runtime entity in an
application.

12.2.1 Composition and the Inversion of Control Principle

A critical feature of component frameworks is that applications can be built
by composing components and, because the components are designed to follow
a specific set of behavior rules, the composed application works as expected.
For example, an important feature of component frameworks that differs from
many standard programming models is the use of a design pattern called
Inversion of Control (IOC) [275]. This idea is central to the way in which
we think about component composition. In the simplest terms, think of two
components implemented as Java classes. Call one class User and the other
class Provider. Suppose each instance of the User class needs an instance of
the Provider class to operate. The standard way to do this is

class User {
Provider p;
public void initializeUser(){

p = new Provider();
}

}

The problem with this is that it makes the implementation of User completely
dependent upon the implementation of Provider because we assume Provider
is a class and that it has a null constructor. Inversion of Control states that
the specific instance of the Provider should be instantiated elsewhere and
“injected” into the state of the User. For example,

12 Component Architectures and Services 177

interface Provider;

Class User{
Provider p;
public void setProvider(Provider p){

this.p = p;
}

}

allows a “third party” to create an instance of User and an instance of anything
that satisfies the Provider interface and compose them with a call of the form

User u;
Provider p;
...
u.setProvider(p);

In its purest form, IOC also implies that a component instance has a
life cycle and environment that are completely managed by the framework.
Everything the component needs is supplied by the framework. One aspect
of this idea, as argued by Fowler [275], involves dependency injection, which
is the concept that an application invokes a service but the instantiation of
the component that implements this service is determined by the framework
at runtime. In other words, the dependency of one component instance upon
another is injected into the system at the latest possible moment.

Another type of behavior rule that many component systems enforce is a
standard way for a framework to learn about a component at runtime. This
type of component introspection is what allows a framework to discover that
a component actually implements an interface required by an application.

The earliest component frameworks with many of these properties included
Microsoft COM [61], the Java bean model. More recently, the complexity of
the Enterprise Java Bean framework [298] has spawned other frameworks,
such as Spring [392], to simplify its programming model. Pico [356] and the
Apache Avalon [34], which is a server-side framework for Apache, are also
important component frameworks based on some form of IOC.

12.2.2 Web Services as Software Components

If we consider Szyperski’s definition of a software component, it is important
to ask whether a Web service fits this definition. The standard definition of
a Web service instance is as a network endpoint that accepts messages (and
optionally returns results) in a manner specified by a Web Services Description
Language (WSDL) document. The Web service in its abstract form (without a
specific network endpoint binding) describes a software component. The form
of context dependency is usually based on the selected WS profile that the
Web service supports. For example, it is common to consider Web services that

178 Dennis Gannon

support WSDL 2.0, SOAP 1.2, WS-Security, WS-Addressing, and WS-BPEL
as a standard component framework. However, it should be noted that there
are two models of SOAP interaction: request/response, which corresponds to
a remote procedure call (RPC) style where an operation takes arguments and
returns a result, and doc-literal messaging, where the Web service takes an
XML document as input (and optionally) returns an XML document as a
result.

12.3 Models of Composition

The relationship of software component models to the hardware systems that
inspired them has also had a large impact on the way component frameworks
allow users to compose components. There are two general models, each having
multiple variations.

12.3.1 Direct Composition

If we think of a component literally the same way we think of an integrated
circuit, we can envision it as having two basic types of interfaces: input ports
and output ports. Data and requests for service flow into the input ports and
results flow out of the output ports. A typical “graphical programming” envi-
ronment will allow users to select components from a pallet and arrange them
into component graphs where output ports of one component are connected
to the input port of another. As illustrated in Figure 12.1, each component is
represented by an icon with input and output ports clearly identified. Placing
the icon for a component on the pallet represents an instance of the compo-
nent. Dragging a mouse from an output to an input represents the IOC action
to link these two instances together. The types of graphs that can be built
using this approach are a function of the semantics of the component model.

In some systems, the graphs are limited to directed acyclic graphs (DAGS)
or even to trees. In the most general case, the graphs can be cyclic, with com-
ponents that have more than one input port and output ports that can be
connected to more than one input. In this general case, the model of com-
position seems, at first, obvious; the output ports of one component can be
connected to the input ports of another component as long as they have the
same type signature. In this way, users can build an application as a full data-
flow graph. This is an extremely attractive model for application scientists,
and many of them would like to build applications using this concept.

Unfortunately, having an elegant picture of the graph of connectivity does
not fully explain the semantics of the component interaction. There are two
standard cases to consider:

1. Components that have functional or method interfaces
2. Components that have interfaces based on sending and receiving one-way

messages

12 Component Architectures and Services 179

Input port

Output port

Component

instance

Component

instance A

Component

instance B

A connection

(a)

(c)(b)

Figure 12.1: The basic forms of direct composition. a) An icon representing
a component with one input port and one output port, b) a general cyclic
graph, and c) a tree as a special case of a directed acyclic graph.

The easiest of these to map to this graphical representation is the one-
way message-based component model because the act of sending a message
provides the data-driven component of the data-flow graphical metaphor.
However, there are several other issues that must be addressed to make the
picture semantically consistent. Let us assume that the framework uses an
IOC pattern that allows the component to be designed so that it can be
viewed as an idle process waiting for a message to be received at one or more
of its input ports. The first issue that must be addressed is the meaning of two
or more input ports. Do the semantics of the component allow it to respond
to any input on either port? Or is there a data-flow rule that requires and
input message on all ports prior to causing the action of the component to
start? If it does follow this data-flow model, what happens if the component
receives two inputs on one port but none on another? This implies that each
input port must maintain a queue or have the ability to block upstream out-
put ports from sending data until the current data at an input port have been
consumed.

180 Dennis Gannon

Unfortunately, having queues is not sufficient to make the full data-flow
model work. A more difficult problem that every data-flow system must deal
with is matching the correct inputs with each other. For example, suppose
there are two input ports for a component. It is usually the case that if an
input is received on port 1, the semantically matching input on port 2 is
already there or will be the next to arrive. However, if there are many loops
and possible branch conditions, it may be possible for the values that arrive at
port 2 to arrive out of order. This requires a mechanism that uniquely labels
messages according to the “iteration” with which they are associated. The
easiest way out of this problem is to limit components to have a single input
port or to eliminate cycles and restrict the composition to a DAG structure.

The next issue that must be resolved in such a component model is the
meaning of output ports. In most of these systems, an output port is repre-
sented as a channel endpoint that the component writer can use to push out
typed messages. Typically, the IOC pattern for the component model allows
this channel to be connected to one or more input ports on other components.
If more than one input port is connected to an output port, it is the job of the
component framework to duplicate the message for delivery to each input.

There are several significant examples of this style of composition in a
component framework. Ptolemy II [130] is a toolkit for the modeling and
design of digital and analog systems and for the construction of embedded
systems. The components in Ptolemy II are called actors and are composed
together to form data-flow graphs that can support a variety of semantic
behaviors. (The Kepler framework described in this book is built on top of
Ptolemy.)

Mapping Composition Graphs to Components with
Functional Interfaces

Many component frameworks are designed with functional procedure-call in-
terfaces, and users of these systems also demand some form of graphical or
scripted composition tool in order to use them.

There are substantial semantic barriers to mapping a graphical compo-
sitional model onto software components that have procedure-call semantics
for their external interfaces. The first of these involves the meaning of input
and output ports. Suppose a component supports an interface of type F with a
method of type signature T m(S) (meaning it takes an argument of type S and
returns a value of type T). Then it is natural to represent that interface as an
input port, which expects to receive messages of the form m(S-type-value). The
problem is that this is not a one-way message because a value is returned to
the caller. There is a standard solution for embedding such a component into
a data-flow style of message-oriented system. We can automatically generate
or compile a message-style proxy component, as illustrated in Figure 12.2,
that gathers inputs, invokes the interface method, and converts the returned
result to a message.

12 Component Architectures and Services 181

Figure 12.2: A proxy component can be automatically constructed from a
procedure-call–based component that allows it to be inserted into a data-flow
system.

This approach is used in Kepler, Triana, and Taverna (described in this
volume) to integrate RPC-style Web services into a composition tool based
on data flow concepts.

In the case where all the software components are Web services that under-
stand WS-Addressing, there is another solution. WS-Addressing gives us the
ability to pass a message to a Web service with a special tag in the header that
says reply to another. This allows us to specify that the output of a component
should be routed to a third party and a proxy need not be defined.

Graphs that are not data-flow oriented. There are other approaches for dir-
ect composition that are used rather than data flow. For example, Petri Nets
provide a similar compositional model and a rich semantic platform for build-
ing a component architecture. Another approach is to base the composition
on a realization of the Unified Modeling Language (UML).

The Common Object Request Broker Architecture (CORBA) Component
Model [98] has components that have facets that correspond directly to input
and output ports. In the domain of scientific computing, the CORBA Com-
ponent model inspired the Common Component Architecture (CCA) [30,84].
In the CCA model, each component communicates with other components by
a system of ports. Ports are defined by a type system, which is expressed in
Scientific Interface Definition Language (SIDL). SIDL provides a simple way

182 Dennis Gannon

to describe a method interface in terms of the data types common in scientific
computing. There are two types of CCA ports:

1. Provides ports are the services offered by the component. Each Provides
port implements an interface defined in IDL.

2. Uses ports are component features that implement the use of a service
provided by another component. They are bound to the stubs that a
component uses to invoke the services of another port provided by another
component. Uses ports are also defined by IDL.

A Uses port on one component can be connected to the Provides port of
another component as long as they implement the same SIDL interface. The
connection is made by the framework operation “connect” at runtime. When
a component wants to use a service connected to one of its Uses ports, it
executes a framework “getPort” operation. This provides an implementation
of the port or blocks the invocation until one is available. When the component
is finished, it issues a “releasePort” operation. This feature allows components
to be replaced at runtime when not in use.

A Provides port is actually an interface of typed methods with typed res-
ults, and hence it is not a true data-flow model. However, CCA may be used
in a way that emulates the single-input-port style data-flow by making all
method calls have return type void and viewing an invocation of the Uses
port as a push of data arguments to any connected Provides port. Several im-
plementations of the basic CCA model exist, and they cover a wide spectrum
of semantics. SciRun II [492] is one implementation of CCA that is designed
for both distributed and concurrent execution and is used for high-end visu-
alization. XCAT3 [245] is an implementation of CCA where the components
have Provides ports that are implemented as Web services. Both SciRun II
and XCAT3 support an actor style of data-flow graph similar to Ptolemy II,
Kepler, and Triana.

But the standard model of CCA usage is not to emulate data flow. The
types of graphs that typical CCA applications support are component control-
flow call graphs, as illustrated in graph c of Figure 12.1. The emphasis in CCA
is to provide a collection of language-neutral libraries of SPMD parallel com-
ponents that can be composed at runtime and that can execute as efficiently as
any parallel library. The standard CCA application has a root “driver” com-
ponent. This driver component uses its Uses ports to invoke services provided
by other components. The interaction is based entirely on a single thread of
control. When a component invokes a method on a Uses port, control passes
to the method implementing the interface on the Provides port of the com-
ponent that is connected. This component may invoke methods on its own
Uses ports, and the control is passed to the next connected component.

In most of the component systems we have described, concurrency is sup-
ported by the fact that one-way messages enable each component to run its
own thread of control. When a component sends a message to another compo-
nent, it may not need to stop and wait for a reply. The standard CCA model

12 Component Architectures and Services 183

exploits parallelism in a completely orthogonal manner. A Single Program
Multiple Data parallel program is one where the data for the computation
have been divided into some number, say N, of pieces. Rather than running
the program with the entire data set, one copy of the program with one piece
of the data is executed on each of N processors. Because most problems cannot
be easily divided into N pieces that can be solved independently, the program
has to be modified so that information that is part of one part of the solution
can be shared with other parts. This is done with a standard message-passing
library such as MPI.

A standard model CCA SPMD parallel component is one that runs in par-
allel on a distributed memory cluster computer. It uses MPI message passing
to share data needed to complete its work, but this message passing is not
visible from outside the component. As illustrated in Figure 12.3, the CCA
program using this model is a sequential composition of these parallel com-
ponents.

Figure 12.3: A standard model CCA program is a sequential composition of
parallel SPMD components. All of the message passing in the computation is
contained within the components. With a sufficiently powerful library of such
components, programmers can build applications with little need to write
explicit message-passing code.

These are not the only examples of component architectures for scientific
computing. Important early examples include the Model and CODE frame-
works [312]. In visualization applications, the most important early example

184 Dennis Gannon

is the AVS system [266]. Webflow [51] was an early component model for dis-
tributed systems for scientific applications, and, more recently, the Discover
project [50] considers the problem in the context of Grid systems.

12.3.2 Bus-Based Composition

Another model for component composition is based on a different metaphor
from hardware design: Software components can be designed so that they
can be “plugged into a message bus.” The concept is simple and elegant.
The message bus is supplied by the component framework and is respon-
sible for delivering addressed messages to components. It does this by simply
broadcasting each message to each component. The components listen to the
message stream. The components that have a need to respond to messages
of a particular type or address can take a copy of that message and respond
by placing a new message on the bus. Many desktop graphical user interface
systems work on this model. Sun’s JXTA [64] is a good example of this model
in the distributed system case.

There are several different ways such a bus-based system can be organized.
One approach is to give each component a unique identifier that represents its
address on the bus. A message that is tagged with that address is delivered
to that component and no other. This approach makes it difficult for more
than one component to receive a message unless a copy is created for each,
but it does make it possible to build a family of components that are easily

Figure 12.4: Bus-based composition configures components as agents which
listen to messages broadcast over a message bus.

12 Component Architectures and Services 185

assembled into applications that can be easily scripted. For example, suppose
you have three components A, B, and C. Each is capable of reading a data
file, transforming it in some manner, and writing a new data file as a result.
One invokes the component by sending it a message with the address of the
input data file and the address of another component. When it completes, it
posts a message on the bus addressed to the other component. The applic-
ation can then be “programmed” with a fourth component S, which runs a
simple script which uses two primitives: one to send a message on the message
bus, outputPort.send(address, return-address, message), and one to wait for
a message to be delivered, message = inputPort.Read(). A Python-like script
to couple the three components together in a linear chain would look like:

outputPort.send("A", "S", "input_file_1_url")
outputFromA = inputPort.Read()
outputPort.send("B", "S", ouptutFromA)
outputFromB = inputPort.Read()
outputPort.send("C", "S", outputFromB)
outputFromC = inputPort.Read()

Using the full power of a full scripting language, one can easily build compo-
nent applications of arbitrary complexity.

Publish–Subscribe Composition

A more common approach to the design of message-based component systems
is based on a publish–subscribe (pub–sub) notification system. In these sys-
tems, each message has a topic, which is often just a string, but it may also
be a more structured object such as a path hierarchy. For example, a topic
may be userAction.mouseMove or userAction.ButtonPress. Once connected
to the framework bus, a component may then subscribe to events by topic
or topics. For example, a component may subscribe to timerEvents to receive
all events with this topic, or if a hierarchy is supported, a subscription to the
topic userAction.* would deliver all messages that begin with the userAction
prefix.

Application construction in a publish–subscribe component framework is
usually based on a more implicit form of control. One can add a component
to an application because there is a need to respond to an event. For example,
one component may occasionally publish an event signaling a special situation
such as a resource going offline. Responding to that event may require a special
action that must be taken by another component. In this example, this may
be a component that alerts an operator and finds a substitute resource.

12.4 Stateful and Stateless Components

A frequently debated issue regarding software component systems involves
when it is appropriate for a component instance to have state that is visible

186 Dennis Gannon

and persists between client invocations. By state, we mean invoking the com-
ponent instance may cause its behavior to change on subsequent invocations.
For example, suppose a component has an internal variable int x; that can be
accessed with a method int incrementAndReturn() that does x=x+1; return
x;. This has several problems. First, a client component may need to know the
history of prior calls to this component in order for the returned result to have
meaning. However, this is not always the case. If x is initialized to zero, then
the value returned is some measure of the number of previous invocations, or
it can be considered a “unique key” provided to the client. Is this a problem?

To answer this question, consider Web services as components. A service
is a stateless entity because it provides an abstract capability defined by a
document such as an abstract WSDL specification. A service instance is a
concrete binding of a service to a specific network endpoint. A service may be
provided by multiple service instances through a resolution mechanism that
resolves, at request time, a service URI to one of the instances that implement
the service. Therefore, if a client made multiple requests to a service, it would
not know which instance it was talking to from one invocation to the next.
Consequently, having state in the service instances would not be possible
unless that state was somehow shared between multiple instances. In fact,
this is a very common situation. For example, consider a service that provides
the current temperature at the airport in Bloomington, Indiana. The current
state of the temperature is held by an instrument that resides at the airport.
This instrument is an example of a resource managed by the service. Multiple
service instances can interrogate this resource and report the value as the
current temperature at the time of invocation.

Another example is a service that is an interface to your bank account.
The service may allow you to transfer funds between accounts or simply report
the balance in an account. Clearly, we all hope that our bank maintains an
accurate accounting of the state of our accounts. And we would insist that the
Web service instances that access and update our account do so with the most
reliable multiphase transaction protocols. We would not want the state of our
transactions to persist in the service instance because that would expose them
to fraud or loss. We never want a deposit to be lost because a service instance
crashed! If a deposit failed, we would want the transaction to be aborted and
the failure reported back to us. There are three important points here:

1. There is long-term state associated with the component, but it is not kept
by the component instance. The state is held by the resource.

2. To access this state, we must provide context, such as an account number.
3. The component instance may require an internal state to complete a mul-

tiphase commit protocol with the back-end resource, but this state is not
visible to the client and it does not persist between invocations.

In the Web services world, the concept of providing context to access the
resource state is one that has received considerable attention. WS-Context
and WS-Coordination provide protocols for establishing context for ordered

12 Component Architectures and Services 187

transactions between groups of services. WS-Resource Framework is a family
of specs designed to provide a framework for modeling and accessing stateful
resources using Web services. This includes mechanisms to describe views on
the state, to support management of the state through properties associated
with the Web service, and to describe how these mechanisms are extensible
to groups of Web services.

12.5 Space and Time and the Limits to the Power of
Graphical Expression

The component design metaphor of laying out icons representing software
components onto a plane and connecting them together like electronic devices
so that they may interact with each other in response to external controls is a
powerful concept. As a metaphor, it is also very spatial in nature, and it allows
us to see how complex systems can be decomposed into comprehensible units
much better than trying to read through the linear source code that actually
represents the reality of a large system.

It is often argued that this composition-in-space model is not appropri-
ate for building large systems because a two-dimensional graph of a “real”
application would be too hard to read. But component architectures are also
naturally hierarchical. Most allow you to wrap up a network of components
and encapsulate it in a new component. This allows systems of great com-
plexity to be built from two-dimensional diagrams.

12.5.1 Workflow as Composition in Time

The concepts of a component architecture and workflow systems are obviously
closely related. While software component methods are applied to the entire
spectrum of software application development, the connection to scientific
workflow is very clear. If we take the definition of workflow orchestration to
be the activity of organizing the sequences of interdependent tasks that are
needed to manage a business or a scientific or engineering process, we can
see that this clearly relates to the composition of components in a component
framework. Each task is a component, and the composition of one component
with another in an output-to-input order is an acknowledgment of a temporal
ordering that is based on some type of dependency. A workflow instance rep-
resents the active plan to sequence a specific set of tasks to accomplish a single
goal. But the workflow template from which instance was derived from can be
applied to an entire set of independent enactments that may run concurrently
or in a pipelined or data-flow style.

Whereas the composition of software components into a single-program
executable address space is the domain of many software component systems,
workflow comes from the domain of automating human-scale processes that
are scheduled over time. Another difference between direct connection style

188 Dennis Gannon

component composition and most workflow systems is the way control is man-
aged. Connecting software components into explicit data-flow graphs that are
executed within a single system allows the control to be implicit and defined
by the local exchanges between components. This type of distributed, asyn-
chronous local control is a defining characteristic of a composition-in-space
model. However, if a system is physically distributed and composed of a het-
erogeneous collection of elements that interoperate over the Internet, then
completely distributing control is problematic because it is much more dif-
ficult to recover from faults. Hence workflow systems tend to be managed
by a central workflow engine that executes a control script (which may have
been compiled from a graphical representation). This central control script
interprets the component composition graph. It initiates the interaction with
each component and waits for its response. When the response is received, the
control script can proceed with the next action as determined by the inter-
component dependencies that define the workflow. If the completion of one
component interaction enables the invocation of more than one succeeding
component, then the control script can invoke them concurrently (either by
using a separate thread for each or by making nonblocking requests).

Having a centralized enactment engine that does all of the direct invocation
of component services may seem inefficient compared with distributed control.
But for most scientific workflows, which may run for very long periods of time,
this inefficiency is small compared with the advantage of having a single point
that can report on the status of the application and change the course of the
workflow enactment if necessary.

12.5.2 Limits to the Power of Graphical Expression

Many of the scientific workflow tools described in this volume are based on
providing users with a graphical composition tool. This is an extremely at-
tractive paradigm for programming scientific workflows, and it always raises
questions. How powerful is this concept? Is graphical composition of compon-
ents all that is needed for programming? In computer science terms, we are
asking whether these graphical programming systems are Turing complete. In
general, the answer to this question is “no.” There are many programming
activities that are impossible with most graphical systems. For example, most
graphical systems are unable to express exception-handling conditions. A more
fundamental limitation of many systems is the lack of facilities to create new
data types. The fact is that components and services are encapsulation mech-
anisms and what they encapsulate is either another workflow or component
graph or conventional computer code.

A complete component programming system requires not only mechanisms
to compose components but also ways to describe their interfaces and behavi-
ors. This may be an Interface Definition Language of some type, or it may be
an XML schema. For Web services, it is the Web Services Description Lan-
guage (WSDL). But to be truly useful, a system must have a way to build

12 Component Architectures and Services 189

new components and a tool that can convert important legacy applications
into components that can be effectively reused.

13

Petri Nets

Andreas Hoheisel and Martin Alt

In 1962, C.A. Petri introduced in his Ph.D. thesis [351] a formalism for de-
scribing distributed processes by extending state machines with a notion of
concurrency. Due to the simple and intuitive, but at the same time formal and
expressive, nature of his formalism, Petri Nets became an established tool for
modelling and analyzing distributed processes in business as well as the IT
sector. This chapter gives a brief introduction to the theory of Petri Nets and
shows how Petri Nets can be applied for effective workflow management with
regard to the choreography, orchestration, and enactment of e-Science applic-
ations. While choreography deals with the abstract modelling of applications,
orchestration deals with the mapping onto concrete software components and
the infrastructure. During the enactment of e-Science applications, runtime
issues, such as synchronization, persistence, transaction safety, and fault man-
agement, are examined within the workflow formalism.

13.1 Introduction

E-Science applications are usually composed of several distributed services
that are part of a specific process. The user or application developer has to
decide which services should be used in the application and has to specify the
data and control flow between them. We will use the term workflow to refer
to the automation of both control flows and data flows of the application.

In order to simplify the composition of workflows, it is mandatory to de-
scribe an application workflow in a simple, intuitive way. This section gives a
brief overview and classification of common approaches for describing work-
flows and compares these approaches with the notion of Petri Nets.

Existing workflow description languages can be grouped roughly into two
classes: Script-like workflow descriptions specify the workflow by means of a
textual “programming language” that often possesses complex semantics and
an extensive syntax, while graph-based workflow description languages specify
the workflow with only a few basic graph elements. Examples of script-based

13 Petri Nets 191

workflow descriptions are GridAnt [446] and Karajan (refer to Chapter 21).
These languages explicitly contain a set of specific workflow constructs, such
as sequence or while/do, in order to build up the workflow. Purely graph-
based workflow descriptions have been proposed (e.g., for Symphony [265]
or Condor’s DAGMan tool [97]) that are mostly based on directed acyclic
graphs (DAGs). Compared with script-based descriptions, DAGs are easier
to use and more intuitive for the unskilled user: Communications between
different services are represented as arcs going from one service to another.
However, as DAGs are acyclic, they offer only a limited expressiveness, so that
it is often hard to describe complex workflows (e.g., loops cannot be expressed
directly).

Another commonly used script-based approach to describe workflows is the
Business Process Execution Language (BPEL) and its recent version for Web
Services (BPEL4WS) that builds on IBM’s WSFL (Web Services Flow Lan-
guage) and Microsoft’s XLANG (Web Services for Business Process Design).
BPEL is described in more detail in Chapter 14. In comparison with Petri
Nets, BPEL has two main disadvantages. First, BPEL possesses complex and
rather informal semantics, which makes it more difficult to use formal ana-
lysis methods and to model workflows, especially for the unskilled end user.
Second, it has a limited expressiveness (in the sense of suitability); i.e., it does
not directly support some workflow patterns, such as arbitrary cycles [436].

13.1.1 Petri Nets

A Petri Net is one of several mathematical representations of discrete distrib-
uted systems. As a modelling language, it graphically depicts the structure of
a distributed system as a directed bipartite graph with annotations. As such,
a Petri Net has place nodes, transition nodes, and directed arcs connecting
places with transitions [467]. If one abstracts from capacity constraints, Petri
Nets are Turing complete.

There exist several different types of Petri Nets. A common classification
is based on a survey by [47], who distinguishes between three levels of Petri
Nets:

• Level 1: Petri Nets characterized by places that can represent Boolean
values; i.e., a place is marked by at most one unstructured token. Examples
of level 1 nets are Condition/Event (C/E) systems, Elementary Net (EN)
systems, and State Machines (SMs).

• Level 2: Petri Nets characterized by places that can represent integer
values; i.e., a place is marked by a number of unstructured tokens. Ex-
amples of level 2 nets are Place/Transition (P/T) Nets, ordinary Petri
Nets (PNs), and Free Choice Nets.

• Level 3: Petri Nets characterized by places that can represent high-level
values; i.e., a place is marked by a multiset of structured tokens. Examples
of level 3 nets are Colored Petri Nets (CPNs) and High-Level Petri Nets
(HLPNs).

192 Andreas Hoheisel and Martin Alt

In order to model workflows in e-Science, it is very useful to relate the Petri
Net tokens with the real data that are passed from the previous to the fol-
lowing activity. The tokens of a level 1 or level 2 net are unstructured (not
distinguishable), so they do not carry any information besides their existence
and number. These nets are used to describe basic control and data flows but
are not suitable to model the data themselves. The tokens of a level 3 net,
however, can be used directly in order to store the exit status (control data) or
to model the input and output data (real data) of the previous activity, which
are then evaluated by a following activity or the condition of a transition. In
the following, we will introduce the basic Place/Transition Net (level 1 net)
and two commonly used extensions called Stochastic Petri Net and High-Level
Petri Net (level 2 net).

13.1.2 Place/Transition Net (P/T Net)

The basic Petri Net—also known as a Place/Transition Net or P/T Net—
consists of places (p, denoted by circles), transitions (t, represented by thick
vertical lines or rectangles), and directed edges (arcs) connecting places and
transitions or transitions with places, but not places and places or transitions
and transitions. An edge from a place p to a transition t is called an incoming
edge of t, and p is called an input place. Outgoing edges and output places
are defined accordingly. Each place can hold a number of indistinguishable
tokens . The maximum number of tokens on a place is denoted by its capacity.
A distribution of tokens over the places of a net is called marking, which
represents the current state of the workflow. A transition is enabled if there
is a token present at each of its input places and if all output places have
not reached their capacity. Enabled transitions can fire, consuming one token
from each of the input places and producing a new token on each of the output
places. Consecutive markings are obtained by firing transitions. In P/T Nets,
each edge may be labeled with a weight that expresses how many tokens flow
through them at each occurrence of the transitions involved .

It should be noted that the Petri Net state transformation is local in the
sense that it involves only the places connected to a transition by input and/or
output arcs. This is one of the key features of Petri Nets, which allows the easy
description of distributed systems [279]. The execution of P/T Nets may be
nondeterministic since multiple transitions can be enabled at the same time.
If every transition in a Petri Net has exactly one input place and exactly one
output place, the net is in effect a state machine.

Developers often use P/T Nets to model the dynamic behavior of complex
systems. The places are related with certain Boolean state information (e.g.,
open, close, done, failed), and the state is regarded “true” if the corresponding
place contains a token. In level 2 nets, the tokens themselves do not carry any
additional information, so they model the existence of data or specific side
effects. P/T Nets are a good choice if you want to model the data and control
the flow of applications but not the data itself. In case the data flow explicitly

13 Petri Nets 193

ready to produce

C=100

ready to consumeready to deliver

3 2deliver remove consume

ready to remove

produce

Figure 13.1: Place/Transition Net that models a producer/consumer system
with unstructured tokens [369].

depends on the contents of the data, we recommend the use of High-Level
Petri Nets instead (refer to Section 13.1.4).

Figure 13.1 shows a P/T Net representation of a producer/consumer sys-
tem. The producer and consumer are connected via a buffer that has a capacity
of 100 tokens. At each iteration, the producer puts three tokens into the buffer
while the consumer removes two of them in a concurrent process.

13.1.3 Stochastic Petri Net (SPN)

Stochastic Petri Nets (SPNs) associate a firing delay, represented as a ran-
dom distribution function, with each transition. Different types of transitions
can be classified depending on their associated delay; for instance, immediate
transitions (no delay), exponential transitions (the delay is an exponential
distribution), and deterministic transitions (the delay is fixed).

Stochastic Petri Nets are mostly used to statistically analyze running sys-
tems (e.g., for probabilistic performance measures) and less to describe single
workflows. SPN performance evaluation is the modelling of the given sys-
tem using SPNs and generating the stochastic process that governs the sys-
tem’s behavior. This stochastic process is then further analyzed using known
techniques such as Markov chain models and Semi-Markov chain models. In
the context of e-Science frameworks, SPNs are used in complex workflow
scheduling problems. Detailed insights into Stochastic Petri Nets can be found
in [279].

13.1.4 High-Level Petri Net (HLPN)

One approach to using Petri Nets for the description of distributed workflows
in the context of Grid computing is to relate the tokens of a level 3 net with
classes and instances of real data by means of High-Level Petri Nets (HLPNs)
[18]. HLPNs allow for nondeterministic and deterministic choice simply by
connecting several transitions to the same input place and annotating edges
with conditions. HLPNs also make the state of the program execution explicit

194 Andreas Hoheisel and Martin Alt

with tokens flowing through the net that represent the input and output
data as well as side effects. In contrast, DAGs only have a single node type,
and therefore data flowing through the net cannot be modelled easily. Using
the concept of edge expressions, a particular service can be assigned to a
transition, and conditions—also known as transition guards—may be used as
an additional control flow. The resulting workflow description can be analyzed
for certain properties such as conflicts, deadlocks, and liveness using standard
algorithms for HLPNs. High-Level Petri Nets are Turing complete because
they overcome the capacity constraints (unbounded places) and therefore can
do anything we can define in terms of an algorithm [437].

ready to produce

ready to consume aready to deliver a

ready to remove

produce a

a a aa

a a consume aremove adeliver a
buffer full

buffer empty

Figure 13.2: High-Level Petri Net that models a producer/consumer system
for data objects of type a [369].

Figure 13.2 shows an example of an HLPN that models a produ-
cer/consumer system similar to that in Figure 13.1 but also capable of mod-
elling data types. This Petri Net specifies the control flow using unstructured
tokens (places “ready to produce,” “buffer empty,” and “ready to remove”)
and the data flow using tokens of type a (places “ready to deliver a,” “buffer
full,” and “ready to consume a”).

Sections 13.2, 13.3, and 13.4 are based on the concept of High-Level Petri
Nets that is currently being used as the nucleus for workflow management in
several projects, such as the K-Wf Grid project [420], the Fraunhofer Resource
Grid [150,193], and Instant-Grid [213].

13.2 Choreography—Using Petri Nets for Modelling
Abstract Applications

Choreography—also known as dance composition—is the art of making struc-
tures in which movements occur, and it may also refer to the navigation or
connection of these movement structures [465]. Translated to the world of dis-
tributed e-Science applications, the choreography models and describes the
“movement” within applications on an abstract level. This section introduces

13 Petri Nets 195

the basic theory of Petri Nets and describes how they can be used in order to
assist the choreography of distributed e-Science applications.

A workflow description based on graphs does not necessarily mean that a
graphical user interface is required in order to compose workflows. Petri Nets
are in principle just mathematically well-defined entities that possess the nice
feature of having an intuitive visual representation that the user could, but
does not necessarily have to, use. In some cases, the user will actually never
be confronted with the visual representation of the graph; e.g., when the
abstract workflow description is composed automatically or if the Petri Net-
based workflow description is the result of an automatic mapping from another
workflow description format (e.g., performed by the BPEL2PN tool [191]).

13.2.1 Basics

In this chapter, we focus on High-Level Petri Nets (HLPNs), which were intro-
duced informally in Section 13.1.4. For a formal definition of HLPNs, please
refer to [370] or [222]. To model the workflow of a distributed application that
consists of a certain number of coupled software components or services is
fairly simple:

• Transitions represent software components and services or embedded sub-
Petri Nets.

• Places are placeholders for data tokens or control tokens.
• Tokens symbolize real data or control tokens. Control tokens represent

the state of the service and its side effects.
• Edges (arcs) define the data and control flow between the services and

software components.
• Edge expressions specify the names of the service parameters. For ex-

ample, within a service-oriented architecture (SOA) based on Web Ser-
vices, edge expressions define a mapping between the input and output
tokens and their corresponding SOAP message parts.

• Conditions (transition guards) define additional preconditions that must
be fulfilled before the software component or the service is invoked. Nor-
mally, a condition is a function that maps input tokens onto a Boolean
value. The transition fires only if all its conditions are “true.” Conditions
are also used to resolve conflicts and decisions in nondeterministic work-
flows (see below).

With these few language elements, the Petri Net concept is suitable for mod-
elling the inputs outputs preconditions as well as the side effects for each
software component or service, as shown in Figure 13.3.

Figure 13.4 shows three simple examples of how to use Petri Nets for
modelling applications. In the first example (Figure 13.4a), the transition
represents a single service with two input parameters (x and y) and one output
parameter (result). The transition possesses a condition that depends on the

196 Andreas Hoheisel and Martin Alt

input parameters x and y. The result of the service invocation will be placed
on the output place.

The second example (Figure 13.4b) shows how to build an if/then/else
construct: Each transition represents one branch of the decision. In the sense
of the Petri Net theory, the two transitions are in conflict because they com-
pete for the same token, as they share the same input place. This conflict is
solved by introducing two disjunctive conditions (condition and !condition).
If condition is true, then service f(x) will be invoked; if condition is false,
then service g(x) will be invoked.

A loop is shown in the third example (Figure 13.4c). The upper place
holds the token that represents the data to be passed from each iteration to
the next iteration. The token on the lower place contains the number i that
is incremented after each iteration (i + 1). If the initial value of this token is
i = 0, then the service l(x) will be invoked N times.

Further information about how to express common workflow patterns us-
ing Petri Nets is available in [305] and [370].

outputinput

begin outputData

hasBeenSorted

condition

sort

Figure 13.3: Example Petri Net that models the input, output, precondition,
and effect (IOPE) of a sort transition.

r

x
i

i+1

. . .

. . .
x

x

r

r

r=l(x)

i<N

result=service(x,y)

y

x
result

condition(x,y)

(a) (b) (c)

r=f(x)

condition

r=g(x)

!condition

Figure 13.4: HLPNs for single services (a), if/then/else branches (b), and loops
(c).

13 Petri Nets 197

13.2.2 Case Study

In the following, we demonstrate the Petri Net approach using a real-world
example from the e-Science community. The Barnes–Hut (BH) algorithm [39]
is a widely used approach to compute force interactions of bodies (particles)
based on their mass and position in space; e.g., in astrophysical simulations. At
each timestep, the pairwise interactions of all bodies have to be calculated,
which implies a computational complexity of O(n2) for n bodies. The BH
algorithm reduces the complexity to O(n · log n) by grouping distant particles:
For a single particle in the BH algorithm, distant groups of particles are
considered as a single object if the ratio between the spatial extent of the
particle group and the distance to the group is smaller than a simulation-
specific coefficient θ (chosen by the user).

For efficient access to the huge amount of possible groups in a simulation
space with a large number of objects, the BH algorithm subdivides the 3D
simulation space using a hierarchical octree with eight child cubes for each
node (or quadtree for the 2D case). The tree’s leaves contain single particles,
and parental nodes represent the particle group of all child nodes and contain
the group’s center and aggregated mass. The force calculation of a single
particle then is performed by a depth-first traversal of the tree. Figure 13.5
depicts an example partition and the resulting quadtree for the 2D case (see
[39] for further details and complexity considerations).

3

4

7

2

8

9

1

5

6

1 2

3

4 5 6 7

8 9

Figure 13.5: Example of a typical e-Science application: The Barnes–Hut al-
gorithm and its octree partition of the simulation space.

We will now show how the workflow of this complex Grid application can
be expressed easily as an HLPN.

The computations for one timestep of the algorithm are decomposed into
a workflow containing six services, as shown in Fig. 13.6, which correspond to
the following steps of the algorithm:

1. Calculation of the spatial boundary of the simulation space. In order to
build the tree, it is necessary to know the boundaries of the universe to

198 Andreas Hoheisel and Martin Alt

be simulated. This is done using the service compBB, which produces a
bounding box bb as output. Note that this bounding box is copied to two
output places for use by two other services. Also, the array of particles
part received as input is copied to a third output place, as it is also used
by the next service.

2. Indexing. In order to group particles that are nearby in space, the particle
array must be sorted so that nearby particles are also at nearby positions
in the particle array. As a first step for sorting, an index is computed for
each particle, based on its spatial location, using service index. The result
iPart is a particle array, where each particle has an index associated with
it.

3. Sorting. The particles are then sorted in ascending order of the index
computed in the previous step using the service sort. The resulting sorted
particle array sPart is used as input for two other services and thus copied
to two different output places.

4. Building the octrees. This step builds the octree representation of the
universe using the service treebuild. The resulting tree is used to group
particles for efficient access.

5. Force computation. In this step, the interaction of each particle with all
others is computed by the service interact. For each particle in sPart, the
octree tree is traversed and the force effect of the current node is added
to the velocity vector of the particle if the node represents a group that
is small enough or far enough away. If this criterion is not yet met, then
the eight child nodes are processed recursively.

6. Particle update. Finally, in the update service, for each particle, the current
particle’s position is updated according to the forces computed in the
previous step.

Each of the services can be executed remotely on parallel high-performance
Grid servers; e.g., as described in [17].

The workflow for a single timestep described above is executed iteratively
to evolve the simulated universe for a user-defined amount of time. The cor-
responding workflow is shown in Fig. 13.7.

1 2 4 53 6

bb

part

bb iPart

part

part sPart partpart tree tree

interact

iPart part upart

compBB index sort treebuild update

part
sPart bbbb

Figure 13.6: This Petri Net specifies the workflow for a single timestep of the
Barnes–Hut algorithm.

13 Petri Nets 199

bhIter

i<Ni i+1

part uPart

part=loadParticles()

0

part

save(result)

result

i

i=N

Figure 13.7: This Petri Net specifies the outer loop of the Barnes–Hut al-
gorithm. The transition bhIter represents the embedded sub-Petri Net shown
in Figure 13.6.

The single-iteration workflow is encapsulated in a composite transition
bhIter, which is executed in a bounded loop. Before the algorithm starts, initial
particle positions and velocities are loaded using the service loadParticles.
Also, the iteration counter is initialized with 0 using a transition that places
a 0 on its output place when executed. Finally the transition save is used to
save the result after N timesteps.

13.2.3 Workflow Description Languages Based on Petri Nets

The concepts, definitions, and graphical notations of High-Level Petri Nets
are standardized within the ISO/IEC 15909-1 standard [220]. Part 2 of this
standard (ISO/IEC 15909-2) [221] is currently available as a working draft and
specifies a so-called Petri Net Markup Language (PNML) [228] in order to es-
tablish an XML-based interchange format for exchanging Petri Nets between
different Petri Net tools. The PNML is a language for describing a pure Petri
Net together with its graphical layout; however, it is not possible with this
language to relate transitions with services or software components, or tokens
with concrete data, as is required for modelling and controlling real e-Science
applications. Therefore, Fraunhofer FIRST developed a Grid Job Definition
Language (GJobDL) that is based on PNML and possesses additional lan-
guage elements required in a Grid computing environment. The GJobDL has
been used extensively in the Fraunhofer Resource Grid [150] as a general Grid
workflow description language since 2002.

Based on the GJobDL, Fraunhofer FIRST and the University of Münster
recently developed the Grid Workflow Description Language (GWorkflowDL)
in the context of the European project “Knowledge-Based Workflow System
for Grid Applications” (K-Wf Grid) and the European Network of Excel-
lence “CoreGRID.” Besides the XML schema, there are also Java tools for
creating, parsing, editing, and analyzing GWorkflowDL documents under de-
velopment [421].

Figure 13.8 graphically represents the XML schema of the GWorkflowDL.
The root element is called <workflow>: It contains the optional element

200 Andreas Hoheisel and Martin Alt

description?
place

token*

capacity?ID

* *

transition placeID ? edgeExpression

placeID ? edgeExpression+ inputPlace

? description

+ outputPlace

?

ID

?
?workflow

? description

operation

condition
JavaRMIExtension

WSRFExtension

Figure 13.8: Graphical representation of the GWorkflowDL XML schema (“?”
= 0...1 elements, “∗” = 0...n elements, “+” = 1...n elements, rectangle with
dashed line = attribute, rectangle with solid line = element).

<description> with a human-readable description of the workflow and sev-
eral occurrences of the elements <transition> and <place> that define the
Petri Net of the workflow. The element <transition> contains the child ele-
ment <operation>, which may be extended by platform-specific child ele-
ments, such as <WSRFExtension> and <JavaRMIExtension>, representing spe-
cial mappings of transitions onto particular Grid platforms. The elements
<inputPlace> and <outputPlace> define the edges of the net. Edge ex-
pressions are represented as attribute edgeExpression of InputPlace and
OutputPlace tags.

The XML document listed below specifies a workflow according to the
example represented graphically in Figure 13.3:

<workflow xsi:noNamespaceSchemaLocation=
"http://www.gridworkflow.org/kwfgrid/src/xsd/
gworkflowdl_0_9.xsd">

<place ID="begin">
<token>

<soap>
<data1 xsd:type="xsi:string">1 3 17 4 5</data1>

</soap>
</token>
<token>

<soap>
<data2 xsd:type="xsi:string">5 13 4 5 100</data2>

13 Petri Nets 201

</soap>
</token>

</place>
<place ID="outputData"/>
<place ID="hasBeenSorted"/>
<transition ID="sort">

<description>sorts strings or numbers</description>
<inputPlace placeID="begin" edgeExpression="input"/>
<outputPlace placeID="outputData" edgeExpression="output"/>
<outputPlace placeID="hasBeenSorted"/>
<condition>string-length($input/token)>0</condition>
<operation>

<WSClassOperation>
<WSOperation owl="http://kwfgrid.net/services/Sort"

selected="true"/>
</WSClassOperation>

</operation>
</transition>

</workflow>

13.3 Orchestration—Using Petri Nets for Mapping
Abstract Workflows onto Concrete Resources

In the noncomputational world, the term “orchestration” stands for deciding
which instruments should play which notes in a piece of music. Orchestration
includes, in addition to instrumentation, the handling of groups of instru-
ments and their balance and interaction [466]. If you now replace instrument
by resource, play note by invoke operation, and piece of music by e-Science
application, then you get a nice definition of the term orchestration in the
context of e-Science. This section shows how Petri Nets can be used when
mapping abstract workflows onto concrete resources.

Figure 13.9 shows an example of such a mapping. Each workflow may pos-
sess a different abstraction level, ranging from an abstract user request to the
concrete workflow, which can be invoked directly on the available resources.
All these abstraction levels are represented by Petri Nets within a single work-
flow description language. The mapping itself is done by refining the Petri Net
(e.g., replacing a transition by a sub-Petri Net). The example in Figure 13.9
depicts the abstraction levels that are supported within the service-oriented
architecture (SOA) of the K-Wf Grid project, as in the following list.

• Abstract operation. The user request represents a single abstract opera-
tion that still has not been mapped onto potential workflows. The output
places of the transition are linked to some metadata, which specify the
workflow result (data and side effects) requested by the user.

202 Andreas Hoheisel and Martin Alt

• Web Service classes. The user request is mapped onto an abstract work-
flow, which consists of operations of Web Service classes. This abstract
workflow is independent from the concrete resources and represents the
functionality of the workflow. The automation of the composition of ab-
stract workflows is an ongoing research topic. Gubala et al. [183] used
matching of ontologically described resources in order to find classes of
Web Services that provide the desired output data and side effects.

• Web Service candidates. Each Web Service class is mapped onto matching
Web Service candidates that are currently available within the distributed
e-Science environment. An expert system could assist this matching pro-
cess [125].

• Web Service operations. From each list of matching Web Service candid-
ates, one concrete instance of Web Service operation has to be selected
and invoked. This is normally delegated to a scheduler, which optimizes
the selection of concrete Web Service instances according to a user-defined
policy, such as “fastest” or “cheapest.” In state-of-the-art e-Science envi-
ronments, the scheduling decision is based on performance prediction and
detailed monitoring data, such as computational load and network traffic.

It is worth mentioning that one workflow may possess different abstraction
levels at the same time— for example, if the refinement of the workflow is done
during runtime. In this case, only currently enabled transitions are mapped
onto concrete Grid resources, while the rest of the workflow remains abstract.
This is mandatory if a consecutive refinement decision depends on an inter-
mediate workflow result. In this case, it is not possible to build the concrete
workflow from the beginning—the orchestration is then an iterative or even
interactive process.

Figure 13.10 shows how the case study in Section 13.2.2 can be mapped
onto a service-oriented architecture (SOA). Each specific service of the
Barnes–Hut algorithm is deployed on a dedicated host, and it is up to the
workflow enactment service to synchronize the invocation of the remote Web
Service operations and to transfer the data from one service to the next, as
described in the next section.

13.4 Enactment—Using Petri Nets for Executing and
Controlling e-Science Applications

Petri Nets are used not only for modelling coupled and distributed applications
but also for executing the workflow directly on underlying middleware. In
order to enact a workflow due to its description, a service is required that
parses the abstract workflow description, maps it onto real resources (refer to
Section 13.3), and coordinates the execution of the corresponding activities.
The Workflow Management Coalition [479] uses the term workflow engine for
such a software service that provides the runtime execution environment for
interpreting workflows.

13 Petri Nets 203

Figure 13.9: Workflow abstraction levels as supported by the K-Wf Grid pro-
ject. All abstraction levels are represented as Petri Nets within a single work-
flow description language.

The development of a workflow engine based on Petri Nets is quite easy,
as it is a straightforward implementation of the Petri Net rules. Figure 13.11
shows the kernel process of the Grid Workflow Execution Service (GWES)
developed within the K-Wf Grid project. First, the workflow engine parses,
verifies, and analyzes the incoming workflow description. Next, the engine
collects all enabled transitions according to the mathematical definition of the
term enabled (refer to Section 13.1.2). For each enabled transition, a condition
checker evaluates the attached conditions (also known as transition guards). If
the condition is true and if the transition references a concrete activity, then
this activity is started (e.g., invoking a remote Web Service operation). If the
activity completes, then the corresponding transition fires; i.e., one token is
removed from each input place and the activity results (data, side effects)
are placed as new tokens on the output places. If the transition refers to
an abstract activity, then the transition has to be refined first as described in
Section 13.3. The new marking of the Petri Net enables subsequent transitions

204 Andreas Hoheisel and Martin Alt

Internet
WAN

buildtree
implementation

sort
implementation

service library

Host B

Client

Host C

interact

service library

implementation

Host Aworkflow

sort
implementation

service library

Lookup Service

Figure 13.10: Example of the Barnes–Hut algorithm mapped onto a service-
oriented architecture (SOA).

and their corresponding activities. If there are no more enabled transitions, nor
active activities remaining in the workflow, then the workflow is completed.

A big advantage of Petri Net-based workflow engines is that they can pro-
cess almost every workflow pattern without modification of the software. The
Petri Net concept is very expressive and simple at the same time, and there
is no need to implement special functionality for workflow constructs, such
as loops, if/then clauses, and synchronization points. All these workflow con-
structs are supported implicitly by the Petri Net approach, and the workflow
engine itself does not have to bother about them if it implements the basic
Petri Net rules.

Figure 13.12 shows the Petri Net workflow enactment front end of the
Fraunhofer Resource Grid. The right panel gives a graphical representation of
the current workflow. The upper left panel depicts the XML document of the
workflow description. The lower left panel shows the geographical distribution
of the workflow on a map (here with four Fraunhofer Institutes involved in the
workflow). The user interface can be used either as a stand-alone application
or as a set of Java applets, which communicate with the workflow engine using
Web Service technology.

After having introduced the basic execution mechanism of a Petri Net
workflow engine, in the following we discuss further runtime issues, such as
workflow persistence, transactional workflows, and fault management.

In a nonreliable environment, workflows should be persistent ; i.e., they
should be stored on nonvolatile storage during and after their execution. This
is required, for example, to reproduce workflow results or to checkpoint the in-
termediate workflow state in order to recover a workflow after a system failure.
Using the Petri Net approach, it is easy to achieve persistence, as the mark-

13 Petri Nets 205

verify/analyze workflow

collect enabled transitions

check condition

transition != abstract

transition == abstract

start activity

(invoke Web Service operation)

if activity completed: fire transition

refine workflow

(resource mapping,

scheduler, user)

no enabled transition:

workflow completed

Figure 13.11: The kernel process of a Petri Net-based workflow enactment
machine with automatic refinement.

ing of a Petri Net fully describes the state on the workflow level. Therefore
it is enough just to store the current workflow description document together
with the contents of the tokens in order to get a nonvolatile snapshot of the
workflow state. As there is no principal difference between the descriptions
of an initial and a running workflow, it is possible to just reload the stored
workflow description in order to recover a terminated or aborted workflow.

Transactional workflows are workflows that are either entirely completed
or aborted in order to guarantee the integrity of the workflow management
system. In general, this can only be achieved if each of the workflow’s activities
is transactional itself. In traditional database systems, transactions are spe-
cified according to the ACID properties (atomicity, consistency, isolation, and
durability) [219]. The ACID properties, however, are very difficult to guaran-
tee in a distributed environment with long-running transactions, so here the
so-called compensation transaction is often used instead, with limited roll-
back and isolation capabilities [56]. A Petri Net-based workflow engine could
support transactional workflows by recording the whole workflow history and
implementing a mechanism that calls the underlying compensation mechan-
isms of the invoked activities in order to roll back the workflow.

Petri Nets are appropriate to support implicit as well as explicit fault man-
agement mechanisms. Implicit fault management can be inherently included
in the middleware and is invoked either by lower-level services regarding fault
management of single activities or by higher-level services considering the
workflow of the e-Science application. This type of implicit fault management

206 Andreas Hoheisel and Martin Alt

Figure 13.12: The Petri Net-based workflow enactment front end of the
Fraunhofer Resource Grid.

can be achieved by Petri Net refinement; e.g., by automatically introducing
a sub-Petri Net that restarts the activity if the submission or execution fails.
Explicit fault management in our definition refers to user-defined fault man-
agement. Within the Petri Net workflow model, the user defines the fault
management explicitly by including user-defined fault management tasks in
the Petri Net of the application. Hoheisel and Der [194] give more details
about how to model and enable fault management using Petri Nets.

13.5 Conclusions

Petri Nets are a well-established approach in computer science for modelling
and analyzing distributed processes, whereas many workflow management sys-
tems in the e-Science domain use other workflow formalisms, such as BPEL
and DAG. The reasons for this are on the one hand the strong influence of
industrial groups enforcing their own standards (e.g., BPEL) and on the other
hand the wish to keep things very simple (DAG). The Petri Net approach is,
nevertheless, a good candidate for becoming a vendor-independent standard
for graph-based modelling of e-Science workflows, as it has formal semantics—
which offer a profound theory background—and provides advanced analysis

13 Petri Nets 207

methods. An encouraging alternative is to base the workflow engine on Petri
Nets and to map other high-level workflow formalisms (e.g., BPEL, UML)
onto Petri Nets just before the workflow enactment. It is worth mentioning
that many commercial workflow management systems in the business process
domain are based on Petri Nets and that the semantics of UML 2.0 activity
diagrams have been strongly influenced by them.

There exist several classes of Petri Nets that are suitable for different pur-
poses. In order to apply the Petri Net approach to the choreography, orches-
tration, and enactment of real-world e-Science workflows, High-Level Petri
Nets (HLPNs) provide an adequate solution. However, we propose to extend
the classical definition of HLPN for this purpose. We introduce a special nota-
tion for conditions (using the XPath 1.0 standard) to facilitate reactive work-
flow management in addition to the control and data flows that are explicitly
modeled by the edges of the Petri Net. Transitions do not fire instantaneously,
as they represent the invocation of real-world software components or services.
The content of data tokens represents the real data that are produced by ex-
ternal software components or services. We use edge expressions to link places
with specific software component or service parameters.

One drawback of the Petri Net approach is the fact that the graph may
become very huge for complex and fine-grained systems. One solution to this
problem is the use of hierarchical Petri Nets, where one transition represents
a whole sub-Petri Net. The main application area for Petri Nets is in loosely
coupled systems that exhibit a certain granularity of components.

Acknowledgments

This work is supported in part by the European Union through the IST-2002-
004265 Network of Excellence CoreGRID and the IST-2002-511385 project
K-Wf Grid.

14

Adapting BPEL to Scientific Workflows

Aleksander Slominski

14.1 Introduction

In this chapter, we examine the degree to which a de facto standard busi-
ness Web services workflow language, Business Process Execution Language
for Web Services (BPEL4WS), can be used to compose Grid and scientific
workflows. As the Grid application models, such as Open Grid Services Archi-
tecture (OGSA) [146], move toward Web services and service-oriented archi-
tecture (SOA) [135], supporting Web services is becoming a requirement for
a Grid workflow language.

There is a great potential value in leveraging an established workflow lan-
guage standard from the business domain, as it allows for a productive shar-
ing of workflow definition documents using commercial and open-source tools,
leveraging existing training and support, documentation, books, etc. BPEL,
even if it is not a primary workflow language in scientific projects, is a very
good candidate for a common language for sharing workflows between different
projects. (This can be achieved by allowing a workflow to export and import
BPEL workflows in scientific projects.) A high-level overview and more details
about differences between scientific and business workflows can be found in
Chapter 2.

In this chapter, we identify the requirements that we have found to be
important for scientific and Grid workflows that are not yet common in busi-
ness workflows and some that may never become commonplace in business
workflows (such as an experimental approach to constructing workflows). To
this end, we propose a set of additional capabilities that are needed in Grid
workflows and show how they can be implemented with a concrete example.

14.2 Short Overview of BPEL

The following is not meant to be a comprehensive treatment of the BPEL lan-
guage. Instead, our goal is to highlight key features and describe parts of BPEL

14 Adapting BPEL to Scientific Workflows 209

that are particularly important in the context of scientific workflows. Addi-
tional information can be easily obtained from many online sources, books,
and articles, and the BPEL specification itself is the best resource for all the
details.

14.2.1 Origins of BPEL

Business Process Execution Language for Web Services (BPEL4WS), when
created in 2002, replaced two workflow languages created earlier by IBM and
Microsoft. IBM’s Web Services Flow Language (WSFL) had a graph-oriented
view on how to describe workflows, and Microsoft’s XLANG represented a
more block-structured approach. BPEL merged both views and added ex-
tensive support for structural handling of errors with try/catch constructs
and compensation handlers. The initial 1.0 release of BPEL was followed in
2003 by version 1.1 [24], which clarified and improved several parts of BPEL
1.0. Later that year, BPEL was submitted to the Organization for the Ad-
vancement of Structured Information Standards (OASIS), and since 2004 it
has been standardized as WS-BPEL 2.0 [315]. The major change in version
number and changed name reflect that OASIS WS-BPEL 2.0 will be a major
revision and not fully compatible with 1.x versions. In this overview, we will
concentrate on BPEL4WS 1.1.

14.2.2 BPEL Capabilities

BPEL4WS is designed from the ground up to work with Web services, and
each BPEL workflow is a Web Service as well. This makes BPEL an easy fit
into Web services middleware and allows for easy composition of hierarchical
workflows: A BPEL workflow is a Web Service that can be used inside another
BPEL workflow that may again be used as a Web Service inside yet another
BPEL workflow.

BPEL allows one to describe a blueprint of a workflow (called an “abstract
BPEL”) that highlights important behaviors without specifying all details.
The intention is to allow the definition of publicly visible behaviors of a work-
flow, hiding details that may differ between implementations of a blueprint.
This is like an interface or a contract in programming languages. The abstract
BPEL is then implemented by a BPEL workflow that has all details filled in
(called “executable BPEL”).

BPEL mandates support for XPath 1.0 as an expression language to ma-
nipulate XML. XML schemas are supported as a type system that is mainly
used in Web Service Description Language documents (WSDLs) referenced by
BPEL workflows. WS-Addressing and asynchronous conversations are suppor-
ted with the ability to use message correlations to flexibly relate messages that
are part of a workflow execution. Those specifications provide a solid set of

210 Aleksander Slominski

tools to manipulate XML messages, extract and combine parts of XML mes-
sages, describe and validate the content of XML messages, and route messages
to Web services.

BPEL has a strong set of control structures (loops, conditions, etc.) and
good support for catching and handling exceptions (faults) and reversing
changes by using compensations. Compensations are particularly important
for long-running workflows that need to “undo” changes in case there are un-
recoverable errors in services used by a workflow and global consistency must
be restored before a workflow is finished. Using traditional transactions may
not be an option, as long-running workflows could lead to transactional locks
being held for a very long time. BPEL is a control-driven workflow, but mod-
eling data-driven workflows that are translated to BPEL is possible (for more
details on the differences between the approaches, see Chapter 11).

14.2.3 Structure of The BPEL Workflow

The overall structure of the BPEL workflow is shown in Figure 14.1. A BPEL
workflow definition is inside a <process> element. This element is a container
for a set of other elements, such as <partnerLinks> and <variables>, and
one activity that is an entry point to a workflow (typically a <sequence>).

XML is a very verbose language, so in the interest of keeping examples
readable, we will use a simplified notation instead of XML. In this notation,
text indentation indicates a level of nesting of an XML element, and XML
attributes are simply listed after an element name as name=value pairs (pos-
sibly on multiple lines). We will also omit details that are not important for
a given example, such as “messageType” attributes for variables.

By using this compact notation, the example from Figure 14.1 can be
rewritten in a shorter form as shown in Figure 14.2.

14.2.4 The Most Common BPEL Activities

Basic Activities.

BPEL provides a set of simple constructs for sending and receiving messages.
A typical BPEL workflow will start with a <receive> activity and end with
a <reply> activity that sends a reply message to whoever sent initial mes-
sages that were received. It is easy to send a message to other Web services
(they are called partners in BPEL) by using the <invoke> activity. There
are two versions of <invoke>: the one-way version, when only inputVariable
is present; and the request–response version, when both inputVariable and
outputVariable are present in <invoke>.

Data Manipulation.

All messages in BPEL are contained in variables. Variables are passed between
BPEL activities. To copy and change the content of variables, <assign> activ-

14 Adapting BPEL to Scientific Workflows 211

<process name="BpelProcessName" targetNamespace="..."

xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

<partnerLinks>

<partnerLink name="partnerA"

partnerLinkType="wsdl:partnerALinkType"

myRole="myRoleInRelationToPartnerA"/>

...

</partnerLinks>

<variables>

<variable name="varA" messageType="wsdl:MessageA"/>

...

</variables>

<!-- this is executable part of workflow -->

<sequence>

<receive partnerLink="partnerA" portType="wsdl:partnerALinkType"

operation="doSomething" variable="varA" />

<assign>

<copy>

<from>$varA.someParameter</from>

<to>$varB.anotherInfo</to>

</copy>

</assign>

<invoke partnerLink="partnerB" portType="pb:anotherPartnerPT"

operation="doSomethingElse" inputVariable="varB"

outputVariable="varC" />

.... <!-- here something more happens -->

<reply partnerLink="partnerA" portType="wsdl:partnerALinkType"

operation="doSomething" variable="results"/>

</sequence>

</process>

Figure 14.1: Outline of a BPEL process in XML.

ity can be used — it supports the XPath language to select and modify XML
content (other data-manipulation languages may be used as extensions to
BPEL, but only XPath is required).

Structured Activities.

BPEL has a set of structural activities similar to what is available in proced-
ural languages. Loops (<while>) and conditions (<switch> and <if> in BPEL
2.0) are supported. In addition to a block-level construct — <sequence> —
BPEL also supports starting multiple threads of execution in parallel by using
<flow>.

212 Aleksander Slominski

process name="BpelProcessName"

variables $varA, $varB, ...

partnerLinks "partnerA", "partnerB", ...

this is executable part of workflow

sequence

receive partnerLink="partnerA"

operation="doSomething" variable="varA"

assign copy from $varA.someParameter

to $varB.anotherInfo

invoke partnerLink="partnerB"

operation="doSomethingElse" inputVariable="varB"

outputVariable="varC"

here something more may be added

reply partnerLink="partnerA"

operation="doSomething" variable="results"

Figure 14.2: Outline of a BPEL process without XML.

Graph-Based-Workflows.

This last capability is a key to supporting graph-based composition. It is easy
to start many activities in parallel with <flow>, and BPEL allows one to
define graph-like dependencies between activities. Each activity (a node in
a graph) may have a set of incoming and outgoing links. For an activity to
start its execution, all incoming links must be enabled. When an activity is
finished, all of its outgoing links will be enabled, and that will enable related
incoming links for other activities and so on (additional details can be found
in the BPEL specification). This capability allows one to build any graph in
BPEL, and the interesting part is that BPEL allows the programmer to mix
structured and graph approaches in one workflow.

14.2.5 Limitations of BPEL

BPEL does not have a parallel loop. This is particularly important for sci-
entific code. If the number of iterations is constant, it is possible to use <flow>
to start multiple activities in parallel, but this approach does not work if the
number of iterations depends on an input to a workflow. A parallel loop can
be simulated with nonblocking invocations of a Web Service (that is, a BPEL
subworkflow), but such invocations are hard to track, and in general estab-
lishing communication channels between subworkflows and the main workflow
may be difficult (such as detecting when all subworkflows finished execution
successfully).

This and some other limitations of BPEL 1.1 (such as limited capabilities
of the <assign> activity) may be fixed in the upcoming OASIS WS-BPEL
2.0 when work on it is finished.

14 Adapting BPEL to Scientific Workflows 213

14.3 Goals and Requirements for Scientific Workflows
in Grids

Based on our experience, we identified a set of requirements that are desir-
able for a scientific workflow language and a workflow execution environment
(typically called a “workflow engine”) for Grids. Those requirements can be
used to evaluate any Grid workflow language, and later we will use them to
see how BPEL meets requirements for a scientific workflow language in Grids.
However, they will vary in different domains. For example, see Chapter 16,
where requirements for semantic workflows are discussed, and Chapter 26,
with requirements identified in the SEDNA scientific modeling environment.

Generic Design Goals

Use of Standards. Standards help to increase the reuse of workflows and
help share parts of whole workflows. We believe that using an industry stan-
dard Web services workflow language is beneficial to scientific workflows. Be-
sides greater reuse and sharing of tooling, it also allows to leverage existing
knowhow in tutorials, documentation, and other resources available on the In-
ternet. Only when a standard workflow language does not meet requirement
of a scientific workflow (either for a generic or a specific scientific domain)
and such a language cannot be extended to meet requirements (or extensions
are too complicated) should a new workflow language be created. BPEL is
the current de facto standard for Web services based workflows in business
environments and therefore is a good candidate for a standard-based scientific
workflow language for Grids that use Web services.

Integration with Web Architecture. In addition to running workflows, a
Grid workflow engine should follow the general design of a Web Architec-
ture [428,455]. In particular, using URIs simplifies integration of information
resources maintained in a workflow engine with portals, scientific notebooks,
data management systems, and any other scientific or Grid tools. Using URIs
allows to reference workflows (and their parts) already stored in a workflow
engine. In particular, this makes it easier to integrate a workflow engine with
emerging Semantic Web standards [454] that use URIs to identify everything
and makes such semantically enriched information machine-understandable.

Integration with portals. A workflow engine should be easy to integrate into
an existing scientific portal. At a minimum, a workflow engine should expose
a set of monitoring and administrative operations that can be accessed by
portals as Web services. It would also be beneficial if a workflow engine used
Semantic Web data standards [454] and was easy to integrate with scientific
data management systems such as myGrid [308] and myLEAD [359].

Requirements Specific to Scientific Workflows

Integration with legacy code. In scientific workflows, it should be easy to use
components that are not Web services. This requirement can be met by either

214 Aleksander Slominski

directly adding support for specific legacy or special execution capabilities or
by taking advantage of WSDL’s flexibility. Both choices are common. How-
ever, using WSDL as a common abstraction to describe a “service” that is
not necessarily a Web Service provides a uniform and elegant abstraction. A
service accessed from a workflow can be anything from a “real” SOAP-based
Web Service over HTTP to a service that is just an executable running loc-
ally. This is advantageous, as it simplifies a workflow language — it needs
only to describe the orchestration of services described in WSDLs. Also, us-
ing WSDLs makes a workflow description more abstract and resilient to minor
changes and allows the service implementation and location to be determined
at the moment when the workflow needs to access a WSDL-described service.
Apache Web Services Invocation Framework (WSIF [124]) is an example of
a runtime environment that allows seamless access to any service that is de-
scribed in WSDL and available over SOAP/HTTP, SOAP/JMS, as a local
Java object, EJB, and even as embedded scripts. The other possibility is to
embed actual code that interacts with legacy functionality into BPEL as an
extension (for example, the proposed BPELJ [207], which allows one to embed
Java code snippets into BPEL).

Experimental flexibility. A scientific workflow language and a work-
flow runtime environment should support a scientific laboratory notebook
paradigm. They should allow a user to construct and develop a workflow in-
crementally, add and remove steps in a running workflow, modify existing
workflow activities, allow repeat execution of workflow parts, modify work-
flow structure during execution, allow “branching” of a running workflow by
cloning its state, and other operations that may come up when creating and
running experiments. The exact set of capabilities depends on what is expec-
ted by the particular group of users that will be using Grid workflows.

History and provenance. A workflow execution environment for scientific
workflows should automatically record the history of a workflow execution. A
history log should have enough information to reproduce the workflow exe-
cution. That may include, but is not limited to, a time-ordered list of what
services were executed (with enough information to uniquely identify the ser-
vice instances used), what input and output messages were passed, or a record
of any modifications to the workflow state. This information should be used
to construct a full provenance record by an external service. It is also help-
ful if a workflow execution environment can use external provenance tracking
services.

Reuse and hierarchical composition. To encourage workflow reuse, it is
important that workflows be able to be used as parts in bigger workflows.
This can be enabled if workflows are Web services themselves that can be
part of other workflows. A workflow engine should support such composition
by exposing each workflow as a Web or Grid Service.

Support very long-running processes. We expect that some workflows will
be used to orchestrate Web and Grid services that may take very long periods
of time to complete. Therefore, it is very important that a workflow engine

14 Adapting BPEL to Scientific Workflows 215

not only run and store the state of such workflows (so they can survive inter-
mittent failures) but that it will also be easy to find, monitor, and manage
such workflows.

Support running a very large number of workflows. In some scientific do-
mains, running experiments involves starting a very large number of short-
lived workflows. A workflow engine must provide capabilities to track all work-
flows started and make it easy to control them.

Grid-Specific Requirements

Accessing Grid resources. As it was mentioned before (in case of the legacy
code), it is possible to use WSDL abstraction to hide implementation details
of a service. The same approach can be applied to accessing Grid services
from a workflow language. In the case where a WSDL abstraction is not
used, a workflow language needs to have Grid-specific extensions to interact
with specific grid protocols to use Grid resources. Emerging standards such as
WSRF [100] provide a promising set of common and reusable WSDL protocol
bindings specifically geared for Grids.

Dynamic resources. Support for on-demand creation of resources such as
Grid services is essential. In addition to using WSDL abstractions to hide
access protocols, one should be able to dynamically create Grid services when
they are needed (for example, GFac [232]).

Designed for scalability. Nothing in the language design should prevent a
scalable implementation of a workflow engine.

Integration with Grid security One of the most important and fundamental
aspects of Grids is a requirement for strong and flexible authentication and au-
thorization. There are many approaches that are popular. Therefore, a work-
flow language and engine should not mandate one particular security model
but be flexible and open so that they can incorporate security capabilities as
extensions.

14.4 Illustrative Grid Workflow Example

The LEAD (Linked Environments for Atmospheric Discovery [249]) is a Na-
tional Science Foundation large information technology research (ITR) pro-
ject that is creating an integrated, scalable cyberinfrastructure for mesoscale
meteorology research and education. Crucial to the success of LEAD is the
ability to not only compose services and data sources into applications but
make them dynamically adaptive. This requirement is described in LEAD as
Workflow Orchestration for On-Demand, Real-Time, Dynamically Adaptive
Systems (WOORDS [250]). Some of the desired capabilities include the abil-
ity to change configuration rapidly and automatically in response to weather,
continually be steered by new data, respond to decision-driven inputs from

216 Aleksander Slominski

users, initiate other processes automatically, and steer remote observing tech-
nologies to optimize data collection for the problem at hand. Those goals
can be expressed as a more generic capability: Workflows that are driving
LEAD applications must be responsive to events and be able to adapt their
future execution paths (more details on workflows in LEAD can be found in
Chapter 9).

Many typical scientific workflows are long-running and are composed of
many steps, such as data acquisition, decoding, processing, and visualization.
Those steps may need to be repeated and run in parallel for many hours or
days before final results are available.

Subscribe This
Workflow to
Data Mining

Event Source

Receive
Data Mining

Event

Invoke
Event

Handler
Workflow

Receive
Stop

Message

Unsubscribe
from Data

Mining Service

START

QUIT

LOOP

Figure 14.3: Persistent workflow that is monitoring data-mining events.

As an example, we take two workflows that illustrate types of workflows
that LEAD plans to use and describe them in a simple scenario. Let us assume
that we have a data-mining service that monitors real-time data streams and
detects potentially interesting patterns such as the formation of a tornado.
When such an interesting condition is detected, the mining service publishes
an event to a message bus service (that may support standards such as WS-
Eventing or WS-Notification). A user may choose to run a permanent and
persistent workflow that subscribes to data-mining events. A simplified graph
of such a workflow is shown in Figure 14.3, and in Figure 14.4 we show an
outline of a BPEL process for that workflow. The BPEL document has a list
of declared variables and a list of partner links. Each partner link represents
a Web Service that is either using the workflow or is used by the workflow (or
both). BPEL does not specify how the location of the partner is established,
and typically this is done statically in a workflow deployment phase. However,
more dynamic behavior to determine location of partners is possible (either
when a new workflow instance is created or even during workflow execution —
this is discussed in more detail later when the workflow life-cycle is described).
When an instance of this sample workflow is created and starts running, the
first activity executed is <sequence>. Then each activity inside sequence is
executed, beginning with the first assignment. We have used short notation
for <assign> ($running = true) to show that true is assigned to a variable

14 Adapting BPEL to Scientific Workflows 217

process name="PersistentMonitoringWorkflowForUserFoo"

variables $running, $stopMsg, $workflowName, $subscribeMsg, ...

partnerLinks "WorkflowUser", "EventBus", "DataMining", ...

sequence

$running = true

assign from partnerLink="DataMining"

endpointReference="workflowEventConsumer"

to "$subscribeMsg/wse:DeliveryTo/wse:NotifyTo"

invoke name="SubscribeToEventService" partnerLink="EventBus"

portType="wse:EventSource" operation="subscribe"

inputVariable="subsrcibeMsg" outputVariable="subscribeResponse"

flow # two parallel sequences

sequence

receive name="ReceiveStopMessage" partnerLink="WorkflowUser"

variable="stopMsg"

$running := false

sequence name="RunSequence"

while $running is true do

sequence

$workflowName := "EventHandlingWorkflow"

receive name="ReceiveEv" partnerLink="DataMining"

variable="event"

invoke name="StartEventHandlerWf" partnerLink="WorkflowEngine"

portType="wse:EventSource"

operation="startNewWorkflowInstance"

inputVariable="workflowName"

outputVariable="workflowLocation"

assign from $workflowLocation

to partner "EventHandlerWorkflow"

invoke name="InvokeEventHandlerWorkflow"

portType="wse:UserWorkflow" operation="processEvent"

inputVariable="event"

exit # quit workflow

Figure 14.4: Outline of BPEL document describing example workflow.

named “running.” The second <assign> in the sequence is used to copy the
location (“endpoint reference”) of the workflow Web Service (as mentioned
before, when a BPEL workflow is started it becomes a Web Service) to the
“subscribeMsg” variable. This variable holds the content of a message that is
sent to the data-mining service to subscribe for events. Sending the message
is accomplished by the <invoke> operation. This is request–response invoca-
tion (it has both input and output variables) and is a blocking operation; i.e.,
further workflow execution of this thread is stopped until a response arrives.
The response may be either a response message, in which case its content is
copied to the output variable, or it may be a fault message. BPEL has soph-

218 Aleksander Slominski

isticated support for handling faults, but in this example it is not needed and
the default behavior works well. By default, if a fault happens, the workflow
instance is terminated with an error and the workflow execution environment
may notify a user about an abnormal termination of the workflow.

The next activity executed in the sequence is <flow>. It splits execution
into two parallel threads. The first one will immediately block on <receive>.
When this workflow Web service receives “stopMsg” then this thread will
unblock and set the “running” variable to false. Since this is the last activity
in the flow sequence, this thread will be terminated. The other thread started
in the flow is more persistent. We have a <while> that keeps executing until
the “running” variable becomes false. In this loop, the <receive> will block
until an event is received from the data-mining service. If more than one
event is received and the workflow is busy, then events are put into a queue
and no event is lost. The next activity in the loop creates a new workflow
instance by calling a workflow execution service (workflow engine) to create a
workflow instance identified by the “EventHandlingWorkflow” string. When
the workflow instance is created, it may be further configured (as explained
later in the description of workflow life-cycle), but in this example we just
use the new workflow location to invoke it. This invocation is one-way (no
output variable), so there is no need to wait for the result of the invocation
and the loop can continue. When the “running” variable becomes false (after
receiving the stop message in the other thread), the loop will be exited. This is
not an optimal solution, as the loop may still be blocked, waiting to receive an
event. Unfortunately, BPEL does not have the capability to interrupt blocking
waits (still, some BPEL implementations may allow one to configure timeouts
for blocking receive/invoke, and, in such a case, a workflow will eventually
finish). For simplicity, we could just use <exit> in the thread that received
a stop message (as shown in Figure 14.3), but in this example we show how
multiple threads inside a BPEL workflow instance can communicate by using
shared variables (as it is an interesting capability to have in more complex
workflows).

When an event is received, the workflow will start other workflows (“Event-
HandlingWorkflow”) such as the one depicted in Figure 14.5. This event hand-
ler workflow may finish quickly (when the event is deemed “uninteresting”),
or it may continue running a for long time to determine if anything interest-
ing happens. That may lead to generation of other events that may trigger
execution of other workflows and eventually sending of an urgent notification
to a user that something like a tornado is happening with a high probability.

In Figure 14.6, we have an example of BPEL code to implement the work-
flow graph shown in Figure 14.5. As we see in those examples, BPEL is capable
of describing complex workflows, but more than a workflow language is needed.
An important part of a workflow execution is monitoring. Users should be able
to determine the state of the workflows they started. Users may want to know
what workflows are waiting for services, what the intermediary results are,
etc.

14 Adapting BPEL to Scientific Workflows 219

Receive
Data Mining

Event

>50%

Chance of

Hurricane

?

Run Model
Verification

Run
Fast Weather

Simulation

Start
Extensive

Model

Invoke
Offline

Visualization

Notify User
(email etc.)

Send
Results to

Data Mining

NO

YES

START

Run
Additional

Simulations

Run
Ensemble

Simulations

Figure 14.5: Workflow instance launched in response to a data-mining event.

When something interesting is noticed in a workflow, a user should be
able not only to steer the workflow execution (start, stop, pause) but also to
modify either the state of one particular workflow or a whole group of similar
workflows. This is an important requirement for a workflow execution envi-
ronment in LEAD: Workflows are built incrementally and can be modified by
a user even when they are running (we depict some possible modifications in
the second workflow by drawing them with dashed lines in Figure 14.5). The
user can add new steps or rearrange existing steps to meet new requirements.
Workflows are frequently changing, reflecting what the user wants to get done.
This experimental flexibility fits well in the scientific lab notebook paradigm
mentioned under requirements. For example the user may add a new visu-
alization step to the second workflow or modify the first workflow to launch
another experimental workflow on a dedicated resource in response to events
under some conditions. This experimental capability is part of a workflow en-
gine and not a workflow language (BPEL) but nonetheless is important for
running scientific workflows in Grids.

14.5 Workflow Life-Cycle on an Example of a GPEL
Engine

We will now continue to delve into our example to see how aforementioned
goals and requirements can be met. To make the description very con-
crete, we use the Grid Process Execution Language For Scientific Workflows

220 Aleksander Slominski

process name="EventHandlingWorkflow"

sequence

receive name="ReceiveEvent" partnerLink="WorkflowCaller"

variable="event"

if condition $event.probability < 50.0 then

sequence

invoke name="WeatherSim" partnerLink="WeatherSimulationExecution"

portType="fw:FastWeatherSim" operation="runFastCheck"

inputVariable="event" outputVariable="runResults"

invoke name="SendResults" partnerLink="DataMiningService"

portType="dm:DataMining" operation="runDataMining"

inputVariable="runResults" outputVariable="sendStatus"

else

flow # start 3 parallel activities

invoke name="ModelVerification" partnerLink="ModelVerification"

portType="fw:ModelVerification" operation="verify"

inputVariable="event" outputVariable="verificationResults"

invoke name="WeatherSim" partnerLink="WeatherSimulationExecution"

portType="fw:WeatherSim" operation="runExtensiveModel"

inputVariable="event" outputVariable="runModelResults"

sequence

$notifyMsg/userName = "foo"

$notifyMsg/event = $event

invoke name="NotifyUser" partnerLink="NotificationService"

portType="dm:UserNotificationService"

operation="notifyUser" inputVariable="notifyMsg"

exit

Figure 14.6: Outline of BPEL document describing example event-handling
workflow.

(GPEL4SW) environment developed at Indiana University. Following the re-
quirements for standards and reuse, we use BPEL. GPEL4WS consists of two
parts. The first part is the GPEL language, defined as a subset of the BPEL
1.1 language. We are gradually expanding the supported subset with the goal
of supporting the final version of the OASIS WS-BPEL 2.0 standard in future
versions of GPEL. However, as BPEL is still under a standardization process
in OASIS, for now we provide a stable set of semantics by freezing the set of
BPEL constructs in GPEL namespace.

When compared with BPEL4WS, GPEL4SW adds support for Grid-
oriented life-cycle and workflow management operations (those were inten-
tionally left out of the BPEL4WS standardization scope). The GPEL4WS
API has a set of standard XML messages that can be used to find capabilities
of a workflow engine, deploy workflows, start them, and control their execu-
tion. This workflow life-cycle is described in detail in the following sections.

14 Adapting BPEL to Scientific Workflows 221

14.5.1 Workflow Composition

There are many tools that can be used to prepare BPEL workflows. They
range from simple or advanced XML editors (sometimes with XML schema
support to assist in XML creation) to graphical tools that provide an intu-
itive GUI to compose workflows by connecting Web services in a graphical
way by hiding from users the XML text of the BPEL process and generat-
ing XML automatically when needed. Because graphical tools operate on a
higher level of abstraction, they usually support only a subset of the BPEL
language and provide functionality that is specialized for certain groups of
users. For example, Sedna (see Chapter 26) provides a convenient GUI to
manipulate high-level abstractions such as an indexed flow construct (a rep-
resentation of a parallel loop construct that is not available in BPEL) and
supports visual macros and plug-ins to reuse fragments of BPEL code. In
LEAD, we developed XBaya Workflow Composer [382], which provides an
intuitive GUI tool to compose Web services and generate BPEL or GPEL
workflows. XBaya provides an extensible library of LEAD services and allows
a user to drag-and-drop services and connect them together. In addition to
workflow composition, XBaya allows monitoring and visualizing workflow ex-
ecution (for example, visual cues, such as colors, are used to show the state
of services during execution).

14.5.2 Workflow Engine Introspection

The way a client discovers the capabilities of a workflow engine differs greatly
from one implementation to another. Typically there is no mechanism to dis-
cover capabilities of a workflow engine, but the capabilities of a particular
workflow runtime installation are known beforehand. In the GPEL4SW API,
we specified the discovery process by defining an extensible way to do a work-
flow engine introspection. This makes it easier for clients to interact with
different GPEL implementations and to discover additional capabilities. The
discovery is performed by obtaining (typically using HTTP) an introspection
XML document. This document describes capabilities of a GPEL engine. For
example, one of the capabilities is a location where new documents can be
created inside the GPEL engine. When a workflow deployment tool (such as
the XBaya Workflow Composer) is deploying a workflow to a GPEL engine,
it must first obtain an introspection document to find a location where the
deployment documents can be created (see Section 14.5.3 for details). The
location of the introspection document can be found in multiple ways. It can
be hard-coded into the client software, but a more flexible approach is to allow
a user to specify the location of a workflow engine. This location may point to
a Web page that contains a link to the actual GPEL introspection document.

222 Aleksander Slominski

14.5.3 Workflow Deployment

Before a workflow can be started it needs first to be deployed. The deploy-
ment process defines how to associate Web services (described in WSDLs) and
the actual workflow process definition (BPEL/GPEL) together. There may be
additional deployment-specific options, such as security (who can start work-
flows), that must be specified. This process is not standardized in the BPEL
specification, as it was declared out of the scope of BPEL. As a consequence,
the way the deployment is accomplished in different BPEL engines varies
greatly between implementations. This is actually good for Grids, as it allows
us to define a deployment process that fits the dynamic requirements of Grid
environments.

<entry xmlns="http://www.w3.org/2005/Atom">

<title>GPEL template for Workflow Foo</title>

<summary>GPEL template for Workflow Foo.</summary>

<content type="application/x-gpel+xml">

<template xmlns="http://schemas.gpel.org/2005/grid-process/" />

</content>

<link rel="http://schemas.gpel.org/2005/wsdl"

href="http://gpel.example.org/foo.wsdl"/>

<link rel="http://schemas.gpel.org/2005/gpel"

href="http://gpel.example.org/foo.gpel"/>

</entry>

Figure 14.7: An example GPEL workflow template.

The deployment process in BPEL engines is implemented by sending a
set of XML documents, which includes, at a minimum, a definition of BPEL
workflow, but also typically includes WSDL files for all partners and related
partner link types. Sometimes, instead of sending documents, only their loca-
tions (URLs), are sent during deployment. There are many protocols that can
be used in a BPEL engine for deployment, and they range from simple HTTP
POST and SOAP over HTTP to specialized binary protocols. A particular
BPEL engine may provide a programmatic API to do the deployment, but
there may also be no way to do programmatic deployment if the deployment
is done from a GUI application or a servlet that uses proprietary mechanisms
for deploying workflows.

We believe there is a very simple way to do BPEL workflow deployment
and that it may have a chance to be supported in multiple BPEL implemen-
tations eventually. It seems that the simplest way to do deployment is to use
HTTP POST and send all workflow-related documents to the workflow en-
gine. That is how we defined deployment for GPEL. First, a client application
needs to send all documents to a GPEL engine (i.e., WSDL and BPEL/GPEL

14 Adapting BPEL to Scientific Workflows 223

process definitions). The documents are stored in the GPEL engine, and each
one gets a unique URL. Using URLs simplifies the linking of documents (and
is consistent with the requirement of using Web Architecture). When the doc-
ument is stored in the GPEL engine, it is validated (so no invalid BPEL or
GPEL workflow definitions can be executed, and errors should be reported as
early as possible). The last step of the deployment is to create a simple XML
document that describes how to link different documents into a workflow tem-
plate (see Figure 14.7). The GPEL workflow template has all the information
that is necessary to create workflow instances. The GPEL engine will check
that inside the template document there is a link to the workflow document
(BPEL or GPEL) and will validate that all required WSDL port types and
partner link types are present (actual service bindings and locations can be
set later during workflow instance creation). This step finishes deployment.

14.5.4 Workflow Instance Creation

We recommend separating the workflow creation step from actual workflow
execution. This is different from what is described in the BPEL specifica-
tion, where workflow instances are created implicitly when a message marked
as “createInstance” is received. Making the process explicit allows for fine-
grained control over a workflow instance execution environment. However,
both approaches can be supported in one workflow engine.

The separate step of workflow instance creation allows one to set up the
workflow instance to use specific Grid or Web Service instances. This is very
important in Grid environments where a workflow instance may be part of a
bigger application and will run on dedicated Grid resources requiring a special
workflow setup for each execution (such as creation of security credentials and
allocation of cluster nodes).

The GPEL workflow instance document, similarly to the GPEL template
document, is deployed by using HTTP POST and essentially contains a set
of links. The most important link in the workflow instance document is to the
workflow template that this workflow instance “implements.” A user must
replace abstract WSDLs (if any) with concrete WSDLs and can replace any
WSDL used in deployment with a new version that points to a service instance
to use just for this workflow instance.

Workflow Instance State

A workflow when running is stateful, and its state is similar to a state in
a typical program: There is a set of threads, and each thread has a set of
variables. A BPEL engine needs to maintain a set of variables that are scoped
(and in this way similar to local variables in a thread), list of active threads
of execution, and what each thread is doing: What activity is executing? Is it
blocked waiting for a response? What messages are in outgoing and incoming
queues? And so on (see Figure 14.8).

224 Aleksander Slominski

<gpel:instance>

GPEL Workflow

Instance

urn:dir:foo1.gwi

<gpel:template>

BPEL or

GPEL

process

<gpel:state>

GPEL Workflow

State

urn:dir:foo1.gws

<gpel:partnerrs>

GPEL Workflow

Partner Services

urn:dir:foo1.gps

GPEL

Variables

Content

SOAP

Message

Content

<gpel:queue>

GPEL

Message

Queue

Figure 14.8: GPEL workflow instance state.

Using XML is a very convenient way to expose the workflow state. This
not only allows to monitor the state of a workflow instance execution, but a
user or an automatic tool (such as a case-based reasoning system or a semantic
agent) may modify a running workflow simply by modifying XML documents
describing the workflow state. If both the workflow process definitions (BPEL
document) and a workflow instance state document are modified by a user,
then this is not just a simple modification of variables or what activity the
workflow is executing (as in a debugger) but can be a structural change to
the workflow (such as adding new activities).

14.5.5 Workflow Execution

At this point, after a workflow composition, deployment, and creation of a
workflow instance, we have a running workflow. The workflow execution is the
part that is the most important for taking full advantage of Grid resources.
A Grid workflow engine must be able to request and create Grid resources
on-demand. This can be accomplished by leaving the decision about what
service to use to the very moment when the workflow engine needs to send a
message to a Grid service. At that point, the service may be created on the
best available resource and used by the Grid workflow engine.

Workflow Instance Control

The workflow instance state document contains all information pertaining to
a workflow execution. An interesting consequence is that a user is able to go
back in time to any previous state of workflow and continue execution from
that moment by requesting that the GPEL engine use a previously stored

14 Adapting BPEL to Scientific Workflows 225

workflow instance state document. This is particularly useful to allow “clon-
ing” of workflow execution: A user can explore possible execution paths by
storing a workflow instance document and creating a workflow instance clone
to experiment with an alternative execution path. This capability is limited
by the level of support from services used by workflow instances — in par-
ticular, services used by the workflow may need to support checkpointing. In
a more traditional sense, the workflow state can be monitored to do debug-
ging and, in particular, to request a step-by-step execution of the workflow
instance. This is a very useful capability that can be used even by nonpro-
grammers when a suitable high level user interface is provided. For example,
the metaphor of VCR remote start/pause/resume/stop buttons may be used.
In our example, the persistent workflow (Figure 14.3) when started will con-
tinue running until a stop message is received. At any point, a user can request
the workflow engine to pause the workflow execution and then examine the
workflow state, make modifications, and either resume or step through the
workflow execution.

The state of a workflow execution is not complete without knowing what
messages were received and sent to Web services used during a workflow exe-
cution. A user should be able to view and modify messages and the location of
Web services used in a workflow instance and request resending of a message
to a failing service.

In our example, the second workflow that is launched to handle a data-
mining event is more experimental in its nature. The intention is that a user
may tailor a workflow execution to particular needs related to an event re-
ceived by that workflow instance. As an example, a user may want to steer
what the workflow instance is doing or even add new activities to the workflow
(such as invoking a visualization service).

14.6 Challenges in Using BPEL in Grids

BPEL meets the generic requirements identified in Section 14.3 quite well: It
is becoming a leading standard for Web services workflows and can be well
integrated with Web Architecture and with portals. The current limitations
of BPEL, such as poor support for running a large number of parallel sub-
workflows, are either addressed in OASIS WS-BPEL or can be overcome by
providing a higher-level language that is then translated into BPEL XML for
workflow execution.

Other goals and requirements are independent of the choice of BPEL as a
scientific workflow language — they have more to do with actual implementa-
tion of a workflow engine. First there are performance goals (such as scalabil-
ity, clustering, administrative interface, etc.) that are generally desirable and
become even more important in Grid environments that require support for
dynamic resources and Grid security. As many scientific workflows may take a
long time to complete and scientific experiments may require running a large

226 Aleksander Slominski

number of workflows, persistence is a desirable feature of a workflow engine
implementation. A scientist should be able to start workflows and not worry
that if a machine running the workflow engine is rebooted all work will be
lost (and may need to be redone).

Some requirements are specific to scientific workflows. One is supporting
history and provenance tracking. The other is experimental flexibility — many
scientific workflows may never be “finalized” but need to be incrementally
refined and modified during their execution. This capability is particularly
important for long-running workflows where restarting (and losing all results)
is not a good way to make changes in a workflow.

We hope that we showed that BPEL is a viable choice for a Grid work-
flow language but a BPEL workflow engine needs additional capabilities to
meet requirements common in Grids. To this extent, we have shown, using the
GPEL4SW as an example, how to define a set of simple XML documents that
can be used to control the life-cycle of a workflow and, in particular, allow
monitoring and steering of a running workflow instance. By defining a set of
simple XML documents, we hope to increase the chances that such a work-
flow engine API will be used in different middleware applications (including
portals) and that it may be implemented by other scientific workflow engines
used in Grids.

The main challenges are in the area of interactions with legacy scientific
code and Grid services. Approaches such as WSIF or BPELJ can help make
BPEL workflows interact with non-Web services, but only time will tell
how well they meet the requirements of scientific workflows. BPEL supports
extensibility, so it is possible that in the future some extensions may become
de facto standards for scientific BPEL in Grids.

15

Protocol-Based Integration Using SSDL and
π-Calculus

Simon Woodman, Savas Parastatidis, and Jim Webber

A “service” has become the contemporary abstraction around which modern
distributed applications are designed and built. A service represents a piece
of functionality that is exposed on the network. The “message” abstraction
is used to create interaction patterns or protocols to represent the messaging
behavior of a service. In the Web services domain, SOAP is the preferred
model for encoding, transferring, and processing such messages.

The SOAP Service Description Language (SSDL) is a SOAP-centric con-
tract description language for Web services. SSDL provides the base concepts
on top of which frameworks for describing protocols are built. Such protocol
frameworks can capture a range of interaction patterns from simple request–
response message exchange patterns to entire multiservice workflows within a
composite application.

In this chapter, we will introduce the main features of SSDL and its sup-
ported protocol frameworks. We will focus on the Sequential Constraints (SC)
SSDL protocol framework for capturing the messaging behavior of Web ser-
vices acting as part of a composite application or multiparty workflow. The SC
SSDL protocol framework can be used to describe multiservice, multi message
exchange protocols using notations based on the π-calculus. By building on a
formal model, we can make assertions about certain properties (e.g., liveness,
lack of starvation, agreed termination, etc.) of workflows involving multiple
Web services. We will also provide a use case detailing how SSDL can be used
in partnership with Windows Workflow Foundation.

15.1 Introduction

SOAP is the standard message transfer protocol for Web services. However,
the default description language for Web services, Web services Description
Language (WSDL) [457], does not explicitly target SOAP but instead provides
a generic framework for the description of network-exposed software artifacts.
WSDL’s protocol independence makes describing SOAP message transfers

228 Simon Woodman, Savas Parastatidis, and Jim Webber

more complex than if SOAP had been assumed from the outset. WSDL’s
focus on the “interface” abstraction for describing services makes it difficult
to escape the object-oriented or remote procedure call mindset and focus on
message orientation as the means through which integration is achieved.

The SOAP Service Description Language (SSDL) [336–338] is an XML-
based vocabulary for writing message-oriented contracts for Web services.
SSDL focuses on the use of messages combined into protocols (arbitrary
message-exchange patterns) to describe a SOAP-based Web service and is
intended to provide a natural fit with the SOAP model.1

The SOAP processing model [390] in turn provides the fundamental archi-
tectural constraints for the Web services stack, as shown in Figure 15.1. While
the stack itself is unremarkable, it serves to make the strong point that all Web
services must support SOAP and that services interact through the transfer of
SOAP messages. That is, in a Web services based environment (which includes
workflows composed from Web services) we assume that other communication
means, such as Remote Method Invocation (RMI) [400] and Common Object
Request Broker Architecture (CORBA) [322], are merely transport protocols
for the transfer of SOAP messages. Such protocols are thus out of scope and
do not impact the transfer of messages within the Web services domain.

The work presented in this chapter is specifically bounded by the SOAP,
metadata, and process choreography layers from the diagram in Figure 15.1.
While the SOAP layer provides the fundamental architectural constraints to
a service, the process choreography layer orchestrates the workflow at a global
(or application) level. However, it is the introduction of SSDL at the metadata
level that enables choreographies to enlist SOAP-based Web services and be
able to determine in advance whether the message exchanges supported by
the chosen services will lead to workflows that complete in consistent, safe
states.

The remainder of this chapter shows how SSDL, and particularly the Se-
quential Constraints SSDL protocol framework, achieve the goal of support-
ing the description of a contract for services involved in multiparty workflows,
where the capabilities of a service in one part of the workflow must be matched
by capabilities of other services in that workflow. Section 15.2 defines the basic
service-oriented model that is espoused by the SOAP processing model. Sec-
tion 15.3 introduces SSDL contracts and how they can be extended through
protocol frameworks. Section 15.4 provides an in-depth look at the Sequential
Constraints (SC) SSDL protocol framework and highlights its relationship to
the π-calculus. Section 15.5 presents a use case of how SSDL and the SC
protocol framework can be used in a typical multiservice e-Science scenario,
while Section 15.6 relates the N-way contract framework that SC provides to
emerging Web services middleware technology. Final remarks and conclusions
about the utility of SC are provided in Section 15.7.

1 It is assumed that a “Web service” by definition must support SOAP as its native
message-transfer protocol.

15 Protocol-Based Integration Using SSDL and π-Calculus 229

Process Choreography
(BPEL)

M
et
ad
at
a

(S
S

D
L,

 W
S

D
L,

 P
ol
ic
y)

S
ec
ur
ity

(W
S

-S
ec
ur
ity

, W
S

-T
ru
st

,
W
S

-S
ec
ur
eC
on
ve
rs
at
io
n)

R
el
ia
bl
e

M
es
sa

gi
ng

(W
S

-R
el
ia
bl
eM
es
sa

gi
ng

)

Tr
an
sa
ct
io
ns

(W
S

-A
T

/B
A

, W
S

-
Tr
an
sa
ct
io
nM
an
ag
em
en
t)

(WS-Addressing, WS-Eventing, WS-Notification)

SOAP

Figure 15.1: The Web services stack (adapted from [292]).

15.2 Service Orientation

While service orientation is not a new architectural paradigm, the advent
of Web services has reinvigorated interest in the approach. It is a common
misconception that Web services are a form of software magic that automat-
ically corrals an application architect toward a scalable, robust, dependable,
and loosely coupled solution. Certainly it is possible to build service-oriented
applications using Web services protocols and toolkits to meet such quality-
of-service requirements, but, as with any approach and suite of technologies,
this is possible only after carefully considering the solution’s design and by fol-
lowing the right architectural principles. Furthermore, the use of Web services
technologies does not implicitly lead to a service-oriented solution; indeed Web
services based distributed applications could be architected according to the
principles of other paradigms, such as resource or object orientation.

As researchers and developers have rebranded their work to be in vogue
with the latest buzzwords, the terms “service” and “service-oriented archi-
tecture” (SOA) have become overloaded. In what follows, we treat a service
as the logical manifestation of some application logic that is exposed on the
network. Such a service may encapsulate and provide access to any number of
physical or logical resources (such as databases, programs, devices, humans,
etc.). A service’s boundaries are explicit, it is autonomous, it exposes message

230 Simon Woodman, Savas Parastatidis, and Jim Webber

schema information, and its compatibility with other services is determined
through metadata information such as policies and protocol description con-
tracts [292]. The interaction between services is facilitated through the explicit
exchange of messages. We treat the message abstraction as a first-class citizen
of service-oriented architectures and we promote message orientation as the
paradigm of choice for enabling the composition of services into workflows.

A service such as that shown in Figure 15.2 consists of some resources
(e.g., data, programs, or devices), service logic, and a layer responsible for the
processing of incoming and outgoing messages. Messages arrive at the service
and are acted on by the service logic, utilizing the service’s resources (if any)
as required. Services may be of any scale, from a single operating system
process to enterprise-wide business processes.

service logic

message passing

resource

message

se
rv
ic
e

Figure 15.2: The typical structure of a service.

Services may be hosted on devices of arbitrary size (e.g., workstations,
databases, printers, phones, personal digital assistants, etc.), providing differ-
ent types of functionality to a network application. This promotes the concept
of a connected world in which no single device and/or service is isolated. Inter-
esting applications and workflows are built through the composition of services
and the exchange of messages.

15.2.1 Messages

A message is the unit of communication between services. Service-oriented sys-
tems do not expose abstractions such as classes, objects, methods, or remote

15 Protocol-Based Integration Using SSDL and π-Calculus 231

procedures. Instead, services bind to messages transferred between them. A
number of such message transfers can be logically grouped to form message
exchange patterns (e.g., an incoming and a related outgoing message may
form a “request–response”). Such multimessage interactions can be grouped
to form protocols to represent well-defined behaviors.

15.2.2 Protocols, Policies, and Contracts

The messaging behavior of a service in a distributed application is specified by
a set of messages and the order in which they are sent and received (i.e., the
supported protocols). This is a departure from the traditional object-oriented
world, where behavioral semantics are associated with types, exposed through
methods, and coupled with particular endpoints.

Protocols and other metadata are usually described in contracts to which
services must adhere. A contract is a description of the policy (e.g., quality of
service characteristics such as security, support for reliable messaging, etc.),
along with a syntactic description of the message structure and protocols that
a service supports.

15.3 SSDL Overview

The primary goal of an SSDL contract is to provide the mechanisms for ser-
vice architects to describe the structure of the SOAP messages that a Web
service supports. Once the messages of a Web service have been described,
any of the currently available (or future) protocol frameworks can be used
to combine the messages into protocols that expose the messaging behavior
of that Web service. To that end, SSDL defines an extensible mechanism for
various protocol frameworks to be used.

SSDL contracts communicate the supported messaging behavior of a Web
service in terms of messages and protocols, so that architects and developers
can create systems that can meaningfully participate in conversations between
them. SSDL contracts may be dynamically discovered (e.g., from registries
or equivalent mechanisms) and the protocol descriptions compared against
an application’s or workflow’s requirements in order to determine whether a
multimessage interaction can sensibly take place.

An SSDL contract is defined in a namespace that uniquely identifies it and
consists of four major sections, as shown in Figure 15.3.

15.3.1 Schemas

The “schemas” section is used to define the structure of all the elements that
will be used for the description of the SOAP messages. Any schema language
may be used to define schema elements, though XML schema is the default
choice.

232 Simon Woodman, Savas Parastatidis, and Jim Webber

SSDL Contract

CSP SSDL protocol framework

Rules SSDL protocol framework

MEP SSDL protocol framework

SC SSDL protocol framework
(pi-calculus based)

 Other SSDL protocol framework

messages

protocols

schemas

endpoints

Figure 15.3: The structure of an SSDL contract.

15.3.2 Messages

The “messages” section is where the messages that a Web service supports
are declared. There can be many groups of messages defined in different
namespaces. However, irrespective of the namespace in which they are defined,
the messages included in the SSDL document are all part of the same con-
tract. SOAP messages are described in terms of header and body elements
and are named so that protocol frameworks can reference them.

1 <ssdl:messages targetNamespace="uri">

2 <ssdl:message name="msg">

3 <ssdl:header ref="elements:header1" mustUnderstand="true" />

4 <ssdl:header ref="elements:header2" role="urn:ssdl:example:role"/>

5 <ssdl:body ref="elements:body1" />

6 <ssdl:body ref="elements:body2" />

7 </ssdl:message>

8

9 <ssdl:fault name="fault">

10 <ssdl:code role="http://www.w3.org/.../role/ultimateReceiver">

11 <ssdl:value>Sender</ssdl:value>

12 </ssdl:code>

13 </ssdl:fault>

14 </ssdl:messages>

Figure 15.4: An example of a message and a fault message.

In Figure 15.4, a message msg is defined to have two header elements
(children of soap:Header) and two body (children of soap:Body) elements.

15 Protocol-Based Integration Using SSDL and π-Calculus 233

Note that while the SOAP processing model permits it, the WS-I Basic Profile
1.0a [35] mandates a single element as a child of soap:Body. However, SSDL
does not enforce that restriction. Figure 15.4 also demonstrates how a SOAP
fault message could be declared.

The header element provides the mustUnderstand, role, and relay at-
tributes, which correspond to the equivalent attributes defined by the SOAP
processing model (not all of which are shown in Figure 15.4). This makes it
possible and straightforward to describe Web services infrastructure protocols.

15.3.3 Protocols and Endpoints

Once the messages in a contract have been defined, we can move on to describe
how they may relate to each other. SSDL provides an extensible mechanism
based on the concept of protocol frameworks.

A protocol framework uses messages declared in a contract to describe
the simple message-exchange patterns or multimessage interactions that are
observed by other services. A protocol framework is an XML-based model for
capturing relationships between message exchanges in a workflow and may or
may not be supported by an underlying formal model.

It may be possible for the same protocol to be defined in multiple ways
using the same or different protocol frameworks. It is up to the designers
to choose which protocol framework is best for their needs. Also, it may be
possible to translate the description of a service’s messaging behavior from
one protocol framework to another without losing any semantics, depending
on the source and target frameworks.

Some protocol frameworks may be associated with the semantics of a
formal model (e.g., CSP, Rules, SC). As a result, it may be possible to use
model checkers, such as SPIN [198], Failure Divergence Refinement (FDR)
[143], and Mobility Workbench (MWB) [441] to verify the safety (e.g., absence
of starvation and agreed termination) and liveness (e.g., eventual termination
guarantee) properties of the defined protocols.

The initial release of SSDL comes with four protocol frameworks:

• The MEP (Message Exchange Pattern) SSDL Protocol Framework is
defined to be a representation of the MEPs defined by the WSDL 2.0 spe-
cification [457]. The MEP specification defines the semantics and structure
of XML elements representing several message-exchange patterns of two
messages at most (excluding faults).

• The CSP SSDL Protocol Framework is based on the Communicating Se-
quential Processes [334] semantics. A protocol is defined in terms of one or
more sequential processes that may communicate with each other. Mes-
sages that are sent or received represent the events in the described CSP
processes [192].

• The Rules SSDL Protocol Framework uses preconditions on “send” and
“receive” events as the means to describe messaging behaviour. As with

234 Simon Woodman, Savas Parastatidis, and Jim Webber

the CSP SSDL Protocol Framework, it is possible to use model checkers
to verify that a protocol is free from deadlock and race conditions.

• The SC (Sequential Constraints) SSDL Protocol Framework is used to
describe multiservice interactions, and its semantics are based on the π-
calculus [296]. The next section of this chapter discusses this protocol
framework in more detail.

An SSDL contract may also define endpoints, such as WS-Addressing En-
dpoint References (EPRs), of Web services that are known to support the
defined contract. While the schemas, messages, and protocols of a contract
(the contract is identified by its namespace) remain constant, the endpoints
may change. Also, additional endpoints not defined in the contract may exist.

Note that SSDL says nothing about the scope or context of an interaction.
A Web service may support one or more instantiations of a protocol at the
same time. If more instantiations are supported, a contextualization mecha-
nism is necessary for messages to be associated with a particular instantiation
of the protocol (e.g., WS-Context [318], WS-Security [320], WS-Addressing
[456] Reference Parameters, service-specific information, etc.).

A detailed description of the SSDL contract and the MEP, CSP, Rules,
and SC SSDL Protocol Frameworks is presented in the technical specifica-
tions [247, 334, 335, 474], and a more detailed introduction to SSDL has been
published in the literature [338].

15.4 The Sequential Constraint Protocol Framework

The Sequential Constraint (SC) SSDL Protocol Framework provides a
machine-readable description that is used to define the protocols that a Web
service supports. Such protocols may be a set of request–response interactions
or could use several messages involving multiple parties over arbitrary lengths
of time. The framework is intended to provide a simple way of specifying such
protocols but also has a formal basis to allow properties of the protocols to
be determined if required. Protocols in the framework are specified using a
sequential technique, specifying the legal set of actions at each stage of the
protocol. It is believed that this leads to a description that is easy to under-
stand, as at each step of the protocol the set of actions allowed is explicitly
described. The SC SSDL protocol has a formal basis in the π-calculus, a pro-
cess algebra for describing mobile communicating processes. The formal basis
allows multiple protocols described in the SC framework to be validated to
ensure compatibility between them.

15.4.1 An Overview of π-Calculus and Its Relationship to SSDL

The π-calculus [296] is an algebra for describing and analyzing the behavior
of concurrent systems. A π-calculus system is described in terms of processes,

15 Protocol-Based Integration Using SSDL and π-Calculus 235

channels, and names. Processes are independent of each other and commu-
nicate by sending messages along channels that connect them. Both channels
and messages are referred to as name and are thus indistinguishable from
each other.1 In the following sections, we will tend to use the term name to
refer to a message and will explicitly state when the name is in fact a channel
rather than a message.

To send the name msgB along a channel named AtoB in π-calculus, we
use the expression AtoB < msgB >. A notational convention exists whereby
an overbar is placed on a channel that is being used to send messages. To
represent the sending of a message in SSDL-SC, we use ssdl:msgref with a
value of “out” for the direction attribute, as shown on line 3 of Figure 15.5.

1 <sc:sequence>

2 <msgref ref="msgA" direction="in" sc:participant="serviceA"/>

3 <msgref ref="msgB" direction="out" sc:participant="serviceA"/>

4 </sc:sequence>

5

6 <sc:choice>

7 <msgref ref="msgA" direction="in" sc:participant="serviceA"/>

8 <msgref ref="msgB" direction="in" sc:participant="serviceA"/>

9 </sc:choice>

10

11 <sc:parallel>

12 <msgref ref="msgA" direction="in" sc:participant="serviceA"/>

13 <msgref ref="msgB" direction="in" sc:participant="serviceA"/>

14 </sc:parallel>

Figure 15.5: SSDL-SC examples.

To receive the name msgA down the channel named AtoB in π-calculus,
the expression AtoB(msgA) is used. Note the lack of an overbar in the channel
name. Line 2 in Figure 15.5 shows the use of ssdl:msgref with a value of
“in” for the direction attribute element to receive a message.

In order to define that certain things must occur in sequence, we use
the period operator “.”. This can be used, for example, to indicate that one
message must be received before another is sent. To represent the fact that
msgA must be received before msgB is sent, in π-calculus we would write
AtoB(msgA).BtoA < msgB > and the SSDL-SC representation is shown on
lines 1 to 4 of Figure 15.5.

When there is a choice of actions that can occur at a particular point in
the protocol, we use the “+” operator. To test whether a particular name
is received, we use the [x = y] notation after the receipt of the name. For

1 It is the fact that messages and channels are considered equivalent that allows a
channel to be sent from one process to another.

236 Simon Woodman, Savas Parastatidis, and Jim Webber

instance, where either msgA or msgB is to be received, we would write
AtoB(msg)[msg = msgA] + [msg = msgB], and as shown in lines 6 to 9
of Figure 15.5. Following the test (which is known as a “match”), it is pos-
sible to execute different behaviors in a manner similar to a switch statement
in imperative languages.

A special operator in π-calculus exists to define an internal and unob-
servable action, and it is represented by τ . Such τ actions should be used to
describe the action of internally deciding which message to send. To either
send msgA or msgB, we would write τ.AtoB<msgA>+τ.AtoB<msgB>.

Sometimes it is necessary to indicate that actions may occur in parallel,
which can be represented by the vertical bar operator “|”. This allows us to
say that msgA and msgB must both be received but can occur in parallel
using AtoB(msgA)|AtoB(msgB) or the SSDL-SC shown on lines 11 to 14 of
Figure 15.5.

π-calculus expressions are built up to define named processes that corres-
pond to a protocol defined in SSDL-SC; for example, the process REQ−RES
that defines the server-side view of a request–response interaction: REQ−
RES = AtoB(req).BtoA < res > .REQ−RES. Once it has received the re-
quest and sent the response, it invokes itself so that another request can be
received. Other processes can be invoked in a similar manner in π-calculus,
and the SSDL-SC element protocol-ref has the same semantics. Use of these
primitives allows for protocol reuse in SSDL-SC.

The 0 operator in π-calculus signifies explicit termination; for instance,
P.Q.0 means execute process P , when it completes execute process Q, and
then stop. The 0 is often omitted for brevity (simply stating P.Q is equivalent)
but where it adds clarity or cannot be implied from the context it is included.
The SSDL-SC nothing element has semantics similar to the 0 operator.

To define the named participants in SSDL-SC, the participant ele-
ment is used. If the participant is annotated with the abstract attribute,
it implies that this participant will be bound at runtime. To bind a parti-
cipant during the protocol, the incoming message that contains the details
of the participant is annotated using the participant-binding-name and
participant-binding-content attributes. Participants who are neither spe-
cified as abstract nor implicitly bound at the beginning (the service adver-
tising the protocol and the other initial participant) are assumed to be bound
in some out-of-band method.

15.4.2 Computation in π-Calculus

Computation in π-calculus is defined by structured operational semantics, or
“reaction rules” that describe how a system P can be transformed into P ′

in one computational step (P → P ′). Every computation step in π-calculus
consists of communication between two terms (which may be part of separ-
ate processes or the same process). Communication may only occur between

15 Protocol-Based Integration Using SSDL and π-Calculus 237

two terms that are unguarded (that is, they are not part of a sequence pre-
fixed by an action yet to occur) and not alternatives to each other. Consider
P = (... + x(b).Q) | (... + x<a>.R) when the process is in its initial state P ,
two parallel processes are executing, and the latter sends the name a along the
channel x. The former process receives a along channel x, as the sending and
receiving terms are complementary and unguarded (said to form a “redex”).
The action of receiving a has the effect of substituting a for b in the process
Q, and the transformation P → P ′ has occurred, where P = {a/b}Q |R.
The substitution is denoted by {a/b} in the process P ′. A side effect of this
communication occurring is that the alternatives (denoted by ...) have been
discarded and any communication that they would have performed has been
preempted. We have now performed one computation step in the system, and
the system is in a new state.

In many cases, there may be multiple states into which a process can be
transformed. For example, in P = (x<a>.Q) | (x(b).R) | (x(c).S), there are
two transformations possible, P → P or P → P ′. In the process P , name
a is being sent along the channel x but can only be received by one of the
two other parallel compositions. Therefore, after state P , the following states
are P ′ = Q | {a/b}R | (x(c).S), which assumes that the name a is received
by the middle composition, causing a substitution of a for b in process R
or P ′ = Q | (x(b).R) | {a/c}S, where a has been received by the other com-
position and is substituted for c in process S. When examining processes for
compatability, each alternative transformation must be evaluated.

When considering computation in the π-calculus, the property that we are
interested in proving is a lack of starvation. Starvation describes the situation
where one service is expecting to receive a message that another service will
never send. It should be noted that this is different from the case where
a service breaks its contract by failing to send a message that its contract
defines it will send. Starvation within a set of SSDL contracts results in the
system becoming deadlocked: The interaction cannot progress, as an action
required for progress cannot occur. In some sets of contracts, starvation may
only occur under certain race conditions.

In order to validate a set of contracts, it is necessary to apply the reaction
rules that were presented earlier recursively; that is, apply them to the state
P ′ that process P has moved into following the previous computation step.
When this is followed to its natural conclusion, it can be shown that the
system is free of starvation conditions.

When applying the reaction rules recursively, it is necessary to show that
when the receiving process is performing a match (on the incoming message),
there are no messages sent that do not match one of the conditions. Also,
following every reaction, one of the following holds:

1. Another reaction can occur.
2. Every process in the system is either in its initial state or a termination

state where no action terms remain.

238 Simon Woodman, Savas Parastatidis, and Jim Webber

While this section has served as a very brief introduction to the π-calculus
and its relationship to SSDL-SC, it has not been possible to explain all of the
complexities and subtleties that would, and do, fill a book in their own right.
For a further explanation of such issues, including a formal definition of the
structural operational semantics of π-calculus, the reader is directed to [296].

15.5 A Use Case

We use an example from the life sciences application domain to illustrate the
value of SSDL in Web services composition. In order to keep our example
simple, the services are kept minimal by not exposing the complex function-
ality typically found in bioinformatics or Grid applications.

Figure 15.6 shows the UML message sequence diagram for three services:
user interaction, bioinformatics, and data/computational. The collection of
one-way messages each service supports represents the application-specific
protocol in place. SSDL can be used to describe such a protocol. If we were to
use WSDL to describe the message-exchange patterns of the bioinformatics
service, however, we would not be able to capture the relative ordering of the
messages or the interactions between multiple parties.

The application service requests a list of the supported algorithms from
the bioinformatics service, chooses one, and makes a request for an analysis
to start (sending all the necessary information). The bioinformatics service
replies with an analysis identifier that can be used by subsequent interac-
tions. The user-interaction service can cancel the running computation at
any time. Of course, the request may be rejected for any number of reasons
(e.g., because the analysis has reached a critical point or has already been
completed). Appropriate messages may be sent back to the user-interaction
service to represent different request rejections, but for simplicity reasons we
have only included a general one.

The bioinformatics service will contact a data/computational service so
that the analysis code could be executed close to an encapsulated bioinfor-
matics database. A job identifier is returned so that the two services can
correlate subsequent messages related to specific jobs. Messages containing the
results are also sent from the data/computational service to the bioinformatics
service and from the bioinformatics to the user-interaction service.

Due to the verbosity of the SSDL contract document, we cannot present
it in its entirety here. Figure 15.7 shows part of the protocol exposed by the
bioinformatics service. It is assumed that the structure of the messages (XML
schema and SOAP body/header elements) and the endpoints are also defined.
The protocol captures the relationship between the AnalysisSubmission and
AnalysisId messages as a sequence. It then defines that if the execution is
canceled at this point, the cancellation is accepted, but if the AnalysisStarted
message is sent, then a subsequent ExecutionCancelRequest will be rejected.
Finally, the AnalysisCompleted message defines the end of the protocol. For

15 Protocol-Based Integration Using SSDL and π-Calculus 239

User-
Interatcion
Service

Bioinformatics
Service

Data and
Computational

Service

ListOfAlgorithms

AlgorithmList

AnalysisSubmission

AnalysisId

ExecutionCancelRequest

CancelConfirmation

RequestRejected

JobSubmission

JobSubmissionId

Results

AnalysisStarted

Completed

ExecutionCancelRequest is
optional but must come before the
JobSubmission, JobSubmissionId
and AnalysisStarted messages

are sent.

Figure 15.6: UML sequence diagram for a typical bioinformatics example.

reasons of encapsulation, the interactions with the data/computational service
have not been shown in this protocol.

The protocol of Figure 15.7 can also be captured using the π-calculus
notation, as shown in Figure 15.8.

In order to make the use of SSDL easy, tooling could be created to enable
automatic extraction of an SSDL contract from workflow definitions. Service
developers can concentrate on the implementation of their service without

1 <ssdl:protocol

2 targetNamespace="http://example.org/bioinformaticsService/protocol"

3 xmlns:msgs="http://example.org/bioinformaticsService/messages"

4 xmlns:sc="urn:ssdl:v1:protocol:sc">

5 <sc:sc>

6 <sc:participant name="UserInteractionService"/>

7 <sc:participant name="DataAndComputationalService"/>

8 <sc:protocol name="BioinformaticsProtocol">

9 <sc:sequence>

10 <!-- Algorithms request and response omitted -->

11 <ssdl:msgref ref="msgs:AnalysisSubmission" direction="in"

12 sc:participant="UserInteractionService"/>

13 <ssdl:msgref ref="msgs:AnalysisId" direction="out"

14 sc:participant="UserInteractionService"/>

15 <sc:choice>

16 <sc:sequence>

17 <ssdl:msgref ref="msgs:ExecutionCancelRequest" direction="in"

18 sc:particpant="UserInteractionService"/>

19 <ssdl:msgref ref="msgs:CancelConfirmation" direction="out"

20 sc:participant="UserInteractionService"/>

21 </sc:sequence>

22 <sc:sequence>

23 <ssdl:msgref ref="msgs:AnalysisStarted" direction="out"

24 sc:participant="UserInteractionService"/>

25 <sc:choice>

26 <sc:sequence>

27 <ssdl:msgref ref="msgs:ExecutionCancelRequest" direction="in"

28 sc:particpant="UserInteractionService"/>

29 <ssdl:msgref ref="msgs:RequestRejected" direction="out"

30 sc:participant="UserInteractionService"/>

31 <ssdl:msgref ref="msgs:AnalysisCompleted" direction="out"

32 sc:participant="UserInteractionService"/>

33 </sc:sequence>

34 <sc:sequence>

35 <ssdl:msgref ref="msgs:AnalysisCompleted" direction="out"

36 sc:participant="UserInteractionService"/>

37 <sc:choice>

38 <sc:sequence>

39 <ssdl:msgref ref="msgs:ExecutionCancelRequest" direction="in"

40 sc:particpant="UserInteractionService"/>

41 <ssdl:msgref ref="msgs:RequestRejected" direction="out"

42 sc:participant="UserInteractionService"/>

43 </sc:sequence>

44 <sc:nothing/>

45 </sc:choice>

46 </sc:choice>

47 </sc:sequence>

48 </sc:choice>

49 </sc:sequence>

50 </sc:protocol>

51 </sc:sc>

52 </ssdl:protocol>

Figure 15.7: SSDL-SC contract for the bioinformatics service.

15 Protocol-Based Integration Using SSDL and π-Calculus 241

1 BioService =

2 UIStoBS(asu).BStoUIS<aId>.

3 (

4 UIStoBS(ecr).BStoUIS<cc>.0

5 +

6 τ.BStoUIS<as>.
7 (

8 UIStoBS(ecr).BStoUIS<rr>.BStoUIS<com>.0

9 +

10 τ.BStoUIS<com>.
11 (

12 UIStoBS(ecr).BStoUIS<rr>.0

13 +

14 0

15)

16)

17)

Figure 15.8: π-calculus corresponding to the bioinformatics service.

having to worry about SSDL contracts or the π-calculus syntax. As shown in
Figure 15.9, workflow authors can concentrate on capturing the service logic
using tools with which they are familiar. Message exchanges are represented
using explicit send/receive workflow activities. The SSDL contract shown in
Figure 15.7 can be generated automatically through analysis of the workflow.

A workflow definition may contain activities private to the service. The
SSDL contract presented to services wishing to interact with the bioinfor-
matics one only captures those aspects of the workflow that relate to message
exchanges. It is possible to create tooling that will automatically create skel-
eton workflows from the bioinformatics service’s SSDL contract capturing the
sequence of the interactions expected. This way, the implementation of the
user-interaction service can be simplified a great deal.

15.6 Related Work

In addition to WSDL, WS-BPEL 14 and WS-Choreography [458] have gained
some prominence within the Web services community as candidates for de-
scribing complex Web service contracts. Both (abstract) WS-BPEL and WS-
Choreography layer on top of WSDL contracts and augment those contracts
with additional information pertaining to the choreography of the MEPs con-
tained therein.

While there is merit in these approaches, there are also drawbacks. In
particular, since both rely on WSDL, the level of complexity is high. The
building block for the process or choreography descriptions is not the “mes-
sage” abstraction, as one might have expected, but instead the “operation”

242 Simon Woodman, Savas Parastatidis, and Jim Webber

Figure 15.9: The implementation of the bioinformatics service using Mi-
crosoft’s Windows Workflow Foundation [293].

15 Protocol-Based Integration Using SSDL and π-Calculus 243

abstraction. SSDL, on the other hand, allows protocols to be described dir-
ectly through the correlation of messages. As a result, it should be possible to
define both WS-BPEL or WS-Choreography as SSDL protocol frameworks.

15.7 Conclusions

SSDL is a contract language for describing message-oriented, asynchronous
interactions between Web services. In addition to its simplicity and SOAP-
centricity approach, SSDL is also able to capture rich conversations between
Web services without being limited to simple request–response message-
exchange patterns as is the case with WSDL.

A novel and powerful aspect of SSDL is that it enables the use of protocol
description frameworks that are amenable to formal verification. While this
is certainly a luxury for today’s simple Web services systems, as the size and
number of connected services in a deployment increases, the ability to formally
verify that the system as a whole, or individual services, will not starve or
race is an extremely useful proposition.

Acknowledgments

The authors would like to thank the following people for their efforts in and
around the SSDL space: Alan Fekete (University of Sydney, Australia), Paul
Greenfield (CSIRO, Australia), Dean Kuo (University of Manchester, UK)
and Surya Nepal (CSIRO, Australia).

16

Workflow Composition: Semantic
Representations for Flexible Automation

Yolanda Gil

16.1 Introduction

Many different kinds of users may need to compose scientific workflows
for different purposes. This chapter focuses on the requirements and chal-
lenges of scientific workflow composition. They are motivated by our work
with two particular application domains: physics-based seismic hazard ana-
lysis (Chapter 10) and data-intensive natural language processing [238]. Our
research on workflow creation spans fully automated workflow generation
(Chapter 23) using artificial intelligence planning techniques for assisted work-
flow composition [237,276] by combining semantic representations of workflow
components with formal properties of correct workflows. Other projects have
used similar techniques in different domains to support workflow composition
through planning and automated reasoning [286,289,415] and semantic repres-
entations (Chapter 19). As workflow representations become more declarative
and expressive, they enable significant improvements in automation and assis-
tance for workflow composition and in general for managing and automating
complex scientific processes. The chapter starts off motivating and describing
important requirements to support the creation of workflows. Based on these
requirements, we outline the approaches that we have found effective, includ-
ing separating levels of abstraction in workflow descriptions, using semantic
representations of workflows and their components, and supporting flexible
automation through reuse and automatic completion of user specifications of
partial workflows. These are all important areas in current and future research
in workflow composition.

16.2 The Need for Assisted Workflow Composition

Scientific workflows typically comprise dozens of application components that
process large data sets. The data sets are often sliced into smaller sets to be
processed concurrently, often resulting in the execution of thousands of jobs.

16 Workflow Composition 245

Figure 16.1 shows a sketch of a partial workflow for machine translation. It
illustrates how a data set is first divided into subsets, how these are pro-
cessed in parallel by the same sequences of jobs, and how the final results are
assembled in the final stage.

Figure 16.1: Scientific workflows may be complex and often involve parallel
processing of data sets. This figure shows an example where a data set is split
up in the early stages, its subsets are processed concurrently, and final results
are compiled in the later stages.

16.2.1 Unassisted Workflow Composition and Its Limitations

A common approach to creating workflows is to develop ad hoc scripts that
handle the iterative nature of sets of jobs and can generate workflow variants
through global variables. They also specify the data locations and execution
locations necessary for each job. The data have to be moved to the locations
specified, and the executables must be set up in the appropriate locations. The
scripts also take care of generating the metadata associated with the workflow
products, often using naming conventions to differentiate among alternative
configurations and executions. As an alternative to scripts, workflows may be
created by hand with a text editor and updated with a copy–edit process.

These approaches have severe limitations in terms of usability and scale.
Workflows can only be created by users who are very familiar with the applic-
ation components used in the workflow, the execution environment, and the
scripting language. Errors abound, as with any manually managed process,

246 Yolanda Gil

and users need to be able to understand error conditions and repair failures.
Extending the size of the workflows to include new models has cascading ef-
fects that have to be managed manually, making it impractical unless the
additions were anticipated in advance.

Usability and scale turn out to be crucial requirements for many scientific
disciplines. We motivate the requirements for scientific workflow composition
with two application domains that we have used in our work and are repre-
sentative of the requirements we see in other disciplines.

In order to simulate potential earthquakes, a workflow for seismic haz-
ard analysis combines physics-based models including stress models that hy-
pothesize the distribution of cumulated stress over fault systems given con-
tinental drift and the stress in other faults, fault rupture models that forecast
potential earthquake sources in a fault system, wave propagation models that
simulate the propagation of a seismic wave in a 3D Earth volume, site response
models that predict how a seismic wave will be amplified at a certain location
based on its soil type, and structure deformation models that simulate the ef-
fect of seismic waves in a man-made structure such as a building or a bridge.
These models can be used today by the scientists who developed them, but
ideally the users would include other scientists who want to use, extend, or
validate the aggregate models. In addition, the models should be accessible
to a wider range of users, such as engineers designing structures supposed to
withstand ground motion to a reasonable degree, graduate research assistants
doing advanced projects on the sensitivity of the models to certain controlled
variations, and scientists in related disciplines.

Natural language researchers are developing data-intensive statistical
training techniques to create language models useful for automatic summariz-
ation, machine translation, and document Indexing. A wide variety of models
can be found to address different aspects of language processing, such as lexical
analyzers, stemmers, part-of-speech taggers, syntax-based parsers, semantic
parsers, translation rules, and so on. To put together a machine translation
system requires assembling an entire suite of such models to process and parse
the original language sentence, map it to the target language, and smooth
out the output to make it as fluent as possible. Each of the models has to be
trained, perhaps on a different body of text, depending on the topic of transla-
tion, before the actual translation is done on the original sentence. New models
are developed constantly by different groups around the world, and variations
of combinations of models are explored by different research groups for differ-
ent purposes. Because better performance is invariably obtained with larger
sets of training data, there is increased interest in workflow environments that
exploit high-end computing and large data and storage management facilities.
Sharing of data and models is often done informally across research groups.
Flexible workflow composition and execution frameworks would support the
rapid development and validation of novel approaches and models.

In summary, although it is possible to create and manage workflows of
considerable size in an unassisted manner, there are severe challenges and

16 Workflow Composition 247

practical limitations in terms of usability and scalability that can only be
addressed by end-to-end workflow systems that assist users with the creation,
execution, and management of workflows.

16.2.2 Workflow Composition Scenarios

The following are representative scenarios for workflow composition illustrated
in these two application domains. These scenarios motivate the requirements
for workflow composition discussed in the next subsection.

Running a Common Kind of Analysis with a New Data Set

A common kind of wave propagation simulation takes a fault rupture and a
model of the corresponding Earth volume’s characteristics and runs a physics-
based anelastic wave propagation model over that volume to generate 2D or
3D seismograms. This kind of analysis is done routinely by Southern California
Earthquake Center (SCEC) scientists well versed in such physics-based wave
propagation models, but a scientist in Seattle may want to apply the same
analysis to data for the Pacific Northwest area. The workflow structure is
essentially the same, but the input data to be used are different. The Seattle
scientist will not be able to compose the workflow from scratch but could
reuse the basic workflow structure. In a machine translation project, the same
workflow can be tried out with a new body of text or a new language.

Creating a Variant of a Type of Analysis

A scientist in Santa Barbara who creates in her research a new model of a
fault in Southern California would want to test this model with typical wave
propagation simulation codes, except replacing the usual Earth volume model
by one that incorporates hers. In this case, the scientist from Santa Barbara
does not need to compose a workflow from scratch but instead could reuse
the commonly used workflow and modify it slightly by substituting one of
the components. In a machine translation project, a scientist may try out
a new parser her group has developed and investigate its effect on the final
translation quality.

Specifying only Critical Aspects of the Analysis

A scientist in Boston may be interested in simulating wave propagation us-
ing finite-difference models, but any of the finite-difference models would be
acceptable. This illustrates that it is possible to describe categories of work-
flows based on abstract classes of models. The new workflow would not be
composed from scratch, but by selecting one of the instances of the abstract
class of models mentioned in the workflow. A machine translation researcher
working on improving the fluency of the output will run workflows with a
part-of-speech tagger but may have no preference regarding the kind used.

248 Yolanda Gil

Running a Complex Analysis Composed of Common, Simpler Ones

An engineer in Palo Alto would like to simulate the effect of certain fault rup-
tures on his design of a freeway overpass at a location close to the San Andreas
fault. This may require composing a workflow by combining two workflows:
one designed to simulate the effect of certain ground motions on the overpass
structure and another one designed to simulate the wave propagation from the
fault ruptures to the site of the overpass. In a machine translation project,
the output of translation may be used for document summarization, where
the overall processing would be obtained by combining the two respective
workflows.

Specifying a New Type of Analysis

A scientist may create a new model for wave propagation that runs very
efficiently if coupled with certain types of models of an Earth volume. This
scientist would have to compose a completely new workflow out of a new set of
models by specifying step by step what models are to be used and how they
need to be combined. A machine translation researcher may create models
that represent a new approach to word-by-word translation and use them to
create a new kind of workflow.

16.2.3 Requirements for Workflow Composition

The scenarios above illustrate that workflows have many users and uses that
need assistance in creating workflows. From graduate students to experienced
scientists, scientists with varied needs and expertise may need to conduct
workflow analyses using the same underlying models and data. Engineers or
scientists in other disciplines may benefit from using the same models if they
are made accessible and easy to use within their own analysis process. The
degree of freedom and the amount of assistance and automation required dur-
ing workflow creation will be very different in each case. But ideally the same
underlying mechanisms should be used to manage the workflow composition
process.

Some of the scenarios above describe scientific exploration tasks. In those
cases, the scientist will always want to specify some aspects of the analysis
that are critical to their investigation, leaving it to the system to figure out the
rest automatically. The initial specification may include partial descriptions of
desired results, application components to be used in the analysis, input data
to be used in the computation, or all of the above. This requires an expressive
language that supports flexible descriptions of models and data. This may
require assisting users to provide a complete and valid initial specification
to ensure that all the pieces provided are mutually consistent and that it is
possible to create a full workflow from them. Once the initial user specification
is provided, it can then be automatically extended to form a complete workflow

16 Workflow Composition 249

that can be executed. This requires a flexible workflow completion mechanism
since it will need to work from results back to what is required to generate
them, from input data down to typical ways to process them, or from models
and their requirements that need to be generated by adding other models to
the workflow and so on.

Most of the scenarios above do not require creating workflows from scratch.
Although in some cases step-by-step assembly of new workflows from indi-
vidual components is needed, workflows can often be created by reusing exist-
ing workflows with minimal adaptations. This is not surprising, given that sci-
entific exploration often involves repeated analysis with small variants or local
modifications. Workflow reuse also encourages the practice of well-established
methodologies captured in particular workflow specifications. The more com-
mon steps in the workflows used by different scientists to do similar analyses,
the more comparable their results will be. This argues for reusing workflow
structures as much as possible across research groups and across experiments
or analyses. Results that are obtained using well-established methodologies
should essentially be the products of well-known and easily identifiable work-
flows.

Workflow reuse involves two major aspects: retrieval and adaptation. Re-
trieval involves finding appropriate workflows in a library, which requires that
workflow repositories be organized and indexed thematically and hierarchi-
cally. Adaptation of workflows has a wide range of complexity. The less so-
phisticated a user is, the more he or she is likely to reuse entire workflow
structures. More advanced users will be familiar with details of the mod-
els and may venture to create variants of a previous workflow by adding or
replacing components. The simplest kinds of adaptation involve simple sub-
stitutions of input data. The workflow composition system should ensure that
the new data set is appropriate for the models included in the workflow. This
requires that each workflow be described in terms of the types of data for
which it is appropriate. More complex kinds of reuse involve substitutions of
specific components together with the addition of steps to generate the data
needed by the new components. Other steps needed by the old model may
no longer be necessary and need to be removed. Supporting this adaptation
process requires representing the characteristics and constraints of each model
and the ability to use those representations to check the overall consistency
of workflows. Checking the consistency and validity of workflows is even more
necessary when several existing workflows at a time are reused to create a
new workflow.

These scenarios also illustrate the need for describing workflows in terms
that are critical for the experiment while ignoring necessary but irrelevant
execution details. This necessary detail is needed to execute the workflow
and includes components that prepare and transform the data into formats
required by the models, move data to the locations where they need to be
processed or stored, and perform conversions to different metric or reference
systems. A workflow composition system should present workflows to users

250 Yolanda Gil

at an appropriate level of abstraction. In addition, it should automatically
manage any steps in the workflow that do not involve experiment-critical
components.

In summary, there are three key requirements for assisting users in work-
flow composition. First, workflows must be described at different levels of
abstraction that support varying degrees of reuse and adaptation. Second, ex-
pressive descriptions of workflow components are needed to enable workflow
systems to reason about how alternative components are related, the data re-
quirements and products for each component, and any interacting constraints
among them. Third, flexible workflow composition approaches are needed that
accept partial workflow specifications from users and automatically complete
them into executable workflows. The next three sections discuss each of these
three requirements in turn.

16.3 From Reusable Templates to Fully Specified
Executable Workflows

Representing workflows at appropriate levels of abstraction is key to support
reuse and to manage the complexity and details involved in creating scientific
workflows. In our work we consider three stages of creation of workflows,
illustrated in Figures 16.2, 16.3, and 16.4. Each stage corresponds to a different
type of information being added to the workflow, namely:

1. Defining workflow templates that are data- and execution-independent
specifications of computations. Workflow templates identify the types of
components to be invoked and the data flow among them. The nature
of the components constrains the type of data that the workflow is de-
signed to process, but the specific data to be used are not described in
the template. In this sense, a workflow template is parameterized where
its variables are data holders that will be bound to specific data in later
stages of the workflow creation process. A workflow template should be
shared and reused among users performing the same type of analysis.

2. Creating workflow instances that are execution-independent. Workflow
instances specify the input data needed for an analysis in addition to the
application components to be used and the data flow among them. A
workflow instance can be created by selecting a workflow template that
describes the desired type of analysis and binding its data descriptions
to specific data to be used. While a workflow instance logically identifies
the full analysis, it does not include execution details such as the physical
replicas or locations to be used. That is, the same workflow instance can
be mapped into different executable workflows that generate exactly the
same results but use different resources available in alternative execution
environments.

16 Workflow Composition 251

3. Creating executable workflows. Executable workflows are created by taking
workflow instances and assigning actual resources that exist in the exe-
cution environment and reassigning them dynamically as the execution
unfolds. Executable workflows fully specify the resources available in the
execution environment (e.g., physical replicas, sites and hosts, and service
instances) that should be used for execution. This mapping process can
be automated and ideally is incremental and dynamic. In an incremental
mapping scheme, only the initial workflow steps might be assigned to re-
sources, while later steps can wait until the execution of the initial steps
is finalized. The mapping should be dynamic so that when an execution
failure occurs, the assignment can be reconsidered.

The template shown in Figure 16.2 depicts a rule-pruning workflow for
machine translation. This template corresponds to the workflow shown in
Figure 16.1. Templates should specify the types of input data that they are
able to process. In this case, the template takes as input a plain text corpus
and a roster of kernel rules (generated by a different workflow). An instance
can be created simply by binding these two inputs to specific data. In Fig-
ure 16.3, the input is specified as WSJ-2001 and KR-09-05. The specification
of the workflow instance can be quite compact since it consists of a template
identifier and a set of bindings for its inputs. This compact specification can
be turned into a fully expanded instance, shown on the right-hand side of
Figure 16.3 and corresponding to the workflow in Figure 16.1. Executable
workflows fully specify what needs to be executed, where, and in what order.
They also include data movement steps as required by the computations. In
the example shown in the figure, the initial and final stages may be performed
in local machines, while the most computationally intensive stages could be
executed in a shared resource (e.g., a cluster). The final results as well as some
intermediate results may be recorded in shared data repositories. An execut-
able workflow, shown in Figure 16.4, can be automatically generated from the
workflow instance by analyzing the execution requirements of each step and
mapping them into the particular data storage and computation resources
available at the time of execution.

While these different stages make useful distinctions, they are not meant
to be rigid. For example, a workflow template may be partially instantiated
in that some of its data type placeholders may already be assigned to existing
data. A partial instantiation can be used to specify an analysis of a data
set against a standard invariant data set. It could also be used to specify
parameter settings for some of the components of the analysis. The workflow
creation process needs to be flexible across these stages.

Reuse is greatly facilitated by distinguishing these different levels of
abstraction, from generic reusable workflow templates, to specific data-
processing workflow instances, to execution-dependent workflows. Users can
simply retrieve templates that are appropriate to their needs and specify the

252 Yolanda Gil

Figure 16.2: A workflow template captures the structure of the workflow in a
data-independent and execution-independent representation.

data to be processed. New types of workflows can be created by adapting or
merging existing templates.

Validation is also facilitated through this three-stage process. Workflow
templates can specify constraints on the types of input data that they can
process. In creating workflow instances, users can be required (and guided!)
to provide data that satisfy those constraints.

16 Workflow Composition 253

Figure 16.3: A workflow instance specifies the data to be processed by a work-
flow template in an execution-independent representation.

Figure 16.4: An executable workflow specifies where the data are stored and
processed and may include additional steps to move data as required for com-
putation and storage.

254 Yolanda Gil

16.4 Semantic Representations of Workflows to Support
Assisted Composition

Figure 16.5 shows an overview of the kinds of ontologies that we use to rep-
resent workflows. We use the Web Ontology Language (OWL) [331], a W3C
recommendation that now has several widely available editors and reasoners
for efficient inference. Application-specific ontologies, shown in the middle of
Figure 16.5, include definitions of terms and relations that are useful to de-
scribe different data properties in the domain at hand. These domain terms
can be organized in classes described in terms of their relations to other classes
as well as by their class-specific properties. For example, a class of data objects
defined for the machine translation workflow is “Kernel Rules.” This can be
a subclass of a more general class, “Translation Rules.” These domain terms
are then used to define the classes of data required for each component, as well
as the data they create. In our example, the definition of the component “Fil-
ter Rules” would state that one of its inputs is a file of type “Kernel Rules.”
Components can be organized by component types, also organized in classes.
For example, a generic class “Process Rules” may be defined as having at least
one input that is of type “Translation Rules.” Given this definition, the com-
ponent “Filter Rules” belongs to that more general class. Workflow templates
and instances can be specified by using these component classes and descrip-
tions. Since the output of “Filter Rules” is specified to be a set of “Transla-
tion Rules,” the file that results from the second component of the template
is of that type. All these application-specific ontologies can be specializations
of application-independent definitions, shown at the top of Figure 16.5. These
generic ontologies can describe the relationships between components, data,
and workflows, as well as their properties. At the bottom of the figure, ex-
ternal catalogs can be used as repositories of data, components, and executed
workflows. All these catalogs can be indexed by the ontologies, where any
metadata attributes would correspond to terms defined in the ontologies.

Semantic workflow representations support workflow composition in sev-
eral ways. First, the ontology definitions of classes and properties can be used
to check that newly created workflows are valid. In our running example, a
workflow instance may be noted to be invalid if KR-09-05 is not recognized
to be an object of type “Kernel Rules,” which may be either directly stated
in or deduced from the metadata attributes of KR-09-05. The consistency
of newly created workflow templates can also be checked against the defini-
tions in the ontologies. The second use of semantic workflow representations is
for retrieval from workflow libraries. Using ontology-based query languages, a
workflow template can be retrieved by providing a description of the features
sought. For example, one may search for workflows that take “Kernel Rules”
and include at least one component of type “Process Rules.” With this de-
scription, the template in Figure 16.2 would be found.

Semantic workflow representations allow a better integration of data man-
agement systems and workflow systems by supporting detailed descriptions of

16 Workflow Composition 255

Figure 16.5: Semantic workflow representations include application-specific
ontologies organized as specializations of generic application-independent
definitions. The ontologies can be used to index repositories of data, com-
ponents, and executed workflows.

the requirements of a given workflow. Data can be described in a workflow us-
ing metadata attributes to more or less detail. A workflow specification could
include intensional descriptions that describe the data required or extensional
descriptions that refer to specific data sets to be used. These descriptions
could be used to retrieve the data by matching the description against a cata-
log. The descriptions of the data could also prompt the automatic assembly or
generation of the data, perhaps by firing off another workflow. Note that these
representations can describe the data required or produced by a workflow at
different levels of abstraction, including regarding its format and storage. The
same data can be stored in alternative formats, such as a database, or per-
haps in a set of files, each structured either as a table, an XML structure, or a
labeled list. The same data may be replicated in different locations, perhaps
with alternative file breakdowns or directory structures. In some cases, data
formats have a major influence on the efficiency of the workflow, whereas in
other cases data formats do not affect the logical analysis in the workflow and
their handling and conversions may be completely abstracted away.

Rich metadata descriptions of intermediate or final workflow results can
be automatically created based on the representations of the template and
instance that generated them. This supports an important requirement of
scientific domains in terms of documenting how any data are generated and

256 Yolanda Gil

what their properties are. It also supports automatic workflow completion, as
we explain in the next section.

In summary, semantic workflow representations can support workflow com-
position in several ways. The reasoners can use the ontologies and associated
definitions to ensure the consistency of user-created workflows. During work-
flow creation and retrieval, ontology-based query languages can be used to
find relevant workflows and components based on their properties.

16.5 Automatic Completion of Workflows

In our work, we have used search and planning algorithms from artificial intel-
ligence to design workflow completion and automatic generation algorithms.
The abstraction levels and the semantic representations discussed so far turn
out to be useful in supporting a more flexible framework for automatic com-
pletion of workflows.

Complete automation is desirable in the stage of creating an executable
workflow from a workflow instance. This is possible when the execution re-
quirements of the workflow components are specified, and the system can
query the execution environment to find what resources are available for ex-
ecution. Important challenges include optimizing the completion time of any
given workflow, considering resource assignment trade-offs across many work-
flows, and designing appropriate failure handling and recovery mechanisms.

Automation can also be used to complete underspecified workflow tem-
plates. Workflow templates are underspecified when they include abstract
computation descriptions to be specialized during workflow instance creation.
For example, a step in a workflow template may specify a class of component
such as “Gridding.” The specific gridding component to be used may depend
on the nature of the data processed by the workflow. Workflow templates
can also be underspecified in that they may be missing workflow components
that perform data formatting, conversions, and other steps that are not con-
sidered critical to the analysis done in the workflow. As we mentioned, these
are necessary ingredients of a workflow, yet the details of how these steps are
performed may be irrelevant to the experimental design and to the scientist.
Automatically adding these steps is possible when the format requirements for
experiment-critical components are declaratively specified and when the com-
ponent library includes appropriate components for doing the kinds of data
processing required. The kinds of data processing needed may not be known
until the data are specified and therefore would not typically be included in a
workflow template. Once input data are specified, new data-processing steps
can be added during workflow instance creation. Intermediate data products
may also need to be converted for consumption of a subsequent step. In some
cases, their format can be anticipated from the workflow template definitions
and the new steps can be added during workflow instance creation. However,
in other cases, the format of intermediate data products will only be known

16 Workflow Composition 257

once they are created during execution, and in those cases the insertion of
data-processing steps will need to be interleaved with the execution process.

Full automation of the workflow composition process may be desirable for
some kinds of workflows and application domains. Given a description of the
desired data products, the task of creating a valid workflow from individual
application components can require full-fledged automatic programming ca-
pabilities. Automatic workflow generation is manageable in domains where ap-
plication components can be clearly encapsulated and described with detailed
specifications of the component’s outputs based on the properties of their in-
put data. These specifications must include criteria for component selection
and data selection when several alternatives are appropriate and where the
quality of the workflow results may depend on mutually constraining choices.
As an alternative to creating new workflows from scratch, fully automatic
workflow generation can also be achieved by reusing workflow templates. This
approach requires a library of workflow templates that reflects common anal-
ysis processes in the domain and is appropriately indexed according to the
requirements that will be provided at workflow generation time, be they the
desired results, the input data to be analyzed, or the types of components in
the workflow.

16.6 Conclusions

The scale and complexity of scientific applications challenge current workflow
representations and pose limitations on simple workflow composition tools
such as graphical editors or authoring environments with limited user assis-
tance. We have argued that workflow composition environments can greatly
benefit from (1) semantic representations of workflows and their components,
(2) workflow representations at different levels of abstraction, and (3) flexible
automation in completing user-provided partial workflow descriptions. These
novel capabilities can have broader implications beyond workflow composi-
tion in terms of increased automation and intelligent capabilities for workflow
management and execution.

Acknowledgments

This research was supported in part by the National Science Foundation un-
der grant EAR-0122464 and in part by an internal grant from the Information
Sciences Institute (ISI) of the University Of Southern California. I am very
grateful to Ewa Deelman for many fruitful discussions on the topics put for-
ward by this chapter. I would like to thank members of the Southern California
Earthquake Center and the ISI Machine Translation project for sharing with
us their challenging workflow problems. I also thank other members of the
Intelligent Systems Division and the Center for Grid Technologies at ISI.

17

Virtual Data Language: A Typed Workflow
Notation for Diversely Structured
Scientific Data

Yong Zhao, Michael Wilde, and Ian Foster

17.1 Introduction

When constructing workflows that operate on large and complex data sets,
the ability to describe the types of both data sets and workflow procedures can
be invaluable, enabling discovery of data sets and procedures, type checking
and composition of procedure calls, and iteration over composite data sets.

Such typing should in principle be straightforward because of the hier-
archical structure of most scientific data sets. For example, in the functional
magnetic resonance imaging (fMRI) applications in cognitive neuroscience
research that we use for illustrative purposes in this chapter, we find a
hierarchical structure of studies, groups, subjects, experimental runs, and
images. A typical application might build a new study by applying a program
to each image in each run for each subject in each group in a study.

Unfortunately, we find that such clean logical structures are typically
represented in terms of messy physical constructs (e.g., metadata encoded
in directory and file names) employed in ad hoc ways. For example, the fMRI
physical representation with which we work here is a deeply nested directory
structure, with ultimately a single 3D image (“volume”) represented by two
files located in the same directory, distinguished only by filename suffix. The
members of a data set are typically distinguished by identifiers embedded in
filenames using diverse, ad hoc conventions.

Such nonuniform physical representations make program development,
composition, and execution unnecessarily difficult. While we can incorporate
knowledge of file system layouts and file formats into application programs
and scripts, the resulting code is hard to write and read, cannot easily be
adapted to different representations, and is not clearly typed.

We have previously proposed that these concerns be addressed by sep-
arating abstract structure and physical representation [149]. (Woolf et
al. [477] have recently proposed similar ideas.) We describe here the design,
implementation, and evaluation of a notation that achieves this separation.

17 Virtual Data Language 259

We call this notation a virtual data language (VDL) because its declarative
structure allows data sets to be defined prior to their generation and without
regard to their location and representation. For example, consider a VDL
procedure “foo run” with the signature “Run Y =foo run(Run X)” and with
an implementation that builds and returns a new run Y by applying a program
“foo” to each image in the run supplied as argument X (X and Y being
data set variables of type Run). We can then specify via the VDL procedure
invocation “run2=foo run(run1)” that data set “run2” is to be derived from
data set “run1.” Independence from location and representation is achieved
via the use of XML Data Set Typing and Mapping (XDTM) [303] mechanisms,
which allow the types of data sets and procedures to be defined abstractly in
terms of XML schema. Separate mapping descriptors then define how such
abstract data structures translate to physical representations. Such descriptors
specify, for example, how to access the physical files associated with “run1”
and “run2.”

VDL’s declarative and typed structure makes it easy to build up in-
creasingly powerful procedures by composition. For example, a procedure
“Subject Y = foo subject(Subject X)” might apply the procedure “foo run”
introduced earlier to each run in a supplied subject. The repeated application
of such compositional forms can ultimately define large directed acyclic
graphs (DAGs) comprising thousands or even millions of calls to “atomic
transformations,” each of which operates on just one or two image files.

The expansion of data set definitions expressed in VDL into DAGs, and the
execution of these DAGs as workflows in uni- or multiprocessor environments,
is the task of an underlying virtual data system (VDS) [148], which is
comprised of workflow translators, planners, and interfaces to enactment
engines.

We have applied our techniques to fMRI data analysis problems [439]. We
have modeled a variety of data set types (and their corresponding physical
representations) and constructed and executed numerous computational
procedures and workflows that operate on those data sets. Quantitative
studies of code size in a previous paper [496] suggest that VDL and VDS
facilitate easier workflow expression and hence may improve productivity.

This chapter describes:

1. the design of a practical workflow notation and system that separate
logical and physical representation to allow the construction of complex
workflows on messy data using cleanly typed computational procedures;

2. the VDL type system, as well as the interfaces for mapping specification
and program invocation; and

3. a demonstration and evaluation of a prototype of the technology via
the encoding and execution of large fMRI workflows in a distributed
environment.

This chapter is organized as follows. In Section 17.2, we review related
work. In Section 17.3, we introduce the XDTM model, and in Sections 17.4 and

260 Yong Zhao, Michael Wilde, and Ian Foster

17.5 we describe VDL, using a simplified science application for illustration.
In Section 17.6, we apply this model to a real example drawn from procedures
used to prepare fMRI study data for analysis. In Section 17.7, we describe our
prototype implementation, and in Section 17.8 we conclude with an assessment
of this approach.

17.2 Related Work

The Data Format Description Language (DFDL) [42], like XDTM, uses
XML schema to describe abstract data models that specify data structures
independent from their physical representations. DFDL is concerned with
describing legacy data files and complex binary formats, while XDTM focuses
on describing data that span files and directories. Thus, the two systems can
potentially be used together.

In MIX (Mediation of Information using XML) [40], each data source is
also treated as an XML source, and its structural information is represented by
an XML DTD. Queries are expressed in a high-level declarative XML query
language called XMAS (XML Matching and Structuring Language), which
allows object fusion and pattern matching and supports construction of new
integrated XML objects from existing ones. MIX’s query evaluation takes a
virtual approach, where XML queries expressed in XMAS are unfolded and
rewritten at runtime and sent to corresponding sources.

The IBM virtual XML garden project [208] provides virtual XML views
on diverse data sources such as file systems, zip archives, and databases. It
supports XML access and processing on these data sources by writing thin, on-
demand adapters that wrap arbitrary data structures into a generic abstract
XML interface corresponding to the XML Infoset as well as the XPath and
XQuery Data Model.

XML Process Description Language (XPDL) [485], BPEL, and WSDL
also use XML schema to describe data or message types but assume that
data are represented in XML; in contrast, XDTM can describe “messy”
real-world data by mapping from a logical XML view to arbitrary physical
representations. Ptolemy [130] and Kepler [19] provide a static typing system;
Taverna [326] and Triana [91] do not mandate typing. XDTM’s ability to
map logical types from/to physical representations is not provided by these
languages and systems.

When composing programs into workflows, we must often convert logical
types and/or physical representations to make data accessible to downstream
programs. XPDL employs scripting languages such as JavaScript to select
subcomponents of a data type, and BPEL uses XPath expressions in Assign
statements for data conversion. VDL permits the declarative specification
of a rich set of mapping operations on composite data structures and
substructures.

17 Virtual Data Language 261

Many workflow languages allow sequential, parallel, and recursive patterns
but do not directly support iteration. Taverna relies on its workflow engine
to run a process multiple times when a collection is passed to a singleton-
argument process. Kepler uses a “map” operator to apply a function that
operates on singletons to collections. VDL’s typing supports flexible iteration
over data sets — and also type checking, composition, and selection.

17.3 XDTM Overview

XDTM defines a data set’s logical structure via a subset of XML schema,
which defines primitive scalar data types, such as Boolean, integer, string,
float, and date, and also allows for the definition of complex types via the
composition of simple and complex types.

A data set’s physical representation is defined by a mapping descriptor,
which defines how each element in the data set’s logical schema is stored in,
and fetched from, physical structures such as directories, files, and database
tables. The original XDTM description [303] indicated that a mapping
descriptor groups together a set of mapping functions, each associated with an
XML schema type, but did not specify exactly how these mapping functions
would be defined. In this chapter, we describe an approach to defining and
applying these mapping functions.

In order to permit reuse for different data sets, mapping functions may
be parameterized for such things as data set locations. Thus, in order to
access a data set, we need to know three things: its type schema, its mapping
descriptor, and the value(s) of any parameter(s) associated with the mapping
descriptor. These three components are grouped to form a data set handle.

Note that multiple mappings may be defined for the same logical schema
(i.e., for a single logical type). For example, an array of numbers might be
physically represented, in different contexts, as a set of relations, a text file,
a spreadsheet, or an XML document.

17.4 Physical and Logical Structure: An Example

We use a simple example to illustrate the relationship between physical
and logical structure. This example concerns the analysis of data collected
from portable cosmic ray detectors. Such detectors are increasingly used in
secondary-level physics education through projects such as QuarkNet [36].

As in many scientific experiments, the nature of the data collection
process determines the data’s physical representation. Students are organized
into groups; each group installs a few detectors and collects data from the
detectors. Data from detectors are sent to PCs in the form of simple text files
that describe the sampling of A/D converter levels on the multiple channels
of the instrument (Figure 17.1). (We can think of these “raw data files”

262 Yong Zhao, Michael Wilde, and Ian Foster

as describing potential cosmic ray events in the form of digitized waveform
descriptions.) Analysis then consists of processing these raw waveforms to
eliminate noise, extracting a signal, and then searching for correlations in the
data from multiple channels, multiple instruments at varying locations, and
multiple runs.

Figure 17.1: Cosmic ray detector.

As depicted in Figure 17.2, a suitable physical data set organization for
this application is a hierarchical directory structure that provides for multiple
experimental groups, each with data from one or more detectors. (Note that
directories are distinguished from files by a trailing “/”.) Observations consist
of raw data from the instruments along with metadata about the time period
of the recording and the physical location and orientation of the detector
(“geometry”). One metadata file per detector (“detector info”) is also present
in the structure. Derived data produced via various data analysis procedures
are stored in the same structure. Pulse files are an example of an output data
set added to the observation following the application of a reconstruction
procedure to the raw events.

To illustrate how “messy” a physical representation can be, consider that
in this application we could represent the start date/time of an observation
using the creation time of the rawdata file and the end time of the observation
by the modification time of that file.

In contrast to these ad hoc physical encodings, the logical structure of such
a physical data set representation can be uniformly and explicitly described
by XML schema, as illustrated in Figure 17.3.

17.5 Virtual Data Language

XDTM specifies how we define XML structures and associate physical
representations with them. However, it does not address how we write
programs that operate on XDTM-defined data. That is the focus of the

17 Virtual Data Language 263

XDTM-based Virtual Data Language (VDL). This language, derived loosely
from an earlier VDL [148] that dealt solely with untyped files, allows users
to define procedures that accept, return, and operate on data sets with type,
representation, and location defined by XDTM. We introduce the principal
features of VDL via a tutorial example.

17.5.1 Representing Logical Structure: The VDL Type System

VDL uses a C-like syntax to represent XML schema complex types, as
illustrated in Figure 17.4, which shows VDL type definitions corresponding
to the XML schema of Figure 17.3. The Detector type contains information
about the detector hardware — such as serial number, installation date,
and firmware revision (DetectorInfo) — and a set of Observations. Each
Observation contains the time range for which the raw data are gathered
(ostart, oend), the raw data themselves, some geometry information, and a
derived data type Pulse. The conversion from this notation to XML schema is
straightforward: The VDL data model of named member fields (“structures”
or “records”) and arrays is mapped to XML schema constructs for sequences
and element cardinality (occurrence).

17.5.2 Accessing Physical Structure: Mapping Functions

The process of mapping, as defined by XDTM, converts between a data set’s
physical representation (typically in persistent storage) and a logical XML
view of those data. VDL programs operate on this logical view, and mapping
functions implement the actions used to convert back and forth between the
XML view and the physical representation.

Associated with each logical type is a mapping descriptor, which provides
access to a set of mapping functions that the VDL implementation may invoke
during program execution. A mapping descriptor must include the following
four functions:

/quarknet/
/quarknet/group1/
/quarknet/group1/detector1/
/quarknet/group1/detector1/detector_info
/quarknet/group1/detector1/observation1/
/quarknet/group1/detector1/observation1/geometry
/quarknet/group1/detector1/observation1/rawdata
/quarknet/group1/detector1/observation1/pulse
/quarkent/group1/detector1/observation2/
...
/quarknet/group1/detector2/
...

Figure 17.2: Physical directory structure of detector data.

264 Yong Zhao, Michael Wilde, and Ian Foster

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://quarknet.org/schema/cosmic.xsd"

xmlns="http://quarknet.org/schema/cosmic.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="Observation">
<xs:sequence>
<xs:element name="ostart" type="xs:date"/>
<xs:element name="oend" type="xs:date"/>
<xs:element name="rawdata" type="RawData"/>
<xs:element name="geo" type="Geometry"/>
<xs:element name="pulse" type="Pulse"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Detector">
<xs:sequence>
<xs:element name="info" type="DetectorInfo"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="ob" type="Observation"/>

</xs:sequence>
</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 17.3: XML schema of detector data.

type Detector {
DetectorInfo info;
Observation ob[];

}

type Observation {
Date ostart, oend;
RawData rawdata;
Geometry geo;
Pulse pulse; /* a derived file: pulses reconstructed from raw */

}

type DetectorInfo {
Int serialNum;
Date installDate;
String swRev;

}

Figure 17.4: VDL type definition for detector data.

• create data set: creates a physical data set conforming to the desired
physical representation;

• store member: stores a specific element of the logical structure into its
physical storage;

• get member: gets a specific logical child element from the data set’s
physical storage;

• get member list: gets a list of child elements from the physical storage.

17 Virtual Data Language 265

In addition, a mapping descriptor often includes additional mapping functions
that provide access to various components of the physical data representation.
For example:

• filename: provides access to the file or directory name of a data set
member’s physical representation.

To realize the mapping model in VDL, we formalize the concept of the XDTM
logical XML view by defining a construct much like an XML store [435], which
we call the xview. The xview is managed by the VDL runtime implementation,
which we refer to abstractly as the virtual data machine, or VDM.

As a VDL program executes, the VDM performs VDL expression
evaluation by invoking the appropriate mapping functions to move data back
and forth between physical data representations and the xview. When a
mapping function maps a data set’s representation into the xview, it creates
the XML representation of the physical data structure, in which each field
(or member) of a data set type becomes either an atomic value or a handle
to the corresponding physical data set component. VDL variables that are
defined as local to a VDL procedure (i.e., “stack variables” in a procedure’s
activation record [363]) are represented in a similar manner.

The xview can be implemented in many ways (for instance, in an XML
database) and has the desirable features that (a) it can be processed by
standard XML tools such as XPath and XQuery and (b) it can operate
as a cache, logically representing an entire physical data set but physically
“faulting in” data sets as they are referenced in a “lazy evaluation” mode
and swapping out data sets that are not currently being referenced on a least
recently used basis.

17.5.3 Procedures

Data Sets are operated on by procedures, which take data sets described by
XDTM as input, perform computations on those data sets, and produce data
sets described by XDTM as output.

A VDL procedure can be either an atomic procedure or a named workflow
template defining a DAG of multiple nodes (compound procedure). An atomic
procedure definition specifies an interface to an executable program or service
(more on this topic below), while a compound procedure composes calls to
atomic procedures, other compound procedures, and/or control statements.

VDL procedure definitions specify formal parameters; procedure calls
supply the actual argument values. For example, consider an atomic procedure
reconstruct that performs reconstruction of pulse data from raw data. The
following interface specifies that this procedure takes Raw and Geometry as
input data set types and produces Pulse as an output type:

(Pulse pulse) reconstruct (Raw raw, Geometry geo) {
/* procedure body */

}

We present the corresponding procedure body in Section 17.5.4.

266 Yong Zhao, Michael Wilde, and Ian Foster

17.5.4 Atomic Procedures

An atomic procedure defines an interface to an external executable program
or Web service and specifies how logical data types are mapped to and from
application program or service arguments and results.

Invoking Application Programs

An atomic procedure that defines an interface to an external program must
specify:

• The interpreter that will be used to execute the program
• The name of the program to be executed
• The syntax of the command line that must be created to invoke the

program
• The data context in which the program is to execute (i.e., the physical

data sets that need to be available to the program when it executes)

An atomic procedure has a header that specifies its interface in terms
of data set types, but its body operates on data set representations. Thus,
expressions in the data set body must be able to use mapping functions
(Section 17.5.2) to map between types and representations.

The header of an atomic procedure that defines an interface to an
external program specifies the name of the program to be invoked (the
atomic procedure call), the data to be passed to the procedure’s execution
site (the atomic procedure’s input arguments), and the resulting data to be
returned back from the procedure’s execution site (the atomic procedure’s
return arguments).

The body of such an atomic procedure specifies how to set up its execution
environment and how to assemble the call to the procedure. For example, the
following procedure reconstruct defines a VDL interface to a cosmic ray data-
processing application of the same name. The statements in the body assemble
the command to invoke the program, with the “bash” statement indicating
that invocation is to occur by using the bash shell command interpreter.
The @ notation is used to invoke a mapping function. In this example, the
mapping function “filename” is called to extract filenames from the data set
representation so they can be passed to the shell.

(Pulse pulse) reconstruct (Raw raw, Geometry geo) {
bash {
reconstruct
@filename(raw)
@filename(geo)
@filename(pulse)

}
}

This atomic procedure may be invoked by a procedure call such as
Pulse p1 = reconstruct (raw1, geo);

17 Virtual Data Language 267

which takes a raw data set raw1 and a geometry data set geo as inputs
and generates as output a pulse data set p1. The data sets raw1, geo, and
p1 are defined as data set handles, which include the typing and mapping
specifications for these data sets.
RawData raw1 <file_mapper;

location="/quarknet/group1/detector1/observation1/rawdata">
Geometry geo <file_mapper;

location="/quarknet/group1/detector1/observation1/geometry">
Pulse p1 <file_mapper;

location="/quarknet/group1/detector1/processed/pulse/p1">

The procedure call is compiled into the execution of the following command
line:

reconstruct /quarknet/group1/detector1/observation1/rawdata \
/quarknet/group1/detector1/observation1/geometry \
/quarknet/group1/detector1/processed/pulse/p1

If this command is executed on a remote host that does not share a file
system, then VDS must ensure that the physical representations of data sets
passed as input arguments are transferred to the remote site, enabling the
executing application to access the required physical files. For example, in the
call just shown, the physical representations of the data sets raw1 and geo
must be transferred to the remote site.

Similarly, output data (e.g., p1 in the example call) must be made
accessible to other program components. To this end, the existence of the
physical data on the remote site is recorded. In addition, the data are
optionally copied to a specified site to create an additional replica (which
often serves as an archival copy). Finally, the xview itself must be updated to
be brought back in sync with the physical representation.

Invoking Web Services

We envision that atomic procedure definitions could also specify Web service
interfaces. Such procedures would have the same procedure prototype header
as an application program interface but provide a different body. The following
example defines a Web service implementation of the same reconstruct
procedure that was defined above as an executable application.

(Pulse pulse) reconstruct (Raw raw, Geometry geo)
{

service {
wsdlURI = "http://quarknet.org/cosmic.wsdl";
portType = "detectorPT";
operation = "reconstruct";
soapRequestMsg = { rawdata = raw;

geometry = geo};
soapResponseMsg = { pulsedata = pulse};

}
}

Not shown here is the specification of how arguments such as raw, geo, and
pulse are to be passed to and from the Web service. For this, data transport
options such as the following will be required:

268 Yong Zhao, Michael Wilde, and Ian Foster

1. File reference: A reference to a file is passed in the Web service message
in the form of a URI.

2. File content: The content of a file is encoded into an XML element and
passed in the message body.

3. SOAP attachment: The content of a file is passed as a SOAP attachment.

17.5.5 Compound Procedures

A compound procedure contains a set of calls to other procedures. Variables
in the body of a compound procedure specify data dependencies and thus
the directed arcs for the DAG corresponding to the compound procedure’s
workflow. For example:

(Shower s) showerstudy (Observation o1, Observation o2) {
Pulse p1 = thresholdPulse (o1.pulse);
Pulse p2 = thresholdPulse (o2.pulse);
Pulse p = correlateEvents (p1, p2);
s = selectEvents (p);

}

In the procedure showerstudy, which computes the correlation between two
observations, the pulse events from each observation are first filtered by
a thresholding procedure, then the results of the thresholding procedures
are combined by a correlation procedure, and finally interesting shower
events are selected from the combined events. In this compound procedure,
data dependencies dictate that the two invocations of thresholdPulse can be
executed in parallel, after which the calls to correlateEvents and selectEvents
must execute in sequence.

Arbitrary workflow DAGs can be specified in this manner, with the nodes
of the DAGs being procedure calls and the edges represented by variables,
which are employed to pass the output of one procedure to the input of
another.

17.5.6 Control-Flow Constructs

Control-flow constructs are special control entities in a workflow that control
the direction of execution. VDL provides if, switch, foreach, and while
constructs, with syntax and semantics similar to comparable constructs in
high-level languages. We illustrate the use of the foreach construct in the
following example:

genPulses (Detector det) {
foreach Observation o in det.ob {

o.pulse = reconstruct (o.raw, o.geo);
}

}

This example applies the atomic procedure reconstruct to each of the
observations associated with a specific detector det and generates the pulse
data for each observation from the raw data. All of the calls to reconstruct
can be scheduled to run in parallel.

17 Virtual Data Language 269

17.6 An Application Example: Functional MRI

VDL provides an effective way to specify the preprocessing and analysis of the
terabytes of data contained in scientific archives such as the fMRI Data Center
(fMRIDC: www.fmridc.org), based at Dartmouth College. This publicly
available repository includes complete data sets from published studies of
human cognition using functional magnetic resonance imaging (fMRI). Data
Sets include 4D functional image-volume time-course data, high-resolution
images of brain anatomy, study metadata, and other supporting data collected
as part of the study. The fMRIDC curates and packages these data sets for
open dissemination to researchers around the world, who may use the data
to conduct novel analyses, test alternative hypotheses, explore new means of
data visualization, or for education and training.

17.6.1 Overview of fMRI Data Sets

fMRI data sets are derived by scanning the brains of subjects as they perform
cognitive or manual tasks. The raw data for a typical study might consist of
three subject groups with 20 subjects per group, five experimental runs per
subject, and 300 volume images per run, yielding 90,000 volumes and over 60
GB of data. A fully processed and analyzed study data set can contain over
1.2 million files. In a typical year at the Dartmouth Brain Imaging Center,
about 60 researchers preprocess and analyze about 20 concurrent studies.

Experimental subjects are scanned once to obtain a high-resolution image
of their brain anatomy (“anatomical volume”) and then scanned with lower
resolution at rapid intervals to observe the effects of blood flow from the
“BOLD” (blood oxygenated level dependent) signal while performing some
task (“functional runs”). These images are preprocessed and subjected to
intensive analysis that begins with image processing and concludes with a
statistical analysis of correlations between stimuli and neural activity.

Figure 17.5 illustrates some of the conventions that are frequently used in
the physical representation of such fMRI data sets. The logical representation
on the left shows the hierarchy of objects in a hypothetical study, while the
physical representation on the right indicates the typical manner in which
the objects in the logical view are physically represented in a hierarchical file
system directory, making heavy use of the encoding of object identifiers into
the names of files and directories.

The VDL examples in the next subsections are based on a workflow,
AIRSN, that performs spatial normalization for preprocessing raw fMRI data
prior to analysis. AIRSN normalizes sets of time series of 3D volumes to a
standardized coordinate system and applies motion correction and Gaussian
smoothing.

270 Yong Zhao, Michael Wilde, and Ian Foster

DBIC Archive
Study #’2004 0521 hgd’
Group #1

Subject #’2004 e024’
Anatomy
high-res volume

Functional Runs
run #1

volume #001
...
volume #275

...
run #5

volume #001
...
volume #242

Group #5
...

Study #...

DBIC Archive
Study_2004.0521.hgd

Group 1
Subject_2004.e024

volume_anat.img
volume_anat.hdr
bold1_001.img
bold1_001.hdr
...
bold1_275.img
bold1_275.hdr
...

bold5_001.img
...

snrbold*_*
...air*

...
Group 5
...

Study ...

Figure 17.5: fMRI structure — logical (left) and physical (right).

17.6.2 fMRI Data Set Type Definitions

Figure 17.6 shows the VDL types that represent the data objects of Figure
17.5. A Volume contains a 3D image of a volumetric slice of a brain image,
represented by an Image (voxels) and a Header (scanner metadata). As we
do not manipulate the contents of those objects directly within this VDL
program, we do not further decompose their structure. A time series of
volumes taken from a functional scan of one subject, doing one task, forms a
Run. In typical experiments, each Subject has an anatomical data set, Anat,
and multiple input and normalized runs.

Specific output formats involved in processing raw input volumes and
runs may include outputs from various image-processing tools, such as the
automated image registration (AIR) suite [475]. The type Air corresponds to
one of the data set types created by these tools (and it, too, needs no finer
decomposition).

type Volume { Image img; Header hdr; }
type Run { Volume v[]; }
type Anat Volume;
type Subject { Anat anat; Run run []; Run snrun []; }
type Group { Subject s[]; }
type Study { Group g[]; }
type AirVector { Air a[]; }
type NormAnat { Anat aVol; Warp aWarp; Volume nHires; }

Figure 17.6: VDL type definition for fMRI data.

17 Virtual Data Language 271

17.6.3 VDL Procedures for AIRSN

Figure 17.7 shows a subset of the VDL procedures for AIRSN. The procedure
functional() expresses the steps in Figure 17.8; airsn subject() calls this
procedure once per each component and anatomical() (not shown) to process
a Subject. airsn subject() creates in the Subject data set a new spatially
normalized Run for each raw Run. Such procedures define how the workflow
is expanded to process the members of a data set, as in Figure 17.9.

(Run snr) functional(Run r, NormAnat a, Air shrink) {
Run yroRun = reorientRun(r , "y");
Run roRun = reorientRun(yroRun , "x");
Volume std = roRun[0];
Run rndr = random_select(roRun, .1); //10% sample
AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, [81,3,3]);
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");
Volume meanRand = softmean(reslicedRndr, "y", null);
Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, [81,3,3]);
Volume mnQA = reslice(meanRand, mnQAAir, "o", "k");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);
Run nr = reslice_warp_run(boldNormWarp, roRun);
Volume meanAll = strictmean (nr, "y", null)
Volume boldMask = binarize(meanAll, "y");
snr = gsmoothRun(nr, boldMask, 6, 6, 6);

}

airsn_subject(Subject s, Volume atlas, Air ashrink, Air fshrink) {
NormAnat a = anatomical(s.anat, atlas, ashrink);
Run r, snr;

int i;
foreach (r,i) in s.run {

snr = functional(r, a, fshrink);
s.snrun[i] = snr;

}
}

Figure 17.7: VDL fMRI procedure examples.

17.6.4 The AIRSN Workflow

Figures 17.8 and 17.9 show two views of the most data-intensive segment of
the AIRSN workflow, which processes the data from the functional runs of a
study. Figure 17.8 is a high-level representation in which each oval represents
an operation performed on an entire Run. Figure 17.9 expands the workflow
to the Volume level for a data set of ten functional volumes. (Note that the
random select call is omitted in Figure 17.9). In realistic fMRI experiments,
Runs might include hundreds or thousands of Volumes.

272 Yong Zhao, Michael Wilde, and Ian Foster

Figure 17.8: AIRSN workflow high-level representation.

Figure 17.9: AIRSN workflow expanded to show all atomic file operations for
a ten volume run.

17 Virtual Data Language 273

17.7 VDL Implementation

We have developed a prototype system that can process VDL type definitions
and mappings, convert a typed workflow definition into an executable DAG,
expand DAG nodes dynamically to process subcomponents of a compound
data set, and submit and execute the resulting DAG in a Grid environment.
The separation of data set type and physical representation that we achieve
with VDL can facilitate various runtime optimizations and graph-rewriting
operations [112]. The prototype implements the runtime operations needed to
support typed VDL data set processing and execution, which is the principal
technical challenge of implementing VDL. We have also verified that we can
invoke equivalent services and applications from the same VDL.

The prototype extends an earlier VDS implementation with features to
support data typing and mapping. We use the VDS graph traversal mechanism
to generate an abstract DAG in which transformations are not yet tied to
specific applications or services and data objects are not yet bound to specific
locations and physical representations. The extended VDS also enhances
the DAG representation by introducing “foreach” nodes (in addition to the
existing “atomic” nodes) to represent foreach statements in a VDL procedure.
These nodes are expanded at runtime (see Section 17.7.2), thus enabling data
sets to have a dynamically determined size.

The resulting concrete DAG is executed by the DAGMan (“DAG man-
ager”) tool. DAGMan provides many necessary facilities for workflow ex-
ecution, such as logging, job status monitoring, workflow persistence, and
recursive fault recovery. DAGMan submits jobs to Grid sites via the Globus
GRAM protocol.

17.7.1 Data Mapping

Our prototype employs a table-driven approach to implement XDTM mapping
for data sets stored on file systems. Each table entry specifies

name: the data object name
pattern: the pattern used to match filenames
mode:FILE (find matches in directory)

RLS (find matches via replica location service)
ENUM (data set content is enumerated)

content: used in ENUM mode to list content

When mapping an input data set, this table is consulted, the pattern is
used to match a directory or replica location service according to the mode,
and the members of the data set are enumerated in an in-memory structure
that models the behavior of the xview. This structure is then used to expand
foreach statements and to set command-line arguments.

For example, in Figure 17.5, a Volume is physically represented as an
image/header file pair, and a Run as a set of such pairs. Furthermore, multiple
Runs may be stored in the same directory, with different Runs distinguished
by a prefix and different Volumes by a suffix. To map this representation to

274 Yong Zhao, Michael Wilde, and Ian Foster

the logical Run structure, the pattern “boldN∗” is used to identify all pairs
in Run N at a specified location. Thus, the mapper, when applied to the
following eight files, identifies two runs, one with three Volumes (Run 1) and
the other with one (Run 2).

bold1_001.img bold1_001.hdr
bold1_002.img bold1_002.hdr
bold1_003.img bold1_003.hdr
bold2_007.img bold2_007.hdr

17.7.2 Dynamic Node Expansion

A node containing a foreach statement must be expanded dynamically into a
set of nodes: one for each member of the target data set specified in the foreach.
This expansion is performed at runtime: When a foreach node is scheduled
for execution, the appropriate mapper function is called on the specified data
set to determine its members, and for each member of the data set identified
(e.g., for each Volume in a Run), a new job is created in a “sub-DAG.”

The new sub-DAG is submitted for execution, and the main job waits
for the sub-DAG to finish before proceeding. A postscript for the main job
takes care of the transfer and registration of all output files and the collection
of those files into the output data set. This workflow expansion process
may recurse further if the subcomponents themselves also include foreach
statements. DAGMan provides workflow persistence in the event of system
failures during recursion.

The process of dynamic node expansion can be performed in a cursor-like
manner to efficiently navigate large data sets. Large data sets behave as if
the entire data set is expanded in the xview. A näıve implementation would
do exactly that, but a more sophisticated implementation can yield better
performance by taking advantage of operations that “close” members after
they are mapped and that scroll through large sequences of members in a
cursor-like fashion to enable arbitrarily large data sets to be mapped.

17.7.3 Optimizations and Graph Transformation

Since data set mapping and node expansion are carried out at runtime, we can
use graph transformations to apply optimization strategies. For example, in
the AIRSN workflow, some processes, such as the reorient of a single Volume,
only take a few seconds to run. It is inefficient to schedule a distinct process
for each Volume in a Run. Rather, we can combine multiple such processes to
run as a single job, thus reducing scheduling and queuing overhead.

As a second example, the softmean procedure computes the mean of all
Volumes in a Run. For a data set with a large number of Volumes, this stage
is a bottleneck, as no parallelism is engaged. There is also a practical issue:
The executable takes all Volume filenames as command-line arguments, which
can exceed limits defined by the Condor and UNIX shell tools used within our

17 Virtual Data Language 275

VDS implementation. Thus, we transform this node into a tree in which leaf
nodes compute over subsets of the data set. The process repeats until we get
a single output. The shape of this tree can be tuned according to the available
computing nodes and data set sizes to achieve optimal parallelism and avoid
command-line length limitations.

17.8 Conclusion

We have designed a typed workflow notation and system that allows workflows
to be expressed in terms of declarative procedures that operate on XML
data types and are then executed on diverse physical representations and
distributed computers. We have shown, via studies that compare program
sizes with and without our notation [496], that this notation and system can
be used to express large amounts of distributed computation easily.

The productivity leverage of this approach is apparent: A small group of
developers can define VDL interfaces to the application programs and utilities
used in a scientific domain and then create a library of data set types, mappers,
and data set iteration functions. Such a “virtual data library” encapsulates
low-level details concerning how data are grouped, transported, cataloged,
passed to applications, and collected as results. Other scientists can then
use such libraries to construct workflows without needing to understand the
details of physical representation and furthermore are protected by the XDTM
type system from forming workflows that are not type compliant. The data
management conventions of a research group can be encoded and uniformly
maintained with XDTM mapping functions, thus making it easier to curate
data set collections that may include many tens of millions of files.

We next plan to automate the compilation steps that were performed
manually in our prototype and to create a complete workflow development and
execution environment for our XDTM-based VDL. We will also investigate
support for services, automation of type coercions between differing physical
representations, and recording of provenance for large data collections.

Acknowledgments

This work was supported by the National Science Foundation GriPhyN Pro-
ject, grant ITR-800864; the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy; and the National Institutes of Health,
grants NS37470 and NS44393. We are grateful to Jed Dobson and Scott
Grafton of the Dartmouth Brain Imaging Center, and to our colleagues on the
Virtual Data System team, Ewa Deelman, Carl Kesselman, Gaurang Mehta,
Doug Scheftner, Karan Vahi, and Jens Voeckler, for discussion, guidance, and
assistance.

Part III

Frameworks and Tools: Workflow Generation,
Refinement, and Execution

18

Workflow-Level Parametric Study Support by
MOTEUR and the P-GRADE Portal

Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, and Peter
Kacsuk

18.1 Introduction

Many large-scale scientific applications require the processing of complete
data sets made of individual data segments that can be manipulated
independently following a single analysis procedure. Workflow managers have
been designed for describing and controlling such complex application control
flows. However, when considering very data-intensive applications, there is a
large potential parallelism that should be properly exploited to ensure efficient
processing. Distributed systems such as Grid infrastructures are promising
for handling the load resulting from parallel data analysis and manipulation.
Workflow managers can help in exploiting the infrastructure parallelism, given
that they are able to handle the data flow resulting from the application’s
execution.

To handle users’ processing requests, two main strategies have been
proposed and implemented in Grid middleware: the task-based approach,
where a computing task is formally described before being submitted; and the
service-based approach, where a computation handled by an external service is
invoked through a standard interface. Both approaches have led to the design
of different workflow managers. They significantly differ

• in the way data flows are described and manipulated; and
• regarding the optimizations that can be achieved for executing the

workflows.

In particular, in the context of scientific applications, it is often necessary
to run experiments following a single workflow but considering different, and
sometimes dynamic, input data sets. We will name as parametric applications
such data-intensive scientific procedures to underline the variable nature of
their data flows. Workflow managers are expected to offer both

• a high level of flexibility in order to enable parametric studies based on
these applications; and

• a Grid interface and workflow optimization strategies in order to ensure
efficient processing.

280 Glatard et al.

In Section 18.2, we introduce the task-based and the service-based
approaches in more detail. We then study their differences in terms of
managing the resulting data flows (Section 18.3) and computation flows
(Section 18.4). In Section 18.7, we introduce P-GRADE portal, a generic
interface to both approaches. P-GRADE portal is able to use both the
task-based DAGMan and the service-based MOTEUR [161, 304] (hoMe-
made OpTimisEd scUfl enactoR) workflow managers. It conciliates to both
approaches as much as possible (Section 18.5), and it offers a single interface
to describe a data-intensive workflow. The execution technique to be used can
then be selected by the user.

18.2 Task-Based and Service-Based Workflows

In the task-based strategy, also referred to as global computing , users define
computing tasks to be executed. Any executable code may be requested
by specifying the executable code file, input data files, and command-line
parameters to invoke the execution. The task-based strategy, implemented in
Globus [144], LCG2 [248], or gLite [165] middleware for instance, has already
been used for decades in batch computing. It straightforwardly enables legacy
code execution without requiring any modification, provided that the user
knows the command line of the code to be launched. An emblematic workflow
manager using the task-based framework is the directed acyclic graph manager
(DAGMan [97]) from Condor (see Chapter 22) and other frameworks (e.g.,
VDS), are built on top of this (see Chapters 17 and 23 for instance).

The service-based strategy, also referred to as meta computing , consists
of wrapping application codes into standard interfaces. Such services are seen
as black boxes from the workflow manager, for which only the invocation
interface is known. Various interfaces, such as Web services [457] (also see
Chapter 12) or GridRPC [309], have been standardized. The services paradigm
has been widely adopted by middleware developers for the high level of
flexibility that it offers (e.g. in the Open Grid Service Architecture [146] and
the WS-RF extension to Web services). However, this approach is less common
for application code, as it requires all codes to be instrumented with the
common service interface. Yet, the service-based approach has been adopted
in well-known workflow managers such as the Kepler system [272], Taverna
(see Chapter 19), Triana (see Chapter 20), and MOTEUR.

The main difference between the task-based and the service-based ap-
proaches is the way data sets to be processed are being handled. In the
task-based approach, input data segments are specified with each task.
This representation mixes data and processing descriptions. The dependency
between two tasks is explicitly stated as a data dependency in these two
task descriptions. This representation is static and convenient for optimizing
the corresponding computations: The full oriented graph of tasks is known
when the computations are scheduled, thus enabling many optimization

18 Parametric Workflow Support by MOTEUR and P-GRADE 281

opportunities for the workflow scheduler [54]. Conversely, the service-based
approach decouples data and processing. Input data sets are dynamically
specified at execution time as input parameters to the workflow manager.
Each service is defined independently from the data sets to be processed, and
it is only at the service invocation time that input data segments are sent to
the service. This eases the reexecution of application workflows on different
input data. In this framework, the dependencies between consequent services
are logically defined at the level of the workflow manager. Each service is
designed independently of the others.

18.3 Describing Parametric Application Workflows

18.3.1 Dynamic Data Sets

The nonstatic nature of data descriptions in the service-based approach
enables dynamic extensions of the data sets to be processed: A workflow can be
defined and executed even though the complete input data sets are not known
in advance, perhaps because the data segments are being dynamically fed in
as they are produced. Indeed, it is common in scientific applications that data
acquisition is a heavyweight process and that data are progressively produced.
Some workflows may even act on the data production source itself, stopping
data production when sufficient inputs are available to produce meaningful
results.

Due to the dynamic nature of data and data interdependencies, it is
not always possible to define loops and therefore task-based workflows are
typically represented using directed and acyclic graphs (DAGs). Only in
the case where the number of iterations is statically known may a loop be
expressed by unfolding it in the DAG. However, if the loop condition is
dynamically determined (e.g. in optimization loops, which are very frequent
in scientific applications), the task-based approach cannot be used. In a
workflow of services, loops may exist since the circular dependence on the
data segments is not explicitly stated in the graph of services. This enables
the implementation of more complex control structures.

Most importantly, the dynamic extensibility of input data sets for each
service in a workflow can also be used for defining different data composition
strategies, as introduced in Section 18.3.2. The data composition patterns and
their combinations offer a very powerful tool for describing the complex data-
processing scenarios needed in scientific applications. For the users, this means
the ability to describe and schedule very complex processing in an elegant and
compact framework.

18.3.2 Data Composition Patterns

A very important feature associated with the service-based approach for
describing scientific applications is the ability to define different data com-

282 Glatard et al.

position strategies over the input data set of a service. When a service owns
two or more input ports, a data composition strategy describes how the data
segments received on the inputs are combined prior to service invocation.
There are two main composition strategies illustrated in Figure 18.1.

Let us consider two input data sets, A = {A0, A1, . . . , An} and B =
{B0, B1, . . . , Bm}, as an example. The most common data composition
pattern is a one-to-one association of the input data segments (A0 is being
processed with B0, A1 with B1, . . .) as illustrated in left of Figure 18.1. It
results in the invocation of the service min(n, m) times (usually, m = n in this
context) and the production of as many results. Another common strategy is
an all-to-all composition, illustrated on the right in Figure 18.1, where each
data segment in the first set is processed with all data segments in the second
set. It results in m × n service invocations. We will denote by A ⊕ B and
A ⊗ B the one-to-one and the all-to-all compositions of data sets A and B.

Many other strategies could be implemented, but these two are the most
commonly encountered and are sufficient for implementing most applications.
The consideration of binary composition strategies only is not a limitation, as
several strategies may be used pairwise for describing the data composition
pattern of a service with more than two inputs.

...
.
.. ...

.

..

A

A

A

0

1

n

B 0
B 1

B n

A

A

A

0

1

n

B 0
B 1

B n

A B A B

Figure 18.1: One-to-one (left) and all-to-all (right) composition strategies.

18.3.3 Data Synchronization Barriers

Some special workflow services require the complete data set (not just one
data segment) to perform their computation. This is the case for many
statistical operations computed on the data sets, such as the calculation of a
mean or a standard deviation over the produced results, for instance. Such
services are introducing data synchronization in the workflow execution, as
they represent real barriers, waiting for all input data to be processed before
being executed. They can be easily integrated into workflows of services. The
workflow manager will take care of invoking the service only once, as soon as
all input data sets are available.

18.3.4 Generating Parametric Workflows

The expressiveness of the application description language has consequences
for the kind of applications that can be described. Using composition strategies

18 Parametric Workflow Support by MOTEUR and P-GRADE 283

to design complex data interaction patterns is a very powerful tool for data-
intensive application developers. In the task-based framework, two input
data segments, even when processed by the same algorithm, result in the
definition of two independent tasks. This becomes very tedious and quickly
even humanly intractable when considering the very large data sets to be
processed (the all-to-all compositions may produce a considerable number of
tasks). Additional higher-level tools are needed to automatically produce the
huge resulting DAGs, such as the P-GRADE portal (see Section 18.7).

Workflows of services easily handle the description of input data sets
independently from the workflow topology itself. Adding extra inputs or
considering parametric inputs does not result in any additional complexity.
For instance, the Scufl description language from the Taverna workbench (see
Chapter 19) can define one-to-one and all-to-all compositions (known as dot
product and cross product iteration strategies). The service-based approach
offers the maximum flexibility when dealing with dynamically extensible data
sets.

18.4 Efficient Execution of Data-Intensive Workflows

When considering Grid infrastructures with a large potential for parallelism
and optimization in data-intensive applications, efficiency needs to be taken
into account to avoid performance drops. Although very convenient for
representing workflows independently from data sets to be processed, the
service-based approach introduces an extra layer between the workflow
manager and the execution infrastructure that hides one from the other [162].
The workflow manager does not directly control the execution of computing
tasks to a target infrastructure but delegates this role to the services, which
are seen as black boxes. The infrastructure used and the way processings are
handled are fully dependent on the service implementation.

Many solutions have been proposed in the task-based paradigm to optimize
the scheduling of an application in distributed environments [81]. Concerning
workflow-based applications, previous works [54] propose specific heuristics to
optimize the resource allocation of a complete workflow. Even if it provides
remarkable results, this kind of solution is not directly applicable to the
service-based approach. Indeed, in this latest approach, the workflow manager
is not responsible for the task submission and thus cannot optimize the
resource allocation.

Focusing on the service-based approach, nice developments such as DIET
middleware [78] and comparable approaches [31, 405] introduce specific
strategies such as hierarchical scheduling. In [77], for instance, the authors
describe a way to handle file persistence in distributed environments, which
leads to strong performance improvements. However, these works focus
on middleware design and do not include yat any workflow management.
Moreover, those solutions require that specific middleware components be

284 Glatard et al.

deployed on the target infrastructure. Hence, there is a strong need for
precisely identifying generic optimization solutions that apply to service-based
workflows.

In the following sections, we explore different levels of parallelism that can
be exploited for optimizing workflow execution in a service-based approach,
thus offering the flexibility of services and the efficiency of tasks. We describe
them and study their theoretical impact on performance with respect to the
characteristics of the application considered.

18.4.1 Asynchronous Calls

To enable parallelism during the workflow execution, multiple application
tasks or services have to be called concurrently. In the task-based approach,
this means that the workflow manager should be able to concurrently submit
jobs, as is commonly the case (e.g. in DAGMan). In workflows of services, this
means that calls made from the workflow manager to the application services
need to be non-blocking. GridRPC services may be called asynchronously,
as defined in the standard [309]. Web services also theoretically enable
asynchronous calls. However, the vast majority of existing Web service
implementations do not cover the whole standard, and none of the major
implementations [218,438] provide any asynchronous service calls for now. As
a consequence, asynchronous calls to Web services need to be implemented at
the workflow manager level by spawning independent system threads for each
service being executed.

18.4.2 Workflow Parallelism

Given that asynchronous calls are possible, the first level of parallelism that
can be exploited is the intrinsic workflow parallelism depending on the graph
topology. For instance, if we consider the meteorological application workflow
that is presented in Figure 18.2, services cummu, visib, and satel may be
executed in parallel. This optimization is usually implemented in all workflow
managers.

18.4.3 Data Parallelism

When considering data-intensive applications, several input data sets need to
be processed independently using a given workflow. Benefiting from the large
number of resources available in a Grid, the same workflow service can be
instantiated multiple times on different hardware resources to concurrently
process different data segments. Enabling data parallelism implies, on the one
hand, that the services are able to process many parallel connections and, on
the other hand, that the workflow engine is able to submit several simultaneous
queries to a service, leading to the dynamic creation of several threads.

18 Parametric Workflow Support by MOTEUR and P-GRADE 285

Moreover, a data parallel workflow engine should implement a dedicated data
management system. Indeed, in the case of a data parallel execution, a data
segment is able to overtake another one during the processing, and this could
lead to a causality problem. To properly tackle this problem, data provenance
has to be monitored during the data parallel execution.

Consider the simple subworkflow made of three services and extracted from
a meteorological application (Figure 18.2). Suppose that we want to execute
this workflow on three independent input data sets D0, D1, and D2. The data
parallel execution diagram of this workflow is represented in Figure 18.3. In
this kind of diagram, the abscissa axis represents time. When a data set Di

appears on a row corresponding to a service Sj , it means that Di is being
processed by Sj at the current time. To facilitate legibility, we represented
with the Di notation the data segment resulting from the processing of the
initial input data set Di all along the workflow. For example, it is implicit
that on the S2 service row, D0 actually denotes the data segment resulting
from the processing of the input data segment D0 by S1. Moreover, on those
diagrams we made the assumption that the processing time of every data
set by every service is constant, thus leading to cells of equal width. Data
parallelism occurs when different data sets appear on a single square of the
diagram, whereas intrinsic workflow parallelism occurs when the same data set
appears many times on different cells of the same column. Crosses represent
idle cycles.

As demonstrated in the next sections, fully taking into account this
level of parallelism is critical in service-based workflows, whereas it does not
make any sense in task-based ones. Indeed, in this case it is covered by the
workflow parallelism because each task is explicitly described in the workflow
description.

0 2 3

1 2 3

40

2

1

0

0

0

3

1
1

4

1 5

5

sub−workflow

Workflow link

Wokflow component

Job output port

Job input port

cummu

MPI

visib

MPI

delta

MPI

satel

MPI

ready

SEQ

Figure 18.2: MEANDER nowcast meteorology application workflow.

286 Glatard et al.

18.4.4 Service Parallelism

Input data sets are likely to be independent from each other. For example,
this is the case when a single workflow is iterated in parallel on many input
data sets. Service parallelism denotes that the processing of two different data
sets by two different services is totally independent. This pipelining model,
very successfully exploited inside CPUs, can be adapted to sequential parts of
service-based workflows. Consider again the simple subworkflow represented
in Figure 18.2, to be executed on the three independent input data sets D0,
D1, and D2. Figure 18.3 (right) presents a service parallel execution diagram
of this workflow. Service parallelism occurs when different data sets appear
on different cells of the same column. We did not consider data parallelism in
this example.

Here again, we show in the next section that service parallelism is of major
importance to optimizing the execution of service-based workflows. In task-
based workflows, this level of parallelism does not make any sense because it is
included in the workflow parallelism. Data synchronization barriers, presented
in Section 18.3.3, are of course a limitation to service parallelism. In this case,
this level of parallelism cannot be exploited because the input data sets are
dependent on each other.

D0

S1: delta D1 X
D2

D0

S2: cummu X D1

D2

D0

S3: visib X D1

D2

S1: delta D0 D1 D2 X

S2: cummu X D0 D1 D2

S3: visib X D0 D1 D2

Figure 18.3: Data parallel (left) and service parallel (right) execution diagrams
of the sub-workflow extracted from Figure 18.2.

18.4.5 Theoretical Performance Analysis

The data and service parallelisms described above are specific to the service-
based workflow approach. To precisely quantify how they influence the
application performance we model the workflow execution time for different
configurations. We first present general results and then study particular cases,
making assumptions on the type of application run.

Definitions and Notations
In the workflow, a path denotes a set of services linking an input to an

output. The critical path of the workflow denotes the longest path in terms
of execution time. nW denotes the number of services on the critical path

18 Parametric Workflow Support by MOTEUR and P-GRADE 287

of the workflow, and nD denotes the number of data sets to be executed by
the workflow. i denotes the index of the ith service of the critical path of the
workflow (i ∈ [0, nW − 1]). Similarly, j denotes the index of the jth data set
to be executed by the workflow (j ∈ [0, nD − 1]). Ti,j denotes the duration
in seconds of the treatment of the data set j by the service i. If the service
submits jobs to a Grid infrastructure, this duration includes the overhead
introduced by the submission, scheduling, and queuing times. σi,j denotes the
absolute time in seconds of the end of the treatment of the data set j by the
service i. The execution of the workflow is assumed to begin at t = 0. Thus
σ0,0 = T0,0 > 0. Σ = maxj<nD

(σnW −1,j) denotes the total execution time of
the workflow.

Hypotheses
The critical path is assumed not to depend on the data set. This hypothesis
seems reasonable for most applications but may not hold in some cases, as for
example when workflows include algorithms that contain optimization loops
whose convergence time is likely to vary in a complex way with respect to the
nature of the input data set.

Data parallelism is assumed not to be limited by infrastructure constraints.
We justify this hypothesis by considering that our target infrastructure is a
Grid whose computing power is sufficient for our application.

In this section, workflows are assumed not to contain any synchronization
service. Workflows containing synchronization barriers may be analyzed as
two subworkflows corresponding to the parts of the initial workflow preceding
and succeeding the synchronization barrier.

Execution Time Modeling
Under those hypotheses, we can determine the expression of the total
execution time of the workflow for different execution policies:

Sequential case (no parallelism) : Σ =
∑

i<nW

∑
j<nD

Ti,j ,

Case DP, data parallelism only : ΣDP =
∑

i<nW

max
j<nD

{Ti,j} ,

Case SP, service parallelism only : ΣSP = TnW −1,nD−1 + mnW −1,nD−1,

with
{∀i
= 0,∀j
= 0, mi,j = max(Ti−1,j + mi−1,j , Ti,j−1 + mi,j−1)

m0,j =
∑

k<j T0,k and mi,0 =
∑

k<i Tk,0,

Case DSP, data + service parallelism : ΣDSP = max
j<nD

{ ∑
i<nW

Ti,j

}
.

All the expressions of the execution time above can easily be shown recursively.
Here is an example of such a proof for ΣSP . We first can write that, for a
service-parallel but not data-parallel execution:

∀i
= 0,∀j
= 0, σi,j = Ti,j + max(σi−1,j , σi,j−1). (18.1)

288 Glatard et al.

Indeed, without data parallelism, data sets are processed one by one and
service i has to wait for data segment j − 1 to be processed by service i
before starting to process the data segment j. This expression is illustrated
by the two configurations displayed in Figure 18.4. We, moreover, note that
(i) service 0 is never idle until the last data set has been processed and (ii)
D0 is sequentially processed by all services. Thus

σ0,j =
∑
k≤j

T0,k and σi,0 =
∑
k≤i

Tk,0. (18.2)

Dj−1

Dj−1

D j

D j

σ i,j−1

i−1S

iS

Dj−1

D jDj−1

D ji−1S

iS

i,jT

σ i−1,j−1 σ i−1,j σ i,j

time

σ i−1,j−1 σ i,jσ i,j−1σ i−1,j

i,jT

time

Figure 18.4: Two different configurations for an execution with service
parallelism but no data parallelism.

We can then use the following lemma, whose proof is deferred to the
end of the section: P (i, j) : σi,j = Ti,j + mi,j with ∀i
= 0 and ∀j
=
0, mi,j = max(Ti−1,j + mi−1,j , Ti,j−1 + mi,j−1), m0,j =

∑
k<j T0,k, and

mi,0 =
∑

k<i Tk,0. Moreover, we can deduce from Equation 18.1 that for every
nonnull integer j, σi,j > σi,j−1, which implies that ΣSP = σnW −1,nD−1 (by
definition of Σ).

Thus, according to the lemma, ΣSP = TnW −1,nD−1 + mnW −1,nD−1 with
∀i
= 0,∀j
= 0, mi,j = max(Ti−1,j+mi−1,j , Ti,j−1+mi,j−1), m0,j =

∑
k<j T0,k,

and mi,0 =
∑

k<i Tk,0.
The lemma can be shown via a double recurrence, first on i and then on

j. Recursively, with respect to i:

• i = 0: According to Equation 18.2:

∀j < nD, σ0,j =
∑
k≤j

T0,k = T0,j + m0,j with m0,j =
∑
k<j

T0,k.

Thus, ∀j < nD, P(0, j) is true.
• Suppose Hi: ∀j < nD, P(i,j) true. We are going to show recursively with

respect to j that Hi+1 is true:
– j = 0: According to Equation 18.2:

σi+1,0 =
∑

k≤i+1

Tk,0 = Ti+1,0 + mi+1,0 with mi+1,0 =
∑

k<i+1

Tk,0.

Hi+1 is thus true for j = 0.

18 Parametric Workflow Support by MOTEUR and P-GRADE 289

– Suppose Kj : Hi+1 is true for j. We are going to show that Kj+1 is
true.
According to Equation 18.1, σi+1,j+1 = Ti+1,j+1 + max(σi,j+1, σi+1,j).
Thus, according to Kj , σi+1,j+1 = Ti+1,j+1 + max(σi,j+1, Ti+1,j + mi+1,j)
and according to Hi,

σi+1,j+1 = Ti+1,j+1 + max(Ti,j+1 + mi,j+1, Ti+1,j + mi+1,j)

= Ti+1,j+1 + mi+1,j+1

with mi+1,j+1 = max(Ti,j+1 + mi,j+1, Ti+1,j + mi+1,j).

Kj+1 is thus true. Hi+1 is thus true. The lemma is thus true.

Asymptotic Speed-ups
To better understand the properties of each kind of parallelism, it is

interesting to study the asymptotic speedups resulting from service and data
parallelism in particular application cases.

Massively data-parallel workflows. Let us consider a massively (embarrass-
ingly) data-parallel application (a single service S0 and a very large number
of input data). In this case, nW = 1 and the execution time is

ΣDP = ΣDSP = max
j<nD

(T0,j) � Σ = ΣSP =
∑

j<nD

T0,j .

In this case, data parallelism leads to a significant speedup. Service parallelism
is useless, but it does not lead to any overhead.

Non-data-intensive workflows. In such workflows, nD = 1 and the
execution time is ΣDSP = ΣDP = ΣSP = Σ =

∑
i<nW

Ti,0. In this case,
neither data nor service parallelism lead to any speedup. Nevertheless, neither
of them introduce any overhead.

Data-intensive complex workflows. In this case, we will suppose that nW >
1 and nD > 1. In order to analyze the speedups introduced by service and
data parallelism, we make the simplifying assumption of constant execution
times: Ti,j = T . The workflow execution time then resumes to

Σ = nD × nW × T, ΣDP = ΣDSP = nW × T, ΣSP = (nD + nW − 1)× T.

The speedups associated to the different configurations are thus

SDP =
Σ

ΣDP
= nD, SDSP =

ΣSP

ΣDSP
=

nD + nW − 1

nW
, SSP =

Σ

ΣSP
=

nD × nW

nD + nW − 1
.

Service parallelism does not lead to any speedup if it is coupled with
data parallelism: SSDP = ΣDP

ΣDSP
= 1. Thus, under those assumptions, service

parallelism may not be of any use on fully distributed systems. However, in
practice, even in the case of homogeneous input data sets, T is hardly constant
in production systems because of the high variability of the overhead due to
submission, scheduling, and queuing times on such large-scale and multiuser
platforms. The constant execution time hypothesis does not hold. Figure 18.5

290 Glatard et al.

illustrates in a simple example why service parallelism can provide a speedup
even if data parallelism is enabled, if the assumption of constant execution
times does not hold. The left diagram does not take into account service
parallelism, whereas the right one does. The processing time of the data set
D0 is twice as long as the other ones on service S0, and the execution time
of the data set D1 is three times as long as the other ones on service S1.
This can, for example, occur if D0 was submitted twice because an error
occurred and if D1 remained blocked on a waiting queue. In this case, service
parallelism improves performance beyond data parallelism, as it enables some
computations to overlap.

D2

S3 X X D1 X X
D0

D0

S2 X X D2

D1D1D1

D2

S1 D1 X X X
D0D0

S3 X D1 X
D2D0

S2 X D2D0

D1D1D1

D2

S1 D1 X X
D0D0

Figure 18.5: Workflow execution time without (left) and with (right) service
parallelism when the execution time is not constant.

18.4.6 Application-Level Parallelism

In addition, an application code may be instrumented to benefit from a parallel
execution through a standard library (e.g. MPI). The exploitation of this fine-
grain level of parallelism is very dependent on the application code and cannot
be controlled at the workflow management level. However, the procedure for
submitting parallel tasks is often specific in Grid middleware and the workflow
manager needs to recognize the specific nature of such jobs to handle them
properly. Usually, application-level parallelism can only be exploited intrasite
for performance reasons (intersite communication being too slow), while the
other levels of parallelism are coarse-grained and can be exploited intersite.

18.5 Exploiting Both Task- and Service-Based
Approaches in Parametric Data-Intensive Applications

To execute parametric and data-intensive applications, two approaches are
thus possible:

1. In the task-based approach, a high-level tool for transforming the
parametric description of the application into a concrete execution DAG
is needed prior to the execution of the workflow manager.

18 Parametric Workflow Support by MOTEUR and P-GRADE 291

2. In the service-based approach, the separate description of the workflow
topology and the input data sets is sufficient. However, the efficient
execution relies on an optimized workflow manager capable of exploiting
parallelism through parallel service calls.

In the task-based framework, it is not possible to express dynamically
expandable data sets and loops. However, parallelism is explicitly stated in the
application DAG and easy to exploit. The service-based approach offers more
flexibility but requires an optimized application enactor, such as MOTEUR,
to efficiently process the workflow, enabling all levels of parallelism described
above. In the following sections, we introduce the P-GRADE portal and
MOTEUR. P-GRADE conciliates both approaches by providing a unique GUI
for describing the application workflow in a high-level framework. P-GRADE
is interfaced with both DAGMan, for dealing with task-based workflows, and
MOTEUR, for handling workflows of services.

18.6 MOTEUR Service-Based Workflow Enactor

MOTEUR [304] was designed with the idea that the service-based approach
is making services and data composition easier from the application developer
point of view. It is therefore more convenient, provided that it does not lead to
performance losses. The MOTEUR (hoMe-made OpTimisEd scUfl enactoR)
workflow manager was implemented to support workflow, data, and service
parallelism, described in Section 18.4. Our prototype was implemented in Java
in order to be platform independent. It is freely available under CeCILL public
license (a GPL-compatible open source license).

The workflow description language adopted is the Simple Conceptual
Unified Flow Language (Scufl) used by the Taverna engine (see Chapter 19).
Apart from describing the data links between the services, the Scufl language
allows one to define coordination constraints that are control links enforcing
an order of execution between two services even if there is no data dependency
between them. We used those coordination constraints to identify services that
require data synchronization. The Scufl language also specifies the number of
threads of a service (fixed number of parallel data). In the case of MOTEUR,
this number is ignored, as it is dynamically determined during the execution,
considering the number of input data segments available for processing. We
developed an XML-based language to describe input data sets. This language
aims at providing a file format to save and store the input data set in order
to be able to re-execute workflows on the same data set. It simply describes
each item of the different inputs of the workflow.

Handling the composition strategies presented in Section 18.3 in a service
and data parallel workflow is not straightforward because the data sets
produced have to be uniquely identified. Indeed, they are likely to be computed
in a different order in every service, which could lead to causality problems

292 Glatard et al.

and incorrect mapping of the input parameters in one-to-one composition
patterns. Moreover, due to service parallelism, several data sets are processed
concurrently and one cannot number all the produced data segments once
computations are completed. We have implemented a data provenance
strategy to sort out the causality problems that may occur. Attached to each
processed data is a history tree keeping track of all the intermediate results
computed to process it. This tree unambiguously identifies the data segment.

Finally, MOTEUR implements an interface to both Web services and
GridRPC instrumented application code. To ease application code wrapping
in services and job submissions on a Grid infrastructure, we provide a
generic submission Web service. It encapsulates the user code and handles
the interface with the Grid infrastructure. It has been interfaced with both
the EGEE [128] production Grid infrastructure and the Grid5000 [173]
experimental Grid infrastructure.

18.7 P-GRADE Portal

The goal of the P-GRADE portal is to provide a high-level user interface that
hides the low-level details of the underlying Grid systems. Users can construct
complex Grid applications as workflows without learning the specific Grid
interface. Moreover, the P-GRADE portal plays the role of a bridge between
different Grids, solving the interoperability problem at the portal level [230].
The components of a workflow can be executed on any Grid that is connected
to the portal and for which the user owns an access certificate. P-GRADE
portal 2.3 [352] serves as the production portal service for several different Grid
systems: VOCE (Virtual Organization Central Europe of EGEE), HunGrid
(Hungarian VO of EGEE), EGRID (Economics VO of EGEE), SEE-GRID
(South Eastern European Grid), and UK NGS (National Grid Service). If
a portal is configured to access all these Grids, then users can access any
resource of these Grids from the same workflow.

The portal provides a graphical interface through which users can easily
construct workflows based on the DAG concept. Nodes of the graph can be
jobs or GEMLCA legacy code services [117]. Arcs among the nodes represent
file transfers between the nodes. The workflow enactor of portal version 2.3 is
based on DAGMan, which supports only the task-based strategy. Therefore,
parametric applications cannot be defined. This portal version supports
two levels of parallelism: application parallelism (Section 18.4.6), which is
employed when a node of the workflow is an MPI job that is assigned to a
multiprocessor Grid site; and workflow parallelism (Section 18.4.2). However,
portal version 2.3 is not able to support data and service parallelisms described
in Sections 18.4.3 and 18.4.4, respectively.

In order to support the service-based strategy, parametric study applic-
ations, and all kinds of parallelism, we extended the portal with two new
features:

18 Parametric Workflow Support by MOTEUR and P-GRADE 293

1. We have extended the workflow creation interface of the portal in order
to enable the definition of parametric study applications.

2. We integrated the MOTEUR workflow enactor within the portal in order
to support the service-based strategy and to exploit data parallelism and
service parallelism.

This new portal version will support the development of DAGs consisting
of normal and parametric jobs as well as Web services. It will also support
the execution of components of such workflows in Globus-2, Globus-4, LCG-
2, gLite, and Web services Grids. While the normal and parametric job
components will be executed in Globus-based Grids using DAGMan, Web
service invocations will be forwarded to the MOTEUR workflow enactor as
illustrated in Figure 18.6.

The current section focuses on the parametric study extension of the portal
and shows the workflow user interface that can support both the MOTEUR
enactor described in Section 18.6 and the Condor DAGMan-based enactor.

Other grid related portal components
(e.g. MyProxy client)

DAGMan
workflow
definition

workflow
definition

SCUFLPortal
front−end

services
Globus

services
LCG−2

services
Web

Parametric study
workflow editor

GT Broker
clientDAGMan

WS clientsMOTEUR

LCG2−2 clients

Parametric study portal server

GT Broker

Figure 18.6: Structure of the parametric study version of the P-GRADE
portal.

18.7.1 Interface to Workflow Managers

In order to enable parametric studies, the P-GRADE portal includes the
new concept of parametric value. It is based on multiple layers, from high-
level graphical definition of the workflows to low-level workflow enactment, as
illustrated in Figure 18.7. This architecture enables both the representation
of parametric application workflows and the transformation of the abstract
workflow into a graph of services or a DAG of tasks as required by the
underlying workflow enactors.

At the top of the P-GRADE workflow definition process, parameter spaces
are defined. Parameter spaces enable the description of parametric values.
These parametric values are transformed into data segments corresponding
to the data streams (application input data sets) that will be handled by the
workflow manager. At this layer, there are two possibilities, depending on the

294 Glatard et al.

Workflow
enactors

Parameter
spaces

P−GRADE portal Graphical User Interface

Common
Structural

Information 1
(CSI1)

K21

K22

Key2

K11

K12

K13

Key1

K31

2

K33

K3

Key3

Common
Structural

Information 2
(CSI2)

K41

K42

Key4

CSI1 & K1 & K2 = D11 11
CSI1 & K1 & K2 = D11 2 2
CSI1 & K1 & K2 = D12 31

CSI1 & K1 & K2 = D13 62

...

Binary Executable
(B)

...

3 62

2 31

1 2 2

CSI2 & K3 & K4 = D21 11
CSI2 & K3 & K4 = D2
CSI2 & K3 & K4 = D2

CSI2 & K3 & K4 = D2
Web Service endpoint

reference (E)

...
...

B+D1 D2 = T6 6 36

B+D1 D2 = T2 1 7

B+D1 D2 = T1 6 6

B+D1 D2 = T1 3 3

B+D1 D2 = T1 2 2

B+D1 D2 = T1 1 1

...

B+D1 D2 = T6 6 6

B+D1 D2 = T3 3

2 2

1 1 1

3

2

B+D1 D2 = T
B+D1 D2 = T

DAGMan MOTEUR

S 1 S 2

Tasks

GUI

Data streams

Figure 18.7: The P-GRADE portal multilayer architecture.

user setting: either the input data sets and the services description are sent to
MOTEUR for execution in the service-based framework, or data segments are
composed with binary executables according to the data composition patterns
to build tasks. The DAG of tasks can then be submitted to DAGMan for
workflow enactment in the task-based framework.

The P-GRADE portal defines all elements required for defining such
parametric application workflows. It proposes a rich and intuitive GUI for
describing the workflow graph, defining parameter spaces, and composing
data streams. During workflow execution, the P-GRADE portal handles the
interface to the workflow manager, monitors the execution, and provides
graphical feedback to the user. Examples of workflows described through the
P-GRADE GUI are given in Figures 18.2 and 18.8.

18.7.2 DAGMan Workflow Elements

Figure 18.2 illustrates the workflow elements available in P-GRADE portal
version 2.3 to define DAGMan workflows on a real application. They include
the following elements:

18 Parametric Workflow Support by MOTEUR and P-GRADE 295

• Component. All components are normal jobs. A normal job is a program
that has one binary executable file and must be started in batch mode.
The normal job can be either a sequential or an MPI job. The binary
executable of the program is taken from the portal user’s machine.

• Port. Input and output ports can optionally be connected to jobs. Normal
input ports represent one file to be used by the connected component as
input. A Normal output port represents one file to be generated by the
connected job during execution.

• Link. All links in a task-based workflow are normal file channels. They
define a data channel between a normal output port and a normal input
port that represents a transformation of an output file into an input file
of a subsequent task.

Based on these elements, a user can create complex workflow applications that
can exploit intrasite (MPI) and intersite (workflow) parallelism.

18.7.3 Parametric Workflow Elements

The parametric workflow elements are useful for representing parametric data-
intensive applications. In the P-GRADE portal, the same elements are used for
specifying parametric task-based or service-based workflows even though they
can be executed in different ways. Figure 18.8 displays the new parametric
elements.

3

0

0 1

1

1

0

4

2

10

0 1

1

2

4

0

1

0

Parametric job

Parametric
input port

Parametric
output port

Collector channel
Collector input port

Job_2

MPI

Job_3

MPI

Parametric channel
Job_1

MPI
Parametric

MPI

Job_5

Parametric
SEQ

Job_4

Parametric
SEQ

Job_6

Parametric
SEQ

Job_7

Figure 18.8: Normal and parametric workflow elements in the P-GRADE
portal GUI.

Although represented identically in the GUI, the parametric elements differ
in their nature. In particular, parametric job inputs are files, represented
through ports, while Web service inputs are strings (possibly identifying a
file), represented through fields. The new workflow elements are:

• Component. Parametric jobs represent a program that has one binary
executable file and must be started in batch mode on independent input

296 Glatard et al.

file sets. Parametric Web services represent one operation of one Web
service that must be invoked multiple times with independent input string
sets. Depending on the service implementation, it can submit jobs to
a Grid infrastructure when serving the request. Graphically, parametric
Web services are identified by the “WS” label, while parametric jobs are
labeled “SEQ” or “MPI.”

• Port. For parametric jobs, parametric input ports represent the sim-
ultaneously processable instances of a single file (files with the same
structure but different contents), and parametric output ports represent
the instances of a single output file generated by the instances of a
parametric job component (files with the same structure but different
contents). Similarly for parametric Web services, parametric input fields
represent the simultaneously processable instances of an input string,
and parametric output fields represent the instances of an output string
generated by a Web service component.

• Link. Parametric file (resp. parametric string) channels define a data
channel between a parametric output and a parametric input port (resp.
field). These channels “fire” each time an output data segment becomes
available.

In addition, collector ports and channels are introduced to represent data
synchronization barriers (Section 18.3.3). Collector input ports (resp. fields)
represent N files (resp. strings) with different structures and different contents,
which are expected by the connected component as input. They can be
connected to both parametric and nonparametric job components through
collector file (resp. string) channels. These channels fire only when every
output file is available.

Some constraints on the components apply in order to form a semantically
correct parametric study workflow application. It makes sense for normal input
ports to be connected to a parametric job (every instance of the job is using
the same file), while it is not the case for normal output ports. Parametric
input ports (resp. fields) can only be connected to parametric job (resp. Web
service) components. Parametric jobs (resp. Web services) always have at least
one input port (resp. field).

18.7.4 Parameter Spaces and Data Flows

The P-GRADE portal provides a flexible framework for defining variable
values of parameters sent to parametric jobs and Web services. The property
window of an input parametric port (on the left in Figure 18.9) enables the
definition of keys (variable values) and common structural information (CSI)
of the parameters (the common structure of all inputs). The user defines the
CSIs for each parameter. A parameter may be n-dimensional, as it may depend
on n different input keys K1, . . . , Kn. The parameter key definition window
(on the right in Figure 18.9) enables the definition of a key value generation

18 Parametric Workflow Support by MOTEUR and P-GRADE 297

rule (types of values, values read from files or generated according to different
rules, etc.).

Figure 18.9: Parameter space definition user interface.

The transformation between a parameter space definition and data streams
(see Figure 18.7) is an automatic generation process where every occurrence of
a key in the CSI is replaced with a parameter value, according to the algorithm
presented in Figure 18.10. This algorithm produces an indexed (ordered) array
of data segments D. It assumes a precedence order among the keys (primary,
secondary. . .). This precedence order influences the indexing order of data
segments. In the P-GRADE portal, the precedence order of keys is the key
declaration order. For example, the CSI given in Figure 18.9 (<akulcs>,
112, asfas, <bkulcs>) contains two keys (akulcs and bkulcs). The
algorithm will produce the data segments (0, 112, asfas, 0), (0, 112,
asfas, 0.1). . .

for i = 0 to (K1.length - 1)

primaryKey = K1[i]

for j = 0 to (K2.length - 1)

secondaryKey = K2[j]

D[i * K1.length + j] = replace(CSI, primaryKey, secondaryKey)

end

end

Figure 18.10: Parameter generation algorithm.

298 Glatard et al.

18.7.5 Workflow Execution

Workflow applications are taken as input sets of data segments (Si = Dij).
In the case of the MOTEUR enactor, the definition of the input data sets
is sufficient to process the workflow. In the case of DAGMan, data streams
still need to be composed according to the data composition operators
(Section 18.3.2) to produce a list of tasks. The P-GRADE portal interface
allows the definition of the one-to-one and the all-to-all data composition
strategies on the parametric input data ports (or fields) pairwise. From this
input, the data elements, and the job binary, the system generates several
computational tasks for each parametric job component (see the tasks layer
of Figure 18.7).

Each data segment generated has a unique index value within its set
(these values are denoted by the lower indexes in Figure 18.7). The indexes
are used by the workflow enactors during workflow execution to determine
the order of elements for a one-to-one or all-to-all data composition. Since
the computational tasks or the service invocation requests represented by
a parametric component are independent from each other, their submission
order is irrelevant. Even in the case of a known submission order, the
completion time of a task or service is unpredictable. It is the responsibility
of the workflow enactment system to keep track of the order of the execution
results according to the workflow description.

18.8 Conclusions

Task-based and service-based approaches are two very common frameworks
for handling scientific workflows. The service-based approach is very flexible,
enabling the expression of complex data composition patterns and dealing
with parametric data sets. The task-based approach is more static, but it
eases the optimization of the workflow execution since the complete DAG of
tasks is known prior to the application execution.

The MOTEUR service-based workflow manager was specifically designed
to exploit all levels of parallelism that can be automatically handled by the
workflow manager. Using a high-level tool such as the P-GRADE portal, it
is possible to describe parametric workflows that will be instantiated either
as workflows of services or DAGs of tasks. The P-GRADE portal conciliates
the two approaches to some extent, as it automatically produces large DAGs
corresponding to data-intensive parametric applications. Yet, the static nature
of DAGs does not permit dynamic input data set management, contrary to
workflows of services. The P-GRADE portal provides a unique interface for
exploiting both approaches. It is relying on MOTEUR and the DAGMan
workflow managers to deal with the low-level execution.

18 Parametric Workflow Support by MOTEUR and P-GRADE 299

18.9 Acknowledgments

The work on MOTEUR is partially funded by the French research pro-
gram “ACI-Masse de données” (http://acimd.labri.fr/), AGIR project
(http://www.aci-agir.org/). The P-GRADE portal extension work is
partially funded by the EU SEEGRID-2 and CoreGrid projects.

19

Taverna/myGrid: Aligning a Workflow System
with the Life Sciences Community

Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis, Mark
Greenwood, Duncan Hull, Robert Stevens, Daniele Turi, and
Jun Zhao

19.1 Introduction

Bioinformatics is a discipline that uses computational and mathematical
techniques to store, manage, and analyze biological data in order to answer
biological questions. Bioinformatics has over 850 databases [154] and numer-
ous tools that work over those databases and local data to produce even more
data themselves. In order to perform an analysis, a bioinformatician uses one
or more of these resources to gather, filter, and transform data to answer a
question. Thus, bioinformatics is an in silico science.

The traditional bioinformatics technique of cutting and pasting between
Web pages can be effective, but it is neither scalable nor does it support
scientific best practice, such as record keeping. In addition, as such methods
are scaled up, slips and omissions are more likely to occur. A final human
factor is the tedium of such repetitive tasks [397].

Doing these tasks programmatically is an obvious solution, especially
for the repetitive nature of the tasks. Some bioinformaticians have the
programming skills to wrap these distributed resources. Such solutions are,
however, not easy to disseminate, adapt, and verify. Moreover, one of the
consequences of the autonomy of bioinformatics service providers is massive
heterogeneity within those resources. The advent of Web services has brought
about a major change in the availability of bioinformatics resources from Web
pages and command-line programs to Web services [395], though much of the
structural, value-based, and syntactic heterogeneity remains. The consequent
lack of a common type system means that services are difficult to join together
programmatically, and any technical solution to in silico experiments in
biology has to address this issue.

Many scientific computing projects within the academic community
have turned to workflows as a means of orchestrating complex tasks (in
silico experiments) over a distributed set of resources. Examples include
DiscoveryNet [373] for molecular biology and environmental data analysis,

19 Taverna/myGrid 301

SEEK for ecology [19, 20], GriPhyn for particle physics [110], and SCEC/IT
for earthquake analysis and prediction [236].

Workflows offer a high-level alternative for encoding bioinformatics
in silico experiments. The high-level nature of the encoding means a broader
community can create templates for in silico experiments. They are also
easier to adapt or repurpose by substitution or extension. Finally, workflows
are less of a black box than a script or traditional program; the experimental
protocol captured in the workflow is displayed in such a way that a user can
see the components, their order, and inputs and outputs. Such a workflow
can be seen in Figure 19.1.

myGrid is a project to build middleware to support workflow-based in silico
experiments in biology. Funded by the United Kingdom’s e-Science Pro-
gramme since 2001, it has developed a set of open-source components that can
be used independently and together. These include a service directory [267],
ontology-driven search tools over semantic descriptions of external resources
and data [267], data repositories and semantically driven metadata stores for
recording the provenance of a workflow and the experimental life cycle [494],
and other components, such as distributed query processing [16] and event
notification.1

myGrid’s workflow execution and development environment, Taverna, links
together and executes external remote or local, private or public, third-party
or home-grown, heterogeneous open services (applications, databases, etc.).
The Freefluo workflow enactment engine2 enacts the workflows. The Taverna
workbench is a GUI-based application for bioinformaticians to assemble,
adapt, and run workflows and manage the generated data and metadata.
myGrid components are Taverna plug-ins (for results collection and browsing,
provenance capture, service publication, and discovery) and services (such as
specialist text mining). Thus the workbench is the user-facing application for
the myGrid middleware services. At the time of writing, Taverna 1.3 has been
downloaded over 14,000 times3 and has an estimated user base of around
1500 installations. Taverna has been used in many different areas of research
throughout Europe and the United States for functional genomics, systems
biology, protein structure analysis, image processing, chemoinformatics, and
simulation coordination. Since 2006, myGrid has been incorporated into the
United Kingdom’s Open Middleware Infrastructure Institute to be “hardened”
and developed to continue to support life scientists.

19.1.1 A Bioinformatics Case Study

An exemplar Taverna workflow currently being used for systems biology is
shown in Figure 19.1. This workflow uses data stored in distributed databases

1 http://www.mygrid.org.uk.
2 http://freefluo.sourceforge.net.
3 See http://taverna.sourceforge.net/index.php?doc=stats.php.

302 Oinn, Li, et al.

to automate the reconstruction of biological pathways that represent the rela-
tionships between biological entities such as genes, proteins, and metabolites.

The interaction pathways generated by the workflow are in the form of a
data model, which is specified by the XML-based Systems Biology Markup
Language (SBML) [201]. A core SBML workflow is responsible for generating
an SBML model. This is then populated, through the SBML API, by the
supplementary workflows that gather data for the model (see Figure 19.1).
The SBML model can then be used to perform biological simulations.

These workflows typify the needs of bioinformatics analyses. It is a
typically datacentric workflow, gathering many kinds of data from a variety
of locations and from services of a variety of technology types. As will be seen
throughout the chapter, many types of resources are used, and all of these can
be incorporated into Taverna. The workflows have to be run repeatedly, and
such an analysis would be long and tedious to perform manually.

Figure 19.1: An SBML model construction workflow. This workflow retrieves
protein interactions from the BIND database, which are then used to populate
an SBML model using the core SBML workflow. Four types of processors are
used in this example: WSDL, consumer API, local Java, and nested workflow
processors. These processors are joined together by data links (arrows) and
coordination links.

19 Taverna/myGrid 303

The rest of this chapter is organized as follows. Section 19.2 further
elaborates on the background to Taverna and then Section 19.3 outlines
requirements in detail. Section 19.4 introduces the major Taverna components,
and architecture. Section 19.5 concentrates on the workflow design and
Section 19.6 on executing and monitoring workflows. Section 19.7 completes
the workflow life cycle with metadata and provenance associated with
managing and sharing results and the workflows themselves. Section 19.8
discusses related work and Section 19.9 reflects on our experiences and
showcases future developments in Taverna 2.0.

19.2 The Bioinformatics Background

Life scientists are accustomed to making use of a wide variety of Web-
based resources. However, building applications that integrate resources
with interfaces designed for humans is difficult and error-prone [395]. The
emergence of Web services [58], along with the availability of suitable tool
support, has seen a significant number of bioinformatics Web resources become
publicly available and described with a Web Services Description Language
(WSDL) interface.

There are currently over 3000 services accessible to a myGrid user.
Although the majority involve complex interaction patterns or specific
messaging formats, or use different protocols and paradigms, they actually
follow a small number of stereotyped patterns. The users’ lack of middleware
knowledge means they should not be expected to deal with the differences
between these patterns. In addition, given the number and distribution of
services, users cannot be expected to have existing knowledge of what services
are available, where they are, or what they do.

The data produced by these services are mostly semistructured and
heterogeneous. There are a large number of data formats, including those for
gene sequences and protein sequences, as well as bespoke formats produced by
many analysis tools. These are rarely encoded in XML, and there is usually no
formal specification that describes these formats. Interpreting or reconciling
these data as they are passed between different databases and analysis tools
is therefore difficult.

This situation is in contrast with data in other scientific workflow projects
that have much more centralized control of data formats. For example, the
SEEK project provides tools for ecologists to describe their data using XML
schema and ontologies and so support middleware-driven data integration [59].

DiscoveryNet [373] requires each application service to be wrapped,
allowing data to adhere to a common format. Other projects are more uniform
than myGrid in the way applications on distributed resources are accessed.
For example, abstract Pegasus workflows used in the SCEC/IT project are
first compiled into concrete workflows. Each step of a concrete workflow
corresponds to a job to be scheduled on a Condor cluster [111].

304 Oinn, Li, et al.

Taverna differs from these projects by placing an emphasis on coping
with an environment of autonomous service providers and a corresponding
“open world” model for the underlying Grid and service-oriented architecture.
Taverna’s target audience of life scientists wants easy access and composition
of as wide a range of services as feasible, and this reinforces the need for an
open access policy for services, despite the obvious difficulties.

19.3 Aligning with Life Science

From the background and introduction, we can define the key requirements
for the Taverna workflow system that drive us to align with life science:

• Ease of use. The target end users for Taverna are not necessarily expert
programmers.

• Dataflow centric. Bioinformaticians are familiar with the notion of
dataflow centric analysis. We want to enhance how biologists perform
their models of analysis, not change their model of analysis.

• Open world assumption. We want to be able to use any service as presented
rather than require service providers to implement services in a prescribed
manner and thus create a barrier to adoption.

• Easy and rapid user-driven ad hoc workflow design. Quickly and easily
finding services and adapting previous workflows is key to effective
workflow prototyping.

• Fault tolerant . Any software operating in a networked, distributed envir-
onment is required to cope gracefully with failure.

Figure 19.2: The e-Science life cycle.

19 Taverna/myGrid 305

• Support for the e-Science life cycle. Workflows are not a complete solution
for supporting in silico experiments. They exist in a wider context of
scientific data management, as illustrated in Figure 19.2. It is essential
that data produced by a workflow carry some record of how and why they
were produced, i.e., the provenance of the data.

19.4 Architecture of Taverna

The requirements described have led to several major design lessons. Fig-
ure 19.3 illustrates how Taverna takes a layered approach to its overall
architecture. This is driven by the need to present a useful, high-level
presentation in which biologists can coordinate a variety of resources. Our user
base neither knows nor cares about such things as port types, etc. We have a
requirement both to present a straightforward perspective to our users and yet
cope with the heterogeneous interfaces of our services. A major consequence
of this for the workflow system architecture has been to provide a multitiered
approach to resource discovery and execution that separates application and
user concerns from operational and middleware concerns.

Scufl, a workflow language for linking applications [326], is at the
abstraction level of the user; an extensible processor plug-in architecture for
the Freefluo enactor manages the low-level “plumbing” invocation complexity
of different families of services. In between lies an execution layer interpreting
the Taverna Data Object Model that handles user-implied control flows such
as implicit iteration over lists and a user’s fault-tolerance policies.

Figure 19.3 shows how the myGrid components are divided between the
three layers of myGrid’s design.

• The Application Data Flow layer is aimed at the user and is characterized
by a User-Level workflow object model. The purpose is to present the
workflows from a problem-oriented view, hiding the complexity of the
interoperation of the services. When combining services into workflows,
users think in terms of (see Figure 19.4) the data consumed and produced
by logical services and connecting them together. They are not interested
in the implementation styles of the services.

• The Execution Flow layer relieves the user of most of the details of the
execution flow of the workflow and expands on control-flow assumptions
that tend to be made by users. This layer is characterized by the
Enactor Internal Object Model and by the myGrid Contextual Information
Model. The layer manages list and tree data structures, implicitly iterates
over collections of inputs, and implements fault recovery strategies on
behalf of the user. This saves the user explicitly handling these at the
application layer and avoids mixing the mechanics of the workflow with its
conceptual purpose. A drawback is that an expert bioinformatician needs

306 Oinn, Li, et al.

Figure 19.3: An overview of Taverna in layers.

to understand the behavioral semantics of this layer to avoid duplicating
the implicit behavior.

• The Processor Invocation layer is aimed at interacting with and invok-
ing concrete services. Bioinformatics services developed by autonomous
groups can be implemented in a variety of different styles even when they
are similar logical services from a scientist’s perspective. This layer is
characterized by the Enactor Internal Object Model and is catered to by
an extensible processor plug-in architecture for the Freefluo enactment
engine.

myGrid is designed to have a framework that can be extended at three levels:

• The first level provides a plug-in framework to add new GUI panels
to facilitate user interaction for deriving and managing the behavioral
extensions incorporated into Taverna. This extensibility is made available
at the workbench layer.

• The second level allows for new processor types to be plugged in to enable
the enactment engine to recognize and invoke new types of services (which
can be both local and external services). This permits a wider variety of
workflows to be constructed and executed. This level of extensibility is
provided at the workflow execution layer.

• The third level is provided for loosely integrating external components via
an event–observer interface. The workflow enactor generates events during
critical state changes as it executes the workflow, exposing snapshots of
important parts of its internal state via event objects (i.e., messages).
Those event objects are then intercepted and processed by observer plug-

19 Taverna/myGrid 307

ins that can interact with external services. This level of extensibility is
made available at the workflow execution layer.

Figure 19.4: The Taverna workbench showing a tree structure explorer (a) and
a graphical diagram view (b) of a Scufl workflow. The results of this workflow
are shown in the enactor invocation window in the foreground (c). A service
palette showing the range of operations that can be used in the composition
of a workflow is also shown (d).

The Scufl language [326] is essentially a dataflow centric language,
defining a graph of data interactions between different services (or, more
strictly, processors). Scufl is designed to reflect the user’s abstraction of the
in silico experiment rather than the low-level details of the enactment of that
experiment.

Internally to Taverna, Scufl is represented using a Workflow Object Model
along with additional information gained from introspecting over the services.
A typical workflow developed in the systems biology use case is shown in
Figure 19.1.

308 Oinn, Li, et al.

The components of a Scufl workflow are:

• A set of inputs that are entry points for the data for the workflow.
• A set of outputs that are exit points for the data for the workflow.
• A set of processors, each of which represents a logical service — an

individual step within a workflow. A processor includes a set of input
ports and a set of output ports. From the user’s perspective, the behavior
of a processor is to receive data on its input ports (processing the data
internally) and to produce data on its output ports.

• A set of data links that link data sources to data destinations. The data
sources can be inputs or processor output ports, and data destinations
can be outputs or processor input ports.

• A set of coordination links that enable running order dependencies to be
expressed where direct data flow is not required by providing additional
constraints on the behavior of the linked processors. For example, in
Figure 19.1, the coordination links are defined so that one processor will
not process its data until another processor completes, even though there
is no direct data connection between them.

Part of the complexity of workflow design is when the user needs to deal with
collections, control structures such as iterations, and error handling. Scufl is
simplified to the extent that these are implicit. This layer fills in these implicit
assumptions by interpreting an Internal Object Model that encodes the data
that passes through a workflow. This data model is lightweight; it contains
some basic data structures, such as lists and trees, and enables the decoration
of data with MIME types and semantic descriptions to enable later discovery
or viewing of the data.

The addition of data structures such as lists to the data object model
brings about an added complexity. There are a number of ways in which the
list could be handled by the service. Taverna uses an implicit, but configurable,
iteration mechanism, as shown in Figure 19.5. Where a processor takes a single
list as inputs, the enactment engine will invoke the processor multiple times
and collate the results into a new list. Where a processor takes two (or more)
list inputs, the service will be invoked with either the cross or dot product of
the two lists.

Taverna supports fault tolerance through a configurable mechanism;
processors will retry a failed service invocation a number of times, often
with increasing delays between retry attempts before finally reporting failure.
Users can specify alternative services for any Scufl processor in the order in
which they should be substituted. Alternative services are typically either
an identical service supplied by an alternative service provider or, rarely, a
completely different service that the user deems to be substitutable without
damaging the workflow’s intention.

While the Scufl language defines the data flow, it does not fully describe
the service interactions to enable this data flow.

19 Taverna/myGrid 309

Figure 19.5: Configurable iteration. For example, a processor implements a
function f — it takes one input a and produces result f(a). If this processor
is given a list of inputs [a1,a2,a3], the implicit iteration will produce a list of
results, one for each input. This is equivalent to “map f [a1,a2,a3].” Where
a processor has more than one input, the default is to apply the function to
the cross product of all the input lists, however, sometimes the dot product
is required. The configurable iterators allow users to specify how the lists of
input values should be combined using these cross and dot operators.

It would be impossible to describe the interaction with all of the different
service interfaces within a language like Scufl. Instead, Scufl is designed to
be extensible through the use of processor types. We define a set of processor
plug-ins that manage service interaction by presenting a common abstraction
over these different styles. Current processors include:

• A WSDL Scufl processor implemented by a single Web service operation
described in a WSDL file.

• A local Java function processor, where services are provided directly
through a Java implementation with parameters as input ports and results
as output ports (Figure 19.1).

• A Soaplab processor, implemented through a CORBA-like stateful pro-
tocol of the Web service operations in a Soaplab service.

• A nested workflow processor, implemented by a Scufl workflow (Fig-
ure 19.1).

• A BioMOBY processor (Figure 19.6). Several smaller groups have ad-
opted the BioMOBY project’s conventions for publishing Web services.
BioMOBY provides a registry and messaging format for bioinformatics
services [469].

• A SeqHound processor that manages a representational state trans-
fer (REST) style interface, where all information required for the service

310 Oinn, Li, et al.

invocation is encoded in a single HTTP GET or POST request (Fig-
ure 19.6).

• A BioMart processor that directly accesses predefined queries over a
relational database using a JDBC connection (Figure 19.6).

• A Styx processor that executes a workflow subgraph containing streamed
services using peer-to-peer data transfer based on the Styx Grid service
protocol [357].

The Freefluo engine is responsible for the enactment of the workflow. The
core of the engine is workflow language independent, with specific extensions
that specialize Freefluo to enable it to enact Scufl.

19.5 Discovering Resources and Designing Workflows

Workflow construction is driven by the domain expert, that is, the scientist.
This corresponds to designing a suitable laboratory protocol for their investi-
gation. The life cycle of an in silico experiment (see Figure 19.2) has the
following stages:

• Hypothesis formation. First, the scientist determines the overall intention
of the experiment. This informs a top-level design, and would be the
overall “shape” of the workflow, including its inputs and desired outputs.

• Workflow design. Second, this design is translated into a concrete plan.
In the laboratory, this translation would consist of choosing appropriate
experimental protocols and conditions. In an e-Science workflow, this
maps to the choice and configuration of data and analysis services.

• Collecting. The workflow needs to be run, the services invoked, data
coordinated, etc (See Section 19.6). In the laboratory, this is handled
by protocols for entering results in laboratory books. As the workflow
is executed, the results have to be collected and coordinated to record
their derivation path. To comply with scientific practice, records need to
be kept on where these data came from, when they were acquired, who
designed and who ran the workflow, and so forth. This is the provenance
of the workflow and is described more fully in Section 19.7.

• Analyzing and sharing. As in a laboratory experiment, results are analyzed
and then shared.

19.5.1 Service Discovery

In this section, we describe the service discovery and service choice aspects
of running in silico experiments in Taverna.

Taverna uses a variety of different mechanisms for discovery of services and
populates the service list using an incremental approach. Flexible approaches
to discovering available resources are an essential part of supporting the
experimental life cycle:

19 Taverna/myGrid 311

• Public registries such as UDDI [430]. We are in favor of registries, but their
limited usefulness is due to the lack of widespread deployment. They are
generally perceived by the community to be a heavyweight solution [430].

• GRIMOIRES. An enriched prototype UDDI registry service developed by
myGrid, with the ability to store semantic metadata about services.

• URL submission. Users can add new services by directly pointing to a URL
containing WSDL files. The workbench will introspect over the description
and add the described services to a palette of services.

• Workflow introspection. Users can exploit existing experience by loading
existing workflows, observing how services have been used in context, and
adding those services to the available services palette.

• Processor-specific mechanisms. Many of the service types Taverna sup-
ports through its processor plug-ins provide their own methods for service
discovery.

• Scavenging. Local disks are scavenged for WSDL files that are introspected
over, or users create a Web page containing links to service descriptions
and, when pointed at this page, Taverna explores all available service
descriptions, extracts services, and makes them available. While crude,
this works well and gives users considerable flexibility in loading the
palette of available services that fits their current requirements.

Taverna’s access to 3000 services means that service selection is increas-
ingly important. Figure 19.6 is grouped according to the service locations,
which means that services of the same type are grouped together and color
coded. In addition, there is a simple search by name facility.

A common task is to locate a new service based on some conceptual
description of the service semantics. To enable service selection by bioinfor-
maticians, we must represent their view of the services and domain [480].
We have investigated a number of different mechanisms to drive the search
process, including an RDF-based metadata-enriched UDDI registry [269], and
a domain ontology [481] described in the W3C Web Ontology Language OWL.

Feta is our third and most recent version of a component for semantically
searching for candidate services that takes a user-oriented approach to service
discovery [268], a path also being trodden by the BioMOBY project. In
practice, this means we describe an abstraction over the services—provided
by the Taverna processors—rather than the services themselves. We have
relatively shallow descriptions of the services. Although richer descriptions
might enable more refined searching and sophisticated reasoning, they are
expensive and time consuming to provide. In practice, search results do not
have to be precise, as the final choice is made by the workflow designer
(a biologist), not automatically by a machine. Finally, the use of shallow
descriptions enables us to use simpler technologies to answer queries.

312 Oinn, Li, et al.

Figure 19.6: An example palette of local (BeanShell scripts, Java widgets)
and remote (Biomart, Soaplab, BioMOBY, Seqhound) services that can be
used for the construction of workflows in Taverna. libSBML methods made
available as local services via the API consumer and that were used for the
construction of the exemplar systems biology workflow are also shown.

19.5.2 Service Composition

Most workflow design packages have adopted a view analogous to electric
circuit layout, with services represented as “chips” with pins for input and
output [20,409]. However, from a user interface point of view, this arrangement
can become less understandable as complexity increases. If the layout of
service components onscreen is left under the user’s control, then the user
can tailor the workflow appearance, but this can result in a large amount
of time being spent effectively doing graph layout rather than e-Science. In
Taverna, the graphical view of a workflow is read-only; it is generated from
the underlying workflow model. One advantage of this is that it is easy to

19 Taverna/myGrid 313

generate different graphical views of the workflow, showing more or less detail
as required.

When composing workflows in an open world, we have no control over
the data types used by the component services. A service identified by a
scientist as being suitable may not use the same type as the preceding service
in the workflow, even if the data match at a conceptual level. Consequently,
many of the bioinformatics workflows created in Taverna contain numerous
“shim” services [202] that reconcile the inevitable type mismatches between
autonomous third-party services. We are currently building libraries of
shims for dereferencing identifiers, syntax and semantic translation, mapping,
parsing, differencing, and so on.

19.6 Executing and Monitoring Workflows

Execution of a workflow is largely an unseen activity, except for monitoring
the process and reviewing records of an experimental run (see Section 19.7). A
critical requirement of myGrid’s service approach is that workflow invocation
behavior should be independent of the workflow enactment service used. To
facilitate peer review of novel results, it is important that other scientists be
able to reproduce in silico experiments in their context and verify that their
results confirm the reported novel results.

Executing workflows using different enactment services is given less
emphasis in business workflows, which will typically be carefully negotiated
and agreed by the businesses involved and executed in a fixed, known context.
In contrast, a scientific workflow will be shared and evolved by a community
and executed by many individual scientists using their favored workflow
enactment service.

19.6.1 Reporting

Reporting the progress of a workflow is a complex task. Information about
service invocation is unavailable in the general case. Defining how far a service
is through a given invocation, so progress can be displayed, is nontrivial
without the explicit modeling and monitoring of state. The migration of
application services to the Grid’s Web Service Resource Framework [100] is a
solution that we are investigating.

The reporting mechanism in Taverna is a stream of events for each
processing entity, with these events corresponding to state transitions of the
service component. For example, a message is emitted when the service is first
scheduled, when it has failed for the third time and is waiting to retry, etc.
These message streams are collated into an XML document format and the
results presented to the user in tabular form as shown in Figure 19.7.

The introduction of reporting in Taverna does not alter the workflow
results. What it does alter is users’ understanding of what is going on and

314 Oinn, Li, et al.

Figure 19.7: Status information. When running a workflow, the Taverna
workbench displays status information from the workflow enactor. For each
Scufl processor, the last event is displayed along with the appropriate time
and additional detail if available. This additional detail can include progress
through an iteration (e.g. “item 2 of 6”) and retry information. The status
information also allows the selection of a processor and viewing of the relevant
intermediate inputs and outputs. Each data item has been assigned a Life
Science Identifier (LSID). More detailed trace information is also available
using the “Process report” tab.

therefore their confidence that the system is doing what they want. Overall,
the feedback from Taverna’s initial users was that workflow execution without
suitable monitoring was not acceptable. They were willing to accept workflows
that occasionally failed; their experience with form-based Web services was
that these were unreliable. However, workflow execution could not be a “black-
box” service, users need feedback on what is happening, whether the workflow
completed successfully or failed, and they need this recorded in logging
records.

When a workflow may contain 50 or more processing components (e.g.
Scufl processors), and each of these components can be retrying, using
alternative implementations, etc., the complete state of a workflow is highly
complex. Users require a visualization that allows them to see at a glance what
is happening, acquire intermediate results where appropriate, and control the
workflow progress manually should that be required.

19 Taverna/myGrid 315

19.7 Managing and Sharing Workflows and Their
Results

As the use of workflows increases the ability to gather and generate data
in large quantities, the storage of these data in an organized manner
becomes essential for analysis within and between experiments. For scientists,
workflows are the means to an end; their primary interest is in the results
of experiments. This interest, however, goes beyond examining the results
themselves and extends to the context within which those results exist.
Specifically, the scientist will wish to know from where a particular result
was derived, which key process was used, and what parameters were applied
to that process. Thus, in addition to the raw data, we have devised a model
of meta data describing the provenance of all aspects of the experiment: the
data’s derivation path, an audit trail of the services invoked, the context of
the workflow, and the evidence of the knowledge outcomes as a result of its
execution [494]. Another view is that it is the traditional who, where, when,
what, and how questions applied to in silico science. These different aspects
of provenance can be used for life scientists in different scenarios:

• to repeat a workflow execution by retrieving the “recipe” recorded in the
provenance;

• to reproduce a data product by retrieving the intermediate results or
inputs from which these data were derived;

• to assess the performance of a service that is invoked in different
experiment runs at different times;

• to debug the failure of a workflow run, e.g. which service failed, when and
why it failed etc.;

• to analyze the impacts of a service/database update on the experiment
results, by comparing the provenance of repeated runs;

• to “smartly” rerun a workflow if a service is updated by using provenance
to compute which part of a workflow is required to be rerun as a
consequence of the update; and

• to aggregate provenance of a common data product that is produced in
multiple runs.

We have adopted two key technologies for provenance collection:

• Life Science Identifiers. The description of the derivation of data neces-
sitates reference to the data sets both inside and outside the control of
myGrid. Bioinformatics has adopted view standards for the identification
of data instead of using an ad hoc system of accession numbers. The
recent Life Science Identifier (LSID) standard [93] provides a migration
path from the legacy accession numbers to an identification scheme based
on URIs.

• Resource Description Framework (RDF). The Dako data store has a fixed
schema that reflects the common entities used in an e-Science experimental

316 Oinn, Li, et al.

life cycle not tied to any scientific discipline. The use of a fixed schema
provides performance benefits. However, RDF’s basic graph data model
is well suited to the task of representing data derivation. The Knowledge
Annotation and Verification of Experiments (KAVE) meta data store has
a flexible schema due to its use of RDF. This allows statements to be
added outside the fixed schema of the Dako data store, as is needed when
providing subject-specific information. KAVE enables other components
in myGrid to store statements about resources and later query those
statements.

One can distinguish between provenance of the data and provenance of the
process, although the two are linked. The primary task for data provenance is
to allow the exploration of results and the determination of the derivation path
for the result itself in terms of input data and intermediate results en route
to the final value. “Side effect” information about how intermediate and final
results have been obtained is generated and stored during workflow invocation.
Thus the workflow engine produces not just results but also provenance meta
data about those results. Side effect information is anything that could be
recorded by some agent observing the workflow invocation, and it implicitly
or explicitly links the inputs and outputs of each service operation within
the workflow in some meaningful fashion. The associated component RDF
Provenance Plug-in listens to the events of workflow execution and stores
relevant statements using KAVE; for example, a name for a newly created
data item or a meaningful link between the output of a service and the inputs
that were used in its creation.

Process provenance is somewhat simpler than data provenance and is
similar to traditional event logging. Knowledge provenance is the most
advanced and contextual of the meta data results. Often a user does not need
to see a full “blow by blow” account of the processes that executed during
the workflow or a full account of the complete data-derivation path. Instead
they wish to relate data outcomes across a group of processes annotating
the relationships between outcomes with more semantically meaningful terms
than “derived by.” As each such provenance fingerprint is unique to the
workflow and the user, a provenance template accompanies the Scufl document
to be populated by the provenance capture component and stored in the
KAVE.

19.8 Related Work

In life sciences there are many scientists who want an easy way of rapidly
pulling together third-party services into prototypical in silico experiments.
This contrasts with fields such as physics and astronomy, where the prime
scenario involves carefully designed workflows linking applications to exploit
computational Grid resources for in silico experiments that were previously
impractical due to resource constraints.

19 Taverna/myGrid 317

Scientific workflow systems vary in terms of their intended scientific scope
(the kinds of analyses supported), their technical scope (the kinds of resources
that can be composed), their openness to incorporating new services, and
whether or not they are open source. The strengths of Taverna are its ability
to link together a significant range of autonomous bioinformatics services and
its flexibility, particularly in terms of the metadata generated to help manage
and share workflow results.

The Kepler workflow system [19, 20] has been developed for ecologists,
geologists and biologists and is built on Ptolemy II, a mature application
from electrical engineering [366]. Kepler’s strengths include its library of
Actors, which are mainly local applications, and its suite of Directors
that provide flexible control strategies for the composition of Actors. The
Triana [409] system was originally developed as a data analysis environment
for a gravitational wave detection project. Like Taverna and Kepler, Triana
is also data-flow oriented. It is aimed at CPU intensive applications, allowing
scientists to compose their local applications and distribute the computation.

DiscoveryNet uses a proprietary workflow engine, and all services are
wrapped to conform to a standard tabular data model. DiscoveryNet scientific
workflows are used to allow scientists to plan, manage, share, and execute
knowledge discovery and data analysis procedures [373]. In the Pegasus
system [160], users provide a workflow template and artificial intelligence
planning techniques are used to coordinate the execution of applications on
a heterogeneous and changing set of computational resources. The emphasis
is on the scheduling large numbers of jobs on a computational Grid, where
there may be alternative strategies for calculating a user’s result set.

The use of workflows for “programming in the large” to compose web
services has led to significant interest in a standard workflow language,
with BPEL1 [24] a strong candidate, created through the agreed merge of
IBM’s WSFL [254] and Microsoft’s XLANG [416]. One reason why Taverna
workflows use Scufl rather than a potential standard is historical. In the
initial stages of the myGrid project in 2001, BPEL did not exist. The more
significant reason is conceptual. Initial experiments showed IBM’s WSFL
language did not match how our target users wanted to describe their in silico
experiments [7]. WSFL forced users to think in terms of Web service ports
and messages rather than passing data between bioservices.

1 BPEL was originally termed BPEL4WS and is being promoted as a standard
called WSBPEL through OASIS (Organization for the Advancement of
Structured Information Standards), an international consortium for e-business
standards.

318 Oinn, Li, et al.

19.9 Discussion and Future Directions

myGrid set out to build a workflow environment to allow scientists to perform
their current bioinformatics tasks in a more explicit, repeatable, and shareable
manner:

• Making tacit procedural knowledge explicit. For at least the last 250 years,
this has been recognized as essential in science. Each experiment must
carry with it a detailed “methods” description to allow others both
to validate the results and also reuse the experimental method. Our
experience suggests that workflows allow this to be achieved for in silico
experiments. They are formal, precise, and explicit, yet straightforward
to explain to others.

• Ease of automation. Many of the analyzes we support have already
been undertaken by scientists who orchestrate their applications by
hand. Workflows can drastically reduce analysis time by automation. For
example, Taverna workflows developed by the Williams–Beuren Syndrome
team have reduced a manual task that took two weeks to be an automated
task that typically takes just over two hours [397].

• Appropriate level of abstraction. Bioinformaticians have traditionally
automated analyzes through the use of scripting languages such as PERL.
These are notoriously difficult to understand, often because they can
conflate the high-level orchestration at the application level with low-level
“plumbing.”

Taverna and the myGrid suite enables users to rapidly interoperate services.
It does not support the semantic integration of the data outcomes of those
services. We underestimated the amount of data integration and visualization
provided by the existing Web-delivered applications. They often integrate
information from many different analysis tools and provide cross-references to
other resources. Accessing the analysis tool directly as a service circumvents
this useful functionality. Although the scientist is presented with results in
hours, not weeks, it now takes significant time to analyze the large amount
of often fragmented results. A solution is complicated by the fact that
the workflow environment does not “understand” the data and so cannot
perform the data integration necessary. We have provided integration steps
within workflows, written as scripts that integrate and render results, but
these are specific to each workflow design. We are currently investigating a
multi-pronged approach: (i) the use of Semantic Web technology to provide
more generic solutions that can be reused between related workflows; (ii)
appropriate workflow designs using shims and services under the control of
the user to build data objects; and (iii) closing off the open world in situations
where the workflows are known to orchestrate a limited number of services
and will be permanent in nature, so it is worth the effort to build a more
strongly typed model.

19 Taverna/myGrid 319

Since January 2006, the myGrid suite, including Taverna 2.0, has moved to
a new phase. As part of the United Kindom’s Open Middleware Infrastructure
Institute (OMII-UK)(http://www.omii.ac.uk), myGrid is to be integrated
with a range of Grid services and deployed in a common container with job
submission services, monitoring services, and large-scale data management
services. Focus is placed on the following:

• Grid deployment. Deploying the Taverna architecture within a Grid
container, making the enactor a stateful service, and a server-side
distributed service, and supporting stateful data repositories.

• Improved security. Authentication and authorization management for
data, metadata and implementation of credentials for access control of
services.

• Revised execution and processor models. Support of interactive applica-
tions, long running processes, control-based workflows, data flows with
large data throughput, enhanced provenance collection, and credential
handling. We already have a user interaction service that allows users to
participate interactively with workflows.

• Improved data and metadata management. Incorporating better user-
oriented result viewers and incorporating SRB and OGSA-DAI data
implementations.

• Integration with third-party platforms. Examples are Toolbus and EGEE.
We also plan to continue to interoperate with other workflow systems,
specifically Kepler and the ActiveBPEL system emerging from UCL.

• Extending services. To execute over more domain services, such as the R
suite, and over generic services such as GridSAM job submission.

The field of scientific workflows is rapidly evolving, and as a project in this
area myGrid must also evolve. We engage different user communities (such as
biological simulation), and new applications become available, as do novel
service frameworks for deploying them. By working closely with our users,
service providers, and other workflow projects, we continue to extend the
basic core functionality to fulfill a wide range of uses.

Acknowledgments

This work is supported by the UK e-Science programme myGrid grants EPSRC
GR/R67743, EP/D044324/1, EP/C536444/1, and the Link-Up e-Science
sisters project. The authors would like to acknowledge the myGrid team.
Peter Li is funded by the BBSRC. Hannah Tipney developed workflows for
investigating Williams–Beuren Syndrome and is supported by The Wellcome
Foundation (G/R:1061183). We also thank our industrial partners: IBM, Sun
Microsystems, GlaxoSmithKline, AstraZeneca, Merck KgaA, geneticXchange,
Epistemics Ltd, and Cerebra.

20

The Triana Workflow Environment:
Architecture and Applications

Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison

20.1 Introduction

In this chapter, the Triana workflow environment is described. Triana focuses
on supporting services within multiple environments, such as peer-to-peer
(P2P) and the Grid, by integrating with various types of middleware toolkits.
This approach differs from that of the last chapter, which gave an overview
of Taverna, a system designed to support scientists using Grid technology to
conduct in silico experiments in biology. Taverna focuses workflow at the Web
services level and addresses concerns of how such services should be presented
to its users.

Triana [429] is a workflow environment that consists of an intuitive
graphical user interface (GUI) and an underlying subsystem, which allows
integration with multiple services and interfaces. The GUI consists of two main
sections, as shown in Figure 20.1: a tool browser, which employs a conventional
file browser interface — the structure representing toolboxes analogous to
directories in a standard file browser and the leaves (normally representing
files) representing tools; and a work surface, which can be used to graphically
connect tools to form a data-flow diagram. A user drags a desired tool (or
service) from the tool browser, drops it onto the work surface, and connects
tools together by dragging from an output port on one tool to an input port
on the other, which results in cables being drawn to reflect the resulting data
pipeline. Tools can be grouped to create aggregate or compound components
(called Group Units in Triana) for simplifying the visualization of complex
workflows, and groups can contain groups for recursive representation of the
workflow.

The underlying subsystem consists of a collection of interfaces that bind
to different types of middleware and services, including the Grid Application
Toolkit (GAT) [13] and, in turn, its multiple bindings to Grid middleware,
such as Grid Resource Allocation Manager (GRAM), GridFTP, and GridLab
Resource Management System (GRMS); the Grid Application Prototype
(GAP) interface [408] and its bindings to JXTA [64], P2PS [460], and

20 The Triana Workflow Environment 321

Figure 20.1: A mixed-component Triana workflow consisting of Grid file and
job operations through proxies and Java components.

WSPeer [187]; and integration to Web services, WS-RF [100], and OGSA-
DAI. The resulting integration means that Triana tools on the work surface
can represent any service or primitives exposed by such middleware, and
these tools can be interconnected to create mixed-component workflows. An
illustration of this is provided in Figure 20.1, where we show a workflow that
integrates job and file proxy components that interact with the GAT interface
to access job submission (i.e., GRAM) and file transfer operations (GridFTP)
and local Java components that provide editing and visualization capabilities.
In this example, the local Java components are used to edit a parameter
file, which is then staged on the Grid using the file proxy components and
specified as an input file for a Grid job submission, which in this case happens
to be a Cactus simulation (see Chapter 25). Local Java components are
used to visualize the results from this job. Although this example shows the
interaction between Grid jobs and local Java units, we have other scenarios
that interconnect WS-RF services, P2P services, and local Java units.

In this chapter, we will take a detailed look at the Triana environment
and discuss its components for interacting with Grids and P2P networks. We
also focus on application examples and describe two specific examples of how
workflows are generated, refined, and executed within the environment. The
rest of this chapter is organized in the following way. In the next section,
we relate Triana to other frameworks described in this book and elsewhere.
We then give an overview of the main Triana components and illustrate the
types of distributed component interactions that Triana facilitates. In Section

322 Taylor et al.

20.5, we discuss the workflow representations Triana uses, and in Section 20.6
how it has been used in a number of different ways by listing some projects
that are using Triana and the functionality that they employ. In Sections 20.7
and 20.8, we present two case studies, which illustrate how Triana workflows
are generated, modified, and executed within P2P environments and the Grid.

20.2 Relation to Other Frameworks

As we can see from some of the other chapters in this book, the Grid
workflow sector is relatively crowded, with a number of different frameworks,
languages, and representations for similar concepts. Part of the reason for
this is that existing Grid workflow engines are often tied to the technologies
employed by their parent projects and are not necessarily able to integrate
new technologies effectively. Many of these projects contain elements very
similar to Triana, albeit with a different terminology; for example, Triana
tasks are conceptually the same as Kepler actors and Taverna processors.
The Kepler project (Chapter 7) for supporting scientific workflows is a cross-
project collaboration based on the Ptolemy II system [366]. The approach in
Kepler/Ptolemy II is very similar to that of Triana in that the workflow is
visually constructed from Java components, called actors, which can either
be local processes or can invoke remote services such as Web services or a
GridFTP transfer.

Taverna (Chapter 19) is a workbench for workflow composition and
enactment developed as part of the myGrid [396] project, the focus of
which is bioinformatic applications. Originally designed to execute Web
service based workflows, Taverna can now interact with arbitrary services.
ICENI (Chapter 24) is an environment for constructing applications using
a graphical workflow tool together with distributed component repositories
on computational Grids. ICENI employs coarser grained components than
many of the other environments, generally focusing on large Grid-enabled
application components.

The Chimera Virtual Data System (VDS) (Chapter 23) is a system for
deriving data rather than generating them explicitly from a workflow. It
combines a virtual data catalog, for representing data derivation procedures
and derived data, with a virtual data language interpreter that translates user
requests into data definition and query operations on the database. The user
specifies the desired end result, and a workflow capable of generating that
result is derived. If intermediate results are available, then these are used
directly rather than being regenerated. Pegasus takes the abstract workflow
generated by the Chimera system and maps it onto a Grid. Workflows are
expressed in Chimera’s Virtual Data Language (VDL) and are converted into
Condor’s DAGMan format for execution.

The current release of The Globus Alliance’s CoG Kit includes a workflow
tool called the Karajan Workflow Engine (Chapter 21). The workflow language

20 The Triana Workflow Environment 323

Karajan uses is an XML-based scripting language that includes declarative
concurrency, support for control structures such as for...next and while loops,
conditionals such as if...then, and support for all CoG-supported services, such
as GridFTP or Globus job submission. The toolkit comes with a workflow
editor for composing Karajan scripts and a workflow engine for executing
them. Karajan workflow is aimed specifically at executing jobs in a Grid
environment and does not have capabilities for local processes such as those
available in Triana’s local toolboxes. The main operations with which it
concerns itself are job submission and file transfer, and these are represented
as nodes in the script. The BPEL4WS (Chapter 14) language is a workflow
language for choreographing the interaction between Web services. It is used
in many projects in business workflow but is less common in scientific workflow
systems.

20.3 Inside The Triana Framework

Triana was initially designed as a quick-look data analysis tool for the
GEO 600 project [158] but has been subsequently extended into a number
of arenas within the scientific community. Originally, workflows in Triana
were constructed from Java tools and executed on the local machine or
remotely using RMI. A large suite of over 500 Java tools has been developed,
with toolboxes covering problem domains as diverse as signal, image, and
audio processing and statistical analysis. More recently, Triana components
have evolved into flexible proxies that can represent a number of local and
distributed primitives. For example, a Triana unit can represent a Java object,
a legacy code, a workflow, a WS-RF, P2P, or Web service, a Grid job, or a
local or distributed file.

In essence, Triana is a data-flow system (see Chapter 11) for executing
temporal workflows, where cables connecting the units represent the flow
of data during execution. Control flow is also supported through special
messages that trigger control between units. The cables can be used to
represent different functionalities and can provide a convenient method for
implementing plug-ins. For example, in our GAT implementation, described
in Section 20.4.2, the cables represent GAT invocations, and the content
of adjoining units provides the arguments to these calls. Therefore, two
connected file units would result in a GAT fileCopy invocation, and the actual
locations and protocols specified within the units indicate which GAT adapter
should be used to make this transfer (e.g., HTTP, GridFTP, and so on).

Triana integrates components and services (see Chapter 12) as Triana
units and therefore users visually interact with components that can be
connected regardless of their underlying implementation. In a somewhat
simplified perspective, Triana components are used to specify a part of a
system rather than to imply a specific implementation methodology and its
obvious object-oriented connotations. Triana components are simply units of

324 Taylor et al.

execution with defined interactions, which don’t imply any notion of state or
defined format for communication.

The representation of a Triana workflow is handled by specific Java reader
and writing interfaces, which can be used to support multiple representations
through a plug-in mechanism. This means that the actual workflow composi-
tion is somewhat independent of workflow language constraints and currently
we have implementations for VDL (see Chapter 17) and DAG workflows (see
Chapter 22). Such plug-ins can be dynamically activated at runtime, which
means that Triana could be used as a translator between such representations
to provide syntactic compatibility between systems.

20.4 Distributed Triana Workflows

Triana workflows are comprised of Triana components that accept, process,
and output data. A component may be implemented as a Java method call on
a local object or as an interface to one of a range of distributed processes
or entities such as Grid jobs or Web services. We call components that
represent a remote entity distributed components without suggesting that the
remote entity represented describes itself as a component. These distributed
components fall into two categories:

• Grid-oriented components. Grid-oriented components represent applica-
tions that are executed on the Grid via a Grid resource manager (such
as GRAM, GRMS, or Condor/G) and the operations that support these
applications, such as file transfer.

• Service-oriented components. Service-oriented components represent enti-
ties that can be invoked via a network interface, such as Web services or
JXTA services.

Triana uses simplified APIs as its base for programming within both
service-oriented and Grid-oriented environments. Specifically, the Grid Ap-
plication Toolkit (GAT) API [13] developed during the GridLab project [175]
is used for Grid-oriented components. The GAT is capable of implementing
a number of different bindings to different types of middleware, and these
can be dynamically switched at runtime to move across heterogeneous
Grid environments without changing the application implementation. Section
20.4.2 discusses in detail our core interface to Grid-oriented software toolkits
and services using the GAT. For our service-oriented components, we use the
Grid Application Prototype (GAP) interface described in the next section.
The GAT and GAP interfaces can be used simultaneously within a Triana
application instance, enabling users to compose Triana components into
workflows that represent elements from both traditional toolkits such as
Globus 2.x and Web, WS-RF, or P2P services.

20 The Triana Workflow Environment 325

20.4.1 Service-Oriented Components

The Grid Application Prototype Interface (GAP Interface) is a simple
interface for advertising and discovering entities within dynamic service-
oriented networks. See [408] for a full description of the GAP. Essentially,
the GAP uses a P2P-style pipe-based mechanism for communication. The
pipe abstraction allows arbitrary protocols to be implemented as bindings to
the GAP as long as they can fulfill the basic operations of publish, find, and
bind. The GAP currently provides bindings to three different infrastructures:

• P2PS. P2PS [460] is lightweight P2P middleware capable of advert-
isement, discovery, and communication within ad hoc P2P networks.
P2PS implements a subset of the functionality of JXTA using the pipe
abstraction employed by JXTA but tailored for simplicity, efficiency, and
stability.

• Web services. This binding allows applications to host and invoke Web
services using standard discovery protocols such as UDDI [430] or dynamic
P2P oriented discovery mechanisms such as P2PS.

• JXTA. JXTA [64] is a set of open protocols for discovery and communi-
cation within P2P networks. Originally developed by Sun Microsystems,
JXTA is aimed at enabling any connected device, from a PDA to a server,
to communicate in a P2P manner.

The GAP abstracts away the implementation detail of the various
bindings. For example, service description takes different forms in the existing
bindings — Web services use Web Service Definition Language (WSDL) [482],
JXTA uses service descriptors, and P2PS simply uses named pipes. Likewise,
transport and transfer protocols vary — Web services usually use HTTP
over TCP/IP, while JXTA and P2PS are transport agnostic, allowing
communication to traverse different protocols via the pipe abstraction. These
peculiarities do not filter up through the GAP. From a user’s perspective, a
service is simply made available that provides some capability and can be
invoked via the GAP. Furthermore, the use of the GAP as an umbrella to
differing service-oriented infrastructures means that it is possible to seamlessly
use applications developed on top of the GAP Interface across different
networks just by switching the GAP binding used.

The most common GAP binding we use is the Web service binding. This is
largely because of its support for Grid-based security, currently via the Grid
Security Infrastructure (GSI), and because of the confluence of Web and Grid
services, which means many Grid service interfaces are now being defined
using Web service standards.

Web Service Integration

The GAP Web service binding is implemented using WSPeer [187]. WSPeer is
focused on enabling simple, lightweight Web service management and does not

326 Taylor et al.

require the usual infrastructure associated with service hosting, such as a Web
server and a service container. Furthermore, it allows an application to expose
functionality as a Web service on the fly. As a result, WSPeer can operate
under diverse conditions, making its binding to a P2P-oriented interface, such
as the GAP, a straightforward task.

Figure 20.2: Web service and local tools on the Triana desktop.

From the perspective of Triana, the GAP enables diverse service
infrastructures to be viewed in a common way. By wrapping a GAP service
as a Triana component, the service is made available to the graphical
workspace displaying optional input and output ports. Connections are drawn
between components with cables, which usually denote data streams. On the
workspace, local tools, remote services, and Grid jobs can coexist and be
connected to one another. Figure 20.2 shows a combination of local Java
tools interacting with a remote Web service. The local tools provide a means
for inputting data into and reading output from the service component. The
example in Figure 20.2 shows a simple string generator tool that passes Bible
book, chapter, and verse information to the service, read bible. The service
returns the text from the specified section of the Bible, which is displayed
using a simple string viewer tool. From the user’s perspective, there is no
difference between the components — they are simply visual components on
the workspace.

WS-RF Integration

Triana interacts with its distributed resources by using the GAT and
the GAP interfaces, which draw a clear distinction between Grid-based

20 The Triana Workflow Environment 327

and service-oriented interactions. This distinction divides our distributed
interactions between simple application-level interfaces, like the GAT, where
clear standardization efforts are currently under way (e.g., the SAGA GGF
Research Group [374]) and service-based interfaces. Such a distinction,
however, may well become less pronounced as service orientation is more
widely adopted by Grid middleware in general.

Therefore, from a Grid service perspective, WSPeer also incorporates Web
Service Resource Framework (WS-RF) [100] capabilities that enable Triana
to handle stateful resources via services as well as employ the event-driven
notification patterns supported by WS-Notification [316].

The WS-RF suite of specifications is based on the concept of a WS-
Resource [319]. This is the combination of a resource identifier and an endpoint
to a Web service that understands the identifier and can map it to some
resource. The resource can be anything — a table in a database, a job, a
subscription to a published topic, or a membership in a group of services.
The aim of WS-RF is to allow this underlying resource to be made accessible
and potentially be modified across multiple message exchanges with a Web
service without associating the service itself with the state of the resource.
In practice, this is achieved by placing the WS-Resource, serialized as a WS-
Addressing [184] EndpointReference, into the header of the Simple Object
Access Protocol (SOAP) message. Queries for properties of the underlying
resource are implicitly mapped to the resource referenced in the WS-Resource.
A WS-RF service advertises the type of resource it can handle through
a schema document in the WSDL definition of the service. This schema
document describes the properties (keys) that the resource type exposes and
that can therefore be accessed or modified. When a client is in possession of
a WS-Resource, it uses the properties keys declared in the WSDL to retrieve
the associated values. These values in turn represent the state of the resource.

Although the underlying infrastructure to manage WS-RF and WS-
Notification message exchange patterns is quite complex, Triana makes the
process simple from a user’s perspective. A WS-RF service can be discovered
and imported in the same way ordinary Web services are. When a WS-
RF service arrives in the user’s toolbox, it is made up of the usual Web
service operations that can be dragged onto the Triana worktop to be invoked.
However, Triana allows an additional context to be associated with these WS-
RF service operations in the workflow through a simple GUI. This context is
not itself a WS-Resource, but the name associated at workflow design time
with a WS-Resource that will be created or imported into the workflow at
runtime. As WS-RF does not specify the mechanism for how a WS-Resource
is created or returned to a client, it is impossible to write an all-purpose tool
for creating/importing WS-Resources within a Triana workflow. A typical
approach, however, is to employ a factory service. In this case, the factory
service can become part of the workflow, feeding the WS-Resource into the
context that is used as part of the invocation of a WS-RF service.

328 Taylor et al.

WS-RF Workflow

The application of WS-RF compliant services to workflows opens up certain
possibilities. In particular, the WS-Resource construct can be used to reduce
the need for sending large data sets as SOAP attachments or, worse, encoded
as XML. Because the use of WS-Resources allows arbitrary resources to be
exposed via a Web service, this can also pertain to data generated by a service
(that is, output), allowing a service to return a WS-Resource to a service
requester, as opposed to actual data. As a simple example, one can imagine
an executable that has been wrapped as a Web service, that takes a file as
input, and outputs another file after execution. Using standard Web services
mechanisms, one could imagine this service with an operation that takes a
byte array, or a SOAP attachment, as input and returns some similar data
structure as output. In the case of large files, this can be expensive, especially
if the file is being returned to the workflow enactment engine merely to be sent
to the next node in the workflow thereafter. If this service is WS-RF compliant,
however, then it can return a WS-Resource exposing the file as a resource and
itself as the service from which properties of the file can be retrieved. There
are a number of ways clients could be given access to the file resource; for
example, the resource type may expose a property consisting of a URI that
can be connected to directly, in order to read from a data stream. This is
far more efficient that transferring data along with the XML and also allows
the data to be pulled when (if) needed. If we extend this model to service
operation inputs, then it allows us to create workflows in which references to
data are passed directly between workflow components, bypassing the need to
send data via the enactment engine. Further optimizations can be achieved
by defining the properties of the file resource to reflect application-specific
requirements. For example, certain services may only need to process parts
of the file, in which case a property is exposed that returns just the relevant
portion.

From a more general perspective, the widespread adoption of the WS-
Addressing specification and the EndpointReference structure is potentially
useful in terms of workflow. Although not fully standardized as yet, the use
of WS-Addressing could pave the way for a generic means for services to
reference each other — similar to the anchor tag in HTML — even services
that are not specifically Web services. This in turn could lead to mechanisms
for describing and deploying heterogeneous workflows — the kind of workflows
Triana is capable of building — which are autonomous, running independently
of continual controller intervention. Currently, workflows involving arbitrary
services still require control and data to pass through the enactment engine at
every stage of the workflow because there are no universally accepted means
of transferring control or data directly to the next process in the flow.

While the widespread adoption of WS-Addressing should be considered a
positive, its use is not always suitable for all situations. In fact, this criticism
can be leveled at WS-RF. By combining an endpoint address with a resource

20 The Triana Workflow Environment 329

identifier, one is tightly coupling a service with a resource. This model can
lead to an object-oriented approach in which WS-Resources are used as global
pointers to specific resources located at certain addresses. Furthermore, it
encourages the explicit modeling of entities that should be hidden behind
the service interface. Both these conditions can lead to complex and fragile
systems [261]. Specifically in the context of workflow, managing references that
are explicitly tied to service endpoints can become cumbersome as the number
of services involved grows. As a result, we are exploring other Web service
frameworks, such as the Web Services Composite Application Framework
(WS-CAF) [317] and the WS-Context [67] specification in particular, for the
generation and enactment of Web service based workflows. WS-Context does
not couple state with service endpoints. Instead, context is shared between
multiple parties as a stateful conversation, and the interpretation of the
context by individual services is left to the invisible implementation of the
service.

Web service specification is a rapidly evolving area of development,
making it almost impossible to develop code with confidence that it will
have any longevity. In fact, we believe it is unlikely that WS-RF will survive
in any meaningful form beyond 2007, although some of its ideas may be
subsumed into other emerging standards. However, the experience gained with
implementing it has left both WSPeer and Triana with flexible architectures
for handling contextual message information in general, making them well
suited for easily integrating new Web service specifications quickly.

20.4.2 Grid-Oriented Components

Components supporting the execution of code on Grid resources are provided
within Triana using the GridLab GAT. The GridLab GAT is a simple API for
accessing Grid services and resources. It enables applications to perform Grid
tasks such as job submission and file transfer while remaining independent of
the Grid middleware used to execute these tasks. The GridLab GAT employs
an adapter-based architecture that allows different Grid middleware bindings
to be plugged into the GAT, thereby enabling applications written to the
GAT API to operate over a range of current and future Grid technologies. The
application programmer also benefits from only having to learn a single Grid
API, an idea currently being developed further through the SAGA Research
Group [374].

At the core of the GAT is the concept of a job, the execution of code on
a computational resource. The resource used to execute a job can be local or
remote, depending on the GAT adapter used to create the job instance. As
essential as job execution is the ability to interact with and relocate files, for
example to prestage files in the execution directory of a job and to retrieve
output files from a job. Different protocols for accessing and moving files,
for example GridFTP and HTTP, can be handled via different GAT adapter
instances.

330 Taylor et al.

The Visual GAT is the representation of GridLab GAT primitives as
components within Triana workflows and the visualization of the data are
dependencies between these components. The key Visual GAT components
are:

• Job component. A job component represents the submission of a GAT job
description to a resource broker. This job description includes information
on the executable and arguments to be run, plus optional information such
as the resource on which the job should be executed.

• File component. A file component represents a GAT-accessible file. The
file is identified by a URI, which specifies the protocol used to access that
file and its network location.

As with standard Triana components, the cables linking Visual GAT
components represent data flow between those components. The semantics of
this data flow depend on the context of the linked components. For example,
the cable between two file components represents data flow from one file
location to another; in other words, a file copy operation. Similarly, a cable
from a file component to a job component indicates a prestaged file, and a
cable from a non-Visual GAT component to a file component indicates a file
write.

In Figure 20.1 we show a simple job submission workflow using a mixture
of Visual GAT and standard Triana components. In this workflow, local
Java components are used to create and view the data, while Visual GAT
components are used to represent the prestaging and poststaging of these
data and job submission. An equivalent workflow could be created without
Visual GAT components; for example, by having specific GridFTP and Globus
job submission components. However, although this approach is used within
most visual workflow environments, the resulting workflow less accurately
models the data flow between workflow components. Furthermore, non-Visual
GAT workflows are often more complex and contain more redundancy than
equivalent workflows employing Visual GAT components. These issues are
discussed in much greater depth in [407].

20.5 Workflow Representation and Generation

A component in Triana is the unit of execution. It is the smallest granularity
of work that can be executed and typically consists of a single algorithm,
process, or service. Component structure in Triana, in common with many
component-based systems such as the CCA, has a number of properties
such as an identifying name, input and output “ports,” a number of
optional name/value parameters, and a proxy/reference to the part of the
component that will actually be doing the work. In Triana, each component
has a definition encoded in XML that specifies the name, input/output
specifications, and parameters. The format is similar to WSDL [482], although

20 The Triana Workflow Environment 331

more succinct. These definitions are used to represent instance information
about a component within the workflow language and component repositories.
An example component definition can be seen below.

<tool>

<name>Tangent</name>

<description>Tangent of the input data</description>

<inportnum>1</inportnum>

<outportnum>1</outportnum>

<input>

<type>triana.types.GraphType</type>

<type>triana.types.Const</type>

</input>

<output>...</output>

<parameters>

<param name="normPhaseReal" value="0.0"

type="userAccessible"/>

<param name="normPhaseImag" value="0.0"

type="userAccessible"/>

</parameters>

</tool>

The external representation of a Triana workflow is a simple XML
document consisting of the individual participating component specifications
and a list of parent/child relationships representing the connections.
Hierarchical groupings are allowed, with subcomponents consisting of a
number of assembled components and connections. A simple example
taskgraph consisting of just two components can be seen below.

<tool>

<toolname>taskgraph</toolname>

<tasks>

<task>

<toolname>Sqrt</toolname>

<package>Math.Functions</package>

<inportnum>1</inportnum>

<outportnum>1</outportnum>

<input>

<type>triana.types.GraphType</type>

<type>triana.types.Const</type>

</input>

<output>...</output>

<parameters>

</parameters>

</task>

<task>

<toolname>Cosine</toolname>

<package>Math.Functions</package>

....

332 Taylor et al.

</task>

<connections>

<connection>

<source taskname="Cosine" node="0" />

<target taskname="Sqrt" node="0" />

</connection>

</connections>

</tasks>

</tool>

Triana can use other external workflow language representations, such as
VDL, that are available through “pluggable” language readers and writers.
These external workflow representations are mapped to Triana’s internal
object representation for execution by Triana. As long as a suitable mapping
is available, the external representation will largely be a matter of preference
until a standards-based workflow language has been agreed upon. Triana’s
XML language is not dissimilar to those used by other projects such as
ICENI [153], Taverna/FreeFluo [326], and Ptolemy II [366] and should be
interoperable.

A major difference between the Triana workflow language and other
languages, such as BPEL4WS, is that our language has no explicit support for
control constructs. Loops and execution branching in Triana are handled by
specific components; i.e., Triana has a specific loop component that controls
repeated execution over a subworkflow and a logical component that controls
workflow branching. We believe that this approach is both simpler and more
flexible in that it allows for a finer-grained degree of control over these
constructs than can be achieved with a simple XML representation. Explicit
support for constraint-based loops, such as while or an optimization loop, is
often needed in scientific workflows but very difficult to represent. A more
complicated programming language style representation would allow this but
at the cost of ease-of-use considerations.

20.6 Current Triana Applications

This section outlines some of the projects currently using Triana and its
related technologies, such as GAP Interface and P2PS. Triana itself is
currently being developed as part of the GridOneD project.1 The GridOneD
project is in its second phase of funding. The initial focus of GridOneD was to
develop components within Triana to support gravitational wave searches in
collaboration with the GEO600 project [158], and this led to the development
of GAP, P2PS, and other middleware. The second phase aims to extend
Triana’s support for gravitational wave searches and also to develop support
for pulsar searches in collaboration with Manchester University and Jodrell

1 http://www.gridoned.org/.

20 The Triana Workflow Environment 333

Bank. This support will employ Visual GAT components within Triana to
submit data-analysis jobs across Grid resources.

Triana and its related technologies are being used in a range of external
projects. The majority of these projects are using Triana to choreograph
Web services. An example of this is Biodiversity World (Chapter 6), a
collaboration between Cardiff, Reading, and Southampton universities and the
Natural History Museum. The goal of Biodiversity World is to create a Grid-
based problem-solving environment for collaborative exploration and analysis
of global biodiversity patterns. Triana is providing the visual interface for
connecting and enacting the services created by this project. Other examples
of projects using Triana to choreograph Web services include Data Mining
Grid [107], a project developing tools and services for deploying data-mining
applications on the Grid; FAEHIM [8], a second data-mining-based project;
and DIPSO [119], an environment for distributed, complex problem solving.

In terms of related technologies, the DARRT (Distributed Audio
Rendering using Triana) project [105] at the Louisiana Center for Arts and
Technology is exploring the use of Grid computing technologies towards
sound computation and music synthesis, in particular using P2P workflow
distribution within Triana. The SRSS (Scalable Robust Self-organizing Sensor
networks) project [393] has been using the GAP and P2PS in simulating P2P
networks within NS2 for researching lightweight discovery mechanisms. Triana
is also being used for workflow generation and editing within the GENIUS
Grid portal [157], part of the EGEE project.

20.7 Example 1: Distributing GAP Services

The GAP is an interface to a number of distributed services (e.g. P2PS,
JXTA, WS-RF, or Web services). Services can be choreographed into Triana
workflows for managing the control or data flow and dependencies between
distributed services. However, Triana can also be used to locate and utilize a
number of distributed Triana service deployers by using a distribution policy
that enables the dynamic rewiring of the taskgraph at runtime in order to
connect to these services. We have implemented two such distribution policies
for parallel and pipelined execution. In both scenarios, on the client, a set
of Triana units is selected and grouped to create a compound unit, and
a distribution policy is applied to this group. In the parallel scenario, the
subworkflow contained within the group is distributed across all available
service deployers in order to duplicate that group capability across the
resources. When data arrive they are farmed out to the various distributed
services for parallel execution. In the pipelined scenario, the taskgraph is
spliced vertically and parts of the group are distributed across the available
resources.

These scenarios are based on the P2P-style discovery mechanisms that are
exposed by the GAP interface, with implementations of these mechanisms

334 Taylor et al.

provided by the different GAP bindings. These scenarios can therefore work
over WS-RF and Web services in the same way as for P2PS, as described in
Section 20.4.1. We have used this mechanism in a number of scenarios [91,
406,410,411] for high-throughput applications, typically on local networks or
clusters where we have control of the resources. Each application generally has
a fixed set of data that are input into a group unit, which implements a data-
processing algorithm, perhaps for searching a parameter space. Typically, the
algorithms are CPU intensive and the parameter sets being searched can be
divided and sent to parallel instances of the algorithm. We use the parallel
distribution policy to discover and distribute the data to available resources
for processing.

20.7.1 Workflow Generation

For these types of service-based scenarios, workflows are typically constructed
from local units (Java or C) representing the algorithm for importing the data
and for performing the parameter search. Such workflows are constructed and
prototyped in a serial fashion and then distributed at runtime. The serial
version of these algorithms can be complex. In one example [91], a template-
matching algorithm for matching inspiral binaries in gravitational wave signals
was constructed from more than fifty local Java units with a number of
processing pipelines consisting of specific algorithms (e.g., FFT, correlation,
complex conjugate, etc.) that were combined and processed further to give
the desired result.

Once the algorithm is composed, the user can visually select the processing
(CPU-intensive) section of the workflow and group it. This group can then be
assigned the parallel distribution policy to indicate that it should be task-
farmed to available resources. When data arrive at the group unit, they
are passed out across the network to the discovered distributed services one
data segment at a time. In this way, the individual services can process data
segments in parallel.

20.7.2 Workflow Refinement

In this case, workflows are mapped from their locally specified serial version
into a distributed workflow that connects to the available resources. This
workflow refinement happens at runtime after the client has discovered
the available services it can utilize. The workflow is annotated with proxy
components to represent the available distributed services, and the workflow
is rewired to direct data to these components. This results in the connectivity
to the single local group being replaced by one-to-many connectivity from the
client to the available remote services.

20 The Triana Workflow Environment 335

20.7.3 Workflow Execution

The distributed workflow created during the dynamic refinement process is
used by the execution engine in order to be aware of the available services it
can use during the execution phase of the workflow. The current algorithm
simply passes the data out in parallel to the services and thereafter it passes
data to services once they have completed their current data segment. This
ensures a simple load-balancing mechanism during execution.

20.8 Example 2: The Visual GAT

In this section, we outline how Triana can be used to implement complex
Grid workflows that combine the GridLab GAT capabilities discussed
in Section 20.4.2 with interactive legacy application monitoring (using
gridMonSteer, described in Section 20.8.1). The two scenarios presented below
illustrate a fundamental shift in the perception of how legacy applications can
be run on the Grid in that the workflow in each example as a whole is the Grid
application rather than a monolithic legacy code. The legacy code is typically
deployed multiple times within the workflow to conduct parameter sweeps or
similar actions, and we allow interactive control in the wider context of the
complete workflow.

In the examples presented in this section, we employ the use of a wrapper
for integrating distributed legacy applications into complex Visual GAT
workflows. In these workflows, decisions are made based on the current output
state of the legacy application to steer the workflow (or application) to support
the appropriate analysis required.

20.8.1 Integrating Legacy Applications

We have implemented a simple, nonintrusive legacy code or application
wrapper, called gridMonSteer (GMS), which allows us to integrate noncustom-
ized distributed applications within a workflow. GMS monitors the legacy
application as it is executing and further allows application and/or workflow-
level steering. GMS emerged from an ongoing collaboration investigating the
integration of distributed Cactus simulations [167] (Chapter 25 within Triana
workflows. Initially, a Grid-friendly Cactus thorn was developed to provide
the distributed connectivity from Cactus to a Triana workflow component
[168]. This component detected files output by Cactus and passed these into
a running Triana workflow, which was used to visualize the simulation as
it progressed (this was demonstrated in SuperComputing 2004). GMS is a
generalization of this architecture, that allows the same kind of file detection
for any application rather than one that is Cactus-specific.

GMS consists of an application wrapper that executes a legacy application
and monitors specified directories for files that it creates and an application

336 Taylor et al.

controller, which is any application that exposes a defined Web service
interface, enabling it to receive input from one or more application wrappers.
The controller, in our case Triana, uses the dynamic deployment capabilities of
WSPeer to expose a Web service interface that implements the gridMonSteer
protocol for notification and delivery of the distributed files. The wrapper
notifies the controller about new files that have been detected. The controller
then selects files of interest and returns this list to the wrapper. Thereafter,
the wrapper sends these files if and when they are rewritten or updated by
the legacy application to the controller. Within the context of the Grid, the
wrapper is typically the job submitted to the resource manager, with the
executable of the actual legacy application that will be monitored being
an argument of this job. Once started, the wrapper executes the legacy
application and begins monitoring; for example, in the case of output files, it
polls the output directory of the legacy application.

Communication between the wrapper and controller is always initiated
by the wrapper. In other words, the controller plays the role of server by
opening a listening port and the wrapper that of client in that it opens a per-
request outgoing connection, thereby circumventing many NAT and firewall
problems that exist within Grid environments. The principal benefit of the
gridMonSteer architecture is that the wrapper executes in the same directory
as the legacy application, allowing it to constantly monitor the application
output files and immediately notify the controller of changes to these files. This
approach allows the controller to monitor and respond to intermediate results
for the legacy application in a timely manner not possible with other coarse-
grained wrapping architectures, such as GEMCLA [229] and SOAPLab [381].

The next two sections describe a brief overview of the two scenarios that
use GMS to integrate Cactus within a Triana workflow via the Visual GAT
job submission component, described in Section 20.4.2. The breakdown of the
process is illustrated through its generation, refinement and execution steps,
described in Sections 20.8.4 – 20.8.6.

20.8.2 Executing and Monitoring Dynamic Legacy Applications

This first example was the final project review for the GridLab project. It
demonstrated a wrapped GMS Cactus job that was executed within a Triana
workflow. Triana was used to stage the files onto the Grid as input to the job,
coordinate the job submission, and then interact with the running simulation
by visualizing the results and steering it accordingly. The full demonstration
is illustrated in Figure 20.3 and is described at length in [407].

Briefly, the scenario involves the following. The WaveToy medium.par,
represented using a Visual GAT file component, specifies the location of a
Cactus parameter file from a Web server by using an HTTP address. This unit
is connected to a local Java component, which results in the HTTP adapter
being invoked by the GAT to make the HTTP-to-local transfer. (Conceptually,
the GAT invocation is made at the cable level when both protocols on each

20 The Triana Workflow Environment 337

GridLab GAT

File CPI

G
rid

F
T

P

A
d

a
p

to
r

H
T

T
P

A
d

a
p

to
r

D
a

ta

M
o

v
e

m
e

n
t

Resource Broker CPI

L
o

c
a

l

A
d

a
p

to
r

G
R

M
S

A
d

a
p

to
r

G
R

A
M

A
d

a
p

to
r

L
o

c
a

l

A
d

a
p

to
r

www.
gridlab.

org

Testbed

GRMS

Data
Mvment

GAS

Testbed

Cactus

Portal

Instant
Mess

Mercury

DelphoiiGrid
WaveToy.par1

WaveToy.par

WaveToy.par

cactus_wavetoy_serial.sh

Figure 20.3: Graphical Grid programming through monitoring and steering a
deployed Cactus simulation running.

side are defined.) The string editor unit displays this file for minor editing
and then passes the contents to another GAT file component that represents
a Grid-accessible location (a gsiftp address) for the parameter file. The data
flow that results used the GridFTP GAT to write the file to a machine in
Amsterdam. This file represents the first of two file dependencies for the
Cactus job that is specified in the cactus wavetoy serial.sh1 job component.
The second dependency is the script that starts Cactus on the remote machine,
cactus wavetoy serial.sh.

The job component in the GridLab review used the GRMS adapter
to allow it to make the decision about where the actual job was run.
This involved a number of other Gridlab services, including the GridLab
Authentication Service (GAS), iGrid, Delphoi, and Mercury, and the
GridLab Data Management service, resulting in the WaveToy.par and
cactus wavetoy serial.sh files being copied into the location that GRMS
chooses to execute the job, as illustrated in Figure 20.3. During execution,
we used a custom unit, called WaveToySteering, to interact with the Cactus
HTTP steering mechanism for changing run-time parameters. We visualized
the output files gathered by GMS using the Triana ImageViewer tool to
display the JPEG files of the simulation, the SGTGrapher Triana tool for
viewing the wave amplitude of the signal against time from the live Cactus

338 Taylor et al.

simulation as it progressed, and the StringViewer tool to display standard
output (stdout) from the simulation.

20.8.3 Dynamic Data-Dependent Simulations

Building from this simple scenario, we are currently in the process of defining
more complex Cactus–Triana scenarios that adapt during execution depending
on the analyses of data within the workflow. One scenario we are currently
implementing involves monitoring a single Cactus simulation much like the
scenario above, but instead of steering this Cactus simulation directly, we
would monitor its data to watch out for specific features, such as an apparent
horizon from a coalescing black hole binary system. Upon such a detection,
rather than steering the application directly, we make a decision based on the
stimuli or evolution of the application and dynamically instantiate a workflow
to aid in the further investigation of this aspect.

Since this typically involves searching a parameter space, we want to
perform multiple parallel job submissions of Cacti across the Grid of available
resources to perform a distributed search across the parameter range. This
could be implemented by dynamically writing a Visual GAT workflow to
submit a number of Cacti across the Grid. When the Cacti finish their
individual runs, they return the results to the main application, which enables
it to steer the main Cactus simulation in the optimal direction and to visualize
the results.

20.8.4 Workflow Generation

In both of these cases, the workflows can be specified graphically using simple
Visual GAT primitives. In each case, the initial workflows are quite simple
and hide the complexity of the multiple levels of refinement that can happen
during execution.

20.8.5 Workflow Refinement

In both of these scenarios, Triana can refine the workflows in a number of
different ways. In the first case, there are two levels of refinement, which
were outlined during the scenario. The first involves converting the abstract
Visual GAT workflow into a set of invocations that are appropriate for
deployment. We described two mechanisms in the scenario for file transfer and
job submission. The virtual GAT invocations result in runtime level refinement
by dynamically choosing the appropriate Grid tool for the capability. So, for
HTTP-to-local file transfer, an HTTP file adapter was used, and for Grid
staging, a GridFTP file adapter was used. Similarly, for job submission, GRMS
was chosen for its discovery and resource brokering capabilities.

A second-level refinement was made at application steering by allowing the
location of the simulation to be dynamically fed into the WaveToySteering

20 The Triana Workflow Environment 339

unit, which could, in turn, tune the parameters in the simulation. The
application-level refinement allows a user to alter the behavior of the
simulation which in the case of the first scenario can result in different internal
workflows taking place. In the second scenario, however, this is more apparent.
Here, the result from one simulation is used to drive the workflow as a whole.
The initial workflow is simple, but as events are detected, more workflows
are spawned to analyze these events further and are then fed back into the
workflow in order to steer the Cactus simulation.

20.8.6 Workflow Execution

The execution of both of these workflows uses the underlying GAT engine
to coordinate the execution of the components and stage the files for
the necessary transfer. Triana simply acts as a graphical interface to this
underlying engine for the distributed functionality connecting these stages to
the default local scheduler for execution of the local units where appropriate.
Triana can also mix and match distributed services, local units, and GAT
constructs and therefore acts as a manager or a bridge between the different
engines for execution of the components.

20.9 Conclusion

In this chapter, we described the Triana workflow environment, which
is capable of acting in heterogeneous Grid and P2P environments
simultaneously. This is accomplished through the use of two lightweight
application-level interfaces, called the GAP and the GAT, that allow
integration with distributed services and Grid capabilities. The underlying
bindings for these interfaces allow interaction through the GAP to JXTA,
P2PS, and WSPeer (with its integration to Web services and WS-RF) and
through the GAT to a host of Grid tools, such as GRAM, GridFTP, and
GRMS. We described each of these bindings and outlined the underlying
workflow language on which Triana is based. Finally, we presented two service-
based and Grid-based examples to show how the workflow is generated,
refined, and executed in each case.

20.10 Acknowledgments

Triana was originally developed within the GEO 600 project funded by
PPARC but recent developments have been supported through GridLab, an
EU IST three-year project and GridOneD (PPARC), which has funded Grid
and P2P Triana developments for the analysis of one-dimensional astrophysics
data sets. GridOneD, initially a three-year project, has recently been renewed
for a further two years.

21

Java CoG Kit Workflow

Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

21.1 Introduction

In order to satisfy the need for sophisticated experiment and simulation
management solutions for the scientific user community, various frameworks
must be provided. Such frameworks include APIs, services, templates,
patterns, GUIs, command-line tools, and workflow systems that are
specifically addressed towards the goal of assisting in the complex process
of experiment and simulation management. Workflow by itself is just one of
the ingredients for a successful experiment and simulation management tool.

The Java CoG Kit provides an extensive framework that helps in the
creation of process management frameworks for Grid and non-Grid resource
environments. Hence, process management in the Java CoG Kit can be defined
using a Java API providing task sets, queues, graphs, and direct acyclic
graphs (DAGs). An alternate solution is provided in a parallel extensible
scripting language with an XML syntax (a native syntax is also simultaneously
supported). Visualization and monitoring interfaces are provided for both
solutions, with plans for developing more sophisticated but simple-to-use
editors. However, in this chapter we will mostly focus on our workflow
solutions. The Java CoG Kit workflow solutions are developed around an
abstract, high-level, asynchronous task library that integrates the common
Grid tasks: job submission, file transfer, and file operations.

The chapter is structured as follows. First, we provide an overview of
the Java CoG Kit and its evolution, which led to an integrated approach to
Grid computing. We present the task abstractions library, which is necessary
for a flexible Grid workflow system. Next, we provide an overview of the
different workflow solutions that are supported by the Java CoG Kit. Our
main section focuses on only one of these solutions, in the form of a parallel
scripting language that supports an XML syntax for easy integration with
other tools, as well as a native, more human-oriented syntax. Additionally, a
workflow repository of components is also presented, which allows sharing
of workflows between multiple participants and dynamic modification of

21 Java CoG Kit Workflow 341

workflows. We exemplify the use of the workflow system with a simple,
conceptual application. We conclude the chapter with ongoing research
activities.

21.1.1 Overview of the Java CoG Kit

One of the goals of the Java Commodity Grid (CoG) Kit is to allow Grid
users, Grid application developers, and Grid administrators to easily use,
program, and administer grids from a high-level framework. The Java CoG
Kit leverages the portability and availability of a wide range of libraries
associated with the Java framework, while promoting easy and rapid Grid
application development. The Java CoG Kit started with the development
of a client-side and partial server-side implementation of the classic Globus
(Globus Toolkit 2.x) libraries under the name of “jglobus.” Today jglobus
includes, among other libraries, Java implementations of the Grid Security
Infrastructure (GSI) libraries, GridFTP, myProxy, and GRAM. The jglobus
library is a core component of both Globus Toolkit 3 and Globus Toolkit 4
and a major contribution of the Java CoG Kit to the Grid effort.

Today, the Java CoG Kit provides rich concepts and functionality to
support process management that goes beyond that of the Globus Toolkit.
One of the concepts that has proven to be useful in protecting the user from
frequent changes in the standards development is the concept of abstractions
and providers. Through simple abstractions, we have built a layer on top
of the Grid middleware that satisfies many users by giving them access to
functions such as file transfer or job submission. These functions hide much
of the internal complexity present within the Grid middleware. Furthermore,
it projects the ability to reuse commodity protocols and services for process
execution and file transfer instead of only relying on Grid protocols. In order
to integrate new services, all a developer has to do is define a relatively simple
set of providers that follow a standard interface definition. In addition to the
abstraction and provider concept, the Java CoG Kit also provides user-friendly
graphical tools, workflows, and support for portal developers.

Hence, the Java CoG Kit integrates a variety of concepts to address the
needs posed by the development of a flexible Grid upperware toolkit as
depicted in Figure 21.1. End users will be able to access the Grid through
standalone applications, a desktop, or a portal. Command-line tools allow
users to define workflow scripts easily. Programming is achieved through
services, abstractions, APIs, and workflows. Additionally, we integrate
commodity tools, protocols, approaches, and methodologies, while accessing
the Grid through commodity technologies and Grid toolkits. Through this
integrated approach, the Java CoG Kit provides significant enhancements to
the Globus Toolkit. Hence, the Java CoG Kit provides a much needed add-on
functionality to Grid developers and users while focusing on the integration of
Grid patterns through the availability of a toolkit targeted for the development
of Grid upperware.

342 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

Figure 21.1: An integrated approach.

21.1.2 Abstractions and Providers

The architecture of the Java CoG Kit is derived from a layered module concept
that allows easier maintenance and bridges the gap between applications and
the Grid middleware 21.2. It allows for the easy integration of enhancements
developed by the community. One of the strengths of the toolkit is that it is
based on the abstractions and providers model.

We have identified a number of useful basic and advanced abstractions
that help in the development of Grid applications. These abstractions include
job executions, file transfers, workflow abstractions, and job queues and can
be used by higher-level abstractions for rapid prototyping. As the Java CoG
Kit is extensible, users can include their own abstractions and enhance its
functionality.

We introduced the concept of Grid providers that allow a variety of Grid
middleware to be integrated into the Java CoG Kit. The abstractions allow
the developer to choose at runtime where Grid middleware services tasks
related to job submission and file transfer will be submitted. This capability
is enabled through customized dynamic class loading, thus facilitating late
binding against an existing production Grid.

21 Java CoG Kit Workflow 343

Figure 21.2: A layered architecture.

21.1.3 Workflow Concepts in the Java CoG Kit

The origin of all workflow concepts of the Java CoG Kit, including the
adaptive workflow framework is based on the work described in [443], which
defines a dynamically adapting scheduling algorithm that chooses optimized
algorithms based on performance measurements to identify a set of resources
that fulfill a given high-level function such as a matrix multiplication. The task
of conducting the matrix multiplication is specified at the time the workflow is
specified. However, its instantiation and the appropriate choice of algorithm
are conducted during runtime. Other important evolutionary steps are the
development of GECCO [448], which included dynamic fault detections and
a workflow debugger; and GridAnt [446], which uses the commodity tool Ant
to manage Grid tasks.

Today, the Java CoG Kit contains a number of workflow concepts that
have been shaped by our long collaborations with experimental scientists
[444,445]. We evolved several concepts as part of the Java CoG Kit workflow
framework. These concepts include (a) abstractions for queuing systems and
workflow graphs with simple dependencies, as found in [443]; (b) event-based
notifications and monitoring as found in [443, 447, 448, 452]; (c) elementary
faulttolerant features; (d) a simple execution pattern [448], now termed cog

344 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

pattern; (e) hierarchical graphs [448]; (f) structured control flow with loops and
conditions [449]; (g) visual interfaces to augment the workflow execution [443];
(h) an adaptive workflow framework; and (i) workflow component repositories.

21.1.4 Lessons Learned from GridAnt

The Apache Ant project presents certain characteristics that seem to make
it suitable as a workflow language and engine. Features such as native
dependency structured build targets make it easy to write declarative
dependency-based workflows.

Ant is designed around the concept of targets and tasks. Targets exist
only as top-level entities. Dependencies between targets are specified using
target names as handles. Targets in Ant are executed sequentially, without
the possibility to exploit the parallelism inherent in a dependency-based
specification. Targets are composed of tasks that are generally executed
sequentially. Parallel execution of tasks can be achieved with the <parallel>

task. It executes its nested tasks in parallel, synchronously. Globally scoped
immutable properties can be used to provide value abstractions. Conditional
execution is achieved at the target level based on property values. Iterations
are not possible in Ant.

GridAnt, invented by Gregor von Laszewski, is an extension to the Apache
Ant build system, which adds the following features:

• the <gridExecute> and <gridTransfer> tasks, allowing job submission and
file transfers using the Java CoG Kit abstractions API;

• a <gridAuthenticate> task, which launches a GSI proxy certificate
initialization window;

• a generic progress viewer, which can visualize target dependencies and
track the state of the execution of each target (Figure 21.3); and

• Partial iteration capabilities. Full support for iterations featuring iteration
variables was impossible due to the immutable nature of Ant properties,
an aspect that was deeply ingrained into multiple areas of the Ant engine.

The use of the Ant engine posed the following problems that limited the
possibility of implementing complex workflows:

• Inability to concurrently execute targets.
• Lack of full iteration support.
• Difficulties in expressing conditional execution.
• Scalability limitations in parallelism, due to the extensive use of native

threads, leading to memory exhaustion when running workflows describing
large numbers of parallel tasks.

• Difficulties in the ability to consistently capture the state of the execution
of a particular workflow, leading to an inability to add checkpointing and
resuming abilities to Ant.

21 Java CoG Kit Workflow 345

Figure 21.3: GridAnt viewer.

• The authors of Ant favored verbose specifications and made abstractions,
parameterized execution, or self-contained extensibility difficult.

All of these disadvantages motivated us to develop a more streamlined and
powerful workflow framework.

21.2 The Java CoG Kit Karajan Workflow Framework

Karajan was designed and implemented when it became apparent that the
shortcoming of GridAnt could not be avoided without a complete re-design of

346 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

the engine. It provides a cleaner and clearer separation between its composing
parts that have been specifically designed to address the shortcomings of our
previous systems. The name “Karajan” originates from the name of a famous
conductor of the Berlin symphony orchestra. However, it does not yet contain
some of the features we provided in earlier workflow systems [443,448], notably
a workflow engine dealing with workflow congestion and elementary debugging
support. However, for many scientific applications the current version of the
Java CoG Kit Karajan framework will be sufficient.

21.2.1 Architecture

The architecture of the Java CoG Kit Karajan framework is displayed
in Figure 21.4. It contains the workflow engine that interfaces with high-
level components, namely a visualization component that provides a visual
representation of the workflow structure and allows monitoring of the
execution, a checkpointing subsystem that allows the checkpointing of the
current state of the workflow, and a workflow service that allows the execution
of workflows on behalf of a user. A number of convenience libraries enable the
workflow engine to access specific functionalities such as a task library to
enable access to Grid services, a forms library to enable the dynamic creation
of forms as part of workflow tasks, a Java library to extend the workflow
language with elements based on Java classes, and a core library that includes
convenience abstractions used within the workflow engine.

The language structure specification is designed carefully, so it can be
syntactically formulated in two ways. One possibility is to use an XML-based
syntax that has its origin from GridAnt but is significantly enhanced with
features such as control structures. The other way is based on the desire to
have more simplified syntax for scripting that includes such features as the
replacement of XML begin and end tags with simple brackets. This syntax is
significantly shorter than the XML syntax and provides the script designer
with a rapid prototyping mechanism. The languages can be transformed into
each other.

The workflow execution engine employs a lightweight threading in order
to support large-scale workflows efficiently.

The philosophy of Karajan is based on the definition of hierarchical
workflow components. However, instead of just supporting direct acyclic
graphs (DAGs), a much more powerful internal implementation is provided
that is also reflected within the language structure. Hence we provide
primitives for generic sequential and parallel execution, sequential and parallel
iterations, conditional execution and functional abstraction. At the same time,
we provide support for common data types, such as lists and maps, that are
specifically targeted to support parameter studies.

The Grid interface is enabled with the help of the Java CoG Kit
abstractions API that we introduced earlier. Through the use of the provider
concept, which provides a mechanism to interact with tasks by defining specific

21 Java CoG Kit Workflow 347

Figure 21.4: The components of the Java CoG Kit Karajan module build a
sophisticated workflow system.

task handlers for different Grid middleware and services, the decision of how
a particular task is to be executed can be deferred until the task is mapped
onto a specific resource during runtime. This makes it possible to focus on
the definition of tasks while deferring the actual instantiation and mapping of
the component once onto a resource during runtime. The actual mapping can
be performed through the use of a simple scheduler example that is included
within the Karajan framework. This example also demonstrates that it will be
easy to integrate user-defined scheduling algorithms and make the Karajan
workflow framework an ideal candidate for enhancements through the user
community.

Based on this flexibility, the Karajan workflows can provide inter-
operability between multiple grids. One of the fundamental problems of the
Grid is that through deployment variations we cannot assume that the same
Grid middleware version is available everywhere. However, with the Java
CoG Kit and the Karajan workflow, we can formulate workflows despite
the fact that the underlying resources use different versions of Grid services
and standards. Consequently, interoperability is considered an elementary
necessary feature of Grid workflows.

Karajan provides user-directed and global fault tolerance. Through user-
directed fault tolerance, special library elements can be employed to ignore
faults, restart faulting blocks, trap faults, and provide individual actions,
or specify dynamically scoped error handlers. At the global level, timed or
program-directed checkpointing can be used.

348 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

One of the important differences from other workflow frameworks is that
Karajan can be extended both through parameterized user-defined workflow
elements (functions) and/or by implementing new workflow elements in Java.

21.2.2 Language Design

The Karajan language is a declarative style language, but with strict
evaluation.

Variables can be used in Karajan, but the scoping rules restrict the
possibility of concurrent destructive updates. Each execution element, which
is similar to a function, has its own scope, both for its arguments and its
body. Variables defined in parent scopes can be read if they fall within the
same lexical scope but are not written to. Attempting to write to a variable
will create a new binding for that variable, which will shadow a variable with
the same name in any parent scope. Furthermore, parallel elements will create
separate scopes for each concurrent thread.

Iteration elements can be used to execute a given set of elements
sequentially or in parallel for a given set of items. Iterations can be used
for both actions and data. From a data-centered perspective, iterations are
equivalent to multiple issues of the same parameterized data. Unrolling
iterations manually while consecutively replacing the iteration variable with
the respective values produces the same result as using iterations. The direct
consequence is that Karajan elements support multiple return values by
default.

Karajan supports parameterized abstractions, similar to function
definitions. However, Karajan provides extended functionality in terms of
concurrency for workflow element definitions. Besides strict evaluation in
which all arguments are evaluated before the element is invoked, it is possible
to define workflow elements that evaluate the arguments in parallel with the
body of the definition. If an argument that is needed by the body thread is not
yet evaluated, the body thread suspends execution waiting for the argument
thread to evaluate the particular argument. The parallel element evaluation
can achieve a result similar to the use of generators in other languages.
Nonetheless, generators require that special semantics be used in the definition
of generators, while the Karajan parallel element allows any other function
to be used as a generator (in part due to the multiple return values that are
natural in Karajan).

Dataflow equivalence is provided between sequential elements and their
parallel counterparts. Values are returned in lexical order, regardless of the
order in which they are evaluated. It is, however, also possible to use versions
of the parallel primitives which return values in the exact order in which they
are evaluated.

Due to their nature and structure, the parallel composition elements in
Karajan provide and promote locality with respect to concurrency. Combined
with the recursive structure of the language, this allows for concurrent threads

21 Java CoG Kit Workflow 349

to be expressed declaratively. Concurrency thus becomes an aspect of the
program rather than a separate entity.

A number of other helpful concurrent constructs are also available. Futures
can be used to represent the result of a computation that is not yet available.
Syntactically identical to variables, futures will cause the execution of the
thread that attempts to access their value to be suspended until the value
is available. Channels can be used as future lists. Similar to futures, values
in channels can be accessed as they become available, otherwise causing the
accessing thread to be suspended.

21.2.3 Execution Engine

The execution engine supports lightweight threading, which provides
concurrency scalability, with less impact on resources than is the case
with native threads. The engine does not excel in terms of performance.
Nonetheless, the overall impact on Grid workflows is little since the limitations
are caused mostly by the security libraries, most of the overhead CPU time
being spent during authentication, data encryption/decryption, and signature
verification in the Grid libraries.

The lightweight threading engine, given the same resources, allows
somewhere in the range of two orders of magnitude more concurrent threads
when compared with the use of native threading. The engine uses a mix of
cooperative and preemptive multithreading. By default, a small number of
worker threads are started and used to execute workflows. When the existing
worker threads become blocked executing lengthy operations, new threads
are progressively added up to a certain limit, in order to keep the latency
low. The cooperative threading relies on the asynchronous implementation of
time-consuming operations, in particular the Grid tasks.

The language specification provides a recursive definition of a set of
transformations on data and actions (sideeffects) — workflow elements. The
execution of a Karajan workflow consists of the execution of a root element
that receives an initial data environment. The root element in turn executes
all its subelements, which will recursively execute their subelements and so on.
Elements do not have an internal state. The state is maintained in the data
environment, which is continuously moved around and transformed. Elements
can create private spaces in the data environment, which are maintained
for as long as an element and its sub-elements complete execution. Parallel
execution is accompanied by the creation of new environments. Since the
new environments only share data that are private to parent elements, the
concurrent execution of elements cannot cause concurrent destructive writing
into the environment. This ensures the consistency of low-level program data
when concurrent execution is involved.

The execution engine also allows the state to be checkpointed, either
automatically at preconfigured time intervals or manually at specific points in
the workflow. The state of a workflow consists of all the currently executing

350 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

workflow elements and the data environment on which they are executing.
This information alone is sufficient to restore the execution at a later time if
severe failures occur (loss of power, hardware failure, and others).

21.2.4 Task Library

In Karajan, the task library provides the main means of interfacing with Grid
middleware. The task library is built on top of the Java CoG Kit abstractions
API. As the scope of the abstractions API was discussed earlier, we will focus
on the functionality provided by the task library.

The binding of tasks to resources and protocols can either be done
explicitly or delegated to a scheduler. Sometimes it is necessary to separate
tasks that can be executed on any resources that provide certain capabilities
from tasks that must be executed on specific resources. Therefore a mix of
explicit and scheduled tasks can also be employed. For example, a workflow
may involve fetching data from a given resource, processing it as quickly
as possible on all available computation resources, and then moving the
resulting data on to another predefined resource. Using purely abstract or
purely concrete workflows may prevent the ability to express such a workflow.

Schedulers in the task library can be configured with a set of accepted
protocols and a set of resources (although schedulers that dynamically fetch
resource information are also possible but not currently implemented). Tasks
that are then not explicitly bound to a specific resource or protocol are
forwarded to the scheduler, which assigns them resources and protocols based
on policies. An unbound (abstract) task is composed from a type (type) and
a specification (spec): Tu = (type, spec). The type describes the type of task:
execution, file transfer, information query,1 or file operation. A bound task is
a task associated with a resource (r) and a protocol (p): Tb = (type, spec, r, p).
Resources can support zero or more protocols for each service type: r = {s|s =
(type, p)}. Assuming that only one service of the same type and protocol exists
for every resource, then the pair (type, r, p) uniquely identifies a service for
a resource. Consequently, given a bound task (type, spec, r, p) and a resource
r defined above, the task is unambiguously defined. The duty of the task
scheduler is to maintain load information for resources and produce bound
tasks from unbound tasks S : R, (type, spec) → (type, spec, r, p), where R is
the set of all resources available to the scheduler.

Additionally, there might exist the need to group several tasks on the
same resource. A mechanism exists in the task library to request that the
scheduler to supply a virtual resource that can be used to partially bind
tasks for the purpose of indicating that they must be scheduled on the same
resource. The virtual resource allocations can be nested if grouping on more
than one resource is needed at the same time. As an example, suppose that a

1 Due to the many changes in Globus MDS, the Information queries are not yet
implemented.

21 Java CoG Kit Workflow 351

job must be executed somewhere, and two resulting files must be transferred
on another, unique machine. Without grouping, there would be no guarantee
that the transfers would have the source files on the same machine as the
one on which the job is executed or that the transfers would have the same
machine as destination.

The task library, through the Java CoG Kit abstractions API, uses an
asynchronous task execution mechanism, which minimizes the number of
resources (threads) created by the execution of tasks. Combined with the
lightweight threading engine of Karajan, it allows for higher scalability than
synchronous, native thread-based implementations.

21.2.5 The Service

The Karajan service is designed to accomplish the task of writing distributed
Karajan workflows.

The service works together with a remote library element in order to
provide a mechanism through which parts of Karajan programs can be
detached from the current interpreter and sent to the service for execution,
while preserving (most) of the semantics of the language.

Built around a flexible communication layer, the service allows
configuration of the mode in which remote invocations are handled. It
is possible to configure, on a host or domain basis, whether persistent
connections, callback connections, or polling is to be used. Such configuration
is intended to allow control between performance and resource usage, and not
the least, the ability to use the service from behind a firewall. The current
implementation is built on top of a GSI/SSL transport mechanism, allowing
GSI authentication and data privacy and encryption.

Two major modes of operation are supported:

• Personal. In personal mode, the service is bound to a unique GSI identity.
Once authenticated, a user has unrestricted access to all Karajan libraries.

• Shared. The shared mode is designed for multiple users. Authorization is
done using Globus Gridmap files (a simple form of an access control list).
Tight security restrictions are placed on various aspects of the workflow.
Only authorized data types are permitted, and certain library functions
are not available, in order to prevent the possibility of privilege escalation.
In shared mode, a special local provider can be used, enabling Grid
mapped job submission and possibly other operations.

The service allows the use of both remote and local libraries and
abstractions. The use of local libraries enables a workflow to reuse libraries
that are not part of the service distribution, while the use of remote
libraries may allow system-customized interfaces to local resources. With
remote libraries, system administrators can implement system-dependent
functionality and expose a common interface, allowing workflows to be written
in a configuration-independent fashion.

352 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

21.2.6 Examples

In Figure 21.5, we present a simple workflow that concurrently executes
two jobs and transfers their output to the client machine. It makes use of
the scheduling capabilities of Karajan. The <parallel> element executes its
subelements (in this case the two <allocateHost> elements) in parallel and
waits for their completion. The <allocateHost> element allows the grouping
of tasks on a single host, represented by variables one and two, respectively.
It executes its sub-elements in sequential order. The <task:execute> and
<task:transfer> elements interface with the CoG Kit abstraction library in
order to provide job submission and file-transfer capabilities. The duty of
finding the appropriate services for submitting the execution and transfer
requests is left to the scheduler.

The scheduler and resource definition file are presented in Figure 21.6. In
this particular case, the resources used are composed of two hosts, each with
an execution and a file-transfer service.

<karajan>

<import file="cogkit.xml"/>

<import file="scheduler.xml"/>

<parallel>

<allocateHost name="one">

<task:execute executable="/bin/example"

stdout="example1.out" host="{one}"/>

<task:transfer srchost="{one}" srcfile="example1.out"

desthost="localhost"/>

</allocateHost>

<allocateHost name="two">

<task:execute executable="/bin/example"

stdout="example1.out" host="{two}"/>

<task:transfer srchost="{two}" srcfile="example1.out"

desthost="localhost"/>

</allocateHost>

</parallel>

</karajan>

Figure 21.5: A simple workflow that uses a simple scheduler defined in Fig.
21.6.

21.2.7 Repository

The Workflow component repository [450] is a service used to store, retrieve,
and search for components that can be integrated into a Java CoG Kit
workflow. The repository service promotes reusability of components that can

21 Java CoG Kit Workflow 353

<karajan>

<scheduler type="default">

<resources>

<host name="host1.example.org">

<service type="execution" provider="gt2"

uri="host1.example.org"/>

<service type="file-transfer" provider="gsiftp"

uri="host1.example.org"/>

</host>

<host name="host2.example.org">

<service type="execution" provider="gt2"

uri="host2.example.org"/>

<service type="file-transfer" provider="gsiftp"

uri="host2.example.org"/>

</host>

</resources>

</scheduler>

</karajan>

Figure 21.6: A scheduler and resource-definition example that is reused in
Figure 21.5.

be maintained either by an individual researcher or by a shared community
of peers with similar interests.

The aim in designing a workflow repository was to dynamically include
workflow components or provide the ability to modify the components while
a workflow is in progress. Remote access to the repository is also an important
consideration in order to utilize the components of the workflow system in a
collaborative environment by providing remote workflow component storage
and access to distributed group members. The repository subsystem is still
in the first stage of development and only provides indispensable features. It
enables persistence for workflows that are executed by storing them either
at a local embedded repository or a remote repository based on the user’s
preference. The components within the repository have metadata associated
with them. Versioning and timestamps of a workflow component can be
used to distinguish between the components modified over time. Independent
user groups may create and maintain their own repositories, which contain
components with related information. However, when these groups pool their
resources with groups from other domains of science, categories or namespaces
are used for distinction. Provenance information for components will in the
future guide the selection of components.

The Java CoG Kit Karajan workflow framework allows the dynamic
inclusion of workflow components through the use of an include statement.
The include statement fetches the component from the repository and
evaluates the contents at runtime. Components include a number of attributes

354 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

and are defined through a simple XML specification. These attributes are
name, short description, description, license, author, code, signature, version,
date entered, and date modified. Additionally it is possible to add user-defined
attributes. The predefined attributes allow provenance of the component
information.

The repository architecture and design follow those of the abstraction and
provider model defined and promoted within the Java CoG Kit. Hence it is
possible to use a variety of data stores to host such a repository by developing
different providers. Sharing of the repository can be enabled by starting up
a network server. In this mode, the repository can operate as a centralized
component share system for a group of users.

We chose to implement a provider for relational databases specifically
based on Apache Derby [25]. A provider based on a relational data store
has the advantage of well-defined transaction management, regular backup of
data, a built-in server for remote access, user management, and the possibility
of replication of the component data in a distributed database. It is foreseeable
that providers for other implementations including object-oriented databases
and XML databases could be developed. One may ask why it is not enough to
provide one solution? The answer is based on the ease of deployment of such
a service in a wide variety of user communities. Setting up and maintaining a
relational database or a WebDAV server is typically more difficult than simply
providing a flat file system. As our tool serves also as middleware, we want to
give Grid architects the freedom to choose or develop a provider that plugs
into the overall architectural design of their Grid application. It also makes it
possible to address scalability issues.

The repository provides these obvious functionalities to its users: loading,
saving, listing, searching, and retrieving workflow components in the form
of an XML file along with the metadata. Other functions involve definition
of new attributes (metadata) for the components, removal of attributes for
the components, listing current attributes and user management for the
repository. Besides the access provided to the repository API, a command-
line tool exists to interface with the repository in a straight forward fashion
through a UNIX-like command.

The example shown in Figure 21.7 shows how to integrate a predefined
workflow component called “gaussian” into a Karajan workflow. Here, the
program “gaussian,” which is used to compute thermochemical values in the
chemistry domain, is internally called using the element here to invoke the
command on a remote computing server. To do so, an input file is transferred
to the remote server and executed, and the output is copied back to the local
system.

There are a number of predefined elements that can be used to access the
repository via the workflow. These constitute the base repository library and
are stored in “repository.xml.” Once this file is included in a workflow, we
can use the appropriate repository functions that have been defined in the
library which in turn call the repository API using Java elements provided

21 Java CoG Kit Workflow 355

by Karajan. One such is “repository:get,” which retrieves a component from
the repository located at “dblocation”. The “provider” is a local embedded
database that is created and maintained using Apache Derby, and the
component is stored in the file as indicated by “filename.”

<karajan>

<include file="cogkit.xml"/>

<include file="repository.xml"/>

<include>

<repository:get component="gaussianChem"

provider="local:derby"

dblocation="/home/Admin/repositoryext"/>

</include>

<task:transfer srcfile="H2O_B3SP.gjf"

destfile="H20_B3SP.gjf"

desthost="hot.mcs.anl.gov">

<gaussian inputFile="H20_B3SP.gjf"

nodes=2

checkpoint file="H2O.chk"

host="hot.mcs.anl.gov">

<task:transfer srcfile="H2O_B3SP.log" srchost="hot.mcs.anl.gov"

destfile="gaussian.out">

</karajan>

Figure 21.7: An example that demonstrates the inclusion of an element called
gaussian that is defined in a workflow repository.

21.3 Workflow Support for Experiment Management

The Java CoG Kit group has also prototyped a tool that introduces a
framework for experiment management that simplifies the user’s interaction
with Grid environments. We have developed a service that allows the
individual scientist to manage a large number of tasks, as is typically found
in experiment management. Our service includes the ability to conduct
application state notifications. Similar to the definition of standard output and
standard error, we have defined standard status, which allows us to conduct
application status notifications. We have tested our tool with a large number
of long-running experiments and shown its usability [453].

21.4 Conclusion

In this chapter, we introduced a subset of frameworks that provide experiment
management support within the Java CoG Kit. We have focused explicitly

356 Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina

on workflow solutions and motivated the Karajan workflow framework. The
framework can be used to specify workflows through a sophisticated XML
scripting language as well as an equivalent more user-friendly language that
we termed K. In contrast to other systems we not only support hierarchical
workflows based on DAGs but also have the ability to use control structures
such as if, while, and parallel in order to express easy concurrency. The
language itself is extensible through defining elements, and through simple
data structures it allows easy specification of parameter studies. The workflows
can be visualized through our simple visualization engine, which also allows
monitoring of state changes of the workflow in real time. The workflows
can actually be modified during runtime through two mechanisms. The first
is through the definition of elements that can be deposited in a workflow
repository that gets called during runtime. The second is through the
specification of schedulers that allow the dynamic association of resources
to tasks. The execution of the workflows can either be conducted through
the instantiation of a workflow on the users client or can be executed on
behalf of the user on a service. This service will in the future also allow a
more distributed execution model with loosely coupled networks of workflow
engines. Hence, the execution of independent workflows acting as agents
for users will be one of our focus areas. Furthermore, we will extend our
workflow visualizer to integrate components stored in the repository to enable
a dynamically extensible workflow composition tool. We have, however, put
great emphasize on the fact that the workflow can also be started from the
command line and we will provide future enhancements. At present we have
demonstrated with our tool that we can successfully start tens of thousands
of jobs due to our scalability-oriented threading mechanisms that are part of
the Karajan core engine. We will be using this engine to do modeling of the
management of urban water distribution systems [451].

Acknowledgement

This work was supported by the Mathematical, Information, and Compu-
tational Science Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract W-31-109-Eng-38. DARPA, DOEt. The Java CoG Kit is supported
by NSF NMI, NSF DDDAS.

22

Workflow Management in Condor

Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger

22.1 Introduction

The Condor project began in 1988 and has evolved into a feature-rich batch
system that targets high-throughput computing; that is, Condor ([262], [414])
focuses on providing reliable access to computing over long periods of time
instead of highly tuned, high-performance computing for short periods of time
or a small number of applications.

Many Condor users have not only long-running jobs but complex sequences
of jobs, or workflows, that they wish to run. In the late 1990s, we began
development of DAGMan (Directed Acyclic Graph Manager), which allows
users to submit large workflows to Condor. As with Condor, the focus has been
on reliability. DAGMan has a simple interface that allows many, but certainly
not all, types of workflows to be expressed. We have found through years
of experience running production workflows with our users that solving the
“simple” problems can be surprisingly complex. In the first half of this chapter,
we therefore provide a conceptual (and almost chronological) development of
DAGMan to illustrate the complexities that arise in running workflows in
production environments.

In the past several years, Condor has expanded its focus from running jobs
on local clusters of computers (or pools in Condor terminology) to running jobs
in distributed Grid environments. Along with the additional complexities in
running jobs came greater challenges in transferring data to and from the job
execution sites. We have developed Stork [244], which treats data placement
with the same concern that Condor treats job execution.

With a combination of DAGMan, Condor, and Stork, users can create
large, complex workflows that reliably “get the job done” in a Grid
environment. In the rest of this chapter, we explore DAGMan and Stork
(Condor has been covered in detail elsewhere).

358 Couvares et al.

22.2 DAGMan Design Principles

The goal of DAGMan is to automate the submission and management of
complex workflows involving many jobs, with a focus on reliability and
fault tolerance in the face of a variety of errors. Workflow management
includes not only job submission and monitoring but job preparation, cleanup,
throttling, retry, and other actions necessary to ensure the good health of
important workflows. Note that DAGMan addresses workflow execution but
does not directly address workflow generation or workflow refinement. Instead,
DAGMan is an underlying execution environment that can be used by higher-
level workflow systems that perform generation and refinement.

DAGMan attempts to overcome or work around as many execution errors
as possible, and in the face of errors it cannot overcome, it endeavors to allow
the user to resolve the problem manually and then resume the workflow from
the point where it last left off. This can be thought of as a “checkpointing”
of the workflow, just as some batch systems provide checkpointing of jobs.

Notably, the majority of DAGMan’s features—and even some of its specific
semantics—were not originally envisioned but rather are the product of years
of collaboration with active users. The experience gained from the needs
and problems of production science applications has driven most DAGMan
development over the past six years.

The fundamental design principles of DAGMan are as follows:

• DAGMan sits as a layer “above” the batch system in the software stack.
DAGMan utilizes the batch system’s standard API and logs in order to
submit, query, and manipulate jobs, and does not directly interact with
jobs independently.1

• DAGMan reads the logs of the underlying batch system to follow
the status of submitted jobs rather than invoking interactive tools or
service APIs. Reliance on simpler, file-based I/O allows DAGMan’s
own implementation to be simpler, more scalable and reliable across
many platforms, and therefore more robust. For example, if DAGMan
has crashed while the underlying batch system continues to run jobs,
DAGMan can recover its state upon restart and there is no concern
about missing callbacks or gathering information if the batch system is
temporarily unavailable: It is all in the log file.

1 Note that DAGMan assumes the batch system guarantees that it will not “lose”
jobs after they have been successfully submitted. Currently, if the job is lost by the
batch system after being successfully submitted by DAGMan, DAGMan will wait
indefinitely for the status of the job in the queue to change. An explicit query for
the status of submitted jobs (as opposed to waiting for the batch system to record
job status changes) may be necessary to address this. Also, if a job languishes in
the queue forever, DAGMan currently is not able to “timeout” and remove the
job and mark it as failed. When removing jobs, detecting and responding to the
failure of a remove operation (leaving a job “stuck” in the queue) is an interesting
question.

22 Workflow Management in Condor 359

• DAGMan has no persistent state of its own—its runtime state is built
entirely from its input files and from the information gleaned by reading
logs provided by the batch system about the history of the jobs it has
submitted.

22.3 DAGMan Details

22.3.1 DAGMan Basics

DAGMan allows users to express job dependencies as arbitrary directed acyclic
graphs, or DAGs. In the simplest case, DAGMan can be used to ensure that
two jobs execute sequentially—for example, that job B is not submitted until
job A has completed successfully.

Like all graphs, a DAGMan DAG consists of nodes and arcs. Each node
represents a single instance of a batch job to be executed, and each arc
represents the execution order to be enforced between two nodes. Unlike more
complex systems such as those discussed in [476], arcs merely indicate the
order in which the jobs must run.

If an arc points from node Np to Nc, we say that Np is the parent of Nc

and Nc is the child of Np (see Figure 22.1). A parent node must complete
successfully before any of its child nodes can be started. Note that each node
can have any whole number of parents or children (including zero). DAGMan
does not require that DAGs be fully connected.

Why does DAGMan require a directed acyclic graph instead of an arbitrary
graph? The graph is directed in order to express the sequence in which jobs
must run. Likewise, the graph is acyclic to ensure that DAGMan will not run
indefinitely. In practice, we find either that most workflows we encounter do
not require loops or that the loops can be unrolled into an acyclic graph.

DAGMan seeks to run as many jobs as possible in parallel, given the
constraints of their parent/child relationships. For example, in for the DAG
in Figure 22.2, DAGMan will initially submit both N1 and N5 to Condor,
allowing them to execute in parallel if there are sufficient computers available.
After N1 completes successfully, DAGMan will submit both N2 and N3 to
the batch system, allowing them to execute in parallel with each other,
and with N5 if it has not completed already. When both N2 and N3 have
finished successfully, DAGMan will submit N4. If N5 and N4 both complete
successfully, the DAG will have completed, and DAGMan will exit successfully.

Earlier we defined a node’s parent and child relationships. In describing
DAGs, it can also be useful to define a node’s sibling as any node that
shares the same set of parent nodes (including the empty set). Although
sibling relationships are not represented explicitly inside DAGMan, they are
important because sibling nodes become “runable” simultaneously when their
parents complete successfully. In Figure 22.2, N1 and N5 are siblings with no
parents, and N2 and N3 are siblings that share N1 as a parent.

360 Couvares et al.

NP

NC

NL

Figure 22.1: The relationship between parents and children. Np is the parent
of Nc. NL is lonely and has no parents or children.

In practice, however, DAGMan submits individual jobs to the batch
scheduler one at a time and makes no guarantees about the precise order
in which it will submit the jobs of nodes that are ready to run. In other
words, N1 and N5 may be submitted to the batch system in any order.

It is also important to remember that, once submitted, the batch system
is free to run jobs in its queue in any order it chooses. N5 may run after N4,
despite being submitted to the queue earlier. Additionally, the jobs may not
be run in parallel if there are insufficient computing resources for all parallel
jobs.

N1

N2 N3

N4

N5

Figure 22.2: This “diamond” DAG illustrates parent and child links. N1 must
complete successfully, then both N2 and N3 can execute in parallel. Only
when both of them have finished successfully can N4 begin execution. N5 is a
disconnected node and can execute in parallel with all of the other nodes.

While running, DAGMan keeps a list in its memory of all jobs in the
DAG, their parent/child relationships, and their current status. Given this

22 Workflow Management in Condor 361

Waiting for
N parents

Submitted

Failed

Done
(Successful)

Figure 22.3: The state transition diagram for each node of a DAG. See the
text for details.

information, DAGMan submits jobs to the batch system when appropriate,
and continues until either the DAG is complete or no more forward progress
can be made due to failed jobs. In the latter case, DAGMan creates a list of
failed jobs along with the reasons for their failure and produces a rescue DAG
file.

A rescue DAG is a special DAG that represents the state of a previously
partially completed DAG such that the original DAG can be restarted where
it left off without repeating any successfully completed work. The rescue DAG
is an exact copy of the original input DAG, except that all previous nodes
that have successfully completed are marked as done.

When DAGMan is restarted with a rescue DAG, it reconstructs the state
of the previous DAG. Internally, DAGMan keeps track of the current status
of each node. Figure 22.3 shows the basic state diagram of a DAG node. Note
that this is simplified, and we will expand the diagram in the rest of this
chapter.

When DAGMan starts, it marks each node as “waiting” and initializes a
waiting count (N) for the node equal to its number of parents. In the case of a
rescue DAG, DAGMan sets the waiting count equal to the number of parents
that are not already marked as “done.”

A node’s waiting count represents the number of its parents that have yet
to complete successfully and are therefore preventing it from being submitted.
Only when a node’s waiting count reaches zero can DAGMan submit the job
associated with the node. If the job is submitted successfully, DAGMan marks
the node as “submitted.” If the job submission fails for any reason, the node
is marked as “failed.”

When DAGMan detects that a job has left the batch system queue, it
marks the node as “done” if the job exited successfully, otherwise it marks
the node as “failed.” Success is determined by the exit code of the program:

362 Couvares et al.

If it is zero, then the job exited successfully, otherwise it failed. (But see the
description of post scripts in Section 22.3.2 for a modification of this.)

When a job is marked “done,” the waiting count of all its children is
decremented by one. Any node whose waiting count reaches zero is submitted
to the batch scheduler as described earlier.

22.3.2 DAGMan Complications

So far, the description of a DAGMan DAG is not very interesting: We execute
jobs and maintain the order in which they must execute, while allowing
parallelism when it is possible. Unfortunately, this is insufficient in real
environments, which have many complications and sources of errors.

Complication: Setup, Cleanup, or Interpretation of a Node

The first complication occurs when using executables that are not easily
modified to run in a distributed computing environment and therefore need a
setup or cleanup step to occur before or after the job. For example, before a
job is run, data may need to be staged from a tape archive or uncompressed.
While this step could be placed in a separate DAG node, this may cause
unnecessary overhead because the DAG node will be submitted and scheduled
as a separate job by the batch system instead of running immediately on the
local computer.

DAGMan provides the ability to run a program before a job is submitted
(a pre script) or after a job completes (a post script). These programs should
be lightweight because they are executed on the same computer from which
the DAG was submitted and a large DAG may execute many of these scripts.
(But see the discussion on throttling for our solution to preventing too many
of these scripts from running simultaneously.)

Running these scripts adds complexity to the state diagram in Figure 22.3.
The changes needed to support scripts are shown in Figure 22.4. Once a job
is allowed to run, it can optionally run a pre script. After the job has run, it
can optionally run a post script.

Note that if the scripts fail, the node is considered to have failed, just as if
the job itself had failed. There is one interesting case to note that is not easily
represented in Figure 22.4: If a node has a post script, it will never go directly
into the failed state but will always run the post script. In this way, the post
script can decide if a job has really failed or not. It can do some analysis
beyond DAGMan’s ability to decide if a node should be considered to have
succeeded or failed based on whether the exit code is zero or not, perhaps by
examining the output of the job or by accepting alternate exit codes. This
significantly enhances the ability of DAGMan to work with existing code.

Some users have discovered an interesting way to use pre scripts. They
create pre scripts that rewrite the node’s job description file to change how
the job runs. This can be used for at least two purposes. First, it can create

22 Workflow Management in Condor 363

Waiting for

N parents

Submitted

Failed

Done

(Successful)
Pre-script

running

Post-script

running
Done

(Successful)

Figure 22.4: A state diagram for executing a single DAG node. Unlike
Figure 22.3, this diagram adds the ability to run pre scripts and post scripts.
The differences from Figure 22.3 are noted in bold.

conditional DAGs by allowing a runtime decision that changes the DAG. For
example, consider Figure 22.5. If N1 succeeds, then the prescript for N3 will
rewrite N3 to an empty job—perhaps running the /bin/true command.1 In
this way, only N2 will run after N1 succeeds. Similarly, if N1 fails, then only N3

will run. While a more generic facility for conditional DAGs may be desirable,
it would add complexity, and simple conditional DAGs can be created in this
way.

A second use for pre scripts is to do last-minute planning. For example,
when submitting jobs to Condor-G (which allows jobs to be submitted to
remote grid sites instead of the local batch system), users can specify exactly
the Grid site at which they wish their jobs to run. A pre script can decide
what Grid site should be used, rewrite the job description, and the job will
run there.

Complication: Throttling

All of the mechanisms described so far work very well. Unfortunately, the
real world applies additional constraints. Imagine a DAG that can have one
thousand jobs running simultaneously, and each of them has a pre script
and a post script. When DAGMan can submit the jobs, it will start up
one thousand nearly simultaneous pre scripts and then submit one thousand
jobs nearly simultaneously. Running that many pre scripts may cause an
unacceptable load on the submission machine, and submitting that many
jobs to the underlying batch submission system may also strain its capacity.

1 In recent versions of Condor, the job can be edited to contain “noop job = true”
which immediately terminates the job successfully.

364 Couvares et al.

N1

N2

N3

Pre: If result(N1) = success do nothing
else rewrite N2 to empty job

Pre: If result(N1) = failure do nothing
else rewrite N3 to empty job

Figure 22.5: An example conditional DAG.

For this reason, DAGMan can throttle the number of pre scripts, jobs, or
post scripts that may run at any time. This results in another modification
to our state diagram for running a single node, as shown in Figure 22.6. For
example, a node will not leave the pre script ready state unless there are fewer
pre scripts running than the throttle allows.

DAGMan can also throttle the number of jobs that it submits to the
batch system to avoid submitting more jobs than can be handled by the
batch system. This is a good example of a surprising additional constraint:
We did not realize that DAGs might be able to submit so many jobs that the
number of idle jobs could overwhelm the batch system.

Complication: Unreliable Applications or Subsystems

Some applications are not robust—it is not uncommon to find a program that
sometimes fails to run on the first attempt but completes successfully if given
another chance. Sometimes it is due to a program error and sometimes due
to interactions with the environment, such as a flaky networked file system.
Ideally, problems such as this would always be fixed before trying to run
the program. Unfortunately, this is not always possible, perhaps because the
program is closed-source or because of time constraints.

To cope with unreliable programs or environments, DAGMan provides the
ability to retry a node if it fails. Users specify how many times the node should
be retried before deciding that it has actually failed. When a node is retried,
the node’s pre script is also run again. In some cases, a user wants to retry
multiple times unless some catastrophic error occurs. DAGMan handles this
with the “retry unless-exit” feature, which will retry a job unless it exits with
a particular value. One place this might be useful is planning. Imagine a pre
script that decides where a job should be run. Retry might be set to 10 to
allow the job to be run at ten different sites, but if there is some catastrophic

22 Workflow Management in Condor 365

Waiting for

N parents

Submitted

Failed

Pre-script

running

Post-script

running
Done

(Successful)

Pre-script

ready

Submit-

ready

Post-script

ready

Figure 22.6: A state diagram for executing a single DAG node. In addition to
the state in Figure 22.4, this diagram adds DAGMan’s ability to throttle pre
scripts, jobs, and post scripts. The differences from Figure 22.4 are noted in
bold.

error, then the pre script can exit with a specific value that indicates “do not
retry.” Adding the ability to retry the job results in one final change to our
state diagram, as shown in Figure 22.7.

22.3.3 Additional DAGMan Details

Submission Failures

When submitting a job to the underlying batch system, sometimes the job
submission itself (not the job execution) will fail for reasons that are not the
fault of the user. Usually, this is due to heavy use of the batch system, and it
becomes temporarily unavailable to accept submissions. DAGMan will retry
the job submission up to six times (by default, but this can be changed),
increasing the amount of time between job submissions exponentially in order
to increase the chance of a successful submission. If the job continues to fail
to submit successfully, Condor will mark the job submission as failed.

Running DAGMan Robustly

What happens if the machine on which DAGMan is running crashes?
Although DAGMan would no longer continue to submit jobs, existing jobs

366 Couvares et al.

Waiting for

N parents

Submitted

Failed

Pre-script

running

Post-script

running
Done

(Successful)

Pre-script

ready

Submit-

ready

Post-script

ready

Figure 22.7: The complete state diagram for executing a single DAG node.
The single difference from Figure 22.6 is noted in bold.

continue running, but it would be nice if DAGMan could be restarted so that
it could continue to make forward progress. Ideally, DAGMan should handle as
much as possible for the user, so we run DAGMan as a Condor job. This means
that if the machine crashes, when it restarts Condor will restart the DAGMan
process, which will recover the state of its execution from persistent log files,
and will resume operation. This sort of robustness is essential in allowing users
to run large sets of jobs in a “hands-off” fashion.

Recursive DAGs

A DAG node can submit any valid jobs, including submitting another DAG.
This allows the creation of DAGs with conditional branches in them. The
DAG node can make a choice, then submit an independent DAG based on
the result of that choice. This can allow very complex DAGs to be executed.
Unfortunately, it also makes it harder to debug a DAG. For an alternative to
recursive DAGs, see Section 22.7.

22.3.4 Describing a DAG

It is the user’s responsibility to provide DAGMan with a description of each
job in the format of the underlying batch scheduler. For Condor, this means

22 Workflow Management in Condor 367

associating each node with a “submit file” describing the job to be executed.
DAGMan ultimately uses this file to submit the job to the batch scheduler
using the standard submission interface.

Users describe a DAG by listing each node and the relationships between
nodes. A sample DAG description is shown in Figure 22.8.

Job N1 submit-n1

Job N2 submid-n2

Job N3 submid-n3

Job N4 submid-n4

Job N5 submid-n5

Parent N1 Child N2 N3

Parent N2 N3 Child N4

Retry N1 5

Script PRE N5 uncompress-data

Script POST N5 uncompress-data

Figure 22.8: How a user might describe the diamond DAG from Figure 22.2.
In this description, node N1 can be retried five times, and none of the other
nodes are retried if they fail. Node N5 has both a pre script and a post script

22.3.5 DAGMan Experience

DAGMan has been used extensively with the Condor batch job scheduling
system. We have found that our implementation of the DAGMan easily scales
to large DAGs of around 1000 nodes without throttling and DAGs of around
100,000 nodes with throttling. We believe it could scale much further than that
if necessary. Because DAGMan can manage DAGs of this scale and because
we find that the greatest bottleneck is in the underlying batch job submission
system capabilities, we have not expended effort to optimize it to work with
DAGs larger than 100,000 nodes.

DAGMan has been used in a wide variety of production environments. We
will provide two examples here.

Within the Condor Project, we have created a Basic Local Alignment
Search Tool (BLAST) [53] analysis service for the Biological Magnetic
Resonance Data Bank at the University of Wisconsin–Madison [55]. BLAST
finds regions of local similarity between nucleotide or protein sequences. Local
researchers do weekly queries against databases that are updated every week.
Our service takes a list of sequences to query and creates a pair of DAGs to
perform the queries, as illustrated in Figure 22.9. The first DAG performs

368 Couvares et al.

the setup, creates a second DAG that does the queries (the number of nodes
in this DAG varies, so it is dynamically created), and then assembles the
results. These DAGs are used differently: The first DAG uses dependencies to
order the jobs that are run, while the second DAG has completely independent
nodes, and DAGMan is used for reliable execution and throttling. On average,
the second DAG has approximately 1000 nodes, but we have experimented
with as many as 200,000 nodes. This service has run on a weekly basis for
more than two years with little human supervision.

Fetch

BLAST

executables

Prepare

Database

Run query

DAG

Split sequence

input, create

query DAG

Reassemble

results

Main DAG (simplified)

Query DAG (independent nodes)

Query 1 Query 2 Query N...

Figure 22.9: The pair of DAGs used to run BLAST jobs. The query DAG is
created by the main DAG. See the text for details.

The Virtual Data System (VDS) (see Chapter 23 or [148]) builds on top
of DAGMan and Condor-G. Users provide a description of what data are
available and how the data can be transformed, then request the data they
need. The VDS creates a DAG that fetches and transforms data as needed,
while tracking the provenance of the data. As part of the DAG creation and
execution, the VDS uses planning to decide which Grid sites should perform
the transformations. The VDS has been used for a wide variety of applications,
including high-energy physics event simulation, finding galaxy clusters, and
genome analysis.

22.4 Implementation Status

DAGMan has been freely distributed as part of the Condor software since
1999. It has been used for numerous large projects and is stable. It is available
for a wide variety of Unix platforms, Microsoft Windows, and Mac OS X.

22 Workflow Management in Condor 369

22.5 Interaction with Condor

Condor is a high-throughput batch job scheduler. Because it has been covered
in detail elsewhere ([262], [414]), we only briefly review it here.

Condor was originally designed to utilize CPU cycles on computers that
would otherwise be idle, such as desktop computers that are unused but
turned on overnight. However, Condor has expanded its scope and now works
well with dedicated computers and Grid systems. Condor’s ability to interact
with a Grid system called Condor-G [151] allows Condor to submit jobs to
Globus [166] (versions 2, 3, and 4), NorduGrid, Oracle, LSF, PBS, and even
remote Condor installations (referred to as Condor-C).

Condor and Condor-G emphasize reliability. If Condor crashes, it will
continue running the jobs when it restarts. Condor can provide job
checkpointing and migration to facilitate recovery when execution computers
fail. Condor-G provides elaborate recovery schemes to deal with network
outages and remote Grid site failures.

DAGMan is built to use Condor for job execution, and it can submit jobs to
both the local batch system and remote Grid systems with equal ease. We have
created many workflows using DAGMan that execute in a Grid environment.

22.6 Integration with Stork

22.6.1 An Introduction to Stork

Just as computation and network resources need to be carefully scheduled
and managed, the scheduling of data placement activities across distributed
computing systems is crucial, as the access to data is generally the main
bottleneck for data-intensive applications. This is especially the case when
accessing very large data stores using mechanical tape storage systems.

The most common approaches to solving the problems of data placement
are either interactive data movement or the creation of simple scripts.
Generally, scripts cannot adapt to a dynamically changing distributed
computing environment: They do not have the privileges of a job, they do
not get scheduled, and they do not have any automation or fault-tolerance
capabilities. Furthermore, most scripts typically require close monitoring
throughout the life of the process and frequent manual intervention.

Data placement activities must be first-class citizens in the distributed
computing environments, just like computational jobs. Data placement jobs
need to be queued, scheduled, monitored, and even checkpointed. Most
importantly, users require that their data placement jobs omplete successfully
without human monitoring and intervention.

Furthermore, data placement jobs should be treated differently from
computational jobs, as they have different semantics and different
characteristics. For example, if the transfer of a large file fails, we may not

370 Couvares et al.

simply want to restart the job and retransfer the whole file. Rather, we may
prefer to transfer only the remaining part of the file. Similarly, if a transfer
using one protocol fails, we may want to try alternate protocols supported
by the source and destination hosts to perform the transfer. We may want to
dynamically tune network parameters or decide concurrency levels for unique
combinations of the data source, destination, and protocol. A traditional
computational job scheduler does not handle these cases. For this reason,
data placement jobs and computational jobs should be differentiated, and each
should be submitted to specialized schedulers that understand their semantics.

We have designed and implemented the first batch scheduler specialized
for data placement: Stork [244]. This scheduler implements techniques specific
to queuing, scheduling, and optimization of data placement jobs and provides
a level of abstraction between the user applications and the underlying data
transfer and storage resources.

A production-quality Stork is bundled with Condor releases. Additionally,
research into new features is continuing in parallel.

22.6.2 Data Placement Job Types

Under Stork, data placement jobs are categorized into the following three
types:

• Transfer. This job type is for transferring a complete or partial file from
one physical location to another. This can include a get or put operation or
a third-party transfer. Stork supports a variety of data transfer protocols
and storage systems, including local file system, GridFTP, FTP, HTTP,
NeST, SRB, dCache, CASTOR, and UniTree. Furthermore, sites can
create new transfer modules using the Stork modular API.

• Allocate. This job type is used for allocating storage space at the
destination site, allocating network bandwidth, or establishing a light
path on the route from source to destination. It deals with all resource
allocations required for the placement of the data.

• Release. This job type is used for releasing the corresponding allocated
resource.

22.6.3 Flexible Job Representation

Stork uses the ClassAd [367] job description language to represent the data
placement jobs. The ClassAd language provides a very flexible and extensible
data model that can be used to represent arbitrary services and constraints.

Below are three sample data placement (DaP) requests:

[

dap_type = "allocate";

dest_host = "houdini.example.com";

size = "200MB";

22 Workflow Management in Condor 371

duration = "60 minutes";

allocation_id = 1;

]

[

dap_type = "transfer";

src_url = "file:///data/example.dat";

dest_url = "nest://houdini.example.com/data/example.dat";

]

[

dap_type = "release";

dest_host = "houdini.example.com";

allocation_id = 1;

]

The first request is to allocate 200 MB of disk space for 1 hour on a NeST
server. The second request is to transfer a file from the local file system to
the allocated space on the NeST server. The third request is to deallocate the
previously allocated space.

22.6.4 Fault Tolerance

Data placement applications must operate in an imperfect environment. Data
servers may be unavailable for many reasons. Remote and local networks may
encounter outages or congestion. Computers may crash, including the Stork
server host itself. Stork is equipped to deal with a variety of data placement
faults, which can be configured at both the system and job levels.

For transient environment faults, data placement jobs that fail can be
retried after a small delay. The number of retries allowed is configurable.

For longer-term faults associated with a particular data server, Stork can
also retry a failed transfer using a list of alternate data protocols. If in the
previous example the host houdini.example.com is also running a plain FTP
server, the corresponding transfer job could be augmented to retry with plain
FTP.

[

dap_type = "transfer";

src_url = "file:///data/example.dat";

dest_url = "nest://houdini.example.com/data/example.dat";

alt_protocols = "file_ftp";

]

22.6.5 Interaction with DAGMan

Condor’s DAGMan workflow manager has been extended to work with Stork.
In addition to specifying computational jobs, data placement jobs can be

372 Couvares et al.

specified, and DAGMan will submit them to Stork for execution. This allows
straightforward execution of workflows that include data transfer.

A simple example of how Stork can be used with DAGMan appears in
Figure 22.10. This DAG transfers data to a Grid site using Stork, executes
the job at the Grid site using Condor-G, and then transfers the output data
back to the submission site using Stork. This DAG could easily be enhanced
to allow space allocation before the data transfers, or it could have multiple
data transfers.

Transfer

Input

(Stork)

Transfer

Output

(Stork)

Run Job

(Condor)

Figure 22.10: A simple DAG that includes Stork.

22.6.6 Interaction with Heterogeneous Resources

Stork acts like an I/O control system between the user applications and
the underlying protocols and data storage servers. It provides complete
modularity and extendibility. Users can add support for their favorite
storage system, data transport protocol, or middleware very easily. This is
a crucial feature in a system designed to work in a heterogeneous distributed
environment. The users or applications cannot expect all storage systems
to support the same interfaces to talk to each other. Furthermore, it is
becoming increasingly difficult for applications to talk to all the different
storage systems, protocols, and middleware. There needs to be a negotiating
system between them that can interact with those systems easily and even
perform protocol translation. Stork has been developed with these capabilities
as requirements. The modularity of Stork allows users to insert a plug-in to
support any storage system, protocol, or middleware easily.

Stork supports several data transfer protocols, including:

• FTP [362]
• GridFTP [9]
• HTTP [141]
• DiskRouter [242]

Stork supports several data storage systems, including:

• SRB [41]
• UniTree [71]

22 Workflow Management in Condor 373

• NeST [45]
• dCache [109]
• CASTOR [82]

Stork maintains a library of plugable “data placement” modules. These
modules are executed by data placement job requests. Modules can perform
interprotocol translations using either a memory buffer or third-party transfers
whenever available (such as GridFTP). For example, if a user requests a data
transfer between two remote systems, Stork can often perform the transfer
without saving the file to disk. Interprotocol translations are not yet supported
between all systems or protocols, but they are available for the major use cases
we have encountered so far.

In order to transfer data between systems for which direct interprotocol
translation is not supported, two consecutive Stork jobs can be used instead.
The first Stork job performs the transfer from the source storage system to
the local disk cache of Stork, and the second Stork job performs the transfer
from the local disk cache of Stork to the destination storage system.

22.6.7 Modular API

While the Stork server is a single process, the data transfers, allocations, etc.,
are performed by the separate modules. The module application program
interface is simple enough for sites to write their own modules as needed. For
example, each data transfer module is executed with the following argument
list:

src url dest url arguments ...

Thus, to write a new module that transfers data from the foo
protocol to the bar protocol, a new module is created with the name
stork.transfer.foo-bar. Modules need only be executable programs,
and may even be written as shell scripts. Furthermore, module binding
is performed at runtime, enabling sites to create new modules without
restarting the Stork server.

22.6.8 Performance Enhancements

Stork has seen several recent performance enhancements. The first is that
multiple data placements may now be specified in a single submission file
instead of multiple files. This optimization is significant when transferring
many files to Stork because it eliminates extra invocations of the stork submit
command, which can be surprisingly time consuming when transferring tens
of thousands of files.

The second enhancement was integration of the GridFTP client globus-url-
copy into Stork server. When doing many simultaneous GridFTP file transfers,

374 Couvares et al.

this saves considerable time and reduces the total number of processes in the
system.

Finally, Stork is now able to execute an arbitrary program when the active
job queue size falls below a configurable level. This is envisioned as a simple
but high-performance alternative to managing very large data placement
workflows with DAGMan: It will allow Stork users to limit the rate at which
they submit jobs so that Stork is not overwhelmed, while ensuring that Stork
has sufficient work to do at any given time.

22.6.9 Implementation Status

Stork is available, with all features described so far, as part of the Condor
distribution. It is available on Linux and will be available for other platforms
in the future. Users outside of the Condor Project are just beginning to use
Stork in production, and we hope to have more in the near future.

22.6.10 Active Research

Research on Stork is active, and much of it can be found in [243]. Research
includes:

• Extending data placement types to include interaction with a metadata
catalog.

• Experimentation with scheduling techniques other than first-in, first-out.
This includes not only traditional scheduling techniques such as shortest
job first or multilevel queue priority scheduling but also scheduling based
on management of storage space to ensure that storage space is not
exceeded by the data transfers. In addition, scheduling of connection
management is important when there are many simultaneous connections
to a server.

• Runtime adaptation can be performed to tune the network parameters
for a transfer to minimize transfer time. This is discussed in further detail
in [241].

• Research has been done to enable Stork to detect problems such as servers
that are unreliable in a variety of ways and then base scheduling decisions
on this knowledge. More details are in [240].

22.7 Future Directions

There are several promising areas for future work with DAGMan and
Stork. For DAGMan, we would like to explore methods (probably utilizing
ClassAds [367]) to allow different conditions for deciding when a node should
execute. Today, a node executes when all of its parents have finished with an
exit code of 0, but allowing more complex conditions would allow conditional

22 Workflow Management in Condor 375

execution (equivalent to if-then-else) and partial execution (a DAG that
finishes when a certain percentage of nodes have completed).

We also would like to support dymamic DAGs, which are DAGs that can
change on-the-fly, based on user input. This has been frequently requested
by users and is particularly useful when DAGMan is used by a higher-level
scheduling system that may change plans in reaction to current conditions.

For Stork, we are exploring ways to make it more scalable and more
reliable. We are also investigating methods to use matchmaking, similar to
that in Condor, to select which data transfers should be run and which sites
they should transfer data to.

22.8 Conclusions

DAGMan is a reliable workflow management system. Although the workflows
it supports are relatively simple, there are many complexities that were
discovered as we used DAGMan through the years, such as the need for flexible
methods for retrying and throttling. As a result of our experience, DAGMan
has found favor with many users in production environments, and software
has been created that relies on DAGMan for execution. Used with Condor,
Condor-G, and Stork, DAGMan is a powerful tool for workflow execution in
Grid environments.

23

Pegasus: Mapping Large-Scale Workflows to
Distributed Resources

Ewa Deelman, Gaurang Mehta, Gurmeet Singh, Mei-Hui Su, and
Karan Vahi

23.1 Introduction

Many scientific advances today are derived from analyzing large amounts
of data. The computations themselves can be very complex and consume
significant resources. Scientific efforts are also not conducted by individual
scientists; rather, they rely on collaborations that encompass many researchers
from various organizations. The analysis is often composed of several
individual application components designed by different scientists. To describe
the desired analysis, the components are assembled in a workflow where
the dependencies between them are defined and the data needed for the
analysis are identified. To support the scale of the applications, many resources
are needed in order to provide adequate performance. These resources are
often drawn from a heterogeneous pool of geographically distributed compute
and data resources. Running large-scale, collaborative applications in such
environments has many challenges. Among them are systematic management
of the applications, their components, and the data, as well as successful and
efficient execution on the distributed resources.

In order to manage the process of application development and execution,
it is often convenient to separate the two concerns. For example, the
application can be developed independently of the target execution system
using a high-level representation. Then, once the target execution environment
is identified, the application can be mapped onto it.

In this chapter, we describe a system, Pegasus (Planning for Execution
in Grids) [111, 116], which given a workflow instance and information about
the available resources generates an appropriate executable workflow. Pegasus
enables scientists to design workflows at the application level without the need
to worry about the actual execution environment, be it a Grid [147], a set of
Condor pools [262], or a local machine. Pegasus is a flexible framework that
can be tailored to the performance needs of a variety of applications and
execution environments. In this chapter, we describe Pegasus’s functionality
and summarize results of using Pegasus in dedicated and shared execution

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 377

environments. We present the optimizations that are made to improve the
overall workflow performance. We also describe some of the applications that
use Pegasus today.

23.2 Workflow Generation for Pegasus

In our work, we distinguish between three different forms of a workflow: a
template, an instance, and an executable workflow. A workflow template is
a skeleton of a computation; it describes the various application components
that are part of the scientific analysis, as well as the dependencies between
the components. The workflow template provides the general structure of the
analysis but does not identify the data or the resources that are necessary
to obtain the desired results. Templates can be designed collaboratively by a
group of scientists. Once the template is agreed upon, it can be stored in a
library for future use.

A scientist needs to provide data to the workflow template in order to
fully specify the analysis. The template and the input data together form a
workflow instance (also known as an abstract workflow). In this form, the
workflow uniquely identifies the analysis but does not contain information
about the resources that will be used to execute the computations. The
workflow instance is portable; it can be mapped to a variety of execution
environments.

The workflow that includes all the necessary resource information is an
executable workflow (also known as a concrete workflow). This workflow
identifies the resources where each workflow task will be executed, provides
tasks for staging data in and out of the computations (including the
identification of specific data replicas), and any other tasks needed for data
and computation management (such as data registration or creating an
execution directory at the execution site).

In general, a given workflow can be a mixture of a template, instance,
and executable. For example, portions of the workflow can be refined while
others are being executed. However, in practice, the workflow is often just in
one particular form. It is possible that users may develop workflow templates
and instances ahead of a particular experiment and then only during the
experiment’s runtime are the workflows executed.

In our work, we have used a variety of different methods to create
a workflow instance. The first technique is appropriate for application
developers who are comfortable with the notions of workflows and have
experience in designing executable workflows (workflows already tied to a
particular set of resources). They may choose to design the workflow instances
directly according to a predefined schema. Another method uses Chimera [148]
to build the workflow instances, based on the user-provided partial logical
workflow descriptions specified in the Virtual Data Language (VDL) (Chapter
17). We also had initial experiences in using Triana (Chapter 20) where

378 Deelman et al.

the system created workflow instances using the graphical user interface.
Workflow instances may also be constructed using assistance from intelligent
workflow editors such as the Composition Analysis Tool (CAT) [237]. CAT
uses formal planning techniques and ontologies to support flexible mixed-
initiative workflow composition that can critique partial workflows composed
by users and offer suggestions to fix composition errors and to complete the
workflow templates. When using the CAT software, an input data selector
component uses the Metadata Catalog Service (MCS) [386] to populate the
workflow template with the necessary data. MCS performs a mapping from
specific metadata attributes to particular data instances. The three methods of
constructing the workflow instance can be viewed as appropriate for different
circumstances and scientists’ backgrounds, from those very familiar with the
details of the execution environment to those that wish to reason solely at the
application level.

In any case, all three workflow creation methods result in a workflow
instance that needs to be mapped onto the available resources to facilitate
execution. The workflow mapping problem can be defined as finding a mapping
of tasks to resources that minimizes the overall workflow execution time. The
workflow execution consists of both the running time of the tasks and the
data transfer tasks that stage data in and out of the computation.

Since the execution environment can be very dynamic, and the resources
are shared among many users, it is impossible to optimize the workflow from
the point of view of execution ahead of time. In fact, one may want to make
decisions about the execution locations and the access to a particular (possibly
replicated) data set as late as possible.

23.3 Pegasus and the Target Workflow
Execution Environment

Pegasus is a framework that allows the mapping of workflow instances onto
a set of distributed resources such as Grid [147] or a Condor pool [262].
The mapping process not only involves finding the appropriate resources for
the tasks but also may include some workflow restructuring geared toward
improving the performance of the overall workflow. In order to adapt to a
dynamic environment, Pegasus may also map only portions of a workflow at
a time.

23.3.1 Target Execution System Overview

In order to understand the functionality of Pegasus, it is important to describe
the environment in which the workflows are to be executed. We assume that
the environment is a set of heterogeneous hosts connected via a network,
often a wide-area network. The hosts can be single-processor machines,
multiprocessor clusters, or high-performance parallel systems.

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 379

In order to be able to schedule jobs remotely, Pegasus needs a job
submission interface and the ability to automatically stage data to locations
accessible from the computational resources.

Grid Resource 1

Compute Nodes

GridFTP Servers

Head-
Node

GRAM

MDS

LRC

STORAGE

Grid Resource 2

Head- Node

Grid Resource 3

Head- Node

RLS

MDS

Submit Host

Figure 23.1: An example execution host configuration.

Figure 23.1 shows a typical execution system, with a head node visible
to the network, additional hosts that form a pool of resources, and a storage
system. In order to be able to schedule jobs remotely, the resource needs to
have appropriate software deployed that can provide information about the
resources, stage data, and accept job submissions. In our work, we use the
Globus Toolkit [144] to provide these functionalities.

In order to use Pegasus in such an environment, a resource (named the
submit host), which could be a user’s desktop, needs to be set up to provide
Pegasus, DAGMan, and Condor-G [152]. The latter two systems provide the
workflow execution engine (Chapter 22) and the capability to remotely submit
jobs to a variety of Globus-based resources. The submit host also maintains
information about the user’s application software installed at the remote
sites (in the Transformation Catalog (TC) [114], described below) and about
the execution hosts of interest to the user (in the Site Catalog, described
below). The submit host can also serve as a local execution platform for small
workflows or for debugging purposes.

23.3.2 Information Services and Catalogs

Pegasus interfaces with various catalogs to discover the data locations,
executable locations and the available resources and their characteristics.
Pegasus reduces the workflow based on the available intermediate data
products since it is possible that some of the analysis was already conducted
and does not need to be repeated. Once the workflow is reduced, Pegasus
locates the available resources and input data and maps the workflow

380 Deelman et al.

components onto the distributed resources. Pegasus can use various mapping
algorithms and can also map only portions of the workflow at a time to
adjust the mapping to the dynamic environment. We describe Pegasus’ s
functionality in more detail in the following subsections.

Replica Catalog

Pegasus uses a replica catalog to dynamically gather information about the
locations of the data products that are required by the workflows. Input data
products are usually raw data files that cannot be produced as part of a
workflow execution and are needed to be present before the workflow execution
starts. Cataloging of the intermediate data products and final data products
helps in data reuse and allows reduction of parts of the workflow if data already
exist. This is described in detail in Section 23.4. A replica catalog stores the
logical to physical filename mappings. In addition, it stores attributes of the
physical filenames, such as the handle of the site where the physical file resides.
We use the Globus Replica Location Service (RLS) [88] as our default replica
catalog implementation. RLS is a distributed replica management system
consisting of local catalogs that contain information about logical to physical
filename mappings and distributed indexes that summarize the local catalog
content.

Transformation Catalog

Pegasus interfaces with a transformation catalog to gather information about
where the transformations are installed on the Grid sites. The transformations
are the executables corresponding to the jobs in the workflow instance.
Similarly to the replica catalog, the transformation catalog stores the logical
to physical filename mappings.

In addition to the installed executables, the Transformation Catalog can
also store the location of statically linked executables (as part of the physical
mapping) that can be staged to remote sites as part of workflow execution.
The staging of executables is described in detail in Section 23.4. The catalog
also stores a variety of attributes associated with the executables, such as
the target operating system, compiler used, memory needed, etc. The default
implementation of the transformation catalog is a database with a predefined
schema.

Site Catalog

Pegasus interfaces with a Site Catalog to gather information about the layout
of remote sites. It stores both static and dynamic information. The static
information includes information such as:

• The GridFTP [9] servers that stage data in and out of the site

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 381

• The GRAM [102] jobmanagers that submit jobs to the local scheduler
running on the Grid site

• The scratch directories to which data can be staged to as part of workflow
execution

• The storage directories to which the final data products can be staged

The dynamic information includes information such as:

• The number of available processors
• The amount of available memory
• The amount of available disk space

The site catalog can be populated using data provided by the Globus
Monitoring and Discovery Service (MDS) [101] and additional information
provided by the user or site administrator. The site catalog can also be
populated using a Grid-specific catalog such as GridCAT [174] for OSG [328].

23.4 Pegasus and Workflow Refinement

Pegasus transforms a workflow instance to an executable (concrete) workflow
through a series of refinements. The workflow instance (Figure 23.2 shows an
example) is composed of tasks described in terms of logical transformations
and logical input and output filenames. The workflow instance is independent
of the resources. The goal of Pegasus is to find a good mapping of the tasks to
the available resources necessary for execution. Figure 23.3 depicts the steps
taken by Pegasus during the workflow refinement process.

Figure 23.2: An example workflow instance composed of four tasks. Ti stands
for a logical transformation (task). Fi is a logical filename.

Defining the set of available and accessible resources. First, Pegasus
consults the Site Catalog to check which resources are available. Additionally,

382 Deelman et al.

Pegasus may try to authenticate to these resources using the user’s credentials.
Thus, the possible set of resources may be reduced to a minimum.

Workflow reduction. The next step may modify the structure of the
workflow instance based on the available data products. Pegasus consults the
replica catalog to determine which intermediate data products are already
available. Based on this information, Pegasus may reduce the workflow to
contain only the tasks necessary to generate the final data products. In
the extreme case, if the final data are already available, no tasks will be
scheduled except perhaps a data transfer (to the user-specified location) and a
registration of the desired data products. If we consider the workflow instance
in Figure 23.2 and suppose that the replica catalog indicates that files F3 and
F4 are available, then the reduced workflow instance would consist only of
one task, T4.

Resource selection. At this point, we have the minimal workflow instance in
terms of the number of tasks. The workflow reduction was made based on the
assumption that it is more efficient to access the data than to recompute them.
Given the minimal workflow, a site (resource) selection is performed. This
selection can be done based on the available resources and their characteristics,
as well as the location of the required input data. The type of site selection
performed is customizable as a plugable component within Pegasus. The
system incorporates a choice of a few standard selection algorithms: random,
round-robin, group-based,1 and min-min [54]. These algorithms can be applied
to the selection of the execution site as well as the selection of the data
replicas. The selection algorithms make use of information available in the
Site Catalog (resource characteristics), Transformation Catalog (the location
of the application software components), and replica catalog (the location of
the replicated data). It is also possible to delay data replica selection until
a later point, in which case the replica catalog is not consulted at this time.
Additionally, users may wish to add their own algorithms geared toward their
application domain and execution environment. These algorithms may also
rely on additional or different information services that can be plugged into
Pegasus as well.

Task clustering. Pegasus provides an option to cluster jobs together in
cases where a number of small-granularity jobs are destined for the same
computational resource. During clustering, we consider only independent
tasks, so that they can be viewed by the remote execution system as a single
entity. The task clusters can be executed on a remote system either in a
sequence or if feasible and appropriate they can be executed using MPI [389]
in a master/slave mode. In the latter case, an initial number of processors is

1 In group-based site selection, the jobs in the workflow instance are tagged prior to
the mapping by Pegasus. The nodes with the same tags belong to a single group.
All the jobs in the same group are scheduled by Pegasus to the same site. The
tagging can be user-defined or performed automatically based on the performance
characteristics of the workflow components.

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 383

requested and the clustered tasks are sent to the remote site as the constituent
task execution is completed.

Replica

Catalog

Replica

Catalog
Transformati

on Catalog

Site Catalog

Abstract

Workflow

Check Resource

Access

Reduce the

Workflow

MDS

(available

Resources)

Perform Site

Selection

Site Selector

Site Catalog

MDS

Cluster

Individual Jobs

RLS

Add Transfer

Nodes

Write Submit

Files

Fully

Instantiated

Workflow

DAGMan/

Condog-G

file

Replica

Selector

Replica

Catalog

RLS

Transformati

on Catalog

Figure 23.3: Pegasus’s logic.

Executable staging. Pegasus provides the ability to stage the executables
to a remote Grid site. The executable may need to be staged either if it is
not installed there or the version of the executable installed is an out-of-
date version. Currently, Pegasus enables only the transfer of statically linked
executables. Pegasus supports the following staging of executable scenarios:

• Installed executables are always preferred—only sites that have the
executables installed are selected for running the workflow.

• Staged executables are always staged to the remote Grid sites, irrespective
of whether they are installed there or not.

Once Pegasus determines that an executable is to be staged for a particular
computation job, it adds the executable file as an input to that particular
job. The transfer of the executable is then handled in the same manner as the
transfer of other data files required by the computation job.

Adding data stage-in, stage-out and registration tasks. The workflow
instance contains only nodes representing computations. Since the workflow
can be executed across multiple platforms and since data need to be staged in
and out of the computations, Pegasus augments the workflow with tasks that
explicitly perform the necessary data transfers. If, during site selection, data
replica selection was not performed, it can be done at this point. Again, users
have the option of using Pegasus-provided algorithms or suppling their own.
These algorithms are used to determine which of possibly many data replicas
will be used as a data access location. Once the location is determined, a data
stage-in node is placed in the workflow and a dependency to the corresponding
computation is added. Additionally, where appropriate, intermediate and final

384 Deelman et al.

data may be registered in the data catalogs, such as the replica catalog or a
metadata catalog, to enable subsequent data discovery and reuse. The data
registration is also represented explicitly by the addition of registration tasks
and dependencies to the workflow.

Following the example of Figure 23.2, where we have a reduced workflow
containing only task T4, the executable workflow would look as depicted in
Figure 23.4. The workflow consists of three stage-in tasks, which stage the two
input files to the resource R (selected by Pegasus) and stage the executable
T4. There is an additional job following the executable staging, which sets
the x bit on the staged executable (the x bit on a file is usually not preserved
while transferring a file using the Grid transfer tools). Then, the task T4 is
to be executed followed by a transfer of the data file F5 to the user-specified
location U . Finally, the output file is registered in the RLS. It is important
to note that the executable workflow in the figure is a ”plan” that needs to
be given to a workflow execution engine to execute.

Execute

T4 at R

Transfer

F5 to U

(user-

specified

location)

Register

F5 in Replica

Catalog

Transfer

F3 to R

Transfer

F4 to R

Transfer

executable

T4 to R

Set Xbit

on

executa

ble

Figure 23.4: Executable workflow corresponding to the reduced workflow
instance in Figure 23.2.

Submit file generation. At this point, all the compute resource
and data selection has been performed and the workflow has the
structure corresponding to the ultimate execution structure, which includes
computation, data transfer, and registration. The final step is to write it out
in a form that can be interpreted by a workflow execution engine such as,
for example, DAGMan (Chapter 22). Once this has been accomplished, the
resulting submit files can be given to DAGMan and Condor-G for execution.
DAGMan will follow the dependencies in the workflow and submit available
tasks to Condor-G, which in turn will dispatch the tasks to the target
resources.

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 385

The sequence of refinements depicted in Figure 23.3 is currently static, but
one can imagine constructing the sequence dynamically based on user and/or
application requirements.

23.5 Workflow Execution

Executing a workflow involves submitting the ready tasks to the remote
resources, monitoring their execution, and analyzing the dependencies in
the workflow. A workflow execution engine needs to be able to parse the
workflow description, interface with the remote resources, monitor the status
of currently executing tasks, and act on task completion events by identifying
new tasks that have become ready for execution as a result of past completions.
Condor DAGMan [97] is such a workflow execution engine. It can execute a
task graph on the machines in a Condor pool or using Condor-G on a set
of resources that are accessible via the Globus Resource Allocation Manager
(GRAM) [102] (for example, Grid systems that use PBS [189] or LSF [271] as
a front-end scheduler). The combination of DAGMan, Condor-G, and GRAM
allows the execution of an executable workflow generated by Pegasus in a Grid
environment composed of heterogeneous resources.

23.6 Adapting the Workflow Mapping to a Dynamic
Execution Environment

In dynamic execution environments, resources can come and go suddenly. This
poses a problem as well as an opportunity for workflow management systems.
It is a problem in that one cannot plan too far into the future because the
resources the planner assumed would be available may become inaccessible or
overloaded at the time when tasks are sent to them. A dynamic environment
can potentially also be an opportunity in that new resources may come online
or become lightly loaded. This enables the workflow management system
to take advantage of the newly available resources, provided the workflow
management system can adapt to the changes.

In the case of Pegasus, we can adapt to the execution environment by
mapping only portions of the workflow at a time (also known as deferred
mapping). Currently, we support only a static partitioning scheme, where the
workflow is partitioned ahead of time [116] and then Pegasus is called on
each partition in turn to map the portions of the workflow defined within the
partition. The dependencies between the partial workflows (or subworkflows)
reflect the original dependencies between the tasks of the workflow instance.
Pegasus then maps the partial workflows following these dependencies. The
original workflow is partitioned according to a specified partitioning algorithm.
The result is a workflow, where the elements are partial workflows.

386 Deelman et al.

Figure 23.5: Partitioning of the workflow for deferred mapping.

The particular partitioning algorithms shown in Figure 23.5 simply
partition the workflow based on the level of the node in the workflow
instance. The partitioner is a plugable component, where various partitioning
algorithms can be used depending on the type of workflow and the dynamic
nature of the resources. Once the partitioning is performed, Pegasus maps
and submits the partial workflows to DAGMan.

Figure 23.6: Deferred workflow mapping. A meta workflow given to DAGMan
(instance # 1)for execution.

Figure 23.6 illustrates the deferred mapping process. It shows a Meta
Workflow that is generated based on the partitioning in Figure 23.5. This
Meta Workflow is given to DAGMan and starts the refinement and execution
of the application workflow instance. Given this Meta Workflow, DAGMan
(instance #1) first calls Pegasus (shown as a call gencdag) on one partition
of the workflow instance, partition A. Pegasus then generates the executable
workflow and produces the submit files necessary for the execution of that
workflow through DAGMan; these files are named Su(A) in Figure23.6. Now
the first instance of DAGMan calls a new instance of DAGMan (instance
#2) with the submit files Su(A). This is reflected in the DAGMan(Su(A))
node in Figure23.6; it is a nested call to DAGMan within DAGMan. Once
the second instance of DAGMan concludes successfully, implying that the

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 387

executable workflow corresponding to the partial workflow instance A has
successfully executed, the first instance of DAGMan calls Pegasus with the
workflow instance B, and the process repeats until all the partitions of the
workflow are refined to their executable form and executed.

23.6.1 Partition-Level Failure Recovery

Pegasus and DAGMan can be a powerful combination that enables a certain
degree of remapping in case of failure. As explained above, in the Meta
DAG, each task consists of a workflow partition mapping step followed by a
DAGMan execution of the mapped workflow. If either of these steps fails due
to a mapping failure or due to the execution, the entire task can be retried by
DAGMan. An example of a situation where this is particularly useful is shown
in Figure 23.7. We start with a partition containing a subworkflow in the shape
of a diamond, consisting of four tasks. As mentioned before, Pegasus reduces
the workflow based on the available data products. In this case, Pegasus found
that files f2 and f3 are already available. Because the two files are available,
tasks B and C do not need to be executed and consequently neither does task
A. The resulting executable workflow is shown next. It consists of four nodes,
the first two stage in files f2 and f3 to the execution location R1. Then task
D is to be executed at location R1, and finally the data are to be staged out
to the user-specified location. Given this mapping, DAGMan proceeds with
the execution of the workflow. Let’s assume that file f2 is successfully staged
in, but for some reason there is a failure when accessing or transferring f3 and
the data transfer software returns an error. Given this failure, the DAGMan
execution of the partition fails, as does the entire original Meta Workflow
node representing the refinement and execution of the partition. Upon this
failure, the Meta DAG node is resubmitted for execution (by the Condor
retry mechanism) and the refinement (gencdag(A) and execution(Su(A)) is
redone. In the final step we see the executable workflow that resulted from the
Pegasus/gencdag mapping. We notice that Pegasus took into account that f2
was already successfully staged in and at the same time the reduction step
did not reduce task C because f3 needs to be regenerated (assuming there
was only one copy of f3 available). In this case, we also assume that f1 is
available; thus task A still does not need to be executed. Given this new
mapping, DAGMan is invoked again to perform the execution.

23.7 Optimizing Workflow Performance with Pegasus

The resources used in workflow execution are often autonomous, heterogen-
eous, shared in nature, and generally use batch queuing systems such as PBS,
LSF, Condor, etc., for resource management. Each task in the workflow is
submitted to a job queue maintained by the resource management system. All
the tasks in the job queue are considered independent of each other, and the

388 Deelman et al.

Figure 23.7: Recovery from failure. The top left shows the Meta DAG node
that is being refined and executed. The bottom of the figure shows (left to
right) the progression of the refinement and execution process.

remote scheduler generally does not support precedence constraints between
the tasks in the queue. The performance of a resource is optimized with respect
to metrics of interest to the resource provider, and tasks from the job queue
are scheduled based on local policies that are not always made public. In
some cases, the start time of a job depends on the time already spent by the
job in the queue. The parallelism of the executable workflow is often further
inhibited by policies of Grid resources that effectively limit the number of
tasks that can be submitted or executed concurrently by a user.

The approach used in Pegasus for improving the workflow performance
in this type of execution environment is to use placeholders. A placeholder
is a unit of work that is submitted to the queue of a Grid resource and can
be used for executing multiple tasks when the placeholder starts executing.
This placeholder can be a simple shell script that is given a list of tasks to
execute sequentially. It can also be implemented as an MPI wrapper program
that executes all its constituent tasks in a master/slave mode on multiple
worker nodes. In this particular mode of use, there is a tight binding between
the tasks and the placeholders. The set of tasks that would be executed on
a placeholder is known at the time the placeholder is submitted to the job
queue of the target resource.

A placeholder improves the workflow performance by decoupling the
definition of a task in the workflow from a task as seen by the scheduler of a
remote resource. Each placeholder appears as a task to the remote scheduler.
By being able to execute multiple workflow tasks using a single placeholder,
we can reduce the uncertainty associated with the execution of the workflow.
The workflow performance is improved because the queue wait time of the

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 389

placeholder can be amortized over the various tasks that can be executed using
this placeholder. Furthermore, it can be used to overcome the constraints on
concurrency since multiple tasks can be executed in parallel using a smaller
number of placeholders. This approach of using placeholders works well for
fine-granularity workflows where the runtime of the tasks in the workflow is
on the order of seconds or minutes. For this class of workflows, the execution
overhead of queue wait time can be much more than the runtime of the tasks
in the workflow. Thus, placeholders can be used to reduce this execution
overhead and improve the workflow performance [116]. Using placeholders
has the effect of restructuring the executable workflow. Tasks in the workflow
are grouped or clustered together, and each cluster is executed using a single
placeholder.

The approach used for clustering tasks in Pegasus is to cluster tasks that
are at the same depth in the workflow. A level is assigned to each task in the
workflow. The tasks in the workflow that do not have any predecessors are
assigned level 1. Tasks that become ready for execution when the tasks at level
1 complete are assigned level 2, and so on. An important property of this level
assignment is that the tasks at the same level are independent of each other
and can be part of a single cluster. Tasks at the same level are clustered based
on a clustering factor provided by the user. The placeholder implementation
to be used for the cluster (sequential or MPI-based) is also indicated by the
user. The clustering factor and the placeholder implementation are specified
by the user in the Transformation Catalog (Section 23.3.2). Task clustering
in Pegasus is performed after the tasks have been mapped to the execution
resources, and each cluster contains tasks that have been mapped to the same
resource. Thus the mapping drives the clustering in Pegasus and not the
other way around. This is an important distinction since we only want to
cluster tasks based on the characteristics of the target resource. A resource
that has been dedicated for the user might not require any clustering, whereas
a resource that provides a best-effort service may provide good performance
only with task clustering.

In order to illustrate the performance benefit of using clustering, we
describe the execution of a Montage workflow (Chapter 3) with and without
clustering on the NCSA TeraGrid Linux cluster [412], containing 890 Intel
Itanium 2 processors. The Montage workflow used for experimentation created
a two square degree mosaic of the M16 region of the sky. The original
executable workflow without any clustering had 1513 tasks and took 104
minutes to complete. We clustered tasks in the workflow with a clustering
factor of 60, where each cluster contained 60 tasks at the same level. The
restructured workflow contained 35 clusters and completed in 40 minutes, a
61% improvement over the original completion time [116]. The placeholder
implementation used was a simple shell script that executed the tasks in the
cluster sequentially.

While we have implemented a simple clustering strategy, more
sophisticated algorithms are possible that can cluster tasks with precedence

390 Deelman et al.

constraints between them. It is important to note that the placeholder
implementation should then be intelligent enough to ensure that the tasks in
the cluster are executed in the right order. The placeholders that we have
mentioned are passive in the sense that the list of tasks to be executed
is provided as an input data to the placeholder and is known before the
placeholder is submitted to the resource queue. Placeholders can also be
active in the sense that they are not tightly bound to any particular task
or set of tasks but instead can query for work to a central server or manager
when the placeholder starts execution [358]. For example, Condor provides
a placeholder implementation known as Glide-in [96] that can be used to
start Condor daemons on remote resources. The Condor daemons query a
central manager for tasks to be executed. For the duration that the Glide-in
placeholder is executing, the remote resources appear to be part of a Condor
pool. Pegasus provides support for generating executable workflows that can
be executed using these temporary resources. However, the Glide-in job has
to be initiated manually, and the automation of this provisioning step is the
subject of future research.

We are not limited to the choice of active and passive placeholders.
In fact, both can be used simultaneously. We have conducted experiments
[234] that show the performance achieved using Pegasus when tasks are
clustered and executed on resources acquired using Condor Glide-ins. We
conducted experiments using the Montage workflow, and the resulting
performance compares favorably with an MPI-based implementation (Chapter
3). The experiments show that using the proper set of optimizations, the
performance achieved using the workflow paradigm could be comparable to
the performance achieved using other parallel programming paradigms that
are not Grid-aware.

23.8 Applications

Pegasus is currently distributed as part of the GriphyN Virtual Data System
(vds.isi.edu). In addition to Pegasus, VDS contains an abstract planner
[148] that can generate a workflow instance based on a VDL description
(Chapter 17). VDS also contains a variety of Grid utilities, including data
transfer tools, workflow visualization tools, and kickstart, which is used to
launch the executable at the resource and gathers provenance information.
The provenance information can then be stored in the Provenance Tracking
Catalog for future mining.

A large number of scientific groups use Pegasus, the VDS tools, and
DAGMan to map and execute their scientific workflows in Grid environments.
Following are some example applications.

Bioinformatics and biology. One of the most important bioinformatics
applications is BLAST (Basic Local Alignment Search Tool), which consists
of a set of sequence comparison algorithms that are used to search sequence

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 391

databases for optimal local alignments to a query. Scientists used Pegasus
to perform two major runs. One consisted of 60 genomes and the other 450
genomes, each composed of 4000 sequences. The runs produced on the order
of 10,000 jobs and approximately 70 GB of data. A speedup of 5–20 times
was achieved using Pegasus not because of algorithmic changes but because
the nodes of the cluster were used efficiently by keeping the submission of the
jobs to the cluster constant—basically automating the analysis process.

Tomography. In this application, 3D structures are derived from a series of
2D electron microscopic projection images (Chapter 8). Tomography allows
the reconstruction and detailed structural analysis of complex structures, such
as synapses, and large structures, such as dendritic spines. The tomography
application is characterized by the acquisition, generation and processing of
extremely large amounts of data, upward of 200 GB per run.

Astronomy. Astronomy applications are often characterized by a large
number of short jobs. Among such applications are Montage and Galaxy
Morphology. Montage is a Grid-capable astronomical mosaicking application
(Chapter 3, [234]). It is used to reproject, background match, and finally
mosaic many image plates into a single image. Pegasus is used in Montage as
part of a service targeting the astronomy community. In Montage, Pegasus
was able to improve the performance of the application by 61% (Section 23.7,
[116, 234]). The Galaxy Morphology application [115] is used to investigate
the dynamical state of galaxy clusters and to explore galaxy evolution inside
the context of large-scale structure.

High-energy physics. Applications such as CMS [112] fall into the category
of workflows that contain few long-running jobs. In one of the CMS runs, over
the course of seven days, 678 jobs of 250 events each were submitted using
Pegasus and DAGMan. From these jobs, 167,500 events were successfully
produced using approximately 350 CPU-days of computing power and
producing approximately 200 GB of simulated data.

Gravitational-Wave physics. The Laser Interferometer Gravitational Wave
Observatory (LIGO) (Chapter 4) [6, 113] is a distributed network of
interferometers whose mission is to detect and measure gravitational waves
predicted by general relativity, Einstein’s theory of gravity. In a Pegasus run
conducted at the SuperComputing 2002 conference, over 58 pulsar searches
were performed, resulting in a total of 330 tasks, 469 data transfers executed,
and 330 output files. The total runtime was 11:24:35.

Earthquake Science. Within the Southern California Earthquake Center
(SCEC), Pegasus is being used in the CyberShake Project ([276], Chapter 10),
whose goal is to calculate Probabilistic Seismic Hazard curves for several sites
in the Los Angeles area. The hazard curves in this study are generated using
3D ground motion simulations rather than empirically derived attenuation
relationships. SCEC is running hundreds of analyses, some of which run over a
period of several days. Pegasus was recently used to schedule SCEC workflows
onto the TeraGrid resources [412]. During a period of 23 days in the fall of
2005, over 260,000 jobs, which used a combined 1.8 CPU-years, were executed.

392 Deelman et al.

23.9 Related Work

There are many workflow management systems for Grid environments.
Triana (Chapter 20) is a visual workflow composition system where the
workflow components can be service-oriented or Grid-oriented. It uses the
Grid Application Toolkit (GAT) created by GridLab (www.gridlab.org) for
distributing the workflow components across Grids. ICENI (Imperial College
e-Science Network Infrastructure) (Chapter 24) is a system for workflow
specification and enactment on Grids. The user creates an abstract workflow
in an XML-based language. The ICENI system is responsible for making the
workflow concrete by finding suitable implementations of the components
in the workflow, mapping the components to appropriate resources, and
monitoring the instantiation of the concrete workflow on the mapped
resources. Once a schedule for the workflow has been computed, the ICENI
system tries to reserve the resources at the desired time by negotiating with the
resource provider. Taverna (Chapter 19) is the workflow management system
in the myGrid project. The Taverna workbench allows users to graphically
build, edit, and browse workflows. However, it is a domain-specific system
and the workflows are limited to the specification and execution of ad hoc
in silico experiments using bioinformatics resources. These resources might
include information repositories or computational analysis tools providing
a Web service based or custom interface. Workflows are enacted by the
FreeFluo enactment engine, and progress can be monitored from the Taverna
workbench. GridAnt (Chapter 21) is a client-side workflow management
system that can be used for executing workflows on Grid resources. It
extends Ant, an existing commodity tool for controlling build processes in
Java, by adding additional components for authenticating, querying and
transferring data between Grid resources. Furthermore, it provides a graphical
visualization tool for monitoring the progress of the workflow execution.
GridAnt is similar in functionality to the Condor DAGMan workflow manager
(Chapter 22).

GridFlow [76], a Grid workflow management system, uses a graphical user
interface for composing workflows. It assumes a hierarchical Grid structure
consisting of local Grids managed by the Titan resource management and a
global Grid that is an ensemble of local Grids. GridFlow simulates workflow
execution on the global Grid in order to find a near optimal schedule. The best
workflow schedule is enacted on the local Grids using ARMS agents. Unicore
plus [431] is a project to develop a Grid infrastructure and a computing
portal for users to access the Grid resources seamlessly. The Unicore job
model supports directed acyclic graphs with temporal dependencies. The
Unicore graphical tools allow a user to create a job flow that is then serialized
by a Unicore user client and sent to a server for enactment. The server
is responsible for dependency management and execution of the jobs on
the target resources. Gridbus [489] is another workflow management system
that allows users to specify workflows using a simple XML-based workflow

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources 393

language. A workflow coordinator (WCO) is responsible for monitoring the
status of the tasks in the workflow and activating the child tasks when
they become eligible. An event service server (ESS) is used for notification
purposes. Active tasks register their status with the ESS, which in turn
notifies the WCO. Based on the status received from the ESS, WCO may
activate the child tasks (similar to DAGMan functionality). It allows users
to specify execution resources for each task in the workflow. Alternatively,
it is also able to discover resources using Grid information services. Askalon
(Chapter 27) is a Grid application development and computing environment
that supports the development and optimization of workflow applications
over Grid resources. It uses an XML-based AGWL (Abstract Grid Workflow
Language) for specifying workflows. It supports a rich set of constructs for
expressing sequence, parallelism, choice, and iteration constructs. It includes
mechanisms for monitoring workflow execution and dynamic rescheduling in
order to optimize workflow performance. Kepler (Chapter 7) is another project
for composing and executing scientific workflows. It provides a graphical
user interface for composing workflows. A workflow in Kepler is composed
of independent actors communicating through well-defined interfaces. An
actor represents parameterized operations that act on an input to produce
an output. The execution order and the communication mechanisms of the
actors in the workflow are defined in a director object. In order to support
execution over Grid resources, Kepler has defined a set of Grid actors for
access authentication, file coping, job execution, job monitoring, execution
reporting, storage access, data discovery, and service discovery.

23.10 Conclusions

In this chapter, we described the Pegasus system, which can be used to map
large-scale workflows onto Grid resources. Pegasus is a flexible framework that
enables the plugging in of a variety of components from information services
and catalogs to resource and data selection algorithms. Pegasus has been used
in several applications and has mapped the workflows onto a diverse set of
resources from local machines, to Condor pools, to high-performance TeraGrid
systems. Pegasus is only one of the tools in the workflow life cycle; other
tools are used to generate workflow instances, execute workflows, and record
provenance. Pegasus relies on the existing Grid infrastructure to provide the
information necessary for the planning process.

Even with today’s application successes, many research issues remain
open not only for Pegasus but other workflow management systems as well.
Some issues touch upon improving workflow performance by developing better
application and resource performance models, which in turn can help improve
the planning process. The performance models are also necessary for accurate
and cost-efficient resource provisioning.

394 Deelman et al.

In terms of execution and the interplay between the planner and the
workflow engine, more research needs to target fault tolerance. As we
discussed, Pegasus has some fault-tolerant capabilities; however, the issue of
fault tolerance across workflow management systems is a greater one and
involves a dialogue between workflow composition, workflow planning, and
the workflow execution components.

Debugging is also a major issue, especially in environments such as the
Grid, where errors are hard to detect and categorize. Additional complexity
stems from the gap between what the user specified (possibly a very high-level
analysis specification) and what is actually executed (a very low-level detailed
directive to the Grid). Bridging this gap can be a significant challenge.

Finally, most of the workflow systems today involve a user specifying
the workflow in its entirety and then the workflow management systems
bringing it to execution. Providing support for interactive workflows poses
great challenges where the interactions with the users need to be predictable
in terms of time scale. Thus, real-time performance and quality-of-service
(QoS) guarantees are becoming very important.

Acknowledgements

We would like to thank Yolanda Gil and Carl Kesselman for many constructive
discussions. Pegasus is supported by the National Science Foundation
under grants ITR AST0122449 (NVO) and EAR-0122464 (SCEC/ITR).
The use of TeraGrid resources was supported by the National Science
Foundation under the following NSF programs: Partnerships for Advanced
Computational Infrastructure, Distributed Terascale Facility (DTF), and
Terascale Extensions: Enhancements to the Extensible Terascale Facility.

24

ICENI

A. Stephen McGough, William Lee, Jeremy Cohen, Eleftheria Katsiri, and
John Darlington

24.1 Introduction

Performing large-scale science is becoming increasingly complex. Scientists
have resorted to the use of computing tools to enable and automate
their experimental process. As acceptance of the technology grows, it will
become commonplace that computational experiments will involve larger data
sets, more computational resources, and scientists (often referred to as e-
Scientists) distributed across geographical and organizational boundaries. We
see the Grid paradigm as an abstraction to a large collection of distributed
heterogeneous resources, including computational, storage, and instrument
elements, controlled and shared by different organizations. Grid computing
should facilitate the e-Scientist’s ability to run applications in a transparent
manner.

As scientists become more confident with the new emerging Grid paradigm,
their requirements and expectations of the Grid are increasing. Initially their
requirements were to deploy simple applications over the Grid, often by
manual selection and invocation of the resources used. However, this is now
evolving into the need to deploy the whole e-Science process onto the Grid
without the need for intervention by the e-Scientist except where desired. The
e-Scientist may then interact with the running application by monitoring its
progress or, if possible, visualizing the output and/or steering its execution.

To manage the complexity of these e-Science processes, we need a means to
describe them. Each individual task needs to be specified along with the way
in which multiple tasks interact (often referred to as a workflow). However,
the type and level of this description may vary dramatically, depending on the
scientist’s domain knowledge. To this end, we define two realms for workflow
description:

• e-Scientist’s conceptual workflow. This describes the tasks identified by
the e-Scientist and the interactions required between these tasks.

396 McGough et al.

• Middleware workflow. This is the actual set of tasks that are required to
produce the e-Science workflow along with the interactions between them.

In the simplest case, these two workflow descriptions will match, though
this is not always the case. For example, suppose that the e-Scientist wishes
to manipulate a database. In the conceptual workflow, there may appear
tasks such as “Record result in database” or “Retrieve result from database.”
However, these are unlikely to appear as separate computational tasks between
software interacting on different resources, though they may appear as
interactions between a computational task and a database.

We propose an abstract architecture (referred to as a workflow pipeline)
that is used to automatically progress an e-Scientist’s conceptual workflow into
a middleware workflow and then through to an enacted workflow upon the
Grid. Our architecture provides for flexible deployment, charging, execution
performance, and reliability. These are addressed both at the specification
level and at the realization and execution levels.

24.1.1 Definitions

We use the term application to denote a composition of components and
services defined using a workflow language. A component is an indivisible unit
of execution in which all the contextual, functional, and behavioral aspects are
made explicit. These include the implemented functional interfaces, behavioral
description (e.g., performance characteristics), resource dependencies, and
runtime requirements. While multiple components might exhibit the same
functional interface, they can be independently implemented, yielding
different behavior [284]. An application therefore consists of a number of
components linked together in a manner that performs the overall task
required by the e-Scientist. Figure 24.1 illustrates a simple application.

Collect

Results

Process

Results

Perform

New

Experiment

Process

Results
View

Results

Figure 24.1: A simple application consisting of components connected into a
workflow.

Without loss of generality, a component may be viewed as an atomic unit
or the composition of a collection of other components — a supercomponent.
These collective components allow lower-level details to be encapsulated and
higher-level functionality to be exposed. In our definition, a component is an
abstract entity that awaits composition by application authors and subsequent
deployment into an execution environment . We make no assumptions in this
work as to the exclusivity of a service on a resource.

24 ICENI 397

A deployed component is referred to as a service. A service is a
realized manifestation of the states and functions provided by the underlying
resource and the component implementation. It presents a standardized and
interoperable set of renderings (e.g., Web services) of the exposed functions.
The definition does not mandate a particular component implementation
architecture. It only requires the use of an interoperable set of protocols (e.g.,
SOAP) and data models (e.g., WSDL, XSD schema). This allows applications
to be composed with both abstract components that need to be provisioned
and anchored services that exist irrespective of the lifetime of the application.
It is the role of the workflow pipeline to realize an application by performing
component implementation selection, resource allocation, deployment, and
orchestration.

We define application execution time as the time required to execute the
application. This is the time from the start of the first component until the
end of the last component. We define workflow pipeline execution time as the
active time spent within the workflow pipeline.

24.1.2 Background

Figure 24.2 illustrates the layers within a workflow pipeline based on the
pipeline developed at the UK Workflow Workshop 2003. Below, we outline
the functionality of each of these layers:

Goal Description

Abstract Workflow

Concrete Workflow

Workflow Enactment

S
e
c
u
rity

Figure 24.2: The layers within the workflow pipeline.

• Goal description. This is the e-Scientist’s conceptual workflow.
• Abstract workflow. The conceptual workflow is mapped down into an

abstract workflow described in terms of its meaning [284] — what each
component will do rather than how it will achieve it — along with how
the components are interconnected, for example, a linear equation solver
taking inputs from an experimental device and sending the results back
to the user.

• Concrete workflow. Each component is matched with specific implement-
ation and resource instances. Data exchange formats are defined and
reservations are made. For example, a Cholesky solver will be used, that

398 McGough et al.

has an interface that takes a matrix of 32 bit integers and calls a method
on an interface that takes an array of 32 bit integers.

• Workflow enactment. The instantiation of this workflow onto the Grid.
The execution of all the components and the coordination of this process.

The model above is too restrictive for use within the Grid. Rarely will
a workflow pass cleanly through these four stages. It may be desirable to
keep parts of the workflow abstract at the same time as others are concrete
(or even enacted). Likewise, parts of the workflow may revert back to
previous states due to the ever-changing conditions within the Grid (resource
failure/availability). Thus our workflow pipeline merges the abstract and
concrete stages into the realized workflow stage and allows parts of the
workflow in the enactment stage to revert back to this new stage. The workflow
may be altered in light of the changing Grid, while executing components may
be migrated in order to better achieve the desired results of both the e-Scientist
and the owners of the resources.

24.1.3 Requirements for an End-To-End Workflow Pipeline

Many coupling frameworks and component-based languages have been
specified for dealing with workflows. Some of the better known ones include
the Bespoke Framework Generator (BFG) [417], Business Process Execution
Language (BPEL) [24], and Abstract Grid Workflow Language (AGWL) [138].
However, although all the works above are very significant in the field,
they do not provide complete solutions for capturing all the requirements
to provide a fully integrated end-to-end pipeline. Here we define the higher-
level functionalities that we are building into ICENI II. Where appropriate,
we are integrating these features into the existing standards, such as BPEL.

• An information-rich environment. Although many component and
workflow models allow for the annotation of components, this tends to
be at the syntactic level. We advocate the collection and use of higher-
level annotation (semantic) information on components and the workflow
language. In previous work [284, 285], we have shown the annotation of
components in terms of meaning, behavior , and implementation, where
multiple implementations may share the same behavior and multiple
behaviors may share the same meaning. This information is key for the
following high-level services.

• Tools for capturing and manipulating the rich annotation. Without
appropriate tooling to achieve the collection of this information, most
component developers will only provide the minimum amount of
information for the component to be valid. We see the development of
such tooling as key to the success of this work.

• Tacit scientific realm annotation. e-Scientists have a vast knowledge of the
scientific realm in which they work. This information can be captured and
used to provide appropriate annotation on the meaning of a workflow.

24 ICENI 399

• Component encapsulation and abstraction. By allowing application
developers to design their applications in terms of meaning, this removes
the implementation tie-in. Applications can be deployed to the most
appropriate set of resources using the most appropriate implementations
— perhaps ones of which the application author was unaware‘ – thus
making the application much more portable.

• Workflow validation. There is little point in attempting to execute a
workflow if it will fail at a later stage due to incorrect construction.
Therefore, the workflow is validated at both the syntactic and semantic
levels before it is executed.

• The use of problem-solving environments. Problem-solving environ-
ments [134] are capable of taking environment-specific information and
using this to reason on the validity of a workflow at both the syntactic
and semantic levels. This may also be used to determine if manipulations
of the workflow will semantically alter its meaning.

• A general coupling framework. At a naive level, components may be
coupled together by defining components with appropriate “in” ports and
“out” ports and binding the appropriate ports. This, however, assumes
that the components are distinct enough and designed to be combined in
this manner. Often, scientific components will have high levels of inter-
dependence and/or generate output that is in an inappropriate format for
direct connections. By using of component annotation, it is possible to
couple components closely together with high levels of interdependence.
Shims (translation components) can also be automatically inserted into
workflows as appropriate.

• Component hierarchies. An application may itself be considered as a
component deployable within a larger workflow as a supercomponent.
Most workflow systems treat these supercomponents as a black box —
all information about the components within the supercomponent and
the workflow description is lost to the higher-level workflow. A proper
rendering of the supercomponent needs to be used within the workflow
language.

• The use of coordinated forms. In order to be complete, we advocate
that the architecture should also support the notion of a coordination
form. In previous related work, Darlington et al. [104], used a
structured coordination language and proposed different functional
skeletons representing different parallel behavior. The skeletons can be
composed to produce a high-level parallel abstract type. We are developing
coordination forms that provide abstractions in component coupling and
especially in the area of scientific model coupling.

24.1.4 ICENI

ICENI (Imperial College e-Science Networked Infrastructure) [283] originated
from the research activities of Professor John Darlington and colleagues in

400 McGough et al.

the 1970s and early 1980s in the development and exploitation of functional
languages. The growth of applied parallel computing activities at Imperial
College demonstrated a fundamental need for a software environment to
enable the use of complex resources by the average scientist. This requirement
became even more apparent with the growth and adoption of Grid computing
within the United Kingdom (a significantly more complex environment than
a single parallel machine) to enable computer-based research — e-research.
The enduring goal of ICENI is to increase the effectiveness and applicability
of high-performance methods and infrastructure across a whole range of
application areas in science, engineering, medicine, industry, commerce, and
society.

Our focus within ICENI therefore has three major elements: prototyping
the services and their interfaces necessary to build service-oriented Grid
middleware; developing an augmented component programming model to
support Grid applications; and exploring the information needed to annotate
the services and software to enable effective decision making about component
placement within a Grid.

ICENI has now had exposure in the wider Grid community for nearly
five years. The GENIE project has used ICENI in order to Grid-enable
their unified Earth System Model, which has allowed them to vastly reduce
their runtime [185]. The e-Protein project is using ICENI to control their
gene annotation workflows [323]. The Immunology Grid project is using
ICENI in areas of molecular medicine and immunology [212]. The RealityGrid
project has used ICENI in order to coordinate the deployment, steering, and
visualization of its workflows [368].

We are currently revising the ICENI architecture, as ICENI II, in light of
our experiences with these projects. The proposed architecture is derived from
our previous work with the ICENI pipeline along with the changing trends
within the wider community. We abide by state-of-the-art software technology
standards. We have adopted Web services as a distributed component
middleware technology, as they have a set of features that are well suited
to our needs.

24.1.5 Related Work

Many groups are developing systems to deal with workflows [490]. Here we
highlight a number of projects that we feel are significant and compare them
with our approach.

The Component Architecture Toolkit [442] shares the common vision
of a component programming model. It follows the Common Component
Architecture (CCA) specification [30], in which components expose a set of
typed “ports.” Components can then be joined to form larger applications
by connecting type-compatible “ports.” The system has been implemented
in both HPC++ [63] and Java. The motivation is to provide a common
set of familiar APIs to component developers so that the underlying

24 ICENI 401

network intricacies can be abstracted. Resource selection in the Component
Architecture Toolkit is tightly coupled with the composition and control tools
and often driven by the end user. The component implementations are not
designed to interoperate.

Triana [408] is an integrated and generic workflow-based graphical
problem-solving environment that handles a range of distributed elements
such as Grid jobs, Web services, and P2P communication. The distributed
components considered by Triana fall into two categories: Grid-oriented and
service-oriented. Furthermore, Triana and the Visual GAT represent explicitly
Grid operations such as job submission and file transfer (by the introduction
and use of “job components” and “file components”). Although Triana can
be integrated with and operate over a range of Grid technologies, such as
resource managers and data management systems, it only focuses on the
implementation of an environment for the specification and execution of a
component workflow. This means that other aspects such as optimization,
interaction with resource managers, and data management systems are not
addressed by the framework.

Taverna [473] is the workflow editor environment for the MyGrid [396]
project. Taverna and the MyGrid middleware are designed for performing in
silico experiments in biology. We see Taverna as a good example of the need
to provide scientific domain-specific environments and as such feel this fits in
well with our specification layer. However, the MyGrid middleware lacks the
facility to perform scheduling; instead, it looks up anchored services that the
user can compose.

Kepler [19] is similar to Taverna, providing a workflow editing environment
with the ability to invoke Web services. Although Kepler provides a useful
way to model workflows, it lacks the ability to adapt these workflows in the
presence of changes in the Grid.

The Virtual Data System (VDS) [29] (formally Chimera) is a set of tools
for expressing, executing, and tracking the results of workflows. VDS aims to
abstract the workflow from the details of implementation, such as file location
and details of the programs to be deployed. As such, VDS fits well with our
notion of abstract workflows that are realized down to executing components
through an automated system.

The Open Grid Services Architecture (OGSA) [325] working group within
Open Grid Forum (OGF) [324] (formally the Global Grid Forum (GGF) [159])
is chartered to define an architecture for the Grid. Although OGSA has yet
to address the issues of workflow fully within its work, there is great synergy
between our work and that of OGSA due to the active participation within
this working group.

In Section 24.2 we present the abstract architecture for our workflow
pipeline followed by a more detailed breakdown of the three levels in Sections
24.3, 24.4 and 24.5. We illustrate how this architecture can be used in
collaborative environments in Section 24.6 before concluding in Section 24.7.

402 McGough et al.

24.2 The Workflow Pipeline

SSpecification

Realization

Execution

Developers and Deployers
Functional Description + Performance

Annotation + Availability

End-users
High-level Abstract Workflow + QoS

Preferences + Security Constraints

Syntactic and Semantic Validation

SStatic Workflow Optimization

DyDynamic Optimization and Scheduling

Equivalent W
orkflow

Candidates

Performance Repository

P
er

fo
rm

an
ce

D
at

a

Perfo
rm

an
ce

Pro
file

s

Discovery

P
2P

/ U
D

D
I

Component and

Resource Availability

Workflow Orchestration and Re-optimization

Concrete Workflow + QoS constraints + Security

constraints

Execution Environment

Component

Component Packaging and

Deployment

M
ak

e
re

se
rv

at
io

n

Virtual Component Container

A
rr
an

ge
s

de
pl

oy
m

en
t

C
o-

or
di

na
te

s

m
es

sa
ge

ex
ch

an
ge

E
nv

iro
nm

en
t

M
on

ito
rin

g

R
e
a
ct

s
to

o
p
p
o
rt
u
n
iti

e
s

a
n
d

fa
ilu

re
s

ServiceServiceService

Figure 24.3: The workflow pipeline.

Here we define the architecture for our workflow pipeline. The stages of
the workflow pipeline can be grouped into three main areas — Specification,
Realization, and Execution (Figure 24.3). Below is an overview of each of the
stages, which are discussed in greater detail in subsequent sections:

Specification: (goal description). This stage deals with the generation of
the workflow: the language used, the representation of the workflow to the e-
Scientist, and how the e-Scientist specifies any requirements on the execution
of the workflow (quality of service). e-Scientists may never see or be aware of
the underlying language of the workflow, nor indeed that they are specifying
a workflow. This stage will produce an abstract workflow.

Realization (abstract and concrete workflows). The aim of this stage
is to thoroughly validate the workflow and then map its elements to
concrete resources and implementations in preparation for execution. This

24 ICENI 403

is a nontrivial process that may be both computationally intensive and time-
consuming. As a result, this stage begins by carrying out various optimizations
to the abstract workflow.

Execution (workflow enactment). This is the execution of the workflow
(or parts of it) on Grid resources. This is not just a process of deploying
component implementations to resources. The execution stage includes
a middleware layer tasked with monitoring the progress of components,
providing an environment (container) in which the components can execute,
and providing functionality to migrate components as appropriate.

24.3 Specification

The specification stage can be seen as the e-Scientists’ opportunity to specify
the application that they wish to achieve. Key concepts in this stage are end-
user programming, workflow reuse, code reuse, and adaptability.

End-user programming. End users are typically not specialists in Grid
computer software or architectures, nor should they be forced to become so.
e-Scientists should be able to specify their requirements in a format directly
applicable to their field of expertise, which is then mapped to the workflow
language. Eres et al. [134] have shown that scientists can develop their ideas
in systems such as Matlab [423], which can then submit this work to the Grid.
Triana [408] shows an example how a well-tailored interface can be used to
assist a bioscientist in using the Grid. This is of course the ideal scenario.
As there are many scientific domains, we cannot hope to develop suitable
specification environments tailored to all. We are instead developing exemplar
environments for the scientific domains with which we are involved, such as
the e-Protein project [106]. Experts in other areas are encouraged to develop
suitable environments. These specification environments are assumed to be as
expressive as a workflow environment, with the ability to edit and manipulate
specifications as well as archive them for future use or editing, thus providing
workflow reuse and adaptability.

Code reuse. There exists much valuable legacy code and numerous software
libraries, many of which are specialized for particular architectures. This
legacy code needs to be wrapped within component technology so that the
e-Scientist can compose it along with new code as part of a workflow.

24.3.1 Workflow Validation

Workflow validation is aimed at reducing the chance that an invalid workflow
will commence on the Grid. It is of no benefit to submit a workflow that
will fail or return incorrect results to the user. By using the rich annotation
information we collect in ICENI, the abstract workflows can be validated
before being submitted to the Grid. At the most simple level, this can be to
check that the workflow can actually be fulfilled at a syntactic level, though

404 McGough et al.

Goal Description

Abstract Workflow

Reliability

(Syntactic) Validation

Model Coupling

Verification

Numerical Methods

Verification

Parallel Code

Verification

Generic Verification

Libraries

Ontologies

Schemas

Knowledge-

Base

T
ra

n
s
la

tio
n

A
b
s
tra

c
tio

n

Figure 24.4: Specification and deployment.

it may also be used in an attempt to ensure that the result of an application
has a valid meaning (semantic level). Figure 24.4 defines some of the layers of
validation that can be performed. We are currently developing [333] a semantic
validation service for the GENIE project [171].

Validation of the workflow starts by checking the syntactic correctness of
the workflow. The workflow will fail if a component that requires an input
on a port cannot receive that input — we assume that data coming out of a
component can be discarded. Any mandatory input port that is not connected
is a syntactic failure, and the workflow is returned as unexecutable. It is also
necessary to check that the output data type at one end of an interconnection
matches the input expected at the other end. Existing “component knowledge”
can also be utilized when testing for syntactic correctness. It may be known
that a specific component outputs a matrix of size x×y, while the component
receiving the input of this matrix requires a matrix of dimensions s× t (where
x
= s or y
= t), again a syntactic failure.

Once a workflow has passed the initial set of syntactic correctness tests,
it can be assumed that it is capable of passing into the scheduling stage.
However, this is no guarantee that it is carrying out the set of tasks that
the composing scientist intended. At the semantic correctness testing stage,
the aim is to use knowledge about common component groupings, sets
of scientific methods that cannot successfully interact, and other domain-
dependent knowledge to diagnose situations where a scientist may have made
an error within his or her workflow definition. This stage may be considered
akin to a grammar checker for component-based e-Science applications.

It is not always possible to perform this stage due to a lack of model
information about the components that are used within the application.

24 ICENI 405

However, significant work has been done with modeling mathematical
operations in order to achieve this result [273].

24.4 Realization

The resources and software implementations now need to be selected before
the workflow can be enacted on the Grid. In the simplest case, components
need only be assigned to resources and implementations. However, to make
the best use of the resources in the Grid and to satisfy the e-Scientist’s
requirements, a process of scheduling (brokering) is employed.

Most scheduling algorithms do not attempt to search the entire problem
space to find the optimal concrete mapping of components or processes
to resources since this is an NP-hard problem. Instead, heuristics are
used to approximate the optimal solution. Our aim is to map component
implementations to resources, forming an execution plan that is efficient, both
in terms of application execution time, and in terms of workflow execution
pipeline time. Not all components need be deployed at the same time: just-
in-time scheduling of components and the use of advanced reservations help
to make more optimal use of the available resources for all users of the Grid.

24.4.1 Resource Discovery

In Grid computing, services are increasingly used to model resources for
e-Science activities. Resources include not only computational systems but
also assets (data storage and instruments) and knowledge (database, advice,
and brokers). The service encapsulation of resources provides a high-level
abstraction of the functional capabilities offered by the visualized resources.
This level of abstraction permits the e-Scientists to focus on the functional
composition of services to create applications, while allowing Grid middleware
to handle the complex mapping and instantiation of software components onto
available resources.

At each stage of the pipeline, user and system actions are guided by
the resource information made available by resources and services. At the
specification phase, users are largely interested in the abstract functional
interfaces of the services available for composition. In the context of Web
services, the functional interface is often described in the Web Services
Description Language (WSDL). Clients can discover services implementing
a particular interface defined in WSDL by the name of the port type.
This syntactic approach limits the query result to an exact match because
WSDL lacks any inheritance model. Services that differ syntactically but offer
equivalent functionality are missed by this mode of discovery.

The Semantic Web technologies and the standardization of ontology
languages such as the Web Ontology Language OWL [331] lay the foundation
for a reasoned approach in logically describing relationships between concepts

406 McGough et al.

and their properties. The development of the OWL-S Ontology [332] is
an effort to model the constituents of a Web service with the OWL
constructs. It consists of the main concepts ServiceProfile, ServiceModel, and
ServiceGrounding. They respectively model the capabilities of a service in
the form of precondition, input, output and effects, a detailed perspective of
how the service operates as a process, and finally the mapping between the
abstract profile and a concrete specification. The semantic service description
augments the syntactic definition of messages defined in a WSDL document
in relation to the constituent parts of the conceptual description.

This ontological approach is far superior to discovering services by the
name of the type. Clients can take advantage of automated reasoners to query
a service registry by the subconcept relationship (e.g., biconjugate gradient is a
specific method for solving linear equations), equivalence (e.g., job submission
services capable of executing the x86 or Intel instruction set), and instance
checking (e.g., is this service a job submission service capable of executing the
x86 instruction set?) The use of semantic information in the discovery process
has been demonstrated in many e-Science exemplars [87, 267]. Although this
approach has many obvious advantages the expressiveness of the language
has the apparent penalty of loss of efficiency due to its computational
complexity. In the realm of the Grid, where knowledge about the services
is vast and distributed, a trade-off between expressiveness, efficiency and
completeness [188] often has to be made. The usability of a modeling language
presents another barrier to using ontologies to describe resources and services.

The ICENI workflow pipeline is agnostic to the mechanisms for information
dissemination and gathering. Information can be stored in a centralized
registry such as a UDDI [430] directory, frequently used in Web services, or
disseminated across a peer-to-peer network [310]. The decision is driven by the
nature of the information, such as frequency of change, natural distribution
across the network, trust and the need for authoritative verification.

In particular for performance optimization, resource information such as
hardware configuration, CPU load, I/O load, available network bandwidth,
memory, and storage are the main parameters for the scheduling decision.
While static information is best suited to be stored and queried from a central
registry, dynamic information that the scheduler might need to build up a
historical profile of the resource is more suited to being delivered in a publish–
subscribe push model.

24.4.2 Static Workflow Optimization

The Static Workflow Optimization service is responsible for pruning and
manipulation of the workflow in order to preoptimize the runtime execution.
Using static information about the components, this service accepts as input
an application’s workflow and produces a preoptimized workflow that is
expected to execute more efficiently in the Grid. This stage performs best when
an abstract workflow describes the components in terms of their meaning.

24 ICENI 407

Here we do not consider the dynamic load on systems within the Grid. The
manipulations that can be performed include:

• Reordering of components. It may be possible to reorder some of the
components within a workflow to improve efficiency.

• Insertion of additional components. This allows translation components
to be added into the workflow to convert the output from one component
into the desired format for the next component.

• Workflow substitution: A workflow may contain a subset of components
that is semantically equivalent to an alternative subset that is known to
be more efficient.

• Pruning redundant components: Workflows, especially those that are
composed from supercomponents, may contain components that serve no
purpose toward the final result. These components can be identified and
removed.

• Component substitution: It may be possible to use information about the
data that will arrive at the component to select the most appropriate
implementation. For example, for a finite-element solver, with an input
matrix that is sparse and diagonally dominant, it would be more
appropriate to select a Conjugate Gradient Solver over a Jacobi Solver.

24.4.3 Prescheduling Runtime Optimization

Using complex scheduling algorithms to attempt to schedule several
components over what may be millions of resources is in itself an NP-hard
problem. By using simple general knowledge about the user, workflow, and
component requirements, we can prune the search space, thus simplifying the
scheduling task. We take the approach that no dynamic resource information
can be considered at this point. Note that this stage is normally performed
through the use of lazy evaluation. The techniques we propose for this stage
are (listed in order):

• Authorization. If a user is not allowed to use a resource or software
implementation it can quickly be removed from the potential search space.

• Hardware/software requirements. This stage is performed by many
brokering and scheduling systems. Resources can be pruned from the tree
if they don’t match the minimum requirements (e.g., processor type).

• Problem-specific requirements. Many components have specific require-
ments (e.g., long execution time without the ability to checkpoint),
thus allowing more resources to be pruned. Daily et al. [103] proposed
that “closeness” of resources be taken into account when communication
between components is significant.

• Out-of-bounds selection: Although a resource may match the minimum
requirements for a component implementation, knowledge about the
intended use may render it inappropriate. For example a 90 MHz Pentium

408 McGough et al.

processor may be able to run a linear solver; however, if the number of
unknowns is large, it can be pruned at this stage.

24.4.4 Workflow-Aware, Performance-Guided Scheduling

ICENI provides a framework for plugable schedulers [488]. Schedulers may
be designed to be workflow aware. This has been implemented within
ICENI [287]. Thus the scheduling of components depends not only on the
performance of a component on a given resource but also on the effect
this will have on the other components in the workflow. Schedulers may
support the notion of just-in-time evaluation, allowing only those components
currently required to be scheduled. Other components in the workflow are left
unscheduled until required. Described below are the general steps taken to
evaluate a suitable mapping of components onto resources.

As the components that make up the abstract workflow only describe the
meaning of what should be carried out (we define this to include the data
flow between components), the first task of the scheduler is to match these
component meanings with component implementations. The scheduler can
speculatively match implementations with resources.

Performance information [288] can be used to obtain estimates on the
execution times for these combinations, the duration of the entire application,
and the time at which each component is expected to begin execution.
Performance data can be used to determine if the application will be able
to meet the quality of service (QoS). The critical path of the application can
also be determined [288]. This will allow greater flexibility for selection of
component implementations and resources for those components not on the
critical path.

Performance estimates along with resource discovery information allow
the scheduler to determine the valid mapping of the components over the
resources. The scheduling algorithm can then select a set of equally optimal
mappings. The predicted component start times for each realized workflow
can then be passed to the reservation system, which responds with a single
realized workflow, including any reservations it was able to make.

Many current Distributed Resource Management (DRM) systems operate
as a simple queue system. This makes the determination of the time when
components will start executing difficult. Previous work has shown that it is
possible to use gathered execution times to predict future execution times.
This can be used as a wrapper around existing DRM systems to help predict
the start time for components on such systems [288]. Hovestadt et al. [199]
propose a system where a planning system on a DRM sets a start time for each
task, which can be used to provide an accurate start time for each component.
The work by Hovestadt may also be used to implement advanced reservations.

Furthermore, as our system monitors the execution of an application as it
progresses, it is able to react to potential problems (and breaches of QoS). It
may determine that a component won’t start execution as planned and may

24 ICENI 409

reselect the resource for deployment, selecting the “best” realized workflow —
as defined by some user-defined criteria — of the factors that are important to
them. This could be based around quickest execution time, cheapest execution
(where resources are priced), or some other metric or combination of metrics.
The techniques for combining these metrics and accurately modeling the
requirements of users, resource owners, and Grid managers are an area of
current research [487].

A number of scheduling algorithms have been developed for use in ICENI.
These include random, best of n random, simulated annealing, and game
theory schedulers [487]. We are currently developing schedulers based around
constraint equations solved by mixed integer linear programming.

24.4.5 Just-in-Time Scheduling/Deployment

In many workflows, it may be beneficial not to map all the components to
resources at the outset. This may be due to the fact that it is not possible to
determine the execution time of a given component until further information
is obtained by running previous components in the application. It may also
be desirable to delay mapping until a later time in order to take advantage
of resources and/or component implementations that may become available
during the lifetime of the workflow.

Full-ahead planning, where all components are assigned to resources at the
outset, tends to be more useful for applications that contain only a critical
path. This is especially important if time constraints are critical.

Certain deployment environments are capable of handling advanced
reservations (see below), in which case the scheduler will allocate a resource
for the component to run on but the deployment of the component will not
happen until the reservation is active.

The information held about a component implementation indicates
whether a component can benefit from just-in-time scheduling and/or
advanced reservations. The scheduler may then decide to ignore these
components for the purpose of mapping. When the rest of the components
are deployed to resources, all components that are not currently mapped to
a resource are instantiated in a virtual space — referred to as the “green
room”. Components in the “green room” are able to communicate with other
instantiated components. The only valid operations that may be called on
components held in the “green room” are those that add configuration data to
the component; any call that requires computation will cause the component
to be scheduled.

Scheduling of components contained in the “green room” can be triggered
by one of two events. If a component already running tries to communicate
with a component in the “green room” with more than a configuration call,
then the component will trigger a scheduling operation. Alternatively, the
scheduler, which is aware of the time when a component should be required,
can preemptively start scheduling so that the component is made real (just)

410 McGough et al.

before it is required. Components that hold advanced reservations will remain
in the “green room” until the start of their reservation slot. At this time, the
components will be deployed onto the resource that contains the reservation.

As multiple components may exist on the same resource at any given time,
it is always possible to select a resource on which the component may be
deployed. If only resources that are available through queues are available, or
time is required to deploy the component, then any data sent to the component
are buffered during this period. However, it should be noted that these two
circumstances should arise infrequently, as this time lag to deployment should
have been predicted during the planning stage and the component realized
before this point.

24.4.6 Advanced Reservations

Due to the uncertainties of resource and network availability in a dynamic
system such as the Grid, it is necessary to support advanced reservations
to provide QoS guarantees. Reservations may be made on computational
resources, storage resources, instruments, or the underlying fabric of the
Internet, such as network links. The reservations may be made for exclusive
use of the entity or, in some cases, some pre-agreed proportion of it, although
currently few deployment systems support advanced reservations.

It should be noted that not all components require reservations, nor do
all resources provide reservations. However, component-resource pairings are
only selected without reservations if time constraints are not critical for the
application or the components without reservations are considered distinct
enough from the critical path as not to affect it. These components are
monitored during the life cycle of the application in order to ensure that
they don’t become a problem for the overall application.

Although many DRM systems currently don’t support reservations, a
number of techniques exist to “simulate” the same effect. These include the
launching of fake jobs that are submitted to the queue prior to the reservation
time, taking possession of the resource prior to the start of the reservation
period. There is a trade-off here between the utilization of the resource and the
ability to guarantee the reservation. Taking possession too early will prevent
other jobs from running, while releasing a possession a long time before the
reservation time may be wrong if it proves to be impossible to obtain another
possession before the reservation interval.

24.5 Execution Environment

At the end of the optimization stage, the abstract workflow (or subworkflows)
presented by the user is transformed into a concrete workflow where the
software selection and resource arrangement decisions have been made. This
decision might be revoked when opportunity or failure arises in which some

24 ICENI 411

Hardware

Operating System

Virtualised Operating System

Service Container

Service Service

Component

Deployment Service

Workflow Pipeline

Prepares

Instantiates

Inter-service
communication abstraction

deploystransfers monitors

Figure 24.5: Execution environment and multi-level visualization.

parts of the application shall be relocated for efficiency reasons or as a means
of recovery. Moreover, parts of the application can be instantiated in a just-in-
time fashion according to the temporal analysis performed in the optimization
stage. The tentative resource allocation decision of those components can be
refined while the application is executing.

The execution environment represents the visualization of the resource
that manages the life cycle of the parts of an application (Figure 24.5). The
execution environment encapsulates the facilities available to the software
component, such as intercomponent communication, logging, monitoring,
failure recovery, checkpointing, and migration. These facilities are exposed
to the software component through a set of abstract APIs. These abstractions
allow the execution environments managing the parts of an application
to co-operate and coordinate their runtime capabilities, such as network
transport, colocation, and shared file system. Software engineers developing
the components are insulated from the implementation choice made by the
optimization stage by following the software patterns offered by the APIs.
This is analogous to the MPI [179] abstraction for message-passing in parallel
applications.

The software component instantiated in the execution environment is
referred to as a service. We adopt Web services as one view of the running
software component. It is an ideal way for services on different physical
resources to communicate with each other in an interoperable manner. The
elements in the execution environment will be discussed in more detail.

412 McGough et al.

24.5.1 Component Deployment

The ICENI deployment service is the gateway to a computational resource.
It is responsible for facilitating the provisioning and instantiation of a
component assigned to a particular resource. First, the deployment service
prepares the execution environment. This might involve the preparation of a
component container in a cluster resource. Recent advances in visualization
technologies [38,433] offer visualization at the operating system level. Within
the visualized operating system, a component container provides the higher-
level abstraction to the software component on top of the operating system
facilities. The compartment model offers attractive features such as security
and fault isolation. Multilevel visualization allows runtime facilities to be
flexibly configured depending on the deployment requests [388]. Although
visualization provides a sandbox environment in which a component can
execute seemingly exclusively, the cost in instantiating the container on-
demand [235] may be too high for short-running components. Predictive
instantiation might alleviate the setup cost by allocating resources in advance.

Once an execution environment is available, the deployment service
will facilitate the provision of the software component onto the resource.
This might involve the staging of software packages and their dependencies
available remotely into the system. In order for this architecture to succeed
across the Grid, a standardized interface for deployment and a language for
software requirement description are essential. This reduces the need for users
and software agents to understand a large number of description languages
and deployment mechanisms to exploit a variety of Grid resources.

The Job Submission Description Language (JSDL) [227] is being defined in
the Open Grid Forum (OGF) [324]. Although currently focused on describing
deployment of a traditional POSIX application, an extension has been
proposed for describing software components for Java enterprize compliant
containers and others. Configuration Description, Deployment and Lifecycle
Management (CDDLM) [86] is another standard effort focusing on the generic
description and life cycle control of components.

An ICENI component can utilize the GridSAM job submission service
[251,418] exposed through an interface provided by the execution environment
for launching legacy software in the form of a POSIX application. We
have developed tools to generate ICENI components from a description
of the POSIX application expressed in a template JSDL document. These
components can therefore expose an application-specific Web service interface
that can take part in the Web service workflow orchestration while hiding the
legacy details. Previous related work (Furmento et al. [94]) has shown how
legacy code can be wrapped up as components using automated tools and
then used within a workflow.

24 ICENI 413

24.5.2 Checkpointing and Migration

Checkpointing is a technique for preserving the state of a process in order
to reconstruct it at a later date. It is a crucial element for providing fault
recovery from a saved state. In scientific applications, checkpointing provides
a means for long-running simulations to be restarted at a previously examined
parameter space [90]. This is also an important means for migrating the state
of a process to another execution environment. An execution environment that
provides checkpoint facility allows ICENI to reschedule and migrate a running
application when the opportunity arises based on the monitoring information
collected at runtime. In addition, migration can be initiated by a user wishing
to steer an application according to performance and colocation concerns,
typical in a simulation involving collaborative visualization [89,355].

ICENI acts as a management layer on top of checkpointing and migration
systems such as OpenMosix [424], OpenSSI [425], and Kerrighed [422].
It is worth pointing out that not all components can be checkpointed.
Checkpointing and migration schemes can be classified into three broad
categories. The generality of the approaches increases from one technique to
the next. Application-level checkpointing might be initiated by the application
itself through a checkpointing and migration API. This provides fine-grain
control to the developer to save the states of the application at a critical
moment of the execution; however, it requires that existing applications be
modified to take advantage of the functionality. Existing executables could
also be made checkpointable by linking to checkpoint libraries that capture
running stack, heap, and program counter information in order to reconstruct
the process remotely. This solution produces a checkpoint image that is rarely
portable and complete because network sockets or file handles are inherently
difficult to reconstruct. The system-level checkpointing provided by many
virtual machine technologies allows the whole visualized environment to be
checkpointed. This provides a generic solution for most cases, but its coarse
nature means the checkpoint image can be very large.

24.5.3 Resource Charging

The true vision of the type of Grid that ICENI is designed to support is that
of a large number of resources owned by many different organizations and
available to execute code for anyone with access to the Grid. Work such as
that carried out in the UK e-Science project A Market for Computational
Services [263] is under way to develop frameworks to support programmatic
charging and negotiation for Web services [95]. Once components of an
application execute on a resource, the resource owner may wish to charge
the job owner a fee for access to the resource. Given that an application may
have large numbers of components executing on many different resources, a
secure, programmatic means of transferring funds from the job owner to each
of the resource owners is required. We are merging the ideas from the Market

414 McGough et al.

for Computational Services project and ICENI II to support transparent
programmatic charging for resource usage, enhancing the appeal of cross-
organizational usage for resource owners.

24.6 Application Interaction

Once execution of a workflow begins, output may be produced. This output
needs to be managed according to the requirements of the application owner.
It may be that the executing application simply writes out results to a file
and, after execution completes, the file is returned to a location decided
by the application owner. With a large Grid of computational and storage
resources, the location where the output is stored may be crucial to ensure
that the computation runs efficiently and that results can be returned in
a reasonable time. If the computation is set to run on a high-performance
resource but subsequent transmission of the results takes twice as long as the
computation itself due to congested networking, overall throughput may have
been increased by carrying out the computation on a slower resource that
would allow more efficient return of the results. More complex computations
may need to be visualized during execution and possibly steered, raising other
complex issues.

24.7 Conclusion

Through the presentation of a complete workflow pipeline encompassing
specification, optimization, and execution, we have discussed many issues that
arise in the complex process of generating and running a Grid application.

We see that e-Scientists have a requirement for large, complex workflows.
Given this complexity, realizing these applications in a heterogeneous Grid
environment is an inherently difficult task. To make this process transparent to
the end user, we define a series of stages that separate the concerns of using this
pipeline. By providing intelligence at each stage, through the manipulation of
rich component information, we help reduce the effort required in subsequent
pipeline stages.

One of the main aims of the workflow pipeline is to reduce application
execution time. This is partly achieved by selecting appropriate component
implementations and resources on which to deploy the parts of the workflow.
This on its own is insufficient to ensure an optimal execution and thus
other information needs to be taken into account such as the workflow,
the interdependencies between the components, network performance, and
reliability. This all needs to be monitored and acted upon to ensure that
the QoS constraints imposed by the user are not violated and to take
advantage of other opportunities that may arise. However, there is a trade-off
between application execution time and workflow pipeline execution time. It

24 ICENI 415

may be possible to spend more time tweaking out more optimal component
placements/selections, though this may end up taking more time than is saved.
This trade-off is necessary to ensure that the overall throughput is maximized.

Many of the ideas presented in this chapter have developed from our work
on the ICENI architecture. In light of our experiences with ICENI and the
emergence of several new use cases, we have developed the full, expanded
pipeline described in this chapter. This work is now feeding into our ICENI
II implementation.

25

Expressing Workflow in the Cactus Framework

Tom Goodale

25.1 Introduction

The Cactus Framework [15, 73, 167] is an open-source, modular, portable,
programming environment for collaborative HPC computing. It was designed
and written specifically to enable scientists and engineers to perform the
large-scale simulations needed for their science. From the outset, Cactus
has followed two fundamental tenets: respecting user needs and embracing
new technologies. The framework and its associated components must be
driven from the beginning by user requirements. This has been achieved
by developing, supporting, and listening to a large user base. Among
these needs are ease of use, portability, the ability to support large and
geographically diverse collaborations and to handle enormous computing
resources, visualization, file IO, and data management. It must also support
the inclusion of legacy code, as well as a range of programming languages. It is
essential that any living framework be able to incorporate new and developing
cutting edge computation technologies and infrastructure, with minimal or no
disruption to its user base. Cactus is now associated with many computational
science research projects, particularly in visualization, data management, and
Grid computing [14].

Cactus has a generic parallel computational toolkit with components
providing, e.g., parallel drivers, coordinates, boundary conditions, elliptic
solvers, interpolators, reduction operators, and efficient I/O in different
data formats. Generic interfaces are used (e.g., an abstract elliptic solver
API), making it possible to develop improved components that are
immediately available to the user community. Cactus is used by numerous
application communities internationally, including numerical relativity e.g.
[26], climate modeling [118,404], astrophysics [32], biological computing [211],
computational fluid dynamics (CFD) [239], and chemical engineering [74]. It
is a driving framework for many computing projects, particularly in Grid
computing (e.g., GrADS [12], GridLab [175], GriKSL [176], ASC [32, 57]).

25 Expressing Workflow in the Cactus Framework 417

Also, due to its wide use and modular nature, Cactus is geared to play a
central role in general dynamic infrastructures.

Although Cactus is distributed with a unigrid MPI parallel driver, codes
developed in it can also already use multiple adaptive mesh-refinement drivers
with minimal or no changes to the code, including Carpet [80, 380], PAGH
GrACE [170]), and SAMRAI [282,375].

25.2 Structure

As with most frameworks, the Cactus code base is structured as a central
part, called the “flesh” which provides core routines and components called
“thorns” .

The flesh is independent of all thorns and provides the main program,
which parses the parameters and activates the appropriate thorns, passing
control to thorns as required. It contains utility routines that may be used
by thorns to determine information about variables and which thorns are
compiled in or active, or perform non-thorn-specific tasks. By itself, the flesh
does very little apart from move memory around; to do any computational
task the user must compile in thorns and activate them at runtime.

A thorn is the basic working component within Cactus.1 All user-supplied
code goes into thorns, which are, by and large, independent of each other.
Thorns communicate with each other via calls to the flesh API plus, more
rarely, custom APIs of other thorns. The Cactus component model is based
upon tightly coupled subroutines working successively on the same data,
although recent changes have broadened this to allow some element of spatial
workflow.

The connection from a thorn to the flesh or to other thorns is specified in
configuration files that are parsed at compile time and used to generate glue
code that encapsulates the external appearance of a thorn. Two thorns with
identical public interfaces defined in this way are equivalent.

At runtime, the executable reads a parameter file that details which thorns
are to be active, rather than merely compiled in, and specifies values for the
control parameters for these thorns. Inactive thorns have no effect on the code
execution. The main program flow is shown in Figure 25.1.

25.3 Basic Workflow in Cactus

In most existing workflow systems component composition is achieved by
specifying the components and their connections in some workflow language or

1 Thorns are organized into logical units referred to as “arrangements.” Once the
code is built, these have no further meaning — they are used to group thorns into
collections on disk according to function, developer, or source.

418 Tom Goodale

Figure 25.1: The main flow of control in the Cactus framework. The
flesh initializes the code and then hands control to the driver thorn (see
Section 25.3.2). The actions in the driver swimlane are detailed in Figures
25.2, 25.3, and 25.4.

through a graphical user interface, a paradigm familiar to most users. Cactus
component composition however, is a function of the flesh, guided by rules
laid down by developers when they develop their thorns.

Cactus defines a set of coarse scheduling bins, as shown in Figures 25.1–
25.41; routines from a thorn are scheduled to run in one of these bins relative
to the times when other routines from this thorn or other thorns are run.
The thorn author may also schedule groups within which routines may be

1 Future versions of Cactus will allow thorns to specify additional top-level
scheduling bins.

25 Expressing Workflow in the Cactus Framework 419

scheduled; these groups are then scheduled themselves at time bins or within
schedule groups analogously to routines.

Figure 25.2: Initialization action diagram (corresponding to the initialize
simulation action in Figure 25.1). All activities prefixed with “CCTK ” are
schedule bins (see Section 25.3).

Routines (or schedule groups — for scheduling purposes they are the same)
scheduled from thorns may be scheduled before or after other routines from
the same or other thorns and while some condition is true. In order to keep
the modularity, routines may be given an alias when they are scheduled,
thus allowing all thorns providing the same implementation to schedule their
own routine with a common name. Routines may also be scheduled with
respect to routines that do not exist, thus allowing scheduling against routines
from thorns or implementations that may not be active in all simulations.
Additionally, the schedule.ccl file may include if statements which only
register routines with the scheduler if some condition involving parameters is
true.

Once all the routines have been registered with the scheduler, the before
and after specifications form a directed acyclic graph, and a topological sort
is carried out. Currently this is only done once, after all the thorns for this
simulation have been activated and their parameters parsed.

420 Tom Goodale

CCTK_Checkpoint

CCTK_PreStep

CCTK_Evol

CCTK_PostStep

CCTK_Analysis

Check Termination
Condition

Output Data

[Simulation Over]

[Continue Simulation]

Update Time
and

Rotate Timelevels

Figure 25.3: Evolution action diagram (corresponding to the evolve simulation
action in Figure 25.1). All activities prefixed with “CCTK ” are schedule bins
(see Section 25.3).

CCTK_Terminate CCTK_Shutdown

Figure 25.4: Termination action diagram (corresponding to the terminate
simulation action in Figure 25.1). All activities prefixed with “CCTK ” are
schedule bins (see Section 25.3).

This scheduling mechanism is rule-based as opposed to script-based. There
are plans to allow scripting as well; see Section 25.4.3 for further discussion
of this.

25.3.1 Conditional Scheduling and Looping

The scheduling of routines may currently be made conditional by two methods:
at schedule creation time based on parameters having certain values, using if
statements in the CCL (Cactus Configuration Language) file; and at schedule
execution time by use of a while statement. More sophisticated flow control
will be possible in the future.

An if clause in the schedule specification controls whether a routine
is registered with the scheduler for running at any point. These ifs are
based upon algebraic combinations of the configuration parameters read in
at program startup and thus are only evaluated once.

The while specification allows for a degree of dynamic control and looping
within the schedule, based upon situations in the simulation, and allows
looping. A routine may be scheduled to run while a particular integer grid

25 Expressing Workflow in the Cactus Framework 421

scalar is nonzero. On exit from the routine this variable is checked and if
still true, the routine is run again. This is particularly useful for multistage
time integration methods, such as the method of lines, which may schedule a
schedule group in this manner.

25.3.2 Memory Management

The language (CCL) used to define the scheduling also defines the variables
passed between the routines invoked by the scheduler. This allows memory and
parallelization to be managed by a central component (the driver) and also
provides support for legacy codes written in languages, such as FORTRAN
77, that lack dynamic memory support.

When scheduling routines, the developer specifies which variables require
memory allocated during the course of a particular routine. Memory for
variables may be allocated throughout the course of the simulation or just
during the execution of a particular scheduled routine or schedule group;
specifying memory just for a group has no effect if the memory was already
allocated for that variable.

25.3.3 Spatial Workflow

Thorn authors may define specific functions that they provide to other thorns
or expect other thorns to provide. This provides an aliasing mechanism
whereby many thorns may provide a function that may be called by another
thorn with a particular name, with the choice of which one is actually called
being deferred until runtime.

A thorn using such a function may state that it requires the presence of
the function or that this function is optional. If it is required, the flesh will
produce an error and stop code execution after all thorns have been activated
if none of the activated thorns provides the function; if it is optional, the thorn
using it must make its own check before calling the function.

25.4 Extensions

Cactus defines a basic scheduling mechanism for tightly coupled simulations.
It is, however, possible to use Cactus in more loosely coupled situations. This
section describes two such applications: large-scale distributed task farming
and the use of Cactus within other frameworks.

25.4.1 Task Farming

Many problems are amenable to a task farming approach, whereby a
large number of independent tasks are started and their results collated;

422 Tom Goodale

e.g. Monte Carlo simulations and parameter searches. The Cactus task
farming infrastructure allows many independent processes to be started
across a heterogeneous set of resources; these processes need not be Cactus
applications.

In order to deal efficiently with startup costs on remote resources, such as
security and batch queues, the Cactus task farming infrastructure makes use
of a three-level approach, in contrast with a classical master–slave two-level
approach. The user starts a Task Farm Manager (TFM) on a machine that has
good connectivity to the outside world, or at least to the potential resources,
and this TFM then finds resources and starts slave TFMs (e.g., by submitting
to a batch queue) on the resources; in principle, this can be repeated, so we
number the generation of TFMs—TFM0 is the master, TFM1s are the first-
generation child TFMs, etc. When a TFM1 starts, it contacts the TFM0 and
requests tasks, based upon the resources it has allocated to it. For example
we may wish to run 500 two-processor tasks. The TFM finds two resources
— a 100 processor queue on one machine (A) and a 400 processor queue on
another machine (B) — and queues TFM1s for these machines. When the
TFM1 on machine A starts, it requests 50 tasks from the TFM0.

A TFM is just a running instance of Cactus containing two particular
components: a core TFM thorn providing the application-independent part of
the task farming, such as choosing resources and starting child TFMs or tasks
themselves, and an application-specific part, referred to as a logic manager,
which provides the application-specific information. Figure 25.5 shows the
logical relationship of the thorns and shows the interface that a logic manager
must expose to the TFM:

Figure 25.5: The “classes” making up a Task Farm Manager. SWLM and
BHLM are application specific logic managers.

25 Expressing Workflow in the Cactus Framework 423

• MinTasks. Returns the minimum number of tasks that must be run
simultaneously. For many applications, this would be 1; however for
applications where tasks exchange data between them, such as a
distributed Smith–Waterman algorithm, a larger number is necessary.

• DesiredTasks. In an ideal world, it would be possible to specify the
maximum number of tasks that will be run, search for the required
resources, and run them all simultaneously; in practice, however, there
are not infinite resources, and, for a guided parameter search, the
number may not be known in advance. This function returns the
application’s (or application programmers’) best guess for reasonable
resource requirements.

• TaskRequirements. This function returns the number of processors and
amount of memory required by each task.

• GetInputFiles. Given a task ID, this function returns the command-line
arguments for starting the task and a list of URLs of files that must be
staged to the task’s working directory before it starts.

• GetMoreTasks. The TFM uses this to retrieve more task IDs from the
logic manager whenever tasks finish.

• StartTask. Some tasks require to be started up in special ways (e.g., using
mpirun); this function allows the logic manager to customize the startup.
This is invoked on the TFM1.

The first three functions are used by the TFM0 to determine the
characteristics of the tasks before searching for resources; GetMoreTasks and
GetInputFiles are used by the TFM0 whenever a TFM1 requests more tasks;
and StartTask is used by the TFM1 to start individual tasks. See Figure
25.6 for a diagram showing the interaction sequence of the various thorns and
processes.

25.4.2 Connection to Other Frameworks

The Cactus framework is designed around the needs of tightly coupled, high-
performance simulations. The majority of the other frameworks included in
this book deal with large-scale distributed workflows, and Cactus can easily
be integrated as a component within such a workflow.

Triana

Within Cactus, users typically want to view or analyze certain files to monitor
the progress of the application or derive scientific results. Cactus can output
data in many formats, such as HDF 5 files, JPEGs, and ASCII formats suitable
for visualising with common tools such as X-Graph or GNUPlot. A user would
typically want the flexibility of being able to choose, at runtime, the files he
or she wishes to view or analyze in an interactive fashion. For example, a user
may notice from the JPEG images that a simulation of a system consisting

424 Tom Goodale

Figure 25.6: The sequence of actions performed in the startup of an
application using the Cactus task farming infrastructure.

of two orbiting sources is showing the sources coalescing; this user may then
wish to verify these findings by retrieving the detailed simulation data and
passing them to other analysis tools or even converting the output to an audio
format and listening to the acoustic waveform directly. Our protocol therefore
supports the dynamic notification necessary for such interactions. When a file
is created, the Web service deployed within a Triana unit is notified, and at
each time step, the Web service is contacted and can choose to receive any of
the files that are available. By default, the application only sends differences
in text files since the last time the Web service received part of the file, thus
reducing bandwidth; binary files are transferred in their entirety. If something
interesting happens, the Web service can select and receive a different set of
files in the next iteration.

This is aided by the use of the Triana problem-solving environment, which
allows components to be dynamically added/removed as the application runs.
Within Triana, a unit was created to host the Web service representing the
underlying protocol. This is shown in Figure 25.7. The unit upon initialization
uses WSPeer [187] to dynamically create and deploy the Web service within
the Axis environment and create the necessary WSDL file representing the
methods within the protocol. The actual protocol is quite simple. It involves
a notification and selection procedure but is carefully designed so that it is
completely application (i.e., Cactus) driven. This ensures that we do not run
into firewall issues.

25 Expressing Workflow in the Cactus Framework 425

In our initial development, Triana and the Cactus application are deployed
and instantiated independently, which is a useful model for occasional
monitoring of an application’s progress, as it allows a user to make a later
decision to use Triana to monitor the output. In the full usage scenario we
envisage, however, a Triana unit would also be used to deploy Cactus on a
remote resource on demand, thus allowing Triana to manage the full life cycle
of the workflow, as is done in other workflow management systems.

In this current stage of deployment, we are using one Cactus Triana unit
per Cactus instance running on the Grid. This approach is not scalable in the
visual sense (e.g., imagine trying to visualise several thousand Triana units) or
in the networking sense (e.g. having thousands of local instances of the same
Web service would be impractical for hosting environments). To address these
issues, we are currently planning on building a scalable Cactus unit that allows
many instances to be mapped internally within one Web service instance. We
imagine that this would build around the Triana dynamic scripting or looping
implementation (to hide the visual complexity) and then such instances would
be mapped using proxies to a Cactus Triana unit instance for that script or
loop. This would allow the connection of possibly hundreds of instances.

If more instances are needed, then we can use the Triana distributed
mechanisms [408] to segregate the workflow and run it across several Triana
GAP services across the Grid, allowing potentially many thousands of
instances. However, the algorithmic problem of how these results are analyzed
would be application-specific. Within one scenario involving Cactus, we
imagine that Triana would be monitoring the output of its results to see
if something interesting had happened (e.g., the apparent horizon of a black
hole simulation). Then Triana would invoke a separate workflow to farm off
many independent Cactus simulations to investigate this phenomenon more
closely and then analyse the results upon completion. The user would only
wish to view when a certain optimization level has been reached.

A prototype of this protocol has been demonstrated in SC2004 and
SC2005, where we showed the visualisation of a 3D scalar field produced by
two orbiting sources. This was accomplished by using this protocol to connect
a Cactus simulation, running on an HPC resource, and Triana, running on a
users workstation. Triana received notifications of the files created by Cactus
and then selected the ones it wished to visualize. The result was that the user
could see real-time JPEG images from the remote application, representing
the three dimensions of the scalar field, as the simulation progressed.

25.4.3 Future Directions

Another enhancement would be to allow scripting as an alternative to the
current scheduling mechanism. The current mechanism allows thorns to inter-
operate and for simulations to be performed with the logic of when things
happen encapsulated in the schedule CCL file; other frameworks do the same
thing by providing a scripting interface, which gives more complete control

426 Tom Goodale

Figure 25.7: The resulting visualization from a Cactus simulation of the
evolutions of a 3D scalar field.

of the flow of execution, at the expense of the user needing to know more of
the internals. Both schemes have advantages and disadvantages. In the future
we would like to allow users to script operations using Perl, Python, or other
scripting languages.

Automated Composition of Workflows

While in Cactus composition of workflow currently consists of activating
the requisite thorns, as the size and complexity of workflows increase it
may becomes difficult or impossible for a human to create the workflow
explicitly. Future versions of Cactus will address this problem by providing
components with semantic information that can be used to automatically
compose workflows and allow automated recomposition to be triggered on
demand. We plan to provide the ability to take a set of software components
and a task specification and determine the appropriate composition and
configuration of these components.

Distributed Component Level Debugging

Debugging large distributed applications is hard. On single systems or clusters,
tools such as TotalView [136] are very useful; however, these do not scale well

25 Expressing Workflow in the Cactus Framework 427

to the wide-area heterogeneous component-based simulations currently being
developed. There are currently plans to develop the component interfaces in
Cactus to allow single stepping at the component level and tracing data flow
into and out of components, and to add features to allow debugging through
familiar mechanisms, such as breakpoints, trace variables, stepping through
workflows, or even dynamically reconfiguring workflows.

26

Sedna: A BPEL-Based Environment for Visual
Scientific Workflow Modeling

Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron,
Liang Chen, and Jignesh Patel

26.1 Introduction

Scientific Grid computing environments are increasingly adopting the Open
Grid Services Architecture (OGSA), which is a service-oriented architecture
for Grids. With the proliferation of OGSA, Grids effectively consist of a
collection of Grid services, Web services with certain extensions providing
additional support for state and life cycle management. Hence, the need arises
for some means of composing these basic services into larger workflows in order
to, for example, express a scientific experiment.

There are several approaches for composing Web services into larger
workflows, most of which, at least for the composition of scientific workflows,
are based on custom-made workflow languages and corresponding enactment
environments. Another approach, which we have taken in our work, is to use an
industry standard for the orchestration of Web services, such as the Business
Process Execution Language (BPEL) [24].

BPEL, which has been introduced by IBM and Microsoft, makes a
number of benefits available to scientific Grid computing. The host of
commercial providers supporting BPEL means that there are industrial-
strength enactment environments and middleware technologies available that
exhibit a level of scalability and reliability that a research prototype could not
match. The multitude of providers supporting BPEL creates a market, which
means that it is a live standard with ongoing efforts to develop new features.
Furthermore, BPEL could serve as a standard representation for scientific
workflows and hence aid reproducibility. Finally, as a programming language
that focuses on high-level state transitions, it could enable computational
scientists to compose scientific workflows themselves, relieving them of a
dependence on software engineers.

In our work, we have been investigating the applicability of BPEL for the
expression of scientific workflows. We have established in a companion paper
that freely available BPEL enactment environments satisfy the scalability and

26 Sedna 429

reliability requirements of scientific workflows and that the language itself is
sufficiently expressive [132].

There are still a number of questions that need to be answered and certain
obstacles that need to be overcome, before being able to make the benefits
of BPEL available to computational scientists. First, as BPEL is primarily
targeted at business workflows, in which respects are its abstractions lacking
expressiveness for scientific workflows, and how can such shortcomings be
overcome? Second, considering that our target group cannot be expected
to have expert knowledge of distributed systems and software engineering
and given that BPEL relies on a number of XML-based standards such as
Web Services Description Language (WSDL), Simple Object Access Protocol
(SOAP), and XPath, how can we simplify the modeling of workflows?

In order to address these issues, we have developed a visual language and
a visual modeling environment. The language provides language abstractions
in addition to those found in BPEL in order to simplify the modeling
of scientific workflows. We identified the need for these abstractions and
subsequently their value during a case study with computational chemistry
experiments. Our visual language is made accessible via a visual modeling
environment, that, through a number of usability features, hides the
complexity of the underlying orchestration language and middleware. The
modeling environment furthermore ensures the compliance of workflows to
the BPEL specification to enable scientists to execute their experiments on a
host of available enactment engines. The combination of additional language
abstractions and adequate tool support is what enables us to fully return
ownership of workflows to scientists while retaining the benefits BPEL has to
offer.

This chapter presents our work on solving these questions. In Section 26.2,
we are going to introduce our visual representation of BPEL and a number
of additional language abstractions aimed at simplifying the modeling of
scientific workflows. Section 26.3 then explains the need for tool support,
the requirements such tools need to be able to satisfy in order to hide the
complexity inherent in BPEL and the distribution middleware involved, and
finally discusses how our modeling environment attempts to provide the
features necessary to support computational scientists. In Section 26.4, we
then discuss a case study we have carried out in order to demonstrate the
use of our environment for modeling and executing a nontrivial scientific
workflow. Section 26.5 situates our work within the range of existing tools
and approaches. Finally, in Section 26.6, we reflect on our experience with
BPEL so far and present a list of future work to improve the usefulness of our
modeling environment.

430 Wassermann et al.

26.2 Modeling Scientific Workflows

There are a number of obstacles to the use of BPEL by computational
scientists. The first issue is that BPEL’s XML syntax is rather verbose.
Furthermore, the parameters that need to be configured for BPEL activities
are not always trivial in their semantics. Providing a visual language for BPEL
is an obvious choice to improve the productivity of BPEL programmers and
has been taken up by a number of commercial products. However, simply
providing a one-to-one mapping between BPEL and a visual representation
may still cause non-expert users to be overwhelmed. The second issue arises
from the fact that BPEL was originally defined for business workflows. These
generally are less complex than scientific workflows. Business workflows also
do not, in general, exhibit the need for concurrent execution of a large number
of processes.

Figure 26.1 presents an overview of our solution to these issues. The
lowest level is standard BPEL, which we represent in a visual language
that also provides a number of usability features. These features are,
in general, split among the visual language itself and the tool support
providing access to the language. The level above represents the Scientific
Process Execution Language (PEL), which adds general-purpose language
abstractions to increase BPEL’s expressiveness for scientific workflows. The
Domain PEL layer allows domain-specific abstractions, which can be added
by users of our environment in order to extend the available vocabulary
with abstractions closer to their respective domains. Workflows are then
constructed that make use of abstractions from any of these layers.

Sedna Workflow

Domain PEL

Scientific PEL

BPEL 1.1

Figure 26.1: Extension of standard BPEL through additional general-purpose
abstractions (Scientific PEL layer) and by allowing domain-specific extensions
(Domain PEL layer).

26.2.1 Scientific Versus Business Workflows

It is important to be aware of and give due consideration to the differences
between business and scientific workflows, as the application domain area
influences the abstractions available in BPEL.

26 Sedna 431

The most notable difference is probably one of scale. When compared
with scientific workflows, business workflows usually define a relatively small
number of BPEL partners with whom they interact. Scientific workflows may
involve thousands of service instances that will need to be modeled as partners.
Furthermore, scientific workflows will often execute thousands of basic service
invocations and, consequently, send tens of thousands of SOAP messages to
be exchanged among service partners. Business workflows, in the majority of
instances, operate on a smaller scale.

Another difference relates to the modeling requirements of parallel
execution in scientific workflows. Scientific workflows apply complex
computational models that generate large amounts of data and then analyze
these data. Therefore, such workflows contain large numbers of independent
sub-workflows that may be executed concurrently; for example, to run models
concurrently and to filter and extract data resulting from an experiment.
Business workflows do not usually display massively parallel execution of very
similar subworkflows on such a scale.

A related consideration is caused by the fact that e-Science [311]
applications generate massive amounts of data and then need to analyze
these data in successive steps. Consequently, powerful and flexible data-
manipulation primitives are of utmost importance. Again, the amounts of data
that need to be handled in business workflows will, in general, be smaller.

A noteworthy difference to consider is the nature of what finds expression
in a workflow. A scientific workflow represents an experiment that is likely to
be run only a limited number of times before new ideas and insights will need
to be incorporated. Frequent changes and redeployment need to be supported
and made simple. A business workflow captures a set of activities and their
relationships in order to describe a business process. The overall aim is to be
able to automate this process and execute it repeatedly over possibly long
periods of time.

There is a gap between what BPEL aims to provide and what is required
by scientific workflows. The next two sections demonstrate how we close this
gap through a suitable visual language and additional language abstractions.

26.2.2 Visual Representation of BPEL

Our visual modeling environment provides meaningful interaction with the
visual representation while guiding the user with numerous usability features.
However, there are a few issues worth considering that are independent from
the integration of modeling language and tool support.

The main issue by which our efforts have been driven is how to take account
of the large scale of scientific workflows. A useful visual representation of
BPEL for the purpose of expressing large-scale scientific experiments needs
to provide abstractions that can help make this complexity manageable.
Furthermore, we do not want to define a visual language that would require
both BPEL novices and BPEL experts to learn the notation. Users with

432 Wassermann et al.

existing knowledge of BPEL should be able to benefit from this knowledge and
only have to learn how to use the additional features of a visual representation.
This means that we could not base our representation on a language such
as, for example, UML class diagrams, as this would have neither given us
the means to address issues of scale and complexity adequately nor would it
have preserved previously acquired knowledge of BPEL by a user. Figure 26.2
shows an extract of an example workflow using our notation. Our visual
representation is split into three parts: the basic BPEL activities, the complex
BPEL activities, and a representation of our additional language abstractions,
which will be discussed in the next section.

Figure 26.2: Extract of visual representation showing basic and complex
activities.

All elements of our visual language have three concepts in common. They
all have some form of graphical representation, a name that can be assigned
to an element to identify it in a large workflow, and a list of properties that
can be modified in order to configure an activity. Furthermore, all language
elements have connector points that allow them to be connected to other
elements. This allows users to express control flow.

The basic BPEL activities such as, for example, the assign activity
(copying data between two variables), the receive activity (receipt of a
message), or the invoke activity (invocation of an operation from a service
partner), are represented by simple icons. The configuration of their basic
properties is deeply rooted within our tool support and will therefore be
discussed in Section 26.3.

Complex activities are comprised of several other complex or basic
activities. Three examples of complex activities are the while construct, the
top-level process construct, and the scope construct. In a one-to-one mapping
from BPEL, we would have to represent these constructs by start and end tags
as illustrated with two examples in Figure 26.3. Instead, we represent these
constructs by what we call containers. Containers have a visible border, which
restricts their scope and allows other activities to be inserted into that scope.
In this way, containers help to clear up the process diagram and compress the
visual representation. The abstraction of containers is also used by several
commercial editors, as we will discuss in Section 26.5. However, we are able

26 Sedna 433

to derive a further benefit than is the case in the existing representations.
Figure 26.2 displays the scope container, which is similar to a programming
block and allows for the definition of local variables. We reuse the graphical
representation of the scope construct to allow users to set up, inspect, and
modify these variables in the scope container itself. In this way, all elements of
relevance to a particular scope are displayed graphically in a scope container
and are immediately apparent when inspecting the graphical representation
of a workflow.

Figure 26.3: While and switch activities represented by start and end tags
instead of containers.

These few elements allow us to provide a clearer representation and
compress large workflows to make the complexity of scientific workflows more
manageable.

26.2.3 Extensions to BPEL

The elements of our visual representation form a first step toward making
BPEL more usable for the expression of scientific workflows. However, the
vocabulary offered by the visual language still largely corresponds to that
provided by BPEL. While we need to maintain compliance with the BPEL
specification and manage to do so through our tool support, we have also
established that, due to its original focus on business workflows, BPEL lacks
adequate abstractions for the design and manipulation of scientific workflows.
In this section, we present the first set of additional language constructs we
have developed in order to address these issues.

434 Wassermann et al.

In the scientific process execution language layer (Figure 26.1), we have
general-purpose constructs making up the primitives that are demanded by
the requirements of scientific workflow modeling, namely scale and concurrent
execution of complex sets of activities. To further illustrate the purpose of this
layer, we are going to discuss two of its primitives in more detail: the indexed
flow construct and the concept of hierarchical composition of workflows. The
domain process execution language layer allows for domain-specific extensions
that can encapsulate complex sets of activities required in certain domains
into a single reusable activity. In this section, we present the concepts of
plug-ins and macros. The new language constructs presented below have been
developed according to insights gained in a case study (Section 26.4).

Indexed flows. As mentioned before, scientific workflows frequently require
the modeling of concurrent execution of sets of activities to apply complex
computational models and then analyze the resulting data. BPEL supports
concurrent execution with flows. BPEL’s flow construct allows the definition of
multiple sequences of activities, each of which will be executed in parallel. For
scientific workflows, where we often have very similar sequences of activities
that can be executed in parallel, this requires the repeated specification of
the same information. Clearly, having to model the same set of parallel
activities 200 times is tedious and furthermore leads to an explosion of any
representation of the workflow, whether textual or graphical. The indexed flow
construct is better suited to modeling concurrent execution of sets of activities
than BPEL’s native flow construct, as it does not require the repetition of
similar information over and over again. The indexed flow is a container into
which other activities can be placed for execution. It allows a user to specify an
index that determines the required number of parallel executions. The index
has a start and an end range, and the contained activities will be executed
(endrange− startrange + 1) times. An index has a name, which allows us to
use its numerical value in queries and conditions to identify a particular flow
and manipulate its behavior. The modeling environment we have developed
translates an indexed flow into a number of standard BPEL flow constructs,
effectively relieving users of the tedious repetition of the same information
while maintaining a simple graphical representation. The next version of the
BPEL specification is going to introduce a similar construct, called parallel
forEach.

Hierarchical composition. Mechanisms are needed to manage the sheer size
and complexity of scientific workflows. A complete workflow, as we will present
in Section 26.4, can involve a great deal of basic activities and invocations of
partner services. Designing such a workflow in a top-down manner can be
extremely difficult, and modeling it is likely to be error-prone. It can often be
possible, however, to identify common subworkflows in such large workflows.
We therefore need a mechanism that enables us to split large workflows
into several subworkflows. The hierarchical composition of workflows is not
so much an abstraction we have developed but rather a concept we have
found to be quite useful. It exploits the fact that each BPEL process is itself

26 Sedna 435

described by a WSDL interface, which enables other workflows to invoke a
workflow like any other service. A workflow’s initial message-receive activity
provides for the input elements of the interface, and the eventual reply activity
provides the output. This provides us with a means of conquering some of the
complexity introduced by very large workflows, as it enables us to design
workflows in a bottom-up manner. We can identify individual subworkflows,
which may be reused by other workflows, and can start to model and test them
independently. The benefits of hierarchical composition are clearly the reuse
of existing workflows and a reduction of the complexity of larger workflows.
Consider Figure 26.4. In this example, the main workflow has been broken
up into two subworkflows. The job submission subworkflow is responsible for
the submission of jobs to a Grid scheduler and for returning the results of
these jobs to its caller as they become available. The visualizer subworkflow
interacts with various services in order to achieve visualization of data in
certain formats (e.g., tabular representation, scatter plot representation).
These subworkflows would be reusable among many other workflows. In this
case, the main workflow would coordinate among its two subworkflows. It
would gather the input data for some computation and submit this to the job
submission workflow, which prepares it for submission to the Grid and actually
submits the jobs. As soon as the results of a computation are returned from the
Grid, the job submission workflow will respond to its caller with the resulting
data. Then, the main workflow can in turn invoke the visualizer workflow to
amend the current visualization with the results as they become available.

Main Workflow

Job Submission WorkflowVisualization Workflow

Figure 26.4: Decomposition of a large workflow into several subworkflows.

Plug-ins. It may not always make sense to break up a complex workflow
into subworkflows. There may be cases in which we have an extract of a
workflow and not necessarily a complete one with an initial receive and
eventual reply activity to accept input and return a response, respectively.
Such sets of activities may be interacting with several services commonly
used in a particular scientific domain and use complex XPath queries in order
to, for example, carry out data conversion from and/or to domain- or service-
specific data formats. In such cases, we want to reuse these activities as a single
atomic unit of operation, and hierarchical composition, which always involves
complete workflows, would not be the best option; even though a workflow or
part of it is of considerable complexity, we want to keep it as one activity. For
example, several sequences of activities for data conversion into a domain-

436 Wassermann et al.

specific format and invocation of services used in computational chemistry
can, conceptually, be considered as a single domain-specific activity, and it
would therefore be beneficial if we could inline these sequences of activities
into our workflows as one activity. To address these issues, we have developed
plug-ins. Plug-ins encapsulate a domain-specific parameterizable sequence of
BPEL activities that once defined can be used as a basic BPEL activity.
The semantics of plug-ins are defined by providing an operational description
in the form of a simple Java class that generates the BPEL code, as well
as, an XML descriptor containing information about the plug-in’s graphical
representation and configurable parameters. Using plug-ins, an otherwise
complex workflow can have its representation substantially compressed, and
the complexity of the encapsulated BPEL activities is effectively hidden from
workflow designers.

Macros. Hierarchical composition, however useful it is, incurs a certain
amount of overhead in terms of communication and thread use. The reason
for this is simply that workflows that have been composed in a hierarchical
manner run in separate threads and communicate by passing SOAP messages.
Using plug-ins in order to specify domain-specific activities, which can be
further configured, is a powerful alternative to hierarchical communication,
which does not incur the same overhead. However, in order to cater to the
configurable properties of a plug-in, we need to write custom Java code that
knows how to use these properties in the exported BPEL. In order to avoid the
overhead of hierarchical composition and in case no further configuration of a
reusable activity is required, we also introduce macros. To define a macro, a
user models a set of activities in the editor and then, via a menu option, turns
these activities into a reusable macro that is available for use in workflows
like any other activity. Macros can be added to workflows and are like inlined
BPEL activities that get expanded during the editor’s export of a workflow
into standard BPEL. Users can build up toolboxes of useful macros and make
them available to their colleagues.

26.3 Scientific Workflow Editor

These additional higher-level abstractions we have introduced are an essential
prerequisite for introducing BPEL into the domain of scientific computing.
However, BPEL will not be taken up by application scientists unless we
can also provide adequate tools to support them in their work and hide the
complexity of the underlying technologies. In this section, we will discuss how
we can return ownership of workflows to scientists through the automation
and usability features of an adequate visual modeling environment.

26.3.1 The Need for Tool Support

Let us briefly characterize our target group. Computational scientists can, in
general, be regarded as highly computer literate, as several branches of science

26 Sedna 437

have employed scientific computing technologies for decades. We can expect to
find some programming skills. However, we should by no means assume large-
scale software development experience or expert knowledge of distributed
systems and middleware. Furthermore, we need to remind ourselves that
scientific computing aims to be an enabling technology. To a computational
scientist, acquiring skills usually associated with software engineering is a
distraction from what is relevant.

It will often be necessary to change a workflow incorporating new insights
or ideas gained from previous results, and it is therefore important that
ownership of the workflow remain with the scientist. They should be able
to carry out any modifications whenever this is needed, as well as deploy
and execute these workflows. This ensures that their knowledge can be
materialized directly, without requiring communication with and translation
of ideas into a computational form by software engineers. In order to achieve
this goal of truly returning ownership, we need to hide complexity at
several levels apart from developing more suitable language abstractions. In
particular, we need to relieve scientists from a detailed understanding of BPEL
and the distribution middleware used.

BPEL relies on a complex set of underlying technologies, which include
XML, XML schema definitions (XSD), XPath queries, WSDL, and SOAP. In
order to master BPEL, it is necessary to understand how all these technologies
relate to each other. Due to the effort required in learning BPEL and its
associated technologies, we should provide a development environment that
abstracts away from the details and automates the generation of valid BPEL
as much as possible. Furthermore, given the large number of Web services and
XML schema definitions with which scientific workflows need to interact, it is
necessary to at least provide for a means of inspecting these WSDL interfaces
and schema definitions from within the modeling environment.

Two further sources of complexity arise from the distribution middleware
used, which involves a variety of middleware such as Grid job schedulers,
BPEL enactment engines, Web service containers, and so on. Scientists
need not be concerned about the details of the underlying distribution
middleware, such as, for example, what kind of scheduling mechanism is
used to schedule jobs arising from workflows on the Grid. Support is also
required for the deployment of workflows on BPEL engines. Scientists need to
be able to deploy workflows as well as modifications to them without being
concerned about the mechanisms and peculiarities (e.g., different formats of
deployment descriptors) of individual BPEL engines provided by different
vendors. Therefore, an adequate modeling environment needs to provide
sufficient integration with various BPEL engines to be able to fully automate
the process of deploying workflows.

Finally, there is a requirement for validation, monitoring, and debugging of
scientific workflows due to their considerable level of scale and long-running
nature. BPEL is statically typed. This supports the detection of a number
of errors during modeling. A workflow editor should thus support extensive

438 Wassermann et al.

predeployment validation of workflows in order to enable users to correct any
detected problems before they are deployed and executed. This is important
for two reasons. First, if we were to allow the generation of invalid BPEL,
then this would interfere with our ability to automatically deploy workflows
on BPEL engines and would require user interaction at a potentially detailed
level. Second, some errors may only materialize themselves in a running
workflow after a considerable amount of time, which could become quite
expensive in terms of lost computation. Tools should provide some effective
means of debugging workflows, potentially in a manner similar to that offered
by Java debuggers, given that our users are non-experts and that the size of
scientific workflows may increase the chance of introducing errors. The current
monitoring capabilities of our environment are discussed in [132].

26.3.2 Sedna

Our visual modeling environment is called Sedna, in keeping with the tradition
of the Eclipse platform.1 We have developed it using the Eclipse IDE plug-in
mechanism [155]. Sedna presents scientists with a graphical process modeling
environment and provides a number of features whose aim is to further
abstract away from BPEL and simplify the development of workflows.

WSDL

Domain
PEL

Scientific
PEL

BPEL

XSD

Sedna Deployment
Descriptor

ActiveBPEL
Engine

Oracle BPEL
Engine

IBM
Websphere

Microsoft
BizTalk
Server

Figure 26.5: Sedna translates and exports the various language elements
into standard BPEL and creates deployment descriptors for various BPEL
workflow engines.

Figure 26.5 presents a high-level overview of the editor. It provides access
to the visual language representation of BPEL as well as the additional
language abstractions we have discussed. Furthermore, it gathers information
about the services with which a workflow interacts in the form of WSDL

1 Sedna is the most recently discovered trans-Neptunian planetoid of our solar
system. Astronomers do not consider it a planet, although it has a perfect
shape. We adopted its name because it is a humble object. Like our modeling
environment, it is small and lightweight.

26 Sedna 439

interface definitions and the data types used as XML schema definitions.
During workflow modeling, it provides numerous usability features and carries
out several tasks and settings automatically in the background. The editor
works with users on validating the workflow, and once this is complete, it
deploys the workflow in a format that can be executed on any compliant
BPEL engine. This is achieved by translating all the various language elements
into standard BPEL and generating deployment descriptors for a number of
engines.

The Structure of Sedna

Sedna has been developed as a plug-in in the Eclipse IDE. Eclipse is a popular
and highly extensible open-source IDE that integrates many features of a
development environment, such as various source code editors, access to CVS
repositories, and a number of task-specific views, and provides many native
user interface components as part of its Standard Widget Toolkit [127].

New components can be added by providing them as plug-ins. This
modularity and openness has the advantage that any new plug-in can extend
and make use of all the other features Eclipse provides. This, for example,
enables our editor to provide the built-in facilities for handling projects and
provide access to a graphical CVS client. Furthermore, as our editor is an
Eclipse plug-in, it can be further extended by third-party plug-in developers
to add support for additional features (e.g., deployment on a new BPEL engine
or support for collaborative workflow modeling).

Plug-in development in Eclipse incurs a considerable learning curve for
Java developers, but overall, given the vast array of existing plug-ins that
can be reused to a large extent, it simplifies the provision of development
tools. In particular, it aids in creating a consistent user experience through a
familiar graphical user interface (i.e., the icons and other widgets used by all
Eclipse plug-ins) and interaction mechanisms, such as, for example, a unified
mechanism by which new projects and resources of many different types are
created. Moreover, a number of features that would otherwise be hard to
implement (such as printing) are provided by the Eclipse Graphical Editing
Framework. Our editor benefits from a number of other plug-ins, such as IBM’s
WSDL4J [206] for handling WSDL files and the Graphical Editing Framework
(GEF) [126] for implementing the graphical parts of the editor. Our editor
also reuses the plug-ins provided as part of the Eclipse Web Tools Platform
project [462], which provides, among other features, graphical editors for XML
schema and WSDL definitions. These editors are perceived as an integrated
feature of our modeling environment.

The editor consists of two parts: the overview page and the process map.
The overview page allows users to set up any partners, global variables, and
name spaces required for the workflow definition. Partners define services with
which the workflow will need to interact, and variables are temporary data
containers whose types are either defined in a partner’s WSDL definition

440 Wassermann et al.

or some XML schema. The process map (see Figure 26.6) is the visual
programming part of the editor, where activities comprising a workflow are
actually composed and configured. Users are free to start on either of the
two pages. They can also interleave the setup of partners and variables with
modeling the actual workflow.

Figure 26.6: The process map displaying a workflow.

The process modeling page, or process map, is where the actual modeling
of workflows takes place. The process map contains a palette of activities,
the canvas displaying the workflow diagram, and a properties view for
configuration of activities. The palette groups activities into several categories,
such as ”Scoped Activities” and ”Decision Activities”. It contains all standard
BPEL activities, as well as our additional language abstractions from the
scientific and domain PEL layers. Activities are represented as icons with
descriptive text and can simply be dragged from the palette and dropped

26 Sedna 441

onto the canvas in order to be used in a workflow. The canvas expands these
icons into large images.

The file format used internally by our editor to represent workflows is
called sedna. Sedna files store the nonstandard BPEL language constructs
we have discussed along with some metainformation for storing information
about the locations and sizes of the graphical elements of a workflow, as well
as additional information about required partners, variables, and name spaces.
Existing workflows expressed as BPEL files can be read and can be represented
graphically by the editor, although an automatic translation of the standard
features of BPEL into our additional abstractions is not currently supported.

Usability and Automation

There are a number of notable usability features that we want to discuss here.
A good example for the reuse of Eclipse features and resulting usability

are the project management features of Eclipse, which we use for setting
up new workflow projects. The editor is integrated with the ”New Project”
creation wizard and menu options in Eclipse. That allows users to create
a new workflow project in the same way they would create any other kind
of project resource in Eclipse. To create a new workflow, a user selects the
type of resource to be created (i.e., BPEL workflow) from a list of options.
According to this selection, an appropriate wizard appears, which, in our case,
allows setting of the filename, storage location, and target name space of the
workflow. Upon completion, the wizard will create the set of required files and
open an instance of our editor.

The management of projects and files can be carried out using the package
explorer, which looks similar to a file browser. The standard package explorer
allows the manipulation and organization of all related file resources (e.g.,
WSDL files, XSD files, input files) and the management of multiple workflow
projects.

The use of wizards is an important usability feature in our editor. The
wizard mechanism of Eclipse suggests that we detect what the user is doing
and validate her actions, so that we can provide instant feedback and context-
sensitive guidance at each step. The ability to take corrective action from
within a wizard is of particular benefit for the nonskilled user. On the
overview page, the process of setting up partners, variables, and name spaces
is facilitated by wizards. For example, the partner setup wizard asks the user
to specify the URL or file location of the partner’s WSDL definition. The
wizard can then parse this WSDL in order to validate it and provide feedback
to the user about any problems that may be present. The wizard furthermore
detects the absence of partner link type definitions in the WSDL and can
offer to automatically generate appropriate definitions in the specified WSDL.
Another example is a wizard guiding users through the process of setting up
a BPEL assign activity, which relies on complex XPath queries to derive its
versatility. By offering a wizard, we relieve users from having to learn XPath.

442 Wassermann et al.

Another source of complexity that the editor hides is the configuration
of activities with information such as service partners, operations, variables,
etc. The editor displays what is called a properties view, which can be seen
at the bottom of Figure 26.6. The properties view is a tabular representation
of the named properties of an activity selected in the workflow. The view
allows users to enter or select appropriate values. For example, selecting
an invoke activity in the process map will prompt the properties view to
display fields for configuring the operation that is to be invoked as well as
its input and/or output variables. In most instances, the view will display
the available options for configuring an activity from drop-down lists (e.g.,
lists of operations, variables, partner links, etc.), and the editor restricts
the list of valid options by deriving some properties of certain activities and
carrying out the corresponding settings automatically. For example, the invoke
activity in BPEL usually requires the specification of a partner’s portType
to determine the operations that might be invoked. Instead, our editor uses
information about the use of the activity in a particular instance to determine
the portType automatically and then offers a suitable set of operations from
which to choose once the user has selected the appropriate service partner
from a drop-down list. The user only needs to be concerned about choosing
the desired service and the operation provided by this service.

The usability benefits offered by the editor would break down if users
were required to program the WSDL interfaces of their BPEL workflows
themselves. Therefore, the editor generates WSDL interfaces of workflows on
the fly. It does this by detecting relevant additions and deletions of activities
that have an impact on the WSDL interface of the current workflow and any
workflows with which it interacts, as is the case for asynchronous interactions
between workflows. In case WSDL generation is enabled, the editor will
automatically generate a WSDL interface as the user progresses with modeling
the workflow. An example where this feature is particularly useful is when one
workflow is a client of an asynchronous workflow and another one acts as the
provider. Writing the correct WSDL interfaces for such workflows requires a
solid understanding of BPEL as well as Web services.

Given the large number of service partners defined via WSDL interfaces
and the different data types defined via XML schema definitions, it is
necessary to be able to inspect these definitions to determine how they should
be used. The Eclipse plug-ins of the Web Tools Platform project complement
the features of our editor with graphical editors for inspecting and editing
WSDL as well as XML schema definitions. The WTP editors simplify choosing
or even generating data types for an automatically generated WSDL message.
The editor seamlessly integrates inspection and modification of WSDL and
XSD used in a workflow. It enables users to see the relationship between a
particular XML data type, the WSDL message using these data, and the
corresponding operations of a service using these messages as input and
output.

26 Sedna 443

Another simple but nevertheless important feature of the editor is the
ability to label activities and equip them with additional comments. Due to the
potentially large size of scientific workflows, the ability to label basic activities
as well as containers helps to communicate the workings of a workflow.
Comments can be added for further clarity.

Validation

As explained before, a crucial usability feature is the BPEL type system and
syntax rules to provide predeployment validation of workflows. The aim of
predeployment validation is to ensure, as far as possible, that deployment
will be successful and that there are no preventable errors in the workflow.
Our ultimate aim is to catch any problem possible before we even deploy
the workflow and give the user and editor a chance to resolve identified
issues. The editor validates the current workflow whenever it is saved, displays
any issues in its problems view, and changes the graphical representation
of a problematic activity in the process map. Validation can, for example,
detect incompatibilities between the source and target types used in an
assign, an incorrect number of activities in a scope, unconnected activities,
or incompatible variables assigned as input and/or output to a particular
operation. We reuse the problems view to inform users of any problems, which
is the same view used by the Java compiler in the Eclipse development tools to
communicate compiler warnings and errors. The benefit of reusing this view
is that we can provide feedback about any problems. The user can then try to
resolve these and gains immediate feedback about the success (or lack thereof)
of her efforts.

Deployment

An important aspect of hiding the complexity of the distribution middleware
involved is the automation of the deployment process of a workflow onto a
BPEL engine. Once any issues identified during validation have been resolved,
the workflow can be deployed onto a workflow engine. Sedna currently
integrates with the ActiveBPEL engine, as it is an open-source BPEL engine,
and our recent investigations have confirmed that it satisifies the scalability
and reliability requirements of scientific workflows. Support for further BPEL
engines can be added by third-party developers extending Sedna via published
interfaces. Details about our examination of the ActiveBPEL engine and the
workflow execution aspects of our environment can be found in [132].

Deployment of a workflow consists of two parts: generation of deployment-
related files required by a particular engine and transfer of these files to the
engine. At this stage, our environment automates the first part. At the click
of a button, the editor exports the workflow, with all its nonstandard BPEL
features, into standard BPEL. It then generates a deployment descriptor for
the selected engine, which contains information about the service interfaces

444 Wassermann et al.

of the workflow and its partners. Finally, it packages all files required for
deployment in an archive ready for deployment onto the engine. For example,
the ActiveBPEL engine accepts so-called bpr archives as deployment units.
A bpr archive contains the BPEL representation of a workflow, a deployment
descriptor used by the engine to keep track of all required resources, and
any nonremote WSDL files. The actual transfer of these files onto the engine
has not yet been automated, due to insufficient knowledge about users’
deployment models. Open questions remain as to whether users tend to
develop workflows on the same machine hosting the BPEL engine or whether
transfer mechanisms must take account of a potential need for authentication
in order to copy files to an engine.

26.4 Case Study: Polymorph Search

In this section, we further illustrate use of our environment and new language
abstractions and show how the various middleware technologies we integrated
come together. For this purpose, we present a real-world example from
computational chemistry. We have used the same case study in [132] to
evaluate the suitability of BPEL engines for the enactment of scientific
workflows.

The application deals with the computational prediction of organic
crystal structures or polymorphs. Each of the organic crystal structures
an organic molecule can take has different physical properties. A method
for computationally predicting likely polymorphs along with their physical
properties would be of considerable benefit for the development of molecular
materials [364] and in the pharmaceutical industry. For several years, the
computational prediction of polymorphs has been carried out with the help
of FORTRAN programs. MOLPAK [195] and DMAREL [471] are two such
programs. The computational prediction of polymorphs is an exhaustive
search in which MOLPAK can be used to generate possible molecule packings
followed by DMAREL to optimize the lattice energy and cell volume to
determine how thermodynamically feasible the resulting hypothetical crystal
structures are. The calculations of the physical properties for each of those
packings with DMAREL are completely independent of each other, which
enables this problem to be solved using CPUs in a computational Grid without
shared memory and with low-bandwidth connections.

Figure 26.7 shows an abstract overview of a polymorph search workflow.
Scientists need to set up the search and prepare the molecule description. They
then need to choose which packing types they might wish to explore. Each
of the 38 possible packing types can be analyzed in parallel. Scientists then
determine the degree of precision with which the exploration of each packing
type occurs, and this determines how many different subsequent DMAREL
executions are required for the packing type. For the highest precision, this
may result in 200 concurrent executions of DMAREL per packing type. The

26 Sedna 445

rectangles in Figure 26.7 represent Grid services, and arrows show control flow.
Black bars show spawning and joining of concurrent subprocesses. Submission
of MOLPAK and DMAREL computation jobs relies on the GridSAM job
submission service that is available form the OMII. GridSAM implements the
Job Submission Description Language (JSDL) defined by the GGF [252]. The
figure does not show any data flow, which is mainly in a peer-to-peer manner
by auxiliary staging Grid services.

It is worthwhile to consider the scalability requirements of this workflow.
The workflow might involve up to (38×200) = 7600 concurrent invocations of
MOLPAK and DMAREL. MOLPAK and DMAREL jobs may take any time
between two minutes and several hours to complete. We have used the UCL
Condor pool to execute jobs arising from our workflows. The polymorph search
application is reasonably rich in that it not only involves massively parallel
computations but also needs to handle the amount of data that is produced
during the search. The total volume of data produced during an exhaustive
search of a molecule is in the region of 6 GB, and scientists might wish to
complete up to 40 studies during a month, producing a 0.25 TB of data per
month. Processing these data during workflows involves conversion between
the output of MOLPAK and the input format for DMAREL, transformation of
results to the standardized Chemical Markup Language (CML) and enriching
results with metadata about the computation prior to upload of selected
search results to a data portal. This combination of parallel computation with
data handling makes it a fairly representative scientific Grid application. More

Figure 26.7: Overview of polymorph search workflow.

446 Wassermann et al.

detailed information about the scalability and performance characteristics of
the polymorph search workflow can be found in [132].

We will now briefly look at how such a workflow can be expressed as a
BPEL workflow in our editor. The main workflow is indexedMolpak, which
relies on a number of subworkflows. The main workflow starts by gathering
some input data, such as the list of packing types, and then invokes the
invokeMolpak workflow via its WSDL interface supplying these data. From
the prepared input data, the invokeMolpak workflow generates the JSDL
required to actually execute MOLPAK. It then uses an invocation to a
further subworkflow (gssubmit). This subworkflow invokes the GridSAM job
submission Web service and passes the JSDL it has received to GridSAM.
GridSAM will then translate the received JSDL into a script for the underlying
Grid scheduler (i.e., a Condor script), which then takes care of executing
the actual jobs on the Grid. The gssubmit workflow continually checks the
job status by repeatedly invoking the GridSAM job monitoring Web service
and eventually replies to its caller, depending on the status of the jobs (i.e.,
completed or failed). The main workflow then uses the resulting data to
prepare the input data for use by the invokeDmarel workflow and invokes
this workflow. InvokeDmarel then needs to carry out some data manipulation
on the input data, prepare the JSDL needed to execute DMAREL, and
invoke gssubmit in the same way as invokeMolpak has done. The DMAREL
invocations issued from within invokeDmarel operate on the data resulting
from the MOLPAK runs. The main workflow eventually receives the results
from all computations and stores them in an XML file that contains a set
of Chemical Markup Language (CML) [307] crystal structures. As each set of
results from invokeDmarel becomes available, we invoke a visualizer workflow,
which prepares the results in various formats, such as a tabular format and a
scatter plot. This visualization can be updated in real time as further results
become available.

The indexedMolpak workflow presents some interesting features. First
of all, we note the use of two indexed flows, one for the invocations of
MOLPAK and one for the invocation of DMAREL. This allows the concurrent
execution of, say, 200 DMAREL invocations with little effort required from a
modeling perspective. In order to change the precision (number of DMARELs
to run), the end range of the relevant indexed flow needs to be changed
in the properties view. This compares very favorably with the native flow
construct BPEL has to offer, which would require us to repeat the same
information 200 times! Another feature whose importance can be illustrated
by looking at a large, real-world workflow like this one is the importance of
finding ways of compressing the graphical representation. This is, for example,
achieved by representing scopes as containers, which contain activities and
also display all their variables and means for adding or modifying these
variables in one place. Furthermore, this workflow is a good example of
how hierarchical composition of workflows can help to significantly reduce
the modeling complexity and achieve reusability of common workflows (i.e.,

26 Sedna 447

gssubmit, workflows for visualization of output data). Transparency of the
underlying Grid scheduler being used to execute jobs on a Grid is achieved by
using GridSAM. Scientists only need to define the JSDL for their jobs once
and not worry about which scheduler is used now or at any point in the future.

The polymorph search workflow provides us with reassurance that, given
an appropriate set of language constructs for large-scale workflows and given
that adequate tool support and middleware integration can be established,
the use of BPEL by application scientists can become a reality.

26.5 Related Work

A number of industrial modeling tools have become available for BPEL
recently. All tools of which we are aware provide some means of visual
modeling. They usually provide a one-to-one mapping from their visual
constructs to the ones in BPEL and are primarily targeted at software
engineers who possess knowledge of BPEL, WSDL, XSD, and other related
technologies. Therefore, they usually lack higher-level abstractions and
sufficient support for non-expert users. IBM Alphaworks offers the BPWS4J
editor for free download. This editor relies on a tree-based one-to-one
representation of BPEL and hence is not capable of dealing with the
requirements of scientific workflows. Oracle’s BPEL Designer is a free Eclipse
plug-in. Again, it provides a one-to-one mapping to BPEL, but, in addition to
that, offers macros, which can be used to arrange sets of activities into reusable
components. The Oracle tool also offers a flowN construct, which is similar to
our indexed flow activity. However, this construct can only be interpreted by
Oracle’s BPEL engine. ActiveWebflow is another Eclipse-based editor offered
by ActiveEndpoint. At the time of writing, ActiveWebflow is a commercial
editor and we therefore only have limited experience with it. A notable feature
of this editor is a debugger that enables step-by-step debugging of a BPEL
process on a local machine. Again, this editor is also tied to a specific BPEL
engine, in this case the ActiveBPEL engine. The main differences of our
editor, especially in future incarnations, will be found in its focus on additional
language abstractions, a number of usability features, whose aim is to hide
BPEL as far as possible, and the support of several BPEL engines.

Taverna (see Chapter 19 for more information) is a workflow modeling and
enactment environment primarily used by applications in bioinformatics and
developed as part of the myGrid project. Taverna does support Web services,
but it does not rely on an industry standard for the orchestration of Web
services such as BPEL. In Taverna, due to the heterogeneity of service in
bioinformatics, data are always of type string, which provides a great deal of
flexibility at the expense of complicating validation of data compatibility. In
our work, we primarily focus on an industry standard as our workflow language
and attempt to make it accessible to scientists by integrating the tools and
technologies that have been developed for this standard. When comparing

448 Wassermann et al.

Sedna with Taverna, one of the benefits of relying on BPEL becomes apparent:
We can make use of BPEL’s type system to provide the kind of validation
mentioned above.

Triana (see Chapter 20)provides a GUI that allows users to drag services
onto a canvas and to connect these services to each other. Triana supports a
subset of BPEL and can export its workflows into BPEL. Again, our approach
differs in that we aim to make the power of BPEL directly available to users
by hiding its complexity as far as possible. We believe that the focus on a
single workflow language enables extensive and targeted support to users.

GridFlow [76] is a workflow management system for Grid computing and
as such focuses on resource allocation, as do Condor and the Globus GRAM.
The GridFlow Portal is a simple GUI used for the definition and monitoring
of workflows. The support users receive in Sedna is more sophisticated than
that required for GridFlow. Furthermore, by using GridSAM, we separate the
definition of a workflow from the issues involving resource allocation.

GridAnt [22] allows users to make use of the Ant batch language for the
definition and monitoring of Grid workflows. GridAnt offers extensions to
the Ant language and requires users to engage in textual programming in
Ant’s XML format. Disconnection of the client submitting a workflow cannot
be achieved effortlessly (some form of proxy mechanism is required), even
though this is an important feature given the long-running nature of scientific
workflows on the Grid. In contrast to GridAnt, we have chosen to use a full-
fledged workflow language.

The Grid Services Flow Language (GSFL) [246] represents an attempt
to provide a workflow language with additional support for Grid service life
cycle management and P2P service invocation without relying on standards
such as WS-Notification. Our work exploits the fact that BPEL is an industry
standard for which sufficiently scalable and robust enactment environments
are available. We are not aware of an available enactment environment or
any kind of tool support for GSFL, but we believe that comparing a similar
environment based on GSFL would be interesting.

Efforts led by John Grundy [180] [181] focus on providing visual languages
and tools targeted at particular application domains such as software process
modeling, flexible CASE tools, and complex data mappings. The software
engineering tools developed in his work allow visual representation of domain
concepts and their translation into code. We have, so far, not focused on a
particular application domain but aim to make BPEL usable for the expression
of scientific workflows in general.

26.6 Lessons Learned and Future Work

There is a need for composition of Grid services into workflows in scientific
Grid environments, and the use of BPEL for this purpose promises many
benefits but at the same time presents a number of issues that need to be

26 Sedna 449

addressed. We have seen how the verbosity of BPEL and its original target
domain make its abstractions to a certain extent insufficient for use in scientific
workflows and how the complexity of both its underlying technologies and
the distribution middleware present an unacceptable burden to application
scientists.

In order to introduce the potential benefits of BPEL to the scientific
community, we have developed a first set of additional domain-independent
language abstractions, such as the indexed flow, while still allowing for
domain-specific extensions. We attempt to hide the complexity of BPEL and
the underlying middleware technologies by providing extensive tool support.
Our visual modeling environment is integrated within Eclipse and provides a
transparent link to the enactment of workflows on BPEL engines and a Grid
computing infrastructure. The value of our approach has been confirmed using
a case study that has demonstrated how a large-scale scientific workflow is
developed using our framework and its abstractions.

There is of course a long list of future work that we need to complete
in order to increase the usefulness of our approach. One element of our
future work will be to develop further additional language abstractions
on top of BPEL to arrive at a comprehensive set of domain-independent
constructs to facilitate the creation of scientific workflows. We will also work on
better support for asynchronous interaction patterns in the form of workflow
templates and additional wizardry. Ultimately, this wizardry will allow our
users to exploit the capabilities of BPEL without the burden of having
to become thoroughly acquainted with it. The conciseness of the graphical
representation can be enhanced by collapsable containers. We will investigate
a scalable and informative mechanism for real-time monitoring of processes
reusing the existing graphical representation of a workflow in the editor and
also work on a tool that provides graphical debugging facilities similar to that
offered by Eclipse to Java developers. Two other noteworthy features are the
automatic translation of BPEL files into our nonstandard BPEL constructs
and a WSDL browser enabling selection of services by using semantic markup
information.

Each of the features above will further simplify the modeling of scientific
workflows in BPEL by non-expert users. Our experience to date indicates
that with an appropriate set of abstractions and adequate tool support that
successfully hides the complexity of the underlying technologies, BPEL is a
promising language for scientific workflows.

26.7 Acknowledgments

This research has been funded by the UK EPSRC through grants
GR/R97207/01 (e-Materials) and GR/S90843/01 (OMII Managed Pro-
gramme).

27

ASKALON: A Development and Grid
Computing Environment for Scientific
Workflows

Thomas Fahringer, Radu Prodan, Rubing Duan, Jürgen Hofer,
Farrukh Nadeem, Francesco Nerieri, Stefan Podlipnig,
Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon, and
Marek Wieczorek

27.1 Introduction

Most existing Grid application development environments provide the
application developer with a nontransparent Grid. Commonly, application
developers are explicitly involved in tedious tasks such as selecting software
components deployed on specific sites, mapping applications onto the Grid,
or selecting appropriate computers for their applications. Moreover, many
programming interfaces are either implementation-technology-specific (e.g.,
based on Web services [24]) or force the application developer to program at
a low-level middleware abstraction (e.g., start task, transfer data [22, 153]).
While a variety of graphical workflow composition tools are currently being
proposed, none of them is based on standard modeling techniques such as
Unified Modeling Language (UML).

In this chapter, we describe the ASKALON Grid application development
and computing environment (see Figure 27.1) [137], whose ultimate goal is
to provide an invisible Grid to the application developers. In ASKALON,
the user composes Grid workflow applications graphically using a UML-
based workflow composition and modeling service. Additionally, the user can
programmatically describe workflows using the XML-based Abstract Grid
Workflow Language (AGWL), designed at a high level of abstraction that
does not comprise any Grid technology details. The AGWL representation of
a workflow is then given to the ASKALON WSRF-based middleware services
(runtime system) for scheduling and reliable execution on Grid infrastructures.

The Resource Manager service is responsible for negotiation, reservation,
allocation of resources, and automatic deployment of services required to
execute Grid applications. In combination with the AGWL, the Resource
Manager shields the user from the low-level Grid middleware technology.

The Scheduler is a service that determines effective mappings of single
or multiple workflows onto the Grid using graph-based heuristics and

27 ASKALON 451

Web Services

Scheduling &

Optimization

Execution

Control

Fault

Management

 (UML) Application Composition (AGWL)

Resource/

Service

Management

Measurement/

Monitoring of Non-

Functional Parameters

Prediction of

Non-Functional

Parameters

Grid Infrastructure

Job

Submission

File

Transfer

Information

Service
Security

Analysis of

Non-Functional

Parameters

QoS/SLA

Management

Figure 27.1: The ASKALON architecture.

optimization algorithms that benefit from Performance Prediction and
Resource Manager services. Additionally, the Scheduler provides Quality of
Service (QoS) by dynamically adjusting the optimized static schedules to
meet the dynamic nature of Grid infrastructures through execution contract
monitoring [365].

The Execution Engine service targets reliable and fault-tolerant execution
of workflows through techniques such as checkpointing, migration, restart,
retry, and replication.

Performance Analysis supports automatic instrumentation and bottleneck
detection (e.g., excessive synchronization, communication, load imbalance,
inefficiency, or nonscalability) within Grid workflow executions. We are
currently extending our analysis to comprise service-level negotiation and
agreement on a variety of nonfunctional parameters.

A Performance Prediction service estimates execution times of workflow
activities through a training phase and statistical methods using the
Performance Analysis service.

27.2 Workflow Case Study and Grid Infrastructure

We present the functionality of the ASKALON environment for modeling,
specification, scheduling, and performance-oriented execution of scientific

452 Fahringer et al.

workflows in the context of a real-world material science application deployed
on the Austrian Grid infrastructure.

WIEN2k [52] is a program package for performing electronic structure
calculations of solids using density functional theory, based on the full-
potential (linearized) augmented plane-wave ((L)APW) and the local orbital
(lo) method. We have ported WIEN2k as a Grid application by splitting
the monolithic code into several coarse-grained activities coordinated in a
workflow, as illustrated in Figure 27.2. The LAPW1 and LAPW2 activities
can be solved in parallel by a fixed number of so-called k-points. A final
activity, converged, applied on several output files, tests whether the problem
convergence criterion is fulfilled. The number of recursive loops is statically
unknown.

For the experiments that we will present throughout this chapter, we have
solved a problem case with 252 parallel k-points (i.e., size of the two parallel
sections – LAPW1 and LAPW2). We have chosen a problem size of 8.5, which
represents the number of plane-waves used and is equal to the size of the
eigenvalue problem (i.e., the size of the matrix to be diagonalized).

ASKALON serves as the main application development and computing
environment for the Austrian Grid [33] infrastructure, which aggregates over
300 processors geographically distributed across several different sites in

Figure 27.2: The WIEN2k workflow.

27 ASKALON 453

Site Architecture # CPU GHz RAM Mgr. Location

Altix1.jku NUMA, SGI Altix 3000 14 Itanium 2 1.6 61408 Fork Linz
Altix1.uibk NUMA, SGI Altix 350 14 Itanium 2 1.6 15026 Fork Innsbruck
Schafberg NUMA, SGI Altix 350 14 Itanium 2 1.6 15026 Fork Salzburg
Gescher COW, Gigabit Ethernet 16 Pentium 4 3 1024 PBS Vienna
Agrid1 NOW, Ethernet 20 Pentium 4 1.8 512 PBS Innsbruck
Arch19 NOW, Ethernet 20 Pentium 4 1.8 500 PBS Innsbruck
Arch20 NOW, Ethernet 20 Pentium 4 1.8 500 PBS Innsbruck
Arch21 NOW, Ethernet 20 Pentium 4 1.8 500 PBS Innsbruck

Table 27.1: The Austrian Grid infrastructure.

Austria: Innsbruck, Linz, Salzburg, and Vienna. The Austrian Grid currently
uses Globus Toolkit version 2 [144] as the main platform for security, job
submission, file transfer, and resource information. Table 27.1 summarizes
a subset of the Austrian Grid that we have used for the results presented
in this chapter. The SGI Altix 3000 parallel computer in Linz has a total
of 64 processors, while the Altix 350 computers in Innsbruck and Salzburg
both comprise 16 parallel processors. However, the local system administrators
only provide 14 concurrent processors to a regular Austrian Grid user, which
is also the machine size that we used in our experiments. The Grid site in
Vienna (Gescher) is a Beowulf cluster, while the four workstation network
sites in Innsbruck are labs intensively used by students during the day but
automatically rebooted in Grid mode during the night, weekends, or holidays.

27.3 Workflow Generation

ASKALON offers the users two interfaces for generating large-scale scientific
workflows in a compact and intuitive form: graphical modeling using the UML
standard (see Section 27.3.1) and a programmatic XML-based language (see
Section 27.3.2).

27.3.1 UML Modeling-Based Workflow Composition

ASKALON offers to the end user the privilege of composing workflows
through a graphical modeling service based on the UML standard that
combines Activity Diagram modeling elements in a hierarchical fashion. We
have implemented this graphical service as a platform-independent workflow
editor in Java based on the Model-View-Controller paradigm comprising
three main components: graphical user interface (GUI), model traverser,
and model checker. The GUI consists of the following components: menu,
toolbar, drawing space, model tree, and element properties. The drawing
space consists of a tabbed panel that can contain several diagrams. The
model traverser provides the possibility to walk through the model, visit each

454 Fahringer et al.

Figure 27.3: The WIEN2k UML representation.

modeling element, and access its properties (for instance, element name). We
use the model traverser for the generation of various model representations;
for instance, an XML representation serves as input for the ASKALON Grid
environment. The model checker is responsible for the correctness of the
model.

Figure 27.3 shows the UML representation of the WIEN2k workflow, which
consists of several diagrams. The hierarchical representation allows the user
to focus on the basic constructs of the full workflow and easily understand
them. The left panel shows the main sequential outermost while loop, called
whileConv, which embraces the entire workflow. The workflow inputs and
outputs are specified by opening additional dialog boxes that define the
input and the output ports of this activity. To display the loop body that
implements one iteration of the while loop, the user selects the Edit/Loop
Body menu item in the pop-up menu or selects the second loop body node.
As a consequence, the loop body of the while loop is displayed, as shown in
the right window, with arrows representing the control flow dependencies. For
each activity, the user specifies typed data input and output ports through a
special dialog box, as shown in the right window of Figure 27.3.

27 ASKALON 455

27.3.2 Abstract Grid Workflow Language

We have designed an XML-based workflow language that enables the
description of workflow applications at a high level of abstraction that shields
the user from the middleware complexity and dynamic nature of the Grid.

The Abstract Grid Workflow Language (AGWL) [138] enables the
composition of workflow applications from atomic units of work called
activities interconnected through control-flow and data-flow dependencies.
Activities are represented at two abstract levels: activity types and activity
deployments. An activity type is a simplified abstract description of functions
or semantics of an activity, whereas an activity deployment (not seen at the
level of AGWL but resolved by the underlying Resource Manager) refers to an
executable or deployed Web service and describes how they can be accessed
and executed on the Grid.

In contrast to most existing work, AGWL is not bound to any
implementation technology such as Web services. The control-flow constructs
include sequences, directed acyclic graphs (dag), for, forEach, while and
do-while loops, and if and switch constructs, as well as more advanced
constructs such as parallel activities, parallelFor and parallelForEach
loops, and collection iterators. In order to modularize and reuse workflows,
so-called subworkflows can be defined and invoked. Basic data flow is
specified by connecting input and output ports between activities, while more
advanced data-flow constructs include collections and access to abstract data
repositories.

Optionally, the user can specify properties and constraints for activ-
ities and data-flow dependencies that provide functional and nonfunctional
information to the runtime system for optimization and steering of the
Grid workflow execution. Properties define additional information about
activities or data links, such as computational or communication complexity,
or semantic description of workflow activities. Constraints define additional
requirements or contracts to be fulfilled by the runtime system that executes
the workflow application, such as the minimum memory necessary for an
activity execution or the minimum bandwidth required on a data-flow link.

The AGWL representation of a workflow can either be automatically
generated from the UML representation or manually written by the end user.
In both cases, AGWL serves as input to the ASKALON runtime middleware
services (see Figure 27.1).

Figure 27.4 illustrates a representative excerpt of the WIEN2k AGWL
representation, which can be automatically generated from the UML
representation or manually written by the end user. The highest level of
the WIEN2k workflow consists of a while loop whileConv. In this while
loop, the activities LAPW0, pforLAPW1 (parallel for loop), LAPW2 FERMI,
pforLAPW2 (parallel for loop), and MIXER are invoked sequentially. The
activities pforLAPW1 and pforLAPW2 are parallel for loops that execute a
large number (i.e., 252 for the case study considered) of LAPW1 and LAPW2

456 Fahringer et al.

<cgwd name="Wien2K">
 <cgwdInput>
 <dataIn name="startInput" type="agwl:file"

 source="gsiftp://…//…/WIEN2K/atype/STARTINPUT.txt"/> ...
 </cgwdInput>
 <cgwdBody>
 <while name="whileConv">
 <dataLoops>
 <dataLoop name="overflag" type="xs:boolean"

initSource="Wien2K/overflag" loopSource="MIXER/overflag"/>
 </dataLoops>
 <condition> whileConv/overflag </condition>
 <loopBody>
 <activity name="LAPW0" type="wien:LAPW0">
 <dataIns>
 <dataIn name="startInput" type="…" source="Wien2K/startInput"/> ...
 </dataIns>
 <dataOuts>
 <dataOut name="kpoints" type="xs:integer"/> ...
 </dataOuts>
 </activity>
 <parallelFor name="pforLAPW1">
 <loopCounter name="lapw1Index" type="…" from="1" to="LAPW0/kpoints"/>
 <loopBody>
 <activity name="LAPW1" type="wien:LAPW1" …/>
 </loopBody>
 <dataOuts …/>
 </parallelFor>
 <activity name="LAPW1_FERMI" type="wien:LAPW1_FERMI" …/>
 <parallelFor name="pforLAPW2" …/>
 <activity name="MIXER" type="wien:MIXER" …/>
 </loopBody>
 <dataOuts>
 <dataOut name="overflag" type="xs:boolean" source="MIXER/overflag"/>
 </dataOuts>
 </while>
 </cgwdBody>
 <cgwdOutput>
 <dataOut name="overflag" type="xs:boolean" source="whileConv/overflag"

saveto="gsiftp://…//…/WIEN2K/result/…"/>
 </cgwdOutput>
</cgwd>

Figure 27.4: WIEN2k AGWL excerpt.

activity invocations in parallel. It is important to notice at this stage that
one runtime output port of the activity LAPW0 called kpoints (see also
Figure 27.3) represents the number of parallel loop iterations that will be
executed by the following parallel loops (i.e., pforLAPW1 and pforLAPW2),
which is statically unknown. Therefore, the workflow can dynamically change
its shape at runtime, depending on the runtime value of this output port.
The condition to exit the outermost while loop refers to the data loop port
overflag, which can be changed after each iteration by the data output port
of the activity MIXER referred by the loopSource attribute. Finally, the output
port overflag returns the final result of the workflow.

27.4 Resource Manager

ASKALON’s Resource Manager, called GridARM, renders the boundaries of
Grid resource management and brokerage and provides resource discovery,

27 ASKALON 457

advanced reservation, and virtual organization-wide authorization along with
GLARE, a dynamic registration framework for activity types and activity
deployments [383]. GridARM covers physical resources, including processors,
storage devices, and network interconnections, as well as logical resources
comprising Grid/Web services and executables.

Based on Scheduler requests, the GridARM discovers resources or software
components, performs user authorization to verify resource accessibility,
optionally makes a reservation, and returns the result. The result could be a
list of resources along with their specifications, a list of software components,
or a reservation ticket, depending on the request type. In case of a failure, a
Resource Manager can interact with other GridARM instances distributed in
the Grid to recursively discover and allocate the required resources. Moreover,
the GridARM monitors the allocated resources and propagates exceptional
situations to the client. It also works as coallocation manager.

Grid resource discovery and matching are performed based on the
constraints provided by the Scheduler in the form of a resource request (see
Section 27.5). The GridARM can be configured with one or more Monitoring
and Discovery services [101] (of Globus versions 2 and 4) and the Network
Weather Service [472].

Advanced reservation of the Grid resources (including computers and
software components) based on the constraints provided by the requester is a
distinguishing feature of the Resource Manager. The Scheduler can negotiate
for a reservation based on time, cost, and QoS models. The essential attributes
of a reservation include resource contact information, time frame, and resource
requester and provider constraints. The acquisition of reserved resources by
the Execution Engine is only possible by providing a valid user credential
based on which the reservation was made or a valid reservation ticket.

GLARE, as part of GridARM, is a distributed framework for dynamic
registration, automatic deployment, and on-demand provision of workflow
activities. The framework provides an effective mapping between high-level
application descriptions (called activity types) and actual installations (called
activity deployments) on specific Grid sites. Activity types are described
in a hierarchy of abstract and concrete types. Concrete types may have
activity deployments that are shielded from the Grid application developer.
On-demand deployment of activities is triggered automatically when they are
requested by the client. GLARE is built based on a superpeer distributed
framework.

Figure 27.5 illustrates a real-world example of a concrete activity
type of WIEN2k [52] called wien:lapw0, which inherits generic wien2k
and wien types. The activity type wien:lapw0 can have two activity
deployments: a legacy executable, lapw0, and a WSRF-compliant service
called WS-WienLAPW0, both visible to the GLARE framework only internally.
GLARE performs on-demand installation of these activity deployments and
maps them automatically to the activity types, thus shielding the Grid from
the application developers.

458 Fahringer et al.

Wien

wien2k

wien:LAPW0

lapw0

WS-WienLAPW0

Activity Types

Visible to Clients/Application Developers

Visible to GLARE

Executable

Web/Grid Service

Activity Deployments

<ActivityType name="wien" type="">
 <domain name="SolidStatePhysics"/>
 <InputArgument name="input" type="file"/>
</ActivityType>

<ActivityType name="wiek2k" type="wien">
 <InputArgument name="StartInput" type="File"/>
 <InputArgument name="IntegerFraction" type="file"/>
 <InputArgument name="decimalInput" type="xsd:integer"/>
 <OutputArgument name="out" type="file" saveTo="/tmp"/>
</ActivityType>

<ActivityType name="wien:LAPW0" type="wien2k"/>
 <Installation>
 <Constraints />
 <BuildFileURL url="http://dps.uibk.ac.at/~mumtaz/glare/wien2k.build"/>
 </Installation>
 <Deployment EndpointReference="..lapw0..."/>
 <Deployment EndpointReference="...WS-WienLAPW0..."/>
</ActivityType>

<ActivityDeployment name="lapw0" type="wien:LAPW0">
 <nodeName="schareck.askalon.org" path="/opt/wien2k/bin"
 home="/home/mumtaz/wien2k"/>
</ActivityDeployment>

<ActivityDeployment name="WS-WienLAPW0"
 type="wien:LAPW0"> <service EndpointReference=""/>
</ActivityDeployment>

Invisible to Clients/Application Developers

Figure 27.5: WIEN2k activity type to deployment mapping.

We have developed a graphical console to GridARM and GLARE that
can be used to browse current Grid sites and the activity types available
(see left panel of Figure 27.6). For each Grid site or activity type, the
concrete deployments can be retrieved. Additionally, the user can use
this tool to add/remove, register/unregister, and update activity types
and deployment entries and automatically deploy/undeploy actual software
components (services and executables).

GLARE provides a special activity type called askalon.service
that stores configuration and deployment information of the ASKALON
middleware services (i.e., Scheduler, Execution Engine, GridARM). This
activity type is the entry point to the ASKALON middleware services by
providing the required discovery and invocation functionality. Together with
AGWL, GLARE has the responsibility of shielding the user from low-level
Grid middleware and resource details.

27.5 Scheduler

The Scheduler service prepares a workflow application for execution on the
Grid. It processes the workflow specification described in AGWL, converts it
to an executable form, and maps it onto the available Grid resources.

27 ASKALON 459

Figure 27.6: GridARM and GLARE console snapshots.

The scheduling process starts when the Execution Engine sends a
scheduling request with a workflow description. The workflow consists of
nodes representing activity types connected through control- and data-
flow dependencies, as well as overall workflow input and output data. The
Scheduler uses the Resource Manager to retrieve the current status of the Grid
resources and to determine available activity deployments that correspond
to the workflow activity types. In addition, the queries submitted by the
Scheduler to the Resource Manager can contain constraints that must be
honored, such as processor type, minimum clock rate, or operating system.
The Performance Prediction service supplies predicted activity execution
times and data transfer times required by the performance-driven scheduling
algorithms.

The scheduling process consists of three main phases: (1) refinement,
performed by the workflow converter component of the Scheduler; (2)
mapping, performed by the scheduling engine component; and (3) rescheduling
upon important events triggered by the event generator component (see
Figure 27.7).

460 Fahringer et al.

27.5.1 Workflow Refinement

The workflow converter resolves all the ambiguities and refines sophisticated
workflow graphs into simple directed acyclic graphs (DAGs) on which existing
graph-scheduling algorithms can be applied. Initially, several assumptions
are made for various workflow parameters such as conditionals (e.g.,
while, if, switch) or loop iteration bounds (e.g., number of parallel loop
iterations) that cannot be evaluated statically before the execution begins.
Afterward, a set of refinements are applied to refine the original complex
but compact workflow specifications into a pure DAG-based representation.
Typical transformations include branch prediction, parallel loop unrolling, and
sequential loop elimination. Transformations based on correct assumptions
can imply substantial performance benefits, particularly if a strong imbalance
in the workflow is predicted. Incorrect assumptions require appropriate
runtime adjustments such as undoing existing optimizations and rescheduling
based on the new Grid information available.

27.5.2 Workflow Scheduling

The scheduling engine is responsible for the actual mapping of a converted
workflow onto the Grid. It is based on a modular architecture, where different
DAG-based scheduling heuristics can be used interchangeably. The algorithms
with varying accuracy and complexity are based on different metrics
as optimization goals. We have currently incorporated three scheduling
algorithms: Heterogeneous Earliest Finish Time (HEFT) [493], a genetic
algorithm [365], and a myopic just-in-time algorithm acting like a resource
broker, similar to the Condor matchmaking mechanism used by DAGMan
(see Chapter 22). All algorithms receive as input two matrices, representing
the predicted execution time of every activity instance on each computation
architecture and the predicted transfer time of each data dependency link on
every Grid site interconnection network, and deliver a Grid schedule.

workflow

performance

Manager
Resource

Performance
Analysis

Performance
Prediction

Scheduler

. . .

Scheduling

Engine

Workflow
Converter

Event
request

notification
event

converted
workflow

resource
info

info

scheduling
requestEngine

Enactment

scheduled
Myopic Marchmaking

HEFT Algorithm

rescheduling

Genetic Algorithm

Generator

Figure 27.7: The Scheduler architecture.

27 ASKALON 461

As explained in Section 27.3.2, a peculiarity of the WIEN2k workflow is
that the number of parallel activities is unknown until the first activity finishes
its execution and instantiates its output port kpoints. As a consequence, the
workflow converter initially assumes a value of one for this output port, which
produces a schedule that serializes all workflow activities onto the fastest Grid
processor available. In order to graphically display the Gantt chart produced
by the Scheduler (see Figure 27.8(a)), we have customized and integrated
the Jumpshot tool [491] originally developed for postmortem visualization of
MPI(CH) programs.

27.5.3 Workflow Rescheduling

After the initial scheduling, the workflow execution is started based on
the current mapping until the execution finishes or any interrupting event
occurs. The event generator module uses the Monitoring Service to watch
the workflow execution and detect whether any of the initial assumptions,
also called execution contracts , have been violated. The execution contracts
that we currently monitor include structural assumptions made by the
workflow converter, external load on processors, processors no longer available,
congested interconnection networks, or new Grid sites available. In case of a
contract violation, the Scheduler sends a rescheduling event to the Execution
Engine, which generates and returns to the Scheduler a new workflow based
on the current execution status (by excluding the completed activities and
including the ones that need to be reexecuted). We have formally presented
this approach in detail in [365].

In the case of WIEN2k workflow, the number of parallel activities
kpoints is determined after the first activity completes, which triggers a
rescheduling event because of a workflow structural change. Figure 27.8(b)
illustrates a sample Gantt chart upon a rescheduling event for three Grid
sites and 100 parallel activities (kpoints). One can clearly see the two
parallel activities LAPW1 and LAPW2, whose inner activities are distributed
across all processors available. The middle sequential activity LAPW2 FERMI
synchronizes the parallel activities of LAPW1 and scatters them once again
for the next parallel activity, LAPW2. One can also notice that at least two
parallel activities are serialized on each processor, which we will interpret as
a serialization overhead in Section 27.7.

Figure 27.8(c) illustrates the outcome of applying our scheduling
algorithms at the rescheduling events generated by the completion of the
first activity. The results show that optimization algorithms such as HEFT
and genetic search produce substantially better schedules than the myopic
matchmaking. HEFT is also superior to the genetic algorithm since it is
a workflow-specific heuristic highly suitable for heterogeneous environments
such as the Grid. The full-graph scheduling approach produces better results
than the workflow partitioning strategy [116], especially in the case of strongly
unbalanced workflows when one parallel iteration contains significantly more

462 Fahringer et al.

(a) Initial Gantt chart.

(b) Gantt chart after rescheduling.

0

500

1000

1500

2000

2500

Genetic

algorithm

Myopic

algorithm

HEFT HEFT, part.

depth 3

Scheduling Algorithms

M
a
k
e
s
p

a
n

 [
s
e
c
.]

without performance prediction with performance prediction

(c) WIEN2k execution time.

0

100

200

300

400

500

600

700

Genetic

algorithm

Myopic

algorithm

HEFT HEFT, part.

depth 3

Scheduling Algorithms

S
c
h

e
d

u
li
n

g
 T

im
e
 [

s
e
c
.]

(d) WIEN2k scheduling time.

Figure 27.8: Scheduling experimental results.

work than the others. We can also notice that the genetic algorithm needs two
orders of magnitude longer than the other algorithms for achieving results of
the same quality; however, its ratio to the overall workflow execution time is
still negligible (see Figure 27.8(d)).

27 ASKALON 463

27.6 Execution Engine

The Execution Engine is the central service of the ASKALON middleware
responsible for controlling the execution of a workflow application based on
the Grid mapping decided by the Scheduler. The main tasks performed by
the Execution Engine are to coordinate the workflow execution according
to the control-flow constructs (i.e., sequence, if, switch, while, for,
dag, parallel, parallelFor) and to effectively resolve the data-flow
dependencies (e.g., activity arguments, I/O file staging, high-bandwidth third-
party transfers, access to databases) specified by the application developer in
AGWL.

The Execution Engine provides flexible management of large collections of
intermediate data generated by hundreds of parallel activities that are typical
of scientific workflows. Additionally, it provides a mechanism to automatically
track data dependencies between activities and performs static and runtime
workflow optimizations, including archiving and compressing of multiple files
to be transferred between two Grid sites or merging multiple activities to
reduce the job submission and polling for termination overheads.

The Execution Engine provides fault tolerance at three levels of
abstraction: (1) activity level, through retry and replication; (2) control-flow
level, using lightweight workflow checkpointing and migration (described later
in this section); and (3) workflow level, based on alternative task workflow-
level redundancy and workflow-level checkpointing.

Checkpointing and recovery are fundamental techniques for saving the
application state during normal execution and restoring the saved state after
a failure to reduce the amount of lost work. The Execution Engine provides
two types of checkpointing mechanisms, described below.

Lightweight workflow checkpointing saves the workflow state and URL
references to intermediate data (together with additional semantics that
characterize the physical URLs) at customizable execution time intervals. The
lightweight checkpoint is very fast because it does not backup the intermediate
data. The disadvantage is that the intermediate data remain stored on possibly
unsecured and volatile file systems. Lightweight workflow checkpointing is
typically used for immediate recovery during one workflow execution.

Workflow-level checkpointing saves the workflow state and the interme-
diate data at the point when the checkpoint is taken. The advantage of the
workflow-level checkpointing is that it saves backup copies of the intermediate
data into a checkpoint database such that the execution can be restored and
resumed at any time and from any Grid location. The disadvantage is that
the checkpointing overhead grows significantly for large intermediate data.

The Execution Engine provides a comprehensive monitoring interface
through which the user can observe online various metrics that characterize
the progress of the overall workflow execution. First of all, the user is provided
with a dialogbox displayed in Figure 27.9(a), that enables one to customize
personal monitoring metrics and charts, including histograms, line charts, or

464 Fahringer et al.

(a) Monitoring dialog box. (b) Activity state distribution bar charts.

(c) Activity state execution histogram.

Figure 27.9: Online workflow-monitoring snapshots.

online bar charts. Figure 27.9(b) displays two online bar charts that show the
workflow activity states on each Grid site before and after the rescheduling
phase. The left chart shows that the activity LAPW0 is in a preparation phase,
while the following ones are waiting to be executed on the same site due to
control-flow dependencies and assuming one k-point per LAPW1 and LAPW2
parallel section (see Section 27.5). The right chart of Figure 27.9(b) displays an
execution snapshot after rescheduling the workflow on four Grid sites, where
each bar corresponds to one Grid site and displays the number of activities
in each state scheduled on that site. The histogram in Figure 27.9(c) traces
at regular customizable time instances the number of workflow activities in
each possible state (i.e., waiting, preparing, submitted, active, checkpointing,
completed, failed, data transfer).

27 ASKALON 465

27.7 Overhead Analysis

One of the main concerns when executing scientific workflows on the Grid
is achieving faster completion times proportional to the performance or
quality of the Grid resources available. The distributed execution of workflow
applications on the Grid, however, is prone to large overhead that must be
understood in order to improve the overall speedup and efficiency.

As part of a service that analyzes nonfunctional parameters for Grid
applications, we have developed a formal overhead analysis model that defines
the execution time of a Grid workflow application as the sum between a
theoretical ideal time Tideal and a set of temporal overheads that originate
from various sources:

T = Tideal + Total Overhead.

Describing the sources of the temporal overheads, classifying them in a fine-
grained hierarchy, and measuring them in a systematic manner is the scope
of our overhead analysis effort.

We model a workflow application as a directed graph (Nodes,Edges),
where Nodes = {N1, . . . ,Nn} is the set of workflow nodes and Edges =⋃n−1

i=1 (Ni,Ni+1)
⋃ {(Nj ,Nk) | j > k} is the set of control-flow dependencies.

The edges in the latter union set model backward dependencies that
implement recursive loops. A node N can have any of the following types:
(1) computational activity (or remote job submission), CA; (2) data transfer
activity (or file transfer between Grid sites), DT; (3) parallel section, denoted
as NPar = (Np1, . . .Npm); and (4) subworkflow, denoted as (Nodesi,Edgesi),
recursively defined according to this definition.

For the moment, we ignore in our analysis the arbitrary DAG-based
workflow structures, which are nevertheless supported by AGWL.

The ideal execution time of a sequential computational activity, CA,
denoted as T ideal

CA , is the minimum of the wall-clock execution times on all
idle processor types available on the Grid. The ideal execution time of a data
transfer activity is zero since we consider it an overhead: T ideal

DT = 0. The
ideal execution time of a parallel section NPar is the fastest ideal execution
time of a single computational activity: T ideal

NP ar
= min

∀CA∈NP ar

{
T ideal
CA

}
. The ideal

execution time of a workflow (Nodes,Edges) is the sum of the ideal execution
times of all (computational and parallel section) activities N ∈ Nodes:
Tideal =

∑
∀N∈Nodes T ideal

N .
We propose a new hierarchical classification of performance overhead for

Grid workflow applications, which we currently base on four main categories:
middleware, loss of parallelism, data transfer, and activity overheads (see
Figure 27.10). Additionally, we consider the difference between the total
overhead and the sum of the measured identified (nonoverlapping) overheads
as unidentified overhead , which has to be minimized by an effective
performance analysis tool. A high unidentified overhead value indicates that

466 Fahringer et al.

temporal overheads

middleware

loss of parallelism

data transfer

activity

scheduling

execution management

security

optimization algorithm

performance prediction

resource brokerage

job management

submission decision policy

queue

queue waiting

queue residency

data transfer imbalance

access to database

third party data transfer

parallel overheads

external load

rescheduling

control of parallelism

fork construct

barrier

job preparation

service latency

restart

job failure

input from user

unidentified overhead

submission latency

completion polling

file staging

stage in

stage out

load imbalance

serialisation

archive / compression of data

execution management

resource broker

scheduler

performance prediction

job cancel

extract / decompression

replicated job

Figure 27.10: Workflow overhead classification.

27 ASKALON 467

the analysis is unsatisfactory and further effort is required to spot new sources
of overhead in the workflow execution.

Normalized metrics are valuable means for understanding the importance
of the temporal overheads with respect to the entire workflow execution. We
define the value of an overhead To normalized against the workflow execution
as the overhead severity , which quantifies the importance of the performance
overhead for the specific workflow execution: SV = To

T .
In addition, we define the workflow speedup as the ratio between the

fastest single-site execution time (of the entire workflow) TM
seq and the actual

execution time of the workflow on the Grid T :

S =
min

∀M∈Grid

{
TM

seq

}
T

.

Furthermore, we define the workflow efficiency as the speedup normalized
against the number of the Grid sites used, where each Grid site M is weighted
with the speedup of the corresponding single site execution time:

E =
S∑

M∈Grid SM
, where: SM =

min
∀M′∈Grid

{
TM′

seq

}
TM

seq

.

The efficiency formula therefore becomes:

E =
T−1∑

∀M∈Grid(TM
seq)−1

.

The fastest Grid site has a weight of one, whereas the slowest Grid site has
the smallest weight (i.e., closest to zero).

The rationale behind the speedup formula is that only by normalizing
against the fastest parallel computer available can the scientists get a true
indication of what they can gain by extending their focus to Grid computing.

Beyond a detailed overhead analysis, our experiments try to answer the
following question: Assume that we execute and measure the execution time of
a workflow on the fastest Grid site available and thereafter incrementally add
the next fastest site to the Grid execution environment. Does the execution
time of a specific application decrease considerably compared with the single-
site execution? If we can demonstrate reasonable speedups and understand
the nature of the most relevant overheads, the application groups are likely
to become interested in Grid computing and give us additional support in
porting their applications as Grid workflows.

We proceeded by executing the workflow application on every individual
Grid site and ranked the sites according to the execution times obtained
(see Table 27.1). In our experiments, the SGI Altix machines delivered the
fastest execution times, followed by the 3 GHz Pentium 4 compute cluster
from Vienna (Gescher) and the Pentium 4 workstation networks in Innsbruck

468 Fahringer et al.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

altix1 / schafberg gescher agrid1 / arch

Grid site

T
im

e
 [

s
e
c
o

n
d

s
]

(a) Single site comparison.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

altix1.jku schafberg altix1.uibk gescher agrid1 arch19 arch20 arch21

Grid site configuration

speedup efficiency

(b) Speedup and efficiency.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

al
tix

1.
jk
u

sc
ha

fb
er

g

al
tix

1.
ui
bk

ge
sc

he
r

ag
rid

1

ar
ch

19

ar
ch

20

ar
ch

21

Grid site configuration

P
e
rc

e
n

ta
g

e

ideal time total overhead

(c) Total overhead severity.

0

10

20

30

40

50

60

70

80

90

al
tix

1.
jk
u

sc
ha

fb
er

g

al
tix

1.
ui
bk

ge
sc

he
r

ag
rid

1

ar
ch

19

ar
ch

20

ar
ch

21

Grid site configuration

O
v

e
rh

e
a

d
 s

e
v

e
ri

ty
 [

p
e

rc
e

n
ta

g
e

]

serialisation *

resource broker

prediction

scheduler

job preparation *

job submission

load imbalance *

data transfer *

external load *

unidentified

(d) Overhead severity.

0

1000

2000

3000

4000

5000

6000

7000

al
tix

1.
jk
u

sc
ha

fb
er

g

al
tix

1.
ui
bk

ge
sc

he
r

ag
rid

1

ar
ch

19

ar
ch

20

ar
ch

21

Grid site configuration

T
im

e
 [

s
e

c
o

n
d

s
]

unidentified *

external load *

data transfer *

load imbalance *

job submission

job preparation *

scheduler

prediction

resource broker

serialisation

ideal time

(e) 252 k-point executions.

data transfer *

13%

ideal time

28%

job preparation *

18%

load imbalance *

28%

job submission

1%

unidentified *

2%external load *

8%

serialisation

0%

prediction

2%

resource broker

0%

schedule

0%

(f) Overhead breakdown for eight sites.

Figure 27.11: WIEN2k overhead analysis results.

(see Figure 27.11(a)). The ideal execution time of the SGI Altix machines and
Gescher are almost equal, but Gescher has a significantly higher PBS queuing
time (over one minute), which makes it only fourth in the overall Grid site

27 ASKALON 469

ranking. After establishing a ranking of the Grid sites, we proceeded with the
repeated execution of the workflow on multiple Grid sites by incrementally
adding the next fastest site to the Grid environment.

The speedup curve displayed in Figure 27.11(b) shows that the Grid
execution improves up to seven sites. The improvement comes from the
parallel execution of the computationally expensive k-points on multiple Grid
sites, which significantly lowers the execution time of the parallel sections.
The efficiency curve gently decreases in both cases and remains above 0.5,
which we find promising considering the modest problem sizes executed and
the rather high overhead experienced.

Figure 27.11(e) displays the contribution of the ideal execution time and
the most significant overheads to the real execution time. We have marked
with asterisks the most severe overheads, which the reader can follow in a
top–bottom order on the individual bars.

The severity of the total overhead constantly decreases with the Grid size
from over 80% on one site to 45% on eight Grid sites (see Figure 27.11(c)).
Figure 27.11(d) summarizes in one graph the overhead severities in every
Grid site configuration, which indicates the importance of each overhead and
guides the application and middleware developers to the parts on which to
concentrate the next tuning efforts.

The most important overhead is the serialization overhead due to the
limited Grid size, which cannot accommodate the entire number of parallel
activities that have to be serialized on some of the processors (typically
through a job queuing system such as PBS). This overhead accounts for over
90% of the total overhead on a single site, but decreases to zero on eight sites.
This overhead indicates the performance that could be gained by acquiring
or adding new processors to the Grid environment. If extending the Grid size
is irrelevant to the user, one could consider this overhead as part of the ideal
execution time.

The second severe overhead is the loss of parallelism due to load imbalance,
which fluctuates depending on the number of k-points, processors available,
and the size of the serialized block of each processor. In our experiments, it
steadily grows with the Grid size because of the slower processors added to
the Grid environment (see Figure 27.11(f)).

The next important overhead is the job preparation overhead for
compression/decompression of a large number of files into/from an archive
with the purpose of reducing the data transfer overhead. The WIEN2k
activities have a large number of data dependencies (i.e., files), which increase
proportionally with the number of parallel k-points (about three times).
Moreover, the size of the data that need to be transferred between activities
increases with the number of k-points and Grid sites (about 500 MB for 100
k-points). Therefore, it becomes crucial to archive and compress the output
files before transferring them over the network to the next activity. This
overhead remains relatively constant for the first four Grid site configurations.
The Pentium 4 workstation networks (which are part of a large, intensively

470 Fahringer et al.

used student workstation network), however, exhibit unexpectedly large access
latencies to the shared AFS file system upon decompressing file archives of
about 50 MB. This overhead grows linearly with the number of archives used
(i.e., n − 1 tar archives for n Grid sites), which significantly slows down the
execution.

We managed to keep the data transfer overhead relatively constant (about
140 seconds) by using parallel streams over the GridFTP protocol to transfer
the archives between sites. Additionally, we exhibit a constant imbalance on
parallel data transfers of between 50 and 60 seconds per workflow execution.

The external load overhead is significant for one and two Grid site
executions and decreases with the number of Grid sites. Its severity slightly
increases with the Grid size; however, its value decreases and is proportional
with the number of activities that execute concurrently on the SGI Altix
parallel machines (which is obviously decreasing with the Grid size). The
overhead is not simply due to external factors but is also caused by the
nature of the NUMA SMP architecture concurrently executing 14 parallel
activities. This overhead consists of remote memory accesses and contention
on the shared bus, operating system parallel process management, and cache
coherency protocols. For compute clusters and workstation networks, the
external load is (almost) zero due to the dedicated access to the single
processors via the PBS queuing system.

The overheads of the ASKALON middleware services, comprising the
Resource Broker, Scheduler, and Performance Prediction, are constant and
count for less than 1% each of the entire execution time.

27.8 Conclusions

In contrast to many existing systems, ASKALON supports workflow
composition and modeling using the UML standard and provides an XML-
based programming interface that shields the application developer from low-
level middleware technologies. A separate Resource Manager, which covers
both physical resources and workflow activities, renders the boundaries of
resource brokerage, virtual organization-wide authorization, and advanced
reservation, and provides mechanisms for Grid resource discovery, selection,
and allocation along with resource requester and provider interaction. Our
Scheduler supports HEFT and genetic search as optimization algorithms
which perform significantly better than a pure resource broker, in particular
in the case of unbalanced workflows. The Scheduler benefits significantly
from a Performance Prediction service that provides expected execution times
based on a training phase and statistical methods. The Execution Engine
efficiently handles large collections of data dependencies produced by hundreds
of parallel activities specific to scientific workflows. We have demonstrated
significant performance gains through two checkpointing methods for saving

27 ASKALON 471

and restoring the execution of Grid workflows upon engine and application
failures.

We have demonstrated the integrated use of the ASKALON services for
real-world scientific workflows executed in the Austrian Grid infrastructure.
Our future work will focus on further optimization of workflow executions to
increase their scalability on the Grid, scheduling based on QoS parameters
to be negotiated between the Scheduler and the Resource Manager, and
automatic bottleneck detection and steering based on online performance
analysis.

27.9 Acknowledgments

This research was partially supported by the Austrian Science Fund as part
of the SFBF1104 Aurora project and the European Union as part of the IST-
2002-511385 K-Wf Grid and IST-034601 Edutain@Grid projects.

Part IV

Future Requirements

Looking into the Future of Workflows:
The Challenges Ahead

Ewa Deelman

Contributors: Bruce Berriman, Thomas Fahringer, Dennis Gannon, Carole
Goble, Andrew Jones, Miron Livny, Philip Maechling, Steven McGough,
Deana Pennington, Matthew Shields, and Ian Taylor

In this chapter, we take a step back from the individual applications and
software systems and attempt to categorize the types of issues that we are
facing today and the challenges we see ahead. This is by no means a complete
picture of the challenges but rather a set of observations about the various
aspects of workflow management. In a broad sense, we are organizing our
thoughts in terms of the different workflow systems discussed in this book,
from the user interface down to the execution environment.

1 User Experience

It is often difficult to provide users with a satisfying experience in building
and managing applications, mainly because user expectations with respect
to transparency and control vary greatly. Some users may want to describe
their problems in a high-level application-specific manner, some may want to
view intermediate data, while others may make very detailed plans, including
specifying particular resources to use and possibly interacting with the live
analysis by suspending and restarting particular portions of the analysis.
Thus, workflow requirements are varied, often being subject to user- or
domain-specific issues that cannot be satisfied by one system. However, a
workflow system needs to be smart enough to handle the low-level technical
details behind the scenes, hiding that complexity from scientists while at the
same time exposing interfaces to workflow management aspects.

Most of the workflow systems today support a “one-shot” user interaction
where, having started the workflow execution, it must continue to completion
or error state or be aborted. However, it is often the case that users are
not decided on the exact steps in the analysis to be conducted. They may
want to use the workflows in an explorative manner, exploring different
ideas and avenues of investigation. In order to enable this explorative and

476 Ewa Deelman

interactive mode, the user must be very much part of the workflow. The
systems must provide meaningful information to the user, at an appropriate
level of abstraction, and provide adequate user interface responsiveness and
system performance to enable the user to interact with the system on a
realistic time scale.

Scientific users are often comfortable with their existing methodologies
and techniques for conducting their analysis and may resist spending large
amounts of time learning new tools and technologies. It would be useful to
create an environment where new users can view how other applications have
benefited from the technologies. Another benefit of such an approach would be
for novice users to be able to view and use the knowledge of domain experts,
captured in workflows who have solved the same or similar problems. This type
of expert “knowledge capture” is extremely valuable to commercial research
institutions where staff may move on and a new employee is expected to
take over. Collecting workflows and their components into libraries that can
be easily explored, shared between scientists and organizations, and reused
will become increasingly important. In some cases new workflows can be
generated by finding a workflow that is “close” to the desired analysis and then
modifying it to suit the particular needs by substituting different components
or data sources. Additionally, demonstrating the usefulness of the workflow
technologies in a variety of applications and scenarios would enable other
scientists to leverage existing experiences.

Result validation and verification is always uppermost in a scientist’s
mind, often the journey to the result is as important, if not more important,
than the result itself. Reproducibility is vital for the scientific process. To be
able to validate a given set of results, we must be able to take the original
workflow and start data and rerun the execution to give the same results.
Thus, it is important to provide detailed provenance about every step of the
workflow process, even to the level of the execution environment. Each of
the components or steps in the workflow must also be validated to ensure
that each individual result for each component is accurate. Finally, to truly
be able to verify and reproduce experiments accurately since all aspects of
the system are software-based, we must have version information to ensure
that when an experiment is rerun everything is as it was. Are the start data
the exact version that the original experiment used? Do we have the same
versions of all of the components and the execution environment, or have
they been modified? Even if modifications do not affect the results, we must
have information about the system versions and be able to prove that this is
the case. Some aspects of the extremely complicated systems that make up
modern workflow environments are very difficult to version accurately. For
example, if we rely on external services such as Web services as components,
what information do we have access to about the version of the service we
are using from one instance to the next? Standard Web Services Description
Language (WSDL) has no capability for representing version information, and

Future of Workflows 477

even if it did, if the service is controlled by a third party to what level do we
trust any information we may get about the version of the service?

There must also be an infrastructure that can catalog the provenance
information in a scalable way and provide means of efficiently searching the
large volumes of information. Provenance also needs to be structured in a way
that would enable a scientist to easily evaluate the validity of the results. For
example, it may not be necessary to provide detailed execution records when
a scientist wants to find out about the types of analysis used in the workflow,
but it would be if the same scientist wanted to reproduce an experiment from
a workflow. While some scientific workflow systems already provide detailed
provenance information, the problem of providing a standard representation is
not solved. Solving this is necessary if a provenance generated by one workflow
system is to be replayed on another. The other vital area in provenance that
is understood but not necessarily implemented everywhere, and certainly not
in Web services, is all the aspects of workflow system versioning.

Today, various aspects of the user experience are being partially
implemented in a variety of workflow systems. However, there is no single
system that provides all the necessary ingredients for comprehensive, flexible,
and scientifically rigorous experimentation.

2 Workflow Languages and Representations

An aspect not addressed in the user experience is the language used to encode
scientific workflows. In some cases, it is graphical, and in others it is script-
based. In all cases, the language needs to provide the users with easy ways of
specifying the required steps in analysis tasks and a means of connecting them
either with a flow of control or data. As mentioned above, given the differences
between the types of users, developing a standard workflow language is very
challenging. The issue remains whether the cognitive overhead involved in
creating workflows may distract scientists from creative exploration.

Although a plethora of tools, GUIs, and paradigms are currently used,
in practice many suffer from the drawback that they are too low-level and
do not shield the programmer from underlying systems. In other cases,
expressiveness is too limited to describe all the needed control and data flow.
For example, very few graphical systems support exception handling or other
forms of dynamic, adaptive behavior. As with the world of programming
languages, there can be no standard form of expression: Different users
will always need different ways of describing computations. It is possible
that a common intermediate form may exist. Based on such a common
intermediary, the wide variety of workflow-related tools could have a chance
of becoming interoperable and some of the existing duplication of effort could
be eliminated.

In terms of “visual editing” of workflows, much work still needs to be done.
Current workflows range from those that have a few tasks executed by a few

478 Ewa Deelman

services to those that are composed of thousands of tasks distributed over
thousands of processors. Many of the editors existing today can be awkward
to apply in a distributed setting. Thus, developing compact and meaningful
visualizations is an important challenge.

Workflow representations need not only provide a way to describe a
workflow but also support the transitions between the different levels of
abstraction from high-level user descriptions down to low-level execution
details. One example of the information that needs to be captured by a
workflow representation is the performance requirements necessary to map
a workflow to an executable form.

One also has to be careful not to take workflow languages to the extreme
and turn them into full-featured programming or scripting languages since
they already exist in abundance and are inadequate for scientists to use
on a daily basis. Workflow languages need to capture the salient features
of a scientific analysis without providing so much flexibility as to make the
workflow composition process too complex.

One possible solution to this problem would be to develop a series
of languages that can be mapped from one to the other, where we have
different languages that are appropriate in different contexts—different levels
of abstraction. Users could then enter the system at their appropriate level.

Using a common intermediate representation would be one approach.
This could be augmented with a common runtime and standard workflow
enactment engine. In a manner analogous to the Microsoft Common Language
Runtime and Infrastructure (CLR), one could integrate small scripts as
executing components within a larger workflow. Within the Web services
community, especially for business interactions, BPEL is already becoming
the de facto standard for service orchestration and workflow. It is one possible
candidate for a common intermediate representation for e-Science workflows
as well, although there are issues with this approach.

3 Workflow Compilers

Workflow compilers can be used as a mapping tool between workflow
languages at different levels of abstraction. They allow scientists to express
their analysis at any level of abstraction and then compile it to the target
execution system, which can range from a single host or service to a
distributed, heterogeneous set of resources and services.

Compiling a workflow down to an executable form requires knowledge
about the requirements and performance characteristics of the workflow tasks
and knowledge of the availability and the characteristics of the resources.
Currently, this knowledge is rather limited and often encoded in an ad hoc
manner. A challenge for the future would be to capture the application-level
and the execution-level knowledge using semantic representations and employ
reasoners to find suitable mappings.

Future of Workflows 479

The compilation process involves many decisions, for example, why
particular resources were selected over others. It may be beneficial to encode
some of the decision process as the workflow is being mapped. In fact,
the dynamic nature of resource availability may make this late binding
necessary. This would enable more efficient compilation and possibly a more
rich interaction between the workflow compiler and the workflow executors.

Considering that e-Science workflows are often mapped to a set of
heterogeneous, distributed resources, failures in execution are commonplace.
This failure-prone environment poses a significant challenge to the workflow
compilers. Ultimately, the compilers should anticipate failures and plan
accordingly, possibly producing “plan B,” or backtracking. They should also
work closely with the workflow engines to react to problems as they occur.

Compilers also need to support the mapping of information about the
execution of the workflow components back to the high-level descriptions, for
example, in order to provide user-level monitoring and failure information.

As we mentioned before, the management of metadata and provenance
at every step of the workflow is crucial. Compilers can be very beneficial
in this aspect as they can augment the executable workflows with metadata
and provenance management tasks, for example, adding tasks for collecting
execution statistics and tasks for storing them in relevant databases. However,
the compiler cannot manage the metadata and provenance alone. It needs
appropriate workflow representations to support annotations of the workflow
products with relevant metadata.

4 Workflow Enactors or Executors

The main job of a workflow executor, or workflow engine, is to faithfully and
robustly execute the workflows. However, current enactment engines are not
as fault tolerant as we would like, and many application and system faults still
occurr. Many lightweight systems embed the enactor directly into the workflow
composer: If the user turns off his laptop, the workflow will stop. Others, such
as those based around the BPEL specification, are designed to allow the entire
workflow state to be made persistent in a database. Consequently, a workflow
enactment can survive a reboot of the engine.

Today there are many workflow engines, as there are many workflow
compilers and user environments. It would potentially be beneficial to have a
common engine, or at least a limited set of engines, for execution in distributed
environments such as the Grid. Again, workflow language standardization, at
various levels of abstraction, would be of great benefit in developing common
engines.

An important challenge for workflow engines is to detect when a failure
in the environment is a mask, which needs to be passed to the compiler and
perhaps in turn to the user. Clearly, the workflow executor needs to provide

480 Ewa Deelman

enough information at an appropriate level of abstraction to enable this type
of failure handling.

Another issue not addressed fully by workflow executors today is the
management of dynamic workflows, where new portions of a workflow can be
added at any time while some other portions are cancelled. A related problem
stems from the amounts of data involved in the e-Science workflows. Modest-
sized workflows can create gigabytes of data on the execution sites. These
data, once they are successfully transferred to permanent storage, should be
removed, unless of course they are needed by subsequent analysis.

5 Debugging

As we mentioned before, errors often occur and need to be dealt with either by
the workflow engine, the workflow compiler, or the user. Today, a user often
has to examine logs provided by the workflow management system, which are
mostly too low-level to be comprehensible by an average user. Much of the
complexity stems from the cryptic error messages generated by the underlying
distributed execution environment. However, some progress at the workflow
level could be made as well. For example, it would be beneficial to provide
the capability of replaying arbitrary portions of the workflow while modifying
the data sources, the execution systems, and workflow components. This may
provide the users with some insight into the nature of the failures.

In the distributed case, the most common approach to this is to provide
a global event notification system. Such a system can also be tied to the
provenance tracking, and the event history can be of great value in the replay
process. However, a larger challenge is managing all the intermediate data
products of the workflow. These are needed if a workflow is to be interrupted
and restarted without redoing all previous work. Again, in the distributed
case, this requires a distributed virtual data management system. Every
intermediate data product needs to have a unique identifier that can be used
to access that object if it is needed again.

6 Execution Environments

Much work needs to be done in terms of the distributed execution
environment. Reliability is of paramount importance, as is providing detailed
yet meaningful information about failures when they occur. As more scientists
depend on large-scale distributed systems to do their work, these systems need
to provide production-level availability and reliability.

Much work also needs to be done in characterizing the execution system
so that workflow services can make meaningful decisions. This includes not
only characterizing computational resources but also storage. Currently, we

Future of Workflows 481

don’t distinguish between different types of storage such as fast I/O storage,
long-term storage, quotas associated with specific resources, etc.

Usage policies of the resources often are not exposed in a way that can be
easily examined by workflow management software. As a result, computations
may be sent to resources with little chance of successful execution.
Consequently, there is a need for dynamic resource-level authorization and
policy negotiation. One approach is to associate the identity of the owner of a
workflow enactment with the instance of that enactment. The workflow engine
can negotiate with resources at runtime to decide on the best resources that
the user is authorized to use.

Monitoring tools are critical in a distributed environment. They must
be scalable and include meaningful, up-to-date information. Many efforts
have gone into coming up with common schemas for representing sets of
resources. However, because many execution environments today are managed
by different organizations and projects, there needs to be a way to monitor
across the organizational boundaries. Possibly, semantic technologies may help
match seemingly disparate information.

Finally, it is important for the workflow software to be easy to deploy and
manage, ultimately supporting on-the-fly deployment so as to make full use
of the dynamic execution environment.

7 The Big Question

Is the workflow metaphor too restrictive for exploratory e-Science? We think
not. As we have seen, there are a number of approaches within the workflow
arena, but clearly the authors of this book believe that workflow is the correct
approach for e-Science applications. Are they right? Well, only time and
experience will give us the answer to that question.

References

1. The 2MASS Project. http://www.ipac.caltech.edu/2mass.
2. B. Abbott et al. Analysis of LIGO Data for Gravitational Waves from Binary

Neutron Stars. Physical Review D, 69:122001, 2004.
3. B. Abbott et al. Search for Gravitational Waves from Galactic and Extra-

galactic Binary Neutron Stars. Physical Review D, 72:082001, 2005.
4. B. Abbott et al. Search for Gravitational Waves from Primordial Black Hole

Binary Coalescences in the Galactic Halo. Physical Review D, 72:082002, 2005.
5. B. Abbott et al. Search for Gravitational Waves from Binary Black Hole

Inspirals in LIGO Data. Physical Review D, 73:062001, 2006.
6. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura,

F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, and K. S. Thorne. LIGO —
The Laser Interferometer Gravitational-Wave Observatory. Science, 256:325–
333, Apr. 1992.

7. M. Addis, J. Ferris, M. Greenwood, D. Marvin, P. Li, T. Oinn, and A. Wipat.
Experiences with e-Science Workflow Specification and Enactment in Bioinfor-
matics. In Proceedings of UK e-Science All Hands Meeting, pages 459–467,
2003.

8. A. Ali, O. Rana, and I. Taylor. Web Services Composition for Distributed
Data Mining. In ICPP 2005 Workshops, International Conference Workshops
on Parallel Processing, pages 11–18. IEEE, New York, 2005.

9. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data Management and
Transfer in High-Performance Computational Grid Environments. Parallel
Computing, 28(5):749–771, 2002.

10. B. Allen. A chi2 Time-Frequency Discriminator for Gravitational Wave
Detection. Physical Review D, 71:062001, 2005.

11. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E.
Creighton. FINDCHIRP: An Algorithm for Detection of Gravitational Waves
from Inspiraling Compact Binaries. Submitted to Physical Review D, 2005.

12. G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel,
and J. Shalf. The Cactus Worm: Experiments with Dynamic Resource
Discovery and Allocation in a Grid Environment. International Journal
of High Performance Computing Applications, 15(4):345–358, 2001. http:

//www.cactuscode.org/Papers/IJSA 2001.pdf.

484 References

13. G. Allen, D. Angulo, T. Goodale, T. Kielmann, A. Merzky, J. Nabrzysky,
J. Pukacki, M. Russell, T. Radke, E. Seidel, J. Shalf, and I. Taylor. GridLab:
Enabling Applications on the Grid. In M. Parashar, editor, GRID 2002, 3rd
International Workshop on Grid Computing, volume 2536 of Lecture Notes in
Computer Science, pages 39–45. Springer-Verlag, New York, 2002.

14. G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. Hege, G. Lanfermann,
A. Merzky, T. Radke, and E. Seidel. Cactus Grid Computing: Review of
Current Development. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman,
editors, Europar 2001: Parallel Processing, Proceedings of 7th International
Conference, Manchester, UK. Springer, New York, August 2001. http://www.
cactuscode.org/Papers/Europar01.ps.gz.

15. G. Allen, T. Goodale, G. Lanfermann, T. Radke, D. Rideout, and J. Thornburg.
Cactus Users Guide, 2004. http://www.cactuscode.org/Guides/Stable/

UsersGuide/UsersGuideStable.pdf.
16. M. Alpdemir, A. Mukherjee, A. Gounaris, N. Paton, A. Fernandes,

R. Sakellariou, P. Watson, and P. Li. Using OGSA-DQP to Support Scientific
Applications for the Grid. In Proceedings of the First International Workshop
on Scientific Applications in Grid Computing (SAG’04), volume 3458 of
Lecture Notes in Computer Science, pages 13–24. Springer-Verlag, Berlin, 2004.
Invited paper.

17. M. Alt, H. Bischof, and S. Gorlatch. Algorithm Design and Performance
Prediction in a Java-Based Grid System with Skeletons. In B. Monien
and R. Feldmann, editors, Euro-Par 2002, volume 2400 of Lecture Notes in
Computer Science, pages 899–906. Springer-Verlag, Berlin, 2002.

18. M. Alt, A. Hoheisel, H.-W. Pohl, and S. Gorlatch. A Grid Workflow Language
Using High-Level Petri Nets. In R. Wyrzykowski, J. Dongarra, N. Meyer,
and J. Wasniewski, editors, Proceedings of the 6th International Conference
on Parallel Processing and Applied Mathematics PPAM’2005, volume 3911 of
Lecture Notes in Computer Science, pages 715–722. Springer, New York, 2006.

19. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler:
An Extensible System for Design and Execution of Scientific Workflows. In 16th
International Conference on Scientific and Statistical Database Management
(SSDBM), pages 423–424. IEEE Computer Society, New York, 2004.

20. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler:
Towards a Grid-Enabled System for Scientific Workflows. In Proceedings of
the Workflow in Grid Systems Workshop at the Global Grid Forum (GGF10).
Global Grid Forum, 2004.

21. AMD. http://www.amd.com.
22. K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and

A. Rossi. GridAnt: A Client-Controllable Grid Workflow System. In HICSS
’04: Proceedings of the Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) — Track 7, page 70210.3. IEEE
Computer Society, Washington, 2004.

23. R. P. Anderson, D. Lew, and A. T. Peterson. Evaluating Predictive Models
of Species’ Distributions: Criteria for Selecting Optimal Models. Ecological
Modelling, 162:211–232, 2003.

24. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services Version 1.1.

References 485

25. Apache Derby. http://db.apache.org/derby/.
26. Apples with Apples: Numerical Relativity Comparisons and Tests.

See Web site at http://www.ApplesWithApples.org.
27. M. B. Araujo, M. Cabeza, W. Thuiller, L. Hannah, and P. H. Williams. Would

Climate Change Drive Species out of Reserves? An Assessment of Existing
Reserve-Selection Methods. Global Change Biology, 10(9):1618–1626, 2004.

28. M. B. Araujo, R. G. Pearson, W. Thuiller, and M. Erhard. Validation of
Species-Climate Impact Models under Climate Change. Global Change Biology,
11(9):1504–1513, 2005.

29. A. Arbree, P. Avery, D. Bourilkov, R. Cavanaugh, S. Katageri, J. Rodriguez,
G. Graham, J. Vöckler, and M. Wilde. Virtual Data in CMS Productions. In
Proceedings of Computing in High Energy and Nuclear Physics, volume eConf
C0303241. Electronic Conference Proceedings Archive, 2003.

30. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward a Common Component Architecture
for High-Performance Scientific Computing. In Eighth IEEE International
Symposium on High Performance Distributed Computing (HPDC-8 ’99),
page 13. IEEE Computer Society, New York, 1999.

31. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour,
K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Technical
Report ICL-UT-02-05, University of Tennessee, Knoxville, 2002.

32. Astrophysics Simulation Collaboratory (ASC) home page.
http://www.ascportal.org.

33. The Austrian Grid Consortium. http://www.austriangrid.at.
34. The Avalon Project. http://avalon.apache.org.
35. K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, and P. Yendluri. WS-I

Basic Profile Version 1.0. http://www.ws-i.org/Profiles/BasicProfile-1.

0-2004-04-16.html, April 2004.
36. M. Bardeen, E. Gilbert, T. Jordan, P. Nepywoda, E. Quigg, M. Wilde, and

Y. Zhao. The QuarkNet/Grid Collaborative Learning e-Lab. In Workshop
on Collaborative and Learning Applications of Grid Technology and Grid
Education, CCGrid 2005, volume 1, pages 27–34. IEEE Computer Society,
New York, 2005.

37. B. C. Barish and R. Weiss. LIGO and the Detection of Gravitational Waves.
Physics Today, 52(10):44–50, October 1999.

38. P. Barman, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In SOSP
’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 164–177. ACM Press, New York, September 2003.

39. J. E. Barnes and P. Hut. A Hierarchical O(N log N) Force-Calculation
Algorithm. Nature, 324(4):446–449, 1986.

40. C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou,
P. Velikhov, and V. Chu. XML-Based Information Mediation with MIX.
In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 597–599. ACM Press, New York,
1999.

41. C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource
Broker. In CASCON ’98: Proceedings of the 1998 Conference of the Centre for
Advanced Studies on Collaborative Research, page 5. IBM Press, New York,
1998.

486 References

42. M. Beckerle and M. Westhead. GGF DFDL Primer. Technical report, Global
Grid Forum, 2004.

43. D. J. Beerling, B. Huntley, and J. P. Bailey. Climate and the Distribution of
Fallopia Japonica: Use of an Introduced Species to Test the Predictive Capacity
of Response Surfaces. Journal of Vegetation Science, 6:269–282, 1995.

44. R. A. Benjamin, E. Churchwell, B. L. Babler, R. Indebetouw, M. R. Meade,
B. A. Whitney, C. Watson, M. G. Wolfire, M. J. Wolff, R. Ignace, T. M. Bania,
S. Bracker, D. P. Clemens, L. Chomiuk, M. Cohen, J. M. Dickey, J. M. Jackson,
H. A. Kobulnicky, E. P. Mercer, J. S. Mathis, S. R. Stolovy, and B. Uzpen. First
GLIMPSE Results on the Stellar Structure of the Galaxy. The Astrophysical
Journal, 600:L149–L152, 2005.

45. J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, and M. Livny. NeST — A Grid Enabled Storage
Appliance. In J. Weglarz, J. Nabrzyski, J. Schopf, and M. Stroinkski, editors,
Grid Resource Management, volume 64 of International Series in Operations
Research & Management Science. Kluwer Academic Publishers, Dordrecht,
2003.

46. D. Berkley, S. Bowers, M. Jones, B. Ludäscher, M. Schildhauer, and J. Tao.
Incorporating Semantics in Scientific Workflow Authoring. In SSDBM’2005:
Proceedings of the 17th International Conference on Scientific and Statistical
Database Management, pages 75–78. Lawrence Berkeley Laboratory, Berkeley,
2005.

47. L. Bernardinello and F. de Cindio. A Survey of Basic Net Models and Modular
Net Classes. In Advances in Petri Nets 1992, The DEMON Project, volume
609 of Lecture Notes in Computer Science, pages 304–351. Springer-Verlag,
New York, 1992.

48. G. Berriman, D. Curkendall, J. Good, J. Jacob, D. Katz, M. Kong,
S. Monkewitz, R. Moore, T. Prince, and R. Williams. An Architecture for
Access to a Compute Intensive Image Mosaic Service in the NVO. In A. S.
Szalay, editor, Virtual Observatories, Proceedings of The International Society
for Optical Engineering, volume 4686, pages 91–102. SPIE Press, Bellingham
WA, 2002.

49. M. Bevers, J. Hof, D. W. Uresk, and G. L. Schenbeck. Spatial Optimization of
Prairie Dog Colonies for Black-Footed Ferret Recovery. Operations Research,
45:495–507, 1997.

50. V. Bhat and M. Parashar. Discover Middleware Substrate for Integrating
Services on the Grid. In High Performance Computing - HiPC 2003, volume
2913 of Lecture Notes in Computer Science, pages 373–382. Springer, Berlin,
2003.

51. D. Bhatia, V. Burzevski, M. Camuseva, W. F. G. Fox, and G. Premchandra.
WebFlow: A Visual Programming Paradigm for Web/Java Based Coarse
Grain Distributed Computing. Concurrency and Computation: Practice and
Experience, 9(6):555–577, 1997.

52. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k: An
Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal
Properties. Institute of Physical and Theoretical Chemistry, Technische
Universität, Wien, 2001.

53. Basic Local Alignment Search Tool (BLAST). http://www.ncbi.nlm.nih.

gov/blast/, 2006.

References 487

54. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy.
Task Scheduling Strategies for Workflow-based Applications in Grids. In IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2005),
volume 2, pages 759–767. IEEE Computer Society, New York, 2005.

55. Biological Magnetic Resonance Data Bank. http://www.bmrb.wisc.edu/,
2006.

56. L. Bocchi, C. Laneve, and G. Zavattaro. A Calculus for Long Running
Transactions. In E. Najm, U. Nestmann, and P. Stevens, editors, FMOODS
2003: Formal Methods for Open Object-Based Distributed Systems, volume 2884
of Lecture Notes in Computer Science, pages 124–138. Springer-Verlag, Berlin,
2003.

57. R. Bondarescu, G. Allen, G. Daues, I. Kelley, M. Russell, E. Seidel, J. Shalf, and
M. Tobias. The Astrophysics Simulation Collaboratory Portal: a Framework
for Effective Distributed Research. Future Generation Computer Systems,
21(2):259–270, 2005.

58. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and
D. Orchard. Web Services Architecture, W3C Working Group Note. http:

//www.w3.org/TR/2004/NOTE-ws-arch-20040211/, November 2004.
59. S. Bowers and B. Ludäscher. An Ontology-Driven Framework for Data

Transformation in Scientific Workflows. In International Workshop on Data
Integration in the Life Sciences (DILS’04), volume 2994 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 2004.

60. S. Bowers, D. Thau, R. Williams, and B. Ludäscher. Data Procurement
for Enabling Scientific Workflows: On Exploring Inter-Ant Parasitism. In
C. Bussler, V. Tannen, and I. Fundulaki, editors, Semantic Web and Databases,
Second International Workshop, SWDB 2004, volume 3372 of Lecture Notes in
Computer Science, pages 57–63. Springer-Verlag, Berlin, 2005.

61. D. Box. Essential COM. Addison-Wesley, Reading, MA, 1997.
62. D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, A. Geller,

S. Graham, D. Hull, G. Kakivaya, A. Lewis, B. Lovering, M. Mihic, P. Niblett,
D. Orchard, J. Saiyed, S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk,
B. Smith, S. Weerawarana, and D. Wortendyke. Web Services Eventing (WS-
Eventing). Technical report, W3C, August 2004.

63. F. Breg, S.Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gannon.
Java RMI Performance and Object Model Interoperability: Experiments with
Java/HPC++ Distributed Components. Concurrency Practice and Experience,
Special Issue from the Fourth Java for Scientific Computing Workshop, 10(11–
13):941–955, 1998.

64. D. Brookshier, D. Govoni, N. Krishnan, and J. C. Soto. JXTA: Java P2P
Programming. Sams Publishing, Indianapolis, 2002.

65. D. A. Brown. Using the INSPIRAL Program to Search for Gravitational Waves
from Low-Mass Binary Inspiral. Classical and Quantum Gravity, 22:S1097–
S1108, 2005.

66. M. Brune, G. Fagg, and M. Resch. Message Passing Environments for
Metacomputing. Future Generation Computer Systems, 15(5–6):699–712, 1999.

67. D. Bunting, M. Chapman, O. Hurley, M. Little (editor), J. Mischkinsky,
E. Newcomer (editor), J. Webber, and K. Swenson. Web Services Context
(WS-Context) Ver1.0. http://www.arjuna.com/library/specs/ws caf 1-0/

WS-CTX.pdf, 2003.

488 References

68. A. Buonanno, Y. Chen, and M. Vallisneri. Detecting Gravitational Waves from
Precessing Binaries of Spinning Compact Objects: Adiabatic Limit. Physical
Review D, 67:104025, 2003.

69. A. Buonanno, Y. Chen, and M. Vallisneri. Detection Template Families for
Gravitational Waves from the Final Stages of Binary-Black-Hole Inspirals:
Nonspinning Case. Physical Review D, 67:024016, 2003.

70. C. E. Burns, K. M. Johnston, and O. J. Schmitz. Global Climate Change
and Mammalian Species Diversity in US National Parks. Proceedings of the
National Academy of Sciences of the United States of America, 100(20):11474–
11477, 2003.

71. M. Butler, R. Pennington, and J. A. Terstriep. Mass Storage at NCSA: SGI
DMF and HP UniTree. In Proceedings of 40th Cray User Group Conference.
CD Rom Proceedings, 1998.

72. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and
V. Welch. A National-Scale Authentication Infrastructure. IEEE Computer,
33(12):60–66, 2000.

73. The Cactus Framework. See Web site at http://www.cactuscode.org.
74. K. Camarda, Y. He, and K. A. Bishop. A Parallel Chemical Reactor Simulation

using Cactus. In Proceedings of Linux Clusters: The HPC Revolution, NCSA.
Linux Clusters Institute, 2001.

75. F. Camilo, D. Lorimer, P. Freire, A. Lyne, and R. Manchester. Observations
of 20 Millisecond Pulsars in 47 Tucanae at 20 cm. The Astrophysical Journal,
535:975, 2000.

76. J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: Workflow
Management for Grid Computing. In 3rd International Symposium on Cluster
Computing and the Grid, page 198. IEEE Computer Society Press, New York,
2003.

77. E. Caron, B. Del-Fabbro, F. Desprez, E. Jeannot, and J.-M. Nicod. Managing
Data Persistence in Network Enabled Servers. Scientific Programming Journal,
13(4):333–354, 2005.

78. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. A
Scalable Approach to Network Enabled Servers. In 8th International EuroPar
Conference, volume 2400 of Lecture Notes in Computer Science, pages 907–910.
Springer-Verlag, Berlin, 2002.

79. G. Carpenter, A. N. Gillison, and J. Winter. DOMAIN: A Flexible Modeling
Procedure for Mapping Potential Distributions of Animals and Plants. Bio-
diversity and Conservation, 2:667–680, 1993.

80. Fixed Mesh Refinement with Carpet. http://www.carpetcode.org/.
81. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for

Scheduling Parameter Sweep Applications in Grid Environments. In HCW
’00: Proceedings of the 9th Heterogeneous Computing Workshop, pages 349–
363. IEEE Computer Society, New York, 2000.

82. CERN Advanced Storage Manager. http://castor.web.cern.ch/castor/,
2005.

83. Convention on Biodiversity Article 2 (Rio Earth Summit). http://www.

biodiv.org/convention/default.shtml, 1992.
84. CCA Forum. The Common Component Architecture Technical Specification

— version 0.5. Technical report, Common Component Architecture Forum,
2001.

References 489

85. Center for Computation and Technology at Louisiana State University.
See http://www.cct.lsu.edu/.

86. CDDLM Working Group, GGF. https://forge.gridforum.org/projects/

cddlm-wg.
87. L. Chen, S. J. Cox, F. Tao, N. R. Shadbolt, C. Puleston, and C. Goble.

Empower Resource Providers to Build the Semantic Grid. In IEEE/WIC/ACM
International Conference on Web Intelligence (WI’04), pages 271–277. IEEE
Computer Society, New York, 2004.

88. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, and B. Tierney. Giggle: A Framework for Constructing
Scalable Replica Location Services. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–17. IEEE Computer
Society Press, New York, 2002.

89. J. Chin, P. V. Coveney, and J. Harting. The TeraGyroid Project: Collaborative
Steering and Visualisation in an HPC Grid for Modelling Complex Fluids. UK
All-hands e-Science Conference, 2004.

90. J. Chin, J. Harting, S. Jha, P. Coveney, A. R. Porter, and S. M. Pickles. Steering
in Computational Science: Mesoscale Modelling and Simulation. Contemporary
Physics, 44:417–434, 2003.

91. D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields,
I. Taylor, and I. Wang. Programming Scientific and Distributed Workflow
with Triana Services. Concurrency and Computation: Practice and Experience
(Special Issue: Workflow in Grid Systems), 18(10):1021–1037, 2006.

92. E. Churchwell, B. A. Whitney, B. L. Babler, R. Indebetouw, M. R. Meade,
C. Watson, M. J. Wolff, M. G. Wolfire, T. M. Bania, R. A. Benjamin, D. P.
Clemens, M. Cohen, K. E. Devine, J. M. Dickey, F. Heitsch, J. M. Jackson,
H. A. Kobulnicky, A. P. Marston, J. S. Mathis, E. P. Mercer, J. R. Stauffer,
and S. R. Stolovy. RCW 49 at Mid-Infrared Wavelengths: A GLIMPSE from
the Spitzer Space Telescope. The Astrophysical Journal Supplement Series,
154:322–327, 2004.

93. T. Clark, S. Martin, and T. Liefeld. Globally Distributed Object Identification
for Biological Knowledgebases. Briefings in Bioinformatics, 5(1):59–70, 2004.

94. J. Cohen, N. Furmento, G. Kong, A. Mayer, S. Newhouse, and J. Darlington.
RealityGrid: An Integrated Approach to Middleware through ICENI. Royal
Society of London Philosophical Transactions Series A, 363(1833):1817–1827,
2005.

95. J. Cohen, W. Lee, A. Mayer, and S. Newhouse. Making the Grid Pay —
Economic Web Services. In Building Service Based Grids Workshop, GGF11.
Global Grid Forum, June 2004.

96. Condor Glidein. http://www.cs.wisc.edu/condor/glidein.
97. Condor Team. DAGMan: A Directed Acyclic Graph Manager, July 2005.

http://www.cs.wisc.edu/condor/dagman/.
98. The CORBA Component Model.

http://www.omg.org/technology/documents/formal/components.htm.
99. J. Costa, A. T. Peterson, and C. B. Beard. Ecological Niche Modeling

and Differentiation of Populations of Triatoma Brasiliensis Neiva, 1911, the
Most Important Chagas’ Disease Vector in Northeastern Brazil (Hemiptera,
Reduviidae, Triatominae). American Journal of Tropical Medicine & Hygiene,
67(5):516–520, 2002.

490 References

100. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework.
Technical report, The Globus Alliance, 2004.

101. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
Information Services for Distributed Resource Sharing. In HPDC ’01:
Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10’01), pages 181–184. IEEE Computer
Society, Washington, 2001.

102. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems.
In D. G. Feitelson and L. Rudolph, editors, IPPS/SPDP ’98: Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing, volume 1459 of
Lecture Notes in Computer Science, pages 62–82. Springer Verlag, London,
1998.

103. H. Daily, H. Casanovay, and F. Berman. A Decoupled Scheduling Approach
for the GrADS Program Development Environment. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–
14. IEEE Computer Society Press, Los Alamitos, 2002.

104. J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
and Q. Wu. Parallel Programming Using Skeleton Functions. In PARLE
’93: Proceedings of the 5th International PARLE Conference on Parallel
Architectures and Languages Europe, volume 694 of Lecture Notes in Computer
Science, pages 146–160. Springer Verlag, London, 1993.

105. Distributed Audio Rendering and Retrieval using Triana (DARRT).
http://www.lcat.lsu.edu/projects.php#DARRT.

106. S. Das, A. McGough, J. Cohen, and J. Darlington. Lightweight Solution for
Protein Annotation. In S. J. Cox and D. W. Walker, editors, UK e-Science
All Hands Meeting, 2005, pages 396–402, Nottingham, UK, 2005. CD Rom
Proceedings.

107. Data Mining Tools and Services for Grid Computing Environments
(DataMiningGrid). http://www.datamininggrid.org/.

108. E. R. Davis and J. Caron. THREDDS: A Geophysical Data/Metadata
Framework. In Proceedings of the 18th International Conference on Interactive
Information Processing Systems (IIPS) for Meteorology, Oceanography, and
Hydrology, pages 52–53. American Meteorological Society, Boston, January
2002.

109. dCache.org. http://www.dcache.org/, 2006.
110. E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management in

GriPhyN. In J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid Resource
Management, volume 64 of International Series in Operations Research &
Management Science. Kluwer Academic Publishers, Dordrecht, 2003.

111. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,
K. Vahi, and M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid.
In AxGrids 2004: 2nd European Across Grids Conference, volume 3165 of
Lecture Notes in Computer Science, pages 11–20. Springer, Berlin, 2004.

112. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping Abstract
Complex Workflows onto Grid Environments. Journal of Grid Computing,
1(1):25–39, 2003.

References 491

113. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn,
P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda. GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave Scientists. In HPDC ’02:
Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC’02), pages 225–236. IEEE
Computer Society, Washington, 2002.

114. E. Deelman, G. Mehta, and C. Kesselman. Transformation Catalog Design
for GriPhyN. Technical Report GriPhyN-2001-17, University of Southern
California, Information Sciences Institute (ISI), 2001.

115. E. Deelman, R. Plante, C. Kesselman, G. Singh, M.-H. Su, G. Greene,
R. Hanisch, N. Gaffney, A. Volpicelli, J. Annis, V. Sekhri, T. Budavari, M. A.
Nieto-Santisteban, W. O’Mullane, D. Bohlender, T. McGlynn, A. H. Rots,
and O. Pevunova. Grid-Based Galaxy Morphology Analysis for the National
Virtual Observatory. In SC ’03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 47. IEEE Computer Society, Washington, 2003.

116. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. Katz. Pegasus:
a Framework for Mapping Complex Scientific Workflows onto Distributed
Systems. Scientific Programming Journal, 13(3):219–237, 2005.

117. T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszk, S. Winter, and P. Kacsuk.
GEMLCA: Running Legacy Code Applications as Grid Services. Journal of
Grid Computing, 3(1–2):75–90, 2005.

118. F. Dijkstra and A. van der Steen. Integration of Two Ocean Models within
Cactus. Concurrency and Computation: Practice and Experience (Special
Issue: Computational Frameworks), 18(2):193–202, 2005.

119. Environment for Industrial Design Optimisation (DIPSO). http://www.wesc.
ac.uk/projects/dipso/index.html.

120. DOE Grids Certificate Authority. See http://www.doegrids.org/.
121. K. Droegemeier. The Ability of CASA Doppler Radars to Observe Tornadoes:

An Assessment Using Tornado Damage Path Width Climatology. In
9th Symposium on Integrated Observing and Assimilation Systems for the
Atmosphere, Oceans, and Land Surface. American Meteorological Society,
Boston, 2005.

122. K. K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves,
E. Joseph, M. Ramamurthy, R. Wilhelmson, K. Brewster, B. Domenico,
T. Leyton, V. Morris, D. Murray, B. Plale, R. Ramachandran, D. Reed,
J. Rushing, D. Weber, A. Wilson, M. Xue, and S. Yalda. Linked Environments
for Atmospheric Discovery (LEAD): Architecture, Technology Roadmap and
Deployment Strategy. In 21st International Conference on Interactive
Information Processing Systems (IIPS) for Meteorology, Oceanography, and
Hydrology. American Meteorological Society, Boston, 2005.

123. K. K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer,
K. Brewster, R. Clark, B. Domenico, S. Graves, E. Joseph, D. Murray,
R. Ramachandran, M. Ramamurthy, L. Ramakrishnan, J. A. Rushing,
D. Weber, R. Wilhelmson, A. Wilson, M. Xue, and S. Yalda. Service-
Oriented Environments for Dynamically Interacting with Mesoscale Weather.
Computing in Science and Engineering, 7(6):12–29, 2005.

124. M. J. Duftler, N. K. Mukhi, A. Slominski, and S. Weerawarana. Web Services
Invocation Framework (WSIF). In OOPSLA 2001 Workshop on Object-
Oriented Web Services, 2001.

492 References

125. L. Dutka, B. Kryza, K. Krawczyk, M. Majewska, R. Slota, L. Hluchy, and
J. Kitowski. Component-Expert Architecture for Supporting Grid Workflow
Construction Based on Knowledge. In P. Cunningham and M. Cunningham,
editors, Innovation and the Knowledge Economy: Issues, Applications, Case
Studies, volume 2, pages 239–246. IOS Press, Amsterdam, 2005.

126. Eclipse. Graphical editing framework. See Web site at http://www.eclipse.

org/gef/.
127. Eclipse. Standard widget toolkit. See Web site at http://www.eclipse.org/

swt/.
128. EGEE: Enabling Grids for E-science in Europe. See Web site at http://

public.eu-egee.org/.
129. Einstein@Home Project. See Web site at

http://www.physics2005.org/events/einsteinathome/.
130. J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,

and Y. Xiong. Taming Heterogeneity — the Ptolemy Approach. Proceedings
of the IEEE, Special Issue on Modeling and Design of Embedded Software,
91(1):127–144, 2003.

131. J. Elith and M. Burgman. Predictions and Their Validation: Rare Plants in the
Central Highlands, Victoria. In J. Scott, P. J. Heglund, and M. L. Morrison,
editors, Predicting Species Occurrences: Issues of Scale and Accuracy. Island
Press, Washington, DC, 2002.

132. W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid
Service Orchestration using the Business Process Execution Language (BPEL).
Journal of Grid Computing, 3(3–4):283–304, 2005.

133. D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A
Worldwide Flock of Condors: Load Sharing Among Workstation Clusters.
Future Generation Computer Systems (Special Issue: Resource Management
in Distributed Systems), 12(1):53–65, 1996.

134. M. H. Eres, G. E. Pound, Z. Jiao, J. L. Wason, F. Xu, A. J. Keane, and
S. J. Cox. Implementation of a Grid-Enabled Problem Solving Environment in
Matlab. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, ICCS 2003:
International Conference on Computational Science, volume 2660 of Lecture
Notes in Computer Science, pages 420–429. Springer, Berlin, 2003.

135. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall, Englewood Cliffs, NJ, 2005.

136. Etnus. Totalview. http://www.etnus.com/.
137. T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,

H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid Application
Development and Computing Environment. In 6th International Workshop on
Grid Computing, pages 122–131. IEEE Computer Society Press, New York,
2005.

138. T. Fahringer, J. Qin, and S. Hainzer. Specification of Grid Workflow
Applications with AGWL: An Abstract Grid Workflow Language. In
International Symposium on Cluster Computing and the Grid (CCGRID 2005),
volume 2, pages 676–685. IEEE Computer Society Press, New York, 2005.

139. A. Faulkener, I. Stairs, M. Kramer, A. Lyne, G. Hobbs, A. Possenti, D. Lorimer,
R. Manchester, M. McLaughlin, N. DÁmico, F. Camilo, and M. Burgay. The
Parkes Multibeam Pulsar Survey: V. Finding binary and millisecond pulsars.
Monthly Notices of the Royal Astronomical Society, 355(1):147–159, 2004.

References 493

140. E. Field, T. Jordan, and C. Cornell. OpenSHA: A Community-Modeling
Environment for Seismic Hazard Research. Seismological Research Letters,
74(4):406–419, 2003.

141. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. Internet RFC
2616, W3C, 1999.

142. Flexible Image Transport System. http://fits.gsfc.nasa.gov/.
143. Formal Systems (Europe) Ltd. Failure Divergence Refinement: FDR2 User

Manual. http://www.fsel.com/documentation/fdr2/.
144. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

International Journal of Supercomputing Applications, 11(2):115–128, 1997.
145. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computer

Infrastructure. Morgan-Kaufmann, San Francisco, 1999.
146. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Technical report, Open Grid Service Infrastructure WG, Global Grid Forum,
2002.

147. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organization. The International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

148. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation. In 14th
International Conference on Scientific and Statistical Database Management
(SSDBM’02), pages 37–46. IEEE Computer Society Press, New York, 2002.

149. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New
Model and Architecture for Data-Intensive Collaboration. In 15th International
Conference on Scientific and Statistical Database Management, 2003, page 11.
IEEE Computer Society Press, New York, 2003.

150. Fraunhofer-Gesellschaft. The Fraunhofer Resource Grid. http://www.fhrg.

fraunhofer.de/, 2006.
151. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G:

A Computation Management Agent for Multi-Institutional Grids. Cluster
Computing, 5:237–246, 2002.

152. J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A
Computation Management Agent for Multi-Institutional Grids. In Proceedings
of the 10th IEEE International Symposium on High Performance Distributed
Computing (HPCD-’01). IEEE Computer Society, New York, 2001.

153. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington. ICENI: an
Open Grid Service Architecture Implemented with Jini. In Supercomputing
’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages
1–10. IEEE Computer Society Press, New York, 2002.

154. M. Galperin. The Molecular Biology Database Collection: 2006 update. Nucleic
Acids Research, 34(Database issue):3–5, 2006.

155. E. Gamma and K. Beck. Contributing to eclipse: Principles, Patterns, and
Plug-Ins. Addison-Wesley, Reading, MA, 2004.

156. D. Gannon, B. Plale, M. Christie, L. Fang, Y. Huang, S. Jensen,
G. Kandaswamy, S. Marru, S. L. Pallickara, S. Shirasuna, Y. Simmhan,
A. Slominski, and Y. Sun. Service Oriented Architectures for Science Gateways
on Grid Systems. In International Conference on Service Oriented Computing

494 References

2005, volume 3826 of Lecture Notes in Computer Science, pages 21–32.
Springer-Verlag, Berlin, 2005.

157. Grid Enabled web eNvironment for site Independent User job Submission
(GENIUS) Portal. https://genius.ct.infn.it/.

158. GEO 600 aims at the direct detection of gravitational waves. http://www.

geo600.uni-hannover.de/.
159. Global Grid Forum (GGF). http://www.ogf.org/. Now the Open Grid Forum

(OGF).
160. Y. Gil, E. Deelman, J. Blythe, C. Kessleman, and H. Tangmunarunkit.

Artificial Intelligence and Grids: Workflow Planning and Beyond. IEEE
Intelligent Systems Special Issue on e-Science, 19(1):26–33, 2004.

161. T. Glatard, J. Montagnat, and X. Pennec. An Optimized Workflow Enactor
for Data-Intensive Grid Applications. Technical Report 05.32, I3S Laboratory,
Sophia Antipolis, France, 2005.

162. T. Glatard, J. Montagnat, and X. Pennec. Grid-Enabled Workflows for Data
Intensive Applications. In CBMS ’05: Proceedings of the 18th IEEE Symposium
on Computer-Based Medical Systems (CBMS’05). IEEE Computer Society,
Washington, 2005.

163. The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE).
http://www.astro.wisc.edu/sirtf/.

164. GLIMPSE Validation Images.
http://www.astro.wisc.edu/sirtf/2massimages/2massimages.html.

165. gLite middleware. http://www.gLite.org.
166. The Globus Alliance. See Web site at http://www.globus.org.
167. T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and

J. Shalf. The Cactus Framework and Toolkit: Design and Applications. In
Vector and Parallel Processing VECPAR 2002, 5th International Conference,
volume 2565 of Lecture Notes in Computer Science, pages 197–227. Springer,
Berlin, 2003.

168. T. Goodale, I. Taylor, and I. Wang. Integrating Cactus Simulations within
Triana Workflows. In Proceedings of 13th Annual Mardi Gras Conference -
Frontiers of Grid Applications and Technologies, pages 47–53. Louisiana State
University, 2005.

169. J. Grethe, C. Baru, A. Gupta, M. James, B. Ludäscher, M. Martone,
P. Papadopoulos, P. ST., A. Rajasekar, S. Santini, I. Zaslavsky, and
M. Ellisman. Biomedical Informatics Research Network: Building a National
Collaboratory to Hasten the Derivation of New Understanding and Treatment
of Disease. Studies in Health Technologies Informatics, 112:100–109, 2005.

170. Grid Adaptive Computational Engine (GrACE). http://www.caip.rutgers.

edu/∼parashar/TASSL/Projects/GrACE/.
171. Grid ENabled Integrated Earth system model project. http://www.genie.ac.

uk/.
172. Grid3+. See http://www.ivdgl.org/grid2003.
173. Grid5000 French National Grid Initiative. http://www.grid5000.org.
174. GridCat: OSG CE Catalog. http://osg-cat.grid.iu.edu.
175. GridLab: A Grid Application Toolkit and Testbed Project home page. http:

//www.gridlab.org.
176. DFN-Verein Project “Development of Grid Based Simulation and Visualization

Techniques” (GRIKSL) Home Page. http://www.griksl.org.

References 495

177. J. Grinnell. Field Tests of Theories Concerning Distributional Control.
American Naturalist, 51:115–128, 1917.

178. J. Grinnell. Geography and evolution. Ecology, 5:225–229, 1924.
179. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard. Parallel
Computing, 22(6):789–828, 1996.

180. J. Grundy, M. Apperley, J. Hosking, and W. Mugridge. A Decentralized
Architecture for Software Process Modeling and Enactment. IEEE Internet
Computing, 2(5):53–62, 1998.

181. J. Grundy, J. Hosking, R. Amor, W. Mugrdige, and M. Li. Domain-Specific
Visual Languages for Specifying and Generating Data Mapping System.
Journal of Visual Languages and Computing, 15(3–4):243–263, 2004.

182. GSI-Enabled OpenSSH. See http://grid.ncsa.uiuc.edu/ssh/.
183. T. Gubala, M. Bubak, M. Malawski, and K. Rycerz. Semantic-Based Grid

Workflow Composition. In R. Wyrzykowski, J. Dongarra, N. Meyer, and
J. Wasniewski, editors, Proceedings of the 6th International Conference on
Parallel Processing and Applied Mathematics PPAM’2005, volume 3911 of
Lecture Notes in Computer Science, pages 651–658. Springer, New York, 2005.

184. M. Gudgin, M. Hadley, and Tony Rogers (eds). Web Services Addressing 1.0
- Core (WS-Addressing). Technical report, W3C, 2006.

185. M. Y. Gulamali, A. S. McGough, R. J. Marsh, N. R. Edwards, T. M. Lenton,
P. J. Valdes, S. J. Cox, S. J. Newhouse, and J. Darlington. Performance Guided
Scheduling in GENIE through ICENI. In S. J. Cox, editor, Proceedings of the
UK e-Science All Hands Meeting 2004, pages 259–266. CD Rom Proceedings,
2004.

186. W. W. Hargrove, R. H. Gardner, M. G. Turner, W. H. Romme, and D. G.
Despain. Simulating Fire Patterns in Heterogeneous Landscapes. Ecological
Modelling, 135:243–263, 2000.

187. A. Harrison and I. Taylor. WSPeer – An Interface to Web Service Hosting and
Invocation. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) - Workshop 4, page 175a.
IEEE Computer Society, New York, 2005.

188. J. Hau, W. Lee, and J. Darlington. A Semantic Similarity Measure for
Semantic Web Services. In Web Service Semantics: A Workshop at The
14th International World Wide Web Conference (WWW2005). CD Rom
Proceedings, 2005.

189. R. L. Henderson. Job Scheduling Under the Portable Batch System. In D. G.
Feitelson and L. Rudolph, editors, IPPS ’95: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, volume 949 of Lecture Notes
in Computer Science, pages 279–294. Springer Verlag, London, 1995.

190. S. I. Higgins, D. M. Richardson, R. M. Cowling, and T. H. Trinder-Smith.
Predicting the Landscape-Scale Distribution of Alien Plants and Their Threat
to Plant Diversity. Conservation Biology, 13:303–313, 1999.

191. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets.
In W. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors,
Proceedings of the Third International Conference on Business Process
Management (BPM 2005), volume 3649 of Lecture Notes in Computer Science,
pages 220–235. Springer-Verlag, Berlin, 2005.

192. C. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, 1985.

496 References

193. A. Hoheisel and U. Der. An XML-Based Framework for Loosely Coupled
Applications on Grid Environments. In P. M. A. Sloot, D. Abramson, A. V.
Bogdanov, J. J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev, editors,
Computational Science — ICCS 2003, volume 2657 of Lecture Notes in
Computer Science, pages 245–254. Springer-Verlag, Berlin, 2003.

194. A. Hoheisel and U. Der. Dynamic Workflows for Grid Applications. In
Proceedings of the Cracow Grid Workshop ’03. Academic Computer Centre
CYFRONET AGH, Cracow, Poland, 2003.

195. J. R. Holden and H. Ammon. Prediction of Possible Crystal Structures for C-,
H-, N-, O-, and F-Containing Organic Compounds. Journal of Computational
Chemistry, 14(4):422–437, 1993.

196. R. D. Holt. Adaptive Evolution in Source-Sink Environments: Direct and
Indirect Effects of Density-Dependence on Niche Evolution. Oikos, 75:182–
192, 1996.

197. R. D. Holt and M. S. Gaines. Analysis of Adaptation in Heterogeneous Land-
scapes: Implications for the Evolution of Fundamental Niches. Evolutionary
Ecology, 6:433–447, 1992.

198. G. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison Wesley, Reading MA, 2003.

199. M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Resource
Management Systems: Queuing vs. Planning. In D. G. Feitelson, L. Rudolph,
and U. Schwiegelshohn, editors, 9th Workshop on Job Scheduling Strategies for
Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pages
1–20. Springer, Berlin, 2003.

200. Y. Huang, A. Slominski, C. Herath, and D. Gannon. WS-Messenger: A
Web Services based Messaging System for Service-Oriented Grid Computing.
In CCGRID ’06: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID’06), pages 166–173. IEEE
Computer Society, Washington, 2006.

201. M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano, A. Arkin,
B. Bornstein, D. Bray, A. Cornish-Bowden, A. Cuellar, S. Dronov, E. Gilles,
M. Ginkel, V. Gor, I. Goryanin, W. Hedley, T. Hodgman, J. Hofmeyr,
P. Hunter, N. Juty, J. Kasberger, A. Kremling, U. Kummer, N. Le Novère,
L. Loew, D. Lucio, P. Mendes, E. Minch, E. Mjolsness, Y. Nakayama,
M. Nelson, P. Nielsen, T. Sakurada, J. Schaff, B. Shapiro, T. Shimizu,
H. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The
Systems Biology Markup Language (SBML): A Medium for Representation
and Exchange of Biochemical Network Models. Bioinformatics, 19(4):524–531,
2003.

202. D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic web
syndrome with ontologies. In J. Domingue, L. Cabral, and E. Motta, editors,
First Advanced Knowledge Technologies workshop on Semantic Web Services
(AKT-SWS04) KMi, The Open University, Milton Keynes, UK. 2004-12-08,
volume 122, page 1. CEUR Workshop Proceedings (CEUR-WS.org), 2004.

203. L. M. Hunter and L. Rinner. The Association Between Environmental
Perspective and Knowledge and Concern with Species Diversity. Society &
Natural Resources, 17(6):517–532, 2004.

204. B. Huntley, P. J. Bartlein, and I. C. Prentice. Climatic Control of the
Distribution and Abundance of Beech (Fagus L.) in Europe and North America.
Journal of Biogeography, 16:551–560, 1989.

References 497

205. B. Huntley, P. M. Berry, W. Cramer, and A. P. McDonald. Modelling Present
and Potential Future Ranges of Some European Higher Plants Using Climate
Response Surfaces. Journal of Biogeography, 22:967–1001, 1995.

206. IBM. WSDL4J. See Web site at http://sourceforge.net/projects/wsdl4j.
207. IBM and BEA. BPELJ: BPEL for Java.

http://www.ibm.com/developerworks/webservices/library/ws-bpelj/.
208. IBM Alphaworks. Virtual XML Garden. http://www.alphaworks.ibm.com/

tech/virtualxml.
209. IBM DB2. See http://www-306.ibm.com/software/data/db2.
210. IBM Websphere. See Web site at

http://www-306.ibm.com/software/websphere/.
211. Illinois BioGrid. http://www.illinoisbiogrid.org/.
212. Immunology Grid. Immunology Grid Project. http://www.immunologygrid.

org.
213. Instant-Grid — A Grid Demonstration Toolkit. http://instant-grid.de/.
214. Intel. http://www.intel.com.
215. International Virtual Data Grid Laboratory. See Project Web site at

http://www.ivdgl.org.
216. IPHAS Image Gallery. http://astro.ic.ac.uk/Research/Halpha/North/

gallery.shtml.
217. IPHAS: The INT H-Alpha Emission Survey. http://iapetus.phy.umist.ac.

uk/IPHAS/iphas.html.
218. R. Irani and S. J. Bashna. AXIS: Next Generation Java SOAP. Wrox Press,

Hoboken, NJ, 2002.
219. ISO/IEC 10026-1. Information Technology — Open Systems Interconnection

— Distributed Transaction Processing — Part 1: OSI TP Model, 1998.
220. ISO/IEC 15909-1. High-Level Petri Nets — Part 1: Concepts, Definitions and

Graphical Notation, 2004.
221. ISO/IEC 15909-2. High-level Petri Nets — Part 2: Transfer Format, 2005.

Working Draft.
222. K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets.

In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, A Decade of
Concurrency, Reflections and Perspectives, REX School/Symposium, volume
803 of Lecture Notes in Computer Science, pages 230–272. Springer-Verlag,
London, 1994.

223. A. C. Jones, R. J. White, W. A. Gray, F. A. Bisby, N. Caithness, N. Pittas,
X. Xu, T. Sutton, N. J. Fiddian, A. Culham, M. Scoble, P. Williams,
O. Bromley, P. Brewer, C. Yesson, and S. Bhagwat. Building a Biodiversity
GRID. In A. Konagaya and K. Satou, editors, Grid Computing in Life Science:
First International Workshop on Life Science Grid, volume 3370 of Lecture
Notes in Computer Science, pages 140–151. Springer, Berlin, 2005.

224. A. C. Jones, X. Xu, N. Pittas, W. A. Gray, N. J. Fiddian, R. J. White, J. S.
Robinson, F. A. Bisby, and S. M. Brandt. SPICE: A Flexible Architecture
for Integrating Autonomous Databases to Comprise a Distributed Catalogue
of Life. In Database and Expert Systems Applications: 11th International
Conference, DEXA 2000, volume 1873 of Lecture Notes in Computer Science,
pages 981–992. Springer, Berlin, 2000.

225. M. Jones. SEEK EcoGrid: Integrating Data and Computational Resources for
Ecology. DataBits: An Electronic Newsletter for Information Managers, Long
Term Ecological Research Program, Spring:1, 2003.

498 References

226. T. Jordan and P. Maechling. The SCEC Community Modeling Environment
— An Information Infrastructure for System-Level Earthquake Science.
Seismological Research Letters, 74(3):324–328, 2003.

227. Job Submission Description Language Working Group (JSDL-WG). See Web
site at https://forge.gridforum.org/projects/jsdl-wg/.

228. M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language. In
S. Philippi, editor, 7. Workshop Algorithmen und Werkzeuge für Petrinetze,
pages 47–52. Universität Koblenz-Landau, 2000.

229. P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas, and T. Boczko.
High-Level Grid Application Environment to Use Legacy Codes as OGSA Grid
Services. In GRID ’04: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04), pages 428–435. IEEE Computer
Society, Washington, 2004.

230. P. Kacsuk and G. Sipos. Multi-Grid, Multi-User Workflows in the P-GRADE
Grid Portal. Journal of Grid Computing, 3(3–4), 2005.

231. V. Kalogera, C. Kim, D. R. Lorimer, M. Burgay, N. D’Amico, A. Possenti,
R. N. Manchester, A. G. Lyne, B. C. Joshi, M. A. McLaughlin, M. Kramer,
J. M. Sarkissian, and F. Camilo. The Cosmic Coalescence Rates for Double
Neutron Star Binaries. The Astrophysical Journal, 601:L179–L182, 2004.

232. G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D. Gannon.
Building Web services for Scientific Grid Applications. IBM Journal of
Research and Development, 50(2/3):249–260, March/May 2006.

233. K. Karasavvas, M. Antonioletti, M. Atkinson, N. C. Hong, T. Sugden,
A. Hume, M. Jackson, A. Krause, and C. Palansuriya. Introduction to
OGSA-DAI Services. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors,
First International Workshop on Scientific Applications of Grid Computing
(SAG 2004), volume 3458 of Lecture Notes in Computer Science, pages 1–12.
Springer, Berlin, 2005.

234. D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good, A. C. Laity, E. Deelman,
C. Kesselman, G. Singh, M.-H. Su, and T. A. Prince. A Comparision of
Two Methods for Building Astronomical Image Mosaics on a Grid. In
34th International Conference on Parallel Processing Workshops ICPP 2005
Workshops, pages 85–94. IEEE Computer Society, New York, 2005.

235. K. Keahey, K. Doering, and I. Foster. From Sandbox to Playground: Dynamic
Virtual Environments in the Grid. In GRID ’04: Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (GRID’04), pages
34–42. IEEE Computer Society, Washington, 2004.

236. J. Kim, Y. Gil, and M. Spraragen. A Knowledge-Based Approach to Interactive
Workflow Composition. In S. Zilberstein, J. Koehler, and S. Koenig, editors,
14th International Conference on Automated Planning and Scheduling (ICAPS
04). AAAI Press, Menlo Park, CA, 2004.

237. J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistant for Interactive
Workflow Composition. In IUI ’04: Proceedings of the 9th international
conference on Intelligent user interface, pages 125–131. ACM Press, New York,
January 2004.

238. K. Knight and D. Marcu. Machine Translation in the Year 2004. In Proceedings
of the 2005 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 5, pages 965–968. IEEE Computer Society, New
York, 2005.

References 499

239. S.-H. Ko, K. W. Cho, Y. D. Song, and Y. G. Kim. Development of Cactus
Driver for CFD Analyses in the Grid Computing Environment. In G. Goos,
J. Hartmanis, and J. van Leeuwen, editors, Advances in Grid Computing —
EGC 2005, volume 3470 of Lecture Notes in Computer Science, pages 771–777.
Springer, Berlin, 2005.

240. G. Kola, T. Kosar, and M. Livny. A Client-centric Grid Knowledgebase. In
Proceedings of 2004 IEEE International Conference on Cluster Computing,
pages 431–438. IEEE Computer Society, New York, 2004.

241. G. Kola, T. Kosar, and M. Livny. Run-time Adaptation of Grid Data
Placement Jobs. Scalable Computing: Practice and Experience, 6(3):33–43,
2005.

242. G. Kola and M. Livny. Diskrouter: A Flexible Infrastructure for High
Performance Large Scale Data Transfers. Technical Report CS-TR-2003-1484,
University of Wisconsin–Madison Computer Sciences Department, 2003.

243. T. Kosar. Data Placement in Widely Distributed Systems. PhD thesis,
University of Wisconsin–Madison, 2005.

244. T. Kosar and M. Livny. Stork: Making Data Placement a First Class Citizen in
the Grid. In ICDCS ’04: Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’04), pages 342–349. IEEE Computer
Society, Washington, 2004.

245. S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components
as OGSA Services. In 9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS 2004), pages 90–
97. IEEE Computer Society, New York, 2004.

246. S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A Workflow
Framework for Grid Services. Preprint ANL/MCS-P980-0802, 2002.

247. D. Kuo, P. Greenfield, S. Parastatidis, and J. Webber. Rules-based SSDL
Protocol Framework. http://www.ssdl.org/docs/v1.3/html/Rules%20SSDL%
20Protocol%20Framework%20v1.3.html, April 2005.

248. LCG2 middleware. http://lcg.web.cern.ch/LCG/activities/middleware.

html.
249. Linked Environments for Atmospheric Discovery. http://lead.ou.edu/.
250. LEAD Year-2 Annual Report. http://lead.ou.edu/pdfs/LEAD Year-2

Report.pdf, 2005.
251. W. Lee, A. McGough, and J. Darlington. Performance Evaluation of the

GridSAM Job Submission and Monitoring System. In S. J. Cox and D. W.
Walker, editors, UK e-Science All Hands Meeting, 2005, pages 915–922. CD
Rom Proceedings, 2005.

252. W. Lee, S. McGough, S. Newhouse, and J. Darlington. A Standard Based
Approach to Job Submission through Web Services. In S. J. Cox, editor,
Proceedings of the UK e-Science All Hands Meeting 2004, pages 901–905. CD
Rom Proceedings, 2004.

253. R. S. Levine, M. Q. Benedict, and A. T. Peterson. Distribution of Anopheles
quadrimaculatus Say s.l. and Implications for Its Role in Malaria Transmission
in the US. Journal of Medical Entomology, 41:607–613, 2004.

254. F. Leyman. Web Services Flow Language (WSFL) 1.1. Technical report, IBM
Software Group, New York, 2001.

255. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice Hall, Englewood Cliffs, NJ, 1999.

500 References

256. LIGO Data Grid (LDG).
http://www.lsc-group.phys.uwm.edu/lscdatagrid.

257. LIGO Data Replicator. See http://www.lsc-group.phys.uwm.edu/ldr.
258. LIGO home page. http://www.ligo.caltech.edu.
259. A. Lin, L. Dai, K. Ung, S. Peltier, and M. Ellisman. The Telescience Project:

Applications to Middleware Interaction Components. In Proceedings of The
18th IEEE International Symposium on Computer-Based Medical Systems
(CBMS 2005), pages 543–548. IEEE Computer Society, New York, 2005.

260. A. W. Lin, L. Dai, J. Mock, S. Peltier, and M. H. Ellisman. The Telescience
Tools: Version 2.0. In E-SCIENCE ’05: Proceedings of the First International
Conference on e-Science and Grid Computing, pages 56–63. IEEE Computer
Society, Washington, 2005.

261. M. Little, J. Webber, and S. Parastatidis. Stateful interactions in Web Services:
a comparison of WS-Context and WS-Resource Framework. SOA Web Services
Journal, May 2004.

262. M. Litzkow, M. Livny, and M. Mutka. Condor — A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference on
Distributed Computing Systems, pages 104–111. IEEE Computer Society, New
York, June 1988.

263. London e-Science Centre. A Market for Computational Services. Available at
http://www.lesc.ic.ac.uk/markets/.

264. C. J. Lonsdale, H. E. Smith, M. Rowan-Robinson, J. Surace, D. Shupe, C. Xu,
S. Oliver, D. Padgett, F. Fang, T. Conrow, A. Franceschini, N. Gautier,
M. Griffin, P. Hacking, F. Masci, G. Morrison, J. O’Linger, F. Owen, I. Pérez-
Fournon, M. Pierre, R. Puetter, G. Stacey, S. Castro, M. D. C. Polletta,
D. Farrah, T. Jarrett, D. Frayer, B. Siana, T. Babbedge, S. Dye, M. Fox,
E. Gonzalez-Solares, M. Salaman, S. Berta, J. J. Condon, H. Dole, and
S. Serjeant. SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey.
Publications of the Astronomical Society of the Pacific, 115(810):897–927, 2003.

265. M. Lorch and D. Kafura. Symphony — A Java-Based Composition and
Manipulation Framework for Computational Grids. In Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid,
page 136. IEEE Computer Society Press, New York, 2002.

266. H. D. Lord. Improving the Application Environment with Modular
Visualization Environments. Computer Graphics, 29(2):10–12, 1995.

267. P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A Light-Weight Architecture
for User Oriented Semantic Service Discovery. In A. Gómez-Pérez and
J. Euzenat, editors, The Semantic Web: Research and Applications. Second
European Semantic Web Conference, ESWC 2005, volume 3532 of Lecture
Notes in Computer Science, pages 17–31. Springer, Berlin, 2005.

268. P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull,
C. Goble, and L. Stein. Applying Semantic Web Services to Bioinformatics:
Experiences Gained, Lessons Learnt. In 3rd International Semantic Web
Conference (ISWC2004), volume 3298 of Lecture Notes in Computer Science,
pages 350–364. Springer, Berlin, 2004.

269. P. Lord, C. Wroe, R. Stevens, C. Goble, S. Miles, L. Moreau, K. Decker,
T. Payne, and J. Papay. Semantic and Personalised Service Discovery. In
W. K. Cheung and Y. Ye, editors, WI/IAT 2003 Workshop on Knowledge
Grid and Grid Intelligence, pages 100–107. CD Rom Proceedings, 2003.

References 501

270. D. Lorimer and M. Kramer. A Handbook of Pulsar Astronomy. Cambridge
University Press, Cambridge, 2005.

271. Load Sharing Facility. See Web site at http://accl.grc.nasa.gov/lsf/.
272. B. Ludäscher, I. Altintas, C. Berkley, D. G. Higgins, E. Jaeger, M. Jones, E. A.

Lee, and Y. Zhao. Scientific Workflow Management and the Kepler System:
Research Articles. Concurrency and Computation: Practice and Experience,
Special Issue on Workflow in Grid Systems, 18(10):1039–1065, 2006.

273. S. A. Ludwig, W. Naylor, J. Padget, and O. F. Rana. Matchmaking Support
for Mathematical Web Services. In S. J. Cox and D. W. Walker, editors, UK
e-Science All Hands Meeting, 2005, pages 391–399, Nottingham, September
2005. CD Rom Proceedings.

274. A. G. Lyne and G. Smith. Pulsar Astronomy. Cambridge University Press,
Cambridge, 3rd edition, 2005.

275. M. Fowler. Inversion of Control Containers and the Dependency Injection
Pattern.
http://martinfowler.com/articles/injection.html#InversionOfControl.

276. P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman, Y. Gil, S. Gullapalli,
V. Gupta, C. Kesselman, J. Kim, G. Mehta, B. Mendenhall, T. Russ, G. Singh,
M. Spraragen, G. Staples, and K. Vahi. Simplifying Construction of Complex
Workflows for Non-Expert Users of the Southern California Earthquake Center
Community Modeling Environment. ACM SIGMOD Record, 34(3):24–30,
2005.

277. P. Maechling, V. Gupta, N. Gupta, E. Field, D. Okaya, and T. Jordan. Grid
Computing in the SCEC Community Modeling Environment. Seismological
Research Letters, 76(5):518–587, 2005.

278. P. Maechling, V. Gupta, N. Gupta, E. Field, D. Okaya, and T. Jordan. Hazard
Map Calculations Using Grid Computing. Seismological Research Letters,
76(5):565–573, 2005.

279. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing. John Wiley and Sons, Chichester, 1995.

280. E. Mart́ınez-Meyer. Evolutionary Trends in Ecological Niches of Species. PhD
thesis, University of Kansas, 2002.

281. E. Mart́ınez-Meyer, A. T. Peterson, and W. W. Hargrove. Ecological Niches
as Stable Distributional Constraints on Mammal Species, with Implications
for Pleistocene Extinctions and Climate Change Projections for Biodiversity.
Global Ecology and Biogeography, 13:305–314, 2004.

282. Matt Anderson. http://relativity.phys.lsu.edu/postdocs/matt/.
283. A. Mayer, S. McGough, N. Furmento, J. Cohen, M. Gulamali, L. Young,

A. Afzal, S. Newhouse, and J. Darlington. ICENI: An Integrated Grid
Middleware to Support e-Science. In V. Getov and T. Kielmann, editors,
Component Models and Systems for Grid Applications. Proceedings of the
Workshop on Component Models and Systems for Grid Applications, volume 1,
pages 109–124. Springer, New York, June 2004.

284. A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and
J. Darlington. Meaning and Behaviour in Grid Oriented Components. In GRID
’02: Proceedings of the Third International Workshop on Grid Computing,
volume 2536 of Lecture Notes in Computer Science, pages 100–111. Springer-
Verlag, London, 2002.

502 References

285. A. E. Mayer. Composite Construction of High Performance Scientific
Applications. PhD thesis, Department of Computing, Imperial College,
London, UK, 2001.

286. D. McDermott. Estimated-Regression Planning for Interactions with Web
Services. In M. Ghallab, J. Hertzberg, and P. Traverso, editors, 6th
International Conference on Artificial Intelligence Planning and Scheduling.
AAAI Press, Menlo Park, CA, 2002.

287. A. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow
Enactment in ICENI. In S. J. Cox, editor, Proceedings of the UK e-Science All
Hands Meeting 2004, pages 894–900. CD Rom Proceedings, 2004.

288. S. McGough, A. Afzal, J. Darlington, N. Furmento, A. Mayer, and
L. Young. Making the Grid Predictable through Reservations and Performance
Modelling. The Computer Journal, 48(3):358–368, 2005.

289. S. McIlraith and T. Son. Adapting Golog for Programming in the Semantic
Web. In Fifth International Symposium on Logical Formalizations of
Commonsense Reasoning, pages 195–202. In press, 2001.

290. M. McIlroy. Mass Produced Software Components. In P. Naur and B. Randell,
editors, Software Engineering: Report of a conference sponsored by the NATO
Science Committee, pages 79–87. Scientific Affairs Division, NATO, Brussels,
1968.

291. J. O. Meyneeke. Effects of Global Climate Change on Geographic Distributions
of Vertebrates in North Queensland. Ecological Modelling, 174(4):347–357,
2004.

292. Microsoft Corporation. Web Services Specifications Index. http://msdn.

microsoft.com/webservices/understanding/specs/.
293. Microsoft Corporation. Windows Workflow Foundation. http://msdn.

microsoft.com/winfx/reference/workflow/, 2005.
294. L. Miles, A. Grainger, and O. Phillips. The Impact of Global Climate Change

on Tropical Forest Biodiversity in Amazonia. Global Ecology and Biogeography,
13(6):553–565, 2004.

295. Millenium Ecosystem Assessment. Ecosystem and Human Well-Being Reports.
Island Press, Washington, DC, 2005. http://www.millenniumassessment.

org.
296. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge

University Press, Cambridge, 1999.
297. D. J. Mladenoff, T. A. Sickley, R. G. Haight, and A. P. Wydeven. A Regional

Landscape Analysis and Prediction of Favorable Gray Wolf Habitat in the
Northern Great Lakes Region. Conservation Biology, 9:279–294, 1995.

298. R. Monson-Haefel. Enterprise Java Beans. O’Reilly, Sebastopol, CA, 2001.
299. The Montage Project Web page. http://montage.ipac.caltech.edu.
300. Montage Version 1.7.x documentation and download.

http://montage.ipac.caltech.edu/docs/.
301. Montage Version 1.7.x. Photometric and Calibration Accuracy.

http://montage.ipac.caltech.edu/docs/accuracy.html.
302. Mopex, the Spitzer Science Center Mosaic Engine.

http://ssc.spitzer.caltech.edu/postbcd/doc/mosaicer.pdf.
303. L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde. XDTM: XML

Dataset Typing and Mapping for Specifying Datasets. In Advances in Grid
Computing — EGC 2005, volume 3470 of Lecture Notes in Computer Science,
pages 495–505. Springer, Berlin, 2005.

References 503

304. MOTEUR: Home-Made Optimised Scufl Enactor. http://www.i3s.unice.fr/
∼glatard.

305. N. Mulyar and W. van der Aalst. Patterns in Colored Petri Nets. In
BETA Working Paper Series, WP 139. Eindhoven University of Technology,
Eindhoven, 2005.

306. D. Murray, J. McWhirter, S. Wier, and S. Emmerson. The Integrated
Data Viewer — A Web-Enabled Application for Scientific Analysis and
Visualization. In 19th Conference on Interactive Information Processing
Systems (IIPS) for Meteorology, Oceanography, and Hydrology, page 13.2.
American Meteorological Society, Boston, February 2003.

307. P. Murray-Rust. Chemical Markup Language. World Wide Web Journal,
2(4):135–147, 1997.

308. myGrid. http://www.mygrid.org.uk/.
309. H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova. A

GridRPC Model and API for End-User Applications. Technical report, Global
Grid Forum (GGF), July 2005.

310. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. EDUTELLA: A P2P Networking Infrastructure
Based on RDF. In 11th World Wide Web Conference (WWW2002), page 604.
CD Rom Proceedings, May 2002.

311. National e-Science Centre. See Web site at http://www.nesc.ac.uk/.
312. P. Newton and J. Browne. The CODE 2.0 Graphical Parallel Programming

Language. In ICS ’92: Proceedings of the 6th international conference on
Supercomputing, pages 167–177. ACM Press, New York, 1992.

313. H. A. Nix. A Biogeographic Analysis of Australian Elapid Snakes. In
R. Longmore, editor, Atlas of Elapid Snakes of Australia, pages 4–15.
Australian Government Publishing Service, Canberra, 1986.

314. J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for
the Grid: MyProxy. In Proceedings of the Tenth International Symposium on
High Performance Distributed Computing (HPDC-10), HPDC, pages 104–114.
IEEE Computer Society Press: Los Alamitos, CA, 2001.

315. OASIS. OASIS Web Services Business Process Execution Language
(WSBPEL) TC. http://www.oasis-open.org/committees/wsbpel.

316. OASIS. Web Services Base Notification 1.3 (WS-BaseNotification).
http://docs.oasis-open.org/wsn/wsn-ws base notification-1.

3-spec-pr-02.pdf.
317. OASIS. Web Services Composite Application Framework (WS-CAF). http:

//www.oasis-open.org/committees/ws-caf/charter.php.
318. OASIS. Web Services Context (WS-CTX).

www.iona.com/devcenter/standards/WS-CAF/WSCTX.pdf.
319. OASIS. Web Services Resource 1.2 (WS-Resource). http://docs.oasis-open.

org/wsrf/wsrf-ws resource-1.2-spec-cs-01.pdf.
320. OASIS. Web Services Security (WS-Security). http://www.oasis-open.org/

committees/wss.
321. OASIS. WS-Resource Properties (WSRF-RP), April 2006. http://docs.

oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-os.pdf.
322. Object Management Group (OMG). The Common Object Request Broker

Architecture (CORBA). http://www.corba.org.

504 References

323. A. O’Brien, S. Newhouse, and J. Darlington. Mapping of Scientific Workflow
within the e-Protein Project to Distributed Resources. In S. J. Cox, editor,
Proceedings of the UK e-Science All Hands Meeting 2004, pages 162–163. CD
Rom Proceedings, 2004.

324. Open Grid Forum (OGF). http://www.ogf.org/. Formally the Global Grid
Forum (GGF).

325. Open Grid Services Architecture. https://forge.gridforum.org/projects/

ogsa-wg.
326. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A Tool for the
Composition and Enactment of Bioinformatics Workflows. Bioinformatics,
20(17):3045–3054, November 2004.

327. K. B. Olsen, S. M. Day, J. B. Minster, Y. Cui, A. Chourasia, M. Faerman,
R. Moore, P. Maechling, and T. H. Jordan. Strong Shaking in Los Angeles
Expected from Southern San Andreas Earthquake. Geological Research Letters,
2006.

328. The Open Science Grid Consortium. http://www.opensciencegrid.org/.
329. B. J. Owen. Search Templates for Gravitational Waves from Inspiraling

Binaries: Choice of Template Spacing. Physical Review D, 53:6749–6761, 1996.
330. B. J. Owen and B. S. Sathyaprakash. Matched Filtering of Gravitational

Waves from Inspiraling Compact Binaries: Computational Cost and Template
Placement. Physical Review D, 60:022002, 1999.

331. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.
332. OWL Services Coalition. OWL-S Semantic Markup for Web Services. http:

//www.daml.org/services/owl-s/1.1/, 2004.
333. S. Panagiotidi, E. Katsiri, and J. Darlington. On Advanced Scientific

Understanding, Model Componentisation and Coupling in GENIE. In S. J.
Cox and D. W. Walker, editors, UK e-Science All Hands Meeting, 2005, pages
559–567, Nottingham, UK, September 2005. CD Rom Proceedings.

334. S. Parastatidis and J. Webber. CSP SSDL Protocol Framework. http:

//www.ssdl.org/docs/v1.3/html/CSP%20SSDL%20Protocol%20Framework%

20v1.3.html, April 2005.
335. S. Parastatidis and J. Webber. MEP SSDL Protocol Framework.

http://www.ssdl.org/docs/v1.3/html/MEP%20SSDL%20Protocol%

20Framework%20v1.3.html, April 2005.
336. S. Parastatidis and J. Webber. The SOAP Service Description Language.

http://www.ssdl.org/docs/v1.3/html/SSDL%20v1.3.html, April 2005.
337. S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and P. Greenfield. An

Introduction to the SOAP Service Description Language v1.3. http://www.

ssdl.org/docs/v1.3/html/SSDL%20whitepaper%20v1.3.html, April 2005.
338. S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and P. Greenfield. Using

SSDL to Describe and Reason about Asynchronous and Multi-Message
Interactions between Web Services. IEEE Internet Computing, January-
February 2006.

339. Portable Batch System. See http://www.openpbs.org/.
340. R. G. Pearson, T. P. Dawson, P. M. Berry, and P. A. Harrison. SPECIES: A

Spatial Evaluation of Climate Impact on the Envelope of Species. Ecological
Modelling, 154:289–300, 2002.

References 505

341. S. Peltier, A. Lin, D. Lee, S. Mock, S. Lamont, T. Molina, M. Wong,
M. Martone, and M. Ellisman. The Telescience Portal for Advanced
Tomography Applications. Journal of Parallel and Distributed Applications,
63(5):539–550, 2003.

342. Penn State LIGO Data Processing Center. http://ligo.aset.psu.edu.
343. D. Pennington and W. Michener. The EcoGrid and the Kepler Workflow

System: A New Platform for Conducting Ecological Analyses. ESA Bulletin
(Emerging Technologies), 86:169–176, 2005.

344. S. Perera and D. Gannon. Enabling Web Service Extensions for Scientific
Workflows. In Workshop on Workflows in Support of Large-Scale Science
(WORKS). IEEE Computer Society, New York, 2006.

345. A. T. Peterson. Predicting the Geography of Species’ Invasions via Ecological
Niche Modeling. Quarterly Review of Biology, 78:419–433, 2003.

346. A. T. Peterson and D. A. Kluza. New Distributional Modeling Approaches for
Gap Analysis. Animal Conservation, 6:47–54, 2003.

347. A. T. Peterson, E. Mart́ınez-Meyer, C. González-Salazar, and P. Hall. Modeled
Climate Change Effects on Distributions of Canadian Butterfly Species.
Canadian Journal of Zoology, 82:851–858, 2004.

348. A. T. Peterson, M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero,
J. Soberon, R. H. Buddemeier, and D. R. B. Stockwell. Future Projections for
Mexican Faunas Under Global Climate Change Scenarios. Nature, 416:626–
629, 2002.

349. A. T. Peterson, J. Soberón, and V. Sanchez-Cordero. Conservatism of
Ecological Niches in Evolutionary Time. Science, 285:1265–1267, 1999.

350. A. T. Peterson and D. A. Vieglais. Predicting Species Invasions Using
Ecological Niche Modeling. BioScience, 51:363–371, 2001.

351. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
Instrumentelle Mathematik, Bonn, 1962.

352. P-GRADE Portal. http://www.lpds.sztaki.hu/pgportal/.
353. S. J. Phillips, M. Dudik, and R. E. Schapire. A Maximum Entropy Approach to

Species Distribution Modeling. In Proceedings of the International Conference
on Machine Learning. ACM Press, New York, 2004.

354. S. Pickles, J. Brooke, F. Costen, E. Gabriel, M. Müller, M. Resch, and
S. Ord. Metacomputing Across Intercontinental Networks. Future Generation
Computer Systems, 17(5–6):911–918, 2001.

355. S. M. Pickles, P. V. Coveney, and B. M. Boghosian. Transcontinental
RealityGrids for Interactive Collaborative Exploration of Parameter Space
(TRICEPS). Winner of SC’03 HPC Challenge Competition (Most Innovative
Data-Intensive Application), November 2003.

356. The Pico Framework. http://www.picocontainer.org.
357. R. Pike and D. M. Ritchie. The Styx Architecture for Distributed Systems.

Bell Labs Technical Journal, 4(2):146–152, April-June 1999.
358. C. Pinchak, P. Lu, and M. Goldenberg. Practical Heterogeneous Placeholder

Scheduling in Overlay Metacomputers: Early Experiences. In JSSPP, pages
205–228. Springer, Berlin, 2002.

359. B. Plale, J. Alameda, B. Wilhelmson, D. Gannon, S. Hampton, A. Rossi,
and K. Droegemeier. Active Management of Scientific Data. IEEE Internet
Computing, 9(1):27–34, 2005.

506 References

360. B. Plale, D. Gannon, Y. Huang, G. Kandaswamy, S. L. Pallickara,
and A. Slominski. Cooperating Services for Data-Driven Computational
Experimentation. Computing in Science and Enggineering, 7(5):34–43, 2005.

361. V. D. Pope, M. L. Gallani, V. J. Rowntree, and R. A. Stratton. The Impact
of New Physical Parametrizations in the Hadley Centre Climate Model—
HadAM3. Technical report, Bracknell, Berkshire, UK, Hadley Centre for
Climate Prediction and Research, 2002.

362. J. Postel and J. Reynolds. File Transfer Protocol (FTP). Internet RFC 959,
October 1985.

363. T. Pratt and M. Zelkowitz. Programming Languages—Design and
Implementation. Prentice Hall, Englewood Cliffs, NJ, 3rd edition, 1999.

364. S. L. Price. The Computational Prediction of Pharmaceutical Crystal
Structures and Polymorphism. Advanced Drug Delivery Reviews, 56(3):301–
319, 2004.

365. R. Prodan and T. Fahringer. Dynamic Scheduling of Scientific Workflow
Applications on the Grid Using a Modular Optimisation Tool: A Case Study. In
20th Symposium of Applied Computing, pages 687–694. ACM Press, Madison,
WI, 2005.

366. Ptolemy II. See Web site at http://ptolemy.eecs.berkeley.edu/ptolemyII.
367. R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource

Management for High Throughput Computing. In Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing
(HPDC7), Chicago, IL, July 1998. IEEE Computer Society, NY.

368. Reality Grid Project. http://www.realitygrid.org/.
369. W. Reisig. Primer in Petri Net Design. Springer-Verlag, New York, 1992.
370. W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with

Petri Nets. Springer-Verlag, New York, 1998.
371. M. Resch, D. Rantzau, and R. Stoy. Metacomputing Experience in a

Transatlantic Wide Area Application Testbed. Future Generation Computer
Systems, 15(5–6):807–816, 1999.

372. M. P. Robertson, N. Caithness, and M. H. Villet. A PCA-based Modelling
Technique for Predicting Environmental Suitability for Organisms from
Presence Records. Diversity & Distributions, 7:15–27, 2001.

373. A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo. The
discovery net system for high throughput bioinformatics. Bioinformatics,
19(90001):225i–231, 2003.

374. SAGA Research Group (GGF). See Web Site at https://forge.gridforum.

org/projects/saga-rg/.
375. SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure.

http://www.llnl.gov/CASC/SAMRAI/.
376. E. Saxon, B. Baker, W. Hargrove, F. Hoffman, and C. Zganjar. Mapping

Environments at Risk Under Different Global Climate Change Scenarios.
Ecology Letters, 8(1):53–60, 2005.

377. Southern California Earthquake Center (SCEC). http://www.scec.org/.
378. SCEC Community Modeling Environment (SCEC/CME) Project. http://

www.scec.org/cme.
379. D. J. Schlegel, D. Finkbeiner, and M. Davis. Maps of Dust Infrared Emission for

Use in Estimation of Reddening and Cosmic Microwave Background Radiation
Foregrounds. The Astrophysical Journal, 500:525, 1998.

References 507

380. E. Schnetter, S. H. Hawley, and I. Hawke. Evolutions in 3D Numerical
Relativity Using Fixed Mesh Refinement. Classical and Quantum Gravity,
21(6):1465–1488, 2004.

381. M. Senger, P. Rice, and T. Oinn. Soaplab—A Unified Sesame Door to Analysis
Tools. In Proceedings of UK e-Science All Hands Meeting, pages 509–513,
September 2003.

382. S. Shirasuna. X Baya Workflow Composer. http://www.extreme.indiana.

edu/xgws/xbaya.
383. M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer. GLARE: A Grid Activity

Registration, Deployment and Provisioning Framework. In Supercomputing
Conference. ACM Press, Madison, WI, 2005.

384. Y. L. Simmhan, B. Plale, and D. Gannon. Performance Evaluation of the
Karma Provenance Framework for Scientific Workflows. In International
Provenance and Annotation Workshop (IPAW). Springer, Berlin, 2006.

385. Y. L. Simmhan, B. Plale, and D. Gannon. Resource Catalog: An Information
Service for Community Resources in LEAD. Technical Report 002, Linked
Environments for Atmospheric Discovery, 2006.

386. G. Singh, S. Bharathi, A. L. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, S. Patil, and L. Pearlman. A Metadata Catalog Service for
Data Intensive Applications. In SuperComputing, page 33. IEEE Computer
Society, Washington, DC, 2003.

387. M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider,
J. M. Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra,
J. Liebert, C. Lonsdale, D. G. Monet, S. Price, P. Seitzer, T. Jarrett, J. D.
Kirkpatrick, J. E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt,
R. Light, E. L. Kopan, K. A. Marsh, H. L. McCallon, R. Tam, S. Van Dyk, and
S. Wheelock. The Two Micron All-Sky Survey(2MASS). Astronomy Journal,
131(1163):1163–1183, 2006.

388. E. Smith and P. Anderson. Dynamic Reconfiguration for Grid Fabrics. In 5th
IEEE/ACM International Workshop on Grid Computing, pages 86–93. IEEE
Computer Society, New York, November 2004.

389. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:
The Complete Reference. The MIT Press, Cambridge, MA, 1996.

390. Simple Object Access Protocol (SOAP) 1.2. Technical report, W3C, 2003.
391. J. Soberón and A. T. Peterson. Interpretation of Models of Fundamental

Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics,
2:1–10, 2005.

392. The Spring Project. http://www.springframework.org.
393. The Scalable Robust Self-organizing Sensor (SRSS) network project.

http://pf.itd.nrl.navy.mil/srss/.
394. B. R. Stein and J. Wieczorek. Mammals of the World: MaNIS as an Example

of Data Integration in a Distributed Network Environment. Biodiversity
Informatics, 1:14–22, 2004.

395. L. Stein. Creating a Bioinformatics Nation. Nature, 417:119–120, 2002.
396. R. Stevens, A. Robinson, and C. Goble. myGrid: Personalised Bioinformatics

on the Information Grid. In 11th International Conference on Intelligent
Systems in Molecular Biology, volume 19(1) of Bioinformatics, pages i302–
i304. Oxford University Press, Oxford, June 2003.

508 References

397. R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble,
A. Brass, and M. Tassabehji. Exploring Williams Beuren Syndrome Using
myGrid. In A. Bateman and A. Valencia, editors, Intelligent Systems for
Molecular Biology (ISMB) 2004, volume 20 of Bioinformatics, pages i303–310.
Oxford University Press, Oxford, 2004.

398. D. Stockwell and I. R. Noble. Induction of Sets of Rules From Animal
Distribution Data: A Robust and Informative Method of Data Analysis.
Mathematics and Computers in Simulation, 33:385–390, 1992.

399. D. Stockwell and D. Peters. The GARP Modelling System: Problems
and Solutions to Automated Spatial Prediction. International Journal of
Geographical Information Science, 13(2):143–158, 1999.

400. Sun Microsystems. Java Remote Method Invocation (RMI). http://java.

sun.com/products/jdk/rmi/.
401. Sun StorEdge SAM-QFS. See http://www.sun.com.
402. C. Szyperski. Component Software—Beyond Object-Oriented Programming.

Addison-Wesley, Reading, MA, 1998.
403. C. Szyperski and C. Pfistery. Why Objects Are Not Enough. In Proceedings,

International Component Users Conference, Munich, Germany, 1996. SIGS.
404. B. Talbot, S. Zhou, and G. Higgins. Review of the Cactus Framework: Software

Engineering Support of the Third Round of Scientific Grand Challenge
Investigations, Task 4 Report - Earth System Modeling Framework Survey.
http://sdcd.gsfc.nasa.gov/ESS/esmf tasc/Files/Cactus b.html.

405. Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G:
A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. Journal of Grid Computing, 1(1):41–51, 2003.

406. I. Taylor, M. Shields, and R. Philp. GridOneD: Peer to Peer Visualization using
Triana: A Galaxy Formation Test Case. In UK e-Science All Hands Meeting,
2002.

407. I. Taylor, M. Shields, I. Wang, and A. Harrison. Visual Grid Workflow in
Triana. Journal of Grid Computing, 3(3-4):153–169, September 2005.

408. I. Taylor, M. Shields, I. Wang, and O. Rana. Triana Applications within
Grid Computing and Peer to Peer Environments. Journal of Grid Computing,
1(2):199–217, 2003.

409. I. Taylor, I. Wang, M. Shields, and S. Majithia. Distributed Computing with
Triana on the Grid. Concurrency and Computation: Practice and Experience,
17(9):1197–1214, 2005.

410. I. J. Taylor, O. F. Rana, R. Philp, I. Wang, and M. S. Shields. Supporting Peer-
2-Peer Interactions in the Consumer Grid. In Eighth International Workshop
on High-Level Parallel Programming Models and Supportive Environments
(HIPS’03), pages 3–14. IEEE Computer Society, New York, April 2003.

411. I. J. Taylor, M. S. Shields, I. Wang, and R. Philp. Distributed P2P Computing
within Triana: A Galaxy Visualization Test Case. In 17th International Parallel
and Distributed Processing Symposium (IPDPS 2003), pages 16–27. IEEE
Computer Society, New York, 2003.

412. The TeraGrid Project. http://www.teragrid.org/.
413. Teragrid project. http://www.teragrid.org.
414. D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in

Practice: the Condor Experience. Concurrency and Computation: Practice
and Experience, 17(2–4):323–356, 2005.

References 509

415. S. Thakkar, J. L. Ambite, and C. A. Knoblock. Composing, Optimizing, and
Executing Plans for Bioinformatics Web services. VLDB Journal, Special Issue
on Data Management, Analysis and Mining for Life Sciences, 14(3):330–353,
2005.

416. S. Thatte. XLANG Web Services for Business Process Design. http://www.

gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.
417. The General Coupling Framework (GCF) Approach. http://www.cs.man.ac.

uk/cnc-bin/cnc gcf.pl.
418. The GridSAM Project. http://gridsam.sourceforge.net.
419. The Java Community Process. Portlet specification. http://www.jcp.org/

aboutJava/communityprocess/review/jsr168/.
420. The K-Wf Grid Project. Knowledge-Based Workflow System for Grid

Applications. http://www.kwfgrid.net/, 2006.
421. The K-Wf Grid Project. The Grid Workflow Description Language Toolbox.

http://www.gridworkflow.org/kwfgrid/gworkflowdl/docs/, 2006.
422. The Kerrighed Project. http://www.kerrighed.org/.
423. The MathWorks. MatlabR©. http://www.mathworks.com/products/matlab/.
424. The Open Mosix Project. http://openmosix.sourceforge.net/.
425. The Open SSI Project. http://openssi.org/index.shtml.
426. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont,

Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger,
L. Hannah, L. Hughes, B. Huntley, A. S. Van Jaarsveld, G. E. Midgely, L. Miles,
M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, and S. E. Williams.
Extinction Risk From Climate Change. Nature, 427:145–148, 2004.

427. K. S. Thorne. Gravitational Radiation. In S. W. Hawking and W. Israel,
editors, Three Hundred Years of Gravitation, chapter 9, pages 330–458.
Cambridge University Press, Cambridge, 1987.

428. W. Tim Berners-Lee. Web Architecture from 50,000 feet. http://www.w3.

org/DesignIssues/Architecture.html.
429. The Triana Project. http://www.trianacode.org.
430. UDDI Technical White Paper. Technical report, OASIS UDDI, September

2000.
431. UNICORE Forum. UNICORE: UNiform Interface to COmputing REsources.

See Web Site at http://www.unicore.org.
432. University of Southern California — High Performance Computing and

Communication. http://www.usc.edu/hpcc.
433. User Mode Linux. http://user-mode-linux.sourceforge.net/.
434. University of Wisconsin–Milwaukee LIGO Scientific Collaboration Group

Medusa Cluster.
http://www.lsc-group.phys.uwm.edu/beowulf/medusa.

435. A. Vakali, B. Catania, and A. Maddalena. XML Data Stores: Emerging
Practices. Internet Computing, 9(2):62–69, March/April 2005.

436. W. van der Aalst. Pi Calculus Versus Petri Nets: Let Us Eat Humble Pie
Rather Than Further Inflate The Pi Hype. www.bptrends.com, 2005.

437. W. van der Aalst and A. ter Hofstede. Workflow Patterns: On the
Expressive Power of (Petri-Net-Based) Workflow Languages. Technical report,
Department of Technology Management, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2002.

510 References

438. R. A. Van Engelen and K. A. Gallivan. The gSOAP Toolkit for Web Services
and Peer-to-Peer Computing Networks. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID ’02),
page 128, Washington, DC, 2002. IEEE Computer Society, New York.

439. J. Van Horn, J. Dobson, J. Woodward, M. Wilde, Y. Zhao, J. Voeckler, and
I. Foster. Grid-Based Computing and the Future of Neuroscience Computation.
In C. Senior, T. Russell, and M. S. Gazzaniga, editors, Methods in Mind,
Cognitive Neuroscience. The MIT Press, Cambridge, MA (In Press), 2006.

440. The Virtual Data Toolkit. http://www.vdt.org.
441. B. Victor, F. Moller, M. Dam, and L. Eriksson. The Mobility workbench.

http://www.it.uu.se/research/group/mobility/mwb.
442. J. E. Villacis, M. Govindaraju, D. Stern, A. Whitaker, F. Breg, P. Deuskar,

B. Temko, D. Gannon, and R. Bramley. CAT: A High Performance Distributed
Component Architecture Toolkit for the Grid. In High Performance Distributed
Computing. IEEE Press, 1999.

443. G. von Laszewski. An Interactive Parallel Programming Environment Applied
in Atmospheric Science. In G.-R. Hoffman and N. Kreitz, editors, Making Its
Mark, Proceedings of the 6th Workshop on the Use of Parallel Processors in
Meteorology, pages 311–325, Reading, UK, December 1996. European Centre
for Medium Weather Forecast, World Scientific, Singapore.

444. G. von Laszewski. The Grid-Idea and Its Evolution. Information Technology.,
47(6):319–329, 2005.

445. G. von Laszewski. Java CoG Kit Workflow Concepts. accepted for publication
in Journal of Grid Computing, 2006.

446. G. von Laszewski, K. Amin, S. Hampton, and S. Nijsure. GridAnt—White
Paper. Technical report, Argonne National Laboratory, Argonne, IL., July
2002.

447. G. von Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith, and
S. Tuecke. A Directory Service for Configuring High-Performance Distributed
Computations. In Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing, pages 365–375, Portland, OR, August
1997. IEEE Computer Society Press.

448. G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG Kits:
A Bridge between Commodity Distributed Computing and High-Performance
Grids. In ACM Java Grande 2000 Conference, pages 97–106, San Francisco,
CA, June 2000. ACM Press.

449. G. von Laszewski and M. Hategan. Grid Workflow - An Integrated Approach.
Draft Paper, 2005.

450. G. von Laszewski and D. Kodeboyina. A Repository Service for Grid Workflow
Components. In International Conference on Autonomic and Autonomous
Systems International Conference on Networking and Services. IEEE, October
2005.

451. G. von Laszewski, K. Mahinthakumar, R. Ranjithan, D. Brill, J. Uber,
K. Harrison, S. Sreepathi, and E. Zechman. An Adaptive Cyberinfrastructure
for Threat Management in Urban Water Distribution Systems. Technical
report, Argonne National Laboratory, Argonne, IL, Jan. 2007. To be submitted.

452. G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, J. Bresnahan, C. Kesselman,
M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman, and I. McNulty. Real-
Time Analysis, Visualization, and Steering of Microtomography Experiments

References 511

at Photon Sources. In Ninth SIAM Conference on Parallel Processing for
Scientific Computing, San Antonio, TX, March 1999. Society for Industrial
and Applied Mathematics.

453. G. von Laszewski, T. Trieu, P. Zimny, and D. Angulo. The Java CoG
Kit Experiment Manager. Technical report, Argonne National Laboratory,
Argonne, IL, June 2005.

454. W3C. Semantic Web Activity Statement. http://www.w3.org/2001/sw/

Activity.
455. W3C Recommendation: Architecture of the World Wide Web, Volume One.

http://www.w3.org/TR/webarch.
456. W3C. Web Services Addressing (WS-Addressing). http://www.w3.org/2002/

ws/addr/.
457. W3C. Web Services Description Language (WSDL) Version 2.0 Part 2:

Adjuncts. http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803.
458. W3C. Web Services Choreography Description Language (WS-CDL) Version

1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 2004.
459. P. A. Walker and K. D. Cocks. HABITAT: A Procedure for Modelling a Disjoint

Environmental Envelope for a Plant or Animal Species. Global Ecology and
Biogeography Letters, 1:108–118, 1991.

460. I. Wang. P2PS (Peer-to-Peer Simplified). In Proceedings of 13th Annual Mardi
Gras Conference—Frontiers of Grid Applications and Technologies, pages 54–
59. Louisiana State University, February 2005.

461. G. Wasson and M. Humphrey. Exploiting WSRF and WSRF.NET for Remote
Job Execution in Grid Environments. In 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05). IEEE Computer Society, New
York, 2005.

462. Web Tools Project. Eclipse Web Tools Platform Project. See Web site at
http://www.eclipse.org/webtools/.

463. V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid
Services. In Twelfth International Symposium on High Performance Distributed
Computing (HPDC-12), pages 48–57. IEEE Computer Society Press, New
York, 2003.

464. Workflow Management Research Group (GGF). https://forge.gridforum.

org/projects/wfm-rg/.
465. Wikipedia. Choreography—wikipedia, the free encyclopedia, 2006. http://en.

wikipedia.org/w/index.php?title=Choreography&oldid=33366853 (Online;
accessed January 18, 2006).

466. Wikipedia. Orchestration — wikipedia, the free encyclopedia, 2006. http:

//en.wikipedia.org/w/index.php?title=Orchestration&oldid=34882858

(Online; accessed January 18, 2006).
467. Wikipedia. Petri net—wikipedia, the free encyclopedia, 2006. http://

en.wikipedia.org/w/index.php?title=Petri net&oldid=35563598 (Online;
accessed January 18, 2006).

468. E. O. Wiley, K. M. McNyset, A. T. Peterson, C. R. Robins, and A. M. Stewart.
Niche Modeling and Geographic Range Predictions in the Marine Environment
Using a Machine-Learning Algorithm. Oceanography, 16:120–127, 2003.

469. M. D. Wilkinson, D. Gessler, A. Farmer, and L. Stein. The BioMOBY
Project Explores Open-Source, Simple, Extensible Protocols for Enabling

512 References

Biological Database Interoperability. In Virtual Conference on Genomics and
Bioinformatics, volume 3, pages 16–26, 2003.

470. B. Willke et al. The geo 600 gravitational wave detector. Classical and
Quantum Gravity, 19(7):1377–1387, 2002.

471. D. Willock, S. Price, M. Leslie, and C. Catlow. The Relaxation of Molecular
Crystal Structures Using a Distributed Multipole Electrostatic Model. Journal
of Computational Chemistry, 16(5):628–647, 1995.

472. R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing.
Future Generation Computer Systems, 15:757–768, 1999.

473. K. Wolstencroft, T. Oinn, C. Goble, J. Ferris, C. Wroe, P. Lord, K. Glover,
and R. Stevens. Panoply of Utilities in Taverna. In S. J. Cox and D. W.
Walker, editors, UK e-Science All Hands Meeting, 2005, pages 471–475. CD
Rom Proceedings, 2005.

474. S. Woodman, S. Parastatidis, and J. Webber. Sequencing Constraints SSDL
Protocol Framework. Technical Report CS-TR-903, University of Newcastle,
2005.

475. R. P. Woods. Automated Image Registration. http://bishopw.loni.ucla.

edu/AIR5/.
476. W. Woods. What’s in a Link: Foundations for Semantic Networks. In

D. Bobrow and A. Collins, editors, Representation and Understanding: Studies
in Cognitive Science. Academic Press, New York, 1975.

477. A. Woolf, R. Cramer, M. Gutierrez, K. van Dam, S. Kondapalli, S. Latham,
B. Lawrence, R. Lowry, and K. O’Neill. Semantic Integration of File-based
Data for Grid Services. In Workshop on Semantic Infrastructure for Grid
Computing Applications. IEEE, Piscataway, NJ, USA, 2005.

478. The Workflow Management Coalition. http://www.wfmc.org/.
479. Workflow Management Coalition. Terminology & Glossary. Technical report,

WfMC, 1999. http://www.wfmc.org/.
480. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and

L. Moreau. Automating Experiments Using Semantic Data on a Bioinformatics
Grid. IEEE Intelligent Systems, 19(1):48–55, 2004.

481. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data.
The International Journal of Cooperative Information Systems, 12(2):597–624,
2003.

482. Web Services Description Language (WSDL) 1.1. Technical report, W3C, 2001.
483. WSRF::Lite — Perl Grid Services. http://www.sve.man.ac.uk/Research/

AtoZ/ILCT.
484. Web services for remote portlets. http://www.oasis-open.org.
485. XML Process Definition Language (XPDL). Technical report WFMCTC-1025,

Workflow Management Coalition, Lighthouse Point, Fl, USA, 2002.
486. M. Xue, K. K. Droegemeier, and V. Wong. The Advanced Regional Prediction

System (ARPS)x – A Multi-scale Nonhydrostatic Atmospheric Simulation and
Prediction Model. Part I: Model Dynamics and Verification. Meteorology and
Atmospheric Physics, 75(3–4):161–193, 2000.

487. L. Young. Scheduling Componentised Applications On A Computational Grid.
MPhil Transfer Report, 2004.

References 513

488. L. Young, A. McGough, S. Newhouse, and J. Darlington. Scheduling
Architecture and Algorithms within the ICENI Grid Middleware. In UK e-
Science All Hands Meeting, pages 5–12, Nottingham, UK, September 2003.

489. J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow
using Tuple Spaces. In Fifth IEEE/ACM International Workshop on Grid
Computing, pages 119–128. IEEE Computer Society Press: Los Alamitos, CA,
2004.

490. J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for
Grid Computing. Technical Report GRIDS-TR-2005-1, Grid Computing and
Distributed Systems Laboratory, University of Melbourne, March 2005.

491. O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scalable Performance
Visualization with Jumpshot. International Journal of High-Performance
Computing and Applications, 13(3):277–288, 1999.

492. K. Zhang, K. Damevski, V. Venkatachalapathy, and S. Parker. SCIRun2:
A CCA Framework for High Performance Computing. In Proceedings of the
9th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS 2004), pages 72–79, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

493. H. Zhao and R. Sakellariou. An Experimental Investigation into the Rank
Function of the Heterogeneous Earliest Finish Time Scheduling Algorithm. In
H. Kosch, L. Boszormenyi, and H. Hellwagner, editors, Euro-Par, volume 2790
of Lecture Notes in Computer Science, pages 189–194. Springer-Verlag, Berlin,
2003.

494. J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood. Using
Semantic Web Technologies for Representing e-Science Provenance. In 3rd
International Semantic Web Conference (ISWC2004), volume 3298 of Lecture
Notes in Computer Science, pages 92–106. Springer-Verlag, Berlin, 2004.

495. L. Zhao, P. Chen, and T. Jordan. Strain Green’s Tensors, Reciprocity and
their Applications to Seismic Source and Structure Studies. Bulletin of the
Seismological Society of America, 96(5):1753–1763, 2006.

496. Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde. A Notation and
System for Expressing and Executing Cleanly Typed Workflows on Messy
Scientific Data. SIGMOD Record, 34(3):37–43, 2005.

Index

myGrid, 87

abstract component, 397
Abstract Grid Workflow Language

(AGWL), 455
Abstract Web Services Description

Language (AWSDL), 133
abstract workflow, 29, 222, 377, 397
activity

deployment, 455
diagram, 453
type, 455

advanced reservations, 410
AGIR project, 299
all-to-all data composition, 282
anchored service, 397
Apache Ant, 344
Apache Derby, 355
application, 396
application author, 396
application execution time, 397
ArcGIS, 103
ASKALON, 168, 450

Resource Manager, 456
astrophysical triggers, 53
astrophysics, 416
Astrophysics Simulation Collaboratory

(ASC), 416
Atomicity, Consistency, Isolation,

Drability (ACID), 10, 205
attenuation relationship, 148
Austrian Grid, 453
automated composition, 202, 426
autonomous service providers, 304

Barnes-Hut algorithm, 197
Basic Local Alignment Search Tool

(BLAST), 367
behavior, 398
biodiversity, 80, 81, 91
BiodiversityWorld, 80
bioinformatician, 300, 304
bioinformatics, 80, 300–319, 416
biological data, 300
biological nomenclature, 84
Biomedical Informatics Research

Network (BIRN), 110
BioMOBY project, 309
brain anatomy, 269
brokering, 405
Business Process Execution Language

(BPEL), 13, 191, 208, 260, 317,
428, 430

Business Process Execution Language
for Web Services (BPEL4WS),
191, 209

business workflow, 213, 430

Cactus, 168, 335, 416
California Geological Survey, 144
Carpet, 417
checkpointing, 463
chemical engineering, 416
choreography, 194
ClassAds, 374
climate modeling, 416
climate change, 94
Climate Space Model (CSM), 84
clustering, 389

516 Index

collaborative working, 80
collections, 308
Common Component Architecture

(CCA), 181
common workflow terminology, 168
component, 324, 396

abstraction, 399
deployment, 412
encapsulation, 399
hierarchies, 399
insertion, 407
pruning, 407
re-ordering, 407
substitution, 407
super, 396, 399

computation
adaptive, 127

computational fluid dynamics (CFD),
416

computational pathway, 146
Concrete Web Services Description

Language (CWSDL, 140
concrete workflow, 223, 377, 381, 397
condition, 194
condition/event system, 191
Condor, 29, 85, 152, 274, 303, 357, 369,

378, 460
Condor-G, 152, 369
DAGMan, see DAGMan
glide-in, 161
Stork, see Stork
use in LIGO, 46

control
constructs, 268
dependency, 168
statements, 265

control driven workflows, see control
flow

control flow, 167, 190, 210, 305, 323
control structures, 308
coordinated forms, 399
coordination constraints, 291
cosmic ray detectors, 261
coupling framework, 399
critical path, 286
cross product, 283
CyberShake, 143, 146, 150

computational elements, 154
results, 161

CyberShake computational pathway,
146

DAGMan, 29, 120, 151, 152, 273, 357,
358, 374, 386

as a Condor job, 366
ClassAds, 374
DAG

conditional, 363
describing, 366
recursive, 366

post scripts, 362
pre scripts, 362
retrying, 364
throttling, 363
use by VDS, 368
use in LIGO, 51
use with BLAST, 367

data
integration, 102
mining, 333
parallelism, 284
streams, 293
synchronization, 282
transformation, 102
typing, 267
visualization, 269

data dependency, 168
data flow, 111, 167, 190, 212, 279, 296,

304, 308, 323
Data Format Description Language

(DFDL), 260
Data Replication Service (DRS), 130
data-composition pattern, 281
data-driven workflows, see data flow
data-intensive application, 279
DataCutter, 119
DAX

use in LIGO, 48
deferred planning, 385
deployment, 397, 443
derivation path, 310
digital elevation model, 95
directed acyclic graph (DAG), 169, 191,

259, 281, 324, 340, 359, 455, 460
abstract, 273
concrete, 273
use in LIGO, 48

directed cyclic graph (DCG), 169

Index 517

DiscoveryNet, 300, 303, 317
distributed computing, 104
distributed databases, 302
distributed debugging, 426
Distributed Generic Information

Retrieval (DiGIR), 95
dot product, 283
dynamic data sets, 281

Earthquake Rupture Forecast (ERF),
147, 148, 156

Eclipse IDE, 439
EcoGrid, 95
ecological niche modeling, 82, 92
edge expression, 194
elementary net system, 191
Enabling Grids for e-Science (EGEE),

292
enactment, 202
Enactor Internal Object Model, 306
error detection, 106
e-Science, 303–319
event candidates, 53
event-observer interface, 306
executable staging, 383
executable workflow, 223, 377
execution, 403

environment, 396, 410
execution contracts, 461
execution engine, 463
execution environment, 324
execution layer, 305
experimental protocol, 301
experimental run, 313
exploratory workflow construction, 80,

88, 208

failure recovery, 387
fault management, 204, 205, 210
fault tolerance, 304, 308, 387
Feta, 311
flesh, 417
framework, 416
Fraunhofer Resource Grid, 194, 206
free choice net, 191
Freefluo, 301, 305, 306, 310
functional Magnetic Resonance Imaging

(fMRI), 258

Gantt Chart, 461

generalized additive models, 94
generic application factory service

(GFac), 140
Generic Service Toolkit, 133
genetic algorithm, 94, 460
Genetic Algorithm for Rule-set

Production (GARP), 84, 96
GEO 600, 45, 323
Geographic Information Systems (GIS),

91
Geographic Resources Analysis Support

System (GRASS), 103
Geospatial Data Abstraction Library

(GDAL), 102
GLARE, 457
GLIMPSE, 35
global computing, 280
Globus, 130, 273
Globus Resource Allocation Manager

(GRAM), 29
Glue, 47
goal description, 397
graph

rewriting, 273
transformations, 274
traversal, 273

Graphical User Interface (GUI), 453
Gravitational waves, 39
green room, 409
Grid, 273, 323

peer-to-peer, 78
computational, 67, 78
portal, 110, 114

Grid Adaptive Computational Engine
(GrACE), 417

Grid Application Development Software
(GrADS), 416

Grid Application Prototype (GAP), 324
Grid Application Toolkit (GAT), 323
Grid efficiency, 467
Grid Job Definition Language

(GJobDL), 199
Grid Process Execution Language for

Scientific Workflows (GPEL4SW),
220

Grid Resource Allocation and
Management (GRAM), 273, 380

Grid Security Infrastructure (GSI), 325
Grid services, 88

518 Index

Grid speedup, 467
Grid Workflow Description Language

(GWorkflowDL), 199
Grid Workflow Execution Service

(GWES), 203
Grid5000, 292
GridAnt, 343
GridARM, 456
GridFTP, 29, 323, 380

use by LIGO, 43
GridLab, 324, 416
GridSAM, 445
GridSphere, 112, 116
GriKSL, 416
GRIMOIRES, 311
GriPhyN, 275, 301

heterogeneity, 81, 214
Heterogeneous Earliest Finish Time

(HEFT), 460
heterogeneous interfaces, 305
hierarchical composition, 434
high-level presentation, 305
HLPN, see Petri Net
human cognition, 269
Hydro-1k data, 95

IBM, 260
Imperial College e-Science Networked

Infrastructure (ICENI), 399
implementation, 398

selection, 397
implicit iteration, 305
indexed flows, 434
information rich environment, 398
in silico experiment, 300–319

validation, 313
Instant-Grid, 194
Intensity Measure Relationship (IMR),

147
Intergovernmental Panel on Climate

Change (IPCC), 95
intermediate results, 314
interoperation, 81, 214
invasive species, 93
Inversion of Control Principle, 176
IOC, see Inversion of Control Principle
iteration, 308

Java Commodity Grid (CoG) Kit, 340,
341

job scheduling, 161
Jumpshot, 461
JXTA, 325

K-Wf Grid, 194
Karajan, 168, 170, 345
Karma Provenance Service, 132
Kepler, 91, 111, 132, 168, 260, 317
Knowledge Annotation and Verification

of Experiments (KAVE), 316
knowledge capture, 476

layered architecture, 305
Life Science Identifiers (LSID), 315
Lightweight Database Dumper (LDBD),

45
LIGO, 39

Detector, 40
Hanford Observatory, 40
Livingston Observatory, 40
science run, 55

LIGO Data Grid (LDG), 42
client package, 43
server package, 43

LIGO Data Replicator, 43
LIGO Scientific Collaboration, 40
Linked Environments for Atmospheric

Discovery (LEAD), 126, 215
logical XML view (xview), 265
logistic regression, 94
LSCdataFind, 44
LSCsegFind, 44

magic, 369
Mammal Networked Information

System (MaNIS), 94
mapping

descriptor, 263
functions, 263, 265
physical to logical data set, 263

matchmaking, 460
Maximum Entropy, 94
meaning, 398
Mediation of Information using XML

(MIX), 260
memory management, 421

Index 519

Message Passing Interface (MPI), 19,
29, 290, 292, 417

meta workflow, 385, 386
metacomputing, 67, 72, 280
metadata, 255

catalog
use by LIGO, 43

publishing
LIGO metadata, 43

Metadata Catalog Service (MCS), 151
microscopy, 119
middleware, 84, 301
MIME types, 308
model

checker, 453
traverser, 453
validation, 94

monitoring, 463
Monitoring and Discovery Service

(MDS), 380
Montage, 19–21
MOTEUR, 291
multi-tiered approach, 305
myGrid, 300–319, see also Taverna
myGrid

architecture, 305–310
myLead service, 130
MyProxy, 33

numerical relativity, 416

OASIS, 317
object-oriented technology, 12
one-to-one data composition, 282
ontologies, 104
Open Grid Service Architecture’s Data

Access and Integration service
(OGSA-DAI), 130

Open Science Grid (OSG), 42
open world, 304, 313

service assumption, 304
OpenSHA, 147, 156
optimization, 274

heuristics, 460
orchestration, 201, 397
overhead

analysis, 465
data transfer , 470
external load, 470

job preparation, 469
loss of parallelism, 469
middleware , 470
serialization, 469
severity, 467
temporal, 465
unidentified, 465

P-GRADE portal, 292
parallel

execution, 268
loops, 455

Parallel Adaptive Grid Hierarchy
(PAGH), 417

parallel computation, 104
parallelism

client-server, 66
master-slave, 72
message-passing, 72

parameters space, 293, 296
parametric

application, 279
study, 279
workflows, 282, 295

partial workflows, 385
partitioning, 385
path in a workflow, 286
PBS

use in LIGO, 47
peer to peer (P2P), 104, 323
Peer to Peer Simplified (P2PS), 325
Pegasus, 19, 28, 111, 119, 151, 317, 378

CyberShake, 146
use in LIGO, 52, 56
workflows, 303

performance prediction, 459
performance-guided scheduling, 408
Petri Net, 168, 190

Colored, 191
High-Level, 191, 193
Stochastic, 193

Petri Net Markup Language (PNML),
199

Pi-Calculus, 234
pipeline, 49
place, 192
place/transition net, 191, 192
placeholder, 161, 388
plug-in, 435

520 Index

polymorphs, 444
port types, 305
ports, 330
Probabilistic Seismic Hazard Aanalysis

(PSHA), 143
significance, 145

probabilistic seismic hazard curve, 144
probabilistic seismic hazard map, 144
problem solving environments, 399
procedure

atomic, 265
compound, 265

processor-specific mechanisms, 311
provenance, 305, 314–316

collection, 315
data, 316
process, 316
use, 315

provisioning, 160
Ptolemy, 260
Ptolemy II, 317
public registries, 311
pulsars

dedispersion, 62
radio signals, 60

QuarkNet, 261

reaction rules, 236
realization, 402, 405
realized workflow, 398
Receiver Operating Characteristic

(ROC), 98
reciprocity, 150
Remote Method Invocation (RMI), 323
Replica Catalog, 380
Replica Location Service (RLS), 151,

380
use by LIGO, 43

replication, 107
rescheduling, 459
rescue DAG, 52
resource

allocation, 397
catalog, 133
constraints, 316
discovery, 88, 405
pruning, 407

Resource Description Framework
(RDF), 315

result
context, 315
derivation, 315
validation, 315

rule sets, 94
runtime

optimizations, 273

SC2004, 425
SC2005, 425
scalability, 428
SCEC Community Modeling

Environment (SCEC/CME),
146

SCEC/IT, 301
schedule.ccl, 419
scheduler, 458
scheduling, 405

just in time, 409
scientific practice, 310
scientific realm annotation, 398
scientific workflows, 428, 430
SEEK, 86, 301, 303
semantic

annotation, 398
conversions, 102
descriptions, 308
representations, 244

sequential loops, 455
service, 397

anchored, 397
conceptual description, 311

service autonomy, 300
service choice, 310
service composition, 312
service discovery, 310, 311
service heterogeneity, 300
service interactions, 308
service invocation, 313
Service Orientated Architecture (SOA),

13, 130, 229, 304
service parallelism, 286
service registry, 310
service semantics, 311
service substitution, 308
service-based workflow, 208, 280
services, 324

Index 521

shallow semantic description, 311
shim services, 313
signal-to-noise ratio, 53
Simple API for Grid Applications

(SAGA), 327
Simple Conceptual Unified Flow

Language (SCUFL), 305, 308, 317
Simple Object Access Protocol (SOAP),

13, 170, 327
Site Catalog, 151, 380
SOAP Services Description Language

(SSDL), 227
software component

architecture, 176
definition, 175

Southern California Earthquake Center
(SCEC), 143

spatial workflow, 421
species distribution, 92
specification, 402, 403
SSDL

CSP Protocol Framework, 233
Endpoints, 233
Message Exchange Pattern Protocol

Framework, 233
Messages, 232
Protocols, 233
Rules Protocol Framework, 233
Schemas, 231
Sequential Constraint Protocol

Framework, 234
state machine, 191
static workflow optimization, 406
Storage Resource Broker (SRB), 151
Stork, 357, 369, 370, 374

ClassAds, 370
DAGMan interaction, 371
data placement jobs, 370
fault tolerance, 371
modules, 373
transfer protocols, 370, 372

structure
logical, 262
physical, 262

Structured Adaptive Mesh Refinement
Application Infrastructure
(SAMRAI), 417

submit host, 379
subworkflows, 209, 385

supercomponent, 396, 399
supercomputer, 161
SWIRE, 36
syntactic annotation, 398
synthetic seismograms, 150
systems biology, 301
Systems Biology Markup Language

(SBML), 302

task clustering, 382
Task Farm Manager (TFM), 422
task farming, 421
task-based workflow, 280
Taverna, 87, 260, 300–319

alternative services, 308
iteration mechanism, 308
processor plug-in architecture, 306
processor types, 306, 309
requirements, 304, 305
user interface, 312
workflow, 301
Workflow Object Model, 307

Telescience ATOMIC, 112
Telescience Project, 110
template bank, 53
TeraGrid, 19, 146
thorns, 417
token, 192
TotalView, 426
transactional workflow, 204, 205
Transformation Catalog, 151, 153, 380
transition, 192
Triana, 168, 260, 317, 320, 423

applicaitons, 332
components and services, 324
DAG, 324
distributed workflows, 324
GAP, 324
GAT, 335
Grid Application Toolkit (GAT), 85
Grid Computing, 323, 329
P2P, 323
SOA, 325
Web Services, 323, 325
workflow

execution, 335, 339
generation, 334, 338
refinement, 334, 338
representation and generation, 330

522 Index

WS-RF, 326
Turing complete, 194
type system, 300

uncertainty, 106
Unified Modeling Language (UML), 453
United States Geological Survey

(USGS), 144
Universal Description, Discovery and

Integration (UDDI), 13, 14
URL submission, 311
usability, 436, 441
USC High Performance Computing and

Communications (USC HPCC),
146

Virtual Data Language (VDL), 168,
259, 324

Virtual Data System (VDS), 119, 259,
368

Virtual Data Toolkit (VDT), 147
CyberShake, 146
use by LIGO, 43

virtual XML garden, 260
visual modeling, 429
visualization, 106

weather forecasting, 133
Weather Research Forecasting (WRF),

135
Web service, 266
Web services, 195, 323
Web Services Business Process

Execution Language (WS-BPEL),
13, 208, 209, 241, 317

Web Services Description Language
(WSDL), 116, 133, 214, 215, 260

scavenging, 311
Web Services Flow Language (WSFL),

191, 209, 317
Web Services for Remote Portlet

Specification (WSRP), 116
Web Services Invocation Framework

(WSIF), 214
Web Services Resource Framework

(WS-RF), 88, 323, 324, 327, 450
resource properties, 77
WSRF::Lite, 77

WebDAV, 354

WIEN2K, 452
workflow

parallelism, 72
real-time, 71
ad hoc, 10
adaptivity, 127
administrative, 10
automatic generation, 256
benefits, 152
business, 9
collaborative, 9, 122
composition, 221, 244
conceptual, 221, 395
costs, 153
creation, 221, 244
data-centric, 302
definition, 2, 210
delayed execution, 159
deployment, 222
description language, 199
design, 221, 310
discovery, 221
enactment, 224, 398
enactment engines, 259
essential requirements, 151, 213
executable workflows, 223, 250
execution engine, 114
experiment-critical components, 249
ideal time, 465
in LEAD, 130
instance, 2, 216, 223, 377, 381
introspection, 221, 311
layout, 312
life-cycle, 219
mapping, 378
middleware, 396
monitoring, 213, 218, 313
nested, 96, 209
notification-driven, 10
optimization, 387
orchestration, 2, 214
overhead classification, 466
parallelism, 60, 212, 284
partial, 209
partitioning, 385
persistence, 204, 215, 226, 274
pipeline, 396, 397, 402
pipeline execution time, 397
planner, 114

Index 523

planners, 259
production, 10
progress, 213, 218, 313
pruning, 407
reduction, 382
refinement, 460
representations, 244
representions

control flow, 167
data flow, 167

requirements, 304
reuse, 88, 209, 213, 214, 221, 249, 250
scheduling, 408
scientific, 9, 213
semi-automatic creation, 256
state, 225
substitution, 407
Taverna, 301
template, 223, 377
temporal, 323
translators, 259
typed, 275
validation, 223, 244, 250, 399, 403
workflow instances, 250
workflow templates, 250

Workflow Management Coalition
(WfMC), 9

WS-Addressing, 328
WS-CAF, 329
WS-Choreography, 241
WS-Context, 329
WS-Eventing, 130
WS-Notification, 130, 327
WS-Resource, 327
WSBPEL, see also Web Services

Business Process Execution
Language (WS-BPEL)

WSPeer, 325, 424

XBaya workflow composer, 132
XLANG, 209, 317
XML, 340, 455
XML Data Set Typing and Mapping

(XDTM), 259
XML Matching and Structuring

Language (XMAS), 260
XML schema, 260
XPath, 260
XPDL, 260
XQuery, 260

