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5.1 Introduction

Is there a public for natural language based search? This study, based on our experi-
ence with a Web portal, attempts to address criticisms on the lack of scalability and
usability of natural language approaches to search. Our solution is based on InFact R©,
a natural language search engine that combines the speed of keyword search with
the power of natural language processing. InFact performs clause level indexing, and
offers a full spectrum of functionality that ranges from Boolean keyword operators
to linguistic pattern matching in real time, which include recognition of syntactic
roles, such as subject/object and semantic categories, such as people and places. A
user of our search can navigate and retrieve information based on an understanding
of actions, roles and relationships. In developing InFact, we ported the functional-
ity of a deep text analysis platform to a modern search engine architecture. Our
distributed indexing and search services are designed to scale to large document
collections and large numbers of users. We tested the operational viability of InFact
as a search platform by powering a live search on the Web. Site statistics and user
logs demonstrate that a statistically significant segment of the user population is
relying on natural language search functionality. Going forward, we will focus on
promoting this functionality to an even greater percentage of users through a series
of creative interfaces.

Information retrieval on the Web today makes little use of Natural Language
Processing (NLP) techniques [1, 3, 11, 15, 18]. The perceived value of improved
understanding is greatly outweighed by the practical difficulty of storing complex
linguistic annotations in a scalable indexing and search framework. In addition, any
champion of natural language techniques must overcome significant hurdles in user
interface design, as greater search power often comes at a price of more work in for-
mulating a query and navigating the results. All of these obstacles are compounded
by the expected resistance to any technological innovation that has the potential to
change or erode established models for advertising and search optimization, which
are based on pricing of individual keywords or noun phrases, rather than relation-
ships or more complex linguistic constructs.

Nevertheless, with the increasing amount of high value content made available on
the Web and increased user sophistication, we have reasons to believe that a segment
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of the user population will eventually welcome tools that understand a lot more than
present day keyword search does. Better understanding and increased search power
depend on better parameterization of text content in a search engine index. The most
universal storage employed today to capture text content is an inverted index. In
a typical Web search engine, an inverted index may register presence or frequency
or keywords, along with font size or style, and relative location in a Web page.
Obviously this model is only a rough approximation to the complexity of human
language and has the potential to be superseded by future generation of indexing
standards.

InFact relies on a new approach to text parameterization that captures many
linguistic attributes ignored by standard inverted indices. Examples are syntactic
categories (parts of speech), syntactical roles (such as subject, objects, verbs, prepo-
sitional constraints, modifiers, etc.) and semantic categories (such as people, places,
monetary amounts, etc.). Correspondingly, at query time, there are explicit or im-
plicit search operators that can match, join or filter results based on this rich as-
sortment of tags to satisfy very precise search requirements.

The goal of our experiment was to demonstrate that, once scalability barriers
are overcome, a statistically significant percentage of Web users can be converted
from keyword search to natural language based search. InFact has been the search
behind the GlobalSecurity.org site (www.globalsecurity.org) for the past six months.
According to the Alexa site (www.alexa.com), GlobalSecurity.org has a respectable
overall traffic rank (no. 6,751 as of Feb 14, 2006). Users of the site can perform key-
word searches, navigate results by action themes, or enter explicit semantic queries.
An analysis of query logs demonstrate that all these non-standard information dis-
covery processes based on NLP have become increasingly popular over the first six
months of operation.

The remainder of this chapter is organized as follows. Section 5.2 presents an
overview of our system, with special emphasis on the linguistic analyses and new
search logic. Section 5.3 describes the architecture and deployment of a typical
InFact system. Section 5.4 is a study of user patterns and site statistics.

5.2 InFact System Overview

InFact consists of an indexing and a search module. With reference to Figure 5.1, in-
dexing pertains to the processing flow on the bottom of the diagram. InFact models
text as a complex multivariate object using a unique combination of deep pars-
ing, linguistic normalization and efficient storage. The storage schema addresses the
fundamental difficulty of reducing information contained in parse trees into gener-
alized data structures that can be queried dynamically. In addition, InFact handles
the problem of linguistic variation by mapping complex linguistic structures into se-
mantic and syntactic equivalents. This representation supports dynamic relationship
and event search, information extraction and pattern matching from large document
collections in real time.

5.2.1 Indexing

With reference to Figure 5.1, InFact’s Indexing Service performs in order: 1) docu-
ment processing, 2) clause processing, and 3) linguistic normalization.
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Fig. 5.1. Functional overview of InFact.

Document Processing

The first step in document processing is format conversion, which we handle through
our native format converters, or optionally via search export conversion software
from Stellant

TM
(www.stellent.com), which can convert 370 different input file types.

Our customized document parsers can process disparate styles and recognized zones
within each document. Customized document parsers address the issue that a Web
page may not be the basic unit of content, but it may consist of separate sections
with an associated set of relationships and metadata. For instance a blog post may
contain blocks of text with different dates and topics. The challenge is to automat-
ically recognize variations from a common style template, and segment information
in the index to match zones in the source documents, so the relevant section can
be displayed in response to a query. Next we apply logic for sentence splitting in
preparation for clause processing. Challenges here include the ability to unambigu-
ously recognize sentence delimiters, and recognize regions such as lists or tables that
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are unsuitable for deep parsing. Last, we extract morphological stems and compute
frequency counts, which are then entered in the index.

Clause Processing

The indexing service takes the output of the sentence splitter and feeds it to a
deep linguistic parser. A sentence may consist of multiple clauses. Unlike traditional
models that store only term frequency distributions, InFact performs clause level
indexing and captures syntactic category and roles for each term, and grammatical
constructs, relationships, and inter-clause links that enable it to understand events.
One strong differentiator of our approach to information extraction [4, 5, 7, 8, 14, 19]
is that we create these indices automatically, without using predefined extraction
rules, and we capture all information, not just predefined patterns. Our parser per-
forms a full constituency and dependency analysis, extracting part-of-speech (POS)
tags and grammatical roles for all tokens in every clause. In the process, tokens
undergo grammatical stemming and an optional, additional level of tagging. For
instance, when performing grammatical stemming on verb forms, we normalize to
the infinitive, but we may retain temporal tags (e.g., past, present, future), aspect
tags (e.g., progressive, perfect), mood/modality tags (e.g., possibility, subjunctive,
irrealis, negated, conditional, causal) for later use in search.

Next we capture inter-clause links, through: 1) explicit tagging of conjunctions
or pronouns that provide the link between the syntactic structures for two adjacent
clauses in the same sentence; and 2) pointing to the list of annotated keywords in the
antecedent and following sentence. Note that the second mechanism ensures good
recall in those instances where the parser fails to produce a full parse tree for long
and convoluted sentences, or information about an event is spread across adjacent
sentences. In addition, appositive clauses are recognized, split into separate clauses
and cross-referenced to the parent clause.

For instance, the sentence: “Appointed commander of the Continental Army
in 1775, George Washington molded a fighting force that eventually won indepen-
dence from Great Britain” consists of three clauses, each containing a governing
verb (appoint, mold, and win). InFact decomposes it into a primary clause (“George
Washington molded a fighting force”) and two secondary clauses, which are related
to the primary clause by an appositive construct (“Appointed commander of the
Continental Army in 1775”) and a pronoun (“that eventually won independence
from Great Britain”), respectively. Each term in each clause is assigned a syntac-
tic category or POS tag (e.g., noun, adjective, etc.) and a grammatical role tag
(e.g., subject, object, etc.). InFact then utilizes these linguistic tags to extract re-
lationships that are normalized and stored in an index, as outlined in the next two
sections.

Linguistic Normalization

We apply normalization rules at the syntactic, semantic, or even pragmatic level.
Our approach to coreferencing and anaphora resolution make use of syntactic agree-
ment and/or binding theory constraints, as well as modeling of referential distance,
syntactic position, and head noun [6, 10, 12, 13, 16, 17]. Binding theory places syn-
tactic restrictions on the possible coreference relationships between pronouns and
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their antecedents [2]. For instance, when performing pronoun coreferencing, syntac-
tic agreement based on person, gender and number limits our search for a noun
phrase linked to a pronoun to a few candidates in the text. In addition, consistency
restrictions limit our search to a precise text span (the previous sentence, the pre-
ceding text in the current sentence, or the previous and current sentence) depending
upon whether the pronoun is personal, possessive, reflective, and what is its person.
In the sentence “John works by himself,” “himself” must refer to John, whereas in
“John bought him a new car,” “him” must refer to some other individual mentioned
in a previous sentence. In the sentence, ““You have not been sending money,” John
said in a recent call to his wife from Germany,” binding theory constraints limit pro-
noun resolution to first and second persons within a quotation (e.g., you), and the
candidate antecedent to a noun outside the quotation, which fits the grammatical
role of object of a verb or argument of a preposition (e.g., wife). Our coreferencing
and anaphora resolution models also benefit from preferential weighting based on
dependency attributes. The candidate antecedents that appear closer to a pronoun
in the text are scored higher (weighting by referential distance). Subject is favored
over object, except for accusative pronouns (weighting by syntactic position). A head
noun is favored over its modifiers (weighting by head label). In addition, as part of
the normalization process, we apply a transformational grammar to map multiple
surface structures into an equivalent deep structure. A common example is the nor-
malization of a dependency structure involving a passive verb form into the active,
and recognition of the deep subject of such clause. At the more pragmatic level, we
apply rules to normalize composite verb expressions, capture explicit and implicit
negations, or to verbalize noun or adjectives in cases where they convey action sense
in preference to the governing verb of a clause. For instance, the sentences “Bill did
not visit Jane,” which contains an explicit negation, and “Bill failed to visit Jane,”
where the negation is rendered by a composite verb expression, are mapped to the
same structure.

5.2.2 Storage

The output of a deep parser is a complex augmented tree structure that usually does
not lend itself to a tractable indexing schema for cross-document search. Therefore,
we have developed a set of rules for converting an augmented tree representation
into a scalable data storage structure.

In a dependency tree, every word in the sentence is a modifier of exactly one
other word (called its head), except the head word of the sentence, which does not
have a head. We use a list of tuples to specify a dependency tree with the following
format:

(Label Modifier Root POS Head-label Role Antecedent [Attributes])

where: Label is a unique numeric ID; Modifier is a term in the sentence; Root
is the root form (or category) of the modifier; POS is its lexical category; Head-
label is the ID of the term that modifier modifies; Role specifies the type of de-
pendency relationship between head and modifier, such as subject, complement, etc;
Antecedent is the antecedent of the modifier; Attributes is the list of semantic
attributes that may be associated with the modifier, e.g., person’s name, location,
time, number, date, etc.
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For instance, the parse tree for our Washington example above is shown in Table
5.1.

Table 5.1. The parse tree representation of a sentence.

Head
Label Modifier Root POS

Label
Role Antecedent Attributes

1 Appointed Appoint V

2 commander N 1 Obj Person/title

3 of Prep 2 Mod

4 the Det 5 Det

Continental
5

Army
N 3 Pcomp Organization/name

6 in Prep 1 Mod

7 1775 N 6 Pcomp Numeric/date

George
8

Washington
N 9 Subj Person/name

9 molded mold V

10 a Det 12 Det

11 fighting A 12 Mod

12 force N 9 Obj

13 that N 15 Subj 12

14 eventually A 15 Mod

15 won win V

16 independence N 15 Obj

17 from Prep 16 Mod

Great
18

Britain
N 17 Pcomp Location/country

Fig. 5.2. The Subject-Action-Object indexing structure.

The basic idea behind or approach to indexing involves collapsing selected nodes
in the parse tree to reduce the overall complexity of the dependency structures.
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We model our storage structures after the general notion of subject-action-object
triplets, as shown in Figure 5.2. Interlinked subject-action-object triples and their
respective modifiers can express most types of syntactic relations between various
entities within a sentence.

The index abstraction is presented in Table 5.2, where the additional column
“Dist” denotes degrees of separations (or distance) between primary Subject, Verb,
Object and each Modifier, and “Neg” keeps track of negated actions.

Table 5.2. The index abstraction of a sentence.

Subject- Object- Verb-Subject
Modifier

Object
Modifier

Verb
Modifier

Prep Pcomp Dist Neg

Washington George appoint 1 F
commander appoint 1 F
Army Continental appoint 3 F

appoint in 1775 2 F
Washington George force fighting mold 2 F
force fighting independence win 1 F

Greatwin from
Britain

3 F

win eventually 1 F

InFact stores the normalized triplets into dedicated index structures that

• are optimized for efficient keyword search
• are optimized for efficient cross-document retrieval of arbitrary classes of rela-

tionships or events (see examples in the next section)
• store document metadata and additional ancillary linguistic variables for filter-

ing of search results by metadata constraints (e.g., author, date range), or by
linguistic attributes (e.g., retrieve negated actions, search subject modifier field
in addition to primary subject in a relationship search)

• (optionally) superimposes annotations and taxonomical dependencies from a
custom ontology or knowledge base.

With regard to the last feature, for instance, we may superimpose a [Country] entity
label on a noun phrase, which is the subject of the verb “to attack.” The index
supports multiple ontologies and entangled multiparent taxonomies.

InFact stores “soft events” instead of fitting textual information into a rigid
relational schema that may result in information loss. “Soft events” are data struc-
tures that can be recombined to form events and relationships. “Soft events” are
pre-indexed to facilitate thematic retrieval by action, subject, and object type. For
instance, a sentence like “The president of France visited the capital of Tunisia”
contains evidence of 1) a presidential visit to a country’s capital and 2) diplomatic
relationships between two countries. Our storage strategy maintains both interpre-
tations. In other words, we allow more than one subject or object to be associated
with the governing verb of a sentence. The tuples stored in the database are there-
fore “soft events,” as they may encode alternative patterns and relationships found
in each sentence. Typically, only one pattern is chosen at search time, in response to
a specific user request (i.e., request #1: gather all instances of a president visiting a
country; request #2: gather all instances of interactions between any two countries).
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5.2.3 Search

Unlike keyword search engines, InFact employs a highly expressive query language
(IQL or InFact Query Language) that combines the power of grammatical roles
with the flexibility of Boolean operators, and allows users to search for actions,
entities, relationships, and events. InFact represents the basic relationship between
two entities with an expression of the kind:

Subject Entity > Action > Object Entity,

The arrows in the query refer to the directionality of the action, which could be
either uni-directional (as above) or bi-directional. For example,

Entity 1 <> Action <> Entity 2

will retrieve all relationships involving Entity 1 and Entity 2, regardless of their
roles as subject or object of the action. Wildcards can be used for any grammatical
role. For instance, the query “∗ > eat > cake” will retrieve a list of anybody or
anything that eats a cake; and a query like “John > ∗ > Jane” will retrieve a list
of all uni-directional relationships between John and Jane. InFact also supports the
notion of entity types. For instance, in addition to entering an explicit country name
like “Argentina” as Entity 1 or Entity 2 in a relationship query, a user can enter a
wildcard for any country name by using the syntax [Country]. InFact comes with
a generic ontology that includes [Location], [Person], [Organization], [Numeric] as
the four main branches. Entity types can be organized hierarchically in a taxonomy.
IQL renders hierarchical dependencies by means of taxonomy paths. For instance,
in [Entity/Location/Country] and [Entity/Location/City] both [Country] and [City]
nodes have a common parent [Location]. Taxonomy path can encode “is-a” relations
(as in the above examples), or any other relations defined in a particular ontology
(e.g., “part-of” relation). When querying, we can use a taxonomy node in a relation-
ship search, e.g., [Location], and the query will automatically include all subpaths
in the taxonomic hierarchy, including [City], [Location], or narrow the search by
expanding the path to [Location/City].

With the InFact query language, we can search for:

• Any relationships involving an entity of interest

For example, the query “George Bush <> * <> *” will retrieve any events involving
“George Bush” as subject or object

• Relationships between two entities or entity types

For example, the query “China <> * <> Afghan*” will retrieve all relationships
between the two countries. Note in this case a wildcard is used in “Afghan*” to
handle different spelling variations of Afghanistan. The query “Bin Laden <>*<>
[Organization]” will retrieve any relationships involving “Bin Laden” and an orga-
nization.

• Events involving one or more entities or types

For example, the query “Pope > visit > [country]” will return all instances of the
Pope visiting a country. In another example, “[Organization/name] > acquire >
[Organization/name]” will return all events involving a named company buying
another named company.
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• Events involving a certain action type

“Action types” are groups of semantically linked actions. For example, query “[Per-
son] > [Communication] > [Person]” will retrieve all events involving communica-
tion between two people.

InFact’s query syntax supports Boolean operators (i.e., AND, OR, NOT). For
example, the query:

Clinton NOT Hillary > visit OR travel to > [Location]

is likely to retrieve the travels of Bill Clinton, but not Hillary Clinton.
We can further constrain actions with modifiers, which can be explicit entities

or entity types, e.g., Paris or [location]. For example, the query

[Organization/Name] > buy > [Organization/Name]ˆ[money]

will only return results where a document mentions a specific monetary amount
along with a corporate acquisition. Similarly, the query

Bush <> meet<> Clinton ˆ[location]

will return results restricted to actions that occur in an explicit geographical loca-
tion.

We can also filter search results by specifying document-level constraints, in-
cluding:

• Document metadata tags – lists of returned actions, relationships or events are
restricted to documents that contain the specified metadata values.

• Boolean keyword expressions – lists of returned actions, relationships or events
are restricted to documents that contain the specified Boolean keyword expres-
sions.

For instance, a query like:

[Organization/Name] > buy > [Organization/Name]ˆ[money]; energy NOT oil

will return documents that mentions a corporate acquisition with a specific monetary
amount, and also contain the keyword “energy” but do not contain the keyword
“oil.”

InFact also provides a context operator for inter-clause linking. Suppose for
instance, that we want to retrieve all events where a plane crash kills a certain
number of passengers. The event could be spread over adjacent sentences, as in:
“The plane crashed shortly after take-off. As many as 224 people were killed.”

In this case, a query like:

* > kill > [numeric] ∼plane crash

will retrieve all plane crash events, regardless of whether they are contained in a
single or multiple, adjacent sentences.

InFact can also support synonyms and query expansion via custom ontologies.
In this case, InFact will automatically recognize the equivalence of entities or actions
that belong to the same ontology node.

The InFact Query Language rests on a flexible Java Search API. The Java
Search API allows us to programmatically concatenate search operators, package
and present them to the end user through a simpler interface.
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5.3 Architecture and Deployment

We designed both indexing and search as parallel distributed services. Figure 5.3
shows a typical deployment scenario, with an indexing service on the left and a
search service on the right. A typical node in each of the diagrams would is a dual
processor (e.g., 2.8+GHz Xeon 1U) machine with 4GB of RAM and two 120GB
drives.

The Indexing Service (left) processes documents in parallel. Index workers access
source documents from external web servers. Multiple index workers can run on each
node. Each index worker performs all the “Annotation Engine” analyses described in
Figure 5.1. An index manager orchestrates the indexing process across many index
workers. The results of all analyses are stored in temporary indices in the index
workers. At configurable intervals, the index manager orchestrates the merging of
all temporary indices into the partition index components.

A partition index hosts the actual disk based indices used for searching. The
contents of a document corpus are broken up into one or more subsets that are
each stored in a partition index. The system supports multiple partition indices: the
exact number will depend on corpus size, number of queries per second and desired
response time. Indices are queried in parallel and are heavily IO bound. Partition
indices are attached to the leaf nodes of the Search Service on the right.

In addition to storing results in a temporary index, index workers can also store
the raw results of parsing in a Database Management System (DBMS). The database
is used almost exclusively to restore a partition index in the event of index corrup-
tion. Data storage requirements on the DBMS range between 0.5 and 6x corpus
size depending on which recovery options for the InFact system are enabled. Once
a document has been indexed and merged into a partition index it is available for
searching.

In a typical search deployment, queries are sent from a client application; the
client application may be a Web browser or a custom application built using the
Search API. Requests arrive over HTTP and are passed through a Web Server to
the Search Service layer and on to the top searcher of a searcher tree. Searchers
are responsible for searching one or more partition index. Multiple searchers are
supported and can be stacked in a hierarchical tree configuration to enable searching
large data sets. The top level searcher routes ontology related requests to one or more
ontology searchers, which can run on a single node. Search requests are passed to
child searchers, which then pass the request down to one or more partition indices.
The partition index performs the actual search against the index, and the result
passes up the tree until it arrives back at the client for display to the user.

If a particular segment of data located in a partition index is very popular and
becomes a search bottleneck, it may be cloned; the parent searcher will load bal-
ance across two or three partition indices. In addition, if ontology searches become
a bottleneck, more ontology searchers may be added. If a searcher becomes a bot-
tleneck, more searchers can be added. The search service and Web server tier may
be replicated, as well, if a load balancer is used.

The example in Figure 5.3 is an example of a large-scale deployment. In the
GlobalSecurity.org portal, we currently need only four nodes to support a user com-
munity of 100,000 against a corpus of several GB of international news articles,
which are updated on a daily basis.
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Fig. 5.3. Architectural overview of InFact.

5.4 The GlobalSecurity.org Experience

5.4.1 Site Background

InFact started powering the GlobalSecurity.org Web site on June 22, 2005. Based
in Alexandria, VA, and “launched in 2000, GlobalSecurity.org is the most compre-
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hensive and authoritative online destination for those in need of both reliable back-
ground information and breaking news . . . GlobalSecurity.org’s unique positioning
enables it to reach both a targeted and large diversified audience. The content of
the website is updated hourly, as events around the world develop, providing in-
depth coverage of complicated issues. The breadth and depth of information on the
site ensures a loyal repeat audience. This is supplemented by GlobalSecurity.org’s
unique visibility in the mass media, which drives additional growth” [9]. The direc-
tor of GlobalSecurity.org, John Pike, regularly provides commentary and analysis on
space and security issues to PBS, CNN, MSNBC, Fox, ABC, CBS, NBC, BBC, NPR,
and numerous print and online publications. In powering this site, InFact serves the
information search needs of a well-established user community of 100,000, consist-
ing of news reporters, concerned citizens, subject matter experts, senior leaders, and
junior staff and interns.

5.4.2 Operational Considerations

When preparing the GlobalSecurity.org deployment, one of our prime concerns was
the response time of the system. For this reason, we kept the data size of the partition
indices small enough so that most operations occur in memory and disk access
is minimal. We split the GlobalSecurity.org data across two index chunks, each
containing roughly 14 GB of data in each partition index. Another concern was
having sufficient capacity to handle the user load. To account for future user traffic,
we specified the deployment for 2-3 times the maximum expected load of about
11,000 queries per day. This left us with two cloned partition indices per index
chunk. In addition, we wanted a hot back up of the entire site, in case of any
hardware failures, and to support us each time we are rolling out new features.

Fig. 5.4. The GlobalSecurity.org home page.

Another area of concern was the distribution of query types. Our system has
significantly varying average response time and throughput (measured in queries/
minute) depending on the type of queries being executed. We assumed that users
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would take some time to migrate from keyword queries to fact queries. Therefore, we
selected a very conservative ratio of 50/50 fact-to-keyword query types with a view
to adding more hardware if needed. After automatically generating millions of query
files, we heavily loaded the system with the queries to simulate heavy traffic using
JMeter, a multi-threaded client web user simulation application from the Apache
Jakarta organization. Based on these simulations, we deployed with only four nodes.

Fig. 5.5. Keyword search result and automatic tip generation with InFact in re-
sponse to the keyword query “blackhawk.”

5.4.3 Usability Considerations

In deploying InFact on the GlobalSecurity.org site, our goal was to serve the infor-
mation needs of a wide community of users, the majority of which are accustomed
to straightforward keyword search. Therefore, on this site, by default, InFact acts
as a keyword search engine. However, we also started experimenting with ways to
progressively migrate users away from keyword search and towards natural language
search or “fact search.” With reference to Figure 5.4, users approaching the site can
enter InFact queries from the search box in the upper left, or click on the Hot Search
link. The latter executes a predefined fact search, which is particularly popular over
an extended time period (days or even weeks). The Hot Search is controlled by Glob-
alSecurity.org staff, and is outside the control of the general user. However, once in
the InFact search page (Figure 5.5), the user can execute fact searches explicitly by
using the IQL syntax. The IQL syntax is fully documented in the InFact Help page.
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Alternatively, by clicking on the “Try your own Fact Search” link on the upper right
of the InFact Search page, the user is introduced to a Custom Query Generator
(Figure 5.6), which produces the query of Figure 5.7.

Fig. 5.6. Fact search with the InFact Custom Query Generator: the user is looking
for facts that involve the export of plutonium.

The most interesting device we employed is guided fact navigation in response to
a keyword entry. We call this process “tip generation.” In this scenario, we capture
keywords entered by a user and try to understand whether these are names of people,
places, organization, military units, vehicles, etc. When executing a keyword search,
the InFact system can recommend several fact searches which may be of interest to
a user based on the keywords entered. These recommendations are presented to the
user as a guided navigation menu consisting of links. In the example of Figure 5.5,
the user is performing a keyword search for “blackhawk.” The user sees a series of
links presented at the top of the result set. They read: “Tip: View facts involving
blackhawk and: Combat, Its Usage/Operation, Locations, Military Organizations,
Money.” Each of these links when clicked in turn executes a fact search. For instance,
clicking on Military Organizations will generate the list of facts or relationships
of Figure 5.8, which gives an overview of all military units that have used the
blackhawk helicopter; clicking on Money will generate the list of facts or relationships
of Figure 5.9, which gives an overview of procurement and maintenance costs, as well
as government spending for this vehicle. The relationships are returned in a table
display where each row is an event, and columns identify the three basic semantic
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Fig. 5.7. Fact search with the InFact Custom Query Generator: InFact translates
the query of Figure 5.6 into the InFact Query Language (IQL) and returns a list of
results. IQL operators are fully documented in the Help page.

roles of source (or subject), action (or verb), and target (or object). Note that
relationships, by default, are sorted by relevance to a query, but can also be resorted
by date, action frequency, or alphabetically by source, action or target. Each of the
relationships or facts in the table is in turn hyperlinked to the exact location in the
source document where it was found, so the user can quickly validate the findings
and explore its context (Figure 5.10).

Usage logs were the primary driver for this customization effort. The personnel
at GlobalSecurity.org were very helpful and provided us with many months of user
traffic Web logs. We wrote some simple scripts to analyze the logs. For example,
we studied the 500 most popular key word searches performed on the site ranked in
order of popularity. Next, we began looking for entity types that would be helpful
to the most number of users. We found a lot of user interest in weapons, terrorists,
and US officials, amongst other things. We then set about creating ontologies for
each of these areas. New custom ontologies can easily be mapped into the internal
InFact ontology XML format.

5.4.4 Analysis of Query Logs

We wish to quantify the relative popularity of natural language (Fact) search versus
keyword search. In addition, we wish to compare the relative success of alternative
strategies we adopted to overcome usability issues. This study of log data reflect
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Fig. 5.8. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and military organizations.

Fig. 5.9. Tip Navigation with InFact: facts involving the “blackhawk” helicopter
and money.

four ways users submit a natural language query to InFact: 1) they click on the
Hot Search link; 2) they click on a keyword tip; 3) they click on an example in the
Query Generator or Help page; 4) they attempt to type an explicit relationship or
fact search using the IQL syntax.



5 A Case Study in Natural Language Based Web Search 85

Fig. 5.10. Tip Navigation with InFact: each fact is hyperlinked to the exact location
where it was found in the source document.

At the time of this writing, an average of 36% of advanced search users click
on the hot search link “Iran and Nuclear program,” which executes a predefined
search like “Iran > * ∼ nuclear.” However, it is difficult to assess what the user
experience is like because in 80% of cases the user performs non-search-related tasks,
and therefore we don’t know how long they spent looking at the results. Note that
users clicking on this link may not realize that they are going to a search engine
page, since the link title is ambiguous. The results of this search are quite good,
and still relevant. The hot search is an important entry point into our search site,
as 36% of all the fact search queries executed came from this source. It seems likely
that adding more of these hot search links or otherwise accentuating them on the
page would significantly increase user exposure to natural language based queries.

Our analysis of query logs shows that keyword tips are the most effective way
to migrate users to Fact Search. Users who click on tips frequently follow up with



86 Giovanni Marchisio, et al.

queries of their own. Tip clickers also write better queries, probably because, after
seeing the column display, they have a much better sense of how queries can be
composed. Keyword tip clickers typically find the results engaging enough to spend
an average of 1.5 minutes studying the results: 37% of users go back and click on
more than one tip. Even better, 87% follow up by clicking on the “Try your own
Fact Search” link and try their own query. All of the queries attempted are queries;
90% produce results; our follow up analysis suggests that for two thirds of these
queries the results are relevant to the users search goals. In other words, users who
click on the tips are extremely likely not only to try their own fact search, but also
to pay enough attention to the format to write both valid and useful queries.

Examples in the Help File or Query Generator are largely ineffective at getting
users to try Fact Search. Because the results returned by the examples usually do
not necessarily relate to what the user wishes to search on, the column display is
more of a distraction than an enticement to try Fact Search. However, those who go
on to try Fact Search, after clicking on an example, have a better chance of writing
good queries. Example link clickers are less likely to experiment with Fact Search
or invest time learning how it works. Seventy-two percent of users end their session
after clicking on one or more examples, not even returning to perform the keyword
search that presumably brought them to the site in the first place. Of the 28% who
did not leave the site after clicking an example, two thirds went on to try a Fact
Search. Only 6% of users click on examples after having tried a Fact Search query
on their own. Analysis of this user group suggests that examples have a place in the
UI, but are not sufficiently compelling to motivate users to try Fact Search alone.
However, this evidence does lend support to the hypothesis that users who see the
column display are more likely to create valid queries: 60% of the users who click on
examples and go on to write their own queries write valid queries and get results,
which is still a much higher percentage than for users who blindly try to create
queries.

About 75% of users who try Fact Search directly by using the IQL syntax, and
without seeing the column display first fail to get results. Forty-five percent of users
write invalid queries where nouns are inserted in the action field (the most com-
mon error). Another common error is specifying too much information or attaching
prepositions to noun phrases. We can detect some of these errors automatically,
and we plan to provide automatic guidance to users going forward. About 20% of
query creators get impressive results. Most successful users get their queries right
on the first shot, and, in general, seem unwilling to invest much time experimenting.
Successful users are most likely expert analysts. In reproducing their searches and
inspecting their results, we estimate that they have a positive impression of Fact
search. In 75% of cases the results of Fact Search take direct the user quickly to the
relevant parts of relevant documents, providing a deeper overview and faster naviga-
tion of content. However, in 25% of cases, expert users also write queries that return
no results. Reasons for this include specifying too much information or including
modifiers or prepositional terms in the verb field such as: “cyber attack,” “led by,”
and “go to.” In many cases users would be successful by just entering the verb. In
some cases, users get lots of fact search results, but lack the experience to refine
their query, so they simply go back to keyword search. We should try to communi-
cate how queries can be modified further if there are too many results, perhaps by
adding an ontology tag, or a context operator to the query syntax. For instance, the
query “Bush > meet > [person]” could yield a large number of irrelevant results, if
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a user is only interested in a list of diplomatic meetings. The query can be refined
as “Bush >meet > [person/name].” In this case, the addition of an ontology tag
restricts the number of meetings to those that are likely to involve named political
personalities of some relevance. If the user is primarily interested in meeting that
involve talks on nuclear arms control, the query can be further refined as “Bush >
meet > [person/name] ∼ nuclear arms control.” Similarly, the query “[country] >
produce > uranium” can be turned into the query “[country] > produce >[numeric]
uranium” if a user is after quantities of uranium that are being produced around
the world. In general, we observe that users accustomed to keyword search believe
that specifying more terms translates into more accurate results. In moving these
users to Fact Search we must encourage them to start as simple as possible, since
the IQL can express in two words what would take 20 lines using Boolean language.

Fig. 5.11. Queries/day vs day of operation (June 22, 2005, to November 30, 2005).

Finally, Figure 5.11 shows overall query volumes (keyword search and Fact
Search) as a function of day from the first day of operation (June 22 to Novem-
ber 30, 2005). The cyclic nature of the graph derives from the fact that most user
access the site during the working week. Figure 5.12, which displays query volumes
vs week of operation, clearly shows a positive trend: overall traffic to the site has
increased by almost 40% ever since we introduced InFact search. The most inter-
esting metrics relate to the percentage of users that derive value from Fact Search.
The most effective mechanism to promote natural language search, as we have seen,
are the tips. Figure 5.13 shows a 60% increase in the number of users that click on
the tips automatically generated by InFact’s advanced linguistic analysis over our
entire period of operation. The overall percentage has increased from 4% to 10%.
Our analysis also suggests that the best way to teach users how to write good queries
is to first expose them to the summary result displays that ensues from a natural
language query. The sooner users become aware of the type of results that a natural
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language query can yield, the higher the chances that they learn how to use the new
search functions correctly. This reinforces the idea that the result display may be a
driver of Fact Search.

Fig. 5.12. Queries/week vs week of operation (June to November, 2005).

Fig. 5.13. Percentage of tips clicked (June to November, 2005).
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5.5 Conclusion

We deployed a natural language based search to a community of Web users, and
measured its popularity relative to conventional keyword search. Our work addressed
criticisms of NLP approaches to search to the effect that they are not scalable and are
too complex to be usable by average end-users. Our approach rests on a sophisticated
index parameterization of text content, that captures syntactic and semantic roles,
in addition to keyword counts, and enables interactive search and retrieval of events
patterns based on a combination of keyword distributions and natural language
attributes. Our distributed indexing and search services are designed to scale to
large document collections and large numbers of users. We successfully deployed on
a Web site that serves a community of 100,000 users. An analysis of query logs shows
that, during the first six months of operation, traffic has increased by almost 40%.
Even more significantly, we are encountering some success in promoting natural
language searches. Our study demonstrates that the percentage of users that avail
themselves of guided fact navigation based on natural language understanding has
increased from 4% to 10% during the first six months of operation. Going forward,
we will focus on increasing this percentage with a more innovative UI.
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