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Poisson Processes and Ruin Theory

We give in this chapter the main results on Poisson processes, which are
basic examples of jump processes. Despite their elementary properties they
are building blocks of jump process theory. We present various generalizations
such as inhomogeneous Poisson processes and compound Poisson processes.
These processes are not used to model financial prices, due to the simple
character of their jumps and are in practice mixed with Brownian motion, as
we shall present in � Chapter 10. However, they represent the main model in
insurance theory. We end this chapter with two sections about point processes
and marked point processes.

The reader can refer to Çinlar [188], Cocozza-Thivent [190], Karlin and
Taylor [515] and the last chapter in Shreve [795] for the study of standard
Poisson processes, to Brémaud [124] for general Poisson processes, and to
Jacod and Shiryaev [471], Kallenberg [504], Kingman [523], Last and Brandt
[565], Neveu [669], Prigent [725] and Protter [727] for point processes, and to
Mikosch [651, 652] for applications.

8.1 Counting Processes and Stochastic Integrals

A counting process is a process which increases in unit steps at isolated
times and is constant between these times. It can be constructed as follows. Let
(Tn, n ≥ 0) be a sequence of random variables defined on the same probability
space (Ω,F ,P) such that

T0 = 0, Tn < Tn+1 for Tn < ∞ .

This sequence models the times when jumps occur. We define the family of
random variables, for t ≥ 0,

Nt =
{

n if t ∈ [Tn, Tn+1[
+∞ otherwise,
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or, equivalently,

Nt =
∑
n≥1

1{Tn≤t} =
∑
n≥0

n1{Tn≤t<Tn+1}, N0 = 0 .

This counting process (Nt, t ≥ 0), associated with the sequence (Tn, n ≥ 0), is
increasing and right-continuous. We denote by Nt− the left-limit of Ns when
s → t, s < t and by ΔNs = Ns −Ns− the jump process of N . The explosion
time is the r.v. T = supn Tn. In what follows, we reduce our attention to the
case T = ∞.

Let F be a given filtration. A counting process is F-adapted if and only if
the random variables (Tn, n ≥ 1) are F-stopping times. In that case, for any
n, the set {Nt ≤ n} = {Tn+1 > t} belongs to Ft.

The natural filtration of N denoted by FN where FN
t = σ(Ns, s ≤ t) is

the smallest filtration FN which satisfies the usual hypotheses and such that
N is FN -adapted.

The stochastic integral
∫ t

0
CsdNs is defined pathwise as a Stieltjes

integral for every bounded measurable process (not necessarily FN -adapted)
(Ct, t ≥ 0) by

(C�N)t : =
∫ t

0

CsdNs =
∫

]0,t]

CsdNs : =
∞∑

n=1

CTn1{Tn≤t} .

We emphasize that the integral
∫ t

0
CsdNs is here an integral over the time

interval ]0, t], where the upper limit t is included and the lower limit 0
excluded. This integral is finite since there is a finite number of jumps during
the time interval ]0, t]. We shall also write

∫ t

0

CsdNs =
∑
s≤t

CsΔNs

where the right-hand side contains only a finite number of non-zero terms. The
integral

∫∞
0

CsdNs is defined as
∫∞
0

CsdNs =
∑∞

n=1 CTn , when the right-hand
side converges.

We shall also use the differential notation d(C�N)t : = CtdNt.

We can associate a random measure to any counting process as follows.
For any Borel set Λ ⊂ R

+, for any ω, set

μ(ω,Λ) = #{n ≥ 1 : Tn(ω) ∈ Λ} .

For any ω, the map Λ → μ(ω,Λ) defines a positive measure on R
+. One can

note that μ(ω, dt) =
∑

n δTn(ω)(dt).
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The random variable Nt can be written as

Nt(ω) = μ(ω, ]0, t]) =
∫

]0,t]

μ(ω, ds)

and the Stieltjes (or stochastic) integral as
∫ t

0
CsdNs =

∫ t

0
Csμ(ds).

8.2 Standard Poisson Process

8.2.1 Definition and First Properties

The standard Poisson process is a counting process such that the random
variables (Tn+1 −Tn, n ≥ 0) are independent and identically distributed with
exponential law of parameter λ with λ > 0. Hence, the explosion time is
infinite and

P(Nt = n) = e−λt (λt)
n

n!
.

The standard Poisson process can be redefined as follows (see e.g., Çinlar
[188]): it is a counting process without explosion (i.e., T = ∞) such that
• for every s, t ≥ 0 the r.v. Nt+s −Nt is independent of FN

t ,
• for every s, t, the r.v. Nt+s −Nt has the same law as Ns.
or, in an equivalent way, a counting process without explosion whose
increments are independent and stationary.

�

�
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Fig. 8.1 Poisson process
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Definition 8.2.1.1 Let F be a given filtration and λ a positive constant.
The process N is an F-Poisson process with intensity λ if N is an F-
adapted process, such that for all positive numbers (t, s), the r.v. Nt+s −Nt is
independent of Ft and follows the Poisson law with parameter λs.

The random measure μ associated with a Poisson process is such that
μ(Λ) is almost surely finite for any bounded set Λ (the number of jumps in
any finite interval of time is almost surely finite), and E(μ(Λ)) = λ|Λ| where
|Λ| is the Lebesgue measure of the set Λ.

We now recall some properties of Poisson processes.
• The time Tn when the nth-jump of N occurs is the sum of n independent
exponential r.v’s, hence it has a Gamma law with parameters (n, λ):

P(Tn ∈ dt) =
(λt)n−1

(n− 1)!
λe−λt 1{t>0}dt,

and its Laplace transform, for μ > −λ, is given by

E(e−μTn) =
(

λ

λ + μ

)n

.

• From the properties of the Poisson distribution, it follows that for every
t > 0,

E(Nt) = λt, Var (Nt) = λt

and for every x > 0, t ≥ 0, u, α ∈ R

E(xNt) = eλt(x−1) ; E(eiuNt) = eλt(eiu−1) ; E(eαNt) = eλt(eα−1) . (8.2.1)

• Conditionally on (Nt = n), the law of (T1, T2, . . . , Tn) is a multinomial
distribution on [0, t].
• Let, for t fixed and i ≥ 1, T

(t)
i : = TNt+i − t where TNt+i is the time of

the i-th jump which occurs after t. The sequence of times (T (t)
i , i ≥ 1) has

the same law as (Ti, i ≥ 1). This property is called the lack of memory of the
Poisson process.

Exercise 8.2.1.2 Let N be a Poisson process. Prove that Ntt
−1 → λ a.s.

when t goes to infinity. �

Exercise 8.2.1.3 Let N be a Poisson process and Tn its n-th jump time.
Prove that

P(Tn ≥ s|Ft) = 1s≤Tn≤t + 1t<Tn

∫ ∞

s−t

λ(λu)n−1−Nt

(n− 1 −Nt)!
e−λu 1{u≥0} du .

�
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8.2.2 Martingale Properties

From the independence of the increments of the Poisson process, we derive
the following martingale properties:

Proposition 8.2.2.1 Let N be an F-Poisson process. For each α ∈ R, for
each bounded Borel function h, the following processes are F-martingales:

(i) Mt : = Nt − λt,

(ii) M2
t − λt = (Nt − λt)2 − λt, (8.2.2)

(iii) exp(αNt − λt(eα − 1)), (8.2.3)

(iv) exp
(∫ t

0

h(s)dNs − λ

∫ t

0

(eh(s) − 1)ds
)

,

(v)
∫ t

0

h(s)dMs ,

(vi)
(∫ t

0

h(s)dMs

)2

− λ

∫ t

0

h2(s)ds .

Proof: Let s < t. From the independence of the increments of the Poisson
process, we obtain:

(i) E(Mt −Ms|Fs) = E(Nt −Ns)−λ(t− s) = 0, hence M is a martingale.
(ii) The martingale property of M and the independence of the increments

of the Poisson process imply

E(M2
t −M2

s |Fs) = E[(Mt −Ms)2|Fs] = E[(Nt −Ns − λ(t− s))2|Fs]
= E[(Nt −Ns)2] − λ2(t− s)2

= E[N2
t−s] − λ2(t− s)2 = VarNt−s ,

hence,
E(M2

t −M2
s |Fs) = λ(t− s) ,

and the process (M2
t − λt, t ≥ 0) is a martingale.

(iii) From the form of the Laplace transform of Nt given in (8.2.1) and the
independence of the increments, E[exp[α(Nt−Ns)−λ(t−s)(eα−1)] |Fs] = 1,
hence the martingale property of the process in (iii).

Assertions (iv-v-vi) can be proved first for elementary functions h of the
form h =

∑
i ai1]ti,ti+1] and by then passing to the limit for general bounded

Borel functions h. �

Exercise 8.2.2.2 Prove that, for any β > −1, any bounded Borel function
h, and any bounded Borel function ϕ valued in ] − 1,∞[, the processes
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exp[ln(1 + β)Nt − λβt] = (1 + β)Nte−λβt,

exp
(∫ t

0

h(s)dNs + λ

∫ t

0

(1 − eh(s))ds
)

= exp
(∫ t

0

h(s)dMs + λ

∫ t

0

(1 + h(s) − eh(s))ds
)

,

exp
(∫ t

0

ln(1 + ϕ(s))dNs − λ

∫ t

0

ϕ(s)ds
)

= exp
(∫ t

0

ln(1 + ϕ(s))dMs + λ

∫ t

0

(ln(1 + ϕ(s)) − ϕ(s))ds
)

,

are martingales.
Hint: These formulae are “avatars” of those of Proposition 8.2.2.1. �

Exercise 8.2.2.3 Prove (without using the following Proposition!) that the
process (

∫ t

0
Ns−dMs, t ≥ 0) is a martingale, and that the process

∫ t

0
NsdMs

is not a martingale. �

Definition 8.2.2.4 The martingale (Mt = Nt − λt, t ≥ 0) is called the
compensated process of N , and λ the intensity of the process N .

Remarks 8.2.2.5 (a) Note that the process M is a discontinuous martingale
with bounded variation.

(b) We give an example of a martingale which is not square integrable.
Let Xt =

∫ t

0
1√
s
dMs. The process X is a martingale, however, it is not square

integrable.

The previous Proposition 8.2.2.1 can be generalized to predictable integrands:

Proposition 8.2.2.6 Let N be an F-Poisson process and let H be an F-
predictable bounded process. Then the following processes are martingales:

(i) (H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs − λ

∫ t

0

Hsds

(ii) (H�M)2t − λ

∫ t

0

H2
sds

(iii) exp
(∫ t

0

HsdNs + λ

∫ t

0

(1 − eHs)ds
)

=: E(H � M)t

= 1 +
∫ t

0
E(H � M)s−HsdMs

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.2.4)

Proof: One establishes (8.2.4) for predictable processes (Ht, t ≥ 0) of the
form Ht = KS1]S,T ](t) where S and T are two stopping times and KS is
FS-measurable. In that case,

∫ t

0

HsdMs = KS(MT∧t −MS∧t)
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and the martingale property follows. Then, one passes to the limit. The same
procedure can be applied to prove that the two processes (ii) and (iii) of (8.2.4)
are martingales. �

We have used in (iii) the notation E(H � M)t for the Doléans-Dade
exponential of the martingale

∫
HsdMs.

Comments 8.2.2.7 (a) If H satisfies E(
∫ t

0
|Hs|ds) < ∞, the process in (i) is

still a martingale.
(b) The results of Exercise 8.2.2.3 are now quite clear: in general, the

martingale property (8.2.4) does not extend from predictable to adapted
processes H. Indeed, from the definition of the stochastic integral w.r.t. N ,
and the fact that for every fixed s, Ns −Ns− = 0,P a.s.,

∫ t

0

(Ns −Ns−)dMs =
∫ t

0

(Ns −Ns−)dNs − λ

∫ t

0

(Ns −Ns−)ds

= Nt − λ

∫ t

0

(Ns −Ns−)ds = Nt .

Hence, the left-hand side, where one integrates the adapted (unpredictable)
process Ns − Ns− with respect to the martingale M , is not a martingale.
Equivalently, the process

∫ t

0

NsdMs =
∫ t

0

Ns−dMs + Nt ,

is not a martingale.
(c) Property (i) of Proposition 8.2.2.6 enables us to prove that the jump

times (Ti, i ≥ 1) are not predictable. Indeed, if T1 were a predictable
stopping time, then the process (1{t<T1}, t ≥ 0) would be predictable, however∫ t

0
1{s<T1}dMs = −λ(t∧T1) is not a martingale. More generally, assume that

Ti is predictable. Then, (
∫ t

0
1[Ti](s)dMs, t ≥ 0) would be a martingale and

E

(∫ t

0

1[Ti](s)dNs

)
= E (1Ti≤t (NTi −NTi−)) = P(Ti ≤ t)

would be equal to E

(∫ t

0
1[Ti](s)λds

)
= 0, which is absurd.

Remark 8.2.2.8 Note that (i) and (ii) of Proposition 8.2.2.1 imply that
the process (M2

t − Nt; t ≥ 0) is a martingale. Hence, there exist (at least)
two increasing processes A such that (M2

t − At, t ≥ 0) is a martingale. The
increasing process (λt, t ≥ 0) is the predictable quadratic variation of M
(denoted 〈M〉), whereas the increasing process (Nt, t ≥ 0) is the optional
quadratic variation of M (denoted [M ]). For any μ ∈ [0, 1], the process
(μNt + (1 − μ)λt; t ≥ 0) is increasing and the process
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M2
t − (μNt + (1 − μ)λt) = M2

t − λt− μ(Nt − λt)

is a martingale. (See � Section 9.2 for the definition of quadratic variation if
needed.)

8.2.3 Infinitesimal Generator

Proposition 8.2.3.1 The Poisson process is a process with independent
and stationary increments, and hence is a Markov process; its infinitesimal
generator L is given by

L(f)(x) = λ[f(x + 1) − f(x)] ,

where f is a bounded Borel function.

Proof: The Markov property follows from

E(f(Nt)|FN
s ) = E(f(Nt −Ns + Ns)|FN

s ) = F (t− s,Ns)

where F (u, x) = E(f(x + Nu)) and t ≥ s. We recall the definition of the
infinitesimal generator:

L(f)(x) = lim
t→0

1
t
(E(f(x + Nt)) − f(x)) .

Hence, from E(f(x + Nt)) =
∑∞

n=0 f(x + n)P(Nt = n), we obtain

1
t
(E(f(x + Nt)) − f(x)) = e−λt

∞∑
n=0

f(n + x) − f(x)
t

(λt)n

n!
.

From

e−λt
∑
n≥2

(λt)n

n!
≤ λ2t2

2

the limit of 1
t (E(f(x + Nt)) − f(x)) when t goes to 0 is equal to the limit of

e−λt λt
t (f(x + 1) − f(x)), that is to λ(f(x + 1) − f(x)). �

Therefore, for any bounded Borel function f , the process

Cf
t = f(Nt) − f(0) −

∫ t

0

L(f)(Ns)ds

is a martingale (see Proposition 1.1.14.2). Using that

f(Nt) − f(0) =
∫ t

0

(f(Ns− + 1) − f(Ns−)) dNs , (8.2.5)

the martingale (Cf
t , t ≥ 0) can be written as a stochastic integral with respect

to the compensated martingale (Mt = Nt − λt, t ≥ 0) as

Cf
t =

∫ t

0

[f(Ns− + 1) − f(Ns−)]dMs .
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Comment 8.2.3.2 Processes with independent and stationary increments
are called Lévy processes, the reader may refer to � Chapter 11 for a more
extended study.

Exercise 8.2.3.3 Extend formula (8.2.5) to functions f defined on R
+ × N

that are C1 with respect to the first variable, and prove that if β is a constant
with β > −1 and Lt = exp(log(1 + β)Nt − λβt), then dLt = Lt−βdMt.

More generally, let Lt = (1 + a)Nte−λat for a ∈ R. Prove that L satisfies
dLt = Lt−adMt, i.e.,

Lt = 1 +
∫ t

0

Ls− adMs = 1 + a

∫ t

0

Ls− dNs − λa

∫ t

0

Ls− ds .

Note that, for a < −1, Lt takes values in R. The process L is the Doléans-Dade
exponential of the martingale aM . �

Exercise 8.2.3.4 Let T > 0 be fixed and let ϕ : [0, T ] → R be a bounded
Borel function and N a Poisson process. Prove that there exist a predictable
process h and a constant c such that

exp

(∫ T

0

ϕ(s)dNs

)
= c +

∫ T

0

hsdNs .

Hint: Set Zt =
∫ t

0
ϕ(s)dNs. Then,

deZt =
(
eZt−+ϕ(t) − eZt−

)
dNt .

The reader may be interested to compare this simple result with the
predictable representation theorem in Subsection 8.3.5. �

8.2.4 Change of Probability Measure: An Example

If N is a Poisson process with constant intensity λ, then, from Exercises 8.2.2.2
and 8.2.3.3, for β > −1, the process L defined by

Lt = (1 + β)Nte−λβt

is a strictly positive martingale with expectation equal to 1. Let Q be the
probability defined via Q|Ft = LtP|Ft . From

EQ(xNt) = EP(Ltx
Nt) = e−λβt

EP([(1 + β)x]Nt) = exp((1 + β)λt(x− 1))

we deduce that the r.v. Nt follows the Poisson law with parameter (1 + β)λt
under Q. Let t1 < · · · < ti < ti+1 < · · · < tn and let (xi, i ≤ n) be a sequence
of positive real numbers. The equalities
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EQ

(
n∏

i=1

x
Nti+1−Nti

i

)
= EP

(
e−λβt

n∏
i=1

((1 + β)xi)Nti+1−Nti

)

= e−λβt
n∏

i=1

e−λ(ti+1−ti) eλ(ti+1−ti)(1+β)xi

=
n∏

i=1

e(1+β)λ(ti+1−ti)(xi−1)

establish that, under Q, Nti+1 − Nti

law= Nti+1−ti is a Poisson r.v. with
parameter (1 + β)λ(ti+1 − ti) and that N has independent increments.
Therefore, the process N is a Q-Poisson process with intensity equal to
(1 + β)λ. Let us state this result as a proposition:

Proposition 8.2.4.1 Let Πλ be the probability on the canonical space which
makes the coordinate process a Poisson process with intensity λ. Then, the
following absolute continuity relationship holds:

Π(1+β)λ|Ft =
(
(1 + β)Nte−λβt

)
Πλ|Ft .

Comment 8.2.4.2 One should note the analogy between the change of
intensity of Poisson processes and the change of drift of a BM under a change
of probability. However, let us point out a major difference. If Q is equivalent
to P, we know that if B is a P-BM and B̂ is the martingale part of B
under Q, then B2

t − t is a P-martingale and B̂2
t − t is a Q-martingale (in

other words the brackets are the same, i.e., 〈B〉 = 〈B̂〉). If Q is equivalent
to P, and Mt = Nt − λt the compensated martingale associated with a
Poisson process, the process M2

t −λt is a P-martingale and the P-(predictable)
bracket of M is λt. We have proved above that the Q-(predictable) bracket of
M̂t = Nt−(1+β)λt is (1+β)λt. Hence, the predictable bracket is no longer the
same under a change of probability. See � Section 9.4 for a general Girsanov
theorem and � Subsection 11.3.1 for the case of Lévy processes.

8.2.5 Hitting Times

Let x > 0 and Tx = inf{t,Nt ≥ x}. Then, for n− 1 < x ≤ n, the hitting time
Tx = inf{t,Nt ≥ n} = inf{t,Nt = n} is equal to the time of the nth-jump of
N , and hence has a Gamma (n, λ) law.

Exercise 8.2.5.1 Let Xt = Nt + ct. Compute P(infs≤t Xs ≤ a). One should
distinguish the cases c > 0 and c < 0. �
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8.3 Inhomogeneous Poisson Processes

8.3.1 Definition

Instead of considering a constant intensity λ as before, now (λ(t), t ≥ 0) is an
R

+-valued Borel function satisfying
∫ t

0
λ(u)du < ∞,∀t and

∫∞
0

λ(u)du = ∞.
An inhomogeneous Poisson process N with intensity λ is a counting
process with independent increments which satisfies, for t > s,

P(Nt −Ns = n) = e−Λ(s,t) (Λ(s, t))n

n!
(8.3.1)

where Λ(s, t) = Λ(t) − Λ(s) =
∫ t

s

λ(u)du, and Λ(t) =
∫ t

0

λ(u)du.

If (Tn, n ≥ 1) is the sequence of successive jump times associated with N ,
the law of Tn is:

P(Tn ≤ t) =
1

(n− 1)!

∫ t

0

exp(−Λ(s)) (Λ(s))n−1 dΛ(s) .

It can easily be shown that an inhomogeneous Poisson process with determin-
istic intensity is an inhomogeneous Markov process. Moreover, since Nt has a
Poisson law with parameter Λ(t), one has E(Nt) = Λ(t),Var(Nt) = Λ(t). For
any real numbers u and α, for any t ≥ 0,

E(eiuNt) = exp((eiu − 1)Λ(t)),
E(eαNt) = exp((eα − 1)Λ(t)) .

An inhomogeneous Poisson process can be constructed as a deterministic
time changed Poisson process, i.e., if N̂ is a Poisson process with constant
intensity equal to 1, then Nt = N̂Λ(t) is an inhomogeneous Poisson process
with intensity Λ.

We emphasize that we shall use the term Poisson process only when dealing
with the standard Poisson process, i.e., when Λ(t) = λt.

8.3.2 Martingale Properties

The martingale properties of a standard Poisson process can be extended to
an inhomogeneous Poisson process:

Proposition 8.3.2.1 Let N be an inhomogeneous Poisson process with
deterministic intensity λ and FN its natural filtration. The process

Mt = Nt −
∫ t

0

λ(s)ds, t ≥ 0
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is an FN -martingale. The increasing function Λ(t) : =
∫ t

0
λ(s)ds is called the

(deterministic) compensator of N .

Let φ be an FN -predictable process such that E(
∫ t

0
|φs|λ(s)ds) < ∞ for ev-

ery t. Then, the process (
∫ t

0
φsdMs, t ≥ 0) is an FN -martingale. In particular,

E

(∫ t

0

φs dNs

)
= E

(∫ t

0

φsλ(s)ds
)

. (8.3.2)

As in the constant intensity case, for any bounded FN -predictable process H,
the following processes are martingales:

(i) (H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs −
∫ t

0

λ(s)Hsds ,

(ii) (H�M)2t −
∫ t

0

λ(s)H2
sds ,

(iii) exp
(∫ t

0

HsdNs −
∫ t

0

λ(s)(eHs − 1)ds
)

.

8.3.3 Watanabe’s Characterization of Inhomogeneous
Poisson Processes

The study of inhomogeneous Poisson processes can be generalized to the case
where the intensity is not absolutely continuous with respect to the Lebesgue
measure. In this case, Λ is an increasing, right-continuous, deterministic
function with value zero at time zero, and it satisfies Λ(∞) = ∞. If N is a
counting process with independent increments and if (8.3.1) holds, the process
(Nt −Λ(t), t ≥ 0) is a martingale and for any bounded predictable process φ,
the equality E(

∫ t

0
φs dNs) = E(

∫ t

0
φsdΛ(s)) is satisfied for any t. This result

admits a converse.

Proposition 8.3.3.1 (Watanabe’s Characterization.) Let N be a count-
ing process and Λ an increasing, continuous function with value zero at time
zero. Let us assume that the process (Mt : = Nt −Λ(t), t ≥ 0) is a martingale.
Then N is an inhomogeneous Poisson process with compensator Λ. It is a
Poisson process if Λ(t) = λt.

Proof: Let s < t and θ > 0.

eθNt − eθNs =
∑

s<u≤t

eθNu − eθNu−

=
∑

s<u≤t

eθNu−(eθ − 1)ΔNu = (eθ − 1)
∫

]s,t]

eθNu−dNu

= (eθ − 1)

(∫
]s,t]

eθNu−dMu +
∫

]s,t]

eθNudΛ(u)

)
.
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By relying on the fact that the first integral is a martingale,

E(eθNt − eθNs |Fs) = (eθ − 1)E

(∫
]s,t]

eθNudΛ(u)|Fs

)

= (eθ − 1)
∫

]s,t]

E (eθNu |Fs)dΛ(u) .

Let s be fixed and define φ(t) = E(eθNt |Fs). Then, for t > s,

φ(t) = φ(s) + (eθ − 1)
∫ t

s

φ(u)dΛ(u) .

Solving this equation leads to

φ(t) = eθNs exp
[
(eθ − 1)

∫ t

s

dΛ(u)
]

.

This shows that the process N has independent increments and that, for s < t,
the r.v. Nt −Ns has a Poisson law with parameter Λ(t) − Λ(s) . �

8.3.4 Stochastic Calculus

In this section, M is the compensated martingale of an inhomogeneous Poisson
process N with deterministic intensity (λ(s), s ≥ 0). From now on, we restrict
our attention to integrals of predictable processes, even if the stochastic
integral is defined in a more general setting.

Integration by Parts Formula

Let x and y be two predictable processes and define two processes X and Y
as

Xt = x +
∫ t

0

xsdNs, Yt = y +
∫ t

0

ysdNs .

The jumps of X (resp. of Y ) occur at the same times as the jumps of N and
ΔXs = xsΔNs, ΔYs = ysΔNs. The processes X and Y are of finite variation
and are constant between two jumps. Then, it is easy to check that

XtYt = xy +
∑
s≤t

Δ(XY )s = xy +
∑
s≤t

Xs−ΔYs +
∑
s≤t

Ys−ΔXs +
∑
s≤t

ΔXs ΔYs

We shall write this equality as

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t
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where (note that (ΔNt)2 = ΔNt)

[X,Y ]t : =
∑
s≤t

ΔXs ΔYs =
∑
s≤t

xsysΔNs =
∫ t

0

xsysdNs .

More generally (a general discussion is proposed in � Chapter 9 and 10), if

dXt = htdt + xtdNt, X0 = x

dYt = h̃tdt + ytdNt, Y0 = y ,

one still gets

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t

where

[X,Y ]t =
∫ t

0

xsysdNs .

In particular, if dXt = xtdMt and dYt = ytdMt, the process XtYt − [X,Y ]t is
a local martingale.

Itô’s Formula

For Poisson processes, Itô’s formula is obvious as we now explain. We shall
give an extension of this formula for more general processes in the following
Chapter 9.

Let N be a Poisson process and f a bounded Borel function. The trivial
equality

f(Nt) = f(N0) +
∑

0<s≤t

f(Ns) − f(Ns−) (8.3.3)

is the main step in obtaining Itô’s formula for a Poisson process.
We can write the right-hand side of (8.3.3) as a stochastic integral:

∑
0<s≤t

f(Ns) − f(Ns−) =
∑

0<s≤t

[f(Ns− + 1) − f(Ns−)]ΔNs

=
∫ t

0

[f(Ns− + 1) − f(Ns−)] dNs ,

hence, the canonical decomposition of the semi-martingale f(N) as the sum
of a martingale and an absolutely continuous adapted process is

f(Nt) = f(N0)+
∫ t

0

[f(Ns− +1)−f(Ns−)]dMs+
∫ t

0

[f(Ns− +1)−f(Ns−)]λds .

It is straightforward to generalize this result. Let
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Xt = x +
∫ t

0

xsdNs = x +
∑
Tn≤t

xTn ,

with x a predictable process. The process (Xt, t ≥ 0) has at time Tn, a jump
of size (ΔX)Tn = xTn , and is constant between two consecutive jumps. The
obvious identity

F (Xt) = F (X0) +
∑
s≤t

F (Xs) − F (Xs−) ,

holds for any bounded function F . The number of jumps before t is a.s. finite,
and the sum is well defined. This formula can be written in an equivalent
form:

F (Xt) − F (X0) =
∑
s≤t

(F (Xs) − F (Xs−))ΔNs

=
∫ t

0

(F (Xs) − F (Xs−)) dNs =
∫ t

0

(F (Xs− + xs) − F (Xs−)) dNs

where the integral on the right-hand side is a Stieltjes integral. More generally
again, we have the following result

Proposition 8.3.4.1 Let h be an adapted process, x a predictable process and

dXt = htdt + xtdMt = (ht − xtλ(t))dt + xtdNt

where N is an inhomogeneous Poisson process. Let F ∈ C1,1(R+ × R). Then

F (t,Xt) =
∫ t

0

[F (s,Xs− + xs) − F (s,Xs−)]dMs (8.3.4)

+
∫ t

0

(∂tF (s,Xs) + ∂xF (s,Xs)hs) ds

+
∫ t

0

(F (s,Xs− + xs) − F (s,Xs−) − ∂xF (s,Xs−)xs)λ(s)ds .

Proof: Indeed, between two jumps of the process N , dXt = (ht − λ(t)xt)dt,
and for Tn < s < t < Tn+1,

F (t,Xt) = F (s,Xs) +
∫ t

s

∂tF (u,Xu)du +
∫ t

s

∂xF (u,Xu)(hu − xuλ(u))du .

At jump times Tn, one has F (Tn, XTn) = F (Tn, XTn−) + ΔF (·, X)Tn . Hence,

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs)(hs − xsλ(s)) ds

+
∑
s≤t

(F (s,Xs) − F (s,Xs−)) .
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This formula can be written as

F (t,Xt) − F (0, X0) =
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs)(hs − xsλ(s))ds

+
∫ t

0

[F (s,Xs) − F (s,Xs−)]dNs

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)xs]dNs

=
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs− + xs) − F (s,Xs−) − ∂xF (s,Xs−)xs]dNs .

One can also write

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

∂xF (s,Xs−)dXs

+
∑
s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)xsΔNs] .

which is easy to memorize. The first three terms on the right-hand side are
obtained from “ordinary” calculus, the fourth term takes into account the
jumps of the left-hand side and of the stochastic integral on the right-hand
side.

Remarks 8.3.4.2 (a) In the “ds” integrals, we can write Xs− or Xs, since,
for any bounded Borel function f ,

∫ t

0

f(Xs−)ds =
∫ t

0

f(Xs)ds .

Note that since dNs a.s. Ns = Ns− + 1, one has
∫ t

0

f(Ns−)dNs =
∫ t

0

f(Ns − 1)dNs .

However, we systematically use the form
∫ t

0
f(Ns−)dNs, even though the

integral
∫ t

0
f(Ns − 1)dNs has a meaning. The reason is that
∫ t

0

f(Ns−)dMs =
∫ t

0

f(Ns−)dNs − λ

∫ t

0

f(Ns)ds

is a martingale, whereas
∫ t

0
f(Ns − 1)dMs is not.
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(b) We have named Itô’s formula a formula allowing us to write the process
F (t,Xt) as a sum of stochastic integrals, as in equation (8.3.5). In fact, the aim
of Itô’s formula is to give, under some suitable conditions on F , the canonical
decomposition of the semi-martingale F (t,Xt).

Exercise 8.3.4.3 Let N be a Poisson process with intensity λ. Prove that,
if St = S0e

μt+σNt , then

dSt = St−(μdt + (eσ − 1)dNt)

and that S is a martingale iff μ = −λ(eσ − 1). Prove that, for a + 1 > 0,
the process (Lt = exp(Nt ln(1 + a) − λat), t ≥ 0) is a martingale and that, if
Q|Ft = LtP|Ft , the process N is a Q-Poisson process with intensity λ(1 + a).
Note the progression made from Exercise 8.2.3.3. �

Exercise 8.3.4.4 The aim of this exercise is to prove that the linear equation
dZt = Zt−μdMt, Z0 = 1 with μ > −1 has a unique solution. Assume that
Z1 and Z2 are two solutions. W.l.g., we can assume that Z2 is strictly
positive. Prove that Z1/Z2 satisfies an ordinary differential equation with
unique solution equal to 1. �

8.3.5 Predictable Representation Property

Proposition 8.3.5.1 Let FN be the natural filtration of the standard Poisson
process N and let H ∈ L2(FN

∞) be a square integrable random variable. Then,
there exists a unique FN -predictable process (ht, t ≥ 0) such that

H = E(H) +
∫ ∞

0

hsdMs

and E(
∫∞
0

h2
sds) < ∞.

Proof: The family of exponential random variables

Y = exp
(∫ ∞

0

ϕ(s)dNs − λ

∫ ∞

0

(eϕ(s) − 1)ds
)

,

where ϕ is a bounded deterministic function with compact support, is total
in L2(FN

∞). Any Y in this family can be written as a stochastic integral with
respect to dM . Indeed, from Exercise 8.2.2.2 the process

Yt = exp
(∫ t

0

ϕ(s)dNs − λ

∫ t

0

(eϕ(s) − 1)ds
)

= E(Y |FN
t )

is a martingale, and is the solution of
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dYt = Yt−(eϕ(t) − 1)dMt ,

so that,

Y = 1 +
∫ ∞

0

Ys−(eϕ(s) − 1)dMs .

Hence, with the notation of the statement, hs = Ys−(eϕ(s) − 1). For more
general random variables, the result follows by passing to the limit, owing to
the isometry formula

E

(∫ ∞

0

hsdMs

)2

= λE

(∫ ∞

0

h2
sds

)
.

�

Comment 8.3.5.2 This result goes back to Brémaud and Jacod [125], Chou
and Meyer [180], Davis [219].

8.3.6 Multidimensional Poisson Processes

Definition 8.3.6.1 A process (N1, . . . , Nd) is a d-dimensional F-Poisson
process if each component N j is a right-continuous adapted process such that
N j

0 = 0 and if there exist positive constants λj such that for every t ≥ s ≥ 0
and every integer nj

P

⎡
⎣ d⋂

j=1

(N j
t −N j

s = nj)|Fs

⎤
⎦ =

d∏
j=1

e−λj(t−s) (λj(t− s))nj

nj !
.

Note that the processes (N j , j = 1, . . . , d) are independent; more generally, for
any s, the processes

(
(N j

s+t −N j
s , j = 1, . . . , d), t ≥ 0

)
are independent and

also independent of Fs.

Proposition 8.3.6.2 An F-adapted process N is a d-dimensional F-Poisson
process if and only if:

(i) each N j is an F-Poisson process,
(ii) no two N j’s jump simultaneously P a.s..

Proof: We give the proof for d = 2.
(a) We assume (i) and (ii). For any pair (f, g) of bounded Borel functions,

the process

Xt = exp
(∫ t

0

f(s)dN1
s +

∫ t

0

g(s)dN2
s

)

satisfies

Xt = 1 +
∑

0<s≤t

ΔXs = 1 +
∑

0<s≤t

Xs− [exp(f(s)ΔN1
s + g(s)ΔN2

s ) − 1] .
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From condition (ii)

Xt = 1 +
∑

0<s≤t

Xs−

[
(ef(s) − 1)ΔN1

s + (eg(s) − 1)ΔN2
s

]
,

hence, from the martingale property of the compensated process N i
t − λit:

E(Xt) = 1 + E

[∫ t

0

Xs−

(
(ef(s) − 1)λ1 + (eg(s) − 1)λ2

)
ds

]

= 1 +
∫ t

0

E[Xs]
(
(ef(s) − 1)λ1 + (eg(s) − 1)λ2

)
ds .

Therefore, solving this equation, we find

E(Xt) = exp
(∫ t

0

(ef(s) − 1)λ1ds

)
exp

(∫ t

0

(eg(s) − 1)λ2ds

)

= E

[
exp

(∫ t

0

f(s)dN1
s

)]
E

[
exp

(∫ t

0

g(s)dN2
s

)]
.

The result follows.
(b) Conversely, if N is a d-dimensional Poisson process, then (i) and (ii)

hold. �

Comment 8.3.6.3 Another proof follows from the predictable representa-
tion theorem valid for M1 and M2 individually. Let Hi ∈ L2(F i

∞) for i = 1, 2.
From Hi = E(Hi) +

∫∞
0

hi
sdM

i
s and the integration by parts formula, we

deduce that E(H1H2) = E(H1)E(H2) if and only if [M i,M j ] = 0.

In order to construct correlated Poisson processes, one can proceed as
follows. Let (N i, i = 1, 2, 3) be independent Poisson processes. Then the
processes N̂ = N1 + N2 and Ñ = N1 + N3 are correlated Poisson processes.

Exercise 8.3.6.4 Let (N i, i = 1, 2) be two independent Poisson processes.
Prove that N = N1 + N2 is a Poisson process. Compute the compensator of
N . Let τ i = inf{t : N i

t = 1} and τ = inf{t : Nt = 1}. Compute P(τ = τ1). �

8.4 Stochastic Intensity Processes

8.4.1 Doubly Stochastic Poisson Processes

Let F be a given filtration, where F0 is not the trivial σ-algebra; let N be a
counting process which is F-adapted and let λ be a positive process such that
for any t, λt is F0-measurable and

∫ t

0
λsds < ∞,P a.s.. Let Λ(s, t) =

∫ t

s
λudu.

If
E(eiα(Nt−Ns)|Fs) = exp

(
(eiα − 1)Λ(s, t)

)
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for any t > s and any α, then N is called a doubly stochastic Poisson
process. In that case,

P(Nt −Ns = k|Fs) = exp(−Λ(s, t))
(Λ(s, t))n

n!

and the process (Nt −
∫ t

0
λudu, t ≥ 0) is an F-martingale.

Comment 8.4.1.1 Doubly stochastic intensity processes are used in finance
to model the intensity of default process (see Schönbucher [765]).

8.4.2 Inhomogeneous Poisson Processes with Stochastic Intensity

Definition 8.4.2.1 Let F be a given filtration, N an F-adapted counting
process, and (λt, t ≥ 0) a positive F-progressively measurable process such
that for every t, Λt : =

∫ t

0
λsds < ∞, P a.s..

The process N is an inhomogeneous Poisson process with stochastic
intensity λ if for every positive F-predictable process (φt, t ≥ 0) the following
equality is satisfied:

E

(∫ ∞

0

φs dNs

)
= E

(∫ ∞

0

φsλsds

)
.

Therefore (Mt = Nt−Λt, t ≥ 0) is an F-local martingale and an F-martingale
if for every t, E (Λt) < ∞.

Proposition 8.4.2.2 Let N be an inhomogeneous Poisson process with
stochastic intensity λ. Then, for any F-predictable process φ such that ∀t,
E(
∫ t

0
|φs|λsds) < ∞, the process (

∫ t

0
φsdMs, t ≥ 0) is an F-martingale.

The intensity depends in an important manner of the reference filtration.
For example, the FN -intensity of N is E(λs|FN

s ), i.e.,

Nt −
∫ t

0

E(λs|FN
s )ds

is an FN -martingale. This is a particular case of the general filtering formula
given in Proposition 5.10.3.1.

An inhomogeneous Poisson process N with stochastic intensity λt can be
viewed as a time change of a standard Poisson process Ñ , i.e., Nt = ÑΛt .

8.4.3 Itô’s Formula

The formula obtained in Subsection 8.3.4 can be generalized to inhomogeneous
Poisson processes with stochastic intensities.
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8.4.4 Exponential Martingales

We now extend Exercise 8.2.3.3 to more general Doléans-Dade exponentials:

Proposition 8.4.4.1 Let N be an inhomogeneous Poisson process with sto-
chastic intensity (λt, t ≥ 0), and (μt, t ≥ 0) a predictable process such that,
for any t,

∫ t

0
|μs|λs ds < ∞. Let (Tn, n ≥ 1) be the sequence of jump times of

N . Then, the process L, the solution of

dLt = Lt−μtdMt, L0 = 1 , (8.4.1)

is a local martingale defined by

Lt =

{
exp(−

∫ t

0
μsλs ds) if t < T1∏

n,Tn≤t(1 + μTn) exp(−
∫ t

0
μsλs ds) if t ≥ T1 .

(8.4.2)

Moreover, if μ is such that μs > −1 a.s.∀s, then

Lt = exp
[
−
∫ t

0

μsλsds +
∫ t

0

ln(1 + μs) dNs

]
.

Later, we shall simply write the equalities (8.4.2) as

Lt =
∏

n,Tn≤t

(1 + μTn) exp
(
−
∫ t

0

μsλs ds

)

with the understanding that
∏

∅ = 1.

Proof: From general results on SDE, the linear equation (8.4.1) admits a
unique solution (see also Exercise 8.3.4.4). Between two consecutive jumps,
the solution of the equation (8.4.1) satisfies

dLt = −Lt−μtλtdt

therefore, for t ∈ [Tn, Tn+1[, we obtain

Lt = LTn exp
(
−
∫ t

Tn

μsλsds

)
.

The jumps of L occur at the same times as the jumps of N and the size of
the jumps is ΔLt = Lt−μtΔNt, therefore LTn = LTn−(1+μTn). By backward
recurrence on n, we get (8.4.2). �

The local martingale L is denoted by E(μ�M) and called the Doléans-
Dade exponential of the process μ�M . The process L can also be written

Lt =
∏

0<s≤t

(1 + μsΔNs ) exp
[
−
∫ t

0

μs λs ds

]
. (8.4.3)
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Moreover, if for every t, μt > −1, then L is a positive local martingale,
therefore it is a supermartingale and

Lt = exp

⎡
⎣−
∫ t

0

μsλsds +
∑
s≤t

ln(1 + μs)ΔNs

⎤
⎦

= exp
[
−
∫ t

0

μsλsds +
∫ t

0

ln(1 + μs) dNs

]

= exp
[∫ t

0

[ln(1 + μs) − μs]λs ds +
∫ t

0

ln(1 + μs) dMs

]
.

The process L is a martingale if ∀t, E(Lt) = 1. This is the case if μ is bounded.
We shall see a more general criterion in � Subsection 9.4.3.

If μ is not greater than −1, then the process L defined in (8.4.2) is still a
local martingale which satisfies dLt = Lt−μtdMt. However it may be negative.

Example 8.4.4.2 A useful example is the case where μ ≡ −1. In this case,
we obtain that 1{t<T1} exp

(∫ t

0
λsds

)
is a local martingale. Note that we have

obtained similar results in Chapter 7 for processes with a single jump.

8.4.5 Change of Probability Measure

We establish now a particular case of the general Girsanov theorem (see �
Section 9.4 for a general case).

Proposition 8.4.5.1 Let μ be a predictable process such that μ > −1 and∫ t

0
λs|μs|ds < ∞ a.s.. Let L be the positive exponential local martingale

solution of dLt = Lt−μtdMt. Assume that L is a martingale and let Q be the
probability measure (locally equivalent to P) defined on Ft by Q|Ft = Lt P|Ft .
Then, under Q, the process Mμ defined as

Mμ
t : = Mt −

∫ t

0

μsλsds = Nt −
∫ t

0

(μs + 1)λs ds , t ≥ 0

is a local martingale.

Proof: From the integration by parts formula, we get

d(MμL)t = Mμ
t−dLt + Lt−dMμ

t + d[L,Mμ]t
= Mμ

t−dLt + Lt−dMμ
t + Lt−μtdNt

= Mμ
t−dLt + Lt−dMt + Lt−μtdMt = (Mμ

t−μt + 1 + μt)Lt−dMt ,

hence, the process MμL is a P-local martingale and Mμ is a Q-local
martingale. If μ and λ are deterministic, the process N is a Q-inhomogeneous
Poisson process with deterministic intensity (μ(t) + 1)λ(t). �
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Comment 8.4.5.2 We have seen that a Poisson process with stochastic
intensity can be viewed as a time-changed of a standard Poisson process. Here,
we interpret a Poisson process with stochastic intensity as a Poisson process
with constant intensity under a change of probability. Indeed, a Poisson
process with intensity 1 under P is a Poisson process with stochastic intensity
(λt, t ≥ 0) under Q

λ, where Q
λ|Ft = Lλ

t P|Ft and where dLλ
t = Lλ

t−(λt−1)dMt.

8.4.6 An Elementary Model of Prices Involving Jumps

Suppose that S is a stochastic process with dynamics given by

dSt = St−(b(t)dt + φ(t)dMt), (8.4.4)

where M is the compensated martingale associated with an inhomogeneous
Poisson process N with strictly positive deterministic intensity λ and where
b, φ are deterministic continuous functions. We assume that φ > −1 so that
the process S remains strictly positive. The solution of (8.4.4) is

St = S0 exp
[
−
∫ t

0

φ(s)λ(s)ds +
∫ t

0

b(s)ds
]∏

s≤t

(1 + φ(s)ΔNs)

= S0 exp
[∫ t

0

b(s)ds
]

exp
[∫ t

0

ln(1 + φ(s))dNs −
∫ t

0

φ(s)λ(s)ds
]

.

Hence St exp
(
−
∫ t

0
b(s)ds

)
is a strictly positive local martingale.

We assume now that S is the dynamics of the price of a financial asset
under the historical probability measure. We denote by r the deterministic
interest rate and by Rt = exp(−

∫ t

0
r(s)ds) the discount factor. It is important

to give a necessary and sufficient condition under which the financial market
with the asset S and the riskless asset is complete and arbitrage free when
φ does not vanish. Therefore, our aim is to give conditions such that there
exists a probability measure Q, equivalent to P, under which the discounted
process SR is a local martingale.

Any FM -martingale admits a representation as a stochastic integral with
respect to M . Hence, any strictly positive FM -martingale L can be written as
dLt = Lt−μtdMt where μ is an FM -predictable process such that μ > −1 and,
if L0 = 1, the martingale L can be used as a Radon-Nikodým density. We are
looking for conditions on μ such that the process RS is a Q-local martingale
where dQ|Ft = LtdP|Ft ; or equivalently, the process (Yt = RtStLt, t ≥ 0) is a
P-local martingale. Integration by parts yields

dYt
mart= Yt− ((b(t) − r(t))dt + φ(t)μtd[M ]t)
mart= Yt− (b(t) − r(t) + φ(t)μtλ(t)) dt .

Hence, Y is a P-local martingale if and only if μt = −b(t) − r(t)
φ(t)λ(t)

.
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Assume that μ > −1 and define Q|Ft = Lt P|Ft . The process N is an
inhomogeneous Q-Poisson process with intensity ((μ(s) + 1)λ(s), s ≥ 0) and

dSt = St−(r(t)dt + φ(t)dMμ
t )

where (Mμ(t) = Nt −
∫ t

0
(μ(s) + 1)λ(s) ds , t ≥ 0) is the compensated Q-

martingale. Hence, the discounted price SR is a Q-local martingale. In this
setting, Q is the unique equivalent martingale measure.

The condition μ > −1 is needed in order to obtain at least one e.m.m.
and, from the fundamental theorem of asset pricing, to deduce the absence of
arbitrage property.

If μ fails to be greater than −1, there does not exist an e.m.m. and there
are arbitrages in the market. We now make explicit an arbitrage opportunity
in the particular case when the coefficients are constant with φ > 0 and
b− r

φλ
> 1, hence μ < −1. The inequality

St = S0 exp[(b− φλ)t]
∏
s≤t

(1 + φΔNs) > S0e
rt
∏
s≤t

(1 + φΔNs) > S0e
rt

proves that an agent who borrows S0 and invests in a long position in the
underlying has an arbitrage opportunity, since his terminal wealth at time T
ST −S0e

rT is strictly positive with probability one. Note that, in this example,
the process (Ste

−rt, t ≥ 0) is increasing.

Comment 8.4.6.1 We have required that φ and b are continuous functions
in order to avoid integrability conditions. Obviously, we can generalize, to
some extent, to the case of Borel functions. Note that, since we have assumed
that φ(t) does not vanish, there is the equality of σ-fields

σ(Ss, s ≤ t) = σ(Ns, s ≤ t) = σ(Ms, s ≤ t) .

8.5 Poisson Bridges

Let N be a Poisson process with constant intensity λ, FN
t = σ(Ns, s ≤ t) its

natural filtration and T > 0 a fixed time. Let Gt = σ(Ns, s ≤ t;NT ) be the
natural filtration of N enlarged with the terminal value NT of the process N .

8.5.1 Definition of the Poisson Bridge

Proposition 8.5.1.1 The process

ηt = Nt −
∫ t

0

NT −Ns

T − s
ds, t ≤ T

is a G-martingale with predictable bracket

Λt =
∫ t

0

NT −Ns

T − s
ds .
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Proof: For 0 < s < t < T ,

E(Nt −Ns|Gs) = E(Nt −Ns|NT −Ns) =
t− s

T − s
(NT −Ns)

where the last equality follows from the fact that, if X and Y are independent
with Poisson laws with parameters μ and ν respectively, then

P(X = k|X + Y = n) =
n!

k!(n− k)!
αk(1 − α)n−k

where α =
μ

μ + ν
. Hence,

E

(∫ t

s

du
NT −Nu

T − u
|Gs

)
=
∫ t

s

du

T − u
(NT −Ns − E(Nu −Ns|Gs))

=
∫ t

s

du

T − u

(
NT −Ns −

u− s

T − s
(NT −Ns)

)

=
∫ t

s

du

T − s
(NT −Ns) =

t− s

T − s
(NT −Ns) .

Therefore,

E

(
Nt −Ns −

∫ t

s

NT −Nu

T − u
du|Gs

)
=

t− s

T − s
(NT −Ns)−

t− s

T − s
(NT −Ns) = 0

and the result follows.
Therefore, η is a compensated G-Poisson process, time-changed by∫ t

0
NT −Ns

T−s ds, i.e., ηt = M̃(
∫ t

0
NT −Ns

T−s ds) where (M̃(t), t ≥ 0) is a compensated
Poisson process. �

Comment 8.5.1.2 Poisson bridges are studied in Jeulin and Yor [496]. This
kind of enlargement of filtration is used for modelling insider trading in
Elliott and Jeanblanc [314], Grorud and Pontier [410] and Kohatsu-Higa and
Øksendal [534].

8.5.2 Harness Property

The previous result may be extended in terms of the harness property.

Definition 8.5.2.1 A process X fulfills the harness property if

E

(
Xt −Xs

t− s

∣∣∣Fs0], [T

)
=

XT −Xs0

T − s0

for s0 ≤ s < t ≤ T where Fs0], [T = σ(Xu, u ≤ s0, u ≥ T ).
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A process with the harness property satisfies

E

(
Xt

∣∣∣Fs], [T

)
=

T − t

T − s
Xs +

t− s

T − s
XT ,

and conversely.

Proposition 8.5.2.2 If X satisfies the harness property, then, for any
fixed T ,

MT
t = Xt −

∫ t

0

du
XT −Xu

T − u
, t < T

is an Ft], [T -martingale and conversely.

Proof: If X satisfies the harness property, it is easy to check that MT is an
Ft], [T -martingale. Conversely, assume that MT is an Ft], [T -martingale. Let
us prove that the harness property holds, i.e.,

E

(
Xt −Xs

t− s

∣∣Fs], [T

)
=

XT −Xs

T − s
.

From the hypothesis

E(Xt −Xs

∣∣Fs], [T ) =
∫ t

s

duE

(
XT −Xu

T − u

∣∣Fs], [T

)

= (XT −Xs)
∫ t

s

du

T − u
−
∫ t

s

du

T − u
E(Xu −Xs

∣∣Fs], [T ) .

Therefore, for fixed s, T , the process ϕ(u) = E(Xu − Xs|Fs], [T ) defined for
u ≥ s, satisfies

ϕ(t) = (XT −Xs)
∫ t

s

du

T − u
−
∫ t

s

du

T − u
ϕ(u) .

It follows that ϕ is a solution of the ODE

ϕ′(t) =
XT −Xs

T − t
− ϕ(t)

1
T − t

with initial condition ϕ(s) = 0. This ODE has a unique solution given by
ϕ(t) = (t− s)XT −Xs

T−s . �

Comment 8.5.2.3 See Exercise 6.19 in Chaumont and Yor [161] for other
properties. See also Jacod and Protter [470] and Exercise 12.3 in Yor [868]. We
shall prove in � Subsection 11.2.7 that any integrable Lévy process enjoys
the harness property (see also Mansuy and Yor [621]). This property is used
in Corcuera et al. [194] for studying insider trading.



8.6 Compound Poisson Processes 483

8.6 Compound Poisson Processes

8.6.1 Definition and Properties

Definition 8.6.1.1 Let λ > 0 and let F be a cumulative distribution function
on R. A (λ, F )-compound Poisson process is a process X = (Xt, t ≥ 0)
of the form

Xt =
Nt∑

k=1

Yk, X0 = 0

where N is a Poisson process with intensity λ and the (Yk, k ≥ 1) are i.i.d.
random variables with law F (y) = P(Y1 ≤ y), independent of N (we use the
convention that

∑0
k=1 Yk = 0). We assume that P(Y1 = 0) = 0.

The process X differs from a Poisson process since the sizes of the jumps
are random variables. We denote by F (dy) the measure associated with F and
by F ∗n its n-th convolution, i.e.,

F ∗n(y) = P

(
n∑

k=1

Yk ≤ y

)
.

We use the convention F ∗0(y) = P(0 ≤ y) = 1[0,∞[(y).

Proposition 8.6.1.2 A (λ, F )-compound Poisson process has stationary and
independent increments (i.e., it is a Lévy process � Chapter 11); the
cumulative distribution function of the r.v. Xt is

P(Xt ≤ x) = e−λt
∞∑

n=0

(λt)n

n!
F ∗n(x) .

Proof: Since the (Yk) are i.i.d., one gets

E

(
exp(iλ

n∑
k=1

Yk + iμ

m∑
k=n+1

Yk)

)
= (E[exp(iλY1)] )

n (E[exp(iμY1)] )
m−n

.

Then, setting ψ(λ, n) = (E[exp(iλY1)] )
n, the independence and stationarity

of the increments (Xt −Xs) and Xs with t > s follows from

E( exp(iλXs + iμ(Xt −Xs)) ) = E(ψ(λ,Ns)ψ(μ,Nt −Ns) )
= E(ψ(λ,Ns) ) E(ψ(μ,Nt−s) ) .

The independence of a finite sequence of increments follows by induction.
From the independence of N and the random variables (Yk, k ≥ 1) and

using the Poisson law of Nt, we get
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P(Xt ≤ x) =
∞∑

n=0

P

(
Nt = n,

n∑
k=1

Yk ≤ x

)

=
∞∑

n=0

P(Nt = n)P

(
n∑

k=1

Yk ≤ x

)
= e−λt

∞∑
n=0

(λt)n

n!
F ∗n(x) .

�

�

�

T1 T2 T3 T4 T5

�
Y1

Y1

Y1 + Y2 �
Y2

�

Y3

•

•

Fig. 8.2 Compound Poisson process

8.6.2 Integration Formula

If Zt = Z0 + bt+Xt with X a (λ, F )-compound Poisson process, and if f is a
C1 function, the following obvious formula gives a representation of f(Zt) as
a sum of integrals:

f(Zt) = f(Z0) +
∫ t

0

bf ′(Zs)ds +
∑
s≤t

f(Zs) − f(Zs−)

= f(Z0) +
∫ t

0

bf ′(Zs)ds +
∑
s≤t

(f(Zs) − f(Zs−))ΔNs

= f(Z0) +
∫ t

0

bf ′(Zs)ds +
∫ t

0

(f(Zs) − f(Zs−)) dNs .
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It is possible to write this formula as

f(Zt) = f(Z0)+
∫ t

0

(bf ′(Zs)+(f(Zs)−f(Zs−)λ)ds+
∫ t

0

(f(Zs) − f(Zs−)) dMs

however this equality does not give immediately the canonical decomposition
of the semi-martingale f(Zt). Indeed, the reader can notice that the process∫ t

0
(f(Zs) − f(Zs−)) dMs is not a martingale. See � Subsection 8.6.4 for the

decomposition of this semi-martingale.

Exercise 8.6.2.1 Prove that the infinitesimal generator of Z is given, for C1

functions f such that f and f ′ are bounded, by

Lf(x) = bf ′(x) + λ

∫ ∞

−∞
(f(x + y) − f(x))F (dy) .

�

8.6.3 Martingales

Proposition 8.6.3.1 Let X be a (λ, F )-compound Poisson process such that
E(|Y1|) < ∞. Then, the process (Zt = Xt − tλE(Y1), t ≥ 0) is a martingale
and in particular, E(Xt) = λtE(Y1) = λt

∫∞
−∞ yF (dy).

If E(Y 2
1 ) < ∞, the process (Z2

t − tλE(Y 2
1 ), t ≥ 0) is a martingale and

Var (Xt) = λtE(Y 2
1 ).

Proof: The martingale property of (Xt − E(Xt), t ≥ 0) follows from the
independence and stationarity of the increments of the process X. We leave
the details to the reader. It remains to compute the expectation of the r.v. Xt

as follows:

E(Xt) =
∞∑

n=1

E

(
n∑

k=1

Yk1{Nt=n}

)
=

∞∑
n=1

nE(Y1)P(Nt = n)

= E(Y1)
∞∑

n=1

nP(Nt = n) = λtE(Y1) .

The proof of the second property can be done by the same method; however,
it is more convenient to use the Laplace transform of X (See below,
Proposition 8.6.3.4). �

Proposition 8.6.3.2 Let Xt =
∑Nt

i=1 Yi be a (λ, F )-compound Poisson
process, where the random variables Yi are square integrable.

Then Z2
t −

∑Nt

i=1 Y 2
i is a martingale.
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Proof: It suffices to write

Z2
t −

Nt∑
i=1

Y 2
i = Z2

t − λtE(Y 2
1 ) −

(
Nt∑
i=1

Y 2
i − λtE(Y 2

1 )

)
.

We have proved that Z2
t − λtE(Y 2

1 ) is a martingale. Now, since
∑Nt

i=1 Y 2
i is a

compound Poisson process,
∑Nt

i=1 Y 2
i − λtE(Y 2

1 ) is a martingale. �

The process At =
∑Nt

i=1 Y 2
i is an increasing process such that X2

t − At is
a martingale. Hence, as for a Poisson process, we have two (in fact an infinity
of) increasing processes Ct such that X2

t −Ct is a martingale. The particular
process Ct = tλE(Y 2

1 ) is predictable, whereas the process At =
∑Nt

i=1 Y 2
i

satisfies ΔAt = (ΔXt)2. The predictable process tλE(Y 2
1 ) is the predictable

quadratic variation and is denoted 〈X〉t, the process
∑Nt

i=1 Y 2
i is the optional

quadratic variation of X and is denoted [X]t.

Proposition 8.6.3.3 Let Xt =
∑Nt

k=1 Yk be a (λ, F )-compound Poisson
process.

(a) Let dSt = St−(μdt + dXt) (that is S is the Doléans-Dade exponential
martingale E(U) of the process Ut = μt + Xt). Then,

St = S0e
μt

Nt∏
k=1

(1 + Yk) .

In particular, if 1 + Y1 > 0,P.a.s., then

St = S0 exp

(
μt +

Nt∑
k=1

ln(1 + Yk)

)
= S0e

μt+X∗
t = S0e

U∗
t .

Here, X∗ is the (λ, F ∗)-compound Poisson process X∗
t =

∑Nt

k=1 Y ∗
k , where

Y ∗
k = ln(1 + Yk) (hence F ∗(y) = F (ey − 1)) and

U∗
t = Ut +

∑
s≤t

(ln(1 + ΔXs) −ΔXs) = Ut +
Nt∑

k=1

(ln(1 + Yk) − Yk) .

The process (Ste
−rt, t ≥ 0) is a local martingale if and only if μ+λE(Y1) = r.

(b)The process
St = x exp(bt + Xt) = xeVt (8.6.1)

is a solution of
dSt = St−dV ∗

t , S0 = x

(i.e., St = x E(V ∗)t) where
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V ∗
t = Vt +

∑
s≤t

(eΔXs − 1 −ΔXs) = bt +
∑
s≤t

(eΔXs − 1) .

The process S is a martingale if and only if

λ

∫ ∞

−∞
(1 − ey)F (dy) = b .

Proof: The solution of

dSt = St−(μdt + dXt), S0 = x

is

St = xE(U)t = xeμt
Nt∏

k=1

(1 + Yk) = xeμte
PNt

k=1 ln(1+Yk) = eμt+
PNt

k=1 Y ∗
k

where Y ∗
k = ln(1 + Yk). From

μt +
Nt∑

k=1

Y ∗
k = μt + Xt +

Nt∑
k=1

Y ∗
k −Xt = Ut +

∑
s≤t

(ln(1 + ΔXs) −ΔXs) ,

we obtain St = xeU∗
t . Then,

d(e−rtSt) = e−rtSt−((−r + μ + λE(Y1))dt + dXt − λE(Y1)dt)
= e−rtSt−((−r + μ + λE(Y1))dt + dZt) ,

where Zt = Xt − λE(Y1)t is a martingale. It follows that e−rtSt is a local
martingale if and only if −r + μ + λE(Y1) = 0.

The second assertion is the same as the first one, with a different choice
of parametrization. Let

St = xebt+Xt = xebt exp

(
Nt∑
1

Yk

)
= xebt

Nt∏
k=1

(1 + Y ∗
k )

where 1 + Y ∗
k = eYk . Hence, from part a), dSt = St−(bdt + dV ∗

t ) where
V ∗

t =
∑Nt

k=1 Y ∗
k . It remains to note that

bt + V ∗
t = Vt + V ∗

t −Xt = Vt +
∑
s≤t

(eΔXs − 1 −ΔXs) .

�

We now denote by ν the positive measure ν(dy) = λF (dy). Using this
notation, a (λ, F )-compound Poisson process will be called a ν-compound
Poisson process. This notation, which is not standard, will make the various
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formulae more concise and will be of constant use in � Chapter 11 when
dealing with Lévy ’s processes which are a generalization of compound Poisson
processes. Conversely, to any positive finite measure ν on R, we can associate
a cumulative distribution function by setting λ = ν(R) and F (dy) = ν(dy)/λ
and construct a ν-compound Poisson process.

Proposition 8.6.3.4 If X is a ν-compound Poisson process, let

J (ν) =
{
α :

∫ ∞

−∞
eαxν(dx) < ∞

}
.

The Laplace transform of the r.v. Xt is

E(eαXt) = exp
(
−t

∫ ∞

−∞
(1 − eαx)ν(dx)

)
forα ∈ J (ν).

The process

Z
(α)
t = exp

(
αXt + t

∫ ∞

−∞
(1 − eαx)ν(dx)

)

is a martingale.
The characteristic function of the r.v. Xt is

E(eiuXt) = exp
(
−t

∫ ∞

−∞
(1 − eiux)ν(dx)

)
.

Proof: From the independence between the random variables (Yk, k ≥ 1)
and the process N ,

E(eαXt) = E

(
exp

(
α

Nt∑
k=1

Yk

))
= E(Φ(Nt))

where Φ(n) = E

(
exp

(
α

n∑
k=1

Yk

))
= [ΨY (α)]n, with ΨY (α) = E (exp(αY1)).

Now, E(Φ(Nt)) =
∑

n[ΨY (α)]ne−λt λ
ntn

n!
= exp (−λt(1 − ΨY (α)). The martin-

gale property follows from the independence and stationarity of the increments
of X. �

Taking the derivative w.r.t. α of Z(α) and evaluating it at α = 0, we obtain
that the process Z of Proposition 8.6.3.1 is a martingale, and using the second
derivative of Z(α) evaluated at α = 0, one obtains that Z2

t − λtE(Y 2
1 ) is a

martingale.

Proposition 8.6.3.5 Let X be a ν-compound Poisson process, and f a
bounded Borel function. Then, the process
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exp

(
Nt∑

k=1

f(Yk) + t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)

is a martingale. In particular

E

(
exp

(
Nt∑

k=1

f(Yk)

))
= exp

(
−t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)
.

Proof: The proof is left as an exercise. �

For any bounded Borel function f , we denote by ν(f) =
∫∞
−∞ f(x)ν(dx)

the product λE(f(Y1)). Then, one has the following proposition:

Proposition 8.6.3.6 (i) Let X be a ν-compound Poisson process and f a
bounded Borel function. The process

Mf
t =

∑
s≤t

f(ΔXs)1{ΔXs �=0} − tν(f)

is a martingale.
(ii) Conversely, suppose that X is a pure jump process and that there exists

a finite positive measure σ such that
∑
s≤t

f(ΔXs)1{ΔXs �=0} − tσ(f)

is a martingale for any bounded Borel function f , then X is a σ-compound
Poisson process.

Proof: (i) From the definition of Mf ,

E(Mf
t ) =

∑
n

E(f(Yn))P(Tn < t) − tν(f) = E(f(Y1))
∑

n

P(Tn < t) − tν(f)

= E(f(Y1))E(Nt) − tν(f) = 0 .

The proof of the proposition is now standard and results from the computation
of conditional expectations which leads to, for s > 0

E(Mf
t+s −Mf

t |Ft) = E

⎛
⎝ ∑

t<u≤t+s

f(ΔXu)1{ΔXu �=0} − sν(f)|Ft

⎞
⎠ = 0 .

Another proof relies on the fact that the process

∑
s≤t

f(ΔXs)1{ΔXs �=0} =
Nt∑

k=1

f(Yk) =
Nt∑

k=1

Zk
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is a compound Poisson process, hence

Nt∑
k=1

f(Yk) − tλE(Z1) =
Nt∑

k=1

f(Yk) − tλE(f(Y1))

is a martingale.
(ii) For the converse, we write

eiuXt = 1 +
∑
s≤t

eiuXs−(eiuΔXs − 1)

= 1 +
∫ t

0

eiuXs−dMf
s + σ(f)

∫ t

0

eiuXsds

where f(x) = eiux − 1. Hence,

E(eiuXt+s |Ft) = eiuXt + σ(f)
∫ s

0

dr E(eiuXt+r |Ft) .

Setting ϕ(s) = E(eiuXt+s |Ft), one gets ϕ(s) = ϕ(0) + σ(f)
∫ s

0
ϕ(r)dr, hence

E(eiuXt+s |Ft) = eiuXt exp
(
s

∫
R

σ(dx)(eiux − 1)
)

.

The remainder of the proof is standard and left to the reader. �

Introducing the random measure μ =
∑

n δTn,Yn on R
+ × R and denoting

by (f ∗ μ)t the integral1

∫ t

0

∫
R

f(x)μ(ω; ds, dx) =
Nt∑

k=1

f(Yk) ,

we obtain that

Mf
t = (f ∗ μ)t − tν(f) =

∫ t

0

∫
R

f(x)(μ(ω; ds, dx) − ds ν(dx))

is a martingale. (We shall generalize this fact when studying marked point
processes in � Section 8.8 and Lévy processes in � Chapter 11.)

Example 8.6.3.7 Let Us = αs + σWs where W is a standard Brownian
motion and let N be a Poisson process with intensity 1, independent of W .
Define the process Z as Zt = UNt (that is a time change of the drifted
Brownian motion U). Conditionally on N1 = n, the r.v. Z1 has a N (αn, σ2n)
law. The process Z is a compound Poisson process

(Zt, t ≥ 0) law=

(
Nt∑

k=1

Yk, t ≥ 0

)
where Yk

law= N (α, σ2) .

1 Later, in Chapter 11, we shall often use N(ds, dx) instead of μ(ds, dx)
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Example 8.6.3.8 Let X(i), i = 1, 2 be two compound Poisson processes

X
(i)
t =

N
(i)
t∑

k=1

Y
(i)
k

where Y (i), N (i), i = 1, 2 are independent and Y
(i)
1 is a reflected normal r.v.

(i.e., with density f(y)1{y>0} where f(y) =
√

2
σ
√

π
e−y2/(2σ2)). The characteristic

function of the r.v. X
(1)
t −X

(2)
t is

Ψ(u) = e−2λteλt(Φ(u)+Φ(−u))

with Φ(u) = E(eiuY1). From

Φ(u) + Φ(−u) = E(eiuY1 + e−iuY1) =
∫ ∞

0

eiuyf(y)dy +
∫ ∞

0

e−iuyf(y)dy

=
∫ ∞

−∞
eiuyf(y)dy = 2e−σ2u2/2

we obtain
Ψ(u) = exp(2λt(e−σ2u2/2 − 1)) .

This is the characteristic function of σW (N (1)
t + N

(2)
t ) where W is a BM,

evaluated at time N
(1)
t + N

(2)
t .

Exercise 8.6.3.9 Let X be a (λ, F )-compound Poisson process. Compute
E(eiuXt) in the following two cases:

(a) Merton’s case [643]: The law F is a Gaussian law, with mean c and
variance δ,

(b) Kou’s case [540] (double exponential model): The law F of Y1 is

F (dx) =
(
pθ1e

−θ1x1{x>0} + (1 − p)θ2e
θ2x1{x<0}

)
dx ,

where p ∈]0, 1[ and θi, i = 1, 2 are positive numbers. See � Example 10.4.4.5
for a generalization and an answer. �

Exercise 8.6.3.10 (Example of a Compound Poisson Process.) (See
Sato [761], p. 21.) Let X be a ν-compound Poisson process with ν a probability
measure of the form ν(dx) = pδ1(dx) + qδ−1(dx) where δa(dx) denotes the
Dirac measure at a and where q = 1 − p, p ∈]0, 1[. Prove that

P(Xt = k) = e−t

(
p

q

)k/2

Ik(2(pq)1/2t)

where Ik is the Bessel function (see � A.5.2). �
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Exercise 8.6.3.11 (Extension of Compound Poisson Process.) (See
Sato [761], p. 143) Let X be a ν-compound Poisson process and h a bounded
function. The sequence (Tk) is the sequence of jumps of the Poisson process
N . Let Zt =

∑Nt

k=1 h(Tk, Yk). Prove that

E(eiuZt) = exp
(∫ t

0

ds

∫
(eiuh(s,y) − 1)ν(dy)

)
.

The process Z has independent non-homogeneous increments; it is called an
additive process. �

8.6.4 Itô’s Formula

Let X be a ν-compound Poisson process, and Zt = Z0 + bt + Xt. Then, Itô’s
formula

f(Zt) − f(Z0) = b

∫ t

0

f ′(Zs)ds +
∑

k, Tk≤t

f(ZTk
) − f(ZTk−)

= b

∫ t

0

f ′(Zs)ds +
∫ t

0

∫
R

[f(Zs− + y) − f(Zs−)]μ(ds, dy)

(where μ =
∑∞

n=1 δTn,Yn) can be written as

f(Zt) − f(Z0) =
∫ t

0

ds (Lf)(Zs) + M(f)t

where Lf(x) = bf ′(x)+
∫

R
(f(x+y)−f(x)) ν(dy) is the infinitesimal generator

of Z and

M(f)t =
∫ t

0

∫
R

[f(Zs− + y) − f(Zs−)] (μ(ds, dy) − ds ν(dy))

is a local martingale.

8.6.5 Hitting Times

Let Zt = ct−
∑Nt

k=1 Yk be a (λ, F )-compound Poisson process with a drift term
c > 0 and T (x) = inf{t : x + Zt ≤ 0} where x > 0. The random variables Y
can be interpreted as losses for insurance companies. The process Z is called
the Cramer-Lundberg risk process.

� If c = 0 and if the support of the cumulative distribution function F is
included in [0,∞[, then the process Z is decreasing and

{T (x) ≥ t} = {Zt + x ≥ 0} =

{
x ≥

Nt∑
k=1

Yk

}
,
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hence,

P(T (x) ≥ t) = P

(
x ≥

Nt∑
k=1

Yk

)
=
∑

n

P(Nt = n)F ∗n(x) .

For a cumulative distribution function F with support in R,

P(T (x) ≥ t) =
∑

n

P(Nt = n)P(Y1 ≤ x, Y1 + Y2 ≤ x, . . . , Y1 + · · · + Yn ≤ x) .

� Assume now that c �= 0, that the support of F is included in [0,∞[ and
that, for every u, E(euY1) < ∞. Setting ψ(u) = cu +

∫∞
0

(euy − 1)ν(dy), the
process (exp(uZt − tψ(u)), t ≥ 0) is a martingale (Corollary 8.6.3.3). Since
the process Z has no negative jumps, the level cannot be crossed with a
jump and therefore ZT (x) = −x. From Doob’s optional sampling theorem,
E(euZt∧T (x)−(t∧T (x))ψ(u)) = 1 and when t goes to infinity, one obtains

E(e−ux−T (x)ψ(u)1{T (x)<∞}) = 1 .

Hence one gets the Laplace transform of T (x)

E(e−θT (x)1{T (x)<∞}) = exψ�(θ) ,

where ψ� is the negative inverse of ψ (i.e., ψ�(θ) is the solution y of ψ(y) = θ
for θ > 0 which satisfies y < 0).

Example 8.6.5.1 (One-sided Exponential Law.)
If F (dy) = κe−κy1{y>0}dy, one obtains ψ(u) = cu− λu

κ+u , hence inverting ψ,

E(e−θT (x)1{T (x)<∞}) = exψ�(θ) ,

with

ψ�(θ) =
λ + θ − κc−

√
(λ + θ − κc)2 + 4θκc
2c

.

Exercise 8.6.5.2 Let Xt =
Nt∑
i=1

Yi and X∗
t =

N∗
t∑

i=1

Y ∗
i be two compound

Poisson processes, where N,N∗ are independent Poisson processes with
respective intensities λ and λ∗. We assume that the four random objects
N,N∗, Y, Y ∗ are independent and that the law of Y1 (resp. the law of Y ∗

1 )
has support in [0,∞[. Prove that e−ρ(Xt−X∗

t ) is a martingale for ρ a root of
λE(e−ρY1 − 1) + λ∗

E(eρY ∗
1 − 1) = 0. �
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8.6.6 Change of Probability Measure

Two questions may be asked:
(a) Starting from a ν-compound Poisson process X under P, find some

changes of measures Q << P such that, under Q, X is still a compound
Poisson process.

(b) Given two compound Poisson processes, when are their distributions
locally equivalent?
We treat point (a) and leave (b) to the reader (see � Exercise 8.6.6.3).

Let X be a ν-compound Poisson process, ν̃ a positive finite measure on R

absolutely continuous w.r.t. ν, and λ̃ = ν̃(R) > 0. Let

Lt = exp
(
t(λ− λ̃) +

∑
s≤t

ln
(

dν̃

dν

)
(ΔXs)

)
. (8.6.2)

Proposition 8.6.3.4 proves that, if
∑Nt

k=1 Zk is a compound Poisson process,
then

exp

(
Nt∑

k=1

Zk + tλE(1 − eZ1)

)

is a martingale. It follows that

exp

(
Nt∑

k=1

f(Yk) + t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)
(8.6.3)

is a martingale, hence for f = ln
(

deν
dν

)
, the process L is a martingale. Set

Q|Ft = LtP|Ft .

Proposition 8.6.6.1 Let X be a ν-compound Poisson process under P.
Define dQ|Ft = LtdP|Ft where L is given in (8.6.2). Then, the process X
is a ν̃-compound Poisson process under Q.

Proof: First we find the law of the random variable Xt =
∑Nt

k=1 Yk under Q.
Let f = ln

(
deν
dν

)
. Then

EQ(eiuXt) = EP

(
eiuXt exp

(
t(λ− λ̂) +

Nt∑
1

f(Yk)

))

=
∞∑

n=0

e−λt (λt)
n

n!
et(λ−bλ)

(
EP(eiuY1+f(Y1))

)n

=
∞∑

n=0

e−λt (λt)
n

n!
et(λ−bλ)

(
EP

(
dν̂

dν
(Y1) eiuY1

))n

=
∞∑

n=0

(λt)n

n!
e−tbλ

(
1
λ

∫
eiuydν̂(y)

)n

= exp
(
t

∫
(eiuy − 1) dν̂(y)

)
.
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It remains to check that X has independent and stationary increments under
Q. Using Proposition 8.6.3.5, one gets, for t > s,

EQ(eiu(Xt−Xs)|Fs) =
1
Ls

EP(Lte
iu(Xt−Xs)|Fs)

= exp
(

(t− s)
∫

(eiux − 1)ν̃(dx)
)

.

�

In that case, the change of measure changes the intensity (equivalently,
the law of Nt) and the law of the jumps, but the independence of the Y i

is preserved and N remains a Poisson process. It is possible to change the
measure using more general Radon-Nikodým densities, so that the process X
does not remain a compound Poisson process.

Exercise 8.6.6.2 Prove that the process L defined in (8.6.3) satisfies

dLt = Lt−

(∫
R

(ef(y) − 1)(μ(dt, dy) − ν(dy)dt)
)

.

�

Exercise 8.6.6.3 Prove that two compound Poisson processes with measures
ν and ν̃ are locally absolutely continuous, only if ν and ν̃ are equivalent.
Hint: Use E

((∑
s≤t f(ΔXs)

))
= tν(f). �

8.6.7 Price Process

We consider, as in Mordecki [658], the stochastic differential equation

dSt = (αSt− + β) dt + (γSt− + δ)dXt (8.6.4)

where X is a ν-compound Poisson process.

Proposition 8.6.7.1 The solution of (8.6.4) is a Markov process with in-
finitesimal generator

L(f)(x) = (αx + β)f ′(x) +
∫ +∞

−∞
[f(x + γxy + δy) − f(x)] ν(dy) ,

for suitable f (in particular for f ∈ C1 with compact support).

Proof: We use Stieltjes integration to write, path by path,

f(St) − f(x) =
∫ t

0

f ′(Ss−)(αSs− + β) ds +
∑

0≤s≤t

Δ(f(Ss)) .



496 8 Poisson Processes and Ruin Theory

Hence,

E(f(St)) − f(x) = E

(∫ t

0

f ′(Ss)(αSs + β)ds
)

+ E

⎛
⎝ ∑

0≤s≤t

Δ(f(Ss))

⎞
⎠ .

From

E

⎛
⎝ ∑

0≤s≤t

Δ(f(Ss))

⎞
⎠ = E

⎛
⎝ ∑

0≤s≤t

f(Ss− + ΔSs) − f(Ss−)

⎞
⎠

= E

(∫ t

0

∫
R

dν(y) [f(Ss− + (γSs− + δ)y) − f(Ss−)]
)

,

we obtain the infinitesimal generator. �

Proposition 8.6.7.2 The process (e−rtSt, t ≥ 0) where S is a solution of
(8.6.4) is a local martingale if and only if

α + γ

∫
R

yν(dy) = r, β + δ

∫
R

yν(dy) = 0 .

Proof: Left as an exercise. �

Let ν̃ be a positive finite measure which is absolutely continuous with
respect to ν and

Lt = exp

(
(λ− λ̃) +

∑
s≤t

ln
(

dν̃

dν

)
(ΔXs)

)
.

Let Q|Ft = LtP|Ft . Under Q,

dSt = (αSt− + β) dt + (γSt− + δ)dXt

where X is a ν̃-compound Poisson process. The process (Ste
−rt, t ≥ 0) is a

Q-martingale if and only if

α + γ

∫
R

yν̃(dy) = r, β + δ

∫
R

yν̃(dy) = 0 .

Hence, there is an infinite number of e.m.m’s: one can change the intensity of
the Poisson process, or the law of the jumps, while preserving the compound
process setting. Of course, one can also change the probability so as to break
the independence assumptions.

8.6.8 Martingale Representation Theorem

The martingale representation theorem will be presented in the following
Section 8.8 on marked point processes.
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8.6.9 Option Pricing

The valuation of perpetual American options will be presented in �
Subsection 11.9.1 in the chapter on Lévy processes, using tools related to
Lévy processes. The reader can refer to the papers of Gerber and Shiu
[388, 389] and Gerber and Landry [386] for a direct approach. The case
of double-barrier options is presented in Sepp [781] for double exponential
jump diffusions, the case of lookback options is studied in Nahum [664]. Asian
options are studied in Bellamy [69].

8.7 Ruin Process

We present briefly some basic facts about the problem of ruin, where
compound Poisson processes play an essential rôle.

8.7.1 Ruin Probability

In the Cramer-Lundberg model the surplus process of an insurance

company is x + Zt, with Zt = ct − Xt, where Xt =
Nt∑

k=1

Yk is a compound

Poisson process. Here, c is assumed to be positive, the Yk are R
+-valued and

we denote by F the cumulative distribution function of Y1. Let T (x) be the
first time when the surplus process falls below 0:

T (x) = inf{t > 0 : x + Zt ≤ 0} .

The probability of ruin is Φ(x) = P(T (x) < ∞). Note that Φ(x) = 1 for x < 0.

Lemma 8.7.1.1 If ∞ > E(Y1) ≥ c
λ , then for every x, ruin occurs with

probability 1.

Proof: Denoting by Tk the jump times of the process N , and setting

Sn =
n∑
1

[Yk − c(Tk − Tk−1)] ,

the probability of ruin is

Φ(x) = P(inf
n

(−Sn) < −x) = P(sup
n

Sn > x) .

The strong law of large numbers implies

lim
n→∞

1
n
Sn = lim

n→∞

1
n

n∑
1

[Yk − c(Tk − Tk−1)] = E(Y1) −
c

λ
.

�
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8.7.2 Integral Equation

Let Ψ(x) = 1 − Φ(x) = P(T (x) = ∞) where T (x) = inf{t > 0 : x + Zt ≤ 0}.
Obviously Ψ(x) = 0 for x < 0. From the Markov property, for x ≥ 0

Ψ(x) = E(Ψ(x + cT1 − Y1))

where T1 is the first jump time of the Poisson process N . Thus

Ψ(x) =
∫ ∞

0

dtλe−λt
E(Ψ(x + ct− Y1)) .

With the change of variable y = x + ct we get

Ψ(x) = eλx/c λ

c

∫ ∞

x

dye−λy/c
E(Ψ(y − Y1)) .

Differentiating w.r.t. x, we obtain

cΨ ′(x) = λΨ(x) − λE(Ψ(x− Y1)) = λΨ(x) − λ

∫ ∞

0

Ψ(x− y)dF (y)

= λΨ(x) − λ

∫ x

0

Ψ(x− y)dF (y) .

In the case where the Yk’s are exponential with parameter μ,

cΨ ′(x) = λΨ(x) − λ

∫ x

0

Ψ(x− y)μe−μydy .

Differentiating w.r.t. x and using the integration by parts formula leads to

cΨ ′′(x) = (λ− cμ)Ψ ′(x) .

� For β = 1
c (λ− cμ) < 0, the solution of this differential equation is

Ψ(x) = c1

∫ ∞

x

eβtdt + c2

where c1 and c2 are two constants such that Ψ(∞) = 1 and λΨ(0) = cΨ ′(0).
Therefore c2 = 1, c1 = λ

c
λ−μc

cμ < 0 and Ψ(x) = 1 − λ
cμeβx. It follows that

P(T (x) < ∞) = λ
cμeβx.

� If β > 0, then Ψ(x) = 0. Note that the condition β > 0 is equivalent to
E(Y1) ≥ c

λ .

8.7.3 An Example

Let Zt = ct − Xt where Xt =
Nt∑

k=1

Yk is a compound Poisson process. We

denote by F the cumulative distribution function of Y1 and we assume that
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F (0) = 0, i.e., that the random variable Y1 is R
+-valued. Yuen et al. [871]

assume that the insurer is allowed to invest in a portfolio, with stochastic

return Rt = rt+ σWt +X∗
t where W is a Brownian motion and X∗

t =
N∗

t∑
k=1

Y ∗
k

is a compound Poisson process. We assume that (Yk, Y
∗
k , k ≥ 1, N,N∗,W ) are

independent. We denote by F ∗ the cumulative distribution function of Y ∗
1 .

The risk process S associated with this model is defined as the solution
St(x) of the stochastic differential equation

St = x + Zt +
∫ t

0

Ss−dRs , (8.7.1)

i.e.,

St(x) = Ut

(
x +

∫ t

0

U−1
s− dZs

)

where Ut = ertE(σW )t

∏N∗
t

k=1(1 + Y ∗
k ). Note that the process S jumps at the

time when the processes N or N∗ jump and that

ΔSt = ΔZt + St−ΔRt .

Let T (x) = inf{t : St(x) < 0} and Ψ(x) = P(T (x) = ∞) = P(inf
t
St(x) ≥ 0),

the survival probability.

Proposition 8.7.3.1 For x ≥ 0, the function Ψ is the solution of the implicit
equation

Ψ(x) =
∫ ∞

0

∫ ∞

0

γ

2y2+α+a
pα

u(1, y)(D(y, u) + D∗(y, u)) dydu

where

pα
u(z, y) =

(y

z

)α y

u
e−(z2+y2)/(2u)Iα

(zy

u

)
,

D∗(y, u) =
λ∗

λ + λ∗

∫ ∞

−1

Ψ((1 + z)y−2(x + 4cσ−2u)) dF ∗(z),

D(y, u) =
λ

λ + λ∗

∫ y−2(x+4cσ−2u)

0

Ψ(y−2(x + 4cσ−2u) − z) dF (z),

a = σ−2(2r − σ2), γ =
8(λ + λ∗)

σ2
, α = (a2 + γ2)1/2 .

Proof: Let τ (resp. τ∗) be the first time when the process N (resp. N∗)
jumps, T = τ ∧ τ∗ and m = inft≥0 St. Note that, from the independence
between N and N∗, we have P(τ = τ∗) = 0. On the set {t < T}, one has
St = ertE(σW )t

(
x + c

∫ t

0
e−rs[E(σW )s]−1ds

)
. We denote by V the process



500 8 Poisson Processes and Ruin Theory

Vt = ertE(σW )t(x + c
∫ t

0
e−rs[E(σW )s]−1ds). The optional stopping theorem

applied to the bounded martingale

Mt = E(1m≥0|Ft)

and the strong Markov property lead to

Ψ(x) = P(m ≥ 0) = M0 = E(MT ) = E(Ψ(ST )) .

Hence,

Ψ(x) = E(Ψ(Sτ )1τ<τ∗) + E(Ψ(Sτ∗)1τ∗<τ )
= E(Ψ(Vτ − Y1)1τ<τ∗) + E(Ψ(Vτ∗(1 + Y ∗

1 ))1τ∗<τ )

=
∫ ∞

0

dtλe−λt
E(Ψ(Vt − Y1)) P(t < τ∗)

+
∫ ∞

0

dtλ∗e−λ∗t
E(Ψ(Vt(1 + Y ∗

1 ))) P(t < τ)

=
∫ ∞

0

e−(λ+λ∗)t (λE[Ψ(Vt − Y1)] + λ∗
E[Ψ(Vt(1 + Y ∗

1 ))]) dt .

Employing the change of variable t = 4σ−2s,

Ψ(x) =
4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)s (λΥ (s) + λ∗Υ ∗(s)) ds ,

where
Υ (s) = E[Ψ(Xs − Y1)], Υ ∗(s) = E[Ψ(Zs(1 + Y ∗

1 ))]

and

Xs = e2(as+Bs)

(
x +

4c
σ2

∫ s

0

e−2(at+Bt)dt

)
, Bs =

σ

2
W4σ−2s ,

where a = 2r
σ2 − 1. Hence, using the symmetry of BM,

Υ (s) = E

[
Ψ

(
e−2(Bs−as)

(
x +

4c
σ2

∫ s

0

e2(Bt−at)dt

)
− Y1

)]
.

Therefore

4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)sλΥ (s)ds

=
λ

λ + λ∗ E

[
Ψ

(
e−2(BΘ−aΘ)

(
x +

4c
σ2

∫ Θ

0

e2(Bt−at)dt

)
− Y1

)]

where Θ is an exponential random variable, independent of B, with parameter
4(λ + λ∗)σ−2. The law of the pair
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(
e−2(BΘ−aΘ),

∫ Θ

0

e2(Bt−at)dt

)

was presented in Corollary 6.6.2.2. It follows that

4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)sλΥ (s)ds =
∫ ∞

0

∫ ∞

0

γ

2y2+α+a
pα

u(1, y)D(y, u)dydu .

The study of the second term can be carried out by the same method. �

Comment 8.7.3.2 See the main papers of Klüppelberg [526], Paulsen [700],
Paulsen and Gjessing [701], Yuen et al [871], the books of Asmussen [23],
Embrechts et al. [322], Mikosch [650] and Mel’nikov [639] and the thesis of
Loisel [602]. Many applications to ruin theory can be found in Gerber and his
co-authors, e.g., in [387].

8.8 Marked Point Processes

We now generalize compound Poisson processes, introducing briefly a class of
processes which are no longer Lévy processes: we introduce a spatial dimension
for the size of jumps which are no longer i.i.d. random variables; moreover,
the time intervals between two consecutive jumps are no longer independent.
Let (E, E) be a measurable space and (Ω,F ,P) a probability space.

8.8.1 Random Measure

Definition 8.8.1.1 A random measure ϑ on the space R
+ ×E is a family

of positive measures (ϑ(ω; dt, dx);ω ∈ Ω) defined on R
+ × E such that, for

[0, t]×A ∈ B⊗E, the map ω → ϑ(ω; [0, t], A) is F-measurable, and satisfying
ϑ(ω; {0} × E) = 0.

8.8.2 Definition

Let (Zn) be a sequence of random variables taking values in the measurable
space (E, E), and (Tn) an increasing sequence of positive random variables,
with - to avoid explosion - limn Tn = +∞. We define the marked point
process N = {(Tn, Zn)} by: for each Borel set A ⊂ E,

Nt(A) =
∑

n

1{Tn≤t}1{Zn∈A} .

We associate with N a random measure μ by

μ(·; [0, t], A) = Nt(A) .
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The natural filtration of N is

FN
t = σ(Ns(A), s ≤ t, A ∈ E) .

Let H be a map

(t, ω, z) ∈ (R+, Ω,E) → H(t, ω, z) ∈ R .

The map H is predictable if it is P ⊗ E measurable. The random counting
measure μ(ω; ds, dz) acts on the set of predictable processes H as

(H�μ)t =
∫

]0,t]

∫
E

H(s, z)μ(ds, dz) =
∑

n

H(Tn, Zn)1{Tn≤t}

=
Nt(E)∑
n=1

H(Tn, Zn) ,

where we have dropped ω in the notation.

Definition 8.8.2.1 The compensator of μ is the (up to a null set) unique
random measure ν such that, for every predictable process H,

(i) the process H�ν is predictable,
(ii) if moreover, the process |H|�μ is increasing and locally integrable, the

process (H�μ−H�ν) is a local martingale.

The existence of a compensator is established in Brémaud and Jacod [125],
Jacod and Shiryaev [471] and Kallenberg [505].

We now assume that E = R
d. The compensator admits an explicit repre-

sentation: let Gn(dt, dz) be a regular version of the conditional distribution
of (Tn+1, Zn+1) with respect to FN

Tn
= σ{((T1, Z1), . . . (Tn, Zn)}. Then,

ν(dt, dz) =
∑

n

1{Tn<t≤Tn+1}
Gn(dt, dz)

Gn([t,∞[×Rd)
. (8.8.1)

A proof can be found in Prigent [725], Chapter 1 Proposition 1.1.30.

Comment 8.8.2.2 See Brémaud and Jacod [125], Brémaud [124], Prigent
[725], Jacod [467] and Jacod and Shiryaev [471] for more details on marked
point processes.

Warning 8.8.2.3 The notation in various papers in the literature can be
very different from the above: authors may use N or N for various quantities.
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8.8.3 An Integration Formula

Let dXt = βtdt+
∫

E
γ(t, z)μ(dt, dz), where β and γ are predictable and let F

be a C1,1 function. Then

dF (t,Xt) = ∂tFdt + βt ∂xFdt

+
∫

E

(F (t,Xt− + γ(t, z)) − F (t,Xt−))μ(dt, dz)

or, in an integrated form

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds +
∫ t

0

βs ∂xF (s,Xs)ds

+
Nt(E)∑
n=1

[F (Tn, XTn) − F (Tn, XT−
n

)] .

8.8.4 Marked Point Processes with Intensity and Associated
Martingales

In what follows, we assume that, for every A ∈ E , the process Nt(A) admits
the F-predictable intensity λt(A), i.e., there exists a predictable process
(λt(A), t ≥ 0) such that

Nt(A) −
∫ t

0

λs(A)ds

is a martingale. (The most common form of intensity is λt(A) = αtmt(A)
where αt is a positive predictable process and mt a deterministic probability
measure on (E, E). In that case, ν(dt, dz) = αtmt(A)dt. We shall say that the
marked point process admits (αt,mt(dz)) as P-local characteristics.)

If Xt :=
∑Nt(E)

n=1 H(Tn, Zn) where H is an F-predictable process that
satisfies

E

(∫
]0,t]

∫
E

|H(s, z)|λs(dz)ds

)
< ∞

the process

Xt −
∫ t

0

∫
E

H(s, z)λs(dz)ds =
∫

]0,t]

∫
E

H(s, z) [μ(ds, dz) − λs(dz)ds]

is a martingale and in particular

E

(∫
]0,t]

∫
E

H(s, z)μ(ds, dz)

)
= E

(∫
]0,t]

∫
E

H(s, z)λs(dz)ds

)
.
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8.8.5 Girsanov’s Theorem

Let μ be the random measure of a marked point process with intensity of
the form λt(A) = αtmt(A) where mt is, as above, a deterministic probability
measure on (E, E). Let (ψt, h(t, z)) be two predictable positive processes such
that ∫ t

0

ψsαsds < ∞,

∫
E

h(t, z)mt(dz) = 1 .

Let L be the local martingale solution of

dLt = Lt−

∫
E

(ψtht(z) − 1)(μ(dt, dz) − αtmt(dz)dt) .

If E(Lt) = 1, setting Q|Ft = LtP|Ft , the marked point process has the Q-local
characteristics (ψtαt, h(t, z)mt(dz)).

Exercise 8.8.5.1 Prove Proposition 8.6.6.1 using the above result. �

8.8.6 Predictable Representation Theorem

Let (Ω,F ,F,P) be a probability space where F is the filtration generated by
the marked point process N. Then, any (P,F)-square integrable martingale
M admits the representation

Mt = M0 +
∫ t

0

∫
E

H(s, x)(μ(ds, dx) − λs(dx)ds)

where H is a predictable process such that

E

(∫ t

0

∫
E

|H(s, x)|2λs(dx)ds
)

< ∞ .

See Brémaud [124] for a proof. More generally

Proposition 8.8.6.1 Let W be a Brownian motion M, N a marked point
process and Ft = σ(Ws,FN

s ; s ≤ t) completed.
Let μ̃(ds, dz) = μ(ds, dx) − λs(dx)ds. Then, any (P,F)-local martingale

has the representation

Mt = M0 +
∫ t

0

ϕsdWs +
∫ t

0

∫
E

H(s, z)μ̃(ds, dz) (8.8.2)

where ϕ is a predictable process such that
∫ t

0
ϕ2

sds < ∞ and H is a predictable
process such that

∫ t

0

∫
E
|H(s, x)|λs(dx)ds < ∞. If M is a square integrable

martingale, each term on the right-hand side of the representation (8.8.2) is
square integrable, and



8.9 Poisson Point Processes 505

E

((∫ t

0

ϕsdWs

)2
)

= E

(∫ t

0

ϕ2
sds

)

E

((∫ t

0

∫
E

H(s, z)μ̃(ds, dz)
)2
)

= E

(∫ t

0

∫
E

H2(s, z)λs(dz)ds
)

Proof: We refer to Kunita and Watanabe [550], Kunita [549], and to Chapter
III in the book of Jacod and Shiryaev [471]. �

Comment 8.8.6.2 Björk et al. [103] and Prigent [725, 724] gave the first
applications to finance of Marked point processes, which are now studied by
many authors, especially in a BSDE framework.

Exercise 8.8.6.3 Check that the process

St = exp
(∫ t

0

(
βs −

1
2
σ2

s

)
ds +

∫ t

0

σsdWs

) ∏
n,Tn≤t

(1 + γ(Tn, Zn))

is a solution of

dSt = St−

(
βtdt + σtdWt +

∫
E

γ(t, y)μ(dt, dy)
)

,

where μ is the random measure associated with the marked point process
N = {(Tn, Zn)}. �

8.9 Poisson Point Processes

We end this chapter with a brief section on Poisson point processes, which
are of major importance in the study of Brownian excursions.

8.9.1 Poisson Measures

Let (E, E) be a measurable space. A random measure μ on (E, E) is a Poisson
measure with intensity ν, where ν is a σ-finite measure on (E, E), if

(i) for every set B ∈ E with ν(B) < ∞, μ(B) follows a Poisson distribution
with parameter ν(B), and

(ii) for disjoint sets Bi, i ≤ n, the variables μ(Bi), i ≤ n are independent.

Example 8.9.1.1 Let π be a probability measure, (Yk, k ∈ N) i.i.d. random
variables with law π and N a Poisson variable with mean m, independent of

the Yk’s. The random measure
N∑

k=1

δYk
is a Poisson measure with intensity

ν = mπ. Here, δy is the Dirac measure at point y.
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8.9.2 Point Processes

Let (E, E) be a measurable space and δ an additional point. We introduce
Eδ = E ∪ δ, Eδ = σ(E , {δ}).

Definition 8.9.2.1 Let e be a stochastic process defined on a probability space
(Ω,F ,P), taking values in (Eδ, Eδ). The process e is a point process if:

(i) the map (t, ω) → et(ω) is B(]0,∞[) ⊗F-measurable,
(ii) the set Dω = {t : et(ω) �= δ} is a.s. countable.

For every measurable set B of ]0,∞[×E, we set

NB(ω) :=
∑
s≥0

1B(s, es(ω)) .

In particular, if B =]0, t] × Γ , we write

NΓ
t = NB = Card{s ≤ t : e(s) ∈ Γ} .

Let the space (Ω,P) be endowed with a filtration F. A point process is
F-adapted if, for any Γ ∈ E , the process NΓ is F-adapted. For any Γ ∈ Eδ,
we define a point process eΓ by

eΓ
t (ω) = et(ω) if et(ω) ∈ Γ

eΓ
t (ω) = δ otherwise

Definition 8.9.2.2 A point process e is discrete if NE
t < ∞ a.s. for every t.

It is said to be σ-discrete if there is a sequence En of sets with E = ∪En such
that each eEn is discrete.

8.9.3 Poisson Point Processes

Definition 8.9.3.1 An F-Poisson point process e is a σ-discrete point
process such that:

(i) the process e is F-adapted,
(ii) for any s and t and any Γ ∈ E, NΓ

s+t − NΓ
t is independent from

Ft and distributed as NΓ
s .

In particular, for any disjoint family (Γi, i = 1, . . . , d), the d-dimensional
process (NΓi

t , i = 1, · · · , d) is a Poisson process. Moreover, if NΓ is finite
almost surely, then E(NΓ

t ) < ∞ and the quantity 1
t E(NΓ

t ) does not depend
on t.

Definition 8.9.3.2 The σ-finite measure on E defined by

n(Γ ) =
1
t
E(NΓ

t )

is called the characteristic measure of e.
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If n(Γ ) < ∞, the process NΓ
t − tn(Γ ) is an F-martingale.

Proposition 8.9.3.3 (Compensation Formula.) Let H be a predictable
positive process (i.e., measurable with respect to P ⊗Eδ) vanishing at δ. Then

E

[∑
s≥0

H(s, ω, es(ω))

]
= E

[∫ ∞

0

ds

∫
E

H(s, ω, u)n(du)
]

.

If, for any t, E

[∫ t

0
ds
∫

E
H(s, ω, u)n(du)

]
< ∞, the compensated process

∑
s≤t

H(s, ω, es(ω)) −
∫ t

0

ds

∫
E

H(s, ω, u)n(du)

is a martingale.

Proof: By the Monotone Class Theorem, it is enough to prove this formula
for H(s, ω, u) = K(s, ω)1Γ (u). In that case, NΓ

t − tn(Γ ) is an F-martingale.
�

Proposition 8.9.3.4 (Exponential Formula.) If f is a B ⊗ E-measurable
function such that

∫ t

0
ds
∫

E
|f(s, u)|n(du) < ∞ for every t, then,

E

⎡
⎣exp

⎛
⎝i

∑
0<s≤t

f(s, es)

⎞
⎠
⎤
⎦ = exp

(∫ t

0

ds

∫
E

(eif(s,u) − 1)n(du)
)

.

Moreover, if f ≥ 0,

E

⎡
⎣exp

⎛
⎝−

∑
0<s≤t

f(s, es)

⎞
⎠
⎤
⎦ = exp

(
−
∫ t

0

ds

∫
E

(1 − e−f(s,u))n(du)
)

.

8.9.4 The Itô Measure of Brownian Excursions

Let (Bt, t ≥ 0) be a Brownian motion and (τs) be the inverse of the local
time (Lt) at level 0. The set ∪s≥0]τs−(ω), τs(ω)[ is (almost surely) equal to
the complement of the zeros set {u : Bu(ω) = 0}. The excursion process
(es, s ≥ 0) is defined by

es(ω)(t) = 1{t ≤ τs(ω) − τs−(ω)}B
(τs−(ω) + t)(ω) , t ≥ 0.

This is a path-valued process e : R
+ ×Ω → Ω∗, where

Ω∗ = {ε : R
+ → R : ∃V (ε) < ∞, with ε(V (ε) + t) = 0,∀t ≥ 0

ε(u) �= 0,∀ 0 < u < V (ε), ε(0) = 0, ε is continuous } .

Hence, V (ε) is the lifetime of ε.
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The starting point of Itô’s excursion theory is that the excursion process is
a Poisson Point Process; its characteristic measure n, called Itô’s measure,
evaluated on the set Γ , i.e., n(Γ ), is the intensity of the Poisson process

NΓ
t : =

∑
s≤t

1es∈Γ .

The quantity n(Γ ) is the positive real γ such that NΓ
t − tγ is an (Fτt)-

martingale.
Here, are some very useful descriptions of n:

• Itô: Conditionally on V = v, the process

(|εu|, u ≤ v)

is a BES3 bridge of length v. The law of the lifetime V under n is

nV (dv) =
dv√
2πv3

.

Thanks to the symmetry of Brownian motion, a full description of n is

n(dε) =
∫ ∞

0

nV (dv)
1
2
(Πv

+ + Πv
−) (dε)

where Πv
+ (resp. Πv

−) is the law of the standard Bessel Bridge (resp. the
law of its negative) with dimension 3 and length v.

• Williams: Let M(ε) = supu≤v |εu|. Then, conditionally on M = m, the
two processes (εu, u ≤ Tm) and (εV −u, u ≤ V − Tm) are two independent
BES3 processes considered up to their first hitting time of m, and

nM (dm) = n(M(ε) ∈ dm) =
dm

m2
.

We leave to the reader the task of writing a disintegration formula for n
with respect to nM .

Comment 8.9.4.1 See Jeanblanc et al. [483] for applications to decomposi-
tion of Brownian paths and Feynman-Kac formula. At the moment, there are
very few applications to finance of excursion theory. One can cite Gauthier
[376] for a study of Parisian options, and Chesney et al. [173] for Asian-
Parisian options.
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