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Complements on Continuous Path Processes

In this chapter, we present the important notion of time change, which will
be crucial when studying applications to finance in a Lévy process setting.
We then introduce the operation of dual predictable projection, which will
be an important tool when working with the reduced form approach in the
default risk framework (of course, it has many other applications as will appear
clearly in subsequent chapters). We present important facts about general
homogeneous diffusions, in particular concerning their Green functions, scale
functions and speed measures. These three quantities are of great interest
when valuing options in a general setting. We study applications related to
last passage times. A section is devoted to enlargements of filtrations, an
important subject when dealing with insider trading.

The books of Borodin and Salminen [109], Itô [462], Itô and McKean [465],
Karlin and Taylor [515], Karatzas and Shreve [513], Kallenberg [505], Knight
[528], Øksendal [684], [RY] and Rogers and Williams [741, 742] are highly
recommended. See also the review of Varadhan [826].

An excellent reference for the study of first hitting times of a fixed level
for a diffusion is the book of Borodin and Salminen [109] where many results
can be found. The general theory of stochastic processes is presented in
Dellacherie [240], Dellacherie and Meyer [242, 244] and Dellacherie, Meyer
and Maisonneuve [241]. Some results about the general theory of processes
can also be found in � Chapter 9.

5.1 Time Changes

5.1.1 Inverse of an Increasing Process

In this paragraph, we deal with processes on a probability space but do not
make any reference to a given filtration. Let us recall that by definition (see
Subsection 1.1.10) an increasing process is equal to 0 at time 0; it is right
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260 5 Complements on Continuous Path Processes

continuous and of course increasing. Let A be an increasing process and let C
be the right inverse of A, that is the increasing process defined by:

Cu = inf{t : At > u} (5.1.1)

where inf{∅} = ∞. We shall use Cu or C(u) for the value at time u of the
process C. The process C is right-continuous and satisfies

Cu− = inf{t : At ≥ u}

and {Cu > t} = {At < u}. We also have ACs ≥ s and At = inf{u : Cu > t}.
(See [RY], Chapter 0, section 4 for details.) Moreover, if A is continuous and
strictly increasing, C is continuous and C(At) = t.

Proposition 5.1.1.1 Time changing in integrals can be effected as follows:
if f is a positive Borel function

∫
[0,∞[

f(s) dAs =
∫ ∞

0

f(Cu)1{Cu<∞}du .

Proof: For f = 1[0,v], the formula reads

Av =
∫ ∞

0

1{Cu≤v}du

and is a consequence of the definition of C. The general formula follows from
the monotone class theorem. �

5.1.2 Time Changes and Stopping Times

In this section, F is a right-continuous filtration, and A is a right-continuous
adapted increasing process with right inverse C. From the identity

{Cu ≤ t} = {At ≥ u} ,

we see that (Cu, u ≥ 0) is a family of F-stopping times. This leads us to define
a time change C as a family (Cu, u ≥ 0) of stopping times such that the
map u → Cu is a.s. increasing and right continuous. We denote by FC the
filtration FC = (FCt , t ≥ 0). For every t the r.v. At is an FC-stopping time
(indeed {At < u} = {Cu > t}).

Example 5.1.2.1 We have studied a very special case of time change while
dealing with Ornstein-Uhlenbeck processes in Section 2.6. These processes are
obtained from a Brownian motion by means of a deterministic time change.
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Example 5.1.2.2 Let W be a Brownian motion and let

Tt = inf{s ≥ 0 : Ws > t} = inf
{

s ≥ 0 : max
u≤s

Wu > t

}

be the right-continuous inverse of Mt = maxu≤t Wu. The process (Tt, t ≥ 0)
is increasing, and right-continuous (see Subsection 3.1.2). See � Section 11.8
for applications.

Exercise 5.1.2.3 Let (B, W ) be a two-dimensional Brownian motion and
define

Tt = inf{s ≥ 0 : Ws > t} .

Prove that (Yt = BTt , t ≥ 0) is a Cauchy process, i.e., a process with
independent and stationary increments, such that Yt has a Cauchy law with
characteristic function exp(−t|u|).
Hint: E(eiuBTt ) =

∫
e−

1
2 u2Tt(ω)

P(dω) = E(e−
1
2 u2Tt) = e−t|u|. �

5.1.3 Brownian Motion and Time Changes

Proposition 5.1.3.1 (Dubins-Schwarz’s Theorem.) A continuous mar-
tingale M such that

〈M〉∞ = ∞
is a time-changed Brownian motion. In other words, there exists a Brownian
motion W such that Mt = W〈M〉t

.

Sketch of the Proof: Let A = 〈M〉 and define the process W as
Wu = MCu where C is the inverse of A. One can then show that W is a
continuous local martingale, with bracket 〈W 〉u = 〈M〉Cu = u. Therefore,
W is a Brownian motion, and replacing u by At in Wu = MCu , one obtains
Mt = WAt . �

Comments 5.1.3.2 (a) This theorem was proved in Dubins and Schwarz
[268]. It admits a partial extension due to Knight [527] to the multidimensional
case: if M is a d-dimensional martingale such that 〈M i, M j〉 = 0, i 	= j
and 〈M i〉∞ = ∞, ∀i, then the process W = (M i

Ci(t)
, i ≤ d, t ≥ 0) is a d-

dimensional Brownian motion w.r.t. its natural filtration, where the process
Ci is the inverse of 〈M i〉. See, e.g., Rogers and Williams [741]. The assumption
〈M〉∞ = ∞ can be relaxed (See [RY], Chapter V, Theorem 1.10).

(b) Let us mention another two-dimensional extension of Dubins and
Schwarz’s theorem for complex valued local martingales which generalize
complex Brownian motion. Getoor and Sharpe [390] introduced the notion
of a continuous conformal local martingale as a process Z = X + iY , valued
in C, the complex plane, where X and Y are real valued continuous local
martingales and Z2 is a local martingale. A prototype is the complex-valued
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Brownian motion. If Z is a continuous conformal local martingale, then, from
Z2

t = X2
t −Y 2

t +2iXtYt, we deduce that 〈X〉t = 〈Y 〉t and 〈X,Y 〉t = 0. Hence,
applying Knight’s result to the two-dimensional local martingale (X,Y ), there
exists a complex-valued Brownian motion B such that Z = B〈X〉. In fact, in
this case, B can be shown to be a Brownian motion w.r.t. (Fαu , u ≥ 0), where
αu = inf{t : 〈X〉t > u}. If (Zt, t ≥ 0) denotes now a C-valued Brownian
motion, and f : C → C is holomorphic, then (f(Zt), t ≥ 0) is a conformal
martingale. The C-extension of the Dubins-Schwarz-Knight theorem may then
be written as:

f(Zt) = ẐR t
0 |f ′(Zu)|2du, t ≥ 0 (5.1.2)

where f ′ is the C-derivative of f , and Ẑ denotes another C-valued Brownian
motion. This is an extremely powerful result due to Lévy, which expresses the
conformal invariance of C-valued Brownian motion. It is easily shown, as a
consequence, using the exponential function that, if Z0 = a, then (Zt, t ≥ 0)
shall never visit b 	= a (of course, almost surely). As a consequence, (5.1.2)
may be extended to any meromorphic function from C to itself, when P (Z0 ∈
S) = 0 with S the set of singular points of f .

(c) See Jacod [468], Chapter 10 for a detailed study of time changes, and
El Karoui and Weidenfeld [311] and Le Jan [569].

Exercise 5.1.3.3 Let f be a non-constant holomorphic function on C and
Z = X + iY a complex Brownian motion. Prove that there exists another
complex Brownian motion B such that f(Zt) = f(Z0)+B(

∫ t

0
|f ′(Zs)|2d〈X〉s)

(see [RY], Chapter 5). As an example, exp(Zt) = 1 + BR t
0 ds exp(2Xs). �

We now come back to a study of real-valued continuous local martingales.

Lemma 5.1.3.4 Let M be a continuous local martingale with 〈M〉∞ = ∞,
W the Brownian motion such that Mt = W〈M〉t

and C the right-inverse of
〈M〉. If H is an adapted process such that for any t,

∫ t

0

H2
s d〈M〉s

(
=
∫ 〈M〉t

0

H2
Cu

du

)
< ∞ ,

then
∫ t

0

HsdMs =
∫ 〈M〉t

0

HCudWu ,

∫ Ct

0

HsdMs =
∫ t

0

HCudWu .

Lemma 5.1.3.5 Let Xt =
∫ Ct

0
HsdWs, where C is a time change with respect

to F, differentiable with respect to time. Assume that C ′
t 	= 0 for any t. Then,

dXt = HCt

√
C ′

t dBt ,

where B is an FC-Brownian motion.
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Proof: From the previous lemma
∫ Ct

0

HsdWs =
∫ t

0

HCudWCu ,

hence, dXt = HCtdWCt . The process (WCu , u ≥ 0) is a local martingale with
bracket Cu. The process

Bt =
∫ t

0

1√
C ′

u

dWCu

is a Brownian motion. �

Remarks 5.1.3.6 (a) Up to an enlargement of probability space, one can
generalize the previous lemma to the case where the condition C ′

t 	= 0 does
not hold, but where we keep the assumption that C is differentiable. (The
proof is left to the reader.)

(b) A time-changed local martingale is not necessarily a local martingale
with respect to the time-changed filtration. As seen in Example 5.1.2.2, if Tt

is the first hitting time of the level t for the Brownian motion B, the process
t → Tt is increasing and is a time change. However, BTt = t is not a local
martingale. This illustrates, although very roughly, Monroe’s theorem (see
Remark 5.1.3.6) which states that any semi-martingale (even discontinuous)
is a time changed Brownian motion. [655, 656]

However, if X is a continuous F-local martingale and C a continuous
time change, then (XCt)t≥0 is a continuous FC-local martingale. (See [RY],
Chapter V, Section 1).

Comments 5.1.3.7 (a) Changes of time are extensively used for finance
purposes in the papers of Geman, Madan and Yor [379, 385, 380, 381].

(b) The “pli cacheté” of Doeblin [255] may have been one of the first papers
studying time changes.

(c) Further extensions to Markov processes are found in Volkonski [831].
See also McKean’s paper [637] for other aspects of this major idea and
important applications to Bessel processes in � Chapter 6.

Exercise 5.1.3.8 Let Y be the solution of

dYt = (cYt + kY 2
t )dt +

√
YtdWt

Prove that Yt = Z(
∫ t

0
Ysds) where dZ(u) = (c + kZ(u))du + dŴu. �

Exercise 5.1.3.9 Let Z be a complex BM Zt = Xt + iYt. Consider the two
martingales |Zt|2 − 2t and

∫ t

0
(XsdYs − YsdXs). Prove that

1
2
(
|Zt|2 − 2t

)
+ i

∫ t

0

(XsdYs − YsdXs)
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is a conformal martingale which can be represented as Ẑu = βu + iγu time-
changed by

∫ t

0
|Zs|2ds with β and γ two independent BM’s. Prove that

σ(βu, u ≥ 0) = σ(|Zt|, t ≥ 0), hence γ and |Z| are independent. �

5.2 Dual Predictable Projections

In this section, after recalling some basic facts about optional and predictable
projections, we introduce the concept of a dual predictable projection1, which
leads to the fundamental notion of predictable compensators. We recommend
the survey paper of Nikeghbali [674].

Recall that a process is said to be optional if it is measurable with
respect to the σ-algebra on R

+×Ω generated by càdlàg F-adapted processes,
considered as mappings on R

+ × Ω, whereas a predictable process is
measurable with respect to the σ-algebra on R

+ × Ω generated by càg F-
adapted processes (see � Subsection 9.1.3 for comments).

5.2.1 Definitions

Let X be a bounded (or positive) process, and F a given filtration. The
optional projection of X is the unique optional process (o)X which satisfies:
for any F-stopping time τ

E(Xτ1{τ<∞}) = E( (o)Xτ1{τ<∞}) . (5.2.1)

For any F-stopping time τ , let Γ ∈ Fτ and apply the equality (5.2.1) to the
stopping time τΓ = τ1Γ + ∞1Γ c . We get the re-inforced identity:

E(Xτ1{τ<∞}|Fτ ) = (o)Xτ1{τ<∞} .

In particular, if A is an increasing process, then, for s ≤ t:

E( (o)At − (o)As|Fs) = E(At − As|Fs) ≥ 0 . (5.2.2)

Note that, for any t, E(Xt|Ft) = (o)Xt. However, E(Xt|Ft) is defined almost
surely for any t; thus uncountably many null sets are involved, hence, a priori,
E(Xt|Ft) is not a well-defined process whereas (o)X takes care of this difficulty.

Likewise, the predictable projection of X is the unique predictable
process (p)X such that for any F-predictable stopping time τ

E(Xτ1{τ<∞}) = E( (p)Xτ1{τ<∞}) . (5.2.3)

As above, this identity reinforces as

E(Xτ1{τ<∞}|Fτ−) = (p)Xτ1{τ<∞} ,

for any F-predictable stopping time τ (see Subsection 1.2.3 for the definition
of Fτ−).
1 See Dellacherie [240] for the notion of dual optional projection.
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Example 5.2.1.1 Let τ and ϑ be two stopping times such that ϑ ≤ τ and
Z a bounded r.v.. Let X = Z1]]ϑ,τ ]]. Then, (o)X = U1]]ϑ,τ ]],

(p)X = V 1]]ϑ,τ ]]

where U (resp. V ) is the right-continuous (resp. left-continuous) version of
the martingale (E(Z|Ft), t ≥ 0).

Let τ and ϑ be two stopping times such that ϑ ≤ τ and X a positive
process. If A is an increasing optional process, then, since 1]]ϑ,τ ]](t) is
predictable

E

(∫ τ

ϑ

XtdAt

)
= E

(∫ τ

ϑ

(o)XtdAt

)
.

If A is an increasing predictable process, then

E

(∫ τ

ϑ

XtdAt

)
= E

(∫ τ

ϑ

(p)XtdAt

)
.

The notion of interest in this section is that of dual predictable
projection, which we define as follows:

Proposition 5.2.1.2 Let (At, t ≥ 0) be an integrable increasing process (not
necessarily F-adapted). There exists a unique F-predictable increasing process
(A(p)

t , t ≥ 0), called the dual predictable projection of A such that

E

(∫ ∞

0

HsdAs

)
= E

(∫ ∞

0

HsdA(p)
s

)

for any positive F-predictable process H.
In the particular case where At =

∫ t

0
asds, one has

A
(p)
t =

∫ t

0

(p)asds (5.2.4)

Proof: See Dellacherie [240], Chapter V, Dellacherie and Meyer [244],
Chapter 6 paragraph (73), page 148, or Protter [727] Chapter 3, Section 5. �

This definition extends to the difference between two integrable (for sim-
plicity) increasing processes. The terminology “dual predictable projection”
refers to the fact that it is the random measure dtAt(ω) which is relevant when
performing that operation. If X is bounded and A has integrable variation
(not necessarily adapted), then

E((X�A(p))∞) = E(( (p)X�A)∞) .

This is equivalent to: for s < t,

E(At − As|Fs) = E(A(p)
t − A(p)

s |Fs) . (5.2.5)

If A is adapted (not necessarily predictable), then (At − A
(p)
t , t ≥ 0) is a

martingale. In that case, A
(p)
t is also called the predictable compensator of A.
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More generally, from Proposition 5.2.1.2 and (5.2.5), the process (o)A−A(p)

is a martingale.

Proposition 5.2.1.3 If A is increasing, the process (o)A is a sub-martingale
and A(p) is the predictable increasing process in the Doob-Meyer decomposition
of the sub-martingale (o)A.

Example 5.2.1.4 Let W be a Brownian motion, Mt = sups≤t Ws its running
maximum, and Rt = 2Mt−Wt. Then, from � Pitman’s Theorem 5.7.2.1 and
its Corollary 5.7.2.2, for any positive Borel function f ,

E(f(Mt)|FR
t ) =

∫ 1

0

dxf(Rtx) ,

hence, E(2Mt|FR
t ) = Rt and the predictable projection of 2Mt is Rt. On the

other hand, from Pitman’s theorem

Rt = βt +
∫ t

0

ds

Rs
,

where β is a Brownian motion, therefore, the dual predictable projection of
2Mt on FR

t is
∫ t

0
ds
Rs

. Note that the difference between these two projections
is the (Brownian) martingale β.

In a general setting, the predictable projection of an increasing process A
is a sub-martingale whereas the dual predictable projection is an increasing
process. The predictable projection and the dual predictable projection of an
increasing process A are equal if and only if ( (p)At, t ≥ 0) is increasing.

It will also be convenient to introduce the following terminology:

Definition 5.2.1.5 If ϑ is a random time, we call the predictable compen-
sator associated with ϑ the dual predictable projection Aϑ of the increasing
process 1{ϑ≤t}. This dual predictable projection Aϑ satisfies

E(kϑ) = E

(∫ ∞

0

ksdAϑ
s

)
(5.2.6)

for any positive, predictable process k.

5.2.2 Examples

In the sequel, we present examples of computation of dual predictable
projections. We end up with Azéma’s lemma, providing the law of the
predictable compensator associated with the last passage at 0 of a BM before
T , evaluated at a (stopping) time T . See also Knight [529] and � Sections 5.6
and 7.4.
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Example 5.2.2.1 Let (Bs)s≥0 be an F− Brownian motion starting from 0
and B

(ν)
s = Bs + νs. Let G(ν) be the filtration generated by the process

(|B(ν)
s |, s ≥ 0) (which coincides with the one generated by (B(ν)

s )2). We now
compute the decomposition of the semi-martingale (B(ν))2 in the filtration
G(ν) and the dual predictable projection (with respect to G(ν)) of the finite
variation process

∫ t

0
B

(ν)
s ds.

Itô’s lemma provides us with the decomposition of the process (B(ν))2 in
the filtration F:

(B(ν)
t )2 = 2

∫ t

0

B(ν)
s dBs + 2ν

∫ t

0

B(ν)
s ds + t . (5.2.7)

To obtain the decomposition in the filtration G(ν) we remark that, on the
canonical space, denoting as usual by X the canonical process,

W(0)(eνXs |F |X|
s ) = cosh(νXs)

which leads to the equality:

W(ν)(Xs|F |X|
s ) =

W(0)(Xse
νXs |F |X|

s )

W(0)(eνXs |F |X|
s )

= Xs tanh(νXs) ≡ ψ(νXs)/ν ,

where ψ(x) = x tanh(x). We now come back to equality (5.2.7). Due to (5.2.4),
we have just shown that:

The dual predictable projection of 2ν
∫ t

0

B(ν)
s ds is 2

∫ t

0

dsψ(νB(ν)
s ) .

(5.2.8)
As a consequence,

(B(ν)
t )2 − 2

∫ t

0

dsψ(νB(ν)
s ) − t

is a G(ν)-martingale with increasing process 4
∫ t

0
(B(ν)

s )2ds. Hence, there exists
a G(ν)-Brownian motion β such that

(Bt + νt)2 = 2
∫ t

0

|Bs + νs|dβs + 2
∫ t

0

dsψ(ν(Bs + νs)) + t . (5.2.9)

Exercise 5.2.2.2 Prove that, more generally than (5.2.8), the dual pre-
dictable projection of

∫ t

0
f(B(ν)

s )ds is
∫ t

0
E(f(B(ν)

s )|G(ν)
s )ds and that

E(f(B(ν)
s )|G(ν)

s ) =
f(B(ν)

s )eνB(ν)
s + f(−B

(ν)
s )e−νB(ν)

s

2 cosh(νB
(ν)
s )

.

�
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Exercise 5.2.2.3 Prove that if (αs, s ≥ 0) is an increasing predictable
process and X a positive measurable process, then

(∫ ·

0

Xsdαs

)(p)

t

=
∫ t

0

(p)Xsdαs .

In particular (∫ ·

0

Xsds

)(p)

t

=
∫ t

0

(p)Xsds .

�

Example 5.2.2.4 Let B be a Brownian motion and Yt = |Bt|. Tanaka’s
formula gives

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt

where L denotes the local time of (Bt; t ≥ 0) at level 0. By an application
of the balayage formula (see Subsection 4.1.6), we obtain (we recall that gt

denotes the last passage time at level 0 before t)

hgt |Bt| =
∫ t

0

hgssgn(Bs)dBs +
∫ t

0

hsdLs

where we have used the fact that Lgs = Ls. Consequently, replacing, if
necessary, h by |h|, we see that the process

∫ t

0
|hs|dLs is the local time at

0 of (hgtBt, t ≥ 0). Let now τ be a stopping time such that (Bt∧τ ; t ≥ 0) is
uniformly integrable, and satisfies P(Bτ = 0) = 0. Then, it follows from the
balayage formula that, for every predictable and bounded process h

E (hgτ |Bτ |) = E

(∫ τ

0

hsdLs

)
. (5.2.10)

As an example, consider τ = T ∗
a = inf{t : |Bt| = a}; we have

E

(
hgT∗

a

)
=

1
a

E

(∫ T∗
a

0

hsdLs

)
,

whence we conclude that the predictable compensator (Aϑ
t ; t ≥ 0) associated

with ϑ := gT∗
a

is given by

Aϑ
t =

1
a
Lt∧T∗

a
.

In the general case, applying (5.2.10) to the variable ξgτ = E (|Bτ ||Fgτ ) ,
where (ξu; u ≥ 0) is a predictable process (note that P(ξgτ = 0) = 0, as a
consequence of P(Bτ = 0) = 0) we obtain
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E (kgτ ) = E

(∫ τ

0

ks

ξs
dLs

)
(5.2.11)

from which we deduce that the predictable compensator associated with gτ is

At =
∫ t∧τ

0

dLs

ξs
. (5.2.12)

In general, finding ξ may necessitate some work, but in some cases, e.g.,
τ = inf{t : |Bt| = αt}, for a continuous adapted process (αt) such that
αt ≡ αgt , no extra computation is needed, since: |Bτ | = αgτ is Fgτ measurable,
hence we can take: ξu = αu; finally At =

∫ t∧τ

0
dLs

αs
.

We finish this subsection with the following interesting lemma which, in
some generality, gives the law of Aτ .

Lemma 5.2.2.5 (Azéma.) Let B be a BM and τ a stopping time such that
(Bt∧τ ; t ≥ 0) is uniformly integrable, and satisfies P(Bτ = 0) = 0. Let A be
the predictable compensator associated with gτ . Then, Aτ is an exponential
variable with mean 1.

Proof: Since, as a consequence of equality (5.2.12), Aτ = Agτ , we have for
every λ ≥ 0

E
(
e−λAτ

)
= E

(∫ τ

0

e−λAsdAs

)
,

as a consequence of (5.2.6) applied to ϑ = gτ and kt = exp(−λAt). Thus, we
obtain

E
(
e−λAτ

)
= E

(
1 − e−λAτ

λ

)
,

or equivalently, E
(
e−λAτ

)
= 1

1+λ . The desired result follows immediately. �

Note that a corollary of this result provides the law of the local time of
the BM at the time T ∗

a = inf{t : |Bt| = a}: LT∗
a

is an exponential variable,
with mean a.

Exercise 5.2.2.6 Let F ⊂ G and let Gt −
∫ t

0
γsds be a G-martingale.

Recalling that (o)X is the F-optional projection of a process X, prove that
(o)Gt −

∫ t

0
(o)γsds is an F-martingale. �

5.3 Diffusions

In this section, we present the main facts on linear diffusions, following closely
the presentation of Chapter 2 in Borodin and Salminen [109]. We refer to
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Durrett [287], Itô and McKean [465], Linetsky [595] and Rogers and Williams
[742] for other studies of general diffusions.

A linear diffusion is a strong Markov process with continuous paths taking
values on an interval I with left-end point � ≥ −∞ and right-end point
r ≤ ∞. We denote by ζ the life time of X (see Definition 1.1.14.1). We
assume in what follows (unless otherwise stated) that all the diffusions we
consider are regular, i.e., they satisfy Px(Ty < ∞) > 0,∀x, y ∈ I where
Ty = inf{t : Xt = y}.

5.3.1 (Time-homogeneous) Diffusions

In this book, we shall mainly consider diffusions which are Itô processes: let b
and σ be two real-valued functions which are Lipschitz on the interval I, such
that σ(x) > 0 for all x in the interval I. Then, there exists a unique solution
to

Xt = x +
∫ t

0

b(Xs)ds +
∫ t

0

σ(Xs)dWs , (5.3.1)

starting at point x ∈]�, r[, up to the first exit time T	,r = T	(X) ∧ Tr(X). In
this case, X is a time-homogeneous diffusion.

In fact, the Lipschitz assumption is not quite necessary; see Theorem
1.5.5.1 for some finer assumptions on b and σ.

Solutions of

Xt = x +
∫ t

0

b(Xs, s)ds +
∫ t

0

σ(Xs, s)dWs , (5.3.2)

with time dependent coefficients b and σ are called time-inhomogeneous
diffusions; for these processes, the following results do not apply.

From now on, we shall only consider diffusions of the type (5.3.1), and we
drop the term “time-homogeneous.” We mention furthermore that, in general
studies of diffusions (see Borodin and Salminen [109]), a rôle is also played by
a killing measure; however, since we shall not use this item in our presentation,
we do not introduce it.

5.3.2 Scale Function and Speed Measure

Scale Function

Definition 5.3.2.1 Let X be a diffusion on I and Ty = inf{t ≥ 0 : Xt = y},
for y ∈ I. A scale function is an increasing function from I to R such that,
for x ∈ [a, b]

Px(Ta < Tb) =
s(x) − s(b)
s(a) − s(b)

. (5.3.3)
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Obviously, if s∗ is a scale function, then so is αs∗ + β for any (α, β), with
α > 0 and any scale function can be written as αs∗ + β.

Proposition 5.3.2.2 The process (s(Xt), 0 ≤ t < T	,r) is a local martingale.
The scale function satisfies

1
2
σ2(x)s′′(x) + b(x)s′(x) = 0 .

Proof: For any finite stopping time τ < T	,r, the equality

Ex

(
s(Xτ ) − s(b)
s(a) − s(b)

)
=

s(x) − s(b)
s(a) − s(b)

follows from the Markov property. �

In the case of diffusions of the form (5.3.1), a (differentiable) scale function
is

s(x) =
∫ x

c

exp
(
−2
∫ u

c

b(v)/σ2(v) dv

)
du (5.3.4)

for some choice of c ∈]�, r[. The increasing process of s(X) being

At =
∫ t

0

(s′σ)2(Xu)du,

(by an application of Itô’s formula), the local martingale (s(Xt), t < T	,r) can
be written as a time changed Brownian motion: s(Xt) = βAt .

In the case of constant coefficients with b < 0 (resp. b > 0) and σ 	= 0, the
diffusion is defined on R, T	,r = ∞, and we may choose s(x) = exp

(
−2bx/σ2

)
,

(resp. s(x) = − exp
(
−2bx/σ2

)
) so that s is a strictly increasing function and

s(−∞) = 0, s(∞) = ∞ (resp. s(−∞) = −∞, s(∞) = 0).

A diffusion is said to be in natural scale if s(x) = x. In this case, if I = R,
the diffusion (Xt, t ≥ 0) is a local martingale.

Speed Measure

The speed measure m is defined as the measure such that the infinitesimal
generator of X can be written as

Af(x) =
d

dm
d

ds
f(x)
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where
d

ds
f(x) = lim

h→0

f(x + h) − f(x)
s(x + h) − s(x)

,

and
d

dm
g(x) = lim

h→0

g(x + h) − g(x)
m(x, x + h)

.

In the case of diffusions of the form (5.3.1), the speed measure is absolutely
continuous with respect to Lebesgue measure, i.e., m(dx) = m(x)dx, hence

Af(x) =
d

dm
d

ds
f(x) =

1
m(x)

d

dx

(
1
s′

d

dx
f

)

=
1

m(x) s′(x)
f ′′(x) − s′′(x)

m(x) (s′)2(x)
f ′(x)

=
1

m(x) s′(x)
f ′′(x) +

2 b(x)
m(x) s′(x)σ2(x)

f ′(x)

where the last equality comes from formula (5.3.4). Since in this case the
infinitesimal generator has the form

Af(x) =
1
2
σ2(x)f ′′(x) + b(x)f ′(x),

the density of the speed measure is

m(x) =
2

σ2(x)s′(x)
. (5.3.5)

The density of the speed measure satisfies

1
2
(
σ2(x)m(x)

)′′
+ (s(x)b(x)))′(x) = 0 .

It is important to consider the local martingale s(Xt) only strictly before
the hitting time of the boundary. The reader should keep in mind the example
of the reflected Brownian motion, which is not a martingale, although s(x) = x
(see � Proposition 6.1.2.4).

If X is a diffusion with scale function s, we have seen that s(Xt) = βAt ,
where β is a Brownian motion. In terms of speed measure, the increasing
process A is the inverse of

Cu =
1
2

∫ u

0

m(βs)ds =
1
2

∫
m(dz)Lz

u(β) .
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Remark 5.3.2.3 Beware that some authors define the speed measure with a

factor 1/2, that is Af(x) =
1
2

d

dm
d

ds
f(x). Our convention, without this factor

1/2 is the same as Borodin and Salminen [109].

Exercise 5.3.2.4 Prove that, if s(X) is a martingale, then, equality (5.3.3)
holds. �

5.3.3 Boundary Points

Definition 5.3.3.1 The boundary points are classified as follows:

• The left-hand point � is an exit boundary if, for any x ∈]�, r[,
∫ x

	

m(]y, x[)s′(y)dy < ∞

and an entrance boundary if, for any x ∈]�, r[,
∫ x

	

m(]�, y[)s′(y)dy < ∞ .

• The right-hand point r is an exit boundary if, for any x ∈]�, r[,
∫ r

x

m(]x, y[)s′(y)dy < ∞

and an entrance boundary if, for any x ∈]�, r[,
∫ r

x

m(]y, r[)s′(y)dy < ∞ .

• A boundary point which is both entrance and exit is called non-singular.
• A boundary point that is neither entrance nor exit is called natural.

A diffusion reaches its non-singular boundaries with positive probability,
and it is possible to start a diffusion from a non-singular boundary.

An example where 0 is an entrance boundary is given by the BES3 process
(see � Chapter 6), or more generally by a BESδ with δ ≥ 2. We recall that
a BESδ process with δ ≥ 2 does not return to 0 after it has left this point.

Definition 5.3.3.2 Let X be a diffusion. The point � is said to be instan-
taneously reflecting if m({�}) = 0.

For the reflected BM |B|, the point 0 is instantaneously reflecting and the
Lebesgue measure of the set {t : |Bt| = 0} is zero.
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Example 5.3.3.3 We present, following Borodin and Salminen [109], the
computation of the scale function and speed measure for some important
diffusion processes:

• Drifted Brownian motion.
Suppose Xt = Bt + νt. A scale function for X is s(x) = exp(−2νx) for
ν < 0, and s(x) = − exp(−2νx) for ν > 0. The density of the speed
measure is m(x) = 2e2νx. The lifetime is ∞.

• Geometric Brownian motion. Let dSt = St(μdt+σdBt). We have seen
in Lemma 3.6.6.1 that S1−γ

t is a martingale for γ = 2μ/σ2. Hence
– a scale function of S is s(x) = −(x1−γ)/(1 − γ) for γ 	= 1 and lnx for

γ = 1,
– the density of the speed measure is m(x) = 2xγ−2/σ2.
The boundary points 0 and ∞ are natural.
– If γ > 1, then limt→∞ St(ω) = ∞, a.s.,
– if γ < 1, then limt→∞ St(ω) = 0, a.s.,
– if γ = 1, then lim inft→∞ St(ω) = 0, lim supt→∞ St(ω) = ∞ a.s..

• Reflected Brownian motion.
The process Xt = |Wt| is a diffusion on [0,∞[. The left-hand point 0 is a
non-singular boundary point. The scale function is s(x) = x, the density
of the speed measure is m(x) = 2.

• Bessel processes. A Bessel process (see � Section 6.1) with dimension
δ and index ν = δ

2 − 1 is a diffusion on ]0,∞[, or on [0,∞[ depending on
the value of ν and the boundary conditions at 0.
For all values of ν, the boundary point ∞ is natural. The boundary point
0 is
– exit-non-entrance if ν ≤ −1
– nonsingular if −1 < ν < 0
– entrance-not exit if ν ≥ 0.
In the nonsingular case, the boundary condition at 0 is usually reflection or
killing. A scale function for a BES(ν)is s(x) = x−2ν for ν < 0, s(x) = lnx
for ν = 0 and s(x) = −x−2ν for ν > 0. It follows that a scale function for
a BESQ(ν) is
– s(x) = x−ν for ν < 0,
– s(x) = lnx for ν = 0 and
– s(x) = −x−ν for ν > 0.
See � Proposition 6.1.2.4 for more information.
For ν > 0, the density of the speed measure is m(x) = ν−1x2ν+1.

• Affine equation.
Let

dXt = (αXt + 1)dt +
√

2 XtdWt , X0 = x .
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The scale function derivative is s′(x) = x−αe1/x and the speed density
function is m(x) = xαe−1/x.

• OU and Vasicek processes.
Let r be a (k, σ) Ornstein-Uhlenbeck process. A scale function derivative
is s′(x) = exp(kx2/σ2). If r is a (k, θ;σ) Vasicek process (see Section 2.6),
s′(x) = exp k(x − θ)2/σ2.

The first application of the concept of speed measure is Feller’s test for
non-explosion (see Definition 1.5.4.10). We shall see in the sequel that speed
measures are very useful tools.

Proposition 5.3.3.4 (Feller’s Test for non-explosion.) Let b, σ belong to
C1(R), and let X be the solution of

dXt = b(Xt)dt + σ(Xt)dWt

with τ its explosion time. The process does not explode, i.e., P(τ = ∞) = 1 if
and only if

∫ 0

−∞
[s(x) − s(−∞)] m(x)dx =

∫ ∞

0

[s(∞) − s(x)] m(x)dx = ∞ .

Proof: see McKean [637], page 65. �

Comments 5.3.3.5 This proposition extends the case where the coefficients
b and σ are only locally Lipschitz. Khasminskii [522] developed Feller’s test
for multidimensional diffusion processes (see McKean [637], page 103, Rogers
and Williams [742], page 299). See Borodin and Salminen [109], Breiman
[123], Freedman [357], Knight [528], Rogers and Williams [741] or [RY] for
more information on speed measures.

Exercise 5.3.3.6 Let dXt = θdt + σ
√

XtdWt, X0 > 0, where θ > 0 and, for
a < x < b let ψa,b(x) = Px(Tb(X) < Ta(X)). Prove that

ψa,b(x) =
x1−ν − a1−ν

b1−ν − a1−ν

where ν = 2θ/σ2. Prove also that if ν > 1, then T0 is infinite and that if
ν < 1, ψ0,b(x) = (x/b)1−ν . Thus, the process (1/Xt, t ≥ 0) explodes in the
case ν < 1. �

5.3.4 Change of Time or Change of Space Variable

In a number of computations, it is of interest to time change a diffusion into
BM by means of the scale function of the diffusion. It may also be of interest
to relate diffusions of the form
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Xt = x +
∫ t

0

b(Xs)ds +
∫ t

0

σ(Xs)dWs

to those for which σ = 1, that is Yt = y + βt +
∫ t

0
du μ(Yu) where β is a

Brownian motion. For this purpose, one may proceed by means of a change
of time or change of space variable, as we now explain.

(a) Change of Time

Let At =
∫ t

0
σ2(Xs)ds and assume that |σ| > 0. Let (Cu, u ≥ 0) be the inverse

of (At, t ≥ 0). Then

XCu = x + βu +
∫ u

0

dCh b(XCh
)

From h =
∫ Ch

0
σ2(Xs)ds, we deduce dCh =

dh

σ2(XCh
)
, hence

Yu : = XCu = x + βu +
∫ u

0

dh
b

σ2
(Yh)

where β is a Brownian motion.

(b) Change of Space Variable

Assume that ϕ(x) =
∫ x

0

dy

σ(y)
is well defined and that ϕ is of class C2. From

Itô’s formula

ϕ(Xt) = ϕ(x) +
∫ t

0

ϕ′(Xs)dXs +
1
2

∫ t

0

ϕ′′(Xs)σ2(Xs)ds

= ϕ(x) + Wt +
∫ t

0

ds

(
b

σ
(Xs) −

1
2
σ′(Xs)

)
.

Hence, setting Zt = ϕ(Xt), we get

Zt = z + Wt +
∫ t

0

b̂(Zs)ds

where b̂(z) = b
σ (ϕ−1(z)) − 1

2σ′(ϕ−1(z)).

Comment 5.3.4.1 See Doeblin [255] for some interesting applications.
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5.3.5 Recurrence

Definition 5.3.5.1 A diffusion X with values in I is said to be recurrent if

Px(Ty < ∞) = 1, ∀x, y ∈ I .

If not, the diffusion is said to be transient.

It can be proved that the homogeneous diffusion X given by (5.3.1) on ]�, r[
is recurrent if and only if s(�+) = −∞ and s(r−) = ∞. (See [RY], Chapter
VII, Section 3, for a proof given as an exercise.)

Example 5.3.5.2 A one-dimensional Brownian motion is a recurrent pro-
cess, a Bessel process (see � Chapter 6) with index strictly greater than 0
is a transient process. For the (recurrent) one-dimensional Brownian motion,
the times Ty are large, i.e., Ex(Tα

y ) < ∞, for x 	= y if and only if α < 1/2.

5.3.6 Resolvent Kernel and Green Function

Resolvent Kernel

The resolvent of a Markov process X is the family of operators f → Rλf

Rλf(x) = Ex

(∫ ∞

0

e−λtf(Xt)dt

)
.

The resolvent kernel of a diffusion is the density (with respect to Lebesgue
measure) of the resolvent operator, i.e., the Laplace transform in t of the
transition density pt(x, y):

Rλ(x, y) =
∫ ∞

0

e−λtpt(x, y)dt , (5.3.6)

where λ > 0 for a recurrent diffusion and λ ≥ 0 for a transient diffusion. It
satisfies

1
2
σ2(x)

∂2Rλ

∂x2
+ b(x)

∂Rλ

∂x
− λRλ = 0 for x 	= y

and Rλ(x, x) = 1. The Sturm-Liouville O.D.E.

1
2
σ2(x)u′′(x) + b(x)u′(x) − λu(x) = 0 (5.3.7)

admits two linearly independent continuous positive solutions (the basic
solutions) Φλ↑(x) and Φλ↓(x), with Φλ↑ increasing and Φλ↓ decreasing, which
are determined up to constant factors.

A straightforward application of Itô’s formula establishes that e−λtΦλ↑(Xt)
and e−λtΦλ↓(Xt) are local martingales, for λ > 0, hence, using carefully
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Doob’s optional stopping theorem, we obtain the Laplace transform of the
first hitting times:

Ex

(
e−λTy

)
=

⎧⎨
⎩

Φλ↑(x)/Φλ↑(y) if x < y

Φλ↓(x)/Φλ↓(y) if x > y
. (5.3.8)

Green Function

Let p
(m)
t (x, y) be the transition probability function relative to the speed

measure m(y)dy:
Px(Xt ∈ dy) = p

(m)
t (x, y)m(y)dy . (5.3.9)

It is a known and remarkable result that p
(m)
t (x, y) = p

(m)
t (y, x) (see Chung

[185] and page 149 in Itô and McKean [465]).
The Green function is the density with respect to the speed measure of

the resolvent operator: using p
(m)
t (x, y), the transition probability function

relative to the speed measure, there is the identity

Gλ(x, y) : =
∫ ∞

0

e−λtp
(m)
t (x, y)dt = w−1

λ Φλ↑(x ∧ y)Φλ↓(x ∨ y) ,

where the Wronskian

wλ : =
Φ′

λ↑(y)Φλ↓(y) − Φλ↑(y)Φ′
λ↓(y)

s′(y)
(5.3.10)

depends only on λ and not on y. Obviously

m(y)Gλ(x, y) = Rλ(x, y) ,

hence
Rλ(x, y) = w−1

λ m(y)Φλ↑(x ∧ y)Φλ↓(x ∨ y) . (5.3.11)

A diffusion is transient if and only if limλ→0 Gλ(x, y) < ∞ for some x, y ∈ I
and hence for all x, y ∈ I.

Comment 5.3.6.1 See Borodin and Salminen [109] and Pitman and Yor
[718, 719] for an extended study. Kent [520] proposes a methodology to invert
this Laplace transform in certain cases as a series expansion. See Chung [185]
and Chung and Zhao [187] for an extensive study of Green functions. Many
authors call Green functions our resolvent.
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5.3.7 Examples

Here, we present examples of computations of functions Φλ↓ and Φλ↑ for
certain diffusions.

• Brownian motion with drift μ: Xt = μt + σWt. In this case, the basic
solutions of

1
2
σ2u′′ + μu′ = λu

are

Φλ↑(x) = exp
[ x

σ2

(
−μ +

√
2λσ2 + μ2

)]
,

Φλ↓(x) = exp
[
− x

σ2

(
μ +

√
2λσ2 + μ2

)]
.

• Geometric Brownian motion: dXt = Xt(μdt + σdWt).
The basic solutions of

1
2
σ2x2u′′ + μxu′ = λu

are
Φλ↑(x) = x

1
σ2 (−μ+ σ2

2 +
√

2λσ2+(μ−σ2/2)2) ,

Φλ↓(x) = x− 1
σ2 (μ−σ2

2 +
√

2λσ2+(μ−σ2/2)2) .

• Bessel process with index ν. Let dXt = dWt+
(
ν + 1

2

)
1

Xt
dt. For ν > 0,

the basic solutions of

1
2
u′′ +

(
ν +

1
2

)
1
x

u′ = λu

are
Φλ↑(x) = x−νIν(x

√
2λ), Φλ↓(x) = x−νKν(x

√
2λ) ,

where Iν and Kν are the classical Bessel functions with index ν (see �
Appendix A.5.2).

• Affine Equation.
Let

dXt = (αXt + β)dt +
√

2XtdWt ,

with β 	= 0. The basic solutions of

x2u′′ + (αx + β)u′ = λu

are
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Φλ↑(x) =
(

β

x

)(ν+μ)/2

M

(
ν + μ

2
, 1 + μ,

β

x

)
,

Φλ↓(x) =
(

β

x

)(ν+μ)/2

U

(
ν + μ

2
, 1 + μ,

β

x

)

where M and U denote the Kummer functions (see � A.5.4 in the
Appendix) and μ =

√
ν2 + 4λ, 1 + ν = α.

• Ornstein-Uhlenbeck and Vasicek Processes. Let k > 0 and

dXt = k(θ − Xt)dt + σdWt , (5.3.12)

a Vasicek process. The basic solutions of

1
2
σ2u′′ + k(θ − x)u′ = λu

are

Φλ↑(x) = exp

(
k (x − θ)2

2σ2

)
D−λ/k

(
−x − θ

σ

√
2k

)
,

Φλ↓(x) = exp

(
k (x − θ)2

2σ2

)
D−λ/k

(
x − θ

σ

√
2k

)
.

Here, Dν is the parabolic cylinder function with index ν (see � Ap-
pendix A.5.4).

Comment 5.3.7.1 For OU processes, i.e., in the case θ = 0 in equation
(5.3.12), Ricciardi and Sato [732] obtained, for x > a, that the density of
the hitting time of a is

−kek(x2−a2)/2
∞∑

n=1

Dνn,a(x
√

2k)

D′
νn,a

(a
√

2k)
e−kνn,at

where 0 < ν1,a < · · · < νn,a < · · · are the zeros of ν → Dν(−a).
The expression D′

νn,a
denotes the derivative of Dν(a) with respect to ν,

evaluated at the point ν = νn,a. Note that the formula in Leblanc et al.
[573] for the law of the hitting time of a is only valid for a = 0, θ = 0. See
also the discussion in Subsection 3.4.1.

Extended discussions on this topic are found in Alili et al. [10], Göing-
Jaeschke and Yor [398, 397], Novikov [678], Patie [697] or Borodin and
Salminen [109].

• CEV Process.
The constant elasticity of variance process (See � Section 6.4 ) follows
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dSt = St(μdt + Sβ
t dWt) .

In the case β < 0, the basic solutions of

1
2
x2β+2u′′(x) + μxu′(x) = λu(x)

are

Φλ↑(x) = xβ+1/2eεx/2Mk,m(x), Φλ↓(x) = xβ+1/2eεx/2Wk,m(x)

where M and W are the Whittaker functions (see � Subsection A.5.7)
and

ε = sgn(μβ), m = − 1
4β

, k = ε

(
1
2

+
1
4β

)
− λ

2|μβ| .

See Davydov and Linetsky [225].

Exercise 5.3.7.2 Prove that the process

Xt = exp(aBt + bt)
(

x +
∫ t

0

ds exp(−aBs − bs)
)

satisfies

Xt = x + a

∫ t

0

XudBu +
∫ t

0

((
a2

2
+ b

)
Xu + 1

)
du .

(See Donati-Martin et al. [258] for further properties of this process, and
application to Asian options.) More generally, consider the process

dYt = (aYt + b)dt + (cYt + d)dWt ,

where c 	= 0. Prove that, if Xt = cYt + d, then

dXt = (αXt + β)dt + XtdWt

with α = a/c, β = b−da/c. From Tα(Y y) = Tcα+d(Xcx+d), deduce the Laplace
transform of first hitting times for the process Y . �

5.4 Non-homogeneous Diffusions

5.4.1 Kolmogorov’s Equations

Let
Lf(s, x) = b(s, x)∂xf(s, x) +

1
2
σ2(s, x)∂2

xxf(s, x) .

A fundamental solution of
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∂sf(s, x) + Lf(s, x) = 0 (5.4.1)

is a positive function p(x, s; y, t) defined for 0 ≤ s < t, x, y ∈ R, such that for
any function ϕ ∈ C0(R) and any t > 0 the function

f(s, x) =
∫

R

ϕ(y)p(s, x; t, y)dy

is bounded, is of class C1,2, satisfies (5.4.1) and obeys lims↑t f(s, x) = ϕ(x).
If b and σ are real valued bounded and continuous functions R

+ ×R such
that

(i) σ2(t, x) ≥ c > 0,
(ii) there exists α ∈]0, 1] such that for all (x, y), for all s, t ≥ 0,

|b(t, x) − b(s, y)| + |σ2(t, x) − σ2(s, y)| ≤ K(|t − s|α + |x − y|α) ,

then the equation
∂sf(s, x) + Lf(s, x) = 0

admits a strictly positive fundamental solution p. For fixed (y, t) the function
u(s, x) = p(s, x; t, y) is of class C1,2 and satisfies the backward Kolmogorov
equation that we present below. If in addition, the functions ∂xb(t, x),
∂xσ(t, x), ∂xxσ(t, x) are bounded and Hölder continuous, then for fixed (x, s)
the function v(t, y) = p(s, x; t, y) is of class C1,2 and satisfies the forward
Kolmogorov equation that we present below.

Note that a time-inhomogeneous diffusion process can be treated as a
homogeneous process. Instead of X, consider the space-time diffusion process
(t, Xt) on the enlarged state space R

+ × R
d.

We give Kolmogorov’s equations for the general case of inhomogeneous
diffusions

dXt = b(t, Xt)dt + σ(t, Xt)dWt .

Proposition 5.4.1.1 The transition probability density p(s, x; t, y) defined
for s < t as Px,s(Xt ∈ dy) = p(s, x; t, y)dy satisfies the two partial differential
equations (recall δx is the Dirac measure at x):

• The backward Kolmogorov equation:
⎧⎨
⎩

∂

∂s
p(s, x; t, y) +

1
2
σ2(s, x)

∂2

∂x2
p(s, x; t, y) + b(s, x)

∂

∂x
p(s, x; t, y) = 0 ,

lims→t p(s, x; t, y)dy = δx(dy) .

• The forward Kolmogorov equation
⎧⎨
⎩

∂

∂t
p(s, x; t, y) − 1

2
∂2

∂y2

(
p(s, x; t, y)σ2(t, y)

)
+

∂

∂y

(
p(s, x; t, y)b(t, y)

)
= 0 ,

limt→s p(s, x; t, y)dy = δx(dy) .
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Sketch of the Proof: The backward equation is really straightforward to
derive. Let ϕ be a C2 function with compact support. For any fixed t, the
martingale E(ϕ(Xt)|Fs) is equal to f(s, Xs) =

∫
R

ϕ(y)p(s, Xs; t, y)dy since X
is a Markov process. An application of Itô’s formula to f(s, Xs) leads to its
decomposition as a semi-martingale. Since it is in fact a true martingale its
bounded variation term must be equal to zero. This result being true for every
ϕ, it provides the backward equation.

The forward equation is in a certain sense the dual of the backward one.
Recall that if ϕ is a C2 function with compact support, then

Es,x(ϕ(Xt)) =
∫

R

ϕ(y)p(s, x; t, y)dy .

From Itô’s formula, for t > s

ϕ(Xt) = ϕ(Xs) +
∫ t

s

ϕ′(Xu)dXu +
1
2

∫ t

s

ϕ′′(Xu)σ2(u, Xu)du .

Hence, taking (conditional) expectations

Es,x(ϕ(Xt)) = ϕ(x) +
∫ t

s

Es,x

(
ϕ′(Xu)b(u, Xu) +

1
2
σ2(u, Xu)ϕ′′(Xu)

)
du

= ϕ(x) +
∫ t

s

du

∫
R

(
ϕ′(y)b(u, y) +

1
2
σ2(u, y)ϕ′′(y)

)
p(s, x; u, y)dy .

From the integration by parts formula (in the sense of distributions if the
coefficients are not smooth enough) and since ϕ and ϕ′ vanish at ∞:
∫

R

ϕ(y)p(s, x; t, y)dy = ϕ(x) −
∫ t

s

du

∫
R

ϕ(y)
∂

∂y
(b(u, y)p(s, x; u, y)) dy

+
1
2

∫ t

s

du

∫
R

ϕ(y)
∂2

∂y2

(
σ2(u, y)p(s, x; u, y)

)
dy .

Differentiating with respect to t, we obtain that

∂

∂t
p(s, x; t, y) = − ∂

∂y
(b(t, y)p(s, x; t, y)) +

1
2

∂2

∂y2

(
σ2(t, y)p(s, x; t, y)

)
.

�

Note that for homogeneous diffusions, the density

p(x; t, y) = Px(Xt ∈ dy)/dy

satisfies the backward Kolmogorov equation

1
2
σ2(x)

∂2p

∂x2
(x; t, y) + b(x)

∂p

∂x
(x; t, y) =

∂

∂t
p(x; t, y) .
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Comments 5.4.1.2 (a) The Kolmogorov equations are the topic studied by
Doeblin [255] in his now celebrated “ pli cacheté n0 11668”.

(b) We refer to Friedman [361] p.141 and 148, Karatzas and Shreve [513]
p.328, Stroock and Varadhan [812] and Nagasawa [663] for the multidimen-
sional case and for regularity assumptions for uniqueness of the solution to
the backward Kolmogorov equation. See also Itô and McKean [465], p.149 and
Stroock [810].

5.4.2 Application: Dupire’s Formula

Under the assumption that the underlying asset follows

dSt = St(rdt + σ(t, St)dWt)

under the risk-neutral probability, Dupire [284, 283] established a formula
relating the local volatility σ(t, x) and the value C(T,K) of a European Call
where K is the strike and T the maturity, i.e.,

1
2
K2σ2(T,K) =

∂T C(T,K) + rK∂KC(T,K)
∂2

KKC(T,K)
.

We have established this formula using a local-time methodology in Subsection
4.2.1; here we present the original proof of Dupire as an application of the
Kolmogorov backward equation. Let f(T, x) be the density of the random
variable ST , i.e.,

f(T, x)dx = P(ST ∈ dx) .

Then,

C(T,K) = e−rT

∫ ∞

0

(x − K)+f(T, x)dx = e−rT

∫ ∞

K

(x − K)f(T, x)dx

= e−rT

∫ ∞

K

dxf(T, x)
∫ x

K

dy = e−rT

∫ ∞

K

dy

∫ ∞

y

f(T, x)dx . (5.4.2)

By differentiation with respect to K,

∂C

∂K
(T,K) = −e−rT

∫ ∞

0

1{x>K}f(T, x)dx = −e−rT

∫ ∞

K

f(T, x)dx ,

hence, differentiating again

∂2C

∂K2
(T,K) = e−rT f(T,K) (5.4.3)

which allows us to obtain the law of the underlying asset from the prices of
the European options. For notational convenience, we shall now write C(t, x)
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instead of C(T, K). From (5.4.3), f(t, x) = ert ∂
2C

∂x2
(t, x), hence differentiating

both sides of this equality w.r.t. t gives

∂

∂t
f = rert ∂

2C

∂x2
+ ert ∂2

∂x2

∂

∂t
C .

The density f satisfies the forward Kolmogorov equation

∂f

∂t
(t, x) − 1

2
∂2

∂x2

(
x2σ2(t, x)f(t, x)

)
+

∂

∂x
(rxf(t, x)) = 0 ,

or
∂f

∂t
=

1
2

∂2

∂x2

(
x2σ2f

)
− rf − rx

∂

∂x
f . (5.4.4)

Replacing f and ∂f
∂t by their expressions in terms of C in (5.4.4), we obtain

rert ∂
2C

∂x2
+ ert ∂2

∂x2

∂

∂t
C = ert 1

2
∂2

∂x2

(
x2σ2 ∂2C

∂x2

)
− rert ∂

2C

∂x2
− rxert ∂

∂x

∂2C

∂x2

and this equation can be simplified as follows

∂2

∂x2

∂

∂t
C =

1
2

∂2

∂x2

(
x2σ2 ∂2C

∂x2

)
− 2r

∂2C

∂x2
− rx

∂

∂x

∂2C

∂x2

=
1
2

∂2

∂x2

(
x2σ2 ∂2C

∂x2

)
− r

(
2
∂2C

∂x2
+ x

∂

∂x

∂2C

∂x2

)

=
1
2

∂2

∂x2

(
x2σ2 ∂2C

∂x2

)
− r

∂2

∂x2

(
x

∂C

∂x

)
,

hence,
∂2

∂x2

∂C

∂t
=

∂2

∂x2

(
1
2
x2σ2 ∂2C

∂x2
− rx

∂C

∂x

)
.

Integrating twice with respect to x shows that there exist two functions α and
β, depending only on t, such that

1
2
x2σ2(t, x)

∂2C

∂x2
(t, x) = rx

∂C

∂x
(t, x) +

∂C

∂t
(t, x) + α(t)x + β(t) .

Assuming that the quantities
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x2σ2(t, x)
∂2C

∂x2
(t, x) = e−rtx2σ2(t, x)f(t, x)

x
∂C

∂x
(t, x) = −e−rtx

∫ ∞

x

f(t, y)dy

∂C

∂t
(t, x)

go to 0 as x goes to infinity, we obtain limx→∞ α(t)x + β(t) = 0,∀t, hence
α(t) = β(t) = 0 and
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1
2
x2σ2(t, x)

∂2C

∂x2
(t, x) = rx

∂C

∂x
(t, x) +

∂C

∂t
(t, x) .

The value of σ(t, x) in terms of the call prices follows. �

5.4.3 Fokker-Planck Equation

Proposition 5.4.3.1 Let dXt = b(t, Xt)dt + σ(t, Xt)dBt, and assume that h
is a deterministic function such that X0 > h(0), τ = inf{t ≥ 0 : Xt ≤ h(t)}
and

g(t, x)dx = P(Xt ∈ dx, τ > t) .

The function g(t, x) satisfies the Fokker-Planck equation

∂

∂t
g(t, x) = − ∂

∂x

(
b(t, x)g(t, x)

)
+

1
2

∂2

∂x2

(
σ2(t, x)g(t, x)

)
; x > h(t)

and the boundary conditions

lim
t→0

g(t, x)dx = δ(x − X0)

g(t, x)|x=h(t) = 0 .

Proof: The proof follows that of the backward Kolmogorov equation.

� We first note that

E(ϕ(Xt∧τ )) = E(ϕ(Xt)1{t≤τ}) + E(ϕ(Xτ )1{τ<t})

=
∫

R

ϕ(x)g(t, x)dx + E(ϕ(h(τ))1{τ<t})

=
∫

R

ϕ(x)g(t, x)dx +
∫ t

0

ϕ(h(u))μ(du)

where μ is the law of τ .

� If ϕ is a C2 function with compact support,

ϕ(Xt∧τ ) = ϕ(Xs∧τ ) +
∫ t∧τ

s∧τ

ϕ′(Xu)dXu +
1
2

∫ t∧τ

s∧τ

ϕ′′(Xu)σ2(u, Xu)du ,

hence,

E(ϕ(Xt∧τ )) = E(ϕ(Xs∧τ )) + E

(∫ t

s

1{u<τ}ϕ
′(Xu)b(u, Xu)du

)

+
1
2

E

(∫ t

s

1{u<τ}ϕ
′′(Xu)σ2(u, Xu)du

)

=
∫

ϕ(x)g(s, x)dx +
∫ s

0

ϕ(h(v))μ(dv)

+
∫ t

s

du

∫
R

dx

(
ϕ′(x)b(u, x) +

1
2
ϕ′′(x)σ2(u, x)

)
g(x, u) .
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This identity holds for any function ϕ of class C2, therefore, using integration
by parts for the last integral, and differentiation with respect to t, we get the
result. The law of τ is obtained by integration w.r.t. x. �

Using the Fokker-Planck equation, Iyengar [466], He et al. [426] and Zhou
[876] established the following result.

Proposition 5.4.3.2 Let Xi
t = αit+σiW

i
t where W 1, W 2 are two correlated

Brownian motions, with correlation ρ, and let mi
t be the running minimum of

Xi. The probability density

P(X1
t ∈ dx1, X

2
t ∈ dx2, m

1
t ∈ dm1, m

2
t ∈ dm2) =

p(x1, x2, t; m1, m2)dx1dx2dm1dm2

is given by

p(x1, x2, t; m1, m2) =
ea1x1+a2x2+bt

σ1σ2

√
1 − ρ2

h(x1, x2, t; m1, m2) (5.4.5)

with

h(x1, x2, t; m1, m2) =
2
βt

e−(r2+r2
0)/(2t)

∞∑
n=1

sin
(

nπθ0

β

)
sin
(

nπθ

β

)
I(nπ)/β

(rr0

t

)

where Iν is the modified Bessel function of index ν and

a1 =
α1σ2 − ρα2σ1

(1 − ρ2)σ2
1σ2

, a2 =
α2σ1 − ρα1σ2

(1 − ρ2)σ1σ2
2

b = −α1a1 − α2a2 +
1
2
(
σ2

1a2
1 + σ2

2a2
2

)
+ ρσ1σ2a1a2

β = tan−1

(
−
√

1 − ρ2

ρ

)
, for ρ < 0

= π − tan−1

(√
1 − ρ2

ρ

)
, for ρ > 0

z1 =
1√

1 − ρ2

[(
x1 − m1

σ1

)
− ρ

(
x2 − m2

σ2

)]
, z2 =

x2 − m2

σ2

z10 =
1√

1 − ρ2

[
−m1

σ1
+ ρ

m2

σ2

]
, z20 = −m2

σ2

r =
√

z2
1 + z2

2 , tan θ =
z2

z1
, θ ∈ [0, β]

r0 =
√

z2
10 + z2

20, tan θ0 =
z20

z10
, θ0 ∈ [0, β] .
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The joint law with the maximum Mi is

P(X1
t ∈ dx1, X

2
t ∈ dx2, m

1
t ≥ m1, M

2
t ≤ M2)

= p(x1,−x2, t; m1,−M2, α1,−α2, σ1, σ2,−ρ)dx1dx2

where p(x1, x2, t; m1, m2; α1, α2, σ1, σ2, ρ) is the density given in (5.4.5).

Comments 5.4.3.3 (a) The knowledge of the multidimensional laws of such
variables is important in the structural approach of credit risk. However,
the complexity of the above formula makes it difficult to implement. Let us
mention that the wrong formula given in Bielecki and Rutkowski [99] in the
first edition has been corrected in the second printing. See also the recent
paper of Patras [698] where a proof using probabilistic and geometric tools is
given and Blanchet-Scalliet and Patras [106] for application to counterparty
risk.

(b) Recently, Rogers and Shepp [739] have studied the correlation c(ρ) of
the maxima of correlated BMs. Denoting by M i

t = sups≤t W i
s the running

supremum of the BM W i, they established that

c(ρ) = (cosα)
∫ ∞

0

du
cosh(αu)

sinh(uπ/2)
tanh(uγ)

where α is given in terms of the correlation coefficient ρ between the BMs as
α = arcsin(ρ) ∈ [π/2, π/2] and 2γ = α + π/2.

The proof relies on three steps: the first one is to compute the joint
law of (M1

Θ, M2
Θ) for Θ an exponential random variable with parameter λ,

independent of (W 1, W 2). If

F (x1, x2) = P(x1 ≤ M1
Θ, x2 ≤ M2

Θ) ,

then it is easy to check that

c(ρ) = λ

∫ ∞

0

∫ ∞

0

f(x1, x2)dx1dx2

In a second step, the authors note that, since P(M1
Θ > xi) = e−

√
2λxi , then

F (x1, x2) = e−
√

2λx1 + e−
√

2λx2 − P(M1
Θ < x1, M

2
Θ < x2) .

They introduce Xi
t = M i

t − W i
t and obtain

P(M1
Θ < x1, M

2
Θ < x2) = P(τ ≤ Θ|X1

0 = x1, X2
0 = x2)

where τ = inf{t : X1
t X2

t = 0}. The last step consists of the computation of

F̂ (x1, x2) = P(τ ≤ Θ|X1
0 = x1, X2

0 = x2) = E(e−λτ |X1
0 = x1, X2

0 = x2)

which satisfies

2λf̂(x1, x2) = (∂2
x1x1

+ 2ρ∂x1∂x2 + ∂2
x1x1

)f̂(x1, x2)

with the boundary condition f̂ = 1 on the axes.
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5.4.4 Valuation of Contingent Claims

Suppose Vf (x, T ) is the value of a contingent claim with payoff f(ST ), i.e.,
Vf (x, T ) = EQ(e−rT f(ST )) where

dSt = St((r − κ)dt + σ(St)dWt), S0 = x

under the risk-adjusted probability Q. In terms of the transition probability
of S relative to the Lebesgue measure, that is Q(ST ∈ dy) = pT (x, y)dy the
value of the claim is:

Vf (x, T ) = EQ(e−rT f(ST )) = e−rT

∫ ∞

0

f(y)pT (x, y)dy .

Therefore, the quantity e−rT pT (x, y) can be interpreted as the price of a
security with the Dirac measure payoff δy. It is called the price of an Arrow-
Debreu security or the pricing kernel. The Laplace transform of Vf with
respect to the maturity is

V̂f (x, λ) =
∫ ∞

0

e−λT Vf (x, T )dT .

This can be written as

V̂f (x, λ) =
∫ ∞

0

dTe−λT e−rT

∫ ∞

0

dyf(y)pT (x, y) =
1
λ

EQ(e−ref(Se))

where e is an exponential random variable with parameter λ which is
independent of (St, t ≥ 0); this is the so-called exponential weighing, or
Canadization, an expression due to Carr [146], who uses this tool to price
options. In terms of an Arrow-Debreu security, we obtain that

V̂f (x, λ) =
∫ ∞

0

f(y)Â(y, λ)dy .

Here, Â is the Laplace transform of the price of an Arrow-Debreu security,

Â(y, λ) =
∫ ∞

0

e−λte−rtpt(x, y)dt = Rλ+r(x, y) .

We have seen in (5.3.11) that the resolvent is given in terms of the fundamental
solutions of the ODE (5.3.7), hence

V̂f (x, λ) =

w−1
ν

(
Φν↓(x)

∫ x

0

m(y)f(y)Φν↑(y)dy + Φν↑(x)
∫ ∞

x

m(y)f(y)Φν↓(y)dy

)

where ν = r + λ.
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5.5 Local Times for a Diffusion

5.5.1 Various Definitions of Local Times

We assume that (Xt, t ≥ 0) is a regular diffusion on R, with a C1 scale function
s and speed measure m. As discussed in Itô and McKean [465], Borodin and
Salminen [109] and [RY], there exists a jointly continuous family of local times
�x
t (X), sometimes called Itô-McKean local times or diffusion local times,

defined by the following occupation density formula
∫ t

0

du f(Xu) =
∫

R

m(dx) f(x)�x
t (X) (5.5.1)

for all positive Borel functions f .

The process (Yt = s(Xt), t ≥ 0) is a local martingale, and, as such (see
formula (4.1.16)), it admits a Tanaka-Meyer local time (Ly

t (Y ), t ≥ 0) at
level y, which is characterized by the property that

(
(Yt − y)+ − 1

2
Ly

t (Y ) , t ≥ 0
)

is a local martingale.

Assuming that m(dx) = m(x)dx, there exists an occupation local time
λx

t which is defined via the occupation time formula
∫ t

0

f(Xu)du =
∫

R

dxf(x)λx
t (X) .

Lemma 5.5.1.1 Let X be a diffusion, s a scale function and Y = s(X). For
all x and t ≥ 0, one has

Lx
t (X) =

1
s′(x)

L
s(x)
t (Y ), L

s(x)
t (Y ) = 2�x

t (X) .

Hence, �x
t (X) is the Tanaka-Meyer diffusion local time of s(X) at level s(x).

Assuming that the density m exists,

λx
t = m(x)�x

t .

Proof: Let Ly(Y ) be the Tanaka-Meyer local time of Y = s(X).
∫

R

f(y)Ly
t (Y )dy =

∫ t

0

f(Yu)d〈Y 〉u =
∫ t

0

f(s(Xu))(s′(Xu))2d〈X〉u

=
∫

R

f(s(x)) (s′(x))2Lx
t (X)dx

=
∫

R

f(y) s′(s−1(y))Ls−1(y)
t (X)dy .
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Hence
Ly

t (Y ) = s′(s−1(y))Ls−1(y)
t (X)

so that

L
s(x)
t (Y ) = s′(x)Lx

t (X) . (5.5.2)

From the definition of Lx
t (X), and recalling that m(x)σ2(x) = 2

s′(x) (see
equality 5.3.5), one obtains, on the one hand

∫ t

0

d〈X〉uf(Xu) =
∫

R

f(x)Lx
t (X)dx .

On the other hand,
∫ t

0

d〈X〉uf(Xu) =
∫ t

0

σ2(Xu)f(Xu)du

=
∫

R

m(x)σ2(x)f(x)�x
t (X)dx =

∫
R

2
s′(x)

f(x)�x
t dx

and it follows that (see formula (5.3.2))

Lx
t (X) =

2
s′(x)

�x
t (X) ,

hence, from (5.5.2), L
s(x)
t (Y ) = 2�x

t (X). �

We recall that (see equality (5.3.9), there exists a density p(m) such that

Ex0(f(Xu)) =
∫

m(dx)p(m)
u (x0, x)f(x) .

Consequently

Ex0(�
x
t (X)) =

∫ t

0

du p(m)
u (x0, x) .

5.5.2 Some Diffusions Involving Local Time

Example 5.5.2.1 Skew Brownian Motion. The skew BM with parameter
α is a process Y satisfying Yt = Wt +αL0

t (Y ) where W is a Brownian motion,
L0(Y ) is the Tanaka-Meyer local time of the process Y at level 0, and α ≤ 1/2.
Note that this process, which turns out to be a continuous strong Markov
process, is not an Itô process. In order to prove the existence of the skew
Brownian motion, we look for a function ϕ of the form βy+ − γy− for two
constants β and γ such that ϕ(Yt) is a martingale, which solves an SDE. Using
Tanaka’s formula, we obtain
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ϕ(Yt) = β

(∫ t

0

1{Ys>0}dYs +
1
2
L0

t (Y )
)
− γ

(
−
∫ t

0

1{Ys≤0}dYs +
1
2
L0

t (Y )
)

= β

(∫ t

0

1{Ys>0}dWs +
1
2
L0

t (Y )
)

− γ

(
−
∫ t

0

1{Ys≤0}dWs − αL0
t (Y ) +

1
2
L0

t (Y )
)

=
∫ t

0

(
β1{Ys>0} + γ1{Ys≤0}

)
dWs +

1
2

(β − γ + 2αγ)L0
t (Y ) .

Hence, for β − γ + 2αγ = 0, β > 0 and γ > 0, the process Xt = ϕ(Yt) is a
martingale solution of the stochastic differential equation

dXt = (β1Xt>0 + γ1Xt≤0)dWt . (5.5.3)

This SDE has no strong solution for β and γ strictly positive but has a unique
strictly weak solution (see Barlow [47]).

The process Y is such that |Y | is a reflecting Brownian motion. Indeed,

dY 2
t = 2Yt(dWt + αdL0

t (Y )) + dt = 2YtdWt + dt .

Walsh [833] proved that, conversely, the only continuous diffusions whose
absolute values are reflected BM’s are the skew BM’s. It can be shown that
for fixed t > 0, Yt

law= ε|Wt| where W is a BM independent of the Bernoulli
r.v. ε, P(ε = 1) = p, P(ε = −1) = 1 − p where p = 1

2(1−α) .

The relation (4.1.13) between L0
t (Y ) and L0−

t (Y ) reads

L0
t (Y ) − L0−

t (Y ) = 2
∫ t

0

1{Ys=0}dYs .

The integral
∫ t

0
1{Ys=0}dWs is null and

∫ t

0
1{Ys=0}dL0

s(Y ) = L0
t (Y ), hence

L0
t (Y ) − L0−

t (Y ) = 2αL0
t (Y )

that is L0−
t (Y ) = L0

t (Y )(1−2α), which proves the nonexistence of a skew BM
for α > 1/2.

Comment 5.5.2.2 For several studies of skew Brownian motion, and more
generally of processes Y satisfying

Yt =
∫ t

0

σ(Ys)dBs +
∫

ν(dy)Ly
t (Y )

we refer to Barlow [47], Harrison and Shepp [424], Ouknine [687], Le Gall
[567], Lejay [575], Stroock and Yor [813] and Weinryb [838].
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Example 5.5.2.3 Sticky Brownian Motion. Let x > 0. The solution of

Xt = x +
∫ t

0

1{Xs>0}dWs + θ

∫ t

0

1{Xs=0}ds (5.5.4)

with θ > 0 is called sticky Brownian motion with parameter θ. From Tanaka’s
formula,

X−
t = −θ

∫ t

0

1{Xs=0}ds +
1
2
Lt(X) .

The process θ
∫ t

0
1{Xs=0}ds is increasing, hence, from Skorokhod’s lemma,

Lt(X) = 2θ
∫ t

0
1{Xs=0}ds and X−

t = 0. Hence, we may write the equation
(5.5.4) as

Xt = x +
∫ t

0

1{Xs>0}dWs +
1
2
Lt(X)

which enables us to write

Xt = β

(∫ t

0

1{Xs>0}ds

)

where (β(u), u ≥ 0) is a reflecting BM starting from x. See Warren [835] for
a thorough study of sticky Brownian motion.

Exercise 5.5.2.4 Let θ > 0 and X be the sticky Brownian motion with
X0 = 0.

(1) Prove that Lx
t (X) = 0, for every x < 0; then, prove that Xt ≥ 0, a.s.

(2) Let A+
t =

∫ t

0
ds1{Xs>0}, A

0
t =

∫ t

0
ds1{Xs=0}, and define their inverses

α+
u = inf{t : A+

t > u} and α0
u = inf{t : A0

t > u}. Identify the law of
(Xα+

u
, u ≥ 0).

(3) Let G be a Gaussian variable, with unit variance and 0 expectation.
Prove that, for any u > 0 and t > 0

α+
u

law= u +
1
θ

√
u |G| ; A+

t
law=
(√

t +
G2

4θ2
− |G|

2θ

)2

deduce that

A0
t

law=
|G|
θ

√
t +

G2

4θ2
− G2

2θ2

and compute E(A0
t ).

Hint: The process Xα+
u

= W+
u + θA0

α+
u

where W+
u is a BM and A0

α+
u

is an
increasing process, constant on {u : Xα+

u
> 0}, solves Skorokhod equation.

Therefore it is a reflected BM. The obvious equality t = A+
t + A0

t leads to
α+

u = u + A0
α+

u
, and aA0

α+
u

law= L0
u. �
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5.6 Last Passage Times

We now present the study of the law (and the conditional law) of some last
passage times for diffusion processes. In this section, W is a standard Brownian
motion and its natural filtration is F. These random times have been studied
in Jeanblanc and Rutkowski [486] as theoretical examples of default times,
in Imkeller [457] as examples of insider private information and, in a pure
mathematical point of view, in Pitman and Yor [715] and Salminen [754].

5.6.1 Notation and Basic Results

If τ is a random time, then, it is easy to check that the process P(τ > t|Ft) is
a super-martingale. Therefore, it admits a Doob-Meyer decomposition.

Lemma 5.6.1.1 Let τ be a positive random time and

P(τ > t|Ft) = Mt − At

the Doob-Meyer decomposition of the super-martingale Zt = P(τ > t|Ft).
Then, for any predictable positive process H,

E(Hτ ) = E

(∫ ∞

0

dAuHu

)
.

Proof: For any process H of the form H = Λs1]s,t] with Λs ∈ bFs, one has

E(Hτ ) = E(Λs1]s,t](τ)) = E(Λs(At − As)) .

The result follows from MCT. �

Comment 5.6.1.2 The reader will find in Nikeghbali and Yor [676] a
multiplicative decomposition of the super-martingale Z as Zt = ntDt where
D is a decreasing process and n a local martingale, and applications to
enlargement of filtration.

We now show that, in a diffusion setup, At and Mt may be computed explicitly
for some random times τ .

5.6.2 Last Passage Time of a Transient Diffusion

Proposition 5.6.2.1 Let X be a transient homogeneous diffusion such that
Xt → +∞ when t → ∞, and s a scale function such that s(+∞) = 0 (hence,
s(x) < 0 for x ∈ R) and Λy = sup{t : Xt = y} the last time that X hits y.
Then,

Px(Λy > t|Ft) =
s(Xt)
s(y)

∧ 1 .
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Proof: We follow Pitman and Yor [715] and Yor [868], p.48, and use that
under the hypotheses of the proposition, one can choose a scale function such
that s(x) < 0 and s(+∞) = 0 (see Sharpe [784]).

Observe that

Px

(
Λy > t|Ft

)
= Px

(
inf
u≥t

Xu < y
∣∣∣Ft

)
= Px

(
sup
u≥t

(−s(Xu)) > −s(y)
∣∣∣Ft

)

= PXt

(
sup
u≥0

(−s(Xu)) > −s(y)
)

=
s(Xt)
s(y)

∧ 1,

where we have used the Markov property of X, and the fact that if M is a
continuous local martingale with M0 = 1, Mt ≥ 0, and lim

t→∞
Mt = 0, then

sup
t≥0

Mt
law=

1
U

,

where U has a uniform law on [0, 1] (see Exercise 1.2.3.10). �

Lemma 5.6.2.2 The FX-predictable compensator A associated with the

random time Λy is the process A defined as At = − 1
2s(y)

L
s(y)
t (Y ), where

L(Y ) is the local time process of the continuous martingale Y = s(X).

Proof: From x∧y = x− (x−y)+, Proposition 5.6.2.1 and Tanaka’s formula,
it follows that

s(Xt)
s(y)

∧ 1 = Mt +
1

2s(y)
L

s(y)
t (Y ) = Mt +

1
s(y)

�y
t (X)

where M is a martingale. The required result is then easily obtained. �

We deduce the law of the last passage time:

Px(λy > t) =
(

s(x)
s(y)

∧ 1
)

+
1

s(y)
Ex(�y

t (X))

=
(

s(x)
s(y)

∧ 1
)

+
1

s(y)

∫ t

0

du p(m)
u (x, y) .

Hence, for x < y

Px(Λy ∈ dt) = − dt

s(y)
p
(m)
t (x, y) = − dt

s(y)m(y)
pt(x, y)

= −σ2(y)s′(y)
2s(y)

pt(x, y)dt . (5.6.1)

For x > y, we have to add a mass at point 0 equal to

1 −
(

s(x)
s(y)

∧ 1
)

= 1 − s(x)
s(y)

= Px(Ty < ∞) .
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Example 5.6.2.3 Last Passage Time for a Transient Bessel Process:
For a Bessel process of dimension δ > 2 and index ν (see � Chapter 6),
starting from 0,

P
δ
0(Λa < t) = P

δ
0(inf

u≥t
Ru > a) = P

δ
0(sup

u≥t
R−2ν

u < a−2ν)

= P
δ
0

(
R−2ν

t

U
< a−2ν

)
= P

δ
0(a

2ν < UR2ν
t ) = P

δ
0

(
a2

R2
1U

1/ν
< t

)
.

Thus, the r.v. Λa = a2

R2
1U1/ν is distributed as a2

2γ(ν+1)βν,1

law= a2

2γ(ν) where γ(ν)
is a gamma variable with parameter ν:

P(γ(ν) ∈ dt) = 1{t≥0}
tν−1e−t

Γ (ν)
dt .

Hence,

P
δ
0(Λa ∈ dt) = 1{t≥0}

1
tΓ (ν)

(
a2

2t

)ν

e−a2/(2t)dt . (5.6.2)

We might also find this result directly from the general formula (5.6.1) and
apply formula (6.2.3) for the expression of the density.

Proposition 5.6.2.4 For H a positive predictable process

Ex(HΛy |Λy = t) = Ex(Ht|Xt = y)

and, for y > x,

Ex(HΛy ) =
∫ ∞

0

Ex(Λy ∈ dt) Ex(Ht|Xt = y) .

In the case x > y,

Ex(HΛy ) = H0

(
1 − s(x)

s(y)

)
+
∫ ∞

0

Ex(Λy ∈ dt) Ex(Ht|Xt = y) .

Proof: We have shown in the previous Proposition 5.6.2.1 that

Px(Λy > t|Ft) =
s(Xt)
s(y)

∧ 1 .

From Itô-Tanaka’s formula

s(Xt)
s(y)

∧ 1 =
s(x)
s(y)

∧ 1 +
∫ t

0

1{Xu>y} d
s(Xu)
s(y)

− 1
2
L

s(y)
t (s(X)) .

It follows, using Lemma 5.6.1.1 that



5.6 Last Passage Times 297

Ex(HΛx) =
1
2

Ex

(∫ ∞

0

Hu duLs(y)
u (s(X))

)

=
1
2

Ex

(∫ ∞

0

Ex(Hu|Xu = y) duLs(y)
u (s(X))

)
.

Therefore, replacing Hu by Hug(u), we get

Ex (HΛxg(Λx)) =
1
2

Ex

(∫ ∞

0

g(u) Ex (Hu|Xu = y) duLs(y)
u (s(X))

)
. (5.6.3)

Consequently, from (5.6.3), we obtain

Px (Λy ∈ du) =
1
2
duEx

(
Ls(y)

u (s(X))
)

Ex

(
HΛy |Λy = t

)
= Ex(Ht|Xt = y) .

�

Remark 5.6.2.5 In the literature, some studies of last passage times employ
time inversion. See an example in the next Exercise 5.6.2.6.

Exercise 5.6.2.6 Let X be a drifted Brownian motion with positive drift ν
and Λν

y its last passage time at level y. Prove that

Px(Λ(ν)
y ∈ dt) =

ν√
2πt

exp
(
− 1

2t
(x − y + νt)2

)
dt ,

and

Px(Λ(ν)
y = 0) =

{
1 − e−2ν(x−y), for x > y
0 for x < y .

Prove, using time inversion that, for x = 0,

Λ(ν)
y

law=
1

T
(y)
ν

where
T (b)

a = inf{t : Bt + bt = a}

See Madan et al. [611]. �

5.6.3 Last Passage Time Before Hitting a Level

Let Xt = x + σWt where the initial value x is positive and σ is a positive
constant. We consider, for 0 < a < x the last passage time at the level a
before hitting the level 0, given as ga

T0
(X) = sup {t ≤ T0 : Xt = a}, where

T0 = T0(X) = inf {t ≥ 0 : Xt = 0} .
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(In a financial setting, T0 can be interpreted as the time of bankruptcy.)
Then, setting α = (a−x)/σ, T−x/σ(W ) = inf{t : Wt = −x/σ} and dα

t (W ) =
inf{s ≥ t : Ws = α}

Px

(
ga

T0
(X) ≤ t|Ft

)
= P

(
dα

t (W ) > T−x/σ(W )|Ft

)

on the set {t < T−x/σ(W )}. It is easy to prove that

P
(
dα

t (W ) < T−x/σ(W )|Ft

)
= Ψ(Wt∧T−x/σ(W ), α,−x/σ),

where the function Ψ(·, a, b) : R → R equals, for a > b,

Ψ(y, a, b) = Py(Ta(W ) > Tb(W )) =

⎧⎨
⎩

(a − y)/(a − b) for b < y < a,
1 for a < y,
0 for y < b.

(See Proposition 3.5.1.1 for the computation of Ψ .) Consequently, on the set
{T0(X) > t} we have

Px

(
ga

T0
(X) ≤ t|Ft

)
=

(α − Wt∧T0)
+

a/σ
=

(α − Wt)+

a/σ
=

(a − Xt)+

a
. (5.6.4)

As a consequence, applying Tanaka’s formula, we obtain the following result.

Lemma 5.6.3.1 Let Xt = x + σWt, where σ > 0. The F-predictable
compensator associated with the random time ga

T0(X) is the process A defined
as At = 1

2αLα
t∧T−x/σ(W )(W ), where Lα(W ) is the local time of the Brownian

Motion W at level α = (a − x)/σ.

5.6.4 Last Passage Time Before Maturity

In this subsection, we study the last passage time at level a of a diffusion
process X before the fixed horizon (maturity) T . We start with the case where
X = W is a Brownian motion starting from 0 and where the level a is null:

gT = sup{t ≤ T : Wt = 0} .

Lemma 5.6.4.1 The F-predictable compensator associated with the random
time gT equals

At =

√
2
π

∫ t∧T

0

dLs√
T − s

,

where L is the local time at level 0 of the Brownian motion W.

Proof: It suffices to give the proof for T = 1, and we work with t < 1. Let
G be a standard Gaussian variable. Then

P

( a2

G2
> 1 − t

)
= Φ

( |a|√
1 − t

)
,
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where Φ(x) =
√

2
π

∫ x

0

exp(−u2

2
)du. For t < 1, the set {g1 ≤ t} is equal to

{dt > 1}. It follows from (4.3.3) that

P(g1 ≤ t|Ft) = Φ

(
|Wt|√
1 − t

)
.

Then, the Itô-Tanaka formula combined with the identity

xΦ′(x) + Φ′′(x) = 0

leads to

P(g1 ≤ t|Ft) =
∫ t

0

Φ′
(

|Ws|√
1 − s

)
d

(
|Ws|√
1 − s

)
+

1
2

∫ t

0

ds

1 − s
Φ′′
(

|Ws|√
1 − s

)

=
∫ t

0

Φ′
(

|Ws|√
1 − s

)
sgn(Ws)√

1 − s
dWs +

∫ t

0

dLs√
1 − s

Φ′
(

|Ws|√
1 − s

)

=
∫ t

0

Φ′
(

|Ws|√
1 − s

)
sgn(Ws)√

1 − s
dWs +

√
2
π

∫ t

0

dLs√
1 − s

.

It follows that the F-predictable compensator associated with g1 is

At =

√
2
π

∫ t

0

dLs√
1 − s

, (t < 1) .

�

These results can be extended to the last time before T when the Brownian
motion reaches the level α, i.e., gα

T = sup {t ≤ T : Wt = α}, where we set
sup(∅) = T. The predictable compensator associated with gα

T is

At =

√
2
π

∫ t∧T

0

dLα
s√

T − s
,

where Lα is the local time of W at level α.

We now study the case where Xt = x+μ t+σ Wt, with constant coefficients
μ and σ > 0. Let

ga
1 (X) = sup {t ≤ 1 : Xt = a}

= sup {t ≤ 1 : νt + Wt = α}

where ν = μ/σ and α = (a − x)/σ. From Lemma 4.3.9.1, setting

Vt = α − νt − Wt = (a − Xt)/σ ,

we obtain
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P(ga
1 (X) ≤ t|Ft) = (1 − eνVtH(ν, |Vt|, 1 − t))1{T0(V )≤t},

where

H(ν, y, s) = e−νyN
(

νs − y√
s

)
+ eνyN

(
−νs − y√

s

)
.

Using Itô’s lemma, we obtain the decomposition of 1− eνVtH(ν, |Vt|, 1− t) as
a semi-martingale Mt + Ct.

We note that C increases only on the set {t : Xt = a}. Indeed, setting
ga
1 (X) = g, for any predictable process H, one has

E(Hg) = E

(∫ ∞

0

dCsHs

)

hence, since Xg = a,

0 = E(1Xg �=a) = E

(∫ ∞

0

dCs1Xs �=a

)
.

Therefore, dCt = κtdLa
t (X) and, since L increases only at points such that

Xt = a (i.e., Vt = 0), one has

κt = H ′
x(ν, 0, 1 − t) .

The martingale part is given by dMt = mtdWt where

mt = eνVt (νH(ν, |Vt|, 1 − t) − sgn(Vt)H ′
x(ν, |Vt|, 1 − t)) .

Therefore, the predictable compensator associated with ga
1 (X) is

∫ t

0

H ′
x(ν, 0, 1 − s)

eνVsH(ν, 0, 1 − s)
dLa

s .

Exercise 5.6.4.2 The aim of this exercise is to compute, for t < T < 1 ,
the quantity E(h(WT )1{T<g1}|Gt), which is the price of the claim h(ST ) with
barrier condition 1{T<g1}.

Prove that

E(h(WT )1{T<g1}|Ft) = E(h(WT )|Ft) − E

(
h(WT )Φ

( |WT |√
1 − T

) ∣∣∣Ft

)
,

where

Φ(x) =

√
2
π

∫ x

0

exp
(
−u2

2

)
du .

Define k(w) = h(w)Φ(|w|/
√

1 − T ). Prove that E
(
k(WT )

∣∣Ft

)
= k̃(t, Wt),

where

k̃(t, a) = E

(
k(WT−t + a)

)

=
1√

2π(T − t)

∫
R

h(u)Φ
( |u|√

1 − T

)
exp

(
− (u − a)2

2(T − t)

)
du.

�
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5.6.5 Absolutely Continuous Compensator

From the preceding computations, the reader might think that the F-predicta-
ble compensator is always singular w.r.t. the Lebesgue measure. This is not
the case, as we show now. We are indebted to Michel Émery for this example.

Let W be a Brownian motion and let τ = sup {t ≤ 1 : W1 − 2Wt = 0},
that is the last time before 1 when the Brownian motion is equal to half of its
terminal value at time 1. Then,

{τ ≤ t} =
{

inf
t≤s≤1

2Ws ≥ W1 ≥ 0
}
∪
{

sup
t≤s≤1

2Ws ≤ W1 ≤ 0
}

.

� The quantity

P(τ ≤ t, W1 ≥ 0|Ft) = P

(
inf

t≤s≤1
2Ws ≥ W1 ≥ 0|Ft

)

can be evaluated using the equalities
{

inf
t≤s≤1

Ws ≥ W1

2
≥ 0
}

=
{

inf
t≤s≤1

(Ws − Wt) ≥
W1

2
− Wt ≥ −Wt

}

=

{
inf

0≤u≤1−t
(W̃u) ≥ W̃1−t

2
− Wt

2
≥ −Wt

}
,

where (W̃u = Wt+u − Wt, u ≥ 0) is a Brownian motion independent of Ft. It
follows that

P

(
inf

t≤s≤1
Ws ≥ W1

2
≥ 0|Ft

)
= Ψ(1 − t, Wt) ,

where

Ψ(s, x) = P

(
inf

0≤u≤s
W̃u ≥ W̃s

2
− x

2
≥ −x

)
= P

(
2Ms − Ws ≤ x

2
, Ws ≤ x

2

)

= P

(
2M1 − W1 ≤ x

2
√

s
, W1 ≤ x

2
√

s

)
.

� The same kind of computation leads to

P

(
sup

t≤s≤1
2Ws ≤ W1 ≤ 0|Ft

)
= Ψ(1 − t,−Wt) .

� The quantity Ψ(s, x) can now be computed from the joint law of the
maximum and of the process at time 1; however, we prefer to use Pitman’s
theorem (see � Section 5.7): let Ũ be a r.v. uniformly distributed on [−1, +1]
independent of R1 := 2M1 − W1, then
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P(2M1 − W1 ≤ y, W1 ≤ y) = P(R1 ≤ y, ŨR1 ≤ y)

=
1
2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du .

For y > 0,

1
2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du =
1
2

∫ 1

−1

P(R1 ≤ y)du = P(R1 ≤ y) .

For y < 0 ∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du = 0 .

Therefore

P(τ ≤ t|Ft) = Ψ(1 − t, Wt) + Ψ(1 − t,−Wt) = ρ

(
|Wt|√
1 − t

)

where

ρ(y) = P(R1 ≤ y) =

√
2
π

∫ y

0

x2e−x2/2dx .

Then Zt = P(τ > t|Ft) = 1−ρ( |Wt|√
1−t

). We can now apply Tanaka’s formula
to the function ρ. Noting that ρ′(0) = 0, the contribution to the Doob-Meyer
decomposition of Z of the local time of W at level 0 is 0. Furthermore, the
increasing process A of the Doob-Meyer decomposition of Z is given by

dAt =

(
1
2
ρ′′
(

|Wt|√
1 − t

)
1

1 − t
+

1
2
ρ′
(

|Wt|√
1 − t

)
|Wt|√
(1 − t)3

)
dt

=
1

1 − t

|Wt|√
1 − t

e−W 2
t /2(1−t)dt .

We note that A may be obtained as the dual predictable projection on
the Brownian filtration of the process A

(W1)
s , s ≤ 1, where (A(x)

s , s ≤ 1) is the
compensator of τ under the law of the Brownian bridge P

(1)
0→x.

5.6.6 Time When the Supremum is Reached

Let W be a Brownian motion, Mt = sups≤t Ws and let τ be the time when
the supremum on the interval [0, 1] is reached, i.e.,

τ = inf{t ≤ 1 : Wt = M1} = sup{t ≤ 1 : Mt − Wt = 0} .

Let us denote by ζ the positive continuous semimartingale

ζt =
Mt − Wt√

1 − t
, t < 1.
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Let Ft = P(τ ≤ t|Ft). Since Ft = Φ(ζt), (where Φ(x) =
√

2
π

∫ x

0
exp(−u2

2 )du,
see Example 4.1.7.5) using Itô’s formula, we obtain the canonical decomposi-
tion of F as follows:

Ft =
∫ t

0

Φ′(ζu) dζu +
1
2

∫ t

0

Φ′′(ζu)
du

1 − u

(i)
= −

∫ t

0

Φ′(ζu)
dWu√
1 − u

+

√
2
π

∫ t

0

dMu√
1 − u

(ii)
= Ut + F̃t,

where Ut = −
∫ t

0
Φ′(ζu)

dWu√
1 − u

is a martingale and F̃ a predictable increasing

process. To obtain (i), we have used that xΦ′ +Φ′′ = 0; to obtain (ii), we have
used that Φ′(0) =

√
2/π and also that the process M increases only on the

set
{u ∈ [0, t] : Mu = Wu} = {u ∈ [0, t] : ζu = 0}.

5.6.7 Last Passage Times for Particular Martingales

Proposition 5.6.7.1 Let X be a continuous positive local martingale such
that X0 = x, and limt→∞ Xt = 0. Let Σt = sups≤t Xs the (continuous)
supremum process. We consider the last passage time of the process X at the
level Σ∞:

g = sup {t ≥ 0 : Xt = Σ∞}
= sup {t ≥ 0 : Σt − Xt = 0} . (5.6.5)

Consider the supermartingale

Zt = P (g > t | Ft) .

Then:
(i) the multiplicative decomposition of the supermartingale Z reads

Zt =
Xt

Σt
,

(ii) The Doob-Meyer (additive decomposition) of Z is:

Zt = mt − log (Σt) , (5.6.6)

where m is the F-martingale

mt = E [log Σ∞|Ft] .

Proof: We recall the Doob’s maximal identity 1.2.3.10. Applying (1.2.2) to
the martingale (Yt := XT+t, t ≥ 0) for the filtration FT := (Ft+T , t ≥ 0),
where T is a F-stopping time, we obtain that
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P
(
ΣT > a|FT

)
=
(

XT

a

)
∧ 1, (5.6.7)

where
ΣT := sup

u≥T
Xu.

Hence XT

ΣT is a uniform random variable on (0, 1), independent of FT . The
multiplicative decomposition of Z follows from

P (g > t | Ft) = P

(
sup
u≥t

Xu ≥ Σt | Ft

)
=
(

Xt

Σt

)
∧ 1 =

Xt

Σt

From the integration by parts formula applied to Xt

Σt
, and using the fact

that X, hence Σ are continuous, we obtain

dZt =
dXt

Σt
− Xt

dΣt

(Σt)2

Since dΣt charges only the set {t : Xt = Σt}, one has

dZt =
dXt

Σt
− dΣt

Σt
=

dXt

Σt
− d(lnΣt)

From the uniqueness of the Doob-Meyer decomposition, we obtain that the
predictable increasing part of the submartingale Z is lnΣt, hence

Zt = mt − lnΣt

where m is a martingale. The process Z is of class (D), hence m is a uniformly
integrable martingale. From Z∞ = 0, one obtains that mt = E(lnΣ∞|Ft). �

Remark 5.6.7.2 From the Doob-Meyer (additive) decomposition of Z, we
have 1−Zt = (1−mt) + lnΣt. From Skorokhod’s reflection lemma presented
in Subsection 4.1.7 we deduce that

ln Σt = sup
s≤t

ms − 1

We now study the Azéma supermartingale associated with the random
time L, a last passage time or the end of a predictable set Γ , i.e.,

L(ω) = sup{t : (t, ω) ∈ Γ}

(See � Section 5.9.4 for properties of these times in an enlargement of
filtration setting).
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Proposition 5.6.7.3 Let L be the end of a predictable set. Assume that all
the F-martingales are continuous and that L avoids the F-stopping times.
Then, there exists a continuous and nonnegative local martingale N , with
N0 = 1 and limt→∞ Nt = 0, such that:

Zt = P (L > t | Ft) =
Nt

Σt

where Σt = sups≤t Ns. The Doob-Meyer decomposition of Z is

Zt = mt − At

and the following relations hold

Nt = exp
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2

s

)

Σt = exp(At)

mt = 1 +
∫ t

0

dNs

Σs
= E(lnS∞|Ft)

Proof: As recalled previously, the Doob-Meyer decomposition of Z reads
Zt = mt − At with m and A continuous, and dAt is carried by {t : Zt = 1}.
Then, for t < T0 := inf{t : Zt = 0}

− ln Zt = −
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2

s

)
+ At

From Skorokhod’s reflection lemma (see Subsection 4.1.7) we deduce that

At = sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d〈m〉s
Z2

s

)

Introducing the local martingale N defined by

Nt = exp
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2

s

)
,

it follows that
Zt =

Nt

Σt

and

Σt = sup
u≤t

Nu = exp
(

sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d〈m〉s
Z2

s

))
= eAt

�
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The three following exercises are from the work of Bentata and Yor [72].

Exercise 5.6.7.4 Let M be a positive martingale, such that M0 = 1 and
limt→∞ Mt = 0. Let a ∈ [0, 1[ and define Ga = sup{t : Mt = a}. Prove that

P(Ga ≤ t|Ft) =
(

1 − Mt

a

)+

Assume that, for every t > 0, the law of the r.v. Mt admits a density
(mt(x), x ≥ 0), and (t, x) → mt(x) may be chosen continuous on (0,∞)2

and that d〈M〉t = σ2
t dt, and there exists a jointly continuous function

(t, x) → θt(x) = E(σ2
t |Mt = x) on (0,∞)2. Prove that

P(Ga ∈ dt) =
(

1 − M0

a

)
δ0(dt) + 1{t>0}

1
2a

θt(a)mt(a)dt

Hint: Use Tanaka’s formula to prove that the result is equivalent to
dtE(La

t (M)) = dtθt(a)mt(a) where L is the Tanaka-Meyer local time (see
Subsection 5.5.1). �

Exercise 5.6.7.5 Let B be a Brownian motion and

T (ν)
a = inf{t : Bt + νt = a}

G(ν)
a = sup{t : Bt + νt = a}

Prove that

(T (ν)
a , G(ν)

a ) law=
(

1

G
(a)
ν

,
1

T
(a)
ν

)

Give the law of the pair (T (ν)
a , G

(ν)
a ). �

Exercise 5.6.7.6 Let X be a transient diffusion, such that

Px(T0 < ∞) = 0, x > 0
Px( lim

t→∞
Xt = ∞) = 1, x > 0

and note s the scale function satisfying s(0+) = −∞, s(∞) = 0. Prove that
for all x, t > 0,

Px(Gy ∈ dt) =
−1

2s(y)
p
(m)
t (x, y)dt

where p(m) is the density transition w.r.t. the speed measure m. �

5.7 Pitman’s Theorem about (2Mt − Wt)

5.7.1 Time Reversal of Brownian Motion

In our proof of Pitman’s theorem, we shall need two results about time reversal
of Brownian motion which are of interest by themselves:
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Lemma 5.7.1.1 Let W be a Brownian motion, L its local time at level 0 and
τ	 = inf{t : Lt ≥ �}. Then

(Wu, u ≤ τ	|τ	 = t) law= (Wu, u ≤ t|Lt = �, Wt = 0)

As a consequence,

(Wτ�−u, u ≤ τ	)
law= (Wu, u ≤ τ	)

Proof: Assuming the first property, we show how the second one is deduced.
The scaling property allows us to restrict attention to the case � = 1. Since
the law of the Brownian bridge is invariant under time reversal (see Section
4.3.5), we get that

(Wu, u ≤ t|Wt = 0) law= (Wt−u, u ≤ t|Wt = 0) .

This identity implies

((Wu, u ≤ t), Lt|Wt = 0) law= ((Wt−u, u ≤ t), Lt|Wt = 0) .

Therefore

(Wu, u ≤ τ1|τ1 = t) law= (Wu, u ≤ t|Lt = 1, Wt = 0)

law= (Wt−u, u ≤ t|Lt = 1, Wt = 0) law= (Wτ1−u, u ≤ τ1|τ1 = t) .

We conclude that
(Wτ1−u; u ≤ τ1)(Wu; u ≤ τ1) .

�
The second result about time reversal is a particular case of a general result
for Markov processes due to Nagasawa. We need some references to the Bessel
process of dimension 3 (see � Chapter 6).

Theorem 5.7.1.2 (Williams’ Time Reversal Result.) Let W be a BM,
Ta the first hitting time of a by W and R a Bessel process of dimension 3
starting from 0, and Λa its last passage time at level a. Then

(a − WTa−t, t ≤ Ta) law= (Rt, t ≤ Λa) .

Proof: We refer to [RY], Chapter VII. �

5.7.2 Pitman’s Theorem

Here again, the Bessel process of dimension 3 (denoted as BES3) plays an
essential rôle (see � Chapter 6).
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Theorem 5.7.2.1 (Pitman’s Theorem.) Let W be a Brownian motion and
Mt = sups≤t Ws. The following identity in law holds

(2Mt − Wt, Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0)

where (Rt; t ≥ 0) is a BES3 process starting from 0 and Jt = infs≥t Rs.

Proof: We note that it suffices to prove the identity in law between the first
two components, i.e.,

(2Mt − Wt; t ≥ 0) law= (Rt; t ≥ 0) . (5.7.1)

Indeed, the equality (5.7.1) implies

(2Mt − Wt, inf
s≥t

(2Ms − Ws); t ≥ 0) law=
(

Rt, inf
s≥t

Rs; t ≥ 0
)

.

We prove below that Mt = infs≥t(2Ms − Ws). Hence, the equality

(2Mt − Wt, Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0) .

holds.

� We prove Mt = infs≥t(2Ms − Ws) in two steps. First, note that for s ≥ t,
2Ms − Ws ≥ Ms ≥ Mt hence Mt ≤ infs≥t(2Ms − Ws).

In a second step, we introduce θt = inf{s ≥ t : Ms = Ws}. Since
the increasing process M increases only when M = W , it is obvious that
Mt = Mθt . From Mθt = 2Mθt − Wθt ≥ infs≥θt(2Ms − Ws) we deduce
that Mt = infs≥θt(2Ms − Ws) ≥ infs≥t(2Ms − Ws). Therefore, the equality
Mt = infs≥t(2Ms − Ws) holds.

� We now prove the desired result (5.7.1) with the help of Lévy’s identity:
the two statements

(2Mt − Wt; t ≥ 0) law= (Rt; t ≥ 0)

and
(|Wt| + Lt; t ≥ 0) law= (Rt; t ≥ 0) ,

are equivalent (we recall that L denotes the local time at 0 of W ). Hence, we
only need to prove that, for every �,

(|Wt| + Lt; t ≤ τ	)
law= (Rt; t ≤ Λ	) (5.7.2)

where
τ	 = inf{t : Lt ≥ �} and Λ	 = sup{t : Rt = �}.

Accordingly, using Lemma 5.7.1.1, the equality (5.7.2) is equivalent to:
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(|Wτ�−t| + (� − Lτ�−t); t ≤ τ	)
law= (Rt; t ≤ Λ	) .

By Lévy’s identity, this is equivalent to:

(� − WT�−t; t ≤ T	)
law= (Rt; t ≤ Λ	)

which is precisely Williams’ time reversal theorem.
�

Corollary 5.7.2.2 Let R̃t = 2Mt − Wt, Rt = σ{R̃s; s ≤ t}, and let T
be an (Rt) stopping time. Then, conditionally on RT , the r.v. MT (and,
consequently, the r.v. MT − WT ) is uniformly distributed on [0, R̃T ]. Hence,
MT − WT

R̃T

is uniform on [0, 1] and independent of RT .

Proof: Using Pitman’s theorem, the statement of the corollary is equivalent
to: if (Ra

s ; s ≥ 0) is a BES3
a process, infs≥0 Ra

s is uniform on [0, a], which follows
from the useful lemma of Exercise 1.2.3.10.

Consequently for x < y

P(Mu ≤ x|R̃u = y) = P(Uy ≤ x) = x/y .

�

The property featured in the corollary entails an intertwining property
between the semigroups of BM and BES3 which is detailed in the following
exercise.

Exercise 5.7.2.3 Denote by (Pt) and (Qt) respectively the semigroups of the
Brownian motion and of the BES3. Prove that QtΛ = ΛPt where

Λ : f → Λf(r) =
1
2r

∫ +r

−r

dxf(x) .

�

Exercise 5.7.2.4 With the help of Corollary 5.7.2.2 and the Cameron-
Martin formula, prove that the process 2M (μ)

t −W
(μ)
t , where W

(μ)
t = Wt +μt,

is a diffusion whose generator is 1
2

d2

dx2 + μ coth μx d
dx . �

5.8 Filtrations

In the Black-Scholes model with constant coefficients, i.e.,

dSt = St(μdt + σdWt), S0 = x (5.8.1)
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where μ, σ and x are constants, the filtration FS generated by the asset prices

FS
t : = σ(Ss, s ≤ t)

is equal to the filtration FW generated by W . Indeed, the solution of (5.8.1)
is

St = x exp
((

μ − σ2

2

)
t + σWt

)
(5.8.2)

which leads to

Wt =
1
σ

(
ln

St

S0
−
(

μ − σ2

2

)
t

)
. (5.8.3)

From (5.8.2), any function of St is a function of Wt, and FS
t ⊂ FW

t . From
(5.8.3) the reverse inclusion holds.

This result remains valid for μ and σ deterministic functions, as long as
σ(t) > 0, ∀t.

However, in general, the source of randomness is not so easy to identify;
likewise models which are chosen to calibrate the data may involve more
complicated filtrations. We present here a discussion of such set-ups. Our
present aim is not to give a general framework but to study some particular
cases.

5.8.1 Strong and Weak Brownian Filtrations

Amongst continuous-time processes, Brownian motion is undoubtedly the
most studied process, and many characterizations of its law are known. It
may thus seem a little strange that, deciding whether or not a filtration F, on
a given probability space (Ω,F , P), is the natural filtration FB of a Brownian
motion (Bt, t ≥ 0) is a very difficult question and that, to date, no necessary
and sufficient criterion has been found.

However, the following necessary condition can already discard a number
of unsuitable “candidates,” in a reasonably efficient manner: in order that
F be a Brownian filtration, it is necessary that there exists an F-Brownian
motion β such that all F-martingales may be written as Mt = c +

∫ t

0
msdβs

for some c ∈ R and some predictable process m which satisfies
∫ t

0
dsm2

s < ∞.
If needed, the reader may refer to � Section 9.5 for the general definition of
the predictable representation property (PRP). This leads us to the following
definition.

Definition 5.8.1.1 A filtration F on (Ω,F , P) such that F0 is P a.s. trivial
is said to be weakly Brownian if there exists an F-Brownian motion β such
that β has the predictable representation property with respect to F.

A filtration F on (Ω,F , P) such that F0 is P a.s. trivial is said to be
strongly Brownian if there exists an F-BM β such that Ft = Fβ

t .
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Implicitly, in the above definition, we assume that β is one-dimensional,
but of course, a general discussion with d-dimensional Brownian motion can
be developed.

Note that a strongly Brownian filtration is weakly Brownian since the
Brownian motion enjoys the PRP. Since the mid-nineties, the study of weak
Brownian filtrations has made quite some progress, starting with the proof
by Tsirel’son [823] that the filtration of Walsh’s Brownian motion as defined
in Walsh [833] (see also Barlow and Yor [50]) taking values in N ≥ 3 rays is
weakly Brownian, but not strongly Brownian. See, in particular, the review
paper of Émery [327] and notes and comments in Chapter V of [RY].

� We first show that weakly Brownian filtrations are left globally invariant
under locally equivalent changes of probability. We start with a weakly
Brownian filtration F on a probability space (Ω,F , P) and we consider another
probability Q on (Ω,F) such that Q|Ft = LtP|Ft .

Proposition 5.8.1.2 If F is weakly Brownian under P and Q is locally
equivalent to P, then F is also weakly Brownian under Q.

Proof: Let M be an (F, Q)-local martingale, then ML is an (F, P)-local
martingale, hence Nt := MtLt = c +

∫ t

0
nsdβs for some Brownian motion

β defined on (Ω,F ,F, P), independently from M . Similarly, dLs = �sdβs.
Therefore, we have

Mt =
Nt

Lt
= N0 +

∫ t

0

dNs

Ls
−
∫ t

0

NsdLs

L2
s

+
∫ t

0

Nsd〈L〉s
L3

s

−
∫ t

0

d〈N, L〉s
L2

s

= c +
∫ t

0

ns

Ls
dβs −

∫ t

0

Ns�s

L2
s

dβs +
∫ t

0

Ns�
2
s

L3
s

ds −
∫ t

0

ns�s

L2
s

ds

= c +
∫ t

0

(
ns

Ls
− Ns�s

L2
s

) (
dβs −

d〈β, L〉s
Ls

)
.

Thus, (β̃t := βt −
∫ t

0
d〈β,L〉s

Ls
; t ≥ 0), the Girsanov transform of the original

Brownian motion β, allows the representation of all (F, Q)-martingales. �

� We now show that weakly Brownian filtrations are left globally invariant
by “nice” time changes. Again, we consider a weakly Brownian filtration F
on a probability space (Ω,F , P). Let At =

∫ t

0
asds where as > 0, dP⊗ ds a.s.,

be a strictly increasing, F adapted process, such that A∞ = ∞, P a.s..

Proposition 5.8.1.3 If F is weakly Brownian under P and τu is the right-
inverse of the strictly increasing process At =

∫ t

0
asds, then (Fτu , u ≥ 0) is

also weakly Brownian under P.

Proof: It suffices to be able to represent any (Fτu , u ≥ 0)-square integrable
martingale in terms of a given (Fτu , u ≥ 0)-Brownian motion β̃. Consider M̃
a square integrable (Fτu , u ≥ 0)-martingale. From our hypothesis, we know
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that M̃∞ = c +
∫∞
0

msdβs, where β is an F-Brownian motion and m is an
F-predictable process such that E

(∫∞
0

dsm2
s

)
< ∞. Thus, we may write

M̃∞ = c +
∫ ∞

0

ms√
as

√
as dβs . (5.8.4)

It remains to define β̃ the (Fτu , u ≥ 0)-Brownian motion which satisfies∫ t

0

√
asdβs := β̃At . Going back to (5.8.4), we obtain

M̃∞ = c +
∫ ∞

0

mτu√
aτu

dβ̃u .

�

These two properties do not extend to strongly Brownian filtrations. In
particular, F may be strongly Brownian under P and only weakly Brownian
under Q (see Dubins et al. [267], Barlow et al. [48]).

5.8.2 Some Examples

In what follows, we shall sometimes write Brownian filtration for strongly
Brownian filtration.

Let F be a Brownian filtration, M an F-martingale and FM = (FM
t ) the

natural filtration of M .

(a) Reflected Brownian Motion. Let B be a Brownian motion and
B̃t =

∫ t

0
sgn(Bs)dBs. The process B̃ is a Brownian motion in the filtration

F|B|. From Lt = sups≤t(−B̃s), it follows that F eB
t = F |B|

t , hence, F|B| is
strongly Brownian and different from F since the r.v. sgn(Bt) is independent
of (|Bs|, s ≤ t).

(b) Discontinuous Martingales Originating from a Brownian
Setup. We give an example where there exists FM -discontinuous martingales.
Let Mt : =

∫ t

0
1{Bs<0}dBs. Tanaka’s formula leads to

B−
t = −

∫ t

0

1{Bs<0}dBs +
1
2
Lt .

The natural filtration of M , i.e., FM is equal to the natural filtration of the
process (B−

t , t ≥ 0). The FM -martingale

E

(
B+

t − 1
2
Lt|FM

t

)
= −1

2
Lt + 1{Bt>0}

√
t − gt E(m1) ,
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(where we use here the notation of Section 4.3) is discontinuous, thus FM is
not even weakly Brownian. We refer to Williams [841] for a discussion.

(c) A Note about the PRP. Let F be a filtration and suppose that for
a given F-martingale M , any F-martingale (Nt, t ≥ 0) vanishing at 0 can be
written as Nt =

∫ t

0
nsdMs. This does not imply that σ(Ms, s ≤ t) equals Ft

(in fact this is at the heart of the distinction between strongly and weakly
Brownian filtrations). For example, let B̃t =

∫ t

0
sgn (Bs) dBs. As we have seen

in the first example above, F eB
t = σ(|Bs|, s ≤ t) and is strictly smaller than F.

Nevertheless, any F-martingale (Nt, t ≥ 0) with N0 = 0 can be represented as

Nt =
∫ t

0

νsdBs =
∫ t

0

νssgn (Bs) sgn (Bs) dBs =
∫ t

0

nsdB̃s ,

where ns = νs sgn (Bs).

(d) Another Example. Let Yt =
∫ t

0
BsdWs where W and B are

independent Brownian motions. From

Yt =
∫ t

0

|Bs|sgn(Bs)dWs =
∫ t

0

|Bs|dŴs

where Ŵt =
∫ t

0
sgn(Bs)dWs, it follows that

FY
t = σ{|Bs|, Ŵs, s ≤ t} = σ{B̂s, Ŵs, s ≤ t} ,

where B̂t =
∫ t

0
sgn(Bs)dBs is a BM independent of Ŵ . Any FY -martingale

can be written as

y +
∫ t

0

ϕsdB̂s +
∫ t

0

ψsdŴs ,

for two FY -predictable processes ψ and ϕ.

(e) Filtration Generated by a Stochastic Integral with Non-
vanishing Integrator. Let Xt =

∫ t

0
HsdWs where W is a G-Brownian

motion for some filtration G, and H is a strictly positive continuous G-
adapted process (we do not require that G is the natural filtration of W ).
Then FX

t = σ(Hs, Ws; s ≤ t).

The case where the integrator may vanish is not so easy. Here are other
examples.

(f) Tsirel’son’s drift. Let

W(T )|Ft = exp
(∫ t

0

T (s,X � )dXs −
1
2

∫ t

0

T 2(s,X � )ds

)
W|Ft
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where T is Tsirel’son drift (see Example 1.5.5.6). The process

X
(T )
t = Xt −

∫ t

0

T (s,X � )ds

is a W(T )-Brownian motion whose filtration is strictly smaller than F;
however, F is the natural filtration of a W(T )-Brownian motion.

More generally, if

Wb|Ft = exp
(∫ t

0

b(s,X � )dXs −
1
2

∫ t

0

b2(s,X � )ds

)
W|Ft ,

the process

Xb
t = Xt −

∫ t

0

b(s,X·)ds

is a Wb,F-Brownian motion. Dubins et al. [267] established that there exist
infinitely many b’s such that F is not the natural filtration of a Wb Brownian
motion, i.e., F is not strongly Brownian under Wb. See also Emery and
Schachermayer [329].

(g) Let W and B be two independent Brownian motions, and let Z = BW .
From BtWt =

∫ t

0
(BsdWs + WsdBs) one obtains that B2

t + W 2
t is measurable

w.r.t FZ
t . Hence, the random variables 1√

2
|Bt +Wt| and 1√

2
|Bt −Wt| are FZ

t -

measurable. The processes β
(±)
t = 1√

2
(Bt ± Wt) are independent Brownian

motions. The filtration FZ is generated by two independent reflected BMs,
hence from a) above, it is generated by two independent Brownian motions.

Exercise 5.8.2.1 Let B and W be two independent Brownian motions and
Yt = aBt + bWt. Prove that σ(Ys, s ≤ t) ⊂ σ(Bs, Ws, s ≤ t) and that the
inclusion is strict.

Let N1 and N2 be two independent Poisson processes and Yt = aN1,t +
bN2,t, where a 	= b. Prove that σ(Ys, s ≤ t) = σ(N1,s, N2,s, s ≤ t). �

Exercise 5.8.2.2 Let B and W be two independent Brownian motions, a
and b two strictly positive numbers with a 	= b and Yt = aB2

t + bW 2
t . Prove

that σ(Ys, s ≤ t) = σ(B2
s , W 2

s , s ≤ t).
Generalize this result to the case Yt =

∑n
i=1 ai(Bi

t)
2 where ai > 0 and

ai 	= aj for i 	= j. Prove that the filtration of Y is that of an n-dimensional
Brownian motion.
Hint: Compute the bracket of Y and iterate this procedure. �

Example 5.8.2.3 Example of a martingale with respect to two different
probabilities:
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Let B = (B1, B2) be a two-dimensional BM, and R2
t = B2

1(t)+B2
2(t). The

process

Lt = exp
(∫ t

0

(B1(s)dB1(s) + B2(s)dB2(s)) −
1
2

∫ t

0

R2
sds

)

is a martingale. Let Q|Ft = LtP|Ft . The process

Xt =
∫ t

0

(B2(s)dB1(s) − B1(s)dB2(s))

is a P (and a Q) martingale. The process R2 is a BESQ under P and a CIR
under Q (see � Chapter 6). See also Example 1.7.3.10.

Comment 5.8.2.4 In [328], Emery and Schachermayer show that there
exists an absolutely continuous strictly increasing time-change such that the
time-changed filtration is no longer Brownian.

5.9 Enlargements of Filtrations

In general, if G is a filtration larger than F, it is not true that an F-martingale
remains a martingale in the filtration G (an interesting example is Azéma’s
martingale μ (see Subsection 4.3.8): this discontinuous Fμ-martingale is not an
FB-martingale, it is not even a FB-semi-martingale; see � Example 9.4.2.3).

In the seminal paper [461], Itô studies the definition of the integral of a
non-adapted process of the form f(B1, Bs) for some function f , with respect
to a Brownian motion B. From the end of the seventies, Barlow, Jeulin and
Yor started a systematic study of the problem of enlargement of filtrations:
namely which F-martingales M remain G-semi-martingales and if it is the
case, what is the semi-martingale decomposition of M in G?

Up to now, four lecture notes volumes have been dedicated to this question:
Jeulin [493], Jeulin and Yor [497], Yor [868] and Mansuy and Yor [622]. See also
related chapters in the books of Protter [727] and Dellacherie, Maisonneuve
and Meyer [241]. Some important papers are Brémaud and Yor [126], Barlow
[45], Jacod [469, 468] and Jeulin and Yor [495].

These results are extensively used in finance to study two specific problems
occurring in insider trading: existence of arbitrage using strategies adapted
w.r.t. the large filtration, and change of prices dynamics, when an F-
martingale is no longer a G-martingale.

We now study mathematically the two situations.

5.9.1 Immersion of Filtrations

Let F and G be two filtrations such that F ⊂ G. Our aim is to study some
conditions which ensure that F-martingales are G-semi-martingales, and one
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can ask in a first step whether all F-martingales are G-martingales. This last
property is equivalent to E(D|Ft) = E(D|Gt), for any t and D ∈ L1(F∞).

Let us study a simple example where G = F ∨ σ(D) where D ∈ L1(F∞)
and D is not F0-measurable. Obviously E(D|Gt) = D is a G-martingale
and E(D|Ft) is a F-martingale. However E(D|G0) 	= E(D|F0), and some F-
martingales are not G-martingales.

The filtration F is said to be immersed in G if any square integrable
F-martingale is a G-martingale (Tsirel’son [824], Émery [327]). This is also
referred to as the (H) hypothesis by Brémaud and Yor [126] which was defined
as:
(H) Every F-square integrable martingale is a G-square integrable martingale.

Proposition 5.9.1.1 Hypothesis (H) is equivalent to any of the following
properties:

(H1) ∀ t ≥ 0, the σ-fields F∞ and Gt are conditionally independent given Ft.
(H2) ∀ t ≥ 0, ∀Gt ∈ L1(Gt), E(Gt|F∞) = E(Gt|Ft).
(H3) ∀ t ≥ 0, ∀F ∈ L1(F∞), E(F |Gt) = E(F |Ft).

In particular, (H) holds if and only if every F-local martingale is a G-local
martingale.

Proof:

� (H) ⇒ (H1). Let F ∈ L2(F∞) and assume that hypothesis (H) is satisfied.
This implies that the martingale Ft = E(F |Ft) is a G-martingale such that
F∞ = F , hence Ft = E(F |Gt). It follows that for any t and any Gt ∈ L2(Gt):

E(FGt|Ft) = E(GtE(F |Gt)|Ft) = E(GtE(F |Ft)|Ft) = E(Gt|Ft)E(F |Ft)

which is equivalent to (H1).
� (H1) ⇒ (H). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). Under (H1),

E(FE(Gt|Ft)) = E(E(F |Ft)E(Gt|Ft))
H1= E(E(FGt|Ft)) = E(FGt)

which is (H).
� (H2) ⇒ (H3). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). If (H2) holds, then it is
easy to prove that, for F ∈ L2(F∞),

E(GtE(F |Ft)) = E(FE(Gt|Ft))
H2= E(FGt) = E(GtE(F |Gt)),

which implies (H3). The general case follows by approximation.
� Obviously (H3) implies (H). �

In particular, under (H), if W is an F-Brownian motion, then it is a
G-martingale with bracket t, since such a bracket does not depend on the
filtration. Hence, it is a G-Brownian motion.
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A trivial (but useful) example for which (H) is satisfied is G = F ∨ F1

where F and F1 are two filtrations such that F∞ is independent of F1
∞.

We now present two propositions, in which setup the immersion property
is preserved under change of probability.

Proposition 5.9.1.2 Assume that the filtration F is immersed in G under
P, and let Q|Gt = LtP|Gt where L is assumed to be F-adapted. Then, F is
immersed in G under Q.

Proof: Let N be a (F, Q)-martingale, then (NtLt, t ≥ 0) is a (F, P)-
martingale, and since F is immersed in G under P, (NtLt, t ≥ 0) is a (G, P)-
martingale which implies that N is a (G, Q)-martingale. �

In the next proposition, we do not assume that the Radon-Nikodým
density is F-adapted.

Proposition 5.9.1.3 Assume that F is immersed in G under P, and define
Q|Gt = LtP|Gt and Λt = E(Lt|Ft). Assume that all F-martingales are
continuous and that the G-martingale L is continuous. Then, F is immersed
in G under Q if and only if the (G, P)-local martingale

∫ t

0

dLs

Ls
−
∫ t

0

dΛs

Λs
: = L(L)t − L(Λ)t

is orthogonal to the set of all (F, P)-local martingales.

Proof: We prove that any (F, Q)-martingale is a (G, Q)-martingale. Every
(F, Q)-martingale MQ may be written as

MQ
t = MP

t −
∫ t

0

d〈MP , Λ〉s
Λs

where MP is an (F, P)-martingale. By hypothesis, MP is a (G, P)-martingale
and, from Girsanov’s theorem, MP

t = NQ
t +

∫ t

0
d〈MP ,L〉s

Ls
where NQ is an

(F, Q)-martingale. It follows that

MQ
t = NQ

t +
∫ t

0

d〈MP , L〉s
Ls

−
∫ t

0

d〈MP , Λ〉s
Λs

= NQ
t +

∫ t

0

d〈MP ,L(L) − L(Λ)〉s .

Thus MQ is an (G, Q) martingale if and only if 〈MP ,L(L) − L(Λ)〉s = 0. �

Exercise 5.9.1.4 Assume that hypothesis (H) holds under P. Let

Q|Gt = LtP|Gt ; Q|Ft = L̂tP|Ft .
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Prove that hypothesis (H) holds under Q if and only if:

∀X ≥ 0, X ∈ F∞,
E(XL∞|Gt)

Lt
=

E(XL̂∞|Ft)

L̂t

See Nikeghbali [674]. �

5.9.2 The Brownian Bridge as an Example of Initial Enlargement

Rather than studying ab initio the general problem of initial enlargement,
we discuss an interesting example. Let us start with a BM (Bt, t ≥ 0) and
its natural filtration FB . Define a new filtration as Gt = FB

t ∨ σ(B1). In
this filtration, the process (Bt, t ≥ 0) is no longer a martingale. It is easy
to be convinced of this by looking at the process (E(B1|Gt), t ≤ 1): this
process is identically equal to B1, not to Bt, hence (Bt, t ≥ 0) is not a G-
martingale. However, (Bt, t ≥ 0) is a G-semi-martingale, as follows from the
next proposition

Proposition 5.9.2.1 The decomposition of B in the filtration G is

Bt = βt +
∫ t∧1

0

B1 − Bs

1 − s
ds

where β is a G-Brownian motion.

Proof: We have seen, in (4.3.8), that the canonical decomposition of
Brownian bridge under W(1)

0→0 is

Xt = βt −
∫ t

0

ds
Xs

1 − s
, t ≤ 1 .

The same proof implies that the decomposition of B in the filtration G is

Bt = βt +
∫ t∧1

0

B1 − Bs

1 − s
ds .

�

It follows that if M is an F-local martingale such that
∫ 1

0
1√
1−s

d|〈M,B〉|s
is finite, then

Mt = M̂t +
∫ t∧1

0

B1 − Bs

1 − s
d〈M,B〉s

where M̂ is a G-local martingale.

Comments 5.9.2.2 (a) As we shall see in � Subsection 11.2.7, Proposition
5.9.2.1 can be extended to integrable Lévy processes: if X is a Lévy process
which satisfies E(|Xt|) < ∞ and G = FX ∨ σ(X1), the process
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Xt −
∫ t∧1

0

X1 − Xs

1 − s
ds,

is a G-martingale.
(b) The singularity of B1−Bt

1−t at t = 1, i.e., the fact that B1−Bt

1−t is not square
integrable between 0 and 1 prevents a Girsanov measure change transforming
the (P,G) semi-martingale B into a (Q,G) martingale. Let

dSt = St(μdt + σdBt)

and enlarge the filtration with S1 (or equivalently, with B1). In the enlarged
filtration, setting ζt = B1−Bt

1−t , the dynamics of S are

dSt = St((μ + σζt)dt + σdβt) ,

and there does not exist an e.m.m. such that the discounted price process
(e−rtSt, t ≤ 1) is a G-martingale. However, for any ε ∈ ]0, 1], there exists a
uniformly integrable G-martingale L defined as

dLt =
μ − r + σζt

σ
Ltdβt, t ≤ 1 − ε, L0 = 1 ,

such that, setting dQ|Gt = LtdP|Gt , the process (e−rtSt, t ≤ 1− ε) is a (Q,G)-
martingale.

This is the main point in the theory of insider trading where the knowledge
of the terminal value of the underlying asset creates an arbitrage opportunity,
which is effective at time 1.

5.9.3 Initial Enlargement: General Results

Let F be a Brownian filtration generated by B. We consider F (L)
t = Ft∨σ(L)

where L is a real-valued random variable. More precisely, in order to satisfy
the usual hypotheses, redefine

F (L)
t = ∩ε>0 {Ft+ε ∨ σ(L)} .

We recall that there exists a family of regular conditional distributions
λt(ω, dx) such that λt(·, A) is a version of E(1{L∈A}|Ft) and for any ω, λt(ω, ·)
is a probability on R.

Proposition 5.9.3.1 (Jacod’s Criterion.) Suppose that, for each t < T ,
λt(ω, dx) << ν(dx) where ν is the law of L. Then, every F-semi-martingale
(Xt, t < T ) is also an F (L)

t -semi-martingale.
Moreover, if λt(ω, dx) = pt(ω, x)ν(dx) and if X is an F-martingale, its

decomposition in the filtration F (L)
t is

Xt = X̃t +
∫ t

0

d〈p·(L), X〉s
ps(L)

.
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In a more general setting (see Yor [868]), for a bounded Borel function f , let
(λt(f), t ≥ 0) be the continuous version of the martingale (E(f(L)|Ft), t ≥ 0).
There exists a predictable kernel λt(dx) such that

λt(f) =
∫

λt(dx)f(x) .

From the predictable representation property applied to the martingale
E(f(L)|Ft), there exists a predictable process λ̂(f) such that

λt(f) = E(f(L)) +
∫ t

0

λ̂s(f)dBs .

Proposition 5.9.3.2 We assume that there exists a predictable kernel λ̂t(dx)
such that

dt a.s., λ̂t(f) =
∫

λ̂t(dx)f(x) .

Assume furthermore that dt × dP a.s. the measure λ̂t(dx) is absolutely
continuous with respect to λt(dx):

λ̂t(dx) = ρ(t, x)λt(dx) .

Then, if X is an F-martingale, there exists a F(L)-martingale X̂ such that

Xt = X̂t +
∫ t

0

ρ(s, L)d〈X,B〉s .

Sketch of the proof: Let X be an F-martingale, f a given bounded Borel
function and Ft = E(f(L)|Ft). From the hypothesis

Ft = E(f(L)) +
∫ t

0

λ̂s(f)dBs

= E(f(L)) +
∫ t

0

(∫
ρ(s, x)λs(dx)f(x)

)
dBs .

Then, for As ∈ Fs, s < t:

E(1Asf(L)(Xt − Xs)) = E(1As(FtXt − FsXs)) = E(1As(〈F,X〉t − 〈F,X〉s))

= E

(
1As

∫ t

s

d〈X,B〉u λ̂u(f)
)

= E

(
1As

∫ t

s

d〈X,B〉u
∫

λu(dx)f(x)ρ(u, x)
)

.

Therefore, Vt =
∫ t

0
ρ(u, L) d〈X,B〉u satisfies

E(1Asf(L)(Xt − Xs)) = E(1Asf(L)(Vt − Vs)) .
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It follows that, for any Gs ∈ F (L)
s ,

E(1Gs(Xt − Xs)) = E(1Gs(Vt − Vs)) ,

hence, (Xt − Vt, t ≥ 0) is an F(L)-martingale. �

Let us write the result of Proposition 5.9.3.2 in terms of Jacod’s criterion.
If λt(dx) = pt(x)ν(dx), then

λt(f) =
∫

pt(x)f(x)ν(dx) .

Hence,

d〈λ·(f), B〉t = λ̂t(f)dt =
∫

dxf(x) dt〈p·(x), B〉t

and

λ̂t(dx) = dt〈p·(x), B〉t =
dt〈p·(x), B〉t

pt(x)
pt(x)dx

therefore,

λ̂t(dx)dt =
dt〈p·(x), B〉t

pt(x)
λt(dx) .

In the case where λt(dx) = Φ(t, x)dx, with Φ > 0, it is possible to find ψ
such that

Φ(t, x) = Φ(0, x) exp
(∫ t

0

ψ(s, x)dBs −
1
2

∫ t

0

ψ2(s, x)ds

)

and it follows that λ̂t(dx) = ψ(t, x)λt(dx). Then, if X is an F-martingale of
the form Xt = x +

∫ t

0
xsdBs, the process (Xt −

∫ t

0
ds xs ψ(s, L), t ≥ 0) is an

F(L)-martingale.

Example 5.9.3.3 We now give some examples taken from Mansuy and Yor
[622] in a Brownian set-up for which we use the preceding. Here, B is a
standard Brownian motion.

� Enlargement with B1. We compare the results obtained in Subsection
5.9.2 and the method presented in Subsection 5.9.3. Let L = B1. From the
Markov property

E(g(B1)|Ft) = E(g(B1 − Bt + Bt)|Ft) = Fg(Bt, 1 − t)

where Fg(y, 1 − t) =
∫

g(x)p1−t(y, x)dx and ps(y, x) = 1√
2πs

exp
(
− (x−y)2

2s

)
.

It follows that λt(dx) = 1√
2π(1−t)

exp
(
− (x−Bt)

2

2(1−t)

)
dx. Then
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λt(dx) = px
t P(B1 ∈ dx)

with

px
t =

1√
(1 − t)

exp
(
− (x − Bt)2

2(1 − t)
+

x2

2

)
.

From Itô’s formula,

dpx
t = px

t

x − Bt

1 − t
dBt .

It follows that d〈px, B〉t = px
t

x−Bt

1−t dt, hence

Bt = B̃t +
∫ t

0

x − Bs

1 − s
ds .

Note that, in the notation of Proposition 5.9.3.2, one has

λ̂t(dx) =
x − Bt

1 − t

1√
2π(1 − t)

exp
(
− (x − Bt)2

2(1 − t)

)
dx .

� Enlargement with MB = sups≤1 Bs. From Exercise 3.1.6.7,

E(f(MB)|Ft) = F (1 − t, Bt, M
B
t )

where MB
t = sups≤t Bs with

F (s, a, b) =

√
2
πs

(
f(b)

∫ b−a

0

e−u2/(2s)du +
∫ ∞

b

f(u)e−(u−a)2/(2s)du

)

and

λt(dy) =

√
2

π(1 − t)

{
δy(MB

t )
∫ MB

t −Bt

0

exp
(
− u2

2(1 − t)

)
du

+ 1{y>MB
t } exp

(
− (y − Bt)2

2(1 − t)

)
dy

}
.

Hence, by differentiation w.r.t. x(= Bt), i.e., more precisely, by applying Itô’s
formula

λ̂t(dy) =

√
2

π(1 − t)

{
δy(MB

t ) exp
(
− (MB

t − Bt)2

2(1 − t)

)

+ 1{y>MB
t }

y − Bt

1 − t
exp

(
− (y − Bt)2

2(1 − t)

)}
.

It follows that
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ρ(t, x) = 1{x>MB
t }

x − Bt

1 − t
+ 1{MB

t =x}
1√

1 − t

Φ′

Φ

(
x − Bt√

1 − t

)

with Φ(x) =
√

2
π

∫ x

0
e−

u2
2 du.

More examples can be found in Jeulin [493] and Mansuy and Yor [622].
Matsumoto and Yor [629] consider the case where L =

∫∞
0

ds exp(2(Bs−νs)).
See also Baudoin [61].

Exercise 5.9.3.4 Assume that the hypotheses of Proposition 5.9.3.1 hold
and that 1/p∞(·, L) is integrable with expectation 1/c. Prove that under the
probability R defined as

dR|F∞ = c/p∞(·, L)dP|F∞

the r.v. L is independent of F∞. This fact plays an important rôle in Grorud
and Pontier [411]. �

5.9.4 Progressive Enlargement

We now consider a different case of enlargement, more precisely the case where
τ is a finite random time, i.e., a finite non-negative random variable, and we
denote

Fτ
t = ∩ε>0 {Ft+ε ∨ σ(τ ∧ (t + ε))} .

Proposition 5.9.4.1 For any Fτ -predictable process H, there exists an F-
predictable process h such that Ht1{t≤τ} = ht1{t≤τ}. Under the condition
∀t, P(τ ≤ t|Ft) < 1, the process (ht, t ≥ 0) is unique.

Proof: We refer to Dellacherie [245] and Dellacherie et al. [241], page 186.
The process h may be recovered as the ratio of the F-predictable projections
of Ht1{t<τ} and 1{t<τ}:

ht =
E(Ht1{t<τ}|Ft)

P(t < τ |Ft)
. �

Immersion Setting

Let us first investigate the case where the (H) hypothesis holds.

Lemma 5.9.4.2 In the progressive enlargement setting, (H) holds between F
and Fτ if and only if one of the following equivalent conditions holds:

(i) ∀(t, s), s ≤ t, P(τ ≤ s|F∞) = P(τ ≤ s|Ft),
(ii) ∀t, P(τ ≤ t|F∞) = P(τ ≤ t|Ft).

(5.9.1)
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Proof: If (ii) holds, then (i) holds too. If (i) holds, F∞ and σ(t ∧ τ) are
conditionally independent given Ft. The property follows. This result can
also be found in Dellacherie and Meyer [243]. �

Note that, if (H) holds, then (ii) implies that the process P(τ ≤ t|Ft) is
decreasing.

Example: assume that F ⊂ G where (H) holds for F and G. Let τ be a
G-stopping time. Then, (H) holds for F and Fτ .

General Setting

We denote by Zτ the F-super-martingale P(τ > t|Ft), also called the Azéma
supermartingale (introduced in [35]). We assume in what follows

(A) The random time τ avoids the F-stopping times, i.e., P(τ = ϑ) = 0 for
any F-stopping time ϑ.

Under (A), the F-dual predictable projection of the process Dt : = 1τ≤t,
denoted Aτ , is continuous. Indeed, if ϑ is a jump time of Aτ , it is predictable,
and

E(Aτ
ϑ − Aτ

ϑ−) = E(1τ=ϑ) = 0 ;

the continuity of Aτ follows.

Proposition 5.9.4.3 The canonical decomposition of the semi-martingale
Zτ is

Zτ
t = E(Aτ

∞|Ft) − Aτ
t = μτ

t − Aτ
t

where μτ
t : = E(Aτ

∞|Ft).

Proof: From the definition of the dual predictable projection, for any
predictable process H, one has

E(Hτ ) = E

(∫ ∞

0

HudAτ
u

)
.

Let t be fixed and Ft ∈ Ft. Then, the process Hu = Ft1{t<u}, u ≥ 0 is
F-predictable. Then

E(Ft1{t<τ}) = E(Ft(Aτ
∞ − Aτ

t )) .

It follows that E(Aτ
∞|Ft) = Zτ

t + Aτ
t . �

Comment 5.9.4.4 It can be proved that the martingale

μτ
t : = E(Aτ

∞|Ft) = Aτ
t + Zτ

t

is BMO (see Definition 1.2.3.9).
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It is proved in Yor [860] that if X is an F-martingale then the processes
Xt∧τ and Xt(1−Dt) are Fτ semi-martingales. Furthermore, the decomposi-
tions of the F-martingales in the filtration Fτ are known up to time τ (Jeulin
and Yor [495]).

Proposition 5.9.4.5 Every F-martingale M stopped at time τ is an Fτ -
semi-martingale with canonical decomposition

Mt∧τ = M̃t +
∫ t∧τ

0

d〈M,μτ 〉s
Zτ

s−
,

where M̃ is an Fτ -local martingale. The process

1{τ≤t} −
∫ t∧τ

0

1
Zτ

s−
dAτ

s

is an Fτ -martingale.

Proof: Let H be an Fτ -predictable process. There exists an F-predictable
process h such that Ht1{t≤τ} = ht1{t≤τ}, hence, if M is an F-martingale, for
s < t,

E(Hs(Mt∧τ − Ms∧τ )) = E(Hs1{s<τ}(Mt∧τ − Ms∧τ ))
= E(hs1{s<τ}(Mt∧τ − Ms∧τ ))

= E
(
hs(1{s<τ≤t}(Mτ − Ms) + 1{t<τ}(Mt − Ms))

)

From the definition of Z,

E
(
hs1{s<τ≤t}Mτ

)
= −E

(
hs

∫ t

s

MudZu

)

and, noting that
∫ t

s

MudZu − MsZs + ZtMt =
∫ t

s

ZudMu + 〈M,Z〉t − 〈M,Z〉s

we get, from the martingale property of M

E(Hs(Mt∧τ − Ms∧τ )) = E(hs(〈M,μτ 〉t − 〈M,μτ 〉s))

= E

(
hs

∫ t

s

d〈M,μτ 〉u
Zτ

u−
Zτ

u−

)
= E

(
hs

∫ t

s

d〈M,μτ 〉u
Zτ

u−
E(1{u<τ}|Fu)

)

= E

(
hs

∫ t

s

d〈M,μτ 〉u
Zτ

u−
1{u<τ}

)
= E

(
hs

∫ t∧τ

s∧τ

d〈M,μτ 〉u
Zτ

u−

)
.

The result follows. �
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Pseudo-stopping Times

As we have mentioned, if (H) holds, the process (Zτ
t , t ≥ 0) is a decreasing

process. The converse is not true. The decreasing property of Zτ is closely
related with the definition of pseudo-stopping times, a notion developed from
D. Williams example (see Example 5.9.4.8 below).

Definition 5.9.4.6 A random time τ is a pseudo-stopping time if, for any
bounded F-martingale M , E(Mτ ) = M0 .

Proposition 5.9.4.7 The random time τ is a pseudo-stopping time if and
only if one of the following equivalent properties holds:

• For any local F-martingale m, the process (mt∧τ , t ≥ 0) is a local Fτ -
martingale,

• Aτ
∞ = 1,

• μτ
t = 1, ∀t ≥ 0,

• The process Zτ is a decreasing F-predictable process.

Proof: We refer to Nikeghbali and Yor [675]. �

Example 5.9.4.8 The first example of a pseudo-stopping time was given by
Williams [844]. Let B be a Brownian motion and define the stopping time
T1 = inf{t : Bt = 1} and the random time θ = sup{t < T1 : Bt = 0}. Set

τ = sup{s < θ : Bs = MB
s }

where MB
s is the running maximum of the Brownian motion. Then, τ is

a pseudo-stopping time. Note that E(Bτ ) is not equal to 0; this illustrates
the fact we cannot take any martingale in Definition 5.9.4.6. The martingale
(Bt∧T1 , t ≥ 0) is neither bounded, nor uniformly integrable. In fact, since the
maximum MB

θ (=Bτ ) is uniformly distributed on [0, 1], one has E(Bτ ) = 1/2.

Honest Times

For a general random time τ , it is not true that F-martingales are Fτ -semi-
martingales. Here is an example: due to the separability of the Brownian
filtration, there exists a bounded random variable τ such that F∞ = σ(τ).
Hence, Fτ

τ+t = F∞, ∀t so that the Fτ -martingales are constant after τ .
Consequently, F-martingales are not Fτ -semi-martingales.

On the other hand, there exists an interesting class of random times τ such
that F-martingales are Fτ -semi-martingales.

Definition 5.9.4.9 A random time is honest if it is the end of a predictable
set, i.e., τ(ω) = sup{t : (t, ω) ∈ Γ}, where Γ is an F-predictable set.
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In particular, an honest time is F∞-measurable. If X is a transient diffusion,
the last passage time Λa (see Proposition 5.6.2.1) is honest. Jeulin [493]
established that an F∞-measurable random time is honest if and only if it
is equal, on {τ < t}, to an Ft-measurable random variable.

A key point in the proof of the next Proposition 5.9.4.10 is the following
description of Fτ -predictable processes: if τ , an F∞-measurable random time,
is honest, and if H is an Fτ -predictable process, then there exist two F-
predictable processes h and h̃ such that

Ht = ht1{τ>t} + h̃t1{τ≤t} .

(See Jeulin [493] for a proof.)

Proposition 5.9.4.10 Let τ be honest. Then, if X is an F-local martingale,
there exists an Fτ -local martingale X̃ such that

Xt = X̃t +
∫ t∧τ

0

d〈X,μτ 〉s
Zτ

s−
−
∫ τ∨t

τ

d〈X,μτ 〉s
1 − Zτ

s−
.

Proof: Let M be an F-martingale which belongs to H1 and Gs ∈ Fτ
s . We

define a Gτ predictable process H as Hu = 1Gs1]s,t](u). For s < t, one has,
using the decomposition of Gτ predictable processes:

E(1Gs(Mt − Ms)) = E

(∫ ∞

0

HudMu

)

= E

(∫ τ

0

hudMu

)
+ E

(∫ ∞

τ

h̃udMu

)
.

Noting that
∫ t

0
h̃udMu is a martingale yields E

(∫∞
0

h̃udMu

)
= 0,

E(1Gs(Mt − Ms)) = E

(∫ τ

0

(hu − h̃u)dMu

)

= E

(∫ ∞

0

dAτ
v

∫ v

0

(hu − h̃u)dMu

)
.

By integration by parts, with Nt =
∫ t

0
(hu − h̃u)dMu, we get

E(1Gs(Mt − Ms)) = E(N∞Aτ
∞) = E

(∫ ∞

0

(hu − h̃u)d〈M,μτ 〉u
)

.

Now, it remains to note that
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E

(∫ ∞

0

Hu

(
d〈M,μτ 〉u

Zu−
1{u≤τ} −

d〈M,μτ 〉u
1 − Zu−

1{u>τ}

))

= E

(∫ ∞

0

(
hu

d〈M,μτ 〉u
Zu−

1{u≤τ} − h̃u
d〈M,μτ 〉u
1 − Zu−

1{u>τ}

))

= E

(∫ ∞

0

(
hud〈M,μτ 〉u − h̃ud〈M,μτ 〉u

))

= E

(∫ ∞

0

(
hu − h̃u

)
d〈M,μτ 〉u

)

to conclude the result in the case M ∈ H1. The general result follows by
localization. �

Example 5.9.4.11 Let W be a Brownian motion, and τ = g1, the last time
when the BM reaches 0 before time 1, i.e., τ = sup{t ≤ 1 : Wt = 0}. Using the
computation of Zg1 in Subsection 5.6.4 and Proposition 5.9.4.10, we obtain
the decomposition of the Brownian motion in the enlarged filtration

Wt = W̃t −
∫ t

0

1[0,τ ](s)
Φ′

1 − Φ

(
|Ws|√
1 − s

)
sgn(Ws)√

1 − s
ds

+ 1{τ≤t} sgn(W1)
∫ t

τ

Φ′

Φ

(
|Ws|√
1 − s

)
ds

where Φ(x) =
√

2
π

∫ x

0
exp(−u2/2)du.

Comments 5.9.4.12 (a) The (H) hypothesis was studied by Brémaud and
Yor [126] and Mazziotto and Szpirglas [632], and in a financial setting by
Kusuoka [552], Elliott et al. [315] and Jeanblanc and Rutkowski [486, 487].

(b) An incomplete list of authors concerned with enlargement of filtration
in finance for insider trading is: Amendinger [12], Amendinger et al. [13],
Baudoin [61], Corcuera et al. [194], Eyraud-Loisel [338], Florens and Fougère
[347], Gasbarra et al. [374], Grorud and Pontier [410], Hillairet [436], Imkeller
[457], Imkeller et al. [458], Karatzas and Pikovsky [512], Kohatsu-Higa [532,
533] and Kohatsu-Higa and Øksendal [534].

(c) Enlargement theory is also used to study asymmetric information, see
e. g. Föllmer et al. [353] and progressive enlargement is an important tool for
the study of default in the reduced form approach by Bielecki et al. [91, 92, 93],
Elliott et al.[315] and Kusuoka [552] (see � Chapter 7).

(d) See also the papers of Ankirchner et al. [19] and Yoeurp [858].
(e) Note that the random time τ presented in Subsection 5.6.5 is not the

end of a predictable set, hence, is not honest. However, F-martingales are
semi-martingales in the progressive enlarged filtration: it suffices to note that
F-martingales are semi-martingales in the filtration initially enlarged with W1.
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5.10 Filtering the Information

A priori, one might think somewhat näıvely that the drift term in the
historical dynamics of the asset plays no rôle in contingent claims valuation.
Nevertheless, working in the filtration generated by the asset shows the
importance of this parameter. We present here some results, linked with
filtering theory. However, we do not present the theory in detail, and the
reader can refer to Lipster and Shiryaev [598] and Brémaud [124] for processes
with jumps.

5.10.1 Independent Drift

Suppose that dB
(Y )
t = Y dt+dBt, B

(Y )
0 = 0 where Y is some r.v. independent

of B and with law ν. The following proposition describes the distribution
of B(Y ).

Proposition 5.10.1.1 The law of B(Y ) is Whν defined as

Whν |Ft = hν(Xt, t)W|Ft .

Here, hν(x, t) =
∫

ν(dy) exp(yx − y2

2 t).

Proof: Let F be a functional on C([0, t], R). Using the independence between
Y and B, and the Cameron-Martin theorem, we get

E[F (B(Y )
s , s ≤ t)] = E[F (sY + Bs, s ≤ t)] =

∫
ν(dy)E[F (sy + Bs, s ≤ t)]

=
∫

ν(dy)E
[
F (Bs, s ≤ t) exp

(
yBt −

y2

2
t

)]

= E[F (Bs; s ≤ t)hν(Bt, t)] .

�

We now give the canonical decomposition of B(Y ) in its own filtration. Let
Whν |Ft = hν(Xt, t)W|Ft = Lt W|Ft . Therefore, the bracket 〈X,L〉t is equal
to
∫ t

0
∂xhν(Xs, s) ds, and, from Girsanov’s theorem,

βt = Xt −
∫ t

0

ds
∂xhν

hν
(Xs, s)

is a Whν -martingale, more precisely a Whν -Brownian motion and

Xt = βt +
∫ t

0

ds
∂xhν

hν
(Xs, s) .

The canonical decomposition of B(Y ) is



330 5 Complements on Continuous Path Processes

B
(Y )
t = γt +

∫ t

0

ds
∂xhν

hν
(B(Y )

s , s) .

where γ is a BM with respect to the natural filtration of B(Y ).

The next proposition describes the conditional law of Y , given B(Y ).

Proposition 5.10.1.2 If f : R → R
+ is a Borel function, then

πt(f) : = E(f(Y )|B(Y )
s , s ≤ t) =

h(f ·ν)(B
(Y )
t , t)

hν(B(Y )
t , t)

where h(f ·ν)(x, t) =
∫

ν(dy)f(y) exp(yx − y2

2 t) and

πt(f) = 1 +
∫ t

0

(
∂x

h(f ·ν)

hν

)
(B(Y )

s , s)dγs .

Proof: On the one hand

E(f(Y )F (B(Y )
s , s ≤ t) = E(F (Bs, s ≤ t)h(f ·ν)(Bt, t)) . (5.10.1)

On the other hand, if

Φ(B(Y )
s , s ≤ t) = E(f(Y )|B(Y )

s , s ≤ t) ,

the left-hand side of (5.10.1) is equal to

E

(
Φ(B(Y )

s , s ≤ t)F (B(Y )
s , s ≤ t)

)
= E (Φ(Bs, s ≤ t)F (Bs, s ≤ t)hν(Bt, t)) .

(5.10.2)
It follows that

πt(f) = Φ(B(Y )
s , s ≤ t) =

h(f ·ν)(B
(Y )
t , t)

hν(B(Y )
t , t)

.

The expression of πt(f) as a stochastic integral follows directly from this
expression of πt(f) (and the martingale property of πt(f)). �

5.10.2 Other Examples of Canonical Decomposition

The above result can be generalized to the case where

dXt = dWt + (f(t)W̃t + h(t)Xt)dt

where W̃ is independent of W . In that case, studied by Föllmer et al. [353],
the canonical decomposition of X is
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Xt = βt +
∫ t

0

(f(u)ku(Xv; v ≤ u) + h(u)Xu) du

where

ku(Xs; s ≤ u) =
1

Ψ ′(u)

∫ u

0

Ψ(v) (f(v)dXv − f(v)h(v)Xvdv)

with Ψ the fundamental solution of the Sturm-Liouville equation

Ψ ′′(t) = f2(t)Ψ(t)

with boundary conditions Ψ(0) = 0, Ψ ′(0) = 1.

5.10.3 Innovation Process

The following formula plays an important rôle in filtering theory and will be
illustrated below.

Proposition 5.10.3.1 Let dXt = Ytdt + dWt, where W is an F-Brownian
motion and Y an F-adapted process. Define Ŷt = E(Yt|FX

t ), the optional
projection of Y on FX . Then, the process

Zt : = Xt −
∫ t

0

Ŷsds

is an FX-Brownian motion, called the innovation process.

Proof: Note that, for t > s,

E(Zt|FX
s ) = E(Xt|FX

s ) − E

(∫ t

0

Ŷudu|FX
s

)

= E(Wt|FX
s ) + E

(∫ t

0

Yudu|FX
s

)
−
∫ s

0

Ŷudu − E

(∫ t

s

Ŷudu|FX
s

)
.

From the inclusion FX
t ⊂ Ft and the fact that W is an F-martingale, we

obtain E(Wt|FX
s ) = E(Ws|FX

s ). Therefore, by using∫ t

s

E(Yu|FX
s )du =

∫ t

s

E(Ŷu|FX
s )du

we obtain

E(Zt|FX
s ) = E(Ws|FX

s ) + E

(∫ t

0

Yudu|FX
s

)
−
∫ s

0

Ŷudu − E

(∫ t

s

Ŷudu|FX
s

)

= E(Xs|FX
s ) +

∫ t

s

E(Yu|FX
s )du −

∫ s

0

Ŷudu − E

(∫ t

s

Ŷudu|FX
s

)

= Xs +
∫ t

s

E(Ŷu|FX
s )du −

∫ s

0

Ŷudu − E

(∫ t

s

Ŷudu|FX
s

)

= Xs −
∫ s

0

Ŷudu .

�
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Proposition 5.10.3.1 is in fact a particular case of the more general result
that follows, which is of interest if Z is not F-adapted.

Proposition 5.10.3.2 Let Z be a measurable process such that E(
∫ t

0
|Zu|du)

is finite for every t. Then, E(
∫ t

0
Zudu|Ft) is an F-semi-martingale which

decomposes as Mt +
∫ t

0
du E(Zu|Fu), where M is a martingale.

Proof: We leave the proof to the reader. �

Example 5.10.3.3 As an example, take Zu = B1, ∀u, with B a Brownian
motion. Then

E

(∫ t

0

duB1|Ft

)
= tBt = Mt +

∫ t

0

duBu .

Comment 5.10.3.4 The paper of Pham and Quenez [711] and the paper
of Lefebvre et al. [574] study the problem of optimal consumption under
partial observation, by means of filtering theory. See also Nakagawa [665]
for an application to default risk.
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