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Complements on Continuous Path Processes

In this chapter, we present the important notion of time change, which will
be crucial when studying applications to finance in a Lévy process setting.
We then introduce the operation of dual predictable projection, which will
be an important tool when working with the reduced form approach in the
default risk framework (of course, it has many other applications as will appear
clearly in subsequent chapters). We present important facts about general
homogeneous diffusions, in particular concerning their Green functions, scale
functions and speed measures. These three quantities are of great interest
when valuing options in a general setting. We study applications related to
last passage times. A section is devoted to enlargements of filtrations, an
important subject when dealing with insider trading.

The books of Borodin and Salminen [109], It6 [462], It6 and McKean [465],
Karlin and Taylor [515], Karatzas and Shreve [513], Kallenberg [505], Knight
[528], Pksendal [684], [RY] and Rogers and Williams [741, 742] are highly
recommended. See also the review of Varadhan [826].

An excellent reference for the study of first hitting times of a fixed level
for a diffusion is the book of Borodin and Salminen [109] where many results
can be found. The general theory of stochastic processes is presented in
Dellacherie [240], Dellacherie and Meyer [242, 244] and Dellacherie, Meyer
and Maisonneuve [241]. Some results about the general theory of processes
can also be found in — Chapter 9.

5.1 Time Changes

5.1.1 Inverse of an Increasing Process

In this paragraph, we deal with processes on a probability space but do not
make any reference to a given filtration. Let us recall that by definition (see
Subsection 1.1.10) an increasing process is equal to 0 at time 0; it is right
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continuous and of course increasing. Let A be an increasing process and let C
be the right inverse of A, that is the increasing process defined by:

C, =inf{t : Ay > u} (5.1.1)

where inf{()} = co. We shall use C,, or C(u) for the value at time u of the
process C. The process C' is right-continuous and satisfies

Cy— =1inf{t : Ay > u}

and {Cy >t} = {A; < u}. We also have A¢, > s and A; = inf{u : C,, > t}.
(See [RY], Chapter 0, section 4 for details.) Moreover, if A is continuous and
strictly increasing, C' is continuous and C'(4;) = t.

Proposition 5.1.1.1 Time changing in integrals can be effected as follows:
if f is a positive Borel function

/ f(s)dAs Z/ F(Cu) 1, <oy du .
[0,00[ 0

PRrOOF: For f =1y ), the formula reads

A, = / ]l{cugv}du
0

and is a consequence of the definition of C. The general formula follows from
the monotone class theorem. O

5.1.2 Time Changes and Stopping Times

In this section, F' is a right-continuous filtration, and A is a right-continuous
adapted increasing process with right inverse C'. From the identity

{Cu <t} ={Ar > u},

we see that (Cy,u > 0) is a family of F-stopping times. This leads us to define
a time change C as a family (C,,u > 0) of stopping times such that the
map u — (), is a.s. increasing and right continuous. We denote by F¢ the
filtration Fo = (F¢,,t > 0). For every ¢ the r.v. A; is an Fc-stopping time
(indeed {A; < u} = {C, > t}).

Example 5.1.2.1 We have studied a very special case of time change while
dealing with Ornstein-Uhlenbeck processes in Section 2.6. These processes are
obtained from a Brownian motion by means of a deterministic time change.
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Example 5.1.2.2 Let W be a Brownian motion and let
Tt:inf{SEO:Ws>t}:inf{320 : mngu>t}

be the right-continuous inverse of M; = max,<; W,,. The process (T;,t > 0)
is increasing, and right-continuous (see Subsection 3.1.2). See — Section 11.8
for applications.

Exercise 5.1.2.3 Let (B,W) be a two-dimensional Brownian motion and
define
T, =inf{s > 0: W, > t}.

Prove that (Y; = Br,,t > 0) is a Cauchy process, i.e.,, a process with
independent and stationary increments, such that Y; has a Cauchy law with
characteristic function exp(—t|ul).

Hint: E(e™Pn) = fe_%“%f(‘”)ﬂb(dw) = E(e 2" Tt) = ¢~ tlul, <

5.1.3 Brownian Motion and Time Changes

Proposition 5.1.3.1 (Dubins-Schwarz’s Theorem.) A continuous mar-
tingale M such that
(M)oo =00

is a time-changed Brownian motion. In other words, there exists a Brownian
motion W such that My = Wy,

SKETCH OF THE PROOF: Let A = (M) and define the process W as
W, = M¢, where C is the inverse of A. One can then show that W is a
continuous local martingale, with bracket (W), = (M)c, = u. Therefore,
W is a Brownian motion, and replacing u by A; in W,, = M¢,, one obtains
M, = Wa,. 0

Comments 5.1.3.2 (a) This theorem was proved in Dubins and Schwarz
[268]. It admits a partial extension due to Knight [527] to the multidimensional
case: if M is a d-dimensional martingale such that (M? MJ) = 0,i # j
and (M%), = oo,Vi, then the process W = (Méi(t),i <d,t>0)is a d-
dimensional Brownian motion w.r.t. its natural filtration, where the process
C; is the inverse of (M?). See, e.g., Rogers and Williams [741]. The assumption
(M) oo = 00 can be relaxed (See [RY], Chapter V, Theorem 1.10).

(b) Let us mention another two-dimensional extension of Dubins and
Schwarz’s theorem for complex valued local martingales which generalize
complex Brownian motion. Getoor and Sharpe [390] introduced the notion
of a continuous conformal local martingale as a process Z = X + Y, valued
in C, the complex plane, where X and Y are real valued continuous local
martingales and Z?2 is a local martingale. A prototype is the complex-valued
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Brownian motion. If Z is a continuous conformal local martingale, then, from
Z? = X2 - Y2 +2iX,Y;, we deduce that (X); = (Y); and (X,Y); = 0. Hence,
applying Knight’s result to the two-dimensional local martingale (X,Y"), there
exists a complex-valued Brownian motion B such that Z = Bx,. In fact, in
this case, B can be shown to be a Brownian motion w.r.t. (F,,,,u > 0), where
oy, = inf{t : (X)¢ > u}. If (Z4,t > 0) denotes now a C-valued Brownian
motion, and f : C — C is holomorphic, then (f(Z;),t > 0) is a conformal
martingale. The C-extension of the Dubins-Schwarz-Knight theorem may then
be written as:

F(Z) =21\ pzopant 20 (5.1.2)

where f’ is the C-derivative of f, and Z denotes another C-valued Brownian
motion. This is an extremely powerful result due to Lévy, which expresses the
conformal invariance of C-valued Brownian motion. It is easily shown, as a
consequence, using the exponential function that, if Zy = a, then (Z;,¢ > 0)
shall never visit b # a (of course, almost surely). As a consequence, (5.1.2)
may be extended to any meromorphic function from C to itself, when P(Z; €
S) = 0 with S the set of singular points of f.

(c) See Jacod [468], Chapter 10 for a detailed study of time changes, and
El Karoui and Weidenfeld [311] and Le Jan [569)].

Exercise 5.1.3.3 Let f be a non-constant holomorphic function on C and
Z = X + 1Y a complex Brownian motion. Prove that there exists another
complex Brownian motion B such that f(Z;) = f(Zy) —i—B(fot |f(Z)|2d(X)s)
(see [RY], Chapter 5). As an example, exp(Z;) =1+ Bt s exp(2x.)- <

We now come back to a study of real-valued continuous local martingales.

Lemma 5.1.3.4 Let M be a continuous local martingale with (M), = oo,
W' the Brownian motion such that My = Wy, and C the right-inverse of
(M). If H is an adapted process such that for any t,

t (M)
/H§d<M>s :/ HZ du| < oo,
0 0

t (M) Cy t
/ H.dM, = / He, dW, , / H.dM, = / He, dW, .
0 0 0 0

Lemma 5.1.3.5 Let X; = OC" H,dWy, where C is a time change with respect
to F, differentiable with respect to time. Assume that C} # 0 for any t. Then,

then

dXt = HCt \/ C{ dBt,

where B is an Fc-Brownian motion.
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PROOF: From the previous lemma
Cy t
/ H,dW, :/ He, dWe, ,
0 0

hence, dX; = Heo,dWe,. The process (We, ,u > 0) is a local martingale with
bracket C',. The process

t
1
B, = dw

is a Brownian motion. O

Remarks 5.1.3.6 (a) Up to an enlargement of probability space, one can
generalize the previous lemma to the case where the condition C] # 0 does
not hold, but where we keep the assumption that C' is differentiable. (The
proof is left to the reader.)

(b) A time-changed local martingale is not necessarily a local martingale
with respect to the time-changed filtration. As seen in Example 5.1.2.2, if Ty
is the first hitting time of the level ¢ for the Brownian motion B, the process
t — T; is increasing and is a time change. However, By, = t is not a local
martingale. This illustrates, although very roughly, Monroe’s theorem (see
Remark 5.1.3.6) which states that any semi-martingale (even discontinuous)
is a time changed Brownian motion. [655, 656]

However, if X is a continuous F-local martingale and C' a continuous
time change, then (X¢,)i>0 is a continuous Fc-local martingale. (See [RY],
Chapter V, Section 1).

Comments 5.1.3.7 (a) Changes of time are extensively used for finance
purposes in the papers of Geman, Madan and Yor [379, 385, 380, 381].

(b) The “pli cacheté” of Doeblin [255] may have been one of the first papers
studying time changes.

(c) Further extensions to Markov processes are found in Volkonski [831].
See also McKean’s paper [637] for other aspects of this major idea and
important applications to Bessel processes in — Chapter 6.

Exercise 5.1.3.8 Let Y be the solution of
dY; = (cY; + kY2)dt + /Y dW;
Prove that Y; = Z(fot Y,ds) where dZ(u) = (¢ + kZ(u))du + AW, <

Exercise 5.1.3.9 Let Z be a complex BM Z; = X; + iY;. Consider the two
martingales | Z;|? — 2t and fg (XsdYs — YsdX,). Prove that

t
(12 = 20) i [ (XdY. - V.dX.)
0

| —
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is a conformal martingale which can be represented as Zu = [y + iy, time-
changed by fg|Zs\2ds with 8 and 7 two independent BM’s. Prove that
0(Bu,u > 0) = o(|Z],t > 0), hence v and |Z| are independent. <

5.2 Dual Predictable Projections

In this section, after recalling some basic facts about optional and predictable
projections, we introduce the concept of a dual predictable projection', which
leads to the fundamental notion of predictable compensators. We recommend
the survey paper of Nikeghbali [674].

Recall that a process is said to be optional if it is measurable with
respect to the o-algebra on RT x 2 generated by cadlag F-adapted processes,
considered as mappings on RT x {2, whereas a predictable process is
measurable with respect to the o-algebra on R™ x {2 generated by cag F-
adapted processes (see — Subsection 9.1.3 for comments).

5.2.1 Definitions

Let X be a bounded (or positive) process, and F a given filtration. The
optional projection of X is the unique optional process (°)X which satisfies:
for any F-stopping time 7

E(X:Lireooy) = E(“X 11 c00y) - (5.2.1)

For any F-stopping time 7, let I" € F, and apply the equality (5.2.1) to the
stopping time 7 = 71 + ool e . We get the re-inforced identity:

E(X: Loy Fr) = DX 1 ooy
In particular, if A is an increasing process, then, for s < t:
E((D4, — DAF,) =E(A;, — AJF,) > 0. (5.2.2)

Note that, for any ¢, E(X;|F;) = (©X;. However, E(X;|F;) is defined almost
surely for any ¢; thus uncountably many null sets are involved, hence, a priori,
E(X;|F;) is not a well-defined process whereas (©)X takes care of this difficulty.

Likewise, the predictable projection of X is the unique predictable
process (P)X such that for any F-predictable stopping time 7
E(X Lircoe)) = E(PX <o) (5.2.3)
As above, this identity reinforces as
B(X <oy o) = PXoL ey

for any F-predictable stopping time 7 (see Subsection 1.2.3 for the definition
of F-_).

! See Dellacherie [240] for the notion of dual optional projection.
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Example 5.2.1.1 Let 7 and ¥ be two stopping times such that ¢ < 7 and
Z a bounded r.v.. Let X = Z1jy 7. Then, ©)X = Ulyy q, PX = Vi
where U (resp. V) is the right-continuous (resp. left-continuous) version of
the martingale (E(Z|F;),t > 0).

Let 7 and ¥ be two stopping times such that ¢ < 7 and X a positive
process. If A is an increasing optional process, then, since lyy () is

predictable
E </ XtdAt) =F (/ (O)XtdAt) .
9 9

If A is an increasing predictable process, then

1E< / XtdAt):E< / (p)XtdAt)
9 9

The notion of interest in this section is that of dual predictable
projection, which we define as follows:

Proposition 5.2.1.2 Let (A, t > 0) be an integrable increasing process (not
necessarily F-adapted). There exists a unique F-predictable increasing process

(Agp),t > 0), called the dual predictable projection of A such that

E (/ HSdAS> =E (/ HSdAgp)>
0 0

for any positive F-predictable process H.
In the particular case where Ay = fot agds, one has

t
AP = / ®) g, ds (5.2.4)
0

PROOF: See Dellacherie [240], Chapter V, Dellacherie and Meyer [244],
Chapter 6 paragraph (73), page 148, or Protter [727] Chapter 3, Section 5. [J

This definition extends to the difference between two integrable (for sim-
plicity) increasing processes. The terminology “dual predictable projection”
refers to the fact that it is the random measure d; A;(w) which is relevant when
performing that operation. If X is bounded and A has integrable variation
(not necessarily adapted), then

E((X*AP)0) = E(( P XxA)w)
This is equivalent to: for s < t,
E(A, — A,|F,) = E(AP — AP)|F,). (5.2.5)

If A is adapted (not necessarily predictable), then (A; — AEP > 0) is a
martingale. In that case, AE’) ) is also called the predictable compensator of A.
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More generally, from Proposition 5.2.1.2 and (5.2.5), the process (24— A(®)
is a martingale.

Proposition 5.2.1.3 If A is increasing, the process (9A is a sub-martingale
and AW is the predictable increasing process in the Doob-Meyer decomposition
of the sub-martingale (?A.

Example 5.2.1.4 Let W be a Brownian motion, M = sup <, Wy its running
maximum, and R; = 2M; — W;. Then, from — Pitman’s Theorem 5.7.2.1 and
its Corollary 5.7.2.2, for any positive Borel function f,

E(f(M,)|FF) / dof(Rx),

hence, E(2M,;|F£) = R; and the predictable projection of 2M; is R;. On the
other hand, from Pitman’s theorem

t
ds

= ﬁt + o

o Rs

where ( is a Brownlan motion, therefore, the dual predictable projection of

2M; on .7-'75 is fo . Note that the difference between these two projections

is the (Brownian) martlngale B.

In a general setting, the predictable projection of an increasing process A
is a sub-martingale whereas the dual predictable projection is an increasing
process. The predictable projection and the dual predictable projection of an
increasing process A are equal if and only if () A;,¢ > 0) is increasing.

It will also be convenient to introduce the following terminology:

Definition 5.2.1.5 If 4 is a random time, we call the predictable compen-
sator associated with ¥ the dual predictable projection AY of the increasing
process Lg<yy. This dual predictable projection A? satisfies

=E (/OOO ksdAff) (5.2.6)

for any positive, predictable process k.

5.2.2 Examples

In the sequel, we present examples of computation of dual predictable
projections. We end up with Azéma’s lemma, providing the law of the
predictable compensator associated with the last passage at 0 of a BM before
T, evaluated at a (stopping) time T'. See also Knight [529] and — Sections 5.6
and 7.4.
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Example 5.2.2.1 Let (B;)s>0 be an F— Brownian motion starting from 0
and Bg”) = B, + vs. Let G® be the filtration generated by the process
(|B£”)\, s > 0) (which coincides with the one generated by (Bﬁ”))Z). We now
compute the decomposition of the semi-martingale (B(”))2 in the filtration
G®) and the dual predictable projection (with respect to G*)) of the finite
variation process fg B™ds.

1t6’s lemma provides us with the decomposition of the process (B(”))2 in
the filtration F:

t t
(B)? =2 / B{"dB, + 2v / Bds + 1. (5:2.7)
0 0

To obtain the decomposition in the filtration G*) we remark that, on the
canonical space, denoting as usual by X the canonical process,

W(O)(e”Xs ]-'S‘X|) = cosh(rXy)

which leads to the equality:

WO (X erXe | FIX)
W) (erXs ]:S\Xl)

W(”)(Xs|.7:s‘x‘) = = X tanh(vX;) = v(vX,) /v,

where ¢(z) = z tanh(z). We now come back to equality (5.2.7). Due to (5.2.4),
we have just shown that:

¢ ¢
The dual predictable projection of 21// BWds is 2/ dsy(vBW).

0 0
(5.2.8)
AS a consequence,

t
(BM)? —2 / dsy(vB™) —t
0

is a G(*)-martingale with increasing process 4 fot (Bé”))st. Hence, there exists
a G*)-Brownian motion § such that

t

t
(By +vt)? = 2/ |Bs + vs|dBs + 2/ ds(v(Bs +vs)) +t. (5.2.9)
0 0

Exercise 5.2.2.2 Prove that, more generally than (5.2.8), the dual pre-
dictable projection of f(f F(Bds is fg E(f(B)|G{"))ds and that

J(BE)e B 4 f(~ B e B

BB = 2 cosh(vB{")
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Exercise 5.2.2.3 Prove that if (as,s > 0) is an increasing predictable
process and X a positive measurable process, then

. (») t
(/ Xsdozs> :/ P X da .
0 t 0
. (p) t
(/ Xsds) = / P)x . ds.
0 t 0

In particular

<

Example 5.2.2.4 Let B be a Brownian motion and Y; = |B;|. Tanaka’s
formula gives

t
|Bt| :/ sgn(Bs)st +Lt
0

where L denotes the local time of (B¢t > 0) at level 0. By an application
of the balayage formula (see Subsection 4.1.6), we obtain (we recall that g;
denotes the last passage time at level 0 before )

t t
hg, | Bt| :/0 hgssgn(Bs)stJr/O hedL,

where we have used the fact that L, = L,. Consequently, replacing, if

necessary, h by |h|, we see that the process f(f |hs|dLs is the local time at
0 of (hg,Bi,t > 0). Let now 7 be a stopping time such that (Bia-;t > 0) is
uniformly integrable, and satisfies P(B; = 0) = 0. Then, it follows from the
balayage formula that, for every predictable and bounded process h

E (hy,|B-|) =E (/OT hSdLS> : (5.2.10)

As an example, consider 7 = T = inf{t : |B;| = a}; we have

E (hyr; ) = -E ( / " hdes> ,
0

whence we conclude that the predictable compensator (AY;t¢ > 0) associated
with ¥ := g7 is given by

1
A} = =Lt
a
In the general case, applying (5.2.10) to the variable &, = E(|B.||F,.),

where (§,;u > 0) is a predictable process (note that P({,, = 0) = 0, as a
consequence of P(B; = 0) = 0) we obtain
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E(k, ) =E (/OT %dLS> (5.2.11)

from which we deduce that the predictable compensator associated with g, is

tAT
Ay :/ % (5.2.12)
0 fs
In general, finding £ may necessitate some work, but in some cases, e.g.,
7 = inf{t : |By| = a}, for a continuous adapted process (a;) such that
ay = ag,, no extra computation is needed, since: | B;| = a,, is F,, measurable,
hence we can take: £, = ay,; finally A; = OtAT %

We finish this subsection with the following interesting lemma which, in
some generality, gives the law of A,.

Lemma 5.2.2.5 (Azéma.) Let B be a BM and 7 a stopping time such that
(Biar;t > 0) is uniformly integrable, and satisfies P(B, = 0) = 0. Let A be
the predictable compensator associated with g.. Then, A, is an exponential
variable with mean 1.

PROOF: Since, as a consequence of equality (5.2.12), A, = A,_, we have for

every A >0 B
E (e_)‘AT) =F (/ e_/\ASdAS) ,
0

as a consequence of (5.2.6) applied to ¥ = g, and k; = exp(—AA;). Thus, we

obtain o
E (e M7) =R (%) 7

or equivalently, E (e=*+) = 1%\ The desired result follows immediately. O

Note that a corollary of this result provides the law of the local time of
the BM at the time 77 = inf{t : |B;| = a}: Lr- is an exponential variable,
with mean a.

Exercise 5.2.2.6 Let F C G and let G; — fot vsds be a G-martingale.

Recalling that (©) X is the F-optional projection of a process X, prove that
G, — fot (©)~.ds is an F-martingale. <

5.3 Diffusions

In this section, we present the main facts on linear diffusions, following closely
the presentation of Chapter 2 in Borodin and Salminen [109]. We refer to
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Durrett [287], It6 and McKean [465], Linetsky [595] and Rogers and Williams
[742] for other studies of general diffusions.

A linear diffusion is a strong Markov process with continuous paths taking
values on an interval I with left-end point ¢ > —oo and right-end point
r < oco. We denote by ¢ the life time of X (see Definition 1.1.14.1). We
assume in what follows (unless otherwise stated) that all the diffusions we
consider are regular, i.e., they satisfy P,(T, < oo) > 0,Vz,y € I where
T, =inf{t : X, =y}.

5.3.1 (Time-homogeneous) Diffusions

In this book, we shall mainly consider diffusions which are It6 processes: let b
and o be two real-valued functions which are Lipschitz on the interval I, such
that o(z) > 0 for all = in the interval I. Then, there exists a unique solution
to

t t
Xt:x—k/ b(XS)ds+/ o (X )dW, | (5.3.1)
0 0

starting at point = €]¢,r[, up to the first exit time Ty, = T;(X) A T.(X). In
this case, X is a time-homogeneous diffusion.

In fact, the Lipschitz assumption is not quite necessary; see Theorem
1.5.5.1 for some finer assumptions on b and o.

Solutions of

¢ ¢
Xi=z+ / b(Xs,s)ds + / o(Xs,s)dWs, (5.3.2)
0 0

with time dependent coefficients b and ¢ are called time-inhomogeneous
diffusions; for these processes, the following results do not apply.

From now on, we shall only consider diffusions of the type (5.3.1), and we
drop the term “time-homogeneous.” We mention furthermore that, in general
studies of diffusions (see Borodin and Salminen [109]), a réle is also played by
a killing measure; however, since we shall not use this item in our presentation,
we do not introduce it.

5.3.2 Scale Function and Speed Measure
Scale Function

Definition 5.3.2.1 Let X be a diffusion on I and T, = inf{t >0 : X; =y},
fory € 1. A scale function is an increasing function from I to R such that,
for x € [a, b]

s(z) — s(b)

P, (T, < Tp) = FOETOR

(5.3.3)
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Obviously, if s* is a scale function, then so is as* + § for any («, ), with
a > 0 and any scale function can be written as as* + .

Proposition 5.3.2.2 The process (s(X;),0 <t <T},) is a local martingale.
The scale function satisfies

£02 @) () + b(a)s' () = 0.
PRrOOF: For any finite stopping time 7 < T} ., the equality
s(Xr) —s(0) _ s(x) —s(b)
e (Swr) ~ o

follows from the Markov property. O

In the case of diffusions of the form (5.3.1), a (differentiable) scale function

s(z) = / exp( / b(v) /o2 )dv)du (5.3.4)

for some choice of ¢ €]¢, r[. The increasing process of s(X) being

4, = / (02X, )du,

(by an application of It6’s formula), the local martingale (s(X¢),t < Ty ,) can
be written as a time changed Brownian motion: s(X;) = (a4, .

In the case of constant coefficients with b < 0 (resp. b > 0) and o # 0, the
diffusion is defined on R, T, = 0o, and we may choose s(z) = exp (—2bo:/02),
(resp. s(z) = —exp (—2bxz/c?)) so that s is a strictly increasing function and
s(—o00) =0, 5(00) = 00 (resp. s(—o0) = —00, s(c0) = 0).

A diffusion is said to be in natural scale if s(z) = x. In this case, if I = R,
the diffusion (X;,t > 0) is a local martingale.
Speed Measure

The speed measure m is defined as the measure such that the infinitesimal
generator of X can be written as

Af(x) = ———f(x)
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where
o fE+h) — fz)

_f( )= h—>0 s(x 4+ h) —s(x)

)

and
ig( )= 1li w

dm s m(z,z + h)

In the case of diffusions of the form (5.3.1), the speed measure is absolutely
continuous with respect to Lebesgue measure, i.e., m(dz) = m(x)dz, hence

d d 1 d/1d
Af(z) = o~ fla) = ) dz <——f>

s’ dx
o 1 ") — sll(x) o
“n@e@! T e Em! @
1 2b(x)
_|_

- m(x) s’ (x) (@) m(x) s'(x) o?(x) f'(@)

where the last equality comes from formula (5.3.4). Since in this case the
infinitesimal generator has the form

Af(@) = 30> (@) (2) + b(a) ' (x),

the density of the speed measure is

m(m) = (5.3.5)

Tt is important to consider the local martingale s(X;) only strictly before
the hitting time of the boundary. The reader should keep in mind the example
of the reflected Brownian motion, which is not a martingale, although s(z) = «
(see — Proposition 6.1.2.4).

If X is a diffusion with scale function s, we have seen that s(X;) = (4, ,
where § is a Brownian motion. In terms of speed measure, the increasing
process A is the inverse of

! /0 “m()ds = & [mi@;o
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Remark 5.3.2.3 Beware that some authors define the speed measure with a

1d d
factor 1/2, that is Af(x) = 3 dm d—f(a:) Our convention, without this factor
m ds

1/2 is the same as Borodin and Salminen [109].

Exercise 5.3.2.4 Prove that, if s(X) is a martingale, then, equality (5.3.3)
holds. <

5.3.3 Boundary Points

Definition 5.3.3.1 The boundary points are classified as follows:
o The left-hand point € is an exit boundary if, for any x €]¢,r],

/z " m(ly. 2])s'(y)dy < oo

and an entrance boundary if, for any x €]¢,7],

/ " m(t, )5 (y)dy < oo

o The right-hand point r is an exit boundary if, for any x €)¢,r|,

[ mllea0s' )y <

and an entrance boundary if, for any x €]¢,7],

/ " m(y, )5’ (y)dy < 0.

o A boundary point which is both entrance and exit is called non-singular.
o A boundary point that is neither entrance nor exit is called natural.

A diffusion reaches its non-singular boundaries with positive probability,
and it is possible to start a diffusion from a non-singular boundary.

An example where 0 is an entrance boundary is given by the BES? process
(see — Chapter 6), or more generally by a BES® with § > 2. We recall that
a BES? process with § > 2 does not return to 0 after it has left this point.

Definition 5.3.3.2 Let X be a diffusion. The point ¢ is said to be instan-
taneously reflecting if m({¢}) = 0.

For the reflected BM |B]|, the point 0 is instantaneously reflecting and the
Lebesgue measure of the set {t : |B;| = 0} is zero.
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Example 5.3.3.3 We present, following Borodin and Salminen [109], the
computation of the scale function and speed measure for some important
diffusion processes:

e Drifted Brownian motion.
Suppose X; = B; + vt. A scale function for X is s(z) = exp(—2vx) for
v < 0, and s(x) = —exp(—2vz) for v > 0. The density of the speed
measure is m(x) = 2e2V*. The lifetime is co.

¢ Geometric Brownian motion. Let dS; = S;(udt+odB;). We have seen
in Lemma 3.6.6.1 that Stl_”’ is a martingale for v = 2u/0%. Hence
— ascale function of S is s(z) = —(2'77)/(1 — ~) for v # 1 and Inz for
=1,
— the density of the speed measure is m(z) = 22772 /02.
The boundary points 0 and co are natural.
— If v > 1, then lim;_ S¢(w) = 00, a.s.,
— if v < 1, then lim;_, o S;(w) = 0, a.s.,
— if y =1, then liminf; o S¢(w) = 0, limsup,_, ., Si(w) = o0 a.s..

¢ Reflected Brownian motion.
The process X; = |Wy| is a diffusion on [0, co[. The left-hand point 0 is a
non-singular boundary point. The scale function is s(x) = x, the density
of the speed measure is m(z) = 2.

o Bessel processes. A Bessel process (see — Section 6.1) with dimension
6 and index v = § — 1 is a diffusion on ]0, oo[, or on [0, oo[ depending on
the value of v and the boundary conditions at 0.

For all values of v, the boundary point co is natural. The boundary point
0is

— exit-non-entrance if v < —1

— mnonsingular if -1 < v <0

— entrance-not exit if v > 0.

In the nonsingular case, the boundary condition at 0 is usually reflection or
killing. A scale function for a BES®is s(z) = 272" for v < 0, s(z) = Inx
for v = 0 and s(z) = —2~2?" for v > 0. It follows that a scale function for
a BESQ") is

- s(x) =a7" for v <0,

- $(z) =Inz for v =0 and

- s(z)=—a7" forv > 0.

See — Proposition 6.1.2.4 for more information.

For v > 0, the density of the speed measure is m(z) = v~ 1z +1.

e Affine equation.
Let
dX; = (aX; 4 1)dt + V2 X, dW, , Xo = .
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The scale function derivative is s'(z) = 2~ “e'/* and the speed density
function is m(z) = z%e~/*,

e OU and Vasicek processes.
Let r be a (k, o) Ornstein-Uhlenbeck process. A scale function derivative
is s'(z) = exp(ka?/0?). If r is a (k,0; o) Vasicek process (see Section 2.6),
s'(z) = exp k(x — 0)? /o2

The first application of the concept of speed measure is Feller’s test for
non-explosion (see Definition 1.5.4.10). We shall see in the sequel that speed
measures are very useful tools.

Proposition 5.3.3.4 (Feller’s Test for non-explosion.) Let b, o belong to
CL(R), and let X be the solution of

dX, = b(Xy)dt + o(X;)dW,

with T its explosion time. The process does not explode, i.e., P(t = o00) =1 if
and only if

0 oo
/ [s(z) — s(—o0)] m(z)dx = /0 [s(c0) — s(x)] m(z)dx = 0o .

— 00

PROOF: see McKean [637], page 65. O

Comments 5.3.3.5 This proposition extends the case where the coefficients
b and o are only locally Lipschitz. Khasminskii [522] developed Feller’s test
for multidimensional diffusion processes (see McKean [637], page 103, Rogers
and Williams [742], page 299). See Borodin and Salminen [109], Breiman
[123], Freedman [357], Knight [528], Rogers and Williams [741] or [RY] for
more information on speed measures.

Exercise 5.3.3.6 Let dX; = 0dt + o/ X;dW;, Xo > 0, where # > 0 and, for
a<x<blet gp(z) =Py (TH(X) < To(X)). Prove that

7Y —a

blfu _ alfu

1—v

wa,b(x) =

where v = 20/02. Prove also that if v > 1, then T} is infinite and that if
v < 1, Yop(z) = (2/b)' ™. Thus, the process (1/X;,t > 0) explodes in the
case v < 1. 4

5.3.4 Change of Time or Change of Space Variable

In a number of computations, it is of interest to time change a diffusion into
BM by means of the scale function of the diffusion. It may also be of interest
to relate diffusions of the form
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t t
Xi=z —|—/ b(Xs)ds —|—/ o(X)dWs
0 0

to those for which ¢ = 1, that is ¥; = y + 5 + fg du p(Yy,) where f3 is a
Brownian motion. For this purpose, one may proceed by means of a change
of time or change of space variable, as we now explain.

(a) Change of Time

Let A, = fo s)ds and assume that |o| > 0. Let (Cy, u > 0) be the inverse
of (A¢,t > 0). Then

XCu :$+ﬁu+/ dChb(Xch)
0

dh
From h = f s)ds, we deduce dC}j, = , hence

o%(Xe,)
v b
Y, :=Xe, :m+ﬂu+/ dhﬁ(Yh)
0
where 3 is a Brownian motion.
(b) Change of Space Variable

“d
Assume that p(z) = / % is well defined and that ¢ is of class C?. From
o 0

1to’s formula

t 1t

P = (o) + [ P (Xax.+ 5 [ @ (X)o*(X.)ds
0 0
K b 1,
= o(x) + W, +/ ds (—(Xs) - -0 (Xs)) .
0 o 2

Hence, setting Z; = ¢(Xy), we get

t
Zt =z+ Wt +/ b(Zs)dS
0

where b(2) = 2(p71(2)) — 2o’ (¢ (2)).

Comment 5.3.4.1 See Doeblin [255] for some interesting applications.
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5.3.5 Recurrence
Definition 5.3.5.1 A diffusion X with values in I is said to be recurrent if
P, (Ty <o0)=1, Vx,yel.
If not, the diffusion is said to be transient.

It can be proved that the homogeneous diffusion X given by (5.3.1) on |, [
is recurrent if and only if s(/+) = —oo and s(r—) = co. (See [RY], Chapter
VII, Section 3, for a proof given as an exercise.)

Example 5.3.5.2 A one-dimensional Brownian motion is a recurrent pro-
cess, a Bessel process (see — Chapter 6) with index strictly greater than 0
is a transient process. For the (recurrent) one-dimensional Brownian motion,
the times T}, are large, i.e., E,(T}") < oo, for z # y if and only if o < 1/2.

5.3.6 Resolvent Kernel and Green Function
Resolvent Kernel

The resolvent of a Markov process X is the family of operators f — R f

Bafo) =5 ([ e xar)

The resolvent kernel of a diffusion is the density (with respect to Lebesgue
measure) of the resolvent operator, i.e., the Laplace transform in ¢ of the
transition density p:(x,y):

Ra(a,y) = / ey, y)dt (5.3.6)
0

where A > 0 for a recurrent diffusion and A > 0 for a transient diffusion. It

satisfies 2R oR
1, A A _
5 (x) 92 —i—b(m)W—AR)\—O forz #y

and Ry (z,x) = 1. The Sturm-Liouville O.D.E.

%a‘z(x)u”(x) + b2 (2) — M) = 0 (5.3.7)

admits two linearly independent continuous positive solutions (the basic
solutions) #y1(x) and Py (), with @y increasing and @, decreasing, which
are determined up to constant factors.

A straightforward application of Itd’s formula establishes that e =&y (X;)
and e”\téM(Xt) are local martingales, for A > 0, hence, using carefully
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Doob’s optional stopping theorem, we obtain the Laplace transform of the
first hitting times:

B (T Pri(x)/Pary)  ifx <y 65.55)
' Dy (2)/Pri(y) ifz>y ' a

Green Function

Let pgm) (z,y) be the transition probability function relative to the speed
measure m(y)dy:

P,(X; € dy) = pi™ (z,y)m(y)dy . (5.3.9)

It is a known and remarkable result that pgm) (x,y) = pgm)(yw) (see Chung

[185] and page 149 in It6 and McKean [465]).

The Green function is the density with respect to the speed measure of
the resolvent operator: using pgm) (z,y), the transition probability function
relative to the speed measure, there is the identity

G y) : = / e Mpi™ ()t = wy ' Bag (A )Py, (2 V )
0

where the Wronskian

wr i P4 (9)PaL(y) — Pt (y) Py (y) (5.3.10)

s'(y)

depends only on A and not on y. Obviously

m(y)Gr(z,y) = Ra(z,y),

hence
Ry(z,y) = wy 'm(y)Pri(x Ay)Pry(z Vy). (5.3.11)

A diffusion is transient if and only if limy_0 Gx(x,y) < oo for some z,y € T
and hence for all z,y € I.

Comment 5.3.6.1 See Borodin and Salminen [109] and Pitman and Yor
[718, 719] for an extended study. Kent [520] proposes a methodology to invert
this Laplace transform in certain cases as a series expansion. See Chung [185]
and Chung and Zhao [187] for an extensive study of Green functions. Many
authors call Green functions our resolvent.
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5.3.7 Examples

Here, we present examples of computations of functions &, and P,; for
certain diffusions.

e Brownian motion with drift u: X; = ut + cW;. In this case, the basic
solutions of

1
2 2’/+MU—)\U

%T(fﬂ)—exp[ ( u+\/mn
@y (z) = exp [—; (n+v2r?+02)] .

e Geometric Brownian motion: dX; = X;(udt + cdW,).
The basic solutions of

1
502x2u" + pau’ = M

are
Dy (x )_x(,z( % +/2A07 (=02 /2)?)

a(5) = 2~ 0= F BTG

a

e Bessel process with index v. Let dX; = dW;+ (V + %) X%dt. For v > 0,
the basic solutions of

1 1\ 1
§u" + <1/ + 5) Eu’ = \u

B (z) = 27V, (2V2N), Dy (x) = 27K, (zV2N),

where [, and K, are the classical Bessel functions with index v (see —
Appendix A.5.2).

are

e Affine Equation.
Let
dX; = (aX; + B)dt + V2X,dW, ,

with 3 # 0. The basic solutions of
22 + (x4 B)u’ =

are
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(v+p)/2
p v+ p
@AT(I): <E M 2u71+H75 )

(u) /2
@l(x):@) U(V—;u,lJru,g)

where M and U denote the Kummer functions (see — A.5.4 in the
Appendix) and p = V2 + 4\ 1+ v =a.

e Ornstein-Uhlenbeck and Vasicek Processes. Let & > 0 and
dX: = k(0 — Xy)dt + odWy, (5.3.12)
a Vasicek process. The basic solutions of
! o?u’ + k(0 — 2)u’ = \u
27

are

Pyp(x) = exp (@) D_y/k (_x ; Gm) ;

202
Dy (z) = exp (%) D_y/k (x;0m> .

Here, D, is the parabolic cylinder function with index v (see — Ap-
pendix A.5.4).

Comment 5.3.7.1 For OU processes, i.e., in the case § = 0 in equation
(5.3.12), Ricciardi and Sato [732] obtained, for > a, that the density of
the hitting time of a is

_kek(zz—a2)/22 ”"“(x\ﬁ) —kvp qt
Dy, (a\/_)

where 0 < v14 < -+ < Upq < --- are the zeros of v — D,(—a).
The expression D, denotes the derivative of D, (a) with respect to v,
evaluated at the pomt V = Uy 4. Note that the formula in Leblanc et al.
[673] for the law of the hitting time of a is only valid for a = 0,0 = 0. See
also the discussion in Subsection 3.4.1.

Extended discussions on this topic are found in Alili et al. [10], Going-
Jaeschke and Yor [398, 397], Novikov [678], Patie [697] or Borodin and
Salminen [109].

e CEV Process.
The constant elasticity of wvariance process (See — Section 6.4 ) follows
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dS, = Sy(pdt + SPdW,) .
In the case 8 < 0, the basic solutions of
%x2ﬂ+2u”(x) + pxu' (z) = u(x)
are
Dy (z) = xﬁﬂ/ze“/sz}m(x), Dy (z) = xﬂH/Qe“/QWk,m(Z‘)

where M and W are the Whittaker functions (see ~— Subsection A.5.7)

and 1 1 1 A
€ = sgn(uf), m = ke <§ +R> 20uf)’

See Davydov and Linetsky [225].
Exercise 5.3.7.2 Prove that the process

t
X: = exp(aB; + bt) (x + / dsexp(—aB; — bs))
0

t t 2
Xt:x+a/ XudBu+/ ((“2+b>xu+1>du.
0 0

(See Donati-Martin et al. [258] for further properties of this process, and
application to Asian options.) More generally, consider the process

satisfies

dY; = (aY; + b)dt + (cY; + d)dWy ,
where ¢ # 0. Prove that, if X; = ¢Y; + d, then
dX; = (aX + B)dt + X dW,

with a = a/c, 8 = b—da/c. From Ty (YY) = Toqrq(X %), deduce the Laplace
transform of first hitting times for the process Y. <

5.4 Non-homogeneous Diffusions

5.4.1 Kolmogorov’s Equations

Let 1
Lf(S,SL') - b(S,IL’)a:Cf(S,Iﬂ) + 502(*9) x)@imf(s,x) .

A fundamental solution of
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O0sf(s,x)+ Lf(s,z) =0 (5.4.1)

is a positive function p(z, s;y,t) defined for 0 < s < ¢, x,y € R, such that for
any function ¢ € Cy(R) and any ¢ > 0 the function

f(s,2) = /R o()p(s, z:t, y)dy

is bounded, is of class C12, satisfies (5.4.1) and obeys limgy; f(s,7) = p(z).
If b and o are real valued bounded and continuous functions RT x R such
that

(i) o%(t,z) > ¢ >0,
(ii) there exists a €]0, 1] such that for all (x,y), for all s,t > 0,

[b(t, ) = b(s,y)| + |o*(t,2) — 0*(s,y)| < K (|t —s[* + |z —y|*),

then the equation
Osf(s,2)+ Lf(s,x) =0

admits a strictly positive fundamental solution p. For fixed (y,t) the function
u(s,z) = p(s,x;t,y) is of class C1? and satisfies the backward Kolmogorov
equation that we present below. If in addition, the functions 9,b(t,x),
0.0 (t, x), Opyo(t,x) are bounded and Holder continuous, then for fixed (z, s)
the function v(t,y) = p(s,;t,y) is of class C1? and satisfies the forward
Kolmogorov equation that we present below.

Note that a time-inhomogeneous diffusion process can be treated as a
homogeneous process. Instead of X, consider the space-time diffusion process
(t, X;) on the enlarged state space RT x R<.

We give Kolmogorov’s equations for the general case of inhomogeneous
diffusions
dX; =b(t, X3)dt + o(t, X¢)dWy .

Proposition 5.4.1.1 The transition probability density p(s,z;t,y) defined
fors <t as Py s(Xy € dy) = p(s,x;t,y)dy satisfies the two partial differential
equations (recall 0, is the Dirac measure at x):

e The backward Kolmogorov equation:
1 2
(s, a3 1,9) 4 50%(5,2) 3 pls, 75 1,9) + Do, ) pls, 3 ,9) =0,
hms~>t p(87 xZ; tv y)dy = 593 (dy) .

e The forward Kolmogorov equation

( (s,z;t,y)0%(t,y)) + %(p(s,w;tvy)b(t,y)) =0,
dz(dy) -

0
ap(‘g)xa tay) -

1
2 0y?
lim;_, s p(s, z;t,y)dy =
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SKETCH OF THE PROOF: The backward equation is really straightforward to
derive. Let ¢ be a C? function with compact support. For any fixed ¢, the
martingale E(¢(X,)|F;) is equal to f(s,X) = [ o(y)p(s, Xs;t,y)dy since X
is a Markov process. An application of 1td’s formula to f(s, X,) leads to its
decomposition as a semi-martingale. Since it is in fact a true martingale its
bounded variation term must be equal to zero. This result being true for every
©, it provides the backward equation.

The forward equation is in a certain sense the dual of the backward one.
Recall that if ¢ is a C? function with compact support, then

Eva(p(X0) = /R oy)p(s. it y)dy.

From It6’s formula, for ¢ > s

P = () + [ P XIAX+ 5 [ 9" (X0 Xu)du.

Hence, taking (conditional) expectations

Eea (X)) = () + [ EM(MX o, ) + 5070 X (X))

/ dU/ ( ) + ;0 (u,y)w”(y)> p(s, @3 u,y)dy .

From the integration by parts formula (in the sense of distributions if the
coefficients are not smooth enough) and since ¢ and ¢’ vanish at oo:

/Rso(y)p(s,z;t y)dy = / dU/ u,y)p(s, z;u,y)) dy
/ dU/ (u, y)p(s, x3u,y)) dy -

Differentiating with respect to t, we obtain that

D s astiy) = =2 (bt p(swit ) + 2 (02(t y)p(s, 2t y)
atp 871:7 7y - ay 7yp8"1:7 7y 26:[/2 O- 7yp53$5 7y .

Note that for homogeneous diffusions, the density

p(z;t,y) = Po(Xy € dy)/dy

satisfies the backward Kolmogorov equation

o*(@) D (w3 1,9) + () O (3t,9) = 2ol ty).

1
2 t
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Comments 5.4.1.2 (a) The Kolmogorov equations are the topic studied by
Doeblin [255] in his now celebrated “ pli cacheté n® 11668”.

(b) We refer to Friedman [361] p.141 and 148, Karatzas and Shreve [513]
p.328, Stroock and Varadhan [812] and Nagasawa [663] for the multidimen-
sional case and for regularity assumptions for uniqueness of the solution to
the backward Kolmogorov equation. See also It6 and McKean [465], p.149 and
Stroock [810].

5.4.2 Application: Dupire’s Formula
Under the assumption that the underlying asset follows
dSt = St(rdt + O'(t, St)th)

under the risk-neutral probability, Dupire [284, 283] established a formula
relating the local volatility o (¢, ) and the value C(T, K) of a European Call
where K is the strike and T the maturity, i.e.,

9rC(T, K) + rKdx C(T, K)
%k C(T, K)

1

§K202 (T,K) =
We have established this formula using a local-time methodology in Subsection
4.2.1; here we present the original proof of Dupire as an application of the
Kolmogorov backward equation. Let f(T,z) be the density of the random

variable S, i.e.,
f(T,z)dx =P(Sy € dzx).

Then,

C(T,K)=e"T /Ooo(x —~K)Tf(T,2)dx =e"" /Koo(ac — K)f(T,z)dz

K K

=T /00 dz f(T, x) /w dy=e"" /KOO dy /OO f(T,z)dr. (5.4.2)

By differentiation with respect to K,

80 o o0
@) == [ f@apde = T [T,
0 K

hence, differentiating again

820 —rT
which allows us to obtain the law of the underlying asset from the prices of
the European options. For notational convenience, we shall now write C(¢, x)
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2

o°C
instead of C(T, K). From (5.4.3), f(t,z) = e”w(t7 x), hence differentiating

both sides of this equality w.r.t. t gives

0 PC 0
ot? T 922 TC a2 ot
The density f satisfies the forward Kolmogorov equation
of 10?5, 0 B
o (b7) = 555 (@ (o) f(t2) + - (raf(t,2)) =0,
o of _ 0? 0
1
5 = 2847 ( Qsz)—rffrx%f. (5.4.4)
Replacing f and by their expressions in terms of C in (5.4.4), we obtain
P o, B (L 0\ pe Lo
o2 oo = 202 \" T a2 ) T a2 " w on

and this equation can be simplified as follows

9”2 0 102 [, ,0%C 02C o 02C
2o’ T 202\ 92 ) Yoz T or a2
162 [, ,0%C 2C 9 0*C
=202 \" % 02 ) " %0 T o2

L (5 20C\ 9 9C

2022 \" 7 02) "oz "o

hence,

0* 9C _ 9* (1 , ,0°C oC

— QT O g T

oz ot 0a? Ox? Oz
Integrating twice with respect to  shows that there exist two functions o and
0, depending only on ¢, such that

1, ,, 0%C aC aC

3% (t, x)a 5 (t,7) —m"%(t,x)—ka

Assuming that the quantities

(t,z) + a(t)z + B(¢) .

2

2?0%(t2) 5z (b)) = e et (¢ @) f (¢, )
oC

x%(t T / ft,y)d

oC

E(tx)

go to 0 as x goes to infinity, we obtain lim,_,., a(t)x + B(t) = 0, V¢, hence
a(t) = p(t) =0 and
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145, 02C _oC oC
3% (t,x)m(t,x) = rxa—x(t,x) + E(t,:ﬁ).
The value of o(¢,z) in terms of the call prices follows. O

5.4.3 Fokker-Planck Equation

Proposition 5.4.3.1 Let dX; = b(t, X;)dt + o(t, X;)dB;, and assume that h
is a deterministic function such that Xo > h(0), 7 = inf{t > 0 : X; < h(t)}
and

g(t,z)de =P(X; € de, 7 > t).
The function g(t,x) satisfies the Fokker-Planck equation

0 0 10?2, ,
ag(t,x) = —a(b(t,x)g(tw)) + 5@(0 (t,z)g(t,z)); x > h(t)
and the boundary conditions
7}irr(l) g(t,x)dz = 6(x — Xo)
g(t, )| z=pn@ = 0.
PROOF: The proof follows that of the backward Kolmogorov equation.

» We first note that
E(o(Xiar)) = E(o(X)Le<ry) + E(o( X7 )17 <43)

_ /}R p(2)g(t, 2)dz + E(o(h(r)Lr<ty)

_ / o()g(t 1) + / ()l du)

where p is the law of 7.

» If ¢ is a C? function with compact support,

tAT tAT

O (X,)dX, + 5/ " (X))o (u, X, )du,

SAT

o(Xonr) = o(Xons) + /

SAT

hence,
E(e(Xunr)) = E(e(Xnr)) +E | ey (Kb, X
+ %E (/t ]l{u<7}<p"(Xu)02(u,Xu)du)

plalals. iz + [ " o(h(o))p(dv)

/
/St du/Rdx <<P/(Ji)b(u,x) + %(p”(w)aQ(%x)) g(z,u).

+
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This identity holds for any function ¢ of class C2, therefore, using integration
by parts for the last integral, and differentiation with respect to ¢, we get the
result. The law of 7 is obtained by integration w.r.t. x. U

Using the Fokker-Planck equation, Iyengar [466], He et al. [426] and Zhou
[876] established the following result.
Proposition 5.4.3.2 Let X} = a;t +o;W} where W', W? are two correlated

Brownian motions, with correlation p, and let m be the running minimum of
X?. The probability density
P(X} € dxy, X7 € dva,m; € dmy,m] € dmy) =
p(x1, xa, t;my, me)drrdradmydms
is given by

ea1m1+a2m2+bt

p(x1, 2, t; mi,ma) = h(x1,zo,t;my, mo) (5.4.5)

0109 1—p2

with
h(zy, z2,t;my, my) =

2 2, .2 > nmw nmwd T
£ o= (P 4rg)/(2t) ; OV gin [ 222 1 o
2 et ggﬁn( . )ﬁn(%3) omy (722)

where I, is the modified Bessel function of index v and

ar — 102 — PO20q o — Q201 — PO102
L =patey T 7T (1= pP)orod
1
b= —aia; — azaz + B (U%a% + a%a%) + poiozaias
1_ 2
8 =tan"! VT , forp<O
P
1— 2
—r—tan ! M2 , forp>0
p
1 [(mlm1> <$2m2):| T2 — Moy
7 = —p|l— |, m=——
1—p2? o1 lop) 02
1 mi ma ma
20 = —F—=|——+p—|, 20=—""
1—p2? o1 (P o9

r= /2% + 22, taunﬁzé7 6 €1[0,5]
21
ro = \/2%, + 23,, tanfy = ?, 6o € 10,4].

10
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The joint law with the maximum M; is

P(X} € dry, X7 € dao,m) > my, M7 < My)

= p(l’l, —X2, t; my, 7M2, a1, —02,01,02, 7p)dl’1dl’2
where p(x1, T2, t; M1, ma; a1, e, 01,09, p) is the density given in (5.4.5).

Comments 5.4.3.3 (a) The knowledge of the multidimensional laws of such
variables is important in the structural approach of credit risk. However,
the complexity of the above formula makes it difficult to implement. Let us
mention that the wrong formula given in Bielecki and Rutkowski [99] in the
first edition has been corrected in the second printing. See also the recent
paper of Patras [698] where a proof using probabilistic and geometric tools is
given and Blanchet-Scalliet and Patras [106] for application to counterparty
risk.

(b) Recently, Rogers and Shepp [739] have studied the correlation ¢(p) of
the maxima of correlated BMs. Denoting by M; = sup,., W/ the running
supremum of the BM W, they established that

c(p) = (cosa) [ au SR tanin(un)

where « is given in terms of the correlation coefficient p between the BMs as
a = arcsin(p) € [7/2, 7/2] and 2y = a + 7/2.

The proof relies on three steps: the first one is to compute the joint
law of (M}, M2) for © an exponential random variable with parameter A,
independent of (W1, W?2). If

F(wy,2) = P21 < My, xa < M),
then it is easy to check that

c(p) = /\/0OO /OOO f(x1, xo)dr1das

In a second step, the authors note that, since P(Mg > z;) = e"/ﬁxi, then
F(z1,22) = e~ VAT VAT _ P(M} < 21, M3 < x3) .
They introduce X; = M;] — W} and obtain
P(M} < 21, M3 < x3) = P(1 < O|X} = 21, X2 = x3)
where 7 = inf{t : X} X}? = 0}. The last step consists of the computation of
F(x1,15) =P(r < O|X} = a1, X2 = 23) = E(e V| X} = 21, X2 = z,)

which satisfies

-~ o~

2Af (21, 22) = (03,4, + 2000, 00, + 03, 4,) f (21, 72)

with the boundary condition f: 1 on the axes.
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5.4.4 Valuation of Contingent Claims

Suppose Vy(z,T) is the value of a contingent claim with payoff f(Sr), i.e.,
Vi(x,T) = Eg(e ™" f(Sr)) where

dSt = St((T' — Kl)dt + O'(St)th), SO =X

under the risk-adjusted probability Q. In terms of the transition probability
of S relative to the Lebesgue measure, that is Q(St € dy) = pr(z,y)dy the
value of the claim is:

Vi(2.T) = Eg(e~" T f(Sr)) = e~'T / F@)pr (e, y)dy

Therefore, the quantity e~"Tpp(z,y) can be interpreted as the price of a

security with the Dirac measure payoff J,. It is called the price of an Arrow-
Debreu security or the pricing kernel. The Laplace transform of V; with
respect to the maturity is

Vi(z, ) = /OOO e MV (z, T)dT .
This can be written as
Vi) = [ are et [T aystiprte.n) = SEole e (50)
where e is an exponential random variable with parameter A which is
independent of (S;,t > 0); this is the so-called exponential weighing, or

Canadization, an expression due to Carr [146], who uses this tool to price
options. In terms of an Arrow-Debreu security, we obtain that

V() = /0 " ) Ay, Ny

Here, A is the Laplace transform of the price of an Arrow-Debreu security,

Ay, \) =/ e Me "y (z,y)dt = Rasr(z,y) -
0

We have seen in (5.3.11) that the resolvent is given in terms of the fundamental
solutions of the ODE (5.3.7), hence

Vi(z,\) =
wy! (Mx) / Wy + (o) [ m(y)f(y)%y)dy)

where v =7 + A.
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5.5 Local Times for a Diffusion

5.5.1 Various Definitions of Local Times

We assume that (X¢,t > 0) is a regular diffusion on R, with a C'! scale function
s and speed measure m. As discussed in Ité and McKean [465], Borodin and
Salminen [109] and [RY], there exists a jointly continuous family of local times
07 (X)), sometimes called It6-McKean local times or diffusion local times,
defined by the following occupation density formula

/ du f(X /m (dz) f(z)ef (X) (5.5.1)
for all positive Borel functions f.

The process (Y; = s(X),t > 0) is a local martingale, and, as such (see
formula (4.1.16)), it admits a Tanaka-Meyer local time (L{(Y),t > 0) at
level y, which is characterized by the property that

1
GRS TORE
is a local martingale.

Assuming that m(dx) = m(x)dz, there exists an occupation local time
A¢ which is defined via the occupation time formula

[ rxom= [ drs@ioo.

Lemma 5.5.1.1 Let X be a diffusion, s a scale function and Y = s(X). For
all x and t > 0, one has

. 1 s(x s(x X
LIX) = L, (Y), L;¥(Y) = 265(X).

s'(x)

Hence, (7 (X) is the Tanaka-Meyer diffusion local time of s(X) at level s(x).
Assuming that the density m exists,

AP = m(x)ef .
PROOF: Let L¥(Y) be the Tanaka-Meyer local time of ¥ = s(X).

/R ) LYY )dy = / tf(Yu o = / £ X,))?d(X )

/ fs )2 LE(X)da
- / f(y) s'(s7! <y>>L‘:’1<y><X>dy.



5.5 Local Times for a Diffusion 291

Hence .
L) =87 )V X)
so that
L) = ' (2)L¥(X). (5.5.2)
From the definition of L¥(X), and recalling that m(z)o?(z) = ﬁ (see

equality 5.3.5), one obtains, on the one hand

l/ﬂﬂd@@=/ﬂ@ﬂ@ﬂm
0 R
On the other hand,
/MMJMm:/J%&mKMU
0 0
= m(z)o2(z) f(z)l* T =
= [ m@o*@)s)er (x)as = |

2
Gd
R Sl(x)f(x) t €T
and it follows that (see formula (5.3.2))
LE(X) = 56 (X)
t - S/(l') t )
hence, from (5.5.2), L; ") (V) = 262 (X). O

We recall that (see equality (5.3.9), there exists a density p(™) such that

EMﬂ&D=/MmMmeﬁm-

Consequently

%melmﬁmw%

5.5.2 Some Diffusions Involving Local Time

Example 5.5.2.1 Skew Brownian Motion. The skew BM with parameter
« is a process Y satisfying Y; = W, +aL?(Y) where W is a Brownian motion,
L°(Y) is the Tanaka-Meyer local time of the process Y at level 0, and o < 1/2.
Note that this process, which turns out to be a continuous strong Markov
process, is not an Itd process. In order to prove the existence of the skew
Brownian motion, we look for a function ¢ of the form By*™ — vy~ for two
constants 3 and 7 such that ¢(Y;) is a martingale, which solves an SDE. Using
Tanaka’s formula, we obtain
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k 1 K 1
o0 =5 ([ st + 5280) <o (= [ 1pmeodr.+ 320m)
K 1
=0 (/0 Ly, >03dWs + §L?(Y))
K 1
— (—/ 1gy,<oydWs — aL{(Y) + 5L?(Y)>
t ’ 1
= /0 (Bliv, >0y + Y1y, <o0}) AW + 5 (B =~ +2a7y) L2AY).

Hence, for § — v 4+ 2ay = 0, 8 > 0 and v > 0, the process X; = ¢(Y;) is a
martingale solution of the stochastic differential equation

dX: = (flx,>0 +71lx,<0)dW;. (5.5.3)

This SDE has no strong solution for 8 and  strictly positive but has a unique
strictly weak solution (see Barlow [47]).
The process Y is such that |Y| is a reflecting Brownian motion. Indeed,

dY? = 2Yi(dW; + adL2(Y)) + dt = 2Y;dW; + dt .

Walsh [833] proved that, conversely, the only continuous diffusions whose
absolute values are reflected BM’s are the skew BM’s. It can be shown that
for fixed t > 0, Y} faw €|Wy| where W is a BM independent of the Bernoulli
rv. e, Ple=1)=p,Ple=—-1)=1—p where p= ﬁ

The relation (4.1.13) between LY(Y) and LY~ (Y) reads

t

L) - 1 (V) =2 [ 2.
0

The integral fg Liy,—0ydWj is null and fot Liy,—opdL2(Y) = L{(Y'), hence
LY(Y) = L~ (Y) = 2aL{(Y)

that is LY~ (Y) = LY(Y)(1 — 2a), which proves the nonexistence of a skew BM
for a > 1/2.

Comment 5.5.2.2 For several studies of skew Brownian motion, and more
generally of processes Y satisfying

vi= [ B, + [t

we refer to Barlow [47], Harrison and Shepp [424], Ouknine [687], Le Gall
[567], Lejay [575], Stroock and Yor [813] and Weinryb [838].
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Example 5.5.2.3 Sticky Brownian Motion. Let = > 0. The solution of

t t
Xt =x+ / ]]-{X,;>O}dWS + 9 ]].{Xg:()}ds (554)
0 0

with 8 > 0 is called sticky Brownian motion with parameter 6. From Tanaka’s
formula,

t
1
X, = —9/ ]1{X5:0}d5+§Lt(X)-
0

The process 6 fot 1{x,=0)ds is increasing, hence, from Skorokhod’s lemma,
Li(X) = 20 fg I¢x,—0yds and X; = 0. Hence, we may write the equation
(5.5.4) as

1Lt(X)

t
Xt = .’I,‘+/ ﬂ{Xs>0}dWs + 2
0

which enables us to write

t
Xt = ﬂ(/ ]].{Xs>0}d5>
0

where (B(u),u > 0) is a reflecting BM starting from x. See Warren [835] for
a thorough study of sticky Brownian motion.

Exercise 5.5.2.4 Let § > 0 and X be the sticky Brownian motion with
Xo=0.
(1) Prove that L7 (X) = 0, for every = < 0; then, prove that X; > 0, a.s.
(2) Let A = fot dslix, >0y, AY = fot ds1;x,—o}, and define their inverses
af = inf{t : A > w}and of = inf{t : AY > u}. Identify the law of
(3) Let G be a Gaussian variable, with unit variance and 0 expectation.
Prove that, for any v > 0 and ¢t > 0

402 20

w | /
40 law |G
and compute E(AO)

Hint: The process X, + = W, + HAO+ where WF is a BM and A? | is an
increasing process, constant on {u : X + > 0}, solves Skorokhod equatlon
Therefore it is a reflected BM. The obv1ous equality t = A + A? leads to
af =u+ A?xi’ and GAZI taw LY. <

aw 1 aw 2
ilzu+5\/ﬂG|;At+1=( S |G|>

deduce that
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5.6 Last Passage Times

We now present the study of the law (and the conditional law) of some last
passage times for diffusion processes. In this section, W is a standard Brownian
motion and its natural filtration is F. These random times have been studied
in Jeanblanc and Rutkowski [486] as theoretical examples of default times,
in Imkeller [457] as examples of insider private information and, in a pure
mathematical point of view, in Pitman and Yor [715] and Salminen [754].

5.6.1 Notation and Basic Results

If 7 is a random time, then, it is easy to check that the process P(r > t|F;) is
a super-martingale. Therefore, it admits a Doob-Meyer decomposition.

Lemma 5.6.1.1 Let 7 be a positive random time and
P(T > t|.7:t) =M, — A

the Doob-Meyer decomposition of the super-martingale Z; = P(r > t|F).
Then, for any predictable positive process H,

oo

E(H,) = IE< dAuHu> .

0

PROOF: For any process H of the form H = A 1), with A € bF;, one has
E(HT) = E(Asjl]s,t] (T)> = E(AS(AIS - As)) .

The result follows from MCT. O

Comment 5.6.1.2 The reader will find in Nikeghbali and Yor [676] a
multiplicative decomposition of the super-martingale Z as Z; = n;D; where
D is a decreasing process and n a local martingale, and applications to
enlargement of filtration.

We now show that, in a diffusion setup, A; and M; may be computed explicitly
for some random times 7.

5.6.2 Last Passage Time of a Transient Diffusion

Proposition 5.6.2.1 Let X be a transient homogeneous diffusion such that
Xi — 400 when t — oo, and s a scale function such that s(+00) = 0 (hence,
s(x) <0 forx € R) and Ay = sup{t : X, = y} the last time that X hits y.
Then,

s(X¢)

s(y)

A1l

]P)I(Ay > t|ft) =
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PrOOF: We follow Pitman and Yor [715] and Yor [868], p.48, and use that
under the hypotheses of the proposition, one can choose a scale function such
that s(z) < 0 and s(4+o0) = 0 (see Sharpe [784]).
Observe that
P, (Ay > t\j’-}) =P, ( u;ft Xu <y ‘ .7-}) = Pw<sup(—s(Xu)) > —s(y) ‘.7-})
uz u>t
X
) =X
s(y)

where we have used the Markov property of X, and the fact that if M is a
continuous local martingale with My =1, M; > 0, and tlim M; =0, then

— Py, (Sup<_s(xu)) > —s(y)

u>0

)

law 1
sup My =
+>0 U

where U has a uniform law on [0, 1] (see Exercise 1.2.3.10). O

Lemma 5.6.2.2 The FX-predictable compensator A associated with the

random time A, is the process A defined as Ay = — Lf(y) (Y), where

2s(y)
L(Y) is the local time process of the continuous martingale Y = s(X).

PROOF: From z Ay = x — (z —y)™, Proposition 5.6.2.1 and Tanaka’s formula,
it follows that

s(Xy) 1 s(y) 1
AN =M+ ——L;"(Y)=M +—(X
s(y) oyt V) =Mk )
where M is a martingale. The required result is then easily obtained. |

We deduce the law of the last passage time:

Pu(A, > t) = (M A 1) (X))

s(y) s(y)
_ (i(_;”; A 1) + @/Otdupqﬁm)(%yl
Hence, for z < y
P, (A, € dt) = —%pﬁm)(w) = —me
- 02(2?:)(2,)(y)pt(z,y)dt. (5.6.1)

For = > y, we have to add a mass at point 0 equal to

(@) ) g s N
1 (s(y)/\1> 1 s(y) IF’I(Ty< ).



296 5 Complements on Continuous Path Processes

Example 5.6.2.3 Last Passage Time for a Transient Bessel Process:
For a Bessel process of dimension 6 > 2 and index v (see — Chapter 6),
starting from 0,

PS(A, < t) = Pg(ir;t; R, > a) = Pi(sup R, % < a™%)

u>t
R—QV Cl2
=P) ( L— < a_z”) =Pj(a® <UR}") =P} (— < t) :
U ! R3UL/Y
a? : . . a? law 42
Thus, the r.v. 4, = w18 distributed as o7~ = 575y where ~v(v)

is a gamma variable with parameter v:

l/—le—t
Hence,
1 a?\" —a?
PY(Aq € dt) = Ly T <2t> e /@t (5.6.2)

We might also find this result directly from the general formula (5.6.1) and
apply formula (6.2.3) for the expression of the density.

Proposition 5.6.2.4 For H a positive predictable process
Ey(Hp,|Ay =t) = Ex(H| Xy = y)

and, fory > x,
Eo(H,) = / Eo(A, € df) Eo(Hy| X, = y).
0

In the case x >y,

E.(Ha,) = Hy <1 - %) + [T B € 0Bl X = ).

PRrROOF: We have shown in the previous Proposition 5.6.2.1 that

s(Xt)
s(y)

]P)x(/ly>t|./ft): A

From Ito-Tanaka’s formula

s(X) . s@) t () 1w,
) 1= ) M) o a0 - 3R 600,

It follows, using Lemma 5.6.1.1 that
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.(i1a,) = 58 ([ Mo s00)

= 35 ([ X, = a2 6(x))

0

Therefore, replacing H, by H,g(u), we get

By (H.0(4.)) = 5 [ o) Ba (11X, =) 20 6(0)) - 6.0

Consequently, from (5.6.3), we obtain

P. (4, € du) = 5B, (L (5(X)
E, (Ha,|Ay =t) = E.(Hi|X; = y).
O

Remark 5.6.2.5 In the literature, some studies of last passage times employ
time inversion. See an example in the next Exercise 5.6.2.6.

Exercise 5.6.2.6 Let X be a drifted Brownian motion with positive drift v
and Ay its last passage time at level y. Prove that

1
P, (A € dt) = \/% exp (—E(m —y+ ut)Q) dt,

and

— e~ 2v(z—y)
PI(A;V):O):{l e ,fOI‘ x>y

0 for x<y.

Prove, using time inversion that, for z = 0,

() law 1
where
TW =inf{t : B, + bt = a}
See Madan et al. [611]. <

5.6.3 Last Passage Time Before Hitting a Level

Let X; = x 4+ oW, where the initial value z is positive and o is a positive
constant. We consider, for 0 < a < zx the last passage time at the level a
before hitting the level 0, given as g%, (X) = sup {t < Tp : X; = a}, where

TO:TO(X):mf{tZO Xt:()}
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(In a financial setting, Ty can be interpreted as the time of bankruptcy.)
Then, setting o = (a —x) /0, T_; /(W) = inf{t : W; = —x/c} and dff (W) =
inf{s >t : Wy =a}
P, (g%o (X) < t|.7-'t) = P(df(W) > T_I/U(W)\}"t)
on the set {t <T_,,,(W)}. It is easy to prove that
]P’(df‘(W) < T,I/J(W)\]:t) = W(Wt/\T,I/U(W)a a,—x/o),
where the function ¥ (-, a,b) : R — R equals, for a > b,
(a—y)/(a—D0) for b<y<a,
w(yv a, b) = Py(Ta(W) > Tb(W)) = 1 for a < Y,
0 for y <b.

(See Proposition 3.5.1.1 for the computation of ¥.) Consequently, on the set
{TH(X) >t} we have

B (g8, (X) < 17) = 2= Wingy)* _ («=Wo)T _ (= X7 (564

ajo alo a

As a consequence, applying Tanaka’s formula, we obtain the following result.

Lemma 5.6.3.1 Let X; = x + oW, where ¢ > 0. The F-predictable
compensator associated with the random time 9(71“0( X) is the process A defined

as Ay = ﬁLta/\T_m/(,(W)(W)’ where L*(W) is the local time of the Brownian

Motion W at level o = (a — x) /0.

5.6.4 Last Passage Time Before Maturity

In this subsection, we study the last passage time at level a of a diffusion
process X before the fixed horizon (maturity) 7. We start with the case where
X = W is a Brownian motion starting from 0 and where the level a is null:

gr =sup{t <T : W, =0}.

Lemma 5.6.4.1 The F-predictable compensator associated with the random

time gr equals
2 tAT dLS
At =\ _/ )
™ Jo vV T—s

where L is the local time at level 0 of the Brownian motion W.

ProOF: It suffices to give the proof for T' = 1, and we work with ¢ < 1. Let
G be a standard Gaussian variable. Then

p(gﬂft):@( \lal_t),
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2 [* 2
where &(x) = \/j/ exp(—%)du. For t < 1, the set {g1 < t} is equal to
77

0
{d¢ > 1}. It follows from (4.3.3) that

P(gy <t|F) =& (an/—i) '

Then, the It6-Tanaka formula combined with the identity

2@ (z) + & (x) =0

leads to

]P(g1§t|~7:t):/0t¢/( |‘1/Vj|8> d(\)%>+% 0 1—8 (\/W—>
:/Ot ,( W )sgn( )dW+

fo () s v f/ =

It follows that the F-predictable compensator associated with g, is

St

A = , (t<1).

O

These results can be extended to the last time before T" when the Brownian
motion reaches the level a, i.e., g¢ =sup{t < T : W, = a}, where we set
sup(@) = T. The predictable compensator associated with ¢ is

2 [T qre
At_\/j/ s
m™Jo VI —s

where L® is the local time of W at level a.

We now study the case where X; = x+put+o Wy, with constant coefficients
pand o > 0. Let

g3 (X)) =sup{t<1: X;=a}
=sup{t<1:vt+W,=a}

where v = p/o and a = (a — z)/o. From Lemma 4.3.9.1, setting
Viz=a—vt—W;=(a—Xy)/o

we obtain
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P(gi(X) < t1F) = (1 — " H(v, |[Vil,1 = 1)L, (v)<sy.

) o (250 oo (520

Using It6’s lemma, we obtain the decomposition of 1 — "Vt H(v,|V;|,1 —t) as
a semi-martingale M; + C4.

We note that C' increases only on the set {¢ : X; = a}. Indeed, setting
(X) = g, for any predictable process H, one has

E(Hy) =E </ dCsHs)
0
hence, since Xy, = a

0= E(]]-Xg;éa) =E </ dCs:H-XS;éa) .
0

Therefore, dC; = k,dL$(X) and, since L increases only at points such that
X: =a (i.e., V; =0), one has

Ry = H;.(I/,O,l —t)

where

a

91

The martingale part is given by dM; = m.dW, where
me = eV (vH (v, |Vi|, 1 = 8) = sgn(Ve) Hy, (v, [Ve|, 1 = 1)) .
Therefore, the predictable compensator associated with ¢g§(X) is

t /
H 1-—
VCE(V7O7 S) dL?
o e’VsH(r,0,1—3s)

Exercise 5.6.4.2 The aim of this exercise is to compute, for t < T < 1,
the quantity E(h(Wr)l{r<4,1/G:), which is the price of the claim h(S7) with
barrier condition 174, }-

Prove that

E(h(Wr) 1<y 7o) = E(h(Wn)| ) ~ E(n(wr)e( 2L | 7).

o e [( 2)e

Define k(w) = h(w)®(lw|/v/1—T). Prove that E(k(Wr) ‘.7-}) = k(t, W),
where

E(t,a) = ]E(k:(WT_t + a))

where

- i e ) o (- )
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5.6.5 Absolutely Continuous Compensator

From the preceding computations, the reader might think that the F-predicta-
ble compensator is always singular w.r.t. the Lebesgue measure. This is not
the case, as we show now. We are indebted to Michel Emery for this example.

Let W be a Brownian motion and let 7 = sup{t <1 : Wy — 2W; = 0},
that is the last time before 1 when the Brownian motion is equal to half of its
terminal value at time 1. Then,

{TSt}:{ inf 2WSZW120}U{ sup 2W8§W1§0}.
t<s<1 t<s<1
» The quantity

P(r <t,W1, >0|F)=P (t<in£12W9 >W; > O|.7-"t>

can be evaluated using the equalities

{ inf W5>%>0}:{ inf (Ws—Wt)>%—Wt>—Wt}
t<s<1 2 t<s<1

_ . = Wi, W,

= {o<ir§f1_t(W“) 255 2 _Wt};

where (Wu = Witu — Wi, u > 0) is a Brownian motion independent of F;. It
follows that

1%
IP’( inf W, > 71 zom) =0U(l—-t, W),

t<s<
where
W(s,z) =P ian>Ws_§>_x —P(2M—W<fw<f)
T T No<u<s T YT 2 2 = o s S=97 %= 9
x x
=P(2M; - W < — W[ < — | .
( Y 1—%)

» The same kind of computation leads to

P ( sup 2W, < Wy < 0|]-"t> —U(1—t,—W,).

t<s<1

» The quantity ¥(s,z) can now be computed from the joint law of the
maximum and of the process at time 1; however, we prefer to use Pitman’s
theorem (see — Section 5.7): let U be a r.v. uniformly distributed on [—1, +1]
independent of Ry := 2M7; — W7y, then
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P(2M; — Wi <y, W1 <y) = P(R, <y, UR; <y)

1
= 5/ P(R; < y,uR; <y)du.
~1

For y > 0,
e e
5/ P(Ry < y,uR; <y)du = 5/ P(Ry <y)du=P(R; <vy).
1 -1
For y <0
1
/ P(R; <y,uR; <y)du=0.
-1

Therefore

P(r < t|F) = W(1—t,W,) + (1 — t,~W,) = p( Wi )

2 (Y 2
py) =P(R1 <y) = \/j / z2e™ 2
T Jo

Then Z; =P(r > t|F,) =1—p Wil ) We can now apply Tanaka’s formula
Vi—t

to the function p. Noting that p’(0) = 0, the contribution to the Doob-Meyer
decomposition of Z of the local time of W at level 0 is 0. Furthermore, the
increasing process A of the Doob-Meyer decomposition of Z is given by

(3 () 5 30 () s ) o

_ 1w o W2/201-1) gy

1—-t 1t

We note that A may be obtained as the dual predictable projection on

the Brownian filtration of the process Ang), s < 1, where (Agz), s < 1) is the
(1)

0—x-

where

dA;

compensator of 7 under the law of the Brownian bridge P

5.6.6 Time When the Supremum is Reached

Let W be a Brownian motion, M; = sup,<, Wy and let 7 be the time when
the supremum on the interval [0, 1] is reached, i.e.,

T=inf{t<1: W, =M} =sup{t <1: M;—W,=0}.
Let us denote by ( the positive continuous semimartingale

M, — W,y

==

Jt< 1.
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Let Fy = P(r < ¢|F:). Since Fy = &((;), (where &(z) = \/gfox exp(—“Q—Q)du,
see Example 4.1.7.5) using Itd’s formula, we obtain the canonical decomposi-
tion of F' as follows:

t 1/t du
@/ udu - @// “
| ocac s [ o=

t t
i) , dW, 2 / dM,, (i) -
= — | () —m=+1/= = U + Iy,
[regm= 2 [ = un
dVVu . . s . . .
: is a martingale and F' a predictable increasing
u

F

—~

where U; = — fot D' (Cy)

process. To obtain (i), we have used that @’ +@"” = 0; to obtain (ii), we have
used that &'(0) = y/2/7 and also that the process M increases only on the
set

{uel0,t]: M, =W,} ={uel0t]:¢ =0}

5.6.7 Last Passage Times for Particular Martingales

Proposition 5.6.7.1 Let X be a continuous positive local martingale such
that Xo = z, and limy_,oo Xy = 0. Let Xy = sup,., X the (continuous)
supremum process. We consider the last passage time of the process X at the
level X :

g=sup{t>0: X;=2X}
=sup{t>0: X, —X,=0}. (5.6.5)

Consider the supermartingale

Then:
(i) the multiplicative decomposition of the supermartingale Z reads
Xy
Zy = —
t Zt )

(ii) The Doob-Meyer (additive decomposition) of Z is:
Zy = my —log (X)), (5.6.6)
where m is the F-martingale
m = E[log Yoo | Ft] -

PRrOOF: We recall the Doob’s maximal identity 1.2.3.10. Applying (1.2.2) to
the martingale (Y; := X7.4,t > 0) for the filtration FT := (F i, t > 0),
where T is a F-stopping time, we obtain that
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X
P (ST > a|Fr) = (—T> A, (5.6.7)
a
where
T = sup X,,.

u>T
Hence % is a uniform random variable on (0,1), independent of Fp. The

multiplicative decomposition of Z follows from

X X
IP’(g>t|Ft):IP’<supXu22t|.7:t>=( t)/\l_ i

u>t Et B E26
From the integration by parts formula applied to )E(—Z, and using the fact

that X, hence X are continuous, we obtain

dx, ax,
az, = =t _ x, =L
t Et t (2t)2

Since dX; charges only the set {t : X; = X;}, one has

X, dx,  dX,
A R N NPT N
2 =5 =5 =5 —dn )

From the uniqueness of the Doob-Meyer decomposition, we obtain that the
predictable increasing part of the submartingale Z is In X, hence

Zt = My —h’lEt

where m is a martingale. The process Z is of class (D), hence m is a uniformly
integrable martingale. From Z, = 0, one obtains that m; = E(ln X | 7). O

Remark 5.6.7.2 From the Doob-Meyer (additive) decomposition of Z, we
have 1 — Z; = (1 —my) + In ;. From Skorokhod’s reflection lemma presented
in Subsection 4.1.7 we deduce that

InY; =supms —1
s<t

We now study the Azéma supermartingale associated with the random
time L, a last passage time or the end of a predictable set I, i.e.,

L(w) =sup{t : (t,w) eI}

(See — Section 5.9.4 for properties of these times in an enlargement of
filtration setting).
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Proposition 5.6.7.3 Let L be the end of a predictable set. Assume that all
the F-martingales are continuous and that L avoids the F-stopping times.
Then, there exists a continuous and nonnegative local martingale N, with
No =1 and lim;_,oo Ny = 0, such that:

N,
Zt:IP’(L>t|}})=ft
t

where Xy = sup,<; Ns. The Doob-Meyer decomposition of Z is
Zt = My — At

and the following relations hold

b dm 1 (" d(m)
N:exp</ s——/ S)
t 0o Zs  2)y 72

Xy = exp(Ay)
" dN,
0o s

my =1+ = E(ln Soo‘}-t)

PROOF: As recalled previously, the Doob-Meyer decomposition of Z reads
Zy = my — Ay with m and A continuous, and dA; is carried by {¢t : Z; = 1}.
Then, for t < Ty := inf{t : Z; =0}

Ydms 1 [T d{m)
—InZ, =— 2z > A
wa ([ G a )

From Skorokhod’s reflection lemma (see Subsection 4.1.7) we deduce that

“dms 1 ["d(m)s
Ay =su / — 7/ )
' U<}:t)( o Zs 2o Z2

Introducing the local martingale N defined by

¢ t
dms 1 d(m)s
N; = exp (/ — —/ ) )
' o Zs  2Jo Z%

=5

“dms 1 [ d<m>5>> A
Yy =sup N, =exp | su / ——/ = et
' uSIz P (uérz ( 0 Zs 2 0 ZE

it follows that
Zy

and
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The three following exercises are from the work of Bentata and Yor [72].

Exercise 5.6.7.4 Let M be a positive martingale, such that My = 1 and
lim; oo My = 0. Let a € [0,1] and define G, = sup{t : M; = a}. Prove that

+
PG, < 7 = (1- )

Assume that, for every t > 0, the law of the r.v. M; admits a density
(mi(z),z > 0), and (¢t,z) — m;(z) may be chosen continuous on (0, 00)?
and that d(M); = o?2dt, and there exists a jointly continuous function
(t,z) — 04(z) = E(o?|M; = z) on (0,00)2. Prove that

M, 1
]P(Ga S dt) = (1 - 70>(5(](dt) + ]l{t>0}%9t(a)mt(a)dt

Hint: Use Tanaka’s formula to prove that the result is equivalent to
dE(LY(M)) = dtb(a)m,(a) where L is the Tanaka-Meyer local time (see
Subsection 5.5.1). 4

Exercise 5.6.7.5 Let B be a Brownian motion and

TW) = inf{t : B, + vt = a}
G =sup{t : By + vt =a}

Prove that
(W), gyl (L1
a ) a G’(/a) b TIEG‘)
Give the law of the pair (Té”), Gfly)). <

Exercise 5.6.7.6 Let X be a transient diffusion, such that

P.(To < o0) = 0,2 >0
P,(lim X; =00)=1,2>0

t—o0
and note s the scale function satisfying s(0%) = —oo, s(c0) = 0. Prove that
for all z,¢t > 0,
—1
P,(G, €dt) = — ,y)dt
where p(™) is the density transition w.r.t. the speed measure m. <

5.7 Pitman’s Theorem about (2M; — W)

5.7.1 Time Reversal of Brownian Motion

In our proof of Pitman’s theorem, we shall need two results about time reversal
of Brownian motion which are of interest by themselves:
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Lemma 5.7.1.1 Let W be a Brownian motion, L its local time at level 0 and
7o =1inf{t : Ly > {}. Then

(Wa, u < molre = t) "2 (W, u < t|Ly = £, W, = 0)

As a consequence,

law

(WTgf’Um (% S Té) - (Wu7 (% S TE)

PROOF: Assuming the first property, we show how the second one is deduced.
The scaling property allows us to restrict attention to the case £ = 1. Since
the law of the Brownian bridge is invariant under time reversal (see Section
4.3.5), we get that

(W, u < W, = 0) 2 (Wy_y,u < t{IW, = 0).
This identity implies
law
(W, < 1), LWy = 0) = (Wi—u,u < t), L[ Wy = 0).
Therefore
(W, u < m|m=t) "2 (Wy,u < t|L; = 1,W, = 0)

B (W, u <L =1, W, = 0) = (W, u<niln = 1).

We conclude that
(Wr—wsu < 11)(Wysu < 7).

O
The second result about time reversal is a particular case of a general result
for Markov processes due to Nagasawa. We need some references to the Bessel
process of dimension 3 (see — Chapter 6).

Theorem 5.7.1.2 (Williams’ Time Reversal Result.) Let W be a BM,
T, the first hitting time of a by W and R a Bessel process of dimension 3
starting from 0, and A, its last passage time at level a. Then

(0= Wr, 1, t <To) "2 (Ry, t < Ay).

PRrROOF: We refer to [RY], Chapter VIL O

5.7.2 Pitman’s Theorem

Here again, the Bessel process of dimension 3 (denoted as BESB) plays an
essential role (see — Chapter 6).
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Theorem 5.7.2.1 (Pitman’s Theorem.) Let W be a Brownian motion and
M; = sup,; Ws. The following identity in law holds

law

(2My — Wy, Myt > 0) = (Ry, Jyst > 0)

where (Ry;t > 0) is a BES® process starting from 0 and J, = infy>; Rs.

PROOF: We note that it suffices to prove the identity in law between the first
two components, i.e.,

(M, — Wit > 0) 2 (Ry:t > 0). (5.7.1)

Indeed, the equality (5.7.1) implies
(2M; — Wy, inf (2M, — W);t > 0) law (Rn inf Ry;t > 0) :
We prove below that M; = inf,>,(2M; — W;). Hence, the equality

(2M, — Wy, My;t > 0) 2 (Ry, Jyit > 0).
holds.

» We prove M, = infs>,(2M; — W;) in two steps. First, note that for s > ¢,
2M, — W, > M, > M, hence M, < inf,>,(2M, — W,).

In a second step, we introduce #; = inf{s > t : M, = W,}. Since
the increasing process M increases only when M = W, it is obvious that
M, = My,. From My, = 2My, — Wy, > infs>g,(2M; — Ws) we deduce
that M; = infs>g, (2M; — Wy) > infs>, (2M; — Wy). Therefore, the equality
M, = inf >, (2M,; — W) holds.

» We now prove the desired result (5.7.1) with the help of Lévy’s identity:
the two statements

(2M, — Wit > 0) 2 (Rt > 0)

and
law

(Wil 4+ Lyt > 0) 2 (Ryst > 0),

are equivalent (we recall that L denotes the local time at 0 of W). Hence, we
only need to prove that, for every ¢,

(Wil + List < 70) "2 (Ryst < Ay) (5.7.2)

where
T =1inf{t: Ly > ¢} and A, =sup{t: R, ={}.

Accordingly, using Lemma 5.7.1.1, the equality (5.7.2) is equivalent to:
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(Wry—el + (€ = Loy—o)it < 70) "2 (Ryst < Ay).
By Lévy’s identity, this is equivalent to:
(6 —Wrp,_;t <Ty) 2w (Rt < Ay)

which is precisely Williams’ time reversal theorem.
O

Corollary 5.7.2.2 Let R, = 2M, — W,, Ry = O’{ES;S < t}, and let T
be an (R:) stopping time. Then, conditionally on Ry, the r.v. My (and,

consequently, the r.v. My — Wr) is uniformly distributed on [0, Rr]. Hence,

M —
TTVVT is uniform on [0,1] and independent of Ry .
T

PRrROOF: Using Pitman’s theorem, the statement of the corollary is equivalent
to: if (R%; s > 0) is a BES? process, infy>q R? is uniform on [0, a], which follows
from the useful lemma of Exercise 1.2.3.10.

Consequently for z <y

P(M, < z|R, =y) =P(Uy <z) =z/y.
O

The property featured in the corollary entails an intertwining property
between the semigroups of BM and BES® which is detailed in the following
exercise.

Exercise 5.7.2.3 Denote by (P;) and (Q;) respectively the semigroups of the
Brownian motion and of the BES®. Prove that Q;A = AP; where

+r
A f%/lf(r):i/ def(x).

2r J_,
<

Exercise 5.7.2.4 With the help of Corollary 5.7.2.2 and the Cameron-
Martin formula, prove that the process 2Mt(” ) VVt(M ), where Wt(“ ) = W, + ut,
is a diffusion whose generator is %% + pcoth px %. <

5.8 Filtrations

In the Black-Scholes model with constant coefficients, i.e.,

dSt = St(,udt + Uth), S() =T (581)
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where 11, o and z are constants, the filtration F¥ generated by the asset prices
FP:=0(Ss,s<t)

is equal to the filtration F" generated by W. Indeed, the solution of (5.8.1)
is

2
S, = zexp ( (u - %)t + UWt) (5.8.2)

W, = % (mE—; _ ( _ “;) t) . (5.8.3)

From (5.8.2), any function of S; is a function of W;, and F c FV. From
(5.8.3) the reverse inclusion holds.

This result remains valid for p and o deterministic functions, as long as
o(t) > 0, Vt.

However, in general, the source of randomness is not so easy to identify;
likewise models which are chosen to calibrate the data may involve more
complicated filtrations. We present here a discussion of such set-ups. Our
present aim is not to give a general framework but to study some particular
cases.

which leads to

5.8.1 Strong and Weak Brownian Filtrations

Amongst continuous-time processes, Brownian motion is undoubtedly the
most studied process, and many characterizations of its law are known. It
may thus seem a little strange that, deciding whether or not a filtration F, on
a given probability space (£2, F,P), is the natural filtration F? of a Brownian
motion (B, t > 0) is a very difficult question and that, to date, no necessary
and sufficient criterion has been found.

However, the following necessary condition can already discard a number
of unsuitable “candidates,” in a reasonably efficient manner: in order that
F be a Brownian filtration, it is necessary that there exists an F-Brownian
motion § such that all F-martingales may be written as M; = ¢ + fot mgdfs

for some ¢ € R and some predictable process m which satisfies fot dsm? < .
If needed, the reader may refer to — Section 9.5 for the general definition of
the predictable representation property (PRP). This leads us to the following
definition.

Definition 5.8.1.1 A filtration F on (2, F,P) such that Fo is P a.s. trivial
is said to be weakly Brownian if there exists an F-Brownian motion 3 such
that 3 has the predictable representation property with respect to F.

A filtration F on (2,F,P) such that Fy is P a.s. trivial is said to be
strongly Brownian if there exists an ¥-BM (8 such that Fy = ]—"f.
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Implicitly, in the above definition, we assume that 3 is one-dimensional,
but of course, a general discussion with d-dimensional Brownian motion can
be developed.

Note that a strongly Brownian filtration is weakly Brownian since the
Brownian motion enjoys the PRP. Since the mid-nineties, the study of weak
Brownian filtrations has made quite some progress, starting with the proof
by Tsirel’son [823] that the filtration of Walsh’s Brownian motion as defined
in Walsh [833] (see also Barlow and Yor [50]) taking values in N > 3 rays is
weakly Brownian, but not strongly Brownian. See, in particular, the review
paper of Emery [327] and notes and comments in Chapter V of [RY].

» We first show that weakly Brownian filtrations are left globally invariant
under locally equivalent changes of probability. We start with a weakly
Brownian filtration F on a probability space (§2, F,P) and we consider another
probability Q on (£2, F) such that Q|z, = L:P|#,.

Proposition 5.8.1.2 If F is weakly Brownian under P and Q is locally
equivalent to P, then F is also weakly Brownian under Q.

PROOF: Let M be an (F,Q)-local martingale, then ML is an (F,P)-local
martingale, hence Ny := M;L; = ¢+ fot nsdfBs for some Brownian motion

0 defined on (2, F,F,P), independently from M. Similarly, dL, = £,df;.
Therefore, we have

N, dN, t N, dL A d Yd(N, L),
M, = =t = N,
L O+/0 Ls  Jo /0 L3
tn N£ NEQ ngl
:c+/ —dg, — Sds f/ =2 ds
o Ls 0 o L3 o L2

_ ¢ Ns ngs <6aL>S
—”/o (L—‘L—) (dﬁs‘T> '

Thus, ﬁt =G — ft dw@% t > 0), the Girsanov transform of the original
Brownian motion [, allows the representation of all (F,Q)-martingales. [

» We now show that weakly Brownian filtrations are left globally invariant
by “nice” time changes. Again, we consider a weakly Brownian filtration F
on a probability space (£2, F,P). Let A; = fot asds where a; > 0, dP®ds a.s.,
be a strictly increasing, F adapted process, such that A,, = oo, P a.s..

Proposition 5.8.1.3 If F is weakly Brownian under P and 7, is the right-
inverse of the strictly increasing process Ay = fo asds, then (Fr,,u > 0) is
also weakly Brownian under P.

PROOF: Tt suffices to be able to represent any (F,, ,u > 0)-square integrable
martingale in terms of a given (F,, ,u > 0)-Brownian motion 3. Consider M

u

a square integrable (F, ,u > 0)-martingale. From our hypothesis, we know
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that ]\700 =c+ fooo msdfs, where 3 is an F-Brownian motion and m is an
F-predictable process such that E ( fooo ds mi) < 00. Thus, we may write

— o Mg
M, = c+/0 N Vs dBs . (5.8.4)

It remains to define B the (Fr,,u > 0)-Brownian motion which satisfies
fg V@sdfs := [4,. Going back to (5.8.4), we obtain

o~ oo o~
Mm:c+/ M 43,
0 +0r,

O

These two properties do not extend to strongly Brownian filtrations. In
particular, F may be strongly Brownian under P and only weakly Brownian
under Q (see Dubins et al. [267], Barlow et al. [48]).

5.8.2 Some Examples

In what follows, we shall sometimes write Brownian filtration for strongly
Brownian filtration.

Let F be a Brownian filtration, M an F-martingale and FM = (FM) the
natural filtration of M.

(a) Reflected Brownian Motion. Let B be a Brownian motion and
B; = fg sgn(Bg)dBs. The process B is a Brownian motion in the filtration
FIBl From L; = supsgt(—gs), it follows that FP = _7-',5‘3|7 hence, FIB! is
strongly Brownian and different from F since the r.v. sgn(B;) is independent
of (|Bs|,s < t).

(b) Discontinuous Martingales Originating from a Brownian
Setup. We give an example where there exists F*-discontinuous martingales.
Let M; := fg 1B, <0ydBs. Tanaka’s formula leads to

t
_ 1
By = 7/ 1(5,<0ydBs + L.
0

The natural filtration of M, i.e., FM is equal to the natural filtration of the
process (B; ,t > 0). The FM-martingale

1 1
E (Bj - §Lt|ft]M> = —§Lt + 1{Bt>0}\/t — gt E(ml),
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(where we use here the notation of Section 4.3) is discontinuous, thus FM is
not even weakly Brownian. We refer to Williams [841] for a discussion.

(c) A Note about the PRP. Let F be a filtration and suppose that for
a given F-martingale M, any F-martingale (IV;,¢ > 0) vanishing at 0 can be
written as N; = fot nsdMs. This does not imply that o(M,, s < t) equals F;
(in fact this is at the heart of the distinction between strongly and weakly
Brownian filtrations). For example, let B; = fg sgn (Bs) dBs. As we have seen

in the first example above, ftg = 0(|Bs|, s < t) and is strictly smaller than F.
Nevertheless, any F-martingale (N¢,t > 0) with Ny = 0 can be represented as

t t t
N, :/ v.dB, :/ vesgn (Bs) sgn (Bs) dBs :/ ngdBy ,
0 0 0
where ng = vssgn (By).

(d) Another Example. Let Y; = fot BsdW, where W and B are
independent Brownian motions. From

t t
Y, = / |B.|sgn(BL)dW, = / \B.|diT,
0 0

where W, = fot sgn(B,)dWsy, it follows that
fty = U{|BS|sta s < t} = U{ﬁmwsa s <t},

where Et = fg sgn(Bs)dBs is a BM independent of w. Any FY-martingale
can be written as

t t
Yy +/ ¢sdBs +/ psdWs

0 0

for two FY -predictable processes 1 and .

(e) Filtration Generated by a Stochastic Integral with Non-
vanishing Integrator. Let X; = fot H,dW, where W is a G-Brownian
motion for some filtration G, and H is a strictly positive continuous G-
adapted process (we do not require that G is the natural filtration of W).
Then FX = o(H,, W; s < t).

The case where the integrator may vanish is not so easy. Here are other
examples.

(f) Tsirel’son’s drift. Let

t 1 t
WDz =exp (/ T(s,X.)dXs — 5/ TQ(s,X_)dS> W,
0 0
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where T is Tsirel’son drift (see Example 1.5.5.6). The process
¢
x = x, 7/ T(s, X .)ds
0

is a W(T)-Brownian motion whose filtration is strictly smaller than F;
however, F is the natural filtration of a W(T)-Brownian motion.
More generally, if

t 1 t
WP 7, = exp (/ b(s, X.)dX,s — 5/ b2(s,X,)ds> W]z, ,
0 0

the process

t
XP =X, 7/ b(s, X.)ds
0

is a W® F-Brownian motion. Dubins et al. [267] established that there exist
infinitely many b’s such that F is not the natural filtration of a W? Brownian
motion, i.e., F is not strongly Brownian under W?. See also Emery and
Schachermayer [329).

(g) Let W and B be two independent Brownian motions, and let Z = BW.
From B;W; = fg(Bdes + W,dBys) one obtains that B? + W72 is measurable
w.r.t FZ. Hence, the random variables %|Bt + W,| and %|Bt — W;| are FZ-

measurable. The processes 6t(i) = %(Bt + W;) are independent Brownian

motions. The filtration FZ is generated by two independent reflected BMs,
hence from a) above, it is generated by two independent Brownian motions.

Exercise 5.8.2.1 Let B and W be two independent Brownian motions and
Y; = aB; + bW;. Prove that o(Ys,s < t) C o(Bs, Ws,s < t) and that the
inclusion is strict.

Let N; and N3 be two independent Poisson processes and Y; = alNy; +
bNs ., where a # b. Prove that o(Ys,s <t) = 0(N1 s, Nos,s < t). <

Exercise 5.8.2.2 Let B and W be two independent Brownian motions, a
and b two strictly positive numbers with a # b and Y; = aB? + bW2. Prove
that o(Ys,s <t) = o(B2, W2 s < t).

Generalize this result to the case Y; = Y1 | a;(B})? where a; > 0 and
a; # a; for i # j. Prove that the filtration of Y is that of an n-dimensional
Brownian motion.
Hint: Compute the bracket of Y and iterate this procedure. <

Example 5.8.2.3 Example of a martingale with respect to two different
probabilities:
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Let B = (Bj, Bs) be a two-dimensional BM, and R? = B?(¢) + B2(t). The
process

Li = exp ( / (By(5)dB (5) + Ba(s)dBa(s)) — - / t Rids)

is a martingale. Let Q|#, = L,P|#,. The process

X, = / (Bs(s)dBi (s) — Bi(s)dBa(s))
0

is a P (and a Q) martingale. The process R? is a BESQ under P and a CIR
under Q (see — Chapter 6). See also Example 1.7.3.10.

Comment 5.8.2.4 In [328], Emery and Schachermayer show that there
exists an absolutely continuous strictly increasing time-change such that the
time-changed filtration is no longer Brownian.

5.9 Enlargements of Filtrations

In general, if G is a filtration larger than F', it is not true that an F-martingale
remains a martingale in the filtration G (an interesting example is Azéma’s
martingale p (see Subsection 4.3.8): this discontinuous F#-martingale is not an
FB_martingale, it is not even a FB-semi-martingale; see ~— Example 9.4.2.3).

In the seminal paper [461], Itd studies the definition of the integral of a
non-adapted process of the form f(Bj, Bs) for some function f, with respect
to a Brownian motion B. From the end of the seventies, Barlow, Jeulin and
Yor started a systematic study of the problem of enlargement of filtrations:
namely which F-martingales M remain G-semi-martingales and if it is the
case, what is the semi-martingale decomposition of M in G?

Up to now, four lecture notes volumes have been dedicated to this question:
Jeulin [493], Jeulin and Yor [497], Yor [868] and Mansuy and Yor [622]. See also
related chapters in the books of Protter [727] and Dellacherie, Maisonneuve
and Meyer [241]. Some important papers are Brémaud and Yor [126], Barlow
[45], Jacod [469, 468] and Jeulin and Yor [495].

These results are extensively used in finance to study two specific problems
occurring in insider trading: existence of arbitrage using strategies adapted
w.r.t. the large filtration, and change of prices dynamics, when an F-
martingale is no longer a G-martingale.

We now study mathematically the two situations.

5.9.1 Immersion of Filtrations

Let F and G be two filtrations such that F C G. Our aim is to study some
conditions which ensure that F-martingales are G-semi-martingales, and one
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can ask in a first step whether all F-martingales are G-martingales. This last
property is equivalent to E(D|F;) = E(D|G;), for any t and D € L'(F).

Let us study a simple example where G = F V o(D) where D € L'(Fy)
and D is not Fp-measurable. Obviously E(D|G;) = D is a G-martingale
and E(D|F;) is a F-martingale. However E(D|Gy) # E(D|Fy), and some F-
martingales are not G-martingales.

The filtration F is said to be immersed in G if any square integrable
F-martingale is a G-martingale (Tsirel’son [824], Emery [327]). This is also
referred to as the () hypothesis by Brémaud and Yor [126] which was defined
as:

(H) Every F-square integrable martingale is a G-square integrable martingale.

Proposition 5.9.1.1 Hypothesis (H) is equivalent to any of the following
properties:

(H1) Vit > 0, the o-fields Foo and G, are conditionally independent given Fy.
(HQ) Vit > O, \V/Gt € Ll(gt), E(Gt|foo) = E(Gt|]:t)
(H3) YVt >0, VF € LY(Fx), E(F|G:) = E(F|F).

In particular, (H) holds if and only if every F-local martingale is a G-local

martingale.

Proor:

» (H) = (H1). Let F € L?(F,) and assume that hypothesis (H) is satisfied.
This implies that the martingale F; = E(F|F;) is a G-martingale such that
F. = F, hence F; = E(F|G;). It follows that for any ¢ and any G; € L%(G;):

E(FG|Fr) = E(GiE(F|G)|Fr) = B(GE(F|F)|Fr) = E(G|F)E(F|F)

which is equivalent to (H1).
» (H1) = (H). Let F € L?(F) and Gy € L?(G;). Under (H1),

E(FE(Gi|F,) = E(E(F|F)E(GI|F)) = E(E(FG|F)) = E(FGy)
which is (H).

> (H2) = (H3). Let F € L?(Fy) and Gy € L?(G;). If (H2) holds, then it is
easy to prove that, for F' € L?(F,.),

E(GE(F|F) = E(FE(Gi|F:)) = E(FGy) = E(GE(F|Gr)),

which implies (H3). The general case follows by approximation.
» Obviously (H3) implies (H). O

In particular, under (H), if W is an F-Brownian motion, then it is a
G-martingale with bracket ¢, since such a bracket does not depend on the
filtration. Hence, it is a G-Brownian motion.
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A trivial (but useful) example for which (H) is satisfied is G = F vV F!
where F and F! are two filtrations such that F, is independent of FL .

We now present two propositions, in which setup the immersion property
is preserved under change of probability.

Proposition 5.9.1.2 Assume that the filtration F is immersed in G under
P, and let Qlg, = LP|g, where L is assumed to be F-adapted. Then, F is
immersed in G under Q.

PROOF: Let N be a (F,Q)-martingale, then (N;L;,t > 0) is a (F,P)-
martingale, and since F is immersed in G under P, (N;L¢,t > 0) is a (G, P)-
martingale which implies that N is a (G, Q)-martingale. O

In the next proposition, we do not assume that the Radon-Nikodym
density is F-adapted.

Proposition 5.9.1.3 Assume that F is immersed in G under P, and define
Qlg, = LiPlg, and Ay = E(L¢|F;). Assume that all F-martingales are
continuous and that the G-martingale L is continuous. Then, F is immersed
in G under Q if and only if the (G,P)-local martingale

b dLg tdA,
/0 I —/0 T :=L(L) — L(A),

is orthogonal to the set of all (F,P)-local martingales.

PrOOF: We prove that any (F,Q)-martingale is a (G, Q)-martingale. Every
(F,Q)-martingale M@ may be written as

Ld(MP,A),
MtQ:MtP_/ A,
0 s

where M ¥ is an (F,P)-martingale. By hypothesis, M is a (G, P)-martingale
and, from Girsanov’s theorem, M = N2 + ft M
(F, Q) martingale. It follows that

Ld(MP L), Ld(MP, A,
R e i e
0 S 0 s

where N@ is an

¢
= NP +/ d(MP, L(L) - L(A))s -
0
Thus M@ is an (G, Q) martingale if and only if (MP, L(L) — L(A))s =0. O
Exercise 5.9.1.4 Assume that hypothesis () holds under P. Let

Qlg, = LiPlg,; Qlr = LiP|7, .
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Prove that hypothesis (H) holds under Q if and only if:

UX >0, X € By, XLexl0) BNl
Lt Lt

See Nikeghbali [674]. <

5.9.2 The Brownian Bridge as an Example of Initial Enlargement

Rather than studying ab initio the general problem of initial enlargement,
we discuss an interesting example. Let us start with a BM (By,t > 0) and
its natural filtration FZ. Define a new filtration as G, = FP V o(B;). In
this filtration, the process (B, t > 0) is no longer a martingale. It is easy
to be convinced of this by looking at the process (E(B1|G:),t < 1): this
process is identically equal to By, not to By, hence (B, t > 0) is not a G-
martingale. However, (B, ¢t > 0) is a G-semi-martingale, as follows from the
next proposition

Proposition 5.9.2.1 The decomposition of B in the filtration G is
Al
B, - B
b [ BB
0 1-s
where 3 is a G-Brownian motion.

ProoF: We have seen, in (4.3.8), that the canonical decomposition of

Brownian bridge under W(()L)O is

t
Xs
Xt:ﬁt—/ds 5 tSl
0 1-s

The same proof implies that the decomposition of B in the filtration G is

tAL B1 _ Bs

ds.
0 1-s

By =B +
O

It follows that if M is an F-local martingale such that fol \/%dKM, B)|s
is finite, then
tAl Bl _ BS

Mt:]\//-Tt'i‘
0 1-s

d{M,B),

where M is a G-local martingale.

Comments 5.9.2.2 (a) As we shall see in — Subsection 11.2.7, Proposition
5.9.2.1 can be extended to integrable Lévy processes: if X is a Lévy process
which satisfies E(|X;|) < oo and G = FX V o(X}), the process
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tAl
x, - [ X=X
0 1-s
is a G-martingale.
(b) The singularity of % att = 1, i.e., the fact that % is not square
integrable between 0 and 1 prevents a Girsanov measure change transforming
the (P, G) semi-martingale B into a (Q, G) martingale. Let

dSt = St(,udt + O'dBt)

and enlarge the filtration with S; (or equivalently, with By). In the enlarged
filtration, setting (; = Bi:ft, the dynamics of S are

dS; = Si((p+ ol)dt + odfy),

and there does not exist an e.m.m. such that the discounted price process
(e7"S;,t < 1) is a G-martingale. However, for any € €10, 1], there exists a
uniformly integrable G-martingale L defined as

aL =" g < e, Lo=1,
o
such that, setting dQ|g, = LidP|g,, the process (e " S;,t <1—¢) is a (Q, G)-
martingale.
This is the main point in the theory of insider trading where the knowledge

of the terminal value of the underlying asset creates an arbitrage opportunity,
which is effective at time 1.

5.9.3 Initial Enlargement: General Results

Let F be a Brownian filtration generated by B. We consider .7-'t(L) =FVo(L)
where L is a real-valued random variable. More precisely, in order to satisfy
the usual hypotheses, redefine

ft(L) = MNe>0 {ft-&-e \Y O’(L)} .

We recall that there exists a family of regular conditional distributions
A¢(w, dx) such that (-, A) is a version of E(1{zc}|F:) and for any w, A(w, -)
is a probability on R.
Proposition 5.9.3.1 (Jacod’s Criterion.) Suppose that, for each t < T,
At(w, dx) << v(dx) where v is the law of L. Then, every F-semi-martingale
(X¢,t < T) is also an f,g(L)—semi—martz'ngale.

Moreover, if A\i(w,dx) = pi(w,x)v(dz) and if X is an F-martingale, its
decomposition in the filtration ft(L) 18

¥ ! d(p(L),Xﬂ
Xt*XtJr/o ps(L)
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In a more general setting (see Yor [868]), for a bounded Borel function f, let

(Ae(f),t > 0) be the continuous version of the martingale (E(f(L)|F:),t > 0).
There exists a predictable kernel A;(dx) such that

M(f) = / M(de) f(z)

From the predictable representation property applied to the martingale
E(f(L)|F:), there exists a predictable process A(f) such that

~

M(f) = E(f(L)) + / M\ (f)dB,

Proposition 5.9.3.2 We assume that there exists a predictable kernel :\\t(dx)
such that

dt a.s., M(f) :/Xt(dx)f(x)

Assume furthermore that dt x dP a.s. the measure ;\\t(dx) is absolutely
continuous with respect to A¢(dx):

~

Ae(dz) = p(t, ) \(dx) .
Then, if X is an F-martingale, there exists a FX) -martingale X such that
N t
X=X +/ p(s, L)d{X, B); .
0

SKETCH OF THE PROOF: Let X be an F-martingale, f a given bounded Borel
function and F; = E(f(L)|F:). From the hypothesis

F, = E(f(L)) + / A (f)dB,

s+ [ (f p(s,x>xs<dx>f<x>) dB, .
Then, for A, € F, s < t:

E(ﬂAsf(LxXt - Xs)) = ]E(]lAs (FtXt - FSXS)) = E(1A5(<F7X>t - <Fa X>s))
=5 (1a, [ ax.).3.0)

:IE(ﬂAS /: d(X,B>u/)\u(dac)f(x)p(uw)) .

Therefore, V; = fot p(u, L) d{X, B), satisfies

E(La, f(L)(X; = X)) = E(La, f(L)(V: = V5)).
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It follows that, for any G € fﬁL),
E(le, (X: - X)) = E(Le. (Vi = Vi),

hence, (X; — Vi, t > 0) is an F(X)-martingale. d

Let us write the result of Proposition 5.9.3.2 in terms of Jacod’s criterion.
If \¢(dx) = ps(x)v(dx), then

AAﬂ=/m@ﬁ@WW@-

Hence,
a(.(/), B) dt = [ daf(e) dulp. (o), B):
and J B
Ni(dz) = dy(p.(z), B, f<p]'352’) gy ()i
therefore,

di(p.(x), B):
pe()

In the case where \;(dx) = &(¢, x)dx, with @ > 0, it is possible to find ¢

such that
¢ ¢
&(t,z) = P(0,x) exp (/ P(s,xz)dBs — %/ wQ(s,x)ds)
0 0

and it follows that Xt(dx) = (t,x)\¢(dz). Then, if X is an F-martingale of
the form X; = x + fo xsdBs, the process (X; — fo dszs1p(s,L),t > 0) is an
F()_martingale.

Ne(da)dt = Ae(da) .

Example 5.9.3.3 We now give some examples taken from Mansuy and Yor
[622] in a Brownian set-up for which we use the preceding. Here, B is a
standard Brownian motion.

» Enlargement with B;. We compare the results obtained in Subsection
5.9.2 and the method presented in Subsection 5.9.3. Let L = By. From the
Markov property

E(g(B1)|F:) = E(9(B1 — By + By)|Fy) = Fg(By, 1 — t)

where Fy(y,1 —t) = [ g(x)p1-+(y, z)dz and p,(y, =) = —5— exp (—(xgg)z).

It follows that A\ (dz) = ﬁ exp ( (”25( By)? ) dz. Then
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At(dx) = pfP(B; € dx)

r 1 < _(I—Bt)Z I_2
Pr = (1_t)ep< 2(1—t)+2>'

with

From It6’s formula,
2L — Bt
b1t

It follows that d(p®, B); = pf £=5tdt, hence

t
- — B,
Bt:Bt+/z ~ds.
O 1

— S

dpy =p dB; .

Note that, in the notation of Proposition 5.9.3.2, one has

(th)z) dz .

~ Xr — Bt exp <
1—t \fr(l—1) 2(1—t)

)\t (dIE) =

» Enlargement with M? = Supg<q Bs. From Exercise 3.1.6.7,
E(f(MP)|Fi) = F(L=t, By, M?)

where MP = Sup,<; Bs with

2 b—a 00
F(S,(l, b) = —_ <f(b)/ 67”2/(25)du =+ /b f(u)e("a)z/(zs)du>
0

™8

and

Ae(dy) = ﬁ {5y(MtB) /OMtB_Bt exp <_2(1u—it)> du

(y — By)?
+ 1{y>A{F} exp (—2(1_1?) dy .

Hence, by differentiation w.r.t. z(= By), i.e., more precisely, by applying 1t6’s
formula

y— By _(y—B)?
+]1{y>MtB} T exp< 21— 1) .

It follows that
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_B, 1 & (z-B,
p(t,z) = Il{ac>MB} T T Lp =} =7 & \ VIt
with @(z \/>f0 e % du.

More examples can be found in Jeulin [493] and Mansuy and Yor [622].
Matsumoto and Yor [629] consider the case where L = [ ds exp(2(Bs —vs)).
See also Baudoin [61].

Exercise 5.9.3.4 Assume that the hypotheses of Proposition 5.9.3.1 hold
and that 1/p.o(-, L) is integrable with expectation 1/c. Prove that under the
probability R defined as

dR|F., = ¢/Poo(:, L)dP| £

the r.v. L is independent of F.,. This fact plays an important réle in Grorud
and Pontier [411]. 5

5.9.4 Progressive Enlargement

We now consider a different case of enlargement, more precisely the case where
7 is a finite random time, i.e., a finite non-negative random variable, and we
denote

Fl =Neso{Fire Va(T A (t+€))} .

Proposition 5.9.4.1 For any F7-predictable process H, there exists an F-
predictable process h such that Hily<ry = hyl<ry. Under the condition
Ve, P(r < t|F) < 1, the process (hy,t > 0) is unique.

PRrROOF: We refer to Dellacherie [245] and Dellacherie et al. [241], page 186.
The process h may be recovered as the ratio of the F-predictable projections
of Ht:ﬂ-{t<7—} and ]]-{t<7'}:

E(H1 e ry | F2)

P TPl < R

Immersion Setting

Let us first investigate the case where the (H) hypothesis holds.

Lemma 5.9.4.2 In the progressive enlargement setting, (H) holds between F
and F7 if and only if one of the following equivalent conditions holds:

(i) V(t,s), s <t, P(r<s|Fx) =P <s|F),

(i) Vt, P(r < t|Fn) = P(r < t|F). (5.9.1)
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Proor: If (ii) holds, then (i) holds too. If (i) holds, Fo and o(t A 7) are
conditionally independent given F;. The property follows. This result can
also be found in Dellacherie and Meyer [243]. O

Note that, if (H) holds, then (ii) implies that the process P(r < t¢|F;) is
decreasing.

Example: assume that F C G where (H) holds for F and G. Let 7 be a
G-stopping time. Then, (H) holds for F and F7.

General Setting

We denote by Z7 the F-super-martingale P(7 > t|F;), also called the Azéma
supermartingale (introduced in [35]). We assume in what follows

(A) The random time 7 avoids the F-stopping times, i.e., P(r = 9) = 0 for
any F-stopping time .

Under (A), the F-dual predictable projection of the process Dy : = 1,<y,
denoted A7, is continuous. Indeed, if ¥ is a jump time of A7, it is predictable,
and

E(Aj — Aj_) = E(L,—y) = 0

the continuity of A™ follows.
Proposition 5.9.4.3 The canonical decomposition of the semi-martingale
Z7 is
Z{ = B(AL|F) — Al = i — A]
where pl == E(AL|F:).

PROOF: From the definition of the dual predictable projection, for any
predictable process H, one has

E(H,)=E </OOO HudA;> .

Let t be fixed and F; € F;. Then, the process H, = Fil{icyy,u > 0 is
F-predictable. Then

E(thl{t<‘r}) = E(Ft(Ago - AtT)) :
It follows that E(AL |F) = Z] + AJ. O
Comment 5.9.4.4 It can be proved that the martingale
pi c=E(AL|F) = Al + Z]

is BMO (see Definition 1.2.3.9).
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It is proved in Yor [860] that if X is an F-martingale then the processes
Xinr and Xi(1 — D;) are F7™ semi-martingales. Furthermore, the decomposi-
tions of the F-martingales in the filtration F7 are known up to time 7 (Jeulin
and Yor [495]).

Proposition 5.9.4.5 Every F-martingale M stopped at time 7 is an F7-
semi-martingale with canonical decomposition

tAT

~ d{M,u")s
MtAT:Mt+/ < TM>_7
0 Zs—

where M is an F7-local martingale. The process

tAT
1 — ——dA7]
{r<t} /0 ZT

is an FT-martingale.

PrROOF: Let H be an F7-predictable process. There exists an F-predictable
process h such that Hyl<ry = hyl{y<7y, hence, if M is an F-martingale, for
s <1,

IE(11‘9(2\415/\7' - MS/\T)) = E(Hsﬂ{s<'r}(Mt/\T - MS/\T))
= E(hsﬂ-{s<7}(Mt/\'r - Ms/\r))
= E (hs(Lgecr<ey(Mr — My) + Lgpery (M; — My)))

From the definition of Z,
E (h ]l{s<7<t}M ( / M,dZ )
and, noting that
t t
/ M,dZ, — MsZ, + Z,M; = / ZudMy, + (M, Z)s — (M, Z)

we get, from the martingale property of M

E(Hs(Minr — Mspr)) = E(hs (M, p7)e — (M, 17)5))
=E <h /: W‘Z;_) =E <hs /: du\é’;% E(Jl{uq}fu))

LA, Y, N M, T
=k <h/ 7 1{““}) = <h8 / 7 > |

The result follows. O
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Pseudo-stopping Times

As we have mentioned, if (H) holds, the process (Z7,t > 0) is a decreasing
process. The converse is not true. The decreasing property of Z7 is closely
related with the definition of pseudo-stopping times, a notion developed from
D. Williams example (see Example 5.9.4.8 below).

Definition 5.9.4.6 A random time T is a pseudo-stopping time if, for any
bounded F-martingale M, E(M,) = My .

Proposition 5.9.4.7 The random time T is a pseudo-stopping time if and
only if one of the following equivalent properties holds:

e For any local F-martingale m, the process (mipr,t > 0) is a local F7-

martingale,
AT =1,
ui=1,vt >0,

The process Z7 is a decreasing F-predictable process.

PROOF: We refer to Nikeghbali and Yor [675]. O

Example 5.9.4.8 The first example of a pseudo-stopping time was given by
Williams [844]. Let B be a Brownian motion and define the stopping time
Ty = inf{t : B, = 1} and the random time § = sup{t <1} : B, = 0}. Set

T =sup{s <0 : B, = MP}

where MZ is the running maximum of the Brownian motion. Then, 7 is
a pseudo-stopping time. Note that E(B;) is not equal to 0; this illustrates
the fact we cannot take any martingale in Definition 5.9.4.6. The martingale
(Biaty,t > 0) is neither bounded, nor uniformly integrable. In fact, since the
maximum MP (=B;) is uniformly distributed on [0, 1], one has E(B,) = 1/2.

Honest Times

For a general random time 7, it is not true that F-martingales are F7-semi-
martingales. Here is an example: due to the separability of the Brownian
filtration, there exists a bounded random variable 7 such that Foo = o(7).
Hence, F7,; = Foo,Vt so that the F7-martingales are constant after 7.
Consequently, F-martingales are not F7-semi-martingales.

On the other hand, there exists an interesting class of random times 7 such
that F-martingales are F7-semi-martingales.

Definition 5.9.4.9 A random time is honest if it is the end of a predictable
set, i.e., T(w) = sup{t : (t,w) € I'}, where I' is an F-predictable set.
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In particular, an honest time is F,,-measurable. If X is a transient diffusion,
the last passage time A, (see Proposition 5.6.2.1) is honest. Jeulin [493]
established that an F.-measurable random time is honest if and only if it
is equal, on {7 < ¢}, to an Fi-measurable random variable.

A key point in the proof of the next Proposition 5.9.4.10 is the following
description of F7-predictable processes: if 7, an F,-measurable random time,
is honest, and if H is an F7-predictable process, then there exist two F-
predictable processes h and h such that

H, = htﬂ{r>t} +Et]l{7.§t} .

(See Jeulin [493] for a proof.)

Proposition 5.9.4.10 Let 7 be honest. Then, if X is an F-local martingale,
there exists an F7-local martingale X such that

tAT TVt
~ d{X, 1" (X, 1)
Xt = ;ft +/ < TM > - / 7< MT> .
0 Zs— T 1- Zs—

PROOF: Let M be an F-martingale which belongs to H! and G, € F7. We
define a G” predictable process H as H, = 1¢ 1},(u). For s < t, one has,
using the decomposition of G™ predictable processes:

E(le, (M, - M,)) = E ( I HudMu)

E(/imML)+E</ EAMJ.
0 T

Noting that fot hydM,, is a martingale yields E (fooo ?LudMu) =0,

Bt (04 - M) =B [ (hu - Ranm,

E(Awmqénmﬁwma).

By integration by parts, with N, = fot (hu — hy)dM,,, we get

Bl (; = M.) = BV AZ) =5 ( [ (ha = Bt )

Now, it remains to note that
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—E </OOO (hud<M, 1Yy — had(M, u7>u))
_E (/Ooo(hu ~ha)d(M, mu)

to conclude the result in the case M € H!'. The general result follows by
localization. O

Example 5.9.4.11 Let W be a Brownian motion, and 7 = g1, the last time
when the BM reaches 0 before time 1, i.e., 7 = sup{¢t <1 : W; = 0}. Using the
computation of Z9' in Subsection 5.6.4 and Proposition 5.9.4.10, we obtain
the decomposition of the Brownian motion in the enlarged filtration

o ‘ @' [Ws| '\ sgn(Ws)
Wy =W, — | 15, : s q
£ /0 0108 T <\/1—3> Ji—s

Lo (W
+ﬂ{‘r§t} Sgl’l(Wl)/ 5 <\/|&) ds

where @(z \/7f0 exp(—u?/2)du

Comments 5.9.4.12 (a) The (H) hypothesis was studied by Brémaud and
Yor [126] and Mazziotto and Szpirglas [632], and in a financial setting by
Kusuoka [552], Elliott et al. [315] and Jeanblanc and Rutkowski [486, 487].

(b) An incomplete list of authors concerned with enlargement of filtration
in finance for insider trading is: Amendinger [12], Amendinger et al. [13],
Baudoin [61], Corcuera et al. [194], Eyraud-Loisel [338], Florens and Fougére
[347], Gasbarra et al. [374], Grorud and Pontier [410], Hillairet [436], Imkeller
[457], Imkeller et al. [458], Karatzas and Pikovsky [512], Kohatsu-Higa [532,
533] and Kohatsu-Higa and Oksendal [534].

(c) Enlargement theory is also used to study asymmetric information, see
e. g. Follmer et al. [353] and progressive enlargement is an important tool for
the study of default in the reduced form approach by Bielecki et al. [91, 92, 93],
Elliott et al.[315] and Kusuoka [552] (see — Chapter 7).

(d) See also the papers of Ankirchner et al. [19] and Yoeurp [858].

(e) Note that the random time 7 presented in Subsection 5.6.5 is not the
end of a predictable set, hence, is not honest. However, F-martingales are
semi-martingales in the progressive enlarged filtration: it suffices to note that
F-martingales are semi-martingales in the filtration initially enlarged with W7.
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5.10 Filtering the Information

A priori, one might think somewhat naively that the drift term in the
historical dynamics of the asset plays no réle in contingent claims valuation.
Nevertheless, working in the filtration generated by the asset shows the
importance of this parameter. We present here some results, linked with
filtering theory. However, we do not present the theory in detail, and the
reader can refer to Lipster and Shiryaev [598] and Brémaud [124] for processes
with jumps.

5.10.1 Independent Drift

Suppose that dB,EY) =Ydt+dB;, B(()Y) = 0 where Y is some r.v. independent
of B and with law v. The following proposition describes the distribution
of BY),

Proposition 5.10.1.1 The law of B®Y) is W defined as
W |z, = hy, (X, t) W] g, .

2
Here, h,(z,t) = [v(dy) exp(yz — Lt).

PROOF: Let F be a functional on C([0, t],R). Using the independence between
Y and B, and the Cameron-Martin theorem, we get

E[F(BY),s <t)] = E[F(sY + Bs,s < t)] = /y(dy)]E[F(sy + By, s < t)]
2
= /V(dy)IE {F(BS, s <t)exp (th — y2t>]
= E[F(By;s < t)h,(B,1)].
O

We now give the canonical decomposition of B(Y) in its own filtration. Let
W' |z = h, (X, t) W|g, = Ly W|x,. Therefore, the bracket (X, L); is equal
to fot O:hy (X5, s) ds, and, from Girsanov’s theorem,

t
B, = X, - / ds2 ()
o “h,

is a W’ _martingale, more precisely a W"*-Brownian motion and

a{vhl/
hy,

t
Xt:ﬁt+/ as% " (x, g,
0

The canonical decomposition of BM) is
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¢
Ozh
B =it [ as T B0,
0 hV

where ~ is a BM with respect to the natural filtration of B().

The next proposition describes the conditional law of Y, given B(XY).

Proposition 5.10.1.2 If f : R — R™ is a Borel function, then

hy(BS) 1)

m(f) i =E(f(Y)[BM, s < t)

where hy.,)(x,t) = [v(dy)f(y)exp(yz — %t) and

¢ h
mif) =1+ [ (0.02) (B0 o
0

PRrROOF: On the one hand
E(f(Y)F(BY),s <t) =E(F(Bs,s < t) h(s.)(Bi.t)). (5.10.1)
On the other hand, if
®(BY),s <t) =E(f(Y)|B
the left-hand side of (5.10.1) is equal to
E (@(B@, s <)F(BY),s < t)) — E(®(Bs, s < t)F(By, s < 1)hy (B, 1)) .

(5.10.2)
It follows that

Y
ho (B, 1)

m(f) = @B s <t) =

The expression of m:(f) as a stochastic integral follows directly from this
expression of m;(f) (and the martingale property of m(f)). d

5.10.2 Other Examples of Canonical Decomposition
The above result can be generalized to the case where
dX; = dW; + (f(t)W; + h(t)X;)dt

where W is independent of W. In that case, studied by Féllmer et al. [353],
the canonical decomposition of X is
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— B+ / (P ku(Xoiv < u) + h(w)X,,) du

where

1

ky(Xg;s <u) = ) /Ou U(v) (f(v)dX, — f(v)h(v)X,dv)

with ¥ the fundamental solution of the Sturm-Liouville equation
w(t) = f2(0) ()
with boundary conditions ¥(0) = 0,%'(0) =

5.10.3 Innovation Process

The following formula plays an important role in filtering theory and will be
illustrated below.

Proposition 5.10.3.1 Let dX; = Yidt + th, where W is an F-Brownian
motion and Y an F-adapted process. Define Y, = E(Y;|FX), the optional
projection of Y on FX. Then, the process

t
ZtZ:Xt*/ }/SdS
0

is an FX -Brownian motion, called the innovation process.

PROOF: Note that, for ¢ > s,

E(Z,|FX) = B(X,|FX) - (/ Ydu|fx>

s t
—E(Wtf§)+E</ Yudu|f§"> —/ Yudu—E</ Yudu}'SX> .
0 0 s

From the inclusion .7-}/ C F; and the fact that W is an F-martingale, we
obtain E(W;|FX) = E(W,|FX). Therefore, by using

t t
/ E(V, | FX )du = / E(V|FX)du

we obtain

t s t
E(Z|FX) = E(W,|FX) +E (/ Yudu|f§> — / Y, du—E (/ Yudu|f§<>
0 0 s
t S t
= E(X,|FX) +/ E(Yu\fsx)du—/ Y,du —E (/ Yudu|f§>
s 0 s
t S t
=X, +/ E(Y,|FX)du —/ Y,du — E (/ Yudu|f§‘>
s 0 s

:XS—/k v, du.
0
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Proposition 5.10.3.1 is in fact a particular case of the more general result
that follows, which is of interest if Z is not F-adapted.
Proposition 5.10.3.2 Let Z be a measurable process such that E(f(f | Z,|du)
is finite for every t. Then, E(fot Zydu|Fy) is an F-semi-martingale which
decomposes as My + fot duE(Z,|Fy), where M is a martingale.

PROOF: We leave the proof to the reader. O

Example 5.10.3.3 As an example, take Z, = By, Vu, with B a Brownian

motion. Then
t t
E(/ duBl]-}) =tB; = M, +/ duB,, .
0 0

Comment 5.10.3.4 The paper of Pham and Quenez [711] and the paper
of Lefebvre et al. [574] study the problem of optimal consumption under
partial observation, by means of filtering theory. See also Nakagawa [665]
for an application to default risk.
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