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Complements on Brownian Motion

In the first part of this chapter, we present the definition of local time and
the associated Tanaka formulae, first for Brownian motion, then for more
general continuous semi-martingales. In the second part, we give definitions
and basic properties of Brownian bridges and Brownian meander. This is
motivated by the fact that, in order to study complex derivative instruments,
such as passport options or Parisian options, some knowledge of local times,
bridges and excursions with respect to BM in particular and more generally for
diffusions, is useful. We give some applications to exotic options, in particular
to Parisian options.

The main mathematical references on these topics are Chung and Williams
[186], Kallenberg [505], Karatzas and Shreve [513], [RY], Rogers and Williams
[742] and Yor [864, 867, 868].

4.1 Local Time

4.1.1 A Stochastic Fubini Theorem

Let X be a semi-martingale on a filtered probability space (Ω,F ,F, P), μ a
bounded measure on R, and H, defined on R

+ × Ω × R, a P ⊗ B bounded
measurable map, where P is the F-predictable σ-algebra. Then∫ t

0

dXs

(∫
μ(da)H(s, ω, a)

)
=
∫

μ(da)
(∫ t

0

dXs H(s, ω, a)
)

.

More precisely, both sides are well defined and are equal.
This result can be proven for H(s, ω, a) = h(s, ω)ϕ(a), then for a general

H as above by applying the MCT. We leave the details to the reader.

4.1.2 Occupation Time Formula

Theorem 4.1.2.1 (Occupation Time Formula.) Let B be a one-dimen-
sional Brownian motion. There exists a family of increasing processes, the
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local times of B, (Lx
t , t ≥ 0; x ∈ R), which may be taken jointly continuous in

(x, t), such that, for every Borel bounded function f

∫ t

0

f(Bs) ds =
∫ +∞

−∞
Lx

t f(x) dx . (4.1.1)

In particular, for every t and for every Borel set A, the Brownian occupation
time of A between 0 and t satisfies

ν(t, A) : =
∫ t

0

1{Bs∈A} ds =
∫ ∞

−∞
1A(x)Lx

t dx . (4.1.2)

Proof: To prove Theorem 4.1.2.1, we consider the left-hand side of the
equality (4.1.1) as “originating” from the second order correction term in
Itô’s formula. Here are the details.

Let us assume that f is a continuous function with compact support. Let

F (x) : =
∫ x

−∞
dz

∫ z

−∞
dyf(y) =

∫ ∞

−∞
(x − y)+f(y)dy .

Consequently, F is C2 and F ′(x) =
∫ x

−∞ f(y) dy =
∫∞
−∞ f(y)1{x>y} dy. Itô’s

formula applied to F and the stochastic Fubini theorem yield
∫ ∞

−∞
(Bt − y)+f(y)dy =

∫ ∞

−∞
(B0 − y)+f(y)dy +

∫ ∞

−∞
dyf(y)

∫ t

0

1{Bs>y}dBs

+
1
2

∫ t

0

f(Bs)ds .

Therefore

1
2

∫ t

0

f(Bs)ds =
∫ ∞

−∞
dyf(y)

(
(Bt − y)+ − (B0 − y)+ −

∫ t

0

1{Bs>y}dBs

)

(4.1.3)
and formula (4.1.1) is obtained by setting

1
2
Ly

t = (Bt − y)+ − (B0 − y)+ −
∫ t

0

1{Bs>y}dBs . (4.1.4)

Furthermore, it may be proven from (4.1.4), with the help of Kolmogorov’s
continuity criterion (see Theorem 1.1.10.6), that Ly

t may be chosen jointly
continuous with respect to the two variables y and t (see [RY], Chapter VI
for a detailed proof). �

Had we started from G′(x) = −
∫∞

x
f(y) dy = −

∫∞
−∞ f(y)1{x<y} dy, we

would have obtained the following occupation time formula
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∫ t

0

f(Bs) ds =
∫ ∞

−∞
L̃y

t f(y)dy , (4.1.5)

with
1
2
L̃y

t = (Bt − y)− − (B0 − y)− +
∫ t

0

1{Bs<y}dBs .

Therefore,

(Bt − y)− = (B0 − y)− −
∫ t

0

1{Bs<y}dBs +
1
2
L̃y

t .

Note that Ly
t − L̃y

t = Bt − B0 −
∫ t

0
1{Bs �=y}dBs = 2

∫ t

0

dBs1{Bs=y}, hence

(Bt − y)− = (B0 − y)− −
∫ t

0

1{Bs≤y}dBs +
1
2
Ly

t .

Furthermore, the integral
∫ t

0

dBs1{Bs=y} is equal to 0, because its second

order moment is equal to 0; indeed:

E

(∫ t

0

dBs1{Bs=y}

)2

=
∫ t

0

P(Bs = y)ds = 0 .

Hence, Ly = L̃y.

Comments 4.1.2.2 (a) In the occupation time formula (4.1.1), the time t
may be replaced by any random time τ .

(b) The concept and several constructions (different from the above) of
local time in the case of Brownian motion are due to Lévy [585].

(c) Existence of local times for Markov processes whose points are regular
for themselves is developed in Blumenthal and Getoor [107]. Occupation
densities for general stochastic processes are discussed in Geman and Horowitz
[377]. Local times for diffusions are presented in � Section 5.5 and in Borodin
and Salminen [109].

(d) Continuity results for Brownian local times are due to Trotter [821],
and many results can be found in the collective book [37].

4.1.3 An Approximation of Local Time

The quantity Lx
t is called the local time of the Brownian motion at level x

between 0 and t. From (4.1.1), we obtain the equality

Lx
t = lim

ε→0

1
2ε

∫ t

0

1[x−ε,x+ε](Bs) ds ,
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where the limit holds a.s.. It can also be shown that it holds in L2. This
approximation shows in particular that (Lx

t , t ≥ 0), the local time at level
x, is an increasing process. An important property (see [RY], Chapter VI) is
that, for fixed x, the support of the random measure dLx

t is precisely the set
{t ≥ 0 : Bt = x}. In other words, for x = 0, say, the local time (at level 0)
increases only on the set of zeros of the Brownian motion B. In particular

∫ t

0

f(Bs)dL0
s = f(0)L0

t .

Exercise 4.1.3.1 Let H be a measurable map defined on R
+×Ω×R. Prove

that, for any random time τ ,
∫ τ

0

H(s, ω,Bs)ds =
∫ ∞

−∞
dx

∫ τ

0

H(s, ω, x) dsL
x
s ,

where the notation dsL
x
s makes precise that x is fixed and the measure dsL

x
s

is on R
+,B(R+). �

4.1.4 Local Times for Semi-martingales

The same approach can be applied to continuous semi-martingales X (see
� Subsection 4.1.8). In this case, the two quantities L and L̃ obtained from
equations (4.1.4) and (4.1.5) where B is changed to X can be different, and
the continuity property does not necessarily hold. There are also different
definitions of local time, the reader is referred to � Section 5.5.

4.1.5 Tanaka’s Formula

Tanaka’s formulae are variants of Itô’s formula for the absolute value and the
positive and negative parts of a BM.

Proposition 4.1.5.1 (Tanaka’s Formulae.) Let B be a Brownian motion
and Lx

t its local time at level x between 0 and t. For every t,

(Bt − x)+ = (B0 − x)+ +
∫ t

0

1{Bs>x} dBs +
1
2
Lx

t (4.1.6)

(Bt − x)− = (B0 − x)− −
∫ t

0

1{Bs≤x} dBs +
1
2
Lx

t (4.1.7)
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|Bt − x| = |B0 − x| +
∫ t

0

sgn (Bs − x) dBs + Lx
t (4.1.8)

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x ≤ 0.

Proof: The first two formulae follow directly from the definition. The last
equality is obtained by summing term by term the two previous ones. �

Comment 4.1.5.2 If Itô’s formula could be applied to |B|, without taking
care of the discontinuity at 0 of the derivative of |x|, then arguing that BM
spends Lebesgue measure zero time in a given state, one would obtain the
equality of |Bt| and

∫ t

0
sgn (Bs) dBs. This is obviously absurd, since |Bt|

is positive and
∫ t

0
sgn (Bs) dBs is a centered variable. Indeed, the process

(
∫ t

0
sgn (Bs) dBs, t ≥ 0) is a Brownian motion, see Example 1.4.1.5. Therefore,

the local time spent at level 0 by the original Brownian motion B is quite
meaningful, in that Tanaka’s formulae are expressions of the Doob-Meyer
decomposition of the sub-martingales (Bt − x)+ and |Bt − x| where 1

2Lx
t and

Lx
t are the corresponding increasing processes.

More generally, Tanaka’s formulae may be extended to develop f(Bt) as a
semi-martingale when f is locally the difference of two convex functions:

f(Bt) = f(B0) +
∫ t

0

(D−f)(Bs) dBs +
1
2

∫
R

La
t f ′′(da) (4.1.9)

where D−f is the left derivative of f and f ′′ is the second derivative in the
distribution sense, meaning∫

f ′′(da)g(a) =
∫

f(a)g′′(a)da

for any twice differentiable function g with compact support.
Note that if f is a C1 function, and is also C2 on R \ {a1, . . . , an}, for a

finite number of points (ai, i = 1, . . . , n),

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

g(Bs)ds

where g(x)dx is the second derivative of f in the distribution sense. In that
case, there is no local time apparent in the formula.

More generally, if f is locally a difference of two convex functions, which
is C2 on R \ {a1, . . . , an}, then

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

g(Bs)ds +
1
2

n∑
i=1

Lai
t (f ′(a+

i )− f(a−
i )) .
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Warning 4.1.5.3 Some authors (e.g., Karatzas and Shreve [513]) choose a
different normalization of local times starting from the occupation formula.
Hence in their version of Tanaka’s formulae, a coefficient other than 1/2
appears. These different conventions should be considered with care as they
may be a source of errors. On the other hand, the most common choice is the
coefficient 1/2, which allows the extension of Itô’s formula as in (4.1.9).

Comment 4.1.5.4 If B is a Brownian motion, a necessary and sufficient
condition for f(B) to be a semi-martingale is that f is locally a difference of
two convex functions. In [179], Chitashvili and Mania describe the functions
f(t, x) such that (f(t, Bt), t ≥ 0) is a semi-martingale. See also Chitashvili
and Mania [178], Çinlar et al. [189], Föllmer et al. [349], Kunita [546] and
Wang [834] for different generalizations of Itô’s formula.

Exercise 4.1.5.5 Scaling Properties of the Local Time. Prove that for
any λ > 0,

(Lx
λ2t; x, t ≥ 0) law= (λL

x/λ
t ; x, t ≥ 0) .

In particular, the following equality in law holds true

(L0
λ2t, t ≥ 0) law= (λL0

t , t ≥ 0) . �

Exercise 4.1.5.6 Let τ� = inf{t > 0 : L0
t > 
}. Prove that

P(∀
 ≥ 0, Bτ�
= Bτ�− = 0) = 1 . �

Exercise 4.1.5.7 Let dSt = St(r(t)dt + σdWt) where r is a deterministic
function and let h be a convex function satisfying xh′(x) − h(x) ≥ 0. Prove
that exp(−

∫ t

0
r(s)ds)h(St) = Rth(St) is a local sub-martingale.

Hint: Apply the Itô-Tanaka formula to obtain that

R(t)h(St) = h(x) +
∫ t

0

R(u)r(u)(Suh′(Su) − h(Su))du

+
1
2

∫
h′′(da)

∫ t

0

R(s)dsL
a
s + loc. mart. .

�

4.1.6 The Balayage Formula

We now give some other applications of the MCT to stochastic integration,
thus obtaining another kind of extension of Itô’s formula.

Proposition 4.1.6.1 (Balayage Formula.) Let Y be a continuous semi-
martingale and define

gt = sup{s ≤ t : Ys = 0},

with the convention sup{∅} = 0. Then
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hgtYt = h0Y0 +
∫ t

0

hgsdYs

for every predictable, locally bounded process h.

Proof: By the MCT, it is enough to show this formula for processes of the
form hu = 1[0,τ ](u), where τ is a stopping time. In this case,

hgt = 1{gt≤τ} = 1{t≤dτ} where dτ = inf{s ≥ τ : Ys = 0}.

Hence,

hgtYt = 1{t≤dτ}Yt = Yt∧dτ = Y0 +
∫ t

0

1{s≤dτ}dYs = h0Y0 +
∫ t

0

hgsdYs.

�
Let Yt = Bt, then from the balayage formula we obtain that

hgtBt =
∫ t

0

hgsdBs

is a local martingale with increasing process
∫ t

0
h2

gs
ds.

Exercise 4.1.6.2 Let ϕ : R
+ → R be a locally bounded real-valued

function, and L the local time of the Brownian motion at level 0. Prove that
(ϕ(Lt)Bt, t ≥ 0) is a Brownian motion time changed by

∫ t

0
ϕ2(Ls)ds.

Hint: Note that for hs = ϕ(Ls), one has hs = hgs , then use the balayage
formula. Note also that one could prove the result first for ϕ ∈ C1 and then
pass to the limit. �

4.1.7 Skorokhod’s Reflection Lemma

The following real variable lemma will allow us in particular to view local
times as supremum processes.

Lemma 4.1.7.1 Let y be a continuous function. There is a unique pair of
functions (z, k) such that

(i) k(0) = 0, k is an increasing continuous function
(ii) z(t) = −y(t) + k(t) ≥ 0
(iii)

∫ t

0
1{z(s)>0}dk(s) = 0 ,

This pair is given by

k∗(t) = sup
0<s≤t

(y(s)) ∨ 0, z∗(t) = −y(t) + k∗(t).
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Proof: The pair k∗(t) = sup0<s≤t(y(s))∨0, z∗(t) = −y(t)+k∗(t) satisfies the
required properties. Let us prove that the solution is unique. Let (z1, k1) and
(z2, k2) be two pairs of solutions. Then, since z1 − z2 has bounded variation,
from the integration by parts formula,

0 ≤ (z1 − z2)2(t) = 2
∫ t

0

(z1(s) − z2(s)) d(k1(s) − k2(s)) .

From (iii), the right-hand side of the above equality is equal to

−2
∫ t

0

z2(s) dk1(s) − 2
∫ t

0

z1(s) dk2(s)

which is negative. Hence, z1 = z2. �

Note that, if y is increasing, then z = 0. We now give an important
consequence of the Skorokhod lemma:

Theorem 4.1.7.2 (Lévy’s Equivalence Theorem.) Let B be a Brownian
motion starting at 0, L its local time at level 0 and Mt = sups≤t Bs. The two-
dimensional processes (|B|, L) and (M − B, M) have the same law, i.e.,

(|Bt|, Lt ; t ≥ 0) law= (Mt − Bt, Mt ; t ≥ 0) .

Proof: Tanaka’s formula implies that

|Bt| =
∫ t

0

sgn(Bs)dBs + L0
t

where L0, the local time of B, is an increasing process. Therefore, (|B|, L0)
is a solution of Skorokhod’s lemma associated with the Brownian motion
βt = −

∫ t

0
sgn(Bs)dBs. Hence, L0

t = sups≤t βs. By denoting Mt = sups≤t Bs,
we obtain the decompositions

|Bt| = −βt + L0
t

Mt − Bt = (−Bt) + Mt .

The pair (M −B, M) is a solution to Skorokhod’s lemma associated with the
Brownian motion B, because M increases only on the set M −B = 0. Hence,
the processes (|B|, L) and (M − B, M) have the same law. �

Comments 4.1.7.3 (a) We have proved, in Proposition 3.1.3.1 that, for any
fixed t, Mt

law= |Bt|. Here, we obtain that the processes M−B and |B| have the
same law. In particular, for fixed t, Mt −Bt

law= |Bt|. We also have Mt
law= Lt.
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(b) As a consequence of Skorokhod’s lemma, if βt =
∫ t

0
sgn(Bs)dBs, then

it is easily shown that σ(βs, s ≤ t) = σ(|Bs|, s ≤ t). See � Subsection 5.8.2
for comments. This may be contrasted with the equality obtained in 3.1.4.3:

σ(Ms − Bs, s ≤ t) = σ(Bs, s ≤ t) .

(c) There are various identities in law involving the BM and its maximum
process. From Lévy’s theorem, one obtains that

(|Bt| + Lt; t ≥ 0) law= (2Mt − Bt; t ≥ 0) .

From � Exercise 4.1.7.12, we obtain that, for every t, 2Mt −Bt
law= Rt where

R is a BES3 process (see � Chapter 6 if needed). Pitman [712] has extended
this result at the level of processes, proving that

(2Mt − Bt, Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0)

where R is a BES3 process and Jt = inf
s≥t

Rs (see � Section 5.7). Hence, it

also holds that

(|Bt| + Lt, Lt; t ≥ 0) law= (Rt, Jt; t ≥ 0) .

We now present further consequences of Lévy’s theorem:

Example 4.1.7.4 Let (τ�, 
 ≥ 0) be the inverse of the local time (L0
t , t ≥ 0)

defined as τ� = inf{t : L0
t > 
}, and let Tx be the first hitting time of x. Then

(Tx, x ≥ 0) law= (τx, x ≥ 0). Indeed, from Lévy’s equivalence Theorem 4.1.7.2
(Mt, t ≥ 0) law= (Lt, t ≥ 0). Hence the same equality holds for the inverse
processes. As a consequence, we note that

(Lx
t , t ≥ 0) law=

(
(L0

t − |x|)+, t ≥ 0
)

.

Indeed, on the one hand

(Lx
t , t ≥ 0) = (Lx

Tx+(t−Tx)+ , t ≥ 0) law= (L0
(t−Tx)+ , t ≥ 0)

where L0 and Tx are independent. On the other hand
(
(L0

τ�+(t−τ�)+
− 
)+, t ≥ 0

)
law= (L0

(t−bτ�)+
, t ≥ 0)

where τ̂� is independent of (L0
t , t ≥ 0). To conclude, we use τ̂�

law= T� , and
take 
 = |x|.
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Example 4.1.7.5 For fixed t, let θt be the first time at which the Brownian
motion reaches its maximum over the time interval [0, t]:

θt : = inf{s ≤ t |Bs = Mt} = inf{s ≤ t |Bs = sup
u≤t

Bu} .

If t = 1, we obtain

(θ1 ≤ u) =
{

sup
u≤s≤1

Bs ≤ sup
s≤u

Bs

}

=
{

sup
u≤s≤1

(Bs − Bu) + Bu ≤ sup
s≤u

Bs

}
=
{

sup
0≤v≤1−u

B̂v + Bu ≤ Mu

}
,

where B̂ is a BM independent of (Bs, s ≤ u). Setting M̂u = sups≤u B̂s, we get
from Lévy’s Theorem 4.1.7.2 and Proposition 3.1.3.1

P(θ1 ≤ u) = P(M̂1−u ≤ Mu − Bu) = P(|B̂1−u| ≤ |Bu|)

= P(
√

1 − u|B̂1| ≤
√

u|B1|) = P

(
|B1|
|B̂1|

≥
√

1 − u√
u

)

= P

(
C2 ≥ 1 − u

u

)
= P

(
u ≥ 1

1 + C2

)

where C follows the standard Cauchy law (see � Appendix A.4.2). Hence,
for u ≤ 1,

P(θ1 ≤ u) =
2
π

arc sin
√

u .

Finally, by scaling, for s ≤ t,

P(θt ≤ s) =
2
π

arc sin
√

s

t
,

therefore, θt is Arcsine distributed on [0, t]. Note the non-trivial identity in
law θt

law= A+
t where A+

t =
∫ t

0
1{Bs>0}ds (see Subsection 2.5.2). As a direct

application of Lévy’s equivalence theorem, we obtain

θt
law= gt = sup{s ≤ t : Bs = 0} .

Proceeding along the same lines, we obtain the equality

P(Mt ∈ dx, θt ∈ du) =
x

πu
√

u(t − u)
exp
(
−x2

2u

)
1{0≤x,0≤u≤t} du dx

(4.1.10)
and from the previous equalities and using the Markov property

P(θ1 ≤ u|Fu) = P( sup
u≤s≤1

(Bs − Bu) + Bu ≤ sup
s≤u

Bs |Fu)

= P(M̂1−u ≤ Mu − Bu|Fu) = Ψ(1 − u,Mu − Bu) .
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Here,

Ψ(u, x) = P(M̂u ≤ x) = P(|Bu| ≤ x) =
2√
2π

∫ x/
√

u

0

exp
(
−y2

2

)
dy .

Note that, for x > 0, the density of Mt at x can also be obtained from the
equality (4.1.10). Hence, we have the equality

∫ t

0

du
x

π
√

u3(t − u)
exp
(
−x2

2u

)
=

√
2
πt

e−x2/(2t) . (4.1.11)

We also deduce from Lévy’s theorem that the right-hand side of (4.1.10) is
equal to P(Lt ∈ dx, gt ∈ du).

Example 4.1.7.6 From Lévy’s identity, it is straightforward to obtain that
P(La

∞ = ∞) = 1.

Example 4.1.7.7 As discussed in Pitman [713], the law of the pair (Lx
1 , B1)

may be obtained from Lévy’s identity: for y > 0,

P(Lx
1 ∈ dy, B1 ∈ db) =

|x| + y + |b − x|√
2π

exp
(
−1

2
(|x| + y + |b − x|)2

)
dydb .

Proposition 4.1.7.8 Let ϕ be a C1 function. Then, the process

ϕ(Mt) − (Mt − Bt)ϕ′(Mt)

is a local martingale.

Proof: As a first step we assume that ϕ is C2. Then, from integration by
parts and using the fact that M is increasing

(Mt − Bt)ϕ′(Mt) =
∫ t

0

ϕ′(Ms) d(Ms − Bs) +
∫ t

0

(Ms − Bs)ϕ′′(Ms)dMs .

Now, we note that
∫ t

0
(Ms − Bs)ϕ′′(Ms)dMs = 0, since dMs is carried by

{s : Ms = Bs}, and that
∫ t

0
ϕ′(Ms)dMs = ϕ(Mt) − ϕ(0). The result follows.

The general case is obtained using the MCT. �

Comment 4.1.7.9 As we mentioned in Example 1.5.4.5, any solution of
Tanaka’s SDE Xt = X0 +

∫ t

0
sgn(Xs)dBs is a Brownian motion. We can check

that there are indeed weak solutions to this equation: start with a Brownian
motion X and construct the BM Bt =

∫ t

0
sgn(Xs)dXs. This Brownian motion

is equal to |X| − L, so B is adapted to the filtration generated by |X| which
is strictly smaller than the filtration generated by X. Hence, the equation
Xt = X0 +

∫ t

0
sgn(Xs)dBs has no strong solution. Moreover, one can find

infinitely many solutions, e.g., εgtXt, where ε is a ±1-valued predictable
process, and gt = sup{s ≤ t : Xs = 0}.
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Exercise 4.1.7.10 Prove Proposition 4.1.7.8 as a consequence of the bal-
ayage formula applied to Yt = Mt − Bt. �

Exercise 4.1.7.11 Using the balayage formula, extend the result of Propo-
sition 4.1.7.8 when ϕ′ is replaced by a bounded Borel function. �

Exercise 4.1.7.12 Prove, using Theorem 3.1.1.2, that the joint law of the
pair (|Bt|, L0

t ) is

P(|Bt| ∈ dx, L0
t ∈ d
) = 1{x≥0}1{�≥0}

2(x + 
)√
2πt3

exp
(
− (x + 
)2

2t

)
dx d
 .

�

Exercise 4.1.7.13 Let ϕ be in C1
b . Prove that (ϕ(L0

t ) − |Bt|ϕ′(L0
t ), t ≥ 0)

is a martingale. Let T ∗
a = inf{t ≥ 0 : |Bt| = a}. Prove that L0

T∗
a

follows the
exponential law with parameter 1/a.
Hint: Use Proposition 4.1.7.8 together with Lévy’s Theorem. Then, compute
the Laplace transform of L0

T∗
a

by means of the optional stopping theorem.
The second part may also be obtained as a particular case of � Azéma’s
lemma 5.2.2.5. �

Exercise 4.1.7.14 Let y be a continuous positive function vanishing at 0:
y(0) = 0. Prove that there exists a unique pair of functions (z, k) such that

(i) k(0) = 0, where k is an increasing continuous function
(ii) z(t) + k(t) = y(t), z(t) ≥ 0
(iii)

∫ t

0
1{z(s)>0}dk(s) = 0

(iv) ∀t,∃d(t) ≥ t, z(d(t)) = 0

Hint: k∗(t) = infs≥t(y(s)). �

Exercise 4.1.7.15 Let S be a price process, assumed to be a continuous
local martingale, and ϕ a C1 concave, increasing function. Denote by S∗ the
running maximum of S. Prove that the process Xt = ϕ(S∗

t )+ϕ′(S∗
t )(St −S∗

t )
is the value of the self-financing strategy with a risky investment given by
Stϕ

′(S∗
t ), which satisfies the floor constraint Xt ≥ ϕ(St).

Hint: Using an extension of Proposition 4.1.7.8, X is a local martingale. It
is easy to check that Xt = X0 +

∫ t

0
ϕ′(S∗

s )dSs. For an intensive study of this
process in finance, see El Karoui and Meziou [305]. The equality Xt ≥ ϕ(St)
follows from concavity of ϕ. �

4.1.8 Local Time of a Semi-martingale

As mentioned above, local times can also be defined in greater generality for
semi-martingales. The same approach as the one used in Subsection 4.1.2 leads
to the following:
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Theorem 4.1.8.1 (Occupation Time Formula.) Let X be a continuous
semi-martingale. There exists a family of increasing processes (Tanaka-
Meyer local times) (Lx

t (X), t ≥ 0 ; x ∈ R) such that for every bounded
measurable function ϕ

∫ t

0

ϕ(Xs) d〈X〉s =
∫ +∞

−∞
Lx

t (X)ϕ(x) dx . (4.1.12)

There is a version of Lx
t which is jointly continuous in t and right-continuous

with left limits in x. (If X is a continuous martingale, its local time may be
chosen jointly continuous.) In the sequel, we always choose this version. This
local time satisfies

Lx
t (X) = lim

ε→0

1
ε

∫ t

0

1[x,x+ε[(Xs)d〈X〉s .

If Z is a continuous local martingale,

Lx
t (Z) = lim

ε→0

1
2ε

∫ t

0

1]x−ε,x+ε[(Zs)d〈Z〉s .

The same result holds with any random time in place of t.
For a continuous semi-martingale X = Z + A,

Lx
t (X) − Lx−

t (X) = 2
∫ t

0

1{Xs=x}dXs = 2
∫ t

0

1{Xs=x}dAs . (4.1.13)

In particular,

L0
t (|X|) = lim

ε→0

1
ε

∫ t

0

1]−ε,ε[(Xs)d〈X〉s = L0
t (X) + L0−

t (X),

hence

L0
t (|X|) = 2L0

t (X) − 2
∫ t

0

1{Xs=0}dAs .

Example 4.1.8.2 A Non-Continuous Local Time. Let Z be a continuous
martingale and X be the semi-martingale

Xt = aZ+
t − bZ−

t =
∫ t

0

dZs(a1{Zs>0} + b1{Zs<0}) +
a − b

2
L0

t (Z) .

Then, it follows from (4.1.13) that L0
t (X) − L0−

t (X) = (a − b)L0
t (Z). In

particular, for the reflected BM, i.e., for X when Zt = Bt, a = 1, b = −1,
we get L0(|B|) − L0−(|B|) = 2L0(B). Note that L0−(|B|) = 0, hence
L0(|B|) = 2L0(B).
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Example 4.1.8.3 Let Yt = |Bt|. Tanaka’s formula gives:

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt

where (Lt, t ≥ 0) denotes the local time of (Bt; t ≥ 0) at y = 0. By an
application of the balayage formula, we obtain

hgt |Bt| =
∫ t

0

hgssgn(Bs)dBs +
∫ t

0

hsdLs

having used the fact that Lgs = Ls. Consequently, replacing, if necessary, h by
|h|, we see that the process

∫ t

0
|hs|dLs is the local time at 0 of (hgtBt, t ≥ 0).

Tanaka-Meyer Formulae

As before we set sgn(x) = 1 for x > 0 and sgn(x) = −1 for x ≤ 0. Let X be
a continuous semi-martingale. For every (t, x),

|Xt − x| = |X0 − x| +
∫ t

0

sgn (Xs − x) dXs + Lx
t (X) , (4.1.14)

(Xt − x)+ = (X0 − x)+ +
∫ t

0

1{Xs>x} dXs +
1
2
Lx

t (X) , (4.1.15)

(Xt − x)− = (X0 − x)− −
∫ t

0

1{Xs≤x} dXs +
1
2
Lx

t (X) . (4.1.16)

In particular, |X − x|, (X − x)+ and (X − x)− are semi-martingales.

Proposition 4.1.8.4 (Lévy’s Equivalence Theorem for Drifted Brow-
nian Motion.) Let B(ν) be a BM with drift ν, i.e., B

(ν)
t = Bt + νt, and

M
(ν)
t = sups≤t B

(ν)
s . Then

(M (ν)
t − B

(ν)
t , M

(ν)
t ; t ≥ 0) law= (|X(ν)

t |, Lt(X(ν)) ; t ≥ 0) (4.1.17)

where X(ν) is the (unique) strong solution of

dXt = dBt − ν sgn(Xt) dt, X0 = 0 .
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Proof: Let X(ν) be the strong solution of

dXt = dBt − ν sgn(Xt) dt, X0 = 0

(see Theorem 1.5.5.1 for the existence of X) and apply Tanaka’s formula.
Then,

|X(ν)
t | =

∫ t

0

sgn (X(ν)
s )

(
dBs − ν sgn (X(ν)

s ) ds
)

+ L0
t (X

(ν))

where L0(X(ν)) is the Tanaka-Meyer local time of X(ν) at level 0. Hence,
setting βt =

∫ t

0
sgn X

(ν)
s dBs,

|X(ν)
t | = (βt − νt) + L0

t (X
(ν))

and the result follows from Skorokhod’s lemma. �

Comments 4.1.8.5 (a) Note that the processes |B(ν)| and M (ν) − B(ν) do
not have the same law (hence the right-hand side of (4.1.17) cannot be replaced
by (|B(ν)

t |, Lt(B(ν)), t ≥ 0)). Indeed, for ν > 0, B
(ν)
t goes to infinity as t goes

to ∞, whereas M
(ν)
t − B

(ν)
t vanishes for some arbitrarily large values of t.

Pitman and Rogers [714] extended the result of Pitman [712] and proved that

(|B(ν)
t | + L

(ν)
t , t ≥ 0) law= (2M

(ν)
t − B

(ν)
t , t ≥ 0) .

(b) The equality in law of Proposition 4.1.8.4 admits an extension to the
case dB

(a)
t = at(B

(a)
t )dt + dBt and X(a) the unique weak solution of

dX
(a)
t = dBt − at(X

(a)
t ) sgn(X(a)

t )dt, X
(a)
0 = 0

where at(x) is a bounded predictable family. The equality

(M (a) − B(a), M (a)) law= (|X(a)|, L(X(a)))

is proved in Shiryaev and Cherny [792].

We discuss here the Itô-Tanaka formula for strict local continuous
martingales, as it is given in Madan and Yor [614].

Theorem 4.1.8.6 Let S be a positive continuous strict local martingale, τ
an FS-stopping time, a.s. finite, and K a positive real number. Then

E((Sτ − K)+) = (S0 − K)+ +
1
2

E(LK
τ ) − E(S0 − Sτ )

where LK is the local time of S at level K.
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Proof: We prove that

Mt =
1
2
LK

t − (St − K)+ + St =
1
2
LK

t + (St ∧ K)

is a uniformly integrable martingale. In a first step, from Tanaka’s formula, M
is a (positive) local martingale, hence a super-martingale and E(LK

t ) ≤ 2S0.
Since L is an increasing process, it follows that E(LK

∞) ≤ 2S0 and the process
M is a uniformly integrable martingale. We then apply the optimal stopping
theorem at time τ . �

Comment 4.1.8.7 It is important to see that, if the discounted price process
is a martingale under the e.m.m., then the put-call parity holds: indeed, taking
expectation of discounted values of (ST − K)+ = ST − K + (K − ST )+ leads
to C(x, T ) = x − Ke−rT + P (x, T ). This is no more the case if discounted
prices are strict local martingales. See Madan and Yor [614], Cox and Hobson
[203], Pal and Protter [692].

4.1.9 Generalized Itô-Tanaka Formula

Theorem 4.1.9.1 Let X be a continuous semi-martingale, f a convex
function, D−f its left derivative and f ′′(dx) its second derivative in the
distribution sense. Then,

f(Xt) = f(X0) +
∫ t

0

D−f(Xs)dXs +
1
2

∫
R

Lx
t (X)f ′′(dx)

holds.

Corollary 4.1.9.2 Let X be a continuous semi-martingale, f a C1 function
and assume that there exists a measurable function h, integrable on any finite
interval [−a, a] such that f ′(y) − f ′(x) =

∫ y

x
h(z)dz. Then, Itô’s formula

f(Xt) = f(X0) +
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

h(Xs)d〈X〉s

holds.

Proof: In this case, f is locally the difference of two convex functions and
f ′′(dx) = h(x)dx. Indeed, for every ϕ ∈ C∞

b ,

〈f ′′, ϕ〉 = −〈f ′, ϕ′〉 = −
∫

dxf ′(x)ϕ′(x) =
∫

dzh(z)ϕ(z) .

�
In particular, if f is a C1 function, which is C2 on R\{a1, . . . , an}, for a finite
number of points (ai), then



4.2 Applications 227

f(Xt) = f(X0) +
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

g(Xs)d〈Xc〉s .

Here μ(dx) = g(x)dx is the second derivative of f in the distribution sense
and Xc the continuous martingale part of X (see � Subsection 9.3.3).

Exercise 4.1.9.3 Let X be a semi-martingale such that d〈X〉t = σ2(t,Xt)dt.
Assuming that the law of the r.v. Xt admits a density ϕ(t, x), prove that, under
some regularity assumptions,

E(dtL
x
t ) = ϕ(t, x)σ2(t, x)dt . �

4.2 Applications

4.2.1 Dupire’s Formula

In a general stochastic volatility model, with

dSt = St (α(t, St)dt + σtdBt) ,

it follows that 〈S〉t =
∫ t

0
S2

uσ2
udu, therefore

σ2
u =

d

du

(∫ u

0

d〈S〉s
S2

s

)

is FS-adapted. However, despite the fact that this process (the square of the
volatility) is, from a mathematical point of view, adapted to the filtration of
prices, it is not directly observed on the markets, due to the lack of information
on prices. See � Section 6.7 for some examples of stochastic volatility models.
In that general setting, the volatility is a functional of prices.

Under the main assumption that the volatility is a function of time and
of the current value of the underlying asset, i.e., that the underlying process
follows the dynamics

dSt = St (α(t, St)dt + σ(t, St)dBt) ,

Dupire [283, 284] and Derman and Kani [250] give a relation between the
volatility and the price of European calls. The function σ2(t, x), called the
local volatility, is a crucial parameter for pricing and hedging derivatives.

We recall that the implied volatility is the value of σ such that the price
of a call is equal to the value obtained by applying the Black and Scholes
formula. The interested reader can also refer to Berestycki et al. [73] where a
link between local volatility and implied volatility is given. The authors also
propose a calibration procedure to reconstruct a local volatility.

Proposition 4.2.1.1 (Dupire Formula.) Assume that the European call
prices C(K, T ) = E(e−rT (ST − K)+) for any maturity T and any strike K
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are known. If, under the risk-neutral probability, the stock price dynamics are
given by

dSt = St (rdt + σ(t, St)dWt) (4.2.1)

where σ is a deterministic function, then

1
2
K2σ2(T,K) =

∂T C(K, T ) + rK∂KC(K, T )
∂2

KKC(K, T )

where ∂T (resp. ∂K) is the partial derivative operator with respect to the
maturity (resp. the strike).

Proof: (a) We note that, differentiating with respect to K the equality
e−rT

E((ST − K)+) = C(K, T ), we obtain

∂KC(K, T ) = −e−rT
P(ST > K)

and that, assuming the existence of a density ϕ(T, x) of ST ,

ϕ(T,K) = erT ∂KKC(K, T ) .

(b) We now follow Leblanc [572] who uses the local time technology,
whereas the original proof of Dupire (see � Subsection 5.4.2) does not.
Tanaka’s formula applied to the semi-martingale S gives

(ST − K)+ = (S0 − K)+ +
∫ T

0

1{Ss>K}dSs +
1
2

∫ T

0

dLK
s (S) .

Therefore, using integration by parts

e−rT (ST − K)+ = (S0 − K)+ − r

∫ T

0

e−rs(Ss − K)+ds

+
∫ T

0

e−rs1{Ss>K}dSs +
1
2

∫ T

0

e−rsdLK
s (S) .

Taking expectations, for every pair (K, T ),

C(K, T ) = E(e−rT (ST − K)+)

= (S0 − K)+ + E

(∫ T

0

e−rsrSs1{Ss>K}ds

)

− rE

(∫ T

0

e−rs(Ss − K)1{Ss>K}ds

)
+

1
2

E

(∫ T

0

e−rsdLK
s (S)

)
.

From the definition of the local time,
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E

(∫ T

0

e−rsdLK
s (S)

)
=
∫ T

0

e−rsϕ(s,K)K2σ2(s,K)ds

where ϕ(s, ·) is the density of the r.v. Ss (see Exercise 4.1.9.3). Therefore,

C(K, T ) = (S0 − K)+ + rK

∫ T

0

e−rs
P(Ss > K) ds

+
1
2

∫ T

0

e−rsϕ(s,K)K2σ2(s,K)ds .

Then, by differentiating w.r.t. T , one obtains

∂T C(K, T ) = rKe−rT
P(ST > K) +

1
2
e−rT ϕ(T,K)K2σ2(T,K) . (4.2.2)

(c) We now use the result found in (a) to write (4.2.2) as

∂T C(K, T ) = −rK∂KC(K, T ) +
1
2
σ2(T,K)K2∂KKC(K, T )

which is the required result. �

Comments 4.2.1.2 (a) Atlan [25] presents examples of stochastic volatility
models where a local volatility can be computed.

(b) Dupire result is deeply linked with Gyöngy’s theorem [414] which
studies processes with given marginals. See also Brunich [133] and Hirsch
and Yor [438, 439].

4.2.2 Stop-Loss Strategy

This strategy is also said to be the “all or nothing” strategy. A strategic
allocation (a reference portfolio) with value Vt is given in the market. The
investor would like to build a strategy, based on V , such that the value of
the investment is greater than a benchmark, equal to KP (t, T ) where K is
a constant and P (t, T ) is the price at time t of a zero-coupon with maturity
T . We assume, w.l.g., that the initial value of V is greater than KP (0, T ).
The stop-loss strategy relies upon the following argument: the investor takes
a long position in the strategic allocation.

The first time when Vt ≤ KP (t, T ) the investor invests his total wealth of
the portfolio to buy K zero-coupon bonds. When the situation is reversed, the
orders are inverted and all the wealth is invested in the strategic allocation.
Hence, at maturity, the wealth is max(VT , K). See Andreasen et al. [18], Carr
and Jarrow [153] and Sondermann [804] for comments.

The well-known drawback of this method is that it cannot be applied
in practice when the price of the risky asset fluctuates around the floor
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Gt = KP (t, T ), because of transaction costs. Moreover, even in the case of
constant interest rate, the strategy is not self-financing. Indeed, the value of
this strategy is greater than KP (t, T ). If such a strategy were self-financing,
and if there were a stopping time τ such that its value equalledKP (τ, T ),
then it would remain equal to KP (t, T ) after time τ , and this is obviously
not the case. (See Lakner [558] for details.) It may also be noted that the
discounted process e−rt max(Vt, KP (t, T )) is not a martingale under the risk-
neutral probability measure (and the process max(Vt, KP (t, T )) is not the
value of a self-financing strategy). More precisely,

e−rt max(Vt, KP (t, T )) mart= Lt

where L is the local time of (Vte
−rt, t ≥ 0) at the level Ke−rT .

Sometimes, practitioners introduce a corridor around the floor and change
the strategy only when the asset price is outside this corridor. More precisely,
the value of the portfolio is

Vt1{t<T1} + (K − ε)1{T1≤t<T2} + Vt1{T2≤t<T3} + . . .

where

T1 = inf{t : Vt ≤ K − ε}, T2 = inf{t : t > T1, Vt ≥ K + ε},
T3 = inf{t : t > T2, Vt ≤ K − ε} . . . .

The terminal value of the portfolio when the width of the corridor tends to 0
can be shown to converge a.s. to max(VT , K)−LK

T , where LK
T represents the

local time of (Vt, t ∈ [0, T ]) at level K.

4.2.3 Knock-out BOOST

Let (a, b) be a pair of positive real numbers with b < a. The knock-out
BOOST studied in Leblanc [572] is an option which pays, at maturity, the
time that the underlying asset has remained above a level b, until the first
time the asset reaches the level a. We assume that the underlying follows a
geometric Brownian motion, i.e., St = xeσXt where X is a BM with drift ν.
In symbols, the value of this knock-out BOOST option is

KOB(a, b;T ) = EQ

(
e−rT

∫ T∧Ta

0

1(Ss>b) ds

)
.

Let α be the level relative to X, i.e., α =
1
σ

ln
a

x
. From the occupation time

formula (4.1.1) and the fact that Ly
T∧Tα

(X) = 0 for y > α, we obtain that,
for every function f

W(ν)

(∫ T∧Tα

0

f(Xs) ds

)
=
∫ α

−∞
f(y)W(ν)[Ly

Tα∧T ]dy ,
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where, as in the previous chapter W(ν) is the law of a drifted Brownian motion

(see Section 3.2). Hence, if β =
1
σ

ln
b

x
,

KOB(a, b;T ) = W(ν)

(
e−rT

∫ T∧Tα

0

1{Xs>β} ds

)
= e−rT

∫ α

β

Ψα,ν(y) dy

where Ψα,ν(y) = W(ν)(Ly
Tα∧T ).

The computation of Ψα,ν can be performed using Tanaka’s formula. Indeed,
for y < α, using the occupation time formula,

1
2
Ψα,ν(y) = W(ν)[(XTα∧T − y)+] − (−y)+ − νW(ν)

(∫ Tα∧T

0

1{Xs>y}ds

)

= W(ν)[(XTα∧T − y)+] − (−y)+ − ν

∫ α

y

Ψα,ν(z)dz

= (α − y)+W(ν)(Tα < T ) + W(ν)
[
(XT − y)+1{Tα>T}

]

− (−y)+ − ν

∫ α

y

Ψα,ν(z)dz . (4.2.3)

Let us compute explicitly the expectation of the local time in the case T = ∞
and αν > 0. The formula (4.2.3) reads

1
2
Ψα,ν(y) = (α − y)+ − (−y)+ − ν

∫ α

y

Ψα,ν(z)dz,

Ψα,ν(α) = 0 .

This gives

Ψα,ν(y) =

⎧⎪⎪⎨
⎪⎪⎩

1
ν

(1 − exp(2ν(y − α)) for 0 ≤ y ≤ α

1
ν

(1 − exp(−2να)) exp(2νy) for y ≤ 0.

In the general case, differentiating (4.2.3) with respect to y gives for y ≤ α

1
2
Ψ ′

α,ν(y) = −W(ν)(Tα < T ) − W(ν)(Tα > T,XT > y) + 1{y<0} + νΨα,ν(y)

= −1 + W(ν)(Tα > T,XT < y) + 1{y<0} + νΨα,ν(y)

= −1 + N (
y − νT√

T
) − e2ναN (

y − 2α − νt√
T

) + 1{y<0} + νΨα,ν(y) .

It follows that Ψα,ν(y) =

2e2νy

∫ α

y

e−2νx

(
−1 + N (

x − νT√
T

) − e2ναN (
x − 2α − νt√

T
) + 1{x<0}

)
dx .
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4.2.4 Passport Options

An interesting application of local time is the study of passport options. We do
not present this problem here, mainly because this is related to optimization
problems which are beyond the scope of this book. See Delbaen and Yor [239],
Henderson [430], Henderson and Hobson [431], Shreve and Vec̆er̆ [797].

4.3 Bridges, Excursions, and Meanders

Given a process (Xt, t ≥ 0), we shall denote by X [a,b], for a pair of random
times 0 < a < b, the scaled process

X
[a,b]
t =

1√
b − a

Xa+t(b−a), 0 ≤ t ≤ 1. (4.3.1)

In what follows, B is a BM starting from 0 with natural filtration F.

4.3.1 Brownian Motion Zeros

Let Z(ω) be the random set

Z = {t ≥ 0 : Bt = 0} .

The complementary set Zc is open and is therefore a countable union of
maximal open intervals. The set Z does not have isolated points and has zero
Lebesgue measure, as a consequence of the occupation density formula (4.1.2)
where A = {0}.
Exercise 4.3.1.1 Let (τ�, 
 ≥ 0) be the inverse of the local time at level 0,
defined in Example 4.1.7.4. Prove that, if u ∈ Z, then u = τs or u = τs− for
some s.
Hint: if u ∈ Z, either Lu+ε − Lu > 0 for every ε, and u = τs for s = Lu, or
L is constant and u = τs− for s = Lu. �

4.3.2 Excursions

Let t be a fixed time and let gt = sup{s ≤ t : Bs = 0} be the last passage
time at level 0 before time t and dt = inf{s ≥ t : Bs = 0} the first passage
time at level zero after time t. The Brownian excursion which straddles t
is the path

(Bgt+u ; 0 ≤ u ≤ dt − gt) .

The normalized excursion is taken to be the process (B[gt,dt]
u , 0 ≤ u ≤ 1), or

sometimes it is defined as its absolute value.
It is worth noting that gt is not an F-stopping time, whereas dt is an F-
stopping time.
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Let us remark that, for u in the interval (gt, dt), the sign of Bu remains
constant.

Bt
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Fig. 4.1 Excursion of a Brownian motion straddling t

4.3.3 Laws of Tx, dt and gt

We study here the laws of the random variables Tx, dt and gt.

Proposition 4.3.3.1 Let Tx = inf{t : Bt = x} and Mt = sups≤t Bs. Then:

Tx
law= x2T1

law=
(

x

M1

)2
law=
(

x

B1

)2

.

Proof: By scaling Tx
law= x2T1 and Mt

law=
√

tM1. Furthermore,

P(T1 ≥ u) = P(Mu ≤ 1) = P(
√

uM1 ≤ 1) = P

((
1

M1

)2

≥ u

)

which implies the remaining equalities, using that B2
1

law= M2
1 (see Proposi-

tion 3.1.3.1). �

Proposition 4.3.3.2 (i) The law of du is that of u(1 + C2) where C is a
Cauchy random variable with density 1

π
1

1+x2 .
(ii) The variable gt is Arcsine distributed:
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P(gt ∈ ds) =
1
π

1√
s(t − s)

1{s≤t} ds .

Proof: By definition, du = u + inf{v |Bu+v − Bu = −Bu}. The process
B̂ = (B̂t = Bt+u − Bu, t ≥ 0) is a Brownian motion independent of Bu. Let
T̂a be the first hitting time of a associated with this process B̂. By using results
of the previous proposition and the scaling property of Brownian motion, we
obtain

du
law= u + T̂−Bu

law= u + B2
uT̂1

law= u + uB2
1 T̂1

law= u

(
1 +

B2
1

B̂2
1

)

and therefore from the explicit computation of the law of B2
1/B̂2

1 (see �
Appendix A.4.2)

du
law= u(1 + C2) , C with density

1
π

1
1 + x2

.

From {gt < u} = {t < du} we deduce, for all t and u,

du

u

law=
t

gt

law= 1 + C2 ;

consequently, gt is Arcsine distributed. �

These results can be extended to the last time before 1 when a Brownian
motion reaches level a.

Proposition 4.3.3.3 Let ga
1 = sup {t ≤ 1 : Bt = a}, where sup(∅) = 1.

The law of ga
1 is

P(ga
1 ∈ dt) = exp

(
− a2

2t

) dt

π
√

t(1 − t)
1{0<t<1} , (4.3.2)

P(ga
1 = 1) = P(|G| ≤ a)

where G is a standard Gaussian random variable. The r.v.

da
1 = inf{u ≥ 1 : Bu = a}

has the same law as 1 +
(a − G)2

G̃2
where G and G̃ are independent standard

Gaussian random variables.

Proof: From the equality, with t < 1,

{ga
1 ≤ t} = {Ta ≤ t} ∩ {ĝ0

1−Ta
≤ t − Ta}

where ĝ 0 is relative to the Brownian motion (B̂u = Bu+Ta −BTa , u ≥ 0), i.e.,
ĝ 0

t = sup{s ≤ t : B̂s = 0}, one obtains
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P(ga
1 ≤ t) =

∫ t

0

P(Ta ∈ du)P(ĝ 0
1−u ≤ t − u} .

The laws of Ta and ĝ 0
1−u are known, and some easy computation leads to

P(ga
1 ≤ t) =

a

π
√

2π

∫ t

0

dv√
1 − v

∫ v

0

du
e−a2/(2u)√
u3(v − u)

.

It remains to recall that, from (4.1.11) the second integral on the right-hand
side is known.

Note that the right-hand side of (4.3.2) is a sub-probability, and that the
missing mass is

P(ga
1 = 1) = P(Ta ≥ 1) = P(|G| ≤ a) ,

where G is the standard Gaussian variable.
Let da

t (B) = inf{u ≥ t : Bu = a}. We obtain

da
t (B) = t + inf {u ≥ 0 : Bu+t − Bt = a − Bt}

= t + T̂a−Bt

law= t +
(a − Bt)2

G2
. (4.3.3)

Here, T̂b = inf {u ≥ 0 : B̂u = b}, where B̂ is a Brownian motion independent
of Ft, and G is a standard Gaussian variable, independent of B. �

Comments 4.3.3.4 (a) Formula (4.3.2) plays an important rôle in the
discussion of quantiles of Brownian motion in Yor [866] (formula (3.b) therein).

(b) We recall that we already saw the occurrence of the Arcsine law in
Subsection 2.5.2 and Example 4.1.7.5.

Exercise 4.3.3.5 The aim of this exercise is to provide an explanation of the
fact, obtained in Proposition 4.3.3.3, that

P(|G| ≤ 1) +
∫ 1

0

P(ga
1 ∈ dt) = 1 .

From the equality G2 law= 2eg1 where e is exponentially distributed with
parameter 1 and G is a standard Gaussian variable (see � Appendix A.4.2),
prove that P(|G| > a) = E(e−a2/(2g1)) and conclude. �
Exercise 4.3.3.6 Let

g(ν)
a = sup{t : Bt + νt = a}

T (ν)
a = inf{t : Bt + νt = a}

Prove that

(T (ν)
a , g(ν)

a ) law=
(

1

g
(a)
ν

,
1

T
(a)
ν

)
.

See Bentata and Yor [72] for related results. �
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4.3.4 Laws of (Bt, gt, dt)

We now study the laws of the pairs of r.v’s (Bt, dt) and (Bt, gt) for fixed t.

Proposition 4.3.4.1 The joint laws of the pairs (Bt, dt) and (Bt, gt) are
given by:

P(Bt ∈ dx, dt ∈ ds) = 1{s≥t}
|x|

2π
√

t(s − t)3
exp
(
− sx2

2t(s − t)

)
dx ds , (4.3.4)

P(Bt ∈ dx, gt ∈ ds) = 1{s≤t}
|x|

2π
√

s(t − s)3
exp
(
− x2

2(t − s)

)
dx ds . (4.3.5)

Proof: We begin with the law of (Bt, dt). From the Markov property we
derive

P(Bt ∈ dx, dt ∈ ds) = P(Bt ∈ dx)P(dt ∈ ds|Bt = x)
= P(Bt ∈ dx)Px(T0 ∈ ds − t)
= P(Bt ∈ dx)P0(Tx ∈ ds − t) ,

and the two expressions on the right-hand side of the latter equation are well
known.

For the second law, we use time inversion for the pair (B, g). Let us define
{B̂t = tB1/t, t > 0} a standard Brownian motion and let ĝ be related to B̂

via ĝu = sup{s < u : B̂s = 0}. We begin with an identity in law between dt

and g1/t:

dt = inf{s ≥ t : Bs = 0} = inf{s−1 ≥ t : B1/s = 0}
= inf{s−1 ≥ t : sB1/s = 0} = inf{s−1 ≥ t : B̂s = 0}

= 1/ sup
{

u ≤ 1
t

: B̂u = 0
}

=
1

ĝ1/t
.

Therefore, since Bt = tB̂1/t, we have

P(Bt ≤ x, gt ≤ s) = P

(
B̂1/t ≤

x

t
, d̂1/t ≥

1
s

)
.

Denoting by ft(x, s) the density of the pair (B̂t, d̂t), and using the first part
of the proof:

1
dsdx

P(Bt ∈ dx, gt ∈ ds) =
∂2

∂x∂s
P

(
B̂1/t ≤

x

t
, d̂1/t ≥

1
s

)
=

1
ts2

f1/t

(
x

t
,
1
s

)
.

The result follows from this. �



4.3 Bridges, Excursions, and Meanders 237

Comment 4.3.4.2 The reader will find in Chung [183] another proof of
(4.3.5) based on the following remark, which uses the law of the pair (Bt, m

B
t )

established in Subsection 3.1.5:

P(gt ≤ s,Bs ∈ dx, Bt ∈ dy) = P(Bs ∈ dx, Bu �= 0, ∀u ∈ [s, t], Bt ∈ dy)
= P(Bs ∈ dx) Px(Bt−s ∈ dy, T0 > t − s)
= P(Bs ∈ dx) P0(Bt−s + x ∈ dy, mB

t−s > −x)

=
e−x2/(2s)

√
2πs

1√
2π(t − s)

(
exp
(
− (x − y)2

2(t − s)

)
− exp

(
− (x + y)2

2(t − s)

))
dx dy .

By integrating with respect to dx, and differentiating with respect to s, the
result is obtained.

Exercise 4.3.4.3 Let t > 0 be fixed and θt = inf{s ≤ t |Mt = Bs} where
Mt = sups≤t Bs. Prove that

(Mt, θt)
law= (|Bt|, gt)

law= (Lt, gt) .

Hint: Use the equalities (4.1.10) and (4.3.4) and Lévy’s theorem. �

4.3.5 Brownian Bridge

The Brownian bridge (bt, 0 ≤ t ≤ 1) is defined as the conditioned process
(Bt, t ≤ 1|B1 = 0). Note that Bt = (Bt−tB1)+tB1 where, from the Gaussian
property, the process (Bt − tB1, t ≤ 1) and the random variable B1 are
independent. Hence (bt, 0 ≤ t ≤ 1) law= (Bt − tB1, 0 ≤ t ≤ 1). The Brownian
bridge process is a Gaussian process, with zero mean and covariance function
s(1 − t), s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Each of the Gaussian processes X,Y and Z where

Xt = (1 − t)
∫ t

0

dBs

1 − s
; 0 ≤ t ≤ 1

Zt = tB(1/t)−1 ; 0 ≤ t ≤ 1

Yt = (1 − t)B
(

t

1 − t

)
; 0 ≤ t ≤ 1

has the same properties, and is a Brownian bridge. Note that the apparent
difficulty in defining the above processes at time 0 or 1 may be resolved by
extending it continuously to [0, 1].
Since (W1−t − W1, t ≤ 1) law= (Wt, t ≤ 1), the Brownian bridge is invariant
under time reversal.
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We can represent the Brownian bridge between 0 and y during the time
interval [0, 1] as

(Bt − tB1 + ty; t ≤ 1)

and we denote by W(1)
0→y its law on the canonical space. More generally, W(T )

x→y

denotes the law of the Brownian bridge between x and y during the time
interval [0, T ], which may be expressed as

(
x + Bt −

t

T
BT +

t

T
(y − x); t ≤ T

)
,

where (Bt; t ≤ T ) is a standard BM starting from 0.

Theorem 4.3.5.1 For every t, W(t)
x→y is equivalent to Wx on Fs for s < t.

Proof: Let us consider a more general case: suppose ((Xt; t ≥ 0), (Ft), Px)
is a real valued Markov process with semigroup

Pt(x, dy) = pt(x, y)dy,

and Fs is a non-negative Fs-measurable functional. Then, for s ≤ t, and any
function f

Ex[Fsf(Xt)] = Ex[Fs Pt−sf(Xs)] .

On the one hand

Ex[Fs Pt−sf(Xs)] = Ex[Fs

∫
f(y) pt−s(Xs, y) dy]

=
∫

f(y)Ex[Fspt−s(Xs, y)] dy .

On the other hand

Ex[Fsf(Xt)] = Ex[Ex[Fs|Xt]f(Xt)] =
∫

dyf(y)pt(x, y)E(t)
x→y(Fs) ,

where P
(t)
x→y is the probability measure associated with the bridge (for a

general definition of Markov bridges, see Fitzsimmons et al. [346]) between x
and y during the time interval [0, t]. Therefore,

E
(t)
x→y(Fs) =

Ex[Fspt−s(Xs, y)]
pt(x, y)

.

Thus

P
(t)
x→y|Fs =

pt−s(Xs, y)
pt(x, y)

Px|Fs . (4.3.6)

�



4.3 Bridges, Excursions, and Meanders 239

Sometimes, we shall denote X under P
(t)
x→y by (X(t)

x→y(s), s ≤ t).

If X is an n-dimensional Brownian motion and x = y = 0 we have, for
s < t,

W(t)
0→0|Fs =

(
t

t − s

)n/2

exp
(

−|Xs|2
2(t − s)

)
W0|Fs . (4.3.7)

As a consequence of (4.3.7), identifying the density as the exponential
martingale E(Z), where Zs = −

∫ s

0
Xu

t−u dXu, we obtain the canonical

decomposition of the standard Brownian bridge (under W(t)
0→0) as:

Xs = Bs −
∫ s

0

du
Xu

t − u
, s < t, (4.3.8)

where (Bs, s ≤ t) is a Brownian motion under W(t)
0→0. (This decomposition

may be related to the harness property in � Definition 8.5.2.1.)

Therefore, we obtain that the standard Brownian bridge b is a solution of
the following stochastic equation

⎧⎪⎨
⎪⎩

dbt = − bt

1 − t
dt + dBt ; 0 ≤ t < 1

b0 = 0 .

Proposition 4.3.5.2 Let Xt = μt + σBt where B is a BM, and for fixed T ,
(X(T )

0→y(t), t ≤ T ) is the associated bridge. Then, the law of the bridge does not
depend on μ, and in particular

P(X(T )
0→y(t) ∈ dx) =

dx

σ
√

2πt

√
T

T − t
exp
(
− 1

2σ2

(
x2

t
+

(y − x)2

T − t
− y2

T

))

(4.3.9)

Proof: The fact that the law does not depend on μ can be viewed as a
consequence of Girsanov’s theorem. The form of the density is straightforward
from the computation of the joint density of (Xt, XT ), or from (4.3.6). �

Proposition 4.3.5.3 Let B
(t)
x→z be a Brownian bridge, starting from x at

time 0 and ending at z at time t, and M br
t = sup0≤s≤t B

(t)
x→z(s). Then, for

any m > z ∨ x,
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P
(t)
x→z(M

br
t ≤ m) = 1 − exp

(
− (z + x − 2m)2

2t
+

(z − x)2

2t

)
.

In particular, let b be a standard Brownian bridge (x = z = 0, t = 1). Then,

sup
0≤s≤1

bs
law=

1
2
R ,

where R is Rayleigh distributed with density x exp
(
−1

2x2
)

1{x≥0}. If 
a
1(b)

denotes the local time of b at level a at time 1, then for every a


a
1(b) law= (R − 2|a|)+ . (4.3.10)

Proof: Let B be a standard Brownian motion and MB
t = sup0≤s≤t Bs. Then,

for every y > 0 and x ≤ y, equality (3.1.3) reads

P(Bt ∈ dx , MB
t ≤ y) =

dx√
2πt

exp
(
−x2

2t

)
− dx√

2πt
exp
(
− (2y − x)2

2t

)
,

hence,

P(MB
t ≤ y|Bt = x) =

P(Bt ∈ dx , MB
t ≤ y)

P(Bt ∈ dx)
= 1 − exp(− (2y − x)2

2t
+

x2

2t
)

= 1 − exp
(
−2y2 − 2xy

t

)
.

More generally,

P(sup
s≤t

Bs + x ≤ y|Bt + x = z) = P(MB
t ≤ y − x|Bt = z − x)

hence

Px( sup
0≤s≤t

B(t)
x→z(s) ≤ y) = 1 − exp

(
− (z + x − 2y)2

2t
+

(z − x)2

2t

)
.

The result on local time follows by conditioning w.r.t. B1 the equality obtained
in Example 4.1.7.7. �

Theorem 4.3.5.4 Let B be a Brownian motion. For every t, the process
B[0,gt] defined by:

B[0,gt] =
(

1√
gt

Bugt , u ≤ 1
)

(4.3.11)

is a Brownian bridge B
(1)
0→0 independent of the σ-algebra σ{gt, Bgt+u, u ≥ 0}.

Proof: By scaling, it suffices to prove the result for t = 1. Let B̂t = tB1/t.
As in the proof of Proposition 4.3.4.1, d̂1 = 1

g1
. Then,
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1
√

g1
B(ug1) = u

√
g1 B̂

(
1

ug1

)
=

u√
d̂1

[
B̂

(
1
g1

+
1
g1

(
1
u
− 1)

)
− B̂

(
1
g1

)]

=
u√
d̂1

[
B̂

(
d̂1 + d̂1

(
1
u
− 1
))

− B̂(d̂1)
]

.

Knowing that (B̂
bd1+s − B̂

bd1
; s ≥ 0) is a Brownian motion independent of F

bd1

and that B̂
bd1

= 0, the process B̃u = 1√
bd1

B̂
bd1+bd1u is also a Brownian motion

independent of F
bd1

. Therefore tB̃( 1
t −1) is a Brownian bridge independent of

F
bd1

and the result is proved. �

Example 4.3.5.5 Let B be a real-valued Brownian motion under P and

Xt = Bt −
∫ t

0

Bs

s
ds .

This process X is an F∗-Brownian motion where F∗ is the filtration generated
by the bridges, i.e.,

F∗
t = σ

{
Bu − u

t
Bt, u ≤ t

}
.

Let Lt = exp(λBt − λ2t
2 ) and Q|Ft

= LtP|Ft
. Then Q|F∗

t
= P|F∗

t
.

Comments 4.3.5.6 (a) It can be proved that |B|[g1,d1] has the same law as
a BES3 bridge and is independent of

σ(Bu, u ≤ g1) ∨ σ(Bu, u ≥ d1) ∨ σ(sgn(B1)) .

(b) For a study of Bridges in a general Markov setting, see Fitzsimmons
et al. [346].

(c) Application to fast simulation of Brownian bridge in finance can be
found in Pagès [691], Metwally and Atiya [646]. We shall study Brownian
bridges again when dealing with enlargements of filtrations, in � Subsection
5.9.2.

Exercise 4.3.5.7 Let Ta = inf{t : |Xt| = a}. Give the law of Ta under
W(t)

0→0.

Hint: : W(t)
0→0

(
f(Ta1{Ta<t})

)
= W

(
f(Ta)1{Ta<t}

t
(t−Ta)n/2 e−

a2
2(t−Ta)

)
. �

4.3.6 Slow Brownian Filtrations

If ζ is a random time, i.e., a random variable such that ζ > 0 a.s., we define
the σ-field F−

ζ of the past up to ζ as the σ-algebra generated by the variables
hζ , where h is a generic predictable process.
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Likewise, we may define F+
ζ as the σ-algebra generated by the variables

hζ , where h is a generic F-progressively measurable process.
In particular, we consider, as in Dellacherie et al. [241] the σ-algebras F−

gt

and F+
gt

. The following properties are satisfied:

• Both (F−
gt

, t ≥ 0) and (F+
gt

, t ≥ 0) are increasing and are called the slow
Brownian filtrations, (F−

gt
, t ≥ 0) being the strict slow Brownian filtration

and (F+
gt

, t ≥ 0) the wide slow Brownian filtration.
• For fixed t, there is the double identity

F+
gt

= ∩ε>0F−
gt+ε = F−

gt
∨ σ(sgnBt) .

This shows that F+
gt

is the σ-algebra of the immediate future after gt and
the second identity provides the independent complement σ(sgnBt) which
needs to be added to F−

gt
to capture F+

gt
. See Barlow et al. [50].

4.3.7 Meanders

Definition 4.3.7.1 The Brownian meander of length 1 is the process defined
by:

mu : =
1√

1 − g1
|Bg1+u(1−g1)|; (u ≤ 1) .

We begin with a very useful result:

Proposition 4.3.7.2 The law of m1 is the Rayleigh law whose density is

x exp(−x2/2)1{x≥0} .

Consequently, m1
law=

√
2e holds.

Proof: From (4.3.5),

P(B1 ∈ dx, g1 ∈ ds) = 1{s≤1}
|x| dx ds

2π
√

s(1 − s)3
exp
(
− x2

2(1 − s)

)
.

We deduce, for x > 0,

P(m1 ∈ dx) =
∫ 1

s=0

P(m1 ∈ dx, g1 ∈ ds) =
∫ 1

s=0

P(
|B1|√
1 − s

∈ dx, g1 ∈ ds)

= dx1{x≥0}

∫ 1

0

ds
2x(1 − s)

2π
√

s(1 − s)3
exp
(
−x2(1 − s)

2(1 − s)

)

= 2x dx1{x≥0} exp
(
−x2/2

) ∫ 1

0

ds
1

2π
√

s(1 − s)

= xe−x2/21{x≥0}dx ,
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where we have used the fact that
∫ 1

0
ds 1

π
√

s(1−s)
= 1, from the property of

the arcsin density. �

We continue with a more global discussion of meanders in connection with
the slow Brownian filtrations. For any given t, by scaling, the law of the process

m(t)
u =

1√
t − gt

|Bgt+u(t−gt)| , u ≤ 1

does not depend on t. Furthermore, this process is independent of F+
gt

and in
particular of gt and sgn(Bt). All these properties extend also to the case when
t is replaced by τ , any F−

gt
-stopping time.

Note that, from |B1| =
√

1 − g1m1 where m1 and
√

1 − g1 are independent,
we obtain from the particular case of the beta-gamma algebra (see �
Appendix A.4.2) G2 law= 2eg1 where e is exponentially distributed with
parameter 1, G is a standard Gaussian variable, and g1 and e are independent.

Comment 4.3.7.3 For more properties of the Brownian meander, see Biane
and Yor [87] and Bertoin and Pitman [82].

4.3.8 The Azéma Martingale

We now introduce the Azéma martingale which is an (F+
gt

)-martingale and
enjoys many remarkable properties.

Proposition 4.3.8.1 Let B be a Brownian motion. The process

μt = (sgnBt)
√

t − gt, t ≥ 0

is an (F+
gt

)-martingale. Let

Ψ(z) =
∫ ∞

0

x exp
(

zx − x2

2

)
dx = 1 + z

√
2πN (z)ez2/2 . (4.3.12)

The process

exp
(
−λ2

2
t

)
Ψ(λμt), t ≥ 0

is an (F+
gt

)-martingale.

Proof: Following Azéma and Yor [38] closely, we project the F-martingale B
on F+

gt
. From the independence property of the meander and F+

gt
, we obtain

E(Bt|F+
gt

) = E(m(t)
1 μt|F+

gt
) = μtE(m(t)

1 ) =
√

π

2
μt . (4.3.13)

Hence, (μt, t ≥ 0) is an (F+
gt

)-martingale. In a second step, we project the
F-martingale exp(λBt − 1

2λ2t) on the filtration (F+
gt

):
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E(exp(λBt −
λ2

2
t)|F+

gt
) = E

(
exp(λm

(t)
1 μt −

λ2

2
t)|F+

gt

)

and, from the independence property of the meander and F+
gt

, we get

E

(
exp
(

λBt −
λ2

2
t

)
|F+

gt

)
= exp

(
−λ2

2
t

)
Ψ(λμt) , (4.3.14)

where Ψ is defined in (4.3.12) as

Ψ(z) = E(exp(zm1 )) =
∫ ∞

0

x exp
(

zx − x2

2

)
dx .

Obviously, the process in (4.3.14) is a (F+
gt

)-martingale. �

Comment 4.3.8.2 Some authors (e.g. Protter [726]) define the Azéma
martingale as

√
π
2 μt, which is precisely the projection of the BM on the wide

slow filtration, hence in further computations as in the next exercise, different
multiplicative factors appear.

Note that the Azéma martingale is not continuous.

Exercise 4.3.8.3 Prove that the projection on the σ-algebra F+
gt

of the F-
martingale (B2

t − t, t ≥ 0) is 2(t − gt) − t, hence the process

μ2
t − (t/2) = (t/2) − gt

is an (F+
gt

)-martingale. �

4.3.9 Drifted Brownian Motion

We now study how our previous results are modified when working with a BM
with drift. More precisely, we consider Xt = x+μ t+σ Bt with σ > 0. In order
to simplify the proofs, we write ga(X) for ga

1 (X) = sup{t ≤ 1 : Xt = a}. The
law of ga(X) may be obtained as follows

ga(X) = sup {t ≤ 1 : μt + σBt = a − x}
= sup {t ≤ 1 : νt + Bt = α} ,

where ν = μ/σ and α = (a − x)/σ. From Girsanov’s theorem, we deduce

P(ga(X) ≤ t) = E

(
1{gα≤t} exp

(
νB1 −

ν2

2

) )
, (4.3.15)

where
gα = gα

1 (B) = sup {t ≤ 1 : Bt = α}.
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Then, using that |B1| = m1

√
1 − g1 where m1 is the value at time 1 of the

Brownian meander,

P(ga(X) ≤ t) = exp
(
− ν2

2

)
E

(
1{gα<t} exp

(
νεm1

√
1 − gα

) )
(4.3.16)

where ε is a Bernoulli random variable; furthermore, the random variables
gα, ε, and m1 are mutually independent. Therefore, since m1 follows the
Rayleigh law

P(m1 ∈ dy) = y exp
(
−y2

2

)
1{y≥0} dy ,

we obtain

P(ga(X) ≤ t) = exp
(
− ν2

2

) ∫ t

0

1
π
√

u(1 − u)
exp
(
− (a − x)2

2uσ2

)
Υ (ν, u) du

: = Ψ(x, a, t), (4.3.17)

where

Υ (ν, u) = E(exp(νεm1

√
1 − u))

=
1
2

(∫ ∞

0

eνy
√

1−uye−y2/2 dy +
∫ ∞

0

e−νy
√

1−uye−y2/2 dy
)
,

that is,

Υ (ν, u) =
∫ ∞

0

cosh(νy
√

1 − u) ye−y2/2 dy.

Lemma 4.3.9.1 Let Xt = νt + Bt. We have, for t < 1

P(ga(X) > t|Ft) = 1{Ta(X)≤t}e
ν(α−Xt)H(ν, |α − Xt|, 1 − t) ,

where, for y > 0

H(ν, y, s) = e−νyN
(

νs − y√
s

)
+ eνyN

(
−νs − y√

s

)
.

Proof: From the absolute continuity relationship, we obtain, for t < 1

W(ν)(ga(X) ≤ t|Ft) = ζ−1
t W(0)(ζ11{ga(X)≤t}|Ft),

where

ζt = exp
(
νXt −

tν2

2
)
. (4.3.18)

Therefore, from the equality

{ga(X) ≤ t} = {Ta(X) ≤ t} ∩ {da
t (X) > 1}

we obtain
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W(0)(ζ11{ga≤t}|Ft)

= exp
(
νXt − ν2/2

)
1{Ta(X)≤t}W(0)

(
exp[ν(X1 − Xt)]1{da

t (X)>1}|Ft).

Using the independence properties of Brownian motion and equality (4.3.3),
we get

W(0)
(
exp[ν(X1 − Xt)]1{da

t (X)>1}|Ft

)
= W(0)

(
exp[νZ1−t]1{Ta−Xt (Z)>1−t}|Ft

)
= Θ(a − Xt, 1 − t)

where Zt = X1 − Xt
law= X1−t is independent of Ft under W(0) and

Θ(x, s) : = W(0)
(
eνXs1{Tx≥s}

)
= esν2/2 − W(0)

(
eνXs1{Tx<s}

)
.

By conditioning with respect to FTx , we obtain (see Subsection 3.2.4 for the
computation of H)

W(0)
(
eνXs1{Tx<s}

)
= eνxW(0)

(
1{Tx<s}e

ν2
2 (s−Tx)W(0)

(
eν(Xs−XTx )− ν2

2 (s−Tx)|FTx

))

= eνxW(0)
(
1{Tx<s}e

ν2
2 (s−Tx)

)
= eνx+sν2/2H(ν, |x|, s) .

Therefore,

Θ(a − Xt, 1 − t) = e(1−t)ν2/2(1 − eν(a−Xt)H(ν, |a − Xt|, 1 − t))

and

W(ν)(ga(X) ≤ t|Ft) = 1{Ta(X)≤t} exp
( (t − 1)ν2

2

)
Θ(a − Xt, 1 − t)

= 1{Ta(X)≤t}

(
1 − eν(a−Xt)H(ν, |a − Xt|, 1 − t)

)
.

�

4.4 Parisian Options

In this section, our aim is to price an exotic option which we describe below,
in a Black and Scholes framework: the underlying asset satisfies the stochastic
differential equation

dSt = St((r − δ) dt + σ dWt) (4.4.1)

where W is a Brownian motion under the risk-neutral probability Q, and
w.l.g. σ > 0. In a closed form,
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St = S0e
σXt

where Xt = Wt+νt and ν = r−δ
σ − σ

2 . The owner of an up-and-out Parisian
option (UOPa) loses its value if the stock price reaches a level H ( H is for
High) and remains constantly above this level for a time interval longer than
D (the delay). A down-and-in Parisian option (DIPa) is activated if the stock
price falls below a Low level L and remains constantly below this level for a
time interval longer than D. For a delay equal to zero, the Parisian option
reduces to a standard barrier option. When the delay is extended beyond
maturity, the UOPa option reduces to a standard European option. In the
intermediate case, the option presents its “Parisian” feature and becomes a
flexible financial tool which has some interesting properties: for instance, for
some values of the parameters, when the underlying asset price is close to
the out-barrier or when the size of the delay is small, its value is a decreasing
function of the volatility. Therefore, it allows traders to bet in a simple manner
on a decrease of volatility. Last but not least, as far as down-and-out barrier
options are concerned, an influential agent in the market who has written such
options and sees the price approaching the barrier may try to push the price
further down, even momentarily and the cost of doing so may be smaller than
the option payoff. In the case of Parisian options, this would be more difficult
and expensive.

Parisian options, or more precisely Parisian times (the time when the
option is activated or deactivated) are useful for modelling bankruptcy time;
we note that following Chapter 11 of the United States Bankruptcy Code
concerning reorganization of a business allows the firm to wait a certain time
before being declared in bankruptcy.

For a generic continuous process Y and a given t > 0, we introduce gb
t (Y ),

the last time before t at which the process Y was at level b, i.e.,

gb
t (Y ) = sup{s ≤ t : Ys = b}.

For an UOPa option we need to consider the first time at which the underlying
asset S is above H for a period greater than D, i.e.,

G+,H
D (S) = inf{t > 0 : (t − gH

t (S))1{St>H} ≥ D}
= inf{t > 0 : (t − gh

t (X))1{Xt>h} ≥ D} = G+,h
D (X)

where h = ln(H/S0)/σ. If this stopping time occurs before the maturity then
the UOPa option is worthless. The price of an UOPa call option is

UOPa(S0, H, D; T ) = EQ

(
e−rT (ST − K)+1{G+,H

D (S)>T}

)

= EQ

(
e−rT (S0e

σXT − K)+1{G+,h
D (X)>T}

)

or, using a change of probability (see Example 1.7.5.5)
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UOPa(S0, H, D; T ) = e−(r+ν2/2)T
E

(
eνWT (S0e

σWT − K)+1{G+,h
D (W )>T}

)
,

where W is a Brownian motion. The sum of the prices of an up-and-in (UIPa)
and an UOPa option with the same strike and delay is obviously the price of
a plain-vanilla European call.

In the same way, the value of a DIPa option with level L is defined using

G−,L
D (S) = inf{t > 0 : (t − gL

t (S))1{St<L} ≥ D}

which equals, in terms of X,

G−,�
D (X) = inf{t > 0 : (t − g�

t (X))1{Xt<�} ≥ D}

with 
 =
1
σ

ln(L/S0). Then, the value of a DIPa option is equal to

DIPa(S0, L, D; T ) = EQ

(
e−rT (ST − K)+1{G−,L

D (S)<T}

)

= e−(r+ν2/2)T
E

(
eνWT (S0e

σWT − K)+1{G−,�
D (W )<T}

)

: = e−(r+ν2/2)T DIPa(S0, L, D; T ) ,

where in this section, we define the general “star” transformation of a function
f as

f(t) = e(r+ν2/2)tf(t) .

In the case S0 > L, the computation of DIPa(S0, L, D; T ) can be reduced
to the case L = S0, i.e., 
 = 0. Indeed, for the option to be activated, the
level L has to be reached by the process S (or equivalently, the level 
 has to
be reached by the process W ) before the maturity T . Therefore, introducing
T� = inf{t : Wt = 
}, we obtain

DIPa(S0, L, D; T ) = E(eνWT (S0e
σWT − K)+1{G−,�

D (W )<T})

= E

(
eν(WT −WT�

+�)(S0e
σ(WT −WT�

+�) − K)+1{G−,�
D (W )<T}

)

= eν�
E

(
eνZT−T� (S0e

σ(�+ZT−T�
) − K)+1{G−,0

D (Z)<T−T�}

)

where Zt = Wt+T�
− WT�

is a BM independent of T�. Let us now introduce
F�, the cumulative distribution function of T�.

DIPa(S0, L, D; T )

= eν�

∫ T

0

dF�(u)E(eνZT−u(S0e
σ(ZT−u+�) − K)+1{G−,0

D (Z)<T−u})

= eν�

∫ T

0

dF�(u) DIPa(S0, S0, D; T − u) .
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We have used the fact that the computation of the law of the Parisian time
below a level 
 for a Brownian motion starting at level 
 reduces to the law of
the Parisian time below level 0 for a standard Brownian motion (starting from
0). Nevertheless, in the next subsection, we shall present a different approach.

4.4.1 The Law of (G−,�
D (W ) , W

G
−,�
D

)

In a first step, we compute the law of the pair (Parisian time, Brownian motion
at the Parisian time) for a level 
 = 0.

Proposition 4.4.1.1 Let W be a Brownian motion and G−
D : = G−,0

D (W ).
The random variables G−

D and WG−
D

are independent and

P(WG−
D
∈ dx) =

−x

D
exp
(
− x2

2D

)
1{x<0} dx, (4.4.2)

E

(
exp
(
−λ2

2
G−

D

))
=

1
Ψ(λ

√
D )

(4.4.3)

where Ψ(z) =
∫ ∞

0

x exp
(

zx − x2

2

)
dx = 1 + z

√
2πN (z)ez2/2 .

Proof: We have defined in Subsection 4.3.6 the wide slow Brownian filtration
(F+

gt
, t ≥ 0). The r.v. G−

D is an (F+
gt

, t ≥ 0)- hence an (Ft, t ≥ 0)- stopping
time. From results on meanders recalled in Subsection 4.3.7, the process

(
1√
D

|WgG−
D

+ uD| , u ≤ 1
)

is a Brownian meander independent of F+
gG−

D

, since G−
D = gG−

D
+ D, the r.v.

1√
D

WG−
D

is distributed as −m1, hence

P(WG−
D
∈ dx) =

−x

D
exp
(
− x2

2D

)
1{x<0} dx,

and the variables G−
D and WG−

D
are independent. From Proposition 4.3.8.1,

the process

Ψ(−λμt∧G−
D

) exp
(
−λ2

2
(t ∧ G−

D)
)

, t ≥ 0 ,

(where μ denotes the Azéma martingale) is a F+
gt

-local martingale. Since, for
λ > 0, 0 < −λμt∧G−

D
< λD, this process is bounded. Hence, using the optional

sampling theorem at G−
D, we obtain

E

(
Ψ(−λμG−

D

)
exp(

(
−λ2

2
G−

D

)
= Ψ(0) = 1
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and the left-hand side equals Ψ(λ
√

D ) E(exp(−λ2

2
G−

D)). The formula

E

(
exp
(
−λ2

2
G−

D

))
=

1
Ψ(λ

√
D )

follows. �

From the above proposition, we can easily deduce the law of the pair
(G−,�

D , WG−,�
D

) in the case 
 < 0, as we now show.

Corollary 4.4.1.2 Let 
 < 0. The random variables G−,�
D and WG−,�

D
are

independent and their laws are given by

P(WG−,�
D

∈ dx) =
dx

D
1{x<�} (
 − x) exp

(
− (x − 
)2

2D

)
(4.4.4)

E

(
exp
(
−λ2

2
G−,�

D

))
=

exp(
λ)
Ψ(λ

√
D)

. (4.4.5)

Proof: This study may be reduced to the previous one, with the help of the
stopping time T� = T�(W ). Since

G−,�
D = T� + Ĝ−

D

where
Ĝ−

D = inf{t ≥ 0 : 1{cWt≤0}(t − g0
t (Ŵ )) ≥ D}

with Ŵt = WT�+t − WT�
, it follows, from the independence between T� and

Ĝ−
D, that

E

(
exp
(
−λ2

2
G−,�

D

))
= E

(
exp
(
−λ2

2
T�

))
E

(
exp
(
−λ2

2
Ĝ−

D

))
.

The Laplace transform of the hitting time T� is known (see Proposition 3.1.6.1)
and Ĝ−

D
law= G−

D; hence, by application of equality (4.4.3)

E

(
exp
(
−λ2

2
G−,�

D

))
=

exp(
λ)
Ψ(λ

√
D)

.

We obtain finally from (4.4.2) that

P(WG−,�
D

∈ dx) = P(Ŵ
bG−

D
− 
 ∈ dx − 
)

=
dx

D
1{x<�} (
 − x) exp

(
− (x − 
)2

2D

)
.

Note in particular that, since Ψ(0) = 1, P(G−,�
D < ∞) = 1. �
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Proposition 4.4.1.3 In the case 
 > 0, the random variables G−,�
D and

WG−,�
D

are independent. Their laws are characterized by

E(exp(−λG−,�
D )) = e−λD (1 − F�(D)) +

1
Ψ(

√
2λD)

H(
√

2λ, 
, D) ,

where F� is the cumulative distribution function of T� and the function H is
defined in (3.2.7), and

P(W
G−,�

D

∈ dx) = 1{x≤�}dx

[
e−(x−�)2/(2D)

P(T� < D)

 − x

D

+
1√
2πD

(
e−x2/(2D) − e−(x−2�)2/(2D)

)]
.

Proof: In the case 
 > 0, the first excursion below 
 begins at t = 0. We now
use the obvious equality

E(exp(−λG−,�
D )) = E(1{T�<D} exp(−λG−,�

D )) + E(1{T�>D} exp(−λG−,�
D )) .

On the set {T� > D}, we have G−,�
D = D. Therefore,

E(1{T�>D} exp(−λG−,�
D )) = exp(−λD)P(T� > D)

= exp(−λD) (1 − F�(D)) .

Here, F� is the cumulative distribution function of T� (see formula 3.1.6 ).
On the set {T� < D}, we write, as in the proof of the previous corollary,
G−,�

D = T� + Ĝ−
D. Hence, on (T� < D), we have:

E

(
exp(−λG−,�

D ) | FT�

)
= exp(−λT�) E

(
exp(−λĜ−

D)
)

.

Therefore, E
(
1{T�<D} exp(−λG−,�

D )
)

=
1

Ψ(
√

2λD)
E(1{T�<D} exp(−λT�)). The

quantity E(1{T�<D} exp(−λT�)) has been computed in Subsection 3.2.4, and
is equal to H(

√
2λ, 
,D) (see formula (3.2.7)).

It follows that

E(exp(−λG−,�
D )) = e−λD (1 − F�(D)) +

1
Ψ(

√
2λD)

H(
√

2λ, 
,D) .

The law of W
G−,�

D

can easily be deduced from the following three equalities:

W
G−,�

D

= (
 + Ŵ
bG−

D
)1{T�<D} + WD1{T�>D}

P(
 + Ŵ
Ĝ−

D

∈ dx, T� < D) = P(T� < D)1{x≤�}(
 − x) exp
(
− (x − 
)2

2D

)
dx

D
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P(WD ∈ dx, T� > D) =
dx√
2πD

(
exp
(
− x2

2D

)
− exp

(
− (x − 2
)2

2D

))
1{x≤�} .

�

Comment 4.4.1.4 The independence property of a stopping time τ and the
position of the Brownian motion at that time Bτ is a fairly rare phenomenon
for Brownian stopping times; it is satisfied for τ = G−,�

D . It can be proved,
for example that, if T is a bounded stopping time such that T and WT are
independent, then T is a constant. A more general study of stopping times
which enjoy this independence property can be found in De Meyer et al.
[246, 247]. See also the following exercise.

Exercise 4.4.1.5 Let T ∗
a = inf{t : |Wt| = a}. Prove that the r.v’s T ∗

a and
WT∗

a
are independent and show that WT∗

a
is symmetric with values ±a. See

Section 3.5. �

4.4.2 Valuation of a Down-and-In Parisian Option

We have seen that the price of a down-and-in Parisian option is given by

DIPa(S0, L, D; T ) = e−(r+ν2/2)T DIPa(S0, L, D; T )

where

DIPa(S0, L, D; T ) = E

(
1{G−,�

D ≤T}E
(
eνWT (S0e

σWT − K)+|FG−,�
D

))
.

From the strong Markov property

DIPa(S0, L, D; T ) = E(1{G−,�
D ≤T}PT−G−,�

D
(ψ)(WG−,�

D
))

with ⎧⎨
⎩

ψ(y) = eνy(S0e
σy − K)+,

Ptf(z) =
1√
2πt

∫ ∞

−∞
f(y) exp

(
− (y − z)2

2t

)
dy .

Denote by ϕ the density of WG−,�
D

and recall that G−,�
D and WG−,�

D
are

independent. Then,

DIPa(S0, L, D; T ) =
∫∞
−∞ ϕ(dz) E(1{G−,�

D ≤T}PT−G−,�
D

(ψ)(z))

=
∫∞
−∞ dy ψ(y)h�(T, y)

(4.4.6)

where the function h� is defined by

h�(t, y) =
∫ ∞

−∞
ϕ(dz) γ(t, y − z) (4.4.7)
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with

γ(t, x) = E

⎛
⎝ 1{G−,�

D ≤t}√
2π(t − G−,�

D )
exp

(
− x2

2(t − G−,�
D )

)⎞
⎠ .

Then, replacing ψ by its value, we obtain

DIPa(S0, L; D, T ) =
∫ ∞

k

dy eνy(S0e
σy − K)h�(T, y) (4.4.8)

where k =
1
σ

ln
K

S0
. The computation of this quantity relies on the knowledge

of h�; however this function h� is only known through its time Laplace
transform ĥ� which is given in the following two theorems.

Theorem 4.4.2.1 In the case S0 > L (i.e., 
 < 0) the function t → h�(t, y)
is characterized by its Laplace transform: for λ > 0,

ĥ�(λ, y) =
e�

√
2λ

D
√

2λΨ(
√

2λD)

∫ ∞

0

dz z exp
(
− z2

2D
− |y + z − 
|

√
2λ

)

where Ψ(z) is defined in (4.3.12). If y > 
, then

ĥ�(λ, y) =
Ψ(−

√
2λD)

Ψ(
√

2λD)
e(2�−y)

√
2λ

√
2λ

.

Proof: In the case S0 > L, from (4.4.4), the density ϕ of WG−,�
D

is

ϕ(x) = P(WG−,�
D

∈ dx)/dx =
1
D

(
 − x) exp
(
− (x − 
)2

2D

)
1{x≤�} .

The function h� is defined in terms of ϕ and γ. Thus, the knowledge of the
Laplace transform of γ will lead to the knowledge of ĥ�.

For λ > 0, we obtain, with an obvious change of variable,

∫ ∞

0

dt e−λtγ(t, x) = E

⎡
⎣
∫ ∞

G−,�
D

dt
e−λt√

2π(t − G−,�
D )

exp

(
− x2

2(t − G−,�
D )

)⎤
⎦

= E(e−λG−,�
D )
∫ ∞

0

dt exp
(
−x2

2t

)
e−λt

√
2πt

. (4.4.9)

The integral on the right of (4.4.9) is the resolvent kernel of Brownian motion

and is equal to
1√
2λ

e−|x|
√

2λ. By substituting this result in (4.4.9) and using

the Laplace transform of G−,�
D given in (4.4.5), we obtain:
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∫ ∞

0

dt e−λtγ(t, x) =
e−(|x| − 
)

√
2λ

√
2λΨ(

√
2λD)

. (4.4.10)

Therefore, from the definition (4.4.7) of h�, its Laplace transform, ĥ�(λ, y) is
given by

∫ ∞

0

dt e−λth�(t, y) =
∫ �

−∞

dz

D
(
 − z)e−

(�−z)2

2D

∫ ∞

0

dt e−λtγ(t, y − z)

=
∫ ∞

0

du

D
ue−

u2
2D

∫ ∞

0

dt e−λtγ(t, y + u − 
)

=
e�

√
2λ

D
√

2λ Ψ(
√

2λD)

∫ ∞

0

du u exp
(
− u2

2D
− |y + u − 
|

√
2λ

)
.

The corresponding integral

Kλ,D(a) : =
1
D

∫ ∞

0

du u exp
(
− u2

2D
− |u + a|

√
2λ

)

can be easily evaluated as follows.
� If a > 0, using the change of variables u = z

√
D, we obtain

Kλ,D(a) = exp(−a
√

2λ)Ψ(−
√

2λD)

and this leads to the formula for y > 
.
� If a < 0, a similar method leads to

Kλ,D(a) = ea
√

2λ + 2
√

πλDeλD

×
(

ea
√

2λ

[
N
(

−a√
D

−
√

2λD

)
−N

(
−
√

2λD
)]

−e−a
√

2λN
(

a√
D

−
√

2λD

))
.

As a partial check, note that if D = 0, the Parisian option is a standard barrier
option. The previous computation simplifies and we obtain

ĥ�(λ, y) =
e

√

2λ
√

2λ
e−|
 − y|

√
2λ .

It is easy to invert ĥ� and we are back to the formula (3.6.28) for the price of
a DIC option obtained in Theorem 3.6.6.2 . �

Remark 4.4.2.2 The quantity Ψ(−
√

2λD) is a Laplace transform, as well

as the quantity
e(2�−y)

√
2λ

√
2λ

. Therefore, in order to invert ĥ� in the case y > 
,

it suffices to invert the Laplace transform
1

Ψ(
√

2λD)
. This is not easy: see

Schröder [770] for some computation.
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Theorem 4.4.2.3 In the case S0 < L (i.e., 
 > 0), the function h�(t, y) is
characterized by its Laplace transform, for λ > 0,

ĥ�(λ, y) = ĝ(t, y)

+
1

D
√

2λ Ψ(
√

2λD)
H(

√
2λ, 
,D)

∫ ∞

0

dz z exp
(
− z2

2D
− |y − 
 + z|

√
2λ

)
.

where g is defined in the following equality (4.4.12), and H is defined in (3.2.7).

Proof: In the case 
 > 0, the Laplace transform of h�(., y) is more
complicated. Denoting again by ϕ the law of WG−,�

D
, we obtain

∫ ∞

0

dt e−λth�(t, y) = E

(∫ ∞

−∞
ϕ(dz) e−λG−,�

D
1√
2λ

exp(−|y − z|
√

2λ)
)

.

Using the previous results, and the cumulative distribution function F� of T�,
∫ ∞

0

dt e−λth�(t, y) = (4.4.11)

1
D

√
2λ Ψ(

√
2λD)

∫ ∞

0

dz z exp
(
− z2

2D
− |y − 
 + z|

√
2λ

) ∫ D

0

F�(dx) e−λx

+
e−λD

2
√

λπD

∫ �

−∞
dz

(
exp
(
− z2

2D

)
− exp− (z − 2
)2

2D

)
e−|y − z|

√
2λ .

We know from Remark 3.1.6.3 that
1√
2λ

exp(−|a|
√

2λ) is the Laplace

transform of
1√
2πt

exp(−a2

2t
). Hence, the second term on the right-hand side

of (4.4.11) is the time Laplace transform of g(·, y) where

g(t, y) =
1{t>D}

2π
√

D(t − D)

∫ �

−∞
e

(y−z)2

2(t−D)

(
e−

z2
2D − e−

(z−2�)2

2D

)
dz . (4.4.12)

We have not be able go further in the inversion of the Laplace transform.

A particular case: If y > 
, the first term on the right-hand side of (4.4.11)
is equal to

Ψ(−
√

2λD)
Ψ(

√
2λD)

e−(y−�)
√

2λ

√
2λ

∫ D

0

F�(dx)e−λx .

This term is the product of four Laplace transforms; however, the inverse

transform of
1

Ψ(
√

2λD)
is not identified. �
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Comment 4.4.2.4 Parisian options are studied in Avellaneda and Wu [30],
Chesney et al. [175], Cornwall et al. [196], Dassios [213], Gauthier [376] and
Haber et al. [415]. Numerical analysis is carried out in Bernard et al. [76],
Costabile [198], Labart and Lelong [556] and Schröder [770]. An approximation
with an implied barrier is done in Anderluh and Van der Weide [14]. Double-
sided Parisian options are presented in Anderluh and Van der Weide [15],
Dassios and Wu [215, 216, 217] and Labart and Lelong [557]. The “Parisian”
time models a default time in Çetin et al. [158] and in Chen and Suchanecki
[162, 163]. Cumulative Parisian options are developed in Detemple [252],
Hugonnier [451] and Moraux [657]. Their Parisian name is due to their birth
place as well as to the meanders of the Seine River which lead many tourists
to excursions around Paris.

Exercise 4.4.2.5 We have just introduced Parisian down-and-in options
with a call feature, denoted here CDIPa. One can also define Parisian up-and-
in options PUIPa with a put feature, i.e., with payoff (K − ST )+1{G+,L

D <T} .

Prove the symmetry formula

CDIPa(S0, K, L; r, δ;D, T ) = KS0PUIPa(S−1
0 , K−1, L−1, δ, r; D, T ) .

�

4.4.3 PDE Approach

In Haber et al. [415] and in Wilmott [846], the following PDE approach to
valuation of Parisian option is presented, in the case δ = 0. The value at
time t of a down-and-out Parisian option is a function of the three variables
t, St, t− gt, i.e., DOPa = Φ(T − t, St, t− gt) and the discounted price process
e−rtΦ(T − t, St, t − gt) is a Q-martingale. Using the fact that (gt, t ≥ 0) is an
increasing process, Itô’s calculus gives

d[e−rtΦ(t, St, t − gt)] = e−rt

[
−rΦdt + (∂tΦ) dt + (∂xΦ) dSt + (∂uΦ) (dt − dgt)

+
1
2
σ2S2

t (∂xxΦ) dt

]

between two jumps of gt. (Here, u is the third variable of the function Φ).
Therefore, the dt terms must sum to 0 giving

⎧⎨
⎩

−rΦ + ∂tΦ + xr∂xΦ + ∂uΦ +
1
2
σ2x2∂xxΦ = 0, for u < D

∂uΦ(t, x, 0) = 0 .

with the boundary conditions
{

Φ(t, x, u) = Φ(t, x, 0), forx ≥ L
Φ(t, x, u) = 0, foru ≥ D, x < L .
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4.4.4 American Parisian Options

American Parisian options are also considered. Grau [403] combined Monte
Carlo simulations and PDE solvers (see also Grau and Kallsen [404]) in
order to price European and American Parisian options. The PDE approaches
developed by Haber et al. [415] and Wilmott [846] can also be used in order
to value these options. In the same setting, where the risk-neutral dynamics
of the underlying are given by (4.4.1), Chesney and Gauthier [172] developed
a probabilistic approach for the pricing of American Parisian options. They
derived the following result for currency options:

Proposition 4.4.4.1 The price of an American Parisian down-and-out call
(ADOPa) can be decomposed as follows:

ADOPa (S0, L, D, T ) = DOPa (S0, L, D, T )

+ δS0

∫ T

0

e−αu
E

[
1{Wu≥b̄(u)}1{u<G−,�

D (W )} exp ((ν + σ) Wu)
]
du

− rK

∫ T

0

e−αu
E

[
1{Wu≥b̄(u)}1{u<G−,�

D (W )} exp (νWu)
]
du

where

α = r +
ν2

2
, ν =

1
σ

(
r − δ − σ2

2

)
, b̄(u) =

1
σ

ln
(

bc(T − u)
S0

)
,


 =
1
σ

ln
(

L

S0

)
≤ 0

and where {bc(T − u), u ∈ [0, T ]} is the exercise boundary (see Section 3.11
for the general definition). Here, the process W is a Brownian motion.

This decomposition can also be written as follows:

ADOPa (S0, L, D, T ) = DOPa (S0, L, D, T ) + δ

∫ T

0

DOPa(S0, bc(T − u), u)du

+ δ

∫ T

0

(
bc(T − u) − r

δ
K
)

BinDOCPa (S0, bc(T − u), u) du

where DOPa(S0, bc(T − u), u) is the price of the European Parisian down-
and-out call option with maturity u, strike price bc(T − u), barrier L and
delay D, BinDOCPa (S0, bc(T − u), u) is the price of a Parisian binary call
(see Subsections 3.6.2 and 3.6.3 for the definitions of binary calls and binary
barrier options) which generates at maturity a pay-off of one monetary unit
if the underlying value is higher than the strike price and if the first instant
–when the underlying price spends consecutively more than D units of time
under the level L1 – is greater than the maturity u. Otherwise, the payoff is
equal to zero.
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Denote by ADOPa (S0, L, D) the price of a perpetual American Parisian
option. The following proposition is obtained:

Proposition 4.4.4.2 The price of a perpetual American Parisian down-and-
out call is given by:

ADOPa (S0, L, D) = δ

∫ +∞

0

DOPa(S0, Lc, u) du

+ δ

∫ +∞

0

(
Lc −

r

δ
K
)

BinDOCPa (S0, Lc, u) du

or

ADOPa(S0, L, D) =

(
1 − Ψ(−κ

√
D)

Ψ(κ
√

D)
e2�κ

)
1

σκ

(
S0

Lc

)γ (
δLc

γ − 1
− r

γ
K

)

with κ =
√

2r + ν2, γ = −ν+
√

2r+ν2

σ and where the exercise boundary Lc is
defined implicitly by:

Lc − K =

(
1 − Ψ(−κ

√
D)

Ψ(κ
√

D)

(
L

Lc

)2 κ
σ

)
1

σκ

(
δLc

γ − 1
− r

γ
K

)

where the function Ψ is defined in equation (4.3.12).

Solutions when the excursion has already started and for the “in” barrier
case are also derived. The latter case is easier to analyze. Indeed, in this
setting, the option holder cannot do or decide anything before the option
is activated; once the option is activated then it does not have a barrier
anymore, but is just a plain vanilla American call. The exercise frontier for
an American Parisian “in” barrier option is therefore the exercise frontier of
the corresponding plain vanilla option, starting at the activation time.
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