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Hitting Times: A Mix of Mathematics
and Finance

In this chapter, a Brownian motion (Wt, t ≥ 0) starting from 0 is given on a
probability space (Ω,F , P), and F = (Ft, t ≥ 0) is its natural filtration. As
before, the function N (x) = 1√

2π

∫ x

−∞ e−u2/2du is the cumulative function of a
standard Gaussian law N (0, 1). We establish well known results on first hitting
times of levels for BM, BM with drift and geometric Brownian motion, and
we study barrier and lookback options. However, we emphasize that the main
results on barrier option valuation are obtained below without any knowledge
of hitting time laws but using only the strong Markov property. In the last part
of the chapter, we present applications to the structural approach of default
risk and real options theory and we give a short presentation of American
options.

For a continuous path process X, we denote by Ta(X) (or, if there is no
ambiguity, Ta) the first hitting time of the level a for the process X defined
as

Ta(X) = inf{t ≥ 0 : Xt = a} .

The first time when X is above (resp. below) the level a is

T+
a = inf{t ≥ 0 : Xt ≥ a}, resp. T−

a = inf{t ≥ 0 : Xt ≤ a} .

For X0 = x and a > x, we have T+
a = Ta, and T−

a = 0 whereas for a < x, we
have T−

a = Ta, and T+
a = 0. In what follows, we shall write hitting time for

first hitting time. We denote by MX
t (resp. mX

t ) the running maximum (resp.
minimum)

MX
t = sup

s≤t
Xs, mX

t = inf
s≤t

Xs .

In case X is a BM, we shall frequently omit the superscript and denote by
Mt the running maximum of the BM. In this chapter, no martingale will be
denoted Mt!
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3.1 Hitting Times and the Law of the Maximum for
Brownian Motion

We first study the law of the pair of random variables (Wt, Mt) where M is
the maximum process of the Brownian motion W , i.e., Mt : = sups≤t Ws. In
a similar way, we define the minimum process m as mt : = infs≤t Ws. Let us
remark that the process M is an increasing process, with positive values, and
that M

law= (−m). Then, we deduce the law of the hitting time of a given level
by the Brownian motion.

3.1.1 The Law of the Pair of Random Variables (Wt, Mt)

Let us prove the reflection principle.

Proposition 3.1.1.1 (Reflection principle.) For y ≥ 0, x ≤ y, one has:

P(Wt ≤ x ,Mt ≥ y) = P(Wt ≥ 2y − x) . (3.1.1)

Proof: Let T+
y = inf{t : Wt ≥ y} be the first time that the BM W is

greater than y. This is an F-stopping time and {T+
y ≤ t} = {Mt ≥ y} for

y ≥ 0. Furthermore, for y ≥ 0 and by relying on the continuity of Brownian
motion paths, T+

y = Ty and WTy = y. Therefore

P(Wt ≤ x ,Mt ≥ y) = P(Wt ≤ x , Ty ≤ t) = P(Wt − WTy ≤ x − y , Ty ≤ t) .

For the sake of simplicity, we denote EP(1A|Ty) = P(A|Ty). By relying on the
strong Markov property, we obtain

P(Wt − WTy ≤ x − y , Ty ≤ t) = E(1{Ty≤t} P(Wt − WTy ≤ x − y |Ty))
= E(1{Ty≤t} Φ(Ty))

with Φ(u) = P(W̃t−u ≤ x − y ) where (W̃u : = WTy+u − WTy , u ≥ 0) is a
Brownian motion independent of (Wt, t ≤ Ty). The process W̃ has the same
law as −W̃ . Therefore Φ(u) = P(W̃t−u ≥ y − x ) and by proceeding backward

E(1{Ty≤t} Φ(Ty)) = E[1{Ty≤t}P(Wt − WTy ≥ y − x |Ty)]
= P(Wt ≥ 2y − x , Ty ≤ t) .

Hence,
P(Wt ≤ x, Mt ≥ y) = P(Wt ≥ 2y − x, Mt ≥ y) . (3.1.2)

The right-hand side of (3.1.2) is equal to P(Wt ≥ 2y − x) since, from x ≤ y
we have 2y − x ≥ y which implies that, on the set {Wt ≥ 2y − x}, one has
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Mt ≥ y (i.e., the hitting time Ty is smaller than t). �

From the symmetry of the normal law, it follows that

P(Wt ≤ x, Mt ≥ y) = P(Wt ≥ 2y − x) = N
(

x − 2y√
t

)

.

We now give the joint law of the pair of r.v’s (Wt, Mt) for fixed t.

Theorem 3.1.1.2 Let W be a BM starting from 0 and Mt = sup
s≤t

Ws. Then,

for y ≥ 0, x ≤ y, P(Wt ≤ x, Mt ≤ y) = N
(

x√
t

)

−N
(

x − 2y√
t

)

(3.1.3)

for y ≥ 0, x ≥ y, P(Wt ≤ x, Mt ≤ y) = P(Mt ≤ y)

= N
(

y√
t

)

−N
(
−y√

t

)

, (3.1.4)

for y ≤ 0, P(Wt ≤ x, Mt ≤ y) = 0 .

The distribution of the pair of r.v’s (Wt, Mt) is

P(Wt ∈ dx, Mt ∈ dy) = 1{y≥0}1{x≤y}
2(2y − x)√

2πt3
exp

(

− (2y − x)2

2t

)

dx dy

(3.1.5)

Proof: From the reflection principle it follows that, for y ≥ 0, x ≤ y,

P(Wt ≤ x ,Mt ≤ y) = P(Wt ≤ x) − P(Wt ≤ x ,Mt ≥ y)
= P(Wt ≤ x) − P(Wt ≥ 2y − x) ,

hence the equality (3.1.3) is obtained.
For 0 ≤ y ≤ x, since Mt ≥ Wt we get:

P(Wt ≤ x, Mt ≤ y) = P(Wt ≤ y, Mt ≤ y) = P(Mt ≤ y) .

Furthermore, by setting x = y in (3.1.3)

P(Wt ≤ y, Mt ≤ y) = N
(

y√
t

)

−N
(
−y√

t

)

,

hence the equality (3.1.5) is obtained. Finally, for y ≤ 0,

P(Wt ≤ x, Mt ≤ y) = 0

since Mt ≥ M0 = 0. �
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Note that we have also proved that the process B defined for y > 0 as

Bt = Wt1{t<Ty} + (2y − Wt)1{Ty≤t}

is a Brownian motion.

Comment 3.1.1.3 It is remarkable that Bachelier [39, 40] obtained the
reflection principle for Brownian motion, extending the result of Désiré André
for random walks. See Taqqu [819] for a presentation of Bachelier’s work.

Remark 3.1.1.4 Let T0 = inf{t > 0 : Wt = 0}. Then P(T0 = 0) = 1.

Exercise 3.1.1.5 We have proved that

P(Wt ∈ dx, Mt ∈ dy) = 1{y≥0}1{x≤y}
1√
t
g(

x√
t
,

y√
t
) dx dy

where

g(x, y) =
2(2y − x)√

2π
exp

(

− (2y − x)2

2

)

.

Prove that (Mt, Wt, t ≥ 0) is a Markov process and give its semi-group in
terms of g. �

3.1.2 Hitting Times Process

Proposition 3.1.2.1 Let W be a Brownian motion and, for any y > 0, define
Ty = inf{t : Wt = y}. The increasing process (Ty, y ≥ 0) has independent
and stationary increments. It enjoys the scaling property

(Tλy, y ≥ 0) law= (λ2Ty, y ≥ 0) .

Proof: The increasing property follows from the continuity of paths of the
Brownian motion. For z > y,

Tz − Ty = inf{t ≥ 0 : WTy+t − WTy = z − y} .

Hence, the independence and the stationarity properties follow from the strong
Markov property. From the scaling property of BM, for λ > 0,

Tλy = inf
{

t :
1
λ

Wt = y

}
law= λ2 inf{t : Ŵt = y}

where Ŵ is the BM defined by Ŵt = 1
λWλ2t. �

The process (Ty, y ≥ 0) is a particular stable subordinator (with index 1/2)
(see � Section 11.6). Note that this process is not continuous but admits a
right-continuous left-limited version. The non-continuity property may seem
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surprising at first, but can easily be understood by looking at the following
case. Let W be a BM and T1 = inf{t : Wt = 1}. Define two random times g
and θ as

g = sup{t ≤ T1 : Wt = 0}, θ = inf
{

t ≤ g : Wt = sup
s≤g

Ws

}

and Σ = Wθ. Obviously

θ = TΣ < g < TΣ+ : = inf{t : Wt > Σ} .

See Karatzas and Shreve [513] Chapter 6, Theorem 2.1. for more comments
and � Example 11.2.3.5 for a different explanation.

�
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Fig. 3.1 Non continuity of Ty

3.1.3 Law of the Maximum of a Brownian Motion over [0, t]

Proposition 3.1.3.1 For fixed t, the random variable Mt has the same law
as |Wt|.

Proof: This follows from the equality (3.1.4) which states that

P(Mt ≤ y) = P(Wt ≤ y) − P(Wt ≤ −y) .

�
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Comments 3.1.3.2 (a) Obviously, the process M does not have the same
law as the process |W |. Indeed, the process M is an increasing process, whereas
this is not the case for the process |W |. Nevertheless, there are some further
equalities in law, e.g., M−W

law= |W |, this identity in law taking place between
processes (see Lévy’s equivalence Theorem 4.1.7.2 in � Subsection 4.1.7).

(b) Seshadri’s result states that the two random variables Mt(Mt − Wt)
and Wt are independent and that Mt(Mt − Wt) has an exponential law (see
Yor [867, 869]).

Exercise 3.1.3.3 Prove that as a consequence of the reflection principle
(formula (3.1.1)), for any fixed t:
(i) 2Mt − Wt is distributed as ‖B(3)

t ‖ where B(3) is a 3-dimensional BM,
starting from 0,
(ii) given 2Mt − Wt = r, both Mt and Mt − Wt are uniformly distributed on
[0, r].
This result is a small part of Pitman’s theorem (see � Comments 4.1.7.3 and
� Section 5.7). �

3.1.4 Laws of Hitting Times

For x > 0, the law of the hitting time Tx of the level x is now easily deduced
from

P(Tx ≤ t) = P(x ≤ Mt) = P(x ≤ |Wt|)

= P(x ≤ |G|
√

t) = P

(
x2

G2
≤ t

)

, (3.1.6)

where, as usual, G stands for a Gaussian random variable, with zero
expectation and unit variance. Hence,

Tx
law=

x2

G2
(3.1.7)

and the density of the r.v. Tx is given by:

P(Tx ∈ dt) =
x√
2πt3

exp
(

−x2

2t

)

1{t≥0} dt .

For x < 0, we have, using the symmetry of the law of BM

Tx = inf{t : Wt = x} = inf{t : −Wt = −x} law= T−x

and it follows that, for any x �= 0,
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P(Tx ∈ dt) =
|x|√
2πt3

exp
(

−x2

2t

)

1{t≥0} dt . (3.1.8)

In particular, for x �= 0, P(Tx < ∞) = 1 and E(Tx) = ∞. More precisely,
E((Tx)α) < ∞ if and only if α < 1/2, which is immediate from (3.1.7).

Remark 3.1.4.1 Note that, for x > 0, from the explicit form of the density
of Tx given in (3.1.8), we have

tP(Tx ∈ dt) = xP(Wt ∈ dx) .

This relation, known as Kendall’s identity (see Borovkov and Burq [110]) will
be generalized in � Subsection 11.5.3.

Exercise 3.1.4.2 Prove that, for 0 ≤ a < b,

P(Ws �= 0,∀t ∈ [a, b]) =
2
π

arcsin
√

a

b
.

Hint: From elementary properties of Brownian motion, we have

P(Ws �= 0, ∀s ∈ [a, b]) = P(∀s ∈ [a, b], Ws − Wa �= −Wa)

= P(∀s ∈ [a, b], Ws − Wa �= Wa) = P(T̂Wa > b − a) ,

where T̂ is associated with the BM (Ŵt = Wt+a − Wa, t ≥ 0). Using the
scaling property, we compute the right-hand side of this equality

P(Ws �= 0,∀s ∈ [a, b]) = P(aW 2
1 T̂1 > b − a) = P

(
G2

Ĝ2
>

b

a
− 1

)

= P

(
1

1 + C2
<

a

b

)

=
2
π

arcsin
(√

a

b

)

,

where G and Ĝ are two independent standard Gaussian variables and C a
standard Cauchy variable (see � A.4.2 for the required properties of Gaussian
variables). �

Exercise 3.1.4.3 Prove that σ(Ms − Ws, s ≤ t) = σ(Ws, s ≤ t).
Hint: This equality follows from

∫ t

0
1{Ms−Ws=0}d(Ms − Ws) = Mt. Use the

fact that dMs is carried by {s : Ms = Bs}. �

Exercise 3.1.4.4 The right-hand side of formula (3.1.5) reads, on the set
y ≥ 0, y − x ≥ 0,

P(Ty−x ∈ dt)
dt

dxdy =
2y − x

t
pt(2y − x)dxdy

Check simply that this probability has total mass equal to 1! �



142 3 Hitting Times: A Mix of Mathematics and Finance

3.1.5 Law of the Infimum

The law of the infimum of a Brownian motion may be obtained by relying on
the same procedure as the one used for the maximum. It can also be deduced
by observing that

mt : = inf
s≤t

Ws = − sup
s≤t

(−Ws) = − sup
s≤t

(Bs)

where B = −W is a Brownian motion. Hence

for y ≤ 0, x ≥ y P(Wt ≥ x,mt ≥ y) = N
(
−x√

t

)

−N
(

2y − x√
t

)

,

for y ≤ 0, x ≤ y P(Wt ≥ x,mt ≥ y) = N
(
−y√

t

)

−N
(

y√
t

)

= 1 − 2N
(

y√
t

)

,

for y ≥ 0 P(Wt ≥ x,mt ≥ y) = 0 .

In particular, for y ≤ 0, the second equality reduces to

P(mt ≥ y) = N
(
−y√

t

)

−N
(

y√
t

)

.

If the Brownian motion W starts from z at time 0 and if T0 is the first
hitting time of 0, i.e., T0 = inf{t : Wt = 0}, then, for z > 0, x > 0, we obtain

Pz(Wt ∈ dx, T0 ≥ t) = P0(Wt+z ∈ dx, T−z ≥ t) = P0(Wt+z ∈ dx, mt ≥ −z) .

The right-hand side of this equality can be obtained by differentiating w.r.t.
x the following equality, valid for x ≥ 0, z ≥ 0 (hence x − z ≥ −z,−z ≤ 0)

P(Wt ≥ x − z, mt ≥ −z) = N
(

−x − z√
t

)

−N
(

−x + z√
t

)

.

Thus, we obtain, using the notation (1.4.2)

Pz(Wt ∈ dx, T0 ≥ t) =
1{x≥0}√

2πt

[

exp
(

− (z − x)2

2t

)

− exp
(

− (z + x)2

2t

)]

dx ,

= 1{x≥0}(pt(z − x) − pt(z + x))dx .

(3.1.9)
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3.1.6 Laplace Transforms of Hitting Times

The law of first hitting time of a level y is characterized by its Laplace
transforms, which is given in the next proposition.

Proposition 3.1.6.1 Let Ty be the first hitting time of y ∈ R for a standard
Brownian motion. Then, for λ > 0

E

[

exp
(

−λ2

2
Ty

)]

= exp(−|y|λ) .

Proof: Recall that, for any λ ∈ R, the process (exp(λWt − 1
2λ2t), t ≥ 0) is a

martingale. Now, for y ≥ 0, λ ≥ 0 the martingale

(exp(λWt∧Ty − 1
2
λ2(t ∧ Ty)), t ≥ 0)

is bounded by eλy, hence it is u.i.. Using P(Ty < ∞) = 1, Doob’s optional
sampling theorem yields

E

[

exp
(

λWTy − 1
2
λ2Ty

)]

= 1 .

Since WTy = y, we obtain the Laplace transform of Ty. The case where y < 0

follows since W
law= −W . �

Warning 3.1.6.2 In order to apply Doob’s optional sampling theorem, we
had to check carefully that the martingale exp(λWt∧Ty − 1

2λ2(t ∧ Ty)) is
uniformly integrable. In the case λ > 0 and y < 0, a wrong use of this
theorem would lead to the equality between 1 and

E[exp(λWTy − 1
2
λ2Ty)] = eλy

E

[

exp
(

−1
2
λ2Ty

)]

,

that is the two quantities E[exp(−1
2λ2Ty)] and exp(−yλ) would be the same.

This is obviously false since the quantity E[exp(−1
2λ2Ty)] is smaller than 1

whereas exp(−yλ) is strictly greater than 1.

Remark 3.1.6.3 From the equality (3.1.8) and Proposition 3.1.6.1, we check
that for λ > 0

exp(−|y|λ) =
∫ ∞

0

dt
|y|√
2πt3

exp
(

−y2

2t

)

exp
(

−λ2t

2

)

. (3.1.10)

This equality may be directly obtained, in the case y > 0, by checking that
the function

H(μ) =
∫ ∞

0

dt
1√
t3

e−μt exp
(

−1
t

)



144 3 Hitting Times: A Mix of Mathematics and Finance

satisfies μH ′′ + 1
2H ′ − H = 0. A change of function G(

√
μ) = H(μ) leads to

1
4G′′ − G = 0, and the form of H follows. Let us remark that, for y > 0, one
can write the equality (3.1.10) in the form

1 =
∫ ∞

0

dt
y√
2πt3

exp

(

−1
2

(
y√
t
− λ

√
t

)2
)

. (3.1.11)

Note that the quantity

y√
2πt3

exp

(

−1
2

(
y√
t
− λ

√
t

)2
)

in the right-hand member is the density of the hitting time of the level y by a
drifted Brownian motion (see � formula (3.2.3)). Another proof relies on the
knowledge of the resolvent of the Brownian motion: the result can be obtained
via a differentiation w.r.t. y of the equality obtained in Exercise 1.4.1.7

∫ ∞

0

e−λ2t/2pt(0, y)dt =
∫ ∞

0

e−λ2t/2 1√
2πt

e−
y2

2t dt =
1
λ

e−|y|λ

Comment 3.1.6.4 We refer the reader to Lévy’s equivalence � Theorem
4.1.7.2 which allows translation of all preceding results to the running
maximum involving results on the Brownian motion local time.

Exercise 3.1.6.5 Let T ∗
a = inf{t ≥ 0 : |Wt| = a}. Using the fact that the

process (e−λ2t/2 cosh(λWt), t ≥ 0) is a martingale, prove that

E(exp(−λ2T ∗
a /2)) = [cosh(aλ)]−1 .

See � Subsection 3.5.1 for the density of T ∗
a . �

Exercise 3.1.6.6 Let τ = inf{t : Mt − Wt > a}. Prove that Mτ follows the
exponential law with parameter a−1.
Hint: The exponential law stems from

P(Mτ > x + y|Mτ > y) = P(τ > Tx+y|τ > Ty) = P(Mτ > x) .

The value of the mean of Mτ is obtained by passing to the limit in the equality
E(Mτ∧n) = E(Mτ∧n − Wτ∧n). �

Exercise 3.1.6.7 Let W be a Brownian motion, F its natural filtration and
Mt = sups≤t Ws. Prove that, for t < 1,

E(f(M1)|Ft) = F (1 − t,Wt, Mt)

with

F (s, a, b) =

√
2
πs

(

f(b)
∫ b−a

0

e−u2/(2s)du +
∫ ∞

b

f(u) exp
(

− (u − a)2

2s

)

du

)

.
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Hint: Note that

sup
s≤1

Ws = sup
s≤t

Ws ∨ sup
t≤s≤1

Ws = sup
s≤t

Ws ∨ (M̂1−t + Wt)

where M̂s = supu≤s Ŵu for Ŵu = Wu+t − Wt.
Another method consists in an application of � Theorem 4.1.7.8. Apply

Doob’s Theorem to the martingale h(Mt)(Mt − Wt) +
∫∞

Mt
du h(u). �

Exercise 3.1.6.8 Let a and σ be continuous deterministic functions, B a BM
and X the solution of dXt = a(t)Xtdt + σ(t)dBt, X0 = x.

Let T0 = inf{t ≥ 0, Xt ≤ 0}. Prove that, for x > 0, y > 0,

P(Xt ≥ y, T0 ≤ t) = P(Xt ≤ −y) .

Hint: Use the fact that Xte
−At = W

(x)
α(t) where At =

∫ t

0
a(s)ds and

W (x) is a Brownian motion starting from x. Here α denotes the increasing
function α(t) =

∫ t

0
e−2A(s)σ2(s)ds. Then, use the reflection principle to

obtain P(W (x)
u ≥ z, T0 ≤ u) = P(W (x)

u ≤ −z). We refer the reader to �
Theorem 4.1.7.2 which allows computations relative to the maximum M to
be couched in terms of Brownian local time.

�

Exercise 3.1.6.9 Let f be a (bounded) function. Prove that

lim
t→∞

√
t E(f(Mt)|Fs) = c(f(Ms)(Ms − Ws) + F (Ms))

where c is a constant and F (x) =
∫∞

x
duf(u).

Hint: Write Mt = Ms∨(Ws+M̂t−s) where M̂ is the supremum of a Brownian
motion Ŵ , independent of Wu, u ≤ s. �

3.2 Hitting Times for a Drifted Brownian Motion

We now study the first hitting times for the process Xt = νt + Wt, where
W is a Brownian motion and ν a constant. Let MX

t = sup (Xs, s ≤ t),
mX

t = inf (Xs, s ≤ t) and Ty(X) = inf{t ≥ 0 |Xt = y}. We recall that W(ν)

denotes the law of the Brownian motion with drift ν, i.e., W(ν)(Xt ∈ A) is
the probability that a Brownian motion with drift ν belongs to A at time t.

3.2.1 Joint Laws of (MX , X) and (mX , X) at Time t

Proposition 3.2.1.1 For y ≥ 0, y ≥ x

W(ν)(Xt ≤ x,MX
t ≤ y) = N

(
x − νt√

t

)

− e2νyN
(

x − 2y − νt√
t

)
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and for y ≤ 0, y ≤ x

W(ν)(Xt ≥ x,mX
t ≥ y) = N

(
−x + νt√

t

)

− e2νyN
(
−x + 2y + νt√

t

)

.

Proof: From Cameron-Martin’s theorem (see Proposition 1.7.5.2)

W(ν)(Xt ≤ x,MX
t ≥ y) = E

[

exp
(

νWt −
ν2

2
t

)

1{Wt ≤ x,MW
t ≥ y}

]

.

From the reflection principle (3.1.2) for y ≥ 0, x ≤ y, it holds that

P(Wt ≤ x,MW
t ≥ y) = P(x ≥ 2y − Wt, M

W
t ≥ y) ,

hence, on the set y ≥ 0, x ≤ y, one has

P(Wt ∈ dx, MW
t ∈ dy) = P(2y − Wt ∈ dx, MW

t ∈ dy) .

It follows that

E

[

exp
(

νWt −
ν2

2
t

)

1{Wt ≤ x,MW
t ≥ y}

]

= E

[

exp
(

ν(2y − Wt) −
ν2

2
t

)

1{2y − Wt ≤ x,MW
t ≥ y}

]

= e2νy
E

[

exp
(

−νWt −
ν2

2
t

)

1{Wt ≥ 2y − x}

]

.

Applying Cameron-Martin’s theorem again we obtain

E

[

exp
(

−νWt −
ν2

2
t

)

1{Wt ≥ 2y − x}

]

= W(−ν)(Xt ≥ 2y − x).

It follows that for y ≥ 0, y ≥ x,

W(ν)(Xt ≤ x,MX
t ≥ y) = e2νy

P(Wt ≥ 2y − x + νt)

= e2νyN
(
−2y + x − νt√

t

)

.

Therefore, for y ≥ 0 and y ≥ x,

W(ν)(Xt ≤ x,MX
t ≤ y) = W(ν)(Xt ≤ x) − W(ν)(Xt ≤ x,MX

t ≥ y)

= N
(

x − νt√
t

)

− e2νyN
(

x − 2y − νt√
t

)

,

and for y ≤ 0, y ≤ x,
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W(ν)(Xt ≥ x, mX
t ≤ y) = P(Wt + νt ≥ x, inf

s≤t
(Ws + νs) ≤ y)

= P(−Wt − νt ≤ −x, sup
s≤t

(−Ws − νs) ≥ −y)

= P(Wt − νt ≤ −x, sup
s≤t

(Ws − νs) ≥ −y)

= e2νyN
(

2y − x + νt√
t

)

. (3.2.1)

The result of the proposition follows. �

Corollary 3.2.1.2 Let Xt = νt+Wt and MX
t = sups≤t Xs. The joint density

of the pair Xt, M
X
t is

W(ν)(Xt ∈ dx, MX
t ∈ dy) = 1x<y10<y

2(2y − x)√
2πt3

eνx− 1
2 ν2t− 1

2t (2y−x)2dxdy

Exercise 3.2.1.3 Prove that for y ≥ 0 and y ≥ x

W(ν)(Xt ≤ x, MX
t ≥ y) = e2νy

P(Wt + νt ≤ x − 2y)

and that for y ≤ 0 and y ≤ x

W(ν)(Xt ≥ x, mX
t ≤ y) = e2νy

P(Wt + νt ≥ x − 2y) .

�

3.2.2 Laws of Maximum, Minimum, and Hitting Times

The laws of the maximum and the minimum of a drifted Brownian motion
are deduced from the obvious equalities

W(ν)(MX
t ≤ y) = W(ν)(Xt ≤ y, MX

t ≤ y)

and W(ν)(mX
t ≥ y) = W(ν)(Xt ≥ y, mX

t ≥ y). The right-hand sides of these
equalities are computed from Proposition 3.2.1.1. In a closed form, we obtain

W(ν)(MX
t ≤ y) = N

(
y − νt√

t

)

− e2νyN
(
−y − νt√

t

)

, y ≥ 0

W(ν)(MX
t ≥ y) = N

(
−y + νt√

t

)

+ e2νyN
(
−y − νt√

t

)

, y ≥ 0

W(ν)(mX
t ≥ y) = N

(
−y + νt√

t

)

− e2νyN
(

y + νt√
t

)

, y ≤ 0

W(ν)(mX
t ≤ y) = N

(
y − νt√

t

)

+ e2νyN
(

y + νt√
t

)

, y ≤ 0 .
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For y > 0, from the equality W(ν)(Ty(X) ≥ t) = W(ν)(MX
t ≤ y), we deduce

that the law of the random variable Ty(X) is

W(ν)(Ty(X) ∈ dt) =
y√
2πt3

eνy exp
(

−1
2

(
y2

t
+ ν2t

))

1{t≥0}dt (3.2.2)

or, in a more pleasant form

W(ν)(Ty(X) ∈ dt) =
y√
2πt3

exp
(

− 1
2t

(y − νt)2
)

1{t≥0} dt . (3.2.3)

This law is the inverse Gaussian law with parameters (y, ν). (See �
Appendix A.4.4.)

Note that, for ν < 0 and y > 0, when t → ∞ in W(ν)(Ty ≥ t), we obtain
W(ν)(Ty = ∞) = 1 − e2νy. In this case, the density of Ty under W(ν) is
defective. For ν > 0 and y > 0, we obtain W(ν)(Ty = ∞) = 1, which can also
be obtained from (3.1.11). See also Exercise 1.2.3.10.

Let us point out the simple (Cameron-Martin) absolute continuity rela-
tionship between the Brownian motion with drift ν and the Brownian motion
with drift −ν: from both formulae

{
W(ν)|Ft = exp

(
νXt − 1

2ν2t
)
W|Ft

W(−ν)|Ft = exp
(
−νXt − 1

2ν2t
)
W|Ft

(3.2.4)

we deduce
W(ν)|Ft = exp(2νXt)W(−ν)|Ft . (3.2.5)

(See � Exercise 3.6.6.4 for an application of this relation.) In particular, we
obtain again, using Proposition 1.7.1.4,

W(ν)(Ty < ∞) = e2νy, for νy < 0 .

Exercise 3.2.2.1 Let Xt = Wt + νt and mX
t = infs≤t Xs. Prove that, for

y < 0, y < x

P(mX
t ≤ y|Xt = x) = exp

(

−2y(y − x)
t

)

.

Hint: Note that, from Cameron-Martin’s theorem, the left-hand side does
not depend on ν. �

3.2.3 Laplace Transforms

From Cameron-Martin’s relationship (3.2.4),

W(ν)

(

exp
(

−λ2

2
Ty(X)

))

= E

(

exp
(

νWTy − ν2 + λ2

2
Ty(W )

))

,
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where W(ν)(·) is the expectation under W(ν). From Proposition 3.1.6.1, the
right-hand side equals

eνy
E

[

exp
(

−1
2
(ν2 + λ2)Ty(W )

)]

= eνy exp
(
−|y|

√
ν2 + λ2

)
.

Therefore

W(ν)

(

exp
[

−λ2

2
Ty(X)

])

= eνy exp
(
−|y|

√
ν2 + λ2

)
. (3.2.6)

In particular, letting λ go to 0 in (3.2.6), in the case νy < 0

W(ν)(Ty < ∞) = e2νy ,

which proves again that the probability that a Brownian motion with strictly
positive drift hits a negative level is not equal to 1. In the case νy ≥ 0,
obviously W(ν)(Ty < ∞) = 1 . This is explained by the fact that (Wt + νt)/t
goes to ν when t goes to infinity, hence the drift drives the process to infinity.
In the case νy > 0, taking the derivative (w.r.t. λ2/2) of (3.2.6) for λ = 0, we
obtain W(ν)(Ty(X)) = y/ν. When νy < 0, the expectation of the stopping
time is equal to infinity.

3.2.4 Computation of W(ν)(1{Ty(X)<t} e−λTy(X))

We present the computation of W(ν)[1{Ty(X)<t} exp(−λTy(X))]. This will
be useful for finance purposes, for example while studying Boost options in
� Subsection 3.9.2 and last passage times (� Subsections 4.3.9 and 5.6.4).
Obviously, the computation could be done using the density of Ty, however
this direct method is rather tedious.

For any γ, Cameron-Martin’s theorem leads to

W(ν)(e−λTy(X)1{Ty(X)<t})

= W(γ)

(

e−λTy(X) exp
[

(ν − γ)XTy − ν2 − γ2

2
Ty

]

1{Ty(X)<t}

)

.

Choosing γ such that 2λ = γ2 − ν2, we obtain

W(ν)(e−λTy(X)1{Ty(X)<t}) = exp[(ν − γ)y]W(γ)(Ty(X) < t) .

Hence, using the results on the law of the hitting time established in
Subsection 3.2.2 for y > 0,

W(ν)(e−λTy1{Ty<t}) = e(ν−γ)yN
(

γt − y√
t

)

+ e(ν+γ)yN
(
−γt − y√

t

)

and, for y < 0
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W(ν)(e−λTy1{Ty<t}) = e(ν−γ)yN
(
−γt + y√

t

)

+ e(ν+γ)yN
(

γt + y√
t

)

.

Setting

H(a, y, t) : = e−ayN
(

at − y√
t

)

+ eayN
(
−at − y√

t

)

, (3.2.7)

we get

W(ν)(e−λTy1{Ty<t}) = eνyH(γ, |y|, t)

= eνyH(
√

2λ + ν2, |y|, t) .

In particular, for ν = 0,

E(e−λTy(W )1{Ty(W )<t}) = H(
√

2λ, |y|, t) .

3.2.5 Normal Inverse Gaussian Law

Let (W,B) be a two-dimensional Brownian motion, Xt = x + νt + Wt, and
T

(μ)
y = inf{t : μt + Bt = y}. Then, the density of X

T
(μ)
y

is the Normal

Inverse Gaussian law NIG(α, ν, x, y) where α =
√

ν2 + μ2. (If needed, see
� Appendix A.4.5 for the expression of the density.) This can be checked
from

P(X
T

(μ)
y

∈ A) =
∫ ∞

0

P(Xu ∈ A)P(T (μ)
y ∈ du)

and the integral representation of the Bessel function Kν .
Another method of finding the law of X

T
(μ)
y

is to compute its characteristic
function as follows:

E

(
exp(iζ(x + νT (μ)

y + W
T

(μ)
y

))
)

= E

(

exp(iζ(x + νT (μ)
y ) − ζ2

2
T (μ)

y )
)

= exp(iζx)E
(

exp
[

(iζν − ζ2

2
)T (μ)

y

])

= exp(iζx)eμy
E

(

exp
[

−1
2
(ζ2 + μ2 − 2iζν)T (0)

y

])

= exp(iζx)eμye−y
√

(ζ−iν)2+μ2+ν2
.

Comment 3.2.5.1 See Barndorff-Nielsen [51], Eberlein [289] and Barndorff-
Nielsen et al. [53] for applications of these laws in finance.
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3.3 Hitting Times for Geometric Brownian Motion

Let us assume that

dSt = St(μdt + σdWt) , S0 = x > 0 (3.3.1)

with σ > 0, i.e.,

St = x exp
(
(μ − σ2/2)t + σWt

)
= xeσXt ,

where Xt = νt+Wt, ν = (μ−σ2/2)σ−1. We denote by Ta(S) the first hitting
time of a by the process S and Tα(X) the first hitting time of α by the process
X. From

Ta(S) = inf{t ≥ 0 : St = a} = inf{t ≥ 0 : Xt =
1
σ

ln(a/x)}

we obtain Ta(S) = Tα(X) where

α =
1
σ

ln(a/x) .

When another level b is considered for the geometric Brownian motion S, we
shall denote

β =
1
σ

ln(b/x) .

Using the previous results, we give below the law of the hitting time, as well as
the law of the maximum MS

t (resp. minimum mS
t ) of S over the time interval

[0, t].

3.3.1 Laws of the Pairs (MS
t , St) and (mS

t , St)

We deduce, from the results obtained for drifted Brownian motion in
Proposition 3.2.1.1, that for a > b, a > x

Px(St ≤ b, MS
t ≤ a) = W(ν)(Xt ≤ β, MX

t ≤ α)

= N
(

β − νt√
t

)

− e2ναN
(

β − 2α − νt√
t

)

whereas, for b > a, a < x

Px(St ≥ b, mS
t ≥ a) = W(ν)(Xt ≥ β, mX

t ≥ α)

= N
(
−β + νt√

t

)

− e2ναN
(
−β + 2α + νt√

t

)

.

Proposition 3.3.1.1 Let St = xeμt+σWt and MS
t = sups≤t Ss. The joint

density of the pair St, M
S
t is
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P(St ∈ dz, MS
t ∈ dy)

=
2

σ3
√

2πt3
ln(y2/(xz))

zy
exp

(

− ln2(y2/(xz))
2σ2t

+
ρ

σ
ln(z/x) − ρ2t

2

)

dzdy

where ρ = μ/σ + σ/2.

It follows that, for a > x (or α > 0)

Px(Ta(S) < t) = W(ν)(Tα(X) < t)

= N
(
−α + νt√

t

)

+ e2ναN
(
−νt − α√

t

)

(3.3.2)

and, for a < x (or α < 0)

Px(Ta(S) < t) = N
(

α − νt√
t

)

+ e2ναN
(

νt + α√
t

)

. (3.3.3)

The density of the hitting time Ta(S) is obtained by differentiation, or more
directly, from (3.2.3) and the equality Ta(S) = Tα(X):

Px(Ta(S) ∈ dt) =
dt√
2πt3

α exp
(

− 1
2t

(α − νt)2
)

1{t≥0} . (3.3.4)

Exercise 3.3.1.2 Prove that, for a > S0, and t ≤ T

P(Ta(S) > T |Ft) = 1{maxs≤t Ss<a}

(

N (d1) −
(

a

St

)2(r−δ−σ2/2)σ−2

N (d2)

)

with

d1 =
1

σ
√

T − t

(

ln
(

a

St

)

−
(

r − δ − σ2

2

))

d2 =
1

σ
√

T − t

(

ln
(

St

a

)

−
(

r − δ − σ2

2

))

.

�

3.3.2 Laplace Transforms

From the equality Ta(S) = Tα(X),

Ex

(

exp
[

−λ2

2
Ta(S)

])

= W(ν)

(

exp
[

−λ2

2
Tα(X)

])

.

Therefore, from (3.2.6)

Ex

(

exp
[

−λ2

2
Ta(S)

])

= exp
(
να − |α|

√
ν2 + λ2

)
. (3.3.5)
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3.3.3 Computation of E(e−λTa(S)1{Ta(S)<t})

For a > x (or α > 0) we obtain, using the results of Subsection 3.2.4 about
drifted Brownian motion, and choosing γ such that 2λ = γ2 − ν2,

Ex(e−λTa(S)1{Ta(S)<t}) = e(ν−γ)αN
(

γt − α√
t

)

+ e(γ+ν)αN
(
−γt − α√

t

)

.

In the case λ = μ, 2λ + ν2 = (μσ−1 + σ/2)2, we choose γ = −(μσ−1 + σ/2)
so that γ + ν = −σ, ν − γ = 2μ/σ. Then, for a > x

Ex(e−μTa(S)1{Ta(S)<t}) = e2μα/σN
(

γt − α√
t

)

+ e−ασN
(
−γt − α√

t

)

.

In the case where a < x, we obtain

Ex(e−μTa(S)1{Ta(S)<t}) = e2μα/σN
(

α − γt√
t

)

+ e−ασN
(

γt + α√
t

)

.

3.4 Hitting Times in Other Cases

3.4.1 Ornstein-Uhlenbeck Processes

Proposition 3.4.1.1 Let (Xt, t ≥ 0) be an OU process defined as

dXt = −kXt dt + dWt, X0 = x,

and T0 = inf {t ≥ 0 : Xt = 0}. For any x > 0, the density function of T0

equals

f(t) =
x√
2π

exp
(

kx2

2

)

exp
(

k

2
(t − x2 coth(kt))

) (
k

sinh(kt)

)3/2

.

Proof: We present here the proof of Alili et al. [10]. As proved in Corollary
2.6.1.2, the OU process can be written Xt = e−kt(x +

∫ t

0
eksdWs). Hence

T0 = inf{t ≥ 0 : Xt = 0} = inf{t : x +
∫ t

0

eksdWs = 0}

= inf{t : ŴA(t) = −x}

where we have written the martingale
∫ t

0
eksdWs as a Brownian motion Ŵ ,

time changed by A(t) =
∫ t

0
e2ksds (see � Section 5.1 for comments). It follows

that A(T0) = T−x(Ŵ ), hence

Px(T0 ∈ dt) = A′(t)P0(T−x(Ŵ ) ∈ dA(t))

= e2kt exp
(

− x2

2A(t)

)
|x|

√
2πA3(t)

dt .

Some easy computations, based on A(t) = sinh(kt)
k ekt lead to the result. �
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Comments 3.4.1.2 (a) We shall present a different proof in � Subsec-
tion 6.5.2. See also � Subsection 5.3.7.

(b) Ricciardi and Sato [732] obtained, for x > a, that the density of the
hitting time of a is

−kek(x2−a2)/2
∞∑

n=1

Dνn,a(x
√

2k)

D′
νn,a

(a
√

2k)
e−kνn,at

where 0 < ν1,a < · · · < νn,a < · · · are the zeros of ν → Dν(−a). Here Dν is
the parabolic cylinder function with index ν (see � Appendix A.5.4). The
expression D′

νn,a
denotes the derivative of Dν(a) with respect to ν, evaluated

at point ν = νn,a. Note that the formula in Leblanc et al. [573] for the law
of the hitting time of a is only valid for a = 0. See also the discussion in
Subsection 3.4.1.

(c) See other related results in Borodin and Salminen [109], Alili et al. [10],
Göing-Jaeschke and Yor [398, 397], Novikov [679, 678], Patie [697], Pitman
and Yor [719], Salminen [752], Salminen et al. [755] and Shepp [786].

Exercise 3.4.1.3 Prove that the Ricciardi and Sato result given in Com-
ments 3.4.1.2 (b) allows us to express the density of

τ : = inf{t : x + Wt =
√

1 + 2kt} .

Hint: The hitting time of a for an OU process is

inf{t : e−kt(x + ŴA(t)) = a} = inf{u : x + Ŵu = aekA−1(u)} .

�

3.4.2 Deterministic Volatility and Nonconstant Barrier

Valuing barrier options has some interest in two different frameworks:

(i) in a Black and Scholes model with deterministic volatility and a constant
barrier

(ii) in a Black and Scholes model with a barrier which is a deterministic
function of time.

As we discuss now, these two problems are linked. Let us study the case where
the process S is a geometric BM with deterministic volatility σ(t):

dSt = St(rdt + σ(t)dWt), S0 = x ,

and let Ta(S) be the first hitting time of a constant barrier a:

Ta(S) = inf{t : St = a} = inf
{

t : rt − 1
2

∫ t

0

σ2(s)ds +
∫ t

0

σ(s)dWs = α

}

,
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where α = ln(a/x). The process Ut =
∫ t

0
σ(s)dWs is a Gaussian martingale

and can be written as ZA(t) where Z is a BM and A(t) =
∫ t

0
σ2(s)ds (see �

Section 5.1 for a general presentation of time change). Let C be the inverse
of the function A. Then,

Ta(S) = inf{t : rt−1
2
A(t)+ZA(t) = α} = inf

{

C(u) : rC(u) − 1
2
u + Zu = α

}

hence, the computation of the law of Ta(S) reduces to the study of the hitting
time of the non-constant boundary α−rC(u) by the drifted Brownian motion
(Zu− 1

2u, u ≥ 0). This is a difficult and as yet unsolved problem (see references
and comments below).

Comments 3.4.2.1 Deterministic Barriers and Brownian Motion.
Groeneboom [409] studies the case

T = inf{t : x + Wt = αt2} = inf{t : Xt = −x}

where Xt = Wt−αt2. He shows that the densities of the first passage times for
the process X can be written as functionals of a Bessel process of dimension
3, by means of the Cameron-Martin formula. For any x > 0 and α < 0,

Px(T ∈ dt) = 2(αc)2
∞∑

n=0

exp
(

λn/c − 2
3
α2t3

)
Ai(λn − 2αcx)

Ai′(λn)
,

where λn are the zeros on the negative half-line of the Airy function Ai, the
unique bounded solution of u′′ − xu = 0, u(0) = 1, and c = (1/2α2)1/3. (See
� Appendix A.5.5 for a closed form.) This last expression was obtained by
Salminen [753].

Breiman [122] studies the case of a square root boundary when the
stopping time T is T = inf{t : Wt =

√
α + βt} and relates this study to

that of the first hitting times of an OU process.
The hitting time of a nonlinear boundary by a Brownian motion is studied

in a general framework in Alili’s thesis [6], Alili and Patie [9], Daniels [210],
Durbin [285], Ferebee [344], Hobson et al. [443], Jennen and Lerche [491, 492],
Kahalé [503], Lerche [581], Park and Paranjape [695], Park and Schuurmann
[696], Patie’s thesis [697], Peskir and Shiryaev [708], Robbins and Siegmund
[734], Salminen [753] and Siegmund and Yuh [798].

Deterministic Barriers and Diffusion Processes. We shall study hitting
times for Bessel processes in � Chapter 6 and for diffusions in Subsec-
tion 5.3.6. See Borodin and Salminen [109], Delong [245], Kent [519] or Pitman
and Yor [715] for more results on first hitting time distributions for diffusions.
See also Barndorff-Nielsen et al. [52], Kent [520, 521], Ricciardi et al. [732, 731],
and Yamazato [854]. We shall present in � Subsection 5.4.3 a method based
on the Fokker-Planck equation in the case of general diffusions.
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3.5 Hitting Time of a Two-sided Barrier for BM and
GBM

3.5.1 Brownian Case

For a < 0 < b let Ta, Tb be the two hitting times of a and b, where

Ty = inf{t ≥ 0 : Wt = y} ,

and let T ∗ = Ta ∧ Tb be the exit time from the interval [a, b]. As before Mt

denotes the maximum of the Brownian motion over the interval [0, t] and mt

the minimum.

Proposition 3.5.1.1 Let W be a BM starting from x and let T ∗ = Ta ∧ Tb.
Then, for any a, b, x with a < x < b

Px(T ∗ = Ta) = Px(Ta < Tb) =
b − x

b − a

and Ex(T ∗) = (x − a)(b − x).

Proof: We apply Doob’s optional sampling theorem to the bounded martin-
gale (Wt∧Ta∧Tb

, t ≥ 0), so that

x = Ex(WTa∧Tb
) = aPx(Ta < Tb) + bPx(Tb < Ta) ,

and using the obvious equality

Px(Ta < Tb) + Px(Tb < Ta) = 1 ,

one gets Px(Ta < Tb) =
b − x

b − a
.

The process {W 2
t∧Ta∧Tb

− (t ∧ Ta ∧ Tb), t ≥ 0} is a bounded martingale,
hence applying Doob’s optional sampling theorem again, we get

x2 = Ex(W 2
t∧Ta∧Tb

) − Ex(t ∧ Ta ∧ Tb) .

Passing to the limit when t goes to infinity, we obtain

x2 = a2
Px(Ta < Tb) + b2

Px(Tb < Ta) − Ex(Ta ∧ Tb) ,

hence Ex(Ta ∧ Tb) = x(b + a) − ab − x2 = (x − a)(b − x). �

Comment 3.5.1.2 The formula established in Proposition 3.5.1.1 will be
very useful in giving a definition for the scale function of a diffusion (see
Subsection 5.3.2).
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Proposition 3.5.1.3 Let W be a BM starting from 0, and let a < 0 < b.
The Laplace transform of T ∗ = Ta ∧ Tb is

E0

[

exp
(

−λ2

2
T ∗
)]

=
cosh[λ(a + b)/2]
cosh[λ(b − a)/2]

.

The joint law of (Mt, mt, Wt) is given by

P0(a ≤ mt < Mt ≤ b, Wt ∈ E) =
∫

E

ϕ(t, y) dy (3.5.1)

where, for y ∈ [a, b],

ϕ(t, y) = P0(Wt ∈ dy , T ∗ > t) /dy

=
∞∑

n=−∞
pt(y + 2n(b − a)) − pt(2b − y + 2n(b − a)) (3.5.2)

and pt is the Brownian density

pt(y) =
1√
2πt

exp
(

−y2

2t

)

.

Proof: We only give the proof of the form of the Laplace transform. We refer
the reader to formula 5.7 in Chapter X of Feller [343], and Freedman [357], for
the form of the joint law. The Laplace transform of T ∗ is obtained by Doob’s
optional sampling theorem. Indeed, the martingale

exp
(

λ

(

Wt∧T∗ − a + b

2

)

− λ2 (t ∧ T ∗)
2

)

is bounded and T ∗ is finite, hence

exp
[

−λ

(
a + b

2

)]

= E

[

exp
(

λ

(

WT∗ − a + b

2

)

− λ2 T ∗

2

)]

= exp
(

λ
b − a

2

)

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Tb}

]

+ exp
(

λ
a − b

2

)

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Ta}

]

and using −W leads to

exp
[

−λ

(
a + b

2

)]

= E

[

exp
(

λ

(

−WT∗ − a + b

2

)

− λ2 T ∗

2

)]

= exp
(

λ
−3b − a

2

)

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Tb}

]

+ exp
(

λ
−b − 3a

2

)

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Ta}

]

.
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By solving a linear system of two equations, the following result is obtained:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Tb}

]

=
sinh(−λa)

sinh(λ(b − a))

E

[

exp
(

−λ2 T ∗

2

)

1{T∗=Ta}

]

=
sinh(λb)

sinh(λ(b − a))

. (3.5.3)

The proposition is finally derived from

E

[
e−λ2T∗/2

]
= E

[
e−λ2T∗/2)1{T∗=Tb}

]
+ E

[
e−λ2T∗/21{T∗=Ta}

]
.

�

By inverting this Laplace transform using series expansions, written in
terms of e−λc (for various c) which is the Laplace transform in λ2/2 of Tc, the
density of the exit time T ∗ of [a, b] for a BM starting from x ∈ [a, b] follows:
for y ∈ [a, b],

Px(Bt ∈ dy, T ∗ > t) = dy
∑

n∈Z

pt(y−x+2n(b−a))− pt(2b− y−x+2n(b−a))

and the density of T ∗ is

Px(T ∗ ∈ dt) = (sst(b − x, b − a) + sst(x − a, b − a)) dt

where, using the notation of Borodin and Salminen [109],

sst(u, v) =
1√
2πt3

∞∑

k=−∞
(v − u + 2kv)e−(v−u+2kv)2/2t . (3.5.4)

In particular,

Px(T ∗ ∈ dt, BT∗ = a) = sst(x − a, b − a)dt .

In the case −a = b and x = 0, we get the formula obtained in Exercise 3.1.6.5
for T ∗

b = inf{t : |Bt| = b}:

E0

[

exp
(

−λ2

2
T ∗

b

)]

= (cosh(bλ))−1

and inverting the Laplace transform leads to the density

P0(T ∗
b ∈ dt) =

1
b2

∞∑

n=−∞

(

n +
1
2

)

e−(1/2)(n+1/2)2π2t/b2dt .

�
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Comments 3.5.1.4 (a) Let M∗
1 = sups≤1 |Bs| where B is a d-dimensional

Brownian motion. As a consequence of Brownian scaling, M∗
1

law= (T ∗
1 )−1/2

where T ∗
1 = inf{t : |Bt| = 1}. In [774], Schürger computes the moments of

the random variable M∗
1 using the formula established in Exercise 1.1.12.4.

See also Biane and Yor [86] and Pitman and Yor [720].
(b) Proposition 3.5.1.1 can be generalized to diffusions by using the

corresponding scale functions. See � Subsection 5.3.2.
(c) The law of the hitting time of a two-sided barrier was studied in

Bachelier [40], Borodin and Salminen [109], Cox and Miller [204], Freedman
[357], Geman and Yor [384], Harrison [420], Karatzas and Shreve [513],
Kunitomo and Ikeda [551], Knight [528], Itô and McKean [465] (Chapter I)
and Linetsky [593]. See also Biane, Pitman and Yor [85].

(d) Another approach, following Freedman [357] and Knight [528] is given
in [RY], Chap. III, Exercise 3.15.

(e) The law of T ∗ and generalizations can be obtained using spider-
martingales (see Yor [868], p. 107).

3.5.2 Drifted Brownian Motion

Let Xt = νt+Wt be a drifted Brownian motion and T ∗(X) = Ta(X)∧Tb(X)
with a < 0 < b. From Cameron-Martin’s theorem, writing T ∗ for T ∗(X),

W(ν)

(

exp
(

−λ2

2
T ∗
))

= E

(

exp
(

νWT∗ − ν2

2
T ∗
)

exp
(

−λ2

2
T ∗
))

= E(1{T∗=Ta} eνWT∗−(ν2+λ2)T∗/2) + E(1{T∗=Tb} eνWT∗−(ν2+λ2)T∗/2)

= eνa
E(1{T∗=Ta} e−(ν2+λ2)T∗/2) + eνb

E(1{T∗=Tb} e−(ν2+λ2)T∗/2) .

From the result (3.5.3) obtained in the case of a standard BM, it follows that

W(ν)

(

exp
(

−λ2

2
T ∗
))

= exp(νa)
sinh(μb)

sinh(μ(b − a))
+ exp(νb)

sinh(−μa)
sinh(μ(b − a))

where μ2 = ν2 + λ2. Inverting the Laplace transform,

Px(T ∗ ∈ dt)

= e−ν2t/2
(
eν(a−x)sst(b − x, b − a) + eν(b−x)sst(x − a, b − a)

)
dt ,

where the function ss is defined in (3.5.4). In the particular case a = −b, the
Laplace transform is

W(ν)

(

exp
(

−λ2

2
T ∗
))

=
cosh(νb)

cosh(b
√

ν2 + λ2)
.

The formula (3.5.1) can also be extended to drifted Brownian motion thanks
to the Cameron-Martin relationship.



160 3 Hitting Times: A Mix of Mathematics and Finance

3.6 Barrier Options

In this section, we study the price of barrier options in the case where the
underlying asset S follows the Garman-Kohlhagen risk-neutral dynamics

dSt = St((r − δ)dt + σdWt) , (3.6.1)

where r is the risk-free interest rate, δ the dividend yield generated by the
asset and W a BM. If needed, we shall denote by (Sx

t , t ≥ 0) the solution of
(3.6.1) with initial condition x. In a closed form,

Sx
t = xe(r−δ)teσWt−σ2t/2 .

We follow closely El Karoui [297] and El Karoui and Jeanblanc [300]. In a
first step, we recall some properties of standard Call and Put options. We
also recall that an option is out-of-the-money (resp. in-the-money) if its
intrinsic value (St − K)+ is equal to 0 (resp. strictly positive).

3.6.1 Put-Call Symmetry

In the particular case where r = δ = 0, Garman and Kohlhagen’s formulae
(2.7.4) for the time-t price of a European call C∗

E and a put option P ∗
E with

strike price K and maturity T on the underlying asset S reduce to

C∗
E (x,K, T − t) = xN

[
d1

( x

K
, T − t

)]
− KN

[
d2

( x

K
, T − t

)]
(3.6.2)

P ∗
E (x,K, T − t) = KN

[

d1

(
K

x
, T − t

)]

− xN
[

d2

(
K

x
, T − t

)]

.(3.6.3)

The functions di are defined on R
+ × [0, T ] as:

d1(y, u) : =
1√
σ2 u

ln(y) +
1
2

√
σ2 u

d2(y, u) : = d1(y, u) −
√

σ2 u ,

(3.6.4)

and x is the value of the underlying at time t. Note that these formulae do
not depend on the sign of σ and d1(y, u) = −d2(1/y, u).

In the general case, the time-t prices of a European call CE and a put
option PE with strike price K and maturity T on the underlying currency S
are

CE (x,K; r, δ;T − t) = C∗
E(xe−δ(T−t), Ke−r(T−t), T − t)

PE (x,K; r, δ;T − t) = P ∗
E(xe−δ(T−t), Ke−r(T−t), T − t)

or, in closed form
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CE (x, K; r, δ; T − t) = xe−δ(T−t)N
[

d1

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

− Ke−r(T−t)N
[

d2

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

(3.6.5)

PE (x, K; r, δ; T − t) = Ke−r(T−t)N
[

d1

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

− xe−δ(T−t)N
[

d2

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

. (3.6.6)

Notation: The quantity C∗
E(α, β; u) depends on three arguments: the first

one, α, is the value of the underlying, the second one β is the value of the strike,
and the third one, u, is the time to maturity. For example, C∗

E (K, x; T − t)
is the time-t value of a call on an underlying with time-t value equal to
K and strike x. We shall use the same kind of convention for the function
CE(x, K; r, δ; u) which depends on 5 arguments.

As usual, N represents the cumulative distribution function of a standard
Gaussian variable.

If σ is a deterministic function of time, di(y, T − t) has to be changed into
di(y, T, t), where

d1(y; T, t) =
1

Σt,T
ln(y) +

1
2
Σt,T

d2(y; T, t) = d1(y; T, t) − Σt,T

(3.6.7)

with Σ2
t,T =

∫ T

t
σ2(s)ds.

Note that, from the definition and the fact that the geometric Brownian
motion (solution of (3.6.1)) satisfies Sλx

t = λSx
t , the call (resp. the put) is a

homogeneous function of degree 1 with respect to the first two arguments, the
spot and the strike:

λCE (x, K; r, δ; T − t) = CE (λx, λK; r, δ; T − t)
λPE (x, K; r, δ; T − t) = PE (λx, λK; r, δ; T − t) .

(3.6.8)

This can also be checked from the formula (3.6.5). The Deltas, i.e., the first
derivatives of the option price with respect to the underlying, are given by

DeltaC(x, K; r, δ; T − t) = e−δ(T−t)N
[

d1

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

DeltaP(x, K; r, δ; T − t) = −e−δ(T−t)N
[

d2

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

.

The Deltas are homogeneous of degree 0 in the first two arguments, the spot
and the strike:
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DeltaC (x,K; r, δ;T − t) = DeltaC (λx, λK; r, δ; T − t), (3.6.9)
DeltaP (x,K; r, δ;T − t) = DeltaP (λx, λK; r, δ; T − t) .

Using the explicit formulae (3.6.5, 3.6.6), the following result is obtained.

Proposition 3.6.1.1 The put-call symmetry is given by the following expres-
sions

C∗
E(K, x; T − t) = P ∗

E(x,K; T − t)
PE(x,K; r, δ;T − t) = CE(K, x; δ, r;T − t) .

Proof: The formula is straightforward from the expressions (3.6.2, 3.6.3) of
C∗

E and P ∗
E . Hence, the general case for CE and PE follows. This formula

is in fact obvious when dealing with exchange rates: the seller of US dollars
is the buyer of Euros. From the homogeneity property, this can also be written

PE(x,K; r, δ;T − t) = xKCE(1/x, 1/K; δ, r;T − t) . �

Remark 3.6.1.2 A different proof of the put-call symmetry which does not
use the closed form formulae (3.6.2, 3.6.3) relies on Cameron-Martin’s formula
and a change of numéraire. Indeed

CE(x,K, r, δ, T ) = EQ(e−rT (ST − K)+) = EQ(e−rT (ST /x)(x − KxS−1
T )+) .

The process Zt = e−(r−δ)tSt/x is a strictly positive martingale with
expectation 1. Set Q̂|Ft = ZtQ|Ft . Under Q̂, the process Yt = xK(St)−1

follows dynamics dYt = Yt((δ−r)dt−σdBt) where B is a Q̂-Brownian motion,
and Y0 = K. Hence,

CE(x,K, r, δ, T ) = EQ(e−δT ZT (x − YT )+) = Ê(e−δT (x − YT )+) ,

and the right-hand side represents the price of a put option on the underlying
Y , when δ is the interest rate, r the dividend, K the initial value of the
underlying asset, −σ the volatility and x the strike. It remains to note that
the value of a put option is the same for σ and −σ.

Comments 3.6.1.3 (a) This symmetry relation extends to American options
(see Carr and Chesney [147], McDonald and Schroder [633] and Detemple
[251]). See � Subsections 10.4.2 and 11.7.3 for an extension to mixed diffusion
processes and Lévy processes.

(b) The homogeneity property does not extend to more general dynamics.

Exercise 3.6.1.4 Prove that

CE(x,K; r, δ;T − t) = P ∗
E(Ke−μ(T−t), xeμ(T−t); T − t)

= e−μ(T−t)P ∗
E(K, xe2μ(T−t); T − t) ,

where μ = r − δ is called the cost of carry. �
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3.6.2 Binary Options and Δ’s

Among the exotic options traded on the market, binary options are the
simplest ones. Their valuation is straightforward, but hedging is more difficult.
Indeed, the hedging ratio is discontinuous in the neighborhood of the strike
price.

A binary call (in short BinC) (resp. binary put, BinP) is an option that
generates one monetary unit if the underlying value is higher (resp. lower)
than the strike, and 0 otherwise. In other words, the payoff is 1{ST ≥K} (resp.
1{ST ≤K}). Binary options are also called digital options.

Since 1
h ((x − k)+ − (x − (k + h))+) → 1{x≥k} as h → 0, the value of a

binary call is the limit, as h → 0 of the call-spread

1
h

[C(x, K, T ) − C(x, K + h, T )] ,

i.e., is equal to the negative of the derivative of the call with respect to the
strike. Along the same lines, a binary put is the derivative of the put with
respect to the strike.

By differentiating the formula obtained in Exercise 3.6.1.4 with respect to
the variable K, we obtain the following formula:

Proposition 3.6.2.1 In the Garman-Kohlhagen framework, with carrying
cost μ = r − δ the following results are obtained:

BinC(x, K; r, δ; T − t) = −e−μ(T−t)DeltaP∗
E(K, xe2μ(T−t); T − t)

= e−r(T−t)N
[

d2

(
xeμ(T−t)

K
, T − t

)]

(3.6.10)

BinP(x, K; r, δ; T − t) = e−μ(T−t)DeltaC∗
E(K, xe2μ(T−t); T − t)

= e−r(T−t) N
[

d1

(
K

xeμ(T−t)
, T − t

)]

, (3.6.11)

where d1, d2 are defined in (3.6.4).

Exercise 3.6.2.2 Prove that
⎧
⎪⎪⎨

⎪⎪⎩

DeltaC (x, K; r, δ) =
1
x

[CE (x, K; r, δ) + KBinC (x, K; r, δ)]

DeltaP (x, K; r, δ) =
1
x

[PE (x, K; r, δ) − KBinP (x, K; r, δ)]

(3.6.12)

where the quantities are evaluated at time T − t. �
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Comments 3.6.2.3 The price of a BinC can also be computed via a PDE
approach, by solving

{
∂tu + 1

2σ2x2∂xxu + μ∂xu = ru
u(x, T ) = 1{K<x} .

(3.6.13)

See Ingersoll [459] and Rubinstein and Reiner [747] for a discussion on binary
options. Navatte and Quittard-Pinon [667] have studied binary options in a
stochastic interest case (one factor Gaussian model); their results are extended
to a Lévy model in Eberlein and Kluge [291].

3.6.3 Barrier Options: General Characteristics

Practitioners give the name barrier options to options with a payoff that
depends on whether or not the underlying value has reached a given level (the
barrier) before maturity. They are particular types of path-dependent options,
because the final payoff depends on the asset price trajectory and they are
classified into two categories:

• Knock-out options: The option ceases to exist at the first passage time of
the underlying value at the barrier.

• Knock-in options: The option is activated as soon as the barrier is reached.

Let us consider for instance:

• A DOC (down-and-out call) with strike K, barrier L and maturity T
is the option to buy the underlying at price K (at maturity T ) if the
underlying value never falls below the (low) barrier L before time T . The
value of a DOC is therefore null for S0 < L and, for S0 ≥ L,

DOC(S0, K, L, T ) : = EQ(e−rT (ST − K)+1{T<TL})

where:
TL : = inf{t |St ≤ L} = inf{t |St = L} .

In what follows, we consider DOC options only in the case S0 ≥ L.
• An UOC (up-and-out call) has the same characteristics but the (high)

barrier H is above the initial underlying value, S0 ≤ H. Its price is

UOC(S0, K, H, T ) : = EQ(e−rT (ST − K)+1{T<TH})

where TH : = inf{t |St ≥ H} = inf{t |St = H}.
• A DIC (down-and-in call) is activated if the underlying value falls below

the barrier L before time T . Its price is, for S0 > L,

DIC(S0, K, L, T ) : = EQ(e−rT (ST − K)+1{T>TL}) .
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• An UIC (up-and-in call) is activated as soon as the underlying value
hits the barrier H from below. Its price is

UIC(S0, K, H, T ) : = EQ(e−rT (ST − K)+1{T>TH}) .

The same definitions apply to puts, binary options and bonds. For example

• A DIP is a down-and-in put.
• A binary down-and-in call (BinDIC) is a binary call, activated only if

the underlying value falls below the barrier, before maturity. The payoff is
1{ST >K}1{TL<T}.

• A DIB (down-and-in bond) is a product which generates one monetary
unit at maturity if the barrier L has been reached beforehand by the
underlying. Its value is EQ(e−rT 1{TL<T}) = e−rT

Q(TL < T ).

Barrier options are often used on currency markets. Their prices are smaller
than the corresponding standard European prices. This provides an advantage
for the marketing of these products. However, they are more difficult to hedge.

Depending on the “at the barrier” intrinsic value, these exotic options can
be classified further :

• A barrier option that is out of the money when the barrier L is reached
is called a regular option. As an example, note that the time-t intrinsic
value (x−K)+1{TL≤t} of a DIC such that K ≥ L is equal to 0 for x = L.

• A barrier option which is in the money when the barrier is reached is called
a reverse option.

• Some barrier options generate a rebate received in cash when the barrier
L is reached. The value of the rebate corresponds to the payoff of a binary
option. In particular, the rebate is often chosen in such a way that the
payoff continuity is kept at the barrier, e.g., if the payoff is f(ST ) at time
T , the rebate is f(L).

Let us remark that by relying on the absence of arbitrage opportunities, to
being long on one in-option and on one out-option is equivalent to be long on
a plain-vanilla option. Therefore, we restrict our attention to in-options.

Comments 3.6.3.1 (a) Barrier options are studied in a discrete time setting
in Wilmott et al. [847], Chesney et al. [176], Musiela and Rutkowski [661],
Zhang [872], Pliska [721] and Wilmott [846].

(b) In continuous time, the main papers are Andersen et al. [16],
Rubinstein and Reiner [746], Bowie and Carr [116], Rich [733], Heynen and
Kat [434], Douady [262], Carr and Chou [148], Baldi et al. [42], Linetsky
[593] and Suchanecki [814]. Broadie et al. [130] present some correction terms
between discrete and continuous time barrier options.

(c) Roberts and Shortland [735] study a case where the underlying has
time dependent coefficients. The books of Kat [516], Musiela and Rutkowski
[661], Zhang [872] and Wilmott [846] contain more information. Taleb [818]
studies hedging strategies.
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3.6.4 Valuation and Hedging of a Regular Down-and-In Call
Option When the Underlying is a Martingale

In this section, we suppose that the barrier option is written on an underlying
S without carrying costs – hence a martingale – (i.e., μ = 0 or r = δ) with
dynamics having deterministic volatility:

dSt = Stσ(t)dWt .

Furthermore, when there is no ambiguity, the instantaneous time t, the
maturity time T and the volatility will not appear as arguments in the
formulae. The value of the underlying at time t is denoted by x.

Let L be the barrier. We denote by DICM (x,K,L) the DIC option price
and by CM

E (x,K) (resp. PM
E (x,K)) the standard European call (resp. put)

price (where the first variable is the underlying and the second variable is
the strike), when the underlying is a martingale (hence the superscript M).
Relying on the assumption that the carrying cost is zero, the symmetry
formula established in Proposition 3.6.1.1 is

CM
E (x,K) = PM

E (K, x) . (3.6.14)

In particular ∂KCM
E (x,K) = DeltaPM

E (K, x).

We now follow closely Carr et al. [149]. We recall that for a regular DIC
option, the barrier L is lower than the strike (K ≥ L).

Proposition 3.6.4.1 Consider a regular DIC option on an underlying with-
out carrying costs.

(a) Its price is given by:

for x ≤ L, DICM (x,K,L) = CM
E (x,K) , (3.6.15)

for x ≥ L, DICM (x,K,L) =
K

L
PM

E

(

x,
L2

K

)

= CM
E

(
L, K

x

L

)
, (3.6.16)

(b) The static hedging consists of:
(i) a long call for x ≤ L,
(ii) for x ≥ L, a long position of K/L puts of strike L2/K.

Proof: We shall give a proof “without mathematics.”

� If the value x of the underlying (at date t) is smaller than the barrier L,
the option is already activated, therefore it is a plain vanilla option and the
equality (3.6.15) is satisfied.

� If the value of the underlying (at date t) is higher than the barrier, we
proceed as follows. Let t be fixed and denote by

TL = inf{s ≥ t ;Ss ≤ L} (3.6.17)

the first passage time after t of the underlying value below the barrier.
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In order to price the option at time t, by relying on the absence of arbitrage
opportunities, we compute the option value at date TL, and we denote by V
this value. In a second step, we compute the value at time t of the claim V ,
to be received at time TL.

At the barrier, the level of the underlying is known and only the remaining
maturity T − TL is unknown. The DICM option is equivalent to a call of
maturity T − TL on an underlying with value L, i.e., CM

E (L, K, T − TL).
The underlying is a martingale, and the volatility is deterministic. Therefore,
the underlying dynamics with starting time TL and starting point L is,
conditionally with respect to the past before TL, log-normally distributed.
The symmetry formula (3.6.14) and the homogeneity of the put price yield

CM
E (L, K, T − TL) =

K

L
PM

E

(

L,
L2

K
, T − TL

)

. (3.6.18)

Now, since the underlying is equal to the barrier, the down-and-in option
values are equal to standard option values, in particular, for any strike k, one
has DIPM (L, k, L) = PM

E (L, k). Therefore, formula (3.6.18) implies that the
option DICM (x, K, L) is equivalent to K/L options DIPM

(
x, L2K−1, L

)
.

At maturity, the terminal payoff of the DIP is strictly positive only if
the underlying value is below L2K−1. Since L ≤ K, the quantity L2K−1 is
smaller than L. Hence, if the DIP is in the money at maturity, the barrier L
was reached with probability 1; therefore, the barrier is no longer relevant in
pricing the option. The DIPM

(
x, L2K−1, L

)
barrier option is thus equal to

the plain vanilla PM
E

(
x, L2K−1

)
for L ≤ K and the result is obtained.

In order to conclude, the symmetry formula is applied again. �

Corollary 3.6.4.2 In an explicit form,

for x≤L, DICM = e−r(T−t)

{

xN
(

d1

(
x

K
, T − t

))

−KN
(

d2

(
x

K
, T−t

))}

,

for x≥L, DICM = e−r(T−t)

{

LN
(

d1

(
L2

Kx
, T − t

))

−Kx

L
N
(

d2

(
L2

Kx
, T − t

))}

,

where d1, d2 are defined in (3.6.4).

Proposition 3.6.4.3 The price of a regular up-and-in put (H ≥ K) on an
underlying without carrying cost is given by:

(i) for x ≥ L, UIPM (x, K, H) = PM
E (x, K),

(ii) for x ≤ H, UIPM (x, K, H) =
K

H
CM

E

(

x,
H2

K

)

.



168 3 Hitting Times: A Mix of Mathematics and Finance

Proposition 3.6.4.4 Let x ≥ L. The regular binary option BinDICM

satisfies

(i)

BinDICM (x, K, L) =
x

L
BinCM

(

L,
Kx

L

)

, (3.6.19)

(ii)

DeltaDICM (x, K, L) = −K

L
BinCM

(

L,
Kx

L

)

= −Ke−rT

L
N
(

d2

(
L2

xK
, T

))

. (3.6.20)

The price of the DIB option is given by

DIBM (x, L) = e−rT
[ x

L
N (d2(L/x , T )) + N (d1(L/x , T ))

]
. (3.6.21)

The binary put value is obtained by proceeding along the same lines.

Proof: By definition, BinDICM (x, K, L) = −∂KDICM (x, K, L). We differ-
entiate the first and third terms of (3.6.16) with respect to K. We get

BinDICM (x, K, L) = − x

L
∂KCM

E

(

L,
Kx

L

)

= − x

L
DeltaPM

(
Kx

L
, L

)

where we have used the symmetry formula for the second equality. It remains
to apply Proposition 3.6.2.1 to obtain (i). By differentiating the two sides of
the first and second terms of equality (3.6.16) w.r.t. x, one gets

DeltaDICM(x, K, L) =
K

L
DeltaPM

(

x,
L2

K

)

=
K

L
DeltaPM

(
Kx

L
, L

)

where we have used the homogeneity property of degree 0 for the last equality,
hence (ii) is obtained using Proposition 3.6.2.1 again. The payoff of the DIB
option is equal to 1 if the barrier is reached before time T , and, using

{TL ≤ T} = {TL ≤ T, ST > L} ∪ {ST ≤ L},

we obtain

DIBM (x, L) = BinDICM (x, L, L) + BinPM (x, L)

=
x

L
BinCM (L, x) + BinPM (x, L)

= e−rT

{
x

L
N
(

d2

(
L

x
, T

))

+ N
(

d1

(
L

x
, T

))}

.

One can check that the value of the DIB is smaller than 1. �
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Hedge of a Regular Down-and-In Call Option

In this section, we do not write the time argument in di(x, T ). A static hedge
for a DIC regular option consists in holding K/L puts as long as the underlying
value remains above the barrier, and a standard call after the barrier is crossed.
At the barrier, the put-call symmetry implies the continuity of the price. This
is not the case for the hedge ratio, which admits a right limit given from
(3.6.20) by

Δ+DICM (L, K, L) = −Ke−rT

L
N
(
d2(LK−1)

)

whereas, from (3.6.15) the left limit is

Δ−DICM (L, K, L) = DeltaCM (L, K) = e−rTN
(
d1(LK−1)

)
.

Hence, the Delta is not continuous at the barrier and admits a negative jump
equal to minus the discounted probability that the underlying with starting
point K reaches the barrier before T : indeed from (3.6.21)

[Δ+ − Δ−]DICM (L, K, L) = −Ke−rT

L
N
(
d2(LK−1)

)
− e−rTN

(
d1(LK−1)

)

= −DIBM (K, L) .

The absolute value of the jump is smaller than 1.

3.6.5 Mathematical Results Deduced from the Previous Approach

In this section, we do not write the time argument T in di(x, T ). We consider
a martingale (St, t ≥ 0) with deterministic volatility σ = (σ(t), t ≥ 0) which
represents the price of an asset without carrying costs under the risk neutral
probability Q, that is

St = x exp
(∫ t

0

σ(s)dWs −
1
2

∫ t

0

σ2(s)ds

)

. (3.6.22)

A Result on Change of Probability

In a first step, we translate the symmetry formula in terms of a change of
probability: equality (3.6.14) reads for any K,

EQ((ST − K)+) = EQ((x − KST /x)+) .

We note that if X and Y are positive random variables with density, satisfying
E((X − K)+) = E((Y − K)+) for any K ≥ 0, then X

law= Y . Therefore, from

EQ((ST − K)+) = EQ((x − KST /x)+) = EQ

(
ST

x

(
x2

ST
− K

)+
)
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it follows that the law of ST under Q is equal to the law of x2/ST under Q̂,
where Q̂|FT

= ST

x Q|FT
.

One can also obtain the same result using Cameron-Martin’s relationship.

Exercise 3.6.5.1 Let X be a integrable random variable with density ϕ such
that E(f(X)) = E(Xf(1/X)) for any bounded function f .

Prove that ϕ(x) = 1
x2 ϕ( 1

x ). Check that the density of X = eBT −T/2

satisfies this equality.
Hint: Consider ξ(s) : = E(Xs) for s ∈ C, which satisfies ξ(s) = ξ(1 − s). �

Joint Law of (mS
T , ST )

Here, we assume that x ≥ L. Let us introduce the first passage time below
the barrier:

TL = inf{t : St ≤ L}
where we set inf(∅) = +∞ and note that

{TL ≤ T} =
{

inf
0≤t≤T

St ≤ L} = {mS
T ≤ L

}

,

where mS
t = infs≤t Ss. The prices at time 0 for barrier and binary options are

given as:

DICM (x, K, L) = e−rT
EQ[1{TL≤T}(ST − K)+] ,

BinDICM (x, K, L) = e−rT
Q[{TL ≤ T} ∩ {ST ≥ K}]

= e−rT
Q[{mS

T ≤ L} ∩ {ST ≥ K}] .

Proposition 3.6.5.2 Let (St, t ≥ 0) be a martingale with the following
dynamics

dSt = Stσ(t)dWt , S0 = x

where W is a Q-Brownian motion, with initial value x with x ≥ L.
For any K ≥ L, the law of the pair (mS

T , ST ) is given by

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

ST ≥ Kx2

L2

)

=
x

L
N
(

d2

(
L2

Kx

))

and the law of the minimum mS
T = inft≤T St:

Q(mS
T ≤ L) =

x

L
N
(
d2(Lx−1)

)
+ N

(
d1(Lx−1)

)
,

where d1, d2 are given by (3.6.7).

Proof: Formula (3.6.19) leads to

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

L
ST

x
≥ K

L
x

)

=
x

L
Q

(

ST ≥ Kx2

L2

)

.

The law of the minimum follows, taking K = L. �
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The equality

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

ST ≥ Kx2

L2

)

corresponds to the reflection principle obtained for Brownian motion. Indeed,
writing, for x = 1, St = eσXt where Xt = Wt − νt and ν = σ/2 and
taking the logarithm, when σ is constant, one obtains the formula given in
Exercise 3.2.1.3 for the drifted Brownian motion:

P(WT − νT ≥ α, inf
0≤t≤T

(Wt − νt) ≤ β) = e2νβ
P(WT − νT ≥ α − 2β) .

By considering current prices, we shall obtain the conditional distribution
(with respect to the information at time t) of the underlying value at
time T and its minimum on the time interval (t, T ). Let St = y and let
mS

t = infs≤t Ss = m (with m ≤ y) be the minimum over the time interval
[0, t]. In the case m ≤ L, the barrier has been reached during the time
interval [0, t], whereas the barrier has not been reached when m > L. In
the second case, the two events (inf0≤u≤T Su ≤ L) and (inft≤u≤T Su ≤ L) are
identical.

The equality (3.6.19) concerning barrier options

BinDICM (St, K, L, T − t) =
St

L
BinCM

(

L,
KSt

L
, T − t

)

can be written, on the set {TL ≥ t}, as follows:

Q({TL ≤ T} ∩ {ST ≥ K}|Ft) = Q({ inf
t≤u≤T

Su ≤ L} ∩ {ST ≥ K}|Ft)

=
St

L
Q

(

ST
L

St
≥ KSt

L
|Ft

)

=
St

L
N
(

d2

(
L2

KSt
, T − t

))

. (3.6.23)

The equality (3.6.23) gives the conditional distribution function of the pair
(mS [t, T ], ST ) where mS [t, T ] = mint≤s≤T Ss, on the set {TL ≥ t}, as a
differentiable function.

Hence, the conditional law of the pair (mS [t, T ], ST ) with respect to Ft

admits a density f(h, k) on the set 0 < h < k which can be computed from
the density p of a log-normal random variable with expectation 1 and with
variance Σ2

t,T =
∫ T

t
σ2(s)ds,

p(y) =
1

yΣt,T

√
2π

exp

(

− 1
2Σ2

t,T

(

ln(y) − 1
2
Σ2

t,T

)2
)

. (3.6.24)

Indeed,
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Q(mS [t, T ] ≤ L, ST ≥ K|St = x) =
x

L
N
(

d2

(
L2

Kx
, T − t

))

=
x

L

1√
2π

∫ d2(L
2/(Kx), ,T−t)

−∞
e−u2/2du =

x

L

∫ +∞

Kx/L2
p(y)dy .

Hence, we obtain the following proposition:

Proposition 3.6.5.3 Let dSt = σ(t)StdBt. The conditional density f of the
pair (inft≤u≤T Su, ST ) is given, on the set {0 < h < k}, by

Q( inf
t≤u≤T

Su ∈ dh, ST ∈ dk|St = x)

=
(

−3x2

h4
p(kxh−2) − 2kx3

h6
p′(kxh−2)

)

dh dk .

where p is defined in (3.6.24).

Comment 3.6.5.4 In the case dSt = σ(t)StdBt, the law of (ST , sups≤T Ss)
can also be obtained from results on BM. Indeed,

Ss = S0 exp
(∫ s

0

σ(u)dBu − 1
2

∫ s

0

σ2(u)du

)

can be written using a change of time as

St = S0 exp
(

BΣt −
1
2
Σt

)

where B is a BM and Σ(t) =
∫ t

0
σ2(u)du. The law of (ST , sups≤T Ss) is

deduced from the law of (Bu, sups≤u Bs) where u = ΣT .

3.6.6 Valuation and Hedging of Regular Down-and-In Call
Options: The General Case

Valuation

We shall keep the same notation for options. However under the risk neutral
probability, the dynamics of the underlying are now:

dSt = St ((r − δ)dt + σdWt) , S0 = x . (3.6.25)

A standard method exploiting the martingale framework consists of studying
the associated forward price SF

t = Ste
(r−δ)(T−t). This is a martingale under

the risk-neutral forward probability measure. In this case, it is necessary to
discount the barrier.

We can avoid this problem by noticing that any log-normally distributed
asset is the power of a martingale asset. In what follows, we shall denote by
DICS the price of a DIC option on the underlying S with dynamics given by
equation (3.6.25).
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Lemma 3.6.6.1 Let S be an underlying whose dynamics are given by
(3.6.25) under the risk-neutral probability Q. Then, setting

γ = 1 − 2(r − δ)
σ2

, (3.6.26)

(i) the process Sγ = (Sγ
t , t ≥ 0) is a martingale with dynamics

dSγ
t = Sγ

t σ̂ dWt

where σ̂ = γσ.
(ii) for any positive Borel function f

EQ(f(ST )) = EQ

((
ST

x

)γ

f

(
x2

ST

))

.

Proof: The proof of (i) is obvious. The proof of (ii) was the subject of
Exercise 1.7.3.7 (see also Exercise 3.6.5.1). �

The important fact is that the process Sγ
t = exp(σ̂Wt − 1

2 σ̂2t) is a
martingale, hence we can apply the results of Subsection 3.6.4.

The valuation and the instantaneous replication of the BinDICS on an
underlying S with dynamics (3.6.25), and more generally of a DIC option, are
possible by relying on Lemma 3.6.6.1.

Theorem 3.6.6.2 The price of a regular down-and-in binary option on an
underlying with dynamics (3.6.25) is, for x ≥ L,

BinDICS(x,K,L) =
( x

L

)γ

BinCS

(

L,
Kx

L

)

. (3.6.27)

The price of a regular DIC option is, for x ≥ L,

DICS(x,K,L) =
( x

L

)γ−1

CS
E

(

L,
Kx

L

)

. (3.6.28)

Proof: In the first part of the proof, we assume that γ is positive, so that
the underlying with carrying cost is an increasing function of the underlying
martingale.

It is therefore straightforward to value the binary options:

BinCS(x,K; σ) = BinCM (xγ , Kγ ; σ̂)
BinDICS(x,K,L; σ) = BinDICM (xγ , Kγ , Lγ ; σ̂) ,

where we indicate (when it seems important) the value of the volatility, which
is σ for S and σ̂ for Sγ . The right-hand sides of the last two equations are
known from equation (3.6.19):
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BinDICM (xγ , Kγ , Lγ ; σ̂) =
( x

L

)γ

BinCM

(

Lγ ,

(
Kx

L

)γ

; σ̂
)

=
( x

L

)γ

BinCS

(

L,
Kx

L
; σ
)

. (3.6.29)

Hence, we obtain the equality (3.6.27). Note that, from formulae (3.6.10) and
(3.6.9) (we drop the dependence w.r.t. σ)

BinCS

(

L,
Kx

L

)

= −e−μT DeltaPS

(
Kx

L
, Le2μT

)

= −e−μT DeltaPS

(

x,
(LeμT )2

K

)

.

By taking the integral of this option’s value between K and +∞, the price
DICS is obtained

DICS(x, K, L) =
∫ ∞

K

BinDICS(x, k, L)dk =
( x

L

)γ
∫ ∞

K

BinCS
(
L, k

x

L

)
dk

=
( x

L

)γ−1

CS
E

(

L,
Kx

L

)

.

By relying on the put-call symmetry relationship of Proposition 3.6.1.1, and
on the homogeneity property (3.6.8), the equality

DICS(x, L, K) =
( x

L

)γ−1 K

L
PS

E

(

x,
L2

K

)

is obtained.
When γ is negative, a DIC binary option on the underlying becomes a

UIP binary option on an underlying which is a martingale. In particular,

BinDICS(x, K, L; σ) = BinUIPM (xγ , Kγ , Lγ ; σ̂) ,

and

BinPM

(

Lγ ,

(
Kx

L

)γ

; σ̂
)

= BinCS

(

L,
Kx

L
; σ
)

because the payoffs of the two options are the same. From Proposition 3.6.4.3
corresponding to UIP options, we obtain

BinUIPM (xγ , Kγ , Hγ σ̂) =
( x

H

)γ

BinPM

(

Hγ ,

(
Kx

H

)γ

; σ̂
)

=
( x

H

)γ

BinCS

(

H,
Kx

H
; σ
)

.

�



3.6 Barrier Options 175

Remark 3.6.6.3 Let us remark that, when μ = 0 (i.e., γ = 1) the equality
(3.6.28) is formula (3.6.16). The presence of carrying costs induces us to
consider a forward boundary, already introduced by Carr and Chou [148], in
order to give two-sided bounds for the option’s price. Indeed, if μ is positive
and (x/L)γ−1 ≤ 1, the right-hand side gives Carr’s upper bound, while if μ is
negative, the lower bound is obtained.

Therefore, the smaller 2μ
σ2 , the more accurate is Carr’s approximation. This

is also the case when x is close to L, because at the boundary, the two formulae
are the same.

Hedging of the Regular Down-and-In Call Option in the
General Case

As for the case of a regular DIC option without carrying costs, the Delta is
discontinuous at the boundary. By relying on the above developments and on
equation (3.6.29), the following equation is obtained

Δ+DICS(L, K, L) =
γ − 1

L
CS

E(L, K) − K

L
BinCS(L, K)

=
γ

L
CS

E(L, K) − DeltaCS(L, K) .

Thus,

(Δ+ − Δ−)DICS(L, K, L) =
γ

L
CS

E(L, K) − 2 DeltaCS(L, K) .

However, the absolute value of this quantity is not always smaller than 1, as
it was in the case without carrying costs. Therefore, depending on the level
of the carrying costs, the discontinuity can be either positive or negative.

Exercise 3.6.6.4 Recover (ii) with the help of formula (3.2.4) which ex-
presses a simple absolute continuity relationship between Brownian motions
with opposite drifts �

Exercise 3.6.6.5 A power put option (see Exercise 2.3.1.5) is an option with
payoff Sα

T (K−ST )+, its price is denoted PowPα(x,K). Prove that there exists
γ such that

DICS(x,K,L) =
1

Lγ
PowPγ−1(Kx, L2) .

Hint: From (ii) in Lemma 3.6.6.1, DICS(x,K,L) = 1
Lγ E(Sγ

T ( L2

ST
− K)+). �

3.6.7 Valuation and Hedging of Reverse Barrier Options

Valuation of the Down-and-In Bond

The payoff of a down-and-in bond (DIB) is one monetary unit at maturity,
if the barrier is reached before maturity. It is straightforward to obtain these
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prices by relying on BinDIC(x, L, L) prices and on a standard binary put.
Indeed, the payoff of the BinDIC option is one monetary unit if the underlying
value is greater than L and if the barrier is hit. The payoff of the standard
binary put is also 1 if the underlying value is below the barrier at maturity.
Being long on these two options generates a payoff of 1 if the barrier was
reached before maturity. Hence,

for x ≥ L,DIB(x, L) = BinP(x, L) + BinDIC(x, L, L)
for x ≤ L,DIB(x, L) = B(0, T ) .

By relying on equations (3.6.10, 3.6.11, 3.6.28) and on Black and Scholes’
formula, we obtain, for x ≥ L,

DIB(x, L) = BinPS(x, L) +
( x

L

)γ

BinCS(L, x)

= e−rT

[

N
(

d1

(
L

xeμT

))

+
xγ

Lγ
N
(

d2

(
LeμT

x

))]

. (3.6.30)

Example 3.6.7.1 Prove the following relationships:

DICS(x, L, L) + L BinDICS(x, L, L)

=
( x

L

)γ−1

e−μT
[
PS

E (x, Le2μT ) − L
x

L
DeltaPS

E (x, Le2μT )
]

=
( x

L

)γ−1

eμT L BinPS(x, Le2μT ) ,

DIB(x, L) = BinPS(x, L) +
( x

L

)γ−1

eμT BinPS(x, Le2μT )

− 1
L

DICS(x, L, L) . (3.6.31)

Hint: Use formulae (3.6.12) and (3.6.28).

Valuation of a Reverse DIC, Case K < L

Let us study the reverse DIC option, with strike smaller than the barrier,
that is K ≤ L. Depending on the value of the underlying with respect to the
barrier at maturity, the payoff of such an option can be decomposed. Let us
consider the case where x ≥ L.

• The option with a payoff (ST − K)+ if the underlying value is higher
than L at maturity and if the barrier was reached can be hedged with a
DIC(x, L, L) with payoff (ST − L) at maturity if the barrier was reached
and by (L−K) BinDIC(x, L, L) options, with a payoff L−K if the barrier
was reached.

• The option with a payoff (ST − K)+ if the underlying value is between
K and L at maturity (which means that the barrier was reached) can be
hedged by the following portfolio:
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−PE(x, L) + PE(x, K) + (L − K)DIB(x, L) .

Indeed the corresponding payoff is

(ST − K)+1{K≤ST ≤L} = (ST − L − K + L)1{K≤ST ≤L}

= (ST − L)1{K≤ST ≤L} + (L − K)1{K≤ST ≤L}

= (ST − L)1{ST ≤L} − (ST − L)1{ST ≤K}

+ (L − K)1{ST ≤L} − (L − K)1{ST ≤K}

= −(L − ST )+ + (K − ST )+ + (L − K)1{ST ≤L} .

This very general formula is a simple consequence of the no arbitrage
principle and can be obtained without specific assumptions concerning the
underlying dynamics, unlike the DIB valuation formula.

The hedging of such an option requires plain vanilla options, regular DIC
options with the barrier equal to the strike, and DIB(x, L) options, and is not
straightforward. The difficulty corresponds to the hedging of the standard
binary option.

In the particular case of a deterministic volatility, by relying on (3.6.31),

DICrev(x, K, L) =
(

K

L
− 1

)

DIC(x, L, L) − PE(x, L) + PE(x, K)

+ (L − K)BinP(x, L)

+ (L − K)
( x

L

)γ−1

eμT BinP(x, Le2μT ) .

3.6.8 The Emerging Calls Method

Another way to understand barrier options is the study of the first passage
time of the underlying at the barrier, and of the prices of the calls at this first
passage time. This corresponds to integration of the calls with respect to the
hitting time distribution.

Let us assume that the initial underlying value x is higher than the barrier,
i.e., x > L. We denote, as usual,

TL = inf{t : St ≤ L}

the hitting time of the barrier L.
The term erT DIB(x, L, T ) is equal to the probability that the underlying

reaches the barrier before maturity T . Hence, its derivative, i.e., the quantity
fL(x, t) = ∂T [erT DIB(x, L, T )]T=t is the density Q(TL ∈ dt)/dt, and the
following decomposition of the barrier option is obtained:

DIC(x, K, L, T ) =
∫ T

0

CE(L, K, T − τ)e−rτfL(x, τ)dτ . (3.6.32)
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The density fL is obtained by differentiating erT DIB with respect to T in
(3.6.30). Hence

fL(x, t) =
h√
2πt3

exp(− 1
2t

(h − νt)2) ,

where
h =

1
σ

ln
( x

L

)
, ν =

μ

σ
− σ

2
.

(See Subsection 3.2.2 for a different proof.)

3.6.9 Closed Form Expressions

Here, we give the previous results in a closed form.
� For K ≤ L,

DICS(L, K) = S0

(
N (z1) −N (z2) +

(
L

x

) 2r

σ2
+ 1

N (z3)
)

− Ke−rT
(
N (z4) −N (z5) +

(
L

x

) 2r

σ2
− 1

N (z6)
)

where

z1 =
1

σ
√

T

((

r +
1
2
σ2

)

T + ln
( x

K

))

, z4 = z1 − σ
√

T

z2 =
1

σ
√

T

((

r +
1
2
σ2

)

T + ln
( x

L

))

, z5 = z2 − σ
√

T

z3 =
1

σ
√

T

((

r +
1
2
σ2

)

T − ln
( x

L

))

, z6 = z3 − σ
√

T .

� In the case K ≥ L, we find that

DICS(L, K) = x

(
L

x

) 2r

σ2
+ 1

N (z7) − Ke−rT

(
L

x

) 2r

σ2
− 1

N (z8)

where

z7 =
1

σ
√

T

(

ln(L2/xK) +
(

r +
1
2
σ2

)

T

)

z8 = z7 − σ
√

T .
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3.7 Lookback Options

A lookback option on the minimum is an option to buy at maturity T
the underlying S at a price equal to K times the minimum value mS

T of
the underlying during the maturity period (here, mS

T = min0≤u≤T Su). The
terminal payoff is (ST −KmS

T )+. We assume in this section that the dynamics
of the underlying asset value under the risk-adjusted probability is given in a
Garman-Kohlhagen model by equation (3.6.25).

3.7.1 Using Binary Options

The BinDICS price formula can be used in order to value and hedge options
on a minimum. Let MinCS(x, K) be the price of the lookback option. The
terminal payoff can be written

(ST − KmS
T )+ =

∫ +∞

0

1{ST ≥k≥KmS
T } dk .

The expectation of this quantity can be expressed in terms of barrier options:

MinCS(x, K) = e−rT
EQ((ST − KmS

T )+) =
∫ +∞

0

BinDICS

(

x, k,
k

K

)

dk

=
∫ xK

0

BinDICS

(

x, k,
k

K

)

dk +
∫ ∞

xK

BinDICS

(

x, k,
k

K

)

dk

= I1 + I2 .

In the second integral I2, since x < k/K, the BinDIC is activated at time 0
and BinDICS

(
x, k, k

K

)
= BinCS(x, k), hence

I2 = e−rT

∫ ∞

xK

EQ(1{ST ≥k})dk = e−rT
EQ((ST − xK)+) = CS

E(x, xK) .

The first term I1 is more difficult to compute than I2. From Theorem 3.6.6.2,
we obtain, for k < Kx,

BinDICS

(

x, k,
k

K

)

=
(

xK

k

)γ

BinCS

(
k

K
, xK

)

,

where γ is the real number such that (Sγ
t , t ≥ 0) is a martingale, i.e.,

St = xM
1/γ
t where M is a martingale with initial value 1. From the identity

BinCS(x, K) = e−rT
Q(xM

1/γ
T > K), we get:

∫ xK

0

BinDICS

(

x, k,
k

K

)

dk =
∫ xK

0

(
xK

k

)γ

BinCS

(
k

K
, xK

)

dk

= e−rT
EQ

(∫ xK

0

(
xK

k

)γ

1{kM
1/γ
T >xK2}dk

)
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= e−rT (xK)γ
EQ

(∫ ∞

0

k−γ1{xK>k>xK2M
−1/γ
T }dk

)

.

For γ �= 1, the integral can be computed as follows:
∫ xK

0

BinDICS

(

x, k,
k

K

)

dk

= e−rT (xK)γ

1 − γ
EQ

[(
(xK)1−γ − (xK2M

−1/γ
T )1−γ

)+
]

= e−rT xK

1 − γ
EQ

[(
1 − K1−γM

−(1−γ)/γ
T

)+
]

= e−rT xK

1 − γ
EQ

⎡

⎣

(

1 − K1−γSγ−1
T

xγ−1

)+
⎤

⎦ .

Using Itô’s formula and recalling that 1 − γ = 2μ
σ2 , we have

d(Sγ−1
t ) = Sγ−1

t

(

μdt − 2μ

σ
dWt

)

hence the following formula is derived

MinCS(x, K) = x

[

CS
E(1, K; σ) +

Kσ2

2μ
PS

E

(

K1−γ , 1;
2μ

σ

)]

where CS
E(x, K; σ) (resp. PS

E (x, K; σ)) is the call (resp. put) value on an
underlying with carrying cost μ and volatility σ with strike K. The price
at date t is MinCS(St, KmS

t ; T − t) where mS
t = mins≤t Ss.

For γ = 1 we obtain

MinCS(x, K) = CS
E(x, xK) + xKEQ

[(

ln
ST

xK

)+
]

.

Let CS
ln(x, K) be the price of an option with payoff (ln(ST /x)− lnK)+, then

MinCS(x, K) = CS
E(x, xK) + xKCS

ln(x, xK) .

3.7.2 Traditional Approach

The payoff for a standard lookback call option is ST − mS
T . Let us remark

that the quantity ST − mS
T is positive. The price of such an option is

MinCS(x, 1; T ) = e−rT
EQ(ST − mS

T )

whereas MinCS(x, 1; T − t), the price at time t, is given by
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MinCS(x, 1; T − t) = e−r(T−t)
EQ(ST − mS

T |Ft) .

We now forget the superscript S in order to simplify the notation. The relation
mT = mt ∧ mt,T , with mt,T = inf{Su, u ∈ [t, T ]} leads to

e−rtMinCS(x, 1; T − t) = e−rT
EQ(ST |Ft) − e−rT

EQ(mt ∧ mt,T |Ft) .

Using the Q-martingale property of the process (e−μtSt, t ≥ 0), the first term
is e−rte−δ(T−t)St. As far as the second term is concerned, the expectation is
decomposed as follows:

EQ(mt ∧ mt,T |Ft) = EQ(mt1{mt<mt,T }|Ft) + EQ(mt,T 1{mt,T <mt}|Ft) .

Using measurability and independence arguments, we obtain

EQ(mt1{mt<mt,T }|Ft) = mt Φ(T − t,mt, St)

where Φ(u,m, x) = Q(m < xmY
u ), with Y

law= (S/S0). An explicit expression
for Φ is obtained from the results concerning the law of the minimum of the
drifted Brownian motion or by relying on barrier options results:

Φ(u,m, x) = N (d − σ
√

u) −
(

x

m

)1−2μ/σ2

N
(

−d +
2μ

σ

√
u

)

where

d = d1

(
xeru

m

)

=
ln
( x

m

)
+ (μ + σ2/2)u

σ
√

u
.

The quantity
EQ(mt,T 1{mt,T <mt}|Ft)

can be written Ψ(T − t,mt, St) with Ψ(u,m, x) = EQ(xmu1{xmu<m}) which
can be computed from the law of mu. The following proposition (obtained
also in the previous section, setting K = 1) is derived:

Proposition 3.7.2.1 The lookback option price is

MinS(St, 1; T − t) = Ste
−δ(T−t)N (dt) − e−r(T−t)mt N

(
dt − σ

√
T − t

)

+ e−r(T−t) Stσ
2

2μ

⎡

⎢
⎣

(
mt

St

)2μ

σ2
N
(

−dt +
2μ

√
T − t

σ

)

− er(T−t)N (−dt)

⎤

⎥
⎦

with dt =
1

σ
√

T − t
ln
(

St

mt
+
(

μ +
1
2
σ2

)

(T − t)
)

and mt = infs≤t Ss.

Comment 3.7.2.2 Other results on lookback options are presented in Conze
and Viswanathan [193] and He et al. [426]. A PDE approach for European
options whose terminal payoff involves path-dependent lookback variables is
presented in Xu and Kwok [853]. See also Elliott and Kopp [317] p. 182–183
for the case δ = 0 and Musiela and Rutkowski [661] p. 214–218 and Shreve
[795], p. 314–320.
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3.8 Double-barrier Options

The payoff of a double-barrier option is (ST −K)+ if the underlying asset has
remained in the range [L, H] for all times between 0 and maturity, otherwise,
the payoff is null. Its price is

Cdb(x, K, L, H, T ) : = EQ(e−rT (ST − K)+1{T∗>T})

where T ∗ : = TH(S) ∧ TL(S). We give the computation of

EQ(e−rT (ST − K)+1{T∗<T}) = EQ(e−rT (ST − K)+) − Cdb(x, K, L, H, T ) ,

in the case where the risk-neutral dynamics of S are

dSt = St(rdt + σdWt) ;

the price of the double barrier will follow. With a change of probability the
quantity EQ(e−rT (ST − K)+1{T∗<T}) can be written as

e−(r+ 1
2 ν2)T

EQ((xeσBT − K)+eνBT 1{T∗<T}) ,

where B is a generic BM. The explicit computation can be performed using
the law of the pair (BT , T ∗) which may be obtained from the two-sided series
(3.5.2).

Another approach is to proceed as in Geman and Yor [384] where the
Laplace transform Φ of ϕ(t) = EQ[eνBt(xeσBt − K)+1{T∗<t}] is computed.
From Markov’s property

Φ(λ) =
∫ ∞

0

exp
(

−λ2t

2

)

ϕ(t) dt = EQ

(∫ ∞

T∗
exp

(

−λ2t

2

)

ψ(Bt) dt

)

= EQ

(

exp
(

−λ2T ∗

2

)∫ ∞

0

exp
(

−λ2t

2

)

ψ(B̃t + BT∗) dt

)

where ψ(y) = eνy(xeσy − K)+ and B̃ = (B̃t = Bt+T∗ − BT∗ ; t ≥ 0)
is a Brownian motion independent of (Bs, s ≤ T ∗). The computation of
the expectation can be simplified by splitting the expression into two parts
depending on the stopping time values:

Φ(λ) = Ψ(h)EQ

[
e−λ2T∗/21{T∗=Th}

]
+ Ψ(�)EQ

[
e−λ2T∗/21{T∗=T�}

]
,

where h = ln(H/x)σ−1, � = ln(L/x)σ−1 and, from Exercise 1.4.1.7

Ψ(z) = E

∫ ∞

0

e−λ2t/2ψ(B̃t + z)dt =
1
λ

∫ ∞

−∞
e−λ|z−y|ψ(y)dy .

We have obtained an explicit form for
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EQ

[

exp
(

−λ2T ∗

2

)

1{T∗=Th}

]

in the proof of Proposition 3.5.1.3; we now present the computation of Ψ(x).
� Let K ∈ [L, H] and let k = ln(K/x)σ−1, � = ln(L/x)σ−1. For values of λ
such that ν + σ − λ < 0, and by relying on the resolvent:

Ψ(h) = g(h, λ)[Kg(h, ν − λ) − xg(h, σ + ν − λ)]
+ g(−h, λ)

[
x(g(h, σ + ν + λ) − g(k, σ + ν + λ))

− K(g(h, ν + λ) − g(k, ν + λ))
]

with g(u, α) = 1
ueuα and

Ψ(�) =
eλ�

λ
[Kg(k, ν − λ) − xg(k, σ + ν − λ)] .

� For K < L, and z = � or z = k, we find

Ψ(z) = g(h, λ)
(
Kg(h, ν − λ) − xg(z, σ + ν − λ)

)

+ g(−h, λ)
(
x (g(h, σ + m + λ) − g(z, σ + ν + λ))

− K (g(h, ν + λ) − g(z, ν + λ))
)

.

The Laplace transform must now be inverted.
The main papers concerning double-barrier options are those of Kunitomo

and Ikeda [551], Geman and Yor [384], Goldman et al. [399], Pelsser [704], Hui
et al. [600], Schröder [768] and Davydov and Linetsky [226].

3.9 Other Options

We give a few examples of other traded options. We assume as previously that

dSt = St((r − δ)dt + σdWt), S0 = x

under the risk-neutral probability Q and we denote by Ta = Ta(S) the first
time when level a is reached by the process S.

3.9.1 Options Involving a Hitting Time

Digital Options

The asset-or-nothing options depend on an exercise price K. The terminal
payoff is equal to the value of the underlying, if it is in the money at maturity
and 0 otherwise, i.e., ST 1{ST ≥K}. The strike price plays the rôle of a barrier.
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The value of such an option is e−rT
EQ(ST 1{ST ≥K}) and is straightforward to

evaluate. Indeed, this is the first term in the Black and Scholes formula (2.3.3).

These options can also have an up-and-in feature which depends on a
barrier. The price is e−rT

EQ(ST 1{ST ≥K}1{TL>T}). They are used for hedging
barrier options.

Barrier Forward-start or Early-ending Options

In this case, the barrier is activated at time T ′, with T ′ < T where T is the
maturity. In the case of an up-and-out forward-start call option, the payoff
is (ST − K)+1{T T ′

H ≥T} with TT ′

H = inf{u ≥ T ′ : Su ≥ H}. For early-ending
options, the barrier is active only until T ′.

3.9.2 Boost Options

The BOOST (Banking On Overall Stability) options were introduced in the
market by Société Générale in 1994. They are characterized by two levels, a
and b, with a ≤ b. When the boundary of a given range [a, b] is reached for
the first time, the BOOST option terminates, and its owner receives a payoff
equal to a daily amount multiplied by the number of days during which the
underlying asset remained in the range before the first exit. A BOOST option
is, most of the time, a strictly decreasing function of the volatility; therefore
it enables its owner to bet on a decrease in the volatility.

One-level

The one-level BOOST pays, at maturity, an amount equal to the time that
the underlying asset remains continuously above a level a. Therefore, its price
is

EQ[e−rT (T ∧ Ta)] = e−rT T Q(T < Ta) + e−rT
EQ(Ta1{Ta<T}) .

Assume that a < x and let us introduce, as in Subsection 3.2.4,

Ψ(λ) : = E(e−λTa(S)1{Ta(S)<T}) = e(ν−γ)αN
(

α − γT√
T

)

+e(ν+γ)αN
(

α + γT√
T

)

with ν = (r − δ)(σ)−1 − σ/2, γ2 = 2λ + ν2, α = σ−1 ln(a/x).

Then E(Ta1{Ta<T}) = −Ψ ′(0), i.e.,

E(Ta1{Ta<T}) = −α

ν

[

N
(

−νT + α√
T

)

− e2ναN
(

νT + α√
T

)]

+
√

T

ν
√

2π

[

exp
[

− 1
2T

(νT − α)2
]

− e2να exp
[

− 1
2T

(νT + α)2
]]
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and

Q(T < Ta) = 1 − Ψ(0) = N
(
−α + νT√

T

)

− e2ναN
(

α + νT√
T

)

.

Corridor

The BOOST option value Bcor(S0, T ) is given by the expected discounted
payoff,

Bcor(S0, T ) : = EQ(e−rT∗
T ∗1{T∗<T} + e−rT T1{T∗≥T}) (3.9.1)

with
T ∗ = Ta(S) ∧ Tb(S) .

We suppose that a < S0 < b. The valuation problem reduces to the knowledge
of the law of T ∗.

Let us consider a perpetual corridor BOOST with payment at hit.
Its price is given by (3.9.1) with T = ∞, i.e.,

Bcor(S0,∞) : = EQ(e−rT∗
T ∗) .

The problem reduces to the computation of Ψ(λ) = EQ(exp(−1
2λ2T ∗)).

Indeed, the computation of EQ(e−rT∗
T ∗) will follow after differentiation with

respect to λ: EQ(e−rT∗
T ∗) = −Ψ ′(

√
2r)√

2r
. Let us remark that

T ∗ = inf{t|Xt ≤ α or Xt ≥ β} : = T ∗(X)

where Xt = νt+Bt = ( r−δ
σ − σ

2 )t+Bt . Using the results obtained in Subsection
3.5.2, we get, in the case a

x = x
b ,

EQ(e−rT∗
) =

b

x

xθ + bθ

xθ−2 + bθ−2

with

θ = −2ν

σ
= −2(r − δ)

σ2
+ 1 .

It follows that

E(T ∗e−rT∗
) =

2b (bx)θ−2

xσ2 [xθ−2 + bθ−2]2
(x2 − b2) ln

x

b
.

Comments 3.9.2.1 (a) Many other examples are presented in Haug [425],
Kat [516], Pechtl [703], and Zhang [872].

(b) Crucial hedging problems are not considered here: we refer to Bhansali
[84] and Taleb [818].
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(c) BOOST options have been studied by Douady [263] and Leblanc [572].
Path-dependent options with payoff of the form

(∫ T

0

1{Ss≥a}ds − K

)+

1{MS
T ≤b}

are studied in Fujita et al. [367].

3.9.3 Exponential Down Barrier Option

We apply the results given in Subsections 3.3.1 and 3.2.2 to obtain the price of
an option with a deterministic exponential barrier. As usual, we work in the
Black and Scholes model where the dynamics of the underlying stock value in
the risk-neutral economy are:

dSt = St(rdt + σdBt), S0 = x

where the risk-free rate r and the volatility σ are constant and where B is a
Brownian motion under the risk-neutral probability Q. The barrier b(t) is a
deterministic function of time

b(t) = z exp(ηt),

where z < x, η > 0 and zeηT < K. The first hitting time of the barrier is the
time τ

τ = inf{t ≥ 0, St ≤ b(t)} = inf{t ≥ 0, Ŝt ≤ z}

where Ŝt = Ste
−ηt. The dynamics of Ŝ are:

dŜt = Ŝt((r − η)dt + σdBt), Ŝ0 = x .

We assume that the payoff (K − Sτ )+ = (K − Sτ ) is paid at hit, i.e., at time
τ in the case τ < T and that, if T ≤ τ , the payoff is (K − ST )+, paid at
T , where K is the strike price. Therefore, the value of this down-paid at hit
option with exponential barrier is given by:

P η,z
expbar(S0, T )

= EQ((K − Sτ )+e−rτ1{τ<T}) + e−rT
EQ((K − ST )+1{τ≥T})

= EQ((K − Sτ )e−rτ1{τ<T}) + e(η−r)T
EQ((e−ηT K − ŜT )+1{τ≥T})

=
∫ T

0

(K − b(t))e−rt
Q(τ ∈ dt)

+ e(η−r)T

∫ Ke−ηT

z

(Ke−ηT − y) Q(ŜT ∈ dy, m̂T > z)

where m̂T is the minimum



3.9 Other Options 187

m̂T = inf
u∈[0,T ]

Ŝu .

By relying on the dynamics of the process Ŝ and on Subsections 3.2.2 and
3.3.1 the two densities are known: setting

α =
ln(z/x)

σ
, and ν =

r − η

σ
− σ

2
,

we obtain

Q(τ ∈ dt) = |α| 1√
2πt3

exp
(

− 1
2t

(α − νt)2
)

dt

and, for y > z, x > z,

Q(ŜT ∈ dy, mT > z) = − d

dy
Q(ŜT ≥ y,mT > z) .

Hence, setting β(y) = ln(y/x)
σ

Q(ŜT ∈ dy, mT > z)/dy =

1
σy

√
2πT

(

exp
(

− (−β(y) + νT )2

2T

)

− e2να exp
(

− (−β(y) + 2α + νT )2

2T

))

The value of the option follows.

Comments 3.9.3.1 By assuming that the exercise boundary of the Amer-
ican put (see � Section 3.11) written on a non-dividend-paying stock is
an exponential function of time to expiration, Omberg [686] obtains an
approximation of the put price PA. The author makes the assumption that
the exercise boundary for an American put can be approximated by

bp,z,η(t) = z∗ exp(η∗t), t ∈]0, T ]

where the two unknowns z∗ = bp(0) and η∗ are positive and constant. Each
function of this form corresponds to a possible exercise policy which is defined
as follows: to exercise the put as soon as the underlying process S reaches bp,z,η

before maturity, that is to say at time τ if τ < T , or at maturity if the put is
in the money and if τ � T . In this context, the put option value is given by
means of the previous computation:

PA(S0, T ) = sup
z,η

P η,z
expbar(S0, T )

and z∗, η∗ are the values of (z, η) which maximise this expression. By
simplifying further the option value, Omberg [686] obtains a weighted sum
of cumulative functions of the standard Gaussian law.

It is worthwhile mentioning that the above approximation is in reality
a lower bound for the put value, since an exponential exercise boundary is
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in general suboptimal. Indeed, for example, at maturity, it is known that the
exercise boundary is a non-differentiable function of time (the slope is infinite).
As shown in equation (3.11.7), the approximation of the exercise boundary
near to maturity is different from an exponential function of time. However,
as shown by Omberg, the level of accuracy obtained with this approximation
formula is high.

3.10 A Structural Approach to Default Risk

Credit risk, or default risk, concerns the case where a promised payoff is not
delivered if some event (the default) happens before the delivery date. The
default occurs at time τ where τ is a random variable.

In the structural approach, a default event is specified in terms of the
evolution of the firm’s assets. Given the value of the assets of the firm, the
aim is to deduce the value of corporate debt.

3.10.1 Merton’s Model

In this approach – pioneered by Merton [642] – the default occurs if the assets
of the firm are insufficient to meet payments on debt at maturity. The firm
is financed by the issue of bonds, and the face value L of the bonds must be
paid at time T . At time T , the bondholders will receive min(VT , L) where L
is the debt value and VT the value of the firm. Thus, writing

min(VT , L) = L − (L − VT )+

we are essentially dealing with an option pricing problem. Merton assumes
that the risk-neutral dynamics of the value of the firm are

dVt = Vt(rdt + σdBt), V0 = v > L ,

where r is the (constant) risk-free interest rate, and σ is the constant volatility.
In that context, the contingent claim pricing methodology can be used: the
market where (Vt, t ≥ 0) is a tradeable asset is complete and arbitrage free,
the equivalent martingale measure is the historical one, hence the value of the
corporate bonds at time t is

E(e−r(T−t) min(VT , L)|Ft) = Le−r(T−t) − PE(t, Vt, L)

where PE(t, x, L) is the value at time t of a put option on the underlying V
with strike L and maturity T .

We denote by P (t, T ) = e−r(T−t) the value of a default-free zero-coupon
and by D(t, T ) the value of the defaultable zero-coupon of maturity T , with
payment L = 1, i.e.,

D(t, T ) = e−r(T−t)
E(1{VT >1} + VT 1{VT <1}|Ft) .
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Then, from the valuation formula for the European put option

D(t, T ) = Vt N (−d1(Vt, T − t)) + P (t, T )N (d2(Vt, T − t)) ,

where

d1(Vt, T − t) =
log(Vt) +

(
r + 1

2σ2
)
(T − t)

σ
√

T − t

d2(Vt, T − t) =
log(Vt) +

(
r − 1

2σ2
)
(T − t)

σ
√

T − t
.

We denote by

Y (t, T ) = − ln P (t, T )
T − t

,

and

Yd(t, T ) = − ln D(t, T )
T − t

,

the yield to maturity. The spread on corporate debt, i.e.,

S(t, T ) = Yd(t, T ) − Y (t, T )

is

S(t, T ) = − 1
T − t

ln
(

N (d2(Vt, t)) +
Vt

P (t, T )
N (−d1(Vt, t))

)

.

We can specify the probability of default given the information at date t: if
the dynamics of the firm are

dVt = Vt(μdt + σdBt)

under the historical probability,

P(VT ≤ L|Ft) = N (−dt)

where now
dt =

1
σ
√

T − t

(
ln(Vt/L) + (μ − σ2/2)(T − t)

)

is the so-called distance-to-default.

Comment 3.10.1.1 Computation in the case where L is not assumed to
be equal to 1 can be found, e.g., in Bielecki and Rutkowski [99]. If the
default barrier is an exponential function, computations can be done using
the previous subsection. Results are given in Bielecki and Rutkowski [99].
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3.10.2 First Passage Time Models

Merton’s model does not allow for a premature default; Black and Cox [104]
extend Merton’s model to the case where safety covenants provide the firm’s
bondholders with the right to force the firm into bankruptcy and obtain the
ownership of the assets. They postulate that as soon as the firm’s asset cross
a lower threshold, the bondholders take over the firm. The safety convenant
takes the form of an exponential. In this subsection, the model is simplified.
We assume that the firm defaults when its value falls below a pre-specified
level, i.e.,

τ = TL(V ) = inf{t : Vt ≤ L},
where V0 ≥ L. In this case, the default time τ is a stopping time in the asset’s
filtration. The valuation of a defaultable claim X reduces to the problem of
pricing the claim X1{T<τ}. The valuation of the defaultable claim within the
structural approach is a standard problem which needs the knowledge of the
law of the pair (τ, X).

Let us assume that

dVt = Vt((r − δ)dt + σdBt) ,

where δ stands for the dividend yield. The value of a defaultable T -maturity
bond with face value 1 and L ≤ 1 is D(t, T ) = P (t, T )E(1{T<τ}|Ft), i.e.,
using the results on hitting time of a barrier for a geometric BM (see
Exercise 3.3.1.2):

D(t, T ) = P (t, T )

(

N (b1(Vt, T − t)) −
[

L

Vt

]2νσ−2

N (b2(Vt, T − t))

)

where

b1(x, T − t) =
1

σ
√

T − t
(ln(x/L) + ν(T − t))

b2(x, T − t) =
1

σ
√

T − t
(ln(L/x) + ν(T − t)) .

Here, ν = r − δ − σ2/2.

We now assume that a rebate β is paid at default time when it occurs
before maturity. Assume that θ : = ν2 + 2σ2(r − δ) > 0. Then prior to the
company’s default (that is on the set {τ > t}) the price of a defaultable bond
equals

D(t, T ) = P (t, T )
(
N
(
b1(Vt, T − t)

)
− Z2νσ−2

t N
(
b2(Vt, T − t)

))

+ βVt

(
Zθσ−2+1+ζ

t N
(
b3(Vt, T − t)

)
+ Zθσ−2+1−ζ

t N
(
b4(Vt, T − t)

))
,

where Zt = L/Vt, ζ = σ−2
√

θ and
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b3(Vt, T − t) =
ln (L/Vt) + ζσ2(T − t)

σ
√

T − t
,

b4(Vt, T − t) =
ln (L/Vt) − ζσ2(T − t)

σ
√

T − t
.

The general formulae (for L different from 1 and with an exponential
barrier) can be obtained using results given in Subsection 3.9.3. See also
Bielecki et al. [91].

Extensions: Zhou’s Model

Zhou [877] studies the case where the dynamics of the firm’s value is

dVt = Vt− ((μ − λ c)dt + σdWt + dXt)

where W is a Brownian motion, X a compound Poisson process with the jumps
distributed as Y1 where ln Y1 follows a Gaussian law with mean a and variance
b2, and c = exp(a + b2/2). This choice of parameters implies that Vte

μt is a
martingale (see � Subsection 8.6.3). In the first part, Zhou studies Merton’s
problem in that setting. In the second part, he gives an approximation for the
law of the first passage if the default time is τ = inf{t : Vt ≤ L}.

Comment 3.10.2.1 Credit risk is presented in a more detailed form in
Bielecki and Rutkowski [99] and Schönbucher [765] . The reader can also
refer to the survey paper of Bielecki et al. [91]. See also � Chapter 7.

3.11 American Options

An American option gives its owner the right to exercise at any time τ between
the initial time and maturity (see Samuelson [757]1). We refer to Elliott and
Kopp [316] for a general presentation of American options and to Carr et al.
[154] for a decomposition of prices. McKean [635] was the first to exhibit the
relation between the evaluation problem and a free boundary problem.
1 We reproduce the following comments, from Jarrow and Protter [480]. This is

the paper that first coined the terms European and American options. According
to a private communication with R.C. Merton, prior to writing the paper, P.
Samuelson went to Wall Street to discuss options with industry professionals.
His Wall Street contact explained that there were two types of options available,
one more complex - that could be exercised any time prior to maturity, and one
more simple - that could be exercised only at the maturity date, and that only
the more sophisticated European mind (as opposed to the American mind) could
understand the former. In response, when Samuelson wrote the paper, he used
these as prefixes and reversed the ordering.
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Let us consider a currency (resp. a stock) and let us assume that its
dynamics under the risk-neutral probability Q, are given by the Garman-
Kohlhagen model:

dSt = St((r − δ)dt + σdWt)

where (Wt, t ≥ 0) is a Q-Brownian motion, r and δ are the domestic and
foreign risk-free interest rates (resp. the risk-free interest rate and the dividend
rate) and σ is the currency volatility. These parameters are constant, σ is
strictly positive and at least one of the positive parameters r and δ is strictly
positive. We denote by CA(St, T − t) (resp. PA(St, T − t)) the time-t price of
an American call (resp. put) of maturity T and strike price K.

3.11.1 American Stock Options

Let us recall some well known facts on American options. The value of an
American call option (resp. put) of maturity T and strike K, is

CA(S0, T ) = sup
τ∈T (T )

EQ(e−rτ (Sτ − K)+) ,

(resp. supτ∈T (T ) EQ(e−rτ (K −Sτ )+)) where T (T ) is the set of stopping times
τ with values in [0, T ]. Obviously, the value of an American call is greater
than the value of a European call with same maturity and strike.

Lemma 3.11.1.1 The value of an American call is equal to the value of a
European call if the stock does not pay dividends before maturity (δ = 0).

Proof: Indeed, from the convexity of x → (x − Ke−rT )+, the martingale
property of the process (e−rtSt, t ≥ 0), and Jensen’s inequality, the process
((e−rtSt − Ke−rT )+, t ≥ 0) is a Q-submartingale. Hence, for any stopping
time τ bounded by T ,

EQ((e−rτSτ − Ke−rT )+) ≤ EQ(e−rT (ST − K)+) .

The inequality

EQ(e−rτ (Sτ − K)+) ≤ EQ((e−rτSτ − Ke−rT )+)

leads to supτ EQ(e−rτ (Sτ −K)+) ≤ EQ(e−rT (ST −K)+) and the result follows
(the reverse inequality is obvious). �

In the particular case of infinite maturity, an American option is called
perpetual. The value of a perpetual American call CA(x,∞) is x. Indeed, for
any t,

x − e−rtK ≤ EQ(e−rt(St − K)+) ≤ CA(x,∞) ≤ x

and the result follows when t goes to infinity. The limit of the value of a
European call maturity T , when T goes to infinity is also equal to x, as can
be seen from the Black-Scholes formula (see Theorem 2.3.2.1).
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Exercise 3.11.1.2 The payoff of a capitalized-strike American put option is
(Kert − St)+ if exercised at time t. Prove that the price of this option is the
price of a European put, with strike erT K. �

3.11.2 American Currency Options

The exercise boundaries are defined as follows. For an American currency call
(resp. put) of maturity T and for a given time t, t ∈ [0, T ],

{
bc(T − t) = inf {x ≥ 0 : x − K = CA(x, T − t)} ,
bp(T − t) = sup {x ≥ 0 : K − x = PA(x, T − t)} .

(3.11.1)

The exercise boundary for the American call (resp. put) gives for each
time t before maturity the critical level at which the American option should
be exercised. In the continuation region, i.e., when the underlying asset value
is below (resp. above) the exercise boundary, the time value of the American
call is strictly positive. In the stopping region, i.e., when the underlying asset
value is above (resp. below) the exercise boundary, the time value is equal to
zero and therefore it is worthwhile to exercise the option. As we recalled, for
a non-dividend paying stock, it is never optimal to exercise the American call
option before maturity. The exercise boundary for the call is therefore infinite
before maturity. However, for currencies, it could be optimal to exercise the
American call option strictly before maturity, in order to invest at the foreign
interest rate instead of the domestic one. Hence, the exercise boundary given
by the equation (3.11.1) is finite when δ > 0.

By relying upon the proof of Proposition 2.7.1.1 for European options, the
PDE that the option price satisfies in the continuation region, is obtained and
is the same as in the European case:

σ2

2
x2 ∂2CA

∂x2
(x, u)+(r−δ)x

∂CA

∂x
(x, u)−rCA(x, u)− ∂CA

∂u
(x, u) = 0 . (3.11.2)

Proposition 3.11.2.1 The American currency call price satisfies the follow-
ing decomposition:

CA(St, T − t) = CE(St, T − t) + δSt

∫ T

t

e−δ(s−t)N (d1(St, bc(T − s), s − t))ds

− rK

∫ T

t

e−r(s−t)N (d2(St, bc(T − s), s − t))ds (3.11.3)

with

d1(x, y, u) =
ln(x/y) + (r − δ + σ2/2)u

σ
√

u
,

d2(x, y, u) = d1(x, y, u) − σ
√

u .
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Proof: Apply Itô’s lemma to the process S and the function

C̃(x, s) = e−r(s−t)CA(x, T − s)

on the interval [t, T ]. Then,

e−r(T−t)CA(ST , 0) = CA(St, T−t)+
∫ T

t

AC̃(Ss, s)ds+σ

∫ T

t

Ss
∂C̃

∂x
(Ss, s)dWs ,

(3.11.4)
where A is defined by:

A =
σ2

2
x2 ∂2

∂x2
+ (r − δ)x

∂

∂x
+

∂

∂s
.

Now, in the continuation region the American call price satisfies the PDE
given in equation (3.11.2) and therefore AC̃(Ss, s) is equal to zero. In the
stopping region the American call is equal to its intrinsic value, and therefore,
for x > bc(s):

AC̃(x, s) = (r − δ)x + r(K − x) = (rK − δx)1{x>bc(s)} . (3.11.5)

The last integral on the right-hand side of equation (3.11.4) is a martingale.
By applying the expectation operator to this equation and by relying on the
equality (3.11.5), we obtain

CA(St, T − t) = e−r(T−t)
EQ((ST − K)+|Ft)

−
∫ T

t

e−r(s−t)
EQ((rK − δSs)1{Ss>bc(T−s)}|Ft)ds .

From Subsection 2.7.1, where the Garman and Kohlhagen model was
derived, the decomposition given by equation (3.11.3) is obtained. �

Along the same lines, a decomposition for the put price can be derived .

Proposition 3.11.2.2 The American currency put price satisfies the follow-
ing decomposition:

PA(St, T − t) = PE(St, T − t)

+ rK

∫ T

t

e−r(s−t)N (−d2(Ss, bp(T − s), s − t))ds (3.11.6)

− δSt

∫ T

t

e−δ(s−t)N (−d1(Ss, bp(T − s), s − t))ds ,

with di given in Proposition 3.11.2.1 and bp the exercise boundary for the put
defined in (3.11.1).
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By relying on Barles et al. [44] for non-dividend paying stock options (δ = 0),
an approximation of the American put exercise boundary near expiration T
can be given:

bp(T − t) ≈ K(1 − σ
√

(T − t) |ln(T − t)|) (3.11.7)

for t < T .
By substituting the results given by (3.11.7) into equation (3.11.6), an

approximation of the American put price is obtained, for small maturities.

3.11.3 Perpetual American Currency Options

PDE Approach

When the option’s maturity tends to infinity, the following ODE is obtained:

σ2

2
x2C ′′

A(x) + (r − δ)xC ′
A(x) − rCA(x) = 0 (3.11.8)

where now the following notation is used:

CA(x) = CA(x,+∞) .

We denote by L∗ the limit when T goes to infinity of the monotonic function
bc (see (3.11.1)). As seen later, L∗ is finite if δ > 0.

The general solution of the equation (3.11.8) is of the form a1x
γ1 + a2x

γ2

where γ1 and γ2 are the two roots of the polynomial

σ2

2
γ2 +

(

r − δ − σ2

2

)

γ − r (3.11.9)

which admits a positive and a negative root. The call price being an increasing
function of the exchange rate, only the positive root

γ1 =
−ν +

√
ν2 + 2r

σ
(3.11.10)

will be retained, and CA(x) = a1x
γ1 . It can be observed that γ1 > 1. Here ν

is defined (as in Section 3.3) by:

ν =
1
σ

(

r − δ − σ2

2

)

. (3.11.11)

(Note that if δ = 0, then γ1 = 1.) Now, the parameter a1 and the boundary
L∗ are obtained from the boundary conditions:

CA(L∗) = a1(L∗)γ1 = L∗ − K, C ′
A(L∗) = a1γ1(L∗)γ1−1 = 1

i.e., the option price and its derivative are continuous with respect to the
underlying asset value at the exercise boundary. The continuity of the



196 3 Hitting Times: A Mix of Mathematics and Finance

derivative at the boundary is assumed (this last property is the smooth-
fit principle or smooth-pasting condition). It is not obvious that this property
holds, see Elliott and Kopp [316] p.203. Therefore

a1 =
L∗ − K

(L∗)γ1
, L∗ =

γ1

γ1 − 1
K ≥ K . (3.11.12)

It follows that, in the continuation region (for x < L∗), the perpetual
American call price is given by:

CA(x) = (L∗ − K)
( x

L∗

)γ1

.

By relying on equation (3.11.12)

CA(x) =
K

γ1 − 1
e
−γ1 ln

“

γ1K
γ1−1

”

xγ1 . (3.11.13)

In the stopping region, (for x ≥ L∗): CA(x) = x − K .

Martingale Approach

In order to derive the price of an American call, the martingale approach can
also be used. In this framework the option’s value is given by

CA(St) = sup
τ

EQ((Sτ − K)e−r(τ−t)|Ft) ,

where τ runs over all stopping times greater than t.
Let t = 0 and assume that the boundary is constant. By continuity of the

Brownian motion if S0 is in the continuation region (i.e., S0 is smaller than
the boundary):

CA(S0) = sup
L

[
(L − K)EQ(e−rTL)

]
(3.11.14)

where TL is the first passage time of the underlying asset value out of the
continuation region:

TL = inf {t ≥ 0 / St ≥ L} .

(See Elliott and Kopp, p. 196 [316] for a proof that it is possible to restrict
attention to that family of stopping times.) The optimal value L∗ is obtained
by equating the derivative of (L − K)EQ(e−rTL) with respect to L to zero,
hence

L∗ =
−EQ(e−rTL∗ )

[∂EQ(e−rTL)/∂L]L=L∗
+ K . (3.11.15)

Therefore,

CA(S0) =
−
(
EQ(e−rTL∗ )

)2

[∂EQ(e−rTL)/∂L]L=L∗
. (3.11.16)
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Using equation (3.3.5), the Laplace transform of the hitting time TL is

EQ(e−rTL) = e
−(−ν+

√
ν2+2r)

1
σ

ln(L/S0)
= e−γ1 ln(L/S0) (3.11.17)

where the parameter γ1 is defined in (3.11.10). We can thus derive the value
of the exercise boundary from (3.11.15) which can be written L∗ = L∗

γ1
+ K.

We get L∗ = γ1
γ1−1K ≥ K and by relying on equation (3.11.16), the solution

given by (3.11.13) is obtained.
The same procedure allows us to derive the put price as

PA(S0) = (K − L∗)
(

S0

L∗

)γ2

. (3.11.18)

and the exercise boundary for the perpetual American put is constant and
given by L∗ = γ2K/(γ2 − 1), where γ2 is the negative root of (3.11.9). Let us
remark that the put-call symmetry for American options (see Detemple [251])
can also be used:

PA(S0, K, r, δ) = CA(K, S0, δ, r) (3.11.19)

where option prices are now indexed by four arguments. This symmetry comes
basically from the fact that the right to sell a foreign currency corresponds
to the right to buy the domestic one, and can be proved from a change of
numéraire. Let us check that formulae (3.11.18) and (3.11.19) agree. The put-
call symmetry formula (3.11.19) implies that

PA(S0) = (� − S0)
(

K

�

)γ

where γ is the positive root of

σ2

2
γ2 +

(

δ − r − σ2

2

)

γ − δ = 0

and � = γ
γ−1S0. Note that γ > 1 and 1 − γ satisfies

σ2

2
(1 − γ)2 +

(

r − δ − σ2

2

)

(1 − γ) − r = 0

hence 1 − γ = γ2, the negative root of (3.11.9). Now,

PA(S0) = (S0)1−γKγ(γ − 1)γ−1

(
1
γ

)γ

,

and the relation γ2 = 1 − γ yields

PA(S0) = (S0)γ2K1−γ2

(
1

−γ2

)γ2

(1 − γ2)γ2−1 ,

which is (3.11.18).
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By relying on the symmetrical relationship between American put and
call boundaries (see Carr and Chesney [147] , Detemple [251]) the perpetual
American put exercise boundary can also be obtained when T tends to
infinity:

bc(K, r, δ, T − t)bp(K, δ, r, T − t) = K2

where the exercise boundary is indexed by four arguments.

3.12 Real Options

Real options represent an important and relatively new trend in Finance
and often involve the use of hitting times. Therefore, this topic will be
briefly introduced in this chapter. In many circumstances, the standard NPV
(Net Present Value) approach could generate wrong answers to important
questions: “What are the relevant investments and when should the decision
to invest be made?”. This standard investment choice method consists of
computing the NPV, i.e., the expected sum of the discounted difference
between earnings and costs. Depending on the sign of the NPV, the criterion
recommends acceptance (if it is positive) or rejection (otherwise) of the
investment project. This approach is very simple and does not always model
the complexity of the investment choice problem. First of all, this method
presupposes that the earning and cost expectations can be estimated in a
reliable way. Thus, the uncertainty inherent to many investment projects
is not taken into account in an appropriate way. Secondly, this method is
very sensitive to the level of the discount rate and the estimation of the this
parameter is not always straightforward.

Finally, it is a static approach for a dynamical problem. Implicitly the
question is: “Should the investment be undertaken now, or never?” It neglects
the opportunity (one may use also the term option) to wait, in order to obtain
more information, and to make the decision to invest or not to invest in an
optimal way. In many circumstances, the timing aspects are not trivial and
require specific treatment. By relying on the concept of a financial option, and
more specifically on the concept of an American option (an optimal stopping
theory), the investment choice problem can be tackled in a more appropriate
way.

3.12.1 Optimal Entry with Stochastic Investment Costs

Mc Donald and Siegel’s model [634], which corresponds to one of the seminal
articles in the field of real options, is now briefly presented. As shown in their
paper, some real option problems can be more complex than usual option
pricing ones. They consider a firm with the following investment opportunity:
at any time t, the firm can pay Kt to install the investment project which
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generates a sum of expected discounted future net cash-flows denoted Vt. The
investment is irreversible. In their model, costs are stochastic and the maturity
is infinite. It corresponds, therefore, to an extension of the perpetual American
option pricing model with a stochastic strike price. See also Bellalah [68], Dixit
and Pindyck [254] and Trigeorgis [820].

Let us assume that, under the historical probability P, the dynamics of
V (resp. K), the project-expected sum of discounted positive (resp. negative)
instantaneous cash-flows (resp. costs) generated by the project- are given by:

{
dVt = Vt (α1dt + σ1dWt)
dKt = Kt(α2dt + σ2dBt) .

The two trends α1, α2, the two volatilities σ1 and σ2, the correlation coefficient
ρ of the two P-Brownian motions W and B, and the discount rate r, are
supposed to be constant. We also assume that r > αi, i = 1, 2.

If the investment date is t, the payoff of the real option is (Vt − Kt)+. At
time 0, the investment opportunity value is therefore given by

CRO(V0, K0) : = sup
τ∈T

EP(e−rτ (Vτ − Kτ )+)

= sup
τ∈T

EP

(

e−rτKτ

(
Vτ

Kτ
− 1

)+
)

where T is the set of stopping times, i.e, the set of possible investment dates.
Now, using that Kt = K0e

α2teσ2Bt− 1
2 σ2

2t, the same kind of change of
probability measure (change of numéraire) as in Subsection 2.7.2 leads to

CRO(V0, K0) = K0 sup
τ∈T

EQ

(

e−(r−α2)τ

(
Vτ

Kτ
− 1

)+
)

.

Here the probability measure Q is defined by its Radon-Nikodým derivative
with respect to P on the σ-algebra Ft = σ(Ws, Bs, s ≤ t) by

Q|Ft = exp
(

−σ2
2

2
t + σ2Bt

)

P|Ft .

The valuation of the investment opportunity then corresponds to that of a
perpetual American option. As in Subsection 2.7.2, the dynamics of X = V/K
are obtained

dXt/Xt = (α1 − α2)dt + ΣdŴt .

Here
Σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2

and (Ŵt, t ≥ 0) is a Q-Brownian motion. Therefore, from the results obtained
in Subsection 3.11.3 in the case of perpetual American option
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CRO(V0, K0) = K0(L∗ − 1)
(

V0/K0

L∗

)ε

(3.12.1)

with
L∗ =

ε

ε − 1
, (3.12.2)

and

ε =

√(
α1 − α2

Σ2
− 1

2

)2

+
2(r − α2)

Σ2
−
(

α1 − α2

Σ2
− 1

2

)

. (3.12.3)

Let us now assume that spanning holds, that is, in this context, that there
exist two assets perfectly correlated with V and K and with the same standard
deviation as V and K. We can then rely on risk neutrality, and discounting
at the risk-free rate.

Let us denote by α∗
1 and α∗

2 respectively the expected returns of assets 1
and 2 perfectly correlated respectively with V and K. Let us define δ1 and δ2

by
δ1 = α∗

1 − α1, δ2 = α∗
2 − α2

These parameters play the rôle of the dividend yields in the exchange
option context (see Section 2.7.2), and are constant in this framework (see
Gibson and Schwartz [391] for stochastic convenience yields). The quantity
δ1 is an opportunity cost of delaying the investment and keeping the option
to invest alive and δ2 is an opportunity cost saved by differing installation.
The trends r − δ1 (i.e., α1 minus the risk premium associated with V which
is equal to α∗

1 − r) and r − δ2 (equal to α2 − (α∗
2 − r)) should now be used

instead of the trends α1 and α2, respectively. In this setting, r is the risk-
free rate. Thus, equations (3.12.1) and (3.12.2) still give the solution, but
with

ε =

√(
δ2 − δ1

Σ2
− 1

2

)2

+
2δ2

Σ2
−
(

δ2 − δ1

Σ2
− 1

2

)

(3.12.4)

instead of equation (3.12.3). In the neo-classical framework it is optimal to
invest if expected discounted earnings are higher than expected discounted
costs, i.e., if Xt is higher than 1. When the risk is appropriately taken into
account, the optimal time to invest is the first passage time of the process
(Xt, t ≥ 0) for a level L∗ strictly greater than 1, as shown in equation (3.12.2).

As seen above, in the real option framework usually different stochastic
processes are involved (see also, for example, Loubergé et al. [604]). Results
obtained by Hu and Øksendal [447] and Villeneuve [829], who consider the
American option valuation with several underlyings, can therefore be very
useful.
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3.12.2 Optimal Entry in the Presence of Competition

If instead of a monopolistic situation, competition is introduced, by relying
on Lambrecht and Perraudin [561], the value of the investment opportunity
can be derived. Let us assume that the discounted sum Kt of instantaneous
cost is now constant.

Two firms are involved. Only the first one behaves strategically. Both
are potentially willing to invest a sum K in the same investment project.
They consider only this investment project. The decision to invest is supposed
to be irreversible and can be made at any time. Hence the real option is a
perpetual American option. The investors are risk-neutral. Let us denote by
r the constant interest rate. In this risk-neutral economy, the dynamics of S,
the instantaneous cash-flows generated by the investment project, are given
by

dSt = St(αdt + σdWt) .

Let us define V as the expected sum of positive instantaneous cash-flows
S. The processes V and S have the same dynamics. Indeed, for r > α :

Vt = E

(∫ ∞

t

e−r(u−t)Sudu|Ft

)

= ert

∫ ∞

t

e−(r−α)u
E(e−αuSu|Ft)du

= ert

∫ ∞

t

e−(r−α)ue−αtStdu =
St

r − α
.

In this model, the authors assume that firm 1 (resp. 2) completely loses
the option to invest if firm 2 (resp. 1) invests first, and therefore considers the
investment decision of a firm threatened by preemption.

Firm 1 behaves strategically in an incomplete information setting. This
firm conjectures that firm 2 will invest when the underlying value reaches
some level L∗

2 and that L∗
2 is an independent draw from a distribution G. The

authors assume that G has a continuously differentiable density g = G′ with
support in the interval [LD

2 , LU
2 ]. The uncertainty in the investment level of

the competitor comes from the fact that this level depends on competitor’s
investment costs which are not known with certainty and therefore only
conjectured.

The structure of learning implied by the model is the following. Since firm
2 invests only when the underlying S hits for the first time the threshold L∗

2,
firm 1 learns about firm 2 only when the underlying reaches a new supremum.
Indeed, in this case, there are two possibilities. Firm 2 can either invest and
firm 1 learns that the trigger level is the current St, but it is too late to invest
for firm 1, or wait and firm 1 learns that L∗

2 lies in a smaller interval than it
has previously known, i.e., in [Mt, L

U
2 ], where Mt is the supremum at time t:

Mt = sup0≤u≤t Su.
In this context, firm 1 behaves strategically, in that it looks for the optimal

exercise level L∗
1, i.e., the trigger value which maximizes the conditional
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expectation of the discounted realized payoff. Indeed, the value CS to firm
1, the strategic firm, is therefore

CS(St, Mt) = sup
L

(
L

r − α
− K

)

E

(
e−r(TL−t)1{L∗

2>L}|Ft ∨ (L∗
2 > Mt)

)

where the stopping time TL is the first passage time of the process S for level
L after time t:

TL = inf{u � t, Su � L} .

The payoff is realized only if the competitor is preempted, i.e., if L∗
2 > L.

If Mt > LD
2 , the value to the firm depends not only on the instantaneous

value St of the underlying, but also on Mt which represents the knowledge
accumulated by firm 1 about firm 2: the fact that up until time t, firm 1 was
not preempted by firm 2, i.e., L∗

2 > Mt > LD
2 . If Mt ≤ LD

2 , the knowledge of
Mt does not represent any worthwhile information and therefore

CS(St, Mt) = sup
L

(
L

r − α
− K

)

E(e−r(TL−t)1{L∗
2>L}|Ft), if Mt ≤ LD

2 .

From now on, let us assume that Mt > LD
2 . Hence, by independence between

the r.v. L∗
2 and the stopping time TL = inf{t � 0 : St � L}

CS(St, Mt) = sup
L

(CNS(St, L)P(L∗
2 > L | L∗

2 > Mt)) ,

where the value of the non strategic firm CNS(St, L) is obtained by relying on
equation (3.11.17):

CNS(St, L) =
(

L

r − α
− K

)(
St

L

)γ

,

and from equations (3.11.10–3.11.11) γ = −ν+
√

2r+ν2

σ > 0 and ν = α−σ2/2
σ .

Now, in the specific case where the lower boundary LD
2 is higher than the

optimal trigger value in the monopolistic case, the solution is known:

CS(St, Mt) = CNS

(

St,
γ

γ − 1
(r − α)K

)

, if LD
2 � γ

γ − 1
(r − α)K .

Indeed, in this case the presence of the competition does not induce any change
in the strategy of firm 1. It cannot be preempted, because the production costs
of firm 2 are too high.

In the general case, when LD
2 < γ

γ−1 (r−α)K and (r−α)K < LU
2 (otherwise

the competitor will always preempt), knowing that potential candidates for
L∗

1 are higher than Mt:

CS(St, Mt) = sup
L

(
L

r − α
− K

)(
St

L

)γ
P(L∗

2 > L)
P(L∗

2 > Mt)
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i.e.,

CS(St, Mt) = sup
L

((
L

r − α
− K

)(
St

L

)γ 1 − G(L)
1 − G(Mt)

)

.

This optimization problem implies the following result. L∗
1 is the solution of

the equation

x =
γ + h(x)

γ − 1 + h(x)
(r − α)K

with

h(x) =
xg(x)

1 − G(x)
.

The function: y → γ+y
γ−1+y is decreasing, hence the trigger level is smaller in

presence of competition than in the monopolistic case:

L∗
1 <

γ

γ − 1
(r − α)K .

Indeed, the threat of preemption generates incentives to invest earlier than in
the monopolist case.

The value to firm 1 is

CS(St, Mt) =
(

L∗
1

r − α
− K

)(
St

L∗
1

)γ 1 − G(L∗
1)

1 − G(Mt)
.

Let us now consider a specific case. If L∗
2 is uniformly distributed on the

interval [LD
2 , LU

2 ], then:

CS(St, Mt) = sup
L

[(
L

r − α
− K

)(
St

L

)γ (LU
2 − L)/(LU

2 − LD
2 )

(LU
2 − Mt)/(LU

2 − LD
2 )

]

= sup
L

[(
L

r − α
− K

)(
St

L

)γ
LU

2 − L

LU
2 − Mt

]

.

In this case

h(x) =
x/(LU

2 − LD
2 )

(LU
2 − x)/(LU

2 − LD
2 )

=
x

LU
2 − x

and L∗
1 satisfies

x =
γ + x

LU
2 −x

γ − 1 + x
LU

2 −x

(r − α)K

i.e.,
(γ − 2)x2 + (1 − γ)(LU

2 + (r − α)K)x + γ(r − α)KLU
2 = 0 .

Hence, for γ �= 2

L∗
1 =

(γ − 1)(LU
2 + (r − α)K) +

√
Δ

2(γ − 2)
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with

Δ = (1 − γ)2(LU
2 + (r − α)K)2 − 4(γ − 2)γ(r − α)KLU

2

= (LU
2 − (r − α)K)2γ2 − 2(LU

2 − (r − α)K)2γ + (LU
2 + (r − α)K)2 .

It is straightforward to show that this discriminant is positive for any γ and
therefore that L∗

1 is well defined. For γ = 2, L∗
1 = 2(r−α)KLU

2
LU

2 +(r−α)K
.

3.12.3 Optimal Entry and Optimal Exit

Let us now modify the model of Lambrecht and Perraudin [561] as follows.
There is no competition; the decision to invest is no longer irreversible;
however, the decision to disinvest is irreversible and can be made at any
time after the decision to invest has been taken. There are entry costs Ki and
exit costs Kd.

Therefore, there are two embedded perpetual American options in such
a model: First an American call that corresponds to the investment decision
and a put that corresponds to the disinvestment decision.

The value to the firm VF , at initial time is therefore

VF (S0) = sup
Li,Ld

(
φ(Li)E(e−rTLi ) + ψ(Ld)E(e−rTLd )

)

where

φ(�) =
�

r − α
− K − Ki

ψ(�) = K − �

r − α
− Kd

and where the stopping times TLi and TLd
correspond respectively to the first

passage time of the process S at level Li (investment) and to the first passage
time of the process S at level Ld, after TLi (disinvestment):

TLi = inf{t ≥ 0, St ≥ Li}
TLd

= inf{t ≥ TLi , St ≤ Ld} .

Indeed, the right to disinvest gives an additional value to the firm. In case of
a decline of the underlying process S, for example at level Ld, by paying Kd,
the firm has the right to avoid the expected discounted losses at this level:
Ld

r−α − K.
Hence, from Markov’s property:

VF (S0) = sup
Li,Ld

E(e−rTLi )
(
φ(Li) + ψ(Ld)E(e−r(TLd

−TLi
))
)

.

From Subsection 3.11.3, one gets
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VF (S0) = sup
Li,Ld

(
S0

Li

)γ1
[

φ(Li) + ψ(Ld)
(

Li

Ld

)γ2
]

with

γ1 =
−ν +

√
2r + ν2

σ
≥ 0, γ2 =

−ν −
√

2r + ν2

σ
≤ 0

and again

ν =
α − σ2/2

σ
.

This optimization problem yields

L∗
d =

γ2

γ2 − 1
(r − α)(K − Kd) < (r − α)(K − Kd)

which corresponds to the standard exercise boundary of the perpetual put
(see Subsection 3.11.3). It is a decreasing function of the exit cost Kd. Indeed,
if this cost increases, there is less incentive to disinvest. The quantity L∗

i is a
solution of

x =
γ1

γ1 − 1
(r − α)(K + Ki) −

γ1 − γ2

γ1 − 1

(
x

L∗
d

)γ2

((r − α)(K − Kd) − L∗
d)

hence,
L∗

i ≤ γ1

γ1 − 1
(r − α)(K + Ki)

i.e., the possibility to disinvest gives to the firm incentives to invest earlier
than in the irreversible investment case.

The value to the firm is therefore

VF (S0) =
(

S0

L∗
i

)γ1
[

φ(L∗
i ) + ψ(L∗

d)
(

L∗
i

L∗
d

)γ2
]

.

3.12.4 Optimal Exit and Optimal Entry in the Presence of
Competition

Let us now assume that the firm has already invested and is in a monopolistic
situation. It has the opportunity to disinvest. The decision to disinvest is not
irreversible. However, even if the firm has the option to invest again after
the decision to quit has been made, the monopolistic situation will be over:
the firm will face competition. In this case, the firm will be threatened by
preemption and the Lambrecht and Perraudin [561] setting will be used. There
are exit costs Kd and entry costs Ki. Let us use the previous notation.

By relying on the last subsections the value VF (St) to the firm is

Vt − K + sup
Ld,Li

[
ψ(Ld)E(e−r(TLd

−t)|Ft) + φ(Li)E(e−r(TLi
−t)1L∗

2>Li |Ft)
]

i.e., setting t = 0,
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VF (S0) = V0 − K + sup
Ld,Li

(
S0

Ld

)γ2
[

ψ(Ld) + φ(Li)
(

Ld

Li

)γ1

(1 − G(Li))
]

.

Indeed, if firm 1 cannot disinvest, its value is V0 − K; however if it has the
opportunity to disinvest, it adds value to the firm. Furthermore, if firm 1
decides to disinvest, as long as it is not preempted by the competition, it has
the opportunity to invest again. This explains the last term on the right-hand
side: the maximization of the discounted payoff generated by a perpetual
American put and by a perpetual American call times the probability of
avoiding preemption.

Let us remark that the value to the firm does not depend on the supremum
Mt of the underlying. As long as it is active, firm 1 does not accumulate
any knowledge about firm 2. The supremum Mt no longer represents the
knowledge accumulated by firm 1 about firm 2. Even if Mt > LD

2 , it does not
mean that: L∗

2 � Mt > LD
2 . While firm 1 does not disinvest, the knowledge

of Mt does not represent any worthwhile information because firm 2 cannot
invest.

This optimization problem generates the following result. L∗
i is the solution

of the equation:

x =
γ1 + h(x)

γ1 − 1 + h(x)
(r − α)K

with

h(x) =
xg(x)

1 − G(x)
,

and L∗
d is the solution z of the equation

z =
γ2

γ2 − 1
(r−α)(K−Kd)+

γ1 − γ2

1 − γ2

(
z

L∗
i

)γ1

(L∗
i−(r−α)(K+Ki))(1−G(L∗

i )) .

The value to the firm is therefore:

VF (S0) = V0 − K +
(

S0

L∗
d

)γ2
[

ψ(L∗
d) + φ(L∗

i )
(

L∗
d

L∗
i

)γ1

(1 − G(L∗
i ))
]

.

A good reference concerning optimal investment and disinvestment deci-
sions, with or without lags, is Gauthier [376].

3.12.5 Optimal Entry and Exit Decisions

Let us keep the notation of the preceding subsections and still assume risk
neutrality. Furthermore, let us assume now that there is no competition.
Hence, we can restrict the discussion to only one firm. If at the initial time
the firm has not yet invested, it has the possibility of investing at a cost Ki at
any time and of disinvesting later at a cost Kd. The number of investment and
disinvestment dates is not bounded. After each investment date the option to
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disinvest is activated and after each disinvestment date, the option to invest
is activated.

Therefore, depending on the last decision of the firm before time t (to
invest or to disinvest), there are two possible states for the firm: active or
inactive.

In this context, the following theorem gives the values to the firm in these
states.

Theorem 3.12.5.1 Assume that in the risk-neutral economy, the dynamics
of S, the instantaneous cash-flows generated by the investment project, are
given by:

dSt = St(αdt + σdWt) .

Assume further that the discounted sum of instantaneous investment cost K
is constant and that α < r where r is the risk-free interest rate.

If the firm is inactive, i.e., if its last decision was to disinvest, its value is

VFd(St) =
1

γ1 − γ2

(
St

L∗
i

)γ1
(

L∗
i

r − α
− γ2φ(L∗

i )
)

.

If the firm is active, i.e., if its last decision was to invest, its value is

VFi(St) =
1

γ1 − γ2

(
St

L∗
d

)γ2
(

L∗
d

r − α
+ γ1ψ(L∗

d)
)

+
St

r − α
− K .

Here, the optimal entry and exit thresholds, L∗
i and L∗

d are solutions of the
following set of equations with unknowns (x, y)

1 − (y/x)γ1−γ2

γ1 − γ2

(

γ1Ki − γ2

(
x

r − α
− K

)

+
x

r − α

)

= ψ(y)
(

x

y

)γ2

− Ki

(y

x

)γ1−γ2

+
x

r − α
− K

1 − (y/x)γ1−γ2

γ1 − γ2

(
y

r − α
+ γ2ψ(y)

)

= φ(x)
(y

x

)γ1

+ ψ(y)
(y

x

)γ1−γ2

with

γ1 =
−ν +

√
2r + ν2

σ
≥ 0, γ2 =

−ν −
√

2r + ν2

σ
≤ 0

and

ν =
α − σ2/2

σ
.

In the specific case where Ki = Kd = 0, the optimal thresholds are

L∗
i = L∗

d = (r − α)K .
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Proof: In the inactive state, the value of the firm is

VFd(St) = sup
Li

E

(
e−r(TLi

−t)(VFi(STLi
) − Ki)|Ft

)

where TLi is the first passage time of the process S, after time t, for the
possible investment boundary Li

TLi = inf{u ≥ t, Su ≥ Li}

i.e., by continuity of the underlying process S:

VFd(St) = sup
Li

E

(
e−r(TLi

−t)(VFi(Li) − Ki)|Ft

)
.

Along the same lines:

VFi(St) = sup
Ld

E

(
e−r(TLd

−t) (VFd(Ld) + ψ(Ld)) |Ft

)
+

St

r − α
− K

where TLd
is the first passage time of the process S, after time t, for the

possible disinvestment boundary Ld

TLd
= inf{u ≥ t, Su ≤ Ld} .

Indeed, at a given time t, without exit options, the value to the active firm
would be St

r−α − K. However, by paying Kd, it has the option to disinvest
for example at level Ld. At this level, the value to the firm is VFd(Ld) plus
the value of the option to quit K − Ld

r−α (the put option corresponding to the
avoided losses minus the cost Kd).

Therefore
VFd(St) = sup

Li

fd(Li) (3.12.5)

where the function fd is defined by

fd(x) =
(

St

x

)γ1

(VFi(x) − Ki) (3.12.6)

where
VFi(St) = sup

Ld

fi(Ld) (3.12.7)

and

fi(x) =
(

St

x

)γ2

(VFd(x) + ψ(Ld)) +
St

r − α
− K . (3.12.8)

Let us denote by L∗
i and L∗

d the optimal trigger values, i.e., the values which
maximize the functions fd and fi. An inactive (resp. active) firm will find it
optimal to remain in this state as long as the underlying value S remains below
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L∗
i (resp. above L∗

d) and will invest (resp. disinvest) as soon as S reaches L∗
i

(resp. L∗
d).

By setting St equal to L∗
d in equation (3.12.5) and to L∗

i in equation
(3.12.7), the following equations are obtained:

VFd(L∗
d) =

(
L∗

d

L∗
i

)γ1

(VFi(L∗
i ) − Ki) ,

VFi(L∗
i ) =

(
L∗

i

L∗
d

)γ2

(VFd(L∗
d) + ψ(L∗

d)) +
L∗

i

r − α
− K .

The two unknowns VFd(L∗
d) and VFi(L∗

i ) satisfy:
(

1 −
(

L∗
d

L∗
i

)γ1−γ2
)

VFd(L∗
d) = φ(L∗

i )
(

L∗
d

L∗
i

)γ1

+ ψ(L∗
d)
(

L∗
d

L∗
i

)γ1−γ2

(3.12.9)

(

1 −
(

L∗
d

L∗
i

)γ1−γ2
)

VFi(L∗
i ) = ψ(L∗

d)
(

L∗
i

L∗
d

)γ2

− Ki

(
L∗

d

L∗
i

)γ1−γ2

+
L∗

i

r − α
− K . (3.12.10)

Let us now derive the thresholds L∗
d and L∗

i required in order to obtain
the value to the firm. From equation (3.12.8)

∂fi

∂x
(Ld) =

(
St

Ld

)γ2
(

− γ2

Ld
(VFd(Ld) + ψ(Ld)) +

dVFd

dx
(Ld) −

1
r − α

)

and from equation (3.12.6)

∂fd

∂x
(Li) =

(
St

Li

)γ1
(

−γ1

Li
(VFi(Li) − Ki) +

dVFi

dx
(Li)

)

.

Therefore the equation ∂fi

∂x (Ld) = 0 is equivalent to

γ2

L∗
d

(VFd(L∗
d) + ψ(L∗

d)) =
dVFd

dx
(L∗

d) −
1

r − α

or, from equations (3.12.5) and (3.12.6):

γ2

L∗
d

(VFd(L∗
d) + ψ(L∗

d)) =
γ1

L∗
d

VFd(L∗
d) −

1
r − α

i.e.,

VFd(L∗
d) =

1
γ1 − γ2

(
L∗

d

r − α
+ γ2ψ(L∗

d)
)

. (3.12.11)

Moreover, the equation
∂fd

∂x
(Li) = 0



210 3 Hitting Times: A Mix of Mathematics and Finance

is equivalent to
γ1

Li
(VFi(L∗

i ) − Ki) =
dVFi

dx
(L∗

i )

i.e, by relying on equations (3.12.7) and (3.12.8)

γ1

Li
(VFi(L∗

i ) − Ki) =
γ2

Li

(

VFi(L∗
i ) −

(
L∗

i

r − α
− K

))

+
1

r − α

i.e.,

VFi(L∗
i ) =

1
γ1 − γ2

(

γ1Ki − γ2

(
L∗

i

r − α
− K

)

+
L∗

i

r − α

)

. (3.12.12)

Therefore, by substituting VFd(L∗
d) and VFi(L∗

i ), obtained in (3.12.11) and
(3.12.12) respectively in equations (3.12.7) and (3.12.5), the values to the firm
in the active and inactive states are derived.

Finally, by substituting in (3.12.9) the value of VFd(L∗
d) obtained in

(3.12.11) and in (3.12.10) the value of VFi(L∗
i ) obtained in (3.12.12), a set

of two equations is derived. This set admits L∗
i and L∗

d as solutions.
In the specific case where Ki = Kd = 0, from (3.12.9) and (3.12.10) the

investment and abandonment thresholds satisfy L∗
i = L∗

d. However we know
that the investment threshold is higher than the investment cost and that the
abandonment threshold is smaller L∗

i ≥ (r − α)K ≥ L∗
d. Thus

L∗
i = L∗

d = (r − α)K ,

and the theorem is proved.
By relying on a differential equation approach, Dixit [253] (and also Dixit

and Pyndick [254]) solve the same problem (see also Brennan and Schwartz
[127] for the evaluation of mining projects). The value-matching and smooth
pasting conditions at investment and abandonment thresholds generate a set
of four equations, which in our notation is

VFi(L∗
d) − VFd(L∗

d) = −Kd

VFi(L∗
i ) − VFd(L∗

i ) = Ki

dVFi

dx
(L∗

d) −
dVFd

dx
(L∗

d) = 0

dVFi

dx
(L∗

i ) −
dVFd

dx
(L∗

i ) = 0 .

In the probabilistic approach developed in this subsection, the first two
equations correspond respectively to (3.12.7) for St = L∗

d and to (3.12.5) for
St = L∗

i .
The last two equations are obtained from the set of equations (3.12.5)

to (3.12.8).
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