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Basic Concepts and Examples in Finance

In this chapter, we present briefly the main concepts in mathematical
finance as well as some straightforward applications of stochastic calculus
for continuous-path processes. We study in particular the general principle
for valuation of contingent claims, the Feynman-Kac approach, the Ornstein-
Uhlenbeck and Vasicek processes, and, finally, the pricing of European options.

Derivatives are products whose payoffs depend on the prices of the traded
underlying assets. In order for the model to be arbitrage free, the link between
derivatives and underlying prices has to be made precise. We shall present the
mathematical setting of this problem, and give some examples. In this area
we recommend Portait and Poncet [723], Lipton [596], Overhaus et al. [689],
and Brockhaus et al. [131].

Important assets are the zero-coupon bonds which deliver one monetary
unit at a terminal date. The price of this asset depends on the interest rate. We
shall present some basic models of the dynamics of the interest rate (Vasicek
and CIR) and the dynamics of associated zero-coupon bonds. We refer the
reader to Martellini et al. [624] and Musiela and Rutkowski [661] for a study
of modelling of zero-coupon prices and pricing derivatives.

2.1 A Semi-martingale Framework

In a first part, we present in a general setting the modelling of the stock market
and the hypotheses in force in mathematical finance. The dynamics of prices
are semi-martingales, which is justified from the hypothesis of no-arbitrage
(see the precise definition in � Subsection 2.1.2). Roughly speaking, this
hypothesis excludes the possibility of starting with a null amount of money
and investing in the market in such a way that the value of the portfolio
at some fixed date T is positive (and not null) with probability 1. We shall
comment upon this hypothesis later.

We present the definition of self-financing strategies and the concept of
hedging portfolios in a case where the tradeable asset prices are given as
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semi-martingales. We give the definition of an arbitrage opportunity and we
state the fundamental theorem which links the non-arbitrage hypothesis with
the notion of equivalent martingale measure. We define a complete market
and we show how this definition is related to the predictable representation
property.

In this first section, we do not require path-continuity of asset prices.
An important precision: Concerning all financial quantities presented in

that chapter, these will be defined up to a finite horizon T , called the
maturity. On the other hand, when dealing with semi-martingales, these will
be implicitly defined on R

+.

2.1.1 The Financial Market

We study a financial market where assets (stocks) are traded in continuous
time. We assume that there are d assets, and that the prices Si, i = 1, . . . , d
of these assets are modelled as semi-martingales with respect to a reference
filtration F. We shall refer to these assets as risky assets or as securities.
We shall also assume that there is a riskless asset (also called the savings
account) with dynamics

dS0
t = S0

t rtdt, S0
0 = 1

where r is the (positive) interest rate, assumed to be F-adapted. One
monetary unit invested at time 0 in the riskless asset will give a payoff of
exp

(∫ t

0
rsds

)
at time t. If r is deterministic, the price at time 0 of one

monetary unit delivered at time t is

Rt : = exp
(
−
∫ t

0

rsds

)
.

The quantity Rt = (S0
t )−1 is called the discount factor, whether or not

it is deterministic. The discounted value of Si
t is Si

tRt; in the case where r
and Si

t are deterministic, this is the monetary value at time 0 of Si
t monetary

units delivered at time t. More generally, if a process (Vt, t ≥ 0) describes
the value of a financial product at any time t, its discounted value process is
(VtRt, t ≥ 0). The asset that delivers one monetary unit at time T is called
a zero-coupon bond (ZC) of maturity T . If r is deterministic, its price at
time t is given by

P (t, T ) = exp

(
−
∫ T

t

r(s)ds

)
,

the dynamics of the ZC’s price is then dtP (t, T ) = rtP (t, T )dt with the
terminal condition P (T, T ) = 1. If r is a stochastic process, the problem
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of giving the price of a zero-coupon bond is more complex; we shall study this
case later. In that setting, the previous formula for P (t, T ) would be absurd,
since P (t, T ) is known at time t (i.e., is Ft-measurable), whereas the quantity
exp

(
−
∫ T

t
r(s)ds

)
is not. Zero-coupon bonds are traded and are at the core

of trading in financial markets.

Comment 2.1.1.1 In this book, we assume, as is usual in mathematical
finance, that borrowing and lending interest rates are equal to (rs, s ≥ 0): one
monetary unit borrowed at time 0 has to be reimbursed by S0

t = exp
(∫ t

0
rsds

)

monetary units at time t. One monetary unit invested in the riskless asset at
time 0 produces S0

t = exp
(∫ t

0
rsds

)
monetary units at time t. In reality,

borrowing and lending interest rates are not the same, and this equality
hypothesis, which is assumed in mathematical finance, oversimplifies the “real-
world” situation. Pricing derivatives with different interest rates is very similar
to pricing under constraints. If, for example, there are two interest rates with
r1 < r2, one has to assume that it is impossible to borrow money at rate r1

(see also � Example 2.1.2.1). We refer the reader to the papers of El Karoui
et al. [307] for a study of pricing with constraints.

A portfolio (or a strategy) is a (d+1)-dimensional F-predictable process
(π̂t = (πi

t, i = 0, . . . , d) = (π0
t , πt); t ≥ 0) where πi

t represents the number of
shares of asset i held at time t. Its time-t value is

Vt(π̂) : =
d∑

i=0

πi
tS

i
t = π0

t S0
t +

d∑
i=1

πi
tS

i
t .

We assume that the integrals
∫ t

0
πi

sdSi
s are well defined; moreover, we shall

often place more integrability conditions on the portfolio π̂ to avoid arbitrage
opportunities (see � Subsection 2.1.2).

We shall assume that the market is liquid: there is no transaction cost (the
buying price of an asset is equal to its selling price), the number of shares of the
asset available in the market is not bounded, and short-selling of securities
is allowed (i.e., πi, i ≥ 1 can take negative values) as well as borrowing money
(π0 < 0).

We introduce a constraint on the portfolio, to make precise the idea that
instantaneous changes to the value of the portfolio are due to changes in
prices, not to instantaneous rebalancing. This self-financing condition is
an extension of the discrete-time case and we impose it as a constraint in
continuous time. We emphasize that this constraint is not a consequence of
Itô’s lemma and that, if a portfolio (π̂t = (πi

t, i = 0, . . . , d) = (π0
t , πt); t ≥ 0)

is given, this condition has to be satisfied.
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Definition 2.1.1.2 A portfolio π̂ is said to be self-financing if

dVt(π̂) =
d∑

i=0

πi
tdSi

t ,

or, in an integrated form, Vt(π̂) = V0(π̂) +
∑d

i=0

∫ t

0
πi

sdSi
s .

If π̂ = (π0, π) is a self-financing portfolio, then some algebraic computation
establishes that

dVt(π̂) = π0
t S0

t rtdt +
d∑

i=1

πi
tdSi

t = rtVt(π̂)dt +
d∑

i=1

πi
t(dSi

t − rtS
i
tdt)

= rtVt(π̂)dt + πt(dSt − rtStdt)

where the vector π = (πi; i = 1, . . . , d) is written as a (1, d) matrix. We prove
now that the self-financing condition holds for discounted processes, i.e., if all
the processes V and Si are discounted (note that the discounted value of S0

t

is 1):

Proposition 2.1.1.3 If π̂ is a self-financing portfolio, then

RtVt(π̂) = V0(π̂) +
d∑

i=1

∫ t

0

πi
sd(RsS

i
s) . (2.1.1)

Conversely, if x is a given positive real number, if π = (π1, . . . , πd) is a vector
of predictable processes, and if V π denotes the solution of

dV π
t = rtV

π
t dt + πt(dSt − rtStdt) , V π

0 = x , (2.1.2)

then the R
d+1-valued process (π̂t = (V π

t − πtSt, πt); t ≥ 0) is a self-financing
strategy, and V π

t = Vt(π̂).

Proof: Equality (2.1.1) follows from the integration by parts formula:

d(RtVt) = RtdVt − VtrtRtdt = Rtπt(dSt − rtStdt) = πtd(RtSt) .

Conversely, if (x, π = (π1, . . . , πd)) are given, then one deduces from (2.1.2)
that the value V π

t of the portfolio at time t is given by

V π
t Rt = x +

∫ t

0

πsd(RsSs)

and the wealth invested in the riskless asset is

π0
t S0

t = V π
t −

d∑
i=1

πi
tS

i
t = V π

t − πtSt .
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The portfolio π̂ = (π0, π) is obviously self-financing since

dVt = rtVtdt + πt(dSt − rtStdt) = π0
t S0

t rtdt + πtdSt .

The process (
∑d

i=1

∫ t

0
πi

sd(RsS
i
s), t ≥ 0) is the discounted gain process. �

This important result proves that a self-financing portfolio is characterized
by its initial value V0(π̂) and the strategy π = (πi, i = 1, . . . , d) which
represents the investment in the risky assets. The equality (2.1.1) can be
written in terms of the savings account S0 as

Vt(π̂)
S0

t

= V0(π̂) +
d∑

i=1

∫ t

0

πi
s d

(
Si

s

S0
s

)
(2.1.3)

or as

dV 0
t =

d∑
i=1

πi
tdSi,0

t

where
V 0

t = VtRt = Vt/S0
t , Si,0

t = Si
tRt = Si

t/S0
t

are the prices in terms of time-0 monetary units. We shall extend this property
in � Section 2.4 by proving that the self-financing condition does not depend
on the choice of the numéraire.

By abuse of language, we shall also call π = (π1, . . . , πd) a self-financing
portfolio.

The investor is said to have a long position at time t on the asset S if
πt ≥ 0. In the case πt < 0, the investor is short.

Exercise 2.1.1.4 Let dSt = (μdt + σdBt) and r = 0. Is the portfolio π̂(t, 1)
self-financing? If not, find π0 such that (π0

t , 1) is self-financing. �

2.1.2 Arbitrage Opportunities

Roughly speaking, an arbitrage opportunity is a self-financing strategy π
with zero initial value and with terminal value V π

T ≥ 0, such that E(V π
T ) > 0.

From Dudley’s result (see Subsection 1.6.3), it is obvious that we have to
impose conditions on the strategies to exclude arbitrage opportunities. Indeed,
if B is a BM, for any constant A, it is possible to find an adapted process
ϕ such that

∫ T

0
ϕsdBs = A. Hence, in the simple case dSs = σSsdBs and

null interest rate, it is possible to find π such that
∫ T

0
πsdSs = A > 0. The

process Vt =
∫ t

0
πsdSs would be the value of a self-financing strategy, with null
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initial wealth and strictly positive terminal value, therefore, π would be an
arbitrage opportunity. These strategies are often called doubling strategies,
by extension to an infinite horizon of a tossing game: a player with an initial
wealth 0 playing such a game will have, with probability 1, at some time a
wealth equal to 1063 monetary units: he only has to wait long enough (and
to agree to lose a large amount of money before that). It “suffices” to play in
continuous time to win with a BM.

Example 2.1.2.1 If there are two riskless assets in the market with interest
rates r1 and r2, then in order to exclude arbitrage opportunities, we must
have r1 = r2: otherwise, if r1 < r2, an investor might borrow an amount k of
money at rate r1, and invest the same amount at rate r2. The initial wealth
is 0 and the wealth at time T would be ker2T − ker1T > 0. So, in the case of
different interest rates with r1 < r2, one has to restrict the strategies to those
for which the investor can only borrow money at rate r2 and invest at rate
r1. One has to add one dimension to the portfolio; the quantity of shares of
the savings account, denoted by π0 is now a pair of processes π0,1, π0,2 with
π0,1 ≥ 0, π0,2 ≤ 0 where the wealth in the bank account is π0,1

t S0,1
t + π0,2

t S0,2
t

with dS0,j
t = rjS

0,j
t dt.

Exercise 2.1.2.2 There are many examples of relations between prices which
are obtained from the absence of arbitrage opportunities in a financial market.
As an exercise, we give some examples for which we use call and put options
(see � Subsection 2.3.2 for the definition). The reader can refer to Cox and
Rubinstein [204] for proofs. We work in a market with constant interest rate r.
We emphasize that these relations are model-independent, i.e., they are valid
whatever the dynamics of the risky asset.

• Let C (resp. P ) be the value of a European call (resp. a put) on a stock
with current value S, and with strike K and maturity T . Prove the put-call
parity relationship

C = P + S − Ke−rT .

• Prove that S ≥ C ≥ max(0, S − K).
• Prove that the value of a call is decreasing w.r.t. the strike.
• Prove that the call price is concave w.r.t. the strike.
• Prove that, for K2 > K1,

K2 − K1 ≥ C(K2) − C(K1) ,

where C(K) is the value of the call with strike K.

�
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2.1.3 Equivalent Martingale Measure

We now introduce the key definition of equivalent martingale measure (or
risk-neutral probability). It is a major tool in giving the prices of derivative
products as an expectation of the (discounted) terminal payoff, and the
existence of such a probability is related to the non-existence of arbitrage
opportunities.

Definition 2.1.3.1 An equivalent martingale measure (e.m.m.) is a
probability measure Q, equivalent to P on FT , such that the discounted prices
(RtS

i
t , t ≤ T ) are Q-local martingales.

It is proved in the seminal paper of Harrison and Kreps [421] in a discrete
setting and in a series of papers by Delbaen and Schachermayer [233] in a
general framework, that the existence of e.m.m. is more or less equivalent
to the absence of arbitrage opportunities. One of the difficulties is to make
precise the choice of “admissible” portfolios. We borrow from Protter [726]
the name of Folk theorem for what follows:

Folk Theorem: Let S be the stock price process. There is absence of
arbitrage essentially if and only if there exists a probability Q equivalent to P

such that the discounted price process is a Q-local martingale.

From (2.1.3), we deduce that not only the discounted prices of securities
are local-martingales, but that more generally, any price, and in particular
prices of derivatives, are local martingales:

Proposition 2.1.3.2 Under any e.m.m. the discounted value of a self-finan-
cing strategy is a local martingale.

Comment 2.1.3.3 Of course, it can happen that discounted prices are
strict local martingales. We refer to Pal and Protter [692] for an interesting
discussion.

2.1.4 Admissible Strategies

As mentioned above, one has to add some regularity conditions on the portfolio
to exclude arbitrage opportunities. The most common such condition is the
following admissibility criterion.

Definition 2.1.4.1 A self-financing strategy π is said to be admissible if there
exists a constant A such that Vt(π) ≥ −A, a.s. for every t ≤ T .

Definition 2.1.4.2 An arbitrage opportunity on the time interval [0, T ] is an
admissible self-financing strategy π such that V π

0 = 0 and V π
T ≥ 0, E(V π

T ) > 0.



86 2 Basic Concepts and Examples in Finance

In order to give a precise meaning to the fundamental theorem of asset
pricing, we need some definitions (we refer to Delbaen and Schachermayer
[233]). In the following, we assume that the interest rate is equal to 0. Let us
define the sets

K =

{∫ T

0

πsdSs : π is admissible

}
,

A0 = K − L0
+ =

{
X =

∫ T

0

πsdSs − f : π is admissible, f ≥ 0, f finite
}

,

A = A0 ∩ L∞ ,

Ā = closure of A in L∞ .

Note that K is the set of terminal values of admissible self-financing strategies
with zero initial value. Let L∞

+ be the set of positive random variables in L∞.

Definition 2.1.4.3 A semi-martingale S satisfies the no-arbitrage condition
if K ∩ L∞

+ = {0}. A semi-martingale S satisfies the No-Free Lunch with
Vanishing Risk (NFLVR) condition if Ā ∩ L∞

+ = {0}.

Obviously, if S satisfies the no-arbitrage condition, then it satisfies the
NFLVR condition.

Theorem 2.1.4.4 (Fundamental Theorem.) Let S be a locally bounded
semi-martingale. There exists an equivalent martingale measure Q for S if
and only if S satisfies NFLVR.

Proof: The proof relies on the Hahn-Banach theorem, and goes back to
Harrison and Kreps [421], Harrison and Pliska [423] and Kreps [545] and
was extended by Ansel and Stricker [20], Delbaen and Schachermayer [233],
Stricker [809]. We refer to the book of Delbaen and Schachermayer [236],
Theorem 9.1.1. �

The following result (see Delbaen and Schachermayer [236], Theorem 9.7.2.)
establishes that the dynamics of asset prices have to be semi-martingales:

Theorem 2.1.4.5 Let S be an adapted càdlàg process. If S is locally bounded
and satisfies the no free lunch with vanishing risk property for simple
integrands, then S is a semi-martingale.

Comments 2.1.4.6 (a) The study of the absence of arbitrage opportunities
and its connection with the existence of e.m.m. has led to an extensive
literature and is fully presented in the book of Delbaen and Schachermayer
[236]. The survey paper of Kabanov [500] is an excellent presentation of
arbitrage theory. See also the important paper of Ansel and Stricker [20] and
Cherny [167] for a slightly different definition of arbitrage.

(b) Some authors (e.g., Karatzas [510], Levental and Skorokhod [583]) give
the name of tame strategies to admissible strategies.
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(c) It should be noted that the condition for a strategy to be admissible is
restrictive from a financial point of view. Indeed, in the case d = 1, it excludes
short position on the stock. Moreover, the condition depends on the choice of
numéraire. These remarks have led Sin [799] and Xia and Yan [851, 852] to
introduce allowable portfolios, i.e., by definition there exists a ≥ 0 such that
V π

t ≥ −a
∑

i Si
t . The authors develop the fundamental theory of asset pricing

in that setting.
(d) Frittelli [364] links the existence of e.m.m. and NFLVR with results on

optimization theory, and with the choice of a class of utility functions.
(e) The condition K ∩ L∞

+ = {0} is too restrictive to imply the existence
of an e.m.m.

2.1.5 Complete Market

Roughly speaking, a market is complete if any derivative product can be
perfectly hedged, i.e., is the terminal value of a self-financing portfolio.

Assume that there are d risky assets Si which are F-semi-martingales and
a riskless asset S0. A contingent claim H is defined as a square integrable
FT -random variable, where T is a fixed horizon.

Definition 2.1.5.1 A contingent claim H is said to be hedgeable if there
exists a predictable process π = (π1, . . . , πd) such that V π

T = H. The self-
financing strategy π̂ = (V π −πS, π) is called the replicating strategy (or the
hedging strategy) of H, and V π

0 = h is the initial price. The process V π is
the price process of H.

In some sense, this initial value is an equilibrium price: the seller of the claim
agrees to sell the claim at an initial price p if he can construct a portfolio with
initial value p and terminal value greater than the claim he has to deliver.
The buyer of the claim agrees to buy the claim if he is unable to produce the
same (or a greater) amount of money while investing the price of the claim in
the financial market.

It is also easy to prove that, if the price of the claim is not the initial value
of the replicating portfolio, there would be an arbitrage in the market: assume
that the claim H is traded at v with v > V0, where V0 is the initial value of
the replicating portfolio. At time 0, one could

� invest V0 in the financial market using the replicating strategy
� sell the claim at price v
� invest the amount v − V0 in the riskless asset.

The terminal wealth would be (if the interest rate is a constant r)
� the value of the replicating portfolio, i.e., H
� minus the value of the claim to deliver, i.e., H
� plus the amount of money in the savings account, that is (v−V0)erT

and that quantity is strictly positive. If the claim H is traded at price v with
v < V0, we invert the positions, buying the claim at price v and selling the
replicating portfolio.
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Using the characterization of a self-financing strategy obtained in Propo-
sition 2.1.1.3, we see that the contingent claim H is hedgeable if there exists a
pair (h, π) where h is a real number and π a d-dimensional predictable process
such that

H/S0
T = h +

d∑
i=1

∫ T

0

πi
sd(Si

s/S0
s ) .

From (2.1.3) the discounted value at time t of this strategy is given by

V π
t /S0

t = h +
d∑

i=1

∫ t

0

πi
sdSi,0

s .

We shall say that V π
0 is the initial value of H, and that π is the hedging

portfolio. Note that the discounted price process V π,0 is a Q-local martingale
under any e.m.m. Q.

To give precise meaning the notion of market completeness, one needs to
take care with the measurability conditions. The filtration to take into account
is, in the case of a deterministic interest rate, the filtration generated by the
traded assets.

Definition 2.1.5.2 Assume that r is deterministic and let FS be the natural
filtration of the prices. The market is said to be complete if any contingent
claim H ∈ L2(FS

T ) is the value at time T of some self-financing strategy π.

If r is stochastic, the standard attitude is to work with the filtration generated
by the discounted prices.

Comments 2.1.5.3 (a) We emphasize that the definition of market com-
pleteness depends strongly on the choice of measurability of the contingent
claims (see � Subsection 2.3.6) and on the regularity conditions on strategies
(see below).

(b) It may be that the market is complete, but there exists no e.m.m. As
an example, let us assume that a riskless asset S0 and two risky assets with
dynamics

dSi
t = Si

t(bidt + σdBt), i = 1, 2

are traded. Here, B is a one-dimensional Brownian motion, and b1 �= b2.
Obviously, there does not exist an e.m.m., so arbitrage opportunities exist,
however, the market is complete. Indeed, any contingent claim H can be
written as a stochastic integral with respect to S1/S0 (the market with the
two assets S0, S1 is complete).

(c) In a model where dSt = St(btdt + σdBt), where b is FB-adapted, the
value of the trend b has no influence on the valuation of hedgeable contingent
claims. However, if b is a process adapted to a filtration bigger than the
filtration FB, there may exist many e.m.m.. In that case, one has to write the
dynamics of S in its natural filtration, using filtering results (see � Section
5.10). See, for example, Pham and Quenez [711].
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Theorem 2.1.5.4 Let S̃ be a process which represents the discounted prices.
If there exists a unique e.m.m. Q such that S̃ is a Q-local martingale, then
the market is complete and arbitrage free.

Proof: This result is obtained from the fact that if there is a unique
probability measure such that S̃ is a local martingale, then the process S̃
has the representation property. See Jacod and Yor [472] for a proof or �
Subsection 9.5.3. �

Theorem 2.1.5.5 In an arbitrage free and complete market, the time-t price
of a (bounded) contingent claim H is

V H
t = R−1

t EQ(RT H|Ft) (2.1.4)

where Q is the unique e.m.m. and R the discount factor.

Proof: In a complete market, using the predictable representation theorem,
there exists π such that HRT = h +

∑d
i=1

∫ T

0
πsdSi,0

s , and Si,0 is a Q-
martingale. Hence, the result follows. �

Working with the historical probability yields that the process Z defined
by Zt = LtRtV

H
t , where L is the Radon-Nikodým density, is a P-martingale;

therefore we also obtain the price V H
t of the contingent claim H as

V H
t RtLt = EP(LT RT H|Ft) . (2.1.5)

Remark 2.1.5.6 Note that, in an incomplete market, if H is hedgeable, then
the time-t value of the replicating portfolio is V H

t = R−1
t EQ(RT H|Ft), for any

e.m.m. Q.

2.2 A Diffusion Model

In this section, we make precise the dynamics of the assets as Itô processes,
we study the market completeness and, in a Markovian setting, we present
the PDE approach.

Let (Ω,F , P) be a probability space. We assume that an n-dimensional
Brownian motion B is constructed on this space and we denote by F its
natural filtration. We assume that the dynamics of the assets of the financial
market are as follows: the dynamics of the savings account are

dS0
t = rtS

0
t dt, S0

0 = 1 , (2.2.1)

and the vector valued process (Si, 1 ≤ i ≤ d) consisting of the prices of d risky
assets is a d-dimensional diffusion which follows the dynamics
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dSi
t = Si

t(b
i
tdt +

n∑
j=1

σi,j
t dBj

t ) , (2.2.2)

where r, bi, and the volatility coefficients σi,j are supposed to be given F-
predictable processes, and satisfy for any t, almost surely,

rt > 0,

∫ t

0

rsds < ∞,

∫ t

0

|bi
s|ds < ∞ ,

∫ t

0

(σi,j
s )2ds < ∞ .

The solution of (2.2.2) is

Si
t = Si

0 exp

⎛
⎝
∫ t

0

bi
sds +

n∑
j=1

∫ t

0

σi,j
s dBj

s − 1
2

n∑
j=1

∫ t

0

(σi,j
s )2ds

⎞
⎠ .

In particular, the prices of the assets are strictly positive. As usual, we denote
by

Rt = exp
(
−
∫ t

0

rsds

)
= 1/S0

t

the discount factor. We also denote by Si,0 = Si/S0 the discounted prices and
V 0 = V/S0 the discounted value of V .

2.2.1 Absence of Arbitrage

Proposition 2.2.1.1 In the model (2.2.1–2.2.2), the existence of an e.m.m.
implies absence of arbitrage.

Proof: Let π be an admissible self-financing strategy, and assume that Q is
an e.m.m. Then,

dSi,0
t = Rt (dSi

t − rtS
i
tdt) = Si,0

t

n∑
j=1

σi,j
t dW j

t

where W is a Q-Brownian motion. Then, the process V π,0 is a Q-local
martingale which is bounded below (admissibility assumption), and therefore,
it is a supermartingale, and V π,0

0 ≥ EQ(V π,0
T ). Therefore, V π,0

T ≥ 0 implies
that the terminal value is null: there are no arbitrage opportunities. �

2.2.2 Completeness of the Market

In the model (2.2.1, 2.2.2) when d = n (i.e., the number of risky assets equals
the number of driving BM), and when σ is invertible, the e.m.m. exists and is
unique as long as some regularity is imposed on the coefficients. More precisely,
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we require that we can apply Girsanov’s transformation in such a way that
the d-dimensional process W where

dWt = dBt + σ−1
t (bt − rt1)dt = dBt + θtdt ,

is a Q-Brownian motion. In other words, we assume that the solution L of

dLt = −Ltσ
−1
t (bt − rt1)dBt = −LtθtdBt, L0 = 1

is a martingale (this is the case if θ is bounded). The process

θt = σ−1
t (bt − rt1)

is called the risk premium1. Then, we obtain

dSi,0
t = Si,0

t

d∑
j=1

σi,j
t dW j

t .

We can apply the predictable representation property under the probability Q

and find for any H ∈ L2(FT ) a d-dimensional predictable process (ht, t ≤ T )
with EQ(

∫ T

0
|hs|2ds) < ∞ and

HRT = EQ(HRT ) +
∫ T

0

hs dWs .

Therefore,

HRT = EQ(HRT ) +
d∑

i=1

∫ T

0

πi
s dSi,0

s

where π satisfies
∑d

i=1 πi
sS

i,0
s σi,j

s = hj
s. Hence, the market is complete, the

price of H is EQ(HRT ), and the hedging portfolio is (Vt −πtSt, πt) where the
time-t discounted value of the portfolio is given by

V 0
t = R−1

t EQ(HRT |Ft) = EQ(HRT ) +
∫ t

0

Rsπs(dSs − rsSsds) .

Remark 2.2.2.1 In the case d < n, the market is generally incomplete and
does not present arbitrage opportunities. In some specific cases, it can be
reduced to a complete market as in the � Example 2.3.6.1.

In the case n < d, the market generally presents arbitrage opportunities,
as shown in Comments 2.1.5.3, but is complete.
1 In the one-dimensional case, σ is, in finance, a positive process. Roughly speaking,

the investor is willing to invest in the risky asset only if b > r, i.e., if he will get
a positive “premium.”
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2.2.3 PDE Evaluation of Contingent Claims in a Complete Market

In the particular case where H = h(ST ), r is deterministic, h is bounded, and
S is an inhomogeneous diffusion

dSt = DSt(b(t, St)dt + Σ(t, St)dBt) ,

where DS is the diagonal matrix with Si on the diagonal, we deduce from the
Markov property of S under Q that there exists a function V (t, x) such that

EQ(R(T )h(ST )|Ft) = R(t)V (t, St) = V 0(t, St) .

The process (V 0(t, St), t ≥ 0) is a martingale, hence its bounded variation part
is equal to 0. Therefore, as soon as V is smooth enough (see Karatzas and
Shreve [513] for conditions which ensure this regularity), Itô’s formula leads to

V 0(t, St) = V 0(0, S0) +
d∑

i=1

∫ t

0

∂xiV
0(s, Ss)(dSi

s − r(s)Si
sds)

= V (0, S0) +
d∑

i=1

∫ t

0

∂xiV (s, Ss)dSi,0
s ,

where we have used the fact that

∂xiV
0(t, x) = R(t) ∂xiV (t, x) .

We now compare with (2.1.1)

V 0(t, St) = EQ(HR(T )) +
d∑

i=1

∫ t

0

πi
sdSi,0

s

and we obtain that πi
s = ∂xiV (s, Ss).

Proposition 2.2.3.1 Let

dSi
t = Si

t (r(t)dt +
d∑

j=1

σi,j(t, St)dBj
t ) ,

be the risk-neutral dynamics of the d risky assets where the interest rate is
deterministic. Assume that V solves the PDE, for t < T and xi > 0,∀i,

∂tV + r(t)
∑d

i=1 xi∂xiV +
1
2

∑
i,j

xixj∂xixj V

d∑
k=1

σi,kσj,k = r(t)V

(2.2.3)

with terminal condition V (T, x) = h(x). Then, the value at time t of the
contingent claim H = h(ST ) is equal to V (t, St).

The hedging portfolio is πi
t = ∂xiV (t, St), i = 1, . . . , d.
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In the one-dimensional case, when dSt = St(b(t, St)dt + σ(t, St)dBt) , the
PDE reads, for x > 0, t ∈ [0, T [,

∂tV (t, x) + r(t)x∂xV (t, x) +
1
2
σ2(t, x)x2∂xxV (t, x) = r(t)V (t, x)

(2.2.4)

with the terminal condition V (T, x) = h(x).

Definition 2.2.3.2 Solving the equation (2.2.4) with the terminal condition
is called the Partial Derivative Equation (PDE) evaluation procedure.

In the case when the contingent claim H is path-dependent (i.e., when the
payoff H = h(St, t ≤ T ) depends on the past of the price process, and not
only on the terminal value), it is not always possible to associate a PDE to
the pricing problem (see, e.g., Parisian options (see � Section 4.4) and Asian
options (see � Section 6.6)).

Thus, we have two ways of computing the price of a contingent claim
of the form h(ST ), either we solve the PDE, or we compute the conditional
expectation (2.1.5). The quantity RL is often called the state-price density
or the pricing kernel. Therefore, in a complete market, we can characterize
the processes which represent the value of a self-financing strategy.

Proposition 2.2.3.3 If a given process V is such that V R is a Q-martingale
(or V RL is a P-martingale), it defines the value of a self-financing strategy.

In particular, the process (Nt = 1/(RtLt), t ≥ 0) is the value of a portfolio
(NRL is a P-martingale), called the numéraire portfolio or the growth
optimal portfolio. It satisfies

dNt = Nt((r(t) + θ2
t )dt + θtdBt) .

(See Becherer [63], Long [603], Karatzas and Kardaras [511] and the book
of Heath and Platen [429] for a study of the numéraire portfolio.) It is a
main tool for consumption-investment optimization theory, for which we refer
the reader to the books of Karatzas [510], Karatzas and Shreve [514], and
Korn [538].

2.3 The Black and Scholes Model

We now focus on the well-known Black and Scholes model, which is a very
particular and important case of the diffusion model.
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2.3.1 The Model

The Black and Scholes model [105] (see also Merton [641]) assumes that
there is a riskless asset with interest rate r and that the dynamics of the price
of the underlying asset are

dSt = St(bdt + σdBt)

under the historical probability P. Here, the risk-free rate r, the trend b and
the volatility σ are supposed to be constant (note that, for valuation purposes,
b may be an F-adapted process). In other words, the value at time t of the
risky asset is

St = S0 exp
(

bt + σBt −
σ2

2
t

)
.

From now on, we fix a finite horizon T and our processes are only indexed
by [0, T ].

Notation 2.3.1.1 In the sequel, for two semi-martingales X and Y , we shall
use the notation X

mart= Y (or dXt
mart= dYt) to mean that X − Y is a local

martingale.

Proposition 2.3.1.2 In the Black and Scholes model, there exists a unique
e.m.m. Q, precisely Q|Ft = exp(−θBt − 1

2θ2t)P|Ft where θ = b−r
σ is the risk-

premium. The risk-neutral dynamics of the asset are

dSt = St(rdt + σdWt)

where W is a Q-Brownian motion.

Proof: If Q is equivalent to P, there exists a strictly positive martingale L
such that Q|Ft = LtP|Ft . From the predictable representation property under
P, there exists a predictable ψ such that

dLt = ψtdBt = LtφtdBt

where φtLt = ψt. It follows that

d(LRS)t
mart= (LRS)t(b − r + φtσ)dt .

Hence, in order for Q to be an e.m.m., or equivalently for LRS to be a P-
local martingale, there is one and only one process φ such that the bounded
variation part of LRS is null, that is

φt =
r − b

σ
= −θ ,
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where θ is the risk premium. Therefore, the unique e.m.m. has a Radon-
Nikodým density L which satisfies dLt = −LtθdBt, L0 = 1 and is given by
Lt = exp(−θBt − 1

2θ2t).
Hence, from Girsanov’s theorem, Wt = Bt + θt is a Q-Brownian motion,

and

dSt = St(bdt + σdBt) = St(rdt + σ(dBt + θdt)) = St(rdt + σdWt) .

�

In a closed form, we have

St = S0 exp
(

bt + σBt −
σ2

2
t

)
= S0e

rt exp
(

σWt −
σ2

2
t

)
= S0e

σXt

with Xt = νt + Wt, and ν = r
σ − σ

2 .

In order to price a contingent claim h(ST ), we compute the expectation
of its discounted value under the e.m.m.. This can be done easily, since
EQ(h(ST )e−rT ) = e−rT

EQ(h(ST )) and

EQ(h(ST )) = E

[
h(S0e

rT−σ2
2 T exp(σ

√
T G))

]

where G is a standard Gaussian variable.

We can also think about the expression EQ(h(ST )) = EQ(h(xeσXT )) as a
computation for the drifted Brownian motion Xt = νt+Wt. As an exercise on
Girsanov’s transformation, let us show how we can reduce the computation to
the case of a standard Brownian motion. The process X is a Brownian motion
under Q

∗, defined on FT as

Q
∗ = exp

(
−νWT − 1

2
ν2T

)
Q = ζT Q .

Therefore,
EQ(h(xeσXT )) = EQ∗(ζ(−1)

T h(xeσXT )) .

From

ζ
(−1)
T = exp

(
νWT +

1
2
ν2T

)
= exp

(
νXT − 1

2
ν2T

)
,

we obtain

EQ

(
h(xeσXT )

)
= exp

(
−1

2
ν2T

)
EQ∗(exp(νXT )h(xeσXT )) , (2.3.1)

where on the left-hand side, X is a Q-Brownian motion with drift ν and on
the right-hand side, X is a Q

∗-Brownian motion. We can and do write the
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quantity on the right-hand side as exp(−1
2ν2T ) E(exp(νWT )h(xeσWT )), where

W is a generic Brownian motion.

We can proceed in a more powerful way using Cameron-Martin’s theorem,
i.e., the absolute continuity relationship between a Brownian motion with drift
and a Brownian motion. Indeed, as in Exercise 1.7.5.5

EQ(h(xeσXT )) = W(ν)(h(xeσXT )) = E

(
eνWT − ν2

2 T h(xeσWT )
)

(2.3.2)

which is exactly (2.3.1).

Proposition 2.3.1.3 Let us consider the Black and Scholes framework

dSt = St(rdt + σdWt), S0 = x

where W is a Q-Brownian motion and Q is the e.m.m. or risk-neutral
probability. In that setting, the value of the contingent claim h(ST ) is

EQ(e−rT h(ST )) = e−(r+ ν2
2 )T W

(
eνXT h(xeσXT )

)

where ν = r
σ − σ

2 and X is a Brownian motion under W.
The time-t value of the contingent claim h(ST ) is

EQ(e−r(T−t)h(ST )|Ft) = e−(r+ ν2
2 )(T−t)W

(
eνXT−th(zeσXT−t)

)
|z=St .

The value of a path-dependent contingent claim Φ(St, t ≤ T ) is

EQ(e−rT Φ(St, t ≤ T )) = e−(r+ ν2
2 )T W

(
eνXT Φ(xeσXt , t ≤ T )

)
.

Proof: It remains to establish the formula for the time-t value. From

EQ(e−r(T−t)h(ST )|Ft) = EQ(e−r(T−t)h(StS
t
T )|Ft)

where St
T = ST /St, using the independence between St

T and Ft and the

equality St
T

law= S1
T−t, where S1 has the same dynamics as S, with initial

value 1, we get
EQ(e−r(T−t)h(ST )|Ft) = Ψ(St)

where
Ψ(x) = EQ(e−r(T−t)h(xSt

T )) = EQ(e−r(T−t)h(xST−t)) .

This last quantity can be computed from the properties of BM. Indeed,

EQ (h(ST )|Ft) =
1√
2π

∫

R

dy h
(
Ste

r(T−t)+σ
√

T−ty−σ2(T−t)/2
)

e−y2/2 .

(See Example 1.5.4.7 if needed.) �
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Notation 2.3.1.4 In the sequel, when working in the Black and Scholes
framework, we shall use systematically the notation ν = r

σ − σ
2 and the fact

that for t ≥ s the r.v. Ss
t = St/Ss is independent of Ss.

Exercise 2.3.1.5 The payoff of a power option is h(ST ), where the function
h is given by h(x) = xβ(x − K)+. Prove that the payoff can be written as
the difference of European payoffs on the underlying assets Sβ+1 and Sβ with
strikes depending on K and β . �
Exercise 2.3.1.6 We consider a contingent claim with a terminal payoff
h(ST ) and a continuous payoff (xs, s ≤ T ), where xs is paid at time s. Prove
that the price of this claim is

Vt = EQ(e−r(T−t)h(ST ) +
∫ T

t

e−r(s−t)xsds|Ft) .

�
Exercise 2.3.1.7 In a Black and Scholes framework, prove that the price at
time t of the contingent claim h(ST ) is

Ch(x, T − t) = e−r(T−t)
EQ(h(ST )|St = x) = e−r(T−t)

EQ(h(St,x
T ))

where St,x
s is the solution of the SDE

dSt,x
s = St,x

s (rds + σdWs), St,x
t = x

and the hedging strategy consists of holding ∂xCh(St, T − t) shares of the
underlying asset.

Assuming some regularity on h, and using the fact that St,x
T

law= xeσXT−t ,
where XT−t is a Gaussian r.v., prove that

∂xCh(x, T − t) =
1
x

EQ

(
h′(St,x

T )St,x
T

)
e−r(T−t) .

�

2.3.2 European Call and Put Options

Among the various derivative products, the most popular are the European
Call and Put Options, also called vanilla2 options.

A European call is associated with some underlying asset, with price
(St, t ≥ 0). At maturity (a given date T ), the holder of a call receives (ST−K)+

where K is a fixed number, called the strike. The price of a call is the amount
of money that the buyer of the call will pay at time 0 to the seller. The time-t
price is the price of the call at time t, equal to EQ(e−r(T−t)(ST − K)+|Ft),
or, due to the Markov property, EQ(e−r(T−t)(ST − K)+|St). At maturity (a
given date T ), the holder of a European put receives (K − ST )+.
2 To the best of our knowledge, the name “vanilla” (or “plain vanilla”) was given to

emphasize the standard form of these products, by reference to vanilla, a standard
flavor for ice cream, or to plain vanilla, a standard font in printing.
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Theorem 2.3.2.1 Black and Scholes formula.
Let dSt = St(bdt + σdBt) be the dynamics of the price of a risky asset and
assume that the interest rate is a constant r. The value at time t of a European
call with maturity T and strike K is BS(St, σ, t) where

BS(x, σ, t) : = xN
[
d1

( x

Ke−r(T−t)
, T − t

)]

− Ke−r(T−t)N
[
d2

( x

Ke−r(T−t)
, T − t

)] (2.3.3)

where

d1(y, u) =
1√
σ2u

ln(y) +
1
2

√
σ2u, d2(y, u) = d1(y, u) −

√
σ2u ,

where we have written
√

σ2 so that the formula does not depend on the sign
of σ.

Proof: It suffices to solve the evaluation PDE (2.2.4) with terminal condition
C(x, T ) = (x − K)+. Another method is to compute the conditional
expectation, under the e.m.m., of the discounted terminal payoff, i.e.,
EQ(e−rT (ST − K)+|Ft). For t = 0,

EQ(e−rT (ST − K)+) = EQ(e−rT ST 1{ST ≥K}) − Ke−rT
Q(ST ≥ K) .

Under Q, dSt = St(rdt+σdWt) hence, ST
law= S0e

rT−σ2T/2eσ
√

TG, where G is
a standard Gaussian law, hence

Q(ST ≥ K) = N
[
d2

( x

Ke−rT )
, T

)]
.

The equality

EQ(e−rT ST 1{ST ≥K}) = xN
(

d1

(
S0

Ke−rT
, T

))

can be proved using the law of ST , however, we shall give in � Subsec-
tion 2.4.1 a more pleasant method.

The computation of the price at time t is carried out using the Markov
property. �

Let us emphasize that a pricing formula appears in Bachelier [39, 41] in
the case where S is a drifted Brownian motion. The central idea in Black and
Scholes’ paper is the hedging strategy. Here, the hedging strategy for a call is to
keep a long position of Δ(t, St) = ∂C

∂x (St, T −t) in the underlying asset (and to
have C−ΔSt shares in the savings account). It is well known that this quantity
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is equal to N (d1). This can be checked by a tedious differentiation of (2.3.3).
One can also proceed as follows: as we shall see in � Comments 2.3.2.2

C(x, T − t) = EQ(e−r(T−t)(ST − K)+|St = x) = EQ(Rt
T (xSt

T − K)+) ,

where St
T = ST /St, so that Δ(t, x) can be obtained by a differentiation with

respect to x under the expectation sign. Hence,

Δ(t, x) = E(Rt
T St

T 1{xSt
T ≥K}) = N

(
d1(St/(Ke−r(T−t)), T − t)

)
.

This quantity, called the “Delta” (see � Subsection 2.3.3) is positive and
bounded by 1. The second derivative with respect to x (the “Gamma”) is

1
σx

√
T−t

N ′(d1), hence C(x, T − t) is convex w.r.t. x.

Comment 2.3.2.2 It is remarkable that the PDE evaluation was obtained
in the seminal paper of Black and Scholes [105] without the use of any e.m.m..
Let us give here the main arguments. In this paper, the objective is to replicate
the risk-free asset with simultaneous positions in the contingent claim and in
the underlying asset. Let (α, β) be a replicating portfolio and

Vt = αtCt + βtSt

the value of this portfolio assumed to satisfy the self-financing condition, i.e.,

dVt = αtdCt + βtdSt

Then, assuming that Ct is a smooth function of time and underlying value,
i.e., Ct = C(St, t), by relying on Itô’s lemma the differential of V is obtained:

dVt = αt(∂xCdSt + ∂tCdt +
1
2
σ2S2

t ∂xxCdt) + βtdSt ,

where ∂tC (resp. ∂xC ) is the derivative of C with respect to the second
variable (resp. the first variable) and where all the functions C, ∂xC, . . . are
evaluated at (St, t). From αt = (Vt − βtSt)/Ct, we obtain

dVt = ((Vt − βtSt)(Ct)−1∂xC + βt)σStdBt (2.3.4)

+
(

Vt − βtSt

Ct

(
∂tC +

1
2
σ2S2

t ∂xxC + bSt∂xC

)
+ βtStb

)
dt .

If this replicating portfolio is risk-free, one has dVt = Vtrdt: the martingale
part on the right-hand side vanishes, which implies

βt = (St∂xC − Ct)−1 Vt∂xC

and
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Vt − βtSt

Ct

(
∂tC +

1
2
σ2S2

t ∂xxC + Stb∂xC

)
+ βtStb = rVt . (2.3.5)

Using the fact that

(Vt − βtSt)(Ct)−1∂xC + βt = 0

we obtain that the term which contains b, i.e.,

bSt

(
Vt − βSt

Ct
∂xC + βt

)

vanishes. After simplifications, we obtain

rC =
(

1 +
S∂xC

C − S∂xC

)(
∂tC +

1
2
σ2x2∂xxC

)

=
C

C − S∂xC

(
∂tC +

1
2
σ2x2∂xxC

)

and therefore the PDE evaluation

∂tC(x, t) + rx∂xC(x, t) +
1
2
σ2x2∂xxC(x, t)

= rC(x, t), x > 0, t ∈ [0, T [ (2.3.6)

is obtained. Now,

βt = Vt∂xC(S∂xC − C)−1 = V0
N (d1)

Ke−rTN (d2)
.

Note that the hedging ratio is

βt

αt
= −∂xC(t, St) .

Reading carefully [105], it seems that the authors assume that there exists a
self-financing strategy (−1, βt) such that dVt = rVtdt, which is not true; in
particular, the portfolio (−1,N (d1)) is not self-financing and its value, equal
to −Ct +StN (d1) = Ke−r(T−t)N (d2), is not the value of a risk-free portfolio.

Exercise 2.3.2.3 Robustness of the Black and Scholes formula. Let

dSt = St(bdt + σtdBt)

where (σt, t ≥ 0) is an adapted process such that for any t, 0 < a ≤ σt ≤ b.
Prove that

∀t, BS(St, a, t) ≤ EQ(e−r(T−t)(ST − K)+|Ft) ≤ BS(St, b, t) .

Hint: This result is obtained by using the fact that the BS function is convex
with respect to x. �
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Comment 2.3.2.4 The result of the last exercise admits generalizations
to other forms of payoffs as soon as the convexity property is preserved,
and to the case where the volatility is a given process, not necessarily F-
adapted. See El Karoui et al. [301], Avellaneda et al. [29] and Martini [625].
This convexity property holds for a d-dimensional price process only in the
geometric Brownian motion case, see Ekström et al. [296]. See Mordecki [413]
and Bergenthum and Rüschendorf [74], for bounds on option prices.

Exercise 2.3.2.5 Suppose that the dynamics of the risky asset are given by
dSt = St(bdt + σ(t)dBt), where σ is a deterministic function. Characterize
the law of ST under the risk-neutral probability Q and prove that the price
of a European option on the underlying S, with maturity T and strike K, is
BS(x,Σ(t), t) where (Σ(t))2 = 1

T−t

∫ T

t
σ2(s)ds. �

Exercise 2.3.2.6 Assume that, under Q, S follows a Black and Scholes
dynamics with σ = 1, r = 0, S0 = 1. Prove that the function t → C(1, t; 1) :=
EQ((St − 1)+) is a cumulative distribution function of some r.v. X; identify
the law of X.
Hint: EQ((St − 1)+) = Q(4B2

1 ≤ t) where B is a Q-BM. See Bentata and
Yor [72] for more comments. �

2.3.3 The Greeks

It is important for practitioners to have a good knowledge of the sensitivity
of the price of an option with respect to the parameters of the model.

The Delta is the derivative of the price of a call with respect to the
underlying asset price (the spot). In the BS model, the Delta of a call is
N (d1). The Delta of a portfolio is the derivative of the value of the portfolio
with respect to the underlying price. A portfolio with zero Delta is said to be
delta neutral. Delta hedging requires continuous monitoring and rebalancing
of the hedge ratio.

The Gamma is the derivative of the Delta w.r.t. the underlying price.
In the BS model, the Gamma of a call is N ′(d1)/Sσ

√
T − t. It follows that

the BS price of a call option is a convex function of the spot. The Gamma
is important because it makes precise how much hedging will cost in a small
interval of time.

The Vega is the derivative of the option price w.r.t. the volatility. In the
BS model, the Vega of a call is N ′(d1)S

√
T − t.
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2.3.4 General Case

Let us study the case where

dSt = St(αtdt + σtdBt) .

Here, B is a Brownian motion with natural filtration F and α and σ are
bounded F-predictable processes. Then,

St = S0 exp
(∫ t

0

(
αs −

σ2
s

2

)
ds +

∫ t

0

σsdBs

)

and FS
t ⊂ Ft. We assume that r is the constant risk-free interest rate and

that σt ≥ ε > 0, hence the risk premium θt =
αt − r

σt
is bounded. It follows

that the process

Lt = exp
(
−
∫ t

0

θsdBs −
1
2

∫ t

0

θ2
sds

)
, t ≤ T

is a uniformly integrable martingale. We denote by Q the probability measure
satisfying Q|Ft = LtP|Ft and by W the Brownian part of the decomposition
of the Q-semi-martingale B, i.e., Wt = Bt +

∫ t

0
θsds. Hence, from integration

by parts formula, d(RS)t = RtStσtdWt.
Then, from the predictable representation property (see Section 1.6),

for any square integrable FT -measurable random variable H, there exists
an F-predictable process φ such that HRT = EQ(HRT ) +

∫ T

0
φsdWs and

E(
∫ T

0
φ2

sds) < ∞; therefore

HRT = EQ(HRT ) +
∫ T

0

ψsd(RS)s

where ψt = φt/(RtStσt). It follows that H is hedgeable with the self-financing
portfolio (Vt − ψtSt, ψt) where

Vt = R−1
t EQ(HRT |Ft) = H−1

t EP(HHT |Ft)

with Ht = RtLt. The process H is called the deflator or the pricing kernel.

2.3.5 Dividend Paying Assets

In this section, we suppose that the owner of one share of the stock receives
a dividend. Let S be the stock process. Assume in a first step that the stock
pays dividends Δi at fixed increasing dates Ti, i ≤ n with Tn ≤ T . The price
of the stock at time 0 is the expectation under the risk-neutral probability Q

of the discounted future payoffs, that is
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S0 = EQ(ST RT +
n∑

i=1

ΔiRTi) .

We now assume that the dividends are paid in continuous time, and let D
be the cumulative dividend process (that is Dt is the amount of dividends
received between 0 and t). The discounted price of the stock is the risk-
neutral expectation (one often speaks of risk-adjusted probability in the case
of dividends) of the future dividends, that is

StRt = EQ

(
ST RT +

∫ T

t

RsdDs|Ft

)
.

Note that the discounted price RtSt is no longer a Q-martingale. On the other
hand, the discounted cum-dividend price3

Scum
t Rt := StRt +

∫ t

0

RsdDs

is a Q-martingale. Note that Scum
t = St + 1

Rt

∫ t

0
RsdDs. If we assume that the

reference filtration is a Brownian filtration, there exists σ such that

d(Scum
t Rt) = σtStRtdWt,

and we obtain
d(StRt) = −RtdDt + StRtσtdWt.

Suppose now that the asset S pays a proportional dividend, that is, the
holder of one share of the asset receives δStdt in the time interval [t, t + dt].
In that case, under the risk-adjusted probability Q, the discounted value of
an asset equals the expectation on the discounted future payoffs, i.e.,

RtSt = EQ(RT ST + δ

∫ T

t

RsSsds|Ft) .

Hence, the discounted cum-dividend process

RtSt +
∫ t

0

δRsSsds

is a Q-martingale so that the risk-neutral dynamics of the underlying asset
are given by

dSt = St ((r − δ)dt + σdWt) . (2.3.7)

One can also notice that the process (StRte
δt, t ≥ 0) is a Q-martingale.

3 Nothing to do with scum!
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If the underlying asset pays a proportional dividend, the self-financing
condition takes the following form. Let

dSt = St(btdt + σtdBt)

be the historical dynamics of the asset which pays a dividend at rate δ. A
trading strategy π is self-financing if the wealth process Vt = π0

t S0
t + π1

t St

satisfies

dVt = π0
t dS0

t + π1
t (dSt + δStdt) = rVtdt + π1

t (dSt + (δ − r)Stdt) .

The term δπ1
t St makes precise the fact that the gain from the dividends is

reinvested in the market. The process V R satisfies

d(VtRt) = Rtπ
1
t (dSt + (δ − r)Stdt) = Rtπ

1
t StσdWt

hence, it is a (local) Q-martingale.

2.3.6 Rôle of Information

When dealing with completeness the choice of the filtration is very important;
this is now discussed in the following examples:

Example 2.3.6.1 Toy Example. Assume that the riskless interest rate is a
constant r and that the historical dynamics of the risky asset are given by

dSt = St(bdt + σ1dB1
t + σ2dB2

t )

where (Bi, i = 1, 2) are two independent BMs and b a constant4. It is not
possible to hedge every FB1,B2

T -measurable contingent claim with strategies
involving only the riskless and the risky assets, hence the market consisting
of the FB1,B2

T -measurable contingent claims is incomplete.
The set Q of e.m.m’s is obtained via the family of Radon-Nikodým

densities dLt = Lt(ψtdB1
t +γtdB2

t ) where the predictable processes ψ, γ satisfy
b + ψtσ1 + γtσ2 = r. Thus, the set Q is infinite.

However, writing the dynamics of S as a semi-martingale in its own
filtration leads to dSt = St(bdt + σdB3

t ) where B3 is a Brownian motion and
σ2 = σ2

1 + σ2
2 . Note that FB3

t = FS
t . It is now clear that any FS

T -measurable
contingent claim can be hedged, and the market is FS-complete.

Example 2.3.6.2 More generally, a market where the riskless asset has a
price given by (2.2.1) and where the d risky assets’ prices follow

dSi
t = Si

t(b
i(t, St)dt +

n∑
j=1

σi,j(t, St)dBj
t ), Si

0 = xi , (2.3.8)

4 Of course, the superscript 2 is not a power!
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where B is a n-dimensional BM, with n > d, can often be reduced to the case
of an FS

T -complete market. Indeed, it may be possible, under some regularity
assumptions on the matrix σ, to write the equation (2.3.8) as

dSi
t = Si

t(b
i(t, St)dt +

d∑
j=1

σ̃i,j(t, St)dB̃j
t ), Si

0 = xi ,

where B̃ is a d-dimensional Brownian motion. The concept of a strong solution
for an SDE is useful here. See the book of Kallianpur and Karandikar [506]
and the paper of Kallianpur and Xiong [507].

When

dSi
t = Si

t

⎛
⎝bi

tdt +
n∑

j=1

σi,j
t dBj

t

⎞
⎠ , Si

0 = xi, i = 1, . . . , d, (2.3.9)

and n > d, if the coefficients are adapted with respect to the Brownian
filtration FB , then the market is generally incomplete, as was shown in
Exercice 2.3.6.1 (for a general study, see Karatzas [510]). Roughly speaking,
a market with a riskless asset and risky assets is complete if the number of
sources of noise is equal to the number of risky assets.

An important case of an incomplete market (the stochastic volatility
model) is when the coefficient σ is adapted to a filtration different from FB.
(See � Section 6.7 for a presentation of some stochastic volatility models.)

Let us briefly discuss the case dSt = StσtdWt. The square of the volatility
can be written in terms of S and its bracket as σ2

t = d〈S〉t

S2
t dt

and is obviously
FS-adapted. However, except in the particular case of regular local volatility,
where σt = σ(t, St), the filtration generated by S is not the filtration generated
by a one-dimensional BM. For example, when dSt = Ste

BtdWt, where B is
a BM independent of W , it is easy to prove that FS

t = FW
t ∨ FB

t , and in
the warning (1.4.1.6) we have established that the filtration generated by S
is not generated by a one-dimensional Brownian motion and that S does not
possess the predictable representation property.

2.4 Change of Numéraire

The value of a portfolio is expressed in terms of a monetary unit. In order to
compare two numerical values of two different portfolios, one has to express
these values in terms of the same numéraire. In the previous models, the
numéraire was the savings account. We study some cases where a different
choice of numéraire is helpful.
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2.4.1 Change of Numéraire and Black-Scholes Formula

Definition 2.4.1.1 A numéraire is any strictly positive price process. In
particular, it is a semi-martingale.

As we have seen, in a Black and Scholes model, the price of a European option
is given by:

C(S0, T ) = EQ(e−rT (ST − K)1{ST ≥K})

= EQ(e−rT ST 1{ST ≥K}) − e−rT KQ(ST ≥ K) .

Hence, if

k =
1
σ

(
ln(K/x) − (r − 1

2
σ2)T

)
,

using the symmetry of the Gaussian law, one obtains

Q(ST ≥ K) = Q(WT ≥ k) = Q(WT ≤ −k) = N
(
d2

( x

Ke−rT
, T

))

where the function d2 is given in Theorem 2.3.2.1.
From the dynamics of S, one can write:

e−rT
EQ(ST 1{ST ≥K}) = S0EQ

(
1{WT ≥k} exp

(
−σ2

2
T + σWT

))
.

The process (exp(−σ2

2 t + σWt), t ≥ 0) is a positive Q-martingale with
expectation equal to 1. Let us define the probability Q

∗ by its Radon-Nikodým
derivative with respect to Q:

Q
∗|Ft = exp

(
−σ2

2
t + σWt

)
Q|Ft .

Hence,
e−rT

EQ(ST 1{ST ≥K}) = S0Q
∗(WT ≥ k) .

Girsanov’s theorem implies that the process (Ŵt = Wt − σt, t ≥ 0) is a Q
∗-

Brownian motion. Therefore,

e−rT
EQ(ST 1{ST ≥K}) = S0Q

∗ (WT − σT ≥ k − σT )

= S0Q
∗
(
ŴT ≤ −k + σT

)
,

i.e.,
e−rT

EQ(ST 1{ST ≥K}) = S0N
(
d1

( x

Ke−rT
, T

))
.

Note that this change of probability measure corresponds to the choice of
(St, t ≥ 0) as numéraire (see � Subsection 2.4.3).
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2.4.2 Self-financing Strategy and Change of Numéraire

If N is a numéraire (e.g., the price of a zero-coupon bond), we can evaluate
any portfolio in terms of this numéraire. If Vt is the value of a portfolio, its
value in the numéraire N is Vt/Nt. The choice of the numéraire does not
change the fundamental properties of the market. We prove below that the
set of self-financing portfolios does not depend on the choice of numéraire.

Proposition 2.4.2.1 Let us assume that there are d assets in the market,
with prices (Si

t ; i = 1, . . . , d, t ≥ 0) which are continuous semi-martingales
with S1 there to be strictly positive.(We do not require that there is a riskless
asset.) We denote by V π

t =
∑d

i=1 πi
tS

i
t the value at time t of the portfolio

πt = (πi
t, i = 1, . . . , d). If the portfolio (πt, t ≥ 0) is self-financing, i.e., if

dV π
t =

∑d
i=1 πi

tdSi
t, then,choosing S1

t as a numéraire, and

dV π,1
t =

d∑
i=2

πi
tdSi,1

t

where V π,1
t = V π

t /S1
t , Si,1

t = Si
t/S1

t .

Proof: We give the proof in the case d = 2 (for two assets). We note simply
V (instead of V π) the value of a self-financing portfolio π = (π1, π2) in a
market where the two assets Si, i = 1, 2 (there is no savings account here) are
traded. Then

dVt = π1
t dS1

t + π2
t dS2

t = (Vt − π2
t S2

t )dS1
t /S1

t + π2
t dS2

t

= (V 1
t − π2

t S2,1
t )dS1

t + π2
t dS2

t . (2.4.1)

On the other hand, from V 1
t S1

t = Vt one obtains

dVt = V 1
t dS1

t + S1
t dV 1

t + d〈S1, V 1〉t , (2.4.2)

hence,

dV 1
t =

1
S1

t

(
dVt − V 1

t dS1
t − d〈S1, V 1〉t

)

=
1
S1

t

(
π2

t dS2
t − π2

t S2,1
t dS1

t − d〈S1, V 1〉t
)

where we have used (2.4.1) for the last equality. The equality S2,1
t S1

t = S2
t

implies
dS2

t − S2,1
t dS1

t = S1
t dS2,1

t + d〈S1, S2,1〉t
hence,

dV 1
t = π2

t dS2,1
t +

π2
t

S1
t

d〈S1, S2,1〉t −
1
S1

t

d〈S1, V 1〉t .
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This last equality implies that
(

1 +
1
S1

t

)
d〈V 1, S1〉t = π2

t

(
1 +

1
S1

t

)
d〈S1, S2,1〉t

hence, d〈S1, V 1〉t = π2
t d〈S1, S2,1〉t, hence it follows that dV 1

t = π2
t dS2,1

t . �

Comment 2.4.2.2 We refer to Benninga et al. [71], Duffie [270], El Karoui
et al. [299], Jamshidian [478], and Schroder [773] for details and applications
of the change of numéraire method. Change of numéraire has strong links with
optimization theory, see Becherer [63] and Gourieroux et al. [401]. See also an
application to hedgeable claims in a default risk setting in Bielecki et al. [89].
We shall present applications of change of numéraire in � Subsection 2.7.1
and in the proof of symmetry relations (e.g., � formula (3.6.1.1)).

2.4.3 Change of Numéraire and Change of Probability

We define a change of probability associated with any numéraire Z. The
numéraire is a price process, hence the process (ZtRt, t ≥ 0) is a strictly
positive Q-martingale. Define Q

Z as Q
Z |Ft := (ZtRt)Q|Ft .

Proposition 2.4.3.1 Let (Xt, t ≥ 0) be the dynamics of a price and Z a new
numéraire. The price of X, in the numéraire Z: (Xt/Zt, 0 ≤ t ≤ T ), is a
Q

Z-martingale.

Proof: If X is a price process, the discounted process X̃t : = XtRt is a Q-
martingale. Furthermore, from Proposition 1.7.1.1, it follows that Xt/Zt is a
Q

Z -martingale if and only if (Xt/Zt)ZtRt = RtXt is a Q-martingale. �

In particular, if the market is arbitrage-free, and if a riskless asset S0 is
traded, choosing this asset as a numéraire leads to the risk-neutral probability,
under which Xt/S0

t is a martingale.

Comments 2.4.3.2 (a) If the numéraire is the numéraire portfolio, defined
at the end of Subsection 2.2.3, i.e., Nt = 1/RtSt, then the risky assets are
Q

N -martingales.
(b) See � Subsection 2.7.2 for another application of change of numéraire.

2.4.4 Forward Measure

A particular choice of numéraire is the zero-coupon bond of maturity T . Let
P (t, T ) be the price at time t of a zero-coupon bond with maturity T . If the
interest rate is deterministic, P (t, T ) = RT /Rt and the computation of the
value of a contingent claim X reduces to the computation of P (t, T )EQ(X|Ft)
where Q is the risk-neutral probability measure.
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When the spot rate r is a stochastic process, P (t, T ) = (Rt)−1
EQ(RT |Ft)

where Q is the risk-neutral probability measure and the price of a contingent
claim H is (Rt)−1

EQ(HRT |Ft). The computation of EQ(HRT |Ft) may be
difficult and a change of numéraire may give some useful information.
Obviously, the process

ζt : =
1

P (0, T )
EQ(RT |Ft) =

P (t, T )
P (0, T )

Rt

is a strictly positive Q-martingale with expectation equal to 1. Let us define
the forward measure Q

T as the probability associated with the choice of
the zero-coupon bond as a numéraire:

Definition 2.4.4.1 Let P (t, T ) be the price at time t of a zero-coupon with
maturity T . The T -forward measure is the probability Q

T defined on Ft, for
t ≤ T , as

Q
T |Ft = ζt Q|Ft

where ζt =
P (t, T )
P (0, T )

Rt.

Proposition 2.4.4.2 Let (Xt, t ≥ 0) be the dynamics of a price. Then the
forward price (Xt/P (t, T ), 0 ≤ t ≤ T ) is a Q

T -martingale.
The price of a contingent claim H is

V H
t = EQ

(
H exp

(
−
∫ T

t

rsds

)
|Ft

)
= P (t, T )EQT (H|Ft) .

Remark 2.4.4.3 Obviously, if the spot rate r is deterministic, Q
T = Q and

the forward price is equal to the spot price.

Comment 2.4.4.4 A forward contract on H, made at time 0, is a contract
that stipulates that its holder pays the deterministic amount K at the delivery
date T and receives the stochastic amount H. Nothing is paid at time 0.
The forward price of H is K, determined at time 0 as K = EQT

(H). See
Björk [102], Martellini et al. [624] and Musiela and Rutkowski [661] for various
applications.

2.4.5 Self-financing Strategies: Constrained Strategies

We present a very particular case of hedging with strategies subject to a
constraint. The change of numéraire technique is of great importance in
characterizing such strategies. This result is useful when dealing with default
risk (see Bielecki et al. [93]).

We assume that the k ≥ 3 assets Si traded in the market are continuous
semi-martingales, and we assume that S1 and Sk are strictly positive
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processes. We do not assume that there is a riskless asset (we can consider
this case if we specify that dS1

t = rtS
1
t dt).

Let π = (π1, π2, . . . , πk) be a self-financing trading strategy satisfying the
following constraint:

k∑
i=�+1

πi
tS

i
t = Zt, ∀ t ∈ [0, T ], (2.4.3)

for some 1 ≤ � ≤ k − 1 and a predetermined, F-predictable process Z.
Let Φ�(Z) be the class of all self-financing trading strategies satisfying the
condition (2.4.3). We denote by Si,1 = Si/S1 and Z1 = Z/S1 the prices and
the value of the constraint in the numéraire S1.

Proposition 2.4.5.1 The relative time-t wealth V π,1
t = V π

t (S1
t )−1 of a

strategy π ∈ Φ�(Z) satisfies

V π,1
t = V π,1

0 +
�∑

i=2

∫ t

0

πi
u dSi,1

u +
k−1∑

i=�+1

∫ t

0

πi
u

(
dSi,1

u − Si,1
u

Sk,1
u

dSk,1
u

)

+
∫ t

0

Z1
u

Sk,1
u

dSk,1
u .

Proof: Let us consider discounted values of price processes S1, S2, . . . , Sk,
with S1 taken as a numéraire asset. In the proof, for simplicity, we do not
indicate the portfolio π as a superscript for the wealth. We have the numéraire
invariance

V 1
t = V 1

0 +
k∑

i=2

∫ t

0

πi
u dSi,1

u . (2.4.4)

The condition (2.4.3) implies that

k∑
i=�+1

πi
tS

i,1
t = Z1

t ,

and thus

πk
t = (Sk,1

t )−1
(
Z1

t −
k−1∑

i=�+1

πi
tS

i,1
t

)
. (2.4.5)

By inserting (2.4.5) into (2.4.4), we arrive at the desired formula. �

Let us take Z = 0, so that π ∈ Φ�(0). Then the constraint condition
becomes

∑k
i=�+1 πi

tS
i
t = 0, and (2.4.4) reduces to

V π,1
t =

�∑
i=2

∫ t

0

πi
s dSi,1

s +
k−1∑

i=�+1

∫ t

0

πi
s

(
dSi,1

s − Si,1
s

Sk,1
s

dSk,1
s

)
. (2.4.6)



2.4 Change of Numéraire 111

The following result provides a different representation for the (relative)
wealth process in terms of correlations (see Bielecki et al. [92] for the case
where Z is not null).

Lemma 2.4.5.2 Let π = (π1, π2, . . . , πk) be a self-financing strategy in Φ�(0).
Assume that the processes S1, Sk are strictly positive. Then the relative wealth
process V π,1

t = V π
t (S1

t )−1 satisfies

V π,1
t = V π,1

0 +
�∑

i=2

∫ t

0

πi
u dSi,1

u +
k−1∑

i=�+1

∫ t

0

π̂i,k,1
u dŜi,k,1

u , ∀ t ∈ [0, T ],

where we denote

π̂i,k,1
t = πi

t(S
1,k
t )−1eαi,k,1

t , Ŝi,k,1
t = Si,k

t e−αi,k,1
t , (2.4.7)

with Si,k
t = Si

t(S
k
t )−1 and

αi,k,1
t = 〈ln Si,k, ln S1,k〉t =

∫ t

0

(Si,k
u )−1(S1,k

u )−1 d〈Si,k, S1,k〉u. (2.4.8)

Proof: Let us consider the relative values of all processes, with the price
Sk chosen as a numéraire, and V k

t := Vt(Sk
t )−1 =

∑k
i=1 πi

tS
i,k
t (we do not

indicate the superscript π in the wealth). In view of the constraint we have
that V k

t =
∑�

i=1 πi
tS

i,k
t . In addition, as in Proposition 2.4.2.1 we get

dV k
t =

k−1∑
i=1

πi
t dSi,k

t .

Since Si,k
t (S1,k

t )−1 = Si,1
t and V 1

t = V k
t (S1,k

t )−1, using an argument analogous
to that of the proof of Proposition 2.4.2.1, we obtain

V 1
t = V 1

0 +
�∑

i=2

∫ t

0

πi
u dSi,1

u +
k−1∑

i=�+1

∫ t

0

π̂i,k,1
u dŜi,k,1

u , ∀ t ∈ [0, T ],

where the processes π̂i,k,1
t , Ŝi,k,1

t and αi,k,1
t are given by (2.4.7)–(2.4.8). �

The result of Proposition 2.4.5.1 admits a converse.

Proposition 2.4.5.3 Let an FT -measurable random variable H represent a
contingent claim that settles at time T . Assume that there exist F-predictable
processes πi, i = 2, 3, . . . , k − 1 such that

H

S1
T

= x +
l∑

i=2

∫ T

0

πi
t dSi,1

t

+
k−1∑

i=l+1

∫ T

0

πi
t

(
dSi,1

t − Si,1
t

Sk,1
t

dSk,1
t

)
+
∫ T

0

Z1
t

Sk,1
t

dSk,1
t .
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Then there exist two F-predictable processes π1 and πk such that the strategy
π = (π1, π2, . . . , πk) belongs to Φ�(Z) and replicates H. The wealth process of
π equals, for every t ∈ [0, T ],

V π
t )
S1

t

= x +
l∑

i=2

∫ t

0

πi
u dSi,1

u

+
k−1∑

i=l+1

∫ t

0

πi
u

(
dSi,1

u − Si,1
u

Sk,1
u

dSk,1
u

)
+
∫ t

0

Z1
u

Sk,1
u

dSk,1
u .

Proof: The proof is left as an exercise. �

2.5 Feynman-Kac

In what follows, Ex is the expectation corresponding to the probability
distribution of a Brownian motion W starting from x.

2.5.1 Feynman-Kac Formula

Theorem 2.5.1.1 Let α ∈ R
+ and let k : R → R

+ and g : R → R be
continuous functions with g bounded. Then the function

f(x) = Ex

[∫ ∞

0

dt g(Wt) exp
(
−αt −

∫ t

0

k(Ws)ds

)]
(2.5.1)

is piecewise C2 and satisfies

(α + k)f =
1
2
f ′′ + g . (2.5.2)

Proof: We refer to Karatzas and Shreve [513] p.271. �

Let us assume that f is a bounded solution of (2.5.2). Then, one can check
that equality (2.5.1) is satisfied.

We give a few hints for this verification. Let us consider the increasing
process Z defined by:

Zt = αt +
∫ t

0

k(Ws)ds .

By applying Itô’s lemma to the process

Uϕ
t : = ϕ(Wt)e−Zt +

∫ t

0

g(Ws)e−Zsds ,

where ϕ is C2, we obtain
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dUϕ
t = ϕ′(Wt)e−ZtdWt +

(
1
2
ϕ′′(Wt) − (α + k(Wt))ϕ(Wt) + g(Wt)

)
e−Ztdt

Now let ϕ = f where f is a bounded solution of (2.5.2). The process Uf is a
local martingale:

dUf
t = f ′(Wt)e−ZtdWt .

Since Uf is bounded, Uf is a uniformly integrable martingale, and

Ex(Uf
∞) = Ex

(∫ ∞

0

g(Ws)e−Zsds

)
= Uf

0 = f(x) .

�

2.5.2 Occupation Time for a Brownian Motion

We now give Kac’s proof of Lévy’s arcsine law as an application of the
Feynman-Kac formula:

Proposition 2.5.2.1 The random variable A+
t : =

∫ t

0
1[0,∞[(Ws)ds follows

the arcsine law with parameter t:

P(A+
t ∈ ds) =

ds

π
√

s(t − s)
1{0 ≤ s < t} .

Proof: By applying Theorem 2.5.1.1 to k(x) = β1{x≥0} and g(x) = 1, we
obtain that for any α > 0 and β > 0, the function f defined by:

f(x) : = Ex

[∫ ∞

0

dt exp
(
−αt − β

∫ t

0

1[0,∞[(Ws)ds

)]
(2.5.3)

solves the following differential equation:
{

αf(x) = 1
2f ′′(x) − βf(x) + 1, x ≥ 0

αf(x) = 1
2f ′′(x) + 1, x ≤ 0 . (2.5.4)

Bounded and continuous solutions of this differential equation are given by:

f(x) =

{
Ae−x

√
2(α+β) + 1

α+β , x ≥ 0
Bex

√
2α + 1

α , x ≤ 0
.

Relying on the continuity of f and f ′ at zero, we obtain the unique bounded
C2 solution of (2.5.4):

A =
√

α + β −
√

α

(α + β)
√

α
, B =

√
α −

√
α + β

α
√

α + β
.

The following equality holds:
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f(0) =
∫ ∞

0

dte−αt
E0

[
e−βA+

t

]
=

1√
α(α + β)

.

We can invert the Laplace transform using the identity

∫ ∞

0

dte−αt

(∫ t

0

du
e−βu

π
√

u(t − u)

)
=

1√
α(α + β)

,

and the density of A+
t is obtained:

P(A+
t ∈ ds) =

ds

π
√

s(t − s)
1{s<t} .

Therefore, the law of A+
t is the arcsine law on [0, t], and its distribution

function is, for s ∈ [0, t]:

P(A+
t ≤ s) =

2
π

arcsin
√

s

t
.

Note that, by scaling, A+
t

law= tA+
1 . �

Comment 2.5.2.2 This result is due to Lévy [584] and a different proof was
given by Kac [502]. Intensive studies for the more general case

∫ t

0
f(Ws)ds

have been made in the literature. Biane and Yor [86] and Jeanblanc et al. [483]
present a study of the laws of these random variables for particular functions
f , using excursion theory and the Ray-Knight theorem for Brownian local
times at an exponential time.

2.5.3 Occupation Time for a Drifted Brownian Motion

The same method can be applied in order to compute the density of the
occupation times above and below a level L > 0 up to time t for a Brownian
motion with drift ν, i.e.,

A+,L,ν
t =

∫ t

0

ds1{Xs>L}, A−,L,ν
t =

∫ t

0

ds1{Xs<L}

where Xt = νt + Wt. We start with the computation of Ψ where

Ψ(α, β) : = W(ν)
0

(∫ ∞

0

dt exp
(
−αt − β

∫ t

0

ds1{Xs<0}

))
.

From the Feynman-Kac result, Ψ is the unique bounded solution of the
equation (see Akahori [1] for details)
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−1
2
f ′′ − νf ′ + αf + β1{x<0}f = 1 .

Hence,

Ψ(α, β) =
ν

2α

√
ν2 + 2(α + β)

α + β
− ν

2(α + β)

√
ν2 + 2α

α

+
1
2

√
ν2 + 2(α + β)

α + β

√
ν2 + 2α

α
− ν2

2
1

α(α + β)
.

Inverting the Laplace transform, we get

P(A−,0,ν
t ∈ du)/du =

[√
2

πu
exp

(
−ν2

2
u

)
− 2ν Θ(ν

√
u)

]

×
[
ν +

1√
2π(t − u)

exp
(
−ν2

2
(t − u)

)
− ν Θ(ν

√
t − u)

]
(2.5.5)

where Θ(x) = 1√
2π

∫∞
x

exp(−y2

2 )dy. More generally, the law of A−,L,ν
t for

L > 0 is obtained from

P(A−,L,ν
t ≤ u) =

∫ u

0

dsϕ(s, L; ν)P(A−,0,ν
t−s < u − s)

where ϕ(s, L; ν) is the density P(TL(X) ∈ ds)/ds (see � (3.2.3) for its closed
form). The law of A+,L,ν

t follows from A+,L,ν
t + A−,L,ν

t = t.
The law of A+,L,0

t can also be obtained in a more direct way. It is easy to
compute the double Laplace transform

Ψ(α, β; L) : =
∫ ∞

0

dt e−αt
E0

(
e−βA+,L,0

t

)

as follows: let, for L > 0, TL = inf{t : Xt = L}. Then,

Ψ(α, β;L) = E0

(∫ TL

0

dt e−αt +
∫ ∞

TL

dt e−αt exp
(
−β

∫ ∞

TL

ds1{Ws>L}

))

=
1
α

E0(1 − e−αTL) +
1√

α(α + β)
E0(e−αTL)

=
1
α

(1 − e−L
√

2α) +
1√

α(α + β)
e−L

√
2α .

This quantity is the double Laplace transform of

f(t, u)du : = P(TL > t) δ0(du) +
1√

u(t − u)
e−L2/(2(t−u))1{u<t}du ,

i.e.,

Ψ(α, β; L) =
∫ ∞

0

∫ ∞

0

e−αte−βuf(t, u)dtdu .
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Comment 2.5.3.1 For a general presentation of Feynman-Kac formula, we
refer to Durrett [286] and Karatzas and Shreve [513]. For extensions, see
Chung [185], Evans [337], Fusai and Tagliani [371] and Pitman and Yor [718,
719]. Occupation time densities for CEV processes (see � Section 6.4) are
presented in Leung and Kwok [582].

2.5.4 Cumulative Options

Let S be a given process. The occupation time of S above (resp. below) a
level L up to time t is the random variable A+,L

t :=
∫ t

0
ds1{Ss≥L} (resp.

A−,L
t =

∫ t

0
ds1{Ss≤L}). An occupation time derivative is a contingent claim

whose payoff depends on the terminal value of the underlying asset and on
an occupation time. We are mainly interested in terminal payoff of the form
f(ST , A−,L

T ), (or f(ST , A+,L
T ) ). In a Black and Scholes model, as given in

Proposition 2.3.1.3, the price of such a claim is

EQ(e−rT f(ST , A−,L
T )) = e−rT−ν2T/2

E

(
eνWT f(xeσWT , A−,�

T (W ))
)

where � = σ−1 ln(L/x).
We study the particular case f(x, a) = (x−K)+e−ρa, called a step option

by Linetsky [590]. Let

Cstep(x) = e−(r+ν2/2)T
E

(
eνWT (xeσWT − K)+e−ρA−,�

T

)

where W starts from 0. Setting γ = r + ν2/2, we obtain

Cstep(x) = e−γT
E−�

(
eν(WT +�)(xeσ(WT +�) − K)+e−ρA−,0

T

)

= e−γT+ν�(xeσ�Ψ(−�, ν + σ) − KΨ(−�, ν))

where Ψ(x, a) = Ex

(
eaWT 1{WT ≥ 1

σ ln(K/L)}e
−ρA−,0

T

)
. The function Ψ can be

computed from the joint law of (A−,0
T , WT ).

Proposition 2.5.4.1 The density of the pair (A−,0
t , Wt) is

P(A−,0
t ∈ du, Wt ∈ dx) = du dx

|x|√
2π

∫ t

u

1√
s3(t − s)3

e−x2/(2(t−s))ds1{u<t}.

Proof: Let, for a > 0, ρ > 0,

f(t, x) = E

(
1[a,∞[(x + Wt) exp

(
−ρ

∫ t

0

1]−∞,0](x + Ws)ds

))
.

From the Feynman-Kac theorem, the function f satisfies the PDE
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∂tf =
1
2
∂xxf − ρ1]−∞,0](s)f, f(0, x) = 1[a,∞[(x) .

Letting f̂ be the Laplace transform in time of f , i.e.,

f̂(λ, x) =
∫ ∞

0

e−λtf(x, t)dt ,

we obtain
−1[a,∞[(x) + λf̂ =

1
2
∂xxf̂ − ρ1]−∞,0](x)f̂ .

Solving this ODE with the boundary conditions at 0 and a leads to

f̂(λ, 0) =
exp(−a

√
2λ)

√
λ
(√

λ +
√

λ + ρ
) = f̂1(λ)f̂2(λ) , (2.5.6)

with
f̂1(λ) =

1
√

λ
(√

λ +
√

λ + ρ
) , f̂2(λ) = exp(−a

√
2λ) .

Then, one gets

−∂af̂(λ, 0) =
√

2
exp(−a

√
2λ)√

λ +
√

λ + ρ
.

The right-hand side of (2.5.6) may be recognized as the product of the Laplace
transforms of the functions

f1(t) =
1 − e−ρt

ρ
√

2πt3
, and f2(t) =

a√
2πt3

e−a2/2t ,

hence, it is the Laplace transform of the convolution of these two functions.
The result follows. �

Comment 2.5.4.2 Cumulative options are studied in Chesney et al. [175,
196], Dassios [211], Detemple [251], Fusai [370], Hugonnier [451] and Moraux
[657]. In [370], Fusai determines the Fourier transform of the density of the
occupation time τ =

∫ T

0
1{a<νs+Ws<b}ds, in order to compute the price of a

corridor option, i.e., an option with payoff (τ −K)+. The joint law of WT and
A+

T can be found in Fujita and Miura [366] where the authors present, among
other results, options which are knocked-out at the time

τ = inf
{

t :
∫ t

Ta

1{Su≤a} du ≥ α(T − Ta)
}

.

Exercise 2.5.4.3 (1) Deduce from Proposition 2.5.4.1 P(A−,0
t ∈ du|Wt = x).

(2) Recover the formula (2.5.5) for P(A−,0
t ∈ du). �
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2.5.5 Quantiles

Proposition 2.5.5.1 Let Xt = μt + σWt and MX
t = sups≤t Xs. We assume

σ > 0. Define, for a fixed t, θX
t = sup{s ≤ t : Xs = MX

s }. Then

θX
t

law=
∫ t

0

1{Xs>0}ds .

Proof: We shall prove the result in the case σ = 1, μ = 0 in �
Exercise 4.1.7.5. The drifted Brownian motion case follows from an application
of Girsanov’s theorem. �

Proposition 2.5.5.2 Let Xt = μt + σWt with σ > 0, and

qX(α, t) = inf
{

x :
∫ t

0

1{Xs≤x}ds > αt

}
.

Let Xi, i = 1, 2 be two independent copies of X. Then

qX(α, t) law= sup
0≤s≤αt

X1
s + inf

0≤s≤(1−αt)
X2

s .

Proof: We give the proof for t = 1. We note that

AX(x) =
∫ 1

0

1{Xs>x}ds =
∫ 1

Tx

1{Xs>x}ds = 1 −
∫ 1−Tx

0

1{Xs+Tx≤x}ds

where Tx = inf{t : Xt = x}. Then, denoting q(α) = qX(α, 1), one has

P(q(α) > x) = P(AX(x) > 1 − α) = P

(∫ 1−Tx

0

1{Xs+Tx−x>0}ds > 1 − α

)
.

The process (X1
s = Xs+Tx − x, s ≥ 0) is independent of (Xs, s ≤ Tx; Tx) and

has the same law as X. Hence,

P(q(α) > x) =
∫ α

0

P(Tx ∈ du)P
(∫ 1−u

0

1{X1
s >0}ds > 1 − α

)
.

Then, from Proposition 2.5.5.1,

P

(∫ 1−u

0

1{X1
s >0}ds > 1 − α

)
= P(θX1

1−u > 1 − α) .

From the definition of θ1
s , for s > a,

P(θX1

s > a) = P

(
sup
u≤a

(X1
u − X1

a) < sup
a≤v≤s

(X1
v − X1

a)
)

.
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It is easy to check that
(

sup
u≤a

(X1
u − X1

a), sup
a≤v≤s

(X1
v − X1

a)
)

law=
(
− inf

u≤a
X2

u, sup
0<v≤s−a

X3
v

)

where X2 and X3 are two independent copies of X. The result follows. �

Exercise 2.5.5.3 Prove that, in the case ν = 0, setting β = ((1 − α)/α)1/2,
and Φ∗(x) =

√
2/π

∫∞
x

e−y2/2dy

P(q(α) ∈ dx) =

{ √
2/π e−x2/2Φ∗(βx)dx for x ≥ 0√

2/π e−x2/2Φ∗(−xβ−1)dx for x ≤ 0
.

�

Comment 2.5.5.4 See Akahori [1], Dassios [211, 212], Detemple [252],
Embrechts et al. [324], Fujita and Yor [368], Fusai [370], Miura [653] and
Yor [866] for results on quantiles and pricing of quantile options.

2.6 Ornstein-Uhlenbeck Processes and Related Processes

In this section, we present a particular SDE, the solution of which was used to
model interest rates. Even if this kind of model is nowadays not so often used
by practitioners for interest rates, it can be useful for modelling underlying
values in a real options framework.

2.6.1 Definition and Properties

Proposition 2.6.1.1 Let k, θ and σ be bounded Borel functions, and W a
Brownian motion. The solution of

drt = k(t)(θ(t) − rt)dt + σ(t)dWt (2.6.1)

is

rt = e−K(t)

(
r0 +

∫ t

0

eK(s)k(s)θ(s)ds +
∫ t

0

eK(s)σ(s)dWs

)

where K(t) =
∫ t

0
k(s)ds. The process (rt, t ≥ 0) is a Gaussian process with

mean

E(rt) = e−K(t)

(
r0 +

∫ t

0

eK(s)k(s)θ(s)ds

)

and covariance

e−K(t)−K(s)

∫ t∧s

0

e2K(u)σ2(u)du .
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Proof: The solution of (2.6.1) is a particular case of Example 1.5.4.8. The
values of the mean and of the covariance follow from Exercise 1.5.1.4. �

The Hull and White model corresponds to the dynamics (2.6.1) where
k is a positive function. In the particular case where k, θ and σ are constant,
we obtain

Corollary 2.6.1.2 The solution of

drt = k(θ − rt)dt + σdWt (2.6.2)

is

rt = (r0 − θ)e−kt + θ + σ

∫ t

0

e−k(t−u)dWu.

The process (rt, t ≥ 0) is a Gaussian process with mean (r0 − θ)e−kt + θ and
covariance

Cov(rs, rt) =
σ2

2k
e−k(s+t)(e2ks − 1) =

σ2

k
e−kt sinh(ks)

for s ≤ t.

In finance, the solution of (2.6.2) is called a Vasicek process. In general, k is
chosen to be positive, so that E(rt) → θ as t → ∞ (this is why this process
is said to enjoy the mean reverting property). The process (2.6.1) is called
a Generalized Vasicek process (GV). Because r is a Gaussian process,
it takes negative values. This is one of the reasons why this process is no
longer used to model interest rates. When θ = 0, the process r is called an
Ornstein-Uhlenbeck (OU) process. Note that, if r is a Vasicek process, the
process r − θ is an OU process with parameter k. More formally,

Definition 2.6.1.3 An Ornstein-Uhlenbeck (OU) process driven by a BM
follows the dynamics drt = −krtdt + σdWt.

An OU process can be constructed in terms of time-changed BM (see also �
Section 5.1):

Proposition 2.6.1.4 (i) If W is a BM starting from x and a(t) = σ2 e2kt−1
2k ,

the process Zt = e−ktWa(t) is an OU process starting from x.
(ii) Conversely, if U is an OU process starting from x, then there exists a

BM W starting from x such that Ut = e−ktWa(t).

Proof: Indeed, the process Z is a Gaussian process, with mean xe−kt and
covariance e−k(t+s)(a(t) ∧ a(s)). �
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Fig. 2.1 Simulation of Ornstein-Uhlenbeck paths θ = 0, k = 3/2, σ = 0.1

More generally, one can define an Ornstein-Uhlenbeck process driven by
a Lévy process (see � Chapter 11). Here, we note that the Vasicek process
defined in (2.6.2) is an OU process, driven by the Brownian motion with drift
σWt + kθt.

From the Markov and Gaussian properties of a Vasicek process r we
deduce:

Proposition 2.6.1.5 Let r be a Vasicek process, the solution of (2.6.2) and
let F be its natural filtration. For s < t, the conditional expectation and the
conditional variance of rt, with respect to Fs (denoted as Vars(rt)) are given
by

E(rt|Fs) = E(rt|rs) = (rs − θ)e−k(t−s) + θ

Vars (rt) =
σ2

2k
(1 − e−2k(t−s)) .

Note that the filtration generated by the process r is equal to that of the
driving Brownian motion. Owing to the Gaussian property of the process r,
the law of the integrated process

∫ t

0
rsds can be characterized as follows:

Proposition 2.6.1.6 Let r be a solution of (2.6.2).
The process

(∫ t

0
rsds, t ≥ 0

)
is Gaussian with mean and variance given by
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E

(∫ t

0

rsds

)
= θt + (r0 − θ)

1 − e−kt

k
,

Var
(∫ t

0

rsds

)
= − σ2

2k3
(1 − e−kt)2 +

σ2

k2

(
t − 1 − e−kt

k

)

and covariance (for s < t)

σ2

k2

(
s − e−kt e

ks − 1
k

− 1 − e−ks

k
+ e−k(t+s) e

2ks − 1
2k

)
.

Proof: From the definition, rt = r0 + kθt − k
∫ t

0
rsds + σWt, hence

∫ t

0

rsds =
1
k

[−rt + r0 + kθt + σWt]

=
1
k

[kθt + (r0 − θ)(1 − e−kt) − σe−kt

∫ t

0

ekudWu + σWt].

Obviously, from the properties of the Wiener integral, the right-hand side
defines a Gaussian process. It remains to compute the expectation and the
variance of the Gaussian variable on the right-hand side, which is easy, since
the variance of a Wiener integral is well known. �

Note that one can also justify directly the Gaussian property of an integral
process (

∫ t

0
ysds, t ≥ 0) where y is a Gaussian process.

More generally, for t ≥ s,

E

(∫ t

s

ru du|Fs

)
= θ(t − s) + (rs − θ)

1 − e−k(t−s)

k
: = M(s, t) , (2.6.3)

Var s

(∫ t

s

ru du

)
= − σ2

2k3
(1 − e−k(t−s))2

+
σ2

k2

(
t − s − 1 − e−k(t−s)

k

)
: = V (s, t) .(2.6.4)

Exercise 2.6.1.7 Compute the transition probability for an OU process. �

Exercise 2.6.1.8 (1) Let B be a Brownian motion, and define the probability
P b via

P
b|FT

: = exp

{
−b

∫ T

0

Bs dBs −
b2

2

∫ T

0

B2
s ds

}
P|FT

.

Prove that the process (Bt, t ≥ 0) is a P
b-Ornstein-Uhlenbeck process and

that

E

(
exp

(
−αB2

t − b2

2

∫ t

0

B2
s ds

))
= E

b

(
exp

(
−αB2

t +
b

2
(B2

t − t)
))

,
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where E
b is the expectation w.r.t. the probability measure P

b. One can also
prove that if B is an n-dimensional BM starting from a

Ea

(
exp(−α|Bt|2 −

b2

2

∫ t

0

|Bs|2ds)
)

=
(

cosh bt +
2α

b
sinh bt

)−n/2

exp
(
−|a|2b

2
1 + 2α

b coth bt

coth bt + 2α/b

)
,

where Ea is the expectation for a BM starting from a. (See Yor [864].)
(2) Use the Gaussian property of the variable Bt to obtain that

EP

(
exp

(
−αB2

t − b2

2

∫ t

0

B2
s ds

))
=
(
cosh bt + 2

α

b
sinh bt

)− 1
2

.

If B and C are two independent Brownian motions starting form 0, prove that

EP

(
exp(−α(B2

t + C2
t ) − b2

2

∫ t

0

(B2
s + C2

s ) ds)
)

=
(
cosh bt + 2

α

b
sinh bt

)−1

.

(3) Deduce Lévy’s area formula:

E(exp iλAt

∣∣ |Zt|2 = r2) = E

(
exp−λ2

8

∫ t

0

|Zs|2ds
∣∣ |Zt|2 = r2

)

=
tλ/2

sinh(tλ/2)
exp−r2

2
(λt coth λt − 1) ,

where

At : =
1
2

∫ t

0

(BsdCs − CsdBs) =
1
2

γ

(∫ t

0

(B2
s + C2

s )ds

)

where γ is a Brownian motion independent of |Z|2 : = B2 + C2 (see �
Exercise 5.1.3.9)
Hint: Note that

∫ t

0
BsdBs = 1

2 (B2
t − t). �

2.6.2 Zero-coupon Bond

Suppose that the dynamics of the interest rate under the risk-neutral
probability are given by (2.6.2). The value P (t, T ) of a zero-coupon bond
maturing at date T is given as the conditional expectation under the e.m.m.
of the discounted payoff. Using the Laplace transform of a Gaussian law (see
Proposition 1.1.12.1), and Proposition 2.6.1.6, we obtain

P (t, T ) = E

(
exp

(
−
∫ T

t

ru du

) ∣∣Ft

)
= exp

(
−M(t, T ) +

1
2
V (t, T )

)
,

where M and V are defined in (2.6.3) and (2.6.4).
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Proposition 2.6.2.1 In a Vasicek model, the price of a zero-coupon with
maturity T is

P (t, T ) = exp
[
−θ(T − t) − (rt − θ)

1 − e−k(T−t)

k
− σ2

4k3
(1 − e−k(T−t))2

+
σ2

2k2

(
T − t − 1 − e−k(T−t)

k

)]

= exp(a(t, T ) − b(t, T )rt) ,

with b(t, T ) = 1−e−k(T−t)

k .

Without any computation, we know that

dtP (t, T ) = P (t, T )(rtdt − σtdWt) ,

since the discounted value of the zero-coupon bond is a martingale. It suffices
to identify the volatility term. It is not difficult, using Itô’s formula, to check
that the risk-neutral dynamics of the zero-coupon bond are

dtP (t, T ) = P (t, T )(rtdt − b(t, T )dWt) .

2.6.3 Absolute Continuity Relationship for Generalized Vasicek
Processes

Let W be a P-Brownian motion starting from x, θ a bounded Borel function
and L the solution of dLt = kLt(θ(t) − Wt)dWt, L0 = 1, that is,

Lt = exp
(∫ t

0

k(θ(s) − Ws)dWs −
1
2

∫ t

0

k2(θ(s) − Ws)2ds

)
. (2.6.5)

This process is a martingale, from the non-explosion criteria. We define

P
k,θ|Ft = Lt P|Ft .

Then,

Wt = x + βt +
∫ t

0

k(θ(s) − Ws)ds

where, thanks to Girsanov’s theorem, β is a P
k,θ-Brownian motion starting

from 0. Hence, we have proved that the P-Brownian motion W is a GV process
under P

k,θ (and thus we generalize Exercise 2.6.1.8).

Proposition 2.6.3.1 Let θ be a differentiable function and let P
k,θ
x be the law

of the GV process

drt = dWt + k(θ(t) − rt)dt, r0 = x .
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We denote by Wx the law of a Brownian motion starting from x. Then the
following absolute continuity relationship holds

P
k,θ
x |Ft = exp

[
k

2

(
t + x2 − k

∫ t

0

θ2(s)ds − 2xθ(0)
)]

× exp
[
kθ(t)Xt −

k

2
X2

t +
∫ t

0

(k2θ(s) − kθ′(s))Xsds − k2

2

∫ t

0

X2
s ds

]
Wx|Ft .

Proof: We have seen that P
k,θ
x |Ft = Lt Wx|Ft where L is given in (2.6.5).

Since θ is differentiable, an integration by parts under Wx leads to
∫ t

0

(θ(s) − Xs)dXs = θ(t)Xt − xθ(0) −
∫ t

0

θ′(s)Xsds − 1
2
(X2

t − x2 − t) .

�

Corollary 2.6.3.2 Let r be a Vasicek process

drt = k(θ − rt)dt + σdWt, r0 = x .

Then

P
k,θ
x |Ft = exp

(
k

2
(
t + x2 − kθ2t − 2xθ

))
(2.6.6)

× exp
(
−k

2
X2

t + kθXt + k2θ

∫ t

0

Xsds − k2

2

∫ t

0

X2
s ds

)
Wx|Ft .

Proof: The absolute continuity relation (2.6.6) follows from Propo-
sition 2.6.3.1. �

Example 2.6.3.3 As an exercise, we present the computation of

A = E
k,θ
x

(
exp

(
−αXt − λX2

t − β

∫ t

0

Xsds − γ2

2

∫ t

0

X2
s ds

))
,

where (α, β, θ, λ, γ) are real numbers with λ > 0. From (2.6.6)

A = exp
(

k

2
(
t + x2 − kθ2t − 2xθ

))

× Wx

(
exp

(
−λ1X

2
t + α1Xt + (k2θ − β)

∫ t

0

Xsds − γ2
1

2

∫ t

0

X2
s ds

))

where λ1 = λ + k
2 , α1 = kθ − α, γ2

1 = γ2 + k2. From

(k2θ − β)
∫ t

0

Xsds − γ2
1

2

∫ t

0

X2
s ds = −γ2

1

2

∫ t

0

(Xs + β1)2ds +
β2

1γ2
1

2
t



126 2 Basic Concepts and Examples in Finance

with β1 = β−k2θ
γ2
1

and setting Zs = Xs + β1, one gets

A = exp
(

k

2
(
t + x2 − kθ2t − 2xθ

)
+

β2
1γ2

1

2
t

)

× Wx+β1

(
exp

(
−λ1(Zt − β1)2 + α1(Zt − β1) −

γ2
1

2

∫ t

0

Z2
s ds

))
.

Now,

−λ1(Zt − β1)2 + α1(Zt − β1) = −λ1Z
2
t + (α1 + 2λ1β1)Zt − β1(λ1β1 + α1) .

Hence,

Wx+β1

(
exp

(
−λ1(Zt − β1)2 + α1(Zt − β1) −

γ2
1

2

∫ t

0

Z2
s ds

))

= e−β1(λ1β1+α1)Wx+β1

(
exp

(
−λ1Z

2
t + (α1 + 2λ1β1)Zt −

γ2
1

2

∫ t

0

Z2
s ds

))
.

From (2.6.6) again

Wx+β1

(
exp

(
−λ1Z

2
t + (α1 + 2λ1β1)Zt −

γ2
1

2

∫ t

0

Z2
sds

))

= exp
(
−γ1

2
(
t + (x + β1)2

))

× E
γ1,0
x+β1

(
exp

(
(−λ1 +

γ1

2
)X2

t + (α1 + 2λ1β1)Xt

))
.

Finally

A = eC
E

γ1,0
x+β1

(
exp

(
(−λ1 +

γ1

2
)X2

t + (α1 + 2λ1β1)Xt

))

where

C =
k

2
(
t + x2 − kθ2t − 2xθ

)
+

β2
1γ2

1

2
t − β1(λ1β1 + α1) −

γ1

2
(
t + (x + β1)2

)
.

One can then finish the computation since, under P
γ1,0
x+β1

the r.v. Xt is a

Gaussian variable with mean m = (x+β1)e−γ1t and variance σ2

2γ1
(1− e−2γ1t).

Furthermore, from Exercise 1.1.12.3, if U
law= N (m, σ2)

E(exp{λU2 + μU}) =
Σ

σ
exp

(
Σ2

2
(μ +

m

σ2
)2 − m2

2σ2

)
.

with Σ2 =
σ2

1 − 2λσ2
, for 2λσ2 < 1.
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2.6.4 Square of a Generalized Vasicek Process

Let r be a GV process with dynamics

drt = k(θ(t) − rt)dt + dWt

and ρt = r2
t . Hence

dρt = (1 − 2kρt + 2kθ(t)
√

ρt)dt + 2
√

ρtdWt .

By construction, the process ρ takes positive values, and can represent a
spot interest rate. Then, the value of the corresponding zero-coupon bond can
be computed as an application of the absolute continuity relationship between
a GV and a BM, as we present now.

Proposition 2.6.4.1 Let

dρt = (1 − 2kρt + 2kθ(t)
√

ρt)dt + 2
√

ρtdWt, ρ0 = x2.

Then

E

[
exp

(
−
∫ T

0

ρsds

)]
= A(T ) exp

(
k

2
(T + x2 − k

∫ T

0

θ2(s)ds − 2θ(0)x)

)

where

A(T ) = exp

(
1
2

(∫ T

0

f(s)ds +
∫ T

0

g2(s)ds

))
.

Here,

f(s) = K
αeKs + e−Ks

αeKs − e−Ks
,

g(s) = k
θ(T )v(T ) −

∫ T

s
(θ′(u) − kθ(u))v(u)du

v(s)

with v(s) = αeKs − e−Ks , K =
√

k2 + 2 and α =
k − K

k + K
e−2TK .

Proof: From Proposition 2.6.3.1,

E

[
exp

(
−
∫ T

0

ρsds

)]
= A(T ) exp

(
k

2
(T + x2 − k

∫ T

0

θ2(s)ds − 2θ(0)x)

)

where A(T ) is equal to the expectation, under W, of

exp

(
kθ(T )XT − k

2
X2

T +
∫ T

0

(k2θ(s) − kθ′(s))Xsds − k2 + 2
2

∫ T

0

X2
s ds

)
.
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The computation of A(T ) follows from Example 1.5.7.1 which requires the
solution of

f2(s) + f ′(s) = k2 + 2, s ≤ T,

f(s)g(s) + g′(s) = kθ′(s) − k2θ(s),

with the terminal condition at time T

f(T ) = −k, g(T ) = kθ(T ) .

Let us set K2 = k2 + 2. The solution follows by solving the classical Ricatti
equation f2(s) + f ′(s) = K2 whose solution is

f(s) = K
αeKs + e−Ks

αeKs − e−Ks
.

The terminal condition yields α =
k − K

k + K
e−2TK . A straightforward computa-

tion leads to the expression of g given in the proposition. �

2.6.5 Powers of δ-Dimensional Radial OU Processes, Alias CIR
Processes

In the case θ = 0, the process

dρt = (1 − 2kρt)dt + 2
√

ρtdWt

is called a one-dimensional square OU process which is justified by the
computation at the beginning of this subsection. Let U be a δ-dimensional
OU process, i.e., the solution of

Ut = u + Bt − k

∫ t

0

Usds

where B is a δ-dimensional Brownian motion and k a real number, and set
Vt = ‖Ut‖2. From Itô’s formula,

dVt = (δ − 2kVt)dt + 2
√

VtdWt

where W is a one-dimensional Brownian motion. The process V is called
either a squared δ-dimensional radial Ornstein-Uhlenbeck process or more
commonly in mathematical finance a Cox-Ingersoll-Ross (CIR) process with
dimension δ and linear coefficient k, and, for δ ≥ 2, does not reach 0 (see �
Subsection 6.3.1).
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Let γ �= 0 be a real number, and Zt = V γ
t . Then,

Zt = z + 2γ

∫ t

0

Z1−1/(2γ)
s dWs − 2kγ

∫ t

0

Zsds + γ(2(γ − 1) + δ)
∫ t

0

Z1−1/γ
s ds .

In the particular case γ = 1 − δ/2,

Zt = z + 2γ

∫ t

0

Z1−1/(2γ)
s dWs − 2kγ

∫ t

0

Zsds ,

or in differential notation

dZt = Zt(μdt + σZβ
t dWt) ,

with
μ = −2kγ, β = −1/(2γ) = 1/(δ − 2), σ = 2γ .

The process Z is called a CEV process.

Comment 2.6.5.1 We shall study CIR processes in more details in �
Section 6.3. See also Pitman and Yor [716, 717]. See � Section 6.4, where
squares of OU processes are of major interest in constructing CEV processes.

2.7 Valuation of European Options

In this section, we give a few applications of Itô’s lemma, changes of
probabilities and Girsanov’s theorem to the valuation of options.

2.7.1 The Garman and Kohlhagen Model for Currency Options

In this section, European currency options will be considered. It will be shown
that the Black and Scholes formula corresponds to a specific case of the
Garman and Kohlhagen [373] model in which the foreign interest rate is equal
to zero. As in the Black and Scholes model, let us assume that trading is
continuous and that the historical dynamics of the underlying (the currency)
S are given by

dSt = St(αdt + σdBt) .

whereas the risk-neutral dynamics satisfy the Garman-Kohlhagen dynamics

dSt = St((r − δ)dt + σdWt) . (2.7.1)

Here, (Wt, t ≥ 0) is a Q-Brownian motion and Q is the risk-neutral
probability defined by its Radon-Nikodým derivative with respect to P as

Q|Ft = exp(−θBt − 1
2θ2t) P|Ft with θ =

α − (r − δ)
σ

. It follows that
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St = S0e
(r−δ)teσWt−σ2

2 t .

The domestic (resp. foreign) interest rate r (resp. δ) and the volatility σ
are constant. The term δ corresponds to a dividend yield for options (see
Subsection 2.3.5).

The method used in the Black and Scholes model will give us the PDE
evaluation for a European call. We give the details for the reader’s convenience.

In that setting, the PDE evaluation for a contingent claim H = h(ST )
takes the form

−∂uV (x, T − t)+(r−δ)x∂xV (x, T − t)+
1
2
σ2x2∂xxV (x, T − t) = rV (x, T − t)

(2.7.2)
with the initial condition V (x, 0) = h(x). Indeed, the process e−rtV (St, t)
is a Q-martingale, and an application of Itô’s formula leads to the previous
equality. Let us now consider the case of a European call option:

Proposition 2.7.1.1 The time-t value of the European call on an underlying
with risk-neutral dynamics (2.7.1) is CE(St, T − t). The function CE satisfies
the following PDE:

− ∂CE

∂u
(x, T − t) +

1
2
σ2x2 ∂2CE

∂x2
(x, T − t)

+ (r − δ)x
∂CE

∂x
(x, T − t) = rCE(x, T − t) (2.7.3)

with initial condition CE(x, 0) = (x − K)+, and is given by

CE(x, u) = xe−δuN
[
d1

(
xe−δu

Ke−ru
, u

)]
− Ke−ruN

[
d2

(
xe−δu

Ke−ru
, u

)]
,

(2.7.4)

where the di’s are given in Theorem 2.3.2.1.

Proof: The evaluation PDE (2.7.3) is obtained from (2.7.2). Formula (2.7.4)
is obtained by a direct computation of EQ(e−rT (ST − K)+), or by solving
(2.7.3). �

2.7.2 Evaluation of an Exchange Option

An exchange option is an option to exchange one asset for another. In this
domain, the original reference is Margrabe [623]. The model corresponds to
an extension of the Black and Scholes model with a stochastic strike price,
(see Fischer [345]) in a risk-adjusted setting. Let us assume that under the
risk-adjusted neutral probability Q the stock prices’ (respectively, S1 and S2)
dynamics5 are given by:
5 Of course, 1 and 2 are only superscripts, not powers.
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dS1
t = S1

t ((r − ν)dt + σ1dWt) , dS2
t = S2

t ((r − δ)dt + σ2dBt)

where r is the risk-free interest rate and ν and δ are, respectively, the stock
1 and 2 dividend yields and σ1 and σ2 are the stock prices’ volatilities. The
correlation coefficient between the two Brownian motions W and B is denoted
by ρ. It is assumed that all of these parameters are constant. The payoff at
maturity of the exchange call option is (S1

T − S2
T )+. The option price is

therefore given by:

CEX(S1
0 , S2

0 , T ) = EQ(e−rT (S1
T − S2

T )+) = EQ(e−rT S2
T (XT − 1)+)

= S2
0EQ∗(e−δT (XT − 1)+) . (2.7.5)

Here, Xt = S1
t /S2

t , and the probability measure Q
∗ is defined by its Radon-

Nikodým derivative with respect to Q

dQ
∗

dQ

∣∣
Ft

= e−(r−δ)t S
2
t

S2
0

= exp
(

σ2Bt −
σ2

2

2
t

)
. (2.7.6)

Note that this change of probability is associated with a change of numéraire,
the new numéraire being the asset S2. Using Itô’s lemma, the dynamics of X
are

dXt = Xt[(δ − ν + σ2
2 − ρσ1σ2)dt + σ1dWt − σ2dBt] .

Girsanov’s theorem for correlated Brownian motions (see Subsection 1.7.4)
implies that the processes W̃ and B̃ defined as

W̃t = Wt − ρσ2t, B̃t = Bt − σ2t ,

are Q
∗-Brownian motions with correlation ρ. Hence, the dynamics of X are

dXt = Xt[(δ − ν)dt + σ1dW̃t − σ2dB̃t] = Xt[(δ − ν)dt + σdZt]

where Z is a Q
∗-Brownian motion defined as

dZt = σ−1(σ1dW̃t − σ2dB̃t)

and where
σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2 .

As shown in equation (2.7.5), δ plays the rôle of a discount rate. Therefore,
by relying on the Garman and Kohlhagen formula (2.7.4), the exchange option
price is given by:

CEX(S1
0 , S2

0 , T ) = S1
0e−νTN (b1) − S2

0e−δTN (b2)

with

b1 =
ln(S1

0/S2
0) + (δ − ν)T
Σ
√

T
+

1
2
Σ
√

T , b2 = b1 − Σ
√

T .
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This value is independent of the domestic risk-free rate r. Indeed, since the
second asset is the numéraire, its dividend yield, δ, plays the rôle of the
domestic risk-free rate. The first asset dividend yield ν, plays the rôle of
the foreign interest rate in the foreign currency option model developed by
Garman and Kohlhagen [373]. When the second asset plays the rôle of the
numéraire, in the risk-neutral economy the risk-adjusted trend of the process
(S1

t /S2
t , t ≥ 0) is the dividend yield differential δ − ν.

2.7.3 Quanto Options

In the context of the international diversification of portfolios, quanto
options can be useful. Indeed with these options, the problems of currency
risk and stock market movements can be managed simultaneously. Using
the model established in El Karoui and Cherif [298], the valuation of these
products can be obtained.

Let us assume that under the domestic risk-neutral probability Q, the
dynamics of the stock price S, in foreign currency units and of the currency
price X, in domestic units, are respectively given by:

dSt = St ((δ − ν − ρσ1σ2)dt + σ1dWt) (2.7.7)
dXt = Xt ((r − δ)dt + σ2dBt)

where r, δ and ν are respectively the domestic, foreign risk-free interest
rate and the dividend yield and σ1 and σ2 are, respectively, the stock price
and currency volatilities. Again, the correlation coefficient between the two
Brownian motions is denoted by ρ. It is assumed that the parameters are
constant.

The trend in equation (2.7.7) is equal to μ1 = δ − ν − ρσ1σ2 because, in
the domestic risk-neutral economy, we want the trend of the stock price (in
domestic units: XS) dynamics to be equal to r − ν.

We now present four types of quanto options:

Foreign Stock Option with a Strike in a Foreign Currency

In this case, the payoff at maturity is XT (ST − K)+, i.e., the value in the
domestic currency of the standard Black and Scholes payoff in the foreign
currency (ST − K)+. The call price is therefore given by:

Cqt1(S0, X0, T ) := EQ(e−rT (XT ST − KXT )+) .

This quanto option is an exchange option, an option to exchange at
maturity T , an asset of value XT ST for another of value KXT . By relying on
the previous Subsection 2.7.2

Cqt1(S0, X0, T ) = X0EQ∗(e−δT (ST − K)+)
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where the probability measure Q
∗ is defined by its Radon-Nikodým derivative

with respect to Q, in equation (2.7.6).
Cameron-Martin’s theorem implies that the two processes (Bt − σ2t, t≥ 0)

and (Wt − ρσ2t, t ≥ 0) are Q
∗ -Brownian motions. Now, by relying on

equation (2.7.7)

dSt = St ((δ − ν)dt + σ1d(Wt − ρσ2t)) .

Therefore, under the Q
∗ measure, the trend of the process (St, t ≥ 0) is equal

to δ − ν and the volatility of this process is σ1. Therefore, using the Garman
and Kohlhagen formula (2.7.4), the exchange option price is given by

Cqt1(S0, X0, T ) = X0(S0e
−νTN (b1) − Ke−δTN (b2))

with

b1 =
ln(S0/K) + (δ − ν)T

σ1

√
T

+
1
2
σ1

√
T , b2 = b1 − σ1

√
T .

This price could also be obtained by a straightforward arbitrage argument.
If a stock call option (with payoff (ST − K)+) is bought in the domestic
country, its payoff at maturity is the quanto payoff XT (ST −K)+and its price
at time zero is known. It is the Garman and Kohlhagen price (in the foreign
risk-neutral economy where the trend is δ − ν and the positive dividend yield
is ν), times the exchange rate at time zero.

Foreign Stock Option with a Strike in the Domestic Currency

In this case, the payoff at maturity is (XT ST −K)+. The call price is therefore
given by

Cqt2(S0, X0, T ) := EQ(e−rT (XT ST − K)+) .

This quanto option is a standard European option, with a new underlying
process XS, with volatility given by

σXS =
√

σ2
1 + σ2

2 + 2ρσ1σ2

and trend equal to r − ν in the risk-neutral domestic economy. The risk-
free discount rate and the dividend rate are respectively r and ν. Its price is
therefore given by

Cqt2(S0, X0, T ) = X0S0e
−νTN (b1) − Ke−rTN (b2)

with

b1 =
ln(X0S0/K) + (r − ν)T

σXS

√
T

+
1
2
σXS

√
T , b2 = b1 − σ1

√
T .
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Quanto Option with a Given Exchange Rate

In this case, the payoff at maturity is X̄(ST−K)+, where X̄ is a given exchange
rate (X̄ is fixed at time zero). The call price is therefore given by:

Cqt3(S0, X0, T ) := EQ(e−rT X̄(ST − K)+)

i.e.,
Cqt3(S0, X0, T ) = X̄e−(r−δ)T

EQ(e−δT (ST − K)+) .

We obtain the expectation, in the risk-neutral domestic economy, of the
standard foreign stock option payoff discounted with the foreign risk-free
interest rate. Now, under the domestic risk-neutral probability Q, the foreign
asset trend is given by δ − ν − ρσ1σ2 (see equation (2.7.7)).

Therefore, the price of this quanto option is given by

Cqt3(S0, X0, T ) = X̄e−(r−δ)T
[
S0e

−(ν+ρσ1σ2)TN (b1) − Ke−δTN (b2)
]

with

b1 =
ln(S0/K) + (δ − ν − ρσ1σ2)T

σ1

√
T

+
1
2
σ1

√
T , b2 = b1 − σ1

√
T .

Foreign Currency Quanto Option

In this case, the payoff at maturity is ST (XT −K)+. The call price is therefore
given by

Cqt4(S0, X0, T ) := EQ(e−rT ST (XT − K)+) .

Now, the price can be obtained by relying on the first quanto option. Indeed,
the stock price now plays the rôle of the currency price and vice-versa.
Therefore, μ1 and σ1 can be used respectively instead of r − δ and σ2, and
vice versa. Thus

Cqt4(S0, X0, T ) = S0(X0e
(r−δ+ρσ1σ2−(r−μ1))TN (b1) − Ke−(r−μ1)TN (b2))

or, in a closed form

Cqt4(S0, X0, T ) = S0(X0e
−νTN (b1) − Ke−(r−δ+ν+ρσ1σ2) T N (b2))

with

b1 =
ln(X0/K) + (r − δ + ρσ1σ2)T

σ2

√
T

+
1
2
σ2

√
T , b2 = b1 − σ2

√
T .

Indeed, r − δ + ρσ1σ2 is the trend of the currency price under the probability
measure Q

∗, defined by its Radon-Nikodým derivative with respect to Q as

Q
∗|Ft = exp

(
σ1Wt −

1
2
σ2

1t

)
Q|Ft .
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