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Continuous-Path Random Processes:
Mathematical Prerequisites

Historically, in mathematical finance, continuous-time processes have been
considered from the very beginning, e.g., Bachelier [39, 41] deals with
Brownian motion, which has continuous paths. This may justify making our
starting point in this book to deal with continuous-path random processes,
for which, in this first chapter, we recall some well-known facts. We try to
give all the definitions and to quote all the important facts for further use. In
particular, we state, without proofs, results on stochastic calculus, change of
probability and stochastic differential equations.

For proofs, the reader can refer to the books of Revuz and Yor [730],
denoted hereafter [RY], Chung and Williams [186], Ikeda and Watanabe
[456], Karatzas and Shreve [513], Lamberton and Lapeyre [559], Rogers and
Williams [741, 742] and Williams, R. [845]. See also the reviews of Varadhan
[826], Watanabe [836] and Rao [729]. The books of Øksendal [684] and Wong
and Hajek [850] cover a large part of stochastic calculus.

1.1 Some Definitions

1.1.1 Measurability

Given a space Ω, a σ-algebra on Ω is a class F of subsets of Ω, such that F is
closed under complements and countable intersection (hence under countable
union) and ∅ ∈ F (hence, Ω ∈ F). For a given class C of subsets of Ω, we
denote by σ(C) the smallest σ-algebra which contains C (i.e., the intersection
of all the σ-algebras containing G).

A measurable space (Ω,F) is a space Ω endowed with a σ-algebra F .
A measurable map X from (Ω,F) to another measurable space (E, E) is a
map from Ω to E such that, for any B ∈ E , the set

X−1(B) : = {ω ∈ Ω : X(ω) ∈ B}
belongs to F .
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4 1 Continuous-Path Random Processes: Mathematical Prerequisites

A real-valued random variable (r.v.) on (Ω,F) is a measurable map from
(Ω,F) to (R,B) where B is the Borel σ-algebra, i.e., the smallest σ-algebra
that contains the intervals.

Let X be a real-valued random variable on a measurable space (Ω,F).
The σ-algebra generated by X, denoted σ(X), is σ(X) := {X−1(B) ;B ∈ B}.
Doob’s theorem asserts that any σ(X)-measurable real-valued r.v. can be
written as h(X) where h is a Borel function, i.e., a measurable map from
(R,B) to (R,B) (a function such that h−1(B) : = {x ∈ R : h(x) ∈ B} ∈ B for
any B ∈ B). The set of bounded Borel functions on a measurable space (E, E)
(i.e., the measurable maps from (E, E) to (R,B)) will be denoted by b(E). If
H is a σ-algebra on Ω, we shall make the slight abuse of notation by writing
X ∈ H for: X is an H-measurable r.v. and X ∈ bH for: X is a bounded r.v.
in H.

Let (Xi, i ∈ I) be a set of random variables. There exists a unique r.v.
with values in R̄, denoted esssupiXi (essential supremum of the family
(Xi; i ∈ I)) such that, for any r.v. Y ,

Xi ≤ Y a.s.∀i ∈ I ⇐⇒ esssupiXi ≤ Y .

If the family is countable, esssupiXi = supi Xi. In the case where the set I is
not countable, the map supi Xi (pointwise supremum) may not be a random
variable.

1.1.2 Monotone Class Theorem

We will frequently use the monotone class theorem which we state without
proof (see Dellacherie and Meyer [242], Chapter 1). We give two different
versions of that theorem, one dealing with sets, the other with functions.

Theorem 1.1.2.1 Let C be a collection of subsets of Ω such that

• Ω ∈ C,
• if A,B ∈ C and A ⊂ B, then B\A = B ∩Ac ∈ C,
• if An is an increasing sequence of elements of C, then ∪nAn ∈ C.

Then, if F ⊂ C where F is closed under finite intersections, then σ(F) ⊂ C.

Theorem 1.1.2.2 Let V be a vector space of bounded real-valued functions
on Ω such that

• the constant functions are in V,
• if hn is an increasing sequence of positive elements of V such that

h = suphn is bounded, then h ∈ V.

If G is a subset of V which is stable under pointwise multiplication, then V
contains all the bounded σ(G)-measurable functions.
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1.1.3 Probability Measures

A probability measure P on a measurable space (Ω,F) is a map from F
to [0, 1] such that:

• P(Ω) = 1,
• P(∪∞

i=1Ai) =
∑∞

i=1 P(Ai) for any countable family of disjoint sets Ai ∈ F ,
i.e., such that Ai ∩Aj = ∅ for i �= j.

Note that, for A ∈ F , P(A) = 1 − P(Ac) where Ac is the complement set of
A, hence P (∅) = 0.

We shall often write, for J a countable set, P(Aj , j ∈ J) for P(∩j∈JAj).

Warning 1.1.3.1 The property P(∪∞
i=1Ai) =

∑∞
i=1 P(Ai) does not extend to

a non-countable family.

A measurable space (Ω,F) endowed with a probability measure P is called
a probability space.

The “elementary” negligible sets are the sets A ∈ F such that P(A) = 0.
Sets Γ ⊂ Γ ′ with Γ ′ ∈ F and P(Γ ′) = 0 are said to be (P,F)-negligible.

If (Ω,F) is a measurable space and P a probability measure on F , the
completion of F with respect to P is the σ-algebra of subsets A of Ω such
that there exist A1 and A2 in F with A1 ⊂ A ⊂ A2 and P(A1) = P(A2) (or,
equivalently, P(A2 ∩Ac

1) = 0). In particular, the completion of F contains all
the P-negligible sets.

1.1.4 Filtration

A filtration F = (Ft, t ≥ 0) is a family of σ-algebras Ft on the same
probability space (Ω,F ,P), which is increasing, i.e., such that Fs ⊂ Ft for
s < t (that is: if A ∈ Fs, then A ∈ Ft for s < t). We note F∞ = ∨t∈RFt.

It is generally assumed that the filtration satisfies the so-called “usual
hypotheses,” that is,

(i) the filtration is right-continuous, i.e., Ft = ∩u>tFu,
(ii) the σ-algebra F0 contains the (P,F)-negligible sets of F∞.

Usually, (but not always) the σ-algebra F0 is the trivial σ-algebra, up to
completion.

A probability space endowed with a filtration which satisfies the usual
hypotheses is called a filtered probability space.

We shall say that a filtration G is larger than F, and write F ⊂ G, if
Ft ⊂ Gt, ∀t.

Comment 1.1.4.1 It is important that the usual hypotheses are satisfied in
order to be able to apply general results on stochastic processes, especially
when studying processes with jumps.
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1.1.5 Law of a Random Variable, Expectation

The law of a real-valued r.v. X defined on the space (Ω,F ,P) is the probability
measure PX on (R,B) defined by

∀A ∈ B, PX(A) = P(X ∈ A) .

It is the image on (R,B) of P by the map ω → X(ω). This definition extends
to an R

n-valued random variable, and, more generally, to an E-valued random
variable (a measurable map from (Ω,F) to (E, E)). If X and Y have the same
law, we shall write X

law= Y .

The cumulative distribution function of a real valued r.v. X is the
right-continuous function F defined as F (x) = P(X ≤ x).

The expectation of a positive random variable Z is defined as

E(Z) =
∫

ZdP =
∫

R+
x dPZ(x) ,

and, if E(|X|) < ∞, then E(X) = E(X+) − E(X−). In case of ambiguity, we
shall denote by EP the expectation with respect to the probability measure P.
The r.v. X is said to be P-integrable (or integrable if there is no ambiguity)
if E(|X|) < ∞.

There are a few important transforms T of probabilities (on R, say) which
characterize a given probability μ, i.e., such that the map μ → T (μ) is one-
to-one.

• The Fourier transform Fμ(t) =
∫

R
eitxμ(dx) (where t ∈ R).

• The Laplace transform Lμ(λ) =
∫

R
e−λxμ(dx) defined on the interval

{λ ∈ R : E(e−λX) < ∞}. Note that the Laplace transform is well defined
on R

+ if X is positive. We shall also use, when it is defined, the Laplace
transform E(eλX), λ ∈ R.

1.1.6 Independence

A family of random variables (Xi, i ∈ I), defined on the space (Ω,F ,P), is said
to be independent if, for any n distinct indices (i1, i2, . . . , in) with ik ∈ I
and for any (A1, . . . , An) where Ak ∈ B,

P (∩n
k=1(Xik

∈ Ak)) =
n∏

k=1

P(Xik
∈ Ak) .

A classical application of the monotone class theorem is that, if the r.vs
(Xi, i ∈ I) are independent, then, with the same notation as above, for any
bounded Borel functions fk,
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E

(
n∏

k=1

fk(Xik
)

)

=
n∏

k=1

E (fk(Xik
)) .

The converse holds true as well. In particular, two random variables X and
Y are independent if and only if, for any pair of bounded Borel functions f
and g, E(f(X)g(Y )) = E(f(X))E(g(Y )). For the independence property to
hold true, it suffices that this equality is satisfied for “enough” functions, for
example:

• for f, g of the form f = 1]−∞,a], g = 1]−∞,b] for every pair of real numbers
(a, b), i.e.,

P(X ≤ a, Y ≤ b) = P(X ≤ a) P(Y ≤ b) ,

• for f, g of the form f(x) = eiλx, g(x) = eiμx for every pair of real numbers
(λ, μ), i.e.,

E(ei(λX+μY )) = E(eiλX) E(eiμY ) .

• in the case where X and Y are positive random variables, for f, g of the
form f(x) = e−λx, g(x) = e−μx for every pair of positive real numbers
(λ, μ), i.e.,

E(e−λXe−μY ) = E(e−λX)E(e−μY ) .

It is important to note that if X and Y are independent r.vs, then for any
bounded Borel function Φ defined on R

2, E(Φ(X,Y )) = E(ϕ(X)) where
ϕ(x) = E(Φ(x, Y )). This result can be seen as a consequence of the monotone
class theorem, or as an application of Fubini’s theorem.

1.1.7 Equivalent Probabilities and Radon-Nikodým Densities

Let P and Q be two probabilities defined on the same measurable space (Ω,F).
The probability Q is said to be absolutely continuous with respect to P,
(denoted Q << P) if P(A) = 0 implies Q(A) = 0, for any A ∈ F . In that case,
there exists a positive, F-measurable random variable L, called the Radon-
Nikodým density of Q with respect to P, such that

∀A ∈ F ,Q(A) = EP(L1A) .

This random variable L satisfies EP(L) = 1 and for any Q-integrable random
variable X, EQ(X) = EP(XL). The notation dQ

dP
= L (or Q|F = LP|F ) is in

common use, in particular in the chain of equalities

EQ(X) =
∫

XdQ =
∫

X
dQ

dP
dP =

∫

XLdP = EP(XL) .

The probabilities P and Q are said to be equivalent, (this will be denoted
P ∼ Q), if they have the same negligible sets, i.e., if for any A ∈ F ,

Q(A) = 0 ⇔ P(A) = 0 ,
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or equivalently, if Q << P and P << Q. In that case, there exists a strictly
positive, F-measurable random variable L, such that Q(A) = EP(L1A). Note
that dP

dQ
= L−1 and P(A) = EQ(L−11A).

Conversely, if L is a strictly positive F-measurable r.v., with expectation
1 under P, then Q = L · P defines a probability measure on F , equivalent to
P. From the definition of equivalence, if a property holds almost surely (a.s.)
with respect to P, it also holds a.s. for any probability Q equivalent to P.
Two probabilities P and Q on the same filtered probability space (Ω,F) are
said to be locally equivalent1 if they have the same negligible sets on Ft, for
every t ≥ 0, i.e., if Q|Ft ∼ P|Ft . In that case, there exists a strictly positive F-
adapted process (Lt, t ≥ 0) such that Q|Ft = LtP|Ft . (See � Subsection 1.7.1
for more information.) Furthermore, if τ is a stopping time (see � Subsection
1.2.3), then

Q|Fτ∩{τ<∞} = Lτ · P|Fτ∩{τ<∞} .

This will be important when dealing with Girsanov’s theorem and explosion
times (See � Proposition 1.7.5.3).

Warning 1.1.7.1 If P ∼ Q and X is a P-integrable random variable, it is
not necessarily Q-integrable.

1.1.8 Construction of Simple Probability Spaces

In order to construct a random variable with a given law, say a Gaussian law,
the canonical approach is to take Ω = R, X : Ω → R;X(ω) = ω the identity
map and P the law on Ω = R with the Gaussian density with respect to the
Lebesgue measure, i.e.,

P(dω) =
1√
2π

exp
(

−ω2

2

)

dω

(recall that here ω is a real number). Then the cumulative distribution
function of the random variable X is

FX(x) = P(X ≤ x) =
∫

Ω

1{ω≤x}P(dω) =
∫ x

−∞

1√
2π

exp
(

−ω2

2

)

dω .

Hence, the map X is a Gaussian random variable. The construction of a real
valued r.v. with any given law can be carried out using the same idea; for
example, if one needs to construct a random variable with an exponential
law, then, similarly, one may choose Ω = R and the density e−ω1{ω≥0}.

For two independent variables, we choose Ω = Ω1 ×Ω2 where Ωi, i = 1, 2
are two copies of R. On each Ωi, one constructs a random variable as above,
1 This commonly used terminology often refers to a sequence (Tn) of stopping times,

with Tn ↑ ∞ a.s.; here, it is preferable to restrict ourselves to the deterministic
case Tn = n.
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and defines P = P1 ⊗P2 where the product probability P1 ⊗P2 is first defined
on the sets A1 ×A2 for Ai ∈ B, the Borel σ-field of R, as

(P1 ⊗ P2)(A1 ×A2) = P1(A1)P2(A2) ,

and then extended to B × B.

1.1.9 Conditional Expectation

Let X be an integrable random variable on the space (Ω,F ,P) and H a σ-
algebra contained in F , i.e., H ⊆ F . The conditional expectation of X
given H is the almost surely unique H-measurable random variable Z such
that, for any bounded H-measurable random variable Y ,

E(ZY ) = E(XY ) .

The conditional expectation is denoted E(X|H) and the following properties
hold (see, for example Breiman [123], Williams [842, 843]):

• If X is H-measurable, E(X|H) = X, a.s.
• E(E(X|H)) = E(X).
• If X ≥ 0, then E(X|H) ≥ 0 a.s.
• Linearity: If Y is an integrable random variable and a, b ∈ R,

E(aX + bY |H) = aE(X|H) + bE(Y |H), a.s.

• If G is another σ-algebra and G ⊆ H, then

E(E(X|G)|H) = E(E(X|H)|G) = E(X|G), a.s.

• If Y is H-measurable and XY is integrable, E(XY |H) = Y E(X|H) a.s.
• Jensen’s inequality: If f is a convex function such that f(X) is integrable,

E(f(X)|H) ≥ f(E(X|H)), a.s.

In the particular case where H is the σ-algebra generated by a r.v. Y , then
E(X|σ(Y )), which is usually denoted by E(X|Y ), is σ(Y )-measurable, hence
there exists a Borel function ϕ such that E(X|Y ) = ϕ(Y ). The function ϕ is
uniquely defined up to a PY -negligible set. The notation E(X|Y = y) is often
used for ϕ(y).

If X is an R
p-valued random variable, and Y an R

n-valued random
variable, there exists a family of measures (conditional laws) μ(dx, y) such
that, for any bounded Borel function h

E(h(X)|Y = y) =
∫

h(x)μ(dx, y) .

If (X,Y ) are independent random variables, and h is a bounded Borel function,
then E(h(X,Y )|Y ) = Ψ(Y ), where Ψ(y) = E(h(X, y)), i.e., the conditional law
of X given Y = y does not depend on y.



10 1 Continuous-Path Random Processes: Mathematical Prerequisites

Note that, if X is square integrable, then E(X|H) may be defined as the
projection of X on the space L2(Ω,H) of H-measurable square integrable
random variables. The conditional variance of a square integrable random
variable X is

var(X|H) = E(X2|H) − (E(X|H))2 .

Definition 1.1.9.1 Two σ-algebras G1 and G2 are said to be conditionally
independent with respect to the σ-algebra H if E(G1G2|H) = E(G1|H)E(G2|H)
for any bounded random variables Gi ∈ Gi. Two random variables X and Y
are conditionally independent with respect to the σ-algebra H if σ(X) and
σ(Y ) are conditionally independent with respect to H.

This may be extended obviously to any finite family of r.v’s. Two infinite
families of random variables are conditionally independent if any finite
subfamilies are conditionally independent.

1.1.10 Stochastic Processes

Definition 1.1.10.1 A continuous time process X on (Ω,F ,P) is a family of
random variables (Xt, t ≥ 0), such that the map (ω, t) → Xt(ω) is F ⊗B(R+)
measurable.

We emphasize that when speaking of processes, we always mean a measurable
process.

A process X is continuous if, for almost all ω, the map t → Xt(ω) is
continuous. The process is continuous on the right with limits on the left (in
short càdlàg following the French acronym2 if, for almost all ω, the map
t → Xt(ω) is càdlàg.

Definition 1.1.10.2 A process X is increasing if X0 = 0, X is right-
continuous, and Xs ≤ Xt, a.s. for s ≤ t.

Definition 1.1.10.3 Let (Ω,F ,F,P) be a filtered probability space. The
process X is F-adapted if for any t ≥ 0, the random variable Xt is Ft-
measurable.

The natural filtration FX of a stochastic process X is the smallest filtration
F which satisfies the usual hypotheses and such that X is F-adapted. We
shall write in short (with an abuse of notation) FX

t = σ(Xs, s ≤ t).

2 In French, continuous on the right is continu à droite, and with limits on the
left is admettant des limites à gauche. We shall also use càd for continuous on
the right. The use of this acronym comes from P-A. Meyer.
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Let G = (Gt, t ≥ 0) be another filtration on Ω. If G is larger than F, and
if X is an F-adapted process, it is also G-adapted.

Definition 1.1.10.4 A real-valued process X is progressively measurable
with respect to a given filtration F = (Ft, t ≥ 0), if, for every t, the map
(ω, s) → Xs(ω) from Ω × [0, t] into R is Ft × B([0, t])-measurable.

Any càd (or càg) F-adapted process is progressively measurable. An F-
progressively measurable process is F-adapted. If X is progressively measur-
able, then

E

(∫ ∞

0

Xtdt

)

=
∫ ∞

0

E (Xt) dt,

where the existence of one of these expressions implies the existence of the
other.

Definition 1.1.10.5 Two processes (Xt, t ≥ 0) and (Yt, t ≥ 0) have the same
law if, for any n and any (t1, t2, . . . , tn)

(Xt1 , Xt2 , . . . , Xtn) law= (Yt1 , Yt2 , . . . , Ytn) .

We shall write in short X
law= Y , or X

law= μ for a given probability law μ (on
the canonical space).

The process X is a modification of Y if, for any t, P(Xt = Yt) = 1. The process
X is indistinguishable from (or a version of) Y if {ω : Xt(ω) = Yt(ω), ∀t}
is a measurable set and P(Xt = Yt, ∀t) = 1. If X and Y are modifications of
each other and are a.s. continuous, they are indistinguishable.

Let us state without proof a sufficient condition for the existence of a
continuous version of a stochastic process.

Theorem 1.1.10.6 (Kolmogorov.) If a collection (Xt, t ≥ 0) of random
variables satisfies

E(|Xt −Xs|p) ≤ C|t− s|1+ε

for some C > 0, p > 0 and ε > 0, then this collection admits a modification
(X̃t, t ≥ 0) which is a.s. continuous, i.e., out of a negligible set, the map
t → X̃t(ω) is continuous.

Proof: See, e.g., Ikeda and Watanabe [456], p. 20. �

Throughout the book, we shall see many applications of this theorem,
in particular, for the existence of a.s. continuous Brownian paths (see �
Section 1.4).
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Definition 1.1.10.7 A process X has
- independent increments if for any pair (s, t) ∈ R

2
+, the random variable

Xt+s −Xs is independent of FX
s ,

- stationary increments if for any pair (s, t) ∈ R
2
+,

Xt+s −Xs
law= Xt .

A process is stationary if

∀ fixed s > 0, (Xt+s −Xs, t ≥ 0) law= (Xt, t ≥ 0) .

Definition 1.1.10.8 A càd process A is of finite variation on [0, t] if

VA(t, ω) := sup
n∑

i=1

|Ati(ω) −Ati−1(ω)| =
∫ t

0

|dAs(ω)|

is a.s. finite, where the supremum is taken over all finite partitions (ti) of
[0, t].

A càd process A is of finite variation if it is of finite variation on any
compact [0, t]. A càd finite variation process is the difference between two
increasing processes. A càd finite variation process A is said to be integrable
if E(

∫ ∞
0

|dAs|) < ∞. In the definition of finite variation processes, we do not
restrict attention to adapted processes. Note that finite variation càd processes
are càdlàg.

Exercise 1.1.10.9 One might naively think that a collection (Xt, t ∈ R
+) of

independent r.v’s may be chosen “measurably,” i.e., with the map

(R+ ×Ω,BR+ ×F) → (R,BR) : (t, ω) → Xt(ω)

being measurable, so that X is a “true” process. Prove that if the Xt’s are
centered and supt E(X2

t ) < ∞, then no measurable choice can be constructed,
except X = 0.
Hint: E(

∫ t

0
Xsds)2 =

∫ t

0

∫ t

0
E(XsXu)ds du would be equal to 0, hence X

would be null. �

1.1.11 Convergence

A sequence of processes Zn converges in L2(Ω × [0, T ]) to a process Z if
E

∫ T

0
|Zn

s − Zs|2ds converges to 0.
A sequence of processes Zn converges uniformly on compacts in probability

(ucp) to a process Z if, for any t, sup0≤s≤t |Zn
s − Zs| converges to 0 in

probability.
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1.1.12 Laplace Transform

The Laplace transform E(eλX) of a r.v. X is well defined for λ ≥ 0 when
X is a negative r.v. (here, we use a slightly unorthodox definition of Laplace
transform, with λ ≥ 0). In some cases, the Laplace transform can be defined
for every λ ∈ R, as in the following important case, where we denote by
N (μ, σ2) a Gaussian law with mean μ and variance σ2:

Proposition 1.1.12.1 Laplace transform of a Gaussian variable. The
law of the random variable X is N (μ, σ2) if and only if, for any λ ∈ R,

E(exp(λX)) = exp
(

μλ +
1
2
λ2σ2

)

.

This property extends to any λ ∈ C, and to Gaussian random vectors: X is a
d-dimensional Gaussian vector with mean μ and covariance matrix Σ if and
only if for any λ ∈ R

d,

E(exp(λ∗X)) = exp
(

λ∗μ +
1
2
λ∗Σλ

)

,

where the star stands for the transposition operator. If the matrix Σ is
invertible, the random vector X admits the density

(2π)−d/2(detΣ)−1/2 exp
(

−1
2
(x− μ)∗Σ−1(x− μ)

)

.

Comment 1.1.12.2 Let (Xt, t ≥ 0) be a (measurable) process, λ > 0 and f
a positive Borel function. Then, if Θ is a random variable, independent of X,
with exponential law (P(Θ ∈ dt) = λe−λt1{t>0}dt), one has

E(f(XΘ)) = λE

(∫ ∞

0

e−λtf(Xt)dt
)

= λ

∫ ∞

0

e−λt
E (f(Xt)) dt .

Hence, if the process X is continuous, the value of E(f(XΘ)) (for all λ and
all bounded Borel functions f) characterizes the law of Xt, for any t, i.e.,
the law of the marginals of the process X. The law of the process assumed
to be positive, may be characterized by E(exp[−

∫
μ(dt)Xt]) for all positive

measures μ on (R+,B).

Exercise 1.1.12.3 Laplace Transforms for the Square of Gaussian
Law. Let X

law= N (m,σ2) and λ > 0. Prove that

E(e−λX2
) =

1√
1 + 2λσ2

exp
(

− m2λ

1 + 2λσ2

)
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and more generally that

E(exp{−λX2 + μX}) =
σ̂

σ
exp

(
σ̂2

2

(
μ +

m

σ2

)2

− m2

2σ2

)

,

with σ̂2 =
σ2

1 + 2λσ2
. �

Exercise 1.1.12.4 Moments and Laplace Transform. If X is a positive
random variable, prove that its negative moments are given by, for r > 0:

(a) E(X−r) =
1

Γ (r)

∫ ∞

0

tr−1
E(e−tX)dt

where Γ is the Gamma function (see � Subsection A.5.1 if needed) and its
positive moments are, for 0 < r < 1

(b) E(Xr) =
r

Γ (1 − r)

∫ ∞

0

1 − E(e−tX)
tr+1

dt

and for n < r < n + 1, if φ(t) = E(e−tX) belongs to Cn

(c) E(Xr) =
r − n

Γ (n + 1 − r)

∫ ∞

0

(−1)n φ(n)(0) − φ(n)(t)
tr+1−n

dt .

Hint: For example, for (b), use Fubini’s theorem and the fact that, for 0 <
r < 1,

srΓ (1 − r) = r

∫ ∞

0

1 − e−st

tr+1
dt .

For r = n, one has E(Xn) = (−1)nφ(n)(0). See Schürger [774] for more results
and applications. �

Exercise 1.1.12.5 Chi-squared Law. A noncentral chi-squared law χ2(δ, α)
with δ degrees of freedom and noncentrality parameter α has the density

f(x; δ, α) = 2−δ/2 exp
(

−1
2
(α + x)

)

x
δ
2−1

∞∑

n=0

(α

4

)n xn

n!Γ (n + δ/2)
1{x>0}

=
e−α/2

2αν/2
e−x/2xν/2Iν(

√
xα)1{x>0} ,

where Iν is the usual modified Bessel function (see � Subsection A.5.2). Its
cumulative distribution function is denoted χ2(δ, α; ·).
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Let Xi, i = 1, . . . , n be independent random variables with Xi
law= N (mi, 1).

Check that
∑n

i=1 X2
i is a noncentral chi-squared variable with n degrees of

freedom, and noncentrality parameter
∑n

i=1 m2
i . �

1.1.13 Gaussian Processes

A real-valued process (Xt, t ≥ 0) is a Gaussian process if any finite linear
combination

∑n
i=1 aiXti is a Gaussian variable. In particular, for each t ≥ 0,

the random variable Xt is a Gaussian variable. The law of a Gaussian process
is characterized by its mean function ϕ(t) = E(Xt) and its covariance function
c(t, s) = E(XtXs) − ϕ(t)ϕ(s) which satisfies

∑

i,j

λiλ̄j c(ti, tj) ≥ 0, ∀λ ∈ C
n .

Note that this property holds for every square integrable process, but that,
conversely a Gaussian process may always be associated with a pair (ϕ, c)
satisfying the previous conditions. See Janson [479] for many results on
Gaussian processes.

1.1.14 Markov Processes

The R
d-valued process X is said to be a Markov process if for any t, the

past FX
t = σ(Xs, s ≤ t) and the future σ(Xt+u, u ≥ 0) are conditionally

independent with respect to Xt, i.e., for any t, for any bounded random
variable Y ∈ σ(Xu, u ≥ t):

E(Y |FX
t ) = E(Y |Xt) .

This is equivalent to: for any bounded Borel function f , for any times t > s ≥ 0

E(f(Xt)|FX
s ) = E(f(Xt)|Xs) .

A transition probability is a family (Ps,t, 0 ≤ s < t) of probabilities
such that the Chapman-Kolmogorov equation holds:

Ps,t(x,A) =
∫

Ps,u(x, dy)Pu,t(y,A) = P(Xt ∈ A|Xs = x) .

A Markov process with transition probability Ps,t satisfies

E(f(Xt)|Xs) = Ps,tf(Xs) =
∫

f(y)Ps,t(Xs, dy) ,

for any t > s ≥ 0, for every bounded Borel function f . If Ps,t depends
only on the difference t − s, the Markov process is said to be a time-
homogeneous Markov process and we simply write Pt for P0,t. Results for



16 1 Continuous-Path Random Processes: Mathematical Prerequisites

homogeneous Markov processes can be formally extended to inhomogeneous
Markov processes by adding a time dimension to the space, i.e., by considering
the process ((Xt, t), t ≥ 0). For a time-homogeneous Markov process

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) =
∫

A1

Pt1(x, dx1) · · ·
∫

An

Ptn−tn−1(xn−1, dxn) ,

where Px means that X0 = x.
The (strong) infinitesimal generator of a time-homogeneous Markov

process is the operator L defined as

L(f)(x) = lim
t→0

Ex(f(Xt)) − f(x)
t

,

where Ex denotes the expectation for the process starting from x at time 0.
The domain of the generator is the set D(L) of bounded Borel functions f
such that this limit exists in the norm ‖f‖ = sup |f(x)|.

Let X be a time-homogeneous Markov process. The associated semi-
group Ptf(x) = Ex(f(Xt)) satisfies

d

dt
(Ptf) = PtLf = LPtf, f ∈ D(L) . (1.1.1)

(See, for example, Kallenberg [505] or [RY], Chapter VII.)
A Markov process is said to be conservative if Pt(x,Rd) = 1 for all t and

x ∈ R
d. A nonconservative process can be made conservative by adding an

extra state ∂ (called the cemetery state) to R
d. The conservative transition

function P ∂
t is defined by

P ∂
t (x,A) : = Pt(x,A), x ∈ R

d, A ∈ B ,
P ∂

t (x, ∂) : = 1 − Pt(x,Rd), x ∈ R
d,

P ∂
t (∂,A) : = δ{∂}(A), A ∈ R

d ∪ ∂ .

Definition 1.1.14.1 The lifetime of (the conservative process) X is the FX-
stopping time

ζ(ω) : = inf{t ≥ 0 : Xt(ω) = ∂} .

See � Section 1.2.3 for the definition of stopping time.

Proposition 1.1.14.2 Let X be a time-homogeneous Markov process with
infinitesimal generator L. Then, for any function f in the domain D(L) of
the generator

Mf
t := f(Xt) − f(X0) −

∫ t

0

Lf(Xs)ds

is a martingale with respect to Px, ∀x. Moreover, if τ is a bounded stopping
time

Ex(f(Xτ )) = f(x) + Ex

(∫ τ

0

Lf(Xs)ds
)

.
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Proof: See � Section 1.2 for the definition of martingale. From

Mf
t+s −Mf

s = f(Xt+s) − f(Xs) −
∫ t+s

s

Lf(Xu)du

and the Markov property, one deduces

Ex(Mf
t+s −Mf

s |Fs) = EXs(M
f
t ) . (1.1.2)

From (1.1.1),
d

dt
Ex[f(Xt)] = Ex[Lf(Xt)], f ∈ D(L)

hence, by integration

Ex[f(Xt)] = f(x) +
∫ t

0

dsEx[Lf(Xs)] .

It follows that, for any x, Ex(Mf
t ) equals 0, hence EXs(M

f
t ) = 0 and from

(1.1.2), that Mf is a martingale. �

The family (Uα, α > 0) of kernels defined by

Uαf(x) =
∫ ∞

0

e−αt
Ex[f(Xt)]dt

is called the resolvent of the Markov process.(See also � Subsection 5.3.6.)

The strong Markov property holds if for any finite stopping time T
and any t ≥ 0, (see � Subsection 1.2.3 for the definition of a stopping time)
and for any bounded Borel function f ,

E(f(XT+t)|FX
T ) = E(f(XT+t)|XT ) .

It follows that, for any pair of finite stopping times T and S, and any bounded
Borel function f

1{S>T}E(f(XS)|FX
T ) = 1{S>T}E(f(XS)|XT ) .

Proposition 1.1.14.3 Let X be a strong Markov process with continuous
paths and b a continuous function. Define the first passage time of X over b
as

Tb = inf{t > 0|Xt ≥ b(t)} .

Then, for x ≤ b(0) and y > b(t)

Px(Xt ∈ dy) =
∫ t

0

P(Xt ∈ dy|Xs = b(s))F (ds)

where F is the law of Tb.
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Sketch of the Proof: Let B ⊂ [b(t),∞[.

Px(Xt ∈ B) = Px(Xt ∈ B, Tb ≤ t) = Ex(1{Tb≤t}Ex(1{Xt∈B}|Tb))

=
∫ t

0

Ex(1{Xt∈B}|Tb = s)Px(Tb ∈ ds)

=
∫ t

0

P(Xt ∈ B|Xs = b(s))Px(Tb ∈ ds) .

For a complete proof, see Peskir [707]. �

Definition 1.1.14.4 Let X be a Markov process. A Borel set A is said to be
polar if

Px(TA < ∞) = 0, for every x ∈ R
d

where TA = inf{t > 0 : Xt ∈ A}.

This notion will be used (see � Proposition 1.4.2.1) to study some particular
cases.

Comment 1.1.14.5 See Blumenthal and Getoor [107], Chung [184], Del-
lacherie et al. [241], Dynkin [288], Ethier and Kurtz [336], Itô [462], Meyer
[648], Rogers and Williams [741], Sharpe [785] and Stroock and Varadhan
[812], for further results on Markov processes. Proposition 1.1.14.3 was
obtained in Fortet [355] (see Peskir [707] for applications of this result to
Brownian motion). Further examples of deterministic barriers will be given in
� Chapter 3.

Exercise 1.1.14.6 Let W be a Brownian motion (see � Section 1.4 if
needed), x, ν, σ real numbers, Xt = x exp(νt + σWt) and MX

t = sups≤t Xs.
Prove that the process (Yt = MX

t /Xt, t ≥ 0) is a Markov process. This
fact (proved by Lévy) is used in particular in Shepp and Shiryaev [787] for
the valuation of Russian options and in Guo and Shepp [412] for perpetual
lookback American options. �

1.1.15 Uniform Integrability

A family of random variables (Xi, i ∈ I), is uniformly integrable (u.i.) if
supi∈I

∫
|Xi|≥a

|Xi|dP goes to 0 when a goes to infinity.
If |Xi| ≤ Y where Y is integrable, then (Xi, i ∈ I) is u.i., but the converse

does not hold.
Let (Ω,F ,F,P) be a filtered probability space and X an F∞-measurable

integrable random variable. The family (E(X|Ft), t ≥ 0) is u.i.. More
generally, if (Ω,F ,P) is a given probability space and X an integrable r.v.,
the family {E(X|G),G ⊆ F} is u.i.
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Very often, one uses the fact that if (Xi, i ∈ I) is bounded in L2, i.e.,
supi E(X2

i ) < ∞ then, it is a u.i. family.
Among the main uses of uniform integrability, the following is the most

important: if (Xn, n ≥ 1) is u.i. and Xn
P→ X, then Xn

L1

→ X.

1.2 Martingales

Although our aim in this chapter is to discuss continuous path processes,
there would be no advantage in this section of limiting ourselves to the
scope of continuous martingales. We shall restrict our attention to continuous
martingales in � Section 1.3.

1.2.1 Definition and Main Properties

Definition 1.2.1.1 An F-adapted process X = (Xt, t ≥ 0), is an F-
martingale (resp. sub-martingale, resp. super-martingale) if

• E(|Xt|) < ∞, for every t ≥ 0,
• E(Xt|Fs) = Xs (resp. E(Xt|Fs) ≥ Xs , resp. E(Xt|Fs) ≤ Xs) a.s. for

every pair (s, t) such that s < t.

Roughly speaking, an F-martingale is a process which is F-conditionally
constant, and a super-martingale is conditionally decreasing. Hence, one
can ask the question: is a super-martingale the sum of a martingale and a
decreasing process? Under some weak assumptions, the answer is positive
(see the Doob-Meyer theorem quoted below as Theorem 1.2.1.6).

Example 1.2.1.2 The basic example of a martingale is the process X defined
as Xt : = E(X∞|Ft), where X∞ is a given F∞-measurable integrable r.v.. In
fact, X is a uniformly integrable martingale if and only if Xt : = E(X∞|Ft),
for some X∞ ∈ L1(F∞).

Sometimes, we shall deal with processes indexed by [0, T ], which may
be considered by a simple transformation as the above processes. If the
filtration F is right-continuous, it is possible to show that any martingale
has a càdlàg version.

If M is an F-martingale and H ⊆ F, then E(Mt|Ht) is an H-martingale. In
particular, if M is an F-martingale, then it is an FM -martingale. A process
is said to be a martingale if it is a martingale with respect to its natural
filtration.

From now on, any martingale (super-martingale, sub-martingale) will be
taken to be right-continuous with left-hand limits.

Warning 1.2.1.3 If M is an F-martingale and F ⊂ G, it is not true in
general that M is a G-martingale (see � Section 5.9 on enlargement of
filtrations for a discussion on that specific case).
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Example 1.2.1.4 If X is a process with independent increments such that
the r.v. Xt is integrable for any t, the process (Xt − E(Xt), t ≥ 0) is a
martingale. Sometimes, these processes are called self-similar processes (see
� Chapter 11 for the particular case of Lévy processes).

Definition 1.2.1.5 A process X is of the class (D), if the family of random
variables (Xτ , τ finite stopping time) is u.i..

Theorem 1.2.1.6 (Doob-Meyer Decomposition Theorem) The pro-
cess (Xt; t ≥ 0) is a sub-martingale (resp. a super-martingale) of class
(D) if and only if Xt = Mt + At (resp. Xt = Mt − At) where M is a
uniformly integrable martingale and A is an increasing predictable3 process
with E(A∞) < ∞.

Proof: See Dellacherie and Meyer [244] Chapter VII, 12 or Protter [727]
Chapter III. �

If M is a martingale such that supt E(|Mt|) < ∞ (i.e., M is L1 bounded),
there exists an integrable random variable M∞ such that Mt converges almost
surely to M∞ when t goes to infinity (see [RY], Chapter I, Theorem 2.10). This
holds, in particular, if M is uniformly integrable and in that case Mt →L1 M∞
and Mt = E(M∞|Ft). However, an L1-bounded martingale is not necessarily
uniformly integrable as the following example shows:

Example 1.2.1.7 The martingale Mt = exp
(
λWt − λ2

2 t
)

where W is a

Brownian motion (see � Section 1.4) is L1 bounded (indeed ∀t,E(Mt) = 1).
From limt→∞

Wt

t = 0, a.s., we get that

lim
t→∞

Mt = lim
t→∞

exp
(

t

(

λ
Wt

t
− λ2

2

))

= lim
t→∞

exp
(

−t
λ2

2

)

= 0 ,

hence this martingale is not u.i. on [0,∞[ (if it were, it would imply that Mt

is null!).

Exercise 1.2.1.8 Let M be an F-martingale and Z an adapted (bounded)
continuous process. Prove that, for 0 < s < t,

E

(

Mt

∫ t

s

Zudu|Fs

)

= E

(∫ t

s

MuZudu|Fs

)

. �

Exercise 1.2.1.9 Consider the interval [0, 1] endowed with Lebesgue mea-
sure λ on the Borel σ-algebra B. Define Ft = σ{A : A ⊂ [0, t], A ∈ B}. Let f
be an integrable function defined on [0, 1], considered as a random variable.

3 See Subsection 1.2.3 for the definition of predictable processes. In the particular
case where X is continuous, then A is continuous.
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Prove that

E(f |Ft)(u) = f(u)1{u≤t} + 1{u>t}
1

1 − t

∫ 1

t

dxf(x) . �

Exercise 1.2.1.10 Give another proof that limt→∞ Mt = 0 in the above
Example 1.2.1.7 by using T−a = inf{t : Wt = −a}. �

1.2.2 Spaces of Martingales

We denote by H2 (resp. H2[0, T ]) the subset of square integrable martin-
gales (resp. defined on [0,T]), i.e., martingales such that supt E(M2

t ) < ∞
(resp. supt≤T E(M2

t ) < ∞). From Jensen’s inequality, if M is a square
integrable martingale, M2 is a sub-martingale. It follows that the martingale
M is square integrable on [0, T ] if and only if E(M2

T ) < ∞.
If M ∈ H2, the process M is u.i. and Mt = E(M∞|Ft). From Fatou’s

lemma, the random variable M∞ is square integrable and

E(M2
∞) = lim

t→∞
E(M2

t ) = sup
t

E(M2
t ) .

From M2
t ≤ E(M2

∞|Ft), it follows that (M2
t , t ≥ 0) is uniformly integrable.

Doob’s inequality states that, if M ∈ H2, then E(supt M
2
t ) ≤ 4E(M2

∞).
Hence, E(supt M

2
t ) < ∞ is equivalent to supt E(M2

t ) < ∞. More generally, if
M is a martingale or a positive sub-martingale, and p > 1,

‖ sup
t≤T

|Mt|‖p ≤ p

p− 1
sup
t≤T

‖Mt‖p . (1.2.1)

Obviously, the Brownian motion (see � Section 1.4) does not belong to H2,
however, it belongs to H2([0, T ]) for any T .

We denote by H1 the set of martingales M such that E(supt |Mt|) < ∞.
More generally, the space of martingales such that M∗ = supt |Mt| is in Lp is
denoted by Hp. For p > 1, one has the equivalence

M∗ ∈ Lp ⇔ M∞ ∈ Lp .

Thus the space Hp for p > 1 may be identified with Lp(F∞). Note that
supt E(|Mt|) ≤ E(supt |Mt|), hence any element of H1 is L1 bounded, but the
converse if not true (see Azéma et al. [36]).

1.2.3 Stopping Times

Definitions

An R
+ ∪ {+∞}-valued random variable τ is a stopping time with respect

to a given filtration F (in short, an F-stopping time), if {τ ≤ t} ∈ Ft, ∀t ≥ 0.
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If the filtration F is right-continuous, it is equivalent to demand that {τ < t}
belongs to Ft for every t, or that the left-continuous process 1]0,τ ]}(t) is an
F-adapted process). If F ⊂ G, any F-stopping time is a G-stopping time.

If τ is an F-stopping time, the σ-algebra of events prior to τ , Fτ is defined
as:

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀t}.

If X is F-progressively measurable and τ a F-stopping time, then the r.v. Xτ

is Fτ -measurable on the set {τ < ∞}.
The σ-algebra Fτ− is the smallest σ-algebra which contains F0 and all the

sets of the form A ∩ {t < τ}, t > 0 for A ∈ Ft.

Definition 1.2.3.1 A stopping time τ is predictable if there exists an
increasing sequence (τn) of stopping times such that almost surely

(i) limn τn = τ ,
(ii) τn < τ for every n on the set {τ > 0}.

A stopping time τ is totally inaccessible if P(τ = ϑ < ∞) = 0 for any
predictable stopping time ϑ (or, equivalently, if for any increasing sequence of
stopping times (τn, n ≥ 0), P({lim τn = τ} ∩A) = 0 where A = ∩n{τn < τ}).

If X is an F-adapted process and τ a stopping time, the (F-adapted)
process Xτ where Xτ

t := Xt∧τ is called the process X stopped at τ .

Example 1.2.3.2 If τ is a random time, (i.e., a positive random variable),
the smallest filtration with respect to which τ is a stopping time is the
filtration generated by the process Dt = 1{τ≤t}. The completed σ-algebra
Dt is generated by the sets {τ ≤ s}, s ≤ t or, equivalently, by the random
variable τ ∧ t. This kind of times will be of great importance in � Chapter 7
to model default risk events.

Example 1.2.3.3 If X is a continuous process, and a a real number, the
first time T+

a (resp. T−
a ) when X is greater (resp. smaller) than a, is an FX -

stopping time

T+
a = inf{t : Xt ≥ a}, resp. T−

a = inf{t : Xt ≤ a} .

From the continuity of the process X, if the process starts below a (i.e., if
X0 < a), one has T+

a = Ta where Ta = inf{t : Xt = a}, and XTa = a (resp.
if X0 > a, T−

a = Ta). Note that if X0 ≥ a, then T+
a = 0, and Ta > 0.

More generally, if X is a continuous R
d-valued processes, its first

entrance time into a closed set F , i.e., TF = inf{t : Xt ∈ F}, is a
stopping time (see [RY], Chapter I, Proposition 4.6.). If a real-valued process
is progressive with respect to a standard filtration, the first entrance time of
a Borel set is a stopping time.
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Fig. 1.1 First hitting time of a level a

Optional and Predictable Process

If τ and ϑ are two stopping times, the stochastic interval ]]ϑ, τ ]] is the set
{(t, ω) : ϑ(ω) < t ≤ τ(ω)}.

The optional σ-algebra O is the σ-algebra generated on F × B by the
stochastic intervals [[τ,∞[[ where τ is an F-stopping time.

The predictable σ-algebra P is the σ-algebra generated on F × B by
the stochastic intervals ]]ϑ, τ ]] where ϑ and τ are two F-stopping times such
that ϑ ≤ τ .

A process X is said to be F-predictable (resp. F-optional) if the map
(ω, t) → Xt(ω) is P-measurable (resp. O-measurable).

Example 1.2.3.4 An adapted càg process is predictable.

Martingales and Stopping Times

If M is an F-martingale and τ an F-stopping time, the stopped process Mτ

is an F-martingale.

Theorem 1.2.3.5 (Doob’s Optional Sampling Theorem.) If M is a
uniformly integrable martingale (e.g., bounded) and ϑ, τ are two stopping times
with ϑ ≤ τ , then

Mϑ = E(Mτ |Fϑ) = E(M∞|Fϑ), a.s.

If M is a positive super-martingale and ϑ, τ a pair of stopping times with
ϑ ≤ τ , then

E(Mτ |Fϑ) ≤ Mϑ .
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Warning 1.2.3.6 This theorem often serves as a basic tool to determine
quantities defined up to a first hitting time and laws of hitting times. However,
in many cases, the u.i. hypothesis has to be checked carefully. For example,
if W is a Brownian motion, (see the definition in � Section 1.4), and Ta

the first hitting time of a, then E(WTa) = a, while a blind application of
Doob’s theorem would lead to equality between E(WTa) and W0 = 0. The
process (Wt∧Ta , t ≥ 0) is not uniformly integrable, but (Wt∧Ta , t ≤ t0) is, and
obviously so is (Wt∧T−c∧Ta , t ≥ 0) (here, −c < 0 < a).

The following proposition is an easy converse to Doob’s optional sampling
theorem:

Proposition 1.2.3.7 If M is an adapted integrable process, and if for any
two-valued stopping time τ , E(Mτ ) = E(M0), then M is a martingale.

Proof: Let s < t and Γs ∈ Fs. The random time

τ =
{

s on Γ c
s

t on Γs

is a stopping time, hence E(Mt1Γs) = E(Ms1Γs) and the result follows. �

The adapted integrable process M is a martingale if and only if the
following property is satisfied ([RY], Chapter II, Sect. 3): if ϑ, τ are two
bounded stopping times with ϑ ≤ τ , then

Mϑ = E(Mτ |Fϑ), a.s.

Comments 1.2.3.8 (a) Knight and Maisonneuve [530] proved that a
random time τ is an F-stopping time if and only if, for any bounded F-
martingale M , E(M∞|Fτ ) = Mτ . Here, Fτ is the σ-algebra generated by the
random variables Zτ , where Z is any F-optional process. (See Dellacherie et
al. [241], page 141, for more information.)
(b) Note that there exist some random times τ which are not stopping
times, but nonetheless satisfy E(M0) = E(Mτ ) for any bounded F-martingale
(see Williams [844]). Such times are called pseudo-stopping times. (See �
Subsection 5.9.4 and Comments 7.5.1.3.)

Definition 1.2.3.9 A continuous uniformly integrable martingale M belongs
to BMO space if there exists a constant m such that

E(〈M〉∞ − 〈M〉τ |Fτ ) ≤ m

for any stopping time τ .

See � Subsection 1.3.1 for the definition of the bracket 〈.〉. It can be proved
(see, e.g., Dellacherie and Meyer [244], Chapter VII,) that the space BMO is
the dual of H1.
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See Kazamaki [517] and Doléans-Dade and Meyer [257] for a study of
Bounded Mean Oscillation (BMO) martingales.

Exercise 1.2.3.10 A Useful Lemma: Doob’s Maximal Identity.
(1) Let M be a positive continuous martingale such that M0 = x.

(i) Prove that if limt→∞ Mt = 0, then

P(supMt > a) =
(x

a

)
∧ 1 (1.2.2)

and supMt
law=

x

U
where U is a random variable with a uniform law on [0, 1].

(See [RY], Chapter 2, Exercise 3.12.)
(ii) Conversely, if supMt

law=
x

U
, show that M∞ = 0.

(2) Application: Find the law of supt(Bt−μt) for μ > 0. (Use Example 1.2.1.7).
For T

(−μ)
a = inf{t : Bt − μt ≥ a}, compute P(T (−μ)

a < ∞).
Hint: Apply Doob’s optional sampling theorem to Ty ∧ t and prove, passing
to the limit when t goes to infinity, that

a = E(MTy ) = yP(Ty < ∞) = yP(supMt ≥ y) . �

1.2.4 Local Martingales

Definition 1.2.4.1 An adapted, right-continuous process M is an F-local
martingale if there exists a sequence of stopping times (τn) such that:

• The sequence τn is increasing and limn τn = ∞, a.s.
• For every n, the stopped process Mτn1{τn>0} is an F-martingale.

A sequence of stopping times such that the two previous conditions hold
is called a localizing or reducing sequence. If M is a local martingale, it is
always possible to choose the localizing sequence (τn, n ≥ 1) such that each
martingale Mτn1{τn>0} is uniformly integrable.

Let us give some criteria that ensure that a local martingale is a martingale:

• Thanks to Fatou’s lemma, a positive local martingale M is a super-
martingale. Furthermore, it is a martingale if (and only if!) its expectation
is constant (∀t, E(Mt) = E(M0)).

• A local martingale is a uniformly integrable martingale if and only if it is
of the class (D) (see Definition 1.2.1.5).

• A local martingale is a martingale if and only if it is of the class (DL),
that is, if for every a > 0 the family of random variables (Xτ , τ ∈ Ta) is
uniformly integrable, where Ta is the set of stopping times smaller than a.

• If a local martingale M is in H1, i.e., if E(supt |Mt|) < ∞, then M is a
uniformly integrable martingale (however, not every uniformly integrable
martingale is in H1).
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Later, we shall give explicit examples of local martingales which are not
martingales. They are called strict local martingales (see, e.g., � Example
6.1.2.6 and � Subsection 6.4.1). Note that there exist strict local martingales
with constant expectation (see � Exercise 6.1.5.6).

Doob-Meyer decomposition can be extended to general sub-martingales:

Proposition 1.2.4.2 A process X is a sub-martingale (resp. a super-martin-
gale) if and only if Xt = Mt + At (resp. Xt = Mt − At) where M is a local
martingale and A an increasing predictable process.

We also use the following definitions:
A local martingale M is locally square integrable if there exists a localizing
sequence of stopping times (τn) such that Mτn1{τn>0} is a square integrable
martingale.
An increasing process A is locally integrable if there exists a localizing
sequence of stopping times such that Aτn is integrable.
By similar localization, we may define locally bounded martingales, local
super-martingales, and locally finite variation processes.

Let us state without proof (see [RY]) the following important result.

Proposition 1.2.4.3 A continuous local martingale of locally finite variation
is a constant.

Warning 1.2.4.4 If X is a positive local super-martingale, then it is a super-
martingale. If X is a positive local sub-martingale, it is not necessarily a
sub-martingale (e.g., a positive strict local martingale is a positive local sub-
martingale and a super-martingale).

Note that a locally integrable increasing process A does not necessarily
satisfy E(At) < ∞ for any t. As an example, if At =

∫ t

0
ds/R2

s where R is a
2-dimensional Bessel process (see � Chapter 6) then A is locally integrable,
however E(At) = ∞, since, for any s > 0, E(1/R2

s) = ∞.

Comment 1.2.4.5 One can also define a continuous quasi-martingale as a
continuous process X such that

sup
p(n)∑

i=1

E|E(Xtn
i+1

−Xtn
i
|Ftn

i
)| < ∞

where the supremum is taken over the sequences 0 < tni < tni+1 < T . Super-
martingales (sub-martingales) are quasi-martingales. In that case, the above
condition reads

E(|XT −X0|) < ∞ .
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1.3 Continuous Semi-martingales

A d-dimensional continuous semi-martingale is an R
d-valued process X

such that each component Xi admits a decomposition as Xi = M i + Ai

where M i is a continuous local martingale with M i
0 = 0 and Ai is a continuous

adapted process with locally finite variation. This decomposition is unique (see
[RY]), and we shall say in short that M is the martingale part of the continuous
semi-martingale X. This uniqueness property, which is not shared by general
semi-martingales motivated us to restrict our study of semi-martingales at
first to the continuous ones. Later ( � Chapter 9) we shall consider general
semi-martingales.

1.3.1 Brackets of Continuous Local Martingales

If M is a continuous local martingale, there exists a unique continuous
increasing process 〈M〉, called the bracket (or predictable quadratic variation)
of M such that (M2

t −〈M〉t, t ≥ 0) is a continuous local martingale (see [RY]
Chap IV, Theorem 1.3 for the existence).

The process 〈M〉 is equal to the limit in probability of the quadratic
variation

∑
i(Mtn

i+1
− Mtn

i
)2, where 0 = tn0 < tn1 < · · · < tnp(n) = t, when

sup
0≤i≤p(n)−1

(tni+1 − tni ) goes to zero (see [RY], Chapter IV, Section 1). 4 Note

that the limit of
∑

i(Mtn
i+1

− Mtn
i
)2 depends neither on the filtration nor on

the probability measure on the space (Ω,F) (assuming that M remains a
semi-martingale with respect to this filtration or to this probability) and the
process 〈M〉 is FM -adapted.

Example 1.3.1.1 If W is a Brownian motion (defined in � Section 1.4),

〈W 〉t = lim
p(n)−1∑

i=0

(Wtn
i+1

−Wtn
i
)2 = t .

Here, the limit is in the L2 sense (hence, in the probability sense). If∑
n supi(tni+1 − tni ) < ∞, the convergence holds also in the a.s. sense (see

Kallenberg [505]). This is in particular the case for a dyadic sequence, where

tni =
i

2n
t.

Definition 1.3.1.2 If M and N are two continuous local martingales, the
unique continuous process (〈M,N〉t, t ≥ 0) with locally finite variation such
that MN − 〈M,N〉 is a continuous local martingale is called the predictable
bracket (or the predictable covariation process) of M and N .

4 This is why the term quadratic variation is often used instead of bracket.
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Let us remark that 〈M〉 = 〈M,M〉 and

〈M,N〉 =
1
2

[〈M + N〉 − 〈M〉 − 〈N〉] =
1
4

[〈M + N〉 − 〈M −N〉] .

These last identities are known as the polarization equalities.
In particular, if the bracket 〈X,Y 〉 of two martingales X and Y is equal

to zero, the product XY is a local martingale and X and Y are said to be
orthogonal. Note that this is the case if X and Y are independent.

We present now some useful results, related to the predictable bracket. For
the proofs, we refer to [RY], Chapter IV.

• A continuous local martingale M converges a.s. as t goes to infinity on the
set {〈M〉∞ < ∞}.

• The Kunita-Watanabe inequality states that

|〈M,N〉| ≤ 〈M〉1/2 〈N〉1/2 .

More generally, for h, k positive measurable processes

∫ t

0

hs ks|d〈M,N〉s| ≤
(∫ t

0

h2
sd〈M〉s

)1/2 (∫ t

0

k2
sd〈N〉s

)1/2

.

• The Burkholder-Davis-Gundy (BDG) inequalities state that for
0 ≤ p < ∞, there exist two universal constants cp and Cp such that if M
is a continuous local martingale,

cp E[(sup
t

|Mt|)p] ≤ E(〈M〉p/2
∞ ) ≤ Cp E[(sup

t
|Mt|)p] .

(See Lenglart et al. [576] for a complete study.) It follows that, if a
continuous local martingale M satisfies E(〈M〉1/2

∞ ) < ∞, then M is a
martingale. Indeed, E(supt |Mt|) < ∞ (i.e., M ∈ H1) and, by dominated
convergence, the martingale property follows.

We now introduce some spaces of processes, which will be useful for
stochastic integration.

Definition 1.3.1.3 For F a given filtration and M ∈ Hc,2, the space of
square integrable continuous F-martingales, we denote by L2(M,F) the Hilbert
space of equivalence classes of elements of L2(M), the space of F-progressively
measurable processes K such that

E[
∫ ∞

0

K2
sd〈M〉s] < ∞ .

We shall sometimes write only L2(M) when there is no ambiguity. If M
is a continuous local martingale, we call L2

loc(M) the space of progressively
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measurable processes K such that there exists a sequence of stopping times
(τn) increasing to infinity for which

for every n, E

(∫ τn

0

K2
sd〈M〉s

)

< ∞ .

The space L2
loc(M) consists of all progressively measurable processes K such

that

for every t,

∫ t

0

K2
sd〈M〉s < ∞ a.s..

A continuous local martingale belongs to Hc,2 (and is a martingale) if and
only if M0 ∈ L2 and E(〈M〉∞) < ∞.

1.3.2 Brackets of Continuous Semi-martingales

Definition 1.3.2.1 The bracket (or the predictable quadratic covariation)
〈X,Y 〉 of two continuous semi-martingales X and Y is defined as the bracket
of their local martingale parts MX and MY .

The bracket 〈X,Y 〉 := 〈MX ,MY 〉 is also the limit in probability of the
quadratic covariation of X and Y , i.e.,

p(n)−1∑

i=0

(Xtn
i+1

−Xtn
i
)(Ytn

i+1
− Ytn

i
) (1.3.1)

for 0 = tn0 ≤ tn1 ≤ · · · ≤ tp(n) = t when sup0≤i≤p(n)−1(tni+1 − tni ) goes to
0. Indeed, the bounded variation parts AX and AY do not contribute to the
limit of the expression (1.3.1).

If τ is a stopping time, and X a semi-martingale, the stopped process Xτ

is a semi-martingale and if Y is another semi-martingale, the bracket of the
τ -stopped semi-martingales is the τ -stopped bracket:

〈Xτ , Y 〉 = 〈Xτ , Y τ 〉 = 〈X,Y 〉τ .

Remark 1.3.2.2 Let M be a continuous martingale of the form

Mt =
∫ t

0

ϕsdWs

where ϕ is a continuous adapted process (such that
∫ t

0
ϕ2

sds < ∞) and W a
Brownian motion (see � Sections 1.4 and 1.5.1 for definitions). The quadratic
variation 〈M〉 is the process

〈M〉t =
∫ t

0

ϕ2
sds = P − lim

p(n)∑

i=1

(Mtn
i+1

−Mn
ti

)2 ,

hence, FM
t contains σ(ϕ2

s, s ≤ t).
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Exercise 1.3.2.3 Let M be a Gaussian martingale with bracket 〈M〉. Prove
that the process 〈M〉 is deterministic.
Hint: The Gaussian property implies that, for t > s, the r.v. Mt − Ms is
independent of FM

s , hence

E((Mt −Ms)2|FM
s ) = E((Mt −Ms)2) = A(t) −A(s)

with A(t) = E(M2
t ) which is deterministic. �

1.4 Brownian Motion

1.4.1 One-dimensional Brownian Motion

Let X be an R-valued continuous process starting from 0 and FX its natural
filtration.

Definition 1.4.1.1 The continuous process X is said to be a Brownian
motion, (in short, a BM), if one of the following equivalent properties is
satisfied:

(i) The process X has stationary and independent increments, and for any
t > 0, the r.v. Xt follows the N (0, t) law.

(ii) The process X is a Gaussian process, with mean value equal to 0 and
covariance t ∧ s.

(iii) The processes (Xt, t ≥ 0) and (X2
t − t, t ≥ 0) are FX-local martingales.

(iii′) The process X is an FX-local martingale with bracket t.
(iv) For every real number λ, the process

(
exp

(
λXt − λ2

2 t
)
, t ≥ 0

)
is an

FX-local martingale.
(v) For every real number λ, the process

(
exp

(
iλXt + λ2

2 t
)
, t ≥ 0

)
is an

FX-local martingale.

To establish the existence of Brownian motion, one starts with the
canonical space Ω = C(R+,R) of continuous functions. The canonical process
Xt : ω → ω(t) (ω is now a generic continuous function) is defined on Ω.
There exists a unique probability measure on this space Ω such that the law
of X satisfies the above properties. This probability measure is called Wiener
measure and is often denoted by W in deference to Wiener (1923) who proved
its existence. We refer to [RY] Chapter I, for the proofs.

It can be proved, as a consequence of Kolmogorov’s continuity criterion
1.1.10.6 that a process (not assumed to be continuous) which satisfies (i) or (ii)
admits in fact a continuous modification. There exist discontinuous processes
that satisfy (iii) (e.g., the martingale associated with a Poisson process, see
� Chapter 8).
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Fig. 1.2 Simulation of Brownian paths

Extending Definition 1.4.1.1, a continuous process X is said to be a BM
with respect to a filtration F larger than FX if for any (t, s), the random
variable Xt+s −Xt is independent of Ft and is N (0, s) distributed.

The transition probability of the Brownian motion starting from x (i.e.,
such that Px(W0 = x) = 1) is pt(x, y) defined as

pt(x, y)dy = Px(Wt ∈ dy) = P0(x + Wt ∈ dy)

and

pt(x, y) =
1√
2πt

exp
(

− 1
2t

(x− y)2
)

. (1.4.1)

We shall also use the notation pt(x) for pt(0, x) = pt(x, 0), hence

pt(x, y) = pt(x− y) .

We shall prove in � Exercise 1.5.3.3 Lévy’s characterization of Brownian
motion, which is a generalization of (iii) above.

Theorem 1.4.1.2 (Lévy’s Characterization of Brownian Motion.)
The process X is an F-Brownian motion if and only if the processes (Xt, t ≥ 0)
and (X2

t − t, t ≥ 0) are continuous F-local martingales.
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In this case, the processes are FX -local martingales, and in fact FX -
martingales. If X is a Brownian motion, the local martingales in (iv) and (v)
Definition 1.4.1.1 are martingales. See also [RY], Chapter IV, Theorem 3.6.

An important fact is that in a Brownian filtration, i.e., in a filtration
generated by a BM, every stopping time is predictable ([RY], Chapter IV,
Corollary 5.7) which is equivalent to the property that all martingales are
continuous.

Comment 1.4.1.3 In order to prove property (a), it must be established
that limt→0 tW1/t = 0, which follows from (Wt, t > 0) law= (tW1/t, t > 0).

Definition 1.4.1.4 A process Xt = μt+σBt where B is a Brownian motion
is called a drifted Brownian motion, with drift μ.

Fig. 1.3 Simulation of drifted Brownian paths Xt = 3(t + Bt)

Example 1.4.1.5 Let W be a Brownian motion. Then,

(a) The processes (−Wt, t ≥ 0) and (tW1/t, t ≥ 0) are BMs. The second
result is called the time inversion property of the BM.

(b) For any c ∈ R
+, the process ( 1

cWc2t, t ≥ 0) is a BM (scaling property).
(c) The process Bt =

∫ t

0
sgn(Ws)dWs is a Brownian motion with respect

to FW (and to FB): indeed the processes B and (B2
t − t, t ≥ 0) are

FW -martingales. (See � 1.5.1 for the definition of the stochastic integral
and the proofs of the martingale properties). It can be proved that the
natural filtration of B is strictly smaller than the filtration of W (see �
Section 5.8).
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(d) The process B̂t = Wt −
∫ t

0
Ws

ds
s is a Brownian motion with respect to

FB) (but not w.r.t. FW ): indeed, the process B̂ is a Gaussian process and
an easy computation establishes that its mean is 0 and its covariance is
s ∧ t. It can be noted that the process B̂ is not an FW -martingale and
that its natural filtration is strictly smaller than the filtration of W (see
� Section 5.8).

Comment 1.4.1.6 A Brownian filtration is large enough to contain a strictly
smaller Brownian filtration (see Examples 1.4.1.5, (c) and (d) ). On the other
hand, if the processes W (i), i = 1, 2 are independent real-valued Brownian
motions, it is not possible to find a real-valued Brownian motion B such that
σ(Bs, s ≤ t) = σ(W (1)

s ,W
(2)
s , s ≤ t). This will be proved using the predictable

representation theorem. (See � Subsection 1.6.1.)

Exercise 1.4.1.7 Prove that, for λ > 0, one has

∫ ∞

0

e−λtpt(x, y)dt =
1√
2λ

e−|x−y|
√

2λ .

Prove that if f is a bounded Borel function, and λ > 0,

Ex(
∫ ∞
0

e−λ2t/2f(Wt)dt) = 1
λ

∫ ∞
−∞ e−λ|y−x|f(y)dy . �

Exercise 1.4.1.8 Prove that (v) of Definition 1.4.1.1 characterizes a BM,
i.e., if the process (Zt = exp(iλXt + λ2

2 t), t ≥ 0) is a FX -local martingale for
any λ, then X is a BM.
Hint: Establish that Z is a martingale, then prove that, for t > s,

∀A ∈ Fs, E[1A exp(iλ(Xt −Xs))] = P(A) exp
(
−1

2λ
2(t− s)

)
. �

Exercise 1.4.1.9 Prove that, for any λ ∈ C, (e−λ2t/2 cosh(λWt), t ≥ 0) is a
martingale. �

Exercise 1.4.1.10 Let W be a BM and ϕ be an adapted process.
(a) Prove that

∫ t

0
ϕsdWs is a BM if and only if |ϕs| = 1, ds a.s.

(b) Assume now that ϕ is deterministic. Prove that Wt −
∫ t

0
dsϕs Ws is a BM

if and only if ϕ ≡ 0 or ϕ ≡ 1
s , ds a.s..

Hint: The function ϕ satisfies, for t > s,

E

(

(Wt −
∫ t

0

duϕu Wu) (Ws −
∫ s

0

duϕu Wu)
)

= s

if and only if sϕs = ϕs

∫ s

0
duuϕu. �
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1.4.2 d-dimensional Brownian Motion

A continuous process X = (X1, . . . , Xd), taking values in R
d is a d-

dimensional Brownian motion if one of the following equivalent properties
is satisfied:

• all its components Xi are independent Brownian motions.
• The processes Xi and (Xi

tX
j
t − δi,jt, t ≥ 0), where δi,j is the Kronecker

symbol (δi,j = 1 if i = j and δi,j = 0 otherwise) are continuous local
FX -martingales.

• For any λ ∈ R
d, the process

(
exp

(
iλ �Xt + ‖λ‖2

2 t
)
, t ≥ 0

)
is a continuous

FX -local martingale, where the notation λ �x indicates the Euclidian scalar
product between λ and x.

Proposition 1.4.2.1 Let B be a R
d-valued Brownian motion, and Tx the

first hitting time of x, defined as Tx = inf{t > 0 : Bt = x}.

• If d = 1, P(Tx < ∞) = 1, for every x ∈ R,
• If d ≥ 2, P(Tx < ∞) = 0, for every x ∈ R

d, i.e., the one-point sets are
polar.

• If d ≤ 2, the BM is recurrent, i.e., almost surely, the set {t : Bt ∈ A} is
unbounded for all open subsets A ∈ R

d.
• If d ≥ 3, the BM is transient, more precisely, limt→∞ |Bt| = +∞ almost

surely.

Proof: We refer to [RY], Chapter V, Section 2. �

1.4.3 Correlated Brownian Motions

If W 1 and W 2 are two independent BMs and ρ a constant satisfying |ρ| ≤ 1,
the process

W 3 = �W 1 +
√

1 − �2 W 2

is a BM, and 〈W 1,W 3〉t = �t. This leads to the following definition.

Definition 1.4.3.1 Two F-Brownian motions B and W are said to be F-
correlated with correlation ρ if 〈B,W 〉t = ρt.

Proposition 1.4.3.2 The components of the 2-dimensional correlated BM
(B,W ) are independent if and only if ρ = 0.

Proof: If the Brownian motions are independent, their product is a
martingale, hence ρ = 0. Note that this can also be proved using the
integration by parts formula (see � Subsection 1.5.2).

If the bracket is null, then the product BW is a martingale, and it follows
that for t > s,
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E(BsWt) = E(BsE(Wt|Fs)) = E(BsWs) = 0 .

Therefore, the Gaussian processes W and B are uncorrelated, hence they are
independent. �

If B and W are correlated BMs, the process (BtWt − ρt, t ≥ 0) is a
martingale and E(BtWt) = ρt. From the Cauchy-Schwarz inequality, it follows
that |ρ| ≤ 1. In the case |ρ| < 1, the process X defined by the equation

Wt = ρBt +
√

1 − ρ2Xt

is a Brownian motion independent of B. Indeed, it is a continuous martingale,
and it is easy to check that its bracket is t. Moreover 〈X,B〉 = 0.

Note that, for any pair (a, b) ∈ R
2 the process Zt = aBt + bWt is, up to a

multiplicative factor, a Brownian motion. Indeed, setting c =
√

a2 + b2 + 2abρ

the two processes
(
Z̃t := 1

c Zt, t ≥ 0
)

and (Z̃2
t − t, t ≥ 0) are continuous

martingales, hence Z̃ is a Brownian motion.

Proposition 1.4.3.3 Let Bt = ΓWt where W is a d-dimensional Brownian
motion and Γ = (γi,j) is a d× d matrix with

∑d
j=1 γ2

i,j = 1. The process B is
a vector of correlated Brownian motions, with correlation matrix ρ = ΓΓ ∗.

Exercise 1.4.3.4 Prove Proposition 1.4.3.3. �

Exercise 1.4.3.5 Let B be a Brownian motion and let B̂t = Bt −
∫ t

0
dsBs

s .
Prove that for every t, the r.v’s Bt and B̂t are not correlated, hence are
independent. However, clearly, the two Brownian motions B and B̂ are not
independent. There is no contradiction with our previous discussion, as B̂ is
not an FB-Brownian motion. �

Remark 1.4.3.6 It is possible to construct two Brownian motions W and
B such that the pair (W,B) is not a Gaussian process. For example, let W

be a Brownian motion and set Bt =
∫ t

0
sgn(Ws)dWs where the stochastic

integral is defined in � Subsection 1.5.1. The pair (W,B) is not Gaussian,
since aWt + Bt =

∫ t

0
(a + sgn(Ws))dWs is not a Gaussian process. Indeed, its

bracket is not deterministic, whereas the bracket of a Gaussian martingale is
deterministic (see Exercise 1.3.2.3). Note that 〈B,W 〉t =

∫ t

0
sgn(Ws)ds, hence

the bracket is not of the form as in Definition 1.4.3.1. Nonetheless, there is
some “correlation” between these two Brownian motions.

1.5 Stochastic Calculus

Let (Ω,F ,F,P) be a filtered probability space. We recall very briefly
the definition of a stochastic integral with respect to a square integrable
martingale. We refer the reader to [RY] for details.
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1.5.1 Stochastic Integration

An elementary F-predictable process is a process K which can be written

Kt := K01{0}(t) +
∑

i

Ki1]Ti,Ti+1](t) ,

with
0 = T0 < T1 < · · · < Ti < · · · and lim

i
Ti = +∞ .

Here, the Ti’s are F-stopping times and the r.v’s Ki are FTi-measurable and
uniformly bounded, i.e., there exists a constant C such that ∀i, |Ki| ≤ C a.s..

Let M be a continuous local martingale.

� For any elementary predictable process K, the stochastic integral
∫ t

0
KsdMs

is defined path-by-path as

∫ t

0

KsdMs :=
∞∑

i=0

Ki(Mt∧Ti+1 −Mt∧Ti) .

� The stochastic integral
∫ t

0
KsdMs can be defined for any continuous process

K ∈ L2(M) as follows. For any p ∈ N, one defines the sequence of stopping
times

T0 := 0

T p
1 := inf

{

t : |Kt −K0| >
1
p

}

T p
n := inf

{

t > T p
n−1 : |Kt −KT p

n−1
| > 1

p

}

.

Set K
(p)
s =

∑
i KT p

i
1]T p

i ,T p
i+1]

(s). The sequence
∫ t

0
K

(p)
s dMs converges in L2 to

a continuous local martingale denoted by (K�M)t :=
∫ t

0
KsdMs.

� Then, by density arguments, one can define the stochastic integral for any
process K ∈ L2(M), and by localization for K ∈ L2

loc(M).

If M ∈ Hc,2, there is an isometry between L2(M) and the space of
stochastic integrals, i.e.,

E

(∫ t

0

K2
s d〈M〉s

)

= E

(∫ t

0

KsdMs

)2

.

(See [RY], Chapter IV for details.)
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Let M and N belong to Hc,2 and φ ∈ L2(M), ψ ∈ L2(N). For the
martingales X and Y , where Xt = (φ�M)t and Yt = (ψ�N)t, we have
〈X〉t =

∫ t

0
φ2

sd〈M〉s and 〈X,Y 〉t =
∫ t

0
ψsφsd〈M,N〉s. In particular, for any

fixed T , the process (Xt, t ≤ T ) is a square integrable martingale.
If X is a semi-martingale, the integral of a predictable process K, where

K ∈ L2
loc(M) ∩ L1

loc(|dA|) with respect to X is defined to be
∫ t

0

KsdXs =
∫ t

0

KsdMs +
∫ t

0

KsdAs

where
∫ t

0
KsdAs is defined path-by-path as a Stieltjes integral (we have

required that
∫ t

0
|Ks(ω)| |dAs(ω)| < ∞).

For a Brownian motion, we obtain in particular the following proposition:

Proposition 1.5.1.1 Let W be a Brownian motion, τ a stopping time and θ
an adapted process such that E

(∫ τ

0
θ2

sds
)
< ∞. Then E

(∫ τ

0
θsdWs

)
= 0 and

E
(∫ τ

0
θsdWs

)2
= E

(∫ τ

0
θ2

sds
)
.

Proof: We apply the previous results with θ̃ = θ1{]0,τ ]}.

Comment 1.5.1.2 In the previous proposition, the integrability condition
E

(∫ τ

0
θ2

sds
)
< ∞ is important (the case where τ = inf{t : Wt = a} and θ = 1

is an example where the condition does not hold).
In general, there is the inequality

E

(∫ τ

0

KsdMs

)2

≤ E

(∫ τ

0

K2
s d〈M〉s

)

(1.5.1)

and it may happen that

E

(∫ τ

0

K2
s d〈M〉s

)

= ∞, and E

(∫ τ

0

KsdMs

)2

< ∞ .

This is the case if Kt = 1/R2
t for t ≥ 1 and Kt = 0 for t < 1 where R is a

Bessel process of dimension 3 and M the driving Brownian motion for R (see
� Section 6.1).

Comment 1.5.1.3 In the case where K is continuous, the stochastic integral∫
KsdMs is the limit of the “Riemann sums”

∑
i Kui(Mti+1 − Mti) where

ui ∈ [ti, ti+1[. But these sums do not converge pathwise because the paths
of M are a.s. not of bounded variation. This is why we use L2 convergence.
It can be proved that the Riemann sums converge uniformly on compacts in
probability to the stochastic integral.

Exercise 1.5.1.4 Let b and θ be continuous deterministic functions. Prove
that the process Yt =

∫ t

0
b(u)du +

∫ t

0
θ(u)dWu is a Gaussian process, with

mean E(Yt) =
∫ t

0
b(u)du and covariance

∫ s∧t

0
θ2(u)du. �
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Exercise 1.5.1.5 Prove that, if W is a Brownian motion, from the definition
of the stochastic integral as an L2 limit,

∫ t

0
WsdWs = 1

2 (W 2
t − t). �

1.5.2 Integration by Parts

The integration by parts formula follows directly from the definition of the
bracket. If (X,Y ) are two continuous semi-martingales, then

d(XY ) = XdY + Y dX + d〈X,Y 〉

or, in an integrated form

XtYt = X0Y0 +
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X,Y 〉t .

Definition 1.5.2.1 Two square integrable continuous martingales are orthog-
onal if their product is a martingale.

Exercise 1.5.2.2 If two martingales are independent, they are orthogonal.
Check that the converse does not hold.
Hint: Let B and W be two independent Brownian motions. The martingales
W and M where Mt =

∫ t

0
WsdBs are orthogonal and not independent. Indeed,

the martingales W and M satisfy 〈W,M〉 = 0. However, the bracket of M ,
that is 〈M〉t =

∫ t

0
W 2

s ds is FW -adapted. One can also note that

E

(

exp
(

iλ

∫ t

0

WsdBs

)

|FW
∞

)

= exp
(

−λ2

2

∫ t

0

W 2
s ds

)

,

and the right-hand side is not a constant as it would be if the independence
property held. The martingales M and N where Nt =

∫ t

0
BsdWs (or M and

Ñt : =
∫ t

0
WsdWs) are also orthogonal and not independent. �

Exercise 1.5.2.3 Prove that the two martingales N and Ñ , defined in
Exercise 1.5.2.2 are not orthogonal although as r.v’s, for fixed t, Nt and Ñt

are orthogonal in L2. �

1.5.3 Itô’s Formula: The Fundamental Formula of Stochastic
Calculus

The vector space of semi-martingales is invariant under “smooth” transfor-
mations, as established by Itô (see [RY] Chapter IV, for a proof):

Theorem 1.5.3.1 (Itô’s formula.) Let F belong to C1,2(R+ × R
d,R) and

let X = M + A be a continuous d-dimensional semi-martingale. Then the
process (F (t,Xt), t ≥ 0) is a continuous semi-martingale and
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F (t,Xt) = F (0, X0) +
∫ t

0

∂F

∂t
(s,Xs)ds +

d∑

i=1

∫ t

0

∂F

∂xi
(s,Xs)dXi

s

+
1
2

∑

i,j

∫ t

0

∂2F

∂xj ∂xi
(s,Xs)d〈Xi, Xj〉s .

Hence, the bounded variation part of F (t,Xt) is

∫ t

0

∂F

∂t
(s,Xs)ds +

d∑

i=1

∫ t

0

∂F

∂xi
(s,Xs)dAi

s (1.5.2)

+
1
2

∑

i,j

∫ t

0

∂2F

∂xj∂xi
(s,Xs)d〈Xi, Xj〉s .

An important consequence is the following: in the one-dimensional case, if
X is a martingale (X = M) and d〈M〉t = h(t)dt with h deterministic
(i.e., X is a Gaussian martingale), and if F is a C1,2 function such that
∂tF + h(t)1

2∂xxF = 0, then the process F (t,Xt) is a local martingale. A
similar result holds in the d-dimensional case.

Note that the application of Itô’s formula does not depend on whether or
not the processes (Ai

t) or 〈M i,M j〉t are absolutely continuous with respect
to Lebesgue measure. In particular, if F ∈ C1,1,2(R+ ×R×R

d,R) and V is a
continuous bounded variation process, then

dF (t, Vt, Xt) =
∂F

∂t
(t, Vt, Xt)dt +

∂F

∂v
(t, Vt, Xt)dVt +

∑

i

∂F

∂xi
(t, Vt, Xt)dXi

t

+
1
2

∑

i,j

∂2F

∂xj ∂xi
(t, Vt, Xt)d〈Xi, Xj〉t .

We now present an extension of Itô’s formula, which is useful in the study
of stochastic flows and in some cases in finance, when dealing with factor
models (see Douady and Jeanblanc [264]) or with credit derivatives dynamics
in a multi-default setting (see Bielecki et al. [96]).

Theorem 1.5.3.2 (Itô-Kunita-Ventzel’s formula.)Let Ft(x) be a family
of stochastic processes, continuous in (t, x) ∈ (R+ × R

d) a.s. satisfying:

(i) For each t > 0, x → Ft(x) is C2 from R
d to R.

(ii) For each x, (Ft(x), t ≥ 0) is a continuous semi-martingale

dFt(x) =
n∑

j=1

f j
t (x)dM j

t
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where M j are continuous semi-martingales, and f j(x) are stochastic
processes continuous in (t, x), such that ∀s > 0, x → f j

s (x) are C1 maps,
and ∀x, f j(x) are adapted processes.

Let X = (X1, . . . , Xd) be a continuous semi-martingale. Then

Ft(Xt) = F0(X0) +
n∑

j=1

∫ t

0

f j
s (Xs)dM j

s +
d∑

i=1

∫ t

0

∂Fs

∂xi
(Xs)dXi

s

+
d∑

i=1

n∑

j=1

∫ t

0

∂fs

∂xi
(Xs)d〈M j , Xi〉s +

1
2

d∑

i,k=1

∫ t

0

∂2Fs

∂xi∂xk
d〈Xk, Xi〉s .

Proof: We refer to Kunita [546] and Ventzel [828]. �

Exercise 1.5.3.3 Prove Theorem 1.4.1.2, i.e., if X is continuous, Xt and
X2

t − t are martingales, then X is a BM.
Hint: Apply Itô’s formula to the complex valued martingale exp(iλXt+ 1

2λ
2t)

and use Exercise 1.4.1.8. �
Exercise 1.5.3.4 Let f ∈ C1,2([0, T ]×R

d , R). We write ∂xf(t, x) for the row

vector
[
∂f

∂xi
(t, x)

]

i=1,...,d

; ∂xxf(t, x) for the matrix
[

∂2f

∂xi ∂xj
(t, x)

]

i,j

, and

∂tf(t, x) for
∂f

∂t
(t, x). Let B = (B1, . . . , Bn) be an n-dimensional Brownian

motion and Yt = f(t,Xt), where Xt satisfies dXi
t = μi

tdt +
∑n

j=1 ηi,j
t dBj

t .
Prove that

dYt =
{

∂tf(t,Xt)+ ∂xf(t,Xt)μt +
1
2

[
ηt∂xxf(t,Xt)ηT

t

]
}

dt+∂xf(t,Xt)ηt dBt .

�
Exercise 1.5.3.5 Let B be a d-dimensional Brownian motion, with d ≥ 2
and β defined as

dβt =
1

‖Bt‖
Bt · dBt =

1
‖Bt‖

d∑

i=1

Bi
tdB

i
t, β0 = 0.

Prove that β is a Brownian motion. This will be the starting point of the
study of Bessel processes (see � Chapter 6). �
Exercise 1.5.3.6 Let dXt = btdt + dBt where B is a Brownian motion and
b a given bounded FB-adapted process. Let

Lt = exp
(

−
∫ t

0

bsdBs −
1
2

∫ t

0

b2sds

)

.

Show that L and LX are local martingales. (This will be used while dealing
with Girsanov’s theorem in � Section 1.7.) �
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Exercise 1.5.3.7 Let X and Y be continuous semi-martingales. The Strato-
novich integral of X w.r.t. Y may be defined as

∫ t

0

Xs ◦ dYs =
∫ t

0

XsdYs +
1
2
〈X,Y 〉t .

Prove that

∫ t

0

Xs ◦ dYs = (ucp) lim
n→∞

p(n)−1∑

i=0

(
Xtn

i
+ Xtn

i+1

2

)

(Ytn
i+1

− Ytn
i
) ,

where 0 = t0 < tn1 < · · · < tnp(n) = t is a subdivision of [0, T ] such that
supi(tni+1 − tni ) goes to 0 when n goes to infinity. Prove that for f ∈ C3, we
have

f(Xt) = f(X0) +
∫ t

0

f ′(Xs) ◦ dXs .

For a Brownian motion, the Stratonovich integral may also be approximated
as

∫ t

0

ϕ(Bs) ◦ dBs = lim
n→∞

p(n)−1∑

i=0

ϕ(B(ti+ti+1)/2)(Bti+1 −Bti) ,

where the limit is in probability; however, such an approximation does not
hold in general for continuous semi-martingales (see Yor [859]). See Stroock
[811], page 226, for a discussion on the C3 assumption on f in the integral
form of f(Xt). The Stratonovich integral can be extended to general semi-
martingales (not necessarily continuous): see Protter [727], Chapter 5. �

Exercise 1.5.3.8 Let B be a BM and MB
t : = sups≤t Bs. Let f(t, x, y) be a

C1,2,1(R+ × R × R
+) function such that

1
2
fxx + ft = 0

fx(t, 0, y) + fy(t, 0, y) = 0 .

Prove that f(t,MB
t −Bt,M

B
t ) is a local martingale. In particular, for h ∈ C1

h(MB
t ) − h′(MB

t )(MB
t −Bt)

is a local martingale. See Carraro et al. [157] and El Karoui and Meziou [304]
for application to finance. �

Exercise 1.5.3.9 (Kennedy Martingales.) Let B
(μ)
t := Bt +μt be a BM

with drift μ and M (μ) its running maximum, i.e., M
(μ)
t = sups≤t B

(μ)
s . Let

Rt = M
(μ)
t −B

(μ)
t and Ta = Ta(R) = inf{t : Rt ≥ a}.
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1. Set μ = 0. Prove that, for any (α, β) the process

e−αMt− 1
2 β2t

(

cosh(β(Mt −Bt)) +
α

β
sinh(β(Mt −Bt))

)

is a martingale. Deduce that

E

(

exp
(

−αMTa − 1
2
β2Ta

))

= β (β coshβa + α sinhβa)−1 : = ϕ(α, β; a) .

2. For any μ, prove that

E

(

exp
(

−αM
(μ)
Ta

− 1
2
β2Ta

))

= e−μaϕ(αμ, βμ; a)

where αμ = α− μ, βμ =
√

β2 + μ2.

�

Exercise 1.5.3.10 Let (B(μ)
t , t ≥ 0) be a Brownian motion with drift μ, and

let b, c be real numbers. Define

Xt = exp(−cB
(μ)
t )

(

x +
∫ t

0

exp(bB(μ)
s )ds

)

. Prove that

Xt = x− c

∫ t

0

XsdB
(μ)
s +

c2

2

∫ t

0

Xsds +
∫ t

0

e(b−c)B(μ)
s ds .

In particular, for b = c, X is a diffusion (see � Section 5.3) with infinitesimal
generator

c2

2
x2∂xx +

[(
c2

2
− cμ

)

x + 1
]

∂x .

(See Donati-Martin et al. [258].) �

Exercise 1.5.3.11 Let B(μ) be as defined in Exercice 1.5.3.9 and let M (μ)

be its running maximum. Prove that, for t < T ,

E(M (μ)
T |Ft) = M

(μ)
t +

∫ ∞

M
(μ)
t −B

(μ)
t

G(T − t, u) du

where G(T − t, u) = P(M (μ)
T−t > u). �

Exercise 1.5.3.12 Let Mt =
∫ t

0
(XsdYs − YsdXs) where X and Y are two

real-valued independent Brownian motions. Prove that

Mt =
∫ t

0

√
X2

s + Y 2
s dBs

where B is a BM. Prove that
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X2
t + Y 2

t = 2
∫ t

0

(XudYu + YudXu) + 2t

= 2
∫ t

0

√
X2

u + Y 2
u dβu + 2t

where β is a Brownian motion, with d〈B, β〉t = 0. �

1.5.4 Stochastic Differential Equations

We start with a general result ([RY], Chapter IX). Let W = C(R+,Rd) be
the space of continuous functions from R

+ into R
d , w(s) the coordinate

mappings and Bt = σ(w(s), s ≤ t). A function f defined on R
+ ×W is said

to be predictable if it is predictable as a process defined on W with respect
to the filtration (Bt). If X is a continuous process defined on a probability
space (Ω,F,P), we write f(t,X � ) for the value of f at time t on the path
t → Xt(ω). We emphasize that we write X � because f(t,X � ) may depend on
the path of X up to time t.

Definition 1.5.4.1 Let g and f be two predictable functions on W taking
values in the sets of d × n matrices and n-dimensional vectors, respectively.
A solution of the stochastic differential equation e(f,g) is a pair (X,B) of
adapted processes on a probability space (Ω,F ,P) with filtration F such that:

• The n-dimensional process B is a standard F-Brownian motion.
• For i = 1, . . . , d and for any t ∈ R

+

Xi
t = Xi

0 +
∫ t

0

fi(s,X � )ds +
n∑

j=0

∫ t

0

gi,j(s,X � )dBj
s . e(f,g)

We shall also write this equation as

dXi
t = fi(t,X � )dt +

n∑

j=0

gi,j(t,X � )dB
j
t .

Definition 1.5.4.2 (1) There is pathwise uniqueness for e(f,g) if when-
ever two pairs (X,B) and (X̂, B̂) are solutions defined on the same probability
space with B = B̂ and X0 = X̂0, then X and X̂ are indistinguishable.

(2) There is uniqueness in law for e(f,g) if whenever (X,B) and (X̂, B̂)
are two pairs of solutions possibly defined on different probability spaces with
X0

law= X̂0, then X
law= X̂.

(3) A solution (X,B) is said to be strong if X is adapted to the filtration
FB. A general solution is often called a weak solution, and if not strong, a
strictly weak solution.
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Theorem 1.5.4.3 Assume that f and g satisfy the Lipschitz condition, for
a constant K > 0, which does not depend on t,

‖f(t, w) − f(t, w′)‖ + ‖g(t, w) − g(t, w′)‖ ≤ K sup
s≤t

‖w(s) − w′(s)‖ .

Then, e(f,g) admits a unique strong solution, up to indistinguishability.

See [RY], Chapter IX for a proof. The following theorem, due to Yamada and
Watanabe (see also [RY] Chapter IX, Theorem 1.7) establishes a hierarchy
between different uniqueness properties.

Theorem 1.5.4.4 If pathwise uniqueness holds for e(f,g), then uniqueness
in law holds and the solution is strong.

Example 1.5.4.5 Pathwise uniqueness is strictly stronger than uniqueness
in law. For example, in the one-dimensional case, let σ(x) = sgn(x), with
sgn(0) = −1. Any solution (X,B) of e(0, σ) (meaning that g(t,X � ) = σ(Xt))
starting from 0 is a standard BM, thus uniqueness in law holds. On the other
hand, if β is a BM, and Bt =

∫ t

0
sgn(βs)dβs, then (β,B) and (−β,B) are two

solutions of e(0, σ) (indeed, dBt = σ(βt)dβt is equivalent to dβt = σ(βt)dBt),
and pathwise uniqueness does not hold. If (X,B) is any solution of e(0, σ),
then Bt =

∫ t

0
sgn(Xs)dXs, and FB = F|X| which establishes that any solution

is strictly weak (see � Comments 4.1.7.9 and � Subsection 5.8.2 for the
study of the filtrations).

A simple case is the following:

Theorem 1.5.4.6 Let b : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×n be
Borel functions satisfying

‖b(t, x)‖ + ‖σ(t, x)‖ ≤ C(1 + ‖x‖) , x ∈ R
d, t ∈ [0, T ],

‖b(t, x) − b(t, y)‖ + ‖σ(t, x) − σ(t, y)‖ ≤ C‖x− y‖ , x, y ∈ R
d, t ∈ [0, T ]

and let X0 be a square integrable r.v. independent of the n-dimensional
Brownian motion B. Then, the stochastic differential equation (SDE)

dXt = b(t,Xt)dt + σ(t,Xt)dBt, t ≤ T, X0 = x

has a unique continuous strong solution, up to indistinguishability. Moreover,
this process is a strong (inhomogeneous) Markov process.

Sketch of the Proof: The proof relies on Picard’s iteration procedure.
� In a first step, one considers the mapping Z → K(Z) where

(K(Z))t = x +
∫ t

0

b(s, Zs)ds +
∫ t

0

σ(s, Zs)dBs ,

and one defines a sequence (Xn)∞n=0 of processes by setting X0 = x, and
Xn = K(Xn−1). Then, one proves that
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E

(

sup
s≤t

(Xn
s −Xn−1

s )2
)

≤ kcn tn

n!

where k, c are constants. This proves the existence of a solution.
� In a second step, one establishes the uniqueness by use of Gronwall’s lemma.
See [RY], Chapter IV for details. �

The solution depends continuously on the initial value.

Example 1.5.4.7 Geometric Brownian Motion. If B is a Brownian
motion and μ, σ are two real numbers, the solution S of

dSt = St(μdt + σdBt)

is called a geometric Brownian motion with parameters μ and σ. The process
S will often be written in this book as

St = S0 exp(μt + σBt − σ2t/2) = S0 exp(σXt) (1.5.3)

where
Xt = νt + Bt, ν =

μ

σ
− σ

2
. (1.5.4)

The process (Ste
−μt, t ≥ 0) is a martingale. The Markov property of S may

be seen from the equality

St = Ss exp(μ(t− s) + σ(Bt −Bs) − σ2(t− s)/2), t > s .

Let s be fixed. The process Yu = exp(μu + σB̂u − σ2u/2), u ≥ 0) where
B̂u = Bs+u − Bs is independent of FS

s and has the same law as Su/S0.
Moreover, the decomposition St = SsYt−s, for t > s where Y is independent
of FS

s and has the same law as S/S0 will be of frequent use.

Example 1.5.4.8 Affine Coefficients: Method of Variation of Con-
stants. The solution of

dXt = (a(t)Xt + b(t))dt + (c(t)Xt + f(t))dBt, X0 = x

where a, b, c, f are (bounded) Borel functions is X = Y Z where Y is the
solution of

dYt = Yt[a(t)dt + c(t)dBt], Y0 = 1

and

Zt = x +
∫ t

0

Y −1
s [b(s) − c(s)f(s)]ds +

∫ t

0

Y −1
s f(s)dBs .

Note that one can write Y in a closed form as

Yt = exp
(∫ t

0

a(s)ds +
∫ t

0

c(s)dBs −
1
2

∫ t

0

c2(s)ds
)
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Remark 1.5.4.9 Under Lipschitz conditions on the coefficients, the solution
of

dXt = b(Xt)dt + σ(Xt)dBt, t ≤ T, X0 = x ∈ R

is a homogeneous Markov process. More generally, under the conditions of
Theorem 1.5.4.6, the solution of

dXt = b(t,Xt)dt + σ(t,Xt)dBt, t ≤ T, X0 = x ∈ R

is an inhomogeneous Markov process. The pair (Xt, t) is a homogeneous
Markov process.

Definition 1.5.4.10 (Explosion Time.) Suppose that X is a solution of an
SDE with locally Lipschitz coefficients. Then, a localisation argument allows
to define unambiguously, for every n, (Xt, t ≤ τn), when τn is the first exit
time from [−n, n]. Let τ = sup τn. When τ < ∞, we say that X explodes at
time τ .

If the functions b : R
d → R

d and σ : R
d → R

d × R
n are continuous, the

SDE
dXt = b(Xt)dt + σ(Xt)dBt (1.5.5)

admits a weak solution up to its explosion time.

Under the regularity assumptions

‖σ(x) − σ(y)‖2 ≤ C|x− y|2 r(|x− y|2), for |x− y| < 1
|b(x) − b(y)| ≤ C|x− y| r(|x− y|2), for |x− y| < 1 ,

where r : ]0, 1[→ R
+ is a C1 function satisfying

(i) limx→0 r(x) = +∞,

(ii) limx→0
xr′(x)
r(x)

= 0,

(iii)
∫ a

0

ds

sr(s)
= +∞, for any a > 0,

Fang and Zhang [340, 341] have established the pathwise uniqueness of the
solution of the equation (1.5.5).

If, for |x| ≥ 1,

‖σ(x)‖2 ≤ C (|x|2 ρ(|x|2) + 1)
|b(x)| ≤ C (|x| ρ(|x|2) + 1)

for a function ρ of class C1 satisfying
(i) limx→∞ ρ(x) = +∞ ,

(ii) limx→∞
xρ′(x)
ρ(x)

= 0 ,

(iii)
∫ ∞

1

ds

sρ(s) + 1
= +∞,

then, the solution of the equation (1.5.5) does not explode.
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1.5.5 Stochastic Differential Equations: The One-dimensional Case

In the case of dimension one, the following result requires less regularity for
the existence of a solution of the equation

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dBs . (1.5.6)

Theorem 1.5.5.1 Suppose ϕ : ]0,∞[→]0,∞[ is a Borel function such that∫
0+ da/ϕ(a) = +∞.

Under any of the following conditions:

(i) the Borel function b is bounded, the function σ does not depend on the
time variable and satisfies

|σ(x) − σ(y)|2 ≤ ϕ(|x− y|)

and |σ| ≥ ε > 0 ,

(ii) |σ(s, x) − σ(s, y)|2 ≤ ϕ(|x− y|) and b is Lipschitz continuous,

(iii) the function σ does not depend on the time variable and satisfies

|σ(x) − σ(y)|2 ≤ |f(x) − f(y)|

where f is a bounded increasing function, σ ≥ ε > 0 and b is bounded,

the equation (1.5.6) admits a unique solution which is strong, and the solution
X is a Markov process.

See [RY], Chapter IV, Section 3 for a proof. Let us remark that condition (iii)
on σ holds in particular if σ is bounded below and has bounded variation:
indeed

|σ(x) − σ(y)|2 ≤ V |σ(x) − σ(y)| ≤ V |f(x) − f(y)|
with V =

∫
|dσ| and f(x) =

∫ x

−∞ |dσ(y)|.

The existence of a solution for σ(x) =
√
|x| and more generally for the

case σ(x) = |x|α with α ≥ 1/2 can be proved using ϕ(a) = ca. For α ∈ [0, 1/2[,
pathwise uniqueness does not hold, see Girsanov [394], McKean [637], Jacod
and Yor [472].

This criterion does not extend to higher dimensions. As an example, let Z
be a complex valued Brownian motion. It satisfies

Z2
t = 2

∫ t

0

ZsdZs = 2
∫ t

0

|Zs|dγs

where γt =
∫ t

0

ZsdZs

|Zs|
is a C-valued Brownian motion (see also � Subsection

5.1.3). Now, the equation ζt = 2
∫ t

0

√
|ζs|dγs where γ is a Brownian motion

admits at least two solutions: the constant process 0 and the process Z.
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Comment 1.5.5.2 The proof of (iii) was given in the homogeneous case,
using time change and Cameron-Martin’s theorem, by Nakao [666] and was
improved by LeGall [566]. Other interesting results are proved in Barlow and
Perkins [49], Barlow [46], Brossard [132] and Le Gall [566].

The reader will find in � Subsection 5.5.2 other results about existence
and uniqueness of stochastic differential equations.

It is useful (and sometimes unavoidable!) to allow solutions to explode.
We introduce an absorbing state δ so that the processes are R

d ∪ δ-valued.
Let τ be the explosion time (see Definition 1.5.4.10) and set Xt = δ for t > τ .

Proposition 1.5.5.3 Equation e(f, g) has no exploding solution if

sup
s≤t

|f(s, x � )| + sup
s≤t

|g(s, x � )| ≤ c(1 + sup
s≤t

|x � |) .

Proof: See Kallenberg [505] and Stroock and Varadhan [812]. �

Example 1.5.5.4 Zvonkin’s Argument. The equation

dXt = dBt + b(Xt)dt

where b is a bounded Borel function has a solution. Indeed, assume that there
is a solution and let Yt = h(Xt) where h satisfies 1

2h
′′(x) + b(x)h′(x) = 0 (so

h is of the form
h(x) = C

∫ x

0

dy exp(−2b̂(y)) + D

where b̂ is an antiderivative of b, hence h is strictly monotone). Then

Yt = h(x) +
∫ t

0

h′(h−1(Ys))dBs .

Since h′ ◦ h−1 is Lipschitz, Y exists, hence X exists. The law of X is

P
(b)
x |Ft = exp

(∫ t

0

b(Xs)dXs −
1
2

∫ t

0

b2(Xs)ds
)

Wx|Ft .

In a series of papers, Engelbert and Schmidt [331, 332, 333] prove results
concerning existence and uniqueness of solutions of

Xt = x +
∫ t

0

σ(Xs)dBs

that we recall now (see Cherny and Engelbert [168], Karatzas and Shreve [513]
p. 332, or Kallenberg [505]). Let
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Nσ = {x ∈ R : σ(x) = 0}

Iσ = {x ∈ R :
∫ a

−a

σ−2(x + y)dy = +∞, ∀a > 0} .

The condition Iσ ⊂ Nσ is necessary and sufficient for the existence of a
solution for arbitrary initial value, and Nσ ⊂ Iσ is sufficient for uniqueness in
law of solutions. These results are generalized to the case of SDE with drift
by Rutkowski [751].

Example 1.5.5.5 The equation

dXt =
1
2
Xtdt +

√
1 + X2

t dBt, X0 = 0

admits the unique solution Xt = sinh(Bt). Indeed, it suffices to note that,
setting ϕ(x) = sinh(x), one has dϕ(Bt) = b(Xt)dt + σ(Xt)dWt where

σ(x) = ϕ′(ϕ−1(x)) =
√

1 + x2, b(x) =
1
2
ϕ′′(ϕ−1(x)) =

x

2
. (1.5.7)

More generally, if ϕ is a strictly increasing, C2 function, which satisfies
ϕ(−∞) = −∞, ϕ(∞) = ∞, the process Zt = ϕ(Bt) is a solution of

Zt = Z0 +
∫ t

0

ϕ′ ◦ ϕ−1(Zs)dBs +
1
2

∫ t

0

ϕ′′ ◦ ϕ−1(Zs)ds .

One can characterize more explicitly SDEs of this form. Indeed, we can check
that

dZt = b(Zt)dt + σ(Zt)dBt

where
b(z) =

1
2
σ(z)σ′(z) . (1.5.8)

Example 1.5.5.6 Tsirel’son’s Example. Let us give Tsirel’son’s example
[822] of an equation with diffusion coefficient equal to one, for which there is
no strong solution, as an SDE of the form dXt = f(t,X � )dt + dBt. Introduce
the bounded function T on path space as follows: let (ti, i ∈ −N) be a sequence
of positive reals which decrease to 0 as i decreases to −∞. Let

T (s,X � ) =
∑

k∈−N∗

[[
Xtk

−Xtk−1

tk − tk−1

]]

1]tk,tk+1](s) .

Here, [[x]] is the fractional part of x. Then, the equation e(T, 1) has no strong

solution because, for each fixed k,
[[

Xtk
−Xtk−1

tk − tk−1

]]

is independent of B, and

uniformly distributed on [0, 1]. Thus Zvonkin’s result does not extend to the
case where the coefficients depend on the past of the process. See Le Gall and
Yor [568] for further examples.
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Example 1.5.5.7 Some stochastic differential equations of the form

dXt = b(t,Xt)dt + σ(t,Xt)dWt

can be reduced to an SDE with affine coefficients (see Example 1.5.4.8) of the
form

dYt = (a(t)Yt + b(t))dt + (c(t)Yt + f(t))dWt ,

by a change of variable Yt = U(t,Xt). Many examples are provided in Kloeden
and Platen [524]. For example, the SDE

dXt = −1
2

exp(−2Xt)dt + exp(−Xt)dWt

can be transformed (with U(x) = ex) to dYt = dWt. Hence, the solution is
Xt = ln(Wt + eX0) up to the explosion time inf{t : Wt + eX0 = 0}.

Flows of SDE

Here, we present some results on the important topic of the stochastic flow
associated with the initial condition.

Proposition 1.5.5.8 Let

Xx
t = x +

∫ t

0

b(s,Xx
s )ds +

∫ t

0

σ(s,Xx
s )dWs

and assume that the functions b and σ are globally Lipschitz and have locally
Lipschitz first partial derivatives. Then, the explosion time is equal to ∞.
Furthermore, the solution is continuously differentiable w.r.t. the initial value,
and the process Yt = ∂xXt satisfies

Yt = 1 +
∫ t

0

Ys ∂xb(s,Xx
s )ds +

∫ t

0

Ys∂xσ(s,Xx
s )dWs .

We refer to Kunita [547, 548] or Protter, Chapter V [727] for a proof.

SDE with Coefficients Depending of a Parameter

We assume that b(t, x, a) and σ(t, x, a), defined on R
+ × R × R, are C2 with

respect to the two last variables x, a, with bounded derivatives of first and
second order.

Let

Xt = x +
∫ t

0

b(s,Xs, a)ds +
∫ t

0

σ(s,Xs, a)dWs

and Zt = ∂aXt. Then,

Zt =
∫ t

0

(∂ab(s,Xs, a) + Zs∂xb(s,Xs, a)) ds

+
∫ t

0

(∂aσ(s,Xs, a) + Zs∂xσ(s,Xs, a)) dWs .

See Métivier [645].
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Comparison Theorem

We conclude this paragraph with a comparison theorem.

Theorem 1.5.5.9 (Comparison Theorem.) Let

dXi(t) = bi(t,Xi(t))dt + σ(t,Xi(t))dWt , i = 1, 2

where bi, i = 1, 2 are bounded Borel functions and at least one of them is
Lipschitz and σ satisfies (ii) or (iii) of Theorem 1.5.5.1. Suppose also that
X1(0) ≥ X2(0) and b1(x) ≥ b2(x). Then X1(t) ≥ X2(t) , ∀t, a.s.

Proof: See [RY], Chapter IX, Section 3. �

Exercise 1.5.5.10 Consider the equation dXt = 1{Xt≥0}dBt. Prove (in a
direct way) that this equation has no solution starting from 0. Prove that the
equation dXt = 1{Xt>0}dBt has a solution.
Hint: For the first part, one can consider a smooth function f vanishing
on R

+. From Itô’s formula, it follows that X remains positive, and the
contradiction is obtained from the remark that X is a martingale. �

Comment 1.5.5.11 Doss and Süssmann Method. Let σ be a C2-
function with bounded derivatives of the first two orders, and let b be Lipschitz
continuous. Let h be the solution of the ODE

∂h

∂t
(x, t) = σ(h(x, t)), h(x, 0) = x .

Let X be a continuous semi-martingale which vanishes at time 0 and let D
be the solution of the ODE

dDt

dt
= b(h(Dt, Xt(ω))) exp

{

−
∫ Xt(ω)

0

σ′(h(Ds, s))ds

}

, D0 = y .

Then, Yt = h(Dt, Xt) is the unique solution of

Yt = y +
∫ t

0

σ(Ys) ◦ dXs +
∫ t

0

b(Ys)ds

where ◦ stands for the Stratonovich integral (see Exercise 1.5.3.7). See Doss
[261] and Süssmann [815].

1.5.6 Partial Differential Equations

We now give an important relation between two problems: to compute the
(conditional) expectation of a function of the terminal value of the solution
of an SDE and to solve a second-order PDE with boundary conditions.
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Proposition 1.5.6.1 Let A be the second-order operator defined on C1,2

functions by

A(ϕ)(t, x) =
∂ϕ

∂t
(t, x) + b(t, x)

∂ϕ

∂x
(t, x) +

1
2
σ2(t, x)

∂2ϕ

∂x2
(t, x) .

Let X be the diffusion (see � Section 5.3)

dXt = b(t,Xt)dt + σ(t,Xt)dWt .

We assume that this equation admits a unique solution. Then, for f ∈ Cb(R)
the bounded solution to the Cauchy problem

Aϕ = 0, ϕ(T, x) = f(x) , (1.5.9)

is given by
ϕ(t, x) = E(f(XT )|Xt = x) .

Conversely, if ϕ(t, x) = E(f(XT )|Xt = x) is C1,2, then it solves (1.5.9).

Proof: From the Markov property of X, the process

ϕ(t,Xt) = E(f(XT )|Xt) = E(f(XT )|Ft) ,

is a martingale. Hence, its bounded variation part is equal to 0. From (1.5.2),
assuming that ϕ ∈ C1,2,

∂tϕ + b(t, x)∂xϕ +
1
2
σ2(t, x)∂xxϕ = 0 .

The smoothness of ϕ is established from general results on diffusions
under suitable conditions on b and σ (see Kallenberg [505], Theorem 17-6
and Durrett [286]). �

Exercise 1.5.6.2 Let dXt = rXtdt + σ(Xt)dWt, Ψ a bounded continuous
function and ψ(t, x) = E(e−r(T−t)Ψ(XT )|Xt = x). Assuming that ψ is C1,2,
prove that

∂tψ + rx∂xψ +
1
2
σ2(x)∂xxψ = rψ, ψ(T, x) = Ψ(x) . �

1.5.7 Doléans-Dade Exponential

Let M be a continuous local martingale. For any λ ∈ R, the process

E(λM)t : = exp
(

λMt −
λ2

2
〈M〉t

)
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is a positive local martingale (hence, a super-martingale), called the Doléans-
Dade exponential of λM (or, sometimes, the stochastic exponential of λM).
It is a martingale if and only if ∀t, E(E(λM)t) = 1.

If λ ∈ L2(M), the process E(λM) is the unique solution of the stochastic
differential equation

dYt = Yt λtdMt, Y0 = 1 .

This definition admits an extension to semi-martingales as follows. If X is a
continuous semi-martingale vanishing at 0, the Doléans-Dade exponential
of X is the unique solution of the equation

Zt = 1 +
∫ t

0

ZsdXs .

It is given by

E(X)t : = exp
(

Xt −
1
2
〈X〉t

)

.

Let us remark that in general E(λM) E(μM) is not equal to E((λ + μ)M). In
fact, the general formula

E(X)t E(Y )t = E(X + Y + 〈X,Y 〉)t (1.5.10)

leads to
E(λM)tE(μM)t = E((λ + μ)M + λμ〈M〉)t ,

hence, the product of the exponential local martingales E(M)E(N) is a local
martingale if and only if the local martingales M and N are orthogonal.

Example 1.5.7.1 For later use (see � Proposition 2.6.4.1) we present the
following computation. Let f and g be two continuous functions and W a
Brownian motion starting from x at time 0. The process

Zt = exp
(∫ t

0

[f(s)Ws + g(s)]dWs −
1
2

∫ t

0

[f(s)Ws + g(s)]2ds
)

is a local martingale. Using � Proposition 1.7.6.4, it can be proved that it is
a martingale, therefore its expectation is equal to 1. It follows that

E

(

exp
[∫ t

0

[f(s)Ws + g(s)]dWs −
1
2

∫ t

0

[f2(s)W 2
s + 2Wsf(s)g(s)]ds

])

= exp
(

1
2

∫ t

0

g2(s)ds
)

.

If moreover f and g are C1, integration by parts yields
∫ t

0

g(s)dWs = g(t)Wt − g(0)W0 −
∫ t

0

g′(s)Wsds

∫ t

0

f(s)WsdWs =
1
2

(

W 2
t f(t) −W 2

0 f(0) −
∫ t

0

f(s)ds−
∫ t

0

f ′(s)W 2
s ds

)

,
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therefore,

E

[

exp
(

g(t)Wt +
1
2
f(t)W 2

t

− 1
2

∫ t

0

(
[f2(s) + f ′(s)]W 2

s + 2Ws(f(s)g(s) + g′(s))
)
ds

)]

= exp
(

g(0)W0 +
1
2

(

f(0)W 2
0 +

∫ t

0

f(s)ds +
∫ t

0

g2(s)ds
))

.

Exercise 1.5.7.2 Check formula (1.5.10), by showing, e.g., that both sides
satisfy the same linear SDE. �

Exercise 1.5.7.3 Let H and Z be continuous semi-martingales. Check that
the solution of the equation Xt = Ht +

∫ t

0
XsdZs , is

Xt = E(Z)t

(

H0 +
∫ t

0

1
E(Z)s

(dHs − d〈H,Z〉s)
)

.

See Protter [727], Chapter V, Section 9, for the case where H,Z are general
semi-martingales. �

Exercise 1.5.7.4 Prove that if θ is a bounded function, then the process
(E(θ�W )t, t ≤ T ) is a u.i. martingale.
Hint:

exp
(∫ t

0

θsdWs −
1
2

∫ t

0

θ2
sds

)

≤ exp
(

sup
t≤T

∫ t

0

θsdWs

)

= exp β̂R T
0 θ2

sds

with β̂t = supu≤t βu where β is a BM. �

Exercise 1.5.7.5 Multiplicative Decomposition of Positive Sub-mar-
tingales. Let X = M + A be the Doob-Meyer decomposition of a strictly
positive continuous sub-martingale. Let Y be the solution of

dYt = Yt
1
Xt

dMt, Y0 = X0

and let Z be the solution of dZt = −Zt
1

Xt
dAt, Z0 = 1. Prove that U = Y/Z

satisfies dUt = Ut
1

Xt
dXt and deduce that U = X.

Hint: Use that the solution of dUt = Ut
1

Xt
dXt is unique. See Meyer and

Yoeurp [649] and Meyer [647] for a generalization to discontinuous sub-
martingales. Note that this decomposition states that a strictly positive
continuous sub-martingale is the product of a martingale and an increasing
process. �
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1.6 Predictable Representation Property

1.6.1 Brownian Motion Case

Let W be a real-valued Brownian motion and FW its natural filtration. We
recall that the space L2(W ) was presented in Definition 1.3.1.3.

Theorem 1.6.1.1 Let (Mt, t ≥ 0) be a square integrable FW -martingale (i.e.,
supt E(M2

t ) < ∞). There exists a constant μ and a unique predictable process
m in L2(W ) such that

∀t, Mt = μ +
∫ t

0

ms dWs .

If M is an FW -local martingale, there exists a unique predictable process m
in L2

loc(W ) such that

∀t, Mt = μ +
∫ t

0

ms dWs .

Proof: The first step is to prove that for any square integrable FW
∞ -

measurable random variable F , there exists a unique predictable process H
such that

F = E(F ) +
∫ ∞

0

Hs dWs , (1.6.1)

and E[
∫ ∞
0

H2
sds] < ∞. Indeed, the space of random variables F of the form

(1.6.1) is closed in L2. Moreover, it contains any random variable of the form

F = exp
(∫ ∞

0

f(s)dWs −
1
2

∫ ∞

0

f(s)2ds
)

with f =
∑

i λi1]ti−1,ti], λi ∈ R
d, and this space is total in L2. Then density

arguments complete the proof. See [RY], Chapter V, for details. �

Example 1.6.1.2 A special case of Theorem 1.6.1.1 is when Mt = f(t,Wt)
where f is a smooth function (hence, f is space-time harmonic, i.e., it satisfies
∂f
∂t + 1

2
∂2f
∂x2 = 0). In that case, Itô’s formula leads to ms = ∂xf(s,Ws).

This theorem holds in the multidimensional Brownian setting. Let W be a
n-dimensional BM and M be a square integrable FW -martingale. There exists
a constant μ and a unique n-dimensional predictable process m in L2(W ) such
that

∀t, Mt = μ +
n∑

i=1

∫ t

0

mi
s dW i

s .

Corollary 1.6.1.3 Every FW -local martingale admits a continuous version.



56 1 Continuous-Path Random Processes: Mathematical Prerequisites

As a consequence, every optional process in a Brownian filtration is
predictable.
From now on, we shall abuse language and say that every FW -local martingale
is continuous.

Corollary 1.6.1.4 Let W be a G-Brownian motion with natural filtration F.
Then, for every square integrable G-adapted process ϕ,

E

(∫ t

0

ϕsdWs|Ft

)

=
∫ t

0

E(ϕs|Fs)dWs ,

where E(ϕs|Fs) denotes the predictable version of the conditional expectation.

Proof: Since the r.v.
∫ t

0
E(ϕs|Fs)dWs is Ft-measurable, it suffices to check

that, for any bounded r.v. Ft ∈ Ft

E

(

Ft

∫ t

0

ϕsdWs

)

= E

(

Ft

∫ t

0

E(ϕs|Fs)dWs

)

.

The predictable representation theorem implies that Ft = E(Ft) +
∫ t

0
fsdWs,

for some F-predictable process f ∈ L2(W ), hence

E

(

Ft

∫ t

0

ϕsdWs

)

= E

(∫ t

0

fsϕsds

)

=
∫ t

0

E(fsϕs)ds

=
∫ t

0

E(fsE(ϕs|Fs))ds = E

(∫ t

0

fsE(ϕs|Fs)ds
)

= E

({

E(Ft) +
∫ t

0

fsdWs

}∫ t

0

E(ϕs|Fs)dWs

)

,

which ends the proof. �

Example 1.6.1.5 If F =
∫ ∞
0

ds h(s,Ws) where
∫ ∞
0

dsE(|h(s,Ws)|) < ∞,
then from the Markov property, Mt = E(F |Ft) =

∫ t

0
ds h(s,Ws) + ϕ(t,Wt),

for some function ϕ. Assuming that ϕ is smooth, the martingale property of
M and Itô’s formula lead to

h(t,Wt) + ∂tϕ(t,Wt) +
1
2
∂xxϕ(t,Wt) = 0

and Mt = ϕ(0, 0)+
∫ t

0
∂xϕ(s,Ws)dWs. See the papers of Graversen et al. [405]

and Shiryaev and Yor [793] for some examples of functionals of the Brownian
motion which are explicitly written as stochastic integrals.

Proposition 1.6.1.6 Let Mt = E(f(WT )|Ft), for t ≤ T where f is a C1
b

function. Then,

Mt = E(f(WT ))+
∫ t

0

E(f ′(WT )|Fs)dWs = E(f(WT ))+
∫ t

0

PT−s(f ′)(Ws)dWs .



1.6 Predictable Representation Property 57

Proof: From the independence and stationarity of the increments of the
Brownian motion,

E(f(WT )|Ft) = ψ(t,Wt)

where ψ(t, x) = E(f(x + WT−t)). Itô’s formula and the martingale property
of ψ(t,Wt) lead to

∂xψ(t, x) = E(f ′(x + WT−t)) = E(f ′(WT )|Wt = x) .

�

Comment 1.6.1.7 In a more general setting, one can use Malliavin’s
derivative. For T fixed, and h ∈ L2([0, T ]), we define W (h) =

∫ T

0
h(s)dWs.

Let F = f(W (h1), . . . ,W (hn)) where f is a smooth function. The derivative
of F is defined as the process (DtF, t ≤ T ) by

DtF =
n∑

i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi(t) .

The Clark-Ocone representation formula states that for random variables
which satisfy some suitable integrability conditions,

F = E(F ) +
∫ T

0

E(DtF |Ft)dWt .

We refer the reader to the books of Nualart [681] for a study of Malliavin
calculus and of Malliavin and Thalmaier [616] for applications in finance. See
also the issue [560] of Mathematical Finance devoted to applications to finance
of Malliavin calculus.

Exercise 1.6.1.8 Let W = (W 1, . . . ,W d) be a d-dimensional BM. Is the
space of martingales

∑d
i=1

∫ t

0
Hi(W i

� )sdW
i
s dense in the space of square

integrable martingales?
Hint: The answer is negative. Look for Y ∈ L2(W∞) such that Y is
orthogonal to all these variables. �

1.6.2 Towards a General Definition of the Predictable
Representation Property

Besides the Predictable Representation Property (PRP) of Brownian motion,
let us recall the Kunita-Watanabe orthogonal decomposition of a martingale
M with respect to another one X:

Lemma 1.6.2.1 (Kunita-Watanabe Decomposition.) Let X be a given
continuous local F-martingale. Then, every continuous F-local martingale M
vanishing at 0 may be uniquely written

M = H�X + N (1.6.2)

where H is predictable and N is a local martingale orthogonal to X.
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Referring to the Brownian motion case (previous subsection), one may
wonder for which local martingales X it is true that every N in (1.6.2) is a
constant. This leads us to the following definition.

Definition 1.6.2.2 A continuous local martingale X enjoys the predictable
representation property (PRP) if for any FX-local martingale (Mt, t ≥ 0),
there is a constant m and an FX-predictable process (ms, s ≥ 0) such that

Mt = m +
∫ t

0

msdXs, t ≥ 0.

Exercise 1.6.2.3 Prove that (ms, s ≥ 0) is unique in L2
loc(X). �

More generally, a continuous F-local martingale X enjoys the F-predictable
representation property if any F-adapted martingale M can be written as
Mt = m +

∫ t

0
ms dXs, with

∫ t

0
m2

sd〈X〉s < ∞. We do not require in that last
definition that F is the natural filtration of X. (See an important example in
� Subsection 1.7.7.)

We now look for a characterization of martingales that enjoy the PRP.
Given a continuous F-adapted process Y , we denote by M(Y ) the subset of
probability measures Q on (Ω,F), for which the process Y is a (Q,F)-local
martingale. This set is convex. A probability measure P is called extremal in
M(Y ) if whenever P = λP1 + (1 − λ)P2 with λ ∈]0, 1[ and P1,P2 ∈ M(Y ),
then P = P1 = P2.

Note that if P = λP1 +(1−λ)P2, then P1 and P2 are absolutely continuous
with respect to P. However, the Pi’s are not necessarily equivalent. The
following theorem relates the PRP for Y under P ∈ M(Y ) and the extremal
points of M(Y ).

Theorem 1.6.2.4 The process Y enjoys the PRP with respect to FY and P

if and only if P is an extremal point of M(Y ).

Proof: See Jacod [468], Yor [861] and Jacod and Yor [472]. �

Comments 1.6.2.5 (a) The PRP is essential in finance and is deeply linked
with Delta hedging and completeness of the market. If the price process enjoys
the PRP under an equivalent probability measure, the market is complete. It
is worthwhile noting that the key process is the price process itself, rather
than the processes that may drive the price process. See � Subsection 2.3.6
for more details.

(b) We compare Theorems 1.6.1.1 and 1.6.2.4. It turns out that the
Wiener measure is an extremal point in M, the set of martingale laws on
C(R+,R) where Yt(ω) = ω(t). This extremality property follows from Lévy’s
characterization of Brownian motion.

(c) Let us give an example of a martingale which does not enjoy the PRP.
Let Mt =

∫ t

0
eaBs−a2s/2dβs =

∫ t

0
E(aB)sdβs, where B, β are two independent
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one-dimensional Brownian motions. We note that d〈M〉t = (E(aB)t)2dt, so
that (Et : = E(aB)t, t ≥ 0) is FM -adapted and hence is an FM -martingale.
Since Et = 1+a

∫ t

0
EsdBs, the martingale E cannot be obtained as a stochastic

integral w.r.t. β or equivalently w.r.t. M . In fact, every FM -martingale can be
written as the sum of a stochastic integral with respect to M (or equivalently
to β) and a stochastic integral with respect to B.

(d) It is often asked what is the minimal number of orthogonal martingales
needed to obtain a representation formula in a given filtration. We refer the
reader to Davis and Varaiya [224] who defined the notion of multiplicity of a
filtration. See also Davis and Ob�lój [223] and Barlow et al. [50].

Example 1.6.2.6 We give some examples of martingales that enjoy the PRP.
(a) Let W be a BM and F its natural filtration. Set Xt = x +

∫ t

0
xs dWs

where (xs, s ≥ 0) is continuous and does not vanish. Then X enjoys the PRP.
(b) A continuous martingale is a time-changed Brownian motion. Let X

be a martingale, then Xt = β〈X〉t
where β is a Brownian motion. If 〈X〉 is

measurable with respect to β, then X is said to be pure, and PX is extremal.
However, the converse does not hold. See Yor [862].

Exercise 1.6.2.7 Let MP(X) = {Q << P : X is a Q-martingale}. For any
convex set K, we denote by ext(K) the set of extremal points of K. Prove that

ext(MP(X)) = ext(M(X)) ∩MP(X) .

An open question is: does the equality

ext(Meq
P

(X)) = extM(X) ∩Meq
P

(X)

where Meq
P

(X) = {Q ∼ P : X is a Q-martingale}, hold? �

Exercise 1.6.2.8 We present an example where the representation of a boun-
ded r.v. considered as the terminal variable of a martingale can be explicitly
computed. Let B be a Brownian motion and Ta = inf{t ≥ 0 : Bt = a} where
a > 0.

1. Using the Doléans-Dade exponential of λB, prove that, for λ > 0

E(e−λ2Ta/2|Ft) = e−λa + λ

∫ Ta∧t

0

e−λ(a−Bu)−λ2u/2dBu (1.6.3)

and that

e−λ2Ta/2 = e−λa + λ

∫ Ta

0

e−λ(a−Bu)−λ2u/2dBu .

Check that E(
∫ Ta

0
(e−λ(a−Bu)−λ2u/2 )2du) < ∞. Prove that (1.6.3) is not

true for λ < 0, i.e., that, in the case μ : = −λ > 0 the quantities
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E(e−μ2Ta/2|Ft) and eμa−μ
∫ Ta∧t

0
eμ(a−Bu)−μ2u/2 dBu are not equal. Prove

that, nonetheless,

e−λ2Ta/2 = eλa − λ

∫ Ta

0

eλ(a−Bu)−λ2u/2dBu

but E(
∫ Ta

0
(eλ(a−Bu)−λ2u/2 )2 du) = ∞ . Deduce, from the previous results,

that

sinh(λa) = λ

∫ Ta

0

e−λ2u/2 cosh((a−Bu)λ) dBu .

2. By differentiating the Laplace transform of Ta, and using the fact that
ϕ satisfies the Kolmogorov equation ∂tϕ(t, x) = 1

2∂xxϕ(t, x) , (see �
Subsection 5.4.1), prove that

λe−λc = 2
∫ ∞

0

e−λ2t/2∂tϕ(t, c) dt

where ϕ(t, x) = 1√
2πt

e−x2/(2t).
3. Prove that, for any bounded Borel function f

E(f(Ta)|Ft) = E(f(Ta)) + 2
∫ Ta∧t

0

dBs

∫ ∞

0

f(u + s)
∂

∂u
ϕ(u,Bs − a)du .

4. Deduce that, for fixed T ,

1{Ta<T} = P(Ta < T ) + 2
∫ Ta∧T

0

ϕ(T − s,Bs − a) dBs .

See Shiryaev and Yor [793], Graversen et al. [405] for other examples. �

1.6.3 Dudley’s Theorem

In the previous exercise, we were careful to check the integrability of the
stochastic integrals. This may be contrasted with Dudley’s result [269], which
states that every FW

T -random variable can be represented as an Itô stochastic
integral

∫ T

0
θsdWs where θ is predictable and satisfies

∫ T

0
θ2

sds < ∞, a.s.
where W is a Brownian motion. In fact, this result has no relation with the
predictable representation property, as shown by Émery et al. [330]. Indeed,
the authors proved that, in a filtration where any martingale is continuous, if
τ is a stopping time and X is an Fτ -measurable random variable, there exists
a local martingale M , null at 0, such that Mτ = X.

Comment 1.6.3.1 In mathematical finance, Dudley’s result is related to
arbitrage opportunities (see � Chapter 2 for the definition of financial terms
if needed). Let us study the simple case where dSt = StσdWt, S0 = x > 0
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is the price of the risky asset and where the interest rate is null. Consider
a process θ such that

∫ T

0
θ2

sds < ∞, a.s.. and
∫ T

0
θsdWs = 1 (the existence

is a consequence of Dudley’s theorem). Had we chosen πs = θs/(Ssσ) as the
risky part of a self-financing strategy with a zero initial wealth, then we would
obtain an arbitrage opportunity. However, the wealth X associated with this
strategy, i.e., Xt =

∫ t

0
θsdWs is not bounded below (otherwise, X would be

a super-martingale with initial value equal to 0, hence E(XT ) ≤ 0). These
strategies are linked with the well-known doubling strategy of coin tossing
(see Harrison and Pliska [422]).

1.6.4 Backward Stochastic Differential Equations

In deterministic case studies, it is easy to solve an ODE with a terminal
condition just by time reversal. In a stochastic setting, if one insists that the
solution is adapted w.r.t. a given filtration, it is not possible in general to use
time reversal.

A probability space (Ω,F ,P), an n-dimensional Brownian motion W and
its natural filtration F, an FT -measurable square integrable random variable ζ
and a family of F-adapted, R

d-valued processes f(t, � , x, y), x, y ∈ R
d ×R

d×n

are given (we shall, as usual, forget the dependence in ω and write only
f(t, x, y)). The problem we now consider is to solve a stochastic differential
equation where the terminal condition ζ as well as the form of the drift term f
(called the generator) are given, however, the diffusion term is left unspecified.

The Backward Stochastic Differential Equation (BSDE) (f, ζ) has
the form

−dXt = f(t,Xt, Yt) dt− Yt � dWt

XT = ζ .

Here, we have used the usual convention of signs which is in force while
studying BSDEs. The solution of a BSDE is a pair (X,Y ) of adapted processes
which satisfy

Xt = ζ +
∫ T

t

f(s,Xs, Ys) ds−
∫ T

t

Ys � dWs , (1.6.4)

where X is R
d-valued and Y is d× n-matrix valued.

We emphasize that the diffusion coefficient Y is a part of the solution, as
it is clear from the obvious case when f is null: in that case, we are looking
for a martingale with given terminal value. Hence, the quantity Y is the
predictable process arising in the representation of the martingale X in terms
of the Brownian motion.

Example 1.6.4.1 Let us study the easy case where f is a deterministic
function of time (or a given process such that

∫ T

0
fsds is square integrable) and
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d = n = 1. If there exists a solution to Xt = ζ +
∫ T

t
f(s) ds−

∫ T

t
Ys dWs, then

the F-adapted process Xt +
∫ t

0
f(s) ds is equal to ζ +

∫ T

0
f(s) ds−

∫ T

t
Ys dWs.

Taking conditional expectation w.r.t. Ft of the two sides, and assuming that
Y is square integrable, we get

Xt +
∫ t

0

f(s) ds = E(ζ +
∫ T

0

f(s) ds|Ft) (1.6.5)

therefore, the process Xt +
∫ t

0
f(s) ds is an F-martingale with terminal value

ζ +
∫ T

0
f(s) ds. (A more direct proof is to write dXt + f(t)dt = YtdWt.) The

predictable representation theorem asserts that there exists an adapted square
integrable process Y such that Xt +

∫ t

0
f(s) ds = X0 +

∫ t

0
YsdWs and the pair

(X,Y ) is the solution of the BSDE. The process X can be written in terms
of the generator f and the terminal condition as Xt = E(ζ +

∫ T

t
f(s)ds|Ft).

In particular, if ζ1 ≥ ζ2 and f1 ≥ f2, and if Xi is the solution of (fi, ζ
i) for

i = 1, 2, then, for t ∈ [0, T ], X1
t ≥ X2

t .

Definition 1.6.4.2 Let L2([0, T ] × Ω; Rd) be the set of R
d-valued square

integrable F-progressively measurable processes, i.e., processes Z such that

E

[∫ T

0

‖Zs‖2ds

]

< ∞ .

Theorem 1.6.4.3 Let us assume that for any (x, y) ∈ R
n×R

d×n, the process
f( � , x, y) is progressively measurable, with f( � , 0, 0) ∈ L2([0, T ] ×Ω; Rd) and
that the function f(t, � , � ) is uniformly Lipschitz, i.e., there exists a constant
K such that

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ K[ ‖x1 − x2‖ + ‖y1 − y2‖ ], ∀t,P, a.s.

Then there exists a unique pair (X,Y ) of adapted processes belonging to
L2([0, T ] ×Ω; Rn) × L2([0, T ] ×Ω,Rd×n) which satisfies (1.6.4).

Sketch of the Proof: Example (1.6.4.1) provides the proof when f does
not depend on (x, y). The general case is established using Picard’s iteration:
let Φ be the map Φ(x, y) = (X,Y ) where (x, y) is a pair of adapted processes
and (X,Y ) is the solution of

−dXt = f(t, xt, yt) dt− Yt � dWt, XT = ζ .

The map Φ is proved to be a contraction.
The uniqueness is proved by introducing the norm ‖Φ‖2

β = E(
∫ T

0
eβs|φs|ds)

and giving a priori estimates of the norm ‖Y1 − Y2‖β for two solutions of the
BSDE. See Pardoux and Peng [694] and El Karoui et al. [309] for details. �
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An important result is the following comparison theorem for BSDE

Theorem 1.6.4.4 Let f i, i = 1, 2 be two real-valued processes satisfying the
previous hypotheses and f1(t, x, y) ≤ f2(t, x, y). Let ζi be two FT -measurable,
square integrable real-valued random variables such that ζ1 ≤ ζ2 a.s.. Let
(Xi, Y i) be the solution of

−dXi
t = f i(t,Xi

t , Y
i
t ) dt− Y i

t � dWt , X
i
T = ζ.

Then X1
t ≤ X2

t ,∀t ≤ T .

Linear Case. Let us consider the particular case of a linear generator f :
R

+ × R × R
d → R defined as f(t, x, y) = atx + bt � y + ct where a, b, c are

bounded adapted processes. We define the adjoint process Γ as the solution
of the SDE {

dΓt = Γt[atdt + bt � dWt]
Γ0 = 1 . (1.6.6)

Theorem 1.6.4.5 Let ζ ∈ FT , square integrable. The solution of the linear
BSDE

−dXt = (atXt + bt �Yt + ct)dt− Yt � dWt, XT = ζ

is given by

Xt = (Γt)−1
E

(

ΓT ζ +
∫ T

t

Γscsds|Ft

)

.

Proof: If (X,Y ) is a solution of

−dXt = (atXt + bt �Yt + ct)dt− Yt � dWt

with the terminal condition XT = ζ, then

−dX̂t = ĉtdt− Yt � (dWt − btdt), X̂T = ζ exp

(∫ T

0

asds

)

where X̂t = Xt exp
(∫ t

0
asds

)
and ĉt = ct exp

(∫ t

0
asds

)
. We use Girsanov’s

theorem (see � Section 1.7) to eliminate the term Y � b. Let Q|Ft = Lt P|Ft

where dLt = Ltbt � dWt. Then,

−dX̂t = ĉtdt− Yt � dW̃t

where W̃ is a Q-Brownian motion and the process X̂t +
∫ t

0
ĉsds is a Q-

martingale with terminal value ζ +
∫ T

0
ĉsds. Hence, X̂t = EQ(ζ +

∫ T

t
ĉsds|Ft).

The result follows by application of Exercise 1.2.1.8. �

Backward stochastic differential equations are of frequent use in finance.
Suppose, for example, that an agent would like to obtain a terminal wealth
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XT while consuming at a given rate c (an adapted positive process). The
financial market consists of d securities

dSi
t = Si

t(bi(t)dt +
d∑

j=1

σi,j(t)dW
(j)
t )

and a riskless bond with interest rate denoted by r. We assume that the
market is complete and arbitrage free (see � Chapter 2 if needed). The
wealth associated with a portfolio (πi, i = 0, . . . , d) is the sum of the wealth
invested in each asset, i.e., Xt = π0(t)S0

t +
∑d

i=1 πi(t)Si
t . The self-financing

condition for a portfolio with a given consumption c, i.e.,

dXt = π0(t)dS0
t +

d∑

i=1

πi(t)dSi
t − ctdt

allows us to write

dXt = Xtrdt + πt � (bt − r1)dt− ctdt + πt �σtdWt ,

where 1 is the d-dimensional vector with all components equal to 1. Therefore,
the pair (wealth process, portfolio) is obtained via the solution of the BSDE

dXt = f(t,Xt, Yt)dt + Yt � dWt, XT given

with f(t, ·, x, y) = rx+ y �σ−1
t (bt − r1)− ct and the portfolio (πi, i = 1, . . . , d)

is given by πt = Yt �σ−1
t . This is a particular case of a linear BSDE. Then,

the process Γ introduced in (1.6.6) satisfies

dΓt = Γt(rdt + σ−1
t (bt − r1)dWt), Γ0 = 1

and Γt is the product of the discounted factor e−rt and the strictly positive
martingale L, which satisfies

dLt = Ltσ
−1
t (bt − r1)dWt, L0 = 1 ,

i.e., Γt = e−rtLt. If Q is defined as Q|Ft = LtP|Ft , denoting Rt = e−rt, the
process RtXt +

∫ t

0
csRsds is a local martingale under the e.m.m. Q (see �

Chapter 2 if needed). Therefore,

ΓtXt = EP

(

XTΓT +
∫ T

t

csΓsds|Ft

)

.

In particular, the value of wealth at time t needed to hedge a positive terminal
wealth XT and a positive consumption is always positive. Moreover, from the
comparison theorem, if X1

T ≤ X2
T and c1 ≤ c2, then X1

t ≤ X2
t . This can be

explained using the arbitrage principle. If a contingent claim ζ1 is greater than
a contingent claim ζ2, and if there is no consumption, then the initial wealth
is the price of ζ1 and is greater than the price of ζ2.
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Exercise 1.6.4.6 Quadratic BSDE: an example. This exercise provides
an example where there exists a solution although the Lipschitz condition is
not satisfied.
Let a and b be two constants and ζ a bounded FT -measurable r.v.. Prove that
the solution of −dXt = (aY 2

t + bYt)dt− YtdWt, XT = ζ is

Xt =
1
2a

(
1
2
b2(t− T ) − bWt + ln E

(
ebWT +2aζ |Ft

)
)

.

Hint: First, prove that the solution of the BSDE

−dXt = aY 2
t dt− YtdWt, XT = ζ

is Xt = 1
2a ln E(e2aζ |Ft). Then, using Girsanov’s theorem, the solution of

−dXt = (aY 2
t + bYt)dt− YtdWt, XT = ζ

is given by

Xt =
1
2a

ln Ê(e2aζ |Ft)

where Q̂|Ft
= ebWt− 1

2 b2t
P|Ft

. Therefore,

Xt =
1
2a

ln
(
E(ebWT − 1

2 b2T e2aζ |Ft)e−bWt+
1
2 b2t

)

=
1
2a

(

ln E

(
ebWT − 1

2 b2T e2aζ |Ft

)
− bWt +

1
2
b2t

)

. �

Comments 1.6.4.7 (a) The main references on this subject are the collective
book [303], the book of Ma and Yong [607], the El Karoui and Quenez lecture
in [308], El Karoui et al. [309] and Buckdhan’s lecture in [134]. See also the
seminal papers of Lepeltier and San Martin [578, 579] where general existence
theorems for continuous generators with linear growth are established.

(b) In El Karoui and Rouge [310], the indifference price is characterized
as a solution of a BSDE with a quadratic generator.

(c) BSDEs are used to solve control problems in Bielecki et al. [98],
Hamadène [419], Hu and Zhou [448] and Mania and Tevzadze [619].

(d) Backward stochastic differential equations are also studied in the case
where the driving martingale is a process with jumps. The reader can refer to
Barles et al. [43], Royer [744], Nualart and Schoutens [683] and Rong [743].

(e) Reflected BSDE are studied by El Karoui and Quenez [308] in order
to give the price of an American option, without using the notion of a Snell
envelope.

(f) One of the main applications of BSDE is the notion of non-linear
expectation (or G-expectation), and the link between this notion and risk
measures (see Peng [705, 706]).
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1.7 Change of Probability and Girsanov’s Theorem

1.7.1 Change of Probability

We start with a general filtered probability space (Ω,F ,F,P) where, as usual
F0 is trivial.

Proposition 1.7.1.1 Let P and Q be two equivalent probabilities on (Ω,FT ).
Then, there exists a strictly positive (P,F)-martingale (Lt, t ≤ T ), such that
Q|Ft = Lt P|Ft , that is EQ(X) = EP(LtX) for any Ft-measurable positive
random variable X with t ≤ T . Moreover, L0 = 1 and EP(Lt) = 1, ∀t ≤ T .

Proof: If P and Q are equivalent on (Ω,FT ), from the Radon-Nikodým
theorem there exists a strictly positive FT -measurable random variable LT

such that Q = LT P on FT . From the definition of Q, the expectation under Q

of any FT -measurable Q-integrable r.v. X is defined as EQ(X) = EP(LTX).
In particular, EP(LT ) = 1.

The process L = (Lt = EP(LT |Ft), t ≤ T ) is a (P,F)-martingale and is
the Radon-Nikodým density of Q with respect to P on Ft. Indeed, if X is
Ft-measurable (hence FT -measurable) and Q-integrable

EQ(X) = EP(LTX) = EP[EP(XLT |Ft)] = EP[XEP(LT |Ft)] = EP(XLt).

�

Note that P|FT
= (LT )−1

Q|FT
so that, for any positive r.v. Y ∈ FT ,

EP(Y ) = EQ(L−1
T Y ) and L−1 is a Q-martingale.

We shall speak of the law of a random variable (or of a process) under P

or under Q to make precise the choice of the probability measure on the space
Ω. From the equivalence between the measures, a property which holds P-a.s.
holds also Q-a.s. However, a P-integrable random variable is not necessarily
Q-integrable.

Definition 1.7.1.2 A probability Q on a filtered probability space (Ω,F ,F,P)
is said to be locally equivalent to P if there exists a strictly positive F-
martingale L such that Q|Ft = Lt P|Ft , ∀t. The martingale L is called the
Radon-Nikodým density of Q w.r.t. P.

Warning 1.7.1.3 This definition, which is standard in mathematical finance,
is different from the more general one used by the Strasbourg school, where
locally refers to a sequence of F-stopping times, increasing to infinity.

Proposition 1.7.1.4 Let P and Q be locally equivalent, with Radon-Nikodým
density L. Then, for any stopping time τ ,

Q|Fτ∩(τ<∞) = Lτ P|Fτ∩(τ<∞) .
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Proof: Let A ∈ Fτ . Then,

Q(1A1{τ≤t}) = EP(Lt1A1{τ≤t}) = EP(Lτ1A1{τ≤t}) .

The result follows by letting t → ∞. �

Proposition 1.7.1.4 may be quite useful to shift computations under Q into
computations under P when Lτ has a simple expression. See � Subsection
3.2.3 and � Exercice 4.3.5.7.

Proposition 1.7.1.5 (Bayes Formula.) Suppose that Q and P are equiv-
alent on FT with Radon-Nikodým density L. Let X be a Q-integrable FT -
measurable random variable, then, for t < T

EQ(X|Ft) =
EP(LTX|Ft)

Lt
.

Proof: The proof follows immediately from the definition of conditional

expectation. To check that the Ft-measurable r.v. Z =
EP(LTX|Ft)

Lt
is the

Q-conditional expectation of X, we prove that EQ(FtX) = EQ(FtZt) for any
bounded Ft-measurable random variable Ft. This follows from the equalities

EQ(FtX) = EP(LTFtX) = EP(FtEP(XLT |Ft))
= EQ(FtL

−1
t EP(XLT |Ft)) = EQ(FtZ) .

�

Proposition 1.7.1.6 Let P and Q be two locally equivalent probability
measures with Radon-Nikodým density L. A process M is a Q-martingale
if and only if the process LM is a P-martingale. By localization, this result
remains true for local martingales.

Proof: Let M be a Q-martingale. From the Bayes formula, we obtain, for
s ≤ t,

Ms = EQ(Mt|Fs) =
EP(LtMt|Fs)

Ls

and the result follows. The converse part is now obvious. �

Exercise 1.7.1.7 Let (Ω,F ,F,P) be a filtered probability space and denote
by (Lt, t ≥ 0) the Radon-Nikodým density of Q with respect to P. Then, if F̃
is a subfiltration of F, prove that Q|

eFt
= L̃tP|

eFt
, where L̃t = EP(Lt|F̃t). �

Exercise 1.7.1.8 Give conditions on the function h so that the measure Q

defined on FT as Q = h(WT )P is a probability equivalent to P. Prove that,
for t < T Q|Ft = LtP|Ft where
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Lt =
∫ ∞

−∞
dy h(y)

e−(y−Wt)
2/(2(T−t))

√
2π(T − t)

.

Prove that

Lt = 1 +
∫ t

0

dWs

∫ ∞

−∞
dy

h(y)e−(y−Ws)2/(2(T−s))

√
2π(T − s)

y −Ws

T − s
.

For h ∈ C1 with compact support, prove that

Lt = 1 +
∫ t

0

dWs

∫ ∞

−∞
dy

h′(y)e−(y−Ws)2/(2(T−s))

√
2π(T − s)

.

See Baudoin [60] for applications. �

Exercise 1.7.1.9 (1) Let f a Borel function satisfying 0 <
∫ ∞
0

f2(u)du < ∞.
Compute, for any t, P

(∫ ∞
0

f(s)dWs > 0 |Ft

)
=: Zf

t . Prove that, as a
consequence Zf

t > 0 a.s., but P(Zf
∞ = 0) = 1/2.

(2) Prove that there exist pairs (Q,P) of probabilities that are locally
equivalent, but Q is not equivalent to P on F∞. �

1.7.2 Decomposition of P-Martingales as Q-semi-martingales

Theorem 1.7.2.1 Let P and Q be locally equivalent, with Radon-Nikodým
density L. We assume that the process L is continuous.

If M is a continuous P-local martingale, then the process M̃ defined by

dM̃ = dM − 1
L
d〈M,L〉

is a continuous Q-local martingale. If N is another continuous P-local
martingale,

〈M,N〉 = 〈M̃, Ñ〉 = 〈M, Ñ〉 .

Proof: From Proposition 1.7.1.6, it is enough to check that M̃L is a P-local
martingale, which follows easily from Itô’s calculus. �

Corollary 1.7.2.2 Under the hypotheses of Theorem 1.7.2.1, we may write
the process L as a Doléans-Dade martingale: Lt = E(ζ)t, where ζ is an F-local
martingale. The process M̃ = M − 〈M, ζ〉 is a Q-local martingale.
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1.7.3 Girsanov’s Theorem: The One-dimensional Brownian Motion
Case

If the filtration F is generated by a Brownian motion W , and P and Q are
locally equivalent, with Radon-Nikodým density L, the martingale L admits
a representation of the form dLt = ψtdWt. Since L is strictly positive, this
equality takes the form dLt = −θtLtdWt, where θ = −ψ/L. (The minus sign
will be convenient for further use in finance (see � Subsection 2.2.2), to
obtain the usual risk premium). It follows that

Lt = exp
(

−
∫ t

0

θsdWs −
1
2

∫ t

0

θ2
sds

)

= E(ζ)t ,

where ζt = −
∫ t

0
θsdWs.

Proposition 1.7.3.1 (Girsanov’s Theorem) Let W be a (P,F)-Brownian
motion and let θ be an F-adapted process such that the solution of the SDE

dLt = −LtθtdWt, L0 = 1

is a martingale. We set Q|Ft = Lt P|Ft . Then the process W admits a Q-semi-
martingale decomposition W̃ as Wt = W̃t−

∫ t

0
θsds where W̃ is a Q-Brownian

motion.

Proof: From dLt = −LtθtdWt, using Girsanov’s theorem 1.7.2.1, we obtain
that the decomposition of W under Q is W̃t −

∫ t

0
θsds. The process W is a Q-

semi-martingale and its martingale part W̃ is a BM. This last fact follows from
Lévy’s theorem, since the bracket of W does not depend on the (equivalent)
probability. �

Warning 1.7.3.2 Using a real-valued, or complex-valued martingale density
L, with respect to Wiener measure, induces a real-valued or complex-valued
measure on path space. The extension of the Girsanov theorem in this
framework is tricky; see Dellacherie et al. [241], paragraph (39), page 349,
as well as Ruiz de Chavez [748] and Begdhdadi-Sakrani [66].

When the coefficient θ is deterministic, we shall refer to this result as
Cameron-Martin’s theorem due to the origin of this formula [137], which
was extended by Maruyama [626], Girsanov [393], and later by Van Schuppen
and Wong [825].

Example 1.7.3.3 Let S be a geometric Brownian motion

dSt = St(μdt + σdWt) .

Here, W is a Brownian motion under a probability P. Let θ = (μ− r)/σ and
dLt = −θLtdWt. Then, Bt = Wt + θt is a Brownian motion under Q, where
Q|Ft = Lt P|Ft and

dSt = St(rdt + σdBt) .
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Comment 1.7.3.4 In the previous example, the equality

St(μdt + σdWt) = St(rdt + σdBt)

holds under both P and Q. The rôle of the probabilities P and Q makes precise
the dynamics of the driving process W (or B). Therefore, the equation can be
computed in an “algebraic” way, by setting dBt = dWt + θdt. This leads to

μdt + σdWt = rdt + σ[dWt + θdt] = rdt + σdBt .

The explicit computation of S can be made with W or B

St = S0 exp
(

μt + σWt −
1
2
σ2t

)

= S0 exp
(

rt + σBt −
1
2
σ2t

)

.

As a consequence, the importance of the probability appears when we compute
the expectations

EP(St) = S0e
μt, EQ(St) = S0e

rt ,

with the help of the above formulae. Note that (Ste
−μt, t ≥ 0) is a P-martingale

and that (Ste
−rt, t ≥ 0) is a Q-martingale.

Example 1.7.3.5 Let

dXt = a dt + 2
√

XtdWt (1.7.1)

where we choose a ≥ 0 so that there exists a positive solution Xt ≥ 0. (See
� Chapter 6 for more information.) Let F be a C1 function. The continuity
of F implies that the local martingale

Lt = exp
(∫ t

0

F (s)
√

XsdWs −
1
2

∫ t

0

F 2(s)Xsds

)

is in fact a martingale, therefore E(Lt) = 1. From the definition of X and the
integration by parts formula,
∫ t

0

F (s)
√

XsdWs =
1
2

∫ t

0

F (s)(dXs − ads) (1.7.2)

=
1
2

(

F (t)Xt − F (0)X0 −
∫ t

0

F ′(s)Xsds− a

∫ t

0

F (s)ds
)

.

Therefore, one obtains the general formula

E

[

exp
(

1
2

{

F (t)Xt −
∫ t

0

[F ′(s) + F 2(s)]Xsds

})]

= exp
(

1
2

[

F (0)X0 + a

∫ t

0

F (s)ds
])

.
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In the particular case F (s) = −k/2, setting

Q|Ft = Lt P|Ft ,

we obtain

dXt = k(θ −Xt)dt + 2
√

XtdBt = (a− kXt)dt + 2
√

XtdBt (1.7.3)

where B is a Q-Brownian motion. Hence, if Q
a is the law of the process (1.7.1)

and k
Q

a the law of the process defined in (1.7.3) with a = kθ, we get from
(1.7.2) the absolute continuity relationship

k
Q

a|Ft = exp
(

k

4
(at−Xt + x) − k2

8

∫ t

0

Xsds

)

Q
a|Ft .

See Donati-Martin et al. [258] for more information.

Exercise 1.7.3.6 See Exercise 1.7.1.8 for the notation. Prove that B defined
by

dBt = dWt −

∫ ∞

−∞
dy h′(y)e−(y−Wt)

2/(2(T−t))

∫ ∞

−∞
dy h(y)e−(y−Wt)

2/(2(T−t))

dt

is a Q-Brownian motion. See Baudoin [61] for an application to finance. �

Exercise 1.7.3.7 (1) Let dSt = StσdWt, S0 = x. Prove that for any bounded
function f ,

E(f(ST )) = E

(
ST

x
f

(
x2

ST

))

.

(2) Prove that, if dSt = St(μdt + σdWt), there exists γ such that Sγ is a
martingale. Prove that for any bounded function f ,

E(f(ST )) = E

((
ST

x

)γ

f

(
x2

ST

))

.

Prove that, for bounded function f ,

E(Sα
T f(ST )) = xαeμ(α)T

E

(
f(eασ2TST ))

)
,

where μ(α) = α(μ + 1
2σ

2(α − 1)). See � Lemma 3.6.6.1 for application to
finance. �

Exercise 1.7.3.8 Let W be a P-Brownian motion, and Bt = Wt + νt be a
Q-Brownian motion, under a suitable change of probability. Check that, in the
case ν > 0, the process eWt tends towards 0 under Q when t goes to infinity,
whereas this is not the case under P. �
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Comment 1.7.3.9 The relation obtained in question (1) in Exercise 1.7.3.7
can be written as

E(ϕ(WT − σT/2)) = E(e−σ(WT +σT/2)ϕ(WT + σT/2))

which is an “h-process” relationship between a Brownian motion with drift
σ/2 and a Brownian motion with drift −σ/2.

Exercise 1.7.3.10 Examples of a martingale with respect to two different
probabilities:
Let W be a P-BM, and set dQ|Ft = LtdP|Ft where Lt = exp(λWt − 1

2λ
2t).

Prove that the process X, where

Xt = Wt −
∫ t

0

Ws

s
ds

is a Brownian motion with respect to its natural filtration under both P and Q.
Hint: (a) Under P, for any t, (Xu, u ≤ t) is independent of Wt and is a
Brownian motion.

(b) Replacing Wu by (Wu +λu) in the definition of X does not change the
value of X. (See Atlan et al. [26].) See also � Example 5.8.2.3. �

1.7.4 Multidimensional Case

Let W be an n-dimensional Brownian motion and θ an n-dimensional adapted
process such that

∫ t

0
||θs||2ds < ∞, a.s.. Define the local martingale L as the

solution of dLt = Ltθt � dWt = Lt(
∑n

i=1 θi
tdW

i
t ), so that

Lt = exp
(∫ t

0

θs � dWs −
1
2

∫ t

0

||θs||2ds
)

.

If L is a martingale, the n-dimensional process (W̃t = Wt −
∫ t

0
θsds, t ≥ 0)

is a Q-martingale, where Q is defined by Q|Ft = Lt P|Ft . Then, W̃ is
an n-dimensional Brownian motion (and in particular its components are
independent).

If W is a Brownian motion with correlation matrix Λ, then, since the
brackets do not depend on the probability, under Q, the process

W̃t = Wt −
∫ t

0

θs � Λds

is a correlated Brownian motion with the same correlation matrix Λ.
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1.7.5 Absolute Continuity

In this section, we describe Girsanov’s transformation in terms of absolute
continuity. We start with elementary remarks. In what follows, Wx denotes
the Wiener measure such that Wx(X0 = x) = 1 and W stands for W0. The
notation W(ν) for the law of a BM with drift ν on the canonical space will be
used:

W(ν)[F (Xt, t ≤ T )] = E[F (νt + Wt, t ≤ T )] .

On the left-hand side the process X is the canonical process, whose law is
that of a Brownian motion with drift ν, on the right-hand side, W stands for
a standard Brownian motion.

The right-hand side could be written as W(0)[F (νt + Xt, t ≤ T )]. We also
use the notation W(f) for the law of the solution of dXt = f(Xt)dt + dWt.

Comment 1.7.5.1 Throughout our book, (Xt, t ≥ 0) may denote a partic-
ular stochastic process, often defined in terms of BM, or (Xt, t ≥ 0) may be
the canonical process on C(R+,Rd). Each time, the context should not bring
any ambiguity.

Proposition 1.7.5.2 (Cameron-Martin’s Theorem.)
The Cameron-Martin theorem reads:

W(ν)[F (Xt, t ≤ T )] = W(0)[eνXT −ν2T/2F (Xt, t ≤ T )] .

More generally:

Proposition 1.7.5.3 (Girsanov’s Theorem.) Assume that the solution of
dXt = f(Xt)dt + dWt does not explode. Then, Girsanov’s theorem reads: for
any T ,

W(f)[F (Xt, t ≤ T )]

= W(0)

[

exp

(∫ T

0

f(Xs)dXs −
1
2

∫ T

0

f2(Xs)ds

)

F (Xt, t ≤ T )

]

.

This result admits a useful extension to stopping times (in particular to
explosion times):

Proposition 1.7.5.4 Let ζ be the explosion time of the solution of the SDE
dXt = f(Xt)dt + dWt. Then, for any stopping time τ ≤ ζ,

W(f)[F (Xt, t ≤ τ)]

= W(0)

[

exp
(∫ τ

0

f(Xs)dXs −
1
2

∫ τ

0

f2(Xs)ds
)

F (Xt, t ≤ τ)
]

.
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Example 1.7.5.5 From Cameron-Martin’s theorem applied to the particular
random variable F (Xt, t ≤ τ) = h(eσXτ ), we deduce

W(ν)(h(eσXτ )) = E(h(eσ(Wτ +ντ))) = W(0)(e−ν2τ/2+νXτ h(eσXτ ))

= E(e−ν2τ/2eνWτ h(eσWτ )) .

Example 1.7.5.6 If Ta(S) is the first hitting time of a for the geometric
Brownian motion S = xeσX defined in (1.5.3), with a > x and σ > 0, and
Tα(X) is the first hitting time of α = 1

σ ln(a/x) for the drifted Brownian
motion X defined in (1.5.4), then

E(F (St, t ≤ Ta(S))) = W(ν)
[
F (xeσXt , t ≤ Tα(X))

]

= W(0)
[
eνα− ν2

2 Tα(X)F (xeσXt , t ≤ Tα(X))
]

= E

(
eνα− ν2

2 Tα(W )F (xeσWt , t ≤ Tα(W ))
)

. (1.7.4)

Exercise 1.7.5.7 Let W be a standard Brownian motion, a > 1, and τ the
stopping time τ = inf{t : eWt−t/2 > a}. Prove that, ∀λ ≥ 1/2,

E

(

1{τ<∞} exp(λWτ − 1
2
λ2 τ

)

= 1 .

Hint:

E

(

1τ<∞ exp
(

λWτ − 1
2
λ2 τ

))

= W(λ)(τ < ∞) .

The process (Wt − 1
2 t, t ≥ 0) is, under W(λ), a BM with drift λ− 1

2 . �

Exercise 1.7.5.8 Let W be a P-Brownian motion and dQ|Ft = eWt−t/2dP|Ft .
Let τ = inf{t : Wt = −m} for m > 0. Compute P(τ < ∞) and Q(τ < ∞).
Hint: P(τ < ∞) = 1, and using results on hitting times of BM (see �
Proposition 3.1.6.1) Q(τ < ∞) = e−m

EP(e−τ/2) = e−2m. �

1.7.6 Condition for Martingale Property of Exponential Local
Martingales

As noted previously, if Q is a probability measure equivalent to P, then the
Radon-Nikodým density is a martingale: A strict local martingale cannot be
a density between two probabilities.

In many cases we have to solve a problem of the following form: let W be
a Brownian motion and

XΦ
t : = Wt −

∫ t

0

dsΦs (1.7.5)

where Φ is an FW -predictable process such that
∫ 1

0
ds |Φs| < ∞; find a

probability measure Q equivalent to P, such that (XΦ
t , t ≤ 1) is a (Q,F)-

martingale.
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Suppose that Q exists. Then Q|Ft = LtP|Ft and d〈L,W 〉t = ΦtLtdt.
Hence Lt = 1 +

∫ t

0
LsΦsdWs and

∫ t

0
dsΦ2

s < ∞, a.s.. It remains to check
that the local martingale L is a martingale. The positive local martingale L is
a supermartingale and is a martingale when E(Lt) = 1. We give below criteria
which can be more widely applied. A first condition is due to Novikov.

Proposition 1.7.6.1 (Novikov’s Condition.) If the continuous martin-
gale ζ satisfies:

E

(

exp
(

1
2
〈ζ〉∞

))

< ∞ (1.7.6)

then ζ belongs to Hp for every p ∈ [1,∞[ and L = E(ζ) is a uniformly
integrable martingale.

Proof: See [RY], Chapter VIII, Proposition 1.15. �

The constant 1/2 in (1.7.6) is the best possible (see Kazamaki [517],
Chapter 1, Example 1.5).

In the case where ζt =
∫ t

0
θsdWs, Novikov’s condition reads

E

(

exp
(

1
2

∫ ∞

0

θ2
sds

))

< ∞ .

Obviously, if we restrict our attention to the time interval [0, T ], Novikov’s
condition

E

(

exp

(
1
2

∫ T

0

θ2
sds

))

< ∞ (1.7.7)

implies that (Lt; 0 ≤ t ≤ T ) is a martingale where dLt = θtLtdWt. Note that,
Novikov’s condition (1.7.7) is satisfied whenever θ is bounded.

It should be noted that if the local martingale E(ζ) is uniformly integrable,
i.e., if the family of r.v. (E(ζ)t, t ≥ 0) is u.i., it is not necessarily a martingale
(see Kazamaki [517], Chapter 1, Example 1.1. for a counter-example). If
the local martingale E(ζ) belongs to class D, i.e., if the family of r.v.
(E(ζ)τ , τ stopping time) is u.i., then E(ζ) is a martingale. The process E(ζ)
can be a martingale which is not uniformly integrable: take ζ = B where B
is a Brownian motion.

Let us give two theorems (see Kazamaki [517]).

Theorem 1.7.6.2 (Kazamaki’s Criterion.) If ζ is a continuous local
martingale such that the process exp(1

2ζ) is a uniformly integrable sub-
martingale, then the process L = E(ζ) is a uniformly integrable martingale.

Theorem 1.7.6.3 (BMO Criterion.) Let ζ be a continuous martingale in
BMO, then the process L = E(ζ) is a uniformly integrable martingale.
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These conditions are often difficult to check and the following proposition
is a useful tool. In a Markovian case, an easy condition is the following:

Proposition 1.7.6.4 (Non-explosion Criteria.) Let ζt =
∫ t

0
b(s,Ws)dWs

where b satisfies {
|b(s, x) − b(s, y)| ≤ C|x− y| ,
sups≤t |b(s, 0)| ≤ C .

Then, the process Zt = exp(ζt − 1
2 〈ζ〉t) ; t ≥ 0 is a martingale. More generally,

Z is a martingale as soon as the stochastic equation

dXt = b(t,Xt)dt + dWt, X0 = 0

has a unique solution in law, without explosion.

Proof: If the stochastic differential equation Xt = Wt +
∫ t

0
b(s,Xs)ds has

a unique solution, its law is locally equivalent to the Wiener measure (here,
locally refers to the existence of a localizing sequence of stopping times). Let
Tn = inf{t : |Xt| = n}. We define an equivalent probability measure Wb via:

Wb|Ft∧Tn
= exp

[∫ t∧Tn

0

b(s,Xs)dXs −
1
2

∫ t∧Tn

0

b2(s,Xs)ds

]

W|Ft∧Tn
.

Then, for any Ft ∈ Ft

Wb(Ft1{t<Tn}) = W
(

Ft1{t<Tn} exp
[∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
])

Letting n go to infinity, and using the fact that Tn → ∞ both under Wb and
W, we obtain:

Wb|Ft = exp
[∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
]

W|Ft ,

hence, the process

exp
(∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
)

, t ≥ 0

is a martingale. �

In the particular case b(x) = λx of the OU process, we deduce that the
process

exp
(

λ
B2

t − t

2
− λ2

2

∫ t

0

dsB2
s

)

, t ≥ 0

is a martingale, for any λ ∈ R.
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Example 1.7.6.5 If dXt = dBt + f(Xt)dt, where f : R → R is a C1-
function, the Feller criterion (see McKean [636] or � Proposition 5.3.3.4)
gives a sufficient condition for no explosion. Note that if W(f)

x is the law of
the solution, and τ the explosion time, then

W(f)
x |Ft∩{t<τ} = exp

(∫ t

0

f(Xs)dXs −
1
2

∫ t

0

f2(Xs)ds
)

Wx|Ft

= exp
(

F (Xt) − F (x) − 1
2

∫ t

0

(f2 + f ′)(Xs)ds
)

Wx|Ft

where F is an antiderivative of f . If f(x) = |x|γ with γ > 1, then there is
explosion. In the case f(x) = cx2n, one gets

P
(c,n)(τ > t) = E

(

exp
(

c

∫ t

0

B2n
s dBs −

c2

2

∫ t

0

B4n
s ds

))

= E

(

exp
(

ctn+1/2

∫ 1

0

B2n
s dBs −

c2

2
t2n+1

∫ 1

0

B4n
s ds

))

,

which gives an implicit description of the law of τ in terms of the joint law of(∫ 1

0
B2n

s dBs,
∫ 1

0
B4n

s ds
)
.

Example 1.7.6.6 Let us give one example of a local martingale which is not
a martingale (we say that the local martingale is a strict local martingale).
Let α be a positive real number and

dXt = XtY
α
t σdBt; dYt = Yta dBt .

Using the fact that the process Z defined by dZt = ZtadWt + Zα+1
t μdt with

μ > 0 has a finite explosion time, Sin [800] proves that the process X is a
strict local martingale.

Comment 1.7.6.7 There is an extensive literature on uniformly integrable
exponential martingales. Let us mention Cherny and Shiryaev [169], Choulli
et al. [181], Kazamaki [517] and Lépingle and Mémin [580].

1.7.7 Predictable Representation Property under a Change of
Probability

Let F be the filtration of a Brownian motion W and θ an F-adapted
process such that the local martingale Lt : = exp(

∫ t

0
θsdWs − 1

2

∫ t

0
θ2

s ds) is
a martingale. Let Q be the probability law, equivalent to P on Ft for any t,
defined as Q|Ft = Lt P|Ft . Girsanov’s theorem implies that W̃t : = Wt−

∫ t

0
θsds

is an (F,Q)-Brownian motion. Since, obviously, the process W̃ is F-adapted,
the inclusion F̃t = σ(W̃s, s ≤ t) ⊆ Ft holds. If θ is deterministic, then both
filtrations are equal, but this is not the case in general (see Tsirel’son’s example
1.5.5.6 or [822]). However, the representation theorem (see Section 1.6.1)
extends to this framework.
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Proposition 1.7.7.1 Let W be a Brownian motion under P, F its natural
filtration, and Q a probability measure locally equivalent to P. Let W̃ be the
martingale part of the Q-semimartingale W . If M is a (F,Q)-local martingale,
there exists an F-predictable process H such that

∀t, Mt = M0 +
∫ t

0

Hs dW̃s .

Proof: It is enough to write the predictable representation of the P-
martingale ML as MtLt = M0+

∫ t

0
ψsdWs. From Itô’s formula and the obvious

relation M = (ML)L−1, the process M can be written as a stochastic integral
w.r.t. W̃ . �

We have here an example of a “weakly Brownian filtration.” We shall give
other examples in � Chapter 5.

Exercise 1.7.7.2 Prove the result recalled in Comment 1.4.1.6.
Hint: If W

(i)
T could be written as

∫ T

0
φ

(i)
s dBs for i = 1, 2, the properties of

φ(i) would lead to a contradiction. �

1.7.8 An Example of Invariance of BM under Change of Measure

Let P and Q be two equivalent probabilities on (Ω,F) and X a r.v. (or a
process). We present a simple condition under which the law of X is the same
under P and Q, as well as an example (see also � Example 1.7.3.10).

Proposition 1.7.8.1 Let X be a real-valued F-Brownian motion under P

and L be the Radon-Nikodým density of Q w.r.t. P. Then X is a Q-Brownian
motion if and only if X and L are (F,P)-orthogonal martingales

Proof: Note that

X̃t = Xt −
∫ t

0

d〈X,L〉s
Ls

is a (F,Q)- Brownian motion. �

This result admits an extension to the multidimensional case: Let W be an
n-dimensional Brownian motion and Xt = x +

∫ t

0
xs � dWs where (xt, t ≥ 0)

is an n-dimensional predictable process. The process X is a BM if and only
if |xt|2 = 1, ds × dPa.s. Let L be a Radon-Nikodým density. The process L

admits the representation Lt = 1 +
∫ t

0
 s � dWs. The process X is a (F,Q)-

Brownian motion if and only if xt �  t = 0, dt× dP a.s.

Example 1.7.8.2 If W = (X,Y ) is a 2-dimensional Brownian motion
starting from (a, b), the pair (x,  ) where xt = Wt/|Wt| (stopped at the first
time |W | vanishes) and  t = (Yt,−Xt) satisfies the previous condition.
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