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Preface

We translate to the domain of mathematical finance what F. Knight wrote, in
substance, in the preface of his Essentials of Brownian Motion and Diffusion
(1981): “it takes some temerity for the prospective author to embark on yet
another discussion of the concepts and main applications of mathematical
finance”. Yet, this is what we have tried to do in our own way, after
considerable hesitation.

Indeed, we have attempted to fill the gap that exists in this domain
between, on the one hand, mathematically oriented presentations which
demand quite a bit of sophistication in, say, functional analysis, and are thus
difficult for practitioners, and on the other hand, mainstream mathematical
finance books which may be hard for mathematicians just entering into
mathematical finance.

This has led us, quite naturally, to look for some compromise, which in
the main consists of the gradual introduction, at the same time, of a financial
concept, together with the relevant mathematical tools.

Interlacing: This program interlaces, on the one hand, the financial
concepts, such as arbitrage opportunities, admissible strategies, contingent
claims, option pricing, default risk and ruin problems, and on the other hand,
Brownian motion, diffusion processes, Lévy processes, together with the basic
properties of these processes. We have chosen to discuss essentially continuous-
time processes, which in some sense correspond to the real-time efficiency
of the markets, although it would also be interesting to study discrete-time
models. We have not done so, and we refer the reader to some relevant
bibliography in the Appendix at the end of this book. Another feature of
our book is that in the first half we concentrate on continuous-path processes,
whereas the second half deals with discontinuous processes.
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Special features of the book: Intending that this book should be
readable for both mathematicians and practitioners, we were led to a
somewhat unusual organisation, in particular:

1. in a number of cases, when the discussion becomes too technical, in the
Mathematics or the Finance direction, we give only the essence of the
argument, and send the reader to the relevant references,

2. we sometimes wanted a given section, or paragraph, to contain most of
the information available on the topic treated there. This led us to:
a) some forward references to topics discussed further in the book, which

we indicate throughout the book with an arrow ( � )
b) some repetition or at least duplication of the same kind of topic

in various degrees of generality. Let us give an important example:
Itô’s formula is presented successively for continuous path semi-
martingales, Poisson processes, general semi-martingales, mixed pro-
cesses and Lévy processes.

We understand that this way of writing breaks away with the academic
tradition of book writing, but it may be more convenient to access an
important result or method in a given context or model.

About the contents: At this point of the Preface, the reader may expect
to find a detailed description of each chapter. In fact, such a description is
found at the beginning of each chapter, and for the moment we simply refer
the reader to the Contents and the user’s guide, which follows the Contents.

Numbering: In the following, C,S,B,R are integers. The book consists of
two parts, eleven chapters and two appendices. Each chapter C is divided into
sections C.S., which in turn are divided into subsections C.S.B. A statement in
Subsection C.S.B. is numbered as C.S.B.R. Although this system of numbering
is a little heavy, it is the only way we could find of avoiding confusion between
the numbering of statements and unrelated sections.

What is missing in this book? Besides discussing the content of
this book, let us also indicate important topics that are not considered
here: The term structure of interest rate (in particular Heath-Jarrow-Morton
and Brace-Gatarek-Musiela models for zero-coupon bonds), optimization of
wealth, transaction costs, control theory and optimal stopping, simulation
and calibration, discrete time models (ARCH, GARCH), fractional Brownian
motion, Malliavin Calculus, and so on.

History of mathematical finance: More than 100 years after the thesis
of Bachelier [39, 41], mathematical finance has acquired a history that is
only slightly evoked in our book, but by now many historical accounts and
surveys are available. We recommend, among others, the book devoted to
Bachelier by Courtault and Kabanov [199], the book of Bouleau [114] and
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the collective book [870], together with introductory papers of Broadie and
Detemple [129], Davis [221], Embrechts [321], Girlich [392], Gobet [395, 396],
Jarrow and Protter [480], Samuelson [758], Taqqu [819] and Rogers [738], as
well as the seminal papers of Black and Scholes [105], Harrison and Kreps
[421] and Harrison and Pliska [422, 423]. It is also interesting to read the talks
given by the Nobel prize winners Merton [644] and Scholes [764] at the Royal
Academy of Sciences in Stockholm.

A philosophical point: Mathematical finance raises a number of
problems in probability theory. Some of the questions are deeply rooted
in the developments of stochastic processes (let us mention Bachelier once
again), while some other questions are new and necessitate the use of
sophisticated probabilistic analysis, e.g., martingales, stochastic calculus, etc.
These questions may also appear in apparently completely different fields,
e.g., Bessel processes are at the core of the very recent Stochastic Loewner
Evolutions (SLE) processes. We feel that, ultimately, mathematical finance
contributes to the foundations of the stochastic world.

Any relation with the present financial crisis (2007-?)? The writing
of this book began in February 2001, at a time when probabilists who had
engaged in Mathematical Finance kept developing central topics, such as the
no-arbitrage theory, resting implicitly on the “good health of the market”,
i.e.: its “natural” tendency towards efficiency. Nowadays, “the market” is
in quite “bad health” as it suffers badly from illiquidity, lack of confidence,
misappreciation of risks, to name a few points. Revisiting previous axioms in
such a changed situation is a huge task, which undoubtedly shall be addressed
in the future. However, for obvious reasons, our book does not deal with these
new and essential questions.

Acknowledgements: We warmly thank Yann Le Cam, Olivier Le
Courtois, Pierre Patie, Marek Rutkowski, Paavo Salminen and Michael
Suchanecki, who carefully read different versions of this work and sent us many
references and comments, and Vincent Torri for his advice on Tex language.
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M. Siopacha, Th. Steiner and R. Warnung for their helpful suggestions. We
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8.6.4 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.6.5 Hitting Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.6.6 Change of Probability Measure . . . . . . . . . . . . . . . . . . . . . . 494
8.6.7 Price Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
8.6.8 Martingale Representation Theorem . . . . . . . . . . . . . . . . . 496
8.6.9 Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

8.7 Ruin Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.7.1 Ruin Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.7.2 Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498



xviii Contents

8.7.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.8 Marked Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

8.8.1 Random Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.8.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.8.3 An Integration Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
8.8.4 Marked Point Processes with Intensity and Associated

Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
8.8.5 Girsanov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
8.8.6 Predictable Representation Theorem . . . . . . . . . . . . . . . . . 504

8.9 Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.9.1 Poisson Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.9.2 Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
8.9.3 Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
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User’s Guide

This book consists of two parts: the first part concerns continuous-path
processes, and the second part concernes jump processes.

Part I:
Chapter 1 introduces the main results for continuous-path processes and

presents many examples, including in particular Brownian motion.
Chapter 2 presents the main tools in finance: self-financing portfolios,

valuation of contingent claims, hedging strategies.
Chapter 3 contains some useful information about hitting times and their

laws. Closed form expressions are given in the case of (geometric) Brownian
motion.

Chapter 4 discusses finer properties of Brownian motion, e.g., local times,
bridges, excursions and meanders.

Chapter 5 is devoted mainly to the presentation of one-dimensional
diffusions, thus extending the scope of Chapter 4. Filtration problems are
also studied.

Chapter 6 focuses on Bessel processes and applications to finance.

Part II:
Chapter 7 is concerned with models of default risk, which involve stochastic

processes with a single jump.
Chapter 8 introduces Poisson and compound Poisson processes, which are

standard examples of jump processes.
Chapter 9 contains general theory of semi-martingales and aims at unifying

results obtained in Chapters 1 and 8.
Chapter 10 presents some jump-diffusion processes and their applications

to Finance.
Chapter 11 gives basic results about Lévy processes.
Chapter 12 consists of a list of useful formulae found throughout this book.



xxiv User’s Guide

At the end of the book, the reader will find an extended bibliography, and
a list of references, sorted by thema, followed by an index of authors, in which
the page number where each author is quoted is specified.

In the text, some important words are in boldface. These words are also
found in the subject index. Some notation can be found in the notation index.

To complete this guide, we emphasize some particular features of this book,
already mentioned in the Preface:
• in some cases, proofs are sketched and/or omitted, but precise references
are given;
• forward references to topics discussed further in the book are indicated
with the arrow � ;
• we proceed by generalization: an important case/process is discussed,
followed (a little later) by a general study.

Throughout this book, the symbol � indicates the end of a proof, the symbol
� indicates the end of an exercise and the symbol � is used to separate a long
proof into different parts.

Section 2.1 refers to Chapter 2, Section 1, and Subsection 4.3.7 refers to
Chapter 4, Section 3, Subsection 7. Theorem (Proposition, Lemma) 3.2.1.4
is the 4th in Chapter 3, Section 2, Subsection 1.

Begin at the beginning, and go on till you come to the end. Then, stop.

Lewis Carroll, Alice’s Adventures in Wonderland.



Notation xxv

Notation and Abbreviations

We shall use the standard notation and abbreviations.

We shall use increasing instead of nondecreasing and positive instead
of non-negative.

u.i. : uniformly integrable (for a family of r.v.’s)
BM : Brownian motion
r.v. : random variable

e.m.m. : equivalent martingale measure
a.s. : almost surely

w.r.t. : with respect to
w.l.g. : without loss of generality
SDE : Stochastic Differential Equation

BSDE : Backward Stochastic Differential Equation
PRP : Predictable Representation Property
MCT : Monotone Class Theorem
x ∨ y = sup(x, y)
x ∧ y = inf(x, y)
x � y : scalar product of the vectors x, y ∈ R

d

H�X : stochastic integral of the process H with respect to the
semi-martingale X

x+ = x ∨ 0
x− = (−x) ∨ 0

∂xf =
∂

∂x
f = fx

Cn
b : set of functions with continuous bounded derivatives

up to n-th order
μ(t), μt : A function (or a process) evaluated at time t.

If μ is a deterministic function, μ(t) is preferably used;
if μ is a process, when the subscript is not too large,
μt is prefered

∫ b
a
dsf(s) =

∫ b
a
f(s)ds when it seems convenient

X
law= Y : the random variables (or the processes) X and Y have

the same law
X

mart= Y : the process X − Y is a local martingale
X ∈ F : X is a F-measurable r.v., i.e., X ∈ L0(F)
X ∈ bF : X is a bounded F-measurable random variable
N (x) = 1√

2π

∫ x
−∞ e−y2/2dy, the cumulative function for a

standard Gaussian law

Other notation can be found in the glossary at the end of the volume.
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Continuous Path Processes
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Continuous-Path Random Processes:
Mathematical Prerequisites

Historically, in mathematical finance, continuous-time processes have been
considered from the very beginning, e.g., Bachelier [39, 41] deals with
Brownian motion, which has continuous paths. This may justify making our
starting point in this book to deal with continuous-path random processes,
for which, in this first chapter, we recall some well-known facts. We try to
give all the definitions and to quote all the important facts for further use. In
particular, we state, without proofs, results on stochastic calculus, change of
probability and stochastic differential equations.

For proofs, the reader can refer to the books of Revuz and Yor [730],
denoted hereafter [RY], Chung and Williams [186], Ikeda and Watanabe
[456], Karatzas and Shreve [513], Lamberton and Lapeyre [559], Rogers and
Williams [741, 742] and Williams, R. [845]. See also the reviews of Varadhan
[826], Watanabe [836] and Rao [729]. The books of Øksendal [684] and Wong
and Hajek [850] cover a large part of stochastic calculus.

1.1 Some Definitions

1.1.1 Measurability

Given a space Ω, a σ-algebra on Ω is a class F of subsets of Ω, such that F is
closed under complements and countable intersection (hence under countable
union) and ∅ ∈ F (hence, Ω ∈ F). For a given class C of subsets of Ω, we
denote by σ(C) the smallest σ-algebra which contains C (i.e., the intersection
of all the σ-algebras containing G).

A measurable space (Ω,F) is a space Ω endowed with a σ-algebra F .
A measurable map X from (Ω,F) to another measurable space (E, E) is a
map from Ω to E such that, for any B ∈ E , the set

X−1(B) : = {ω ∈ Ω : X(ω) ∈ B}
belongs to F .

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 1,
c© Springer-Verlag London Limited 2009
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A real-valued random variable (r.v.) on (Ω,F) is a measurable map from
(Ω,F) to (R,B) where B is the Borel σ-algebra, i.e., the smallest σ-algebra
that contains the intervals.

Let X be a real-valued random variable on a measurable space (Ω,F).
The σ-algebra generated by X, denoted σ(X), is σ(X) := {X−1(B) ;B ∈ B}.
Doob’s theorem asserts that any σ(X)-measurable real-valued r.v. can be
written as h(X) where h is a Borel function, i.e., a measurable map from
(R,B) to (R,B) (a function such that h−1(B) : = {x ∈ R : h(x) ∈ B} ∈ B for
any B ∈ B). The set of bounded Borel functions on a measurable space (E, E)
(i.e., the measurable maps from (E, E) to (R,B)) will be denoted by b(E). If
H is a σ-algebra on Ω, we shall make the slight abuse of notation by writing
X ∈ H for: X is an H-measurable r.v. and X ∈ bH for: X is a bounded r.v.
in H.

Let (Xi, i ∈ I) be a set of random variables. There exists a unique r.v.
with values in R̄, denoted esssupiXi (essential supremum of the family
(Xi; i ∈ I)) such that, for any r.v. Y ,

Xi ≤ Y a.s.∀i ∈ I ⇐⇒ esssupiXi ≤ Y .

If the family is countable, esssupiXi = supiXi. In the case where the set I is
not countable, the map supiXi (pointwise supremum) may not be a random
variable.

1.1.2 Monotone Class Theorem

We will frequently use the monotone class theorem which we state without
proof (see Dellacherie and Meyer [242], Chapter 1). We give two different
versions of that theorem, one dealing with sets, the other with functions.

Theorem 1.1.2.1 Let C be a collection of subsets of Ω such that

• Ω ∈ C,
• if A,B ∈ C and A ⊂ B, then B\A = B ∩Ac ∈ C,
• if An is an increasing sequence of elements of C, then ∪nAn ∈ C.

Then, if F ⊂ C where F is closed under finite intersections, then σ(F) ⊂ C.

Theorem 1.1.2.2 Let V be a vector space of bounded real-valued functions
on Ω such that

• the constant functions are in V,
• if hn is an increasing sequence of positive elements of V such that

h = suphn is bounded, then h ∈ V.

If G is a subset of V which is stable under pointwise multiplication, then V
contains all the bounded σ(G)-measurable functions.
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1.1.3 Probability Measures

A probability measure P on a measurable space (Ω,F) is a map from F
to [0, 1] such that:

• P(Ω) = 1,
• P(∪∞

i=1Ai) =
∑∞

i=1 P(Ai) for any countable family of disjoint sets Ai ∈ F ,
i.e., such that Ai ∩Aj = ∅ for i = j.

Note that, for A ∈ F , P(A) = 1 − P(Ac) where Ac is the complement set of
A, hence P (∅) = 0.

We shall often write, for J a countable set, P(Aj , j ∈ J) for P(∩j∈JAj).

Warning 1.1.3.1 The property P(∪∞
i=1Ai) =

∑∞
i=1 P(Ai) does not extend to

a non-countable family.

A measurable space (Ω,F) endowed with a probability measure P is called
a probability space.

The “elementary” negligible sets are the sets A ∈ F such that P(A) = 0.
Sets Γ ⊂ Γ ′ with Γ ′ ∈ F and P(Γ ′) = 0 are said to be (P,F)-negligible.

If (Ω,F) is a measurable space and P a probability measure on F , the
completion of F with respect to P is the σ-algebra of subsets A of Ω such
that there exist A1 and A2 in F with A1 ⊂ A ⊂ A2 and P(A1) = P(A2) (or,
equivalently, P(A2 ∩Ac

1) = 0). In particular, the completion of F contains all
the P-negligible sets.

1.1.4 Filtration

A filtration F = (Ft, t ≥ 0) is a family of σ-algebras Ft on the same
probability space (Ω,F ,P), which is increasing, i.e., such that Fs ⊂ Ft for
s < t (that is: if A ∈ Fs, then A ∈ Ft for s < t). We note F∞ = ∨t∈RFt.

It is generally assumed that the filtration satisfies the so-called “usual
hypotheses,” that is,

(i) the filtration is right-continuous, i.e., Ft = ∩u>tFu,
(ii) the σ-algebra F0 contains the (P,F)-negligible sets of F∞.

Usually, (but not always) the σ-algebra F0 is the trivial σ-algebra, up to
completion.

A probability space endowed with a filtration which satisfies the usual
hypotheses is called a filtered probability space.

We shall say that a filtration G is larger than F, and write F ⊂ G, if
Ft ⊂ Gt, ∀t.

Comment 1.1.4.1 It is important that the usual hypotheses are satisfied in
order to be able to apply general results on stochastic processes, especially
when studying processes with jumps.
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1.1.5 Law of a Random Variable, Expectation

The law of a real-valued r.v.X defined on the space (Ω,F ,P) is the probability
measure PX on (R,B) defined by

∀A ∈ B, PX(A) = P(X ∈ A) .

It is the image on (R,B) of P by the map ω → X(ω). This definition extends
to an R

n-valued random variable, and, more generally, to an E-valued random
variable (a measurable map from (Ω,F) to (E, E)). If X and Y have the same
law, we shall write X law= Y .

The cumulative distribution function of a real valued r.v. X is the
right-continuous function F defined as F (x) = P(X ≤ x).

The expectation of a positive random variable Z is defined as

E(Z) =
∫
ZdP =

∫

R+
x dPZ(x) ,

and, if E(|X|) < ∞, then E(X) = E(X+) − E(X−). In case of ambiguity, we
shall denote by EP the expectation with respect to the probability measure P.
The r.v. X is said to be P-integrable (or integrable if there is no ambiguity)
if E(|X|) <∞.

There are a few important transforms T of probabilities (on R, say) which
characterize a given probability μ, i.e., such that the map μ → T (μ) is one-
to-one.

• The Fourier transform Fμ(t) =
∫

R
eitxμ(dx) (where t ∈ R).

• The Laplace transform Lμ(λ) =
∫

R
e−λxμ(dx) defined on the interval

{λ ∈ R : E(e−λX) <∞}. Note that the Laplace transform is well defined
on R

+ if X is positive. We shall also use, when it is defined, the Laplace
transform E(eλX), λ ∈ R.

1.1.6 Independence

A family of random variables (Xi, i ∈ I), defined on the space (Ω,F ,P), is said
to be independent if, for any n distinct indices (i1, i2, . . . , in) with ik ∈ I
and for any (A1, . . . , An) where Ak ∈ B,

P (∩n
k=1(Xik ∈ Ak)) =

n∏

k=1

P(Xik ∈ Ak) .

A classical application of the monotone class theorem is that, if the r.vs
(Xi, i ∈ I) are independent, then, with the same notation as above, for any
bounded Borel functions fk,
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E

(
n∏

k=1

fk(Xik)

)

=
n∏

k=1

E (fk(Xik)) .

The converse holds true as well. In particular, two random variables X and
Y are independent if and only if, for any pair of bounded Borel functions f
and g, E(f(X)g(Y )) = E(f(X))E(g(Y )). For the independence property to
hold true, it suffices that this equality is satisfied for “enough” functions, for
example:

• for f, g of the form f = 1]−∞,a], g = 1]−∞,b] for every pair of real numbers
(a, b), i.e.,

P(X ≤ a, Y ≤ b) = P(X ≤ a) P(Y ≤ b) ,

• for f, g of the form f(x) = eiλx, g(x) = eiμx for every pair of real numbers
(λ, μ), i.e.,

E(ei(λX+μY )) = E(eiλX) E(eiμY ) .

• in the case where X and Y are positive random variables, for f, g of the
form f(x) = e−λx, g(x) = e−μx for every pair of positive real numbers
(λ, μ), i.e.,

E(e−λXe−μY ) = E(e−λX)E(e−μY ) .

It is important to note that if X and Y are independent r.vs, then for any
bounded Borel function Φ defined on R

2, E(Φ(X,Y )) = E(ϕ(X)) where
ϕ(x) = E(Φ(x, Y )). This result can be seen as a consequence of the monotone
class theorem, or as an application of Fubini’s theorem.

1.1.7 Equivalent Probabilities and Radon-Nikodým Densities

Let P and Q be two probabilities defined on the same measurable space (Ω,F).
The probability Q is said to be absolutely continuous with respect to P,
(denoted Q << P) if P(A) = 0 implies Q(A) = 0, for any A ∈ F . In that case,
there exists a positive, F-measurable random variable L, called the Radon-
Nikodým density of Q with respect to P, such that

∀A ∈ F ,Q(A) = EP(L1A) .

This random variable L satisfies EP(L) = 1 and for any Q-integrable random
variable X, EQ(X) = EP(XL). The notation dQ

dP
= L (or Q|F = LP|F ) is in

common use, in particular in the chain of equalities

EQ(X) =
∫
XdQ =

∫
X
dQ

dP
dP =

∫
XLdP = EP(XL) .

The probabilities P and Q are said to be equivalent, (this will be denoted
P ∼ Q), if they have the same negligible sets, i.e., if for any A ∈ F ,

Q(A) = 0 ⇔ P(A) = 0 ,
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or equivalently, if Q << P and P << Q. In that case, there exists a strictly
positive, F-measurable random variable L, such that Q(A) = EP(L1A). Note
that dP

dQ
= L−1 and P(A) = EQ(L−11A).

Conversely, if L is a strictly positive F-measurable r.v., with expectation
1 under P, then Q = L · P defines a probability measure on F , equivalent to
P. From the definition of equivalence, if a property holds almost surely (a.s.)
with respect to P, it also holds a.s. for any probability Q equivalent to P.
Two probabilities P and Q on the same filtered probability space (Ω,F) are
said to be locally equivalent1 if they have the same negligible sets on Ft, for
every t ≥ 0, i.e., if Q|Ft ∼ P|Ft . In that case, there exists a strictly positive F-
adapted process (Lt, t ≥ 0) such that Q|Ft = LtP|Ft . (See � Subsection 1.7.1
for more information.) Furthermore, if τ is a stopping time (see � Subsection
1.2.3), then

Q|Fτ∩{τ<∞} = Lτ · P|Fτ∩{τ<∞} .

This will be important when dealing with Girsanov’s theorem and explosion
times (See � Proposition 1.7.5.3).

Warning 1.1.7.1 If P ∼ Q and X is a P-integrable random variable, it is
not necessarily Q-integrable.

1.1.8 Construction of Simple Probability Spaces

In order to construct a random variable with a given law, say a Gaussian law,
the canonical approach is to take Ω = R, X : Ω → R;X(ω) = ω the identity
map and P the law on Ω = R with the Gaussian density with respect to the
Lebesgue measure, i.e.,

P(dω) =
1√
2π

exp
(

−ω
2

2

)

dω

(recall that here ω is a real number). Then the cumulative distribution
function of the random variable X is

FX(x) = P(X ≤ x) =
∫

Ω

1{ω≤x}P(dω) =
∫ x

−∞

1√
2π

exp
(

−ω
2

2

)

dω .

Hence, the map X is a Gaussian random variable. The construction of a real
valued r.v. with any given law can be carried out using the same idea; for
example, if one needs to construct a random variable with an exponential
law, then, similarly, one may choose Ω = R and the density e−ω1{ω≥0}.

For two independent variables, we choose Ω = Ω1 ×Ω2 where Ωi, i = 1, 2
are two copies of R. On each Ωi, one constructs a random variable as above,
1 This commonly used terminology often refers to a sequence (Tn) of stopping times,

with Tn ↑ ∞ a.s.; here, it is preferable to restrict ourselves to the deterministic
case Tn = n.
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and defines P = P1 ⊗P2 where the product probability P1 ⊗P2 is first defined
on the sets A1 ×A2 for Ai ∈ B, the Borel σ-field of R, as

(P1 ⊗ P2)(A1 ×A2) = P1(A1)P2(A2) ,

and then extended to B × B.

1.1.9 Conditional Expectation

Let X be an integrable random variable on the space (Ω,F ,P) and H a σ-
algebra contained in F , i.e., H ⊆ F . The conditional expectation of X
given H is the almost surely unique H-measurable random variable Z such
that, for any bounded H-measurable random variable Y ,

E(ZY ) = E(XY ) .

The conditional expectation is denoted E(X|H) and the following properties
hold (see, for example Breiman [123], Williams [842, 843]):

• If X is H-measurable, E(X|H) = X, a.s.
• E(E(X|H)) = E(X).
• If X ≥ 0, then E(X|H) ≥ 0 a.s.
• Linearity: If Y is an integrable random variable and a, b ∈ R,

E(aX + bY |H) = aE(X|H) + bE(Y |H), a.s.

• If G is another σ-algebra and G ⊆ H, then

E(E(X|G)|H) = E(E(X|H)|G) = E(X|G), a.s.

• If Y is H-measurable and XY is integrable, E(XY |H) = Y E(X|H) a.s.
• Jensen’s inequality: If f is a convex function such that f(X) is integrable,

E(f(X)|H) ≥ f(E(X|H)), a.s.

In the particular case where H is the σ-algebra generated by a r.v. Y , then
E(X|σ(Y )), which is usually denoted by E(X|Y ), is σ(Y )-measurable, hence
there exists a Borel function ϕ such that E(X|Y ) = ϕ(Y ). The function ϕ is
uniquely defined up to a PY -negligible set. The notation E(X|Y = y) is often
used for ϕ(y).

If X is an R
p-valued random variable, and Y an R

n-valued random
variable, there exists a family of measures (conditional laws) μ(dx, y) such
that, for any bounded Borel function h

E(h(X)|Y = y) =
∫
h(x)μ(dx, y) .

If (X,Y ) are independent random variables, and h is a bounded Borel function,
then E(h(X,Y )|Y ) = Ψ(Y ), where Ψ(y) = E(h(X, y)), i.e., the conditional law
of X given Y = y does not depend on y.
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Note that, if X is square integrable, then E(X|H) may be defined as the
projection of X on the space L2(Ω,H) of H-measurable square integrable
random variables. The conditional variance of a square integrable random
variable X is

var(X|H) = E(X2|H) − (E(X|H))2 .

Definition 1.1.9.1 Two σ-algebras G1 and G2 are said to be conditionally
independent with respect to the σ-algebra H if E(G1G2|H) = E(G1|H)E(G2|H)
for any bounded random variables Gi ∈ Gi. Two random variables X and Y
are conditionally independent with respect to the σ-algebra H if σ(X) and
σ(Y ) are conditionally independent with respect to H.

This may be extended obviously to any finite family of r.v’s. Two infinite
families of random variables are conditionally independent if any finite
subfamilies are conditionally independent.

1.1.10 Stochastic Processes

Definition 1.1.10.1 A continuous time process X on (Ω,F ,P) is a family of
random variables (Xt, t ≥ 0), such that the map (ω, t) → Xt(ω) is F ⊗B(R+)
measurable.

We emphasize that when speaking of processes, we always mean a measurable
process.

A process X is continuous if, for almost all ω, the map t → Xt(ω) is
continuous. The process is continuous on the right with limits on the left (in
short càdlàg following the French acronym2 if, for almost all ω, the map
t→ Xt(ω) is càdlàg.

Definition 1.1.10.2 A process X is increasing if X0 = 0, X is right-
continuous, and Xs ≤ Xt, a.s. for s ≤ t.

Definition 1.1.10.3 Let (Ω,F ,F,P) be a filtered probability space. The
process X is F-adapted if for any t ≥ 0, the random variable Xt is Ft-
measurable.

The natural filtration FX of a stochastic process X is the smallest filtration
F which satisfies the usual hypotheses and such that X is F-adapted. We
shall write in short (with an abuse of notation) FX

t = σ(Xs, s ≤ t).

2 In French, continuous on the right is continu à droite, and with limits on the
left is admettant des limites à gauche. We shall also use càd for continuous on
the right. The use of this acronym comes from P-A. Meyer.
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Let G = (Gt, t ≥ 0) be another filtration on Ω. If G is larger than F, and
if X is an F-adapted process, it is also G-adapted.

Definition 1.1.10.4 A real-valued process X is progressively measurable
with respect to a given filtration F = (Ft, t ≥ 0), if, for every t, the map
(ω, s) → Xs(ω) from Ω × [0, t] into R is Ft × B([0, t])-measurable.

Any càd (or càg) F-adapted process is progressively measurable. An F-
progressively measurable process is F-adapted. If X is progressively measur-
able, then

E

(∫ ∞

0

Xtdt

)

=
∫ ∞

0

E (Xt) dt,

where the existence of one of these expressions implies the existence of the
other.

Definition 1.1.10.5 Two processes (Xt, t ≥ 0) and (Yt, t ≥ 0) have the same
law if, for any n and any (t1, t2, . . . , tn)

(Xt1 , Xt2 , . . . , Xtn) law= (Yt1 , Yt2 , . . . , Ytn) .

We shall write in short X law= Y , or X law= μ for a given probability law μ (on
the canonical space).

The processX is a modification of Y if, for any t, P(Xt = Yt) = 1. The process
X is indistinguishable from (or a version of) Y if {ω : Xt(ω) = Yt(ω),∀t}
is a measurable set and P(Xt = Yt,∀t) = 1. If X and Y are modifications of
each other and are a.s. continuous, they are indistinguishable.

Let us state without proof a sufficient condition for the existence of a
continuous version of a stochastic process.

Theorem 1.1.10.6 (Kolmogorov.) If a collection (Xt, t ≥ 0) of random
variables satisfies

E(|Xt −Xs|p) ≤ C|t− s|1+ε

for some C > 0, p > 0 and ε > 0, then this collection admits a modification
(X̃t, t ≥ 0) which is a.s. continuous, i.e., out of a negligible set, the map
t→ X̃t(ω) is continuous.

Proof: See, e.g., Ikeda and Watanabe [456], p. 20. �

Throughout the book, we shall see many applications of this theorem,
in particular, for the existence of a.s. continuous Brownian paths (see �
Section 1.4).
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Definition 1.1.10.7 A process X has
- independent increments if for any pair (s, t) ∈ R

2
+, the random variable

Xt+s −Xs is independent of FX
s ,

- stationary increments if for any pair (s, t) ∈ R
2
+,

Xt+s −Xs
law= Xt .

A process is stationary if

∀ fixed s > 0, (Xt+s −Xs, t ≥ 0) law= (Xt, t ≥ 0) .

Definition 1.1.10.8 A càd process A is of finite variation on [0, t] if

VA(t, ω) := sup
n∑

i=1

|Ati(ω) −Ati−1(ω)| =
∫ t

0

|dAs(ω)|

is a.s. finite, where the supremum is taken over all finite partitions (ti) of
[0, t].

A càd process A is of finite variation if it is of finite variation on any
compact [0, t]. A càd finite variation process is the difference between two
increasing processes. A càd finite variation process A is said to be integrable
if E(

∫∞
0

|dAs|) <∞. In the definition of finite variation processes, we do not
restrict attention to adapted processes. Note that finite variation càd processes
are càdlàg.

Exercise 1.1.10.9 One might naively think that a collection (Xt, t ∈ R
+) of

independent r.v’s may be chosen “measurably,” i.e., with the map

(R+ ×Ω,BR+ ×F) → (R,BR) : (t, ω) → Xt(ω)

being measurable, so that X is a “true” process. Prove that if the Xt’s are
centered and supt E(X2

t ) <∞, then no measurable choice can be constructed,
except X = 0.
Hint: E(

∫ t
0
Xsds)2 =

∫ t
0

∫ t
0

E(XsXu)ds du would be equal to 0, hence X
would be null. �

1.1.11 Convergence

A sequence of processes Zn converges in L2(Ω × [0, T ]) to a process Z if
E
∫ T
0
|Zn

s − Zs|2ds converges to 0.
A sequence of processes Zn converges uniformly on compacts in probability

(ucp) to a process Z if, for any t, sup0≤s≤t |Zn
s − Zs| converges to 0 in

probability.
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1.1.12 Laplace Transform

The Laplace transform E(eλX) of a r.v. X is well defined for λ ≥ 0 when
X is a negative r.v. (here, we use a slightly unorthodox definition of Laplace
transform, with λ ≥ 0). In some cases, the Laplace transform can be defined
for every λ ∈ R, as in the following important case, where we denote by
N (μ, σ2) a Gaussian law with mean μ and variance σ2:

Proposition 1.1.12.1 Laplace transform of a Gaussian variable. The
law of the random variable X is N (μ, σ2) if and only if, for any λ ∈ R,

E(exp(λX)) = exp
(

μλ+
1
2
λ2σ2

)

.

This property extends to any λ ∈ C, and to Gaussian random vectors: X is a
d-dimensional Gaussian vector with mean μ and covariance matrix Σ if and
only if for any λ ∈ R

d,

E(exp(λ∗X)) = exp
(

λ∗μ+
1
2
λ∗Σλ

)

,

where the star stands for the transposition operator. If the matrix Σ is
invertible, the random vector X admits the density

(2π)−d/2(detΣ)−1/2 exp
(

−1
2
(x− μ)∗Σ−1(x− μ)

)

.

Comment 1.1.12.2 Let (Xt, t ≥ 0) be a (measurable) process, λ > 0 and f
a positive Borel function. Then, if Θ is a random variable, independent of X,
with exponential law (P(Θ ∈ dt) = λe−λt1{t>0}dt), one has

E(f(XΘ)) = λE

(∫ ∞

0

e−λtf(Xt)dt
)

= λ

∫ ∞

0

e−λt
E (f(Xt)) dt .

Hence, if the process X is continuous, the value of E(f(XΘ)) (for all λ and
all bounded Borel functions f) characterizes the law of Xt, for any t, i.e.,
the law of the marginals of the process X. The law of the process assumed
to be positive, may be characterized by E(exp[−

∫
μ(dt)Xt]) for all positive

measures μ on (R+,B).

Exercise 1.1.12.3 Laplace Transforms for the Square of Gaussian
Law. Let X law= N (m,σ2) and λ > 0. Prove that

E(e−λX2
) =

1√
1 + 2λσ2

exp
(

− m2λ

1 + 2λσ2

)
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and more generally that

E(exp{−λX2 + μX}) =
σ̂

σ
exp
(
σ̂2

2

(
μ+

m

σ2

)2

− m2

2σ2

)

,

with σ̂2 =
σ2

1 + 2λσ2
. �

Exercise 1.1.12.4 Moments and Laplace Transform. If X is a positive
random variable, prove that its negative moments are given by, for r > 0:

(a) E(X−r) =
1

Γ (r)

∫ ∞

0

tr−1
E(e−tX)dt

where Γ is the Gamma function (see � Subsection A.5.1 if needed) and its
positive moments are, for 0 < r < 1

(b) E(Xr) =
r

Γ (1 − r)

∫ ∞

0

1 − E(e−tX)
tr+1

dt

and for n < r < n+ 1, if φ(t) = E(e−tX) belongs to Cn

(c) E(Xr) =
r − n

Γ (n+ 1 − r)

∫ ∞

0

(−1)n
φ(n)(0) − φ(n)(t)

tr+1−n
dt .

Hint: For example, for (b), use Fubini’s theorem and the fact that, for 0 <
r < 1,

srΓ (1 − r) = r

∫ ∞

0

1 − e−st

tr+1
dt .

For r = n, one has E(Xn) = (−1)nφ(n)(0). See Schürger [774] for more results
and applications. �

Exercise 1.1.12.5 Chi-squared Law. A noncentral chi-squared law χ2(δ, α)
with δ degrees of freedom and noncentrality parameter α has the density

f(x; δ, α) = 2−δ/2 exp
(

−1
2
(α+ x)

)

x
δ
2−1

∞∑

n=0

(α
4

)n xn

n!Γ (n+ δ/2)
1{x>0}

=
e−α/2

2αν/2
e−x/2xν/2Iν(

√
xα)1{x>0} ,

where Iν is the usual modified Bessel function (see � Subsection A.5.2). Its
cumulative distribution function is denoted χ2(δ, α; ·).
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Let Xi, i = 1, . . . , n be independent random variables with Xi
law= N (mi, 1).

Check that
∑n

i=1X
2
i is a noncentral chi-squared variable with n degrees of

freedom, and noncentrality parameter
∑n

i=1m
2
i . �

1.1.13 Gaussian Processes

A real-valued process (Xt, t ≥ 0) is a Gaussian process if any finite linear
combination

∑n
i=1 aiXti is a Gaussian variable. In particular, for each t ≥ 0,

the random variable Xt is a Gaussian variable. The law of a Gaussian process
is characterized by its mean function ϕ(t) = E(Xt) and its covariance function
c(t, s) = E(XtXs) − ϕ(t)ϕ(s) which satisfies

∑

i,j

λiλ̄j c(ti, tj) ≥ 0, ∀λ ∈ C
n .

Note that this property holds for every square integrable process, but that,
conversely a Gaussian process may always be associated with a pair (ϕ, c)
satisfying the previous conditions. See Janson [479] for many results on
Gaussian processes.

1.1.14 Markov Processes

The R
d-valued process X is said to be a Markov process if for any t, the

past FX
t = σ(Xs, s ≤ t) and the future σ(Xt+u, u ≥ 0) are conditionally

independent with respect to Xt, i.e., for any t, for any bounded random
variable Y ∈ σ(Xu, u ≥ t):

E(Y |FX
t ) = E(Y |Xt) .

This is equivalent to: for any bounded Borel function f , for any times t > s ≥ 0

E(f(Xt)|FX
s ) = E(f(Xt)|Xs) .

A transition probability is a family (Ps,t, 0 ≤ s < t) of probabilities
such that the Chapman-Kolmogorov equation holds:

Ps,t(x,A) =
∫
Ps,u(x, dy)Pu,t(y,A) = P(Xt ∈ A|Xs = x) .

A Markov process with transition probability Ps,t satisfies

E(f(Xt)|Xs) = Ps,tf(Xs) =
∫
f(y)Ps,t(Xs, dy) ,

for any t > s ≥ 0, for every bounded Borel function f . If Ps,t depends
only on the difference t − s, the Markov process is said to be a time-
homogeneous Markov process and we simply write Pt for P0,t. Results for
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homogeneous Markov processes can be formally extended to inhomogeneous
Markov processes by adding a time dimension to the space, i.e., by considering
the process ((Xt, t), t ≥ 0). For a time-homogeneous Markov process

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) =
∫

A1

Pt1(x, dx1) · · ·
∫

An

Ptn−tn−1(xn−1, dxn) ,

where Px means that X0 = x.
The (strong) infinitesimal generator of a time-homogeneous Markov

process is the operator L defined as

L(f)(x) = lim
t→0

Ex(f(Xt)) − f(x)
t

,

where Ex denotes the expectation for the process starting from x at time 0.
The domain of the generator is the set D(L) of bounded Borel functions f
such that this limit exists in the norm ‖f‖ = sup |f(x)|.

Let X be a time-homogeneous Markov process. The associated semi-
group Ptf(x) = Ex(f(Xt)) satisfies

d

dt
(Ptf) = PtLf = LPtf, f ∈ D(L) . (1.1.1)

(See, for example, Kallenberg [505] or [RY], Chapter VII.)
A Markov process is said to be conservative if Pt(x,Rd) = 1 for all t and

x ∈ R
d. A nonconservative process can be made conservative by adding an

extra state ∂ (called the cemetery state) to R
d. The conservative transition

function P ∂
t is defined by

P ∂
t (x,A) : = Pt(x,A), x ∈ R

d, A ∈ B ,
P ∂
t (x, ∂) : = 1 − Pt(x,Rd), x ∈ R

d,
P ∂
t (∂,A) : = δ{∂}(A), A ∈ R

d ∪ ∂ .

Definition 1.1.14.1 The lifetime of (the conservative process) X is the FX-
stopping time

ζ(ω) : = inf{t ≥ 0 : Xt(ω) = ∂} .

See � Section 1.2.3 for the definition of stopping time.

Proposition 1.1.14.2 Let X be a time-homogeneous Markov process with
infinitesimal generator L. Then, for any function f in the domain D(L) of
the generator

Mf
t := f(Xt) − f(X0) −

∫ t

0

Lf(Xs)ds

is a martingale with respect to Px,∀x. Moreover, if τ is a bounded stopping
time

Ex(f(Xτ )) = f(x) + Ex

(∫ τ

0

Lf(Xs)ds
)

.
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Proof: See � Section 1.2 for the definition of martingale. From

Mf
t+s −Mf

s = f(Xt+s) − f(Xs) −
∫ t+s

s

Lf(Xu)du

and the Markov property, one deduces

Ex(M
f
t+s −Mf

s |Fs) = EXs(M
f
t ) . (1.1.2)

From (1.1.1),
d

dt
Ex[f(Xt)] = Ex[Lf(Xt)], f ∈ D(L)

hence, by integration

Ex[f(Xt)] = f(x) +
∫ t

0

dsEx[Lf(Xs)] .

It follows that, for any x, Ex(M
f
t ) equals 0, hence EXs(M

f
t ) = 0 and from

(1.1.2), that Mf is a martingale. �

The family (Uα, α > 0) of kernels defined by

Uαf(x) =
∫ ∞

0

e−αt
Ex[f(Xt)]dt

is called the resolvent of the Markov process.(See also � Subsection 5.3.6.)

The strong Markov property holds if for any finite stopping time T
and any t ≥ 0, (see � Subsection 1.2.3 for the definition of a stopping time)
and for any bounded Borel function f ,

E(f(XT+t)|FX
T ) = E(f(XT+t)|XT ) .

It follows that, for any pair of finite stopping times T and S, and any bounded
Borel function f

1{S>T}E(f(XS)|FX
T ) = 1{S>T}E(f(XS)|XT ) .

Proposition 1.1.14.3 Let X be a strong Markov process with continuous
paths and b a continuous function. Define the first passage time of X over b
as

Tb = inf{t > 0|Xt ≥ b(t)} .
Then, for x ≤ b(0) and y > b(t)

Px(Xt ∈ dy) =
∫ t

0

P(Xt ∈ dy|Xs = b(s))F (ds)

where F is the law of Tb.
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Sketch of the Proof: Let B ⊂ [b(t),∞[.

Px(Xt ∈ B) = Px(Xt ∈ B, Tb ≤ t) = Ex(1{Tb≤t}Ex(1{Xt∈B}|Tb))

=
∫ t

0

Ex(1{Xt∈B}|Tb = s)Px(Tb ∈ ds)

=
∫ t

0

P(Xt ∈ B|Xs = b(s))Px(Tb ∈ ds) .

For a complete proof, see Peskir [707]. �

Definition 1.1.14.4 Let X be a Markov process. A Borel set A is said to be
polar if

Px(TA <∞) = 0, for every x ∈ R
d

where TA = inf{t > 0 : Xt ∈ A}.

This notion will be used (see � Proposition 1.4.2.1) to study some particular
cases.

Comment 1.1.14.5 See Blumenthal and Getoor [107], Chung [184], Del-
lacherie et al. [241], Dynkin [288], Ethier and Kurtz [336], Itô [462], Meyer
[648], Rogers and Williams [741], Sharpe [785] and Stroock and Varadhan
[812], for further results on Markov processes. Proposition 1.1.14.3 was
obtained in Fortet [355] (see Peskir [707] for applications of this result to
Brownian motion). Further examples of deterministic barriers will be given in
� Chapter 3.

Exercise 1.1.14.6 Let W be a Brownian motion (see � Section 1.4 if
needed), x, ν, σ real numbers, Xt = x exp(νt + σWt) and MX

t = sups≤tXs.
Prove that the process (Yt = MX

t /Xt, t ≥ 0) is a Markov process. This
fact (proved by Lévy) is used in particular in Shepp and Shiryaev [787] for
the valuation of Russian options and in Guo and Shepp [412] for perpetual
lookback American options. �

1.1.15 Uniform Integrability

A family of random variables (Xi, i ∈ I), is uniformly integrable (u.i.) if
supi∈I

∫
|Xi|≥a

|Xi|dP goes to 0 when a goes to infinity.
If |Xi| ≤ Y where Y is integrable, then (Xi, i ∈ I) is u.i., but the converse

does not hold.
Let (Ω,F ,F,P) be a filtered probability space and X an F∞-measurable

integrable random variable. The family (E(X|Ft), t ≥ 0) is u.i.. More
generally, if (Ω,F ,P) is a given probability space and X an integrable r.v.,
the family {E(X|G),G ⊆ F} is u.i.
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Very often, one uses the fact that if (Xi, i ∈ I) is bounded in L2, i.e.,
supi E(X2

i ) <∞ then, it is a u.i. family.
Among the main uses of uniform integrability, the following is the most

important: if (Xn, n ≥ 1) is u.i. and Xn
P→ X, then Xn

L1

→ X.

1.2 Martingales

Although our aim in this chapter is to discuss continuous path processes,
there would be no advantage in this section of limiting ourselves to the
scope of continuous martingales. We shall restrict our attention to continuous
martingales in � Section 1.3.

1.2.1 Definition and Main Properties

Definition 1.2.1.1 An F-adapted process X = (Xt, t ≥ 0), is an F-
martingale (resp. sub-martingale, resp. super-martingale) if

• E(|Xt|) <∞, for every t ≥ 0,
• E(Xt|Fs) = Xs (resp. E(Xt|Fs) ≥ Xs , resp. E(Xt|Fs) ≤ Xs) a.s. for

every pair (s, t) such that s < t.

Roughly speaking, an F-martingale is a process which is F-conditionally
constant, and a super-martingale is conditionally decreasing. Hence, one
can ask the question: is a super-martingale the sum of a martingale and a
decreasing process? Under some weak assumptions, the answer is positive
(see the Doob-Meyer theorem quoted below as Theorem 1.2.1.6).

Example 1.2.1.2 The basic example of a martingale is the processX defined
as Xt : = E(X∞|Ft), where X∞ is a given F∞-measurable integrable r.v.. In
fact, X is a uniformly integrable martingale if and only if Xt : = E(X∞|Ft),
for some X∞ ∈ L1(F∞).

Sometimes, we shall deal with processes indexed by [0, T ], which may
be considered by a simple transformation as the above processes. If the
filtration F is right-continuous, it is possible to show that any martingale
has a càdlàg version.

IfM is an F-martingale and H ⊆ F, then E(Mt|Ht) is an H-martingale. In
particular, if M is an F-martingale, then it is an FM -martingale. A process
is said to be a martingale if it is a martingale with respect to its natural
filtration.

From now on, any martingale (super-martingale, sub-martingale) will be
taken to be right-continuous with left-hand limits.

Warning 1.2.1.3 If M is an F-martingale and F ⊂ G, it is not true in
general that M is a G-martingale (see � Section 5.9 on enlargement of
filtrations for a discussion on that specific case).
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Example 1.2.1.4 If X is a process with independent increments such that
the r.v. Xt is integrable for any t, the process (Xt − E(Xt), t ≥ 0) is a
martingale. Sometimes, these processes are called self-similar processes (see
� Chapter 11 for the particular case of Lévy processes).

Definition 1.2.1.5 A process X is of the class (D), if the family of random
variables (Xτ , τ finite stopping time) is u.i..

Theorem 1.2.1.6 (Doob-Meyer Decomposition Theorem) The pro-
cess (Xt; t ≥ 0) is a sub-martingale (resp. a super-martingale) of class
(D) if and only if Xt = Mt + At (resp. Xt = Mt − At) where M is a
uniformly integrable martingale and A is an increasing predictable3 process
with E(A∞) <∞.

Proof: See Dellacherie and Meyer [244] Chapter VII, 12 or Protter [727]
Chapter III. �

If M is a martingale such that supt E(|Mt|) <∞ (i.e., M is L1 bounded),
there exists an integrable random variable M∞ such that Mt converges almost
surely toM∞ when t goes to infinity (see [RY], Chapter I, Theorem 2.10). This
holds, in particular, ifM is uniformly integrable and in that caseMt →L1 M∞
and Mt = E(M∞|Ft). However, an L1-bounded martingale is not necessarily
uniformly integrable as the following example shows:

Example 1.2.1.7 The martingale Mt = exp
(
λWt − λ2

2 t
)

where W is a

Brownian motion (see � Section 1.4) is L1 bounded (indeed ∀t,E(Mt) = 1).
From limt→∞

Wt

t = 0, a.s., we get that

lim
t→∞

Mt = lim
t→∞

exp
(

t

(

λ
Wt

t
− λ2

2

))

= lim
t→∞

exp
(

−tλ
2

2

)

= 0 ,

hence this martingale is not u.i. on [0,∞[ (if it were, it would imply that Mt

is null!).

Exercise 1.2.1.8 Let M be an F-martingale and Z an adapted (bounded)
continuous process. Prove that, for 0 < s < t,

E

(

Mt

∫ t

s

Zudu|Fs

)

= E

(∫ t

s

MuZudu|Fs

)

. �

Exercise 1.2.1.9 Consider the interval [0, 1] endowed with Lebesgue mea-
sure λ on the Borel σ-algebra B. Define Ft = σ{A : A ⊂ [0, t], A ∈ B}. Let f
be an integrable function defined on [0, 1], considered as a random variable.

3 See Subsection 1.2.3 for the definition of predictable processes. In the particular
case where X is continuous, then A is continuous.
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Prove that

E(f |Ft)(u) = f(u)1{u≤t} + 1{u>t}
1

1 − t

∫ 1

t

dxf(x) . �

Exercise 1.2.1.10 Give another proof that limt→∞Mt = 0 in the above
Example 1.2.1.7 by using T−a = inf{t : Wt = −a}. �

1.2.2 Spaces of Martingales

We denote by H2 (resp. H2[0, T ]) the subset of square integrable martin-
gales (resp. defined on [0,T]), i.e., martingales such that supt E(M2

t ) < ∞
(resp. supt≤T E(M2

t ) < ∞). From Jensen’s inequality, if M is a square
integrable martingale, M2 is a sub-martingale. It follows that the martingale
M is square integrable on [0, T ] if and only if E(M2

T ) <∞.
If M ∈ H2, the process M is u.i. and Mt = E(M∞|Ft). From Fatou’s

lemma, the random variable M∞ is square integrable and

E(M2
∞) = lim

t→∞
E(M2

t ) = sup
t

E(M2
t ) .

From M2
t ≤ E(M2

∞|Ft), it follows that (M2
t , t ≥ 0) is uniformly integrable.

Doob’s inequality states that, if M ∈ H2, then E(suptM
2
t ) ≤ 4E(M2

∞).
Hence, E(suptM

2
t ) <∞ is equivalent to supt E(M2

t ) <∞. More generally, if
M is a martingale or a positive sub-martingale, and p > 1,

‖ sup
t≤T

|Mt|‖p ≤ p

p− 1
sup
t≤T

‖Mt‖p . (1.2.1)

Obviously, the Brownian motion (see � Section 1.4) does not belong to H2,
however, it belongs to H2([0, T ]) for any T .

We denote by H1 the set of martingales M such that E(supt |Mt|) < ∞.
More generally, the space of martingales such that M∗ = supt |Mt| is in Lp is
denoted by Hp. For p > 1, one has the equivalence

M∗ ∈ Lp ⇔M∞ ∈ Lp .

Thus the space Hp for p > 1 may be identified with Lp(F∞). Note that
supt E(|Mt|) ≤ E(supt |Mt|), hence any element of H1 is L1 bounded, but the
converse if not true (see Azéma et al. [36]).

1.2.3 Stopping Times

Definitions

An R
+ ∪ {+∞}-valued random variable τ is a stopping time with respect

to a given filtration F (in short, an F-stopping time), if {τ ≤ t} ∈ Ft, ∀t ≥ 0.
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If the filtration F is right-continuous, it is equivalent to demand that {τ < t}
belongs to Ft for every t, or that the left-continuous process 1]0,τ ]}(t) is an
F-adapted process). If F ⊂ G, any F-stopping time is a G-stopping time.

If τ is an F-stopping time, the σ-algebra of events prior to τ , Fτ is defined
as:

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀t}.

If X is F-progressively measurable and τ a F-stopping time, then the r.v. Xτ

is Fτ -measurable on the set {τ <∞}.
The σ-algebra Fτ− is the smallest σ-algebra which contains F0 and all the

sets of the form A ∩ {t < τ}, t > 0 for A ∈ Ft.

Definition 1.2.3.1 A stopping time τ is predictable if there exists an
increasing sequence (τn) of stopping times such that almost surely

(i) limn τn = τ ,
(ii) τn < τ for every n on the set {τ > 0}.

A stopping time τ is totally inaccessible if P(τ = ϑ < ∞) = 0 for any
predictable stopping time ϑ (or, equivalently, if for any increasing sequence of
stopping times (τn, n ≥ 0), P({lim τn = τ} ∩A) = 0 where A = ∩n{τn < τ}).

If X is an F-adapted process and τ a stopping time, the (F-adapted)
process Xτ where Xτ

t := Xt∧τ is called the process X stopped at τ .

Example 1.2.3.2 If τ is a random time, (i.e., a positive random variable),
the smallest filtration with respect to which τ is a stopping time is the
filtration generated by the process Dt = 1{τ≤t}. The completed σ-algebra
Dt is generated by the sets {τ ≤ s}, s ≤ t or, equivalently, by the random
variable τ ∧ t. This kind of times will be of great importance in � Chapter 7
to model default risk events.

Example 1.2.3.3 If X is a continuous process, and a a real number, the
first time T+

a (resp. T−
a ) when X is greater (resp. smaller) than a, is an FX -

stopping time

T+
a = inf{t : Xt ≥ a}, resp. T−

a = inf{t : Xt ≤ a} .

From the continuity of the process X, if the process starts below a (i.e., if
X0 < a), one has T+

a = Ta where Ta = inf{t : Xt = a}, and XTa = a (resp.
if X0 > a, T−

a = Ta). Note that if X0 ≥ a, then T+
a = 0, and Ta > 0.

More generally, if X is a continuous R
d-valued processes, its first

entrance time into a closed set F , i.e., TF = inf{t : Xt ∈ F}, is a
stopping time (see [RY], Chapter I, Proposition 4.6.). If a real-valued process
is progressive with respect to a standard filtration, the first entrance time of
a Borel set is a stopping time.
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Fig. 1.1 First hitting time of a level a

Optional and Predictable Process

If τ and ϑ are two stopping times, the stochastic interval ]]ϑ, τ ]] is the set
{(t, ω) : ϑ(ω) < t ≤ τ(ω)}.

The optional σ-algebra O is the σ-algebra generated on F × B by the
stochastic intervals [[τ,∞[[ where τ is an F-stopping time.

The predictable σ-algebra P is the σ-algebra generated on F × B by
the stochastic intervals ]]ϑ, τ ]] where ϑ and τ are two F-stopping times such
that ϑ ≤ τ .

A process X is said to be F-predictable (resp. F-optional) if the map
(ω, t) → Xt(ω) is P-measurable (resp. O-measurable).

Example 1.2.3.4 An adapted càg process is predictable.

Martingales and Stopping Times

If M is an F-martingale and τ an F-stopping time, the stopped process Mτ

is an F-martingale.

Theorem 1.2.3.5 (Doob’s Optional Sampling Theorem.) If M is a
uniformly integrable martingale (e.g., bounded) and ϑ, τ are two stopping times
with ϑ ≤ τ , then

Mϑ = E(Mτ |Fϑ) = E(M∞|Fϑ), a.s.

If M is a positive super-martingale and ϑ, τ a pair of stopping times with
ϑ ≤ τ , then

E(Mτ |Fϑ) ≤Mϑ .
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Warning 1.2.3.6 This theorem often serves as a basic tool to determine
quantities defined up to a first hitting time and laws of hitting times. However,
in many cases, the u.i. hypothesis has to be checked carefully. For example,
if W is a Brownian motion, (see the definition in � Section 1.4), and Ta
the first hitting time of a, then E(WTa) = a, while a blind application of
Doob’s theorem would lead to equality between E(WTa) and W0 = 0. The
process (Wt∧Ta , t ≥ 0) is not uniformly integrable, but (Wt∧Ta , t ≤ t0) is, and
obviously so is (Wt∧T−c∧Ta , t ≥ 0) (here, −c < 0 < a).

The following proposition is an easy converse to Doob’s optional sampling
theorem:

Proposition 1.2.3.7 If M is an adapted integrable process, and if for any
two-valued stopping time τ , E(Mτ ) = E(M0), then M is a martingale.

Proof: Let s < t and Γs ∈ Fs. The random time

τ =
{
s on Γ c

s

t on Γs

is a stopping time, hence E(Mt1Γs) = E(Ms1Γs) and the result follows. �

The adapted integrable process M is a martingale if and only if the
following property is satisfied ([RY], Chapter II, Sect. 3): if ϑ, τ are two
bounded stopping times with ϑ ≤ τ , then

Mϑ = E(Mτ |Fϑ), a.s.

Comments 1.2.3.8 (a) Knight and Maisonneuve [530] proved that a
random time τ is an F-stopping time if and only if, for any bounded F-
martingale M , E(M∞|Fτ ) = Mτ . Here, Fτ is the σ-algebra generated by the
random variables Zτ , where Z is any F-optional process. (See Dellacherie et
al. [241], page 141, for more information.)
(b) Note that there exist some random times τ which are not stopping
times, but nonetheless satisfy E(M0) = E(Mτ ) for any bounded F-martingale
(see Williams [844]). Such times are called pseudo-stopping times. (See �
Subsection 5.9.4 and Comments 7.5.1.3.)

Definition 1.2.3.9 A continuous uniformly integrable martingale M belongs
to BMO space if there exists a constant m such that

E(〈M〉∞ − 〈M〉τ |Fτ ) ≤ m

for any stopping time τ .

See � Subsection 1.3.1 for the definition of the bracket 〈.〉. It can be proved
(see, e.g., Dellacherie and Meyer [244], Chapter VII,) that the space BMO is
the dual of H1.
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See Kazamaki [517] and Doléans-Dade and Meyer [257] for a study of
Bounded Mean Oscillation (BMO) martingales.

Exercise 1.2.3.10 A Useful Lemma: Doob’s Maximal Identity.
(1) Let M be a positive continuous martingale such that M0 = x.

(i) Prove that if limt→∞Mt = 0, then

P(supMt > a) =
(x
a

)
∧ 1 (1.2.2)

and supMt
law=

x

U
where U is a random variable with a uniform law on [0, 1].

(See [RY], Chapter 2, Exercise 3.12.)
(ii) Conversely, if supMt

law=
x

U
, show that M∞ = 0.

(2) Application: Find the law of supt(Bt−μt) for μ > 0. (Use Example 1.2.1.7).
For T (−μ)

a = inf{t : Bt − μt ≥ a}, compute P(T (−μ)
a <∞).

Hint: Apply Doob’s optional sampling theorem to Ty ∧ t and prove, passing
to the limit when t goes to infinity, that

a = E(MTy ) = yP(Ty <∞) = yP(supMt ≥ y) . �

1.2.4 Local Martingales

Definition 1.2.4.1 An adapted, right-continuous process M is an F-local
martingale if there exists a sequence of stopping times (τn) such that:

• The sequence τn is increasing and limn τn = ∞, a.s.
• For every n, the stopped process Mτn1{τn>0} is an F-martingale.

A sequence of stopping times such that the two previous conditions hold
is called a localizing or reducing sequence. If M is a local martingale, it is
always possible to choose the localizing sequence (τn, n ≥ 1) such that each
martingale Mτn1{τn>0} is uniformly integrable.

Let us give some criteria that ensure that a local martingale is a martingale:

• Thanks to Fatou’s lemma, a positive local martingale M is a super-
martingale. Furthermore, it is a martingale if (and only if!) its expectation
is constant (∀t, E(Mt) = E(M0)).

• A local martingale is a uniformly integrable martingale if and only if it is
of the class (D) (see Definition 1.2.1.5).

• A local martingale is a martingale if and only if it is of the class (DL),
that is, if for every a > 0 the family of random variables (Xτ , τ ∈ Ta) is
uniformly integrable, where Ta is the set of stopping times smaller than a.

• If a local martingale M is in H1, i.e., if E(supt |Mt|) < ∞, then M is a
uniformly integrable martingale (however, not every uniformly integrable
martingale is in H1).
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Later, we shall give explicit examples of local martingales which are not
martingales. They are called strict local martingales (see, e.g., � Example
6.1.2.6 and � Subsection 6.4.1). Note that there exist strict local martingales
with constant expectation (see � Exercise 6.1.5.6).

Doob-Meyer decomposition can be extended to general sub-martingales:

Proposition 1.2.4.2 A process X is a sub-martingale (resp. a super-martin-
gale) if and only if Xt = Mt + At (resp. Xt = Mt − At) where M is a local
martingale and A an increasing predictable process.

We also use the following definitions:
A local martingale M is locally square integrable if there exists a localizing
sequence of stopping times (τn) such that Mτn1{τn>0} is a square integrable
martingale.
An increasing process A is locally integrable if there exists a localizing
sequence of stopping times such that Aτn is integrable.
By similar localization, we may define locally bounded martingales, local
super-martingales, and locally finite variation processes.

Let us state without proof (see [RY]) the following important result.

Proposition 1.2.4.3 A continuous local martingale of locally finite variation
is a constant.

Warning 1.2.4.4 If X is a positive local super-martingale, then it is a super-
martingale. If X is a positive local sub-martingale, it is not necessarily a
sub-martingale (e.g., a positive strict local martingale is a positive local sub-
martingale and a super-martingale).

Note that a locally integrable increasing process A does not necessarily
satisfy E(At) < ∞ for any t. As an example, if At =

∫ t
0
ds/R2

s where R is a
2-dimensional Bessel process (see � Chapter 6) then A is locally integrable,
however E(At) = ∞, since, for any s > 0, E(1/R2

s) = ∞.

Comment 1.2.4.5 One can also define a continuous quasi-martingale as a
continuous process X such that

sup
p(n)∑

i=1

E|E(Xtni+1
−Xtni

|Ftni
)| <∞

where the supremum is taken over the sequences 0 < tni < tni+1 < T . Super-
martingales (sub-martingales) are quasi-martingales. In that case, the above
condition reads

E(|XT −X0|) <∞ .
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1.3 Continuous Semi-martingales

A d-dimensional continuous semi-martingale is an R
d-valued process X

such that each component Xi admits a decomposition as Xi = M i + Ai

where M i is a continuous local martingale withM i
0 = 0 and Ai is a continuous

adapted process with locally finite variation. This decomposition is unique (see
[RY]), and we shall say in short thatM is the martingale part of the continuous
semi-martingale X. This uniqueness property, which is not shared by general
semi-martingales motivated us to restrict our study of semi-martingales at
first to the continuous ones. Later ( � Chapter 9) we shall consider general
semi-martingales.

1.3.1 Brackets of Continuous Local Martingales

If M is a continuous local martingale, there exists a unique continuous
increasing process 〈M〉, called the bracket (or predictable quadratic variation)
of M such that (M2

t −〈M〉t, t ≥ 0) is a continuous local martingale (see [RY]
Chap IV, Theorem 1.3 for the existence).

The process 〈M〉 is equal to the limit in probability of the quadratic
variation

∑
i(Mtni+1

− Mtni
)2, where 0 = tn0 < tn1 < · · · < tnp(n) = t, when

sup
0≤i≤p(n)−1

(tni+1 − tni ) goes to zero (see [RY], Chapter IV, Section 1). 4 Note

that the limit of
∑

i(Mtni+1
−Mtni

)2 depends neither on the filtration nor on
the probability measure on the space (Ω,F) (assuming that M remains a
semi-martingale with respect to this filtration or to this probability) and the
process 〈M〉 is FM -adapted.

Example 1.3.1.1 If W is a Brownian motion (defined in � Section 1.4),

〈W 〉t = lim
p(n)−1∑

i=0

(Wtni+1
−Wtni

)2 = t .

Here, the limit is in the L2 sense (hence, in the probability sense). If∑
n supi(tni+1 − tni ) < ∞, the convergence holds also in the a.s. sense (see

Kallenberg [505]). This is in particular the case for a dyadic sequence, where

tni =
i

2n
t.

Definition 1.3.1.2 If M and N are two continuous local martingales, the
unique continuous process (〈M,N〉t, t ≥ 0) with locally finite variation such
that MN − 〈M,N〉 is a continuous local martingale is called the predictable
bracket (or the predictable covariation process) of M and N .

4 This is why the term quadratic variation is often used instead of bracket.
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Let us remark that 〈M〉 = 〈M,M〉 and

〈M,N〉 =
1
2

[〈M +N〉 − 〈M〉 − 〈N〉] =
1
4

[〈M +N〉 − 〈M −N〉] .

These last identities are known as the polarization equalities.
In particular, if the bracket 〈X,Y 〉 of two martingales X and Y is equal

to zero, the product XY is a local martingale and X and Y are said to be
orthogonal. Note that this is the case if X and Y are independent.

We present now some useful results, related to the predictable bracket. For
the proofs, we refer to [RY], Chapter IV.

• A continuous local martingale M converges a.s. as t goes to infinity on the
set {〈M〉∞ <∞}.

• The Kunita-Watanabe inequality states that

|〈M,N〉| ≤ 〈M〉1/2 〈N〉1/2 .

More generally, for h, k positive measurable processes

∫ t

0

hs ks|d〈M,N〉s| ≤
(∫ t

0

h2
sd〈M〉s

)1/2(∫ t

0

k2
sd〈N〉s

)1/2

.

• The Burkholder-Davis-Gundy (BDG) inequalities state that for
0 ≤ p < ∞, there exist two universal constants cp and Cp such that if M
is a continuous local martingale,

cp E[(sup
t

|Mt|)p] ≤ E(〈M〉p/2∞ ) ≤ Cp E[(sup
t

|Mt|)p] .

(See Lenglart et al. [576] for a complete study.) It follows that, if a
continuous local martingale M satisfies E(〈M〉1/2∞ ) < ∞, then M is a
martingale. Indeed, E(supt |Mt|) < ∞ (i.e., M ∈ H1) and, by dominated
convergence, the martingale property follows.

We now introduce some spaces of processes, which will be useful for
stochastic integration.

Definition 1.3.1.3 For F a given filtration and M ∈ Hc,2, the space of
square integrable continuous F-martingales, we denote by L2(M,F) the Hilbert
space of equivalence classes of elements of L2(M), the space of F-progressively
measurable processes K such that

E[
∫ ∞

0

K2
sd〈M〉s] <∞ .

We shall sometimes write only L2(M) when there is no ambiguity. If M
is a continuous local martingale, we call L2

loc(M) the space of progressively
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measurable processes K such that there exists a sequence of stopping times
(τn) increasing to infinity for which

for every n, E

(∫ τn

0

K2
sd〈M〉s

)

<∞ .

The space L2
loc(M) consists of all progressively measurable processes K such

that

for every t,
∫ t

0

K2
sd〈M〉s <∞ a.s..

A continuous local martingale belongs to Hc,2 (and is a martingale) if and
only if M0 ∈ L2 and E(〈M〉∞) <∞.

1.3.2 Brackets of Continuous Semi-martingales

Definition 1.3.2.1 The bracket (or the predictable quadratic covariation)
〈X,Y 〉 of two continuous semi-martingales X and Y is defined as the bracket
of their local martingale parts MX and MY .

The bracket 〈X,Y 〉 := 〈MX ,MY 〉 is also the limit in probability of the
quadratic covariation of X and Y , i.e.,

p(n)−1∑

i=0

(Xtni+1
−Xtni

)(Ytni+1
− Ytni ) (1.3.1)

for 0 = tn0 ≤ tn1 ≤ · · · ≤ tp(n) = t when sup0≤i≤p(n)−1(tni+1 − tni ) goes to
0. Indeed, the bounded variation parts AX and AY do not contribute to the
limit of the expression (1.3.1).

If τ is a stopping time, and X a semi-martingale, the stopped process Xτ

is a semi-martingale and if Y is another semi-martingale, the bracket of the
τ -stopped semi-martingales is the τ -stopped bracket:

〈Xτ , Y 〉 = 〈Xτ , Y τ 〉 = 〈X,Y 〉τ .

Remark 1.3.2.2 Let M be a continuous martingale of the form

Mt =
∫ t

0

ϕsdWs

where ϕ is a continuous adapted process (such that
∫ t
0
ϕ2
sds < ∞) and W a

Brownian motion (see � Sections 1.4 and 1.5.1 for definitions). The quadratic
variation 〈M〉 is the process

〈M〉t =
∫ t

0

ϕ2
sds = P − lim

p(n)∑

i=1

(Mtni+1
−Mn

ti)
2 ,

hence, FM
t contains σ(ϕ2

s, s ≤ t).
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Exercise 1.3.2.3 Let M be a Gaussian martingale with bracket 〈M〉. Prove
that the process 〈M〉 is deterministic.
Hint: The Gaussian property implies that, for t > s, the r.v. Mt −Ms is
independent of FM

s , hence

E((Mt −Ms)2|FM
s ) = E((Mt −Ms)2) = A(t) −A(s)

with A(t) = E(M2
t ) which is deterministic. �

1.4 Brownian Motion

1.4.1 One-dimensional Brownian Motion

Let X be an R-valued continuous process starting from 0 and FX its natural
filtration.

Definition 1.4.1.1 The continuous process X is said to be a Brownian
motion, (in short, a BM), if one of the following equivalent properties is
satisfied:

(i) The process X has stationary and independent increments, and for any
t > 0, the r.v. Xt follows the N (0, t) law.

(ii) The process X is a Gaussian process, with mean value equal to 0 and
covariance t ∧ s.

(iii) The processes (Xt, t ≥ 0) and (X2
t − t, t ≥ 0) are FX-local martingales.

(iii′) The process X is an FX-local martingale with bracket t.
(iv) For every real number λ, the process

(
exp
(
λXt − λ2

2 t
)
, t ≥ 0

)
is an

FX-local martingale.
(v) For every real number λ, the process

(
exp
(
iλXt + λ2

2 t
)
, t ≥ 0

)
is an

FX-local martingale.

To establish the existence of Brownian motion, one starts with the
canonical space Ω = C(R+,R) of continuous functions. The canonical process
Xt : ω → ω(t) (ω is now a generic continuous function) is defined on Ω.
There exists a unique probability measure on this space Ω such that the law
of X satisfies the above properties. This probability measure is called Wiener
measure and is often denoted by W in deference to Wiener (1923) who proved
its existence. We refer to [RY] Chapter I, for the proofs.

It can be proved, as a consequence of Kolmogorov’s continuity criterion
1.1.10.6 that a process (not assumed to be continuous) which satisfies (i) or (ii)
admits in fact a continuous modification. There exist discontinuous processes
that satisfy (iii) (e.g., the martingale associated with a Poisson process, see
� Chapter 8).
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Fig. 1.2 Simulation of Brownian paths

Extending Definition 1.4.1.1, a continuous process X is said to be a BM
with respect to a filtration F larger than FX if for any (t, s), the random
variable Xt+s −Xt is independent of Ft and is N (0, s) distributed.

The transition probability of the Brownian motion starting from x (i.e.,
such that Px(W0 = x) = 1) is pt(x, y) defined as

pt(x, y)dy = Px(Wt ∈ dy) = P0(x+Wt ∈ dy)

and

pt(x, y) =
1√
2πt

exp
(

− 1
2t

(x− y)2
)

. (1.4.1)

We shall also use the notation pt(x) for pt(0, x) = pt(x, 0), hence

pt(x, y) = pt(x− y) .

We shall prove in � Exercise 1.5.3.3 Lévy’s characterization of Brownian
motion, which is a generalization of (iii) above.

Theorem 1.4.1.2 (Lévy’s Characterization of Brownian Motion.)
The process X is an F-Brownian motion if and only if the processes (Xt, t ≥ 0)
and (X2

t − t, t ≥ 0) are continuous F-local martingales.
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In this case, the processes are FX -local martingales, and in fact FX -
martingales. If X is a Brownian motion, the local martingales in (iv) and (v)
Definition 1.4.1.1 are martingales. See also [RY], Chapter IV, Theorem 3.6.

An important fact is that in a Brownian filtration, i.e., in a filtration
generated by a BM, every stopping time is predictable ([RY], Chapter IV,
Corollary 5.7) which is equivalent to the property that all martingales are
continuous.

Comment 1.4.1.3 In order to prove property (a), it must be established
that limt→0 tW1/t = 0, which follows from (Wt, t > 0) law= (tW1/t, t > 0).

Definition 1.4.1.4 A process Xt = μt+σBt where B is a Brownian motion
is called a drifted Brownian motion, with drift μ.

Fig. 1.3 Simulation of drifted Brownian paths Xt = 3(t+Bt)

Example 1.4.1.5 Let W be a Brownian motion. Then,

(a) The processes (−Wt, t ≥ 0) and (tW1/t, t ≥ 0) are BMs. The second
result is called the time inversion property of the BM.

(b) For any c ∈ R
+, the process ( 1

cWc2t, t ≥ 0) is a BM (scaling property).
(c) The process Bt =

∫ t
0

sgn(Ws)dWs is a Brownian motion with respect
to FW (and to FB): indeed the processes B and (B2

t − t, t ≥ 0) are
FW -martingales. (See � 1.5.1 for the definition of the stochastic integral
and the proofs of the martingale properties). It can be proved that the
natural filtration of B is strictly smaller than the filtration of W (see �
Section 5.8).
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(d) The process B̂t = Wt −
∫ t
0
Ws

ds
s is a Brownian motion with respect to

FB) (but not w.r.t. FW ): indeed, the process B̂ is a Gaussian process and
an easy computation establishes that its mean is 0 and its covariance is
s ∧ t. It can be noted that the process B̂ is not an FW -martingale and
that its natural filtration is strictly smaller than the filtration of W (see
� Section 5.8).

Comment 1.4.1.6 A Brownian filtration is large enough to contain a strictly
smaller Brownian filtration (see Examples 1.4.1.5, (c) and (d) ). On the other
hand, if the processes W (i), i = 1, 2 are independent real-valued Brownian
motions, it is not possible to find a real-valued Brownian motion B such that
σ(Bs, s ≤ t) = σ(W (1)

s ,W
(2)
s , s ≤ t). This will be proved using the predictable

representation theorem. (See � Subsection 1.6.1.)

Exercise 1.4.1.7 Prove that, for λ > 0, one has

∫ ∞

0

e−λtpt(x, y)dt =
1√
2λ
e−|x−y|

√
2λ .

Prove that if f is a bounded Borel function, and λ > 0,

Ex(
∫∞
0
e−λ2t/2f(Wt)dt) = 1

λ

∫∞
−∞ e−λ|y−x|f(y)dy . �

Exercise 1.4.1.8 Prove that (v) of Definition 1.4.1.1 characterizes a BM,
i.e., if the process (Zt = exp(iλXt + λ2

2 t), t ≥ 0) is a FX -local martingale for
any λ, then X is a BM.
Hint: Establish that Z is a martingale, then prove that, for t > s,

∀A ∈ Fs, E[1A exp(iλ(Xt −Xs))] = P(A) exp
(
−1

2λ
2(t− s)

)
. �

Exercise 1.4.1.9 Prove that, for any λ ∈ C, (e−λ2t/2 cosh(λWt), t ≥ 0) is a
martingale. �

Exercise 1.4.1.10 Let W be a BM and ϕ be an adapted process.
(a) Prove that

∫ t
0
ϕsdWs is a BM if and only if |ϕs| = 1, ds a.s.

(b) Assume now that ϕ is deterministic. Prove that Wt−
∫ t
0
dsϕsWs is a BM

if and only if ϕ ≡ 0 or ϕ ≡ 1
s , ds a.s..

Hint: The function ϕ satisfies, for t > s,

E

(

(Wt −
∫ t

0

duϕuWu) (Ws −
∫ s

0

duϕuWu)
)

= s

if and only if sϕs = ϕs

∫ s
0
duuϕu. �



34 1 Continuous-Path Random Processes: Mathematical Prerequisites

1.4.2 d-dimensional Brownian Motion

A continuous process X = (X1, . . . , Xd), taking values in R
d is a d-

dimensional Brownian motion if one of the following equivalent properties
is satisfied:

• all its components Xi are independent Brownian motions.
• The processes Xi and (Xi

tX
j
t − δi,jt, t ≥ 0), where δi,j is the Kronecker

symbol (δi,j = 1 if i = j and δi,j = 0 otherwise) are continuous local
FX -martingales.

• For any λ ∈ R
d, the process

(
exp
(
iλ �Xt + ‖λ‖2

2 t
)
, t ≥ 0

)
is a continuous

FX -local martingale, where the notation λ �x indicates the Euclidian scalar
product between λ and x.

Proposition 1.4.2.1 Let B be a R
d-valued Brownian motion, and Tx the

first hitting time of x, defined as Tx = inf{t > 0 : Bt = x}.

• If d = 1, P(Tx <∞) = 1, for every x ∈ R,
• If d ≥ 2, P(Tx < ∞) = 0, for every x ∈ R

d, i.e., the one-point sets are
polar.

• If d ≤ 2, the BM is recurrent, i.e., almost surely, the set {t : Bt ∈ A} is
unbounded for all open subsets A ∈ R

d.
• If d ≥ 3, the BM is transient, more precisely, limt→∞ |Bt| = +∞ almost

surely.

Proof: We refer to [RY], Chapter V, Section 2. �

1.4.3 Correlated Brownian Motions

If W 1 and W 2 are two independent BMs and ρ a constant satisfying |ρ| ≤ 1,
the process

W 3 = �W 1 +
√

1 − �2W 2

is a BM, and 〈W 1,W 3〉t = �t. This leads to the following definition.

Definition 1.4.3.1 Two F-Brownian motions B and W are said to be F-
correlated with correlation ρ if 〈B,W 〉t = ρt.

Proposition 1.4.3.2 The components of the 2-dimensional correlated BM
(B,W ) are independent if and only if ρ = 0.

Proof: If the Brownian motions are independent, their product is a
martingale, hence ρ = 0. Note that this can also be proved using the
integration by parts formula (see � Subsection 1.5.2).

If the bracket is null, then the product BW is a martingale, and it follows
that for t > s,
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E(BsWt) = E(BsE(Wt|Fs)) = E(BsWs) = 0 .

Therefore, the Gaussian processes W and B are uncorrelated, hence they are
independent. �

If B and W are correlated BMs, the process (BtWt − ρt, t ≥ 0) is a
martingale and E(BtWt) = ρt. From the Cauchy-Schwarz inequality, it follows
that |ρ| ≤ 1. In the case |ρ| < 1, the process X defined by the equation

Wt = ρBt +
√

1 − ρ2Xt

is a Brownian motion independent of B. Indeed, it is a continuous martingale,
and it is easy to check that its bracket is t. Moreover 〈X,B〉 = 0.

Note that, for any pair (a, b) ∈ R
2 the process Zt = aBt + bWt is, up to a

multiplicative factor, a Brownian motion. Indeed, setting c =
√
a2 + b2 + 2abρ

the two processes
(
Z̃t := 1

c Zt, t ≥ 0
)

and (Z̃2
t − t, t ≥ 0) are continuous

martingales, hence Z̃ is a Brownian motion.

Proposition 1.4.3.3 Let Bt = ΓWt where W is a d-dimensional Brownian
motion and Γ = (γi,j) is a d× d matrix with

∑d
j=1 γ

2
i,j = 1. The process B is

a vector of correlated Brownian motions, with correlation matrix ρ = ΓΓ ∗.

Exercise 1.4.3.4 Prove Proposition 1.4.3.3. �

Exercise 1.4.3.5 Let B be a Brownian motion and let B̂t = Bt −
∫ t
0
dsBs

s .
Prove that for every t, the r.v’s Bt and B̂t are not correlated, hence are
independent. However, clearly, the two Brownian motions B and B̂ are not
independent. There is no contradiction with our previous discussion, as B̂ is
not an FB-Brownian motion. �

Remark 1.4.3.6 It is possible to construct two Brownian motions W and
B such that the pair (W,B) is not a Gaussian process. For example, let W
be a Brownian motion and set Bt =

∫ t
0

sgn(Ws)dWs where the stochastic
integral is defined in � Subsection 1.5.1. The pair (W,B) is not Gaussian,
since aWt +Bt =

∫ t
0
(a+ sgn(Ws))dWs is not a Gaussian process. Indeed, its

bracket is not deterministic, whereas the bracket of a Gaussian martingale is
deterministic (see Exercise 1.3.2.3). Note that 〈B,W 〉t =

∫ t
0

sgn(Ws)ds, hence
the bracket is not of the form as in Definition 1.4.3.1. Nonetheless, there is
some “correlation” between these two Brownian motions.

1.5 Stochastic Calculus

Let (Ω,F ,F,P) be a filtered probability space. We recall very briefly
the definition of a stochastic integral with respect to a square integrable
martingale. We refer the reader to [RY] for details.
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1.5.1 Stochastic Integration

An elementary F-predictable process is a process K which can be written

Kt := K01{0}(t) +
∑

i

Ki1]Ti,Ti+1](t) ,

with
0 = T0 < T1 < · · · < Ti < · · · and lim

i
Ti = +∞ .

Here, the Ti’s are F-stopping times and the r.v’s Ki are FTi-measurable and
uniformly bounded, i.e., there exists a constant C such that ∀i, |Ki| ≤ C a.s..

Let M be a continuous local martingale.

� For any elementary predictable processK, the stochastic integral
∫ t
0
KsdMs

is defined path-by-path as

∫ t

0

KsdMs :=
∞∑

i=0

Ki(Mt∧Ti+1 −Mt∧Ti) .

� The stochastic integral
∫ t
0
KsdMs can be defined for any continuous process

K ∈ L2(M) as follows. For any p ∈ N, one defines the sequence of stopping
times

T0 := 0

T p
1 := inf

{

t : |Kt −K0| >
1
p

}

T p
n := inf

{

t > T p
n−1 : |Kt −KTp

n−1
| > 1

p

}

.

Set K(p)
s =

∑
iKTp

i
1]Tp

i ,Tp
i+1]

(s). The sequence
∫ t
0
K

(p)
s dMs converges in L2 to

a continuous local martingale denoted by (K�M)t :=
∫ t
0
KsdMs.

� Then, by density arguments, one can define the stochastic integral for any
process K ∈ L2(M), and by localization for K ∈ L2

loc(M).

If M ∈ Hc,2, there is an isometry between L2(M) and the space of
stochastic integrals, i.e.,

E

(∫ t

0

K2
s d〈M〉s

)

= E

(∫ t

0

KsdMs

)2

.

(See [RY], Chapter IV for details.)
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Let M and N belong to Hc,2 and φ ∈ L2(M), ψ ∈ L2(N). For the
martingales X and Y , where Xt = (φ�M)t and Yt = (ψ�N)t, we have
〈X〉t =

∫ t
0
φ2
sd〈M〉s and 〈X,Y 〉t =

∫ t
0
ψsφsd〈M,N〉s. In particular, for any

fixed T , the process (Xt, t ≤ T ) is a square integrable martingale.
If X is a semi-martingale, the integral of a predictable process K, where

K ∈ L2
loc(M) ∩ L1

loc(|dA|) with respect to X is defined to be
∫ t

0

KsdXs =
∫ t

0

KsdMs +
∫ t

0

KsdAs

where
∫ t
0
KsdAs is defined path-by-path as a Stieltjes integral (we have

required that
∫ t
0
|Ks(ω)| |dAs(ω)| <∞).

For a Brownian motion, we obtain in particular the following proposition:

Proposition 1.5.1.1 Let W be a Brownian motion, τ a stopping time and θ
an adapted process such that E

(∫ τ
0
θ2sds

)
< ∞. Then E

(∫ τ
0
θsdWs

)
= 0 and

E
(∫ τ

0
θsdWs

)2
= E

(∫ τ
0
θ2sds

)
.

Proof: We apply the previous results with θ̃ = θ1{]0,τ ]}.

Comment 1.5.1.2 In the previous proposition, the integrability condition
E
(∫ τ

0
θ2sds

)
<∞ is important (the case where τ = inf{t : Wt = a} and θ = 1

is an example where the condition does not hold).
In general, there is the inequality

E

(∫ τ

0

KsdMs

)2

≤ E

(∫ τ

0

K2
s d〈M〉s

)

(1.5.1)

and it may happen that

E

(∫ τ

0

K2
s d〈M〉s

)

= ∞, and E

(∫ τ

0

KsdMs

)2

<∞ .

This is the case if Kt = 1/R2
t for t ≥ 1 and Kt = 0 for t < 1 where R is a

Bessel process of dimension 3 and M the driving Brownian motion for R (see
� Section 6.1).

Comment 1.5.1.3 In the case where K is continuous, the stochastic integral∫
KsdMs is the limit of the “Riemann sums”

∑
iKui(Mti+1 − Mti) where

ui ∈ [ti, ti+1[. But these sums do not converge pathwise because the paths
of M are a.s. not of bounded variation. This is why we use L2 convergence.
It can be proved that the Riemann sums converge uniformly on compacts in
probability to the stochastic integral.

Exercise 1.5.1.4 Let b and θ be continuous deterministic functions. Prove
that the process Yt =

∫ t
0
b(u)du +

∫ t
0
θ(u)dWu is a Gaussian process, with

mean E(Yt) =
∫ t
0
b(u)du and covariance

∫ s∧t
0

θ2(u)du. �
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Exercise 1.5.1.5 Prove that, if W is a Brownian motion, from the definition
of the stochastic integral as an L2 limit,

∫ t
0
WsdWs = 1

2 (W 2
t − t). �

1.5.2 Integration by Parts

The integration by parts formula follows directly from the definition of the
bracket. If (X,Y ) are two continuous semi-martingales, then

d(XY ) = XdY + Y dX + d〈X,Y 〉

or, in an integrated form

XtYt = X0Y0 +
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X,Y 〉t .

Definition 1.5.2.1 Two square integrable continuous martingales are orthog-
onal if their product is a martingale.

Exercise 1.5.2.2 If two martingales are independent, they are orthogonal.
Check that the converse does not hold.
Hint: Let B and W be two independent Brownian motions. The martingales
W andM whereMt =

∫ t
0
WsdBs are orthogonal and not independent. Indeed,

the martingales W and M satisfy 〈W,M〉 = 0. However, the bracket of M ,
that is 〈M〉t =

∫ t
0
W 2

s ds is FW -adapted. One can also note that

E

(

exp
(

iλ

∫ t

0

WsdBs

)

|FW
∞

)

= exp
(

−λ
2

2

∫ t

0

W 2
s ds

)

,

and the right-hand side is not a constant as it would be if the independence
property held. The martingales M and N where Nt =

∫ t
0
BsdWs (or M and

Ñt : =
∫ t
0
WsdWs) are also orthogonal and not independent. �

Exercise 1.5.2.3 Prove that the two martingales N and Ñ , defined in
Exercise 1.5.2.2 are not orthogonal although as r.v’s, for fixed t, Nt and Ñt

are orthogonal in L2. �

1.5.3 Itô’s Formula: The Fundamental Formula of Stochastic
Calculus

The vector space of semi-martingales is invariant under “smooth” transfor-
mations, as established by Itô (see [RY] Chapter IV, for a proof):

Theorem 1.5.3.1 (Itô’s formula.) Let F belong to C1,2(R+ × R
d,R) and

let X = M + A be a continuous d-dimensional semi-martingale. Then the
process (F (t,Xt), t ≥ 0) is a continuous semi-martingale and



1.5 Stochastic Calculus 39

F (t,Xt) = F (0, X0) +
∫ t

0

∂F

∂t
(s,Xs)ds+

d∑

i=1

∫ t

0

∂F

∂xi
(s,Xs)dXi

s

+
1
2

∑

i,j

∫ t

0

∂2F

∂xj ∂xi
(s,Xs)d〈Xi, Xj〉s .

Hence, the bounded variation part of F (t,Xt) is

∫ t

0

∂F

∂t
(s,Xs)ds +

d∑

i=1

∫ t

0

∂F

∂xi
(s,Xs)dAi

s (1.5.2)

+
1
2

∑

i,j

∫ t

0

∂2F

∂xj∂xi
(s,Xs)d〈Xi, Xj〉s .

An important consequence is the following: in the one-dimensional case, if
X is a martingale (X = M) and d〈M〉t = h(t)dt with h deterministic
(i.e., X is a Gaussian martingale), and if F is a C1,2 function such that
∂tF + h(t)1

2∂xxF = 0, then the process F (t,Xt) is a local martingale. A
similar result holds in the d-dimensional case.

Note that the application of Itô’s formula does not depend on whether or
not the processes (Ai

t) or 〈M i,M j〉t are absolutely continuous with respect
to Lebesgue measure. In particular, if F ∈ C1,1,2(R+ ×R×R

d,R) and V is a
continuous bounded variation process, then

dF (t, Vt, Xt) =
∂F

∂t
(t, Vt, Xt)dt+

∂F

∂v
(t, Vt, Xt)dVt +

∑

i

∂F

∂xi
(t, Vt, Xt)dXi

t

+
1
2

∑

i,j

∂2F

∂xj ∂xi
(t, Vt, Xt)d〈Xi, Xj〉t .

We now present an extension of Itô’s formula, which is useful in the study
of stochastic flows and in some cases in finance, when dealing with factor
models (see Douady and Jeanblanc [264]) or with credit derivatives dynamics
in a multi-default setting (see Bielecki et al. [96]).

Theorem 1.5.3.2 (Itô-Kunita-Ventzel’s formula.)Let Ft(x) be a family
of stochastic processes, continuous in (t, x) ∈ (R+ × R

d) a.s. satisfying:

(i) For each t > 0, x→ Ft(x) is C2 from R
d to R.

(ii) For each x, (Ft(x), t ≥ 0) is a continuous semi-martingale

dFt(x) =
n∑

j=1

f jt (x)dM j
t
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where M j are continuous semi-martingales, and f j(x) are stochastic
processes continuous in (t, x), such that ∀s > 0, x→ f js (x) are C1 maps,
and ∀x, f j(x) are adapted processes.

Let X = (X1, . . . , Xd) be a continuous semi-martingale. Then

Ft(Xt) = F0(X0) +
n∑

j=1

∫ t

0

f js (Xs)dM j
s +

d∑

i=1

∫ t

0

∂Fs
∂xi

(Xs)dXi
s

+
d∑

i=1

n∑

j=1

∫ t

0

∂fs
∂xi

(Xs)d〈M j , Xi〉s +
1
2

d∑

i,k=1

∫ t

0

∂2Fs
∂xi∂xk

d〈Xk, Xi〉s .

Proof: We refer to Kunita [546] and Ventzel [828]. �

Exercise 1.5.3.3 Prove Theorem 1.4.1.2, i.e., if X is continuous, Xt and
X2

t − t are martingales, then X is a BM.
Hint: Apply Itô’s formula to the complex valued martingale exp(iλXt+ 1

2λ
2t)

and use Exercise 1.4.1.8. �
Exercise 1.5.3.4 Let f ∈ C1,2([0, T ]×R

d , R). We write ∂xf(t, x) for the row

vector
[
∂f

∂xi
(t, x)

]

i=1,...,d

; ∂xxf(t, x) for the matrix
[

∂2f

∂xi ∂xj
(t, x)

]

i,j

, and

∂tf(t, x) for
∂f

∂t
(t, x). Let B = (B1, . . . , Bn) be an n-dimensional Brownian

motion and Yt = f(t,Xt), where Xt satisfies dXi
t = μitdt +

∑n
j=1 η

i,j
t dBj

t .
Prove that

dYt =
{

∂tf(t,Xt)+ ∂xf(t,Xt)μt +
1
2
[
ηt∂xxf(t,Xt)ηTt

]
}

dt+∂xf(t,Xt)ηt dBt .

�
Exercise 1.5.3.5 Let B be a d-dimensional Brownian motion, with d ≥ 2
and β defined as

dβt =
1

‖Bt‖
Bt · dBt =

1
‖Bt‖

d∑

i=1

Bi
tdB

i
t, β0 = 0.

Prove that β is a Brownian motion. This will be the starting point of the
study of Bessel processes (see � Chapter 6). �
Exercise 1.5.3.6 Let dXt = btdt + dBt where B is a Brownian motion and
b a given bounded FB-adapted process. Let

Lt = exp
(

−
∫ t

0

bsdBs −
1
2

∫ t

0

b2sds

)

.

Show that L and LX are local martingales. (This will be used while dealing
with Girsanov’s theorem in � Section 1.7.) �
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Exercise 1.5.3.7 Let X and Y be continuous semi-martingales. The Strato-
novich integral of X w.r.t. Y may be defined as

∫ t

0

Xs ◦ dYs =
∫ t

0

XsdYs +
1
2
〈X,Y 〉t .

Prove that

∫ t

0

Xs ◦ dYs = (ucp) lim
n→∞

p(n)−1∑

i=0

(
Xtni

+Xtni+1

2

)

(Ytni+1
− Ytni ) ,

where 0 = t0 < tn1 < · · · < tnp(n) = t is a subdivision of [0, T ] such that
supi(tni+1 − tni ) goes to 0 when n goes to infinity. Prove that for f ∈ C3, we
have

f(Xt) = f(X0) +
∫ t

0

f ′(Xs) ◦ dXs .

For a Brownian motion, the Stratonovich integral may also be approximated
as

∫ t

0

ϕ(Bs) ◦ dBs = lim
n→∞

p(n)−1∑

i=0

ϕ(B(ti+ti+1)/2)(Bti+1 −Bti) ,

where the limit is in probability; however, such an approximation does not
hold in general for continuous semi-martingales (see Yor [859]). See Stroock
[811], page 226, for a discussion on the C3 assumption on f in the integral
form of f(Xt). The Stratonovich integral can be extended to general semi-
martingales (not necessarily continuous): see Protter [727], Chapter 5. �

Exercise 1.5.3.8 Let B be a BM and MB
t : = sups≤tBs. Let f(t, x, y) be a

C1,2,1(R+ × R × R
+) function such that

1
2
fxx + ft = 0

fx(t, 0, y) + fy(t, 0, y) = 0 .

Prove that f(t,MB
t −Bt,M

B
t ) is a local martingale. In particular, for h ∈ C1

h(MB
t ) − h′(MB

t )(MB
t −Bt)

is a local martingale. See Carraro et al. [157] and El Karoui and Meziou [304]
for application to finance. �

Exercise 1.5.3.9 (Kennedy Martingales.) Let B(μ)
t := Bt +μt be a BM

with drift μ and M (μ) its running maximum, i.e., M (μ)
t = sups≤tB

(μ)
s . Let

Rt = M
(μ)
t −B

(μ)
t and Ta = Ta(R) = inf{t : Rt ≥ a}.
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1. Set μ = 0. Prove that, for any (α, β) the process

e−αMt− 1
2β

2t

(

cosh(β(Mt −Bt)) +
α

β
sinh(β(Mt −Bt))

)

is a martingale. Deduce that

E

(

exp
(

−αMTa − 1
2
β2Ta

))

= β (β coshβa+ α sinhβa)−1 : = ϕ(α, β; a) .

2. For any μ, prove that

E

(

exp
(

−αM (μ)
Ta

− 1
2
β2Ta

))

= e−μaϕ(αμ, βμ; a)

where αμ = α− μ, βμ =
√
β2 + μ2.

�

Exercise 1.5.3.10 Let (B(μ)
t , t ≥ 0) be a Brownian motion with drift μ, and

let b, c be real numbers. Define

Xt = exp(−cB(μ)
t )

(

x+
∫ t

0

exp(bB(μ)
s )ds

)

. Prove that

Xt = x− c

∫ t

0

XsdB
(μ)
s +

c2

2

∫ t

0

Xsds+
∫ t

0

e(b−c)B(μ)
s ds .

In particular, for b = c, X is a diffusion (see � Section 5.3) with infinitesimal
generator

c2

2
x2∂xx +

[(
c2

2
− cμ

)

x+ 1
]

∂x .

(See Donati-Martin et al. [258].) �

Exercise 1.5.3.11 Let B(μ) be as defined in Exercice 1.5.3.9 and let M (μ)

be its running maximum. Prove that, for t < T ,

E(M (μ)
T |Ft) = M

(μ)
t +

∫ ∞

M
(μ)
t −B

(μ)
t

G(T − t, u) du

where G(T − t, u) = P(M (μ)
T−t > u). �

Exercise 1.5.3.12 Let Mt =
∫ t
0
(XsdYs − YsdXs) where X and Y are two

real-valued independent Brownian motions. Prove that

Mt =
∫ t

0

√
X2

s + Y 2
s dBs

where B is a BM. Prove that
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X2
t + Y 2

t = 2
∫ t

0

(XudYu + YudXu) + 2t

= 2
∫ t

0

√
X2

u + Y 2
u dβu + 2t

where β is a Brownian motion, with d〈B, β〉t = 0. �

1.5.4 Stochastic Differential Equations

We start with a general result ([RY], Chapter IX). Let W = C(R+,Rd) be
the space of continuous functions from R

+ into R
d , w(s) the coordinate

mappings and Bt = σ(w(s), s ≤ t). A function f defined on R
+ ×W is said

to be predictable if it is predictable as a process defined on W with respect
to the filtration (Bt). If X is a continuous process defined on a probability
space (Ω,F,P), we write f(t,X � ) for the value of f at time t on the path
t→ Xt(ω). We emphasize that we write X � because f(t,X � ) may depend on
the path of X up to time t.

Definition 1.5.4.1 Let g and f be two predictable functions on W taking
values in the sets of d × n matrices and n-dimensional vectors, respectively.
A solution of the stochastic differential equation e(f,g) is a pair (X,B) of
adapted processes on a probability space (Ω,F ,P) with filtration F such that:

• The n-dimensional process B is a standard F-Brownian motion.
• For i = 1, . . . , d and for any t ∈ R

+

Xi
t = Xi

0 +
∫ t

0

fi(s,X � )ds+
n∑

j=0

∫ t

0

gi,j(s,X � )dBj
s . e(f,g)

We shall also write this equation as

dXi
t = fi(t,X � )dt+

n∑

j=0

gi,j(t,X � )dB
j
t .

Definition 1.5.4.2 (1) There is pathwise uniqueness for e(f,g) if when-
ever two pairs (X,B) and (X̂, B̂) are solutions defined on the same probability
space with B = B̂ and X0 = X̂0, then X and X̂ are indistinguishable.

(2) There is uniqueness in law for e(f,g) if whenever (X,B) and (X̂, B̂)
are two pairs of solutions possibly defined on different probability spaces with
X0

law= X̂0, then X law= X̂.
(3) A solution (X,B) is said to be strong if X is adapted to the filtration

FB. A general solution is often called a weak solution, and if not strong, a
strictly weak solution.
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Theorem 1.5.4.3 Assume that f and g satisfy the Lipschitz condition, for
a constant K > 0, which does not depend on t,

‖f(t, w) − f(t, w′)‖ + ‖g(t, w) − g(t, w′)‖ ≤ K sup
s≤t

‖w(s) − w′(s)‖ .

Then, e(f,g) admits a unique strong solution, up to indistinguishability.

See [RY], Chapter IX for a proof. The following theorem, due to Yamada and
Watanabe (see also [RY] Chapter IX, Theorem 1.7) establishes a hierarchy
between different uniqueness properties.

Theorem 1.5.4.4 If pathwise uniqueness holds for e(f,g), then uniqueness
in law holds and the solution is strong.

Example 1.5.4.5 Pathwise uniqueness is strictly stronger than uniqueness
in law. For example, in the one-dimensional case, let σ(x) = sgn(x), with
sgn(0) = −1. Any solution (X,B) of e(0, σ) (meaning that g(t,X � ) = σ(Xt))
starting from 0 is a standard BM, thus uniqueness in law holds. On the other
hand, if β is a BM, and Bt =

∫ t
0

sgn(βs)dβs, then (β,B) and (−β,B) are two
solutions of e(0, σ) (indeed, dBt = σ(βt)dβt is equivalent to dβt = σ(βt)dBt),
and pathwise uniqueness does not hold. If (X,B) is any solution of e(0, σ),
then Bt =

∫ t
0

sgn(Xs)dXs, and FB = F|X| which establishes that any solution
is strictly weak (see � Comments 4.1.7.9 and � Subsection 5.8.2 for the
study of the filtrations).

A simple case is the following:

Theorem 1.5.4.6 Let b : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×n be
Borel functions satisfying

‖b(t, x)‖ + ‖σ(t, x)‖ ≤ C(1 + ‖x‖) , x ∈ R
d, t ∈ [0, T ],

‖b(t, x) − b(t, y)‖ + ‖σ(t, x) − σ(t, y)‖ ≤ C‖x− y‖ , x, y ∈ R
d, t ∈ [0, T ]

and let X0 be a square integrable r.v. independent of the n-dimensional
Brownian motion B. Then, the stochastic differential equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ≤ T, X0 = x

has a unique continuous strong solution, up to indistinguishability. Moreover,
this process is a strong (inhomogeneous) Markov process.

Sketch of the Proof: The proof relies on Picard’s iteration procedure.
� In a first step, one considers the mapping Z → K(Z) where

(K(Z))t = x+
∫ t

0

b(s, Zs)ds+
∫ t

0

σ(s, Zs)dBs ,

and one defines a sequence (Xn)∞n=0 of processes by setting X0 = x, and
Xn = K(Xn−1). Then, one proves that
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E

(

sup
s≤t

(Xn
s −Xn−1

s )2
)

≤ kcn
tn

n!

where k, c are constants. This proves the existence of a solution.
� In a second step, one establishes the uniqueness by use of Gronwall’s lemma.
See [RY], Chapter IV for details. �

The solution depends continuously on the initial value.

Example 1.5.4.7 Geometric Brownian Motion. If B is a Brownian
motion and μ, σ are two real numbers, the solution S of

dSt = St(μdt+ σdBt)

is called a geometric Brownian motion with parameters μ and σ. The process
S will often be written in this book as

St = S0 exp(μt+ σBt − σ2t/2) = S0 exp(σXt) (1.5.3)

where
Xt = νt+Bt, ν =

μ

σ
− σ

2
. (1.5.4)

The process (Ste−μt, t ≥ 0) is a martingale. The Markov property of S may
be seen from the equality

St = Ss exp(μ(t− s) + σ(Bt −Bs) − σ2(t− s)/2), t > s .

Let s be fixed. The process Yu = exp(μu + σB̂u − σ2u/2), u ≥ 0) where
B̂u = Bs+u − Bs is independent of FS

s and has the same law as Su/S0.
Moreover, the decomposition St = SsYt−s, for t > s where Y is independent
of FS

s and has the same law as S/S0 will be of frequent use.

Example 1.5.4.8 Affine Coefficients: Method of Variation of Con-
stants. The solution of

dXt = (a(t)Xt + b(t))dt+ (c(t)Xt + f(t))dBt, X0 = x

where a, b, c, f are (bounded) Borel functions is X = Y Z where Y is the
solution of

dYt = Yt[a(t)dt+ c(t)dBt], Y0 = 1

and

Zt = x+
∫ t

0

Y −1
s [b(s) − c(s)f(s)]ds+

∫ t

0

Y −1
s f(s)dBs .

Note that one can write Y in a closed form as

Yt = exp
(∫ t

0

a(s)ds+
∫ t

0

c(s)dBs −
1
2

∫ t

0

c2(s)ds
)
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Remark 1.5.4.9 Under Lipschitz conditions on the coefficients, the solution
of

dXt = b(Xt)dt+ σ(Xt)dBt, t ≤ T, X0 = x ∈ R

is a homogeneous Markov process. More generally, under the conditions of
Theorem 1.5.4.6, the solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ≤ T, X0 = x ∈ R

is an inhomogeneous Markov process. The pair (Xt, t) is a homogeneous
Markov process.

Definition 1.5.4.10 (Explosion Time.) Suppose that X is a solution of an
SDE with locally Lipschitz coefficients. Then, a localisation argument allows
to define unambiguously, for every n, (Xt, t ≤ τn), when τn is the first exit
time from [−n, n]. Let τ = sup τn. When τ < ∞, we say that X explodes at
time τ .

If the functions b : R
d → R

d and σ : R
d → R

d × R
n are continuous, the

SDE
dXt = b(Xt)dt+ σ(Xt)dBt (1.5.5)

admits a weak solution up to its explosion time.

Under the regularity assumptions

‖σ(x) − σ(y)‖2 ≤ C|x− y|2 r(|x− y|2), for |x− y| < 1
|b(x) − b(y)| ≤ C|x− y| r(|x− y|2), for |x− y| < 1 ,

where r : ]0, 1[→ R
+ is a C1 function satisfying

(i) limx→0 r(x) = +∞,

(ii) limx→0
xr′(x)
r(x)

= 0,

(iii)
∫ a

0

ds

sr(s)
= +∞, for any a > 0,

Fang and Zhang [340, 341] have established the pathwise uniqueness of the
solution of the equation (1.5.5).

If, for |x| ≥ 1,

‖σ(x)‖2 ≤ C (|x|2 ρ(|x|2) + 1)
|b(x)| ≤ C (|x| ρ(|x|2) + 1)

for a function ρ of class C1 satisfying
(i) limx→∞ ρ(x) = +∞ ,

(ii) limx→∞
xρ′(x)
ρ(x)

= 0 ,

(iii)
∫ ∞

1

ds

sρ(s) + 1
= +∞,

then, the solution of the equation (1.5.5) does not explode.
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1.5.5 Stochastic Differential Equations: The One-dimensional Case

In the case of dimension one, the following result requires less regularity for
the existence of a solution of the equation

Xt = X0 +
∫ t

0

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dBs . (1.5.6)

Theorem 1.5.5.1 Suppose ϕ : ]0,∞[→]0,∞[ is a Borel function such that∫
0+ da/ϕ(a) = +∞.

Under any of the following conditions:

(i) the Borel function b is bounded, the function σ does not depend on the
time variable and satisfies

|σ(x) − σ(y)|2 ≤ ϕ(|x− y|)

and |σ| ≥ ε > 0 ,

(ii) |σ(s, x) − σ(s, y)|2 ≤ ϕ(|x− y|) and b is Lipschitz continuous,

(iii) the function σ does not depend on the time variable and satisfies

|σ(x) − σ(y)|2 ≤ |f(x) − f(y)|

where f is a bounded increasing function, σ ≥ ε > 0 and b is bounded,

the equation (1.5.6) admits a unique solution which is strong, and the solution
X is a Markov process.

See [RY], Chapter IV, Section 3 for a proof. Let us remark that condition (iii)
on σ holds in particular if σ is bounded below and has bounded variation:
indeed

|σ(x) − σ(y)|2 ≤ V |σ(x) − σ(y)| ≤ V |f(x) − f(y)|
with V =

∫
|dσ| and f(x) =

∫ x
−∞ |dσ(y)|.

The existence of a solution for σ(x) =
√
|x| and more generally for the

case σ(x) = |x|α with α ≥ 1/2 can be proved using ϕ(a) = ca. For α ∈ [0, 1/2[,
pathwise uniqueness does not hold, see Girsanov [394], McKean [637], Jacod
and Yor [472].

This criterion does not extend to higher dimensions. As an example, let Z
be a complex valued Brownian motion. It satisfies

Z2
t = 2

∫ t

0

ZsdZs = 2
∫ t

0

|Zs|dγs

where γt =
∫ t

0

ZsdZs

|Zs|
is a C-valued Brownian motion (see also � Subsection

5.1.3). Now, the equation ζt = 2
∫ t
0

√
|ζs|dγs where γ is a Brownian motion

admits at least two solutions: the constant process 0 and the process Z.
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Comment 1.5.5.2 The proof of (iii) was given in the homogeneous case,
using time change and Cameron-Martin’s theorem, by Nakao [666] and was
improved by LeGall [566]. Other interesting results are proved in Barlow and
Perkins [49], Barlow [46], Brossard [132] and Le Gall [566].

The reader will find in � Subsection 5.5.2 other results about existence
and uniqueness of stochastic differential equations.

It is useful (and sometimes unavoidable!) to allow solutions to explode.
We introduce an absorbing state δ so that the processes are R

d ∪ δ-valued.
Let τ be the explosion time (see Definition 1.5.4.10) and set Xt = δ for t > τ .

Proposition 1.5.5.3 Equation e(f, g) has no exploding solution if

sup
s≤t

|f(s, x � )| + sup
s≤t

|g(s, x � )| ≤ c(1 + sup
s≤t

|x � |) .

Proof: See Kallenberg [505] and Stroock and Varadhan [812]. �

Example 1.5.5.4 Zvonkin’s Argument. The equation

dXt = dBt + b(Xt)dt

where b is a bounded Borel function has a solution. Indeed, assume that there
is a solution and let Yt = h(Xt) where h satisfies 1

2h
′′(x) + b(x)h′(x) = 0 (so

h is of the form
h(x) = C

∫ x

0

dy exp(−2b̂(y)) +D

where b̂ is an antiderivative of b, hence h is strictly monotone). Then

Yt = h(x) +
∫ t

0

h′(h−1(Ys))dBs .

Since h′ ◦ h−1 is Lipschitz, Y exists, hence X exists. The law of X is

P
(b)
x |Ft = exp

(∫ t

0

b(Xs)dXs −
1
2

∫ t

0

b2(Xs)ds
)

Wx|Ft .

In a series of papers, Engelbert and Schmidt [331, 332, 333] prove results
concerning existence and uniqueness of solutions of

Xt = x+
∫ t

0

σ(Xs)dBs

that we recall now (see Cherny and Engelbert [168], Karatzas and Shreve [513]
p. 332, or Kallenberg [505]). Let
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Nσ = {x ∈ R : σ(x) = 0}

Iσ = {x ∈ R :
∫ a

−a

σ−2(x+ y)dy = +∞, ∀a > 0} .

The condition Iσ ⊂ Nσ is necessary and sufficient for the existence of a
solution for arbitrary initial value, and Nσ ⊂ Iσ is sufficient for uniqueness in
law of solutions. These results are generalized to the case of SDE with drift
by Rutkowski [751].

Example 1.5.5.5 The equation

dXt =
1
2
Xtdt+

√
1 +X2

t dBt, X0 = 0

admits the unique solution Xt = sinh(Bt). Indeed, it suffices to note that,
setting ϕ(x) = sinh(x), one has dϕ(Bt) = b(Xt)dt+ σ(Xt)dWt where

σ(x) = ϕ′(ϕ−1(x)) =
√

1 + x2, b(x) =
1
2
ϕ′′(ϕ−1(x)) =

x

2
. (1.5.7)

More generally, if ϕ is a strictly increasing, C2 function, which satisfies
ϕ(−∞) = −∞, ϕ(∞) = ∞, the process Zt = ϕ(Bt) is a solution of

Zt = Z0 +
∫ t

0

ϕ′ ◦ ϕ−1(Zs)dBs +
1
2

∫ t

0

ϕ′′ ◦ ϕ−1(Zs)ds .

One can characterize more explicitly SDEs of this form. Indeed, we can check
that

dZt = b(Zt)dt+ σ(Zt)dBt

where
b(z) =

1
2
σ(z)σ′(z) . (1.5.8)

Example 1.5.5.6 Tsirel’son’s Example. Let us give Tsirel’son’s example
[822] of an equation with diffusion coefficient equal to one, for which there is
no strong solution, as an SDE of the form dXt = f(t,X � )dt+ dBt. Introduce
the bounded function T on path space as follows: let (ti, i ∈ −N) be a sequence
of positive reals which decrease to 0 as i decreases to −∞. Let

T (s,X � ) =
∑

k∈−N∗

[[
Xtk −Xtk−1

tk − tk−1

]]

1]tk,tk+1](s) .

Here, [[x]] is the fractional part of x. Then, the equation e(T, 1) has no strong

solution because, for each fixed k,
[[
Xtk −Xtk−1

tk − tk−1

]]

is independent of B, and

uniformly distributed on [0, 1]. Thus Zvonkin’s result does not extend to the
case where the coefficients depend on the past of the process. See Le Gall and
Yor [568] for further examples.
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Example 1.5.5.7 Some stochastic differential equations of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

can be reduced to an SDE with affine coefficients (see Example 1.5.4.8) of the
form

dYt = (a(t)Yt + b(t))dt+ (c(t)Yt + f(t))dWt ,

by a change of variable Yt = U(t,Xt). Many examples are provided in Kloeden
and Platen [524]. For example, the SDE

dXt = −1
2

exp(−2Xt)dt+ exp(−Xt)dWt

can be transformed (with U(x) = ex) to dYt = dWt. Hence, the solution is
Xt = ln(Wt + eX0) up to the explosion time inf{t : Wt + eX0 = 0}.

Flows of SDE

Here, we present some results on the important topic of the stochastic flow
associated with the initial condition.

Proposition 1.5.5.8 Let

Xx
t = x+

∫ t

0

b(s,Xx
s )ds+

∫ t

0

σ(s,Xx
s )dWs

and assume that the functions b and σ are globally Lipschitz and have locally
Lipschitz first partial derivatives. Then, the explosion time is equal to ∞.
Furthermore, the solution is continuously differentiable w.r.t. the initial value,
and the process Yt = ∂xXt satisfies

Yt = 1 +
∫ t

0

Ys ∂xb(s,Xx
s )ds+

∫ t

0

Ys∂xσ(s,Xx
s )dWs .

We refer to Kunita [547, 548] or Protter, Chapter V [727] for a proof.

SDE with Coefficients Depending of a Parameter

We assume that b(t, x, a) and σ(t, x, a), defined on R
+ × R × R, are C2 with

respect to the two last variables x, a, with bounded derivatives of first and
second order.

Let

Xt = x+
∫ t

0

b(s,Xs, a)ds+
∫ t

0

σ(s,Xs, a)dWs

and Zt = ∂aXt. Then,

Zt =
∫ t

0

(∂ab(s,Xs, a) + Zs∂xb(s,Xs, a)) ds

+
∫ t

0

(∂aσ(s,Xs, a) + Zs∂xσ(s,Xs, a)) dWs .

See Métivier [645].
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Comparison Theorem

We conclude this paragraph with a comparison theorem.

Theorem 1.5.5.9 (Comparison Theorem.) Let

dXi(t) = bi(t,Xi(t))dt+ σ(t,Xi(t))dWt , i = 1, 2

where bi, i = 1, 2 are bounded Borel functions and at least one of them is
Lipschitz and σ satisfies (ii) or (iii) of Theorem 1.5.5.1. Suppose also that
X1(0) ≥ X2(0) and b1(x) ≥ b2(x). Then X1(t) ≥ X2(t) ,∀t, a.s.

Proof: See [RY], Chapter IX, Section 3. �

Exercise 1.5.5.10 Consider the equation dXt = 1{Xt≥0}dBt. Prove (in a
direct way) that this equation has no solution starting from 0. Prove that the
equation dXt = 1{Xt>0}dBt has a solution.
Hint: For the first part, one can consider a smooth function f vanishing
on R

+. From Itô’s formula, it follows that X remains positive, and the
contradiction is obtained from the remark that X is a martingale. �

Comment 1.5.5.11 Doss and Süssmann Method. Let σ be a C2-
function with bounded derivatives of the first two orders, and let b be Lipschitz
continuous. Let h be the solution of the ODE

∂h

∂t
(x, t) = σ(h(x, t)), h(x, 0) = x .

Let X be a continuous semi-martingale which vanishes at time 0 and let D
be the solution of the ODE

dDt

dt
= b(h(Dt, Xt(ω))) exp

{

−
∫ Xt(ω)

0

σ′(h(Ds, s))ds

}

, D0 = y .

Then, Yt = h(Dt, Xt) is the unique solution of

Yt = y +
∫ t

0

σ(Ys) ◦ dXs +
∫ t

0

b(Ys)ds

where ◦ stands for the Stratonovich integral (see Exercise 1.5.3.7). See Doss
[261] and Süssmann [815].

1.5.6 Partial Differential Equations

We now give an important relation between two problems: to compute the
(conditional) expectation of a function of the terminal value of the solution
of an SDE and to solve a second-order PDE with boundary conditions.
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Proposition 1.5.6.1 Let A be the second-order operator defined on C1,2

functions by

A(ϕ)(t, x) =
∂ϕ

∂t
(t, x) + b(t, x)

∂ϕ

∂x
(t, x) +

1
2
σ2(t, x)

∂2ϕ

∂x2
(t, x) .

Let X be the diffusion (see � Section 5.3)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt .

We assume that this equation admits a unique solution. Then, for f ∈ Cb(R)
the bounded solution to the Cauchy problem

Aϕ = 0, ϕ(T, x) = f(x) , (1.5.9)

is given by
ϕ(t, x) = E(f(XT )|Xt = x) .

Conversely, if ϕ(t, x) = E(f(XT )|Xt = x) is C1,2, then it solves (1.5.9).

Proof: From the Markov property of X, the process

ϕ(t,Xt) = E(f(XT )|Xt) = E(f(XT )|Ft) ,

is a martingale. Hence, its bounded variation part is equal to 0. From (1.5.2),
assuming that ϕ ∈ C1,2,

∂tϕ+ b(t, x)∂xϕ+
1
2
σ2(t, x)∂xxϕ = 0 .

The smoothness of ϕ is established from general results on diffusions
under suitable conditions on b and σ (see Kallenberg [505], Theorem 17-6
and Durrett [286]). �

Exercise 1.5.6.2 Let dXt = rXtdt + σ(Xt)dWt, Ψ a bounded continuous
function and ψ(t, x) = E(e−r(T−t)Ψ(XT )|Xt = x). Assuming that ψ is C1,2,
prove that

∂tψ + rx∂xψ +
1
2
σ2(x)∂xxψ = rψ, ψ(T, x) = Ψ(x) . �

1.5.7 Doléans-Dade Exponential

Let M be a continuous local martingale. For any λ ∈ R, the process

E(λM)t : = exp
(

λMt −
λ2

2
〈M〉t

)
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is a positive local martingale (hence, a super-martingale), called the Doléans-
Dade exponential of λM (or, sometimes, the stochastic exponential of λM).
It is a martingale if and only if ∀t, E(E(λM)t) = 1.

If λ ∈ L2(M), the process E(λM) is the unique solution of the stochastic
differential equation

dYt = Yt λtdMt, Y0 = 1 .

This definition admits an extension to semi-martingales as follows. If X is a
continuous semi-martingale vanishing at 0, the Doléans-Dade exponential
of X is the unique solution of the equation

Zt = 1 +
∫ t

0

ZsdXs .

It is given by

E(X)t : = exp
(

Xt −
1
2
〈X〉t

)

.

Let us remark that in general E(λM) E(μM) is not equal to E((λ+ μ)M). In
fact, the general formula

E(X)t E(Y )t = E(X + Y + 〈X,Y 〉)t (1.5.10)

leads to
E(λM)tE(μM)t = E((λ+ μ)M + λμ〈M〉)t ,

hence, the product of the exponential local martingales E(M)E(N) is a local
martingale if and only if the local martingales M and N are orthogonal.

Example 1.5.7.1 For later use (see � Proposition 2.6.4.1) we present the
following computation. Let f and g be two continuous functions and W a
Brownian motion starting from x at time 0. The process

Zt = exp
(∫ t

0

[f(s)Ws + g(s)]dWs −
1
2

∫ t

0

[f(s)Ws + g(s)]2ds
)

is a local martingale. Using � Proposition 1.7.6.4, it can be proved that it is
a martingale, therefore its expectation is equal to 1. It follows that

E

(

exp
[∫ t

0

[f(s)Ws + g(s)]dWs −
1
2

∫ t

0

[f2(s)W 2
s + 2Wsf(s)g(s)]ds

])

= exp
(

1
2

∫ t

0

g2(s)ds
)

.

If moreover f and g are C1, integration by parts yields
∫ t

0

g(s)dWs = g(t)Wt − g(0)W0 −
∫ t

0

g′(s)Wsds

∫ t

0

f(s)WsdWs =
1
2

(

W 2
t f(t) −W 2

0 f(0) −
∫ t

0

f(s)ds−
∫ t

0

f ′(s)W 2
s ds

)

,
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therefore,

E

[

exp
(

g(t)Wt +
1
2
f(t)W 2

t

− 1
2

∫ t

0

(
[f2(s) + f ′(s)]W 2

s + 2Ws(f(s)g(s) + g′(s))
)
ds

)]

= exp
(

g(0)W0 +
1
2

(

f(0)W 2
0 +

∫ t

0

f(s)ds+
∫ t

0

g2(s)ds
))

.

Exercise 1.5.7.2 Check formula (1.5.10), by showing, e.g., that both sides
satisfy the same linear SDE. �

Exercise 1.5.7.3 Let H and Z be continuous semi-martingales. Check that
the solution of the equation Xt = Ht +

∫ t
0
XsdZs , is

Xt = E(Z)t

(

H0 +
∫ t

0

1
E(Z)s

(dHs − d〈H,Z〉s)
)

.

See Protter [727], Chapter V, Section 9, for the case where H,Z are general
semi-martingales. �

Exercise 1.5.7.4 Prove that if θ is a bounded function, then the process
(E(θ�W )t, t ≤ T ) is a u.i. martingale.
Hint:

exp
(∫ t

0

θsdWs −
1
2

∫ t

0

θ2sds

)

≤ exp
(

sup
t≤T

∫ t

0

θsdWs

)

= exp β̂R T
0 θ2

sds

with β̂t = supu≤t βu where β is a BM. �

Exercise 1.5.7.5 Multiplicative Decomposition of Positive Sub-mar-
tingales. Let X = M + A be the Doob-Meyer decomposition of a strictly
positive continuous sub-martingale. Let Y be the solution of

dYt = Yt
1
Xt
dMt, Y0 = X0

and let Z be the solution of dZt = −Zt
1
Xt
dAt, Z0 = 1. Prove that U = Y/Z

satisfies dUt = Ut
1
Xt
dXt and deduce that U = X.

Hint: Use that the solution of dUt = Ut
1
Xt
dXt is unique. See Meyer and

Yoeurp [649] and Meyer [647] for a generalization to discontinuous sub-
martingales. Note that this decomposition states that a strictly positive
continuous sub-martingale is the product of a martingale and an increasing
process. �
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1.6 Predictable Representation Property

1.6.1 Brownian Motion Case

Let W be a real-valued Brownian motion and FW its natural filtration. We
recall that the space L2(W ) was presented in Definition 1.3.1.3.

Theorem 1.6.1.1 Let (Mt, t ≥ 0) be a square integrable FW -martingale (i.e.,
supt E(M2

t ) <∞). There exists a constant μ and a unique predictable process
m in L2(W ) such that

∀t, Mt = μ+
∫ t

0

ms dWs .

If M is an FW -local martingale, there exists a unique predictable process m
in L2

loc(W ) such that

∀t, Mt = μ+
∫ t

0

ms dWs .

Proof: The first step is to prove that for any square integrable FW
∞ -

measurable random variable F , there exists a unique predictable process H
such that

F = E(F ) +
∫ ∞

0

Hs dWs , (1.6.1)

and E[
∫∞
0
H2

sds] < ∞. Indeed, the space of random variables F of the form
(1.6.1) is closed in L2. Moreover, it contains any random variable of the form

F = exp
(∫ ∞

0

f(s)dWs −
1
2

∫ ∞

0

f(s)2ds
)

with f =
∑

i λi1]ti−1,ti], λi ∈ R
d, and this space is total in L2. Then density

arguments complete the proof. See [RY], Chapter V, for details. �

Example 1.6.1.2 A special case of Theorem 1.6.1.1 is when Mt = f(t,Wt)
where f is a smooth function (hence, f is space-time harmonic, i.e., it satisfies
∂f
∂t + 1

2
∂2f
∂x2 = 0). In that case, Itô’s formula leads to ms = ∂xf(s,Ws).

This theorem holds in the multidimensional Brownian setting. Let W be a
n-dimensional BM and M be a square integrable FW -martingale. There exists
a constant μ and a unique n-dimensional predictable processm in L2(W ) such
that

∀t, Mt = μ+
n∑

i=1

∫ t

0

mi
s dW

i
s .

Corollary 1.6.1.3 Every FW -local martingale admits a continuous version.
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As a consequence, every optional process in a Brownian filtration is
predictable.
From now on, we shall abuse language and say that every FW -local martingale
is continuous.

Corollary 1.6.1.4 Let W be a G-Brownian motion with natural filtration F.
Then, for every square integrable G-adapted process ϕ,

E

(∫ t

0

ϕsdWs|Ft

)

=
∫ t

0

E(ϕs|Fs)dWs ,

where E(ϕs|Fs) denotes the predictable version of the conditional expectation.

Proof: Since the r.v.
∫ t
0

E(ϕs|Fs)dWs is Ft-measurable, it suffices to check
that, for any bounded r.v. Ft ∈ Ft

E

(

Ft

∫ t

0

ϕsdWs

)

= E

(

Ft

∫ t

0

E(ϕs|Fs)dWs

)

.

The predictable representation theorem implies that Ft = E(Ft) +
∫ t
0
fsdWs,

for some F-predictable process f ∈ L2(W ), hence

E

(

Ft

∫ t

0

ϕsdWs

)

= E

(∫ t

0

fsϕsds

)

=
∫ t

0

E(fsϕs)ds

=
∫ t

0

E(fsE(ϕs|Fs))ds = E

(∫ t

0

fsE(ϕs|Fs)ds
)

= E

({

E(Ft) +
∫ t

0

fsdWs

}∫ t

0

E(ϕs|Fs)dWs

)

,

which ends the proof. �

Example 1.6.1.5 If F =
∫∞
0
ds h(s,Ws) where

∫∞
0
dsE(|h(s,Ws)|) < ∞,

then from the Markov property, Mt = E(F |Ft) =
∫ t
0
ds h(s,Ws) + ϕ(t,Wt),

for some function ϕ. Assuming that ϕ is smooth, the martingale property of
M and Itô’s formula lead to

h(t,Wt) + ∂tϕ(t,Wt) +
1
2
∂xxϕ(t,Wt) = 0

and Mt = ϕ(0, 0)+
∫ t
0
∂xϕ(s,Ws)dWs. See the papers of Graversen et al. [405]

and Shiryaev and Yor [793] for some examples of functionals of the Brownian
motion which are explicitly written as stochastic integrals.

Proposition 1.6.1.6 Let Mt = E(f(WT )|Ft), for t ≤ T where f is a C1
b

function. Then,

Mt = E(f(WT ))+
∫ t

0

E(f ′(WT )|Fs)dWs = E(f(WT ))+
∫ t

0

PT−s(f ′)(Ws)dWs .
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Proof: From the independence and stationarity of the increments of the
Brownian motion,

E(f(WT )|Ft) = ψ(t,Wt)

where ψ(t, x) = E(f(x +WT−t)). Itô’s formula and the martingale property
of ψ(t,Wt) lead to

∂xψ(t, x) = E(f ′(x+WT−t)) = E(f ′(WT )|Wt = x) .

�

Comment 1.6.1.7 In a more general setting, one can use Malliavin’s
derivative. For T fixed, and h ∈ L2([0, T ]), we define W (h) =

∫ T
0
h(s)dWs.

Let F = f(W (h1), . . . ,W (hn)) where f is a smooth function. The derivative
of F is defined as the process (DtF, t ≤ T ) by

DtF =
n∑

i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi(t) .

The Clark-Ocone representation formula states that for random variables
which satisfy some suitable integrability conditions,

F = E(F ) +
∫ T

0

E(DtF |Ft)dWt .

We refer the reader to the books of Nualart [681] for a study of Malliavin
calculus and of Malliavin and Thalmaier [616] for applications in finance. See
also the issue [560] of Mathematical Finance devoted to applications to finance
of Malliavin calculus.

Exercise 1.6.1.8 Let W = (W 1, . . . ,W d) be a d-dimensional BM. Is the
space of martingales

∑d
i=1

∫ t
0
Hi(W i

� )sdW
i
s dense in the space of square

integrable martingales?
Hint: The answer is negative. Look for Y ∈ L2(W∞) such that Y is
orthogonal to all these variables. �

1.6.2 Towards a General Definition of the Predictable
Representation Property

Besides the Predictable Representation Property (PRP) of Brownian motion,
let us recall the Kunita-Watanabe orthogonal decomposition of a martingale
M with respect to another one X:

Lemma 1.6.2.1 (Kunita-Watanabe Decomposition.) Let X be a given
continuous local F-martingale. Then, every continuous F-local martingale M
vanishing at 0 may be uniquely written

M = H�X +N (1.6.2)

where H is predictable and N is a local martingale orthogonal to X.
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Referring to the Brownian motion case (previous subsection), one may
wonder for which local martingales X it is true that every N in (1.6.2) is a
constant. This leads us to the following definition.

Definition 1.6.2.2 A continuous local martingale X enjoys the predictable
representation property (PRP) if for any FX-local martingale (Mt, t ≥ 0),
there is a constant m and an FX-predictable process (ms, s ≥ 0) such that

Mt = m+
∫ t

0

msdXs, t ≥ 0.

Exercise 1.6.2.3 Prove that (ms, s ≥ 0) is unique in L2
loc(X). �

More generally, a continuous F-local martingale X enjoys the F-predictable
representation property if any F-adapted martingale M can be written as
Mt = m+

∫ t
0
ms dXs, with

∫ t
0
m2

sd〈X〉s < ∞. We do not require in that last
definition that F is the natural filtration of X. (See an important example in
� Subsection 1.7.7.)

We now look for a characterization of martingales that enjoy the PRP.
Given a continuous F-adapted process Y , we denote by M(Y ) the subset of
probability measures Q on (Ω,F), for which the process Y is a (Q,F)-local
martingale. This set is convex. A probability measure P is called extremal in
M(Y ) if whenever P = λP1 + (1 − λ)P2 with λ ∈]0, 1[ and P1,P2 ∈ M(Y ),
then P = P1 = P2.

Note that if P = λP1 +(1−λ)P2, then P1 and P2 are absolutely continuous
with respect to P. However, the Pi’s are not necessarily equivalent. The
following theorem relates the PRP for Y under P ∈ M(Y ) and the extremal
points of M(Y ).

Theorem 1.6.2.4 The process Y enjoys the PRP with respect to FY and P

if and only if P is an extremal point of M(Y ).

Proof: See Jacod [468], Yor [861] and Jacod and Yor [472]. �

Comments 1.6.2.5 (a) The PRP is essential in finance and is deeply linked
with Delta hedging and completeness of the market. If the price process enjoys
the PRP under an equivalent probability measure, the market is complete. It
is worthwhile noting that the key process is the price process itself, rather
than the processes that may drive the price process. See � Subsection 2.3.6
for more details.

(b) We compare Theorems 1.6.1.1 and 1.6.2.4. It turns out that the
Wiener measure is an extremal point in M, the set of martingale laws on
C(R+,R) where Yt(ω) = ω(t). This extremality property follows from Lévy’s
characterization of Brownian motion.

(c) Let us give an example of a martingale which does not enjoy the PRP.
Let Mt =

∫ t
0
eaBs−a2s/2dβs =

∫ t
0
E(aB)sdβs, where B, β are two independent
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one-dimensional Brownian motions. We note that d〈M〉t = (E(aB)t)2dt, so
that (Et : = E(aB)t, t ≥ 0) is FM -adapted and hence is an FM -martingale.
Since Et = 1+a

∫ t
0
EsdBs, the martingale E cannot be obtained as a stochastic

integral w.r.t. β or equivalently w.r.t. M . In fact, every FM -martingale can be
written as the sum of a stochastic integral with respect to M (or equivalently
to β) and a stochastic integral with respect to B.

(d) It is often asked what is the minimal number of orthogonal martingales
needed to obtain a representation formula in a given filtration. We refer the
reader to Davis and Varaiya [224] who defined the notion of multiplicity of a
filtration. See also Davis and Ob�lój [223] and Barlow et al. [50].

Example 1.6.2.6 We give some examples of martingales that enjoy the PRP.
(a) Let W be a BM and F its natural filtration. Set Xt = x +

∫ t
0
xs dWs

where (xs, s ≥ 0) is continuous and does not vanish. Then X enjoys the PRP.
(b) A continuous martingale is a time-changed Brownian motion. Let X

be a martingale, then Xt = β〈X〉t
where β is a Brownian motion. If 〈X〉 is

measurable with respect to β, then X is said to be pure, and PX is extremal.
However, the converse does not hold. See Yor [862].

Exercise 1.6.2.7 Let MP(X) = {Q << P : X is a Q-martingale}. For any
convex set K, we denote by ext(K) the set of extremal points of K. Prove that

ext(MP(X)) = ext(M(X)) ∩MP(X) .

An open question is: does the equality

ext(Meq
P

(X)) = extM(X) ∩Meq
P

(X)

where Meq
P

(X) = {Q ∼ P : X is a Q-martingale}, hold? �

Exercise 1.6.2.8 We present an example where the representation of a boun-
ded r.v. considered as the terminal variable of a martingale can be explicitly
computed. Let B be a Brownian motion and Ta = inf{t ≥ 0 : Bt = a} where
a > 0.

1. Using the Doléans-Dade exponential of λB, prove that, for λ > 0

E(e−λ2Ta/2|Ft) = e−λa + λ

∫ Ta∧t

0

e−λ(a−Bu)−λ2u/2dBu (1.6.3)

and that

e−λ2Ta/2 = e−λa + λ

∫ Ta

0

e−λ(a−Bu)−λ2u/2dBu .

Check that E(
∫ Ta

0
(e−λ(a−Bu)−λ2u/2 )2du) < ∞. Prove that (1.6.3) is not

true for λ < 0, i.e., that, in the case μ : = −λ > 0 the quantities
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E(e−μ2Ta/2|Ft) and eμa−μ
∫ Ta∧t
0

eμ(a−Bu)−μ2u/2 dBu are not equal. Prove
that, nonetheless,

e−λ2Ta/2 = eλa − λ

∫ Ta

0

eλ(a−Bu)−λ2u/2dBu

but E(
∫ Ta

0
(eλ(a−Bu)−λ2u/2 )2 du) = ∞ . Deduce, from the previous results,

that

sinh(λa) = λ

∫ Ta

0

e−λ2u/2 cosh((a−Bu)λ) dBu .

2. By differentiating the Laplace transform of Ta, and using the fact that
ϕ satisfies the Kolmogorov equation ∂tϕ(t, x) = 1

2∂xxϕ(t, x) , (see �
Subsection 5.4.1), prove that

λe−λc = 2
∫ ∞

0

e−λ2t/2∂tϕ(t, c) dt

where ϕ(t, x) = 1√
2πt
e−x2/(2t).

3. Prove that, for any bounded Borel function f

E(f(Ta)|Ft) = E(f(Ta)) + 2
∫ Ta∧t

0

dBs

∫ ∞

0

f(u+ s)
∂

∂u
ϕ(u,Bs − a)du .

4. Deduce that, for fixed T ,

1{Ta<T} = P(Ta < T ) + 2
∫ Ta∧T

0

ϕ(T − s,Bs − a) dBs .

See Shiryaev and Yor [793], Graversen et al. [405] for other examples. �

1.6.3 Dudley’s Theorem

In the previous exercise, we were careful to check the integrability of the
stochastic integrals. This may be contrasted with Dudley’s result [269], which
states that every FW

T -random variable can be represented as an Itô stochastic
integral

∫ T
0
θsdWs where θ is predictable and satisfies

∫ T
0
θ2sds < ∞, a.s.

where W is a Brownian motion. In fact, this result has no relation with the
predictable representation property, as shown by Émery et al. [330]. Indeed,
the authors proved that, in a filtration where any martingale is continuous, if
τ is a stopping time and X is an Fτ -measurable random variable, there exists
a local martingale M , null at 0, such that Mτ = X.

Comment 1.6.3.1 In mathematical finance, Dudley’s result is related to
arbitrage opportunities (see � Chapter 2 for the definition of financial terms
if needed). Let us study the simple case where dSt = StσdWt, S0 = x > 0
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is the price of the risky asset and where the interest rate is null. Consider
a process θ such that

∫ T
0
θ2sds < ∞, a.s.. and

∫ T
0
θsdWs = 1 (the existence

is a consequence of Dudley’s theorem). Had we chosen πs = θs/(Ssσ) as the
risky part of a self-financing strategy with a zero initial wealth, then we would
obtain an arbitrage opportunity. However, the wealth X associated with this
strategy, i.e., Xt =

∫ t
0
θsdWs is not bounded below (otherwise, X would be

a super-martingale with initial value equal to 0, hence E(XT ) ≤ 0). These
strategies are linked with the well-known doubling strategy of coin tossing
(see Harrison and Pliska [422]).

1.6.4 Backward Stochastic Differential Equations

In deterministic case studies, it is easy to solve an ODE with a terminal
condition just by time reversal. In a stochastic setting, if one insists that the
solution is adapted w.r.t. a given filtration, it is not possible in general to use
time reversal.

A probability space (Ω,F ,P), an n-dimensional Brownian motion W and
its natural filtration F, an FT -measurable square integrable random variable ζ
and a family of F-adapted, R

d-valued processes f(t, � , x, y), x, y ∈ R
d ×R

d×n

are given (we shall, as usual, forget the dependence in ω and write only
f(t, x, y)). The problem we now consider is to solve a stochastic differential
equation where the terminal condition ζ as well as the form of the drift term f
(called the generator) are given, however, the diffusion term is left unspecified.

The Backward Stochastic Differential Equation (BSDE) (f, ζ) has
the form

−dXt = f(t,Xt, Yt) dt− Yt � dWt

XT = ζ .

Here, we have used the usual convention of signs which is in force while
studying BSDEs. The solution of a BSDE is a pair (X,Y ) of adapted processes
which satisfy

Xt = ζ +
∫ T

t

f(s,Xs, Ys) ds−
∫ T

t

Ys � dWs , (1.6.4)

where X is R
d-valued and Y is d× n-matrix valued.

We emphasize that the diffusion coefficient Y is a part of the solution, as
it is clear from the obvious case when f is null: in that case, we are looking
for a martingale with given terminal value. Hence, the quantity Y is the
predictable process arising in the representation of the martingale X in terms
of the Brownian motion.

Example 1.6.4.1 Let us study the easy case where f is a deterministic
function of time (or a given process such that

∫ T
0
fsds is square integrable) and
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d = n = 1. If there exists a solution to Xt = ζ +
∫ T
t
f(s) ds−

∫ T
t
Ys dWs, then

the F-adapted process Xt +
∫ t
0
f(s) ds is equal to ζ +

∫ T
0
f(s) ds−

∫ T
t
Ys dWs.

Taking conditional expectation w.r.t. Ft of the two sides, and assuming that
Y is square integrable, we get

Xt +
∫ t

0

f(s) ds = E(ζ +
∫ T

0

f(s) ds|Ft) (1.6.5)

therefore, the process Xt +
∫ t
0
f(s) ds is an F-martingale with terminal value

ζ +
∫ T
0
f(s) ds. (A more direct proof is to write dXt + f(t)dt = YtdWt.) The

predictable representation theorem asserts that there exists an adapted square
integrable process Y such that Xt +

∫ t
0
f(s) ds = X0 +

∫ t
0
YsdWs and the pair

(X,Y ) is the solution of the BSDE. The process X can be written in terms
of the generator f and the terminal condition as Xt = E(ζ +

∫ T
t
f(s)ds|Ft).

In particular, if ζ1 ≥ ζ2 and f1 ≥ f2, and if Xi is the solution of (fi, ζi) for
i = 1, 2, then, for t ∈ [0, T ], X1

t ≥ X2
t .

Definition 1.6.4.2 Let L2([0, T ] × Ω; Rd) be the set of R
d-valued square

integrable F-progressively measurable processes, i.e., processes Z such that

E

[∫ T

0

‖Zs‖2ds

]

<∞ .

Theorem 1.6.4.3 Let us assume that for any (x, y) ∈ R
n×R

d×n, the process
f( � , x, y) is progressively measurable, with f( � , 0, 0) ∈ L2([0, T ] ×Ω; Rd) and
that the function f(t, � , � ) is uniformly Lipschitz, i.e., there exists a constant
K such that

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ K[ ‖x1 − x2‖ + ‖y1 − y2‖ ], ∀t,P, a.s.

Then there exists a unique pair (X,Y ) of adapted processes belonging to
L2([0, T ] ×Ω; Rn) × L2([0, T ] ×Ω,Rd×n) which satisfies (1.6.4).

Sketch of the Proof: Example (1.6.4.1) provides the proof when f does
not depend on (x, y). The general case is established using Picard’s iteration:
let Φ be the map Φ(x, y) = (X,Y ) where (x, y) is a pair of adapted processes
and (X,Y ) is the solution of

−dXt = f(t, xt, yt) dt− Yt � dWt, XT = ζ .

The map Φ is proved to be a contraction.
The uniqueness is proved by introducing the norm ‖Φ‖2

β = E(
∫ T
0
eβs|φs|ds)

and giving a priori estimates of the norm ‖Y1 − Y2‖β for two solutions of the
BSDE. See Pardoux and Peng [694] and El Karoui et al. [309] for details. �
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An important result is the following comparison theorem for BSDE

Theorem 1.6.4.4 Let f i, i = 1, 2 be two real-valued processes satisfying the
previous hypotheses and f1(t, x, y) ≤ f2(t, x, y). Let ζi be two FT -measurable,
square integrable real-valued random variables such that ζ1 ≤ ζ2 a.s.. Let
(Xi, Y i) be the solution of

−dXi
t = f i(t,Xi

t , Y
i
t ) dt− Y i

t � dWt , X
i
T = ζ.

Then X1
t ≤ X2

t ,∀t ≤ T .

Linear Case. Let us consider the particular case of a linear generator f :
R

+ × R × R
d → R defined as f(t, x, y) = atx + bt � y + ct where a, b, c are

bounded adapted processes. We define the adjoint process Γ as the solution
of the SDE {

dΓt = Γt[atdt+ bt � dWt]
Γ0 = 1 . (1.6.6)

Theorem 1.6.4.5 Let ζ ∈ FT , square integrable. The solution of the linear
BSDE

−dXt = (atXt + bt �Yt + ct)dt− Yt � dWt, XT = ζ

is given by

Xt = (Γt)−1
E

(

ΓT ζ +
∫ T

t

Γscsds|Ft

)

.

Proof: If (X,Y ) is a solution of

−dXt = (atXt + bt �Yt + ct)dt− Yt � dWt

with the terminal condition XT = ζ, then

−dX̂t = ĉtdt− Yt � (dWt − btdt), X̂T = ζ exp

(∫ T

0

asds

)

where X̂t = Xt exp
(∫ t

0
asds

)
and ĉt = ct exp

(∫ t
0
asds

)
. We use Girsanov’s

theorem (see � Section 1.7) to eliminate the term Y � b. Let Q|Ft = Lt P|Ft

where dLt = Ltbt � dWt. Then,

−dX̂t = ĉtdt− Yt � dW̃t

where W̃ is a Q-Brownian motion and the process X̂t +
∫ t
0
ĉsds is a Q-

martingale with terminal value ζ +
∫ T
0
ĉsds. Hence, X̂t = EQ(ζ +

∫ T
t
ĉsds|Ft).

The result follows by application of Exercise 1.2.1.8. �

Backward stochastic differential equations are of frequent use in finance.
Suppose, for example, that an agent would like to obtain a terminal wealth
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XT while consuming at a given rate c (an adapted positive process). The
financial market consists of d securities

dSi
t = Si

t(bi(t)dt+
d∑

j=1

σi,j(t)dW
(j)
t )

and a riskless bond with interest rate denoted by r. We assume that the
market is complete and arbitrage free (see � Chapter 2 if needed). The
wealth associated with a portfolio (πi, i = 0, . . . , d) is the sum of the wealth
invested in each asset, i.e., Xt = π0(t)S0

t +
∑d

i=1 πi(t)S
i
t . The self-financing

condition for a portfolio with a given consumption c, i.e.,

dXt = π0(t)dS0
t +

d∑

i=1

πi(t)dSi
t − ctdt

allows us to write

dXt = Xtrdt+ πt � (bt − r1)dt− ctdt+ πt �σtdWt ,

where 1 is the d-dimensional vector with all components equal to 1. Therefore,
the pair (wealth process, portfolio) is obtained via the solution of the BSDE

dXt = f(t,Xt, Yt)dt+ Yt � dWt, XT given

with f(t, ·, x, y) = rx+ y �σ−1
t (bt− r1)− ct and the portfolio (πi, i = 1, . . . , d)

is given by πt = Yt �σ−1
t . This is a particular case of a linear BSDE. Then,

the process Γ introduced in (1.6.6) satisfies

dΓt = Γt(rdt+ σ−1
t (bt − r1)dWt), Γ0 = 1

and Γt is the product of the discounted factor e−rt and the strictly positive
martingale L, which satisfies

dLt = Ltσ
−1
t (bt − r1)dWt, L0 = 1 ,

i.e., Γt = e−rtLt. If Q is defined as Q|Ft = LtP|Ft , denoting Rt = e−rt, the
process RtXt +

∫ t
0
csRsds is a local martingale under the e.m.m. Q (see �

Chapter 2 if needed). Therefore,

ΓtXt = EP

(

XTΓT +
∫ T

t

csΓsds|Ft

)

.

In particular, the value of wealth at time t needed to hedge a positive terminal
wealth XT and a positive consumption is always positive. Moreover, from the
comparison theorem, if X1

T ≤ X2
T and c1 ≤ c2, then X1

t ≤ X2
t . This can be

explained using the arbitrage principle. If a contingent claim ζ1 is greater than
a contingent claim ζ2, and if there is no consumption, then the initial wealth
is the price of ζ1 and is greater than the price of ζ2.
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Exercise 1.6.4.6 Quadratic BSDE: an example. This exercise provides
an example where there exists a solution although the Lipschitz condition is
not satisfied.
Let a and b be two constants and ζ a bounded FT -measurable r.v.. Prove that
the solution of −dXt = (aY 2

t + bYt)dt− YtdWt, XT = ζ is

Xt =
1
2a

(
1
2
b2(t− T ) − bWt + ln E

(
ebWT +2aζ |Ft

)
)

.

Hint: First, prove that the solution of the BSDE

−dXt = aY 2
t dt− YtdWt, XT = ζ

is Xt = 1
2a ln E(e2aζ |Ft). Then, using Girsanov’s theorem, the solution of

−dXt = (aY 2
t + bYt)dt− YtdWt, XT = ζ

is given by

Xt =
1
2a

ln Ê(e2aζ |Ft)

where Q̂|Ft
= ebWt− 1

2 b
2t

P|Ft
. Therefore,

Xt =
1
2a

ln
(
E(ebWT − 1

2 b
2T e2aζ |Ft)e−bWt+

1
2 b

2t
)

=
1
2a

(

ln E

(
ebWT − 1

2 b
2T e2aζ |Ft

)
− bWt +

1
2
b2t

)

. �

Comments 1.6.4.7 (a) The main references on this subject are the collective
book [303], the book of Ma and Yong [607], the El Karoui and Quenez lecture
in [308], El Karoui et al. [309] and Buckdhan’s lecture in [134]. See also the
seminal papers of Lepeltier and San Martin [578, 579] where general existence
theorems for continuous generators with linear growth are established.

(b) In El Karoui and Rouge [310], the indifference price is characterized
as a solution of a BSDE with a quadratic generator.

(c) BSDEs are used to solve control problems in Bielecki et al. [98],
Hamadène [419], Hu and Zhou [448] and Mania and Tevzadze [619].

(d) Backward stochastic differential equations are also studied in the case
where the driving martingale is a process with jumps. The reader can refer to
Barles et al. [43], Royer [744], Nualart and Schoutens [683] and Rong [743].

(e) Reflected BSDE are studied by El Karoui and Quenez [308] in order
to give the price of an American option, without using the notion of a Snell
envelope.

(f) One of the main applications of BSDE is the notion of non-linear
expectation (or G-expectation), and the link between this notion and risk
measures (see Peng [705, 706]).
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1.7 Change of Probability and Girsanov’s Theorem

1.7.1 Change of Probability

We start with a general filtered probability space (Ω,F ,F,P) where, as usual
F0 is trivial.

Proposition 1.7.1.1 Let P and Q be two equivalent probabilities on (Ω,FT ).
Then, there exists a strictly positive (P,F)-martingale (Lt, t ≤ T ), such that
Q|Ft = Lt P|Ft , that is EQ(X) = EP(LtX) for any Ft-measurable positive
random variable X with t ≤ T . Moreover, L0 = 1 and EP(Lt) = 1, ∀t ≤ T .

Proof: If P and Q are equivalent on (Ω,FT ), from the Radon-Nikodým
theorem there exists a strictly positive FT -measurable random variable LT

such that Q = LTP on FT . From the definition of Q, the expectation under Q

of any FT -measurable Q-integrable r.v. X is defined as EQ(X) = EP(LTX).
In particular, EP(LT ) = 1.

The process L = (Lt = EP(LT |Ft), t ≤ T ) is a (P,F)-martingale and is
the Radon-Nikodým density of Q with respect to P on Ft. Indeed, if X is
Ft-measurable (hence FT -measurable) and Q-integrable

EQ(X) = EP(LTX) = EP[EP(XLT |Ft)] = EP[XEP(LT |Ft)] = EP(XLt).

�

Note that P|FT
= (LT )−1

Q|FT
so that, for any positive r.v. Y ∈ FT ,

EP(Y ) = EQ(L−1
T Y ) and L−1 is a Q-martingale.

We shall speak of the law of a random variable (or of a process) under P

or under Q to make precise the choice of the probability measure on the space
Ω. From the equivalence between the measures, a property which holds P-a.s.
holds also Q-a.s. However, a P-integrable random variable is not necessarily
Q-integrable.

Definition 1.7.1.2 A probability Q on a filtered probability space (Ω,F ,F,P)
is said to be locally equivalent to P if there exists a strictly positive F-
martingale L such that Q|Ft = Lt P|Ft , ∀t. The martingale L is called the
Radon-Nikodým density of Q w.r.t. P.

Warning 1.7.1.3 This definition, which is standard in mathematical finance,
is different from the more general one used by the Strasbourg school, where
locally refers to a sequence of F-stopping times, increasing to infinity.

Proposition 1.7.1.4 Let P and Q be locally equivalent, with Radon-Nikodým
density L. Then, for any stopping time τ ,

Q|Fτ∩(τ<∞) = Lτ P|Fτ∩(τ<∞) .
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Proof: Let A ∈ Fτ . Then,

Q(1A1{τ≤t}) = EP(Lt1A1{τ≤t}) = EP(Lτ1A1{τ≤t}) .

The result follows by letting t→ ∞. �

Proposition 1.7.1.4 may be quite useful to shift computations under Q into
computations under P when Lτ has a simple expression. See � Subsection
3.2.3 and � Exercice 4.3.5.7.

Proposition 1.7.1.5 (Bayes Formula.) Suppose that Q and P are equiv-
alent on FT with Radon-Nikodým density L. Let X be a Q-integrable FT -
measurable random variable, then, for t < T

EQ(X|Ft) =
EP(LTX|Ft)

Lt
.

Proof: The proof follows immediately from the definition of conditional

expectation. To check that the Ft-measurable r.v. Z =
EP(LTX|Ft)

Lt
is the

Q-conditional expectation of X, we prove that EQ(FtX) = EQ(FtZt) for any
bounded Ft-measurable random variable Ft. This follows from the equalities

EQ(FtX) = EP(LTFtX) = EP(FtEP(XLT |Ft))
= EQ(FtL−1

t EP(XLT |Ft)) = EQ(FtZ) .

�

Proposition 1.7.1.6 Let P and Q be two locally equivalent probability
measures with Radon-Nikodým density L. A process M is a Q-martingale
if and only if the process LM is a P-martingale. By localization, this result
remains true for local martingales.

Proof: Let M be a Q-martingale. From the Bayes formula, we obtain, for
s ≤ t,

Ms = EQ(Mt|Fs) =
EP(LtMt|Fs)

Ls

and the result follows. The converse part is now obvious. �

Exercise 1.7.1.7 Let (Ω,F ,F,P) be a filtered probability space and denote
by (Lt, t ≥ 0) the Radon-Nikodým density of Q with respect to P. Then, if F̃
is a subfiltration of F, prove that Q|

eFt
= L̃tP|

eFt
, where L̃t = EP(Lt|F̃t). �

Exercise 1.7.1.8 Give conditions on the function h so that the measure Q

defined on FT as Q = h(WT )P is a probability equivalent to P. Prove that,
for t < T Q|Ft = LtP|Ft where
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Lt =
∫ ∞

−∞
dy h(y)

e−(y−Wt)
2/(2(T−t))

√
2π(T − t)

.

Prove that

Lt = 1 +
∫ t

0

dWs

∫ ∞

−∞
dy
h(y)e−(y−Ws)2/(2(T−s))

√
2π(T − s)

y −Ws

T − s
.

For h ∈ C1 with compact support, prove that

Lt = 1 +
∫ t

0

dWs

∫ ∞

−∞
dy
h′(y)e−(y−Ws)2/(2(T−s))

√
2π(T − s)

.

See Baudoin [60] for applications. �

Exercise 1.7.1.9 (1) Let f a Borel function satisfying 0 <
∫∞
0
f2(u)du <∞.

Compute, for any t, P
(∫∞

0
f(s)dWs > 0 |Ft

)
=: Zf

t . Prove that, as a
consequence Zf

t > 0 a.s., but P(Zf
∞ = 0) = 1/2.

(2) Prove that there exist pairs (Q,P) of probabilities that are locally
equivalent, but Q is not equivalent to P on F∞. �

1.7.2 Decomposition of P-Martingales as Q-semi-martingales

Theorem 1.7.2.1 Let P and Q be locally equivalent, with Radon-Nikodým
density L. We assume that the process L is continuous.

If M is a continuous P-local martingale, then the process M̃ defined by

dM̃ = dM − 1
L
d〈M,L〉

is a continuous Q-local martingale. If N is another continuous P-local
martingale,

〈M,N〉 = 〈M̃, Ñ〉 = 〈M, Ñ〉 .

Proof: From Proposition 1.7.1.6, it is enough to check that M̃L is a P-local
martingale, which follows easily from Itô’s calculus. �

Corollary 1.7.2.2 Under the hypotheses of Theorem 1.7.2.1, we may write
the process L as a Doléans-Dade martingale: Lt = E(ζ)t, where ζ is an F-local
martingale. The process M̃ = M − 〈M, ζ〉 is a Q-local martingale.
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1.7.3 Girsanov’s Theorem: The One-dimensional Brownian Motion
Case

If the filtration F is generated by a Brownian motion W , and P and Q are
locally equivalent, with Radon-Nikodým density L, the martingale L admits
a representation of the form dLt = ψtdWt. Since L is strictly positive, this
equality takes the form dLt = −θtLtdWt, where θ = −ψ/L. (The minus sign
will be convenient for further use in finance (see � Subsection 2.2.2), to
obtain the usual risk premium). It follows that

Lt = exp
(

−
∫ t

0

θsdWs −
1
2

∫ t

0

θ2sds

)

= E(ζ)t ,

where ζt = −
∫ t
0
θsdWs.

Proposition 1.7.3.1 (Girsanov’s Theorem) Let W be a (P,F)-Brownian
motion and let θ be an F-adapted process such that the solution of the SDE

dLt = −LtθtdWt, L0 = 1

is a martingale. We set Q|Ft = Lt P|Ft . Then the process W admits a Q-semi-
martingale decomposition W̃ as Wt = W̃t−

∫ t
0
θsds where W̃ is a Q-Brownian

motion.

Proof: From dLt = −LtθtdWt, using Girsanov’s theorem 1.7.2.1, we obtain
that the decomposition of W under Q is W̃t−

∫ t
0
θsds. The process W is a Q-

semi-martingale and its martingale part W̃ is a BM. This last fact follows from
Lévy’s theorem, since the bracket of W does not depend on the (equivalent)
probability. �

Warning 1.7.3.2 Using a real-valued, or complex-valued martingale density
L, with respect to Wiener measure, induces a real-valued or complex-valued
measure on path space. The extension of the Girsanov theorem in this
framework is tricky; see Dellacherie et al. [241], paragraph (39), page 349,
as well as Ruiz de Chavez [748] and Begdhdadi-Sakrani [66].

When the coefficient θ is deterministic, we shall refer to this result as
Cameron-Martin’s theorem due to the origin of this formula [137], which
was extended by Maruyama [626], Girsanov [393], and later by Van Schuppen
and Wong [825].

Example 1.7.3.3 Let S be a geometric Brownian motion

dSt = St(μdt+ σdWt) .

Here, W is a Brownian motion under a probability P. Let θ = (μ− r)/σ and
dLt = −θLtdWt. Then, Bt = Wt + θt is a Brownian motion under Q, where
Q|Ft = Lt P|Ft and

dSt = St(rdt+ σdBt) .
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Comment 1.7.3.4 In the previous example, the equality

St(μdt+ σdWt) = St(rdt+ σdBt)

holds under both P and Q. The rôle of the probabilities P and Q makes precise
the dynamics of the driving process W (or B). Therefore, the equation can be
computed in an “algebraic” way, by setting dBt = dWt + θdt. This leads to

μdt+ σdWt = rdt+ σ[dWt + θdt] = rdt+ σdBt .

The explicit computation of S can be made with W or B

St = S0 exp
(

μt+ σWt −
1
2
σ2t

)

= S0 exp
(

rt+ σBt −
1
2
σ2t

)

.

As a consequence, the importance of the probability appears when we compute
the expectations

EP(St) = S0e
μt, EQ(St) = S0e

rt ,

with the help of the above formulae. Note that (Ste−μt, t ≥ 0) is a P-martingale
and that (Ste−rt, t ≥ 0) is a Q-martingale.

Example 1.7.3.5 Let

dXt = a dt+ 2
√
XtdWt (1.7.1)

where we choose a ≥ 0 so that there exists a positive solution Xt ≥ 0. (See
� Chapter 6 for more information.) Let F be a C1 function. The continuity
of F implies that the local martingale

Lt = exp
(∫ t

0

F (s)
√
XsdWs −

1
2

∫ t

0

F 2(s)Xsds

)

is in fact a martingale, therefore E(Lt) = 1. From the definition of X and the
integration by parts formula,
∫ t

0

F (s)
√
XsdWs =

1
2

∫ t

0

F (s)(dXs − ads) (1.7.2)

=
1
2

(

F (t)Xt − F (0)X0 −
∫ t

0

F ′(s)Xsds− a

∫ t

0

F (s)ds
)

.

Therefore, one obtains the general formula

E

[

exp
(

1
2

{

F (t)Xt −
∫ t

0

[F ′(s) + F 2(s)]Xsds

})]

= exp
(

1
2

[

F (0)X0 + a

∫ t

0

F (s)ds
])

.
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In the particular case F (s) = −k/2, setting

Q|Ft = Lt P|Ft ,

we obtain

dXt = k(θ −Xt)dt+ 2
√
XtdBt = (a− kXt)dt+ 2

√
XtdBt (1.7.3)

where B is a Q-Brownian motion. Hence, if Q
a is the law of the process (1.7.1)

and k
Q

a the law of the process defined in (1.7.3) with a = kθ, we get from
(1.7.2) the absolute continuity relationship

k
Q

a|Ft = exp
(
k

4
(at−Xt + x) − k2

8

∫ t

0

Xsds

)

Q
a|Ft .

See Donati-Martin et al. [258] for more information.

Exercise 1.7.3.6 See Exercise 1.7.1.8 for the notation. Prove that B defined
by

dBt = dWt −

∫ ∞

−∞
dy h′(y)e−(y−Wt)

2/(2(T−t))

∫ ∞

−∞
dy h(y)e−(y−Wt)

2/(2(T−t))

dt

is a Q-Brownian motion. See Baudoin [61] for an application to finance. �

Exercise 1.7.3.7 (1) Let dSt = StσdWt, S0 = x. Prove that for any bounded
function f ,

E(f(ST )) = E

(
ST
x
f

(
x2

ST

))

.

(2) Prove that, if dSt = St(μdt + σdWt), there exists γ such that Sγ is a
martingale. Prove that for any bounded function f ,

E(f(ST )) = E

((
ST
x

)γ

f

(
x2

ST

))

.

Prove that, for bounded function f ,

E(Sα
T f(ST )) = xαeμ(α)T

E

(
f(eασ

2TST ))
)
,

where μ(α) = α(μ + 1
2σ

2(α − 1)). See � Lemma 3.6.6.1 for application to
finance. �

Exercise 1.7.3.8 Let W be a P-Brownian motion, and Bt = Wt + νt be a
Q-Brownian motion, under a suitable change of probability. Check that, in the
case ν > 0, the process eWt tends towards 0 under Q when t goes to infinity,
whereas this is not the case under P. �
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Comment 1.7.3.9 The relation obtained in question (1) in Exercise 1.7.3.7
can be written as

E(ϕ(WT − σT/2)) = E(e−σ(WT +σT/2)ϕ(WT + σT/2))

which is an “h-process” relationship between a Brownian motion with drift
σ/2 and a Brownian motion with drift −σ/2.

Exercise 1.7.3.10 Examples of a martingale with respect to two different
probabilities:
Let W be a P-BM, and set dQ|Ft = LtdP|Ft where Lt = exp(λWt − 1

2λ
2t).

Prove that the process X, where

Xt = Wt −
∫ t

0

Ws

s
ds

is a Brownian motion with respect to its natural filtration under both P and Q.
Hint: (a) Under P, for any t, (Xu, u ≤ t) is independent of Wt and is a
Brownian motion.

(b) Replacing Wu by (Wu +λu) in the definition of X does not change the
value of X. (See Atlan et al. [26].) See also � Example 5.8.2.3. �

1.7.4 Multidimensional Case

Let W be an n-dimensional Brownian motion and θ an n-dimensional adapted
process such that

∫ t
0
||θs||2ds < ∞, a.s.. Define the local martingale L as the

solution of dLt = Ltθt � dWt = Lt(
∑n

i=1 θ
i
tdW

i
t ), so that

Lt = exp
(∫ t

0

θs � dWs −
1
2

∫ t

0

||θs||2ds
)

.

If L is a martingale, the n-dimensional process (W̃t = Wt −
∫ t
0
θsds, t ≥ 0)

is a Q-martingale, where Q is defined by Q|Ft = Lt P|Ft . Then, W̃ is
an n-dimensional Brownian motion (and in particular its components are
independent).

If W is a Brownian motion with correlation matrix Λ, then, since the
brackets do not depend on the probability, under Q, the process

W̃t = Wt −
∫ t

0

θs � Λds

is a correlated Brownian motion with the same correlation matrix Λ.
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1.7.5 Absolute Continuity

In this section, we describe Girsanov’s transformation in terms of absolute
continuity. We start with elementary remarks. In what follows, Wx denotes
the Wiener measure such that Wx(X0 = x) = 1 and W stands for W0. The
notation W(ν) for the law of a BM with drift ν on the canonical space will be
used:

W(ν)[F (Xt, t ≤ T )] = E[F (νt+Wt, t ≤ T )] .

On the left-hand side the process X is the canonical process, whose law is
that of a Brownian motion with drift ν, on the right-hand side, W stands for
a standard Brownian motion.

The right-hand side could be written as W(0)[F (νt+Xt, t ≤ T )]. We also
use the notation W(f) for the law of the solution of dXt = f(Xt)dt+ dWt.

Comment 1.7.5.1 Throughout our book, (Xt, t ≥ 0) may denote a partic-
ular stochastic process, often defined in terms of BM, or (Xt, t ≥ 0) may be
the canonical process on C(R+,Rd). Each time, the context should not bring
any ambiguity.

Proposition 1.7.5.2 (Cameron-Martin’s Theorem.)
The Cameron-Martin theorem reads:

W(ν)[F (Xt, t ≤ T )] = W(0)[eνXT −ν2T/2F (Xt, t ≤ T )] .

More generally:

Proposition 1.7.5.3 (Girsanov’s Theorem.) Assume that the solution of
dXt = f(Xt)dt+ dWt does not explode. Then, Girsanov’s theorem reads: for
any T ,

W(f)[F (Xt, t ≤ T )]

= W(0)

[

exp

(∫ T

0

f(Xs)dXs −
1
2

∫ T

0

f2(Xs)ds

)

F (Xt, t ≤ T )

]

.

This result admits a useful extension to stopping times (in particular to
explosion times):

Proposition 1.7.5.4 Let ζ be the explosion time of the solution of the SDE
dXt = f(Xt)dt+ dWt. Then, for any stopping time τ ≤ ζ,

W(f)[F (Xt, t ≤ τ)]

= W(0)

[

exp
(∫ τ

0

f(Xs)dXs −
1
2

∫ τ

0

f2(Xs)ds
)

F (Xt, t ≤ τ)
]

.
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Example 1.7.5.5 From Cameron-Martin’s theorem applied to the particular
random variable F (Xt, t ≤ τ) = h(eσXτ ), we deduce

W(ν)(h(eσXτ )) = E(h(eσ(Wτ +ντ))) = W(0)(e−ν2τ/2+νXτh(eσXτ ))

= E(e−ν2τ/2eνWτh(eσWτ )) .

Example 1.7.5.6 If Ta(S) is the first hitting time of a for the geometric
Brownian motion S = xeσX defined in (1.5.3), with a > x and σ > 0, and
Tα(X) is the first hitting time of α = 1

σ ln(a/x) for the drifted Brownian
motion X defined in (1.5.4), then

E(F (St, t ≤ Ta(S))) = W(ν)
[
F (xeσXt , t ≤ Tα(X))

]

= W(0)
[
eνα−

ν2
2 Tα(X)F (xeσXt , t ≤ Tα(X))

]

= E

(
eνα−

ν2
2 Tα(W )F (xeσWt , t ≤ Tα(W ))

)
. (1.7.4)

Exercise 1.7.5.7 Let W be a standard Brownian motion, a > 1, and τ the
stopping time τ = inf{t : eWt−t/2 > a}. Prove that, ∀λ ≥ 1/2,

E

(

1{τ<∞} exp(λWτ − 1
2
λ2 τ

)

= 1 .

Hint:

E

(

1τ<∞ exp
(

λWτ − 1
2
λ2 τ

))

= W(λ)(τ <∞) .

The process (Wt − 1
2 t, t ≥ 0) is, under W(λ), a BM with drift λ− 1

2 . �

Exercise 1.7.5.8 LetW be a P-Brownian motion and dQ|Ft = eWt−t/2dP|Ft .
Let τ = inf{t : Wt = −m} for m > 0. Compute P(τ <∞) and Q(τ <∞).
Hint: P(τ < ∞) = 1, and using results on hitting times of BM (see �
Proposition 3.1.6.1) Q(τ <∞) = e−m

EP(e−τ/2) = e−2m. �

1.7.6 Condition for Martingale Property of Exponential Local
Martingales

As noted previously, if Q is a probability measure equivalent to P, then the
Radon-Nikodým density is a martingale: A strict local martingale cannot be
a density between two probabilities.

In many cases we have to solve a problem of the following form: let W be
a Brownian motion and

XΦ
t : = Wt −

∫ t

0

dsΦs (1.7.5)

where Φ is an FW -predictable process such that
∫ 1

0
ds |Φs| < ∞; find a

probability measure Q equivalent to P, such that (XΦ
t , t ≤ 1) is a (Q,F)-

martingale.
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Suppose that Q exists. Then Q|Ft = LtP|Ft and d〈L,W 〉t = ΦtLtdt.
Hence Lt = 1 +

∫ t
0
LsΦsdWs and

∫ t
0
dsΦ2

s < ∞, a.s.. It remains to check
that the local martingale L is a martingale. The positive local martingale L is
a supermartingale and is a martingale when E(Lt) = 1. We give below criteria
which can be more widely applied. A first condition is due to Novikov.

Proposition 1.7.6.1 (Novikov’s Condition.) If the continuous martin-
gale ζ satisfies:

E

(

exp
(

1
2
〈ζ〉∞

))

<∞ (1.7.6)

then ζ belongs to Hp for every p ∈ [1,∞[ and L = E(ζ) is a uniformly
integrable martingale.

Proof: See [RY], Chapter VIII, Proposition 1.15. �

The constant 1/2 in (1.7.6) is the best possible (see Kazamaki [517],
Chapter 1, Example 1.5).

In the case where ζt =
∫ t
0
θsdWs, Novikov’s condition reads

E

(

exp
(

1
2

∫ ∞

0

θ2sds

))

<∞ .

Obviously, if we restrict our attention to the time interval [0, T ], Novikov’s
condition

E

(

exp

(
1
2

∫ T

0

θ2sds

))

<∞ (1.7.7)

implies that (Lt; 0 ≤ t ≤ T ) is a martingale where dLt = θtLtdWt. Note that,
Novikov’s condition (1.7.7) is satisfied whenever θ is bounded.

It should be noted that if the local martingale E(ζ) is uniformly integrable,
i.e., if the family of r.v. (E(ζ)t, t ≥ 0) is u.i., it is not necessarily a martingale
(see Kazamaki [517], Chapter 1, Example 1.1. for a counter-example). If
the local martingale E(ζ) belongs to class D, i.e., if the family of r.v.
(E(ζ)τ , τ stopping time) is u.i., then E(ζ) is a martingale. The process E(ζ)
can be a martingale which is not uniformly integrable: take ζ = B where B
is a Brownian motion.

Let us give two theorems (see Kazamaki [517]).

Theorem 1.7.6.2 (Kazamaki’s Criterion.) If ζ is a continuous local
martingale such that the process exp(1

2ζ) is a uniformly integrable sub-
martingale, then the process L = E(ζ) is a uniformly integrable martingale.

Theorem 1.7.6.3 (BMO Criterion.) Let ζ be a continuous martingale in
BMO, then the process L = E(ζ) is a uniformly integrable martingale.
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These conditions are often difficult to check and the following proposition
is a useful tool. In a Markovian case, an easy condition is the following:

Proposition 1.7.6.4 (Non-explosion Criteria.) Let ζt =
∫ t
0
b(s,Ws)dWs

where b satisfies {
|b(s, x) − b(s, y)| ≤ C|x− y| ,
sups≤t |b(s, 0)| ≤ C .

Then, the process Zt = exp(ζt− 1
2 〈ζ〉t) ; t ≥ 0 is a martingale. More generally,

Z is a martingale as soon as the stochastic equation

dXt = b(t,Xt)dt+ dWt, X0 = 0

has a unique solution in law, without explosion.

Proof: If the stochastic differential equation Xt = Wt +
∫ t
0
b(s,Xs)ds has

a unique solution, its law is locally equivalent to the Wiener measure (here,
locally refers to the existence of a localizing sequence of stopping times). Let
Tn = inf{t : |Xt| = n}. We define an equivalent probability measure Wb via:

Wb|Ft∧Tn
= exp

[∫ t∧Tn

0

b(s,Xs)dXs −
1
2

∫ t∧Tn

0

b2(s,Xs)ds

]

W|Ft∧Tn
.

Then, for any Ft ∈ Ft

Wb(Ft1{t<Tn}) = W
(

Ft1{t<Tn} exp
[∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
])

Letting n go to infinity, and using the fact that Tn → ∞ both under Wb and
W, we obtain:

Wb|Ft = exp
[∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
]

W|Ft ,

hence, the process

exp
(∫ t

0

b(s,Xs)dXs −
1
2

∫ t

0

b2(s,Xs)ds
)

, t ≥ 0

is a martingale. �

In the particular case b(x) = λx of the OU process, we deduce that the
process

exp
(

λ
B2

t − t

2
− λ2

2

∫ t

0

dsB2
s

)

, t ≥ 0

is a martingale, for any λ ∈ R.
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Example 1.7.6.5 If dXt = dBt + f(Xt)dt, where f : R → R is a C1-
function, the Feller criterion (see McKean [636] or � Proposition 5.3.3.4)
gives a sufficient condition for no explosion. Note that if W(f)

x is the law of
the solution, and τ the explosion time, then

W(f)
x |Ft∩{t<τ} = exp

(∫ t

0

f(Xs)dXs −
1
2

∫ t

0

f2(Xs)ds
)

Wx|Ft

= exp
(

F (Xt) − F (x) − 1
2

∫ t

0

(f2 + f ′)(Xs)ds
)

Wx|Ft

where F is an antiderivative of f . If f(x) = |x|γ with γ > 1, then there is
explosion. In the case f(x) = cx2n, one gets

P
(c,n)(τ > t) = E

(

exp
(

c

∫ t

0

B2n
s dBs −

c2

2

∫ t

0

B4n
s ds

))

= E

(

exp
(

ctn+1/2

∫ 1

0

B2n
s dBs −

c2

2
t2n+1

∫ 1

0

B4n
s ds

))

,

which gives an implicit description of the law of τ in terms of the joint law of(∫ 1

0
B2n

s dBs,
∫ 1

0
B4n

s ds
)
.

Example 1.7.6.6 Let us give one example of a local martingale which is not
a martingale (we say that the local martingale is a strict local martingale).
Let α be a positive real number and

dXt = XtY
α
t σdBt; dYt = Yta dBt .

Using the fact that the process Z defined by dZt = ZtadWt + Zα+1
t μdt with

μ > 0 has a finite explosion time, Sin [800] proves that the process X is a
strict local martingale.

Comment 1.7.6.7 There is an extensive literature on uniformly integrable
exponential martingales. Let us mention Cherny and Shiryaev [169], Choulli
et al. [181], Kazamaki [517] and Lépingle and Mémin [580].

1.7.7 Predictable Representation Property under a Change of
Probability

Let F be the filtration of a Brownian motion W and θ an F-adapted
process such that the local martingale Lt : = exp(

∫ t
0
θsdWs − 1

2

∫ t
0
θ2s ds) is

a martingale. Let Q be the probability law, equivalent to P on Ft for any t,
defined as Q|Ft = Lt P|Ft . Girsanov’s theorem implies that W̃t : = Wt−

∫ t
0
θsds

is an (F,Q)-Brownian motion. Since, obviously, the process W̃ is F-adapted,
the inclusion F̃t = σ(W̃s, s ≤ t) ⊆ Ft holds. If θ is deterministic, then both
filtrations are equal, but this is not the case in general (see Tsirel’son’s example
1.5.5.6 or [822]). However, the representation theorem (see Section 1.6.1)
extends to this framework.
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Proposition 1.7.7.1 Let W be a Brownian motion under P, F its natural
filtration, and Q a probability measure locally equivalent to P. Let W̃ be the
martingale part of the Q-semimartingale W . If M is a (F,Q)-local martingale,
there exists an F-predictable process H such that

∀t, Mt = M0 +
∫ t

0

Hs dW̃s .

Proof: It is enough to write the predictable representation of the P-
martingaleML asMtLt = M0+

∫ t
0
ψsdWs. From Itô’s formula and the obvious

relation M = (ML)L−1, the process M can be written as a stochastic integral
w.r.t. W̃ . �

We have here an example of a “weakly Brownian filtration.” We shall give
other examples in � Chapter 5.

Exercise 1.7.7.2 Prove the result recalled in Comment 1.4.1.6.
Hint: If W (i)

T could be written as
∫ T
0
φ

(i)
s dBs for i = 1, 2, the properties of

φ(i) would lead to a contradiction. �

1.7.8 An Example of Invariance of BM under Change of Measure

Let P and Q be two equivalent probabilities on (Ω,F) and X a r.v. (or a
process). We present a simple condition under which the law of X is the same
under P and Q, as well as an example (see also � Example 1.7.3.10).

Proposition 1.7.8.1 Let X be a real-valued F-Brownian motion under P

and L be the Radon-Nikodým density of Q w.r.t. P. Then X is a Q-Brownian
motion if and only if X and L are (F,P)-orthogonal martingales

Proof: Note that

X̃t = Xt −
∫ t

0

d〈X,L〉s
Ls

is a (F,Q)- Brownian motion. �

This result admits an extension to the multidimensional case: Let W be an
n-dimensional Brownian motion and Xt = x +

∫ t
0
xs � dWs where (xt, t ≥ 0)

is an n-dimensional predictable process. The process X is a BM if and only
if |xt|2 = 1, ds × dPa.s. Let L be a Radon-Nikodým density. The process L
admits the representation Lt = 1 +

∫ t
0
!s � dWs. The process X is a (F,Q)-

Brownian motion if and only if xt � !t = 0, dt× dP a.s.

Example 1.7.8.2 If W = (X,Y ) is a 2-dimensional Brownian motion
starting from (a, b), the pair (x, !) where xt = Wt/|Wt| (stopped at the first
time |W | vanishes) and !t = (Yt,−Xt) satisfies the previous condition.



2

Basic Concepts and Examples in Finance

In this chapter, we present briefly the main concepts in mathematical
finance as well as some straightforward applications of stochastic calculus
for continuous-path processes. We study in particular the general principle
for valuation of contingent claims, the Feynman-Kac approach, the Ornstein-
Uhlenbeck and Vasicek processes, and, finally, the pricing of European options.

Derivatives are products whose payoffs depend on the prices of the traded
underlying assets. In order for the model to be arbitrage free, the link between
derivatives and underlying prices has to be made precise. We shall present the
mathematical setting of this problem, and give some examples. In this area
we recommend Portait and Poncet [723], Lipton [596], Overhaus et al. [689],
and Brockhaus et al. [131].

Important assets are the zero-coupon bonds which deliver one monetary
unit at a terminal date. The price of this asset depends on the interest rate. We
shall present some basic models of the dynamics of the interest rate (Vasicek
and CIR) and the dynamics of associated zero-coupon bonds. We refer the
reader to Martellini et al. [624] and Musiela and Rutkowski [661] for a study
of modelling of zero-coupon prices and pricing derivatives.

2.1 A Semi-martingale Framework

In a first part, we present in a general setting the modelling of the stock market
and the hypotheses in force in mathematical finance. The dynamics of prices
are semi-martingales, which is justified from the hypothesis of no-arbitrage
(see the precise definition in � Subsection 2.1.2). Roughly speaking, this
hypothesis excludes the possibility of starting with a null amount of money
and investing in the market in such a way that the value of the portfolio
at some fixed date T is positive (and not null) with probability 1. We shall
comment upon this hypothesis later.

We present the definition of self-financing strategies and the concept of
hedging portfolios in a case where the tradeable asset prices are given as

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 2,
c© Springer-Verlag London Limited 2009
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semi-martingales. We give the definition of an arbitrage opportunity and we
state the fundamental theorem which links the non-arbitrage hypothesis with
the notion of equivalent martingale measure. We define a complete market
and we show how this definition is related to the predictable representation
property.

In this first section, we do not require path-continuity of asset prices.
An important precision: Concerning all financial quantities presented in

that chapter, these will be defined up to a finite horizon T , called the
maturity. On the other hand, when dealing with semi-martingales, these will
be implicitly defined on R

+.

2.1.1 The Financial Market

We study a financial market where assets (stocks) are traded in continuous
time. We assume that there are d assets, and that the prices Si, i = 1, . . . , d
of these assets are modelled as semi-martingales with respect to a reference
filtration F. We shall refer to these assets as risky assets or as securities.
We shall also assume that there is a riskless asset (also called the savings
account) with dynamics

dS0
t = S0

t rtdt, S
0
0 = 1

where r is the (positive) interest rate, assumed to be F-adapted. One
monetary unit invested at time 0 in the riskless asset will give a payoff of
exp
(∫ t

0
rsds

)
at time t. If r is deterministic, the price at time 0 of one

monetary unit delivered at time t is

Rt : = exp
(

−
∫ t

0

rsds

)

.

The quantity Rt = (S0
t )

−1 is called the discount factor, whether or not
it is deterministic. The discounted value of Si

t is Si
tRt; in the case where r

and Si
t are deterministic, this is the monetary value at time 0 of Si

t monetary
units delivered at time t. More generally, if a process (Vt, t ≥ 0) describes
the value of a financial product at any time t, its discounted value process is
(VtRt, t ≥ 0). The asset that delivers one monetary unit at time T is called
a zero-coupon bond (ZC) of maturity T . If r is deterministic, its price at
time t is given by

P (t, T ) = exp

(

−
∫ T

t

r(s)ds

)

,

the dynamics of the ZC’s price is then dtP (t, T ) = rtP (t, T )dt with the
terminal condition P (T, T ) = 1. If r is a stochastic process, the problem
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of giving the price of a zero-coupon bond is more complex; we shall study this
case later. In that setting, the previous formula for P (t, T ) would be absurd,
since P (t, T ) is known at time t (i.e., is Ft-measurable), whereas the quantity
exp
(
−
∫ T
t
r(s)ds

)
is not. Zero-coupon bonds are traded and are at the core

of trading in financial markets.

Comment 2.1.1.1 In this book, we assume, as is usual in mathematical
finance, that borrowing and lending interest rates are equal to (rs, s ≥ 0): one
monetary unit borrowed at time 0 has to be reimbursed by S0

t = exp
(∫ t

0
rsds

)

monetary units at time t. One monetary unit invested in the riskless asset at
time 0 produces S0

t = exp
(∫ t

0
rsds

)
monetary units at time t. In reality,

borrowing and lending interest rates are not the same, and this equality
hypothesis, which is assumed in mathematical finance, oversimplifies the “real-
world” situation. Pricing derivatives with different interest rates is very similar
to pricing under constraints. If, for example, there are two interest rates with
r1 < r2, one has to assume that it is impossible to borrow money at rate r1
(see also � Example 2.1.2.1). We refer the reader to the papers of El Karoui
et al. [307] for a study of pricing with constraints.

A portfolio (or a strategy) is a (d+1)-dimensional F-predictable process
(π̂t = (πit, i = 0, . . . , d) = (π0

t , πt); t ≥ 0) where πit represents the number of
shares of asset i held at time t. Its time-t value is

Vt(π̂) : =
d∑

i=0

πitS
i
t = π0

tS
0
t +

d∑

i=1

πitS
i
t .

We assume that the integrals
∫ t
0
πisdS

i
s are well defined; moreover, we shall

often place more integrability conditions on the portfolio π̂ to avoid arbitrage
opportunities (see � Subsection 2.1.2).

We shall assume that the market is liquid: there is no transaction cost (the
buying price of an asset is equal to its selling price), the number of shares of the
asset available in the market is not bounded, and short-selling of securities
is allowed (i.e., πi, i ≥ 1 can take negative values) as well as borrowing money
(π0 < 0).

We introduce a constraint on the portfolio, to make precise the idea that
instantaneous changes to the value of the portfolio are due to changes in
prices, not to instantaneous rebalancing. This self-financing condition is
an extension of the discrete-time case and we impose it as a constraint in
continuous time. We emphasize that this constraint is not a consequence of
Itô’s lemma and that, if a portfolio (π̂t = (πit, i = 0, . . . , d) = (π0

t , πt); t ≥ 0)
is given, this condition has to be satisfied.
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Definition 2.1.1.2 A portfolio π̂ is said to be self-financing if

dVt(π̂) =
d∑

i=0

πitdS
i
t ,

or, in an integrated form, Vt(π̂) = V0(π̂) +
∑d

i=0

∫ t
0
πisdS

i
s .

If π̂ = (π0, π) is a self-financing portfolio, then some algebraic computation
establishes that

dVt(π̂) = π0
tS

0
t rtdt+

d∑

i=1

πitdS
i
t = rtVt(π̂)dt+

d∑

i=1

πit(dS
i
t − rtS

i
tdt)

= rtVt(π̂)dt+ πt(dSt − rtStdt)

where the vector π = (πi; i = 1, . . . , d) is written as a (1, d) matrix. We prove
now that the self-financing condition holds for discounted processes, i.e., if all
the processes V and Si are discounted (note that the discounted value of S0

t

is 1):

Proposition 2.1.1.3 If π̂ is a self-financing portfolio, then

RtVt(π̂) = V0(π̂) +
d∑

i=1

∫ t

0

πisd(RsS
i
s) . (2.1.1)

Conversely, if x is a given positive real number, if π = (π1, . . . , πd) is a vector
of predictable processes, and if V π denotes the solution of

dV π
t = rtV

π
t dt+ πt(dSt − rtStdt) , V π

0 = x , (2.1.2)

then the R
d+1-valued process (π̂t = (V π

t − πtSt, πt); t ≥ 0) is a self-financing
strategy, and V π

t = Vt(π̂).

Proof: Equality (2.1.1) follows from the integration by parts formula:

d(RtVt) = RtdVt − VtrtRtdt = Rtπt(dSt − rtStdt) = πtd(RtSt) .

Conversely, if (x, π = (π1, . . . , πd)) are given, then one deduces from (2.1.2)
that the value V π

t of the portfolio at time t is given by

V π
t Rt = x+

∫ t

0

πsd(RsSs)

and the wealth invested in the riskless asset is

π0
tS

0
t = V π

t −
d∑

i=1

πitS
i
t = V π

t − πtSt .
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The portfolio π̂ = (π0, π) is obviously self-financing since

dVt = rtVtdt+ πt(dSt − rtStdt) = π0
tS

0
t rtdt+ πtdSt .

The process (
∑d

i=1

∫ t
0
πisd(RsS

i
s), t ≥ 0) is the discounted gain process. �

This important result proves that a self-financing portfolio is characterized
by its initial value V0(π̂) and the strategy π = (πi, i = 1, . . . , d) which
represents the investment in the risky assets. The equality (2.1.1) can be
written in terms of the savings account S0 as

Vt(π̂)
S0
t

= V0(π̂) +
d∑

i=1

∫ t

0

πis d

(
Si
s

S0
s

)
(2.1.3)

or as

dV 0
t =

d∑

i=1

πitdS
i,0
t

where
V 0
t = VtRt = Vt/S

0
t , Si,0

t = Si
tRt = Si

t/S
0
t

are the prices in terms of time-0 monetary units. We shall extend this property
in � Section 2.4 by proving that the self-financing condition does not depend
on the choice of the numéraire.

By abuse of language, we shall also call π = (π1, . . . , πd) a self-financing
portfolio.

The investor is said to have a long position at time t on the asset S if
πt ≥ 0. In the case πt < 0, the investor is short.

Exercise 2.1.1.4 Let dSt = (μdt+ σdBt) and r = 0. Is the portfolio π̂(t, 1)
self-financing? If not, find π0 such that (π0

t , 1) is self-financing. �

2.1.2 Arbitrage Opportunities

Roughly speaking, an arbitrage opportunity is a self-financing strategy π
with zero initial value and with terminal value V π

T ≥ 0, such that E(V π
T ) > 0.

From Dudley’s result (see Subsection 1.6.3), it is obvious that we have to
impose conditions on the strategies to exclude arbitrage opportunities. Indeed,
if B is a BM, for any constant A, it is possible to find an adapted process
ϕ such that

∫ T
0
ϕsdBs = A. Hence, in the simple case dSs = σSsdBs and

null interest rate, it is possible to find π such that
∫ T
0
πsdSs = A > 0. The

process Vt =
∫ t
0
πsdSs would be the value of a self-financing strategy, with null
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initial wealth and strictly positive terminal value, therefore, π would be an
arbitrage opportunity. These strategies are often called doubling strategies,
by extension to an infinite horizon of a tossing game: a player with an initial
wealth 0 playing such a game will have, with probability 1, at some time a
wealth equal to 1063 monetary units: he only has to wait long enough (and
to agree to lose a large amount of money before that). It “suffices” to play in
continuous time to win with a BM.

Example 2.1.2.1 If there are two riskless assets in the market with interest
rates r1 and r2, then in order to exclude arbitrage opportunities, we must
have r1 = r2: otherwise, if r1 < r2, an investor might borrow an amount k of
money at rate r1, and invest the same amount at rate r2. The initial wealth
is 0 and the wealth at time T would be ker2T − ker1T > 0. So, in the case of
different interest rates with r1 < r2, one has to restrict the strategies to those
for which the investor can only borrow money at rate r2 and invest at rate
r1. One has to add one dimension to the portfolio; the quantity of shares of
the savings account, denoted by π0 is now a pair of processes π0,1, π0,2 with
π0,1 ≥ 0, π0,2 ≤ 0 where the wealth in the bank account is π0,1

t S0,1
t + π0,2

t S0,2
t

with dS0,j
t = rjS

0,j
t dt.

Exercise 2.1.2.2 There are many examples of relations between prices which
are obtained from the absence of arbitrage opportunities in a financial market.
As an exercise, we give some examples for which we use call and put options
(see � Subsection 2.3.2 for the definition). The reader can refer to Cox and
Rubinstein [204] for proofs. We work in a market with constant interest rate r.
We emphasize that these relations are model-independent, i.e., they are valid
whatever the dynamics of the risky asset.

• Let C (resp. P ) be the value of a European call (resp. a put) on a stock
with current value S, and with strikeK and maturity T . Prove the put-call
parity relationship

C = P + S −Ke−rT .

• Prove that S ≥ C ≥ max(0, S −K).
• Prove that the value of a call is decreasing w.r.t. the strike.
• Prove that the call price is concave w.r.t. the strike.
• Prove that, for K2 > K1,

K2 −K1 ≥ C(K2) − C(K1) ,

where C(K) is the value of the call with strike K.

�
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2.1.3 Equivalent Martingale Measure

We now introduce the key definition of equivalent martingale measure (or
risk-neutral probability). It is a major tool in giving the prices of derivative
products as an expectation of the (discounted) terminal payoff, and the
existence of such a probability is related to the non-existence of arbitrage
opportunities.

Definition 2.1.3.1 An equivalent martingale measure (e.m.m.) is a
probability measure Q, equivalent to P on FT , such that the discounted prices
(RtS

i
t , t ≤ T ) are Q-local martingales.

It is proved in the seminal paper of Harrison and Kreps [421] in a discrete
setting and in a series of papers by Delbaen and Schachermayer [233] in a
general framework, that the existence of e.m.m. is more or less equivalent
to the absence of arbitrage opportunities. One of the difficulties is to make
precise the choice of “admissible” portfolios. We borrow from Protter [726]
the name of Folk theorem for what follows:

Folk Theorem: Let S be the stock price process. There is absence of
arbitrage essentially if and only if there exists a probability Q equivalent to P

such that the discounted price process is a Q-local martingale.

From (2.1.3), we deduce that not only the discounted prices of securities
are local-martingales, but that more generally, any price, and in particular
prices of derivatives, are local martingales:

Proposition 2.1.3.2 Under any e.m.m. the discounted value of a self-finan-
cing strategy is a local martingale.

Comment 2.1.3.3 Of course, it can happen that discounted prices are
strict local martingales. We refer to Pal and Protter [692] for an interesting
discussion.

2.1.4 Admissible Strategies

As mentioned above, one has to add some regularity conditions on the portfolio
to exclude arbitrage opportunities. The most common such condition is the
following admissibility criterion.

Definition 2.1.4.1 A self-financing strategy π is said to be admissible if there
exists a constant A such that Vt(π) ≥ −A, a.s. for every t ≤ T .

Definition 2.1.4.2 An arbitrage opportunity on the time interval [0, T ] is an
admissible self-financing strategy π such that V π

0 = 0 and V π
T ≥ 0,E(V π

T ) > 0.
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In order to give a precise meaning to the fundamental theorem of asset
pricing, we need some definitions (we refer to Delbaen and Schachermayer
[233]). In the following, we assume that the interest rate is equal to 0. Let us
define the sets

K =

{∫ T

0

πsdSs : π is admissible

}

,

A0 = K − L0
+ =

{

X =
∫ T

0

πsdSs − f : π is admissible, f ≥ 0, f finite
}

,

A = A0 ∩ L∞ ,

Ā = closure of A in L∞ .

Note that K is the set of terminal values of admissible self-financing strategies
with zero initial value. Let L∞

+ be the set of positive random variables in L∞.

Definition 2.1.4.3 A semi-martingale S satisfies the no-arbitrage condition
if K ∩ L∞

+ = {0}. A semi-martingale S satisfies the No-Free Lunch with
Vanishing Risk (NFLVR) condition if Ā ∩ L∞

+ = {0}.

Obviously, if S satisfies the no-arbitrage condition, then it satisfies the
NFLVR condition.

Theorem 2.1.4.4 (Fundamental Theorem.) Let S be a locally bounded
semi-martingale. There exists an equivalent martingale measure Q for S if
and only if S satisfies NFLVR.

Proof: The proof relies on the Hahn-Banach theorem, and goes back to
Harrison and Kreps [421], Harrison and Pliska [423] and Kreps [545] and
was extended by Ansel and Stricker [20], Delbaen and Schachermayer [233],
Stricker [809]. We refer to the book of Delbaen and Schachermayer [236],
Theorem 9.1.1. �

The following result (see Delbaen and Schachermayer [236], Theorem 9.7.2.)
establishes that the dynamics of asset prices have to be semi-martingales:

Theorem 2.1.4.5 Let S be an adapted càdlàg process. If S is locally bounded
and satisfies the no free lunch with vanishing risk property for simple
integrands, then S is a semi-martingale.

Comments 2.1.4.6 (a) The study of the absence of arbitrage opportunities
and its connection with the existence of e.m.m. has led to an extensive
literature and is fully presented in the book of Delbaen and Schachermayer
[236]. The survey paper of Kabanov [500] is an excellent presentation of
arbitrage theory. See also the important paper of Ansel and Stricker [20] and
Cherny [167] for a slightly different definition of arbitrage.

(b) Some authors (e.g., Karatzas [510], Levental and Skorokhod [583]) give
the name of tame strategies to admissible strategies.
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(c) It should be noted that the condition for a strategy to be admissible is
restrictive from a financial point of view. Indeed, in the case d = 1, it excludes
short position on the stock. Moreover, the condition depends on the choice of
numéraire. These remarks have led Sin [799] and Xia and Yan [851, 852] to
introduce allowable portfolios, i.e., by definition there exists a ≥ 0 such that
V π
t ≥ −a

∑
i S

i
t . The authors develop the fundamental theory of asset pricing

in that setting.
(d) Frittelli [364] links the existence of e.m.m. and NFLVR with results on

optimization theory, and with the choice of a class of utility functions.
(e) The condition K ∩ L∞

+ = {0} is too restrictive to imply the existence
of an e.m.m.

2.1.5 Complete Market

Roughly speaking, a market is complete if any derivative product can be
perfectly hedged, i.e., is the terminal value of a self-financing portfolio.

Assume that there are d risky assets Si which are F-semi-martingales and
a riskless asset S0. A contingent claim H is defined as a square integrable
FT -random variable, where T is a fixed horizon.

Definition 2.1.5.1 A contingent claim H is said to be hedgeable if there
exists a predictable process π = (π1, . . . , πd) such that V π

T = H. The self-
financing strategy π̂ = (V π−πS, π) is called the replicating strategy (or the
hedging strategy) of H, and V π

0 = h is the initial price. The process V π is
the price process of H.

In some sense, this initial value is an equilibrium price: the seller of the claim
agrees to sell the claim at an initial price p if he can construct a portfolio with
initial value p and terminal value greater than the claim he has to deliver.
The buyer of the claim agrees to buy the claim if he is unable to produce the
same (or a greater) amount of money while investing the price of the claim in
the financial market.

It is also easy to prove that, if the price of the claim is not the initial value
of the replicating portfolio, there would be an arbitrage in the market: assume
that the claim H is traded at v with v > V0, where V0 is the initial value of
the replicating portfolio. At time 0, one could

� invest V0 in the financial market using the replicating strategy
� sell the claim at price v
� invest the amount v − V0 in the riskless asset.

The terminal wealth would be (if the interest rate is a constant r)
� the value of the replicating portfolio, i.e., H
� minus the value of the claim to deliver, i.e., H
� plus the amount of money in the savings account, that is (v−V0)erT

and that quantity is strictly positive. If the claim H is traded at price v with
v < V0, we invert the positions, buying the claim at price v and selling the
replicating portfolio.
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Using the characterization of a self-financing strategy obtained in Propo-
sition 2.1.1.3, we see that the contingent claim H is hedgeable if there exists a
pair (h, π) where h is a real number and π a d-dimensional predictable process
such that

H/S0
T = h+

d∑

i=1

∫ T

0

πisd(S
i
s/S

0
s ) .

From (2.1.3) the discounted value at time t of this strategy is given by

V π
t /S

0
t = h+

d∑

i=1

∫ t

0

πisdS
i,0
s .

We shall say that V π
0 is the initial value of H, and that π is the hedging

portfolio. Note that the discounted price process V π,0 is a Q-local martingale
under any e.m.m. Q.

To give precise meaning the notion of market completeness, one needs to
take care with the measurability conditions. The filtration to take into account
is, in the case of a deterministic interest rate, the filtration generated by the
traded assets.

Definition 2.1.5.2 Assume that r is deterministic and let FS be the natural
filtration of the prices. The market is said to be complete if any contingent
claim H ∈ L2(FS

T ) is the value at time T of some self-financing strategy π.

If r is stochastic, the standard attitude is to work with the filtration generated
by the discounted prices.

Comments 2.1.5.3 (a) We emphasize that the definition of market com-
pleteness depends strongly on the choice of measurability of the contingent
claims (see � Subsection 2.3.6) and on the regularity conditions on strategies
(see below).

(b) It may be that the market is complete, but there exists no e.m.m. As
an example, let us assume that a riskless asset S0 and two risky assets with
dynamics

dSi
t = Si

t(bidt+ σdBt), i = 1, 2

are traded. Here, B is a one-dimensional Brownian motion, and b1 = b2.
Obviously, there does not exist an e.m.m., so arbitrage opportunities exist,
however, the market is complete. Indeed, any contingent claim H can be
written as a stochastic integral with respect to S1/S0 (the market with the
two assets S0, S1 is complete).

(c) In a model where dSt = St(btdt + σdBt), where b is FB-adapted, the
value of the trend b has no influence on the valuation of hedgeable contingent
claims. However, if b is a process adapted to a filtration bigger than the
filtration FB, there may exist many e.m.m.. In that case, one has to write the
dynamics of S in its natural filtration, using filtering results (see � Section
5.10). See, for example, Pham and Quenez [711].
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Theorem 2.1.5.4 Let S̃ be a process which represents the discounted prices.
If there exists a unique e.m.m. Q such that S̃ is a Q-local martingale, then
the market is complete and arbitrage free.

Proof: This result is obtained from the fact that if there is a unique
probability measure such that S̃ is a local martingale, then the process S̃
has the representation property. See Jacod and Yor [472] for a proof or �
Subsection 9.5.3. �

Theorem 2.1.5.5 In an arbitrage free and complete market, the time-t price
of a (bounded) contingent claim H is

V H
t = R−1

t EQ(RTH|Ft) (2.1.4)

where Q is the unique e.m.m. and R the discount factor.

Proof: In a complete market, using the predictable representation theorem,
there exists π such that HRT = h +

∑d
i=1

∫ T
0
πsdS

i,0
s , and Si,0 is a Q-

martingale. Hence, the result follows. �

Working with the historical probability yields that the process Z defined
by Zt = LtRtV

H
t , where L is the Radon-Nikodým density, is a P-martingale;

therefore we also obtain the price V H
t of the contingent claim H as

V H
t RtLt = EP(LTRTH|Ft) . (2.1.5)

Remark 2.1.5.6 Note that, in an incomplete market, if H is hedgeable, then
the time-t value of the replicating portfolio is V H

t = R−1
t EQ(RTH|Ft), for any

e.m.m. Q.

2.2 A Diffusion Model

In this section, we make precise the dynamics of the assets as Itô processes,
we study the market completeness and, in a Markovian setting, we present
the PDE approach.

Let (Ω,F ,P) be a probability space. We assume that an n-dimensional
Brownian motion B is constructed on this space and we denote by F its
natural filtration. We assume that the dynamics of the assets of the financial
market are as follows: the dynamics of the savings account are

dS0
t = rtS

0
t dt, S

0
0 = 1 , (2.2.1)

and the vector valued process (Si, 1 ≤ i ≤ d) consisting of the prices of d risky
assets is a d-dimensional diffusion which follows the dynamics
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dSi
t = Si

t(b
i
tdt+

n∑

j=1

σi,jt dBj
t ) , (2.2.2)

where r, bi, and the volatility coefficients σi,j are supposed to be given F-
predictable processes, and satisfy for any t, almost surely,

rt > 0,
∫ t

0

rsds <∞,

∫ t

0

|bis|ds <∞ ,

∫ t

0

(σi,js )2ds <∞ .

The solution of (2.2.2) is

Si
t = Si

0 exp

⎛

⎝
∫ t

0

bisds+
n∑

j=1

∫ t

0

σi,js dBj
s −

1
2

n∑

j=1

∫ t

0

(σi,js )2ds

⎞

⎠ .

In particular, the prices of the assets are strictly positive. As usual, we denote
by

Rt = exp
(

−
∫ t

0

rsds

)

= 1/S0
t

the discount factor. We also denote by Si,0 = Si/S0 the discounted prices and
V 0 = V/S0 the discounted value of V .

2.2.1 Absence of Arbitrage

Proposition 2.2.1.1 In the model (2.2.1–2.2.2), the existence of an e.m.m.
implies absence of arbitrage.

Proof: Let π be an admissible self-financing strategy, and assume that Q is
an e.m.m. Then,

dSi,0
t = Rt (dSi

t − rtS
i
tdt) = Si,0

t

n∑

j=1

σi,jt dW j
t

where W is a Q-Brownian motion. Then, the process V π,0 is a Q-local
martingale which is bounded below (admissibility assumption), and therefore,
it is a supermartingale, and V π,0

0 ≥ EQ(V π,0
T ). Therefore, V π,0

T ≥ 0 implies
that the terminal value is null: there are no arbitrage opportunities. �

2.2.2 Completeness of the Market

In the model (2.2.1, 2.2.2) when d = n (i.e., the number of risky assets equals
the number of driving BM), and when σ is invertible, the e.m.m. exists and is
unique as long as some regularity is imposed on the coefficients. More precisely,
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we require that we can apply Girsanov’s transformation in such a way that
the d-dimensional process W where

dWt = dBt + σ−1
t (bt − rt1)dt = dBt + θtdt ,

is a Q-Brownian motion. In other words, we assume that the solution L of

dLt = −Ltσ
−1
t (bt − rt1)dBt = −LtθtdBt, L0 = 1

is a martingale (this is the case if θ is bounded). The process

θt = σ−1
t (bt − rt1)

is called the risk premium1. Then, we obtain

dSi,0
t = Si,0

t

d∑

j=1

σi,jt dW j
t .

We can apply the predictable representation property under the probability Q

and find for any H ∈ L2(FT ) a d-dimensional predictable process (ht, t ≤ T )
with EQ(

∫ T
0
|hs|2ds) <∞ and

HRT = EQ(HRT ) +
∫ T

0

hs dWs .

Therefore,

HRT = EQ(HRT ) +
d∑

i=1

∫ T

0

πis dS
i,0
s

where π satisfies
∑d

i=1 π
i
sS

i,0
s σi,js = hjs. Hence, the market is complete, the

price of H is EQ(HRT ), and the hedging portfolio is (Vt−πtSt, πt) where the
time-t discounted value of the portfolio is given by

V 0
t = R−1

t EQ(HRT |Ft) = EQ(HRT ) +
∫ t

0

Rsπs(dSs − rsSsds) .

Remark 2.2.2.1 In the case d < n, the market is generally incomplete and
does not present arbitrage opportunities. In some specific cases, it can be
reduced to a complete market as in the � Example 2.3.6.1.

In the case n < d, the market generally presents arbitrage opportunities,
as shown in Comments 2.1.5.3, but is complete.
1 In the one-dimensional case, σ is, in finance, a positive process. Roughly speaking,

the investor is willing to invest in the risky asset only if b > r, i.e., if he will get
a positive “premium.”
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2.2.3 PDE Evaluation of Contingent Claims in a Complete Market

In the particular case where H = h(ST ), r is deterministic, h is bounded, and
S is an inhomogeneous diffusion

dSt = DSt(b(t, St)dt+Σ(t, St)dBt) ,

where DS is the diagonal matrix with Si on the diagonal, we deduce from the
Markov property of S under Q that there exists a function V (t, x) such that

EQ(R(T )h(ST )|Ft) = R(t)V (t, St) = V 0(t, St) .

The process (V 0(t, St), t ≥ 0) is a martingale, hence its bounded variation part
is equal to 0. Therefore, as soon as V is smooth enough (see Karatzas and
Shreve [513] for conditions which ensure this regularity), Itô’s formula leads to

V 0(t, St) = V 0(0, S0) +
d∑

i=1

∫ t

0

∂xiV
0(s, Ss)(dSi

s − r(s)Si
sds)

= V (0, S0) +
d∑

i=1

∫ t

0

∂xiV (s, Ss)dSi,0
s ,

where we have used the fact that

∂xiV
0(t, x) = R(t) ∂xiV (t, x) .

We now compare with (2.1.1)

V 0(t, St) = EQ(HR(T )) +
d∑

i=1

∫ t

0

πisdS
i,0
s

and we obtain that πis = ∂xiV (s, Ss).

Proposition 2.2.3.1 Let

dSi
t = Si

t (r(t)dt+
d∑

j=1

σi,j(t, St)dB
j
t ) ,

be the risk-neutral dynamics of the d risky assets where the interest rate is
deterministic. Assume that V solves the PDE, for t < T and xi > 0,∀i,

∂tV + r(t)
∑d

i=1 xi∂xiV +
1
2

∑

i,j

xixj∂xixjV

d∑

k=1

σi,kσj,k = r(t)V

(2.2.3)

with terminal condition V (T, x) = h(x). Then, the value at time t of the
contingent claim H = h(ST ) is equal to V (t, St).

The hedging portfolio is πit = ∂xiV (t, St), i = 1, . . . , d.
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In the one-dimensional case, when dSt = St(b(t, St)dt + σ(t, St)dBt) , the
PDE reads, for x > 0, t ∈ [0, T [,

∂tV (t, x) + r(t)x∂xV (t, x) +
1
2
σ2(t, x)x2∂xxV (t, x) = r(t)V (t, x)

(2.2.4)

with the terminal condition V (T, x) = h(x).

Definition 2.2.3.2 Solving the equation (2.2.4) with the terminal condition
is called the Partial Derivative Equation (PDE) evaluation procedure.

In the case when the contingent claim H is path-dependent (i.e., when the
payoff H = h(St, t ≤ T ) depends on the past of the price process, and not
only on the terminal value), it is not always possible to associate a PDE to
the pricing problem (see, e.g., Parisian options (see � Section 4.4) and Asian
options (see � Section 6.6)).

Thus, we have two ways of computing the price of a contingent claim
of the form h(ST ), either we solve the PDE, or we compute the conditional
expectation (2.1.5). The quantity RL is often called the state-price density
or the pricing kernel. Therefore, in a complete market, we can characterize
the processes which represent the value of a self-financing strategy.

Proposition 2.2.3.3 If a given process V is such that V R is a Q-martingale
(or V RL is a P-martingale), it defines the value of a self-financing strategy.

In particular, the process (Nt = 1/(RtLt), t ≥ 0) is the value of a portfolio
(NRL is a P-martingale), called the numéraire portfolio or the growth
optimal portfolio. It satisfies

dNt = Nt((r(t) + θ2t )dt+ θtdBt) .

(See Becherer [63], Long [603], Karatzas and Kardaras [511] and the book
of Heath and Platen [429] for a study of the numéraire portfolio.) It is a
main tool for consumption-investment optimization theory, for which we refer
the reader to the books of Karatzas [510], Karatzas and Shreve [514], and
Korn [538].

2.3 The Black and Scholes Model

We now focus on the well-known Black and Scholes model, which is a very
particular and important case of the diffusion model.
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2.3.1 The Model

The Black and Scholes model [105] (see also Merton [641]) assumes that
there is a riskless asset with interest rate r and that the dynamics of the price
of the underlying asset are

dSt = St(bdt+ σdBt)

under the historical probability P. Here, the risk-free rate r, the trend b and
the volatility σ are supposed to be constant (note that, for valuation purposes,
b may be an F-adapted process). In other words, the value at time t of the
risky asset is

St = S0 exp
(

bt+ σBt −
σ2

2
t

)

.

From now on, we fix a finite horizon T and our processes are only indexed
by [0, T ].

Notation 2.3.1.1 In the sequel, for two semi-martingales X and Y , we shall
use the notation X mart= Y (or dXt

mart= dYt) to mean that X − Y is a local
martingale.

Proposition 2.3.1.2 In the Black and Scholes model, there exists a unique
e.m.m. Q, precisely Q|Ft = exp(−θBt − 1

2θ
2t)P|Ft where θ = b−r

σ is the risk-
premium. The risk-neutral dynamics of the asset are

dSt = St(rdt+ σdWt)

where W is a Q-Brownian motion.

Proof: If Q is equivalent to P, there exists a strictly positive martingale L
such that Q|Ft = LtP|Ft . From the predictable representation property under
P, there exists a predictable ψ such that

dLt = ψtdBt = LtφtdBt

where φtLt = ψt. It follows that

d(LRS)t
mart= (LRS)t(b− r + φtσ)dt .

Hence, in order for Q to be an e.m.m., or equivalently for LRS to be a P-
local martingale, there is one and only one process φ such that the bounded
variation part of LRS is null, that is

φt =
r − b

σ
= −θ ,
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where θ is the risk premium. Therefore, the unique e.m.m. has a Radon-
Nikodým density L which satisfies dLt = −LtθdBt, L0 = 1 and is given by
Lt = exp(−θBt − 1

2θ
2t).

Hence, from Girsanov’s theorem, Wt = Bt + θt is a Q-Brownian motion,
and

dSt = St(bdt+ σdBt) = St(rdt+ σ(dBt + θdt)) = St(rdt+ σdWt) .

�

In a closed form, we have

St = S0 exp
(

bt+ σBt −
σ2

2
t

)

= S0e
rt exp

(

σWt −
σ2

2
t

)

= S0e
σXt

with Xt = νt+Wt, and ν = r
σ − σ

2 .

In order to price a contingent claim h(ST ), we compute the expectation
of its discounted value under the e.m.m.. This can be done easily, since
EQ(h(ST )e−rT ) = e−rT

EQ(h(ST )) and

EQ(h(ST )) = E

[
h(S0e

rT−σ2
2 T exp(σ

√
T G))

]

where G is a standard Gaussian variable.

We can also think about the expression EQ(h(ST )) = EQ(h(xeσXT )) as a
computation for the drifted Brownian motion Xt = νt+Wt. As an exercise on
Girsanov’s transformation, let us show how we can reduce the computation to
the case of a standard Brownian motion. The process X is a Brownian motion
under Q

∗, defined on FT as

Q
∗ = exp

(

−νWT − 1
2
ν2T

)

Q = ζTQ .

Therefore,
EQ(h(xeσXT )) = EQ∗(ζ(−1)

T h(xeσXT )) .

From

ζ
(−1)
T = exp

(

νWT +
1
2
ν2T

)

= exp
(

νXT − 1
2
ν2T

)

,

we obtain

EQ

(
h(xeσXT )

)
= exp

(

−1
2
ν2T

)

EQ∗(exp(νXT )h(xeσXT )) , (2.3.1)

where on the left-hand side, X is a Q-Brownian motion with drift ν and on
the right-hand side, X is a Q

∗-Brownian motion. We can and do write the
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quantity on the right-hand side as exp(−1
2ν

2T ) E(exp(νWT )h(xeσWT )), where
W is a generic Brownian motion.

We can proceed in a more powerful way using Cameron-Martin’s theorem,
i.e., the absolute continuity relationship between a Brownian motion with drift
and a Brownian motion. Indeed, as in Exercise 1.7.5.5

EQ(h(xeσXT )) = W(ν)(h(xeσXT )) = E

(
eνWT − ν2

2 Th(xeσWT )
)

(2.3.2)

which is exactly (2.3.1).

Proposition 2.3.1.3 Let us consider the Black and Scholes framework

dSt = St(rdt+ σdWt), S0 = x

where W is a Q-Brownian motion and Q is the e.m.m. or risk-neutral
probability. In that setting, the value of the contingent claim h(ST ) is

EQ(e−rTh(ST )) = e−(r+ ν2
2 )TW

(
eνXT h(xeσXT )

)

where ν = r
σ − σ

2 and X is a Brownian motion under W.
The time-t value of the contingent claim h(ST ) is

EQ(e−r(T−t)h(ST )|Ft) = e−(r+ ν2
2 )(T−t)W

(
eνXT−th(zeσXT−t)

)
|z=St .

The value of a path-dependent contingent claim Φ(St, t ≤ T ) is

EQ(e−rTΦ(St, t ≤ T )) = e−(r+ ν2
2 )TW

(
eνXTΦ(xeσXt , t ≤ T )

)
.

Proof: It remains to establish the formula for the time-t value. From

EQ(e−r(T−t)h(ST )|Ft) = EQ(e−r(T−t)h(StSt
T )|Ft)

where St
T = ST /St, using the independence between St

T and Ft and the

equality St
T

law= S1
T−t, where S1 has the same dynamics as S, with initial

value 1, we get
EQ(e−r(T−t)h(ST )|Ft) = Ψ(St)

where
Ψ(x) = EQ(e−r(T−t)h(xSt

T )) = EQ(e−r(T−t)h(xST−t)) .

This last quantity can be computed from the properties of BM. Indeed,

EQ (h(ST )|Ft) =
1√
2π

∫

R

dy h
(
Ste

r(T−t)+σ
√
T−ty−σ2(T−t)/2

)
e−y2/2 .

(See Example 1.5.4.7 if needed.) �
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Notation 2.3.1.4 In the sequel, when working in the Black and Scholes
framework, we shall use systematically the notation ν = r

σ − σ
2 and the fact

that for t ≥ s the r.v. Ss
t = St/Ss is independent of Ss.

Exercise 2.3.1.5 The payoff of a power option is h(ST ), where the function
h is given by h(x) = xβ(x − K)+. Prove that the payoff can be written as
the difference of European payoffs on the underlying assets Sβ+1 and Sβ with
strikes depending on K and β . �
Exercise 2.3.1.6 We consider a contingent claim with a terminal payoff
h(ST ) and a continuous payoff (xs, s ≤ T ), where xs is paid at time s. Prove
that the price of this claim is

Vt = EQ(e−r(T−t)h(ST ) +
∫ T

t

e−r(s−t)xsds|Ft) .

�
Exercise 2.3.1.7 In a Black and Scholes framework, prove that the price at
time t of the contingent claim h(ST ) is

Ch(x, T − t) = e−r(T−t)
EQ(h(ST )|St = x) = e−r(T−t)

EQ(h(St,x
T ))

where St,x
s is the solution of the SDE

dSt,x
s = St,x

s (rds+ σdWs), S
t,x
t = x

and the hedging strategy consists of holding ∂xCh(St, T − t) shares of the
underlying asset.

Assuming some regularity on h, and using the fact that St,x
T

law= xeσXT−t ,
where XT−t is a Gaussian r.v., prove that

∂xCh(x, T − t) =
1
x

EQ

(
h′(St,x

T )St,x
T

)
e−r(T−t) .

�

2.3.2 European Call and Put Options

Among the various derivative products, the most popular are the European
Call and Put Options, also called vanilla2 options.

A European call is associated with some underlying asset, with price
(St, t ≥ 0). At maturity (a given date T ), the holder of a call receives (ST−K)+

where K is a fixed number, called the strike. The price of a call is the amount
of money that the buyer of the call will pay at time 0 to the seller. The time-t
price is the price of the call at time t, equal to EQ(e−r(T−t)(ST − K)+|Ft),
or, due to the Markov property, EQ(e−r(T−t)(ST −K)+|St). At maturity (a
given date T ), the holder of a European put receives (K − ST )+.
2 To the best of our knowledge, the name “vanilla” (or “plain vanilla”) was given to

emphasize the standard form of these products, by reference to vanilla, a standard
flavor for ice cream, or to plain vanilla, a standard font in printing.
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Theorem 2.3.2.1 Black and Scholes formula.
Let dSt = St(bdt + σdBt) be the dynamics of the price of a risky asset and
assume that the interest rate is a constant r. The value at time t of a European
call with maturity T and strike K is BS(St, σ, t) where

BS(x, σ, t) : = xN
[
d1

( x

Ke−r(T−t)
, T − t

)]

−Ke−r(T−t)N
[
d2

( x

Ke−r(T−t)
, T − t

)] (2.3.3)

where

d1(y, u) =
1√
σ2u

ln(y) +
1
2

√
σ2u, d2(y, u) = d1(y, u) −

√
σ2u ,

where we have written
√
σ2 so that the formula does not depend on the sign

of σ.

Proof: It suffices to solve the evaluation PDE (2.2.4) with terminal condition
C(x, T ) = (x − K)+. Another method is to compute the conditional
expectation, under the e.m.m., of the discounted terminal payoff, i.e.,
EQ(e−rT (ST −K)+|Ft). For t = 0,

EQ(e−rT (ST −K)+) = EQ(e−rTST1{ST ≥K}) −Ke−rT
Q(ST ≥ K) .

Under Q, dSt = St(rdt+σdWt) hence, ST
law= S0e

rT−σ2T/2eσ
√
TG, where G is

a standard Gaussian law, hence

Q(ST ≥ K) = N
[
d2

( x

Ke−rT )
, T
)]

.

The equality

EQ(e−rTST1{ST ≥K}) = xN
(

d1

(
S0

Ke−rT
, T

))

can be proved using the law of ST , however, we shall give in � Subsec-
tion 2.4.1 a more pleasant method.

The computation of the price at time t is carried out using the Markov
property. �

Let us emphasize that a pricing formula appears in Bachelier [39, 41] in
the case where S is a drifted Brownian motion. The central idea in Black and
Scholes’ paper is the hedging strategy. Here, the hedging strategy for a call is to
keep a long position of Δ(t, St) = ∂C

∂x (St, T−t) in the underlying asset (and to
have C−ΔSt shares in the savings account). It is well known that this quantity
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is equal to N (d1). This can be checked by a tedious differentiation of (2.3.3).
One can also proceed as follows: as we shall see in � Comments 2.3.2.2

C(x, T − t) = EQ(e−r(T−t)(ST −K)+|St = x) = EQ(Rt
T (xSt

T −K)+) ,

where St
T = ST /St, so that Δ(t, x) can be obtained by a differentiation with

respect to x under the expectation sign. Hence,

Δ(t, x) = E(Rt
TS

t
T1{xSt

T ≥K}) = N
(
d1(St/(Ke−r(T−t)), T − t)

)
.

This quantity, called the “Delta” (see � Subsection 2.3.3) is positive and
bounded by 1. The second derivative with respect to x (the “Gamma”) is

1
σx

√
T−t

N ′(d1), hence C(x, T − t) is convex w.r.t. x.

Comment 2.3.2.2 It is remarkable that the PDE evaluation was obtained
in the seminal paper of Black and Scholes [105] without the use of any e.m.m..
Let us give here the main arguments. In this paper, the objective is to replicate
the risk-free asset with simultaneous positions in the contingent claim and in
the underlying asset. Let (α, β) be a replicating portfolio and

Vt = αtCt + βtSt

the value of this portfolio assumed to satisfy the self-financing condition, i.e.,

dVt = αtdCt + βtdSt

Then, assuming that Ct is a smooth function of time and underlying value,
i.e., Ct = C(St, t), by relying on Itô’s lemma the differential of V is obtained:

dVt = αt(∂xCdSt + ∂tCdt+
1
2
σ2S2

t ∂xxCdt) + βtdSt ,

where ∂tC (resp. ∂xC ) is the derivative of C with respect to the second
variable (resp. the first variable) and where all the functions C, ∂xC, . . . are
evaluated at (St, t). From αt = (Vt − βtSt)/Ct, we obtain

dVt = ((Vt − βtSt)(Ct)−1∂xC + βt)σStdBt (2.3.4)

+
(
Vt − βtSt

Ct

(

∂tC +
1
2
σ2S2

t ∂xxC + bSt∂xC

)

+ βtStb

)

dt .

If this replicating portfolio is risk-free, one has dVt = Vtrdt: the martingale
part on the right-hand side vanishes, which implies

βt = (St∂xC − Ct)−1 Vt∂xC

and
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Vt − βtSt
Ct

(

∂tC +
1
2
σ2S2

t ∂xxC + Stb∂xC

)

+ βtStb = rVt . (2.3.5)

Using the fact that

(Vt − βtSt)(Ct)−1∂xC + βt = 0

we obtain that the term which contains b, i.e.,

bSt

(
Vt − βSt
Ct

∂xC + βt

)

vanishes. After simplifications, we obtain

rC =
(

1 +
S∂xC

C − S∂xC

)(

∂tC +
1
2
σ2x2∂xxC

)

=
C

C − S∂xC

(

∂tC +
1
2
σ2x2∂xxC

)

and therefore the PDE evaluation

∂tC(x, t) + rx∂xC(x, t) +
1
2
σ2x2∂xxC(x, t)

= rC(x, t), x > 0, t ∈ [0, T [ (2.3.6)

is obtained. Now,

βt = Vt∂xC(S∂xC − C)−1 = V0
N (d1)

Ke−rTN (d2)
.

Note that the hedging ratio is

βt
αt

= −∂xC(t, St) .

Reading carefully [105], it seems that the authors assume that there exists a
self-financing strategy (−1, βt) such that dVt = rVtdt, which is not true; in
particular, the portfolio (−1,N (d1)) is not self-financing and its value, equal
to −Ct +StN (d1) = Ke−r(T−t)N (d2), is not the value of a risk-free portfolio.

Exercise 2.3.2.3 Robustness of the Black and Scholes formula. Let

dSt = St(bdt+ σtdBt)

where (σt, t ≥ 0) is an adapted process such that for any t, 0 < a ≤ σt ≤ b.
Prove that

∀t, BS(St, a, t) ≤ EQ(e−r(T−t)(ST −K)+|Ft) ≤ BS(St, b, t) .

Hint: This result is obtained by using the fact that the BS function is convex
with respect to x. �
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Comment 2.3.2.4 The result of the last exercise admits generalizations
to other forms of payoffs as soon as the convexity property is preserved,
and to the case where the volatility is a given process, not necessarily F-
adapted. See El Karoui et al. [301], Avellaneda et al. [29] and Martini [625].
This convexity property holds for a d-dimensional price process only in the
geometric Brownian motion case, see Ekström et al. [296]. See Mordecki [413]
and Bergenthum and Rüschendorf [74], for bounds on option prices.

Exercise 2.3.2.5 Suppose that the dynamics of the risky asset are given by
dSt = St(bdt + σ(t)dBt), where σ is a deterministic function. Characterize
the law of ST under the risk-neutral probability Q and prove that the price
of a European option on the underlying S, with maturity T and strike K, is
BS(x,Σ(t), t) where (Σ(t))2 = 1

T−t

∫ T
t
σ2(s)ds. �

Exercise 2.3.2.6 Assume that, under Q, S follows a Black and Scholes
dynamics with σ = 1, r = 0, S0 = 1. Prove that the function t→ C(1, t; 1) :=
EQ((St − 1)+) is a cumulative distribution function of some r.v. X; identify
the law of X.
Hint: EQ((St − 1)+) = Q(4B2

1 ≤ t) where B is a Q-BM. See Bentata and
Yor [72] for more comments. �

2.3.3 The Greeks

It is important for practitioners to have a good knowledge of the sensitivity
of the price of an option with respect to the parameters of the model.

The Delta is the derivative of the price of a call with respect to the
underlying asset price (the spot). In the BS model, the Delta of a call is
N (d1). The Delta of a portfolio is the derivative of the value of the portfolio
with respect to the underlying price. A portfolio with zero Delta is said to be
delta neutral. Delta hedging requires continuous monitoring and rebalancing
of the hedge ratio.

The Gamma is the derivative of the Delta w.r.t. the underlying price.
In the BS model, the Gamma of a call is N ′(d1)/Sσ

√
T − t. It follows that

the BS price of a call option is a convex function of the spot. The Gamma
is important because it makes precise how much hedging will cost in a small
interval of time.

The Vega is the derivative of the option price w.r.t. the volatility. In the
BS model, the Vega of a call is N ′(d1)S

√
T − t.
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2.3.4 General Case

Let us study the case where

dSt = St(αtdt+ σtdBt) .

Here, B is a Brownian motion with natural filtration F and α and σ are
bounded F-predictable processes. Then,

St = S0 exp
(∫ t

0

(

αs −
σ2
s

2

)

ds+
∫ t

0

σsdBs

)

and FS
t ⊂ Ft. We assume that r is the constant risk-free interest rate and

that σt ≥ ε > 0, hence the risk premium θt =
αt − r

σt
is bounded. It follows

that the process

Lt = exp
(

−
∫ t

0

θsdBs −
1
2

∫ t

0

θ2sds

)

, t ≤ T

is a uniformly integrable martingale. We denote by Q the probability measure
satisfying Q|Ft = LtP|Ft and by W the Brownian part of the decomposition
of the Q-semi-martingale B, i.e., Wt = Bt +

∫ t
0
θsds. Hence, from integration

by parts formula, d(RS)t = RtStσtdWt.
Then, from the predictable representation property (see Section 1.6),

for any square integrable FT -measurable random variable H, there exists
an F-predictable process φ such that HRT = EQ(HRT ) +

∫ T
0
φsdWs and

E(
∫ T
0
φ2
sds) <∞; therefore

HRT = EQ(HRT ) +
∫ T

0

ψsd(RS)s

where ψt = φt/(RtStσt). It follows that H is hedgeable with the self-financing
portfolio (Vt − ψtSt, ψt) where

Vt = R−1
t EQ(HRT |Ft) = H−1

t EP(HHT |Ft)

with Ht = RtLt. The process H is called the deflator or the pricing kernel.

2.3.5 Dividend Paying Assets

In this section, we suppose that the owner of one share of the stock receives
a dividend. Let S be the stock process. Assume in a first step that the stock
pays dividends Δi at fixed increasing dates Ti, i ≤ n with Tn ≤ T . The price
of the stock at time 0 is the expectation under the risk-neutral probability Q

of the discounted future payoffs, that is
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S0 = EQ(STRT +
n∑

i=1

ΔiRTi) .

We now assume that the dividends are paid in continuous time, and let D
be the cumulative dividend process (that is Dt is the amount of dividends
received between 0 and t). The discounted price of the stock is the risk-
neutral expectation (one often speaks of risk-adjusted probability in the case
of dividends) of the future dividends, that is

StRt = EQ

(

STRT +
∫ T

t

RsdDs|Ft

)

.

Note that the discounted price RtSt is no longer a Q-martingale. On the other
hand, the discounted cum-dividend price3

Scum
t Rt := StRt +

∫ t

0

RsdDs

is a Q-martingale. Note that Scum
t = St + 1

Rt

∫ t
0
RsdDs. If we assume that the

reference filtration is a Brownian filtration, there exists σ such that

d(Scum
t Rt) = σtStRtdWt,

and we obtain
d(StRt) = −RtdDt + StRtσtdWt.

Suppose now that the asset S pays a proportional dividend, that is, the
holder of one share of the asset receives δStdt in the time interval [t, t + dt].
In that case, under the risk-adjusted probability Q, the discounted value of
an asset equals the expectation on the discounted future payoffs, i.e.,

RtSt = EQ(RTST + δ

∫ T

t

RsSsds|Ft) .

Hence, the discounted cum-dividend process

RtSt +
∫ t

0

δRsSsds

is a Q-martingale so that the risk-neutral dynamics of the underlying asset
are given by

dSt = St ((r − δ)dt+ σdWt) . (2.3.7)

One can also notice that the process (StRte
δt, t ≥ 0) is a Q-martingale.

3 Nothing to do with scum!
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If the underlying asset pays a proportional dividend, the self-financing
condition takes the following form. Let

dSt = St(btdt+ σtdBt)

be the historical dynamics of the asset which pays a dividend at rate δ. A
trading strategy π is self-financing if the wealth process Vt = π0

tS
0
t + π1

tSt
satisfies

dVt = π0
t dS

0
t + π1

t (dSt + δStdt) = rVtdt+ π1
t (dSt + (δ − r)Stdt) .

The term δπ1
tSt makes precise the fact that the gain from the dividends is

reinvested in the market. The process V R satisfies

d(VtRt) = Rtπ
1
t (dSt + (δ − r)Stdt) = Rtπ

1
tStσdWt

hence, it is a (local) Q-martingale.

2.3.6 Rôle of Information

When dealing with completeness the choice of the filtration is very important;
this is now discussed in the following examples:

Example 2.3.6.1 Toy Example. Assume that the riskless interest rate is a
constant r and that the historical dynamics of the risky asset are given by

dSt = St(bdt+ σ1dB
1
t + σ2dB

2
t )

where (Bi, i = 1, 2) are two independent BMs and b a constant4. It is not
possible to hedge every FB1,B2

T -measurable contingent claim with strategies
involving only the riskless and the risky assets, hence the market consisting
of the FB1,B2

T -measurable contingent claims is incomplete.
The set Q of e.m.m’s is obtained via the family of Radon-Nikodým

densities dLt = Lt(ψtdB
1
t +γtdB2

t ) where the predictable processes ψ, γ satisfy
b+ ψtσ1 + γtσ2 = r. Thus, the set Q is infinite.

However, writing the dynamics of S as a semi-martingale in its own
filtration leads to dSt = St(bdt+ σdB3

t ) where B3 is a Brownian motion and
σ2 = σ2

1 + σ2
2 . Note that FB3

t = FS
t . It is now clear that any FS

T -measurable
contingent claim can be hedged, and the market is FS-complete.

Example 2.3.6.2 More generally, a market where the riskless asset has a
price given by (2.2.1) and where the d risky assets’ prices follow

dSi
t = Si

t(b
i(t, St)dt+

n∑

j=1

σi,j(t, St)dB
j
t ), S

i
0 = xi , (2.3.8)

4 Of course, the superscript 2 is not a power!
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where B is a n-dimensional BM, with n > d, can often be reduced to the case
of an FS

T -complete market. Indeed, it may be possible, under some regularity
assumptions on the matrix σ, to write the equation (2.3.8) as

dSi
t = Si

t(b
i(t, St)dt+

d∑

j=1

σ̃i,j(t, St)dB̃
j
t ), S

i
0 = xi ,

where B̃ is a d-dimensional Brownian motion. The concept of a strong solution
for an SDE is useful here. See the book of Kallianpur and Karandikar [506]
and the paper of Kallianpur and Xiong [507].

When

dSi
t = Si

t

⎛

⎝bitdt+
n∑

j=1

σi,jt dBj
t

⎞

⎠ , Si
0 = xi, i = 1, . . . , d, (2.3.9)

and n > d, if the coefficients are adapted with respect to the Brownian
filtration FB , then the market is generally incomplete, as was shown in
Exercice 2.3.6.1 (for a general study, see Karatzas [510]). Roughly speaking,
a market with a riskless asset and risky assets is complete if the number of
sources of noise is equal to the number of risky assets.

An important case of an incomplete market (the stochastic volatility
model) is when the coefficient σ is adapted to a filtration different from FB.
(See � Section 6.7 for a presentation of some stochastic volatility models.)

Let us briefly discuss the case dSt = StσtdWt. The square of the volatility
can be written in terms of S and its bracket as σ2

t = d〈S〉t

S2
t dt

and is obviously
FS-adapted. However, except in the particular case of regular local volatility,
where σt = σ(t, St), the filtration generated by S is not the filtration generated
by a one-dimensional BM. For example, when dSt = Ste

BtdWt, where B is
a BM independent of W , it is easy to prove that FS

t = FW
t ∨ FB

t , and in
the warning (1.4.1.6) we have established that the filtration generated by S
is not generated by a one-dimensional Brownian motion and that S does not
possess the predictable representation property.

2.4 Change of Numéraire

The value of a portfolio is expressed in terms of a monetary unit. In order to
compare two numerical values of two different portfolios, one has to express
these values in terms of the same numéraire. In the previous models, the
numéraire was the savings account. We study some cases where a different
choice of numéraire is helpful.
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2.4.1 Change of Numéraire and Black-Scholes Formula

Definition 2.4.1.1 A numéraire is any strictly positive price process. In
particular, it is a semi-martingale.

As we have seen, in a Black and Scholes model, the price of a European option
is given by:

C(S0, T ) = EQ(e−rT (ST −K)1{ST ≥K})

= EQ(e−rTST1{ST ≥K}) − e−rTKQ(ST ≥ K) .

Hence, if

k =
1
σ

(

ln(K/x) − (r − 1
2
σ2)T

)

,

using the symmetry of the Gaussian law, one obtains

Q(ST ≥ K) = Q(WT ≥ k) = Q(WT ≤ −k) = N
(
d2

( x

Ke−rT
, T
))

where the function d2 is given in Theorem 2.3.2.1.
From the dynamics of S, one can write:

e−rT
EQ(ST1{ST ≥K}) = S0EQ

(

1{WT ≥k} exp
(

−σ
2

2
T + σWT

))

.

The process (exp(−σ2

2 t + σWt), t ≥ 0) is a positive Q-martingale with
expectation equal to 1. Let us define the probability Q

∗ by its Radon-Nikodým
derivative with respect to Q:

Q
∗|Ft = exp

(

−σ
2

2
t+ σWt

)

Q|Ft .

Hence,
e−rT

EQ(ST1{ST ≥K}) = S0Q
∗(WT ≥ k) .

Girsanov’s theorem implies that the process (Ŵt = Wt − σt, t ≥ 0) is a Q
∗-

Brownian motion. Therefore,

e−rT
EQ(ST1{ST ≥K}) = S0Q

∗ (WT − σT ≥ k − σT )

= S0Q
∗
(
ŴT ≤ −k + σT

)
,

i.e.,
e−rT

EQ(ST1{ST ≥K}) = S0N
(
d1

( x

Ke−rT
, T
))

.

Note that this change of probability measure corresponds to the choice of
(St, t ≥ 0) as numéraire (see � Subsection 2.4.3).
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2.4.2 Self-financing Strategy and Change of Numéraire

If N is a numéraire (e.g., the price of a zero-coupon bond), we can evaluate
any portfolio in terms of this numéraire. If Vt is the value of a portfolio, its
value in the numéraire N is Vt/Nt. The choice of the numéraire does not
change the fundamental properties of the market. We prove below that the
set of self-financing portfolios does not depend on the choice of numéraire.

Proposition 2.4.2.1 Let us assume that there are d assets in the market,
with prices (Si

t ; i = 1, . . . , d, t ≥ 0) which are continuous semi-martingales
with S1 there to be strictly positive.(We do not require that there is a riskless
asset.) We denote by V π

t =
∑d

i=1 π
i
tS

i
t the value at time t of the portfolio

πt = (πit, i = 1, . . . , d). If the portfolio (πt, t ≥ 0) is self-financing, i.e., if
dV π

t =
∑d

i=1 π
i
tdS

i
t, then,choosing S1

t as a numéraire, and

dV π,1
t =

d∑

i=2

πitdS
i,1
t

where V π,1
t = V π

t /S
1
t , S

i,1
t = Si

t/S
1
t .

Proof: We give the proof in the case d = 2 (for two assets). We note simply
V (instead of V π) the value of a self-financing portfolio π = (π1, π2) in a
market where the two assets Si, i = 1, 2 (there is no savings account here) are
traded. Then

dVt = π1
t dS

1
t + π2

t dS
2
t = (Vt − π2

tS
2
t )dS

1
t /S

1
t + π2

t dS
2
t

= (V 1
t − π2

tS
2,1
t )dS1

t + π2
t dS

2
t . (2.4.1)

On the other hand, from V 1
t S

1
t = Vt one obtains

dVt = V 1
t dS

1
t + S1

t dV
1
t + d〈S1, V 1〉t , (2.4.2)

hence,

dV 1
t =

1
S1
t

(
dVt − V 1

t dS
1
t − d〈S1, V 1〉t

)

=
1
S1
t

(
π2
t dS

2
t − π2

tS
2,1
t dS1

t − d〈S1, V 1〉t
)

where we have used (2.4.1) for the last equality. The equality S2,1
t S1

t = S2
t

implies
dS2

t − S2,1
t dS1

t = S1
t dS

2,1
t + d〈S1, S2,1〉t

hence,

dV 1
t = π2

t dS
2,1
t +

π2
t

S1
t

d〈S1, S2,1〉t −
1
S1
t

d〈S1, V 1〉t .
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This last equality implies that
(

1 +
1
S1
t

)

d〈V 1, S1〉t = π2
t

(

1 +
1
S1
t

)

d〈S1, S2,1〉t

hence, d〈S1, V 1〉t = π2
t d〈S1, S2,1〉t, hence it follows that dV 1

t = π2
t dS

2,1
t . �

Comment 2.4.2.2 We refer to Benninga et al. [71], Duffie [270], El Karoui
et al. [299], Jamshidian [478], and Schroder [773] for details and applications
of the change of numéraire method. Change of numéraire has strong links with
optimization theory, see Becherer [63] and Gourieroux et al. [401]. See also an
application to hedgeable claims in a default risk setting in Bielecki et al. [89].
We shall present applications of change of numéraire in � Subsection 2.7.1
and in the proof of symmetry relations (e.g., � formula (3.6.1.1)).

2.4.3 Change of Numéraire and Change of Probability

We define a change of probability associated with any numéraire Z. The
numéraire is a price process, hence the process (ZtRt, t ≥ 0) is a strictly
positive Q-martingale. Define Q

Z as Q
Z |Ft := (ZtRt)Q|Ft .

Proposition 2.4.3.1 Let (Xt, t ≥ 0) be the dynamics of a price and Z a new
numéraire. The price of X, in the numéraire Z: (Xt/Zt, 0 ≤ t ≤ T ), is a
Q

Z-martingale.

Proof: If X is a price process, the discounted process X̃t : = XtRt is a Q-
martingale. Furthermore, from Proposition 1.7.1.1, it follows that Xt/Zt is a
Q

Z -martingale if and only if (Xt/Zt)ZtRt = RtXt is a Q-martingale. �

In particular, if the market is arbitrage-free, and if a riskless asset S0 is
traded, choosing this asset as a numéraire leads to the risk-neutral probability,
under which Xt/S

0
t is a martingale.

Comments 2.4.3.2 (a) If the numéraire is the numéraire portfolio, defined
at the end of Subsection 2.2.3, i.e., Nt = 1/RtSt, then the risky assets are
Q

N -martingales.
(b) See � Subsection 2.7.2 for another application of change of numéraire.

2.4.4 Forward Measure

A particular choice of numéraire is the zero-coupon bond of maturity T . Let
P (t, T ) be the price at time t of a zero-coupon bond with maturity T . If the
interest rate is deterministic, P (t, T ) = RT /Rt and the computation of the
value of a contingent claim X reduces to the computation of P (t, T )EQ(X|Ft)
where Q is the risk-neutral probability measure.
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When the spot rate r is a stochastic process, P (t, T ) = (Rt)−1
EQ(RT |Ft)

where Q is the risk-neutral probability measure and the price of a contingent
claim H is (Rt)−1

EQ(HRT |Ft). The computation of EQ(HRT |Ft) may be
difficult and a change of numéraire may give some useful information.
Obviously, the process

ζt : =
1

P (0, T )
EQ(RT |Ft) =

P (t, T )
P (0, T )

Rt

is a strictly positive Q-martingale with expectation equal to 1. Let us define
the forward measure Q

T as the probability associated with the choice of
the zero-coupon bond as a numéraire:

Definition 2.4.4.1 Let P (t, T ) be the price at time t of a zero-coupon with
maturity T . The T -forward measure is the probability Q

T defined on Ft, for
t ≤ T , as

Q
T |Ft = ζt Q|Ft

where ζt =
P (t, T )
P (0, T )

Rt.

Proposition 2.4.4.2 Let (Xt, t ≥ 0) be the dynamics of a price. Then the
forward price (Xt/P (t, T ), 0 ≤ t ≤ T ) is a Q

T -martingale.
The price of a contingent claim H is

V H
t = EQ

(

H exp

(

−
∫ T

t

rsds

)

|Ft

)

= P (t, T )EQT (H|Ft) .

Remark 2.4.4.3 Obviously, if the spot rate r is deterministic, Q
T = Q and

the forward price is equal to the spot price.

Comment 2.4.4.4 A forward contract on H, made at time 0, is a contract
that stipulates that its holder pays the deterministic amountK at the delivery
date T and receives the stochastic amount H. Nothing is paid at time 0.
The forward price of H is K, determined at time 0 as K = EQT

(H). See
Björk [102], Martellini et al. [624] and Musiela and Rutkowski [661] for various
applications.

2.4.5 Self-financing Strategies: Constrained Strategies

We present a very particular case of hedging with strategies subject to a
constraint. The change of numéraire technique is of great importance in
characterizing such strategies. This result is useful when dealing with default
risk (see Bielecki et al. [93]).

We assume that the k ≥ 3 assets Si traded in the market are continuous
semi-martingales, and we assume that S1 and Sk are strictly positive
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processes. We do not assume that there is a riskless asset (we can consider
this case if we specify that dS1

t = rtS
1
t dt).

Let π = (π1, π2, . . . , πk) be a self-financing trading strategy satisfying the
following constraint:

k∑

i=�+1

πitS
i
t = Zt, ∀ t ∈ [0, T ], (2.4.3)

for some 1 ≤ ! ≤ k − 1 and a predetermined, F-predictable process Z.
Let Φ�(Z) be the class of all self-financing trading strategies satisfying the
condition (2.4.3). We denote by Si,1 = Si/S1 and Z1 = Z/S1 the prices and
the value of the constraint in the numéraire S1.

Proposition 2.4.5.1 The relative time-t wealth V π,1
t = V π

t (S1
t )−1 of a

strategy π ∈ Φ�(Z) satisfies

V π,1
t = V π,1

0 +
�∑

i=2

∫ t

0

πiu dS
i,1
u +

k−1∑

i=�+1

∫ t

0

πiu

(

dSi,1
u − Si,1

u

Sk,1
u

dSk,1
u

)

+
∫ t

0

Z1
u

Sk,1
u

dSk,1
u .

Proof: Let us consider discounted values of price processes S1, S2, . . . , Sk,
with S1 taken as a numéraire asset. In the proof, for simplicity, we do not
indicate the portfolio π as a superscript for the wealth. We have the numéraire
invariance

V 1
t = V 1

0 +
k∑

i=2

∫ t

0

πiu dS
i,1
u . (2.4.4)

The condition (2.4.3) implies that

k∑

i=�+1

πitS
i,1
t = Z1

t ,

and thus

πkt = (Sk,1
t )−1

(
Z1
t −

k−1∑

i=�+1

πitS
i,1
t

)
. (2.4.5)

By inserting (2.4.5) into (2.4.4), we arrive at the desired formula. �

Let us take Z = 0, so that π ∈ Φ�(0). Then the constraint condition
becomes

∑k
i=�+1 π

i
tS

i
t = 0, and (2.4.4) reduces to

V π,1
t =

�∑

i=2

∫ t

0

πis dS
i,1
s +

k−1∑

i=�+1

∫ t

0

πis

(

dSi,1
s − Si,1

s

Sk,1
s

dSk,1
s

)

. (2.4.6)
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The following result provides a different representation for the (relative)
wealth process in terms of correlations (see Bielecki et al. [92] for the case
where Z is not null).

Lemma 2.4.5.2 Let π = (π1, π2, . . . , πk) be a self-financing strategy in Φ�(0).
Assume that the processes S1, Sk are strictly positive. Then the relative wealth
process V π,1

t = V π
t (S1

t )−1 satisfies

V π,1
t = V π,1

0 +
�∑

i=2

∫ t

0

πiu dS
i,1
u +

k−1∑

i=�+1

∫ t

0

π̂i,k,1u dŜi,k,1
u , ∀ t ∈ [0, T ],

where we denote

π̂i,k,1t = πit(S
1,k
t )−1eα

i,k,1
t , Ŝi,k,1

t = Si,k
t e−αi,k,1

t , (2.4.7)

with Si,k
t = Si

t(S
k
t )−1 and

αi,k,1t = 〈lnSi,k, lnS1,k〉t =
∫ t

0

(Si,k
u )−1(S1,k

u )−1 d〈Si,k, S1,k〉u. (2.4.8)

Proof: Let us consider the relative values of all processes, with the price
Sk chosen as a numéraire, and V k

t := Vt(Sk
t )−1 =

∑k
i=1 π

i
tS

i,k
t (we do not

indicate the superscript π in the wealth). In view of the constraint we have
that V k

t =
∑�

i=1 π
i
tS

i,k
t . In addition, as in Proposition 2.4.2.1 we get

dV k
t =

k−1∑

i=1

πit dS
i,k
t .

Since Si,k
t (S1,k

t )−1 = Si,1
t and V 1

t = V k
t (S1,k

t )−1, using an argument analogous
to that of the proof of Proposition 2.4.2.1, we obtain

V 1
t = V 1

0 +
�∑

i=2

∫ t

0

πiu dS
i,1
u +

k−1∑

i=�+1

∫ t

0

π̂i,k,1u dŜi,k,1
u , ∀ t ∈ [0, T ],

where the processes π̂i,k,1t , Ŝi,k,1
t and αi,k,1t are given by (2.4.7)–(2.4.8). �

The result of Proposition 2.4.5.1 admits a converse.

Proposition 2.4.5.3 Let an FT -measurable random variable H represent a
contingent claim that settles at time T . Assume that there exist F-predictable
processes πi, i = 2, 3, . . . , k − 1 such that

H

S1
T

= x+
l∑

i=2

∫ T

0

πit dS
i,1
t

+
k−1∑

i=l+1

∫ T

0

πit

(

dSi,1
t − Si,1

t

Sk,1
t

dSk,1
t

)

+
∫ T

0

Z1
t

Sk,1
t

dSk,1
t .
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Then there exist two F-predictable processes π1 and πk such that the strategy
π = (π1, π2, . . . , πk) belongs to Φ�(Z) and replicates H. The wealth process of
π equals, for every t ∈ [0, T ],

V π
t )
S1
t

= x+
l∑

i=2

∫ t

0

πiu dS
i,1
u

+
k−1∑

i=l+1

∫ t

0

πiu

(

dSi,1
u − Si,1

u

Sk,1
u

dSk,1
u

)

+
∫ t

0

Z1
u

Sk,1
u

dSk,1
u .

Proof: The proof is left as an exercise. �

2.5 Feynman-Kac

In what follows, Ex is the expectation corresponding to the probability
distribution of a Brownian motion W starting from x.

2.5.1 Feynman-Kac Formula

Theorem 2.5.1.1 Let α ∈ R
+ and let k : R → R

+ and g : R → R be
continuous functions with g bounded. Then the function

f(x) = Ex

[∫ ∞

0

dt g(Wt) exp
(

−αt−
∫ t

0

k(Ws)ds
)]

(2.5.1)

is piecewise C2 and satisfies

(α+ k)f =
1
2
f ′′ + g . (2.5.2)

Proof: We refer to Karatzas and Shreve [513] p.271. �

Let us assume that f is a bounded solution of (2.5.2). Then, one can check
that equality (2.5.1) is satisfied.

We give a few hints for this verification. Let us consider the increasing
process Z defined by:

Zt = αt+
∫ t

0

k(Ws)ds .

By applying Itô’s lemma to the process

Uϕ
t : = ϕ(Wt)e−Zt +

∫ t

0

g(Ws)e−Zsds ,

where ϕ is C2, we obtain
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dUϕ
t = ϕ′(Wt)e−ZtdWt +

(
1
2
ϕ′′(Wt) − (α+ k(Wt))ϕ(Wt) + g(Wt)

)

e−Ztdt

Now let ϕ = f where f is a bounded solution of (2.5.2). The process Uf is a
local martingale:

dUf
t = f ′(Wt)e−ZtdWt .

Since Uf is bounded, Uf is a uniformly integrable martingale, and

Ex(Uf
∞) = Ex

(∫ ∞

0

g(Ws)e−Zsds

)

= Uf
0 = f(x) .

�

2.5.2 Occupation Time for a Brownian Motion

We now give Kac’s proof of Lévy’s arcsine law as an application of the
Feynman-Kac formula:

Proposition 2.5.2.1 The random variable A+
t : =

∫ t
0

1[0,∞[(Ws)ds follows
the arcsine law with parameter t:

P(A+
t ∈ ds) =

ds

π
√
s(t− s)

1{0 ≤ s < t} .

Proof: By applying Theorem 2.5.1.1 to k(x) = β1{x≥0} and g(x) = 1, we
obtain that for any α > 0 and β > 0, the function f defined by:

f(x) : = Ex

[∫ ∞

0

dt exp
(

−αt− β

∫ t

0

1[0,∞[(Ws)ds
)]

(2.5.3)

solves the following differential equation:
{
αf(x) = 1

2f
′′(x) − βf(x) + 1, x ≥ 0

αf(x) = 1
2f

′′(x) + 1, x ≤ 0 . (2.5.4)

Bounded and continuous solutions of this differential equation are given by:

f(x) =

{
Ae−x

√
2(α+β) + 1

α+β , x ≥ 0
Bex

√
2α + 1

α , x ≤ 0
.

Relying on the continuity of f and f ′ at zero, we obtain the unique bounded
C2 solution of (2.5.4):

A =
√
α+ β −

√
α

(α+ β)
√
α

, B =
√
α−

√
α+ β

α
√
α+ β

.

The following equality holds:
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f(0) =
∫ ∞

0

dte−αt
E0

[
e−βA+

t

]
=

1
√
α(α+ β)

.

We can invert the Laplace transform using the identity

∫ ∞

0

dte−αt

(∫ t

0

du
e−βu

π
√
u(t− u)

)

=
1

√
α(α+ β)

,

and the density of A+
t is obtained:

P(A+
t ∈ ds) =

ds

π
√
s(t− s)

1{s<t} .

Therefore, the law of A+
t is the arcsine law on [0, t], and its distribution

function is, for s ∈ [0, t]:

P(A+
t ≤ s) =

2
π

arcsin
√
s

t
.

Note that, by scaling, A+
t

law= tA+
1 . �

Comment 2.5.2.2 This result is due to Lévy [584] and a different proof was
given by Kac [502]. Intensive studies for the more general case

∫ t
0
f(Ws)ds

have been made in the literature. Biane and Yor [86] and Jeanblanc et al. [483]
present a study of the laws of these random variables for particular functions
f , using excursion theory and the Ray-Knight theorem for Brownian local
times at an exponential time.

2.5.3 Occupation Time for a Drifted Brownian Motion

The same method can be applied in order to compute the density of the
occupation times above and below a level L > 0 up to time t for a Brownian
motion with drift ν, i.e.,

A+,L,ν
t =

∫ t

0

ds1{Xs>L}, A−,L,ν
t =

∫ t

0

ds1{Xs<L}

where Xt = νt+Wt. We start with the computation of Ψ where

Ψ(α, β) : = W(ν)
0

(∫ ∞

0

dt exp
(

−αt− β

∫ t

0

ds1{Xs<0}

))

.

From the Feynman-Kac result, Ψ is the unique bounded solution of the
equation (see Akahori [1] for details)



2.5 Feynman-Kac 115

−1
2
f ′′ − νf ′ + αf + β1{x<0}f = 1 .

Hence,

Ψ(α, β) =
ν

2α

√
ν2 + 2(α+ β)
α+ β

− ν

2(α+ β)

√
ν2 + 2α
α

+
1
2

√
ν2 + 2(α+ β)
α+ β

√
ν2 + 2α
α

− ν2

2
1

α(α+ β)
.

Inverting the Laplace transform, we get

P(A−,0,ν
t ∈ du)/du =

[√
2
πu

exp
(

−ν
2

2
u

)

− 2ν Θ(ν
√
u)

]

×
[

ν +
1

√
2π(t− u)

exp
(

−ν
2

2
(t− u)

)

− ν Θ(ν
√
t− u)

]

(2.5.5)

where Θ(x) = 1√
2π

∫∞
x

exp(−y2

2 )dy. More generally, the law of A−,L,ν
t for

L > 0 is obtained from

P(A−,L,ν
t ≤ u) =

∫ u

0

dsϕ(s, L; ν)P(A−,0,ν
t−s < u− s)

where ϕ(s, L; ν) is the density P(TL(X) ∈ ds)/ds (see � (3.2.3) for its closed
form). The law of A+,L,ν

t follows from A+,L,ν
t +A−,L,ν

t = t.
The law of A+,L,0

t can also be obtained in a more direct way. It is easy to
compute the double Laplace transform

Ψ(α, β;L) : =
∫ ∞

0

dt e−αt
E0

(
e−βA+,L,0

t

)

as follows: let, for L > 0, TL = inf{t : Xt = L}. Then,

Ψ(α, β;L) = E0

(∫ TL

0

dt e−αt +
∫ ∞

TL

dt e−αt exp
(

−β
∫ ∞

TL

ds1{Ws>L}

))

=
1
α

E0(1 − e−αTL) +
1

√
α(α+ β)

E0(e−αTL)

=
1
α

(1 − e−L
√

2α) +
1

√
α(α+ β)

e−L
√

2α .

This quantity is the double Laplace transform of

f(t, u)du : = P(TL > t) δ0(du) +
1

√
u(t− u)

e−L2/(2(t−u))1{u<t}du ,

i.e.,

Ψ(α, β;L) =
∫ ∞

0

∫ ∞

0

e−αte−βuf(t, u)dtdu .
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Comment 2.5.3.1 For a general presentation of Feynman-Kac formula, we
refer to Durrett [286] and Karatzas and Shreve [513]. For extensions, see
Chung [185], Evans [337], Fusai and Tagliani [371] and Pitman and Yor [718,
719]. Occupation time densities for CEV processes (see � Section 6.4) are
presented in Leung and Kwok [582].

2.5.4 Cumulative Options

Let S be a given process. The occupation time of S above (resp. below) a
level L up to time t is the random variable A+,L

t :=
∫ t
0
ds1{Ss≥L} (resp.

A−,L
t =

∫ t
0
ds1{Ss≤L}). An occupation time derivative is a contingent claim

whose payoff depends on the terminal value of the underlying asset and on
an occupation time. We are mainly interested in terminal payoff of the form
f(ST , A

−,L
T ), (or f(ST , A

+,L
T ) ). In a Black and Scholes model, as given in

Proposition 2.3.1.3, the price of such a claim is

EQ(e−rT f(ST , A
−,L
T )) = e−rT−ν2T/2

E

(
eνWT f(xeσWT , A−,�

T (W ))
)

where ! = σ−1 ln(L/x).
We study the particular case f(x, a) = (x−K)+e−ρa, called a step option

by Linetsky [590]. Let

Cstep(x) = e−(r+ν2/2)T
E

(
eνWT (xeσWT −K)+e−ρA−,�

T

)

where W starts from 0. Setting γ = r + ν2/2, we obtain

Cstep(x) = e−γT
E−�

(
eν(WT +�)(xeσ(WT +�) −K)+e−ρA−,0

T

)

= e−γT+ν�(xeσ�Ψ(−!, ν + σ) −KΨ(−!, ν))

where Ψ(x, a) = Ex

(
eaWT 1{WT ≥ 1

σ ln(K/L)}e
−ρA−,0

T

)
. The function Ψ can be

computed from the joint law of (A−,0
T ,WT ).

Proposition 2.5.4.1 The density of the pair (A−,0
t ,Wt) is

P(A−,0
t ∈ du,Wt ∈ dx) = du dx

|x|√
2π

∫ t

u

1
√
s3(t− s)3

e−x2/(2(t−s))ds1{u<t}.

Proof: Let, for a > 0, ρ > 0,

f(t, x) = E

(

1[a,∞[(x+Wt) exp
(

−ρ
∫ t

0

1]−∞,0](x+Ws)ds
))

.

From the Feynman-Kac theorem, the function f satisfies the PDE
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∂tf =
1
2
∂xxf − ρ1]−∞,0](s)f, f(0, x) = 1[a,∞[(x) .

Letting f̂ be the Laplace transform in time of f , i.e.,

f̂(λ, x) =
∫ ∞

0

e−λtf(x, t)dt ,

we obtain
−1[a,∞[(x) + λf̂ =

1
2
∂xxf̂ − ρ1]−∞,0](x)f̂ .

Solving this ODE with the boundary conditions at 0 and a leads to

f̂(λ, 0) =
exp(−a

√
2λ)

√
λ
(√

λ+
√
λ+ ρ

) = f̂1(λ)f̂2(λ) , (2.5.6)

with
f̂1(λ) =

1
√
λ
(√

λ+
√
λ+ ρ

) , f̂2(λ) = exp(−a
√

2λ) .

Then, one gets

−∂af̂(λ, 0) =
√

2
exp(−a

√
2λ)√

λ+
√
λ+ ρ

.

The right-hand side of (2.5.6) may be recognized as the product of the Laplace
transforms of the functions

f1(t) =
1 − e−ρt

ρ
√

2πt3
, and f2(t) =

a√
2πt3

e−a2/2t ,

hence, it is the Laplace transform of the convolution of these two functions.
The result follows. �

Comment 2.5.4.2 Cumulative options are studied in Chesney et al. [175,
196], Dassios [211], Detemple [251], Fusai [370], Hugonnier [451] and Moraux
[657]. In [370], Fusai determines the Fourier transform of the density of the
occupation time τ =

∫ T
0

1{a<νs+Ws<b}ds, in order to compute the price of a
corridor option, i.e., an option with payoff (τ −K)+. The joint law of WT and
A+
T can be found in Fujita and Miura [366] where the authors present, among

other results, options which are knocked-out at the time

τ = inf
{

t :
∫ t

Ta

1{Su≤a} du ≥ α(T − Ta)
}

.

Exercise 2.5.4.3 (1) Deduce from Proposition 2.5.4.1 P(A−,0
t ∈ du|Wt = x).

(2) Recover the formula (2.5.5) for P(A−,0
t ∈ du). �
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2.5.5 Quantiles

Proposition 2.5.5.1 Let Xt = μt+ σWt and MX
t = sups≤tXs. We assume

σ > 0. Define, for a fixed t, θXt = sup{s ≤ t : Xs = MX
s }. Then

θXt
law=
∫ t

0

1{Xs>0}ds .

Proof: We shall prove the result in the case σ = 1, μ = 0 in �
Exercise 4.1.7.5. The drifted Brownian motion case follows from an application
of Girsanov’s theorem. �

Proposition 2.5.5.2 Let Xt = μt+ σWt with σ > 0, and

qX(α, t) = inf
{

x :
∫ t

0

1{Xs≤x}ds > αt

}

.

Let Xi, i = 1, 2 be two independent copies of X. Then

qX(α, t) law= sup
0≤s≤αt

X1
s + inf

0≤s≤(1−αt)
X2

s .

Proof: We give the proof for t = 1. We note that

AX(x) =
∫ 1

0

1{Xs>x}ds =
∫ 1

Tx

1{Xs>x}ds = 1 −
∫ 1−Tx

0

1{Xs+Tx≤x}ds

where Tx = inf{t : Xt = x}. Then, denoting q(α) = qX(α, 1), one has

P(q(α) > x) = P(AX(x) > 1 − α) = P

(∫ 1−Tx

0

1{Xs+Tx−x>0}ds > 1 − α

)

.

The process (X1
s = Xs+Tx − x, s ≥ 0) is independent of (Xs, s ≤ Tx;Tx) and

has the same law as X. Hence,

P(q(α) > x) =
∫ α

0

P(Tx ∈ du)P
(∫ 1−u

0

1{X1
s>0}ds > 1 − α

)

.

Then, from Proposition 2.5.5.1,

P

(∫ 1−u

0

1{X1
s>0}ds > 1 − α

)

= P(θX
1

1−u > 1 − α) .

From the definition of θ1s , for s > a,

P(θX
1

s > a) = P

(

sup
u≤a

(X1
u −X1

a) < sup
a≤v≤s

(X1
v −X1

a)
)

.
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It is easy to check that
(

sup
u≤a

(X1
u −X1

a), sup
a≤v≤s

(X1
v −X1

a)
)

law=
(

− inf
u≤a

X2
u, sup

0<v≤s−a
X3

v

)

where X2 and X3 are two independent copies of X. The result follows. �

Exercise 2.5.5.3 Prove that, in the case ν = 0, setting β = ((1 − α)/α)1/2,
and Φ∗(x) =

√
2/π

∫∞
x
e−y2/2dy

P(q(α) ∈ dx) =

{ √
2/π e−x2/2Φ∗(βx)dx for x ≥ 0

√
2/π e−x2/2Φ∗(−xβ−1)dx for x ≤ 0

.

�

Comment 2.5.5.4 See Akahori [1], Dassios [211, 212], Detemple [252],
Embrechts et al. [324], Fujita and Yor [368], Fusai [370], Miura [653] and
Yor [866] for results on quantiles and pricing of quantile options.

2.6 Ornstein-Uhlenbeck Processes and Related Processes

In this section, we present a particular SDE, the solution of which was used to
model interest rates. Even if this kind of model is nowadays not so often used
by practitioners for interest rates, it can be useful for modelling underlying
values in a real options framework.

2.6.1 Definition and Properties

Proposition 2.6.1.1 Let k, θ and σ be bounded Borel functions, and W a
Brownian motion. The solution of

drt = k(t)(θ(t) − rt)dt+ σ(t)dWt (2.6.1)

is

rt = e−K(t)

(

r0 +
∫ t

0

eK(s)k(s)θ(s)ds+
∫ t

0

eK(s)σ(s)dWs

)

where K(t) =
∫ t
0
k(s)ds. The process (rt, t ≥ 0) is a Gaussian process with

mean

E(rt) = e−K(t)

(

r0 +
∫ t

0

eK(s)k(s)θ(s)ds
)

and covariance

e−K(t)−K(s)

∫ t∧s

0

e2K(u)σ2(u)du .
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Proof: The solution of (2.6.1) is a particular case of Example 1.5.4.8. The
values of the mean and of the covariance follow from Exercise 1.5.1.4. �

The Hull and White model corresponds to the dynamics (2.6.1) where
k is a positive function. In the particular case where k, θ and σ are constant,
we obtain

Corollary 2.6.1.2 The solution of

drt = k(θ − rt)dt+ σdWt (2.6.2)

is

rt = (r0 − θ)e−kt + θ + σ

∫ t

0

e−k(t−u)dWu.

The process (rt, t ≥ 0) is a Gaussian process with mean (r0 − θ)e−kt + θ and
covariance

Cov(rs, rt) =
σ2

2k
e−k(s+t)(e2ks − 1) =

σ2

k
e−kt sinh(ks)

for s ≤ t.

In finance, the solution of (2.6.2) is called a Vasicek process. In general, k is
chosen to be positive, so that E(rt) → θ as t → ∞ (this is why this process
is said to enjoy the mean reverting property). The process (2.6.1) is called
a Generalized Vasicek process (GV). Because r is a Gaussian process,
it takes negative values. This is one of the reasons why this process is no
longer used to model interest rates. When θ = 0, the process r is called an
Ornstein-Uhlenbeck (OU) process. Note that, if r is a Vasicek process, the
process r − θ is an OU process with parameter k. More formally,

Definition 2.6.1.3 An Ornstein-Uhlenbeck (OU) process driven by a BM
follows the dynamics drt = −krtdt+ σdWt.

An OU process can be constructed in terms of time-changed BM (see also �
Section 5.1):

Proposition 2.6.1.4 (i) If W is a BM starting from x and a(t) = σ2 e2kt−1
2k ,

the process Zt = e−ktWa(t) is an OU process starting from x.
(ii) Conversely, if U is an OU process starting from x, then there exists a

BM W starting from x such that Ut = e−ktWa(t).

Proof: Indeed, the process Z is a Gaussian process, with mean xe−kt and
covariance e−k(t+s)(a(t) ∧ a(s)). �
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Fig. 2.1 Simulation of Ornstein-Uhlenbeck paths θ = 0, k = 3/2, σ = 0.1

More generally, one can define an Ornstein-Uhlenbeck process driven by
a Lévy process (see � Chapter 11). Here, we note that the Vasicek process
defined in (2.6.2) is an OU process, driven by the Brownian motion with drift
σWt + kθt.

From the Markov and Gaussian properties of a Vasicek process r we
deduce:

Proposition 2.6.1.5 Let r be a Vasicek process, the solution of (2.6.2) and
let F be its natural filtration. For s < t, the conditional expectation and the
conditional variance of rt, with respect to Fs (denoted as Vars(rt)) are given
by

E(rt|Fs) = E(rt|rs) = (rs − θ)e−k(t−s) + θ

Vars (rt) =
σ2

2k
(1 − e−2k(t−s)) .

Note that the filtration generated by the process r is equal to that of the
driving Brownian motion. Owing to the Gaussian property of the process r,
the law of the integrated process

∫ t
0
rsds can be characterized as follows:

Proposition 2.6.1.6 Let r be a solution of (2.6.2).
The process

(∫ t
0
rsds, t ≥ 0

)
is Gaussian with mean and variance given by
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E

(∫ t

0

rsds

)

= θt+ (r0 − θ)
1 − e−kt

k
,

Var
(∫ t

0

rsds

)

= − σ2

2k3
(1 − e−kt)2 +

σ2

k2

(

t− 1 − e−kt

k

)

and covariance (for s < t)

σ2

k2

(

s− e−kt e
ks − 1
k

− 1 − e−ks

k
+ e−k(t+s) e

2ks − 1
2k

)

.

Proof: From the definition, rt = r0 + kθt− k
∫ t
0
rsds+ σWt, hence

∫ t

0

rsds =
1
k

[−rt + r0 + kθt+ σWt]

=
1
k

[kθt+ (r0 − θ)(1 − e−kt) − σe−kt

∫ t

0

ekudWu + σWt].

Obviously, from the properties of the Wiener integral, the right-hand side
defines a Gaussian process. It remains to compute the expectation and the
variance of the Gaussian variable on the right-hand side, which is easy, since
the variance of a Wiener integral is well known. �

Note that one can also justify directly the Gaussian property of an integral
process (

∫ t
0
ysds, t ≥ 0) where y is a Gaussian process.

More generally, for t ≥ s,

E

(∫ t

s

ru du|Fs

)

= θ(t− s) + (rs − θ)
1 − e−k(t−s)

k
: = M(s, t) , (2.6.3)

Var s

(∫ t

s

ru du

)

= − σ2

2k3
(1 − e−k(t−s))2

+
σ2

k2

(

t− s− 1 − e−k(t−s)

k

)

: = V (s, t) .(2.6.4)

Exercise 2.6.1.7 Compute the transition probability for an OU process. �

Exercise 2.6.1.8 (1) Let B be a Brownian motion, and define the probability
P b via

P
b|FT

: = exp

{

−b
∫ T

0

Bs dBs −
b2

2

∫ T

0

B2
s ds

}

P|FT
.

Prove that the process (Bt, t ≥ 0) is a P
b-Ornstein-Uhlenbeck process and

that

E

(

exp
(

−αB2
t − b2

2

∫ t

0

B2
s ds

))

= E
b

(

exp
(

−αB2
t +

b

2
(B2

t − t)
))

,
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where E
b is the expectation w.r.t. the probability measure P

b. One can also
prove that if B is an n-dimensional BM starting from a

Ea

(

exp(−α|Bt|2 −
b2

2

∫ t

0

|Bs|2ds)
)

=
(

cosh bt+
2α
b

sinh bt
)−n/2

exp
(

−|a|2b
2

1 + 2α
b coth bt

coth bt+ 2α/b

)

,

where Ea is the expectation for a BM starting from a. (See Yor [864].)
(2) Use the Gaussian property of the variable Bt to obtain that

EP

(

exp
(

−αB2
t − b2

2

∫ t

0

B2
s ds

))

=
(
cosh bt+ 2

α

b
sinh bt

)− 1
2
.

If B and C are two independent Brownian motions starting form 0, prove that

EP

(

exp(−α(B2
t + C2

t ) − b2

2

∫ t

0

(B2
s + C2

s ) ds)
)

=
(
cosh bt+ 2

α

b
sinh bt

)−1

.

(3) Deduce Lévy’s area formula:

E(exp iλAt

∣
∣ |Zt|2 = r2) = E

(

exp−λ
2

8

∫ t

0

|Zs|2ds
∣
∣ |Zt|2 = r2

)

=
tλ/2

sinh(tλ/2)
exp−r

2

2
(λt cothλt− 1) ,

where

At : =
1
2

∫ t

0

(BsdCs − CsdBs) =
1
2
γ

(∫ t

0

(B2
s + C2

s )ds
)

where γ is a Brownian motion independent of |Z|2 : = B2 + C2 (see �
Exercise 5.1.3.9)
Hint: Note that

∫ t
0
BsdBs = 1

2 (B2
t − t). �

2.6.2 Zero-coupon Bond

Suppose that the dynamics of the interest rate under the risk-neutral
probability are given by (2.6.2). The value P (t, T ) of a zero-coupon bond
maturing at date T is given as the conditional expectation under the e.m.m.
of the discounted payoff. Using the Laplace transform of a Gaussian law (see
Proposition 1.1.12.1), and Proposition 2.6.1.6, we obtain

P (t, T ) = E

(

exp

(

−
∫ T

t

ru du

)
∣
∣Ft

)

= exp
(

−M(t, T ) +
1
2
V (t, T )

)

,

where M and V are defined in (2.6.3) and (2.6.4).



124 2 Basic Concepts and Examples in Finance

Proposition 2.6.2.1 In a Vasicek model, the price of a zero-coupon with
maturity T is

P (t, T ) = exp
[

−θ(T − t) − (rt − θ)
1 − e−k(T−t)

k
− σ2

4k3
(1 − e−k(T−t))2

+
σ2

2k2

(

T − t− 1 − e−k(T−t)

k

)]

= exp(a(t, T ) − b(t, T )rt) ,

with b(t, T ) = 1−e−k(T−t)

k .

Without any computation, we know that

dtP (t, T ) = P (t, T )(rtdt− σtdWt) ,

since the discounted value of the zero-coupon bond is a martingale. It suffices
to identify the volatility term. It is not difficult, using Itô’s formula, to check
that the risk-neutral dynamics of the zero-coupon bond are

dtP (t, T ) = P (t, T )(rtdt− b(t, T )dWt) .

2.6.3 Absolute Continuity Relationship for Generalized Vasicek
Processes

Let W be a P-Brownian motion starting from x, θ a bounded Borel function
and L the solution of dLt = kLt(θ(t) −Wt)dWt, L0 = 1, that is,

Lt = exp
(∫ t

0

k(θ(s) −Ws)dWs −
1
2

∫ t

0

k2(θ(s) −Ws)2ds
)

. (2.6.5)

This process is a martingale, from the non-explosion criteria. We define

P
k,θ|Ft = Lt P|Ft .

Then,

Wt = x+ βt +
∫ t

0

k(θ(s) −Ws)ds

where, thanks to Girsanov’s theorem, β is a P
k,θ-Brownian motion starting

from 0. Hence, we have proved that the P-Brownian motionW is a GV process
under P

k,θ (and thus we generalize Exercise 2.6.1.8).

Proposition 2.6.3.1 Let θ be a differentiable function and let P
k,θ
x be the law

of the GV process

drt = dWt + k(θ(t) − rt)dt, r0 = x .



2.6 Ornstein-Uhlenbeck Processes and Related Processes 125

We denote by Wx the law of a Brownian motion starting from x. Then the
following absolute continuity relationship holds

P
k,θ
x |Ft = exp

[
k

2

(

t+ x2 − k

∫ t

0

θ2(s)ds− 2xθ(0)
)]

× exp
[

kθ(t)Xt −
k

2
X2

t +
∫ t

0

(k2θ(s) − kθ′(s))Xsds−
k2

2

∫ t

0

X2
sds

]

Wx|Ft .

Proof: We have seen that P
k,θ
x |Ft = Lt Wx|Ft where L is given in (2.6.5).

Since θ is differentiable, an integration by parts under Wx leads to
∫ t

0

(θ(s) −Xs)dXs = θ(t)Xt − xθ(0) −
∫ t

0

θ′(s)Xsds−
1
2
(X2

t − x2 − t) .

�

Corollary 2.6.3.2 Let r be a Vasicek process

drt = k(θ − rt)dt+ σdWt, r0 = x .

Then

P
k,θ
x |Ft = exp

(
k

2
(
t+ x2 − kθ2t− 2xθ

)
)

(2.6.6)

× exp
(

−k
2
X2

t + kθXt + k2θ

∫ t

0

Xsds−
k2

2

∫ t

0

X2
sds

)

Wx|Ft .

Proof: The absolute continuity relation (2.6.6) follows from Propo-
sition 2.6.3.1. �

Example 2.6.3.3 As an exercise, we present the computation of

A = E
k,θ
x

(

exp
(

−αXt − λX2
t − β

∫ t

0

Xsds−
γ2

2

∫ t

0

X2
sds

))

,

where (α, β, θ, λ, γ) are real numbers with λ > 0. From (2.6.6)

A = exp
(
k

2
(
t+ x2 − kθ2t− 2xθ

)
)

× Wx

(

exp
(

−λ1X
2
t + α1Xt + (k2θ − β)

∫ t

0

Xsds−
γ2
1

2

∫ t

0

X2
sds

))

where λ1 = λ+ k
2 , α1 = kθ − α, γ2

1 = γ2 + k2. From

(k2θ − β)
∫ t

0

Xsds−
γ2
1

2

∫ t

0

X2
sds = −γ

2
1

2

∫ t

0

(Xs + β1)2ds+
β2

1γ
2
1

2
t
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with β1 = β−k2θ
γ2
1

and setting Zs = Xs + β1, one gets

A = exp
(
k

2
(
t+ x2 − kθ2t− 2xθ

)
+
β2

1γ
2
1

2
t

)

× Wx+β1

(

exp
(

−λ1(Zt − β1)2 + α1(Zt − β1) −
γ2
1

2

∫ t

0

Z2
sds

))

.

Now,

−λ1(Zt − β1)2 + α1(Zt − β1) = −λ1Z
2
t + (α1 + 2λ1β1)Zt − β1(λ1β1 + α1) .

Hence,

Wx+β1

(

exp
(

−λ1(Zt − β1)2 + α1(Zt − β1) −
γ2
1

2

∫ t

0

Z2
sds

))

= e−β1(λ1β1+α1)Wx+β1

(

exp
(

−λ1Z
2
t + (α1 + 2λ1β1)Zt −

γ2
1

2

∫ t

0

Z2
sds

))

.

From (2.6.6) again

Wx+β1

(

exp
(

−λ1Z
2
t + (α1 + 2λ1β1)Zt −

γ2
1

2

∫ t

0

Z2
sds

))

= exp
(
−γ1

2
(
t+ (x+ β1)2

))

× E
γ1,0
x+β1

(
exp
(
(−λ1 +

γ1

2
)X2

t + (α1 + 2λ1β1)Xt

))
.

Finally

A = eC E
γ1,0
x+β1

(
exp
(
(−λ1 +

γ1

2
)X2

t + (α1 + 2λ1β1)Xt

))

where

C =
k

2
(
t+ x2 − kθ2t− 2xθ

)
+
β2

1γ
2
1

2
t− β1(λ1β1 + α1) −

γ1

2
(
t+ (x+ β1)2

)
.

One can then finish the computation since, under P
γ1,0
x+β1

the r.v. Xt is a

Gaussian variable with mean m = (x+β1)e−γ1t and variance σ2

2γ1
(1− e−2γ1t).

Furthermore, from Exercise 1.1.12.3, if U law= N (m,σ2)

E(exp{λU2 + μU}) =
Σ

σ
exp
(
Σ2

2
(μ+

m

σ2
)2 − m2

2σ2

)

.

with Σ2 =
σ2

1 − 2λσ2
, for 2λσ2 < 1.
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2.6.4 Square of a Generalized Vasicek Process

Let r be a GV process with dynamics

drt = k(θ(t) − rt)dt+ dWt

and ρt = r2t . Hence

dρt = (1 − 2kρt + 2kθ(t)
√
ρt)dt+ 2

√
ρtdWt .

By construction, the process ρ takes positive values, and can represent a
spot interest rate. Then, the value of the corresponding zero-coupon bond can
be computed as an application of the absolute continuity relationship between
a GV and a BM, as we present now.

Proposition 2.6.4.1 Let

dρt = (1 − 2kρt + 2kθ(t)
√
ρt)dt+ 2

√
ρtdWt, ρ0 = x2.

Then

E

[

exp

(

−
∫ T

0

ρsds

)]

= A(T ) exp

(
k

2
(T + x2 − k

∫ T

0

θ2(s)ds− 2θ(0)x)

)

where

A(T ) = exp

(
1
2

(∫ T

0

f(s)ds+
∫ T

0

g2(s)ds

))

.

Here,

f(s) = K
αeKs + e−Ks

αeKs − e−Ks
,

g(s) = k
θ(T )v(T ) −

∫ T
s

(θ′(u) − kθ(u))v(u)du
v(s)

with v(s) = αeKs − e−Ks , K =
√
k2 + 2 and α =

k −K

k +K
e−2TK .

Proof: From Proposition 2.6.3.1,

E

[

exp

(

−
∫ T

0

ρsds

)]

= A(T ) exp

(
k

2
(T + x2 − k

∫ T

0

θ2(s)ds− 2θ(0)x)

)

where A(T ) is equal to the expectation, under W, of

exp

(

kθ(T )XT − k

2
X2

T +
∫ T

0

(k2θ(s) − kθ′(s))Xsds−
k2 + 2

2

∫ T

0

X2
sds

)

.
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The computation of A(T ) follows from Example 1.5.7.1 which requires the
solution of

f2(s) + f ′(s) = k2 + 2, s ≤ T,

f(s)g(s) + g′(s) = kθ′(s) − k2θ(s),

with the terminal condition at time T

f(T ) = −k, g(T ) = kθ(T ) .

Let us set K2 = k2 + 2. The solution follows by solving the classical Ricatti
equation f2(s) + f ′(s) = K2 whose solution is

f(s) = K
αeKs + e−Ks

αeKs − e−Ks
.

The terminal condition yields α =
k −K

k +K
e−2TK . A straightforward computa-

tion leads to the expression of g given in the proposition. �

2.6.5 Powers of δ-Dimensional Radial OU Processes, Alias CIR
Processes

In the case θ = 0, the process

dρt = (1 − 2kρt)dt+ 2
√
ρtdWt

is called a one-dimensional square OU process which is justified by the
computation at the beginning of this subsection. Let U be a δ-dimensional
OU process, i.e., the solution of

Ut = u+Bt − k

∫ t

0

Usds

where B is a δ-dimensional Brownian motion and k a real number, and set
Vt = ‖Ut‖2. From Itô’s formula,

dVt = (δ − 2kVt)dt+ 2
√
VtdWt

where W is a one-dimensional Brownian motion. The process V is called
either a squared δ-dimensional radial Ornstein-Uhlenbeck process or more
commonly in mathematical finance a Cox-Ingersoll-Ross (CIR) process with
dimension δ and linear coefficient k, and, for δ ≥ 2, does not reach 0 (see �
Subsection 6.3.1).
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Let γ = 0 be a real number, and Zt = V γ
t . Then,

Zt = z + 2γ
∫ t

0

Z1−1/(2γ)
s dWs − 2kγ

∫ t

0

Zsds+ γ(2(γ − 1) + δ)
∫ t

0

Z1−1/γ
s ds .

In the particular case γ = 1 − δ/2,

Zt = z + 2γ
∫ t

0

Z1−1/(2γ)
s dWs − 2kγ

∫ t

0

Zsds ,

or in differential notation

dZt = Zt(μdt+ σZβ
t dWt) ,

with
μ = −2kγ, β = −1/(2γ) = 1/(δ − 2), σ = 2γ .

The process Z is called a CEV process.

Comment 2.6.5.1 We shall study CIR processes in more details in �
Section 6.3. See also Pitman and Yor [716, 717]. See � Section 6.4, where
squares of OU processes are of major interest in constructing CEV processes.

2.7 Valuation of European Options

In this section, we give a few applications of Itô’s lemma, changes of
probabilities and Girsanov’s theorem to the valuation of options.

2.7.1 The Garman and Kohlhagen Model for Currency Options

In this section, European currency options will be considered. It will be shown
that the Black and Scholes formula corresponds to a specific case of the
Garman and Kohlhagen [373] model in which the foreign interest rate is equal
to zero. As in the Black and Scholes model, let us assume that trading is
continuous and that the historical dynamics of the underlying (the currency)
S are given by

dSt = St(αdt+ σdBt) .

whereas the risk-neutral dynamics satisfy the Garman-Kohlhagen dynamics

dSt = St((r − δ)dt+ σdWt) . (2.7.1)

Here, (Wt, t ≥ 0) is a Q-Brownian motion and Q is the risk-neutral
probability defined by its Radon-Nikodým derivative with respect to P as

Q|Ft = exp(−θBt − 1
2θ

2t) P|Ft with θ =
α− (r − δ)

σ
. It follows that
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St = S0e
(r−δ)teσWt−σ2

2 t .

The domestic (resp. foreign) interest rate r (resp. δ) and the volatility σ
are constant. The term δ corresponds to a dividend yield for options (see
Subsection 2.3.5).

The method used in the Black and Scholes model will give us the PDE
evaluation for a European call. We give the details for the reader’s convenience.

In that setting, the PDE evaluation for a contingent claim H = h(ST )
takes the form

−∂uV (x, T − t)+(r−δ)x∂xV (x, T − t)+
1
2
σ2x2∂xxV (x, T − t) = rV (x, T − t)

(2.7.2)
with the initial condition V (x, 0) = h(x). Indeed, the process e−rtV (St, t)
is a Q-martingale, and an application of Itô’s formula leads to the previous
equality. Let us now consider the case of a European call option:

Proposition 2.7.1.1 The time-t value of the European call on an underlying
with risk-neutral dynamics (2.7.1) is CE(St, T − t). The function CE satisfies
the following PDE:

− ∂CE

∂u
(x, T − t) +

1
2
σ2x2 ∂

2CE

∂x2
(x, T − t)

+ (r − δ)x
∂CE

∂x
(x, T − t) = rCE(x, T − t) (2.7.3)

with initial condition CE(x, 0) = (x−K)+, and is given by

CE(x, u) = xe−δuN
[

d1

(
xe−δu

Ke−ru
, u

)]

−Ke−ruN
[

d2

(
xe−δu

Ke−ru
, u

)]

,

(2.7.4)

where the di’s are given in Theorem 2.3.2.1.

Proof: The evaluation PDE (2.7.3) is obtained from (2.7.2). Formula (2.7.4)
is obtained by a direct computation of EQ(e−rT (ST − K)+), or by solving
(2.7.3). �

2.7.2 Evaluation of an Exchange Option

An exchange option is an option to exchange one asset for another. In this
domain, the original reference is Margrabe [623]. The model corresponds to
an extension of the Black and Scholes model with a stochastic strike price,
(see Fischer [345]) in a risk-adjusted setting. Let us assume that under the
risk-adjusted neutral probability Q the stock prices’ (respectively, S1 and S2)
dynamics5 are given by:
5 Of course, 1 and 2 are only superscripts, not powers.
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dS1
t = S1

t ((r − ν)dt+ σ1dWt) , dS2
t = S2

t ((r − δ)dt+ σ2dBt)

where r is the risk-free interest rate and ν and δ are, respectively, the stock
1 and 2 dividend yields and σ1 and σ2 are the stock prices’ volatilities. The
correlation coefficient between the two Brownian motions W and B is denoted
by ρ. It is assumed that all of these parameters are constant. The payoff at
maturity of the exchange call option is (S1

T − S2
T )+. The option price is

therefore given by:

CEX(S1
0 , S

2
0 , T ) = EQ(e−rT (S1

T − S2
T )+) = EQ(e−rTS2

T (XT − 1)+)
= S2

0EQ∗(e−δT (XT − 1)+) . (2.7.5)

Here, Xt = S1
t /S

2
t , and the probability measure Q

∗ is defined by its Radon-
Nikodým derivative with respect to Q

dQ∗

dQ

∣
∣
Ft

= e−(r−δ)tS
2
t

S2
0

= exp
(

σ2Bt −
σ2

2

2
t

)

. (2.7.6)

Note that this change of probability is associated with a change of numéraire,
the new numéraire being the asset S2. Using Itô’s lemma, the dynamics of X
are

dXt = Xt[(δ − ν + σ2
2 − ρσ1σ2)dt+ σ1dWt − σ2dBt] .

Girsanov’s theorem for correlated Brownian motions (see Subsection 1.7.4)
implies that the processes W̃ and B̃ defined as

W̃t = Wt − ρσ2t, B̃t = Bt − σ2t ,

are Q
∗-Brownian motions with correlation ρ. Hence, the dynamics of X are

dXt = Xt[(δ − ν)dt+ σ1dW̃t − σ2dB̃t] = Xt[(δ − ν)dt+ σdZt]

where Z is a Q
∗-Brownian motion defined as

dZt = σ−1(σ1dW̃t − σ2dB̃t)

and where
σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2 .

As shown in equation (2.7.5), δ plays the rôle of a discount rate. Therefore,
by relying on the Garman and Kohlhagen formula (2.7.4), the exchange option
price is given by:

CEX(S1
0 , S

2
0 , T ) = S1

0e
−νTN (b1) − S2

0e
−δTN (b2)

with

b1 =
ln(S1

0/S
2
0) + (δ − ν)T
Σ
√
T

+
1
2
Σ
√
T , b2 = b1 −Σ

√
T .
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This value is independent of the domestic risk-free rate r. Indeed, since the
second asset is the numéraire, its dividend yield, δ, plays the rôle of the
domestic risk-free rate. The first asset dividend yield ν, plays the rôle of
the foreign interest rate in the foreign currency option model developed by
Garman and Kohlhagen [373]. When the second asset plays the rôle of the
numéraire, in the risk-neutral economy the risk-adjusted trend of the process
(S1

t /S
2
t , t ≥ 0) is the dividend yield differential δ − ν.

2.7.3 Quanto Options

In the context of the international diversification of portfolios, quanto
options can be useful. Indeed with these options, the problems of currency
risk and stock market movements can be managed simultaneously. Using
the model established in El Karoui and Cherif [298], the valuation of these
products can be obtained.

Let us assume that under the domestic risk-neutral probability Q, the
dynamics of the stock price S, in foreign currency units and of the currency
price X, in domestic units, are respectively given by:

dSt = St ((δ − ν − ρσ1σ2)dt+ σ1dWt) (2.7.7)
dXt = Xt ((r − δ)dt+ σ2dBt)

where r, δ and ν are respectively the domestic, foreign risk-free interest
rate and the dividend yield and σ1 and σ2 are, respectively, the stock price
and currency volatilities. Again, the correlation coefficient between the two
Brownian motions is denoted by ρ. It is assumed that the parameters are
constant.

The trend in equation (2.7.7) is equal to μ1 = δ − ν − ρσ1σ2 because, in
the domestic risk-neutral economy, we want the trend of the stock price (in
domestic units: XS) dynamics to be equal to r − ν.

We now present four types of quanto options:

Foreign Stock Option with a Strike in a Foreign Currency

In this case, the payoff at maturity is XT (ST − K)+, i.e., the value in the
domestic currency of the standard Black and Scholes payoff in the foreign
currency (ST −K)+. The call price is therefore given by:

Cqt1(S0, X0, T ) := EQ(e−rT (XTST −KXT )+) .

This quanto option is an exchange option, an option to exchange at
maturity T , an asset of value XTST for another of value KXT . By relying on
the previous Subsection 2.7.2

Cqt1(S0, X0, T ) = X0EQ∗(e−δT (ST −K)+)
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where the probability measure Q
∗ is defined by its Radon-Nikodým derivative

with respect to Q, in equation (2.7.6).
Cameron-Martin’s theorem implies that the two processes (Bt − σ2t, t≥ 0)

and (Wt − ρσ2t, t ≥ 0) are Q
∗ -Brownian motions. Now, by relying on

equation (2.7.7)

dSt = St ((δ − ν)dt+ σ1d(Wt − ρσ2t)) .

Therefore, under the Q
∗ measure, the trend of the process (St, t ≥ 0) is equal

to δ − ν and the volatility of this process is σ1. Therefore, using the Garman
and Kohlhagen formula (2.7.4), the exchange option price is given by

Cqt1(S0, X0, T ) = X0(S0e
−νTN (b1) −Ke−δTN (b2))

with

b1 =
ln(S0/K) + (δ − ν)T

σ1

√
T

+
1
2
σ1

√
T , b2 = b1 − σ1

√
T .

This price could also be obtained by a straightforward arbitrage argument.
If a stock call option (with payoff (ST − K)+) is bought in the domestic
country, its payoff at maturity is the quanto payoff XT (ST −K)+and its price
at time zero is known. It is the Garman and Kohlhagen price (in the foreign
risk-neutral economy where the trend is δ− ν and the positive dividend yield
is ν), times the exchange rate at time zero.

Foreign Stock Option with a Strike in the Domestic Currency

In this case, the payoff at maturity is (XTST −K)+. The call price is therefore
given by

Cqt2(S0, X0, T ) := EQ(e−rT (XTST −K)+) .

This quanto option is a standard European option, with a new underlying
process XS, with volatility given by

σXS =
√
σ2

1 + σ2
2 + 2ρσ1σ2

and trend equal to r − ν in the risk-neutral domestic economy. The risk-
free discount rate and the dividend rate are respectively r and ν. Its price is
therefore given by

Cqt2(S0, X0, T ) = X0S0e
−νTN (b1) −Ke−rTN (b2)

with

b1 =
ln(X0S0/K) + (r − ν)T

σXS

√
T

+
1
2
σXS

√
T , b2 = b1 − σ1

√
T .
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Quanto Option with a Given Exchange Rate

In this case, the payoff at maturity is X̄(ST−K)+, where X̄ is a given exchange
rate (X̄ is fixed at time zero). The call price is therefore given by:

Cqt3(S0, X0, T ) := EQ(e−rT X̄(ST −K)+)

i.e.,
Cqt3(S0, X0, T ) = X̄e−(r−δ)T

EQ(e−δT (ST −K)+) .

We obtain the expectation, in the risk-neutral domestic economy, of the
standard foreign stock option payoff discounted with the foreign risk-free
interest rate. Now, under the domestic risk-neutral probability Q, the foreign
asset trend is given by δ − ν − ρσ1σ2 (see equation (2.7.7)).

Therefore, the price of this quanto option is given by

Cqt3(S0, X0, T ) = X̄e−(r−δ)T
[
S0e

−(ν+ρσ1σ2)TN (b1) −Ke−δTN (b2)
]

with

b1 =
ln(S0/K) + (δ − ν − ρσ1σ2)T

σ1

√
T

+
1
2
σ1

√
T , b2 = b1 − σ1

√
T .

Foreign Currency Quanto Option

In this case, the payoff at maturity is ST (XT −K)+. The call price is therefore
given by

Cqt4(S0, X0, T ) := EQ(e−rTST (XT −K)+) .

Now, the price can be obtained by relying on the first quanto option. Indeed,
the stock price now plays the rôle of the currency price and vice-versa.
Therefore, μ1 and σ1 can be used respectively instead of r − δ and σ2, and
vice versa. Thus

Cqt4(S0, X0, T ) = S0(X0e
(r−δ+ρσ1σ2−(r−μ1))TN (b1) −Ke−(r−μ1)TN (b2))

or, in a closed form

Cqt4(S0, X0, T ) = S0(X0e
−νTN (b1) −Ke−(r−δ+ν+ρσ1σ2)T N (b2))

with

b1 =
ln(X0/K) + (r − δ + ρσ1σ2)T

σ2

√
T

+
1
2
σ2

√
T , b2 = b1 − σ2

√
T .

Indeed, r− δ+ ρσ1σ2 is the trend of the currency price under the probability
measure Q

∗, defined by its Radon-Nikodým derivative with respect to Q as

Q
∗|Ft = exp

(

σ1Wt −
1
2
σ2

1t

)

Q|Ft .
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Hitting Times: A Mix of Mathematics
and Finance

In this chapter, a Brownian motion (Wt, t ≥ 0) starting from 0 is given on a
probability space (Ω,F ,P), and F = (Ft, t ≥ 0) is its natural filtration. As
before, the function N (x) = 1√

2π

∫ x
−∞ e−u2/2du is the cumulative function of a

standard Gaussian law N (0, 1). We establish well known results on first hitting
times of levels for BM, BM with drift and geometric Brownian motion, and
we study barrier and lookback options. However, we emphasize that the main
results on barrier option valuation are obtained below without any knowledge
of hitting time laws but using only the strong Markov property. In the last part
of the chapter, we present applications to the structural approach of default
risk and real options theory and we give a short presentation of American
options.

For a continuous path process X, we denote by Ta(X) (or, if there is no
ambiguity, Ta) the first hitting time of the level a for the process X defined
as

Ta(X) = inf{t ≥ 0 : Xt = a} .

The first time when X is above (resp. below) the level a is

T+
a = inf{t ≥ 0 : Xt ≥ a}, resp. T−

a = inf{t ≥ 0 : Xt ≤ a} .

For X0 = x and a > x, we have T+
a = Ta, and T−

a = 0 whereas for a < x, we
have T−

a = Ta, and T+
a = 0. In what follows, we shall write hitting time for

first hitting time. We denote by MX
t (resp. mX

t ) the running maximum (resp.
minimum)

MX
t = sup

s≤t
Xs, m

X
t = inf

s≤t
Xs .

In case X is a BM, we shall frequently omit the superscript and denote by
Mt the running maximum of the BM. In this chapter, no martingale will be
denoted Mt!
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3.1 Hitting Times and the Law of the Maximum for
Brownian Motion

We first study the law of the pair of random variables (Wt,Mt) where M is
the maximum process of the Brownian motion W , i.e., Mt : = sups≤tWs. In
a similar way, we define the minimum process m as mt : = infs≤tWs. Let us
remark that the process M is an increasing process, with positive values, and
that M law= (−m). Then, we deduce the law of the hitting time of a given level
by the Brownian motion.

3.1.1 The Law of the Pair of Random Variables (Wt, Mt)

Let us prove the reflection principle.

Proposition 3.1.1.1 (Reflection principle.) For y ≥ 0, x ≤ y, one has:

P(Wt ≤ x ,Mt ≥ y) = P(Wt ≥ 2y − x) . (3.1.1)

Proof: Let T+
y = inf{t : Wt ≥ y} be the first time that the BM W is

greater than y. This is an F-stopping time and {T+
y ≤ t} = {Mt ≥ y} for

y ≥ 0. Furthermore, for y ≥ 0 and by relying on the continuity of Brownian
motion paths, T+

y = Ty and WTy = y. Therefore

P(Wt ≤ x ,Mt ≥ y) = P(Wt ≤ x , Ty ≤ t) = P(Wt −WTy ≤ x− y , Ty ≤ t) .

For the sake of simplicity, we denote EP(1A|Ty) = P(A|Ty). By relying on the
strong Markov property, we obtain

P(Wt −WTy ≤ x− y , Ty ≤ t) = E(1{Ty≤t} P(Wt −WTy ≤ x− y |Ty))
= E(1{Ty≤t} Φ(Ty))

with Φ(u) = P(W̃t−u ≤ x − y ) where (W̃u : = WTy+u − WTy , u ≥ 0) is a
Brownian motion independent of (Wt, t ≤ Ty). The process W̃ has the same
law as −W̃ . Therefore Φ(u) = P(W̃t−u ≥ y− x ) and by proceeding backward

E(1{Ty≤t} Φ(Ty)) = E[1{Ty≤t}P(Wt −WTy ≥ y − x |Ty)]
= P(Wt ≥ 2y − x , Ty ≤ t) .

Hence,
P(Wt ≤ x,Mt ≥ y) = P(Wt ≥ 2y − x,Mt ≥ y) . (3.1.2)

The right-hand side of (3.1.2) is equal to P(Wt ≥ 2y − x) since, from x ≤ y
we have 2y − x ≥ y which implies that, on the set {Wt ≥ 2y − x}, one has
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Mt ≥ y (i.e., the hitting time Ty is smaller than t). �

From the symmetry of the normal law, it follows that

P(Wt ≤ x,Mt ≥ y) = P(Wt ≥ 2y − x) = N
(
x− 2y√

t

)

.

We now give the joint law of the pair of r.v’s (Wt,Mt) for fixed t.

Theorem 3.1.1.2 Let W be a BM starting from 0 and Mt = sup
s≤t

Ws. Then,

for y ≥ 0, x ≤ y, P(Wt ≤ x,Mt ≤ y) = N
(
x√
t

)

−N
(
x− 2y√

t

)

(3.1.3)

for y ≥ 0, x ≥ y, P(Wt ≤ x,Mt ≤ y) = P(Mt ≤ y)

= N
(
y√
t

)

−N
(
−y√
t

)

, (3.1.4)

for y ≤ 0, P(Wt ≤ x,Mt ≤ y) = 0 .

The distribution of the pair of r.v’s (Wt,Mt) is

P(Wt ∈ dx,Mt ∈ dy) = 1{y≥0}1{x≤y}
2(2y − x)√

2πt3
exp
(

− (2y − x)2

2t

)

dx dy

(3.1.5)

Proof: From the reflection principle it follows that, for y ≥ 0, x ≤ y,

P(Wt ≤ x ,Mt ≤ y) = P(Wt ≤ x) − P(Wt ≤ x ,Mt ≥ y)
= P(Wt ≤ x) − P(Wt ≥ 2y − x) ,

hence the equality (3.1.3) is obtained.
For 0 ≤ y ≤ x, since Mt ≥Wt we get:

P(Wt ≤ x,Mt ≤ y) = P(Wt ≤ y,Mt ≤ y) = P(Mt ≤ y) .

Furthermore, by setting x = y in (3.1.3)

P(Wt ≤ y,Mt ≤ y) = N
(
y√
t

)

−N
(
−y√
t

)

,

hence the equality (3.1.5) is obtained. Finally, for y ≤ 0,

P(Wt ≤ x,Mt ≤ y) = 0

since Mt ≥M0 = 0. �
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Note that we have also proved that the process B defined for y > 0 as

Bt = Wt1{t<Ty} + (2y −Wt)1{Ty≤t}

is a Brownian motion.

Comment 3.1.1.3 It is remarkable that Bachelier [39, 40] obtained the
reflection principle for Brownian motion, extending the result of Désiré André
for random walks. See Taqqu [819] for a presentation of Bachelier’s work.

Remark 3.1.1.4 Let T0 = inf{t > 0 : Wt = 0}. Then P(T0 = 0) = 1.

Exercise 3.1.1.5 We have proved that

P(Wt ∈ dx,Mt ∈ dy) = 1{y≥0}1{x≤y}
1√
t
g(
x√
t
,
y√
t
) dx dy

where

g(x, y) =
2(2y − x)√

2π
exp
(

− (2y − x)2

2

)

.

Prove that (Mt,Wt, t ≥ 0) is a Markov process and give its semi-group in
terms of g. �

3.1.2 Hitting Times Process

Proposition 3.1.2.1 Let W be a Brownian motion and, for any y > 0, define
Ty = inf{t : Wt = y}. The increasing process (Ty, y ≥ 0) has independent
and stationary increments. It enjoys the scaling property

(Tλy, y ≥ 0) law= (λ2Ty, y ≥ 0) .

Proof: The increasing property follows from the continuity of paths of the
Brownian motion. For z > y,

Tz − Ty = inf{t ≥ 0 : WTy+t −WTy = z − y} .

Hence, the independence and the stationarity properties follow from the strong
Markov property. From the scaling property of BM, for λ > 0,

Tλy = inf
{

t :
1
λ
Wt = y

}
law= λ2 inf{t : Ŵt = y}

where Ŵ is the BM defined by Ŵt = 1
λWλ2t. �

The process (Ty, y ≥ 0) is a particular stable subordinator (with index 1/2)
(see � Section 11.6). Note that this process is not continuous but admits a
right-continuous left-limited version. The non-continuity property may seem
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surprising at first, but can easily be understood by looking at the following
case. Let W be a BM and T1 = inf{t : Wt = 1}. Define two random times g
and θ as

g = sup{t ≤ T1 : Wt = 0}, θ = inf
{

t ≤ g : Wt = sup
s≤g

Ws

}

and Σ = Wθ. Obviously

θ = TΣ < g < TΣ+ : = inf{t : Wt > Σ} .

See Karatzas and Shreve [513] Chapter 6, Theorem 2.1. for more comments
and � Example 11.2.3.5 for a different explanation.
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Fig. 3.1 Non continuity of Ty

3.1.3 Law of the Maximum of a Brownian Motion over [0, t]

Proposition 3.1.3.1 For fixed t, the random variable Mt has the same law
as |Wt|.

Proof: This follows from the equality (3.1.4) which states that

P(Mt ≤ y) = P(Wt ≤ y) − P(Wt ≤ −y) .

�
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Comments 3.1.3.2 (a) Obviously, the process M does not have the same
law as the process |W |. Indeed, the processM is an increasing process, whereas
this is not the case for the process |W |. Nevertheless, there are some further
equalities in law, e.g.,M−W law= |W |, this identity in law taking place between
processes (see Lévy’s equivalence Theorem 4.1.7.2 in � Subsection 4.1.7).

(b) Seshadri’s result states that the two random variables Mt(Mt −Wt)
and Wt are independent and that Mt(Mt −Wt) has an exponential law (see
Yor [867, 869]).

Exercise 3.1.3.3 Prove that as a consequence of the reflection principle
(formula (3.1.1)), for any fixed t:
(i) 2Mt − Wt is distributed as ‖B(3)

t ‖ where B(3) is a 3-dimensional BM,
starting from 0,
(ii) given 2Mt −Wt = r, both Mt and Mt −Wt are uniformly distributed on
[0, r].
This result is a small part of Pitman’s theorem (see � Comments 4.1.7.3 and
� Section 5.7). �

3.1.4 Laws of Hitting Times

For x > 0, the law of the hitting time Tx of the level x is now easily deduced
from

P(Tx ≤ t) = P(x ≤Mt) = P(x ≤ |Wt|)

= P(x ≤ |G|
√
t) = P

(
x2

G2
≤ t

)

, (3.1.6)

where, as usual, G stands for a Gaussian random variable, with zero
expectation and unit variance. Hence,

Tx
law=

x2

G2
(3.1.7)

and the density of the r.v. Tx is given by:

P(Tx ∈ dt) =
x√
2πt3

exp
(

−x
2

2t

)

1{t≥0} dt .

For x < 0, we have, using the symmetry of the law of BM

Tx = inf{t : Wt = x} = inf{t : −Wt = −x} law= T−x

and it follows that, for any x = 0,
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P(Tx ∈ dt) =
|x|√
2πt3

exp
(

−x
2

2t

)

1{t≥0} dt . (3.1.8)

In particular, for x = 0, P(Tx < ∞) = 1 and E(Tx) = ∞. More precisely,
E((Tx)α) <∞ if and only if α < 1/2, which is immediate from (3.1.7).

Remark 3.1.4.1 Note that, for x > 0, from the explicit form of the density
of Tx given in (3.1.8), we have

tP(Tx ∈ dt) = xP(Wt ∈ dx) .

This relation, known as Kendall’s identity (see Borovkov and Burq [110]) will
be generalized in � Subsection 11.5.3.

Exercise 3.1.4.2 Prove that, for 0 ≤ a < b,

P(Ws = 0,∀t ∈ [a, b]) =
2
π

arcsin
√
a

b
.

Hint: From elementary properties of Brownian motion, we have

P(Ws = 0,∀s ∈ [a, b]) = P(∀s ∈ [a, b], Ws −Wa = −Wa)

= P(∀s ∈ [a, b], Ws −Wa = Wa) = P(T̂Wa > b− a) ,

where T̂ is associated with the BM (Ŵt = Wt+a − Wa, t ≥ 0). Using the
scaling property, we compute the right-hand side of this equality

P(Ws = 0,∀s ∈ [a, b]) = P(aW 2
1 T̂1 > b− a) = P

(
G2

Ĝ2
>
b

a
− 1
)

= P

(
1

1 + C2
<
a

b

)

=
2
π

arcsin
(√

a

b

)

,

where G and Ĝ are two independent standard Gaussian variables and C a
standard Cauchy variable (see � A.4.2 for the required properties of Gaussian
variables). �

Exercise 3.1.4.3 Prove that σ(Ms −Ws, s ≤ t) = σ(Ws, s ≤ t).
Hint: This equality follows from

∫ t
0

1{Ms−Ws=0}d(Ms −Ws) = Mt. Use the
fact that dMs is carried by {s : Ms = Bs}. �

Exercise 3.1.4.4 The right-hand side of formula (3.1.5) reads, on the set
y ≥ 0, y − x ≥ 0,

P(Ty−x ∈ dt)
dt

dxdy =
2y − x

t
pt(2y − x)dxdy

Check simply that this probability has total mass equal to 1! �
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3.1.5 Law of the Infimum

The law of the infimum of a Brownian motion may be obtained by relying on
the same procedure as the one used for the maximum. It can also be deduced
by observing that

mt : = inf
s≤t

Ws = − sup
s≤t

(−Ws) = − sup
s≤t

(Bs)

where B = −W is a Brownian motion. Hence

for y ≤ 0, x ≥ y P(Wt ≥ x,mt ≥ y) = N
(
−x√
t

)

−N
(

2y − x√
t

)

,

for y ≤ 0, x ≤ y P(Wt ≥ x,mt ≥ y) = N
(
−y√
t

)

−N
(
y√
t

)

= 1 − 2N
(
y√
t

)

,

for y ≥ 0 P(Wt ≥ x,mt ≥ y) = 0 .

In particular, for y ≤ 0, the second equality reduces to

P(mt ≥ y) = N
(
−y√
t

)

−N
(
y√
t

)

.

If the Brownian motion W starts from z at time 0 and if T0 is the first
hitting time of 0, i.e., T0 = inf{t : Wt = 0}, then, for z > 0, x > 0, we obtain

Pz(Wt ∈ dx, T0 ≥ t) = P0(Wt+z ∈ dx, T−z ≥ t) = P0(Wt+z ∈ dx,mt ≥ −z) .

The right-hand side of this equality can be obtained by differentiating w.r.t.
x the following equality, valid for x ≥ 0, z ≥ 0 (hence x− z ≥ −z,−z ≤ 0)

P(Wt ≥ x− z,mt ≥ −z) = N
(

−x− z√
t

)

−N
(

−x+ z√
t

)

.

Thus, we obtain, using the notation (1.4.2)

Pz(Wt ∈ dx, T0 ≥ t) =
1{x≥0}√

2πt

[

exp
(

− (z − x)2

2t

)

− exp
(

− (z + x)2

2t

)]

dx ,

= 1{x≥0}(pt(z − x) − pt(z + x))dx .

(3.1.9)
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3.1.6 Laplace Transforms of Hitting Times

The law of first hitting time of a level y is characterized by its Laplace
transforms, which is given in the next proposition.

Proposition 3.1.6.1 Let Ty be the first hitting time of y ∈ R for a standard
Brownian motion. Then, for λ > 0

E

[

exp
(

−λ
2

2
Ty

)]

= exp(−|y|λ) .

Proof: Recall that, for any λ ∈ R, the process (exp(λWt − 1
2λ

2t), t ≥ 0) is a
martingale. Now, for y ≥ 0, λ ≥ 0 the martingale

(exp(λWt∧Ty − 1
2
λ2(t ∧ Ty)), t ≥ 0)

is bounded by eλy, hence it is u.i.. Using P(Ty < ∞) = 1, Doob’s optional
sampling theorem yields

E

[

exp
(

λWTy − 1
2
λ2Ty

)]

= 1 .

Since WTy = y, we obtain the Laplace transform of Ty. The case where y < 0

follows since W law= −W . �

Warning 3.1.6.2 In order to apply Doob’s optional sampling theorem, we
had to check carefully that the martingale exp(λWt∧Ty − 1

2λ
2(t ∧ Ty)) is

uniformly integrable. In the case λ > 0 and y < 0, a wrong use of this
theorem would lead to the equality between 1 and

E[exp(λWTy − 1
2
λ2Ty)] = eλyE

[

exp
(

−1
2
λ2Ty

)]

,

that is the two quantities E[exp(−1
2λ

2Ty)] and exp(−yλ) would be the same.
This is obviously false since the quantity E[exp(−1

2λ
2Ty)] is smaller than 1

whereas exp(−yλ) is strictly greater than 1.

Remark 3.1.6.3 From the equality (3.1.8) and Proposition 3.1.6.1, we check
that for λ > 0

exp(−|y|λ) =
∫ ∞

0

dt
|y|√
2πt3

exp
(

−y
2

2t

)

exp
(

−λ
2t

2

)

. (3.1.10)

This equality may be directly obtained, in the case y > 0, by checking that
the function

H(μ) =
∫ ∞

0

dt
1√
t3
e−μt exp

(

−1
t

)
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satisfies μH ′′ + 1
2H

′ −H = 0. A change of function G(
√
μ) = H(μ) leads to

1
4G

′′ −G = 0, and the form of H follows. Let us remark that, for y > 0, one
can write the equality (3.1.10) in the form

1 =
∫ ∞

0

dt
y√
2πt3

exp

(

−1
2

(
y√
t
− λ

√
t

)2
)

. (3.1.11)

Note that the quantity

y√
2πt3

exp

(

−1
2

(
y√
t
− λ

√
t

)2
)

in the right-hand member is the density of the hitting time of the level y by a
drifted Brownian motion (see � formula (3.2.3)). Another proof relies on the
knowledge of the resolvent of the Brownian motion: the result can be obtained
via a differentiation w.r.t. y of the equality obtained in Exercise 1.4.1.7

∫ ∞

0

e−λ2t/2pt(0, y)dt =
∫ ∞

0

e−λ2t/2 1√
2πt

e−
y2

2t dt =
1
λ
e−|y|λ

Comment 3.1.6.4 We refer the reader to Lévy’s equivalence � Theorem
4.1.7.2 which allows translation of all preceding results to the running
maximum involving results on the Brownian motion local time.

Exercise 3.1.6.5 Let T ∗
a = inf{t ≥ 0 : |Wt| = a}. Using the fact that the

process (e−λ2t/2 cosh(λWt), t ≥ 0) is a martingale, prove that

E(exp(−λ2T ∗
a /2)) = [cosh(aλ)]−1 .

See � Subsection 3.5.1 for the density of T ∗
a . �

Exercise 3.1.6.6 Let τ = inf{t : Mt −Wt > a}. Prove that Mτ follows the
exponential law with parameter a−1.
Hint: The exponential law stems from

P(Mτ > x+ y|Mτ > y) = P(τ > Tx+y|τ > Ty) = P(Mτ > x) .

The value of the mean ofMτ is obtained by passing to the limit in the equality
E(Mτ∧n) = E(Mτ∧n −Wτ∧n). �

Exercise 3.1.6.7 Let W be a Brownian motion, F its natural filtration and
Mt = sups≤tWs. Prove that, for t < 1,

E(f(M1)|Ft) = F (1 − t,Wt,Mt)

with

F (s, a, b) =

√
2
πs

(

f(b)
∫ b−a

0

e−u2/(2s)du+
∫ ∞

b

f(u) exp
(

− (u− a)2

2s

)

du

)

.
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Hint: Note that

sup
s≤1

Ws = sup
s≤t

Ws ∨ sup
t≤s≤1

Ws = sup
s≤t

Ws ∨ (M̂1−t +Wt)

where M̂s = supu≤s Ŵu for Ŵu = Wu+t −Wt.
Another method consists in an application of � Theorem 4.1.7.8. Apply

Doob’s Theorem to the martingale h(Mt)(Mt −Wt) +
∫∞
Mt
duh(u). �

Exercise 3.1.6.8 Let a and σ be continuous deterministic functions, B a BM
and X the solution of dXt = a(t)Xtdt+ σ(t)dBt, X0 = x.

Let T0 = inf{t ≥ 0, Xt ≤ 0}. Prove that, for x > 0, y > 0,

P(Xt ≥ y, T0 ≤ t) = P(Xt ≤ −y) .

Hint: Use the fact that Xte
−At = W

(x)
α(t) where At =

∫ t
0
a(s)ds and

W (x) is a Brownian motion starting from x. Here α denotes the increasing
function α(t) =

∫ t
0
e−2A(s)σ2(s)ds. Then, use the reflection principle to

obtain P(W (x)
u ≥ z, T0 ≤ u) = P(W (x)

u ≤ −z). We refer the reader to �
Theorem 4.1.7.2 which allows computations relative to the maximum M to
be couched in terms of Brownian local time.

�

Exercise 3.1.6.9 Let f be a (bounded) function. Prove that

lim
t→∞

√
tE(f(Mt)|Fs) = c(f(Ms)(Ms −Ws) + F (Ms))

where c is a constant and F (x) =
∫∞
x
duf(u).

Hint: WriteMt = Ms∨(Ws+M̂t−s) where M̂ is the supremum of a Brownian
motion Ŵ , independent of Wu, u ≤ s. �

3.2 Hitting Times for a Drifted Brownian Motion

We now study the first hitting times for the process Xt = νt + Wt, where
W is a Brownian motion and ν a constant. Let MX

t = sup (Xs, s ≤ t),
mX

t = inf (Xs, s ≤ t) and Ty(X) = inf{t ≥ 0 |Xt = y}. We recall that W(ν)

denotes the law of the Brownian motion with drift ν, i.e., W(ν)(Xt ∈ A) is
the probability that a Brownian motion with drift ν belongs to A at time t.

3.2.1 Joint Laws of (MX , X) and (mX , X) at Time t

Proposition 3.2.1.1 For y ≥ 0, y ≥ x

W(ν)(Xt ≤ x,MX
t ≤ y) = N

(
x− νt√

t

)

− e2νyN
(
x− 2y − νt√

t

)
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and for y ≤ 0, y ≤ x

W(ν)(Xt ≥ x,mX
t ≥ y) = N

(
−x+ νt√

t

)

− e2νyN
(
−x+ 2y + νt√

t

)

.

Proof: From Cameron-Martin’s theorem (see Proposition 1.7.5.2)

W(ν)(Xt ≤ x,MX
t ≥ y) = E

[

exp
(

νWt −
ν2

2
t

)

1{Wt ≤ x,MW
t ≥ y}

]

.

From the reflection principle (3.1.2) for y ≥ 0, x ≤ y, it holds that

P(Wt ≤ x,MW
t ≥ y) = P(x ≥ 2y −Wt,M

W
t ≥ y) ,

hence, on the set y ≥ 0, x ≤ y, one has

P(Wt ∈ dx,MW
t ∈ dy) = P(2y −Wt ∈ dx,MW

t ∈ dy) .

It follows that

E

[

exp
(

νWt −
ν2

2
t

)

1{Wt ≤ x,MW
t ≥ y}

]

= E

[

exp
(

ν(2y −Wt) −
ν2

2
t

)

1{2y −Wt ≤ x,MW
t ≥ y}

]

= e2νyE

[

exp
(

−νWt −
ν2

2
t

)

1{Wt ≥ 2y − x}

]

.

Applying Cameron-Martin’s theorem again we obtain

E

[

exp
(

−νWt −
ν2

2
t

)

1{Wt ≥ 2y − x}

]

= W(−ν)(Xt ≥ 2y − x).

It follows that for y ≥ 0, y ≥ x,

W(ν)(Xt ≤ x,MX
t ≥ y) = e2νyP(Wt ≥ 2y − x+ νt)

= e2νyN
(
−2y + x− νt√

t

)

.

Therefore, for y ≥ 0 and y ≥ x,

W(ν)(Xt ≤ x,MX
t ≤ y) = W(ν)(Xt ≤ x) − W(ν)(Xt ≤ x,MX

t ≥ y)

= N
(
x− νt√

t

)

− e2νyN
(
x− 2y − νt√

t

)

,

and for y ≤ 0, y ≤ x,
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W(ν)(Xt ≥ x,mX
t ≤ y) = P(Wt + νt ≥ x, inf

s≤t
(Ws + νs) ≤ y)

= P(−Wt − νt ≤ −x, sup
s≤t

(−Ws − νs) ≥ −y)

= P(Wt − νt ≤ −x, sup
s≤t

(Ws − νs) ≥ −y)

= e2νyN
(

2y − x+ νt√
t

)

. (3.2.1)

The result of the proposition follows. �

Corollary 3.2.1.2 Let Xt = νt+Wt and MX
t = sups≤tXs. The joint density

of the pair Xt,M
X
t is

W(ν)(Xt ∈ dx,MX
t ∈ dy) = 1x<y10<y

2(2y − x)√
2πt3

eνx−
1
2ν

2t− 1
2t (2y−x)2dxdy

Exercise 3.2.1.3 Prove that for y ≥ 0 and y ≥ x

W(ν)(Xt ≤ x,MX
t ≥ y) = e2νyP(Wt + νt ≤ x− 2y)

and that for y ≤ 0 and y ≤ x

W(ν)(Xt ≥ x,mX
t ≤ y) = e2νyP(Wt + νt ≥ x− 2y) .

�

3.2.2 Laws of Maximum, Minimum, and Hitting Times

The laws of the maximum and the minimum of a drifted Brownian motion
are deduced from the obvious equalities

W(ν)(MX
t ≤ y) = W(ν)(Xt ≤ y,MX

t ≤ y)

and W(ν)(mX
t ≥ y) = W(ν)(Xt ≥ y,mX

t ≥ y). The right-hand sides of these
equalities are computed from Proposition 3.2.1.1. In a closed form, we obtain

W(ν)(MX
t ≤ y) = N

(
y − νt√

t

)

− e2νyN
(
−y − νt√

t

)

, y ≥ 0

W(ν)(MX
t ≥ y) = N

(
−y + νt√

t

)

+ e2νyN
(
−y − νt√

t

)

, y ≥ 0

W(ν)(mX
t ≥ y) = N

(
−y + νt√

t

)

− e2νyN
(
y + νt√

t

)

, y ≤ 0

W(ν)(mX
t ≤ y) = N

(
y − νt√

t

)

+ e2νyN
(
y + νt√

t

)

, y ≤ 0 .
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For y > 0, from the equality W(ν)(Ty(X) ≥ t) = W(ν)(MX
t ≤ y), we deduce

that the law of the random variable Ty(X) is

W(ν)(Ty(X) ∈ dt) =
y√
2πt3

eνy exp
(

−1
2

(
y2

t
+ ν2t

))

1{t≥0}dt (3.2.2)

or, in a more pleasant form

W(ν)(Ty(X) ∈ dt) =
y√
2πt3

exp
(

− 1
2t

(y − νt)2
)

1{t≥0} dt . (3.2.3)

This law is the inverse Gaussian law with parameters (y, ν). (See �
Appendix A.4.4.)

Note that, for ν < 0 and y > 0, when t→ ∞ in W(ν)(Ty ≥ t), we obtain
W(ν)(Ty = ∞) = 1 − e2νy. In this case, the density of Ty under W(ν) is
defective. For ν > 0 and y > 0, we obtain W(ν)(Ty = ∞) = 1, which can also
be obtained from (3.1.11). See also Exercise 1.2.3.10.

Let us point out the simple (Cameron-Martin) absolute continuity rela-
tionship between the Brownian motion with drift ν and the Brownian motion
with drift −ν: from both formulae

{
W(ν)|Ft = exp

(
νXt − 1

2ν
2t
)
W|Ft

W(−ν)|Ft = exp
(
−νXt − 1

2ν
2t
)
W|Ft

(3.2.4)

we deduce
W(ν)|Ft = exp(2νXt)W(−ν)|Ft . (3.2.5)

(See � Exercise 3.6.6.4 for an application of this relation.) In particular, we
obtain again, using Proposition 1.7.1.4,

W(ν)(Ty <∞) = e2νy, for νy < 0 .

Exercise 3.2.2.1 Let Xt = Wt + νt and mX
t = infs≤tXs. Prove that, for

y < 0, y < x

P(mX
t ≤ y|Xt = x) = exp

(

−2y(y − x)
t

)

.

Hint: Note that, from Cameron-Martin’s theorem, the left-hand side does
not depend on ν. �

3.2.3 Laplace Transforms

From Cameron-Martin’s relationship (3.2.4),

W(ν)

(

exp
(

−λ
2

2
Ty(X)

))

= E

(

exp
(

νWTy − ν2 + λ2

2
Ty(W )

))

,
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where W(ν)(·) is the expectation under W(ν). From Proposition 3.1.6.1, the
right-hand side equals

eνyE

[

exp
(

−1
2
(ν2 + λ2)Ty(W )

)]

= eνy exp
(
−|y|

√
ν2 + λ2

)
.

Therefore

W(ν)

(

exp
[

−λ
2

2
Ty(X)

])

= eνy exp
(
−|y|

√
ν2 + λ2

)
. (3.2.6)

In particular, letting λ go to 0 in (3.2.6), in the case νy < 0

W(ν)(Ty <∞) = e2νy ,

which proves again that the probability that a Brownian motion with strictly
positive drift hits a negative level is not equal to 1. In the case νy ≥ 0,
obviously W(ν)(Ty <∞) = 1 . This is explained by the fact that (Wt + νt)/t
goes to ν when t goes to infinity, hence the drift drives the process to infinity.
In the case νy > 0, taking the derivative (w.r.t. λ2/2) of (3.2.6) for λ = 0, we
obtain W(ν)(Ty(X)) = y/ν. When νy < 0, the expectation of the stopping
time is equal to infinity.

3.2.4 Computation of W(ν)(1{Ty(X)<t} e−λTy(X))

We present the computation of W(ν)[1{Ty(X)<t} exp(−λTy(X))]. This will
be useful for finance purposes, for example while studying Boost options in
� Subsection 3.9.2 and last passage times (� Subsections 4.3.9 and 5.6.4).
Obviously, the computation could be done using the density of Ty, however
this direct method is rather tedious.

For any γ, Cameron-Martin’s theorem leads to

W(ν)(e−λTy(X)1{Ty(X)<t})

= W(γ)

(

e−λTy(X) exp
[

(ν − γ)XTy − ν2 − γ2

2
Ty

]

1{Ty(X)<t}

)

.

Choosing γ such that 2λ = γ2 − ν2, we obtain

W(ν)(e−λTy(X)1{Ty(X)<t}) = exp[(ν − γ)y]W(γ)(Ty(X) < t) .

Hence, using the results on the law of the hitting time established in
Subsection 3.2.2 for y > 0,

W(ν)(e−λTy1{Ty<t}) = e(ν−γ)yN
(
γt− y√

t

)

+ e(ν+γ)yN
(
−γt− y√

t

)

and, for y < 0
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W(ν)(e−λTy1{Ty<t}) = e(ν−γ)yN
(
−γt+ y√

t

)

+ e(ν+γ)yN
(
γt+ y√

t

)

.

Setting

H(a, y, t) : = e−ayN
(
at− y√

t

)

+ eayN
(
−at− y√

t

)

, (3.2.7)

we get

W(ν)(e−λTy1{Ty<t}) = eνyH(γ, |y|, t)

= eνyH(
√

2λ+ ν2, |y|, t) .

In particular, for ν = 0,

E(e−λTy(W )1{Ty(W )<t}) = H(
√

2λ, |y|, t) .

3.2.5 Normal Inverse Gaussian Law

Let (W,B) be a two-dimensional Brownian motion, Xt = x + νt + Wt, and
T

(μ)
y = inf{t : μt + Bt = y}. Then, the density of X

T
(μ)
y

is the Normal

Inverse Gaussian law NIG(α, ν, x, y) where α =
√
ν2 + μ2. (If needed, see

� Appendix A.4.5 for the expression of the density.) This can be checked
from

P(X
T

(μ)
y

∈ A) =
∫ ∞

0

P(Xu ∈ A)P(T (μ)
y ∈ du)

and the integral representation of the Bessel function Kν .
Another method of finding the law of X

T
(μ)
y

is to compute its characteristic
function as follows:

E

(
exp(iζ(x+ νT (μ)

y +W
T

(μ)
y

))
)

= E

(

exp(iζ(x+ νT (μ)
y ) − ζ2

2
T (μ)
y )
)

= exp(iζx)E
(

exp
[

(iζν − ζ2

2
)T (μ)

y

])

= exp(iζx)eμyE

(

exp
[

−1
2
(ζ2 + μ2 − 2iζν)T (0)

y

])

= exp(iζx)eμye−y
√

(ζ−iν)2+μ2+ν2
.

Comment 3.2.5.1 See Barndorff-Nielsen [51], Eberlein [289] and Barndorff-
Nielsen et al. [53] for applications of these laws in finance.
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3.3 Hitting Times for Geometric Brownian Motion

Let us assume that

dSt = St(μdt+ σdWt) , S0 = x > 0 (3.3.1)

with σ > 0, i.e.,

St = x exp
(
(μ− σ2/2)t+ σWt

)
= xeσXt ,

where Xt = νt+Wt, ν = (μ−σ2/2)σ−1. We denote by Ta(S) the first hitting
time of a by the process S and Tα(X) the first hitting time of α by the process
X. From

Ta(S) = inf{t ≥ 0 : St = a} = inf{t ≥ 0 : Xt =
1
σ

ln(a/x)}

we obtain Ta(S) = Tα(X) where

α =
1
σ

ln(a/x) .

When another level b is considered for the geometric Brownian motion S, we
shall denote

β =
1
σ

ln(b/x) .

Using the previous results, we give below the law of the hitting time, as well as
the law of the maximum MS

t (resp. minimum mS
t ) of S over the time interval

[0, t].

3.3.1 Laws of the Pairs (MS
t , St) and (mS

t , St)

We deduce, from the results obtained for drifted Brownian motion in
Proposition 3.2.1.1, that for a > b, a > x

Px(St ≤ b,MS
t ≤ a) = W(ν)(Xt ≤ β,MX

t ≤ α)

= N
(
β − νt√

t

)

− e2ναN
(
β − 2α− νt√

t

)

whereas, for b > a, a < x

Px(St ≥ b,mS
t ≥ a) = W(ν)(Xt ≥ β,mX

t ≥ α)

= N
(
−β + νt√

t

)

− e2ναN
(
−β + 2α+ νt√

t

)

.

Proposition 3.3.1.1 Let St = xeμt+σWt and MS
t = sups≤t Ss. The joint

density of the pair St,MS
t is
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P(St ∈ dz,MS
t ∈ dy)

=
2

σ3
√

2πt3
ln(y2/(xz))

zy
exp
(

− ln2(y2/(xz))
2σ2t

+
ρ

σ
ln(z/x) − ρ2t

2

)

dzdy

where ρ = μ/σ + σ/2.

It follows that, for a > x (or α > 0)

Px(Ta(S) < t) = W(ν)(Tα(X) < t)

= N
(
−α+ νt√

t

)

+ e2ναN
(
−νt− α√

t

)

(3.3.2)

and, for a < x (or α < 0)

Px(Ta(S) < t) = N
(
α− νt√

t

)

+ e2ναN
(
νt+ α√

t

)

. (3.3.3)

The density of the hitting time Ta(S) is obtained by differentiation, or more
directly, from (3.2.3) and the equality Ta(S) = Tα(X):

Px(Ta(S) ∈ dt) =
dt√
2πt3

α exp
(

− 1
2t

(α− νt)2
)

1{t≥0} . (3.3.4)

Exercise 3.3.1.2 Prove that, for a > S0, and t ≤ T

P(Ta(S) > T |Ft) = 1{maxs≤t Ss<a}

(

N (d1) −
(
a

St

)2(r−δ−σ2/2)σ−2

N (d2)

)

with

d1 =
1

σ
√
T − t

(

ln
(
a

St

)

−
(

r − δ − σ2

2

))

d2 =
1

σ
√
T − t

(

ln
(
St
a

)

−
(

r − δ − σ2

2

))

.

�

3.3.2 Laplace Transforms

From the equality Ta(S) = Tα(X),

Ex

(

exp
[

−λ
2

2
Ta(S)

])

= W(ν)

(

exp
[

−λ
2

2
Tα(X)

])

.

Therefore, from (3.2.6)

Ex

(

exp
[

−λ
2

2
Ta(S)

])

= exp
(
να− |α|

√
ν2 + λ2

)
. (3.3.5)
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3.3.3 Computation of E(e−λTa(S)1{Ta(S)<t})

For a > x (or α > 0) we obtain, using the results of Subsection 3.2.4 about
drifted Brownian motion, and choosing γ such that 2λ = γ2 − ν2,

Ex(e−λTa(S)1{Ta(S)<t}) = e(ν−γ)αN
(
γt− α√

t

)

+ e(γ+ν)αN
(
−γt− α√

t

)

.

In the case λ = μ, 2λ + ν2 = (μσ−1 + σ/2)2, we choose γ = −(μσ−1 + σ/2)
so that γ + ν = −σ, ν − γ = 2μ/σ. Then, for a > x

Ex(e−μTa(S)1{Ta(S)<t}) = e2μα/σN
(
γt− α√

t

)

+ e−ασN
(
−γt− α√

t

)

.

In the case where a < x, we obtain

Ex(e−μTa(S)1{Ta(S)<t}) = e2μα/σN
(
α− γt√

t

)

+ e−ασN
(
γt+ α√

t

)

.

3.4 Hitting Times in Other Cases

3.4.1 Ornstein-Uhlenbeck Processes

Proposition 3.4.1.1 Let (Xt, t ≥ 0) be an OU process defined as

dXt = −kXt dt+ dWt, X0 = x,

and T0 = inf {t ≥ 0 : Xt = 0}. For any x > 0, the density function of T0

equals

f(t) =
x√
2π

exp
(
kx2

2

)

exp
(
k

2
(t− x2 coth(kt))

) (
k

sinh(kt)

)3/2

.

Proof: We present here the proof of Alili et al. [10]. As proved in Corollary
2.6.1.2, the OU process can be written Xt = e−kt(x+

∫ t
0
eksdWs). Hence

T0 = inf{t ≥ 0 : Xt = 0} = inf{t : x+
∫ t

0

eksdWs = 0}

= inf{t : ŴA(t) = −x}

where we have written the martingale
∫ t
0
eksdWs as a Brownian motion Ŵ ,

time changed by A(t) =
∫ t
0
e2ksds (see � Section 5.1 for comments). It follows

that A(T0) = T−x(Ŵ ), hence

Px(T0 ∈ dt) = A′(t)P0(T−x(Ŵ ) ∈ dA(t))

= e2kt exp
(

− x2

2A(t)

)
|x|

√
2πA3(t)

dt .

Some easy computations, based on A(t) = sinh(kt)
k ekt lead to the result. �
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Comments 3.4.1.2 (a) We shall present a different proof in � Subsec-
tion 6.5.2. See also � Subsection 5.3.7.

(b) Ricciardi and Sato [732] obtained, for x > a, that the density of the
hitting time of a is

−kek(x2−a2)/2
∞∑

n=1

Dνn,a(x
√

2k)

D′
νn,a

(a
√

2k)
e−kνn,at

where 0 < ν1,a < · · · < νn,a < · · · are the zeros of ν → Dν(−a). Here Dν is
the parabolic cylinder function with index ν (see � Appendix A.5.4). The
expression D′

νn,a
denotes the derivative of Dν(a) with respect to ν, evaluated

at point ν = νn,a. Note that the formula in Leblanc et al. [573] for the law
of the hitting time of a is only valid for a = 0. See also the discussion in
Subsection 3.4.1.

(c) See other related results in Borodin and Salminen [109], Alili et al. [10],
Göing-Jaeschke and Yor [398, 397], Novikov [679, 678], Patie [697], Pitman
and Yor [719], Salminen [752], Salminen et al. [755] and Shepp [786].

Exercise 3.4.1.3 Prove that the Ricciardi and Sato result given in Com-
ments 3.4.1.2 (b) allows us to express the density of

τ : = inf{t : x+Wt =
√

1 + 2kt} .

Hint: The hitting time of a for an OU process is

inf{t : e−kt(x+ ŴA(t)) = a} = inf{u : x+ Ŵu = aekA
−1(u)} .

�

3.4.2 Deterministic Volatility and Nonconstant Barrier

Valuing barrier options has some interest in two different frameworks:

(i) in a Black and Scholes model with deterministic volatility and a constant
barrier

(ii) in a Black and Scholes model with a barrier which is a deterministic
function of time.

As we discuss now, these two problems are linked. Let us study the case where
the process S is a geometric BM with deterministic volatility σ(t):

dSt = St(rdt+ σ(t)dWt), S0 = x ,

and let Ta(S) be the first hitting time of a constant barrier a:

Ta(S) = inf{t : St = a} = inf
{

t : rt− 1
2

∫ t

0

σ2(s)ds+
∫ t

0

σ(s)dWs = α

}

,
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where α = ln(a/x). The process Ut =
∫ t
0
σ(s)dWs is a Gaussian martingale

and can be written as ZA(t) where Z is a BM and A(t) =
∫ t
0
σ2(s)ds (see �

Section 5.1 for a general presentation of time change). Let C be the inverse
of the function A. Then,

Ta(S) = inf{t : rt−1
2
A(t)+ZA(t) = α} = inf

{

C(u) : rC(u) − 1
2
u+ Zu = α

}

hence, the computation of the law of Ta(S) reduces to the study of the hitting
time of the non-constant boundary α−rC(u) by the drifted Brownian motion
(Zu− 1

2u, u ≥ 0). This is a difficult and as yet unsolved problem (see references
and comments below).

Comments 3.4.2.1 Deterministic Barriers and Brownian Motion.
Groeneboom [409] studies the case

T = inf{t : x+Wt = αt2} = inf{t : Xt = −x}

where Xt = Wt−αt2. He shows that the densities of the first passage times for
the process X can be written as functionals of a Bessel process of dimension
3, by means of the Cameron-Martin formula. For any x > 0 and α < 0,

Px(T ∈ dt) = 2(αc)2
∞∑

n=0

exp
(

λn/c−
2
3
α2t3

)
Ai(λn − 2αcx)

Ai′(λn)
,

where λn are the zeros on the negative half-line of the Airy function Ai, the
unique bounded solution of u′′ − xu = 0, u(0) = 1, and c = (1/2α2)1/3. (See
� Appendix A.5.5 for a closed form.) This last expression was obtained by
Salminen [753].

Breiman [122] studies the case of a square root boundary when the
stopping time T is T = inf{t : Wt =

√
α+ βt} and relates this study to

that of the first hitting times of an OU process.
The hitting time of a nonlinear boundary by a Brownian motion is studied

in a general framework in Alili’s thesis [6], Alili and Patie [9], Daniels [210],
Durbin [285], Ferebee [344], Hobson et al. [443], Jennen and Lerche [491, 492],
Kahalé [503], Lerche [581], Park and Paranjape [695], Park and Schuurmann
[696], Patie’s thesis [697], Peskir and Shiryaev [708], Robbins and Siegmund
[734], Salminen [753] and Siegmund and Yuh [798].

Deterministic Barriers and Diffusion Processes. We shall study hitting
times for Bessel processes in � Chapter 6 and for diffusions in Subsec-
tion 5.3.6. See Borodin and Salminen [109], Delong [245], Kent [519] or Pitman
and Yor [715] for more results on first hitting time distributions for diffusions.
See also Barndorff-Nielsen et al. [52], Kent [520, 521], Ricciardi et al. [732, 731],
and Yamazato [854]. We shall present in � Subsection 5.4.3 a method based
on the Fokker-Planck equation in the case of general diffusions.
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3.5 Hitting Time of a Two-sided Barrier for BM and
GBM

3.5.1 Brownian Case

For a < 0 < b let Ta, Tb be the two hitting times of a and b, where

Ty = inf{t ≥ 0 : Wt = y} ,

and let T ∗ = Ta ∧ Tb be the exit time from the interval [a, b]. As before Mt

denotes the maximum of the Brownian motion over the interval [0, t] and mt

the minimum.

Proposition 3.5.1.1 Let W be a BM starting from x and let T ∗ = Ta ∧ Tb.
Then, for any a, b, x with a < x < b

Px(T ∗ = Ta) = Px(Ta < Tb) =
b− x

b− a

and Ex(T ∗) = (x− a)(b− x).

Proof: We apply Doob’s optional sampling theorem to the bounded martin-
gale (Wt∧Ta∧Tb

, t ≥ 0), so that

x = Ex(WTa∧Tb
) = aPx(Ta < Tb) + bPx(Tb < Ta) ,

and using the obvious equality

Px(Ta < Tb) + Px(Tb < Ta) = 1 ,

one gets Px(Ta < Tb) =
b− x

b− a
.

The process {W 2
t∧Ta∧Tb

− (t ∧ Ta ∧ Tb), t ≥ 0} is a bounded martingale,
hence applying Doob’s optional sampling theorem again, we get

x2 = Ex(W 2
t∧Ta∧Tb

) − Ex(t ∧ Ta ∧ Tb) .

Passing to the limit when t goes to infinity, we obtain

x2 = a2
Px(Ta < Tb) + b2Px(Tb < Ta) − Ex(Ta ∧ Tb) ,

hence Ex(Ta ∧ Tb) = x(b+ a) − ab− x2 = (x− a)(b− x). �

Comment 3.5.1.2 The formula established in Proposition 3.5.1.1 will be
very useful in giving a definition for the scale function of a diffusion (see
Subsection 5.3.2).
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Proposition 3.5.1.3 Let W be a BM starting from 0, and let a < 0 < b.
The Laplace transform of T ∗ = Ta ∧ Tb is

E0

[

exp
(

−λ
2

2
T ∗
)]

=
cosh[λ(a+ b)/2]
cosh[λ(b− a)/2]

.

The joint law of (Mt,mt,Wt) is given by

P0(a ≤ mt < Mt ≤ b,Wt ∈ E) =
∫

E

ϕ(t, y) dy (3.5.1)

where, for y ∈ [a, b],

ϕ(t, y) = P0(Wt ∈ dy , T ∗ > t) /dy

=
∞∑

n=−∞
pt(y + 2n(b− a)) − pt(2b− y + 2n(b− a)) (3.5.2)

and pt is the Brownian density

pt(y) =
1√
2πt

exp
(

−y
2

2t

)

.

Proof: We only give the proof of the form of the Laplace transform. We refer
the reader to formula 5.7 in Chapter X of Feller [343], and Freedman [357], for
the form of the joint law. The Laplace transform of T ∗ is obtained by Doob’s
optional sampling theorem. Indeed, the martingale

exp
(

λ

(

Wt∧T∗ − a+ b

2

)

− λ2 (t ∧ T ∗)
2

)

is bounded and T ∗ is finite, hence

exp
[

−λ
(
a+ b

2

)]

= E

[

exp
(

λ

(

WT∗ − a+ b

2

)

− λ2 T ∗

2

)]

= exp
(

λ
b− a

2

)

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Tb}

]

+ exp
(

λ
a− b

2

)

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Ta}

]

and using −W leads to

exp
[

−λ
(
a+ b

2

)]

= E

[

exp
(

λ

(

−WT∗ − a+ b

2

)

− λ2 T ∗

2

)]

= exp
(

λ
−3b− a

2

)

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Tb}

]

+ exp
(

λ
−b− 3a

2

)

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Ta}

]

.
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By solving a linear system of two equations, the following result is obtained:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Tb}

]

=
sinh(−λa)

sinh(λ(b− a))

E

[

exp
(

−λ
2 T ∗

2

)

1{T∗=Ta}

]

=
sinh(λb)

sinh(λ(b− a))

. (3.5.3)

The proposition is finally derived from

E

[
e−λ2T∗/2

]
= E

[
e−λ2T∗/2)1{T∗=Tb}

]
+ E

[
e−λ2T∗/21{T∗=Ta}

]
.

�

By inverting this Laplace transform using series expansions, written in
terms of e−λc (for various c) which is the Laplace transform in λ2/2 of Tc, the
density of the exit time T ∗ of [a, b] for a BM starting from x ∈ [a, b] follows:
for y ∈ [a, b],

Px(Bt ∈ dy, T ∗ > t) = dy
∑

n∈Z

pt(y−x+2n(b−a))− pt(2b− y−x+2n(b−a))

and the density of T ∗ is

Px(T ∗ ∈ dt) = (sst(b− x, b− a) + sst(x− a, b− a)) dt

where, using the notation of Borodin and Salminen [109],

sst(u, v) =
1√
2πt3

∞∑

k=−∞
(v − u+ 2kv)e−(v−u+2kv)2/2t . (3.5.4)

In particular,

Px(T ∗ ∈ dt,BT∗ = a) = sst(x− a, b− a)dt .

In the case −a = b and x = 0, we get the formula obtained in Exercise 3.1.6.5
for T ∗

b = inf{t : |Bt| = b}:

E0

[

exp
(

−λ
2

2
T ∗
b

)]

= (cosh(bλ))−1

and inverting the Laplace transform leads to the density

P0(T ∗
b ∈ dt) =

1
b2

∞∑

n=−∞

(

n+
1
2

)

e−(1/2)(n+1/2)2π2t/b2dt .

�
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Comments 3.5.1.4 (a) Let M∗
1 = sups≤1 |Bs| where B is a d-dimensional

Brownian motion. As a consequence of Brownian scaling, M∗
1

law= (T ∗
1 )−1/2

where T ∗
1 = inf{t : |Bt| = 1}. In [774], Schürger computes the moments of

the random variable M∗
1 using the formula established in Exercise 1.1.12.4.

See also Biane and Yor [86] and Pitman and Yor [720].
(b) Proposition 3.5.1.1 can be generalized to diffusions by using the

corresponding scale functions. See � Subsection 5.3.2.
(c) The law of the hitting time of a two-sided barrier was studied in

Bachelier [40], Borodin and Salminen [109], Cox and Miller [204], Freedman
[357], Geman and Yor [384], Harrison [420], Karatzas and Shreve [513],
Kunitomo and Ikeda [551], Knight [528], Itô and McKean [465] (Chapter I)
and Linetsky [593]. See also Biane, Pitman and Yor [85].

(d) Another approach, following Freedman [357] and Knight [528] is given
in [RY], Chap. III, Exercise 3.15.

(e) The law of T ∗ and generalizations can be obtained using spider-
martingales (see Yor [868], p. 107).

3.5.2 Drifted Brownian Motion

Let Xt = νt+Wt be a drifted Brownian motion and T ∗(X) = Ta(X)∧Tb(X)
with a < 0 < b. From Cameron-Martin’s theorem, writing T ∗ for T ∗(X),

W(ν)

(

exp
(

−λ
2

2
T ∗
))

= E

(

exp
(

νWT∗ − ν2

2
T ∗
)

exp
(

−λ
2

2
T ∗
))

= E(1{T∗=Ta} e
νWT∗−(ν2+λ2)T∗/2) + E(1{T∗=Tb} e

νWT∗−(ν2+λ2)T∗/2)

= eνaE(1{T∗=Ta} e
−(ν2+λ2)T∗/2) + eνbE(1{T∗=Tb} e

−(ν2+λ2)T∗/2) .

From the result (3.5.3) obtained in the case of a standard BM, it follows that

W(ν)

(

exp
(

−λ
2

2
T ∗
))

= exp(νa)
sinh(μb)

sinh(μ(b− a))
+ exp(νb)

sinh(−μa)
sinh(μ(b− a))

where μ2 = ν2 + λ2. Inverting the Laplace transform,

Px(T ∗ ∈ dt)

= e−ν2t/2
(
eν(a−x)sst(b− x, b− a) + eν(b−x)sst(x− a, b− a)

)
dt ,

where the function ss is defined in (3.5.4). In the particular case a = −b, the
Laplace transform is

W(ν)

(

exp
(

−λ
2

2
T ∗
))

=
cosh(νb)

cosh(b
√
ν2 + λ2)

.

The formula (3.5.1) can also be extended to drifted Brownian motion thanks
to the Cameron-Martin relationship.
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3.6 Barrier Options

In this section, we study the price of barrier options in the case where the
underlying asset S follows the Garman-Kohlhagen risk-neutral dynamics

dSt = St((r − δ)dt+ σdWt) , (3.6.1)

where r is the risk-free interest rate, δ the dividend yield generated by the
asset and W a BM. If needed, we shall denote by (Sx

t , t ≥ 0) the solution of
(3.6.1) with initial condition x. In a closed form,

Sx
t = xe(r−δ)teσWt−σ2t/2 .

We follow closely El Karoui [297] and El Karoui and Jeanblanc [300]. In a
first step, we recall some properties of standard Call and Put options. We
also recall that an option is out-of-the-money (resp. in-the-money) if its
intrinsic value (St −K)+ is equal to 0 (resp. strictly positive).

3.6.1 Put-Call Symmetry

In the particular case where r = δ = 0, Garman and Kohlhagen’s formulae
(2.7.4) for the time-t price of a European call C∗

E and a put option P ∗
E with

strike price K and maturity T on the underlying asset S reduce to

C∗
E (x,K, T − t) = xN

[
d1

( x
K
, T − t

)]
−KN

[
d2

( x
K
, T − t

)]
(3.6.2)

P ∗
E (x,K, T − t) = KN

[

d1

(
K

x
, T − t

)]

− xN
[

d2

(
K

x
, T − t

)]

.(3.6.3)

The functions di are defined on R
+ × [0, T ] as:

d1(y, u) : =
1√
σ2 u

ln(y) +
1
2

√
σ2 u

d2(y, u) : = d1(y, u) −
√
σ2 u ,

(3.6.4)

and x is the value of the underlying at time t. Note that these formulae do
not depend on the sign of σ and d1(y, u) = −d2(1/y, u).

In the general case, the time-t prices of a European call CE and a put
option PE with strike price K and maturity T on the underlying currency S
are

CE (x,K; r, δ;T − t) = C∗
E(xe−δ(T−t),Ke−r(T−t), T − t)

PE (x,K; r, δ;T − t) = P ∗
E(xe−δ(T−t),Ke−r(T−t), T − t)

or, in closed form
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CE (x,K; r, δ;T − t) = xe−δ(T−t)N
[

d1

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

− Ke−r(T−t)N
[

d2

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

(3.6.5)

PE (x,K; r, δ;T − t) = Ke−r(T−t)N
[

d1

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

− xe−δ(T−t)N
[

d2

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

. (3.6.6)

Notation: The quantity C∗
E(α, β;u) depends on three arguments: the first

one, α, is the value of the underlying, the second one β is the value of the strike,
and the third one, u, is the time to maturity. For example, C∗

E (K,x;T − t)
is the time-t value of a call on an underlying with time-t value equal to
K and strike x. We shall use the same kind of convention for the function
CE(x,K; r, δ;u) which depends on 5 arguments.

As usual, N represents the cumulative distribution function of a standard
Gaussian variable.

If σ is a deterministic function of time, di(y, T − t) has to be changed into
di(y, T, t), where

d1(y;T, t) =
1

Σt,T
ln(y) +

1
2
Σt,T

d2(y;T, t) = d1(y;T, t) −Σt,T

(3.6.7)

with Σ2
t,T =

∫ T
t
σ2(s)ds.

Note that, from the definition and the fact that the geometric Brownian
motion (solution of (3.6.1)) satisfies Sλx

t = λSx
t , the call (resp. the put) is a

homogeneous function of degree 1 with respect to the first two arguments, the
spot and the strike:

λCE (x,K; r, δ;T − t) = CE (λx, λK; r, δ;T − t)
λPE (x,K; r, δ;T − t) = PE (λx, λK; r, δ;T − t) . (3.6.8)

This can also be checked from the formula (3.6.5). The Deltas, i.e., the first
derivatives of the option price with respect to the underlying, are given by

DeltaC(x,K; r, δ;T − t) = e−δ(T−t)N
[

d1

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

DeltaP(x,K; r, δ;T − t) = −e−δ(T−t)N
[

d2

(
Ke−r(T−t)

xe−δ(T−t)
, T − t

)]

.

The Deltas are homogeneous of degree 0 in the first two arguments, the spot
and the strike:
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DeltaC (x,K; r, δ;T − t) = DeltaC (λx, λK; r, δ;T − t), (3.6.9)
DeltaP (x,K; r, δ;T − t) = DeltaP (λx, λK; r, δ;T − t) .

Using the explicit formulae (3.6.5, 3.6.6), the following result is obtained.

Proposition 3.6.1.1 The put-call symmetry is given by the following expres-
sions

C∗
E(K,x;T − t) = P ∗

E(x,K;T − t)
PE(x,K; r, δ;T − t) = CE(K,x; δ, r;T − t) .

Proof: The formula is straightforward from the expressions (3.6.2, 3.6.3) of
C∗
E and P ∗

E . Hence, the general case for CE and PE follows. This formula
is in fact obvious when dealing with exchange rates: the seller of US dollars
is the buyer of Euros. From the homogeneity property, this can also be written

PE(x,K; r, δ;T − t) = xKCE(1/x, 1/K; δ, r;T − t) . �

Remark 3.6.1.2 A different proof of the put-call symmetry which does not
use the closed form formulae (3.6.2, 3.6.3) relies on Cameron-Martin’s formula
and a change of numéraire. Indeed

CE(x,K, r, δ, T ) = EQ(e−rT (ST −K)+) = EQ(e−rT (ST /x)(x−KxS−1
T )+) .

The process Zt = e−(r−δ)tSt/x is a strictly positive martingale with
expectation 1. Set Q̂|Ft = ZtQ|Ft . Under Q̂, the process Yt = xK(St)−1

follows dynamics dYt = Yt((δ−r)dt−σdBt) where B is a Q̂-Brownian motion,
and Y0 = K. Hence,

CE(x,K, r, δ, T ) = EQ(e−δTZT (x− YT )+) = Ê(e−δT (x− YT )+) ,

and the right-hand side represents the price of a put option on the underlying
Y , when δ is the interest rate, r the dividend, K the initial value of the
underlying asset, −σ the volatility and x the strike. It remains to note that
the value of a put option is the same for σ and −σ.

Comments 3.6.1.3 (a) This symmetry relation extends to American options
(see Carr and Chesney [147], McDonald and Schroder [633] and Detemple
[251]). See � Subsections 10.4.2 and 11.7.3 for an extension to mixed diffusion
processes and Lévy processes.

(b) The homogeneity property does not extend to more general dynamics.

Exercise 3.6.1.4 Prove that

CE(x,K; r, δ;T − t) = P ∗
E(Ke−μ(T−t), xeμ(T−t);T − t)

= e−μ(T−t)P ∗
E(K,xe2μ(T−t);T − t) ,

where μ = r − δ is called the cost of carry. �
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3.6.2 Binary Options and Δ’s

Among the exotic options traded on the market, binary options are the
simplest ones. Their valuation is straightforward, but hedging is more difficult.
Indeed, the hedging ratio is discontinuous in the neighborhood of the strike
price.

A binary call (in short BinC) (resp. binary put, BinP) is an option that
generates one monetary unit if the underlying value is higher (resp. lower)
than the strike, and 0 otherwise. In other words, the payoff is 1{ST ≥K} (resp.
1{ST ≤K}). Binary options are also called digital options.

Since 1
h ((x− k)+ − (x− (k + h))+) → 1{x≥k} as h → 0, the value of a

binary call is the limit, as h→ 0 of the call-spread

1
h

[C(x,K, T ) − C(x,K + h, T )] ,

i.e., is equal to the negative of the derivative of the call with respect to the
strike. Along the same lines, a binary put is the derivative of the put with
respect to the strike.

By differentiating the formula obtained in Exercise 3.6.1.4 with respect to
the variable K, we obtain the following formula:

Proposition 3.6.2.1 In the Garman-Kohlhagen framework, with carrying
cost μ = r − δ the following results are obtained:

BinC(x,K; r, δ;T − t) = −e−μ(T−t)DeltaP∗
E(K,xe2μ(T−t); T − t)

= e−r(T−t)N
[

d2

(
xeμ(T−t)

K
, T − t

)]

(3.6.10)

BinP(x,K; r, δ;T − t) = e−μ(T−t)DeltaC∗
E(K,xe2μ(T−t); T − t)

= e−r(T−t) N
[

d1

(
K

xeμ(T−t)
, T − t

)]

, (3.6.11)

where d1, d2 are defined in (3.6.4).

Exercise 3.6.2.2 Prove that
⎧
⎪⎪⎨

⎪⎪⎩

DeltaC (x,K; r, δ) =
1
x

[CE (x,K; r, δ) +KBinC (x,K; r, δ)]

DeltaP (x,K; r, δ) =
1
x

[PE (x,K; r, δ) −KBinP (x,K; r, δ)]

(3.6.12)

where the quantities are evaluated at time T − t. �
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Comments 3.6.2.3 The price of a BinC can also be computed via a PDE
approach, by solving

{
∂tu+ 1

2σ
2x2∂xxu+ μ∂xu = ru

u(x, T ) = 1{K<x} .
(3.6.13)

See Ingersoll [459] and Rubinstein and Reiner [747] for a discussion on binary
options. Navatte and Quittard-Pinon [667] have studied binary options in a
stochastic interest case (one factor Gaussian model); their results are extended
to a Lévy model in Eberlein and Kluge [291].

3.6.3 Barrier Options: General Characteristics

Practitioners give the name barrier options to options with a payoff that
depends on whether or not the underlying value has reached a given level (the
barrier) before maturity. They are particular types of path-dependent options,
because the final payoff depends on the asset price trajectory and they are
classified into two categories:

• Knock-out options: The option ceases to exist at the first passage time of
the underlying value at the barrier.

• Knock-in options: The option is activated as soon as the barrier is reached.

Let us consider for instance:

• A DOC (down-and-out call) with strike K, barrier L and maturity T
is the option to buy the underlying at price K (at maturity T ) if the
underlying value never falls below the (low) barrier L before time T . The
value of a DOC is therefore null for S0 < L and, for S0 ≥ L,

DOC(S0,K, L, T ) : = EQ(e−rT (ST −K)+1{T<TL})

where:
TL : = inf{t |St ≤ L} = inf{t |St = L} .

In what follows, we consider DOC options only in the case S0 ≥ L.
• An UOC (up-and-out call) has the same characteristics but the (high)

barrier H is above the initial underlying value, S0 ≤ H. Its price is

UOC(S0,K,H, T ) : = EQ(e−rT (ST −K)+1{T<TH})

where TH : = inf{t |St ≥ H} = inf{t |St = H}.
• A DIC (down-and-in call) is activated if the underlying value falls below

the barrier L before time T . Its price is, for S0 > L,

DIC(S0,K, L, T ) : = EQ(e−rT (ST −K)+1{T>TL}) .
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• An UIC (up-and-in call) is activated as soon as the underlying value
hits the barrier H from below. Its price is

UIC(S0,K,H, T ) : = EQ(e−rT (ST −K)+1{T>TH}) .

The same definitions apply to puts, binary options and bonds. For example

• A DIP is a down-and-in put.
• A binary down-and-in call (BinDIC) is a binary call, activated only if

the underlying value falls below the barrier, before maturity. The payoff is
1{ST >K}1{TL<T}.

• A DIB (down-and-in bond) is a product which generates one monetary
unit at maturity if the barrier L has been reached beforehand by the
underlying. Its value is EQ(e−rT1{TL<T}) = e−rT

Q(TL < T ).

Barrier options are often used on currency markets. Their prices are smaller
than the corresponding standard European prices. This provides an advantage
for the marketing of these products. However, they are more difficult to hedge.

Depending on the “at the barrier” intrinsic value, these exotic options can
be classified further :

• A barrier option that is out of the money when the barrier L is reached
is called a regular option. As an example, note that the time-t intrinsic
value (x−K)+1{TL≤t} of a DIC such that K ≥ L is equal to 0 for x = L.

• A barrier option which is in the money when the barrier is reached is called
a reverse option.

• Some barrier options generate a rebate received in cash when the barrier
L is reached. The value of the rebate corresponds to the payoff of a binary
option. In particular, the rebate is often chosen in such a way that the
payoff continuity is kept at the barrier, e.g., if the payoff is f(ST ) at time
T , the rebate is f(L).

Let us remark that by relying on the absence of arbitrage opportunities, to
being long on one in-option and on one out-option is equivalent to be long on
a plain-vanilla option. Therefore, we restrict our attention to in-options.

Comments 3.6.3.1 (a) Barrier options are studied in a discrete time setting
in Wilmott et al. [847], Chesney et al. [176], Musiela and Rutkowski [661],
Zhang [872], Pliska [721] and Wilmott [846].

(b) In continuous time, the main papers are Andersen et al. [16],
Rubinstein and Reiner [746], Bowie and Carr [116], Rich [733], Heynen and
Kat [434], Douady [262], Carr and Chou [148], Baldi et al. [42], Linetsky
[593] and Suchanecki [814]. Broadie et al. [130] present some correction terms
between discrete and continuous time barrier options.

(c) Roberts and Shortland [735] study a case where the underlying has
time dependent coefficients. The books of Kat [516], Musiela and Rutkowski
[661], Zhang [872] and Wilmott [846] contain more information. Taleb [818]
studies hedging strategies.
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3.6.4 Valuation and Hedging of a Regular Down-and-In Call
Option When the Underlying is a Martingale

In this section, we suppose that the barrier option is written on an underlying
S without carrying costs – hence a martingale – (i.e., μ = 0 or r = δ) with
dynamics having deterministic volatility:

dSt = Stσ(t)dWt .

Furthermore, when there is no ambiguity, the instantaneous time t, the
maturity time T and the volatility will not appear as arguments in the
formulae. The value of the underlying at time t is denoted by x.

Let L be the barrier. We denote by DICM (x,K,L) the DIC option price
and by CM

E (x,K) (resp. PM
E (x,K)) the standard European call (resp. put)

price (where the first variable is the underlying and the second variable is
the strike), when the underlying is a martingale (hence the superscript M).
Relying on the assumption that the carrying cost is zero, the symmetry
formula established in Proposition 3.6.1.1 is

CM
E (x,K) = PM

E (K,x) . (3.6.14)

In particular ∂KCM
E (x,K) = DeltaPM

E (K,x).

We now follow closely Carr et al. [149]. We recall that for a regular DIC
option, the barrier L is lower than the strike (K ≥ L).

Proposition 3.6.4.1 Consider a regular DIC option on an underlying with-
out carrying costs.

(a) Its price is given by:

for x ≤ L, DICM (x,K,L) = CM
E (x,K) , (3.6.15)

for x ≥ L, DICM (x,K,L) =
K

L
PM
E

(

x,
L2

K

)

= CM
E

(
L,K

x

L

)
, (3.6.16)

(b) The static hedging consists of:
(i) a long call for x ≤ L,
(ii) for x ≥ L, a long position of K/L puts of strike L2/K.

Proof: We shall give a proof “without mathematics.”

� If the value x of the underlying (at date t) is smaller than the barrier L,
the option is already activated, therefore it is a plain vanilla option and the
equality (3.6.15) is satisfied.

� If the value of the underlying (at date t) is higher than the barrier, we
proceed as follows. Let t be fixed and denote by

TL = inf{s ≥ t ;Ss ≤ L} (3.6.17)

the first passage time after t of the underlying value below the barrier.



3.6 Barrier Options 167

In order to price the option at time t, by relying on the absence of arbitrage
opportunities, we compute the option value at date TL, and we denote by V
this value. In a second step, we compute the value at time t of the claim V ,
to be received at time TL.

At the barrier, the level of the underlying is known and only the remaining
maturity T − TL is unknown. The DICM option is equivalent to a call of
maturity T − TL on an underlying with value L, i.e., CM

E (L,K, T − TL).
The underlying is a martingale, and the volatility is deterministic. Therefore,
the underlying dynamics with starting time TL and starting point L is,
conditionally with respect to the past before TL, log-normally distributed.
The symmetry formula (3.6.14) and the homogeneity of the put price yield

CM
E (L,K, T − TL) =

K

L
PM
E

(

L,
L2

K
,T − TL

)

. (3.6.18)

Now, since the underlying is equal to the barrier, the down-and-in option
values are equal to standard option values, in particular, for any strike k, one
has DIPM (L, k, L) = PM

E (L, k). Therefore, formula (3.6.18) implies that the
option DICM (x,K,L) is equivalent to K/L options DIPM

(
x, L2K−1, L

)
.

At maturity, the terminal payoff of the DIP is strictly positive only if
the underlying value is below L2K−1. Since L ≤ K, the quantity L2K−1 is
smaller than L. Hence, if the DIP is in the money at maturity, the barrier L
was reached with probability 1; therefore, the barrier is no longer relevant in
pricing the option. The DIPM

(
x, L2K−1, L

)
barrier option is thus equal to

the plain vanilla PM
E

(
x, L2K−1

)
for L ≤ K and the result is obtained.

In order to conclude, the symmetry formula is applied again. �

Corollary 3.6.4.2 In an explicit form,

for x≤L, DICM = e−r(T−t)

{

xN
(

d1

(
x

K
, T − t

))

−KN
(

d2

(
x

K
, T−t

))}

,

for x≥L, DICM = e−r(T−t)

{

LN
(

d1

(
L2

Kx
, T − t

))

−Kx
L

N
(

d2

(
L2

Kx
, T − t

))}

,

where d1, d2 are defined in (3.6.4).

Proposition 3.6.4.3 The price of a regular up-and-in put (H ≥ K) on an
underlying without carrying cost is given by:

(i) for x ≥ L, UIPM (x,K,H) = PM
E (x,K),

(ii) for x ≤ H, UIPM (x,K,H) =
K

H
CM
E

(

x,
H2

K

)

.
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Proposition 3.6.4.4 Let x ≥ L. The regular binary option BinDICM

satisfies

(i)

BinDICM (x,K,L) =
x

L
BinCM

(

L,
Kx

L

)

, (3.6.19)

(ii)

DeltaDICM (x,K,L) = −K
L

BinCM

(

L,
Kx

L

)

= −Ke
−rT

L
N
(

d2

(
L2

xK
, T

))

. (3.6.20)

The price of the DIB option is given by

DIBM (x, L) = e−rT
[ x
L
N (d2(L/x , T )) + N (d1(L/x , T ))

]
. (3.6.21)

The binary put value is obtained by proceeding along the same lines.

Proof: By definition, BinDICM (x,K,L) = −∂KDICM (x,K,L). We differ-
entiate the first and third terms of (3.6.16) with respect to K. We get

BinDICM (x,K,L) = − x
L
∂KC

M
E

(

L,
Kx

L

)

= − x
L

DeltaPM

(
Kx

L
,L

)

where we have used the symmetry formula for the second equality. It remains
to apply Proposition 3.6.2.1 to obtain (i). By differentiating the two sides of
the first and second terms of equality (3.6.16) w.r.t. x, one gets

DeltaDICM(x,K,L) =
K

L
DeltaPM

(

x,
L2

K

)

=
K

L
DeltaPM

(
Kx

L
,L

)

where we have used the homogeneity property of degree 0 for the last equality,
hence (ii) is obtained using Proposition 3.6.2.1 again. The payoff of the DIB
option is equal to 1 if the barrier is reached before time T , and, using

{TL ≤ T} = {TL ≤ T, ST > L} ∪ {ST ≤ L},

we obtain

DIBM (x, L) = BinDICM (x, L, L) + BinPM (x, L)

=
x

L
BinCM (L, x) + BinPM (x, L)

= e−rT

{
x

L
N
(

d2

(
L

x
, T

))

+ N
(

d1

(
L

x
, T

))}

.

One can check that the value of the DIB is smaller than 1. �
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Hedge of a Regular Down-and-In Call Option

In this section, we do not write the time argument in di(x, T ). A static hedge
for a DIC regular option consists in holdingK/L puts as long as the underlying
value remains above the barrier, and a standard call after the barrier is crossed.
At the barrier, the put-call symmetry implies the continuity of the price. This
is not the case for the hedge ratio, which admits a right limit given from
(3.6.20) by

Δ+DICM (L,K,L) = −Ke
−rT

L
N
(
d2(LK−1)

)

whereas, from (3.6.15) the left limit is

Δ−DICM (L,K,L) = DeltaCM (L,K) = e−rTN
(
d1(LK−1)

)
.

Hence, the Delta is not continuous at the barrier and admits a negative jump
equal to minus the discounted probability that the underlying with starting
point K reaches the barrier before T : indeed from (3.6.21)

[Δ+ −Δ−]DICM (L,K,L) = −Ke
−rT

L
N
(
d2(LK−1)

)
− e−rTN

(
d1(LK−1)

)

= −DIBM (K,L) .

The absolute value of the jump is smaller than 1.

3.6.5 Mathematical Results Deduced from the Previous Approach

In this section, we do not write the time argument T in di(x, T ). We consider
a martingale (St, t ≥ 0) with deterministic volatility σ = (σ(t), t ≥ 0) which
represents the price of an asset without carrying costs under the risk neutral
probability Q, that is

St = x exp
(∫ t

0

σ(s)dWs −
1
2

∫ t

0

σ2(s)ds
)

. (3.6.22)

A Result on Change of Probability

In a first step, we translate the symmetry formula in terms of a change of
probability: equality (3.6.14) reads for any K,

EQ((ST −K)+) = EQ((x−KST /x)+) .

We note that if X and Y are positive random variables with density, satisfying
E((X −K)+) = E((Y −K)+) for any K ≥ 0, then X law= Y . Therefore, from

EQ((ST −K)+) = EQ((x−KST /x)+) = EQ

(
ST
x

(
x2

ST
−K

)+
)
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it follows that the law of ST under Q is equal to the law of x2/ST under Q̂,
where Q̂|FT

= ST

x Q|FT
.

One can also obtain the same result using Cameron-Martin’s relationship.

Exercise 3.6.5.1 Let X be a integrable random variable with density ϕ such
that E(f(X)) = E(Xf(1/X)) for any bounded function f .

Prove that ϕ(x) = 1
x2ϕ( 1

x ). Check that the density of X = eBT −T/2

satisfies this equality.
Hint: Consider ξ(s) : = E(Xs) for s ∈ C, which satisfies ξ(s) = ξ(1 − s). �

Joint Law of (mS
T , ST )

Here, we assume that x ≥ L. Let us introduce the first passage time below
the barrier:

TL = inf{t : St ≤ L}
where we set inf(∅) = +∞ and note that

{TL ≤ T} =
{

inf
0≤t≤T

St ≤ L} = {mS
T ≤ L

}

,

where mS
t = infs≤t Ss. The prices at time 0 for barrier and binary options are

given as:

DICM (x,K,L) = e−rT
EQ[1{TL≤T}(ST −K)+] ,

BinDICM (x,K,L) = e−rT
Q[{TL ≤ T} ∩ {ST ≥ K}]

= e−rT
Q[{mS

T ≤ L} ∩ {ST ≥ K}] .

Proposition 3.6.5.2 Let (St, t ≥ 0) be a martingale with the following
dynamics

dSt = Stσ(t)dWt , S0 = x

where W is a Q-Brownian motion, with initial value x with x ≥ L.
For any K ≥ L, the law of the pair (mS

T , ST ) is given by

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

ST ≥ Kx2

L2

)

=
x

L
N
(

d2

(
L2

Kx

))

and the law of the minimum mS
T = inft≤T St:

Q(mS
T ≤ L) =

x

L
N
(
d2(Lx−1)

)
+ N

(
d1(Lx−1)

)
,

where d1, d2 are given by (3.6.7).

Proof: Formula (3.6.19) leads to

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

L
ST
x

≥ K

L
x

)

=
x

L
Q

(

ST ≥ Kx2

L2

)

.

The law of the minimum follows, taking K = L. �
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The equality

Q(mS
T ≤ L, ST ≥ K) =

x

L
Q

(

ST ≥ Kx2

L2

)

corresponds to the reflection principle obtained for Brownian motion. Indeed,
writing, for x = 1, St = eσXt where Xt = Wt − νt and ν = σ/2 and
taking the logarithm, when σ is constant, one obtains the formula given in
Exercise 3.2.1.3 for the drifted Brownian motion:

P(WT − νT ≥ α, inf
0≤t≤T

(Wt − νt) ≤ β) = e2νβP(WT − νT ≥ α− 2β) .

By considering current prices, we shall obtain the conditional distribution
(with respect to the information at time t) of the underlying value at
time T and its minimum on the time interval (t, T ). Let St = y and let
mS

t = infs≤t Ss = m (with m ≤ y) be the minimum over the time interval
[0, t]. In the case m ≤ L, the barrier has been reached during the time
interval [0, t], whereas the barrier has not been reached when m > L. In
the second case, the two events (inf0≤u≤T Su ≤ L) and (inft≤u≤T Su ≤ L) are
identical.

The equality (3.6.19) concerning barrier options

BinDICM (St,K, L, T − t) =
St
L

BinCM

(

L,
KSt
L

, T − t

)

can be written, on the set {TL ≥ t}, as follows:

Q({TL ≤ T} ∩ {ST ≥ K}|Ft) = Q({ inf
t≤u≤T

Su ≤ L} ∩ {ST ≥ K}|Ft)

=
St
L

Q

(

ST
L

St
≥ KSt

L
|Ft

)

=
St
L
N
(

d2

(
L2

KSt
, T − t

))

. (3.6.23)

The equality (3.6.23) gives the conditional distribution function of the pair
(mS [t, T ], ST ) where mS [t, T ] = mint≤s≤T Ss, on the set {TL ≥ t}, as a
differentiable function.

Hence, the conditional law of the pair (mS [t, T ], ST ) with respect to Ft

admits a density f(h, k) on the set 0 < h < k which can be computed from
the density p of a log-normal random variable with expectation 1 and with
variance Σ2

t,T =
∫ T
t
σ2(s)ds,

p(y) =
1

yΣt,T

√
2π

exp

(

− 1
2Σ2

t,T

(

ln(y) − 1
2
Σ2

t,T

)2
)

. (3.6.24)

Indeed,
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Q(mS [t, T ] ≤ L, ST ≥ K|St = x) =
x

L
N
(

d2

(
L2

Kx
, T − t

))

=
x

L

1√
2π

∫ d2(L
2/(Kx), ,T−t)

−∞
e−u2/2du =

x

L

∫ +∞

Kx/L2
p(y)dy .

Hence, we obtain the following proposition:

Proposition 3.6.5.3 Let dSt = σ(t)StdBt. The conditional density f of the
pair (inft≤u≤T Su, ST ) is given, on the set {0 < h < k}, by

Q( inf
t≤u≤T

Su ∈ dh, ST ∈ dk|St = x)

=
(

−3x2

h4
p(kxh−2) − 2kx3

h6
p′(kxh−2)

)

dh dk .

where p is defined in (3.6.24).

Comment 3.6.5.4 In the case dSt = σ(t)StdBt, the law of (ST , sups≤T Ss)
can also be obtained from results on BM. Indeed,

Ss = S0 exp
(∫ s

0

σ(u)dBu − 1
2

∫ s

0

σ2(u)du
)

can be written using a change of time as

St = S0 exp
(

BΣt −
1
2
Σt

)

where B is a BM and Σ(t) =
∫ t
0
σ2(u)du. The law of (ST , sups≤T Ss) is

deduced from the law of (Bu, sups≤uBs) where u = ΣT .

3.6.6 Valuation and Hedging of Regular Down-and-In Call
Options: The General Case

Valuation

We shall keep the same notation for options. However under the risk neutral
probability, the dynamics of the underlying are now:

dSt = St ((r − δ)dt+ σdWt) , S0 = x . (3.6.25)

A standard method exploiting the martingale framework consists of studying
the associated forward price SF

t = Ste
(r−δ)(T−t). This is a martingale under

the risk-neutral forward probability measure. In this case, it is necessary to
discount the barrier.

We can avoid this problem by noticing that any log-normally distributed
asset is the power of a martingale asset. In what follows, we shall denote by
DICS the price of a DIC option on the underlying S with dynamics given by
equation (3.6.25).
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Lemma 3.6.6.1 Let S be an underlying whose dynamics are given by
(3.6.25) under the risk-neutral probability Q. Then, setting

γ = 1 − 2(r − δ)
σ2

, (3.6.26)

(i) the process Sγ = (Sγ
t , t ≥ 0) is a martingale with dynamics

dSγ
t = Sγ

t σ̂ dWt

where σ̂ = γσ.
(ii) for any positive Borel function f

EQ(f(ST )) = EQ

((
ST
x

)γ

f

(
x2

ST

))

.

Proof: The proof of (i) is obvious. The proof of (ii) was the subject of
Exercise 1.7.3.7 (see also Exercise 3.6.5.1). �

The important fact is that the process Sγ
t = exp(σ̂Wt − 1

2 σ̂
2t) is a

martingale, hence we can apply the results of Subsection 3.6.4.
The valuation and the instantaneous replication of the BinDICS on an

underlying S with dynamics (3.6.25), and more generally of a DIC option, are
possible by relying on Lemma 3.6.6.1.

Theorem 3.6.6.2 The price of a regular down-and-in binary option on an
underlying with dynamics (3.6.25) is, for x ≥ L,

BinDICS(x,K,L) =
( x
L

)γ
BinCS

(

L,
Kx

L

)

. (3.6.27)

The price of a regular DIC option is, for x ≥ L,

DICS(x,K,L) =
( x
L

)γ−1

CS
E

(

L,
Kx

L

)

. (3.6.28)

Proof: In the first part of the proof, we assume that γ is positive, so that
the underlying with carrying cost is an increasing function of the underlying
martingale.

It is therefore straightforward to value the binary options:

BinCS(x,K;σ) = BinCM (xγ ,Kγ ; σ̂)
BinDICS(x,K,L;σ) = BinDICM (xγ ,Kγ , Lγ ; σ̂) ,

where we indicate (when it seems important) the value of the volatility, which
is σ for S and σ̂ for Sγ . The right-hand sides of the last two equations are
known from equation (3.6.19):
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BinDICM (xγ ,Kγ , Lγ ; σ̂) =
( x
L

)γ
BinCM

(

Lγ ,

(
Kx

L

)γ

; σ̂
)

=
( x
L

)γ
BinCS

(

L,
Kx

L
;σ
)

. (3.6.29)

Hence, we obtain the equality (3.6.27). Note that, from formulae (3.6.10) and
(3.6.9) (we drop the dependence w.r.t. σ)

BinCS

(

L,
Kx

L

)

= −e−μTDeltaPS

(
Kx

L
,Le2μT

)

= −e−μTDeltaPS

(

x,
(LeμT )2

K

)

.

By taking the integral of this option’s value between K and +∞, the price
DICS is obtained

DICS(x,K,L) =
∫ ∞

K

BinDICS(x, k, L)dk =
( x
L

)γ ∫ ∞

K

BinCS
(
L, k

x

L

)
dk

=
( x
L

)γ−1

CS
E

(

L,
Kx

L

)

.

By relying on the put-call symmetry relationship of Proposition 3.6.1.1, and
on the homogeneity property (3.6.8), the equality

DICS(x, L,K) =
( x
L

)γ−1 K

L
PS
E

(

x,
L2

K

)

is obtained.
When γ is negative, a DIC binary option on the underlying becomes a

UIP binary option on an underlying which is a martingale. In particular,

BinDICS(x,K,L;σ) = BinUIPM (xγ ,Kγ , Lγ ; σ̂) ,

and

BinPM

(

Lγ ,

(
Kx

L

)γ

; σ̂
)

= BinCS

(

L,
Kx

L
;σ
)

because the payoffs of the two options are the same. From Proposition 3.6.4.3
corresponding to UIP options, we obtain

BinUIPM (xγ ,Kγ , Hγ σ̂) =
( x
H

)γ
BinPM

(

Hγ ,

(
Kx

H

)γ

; σ̂
)

=
( x
H

)γ
BinCS

(

H,
Kx

H
;σ
)

.

�
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Remark 3.6.6.3 Let us remark that, when μ = 0 (i.e., γ = 1) the equality
(3.6.28) is formula (3.6.16). The presence of carrying costs induces us to
consider a forward boundary, already introduced by Carr and Chou [148], in
order to give two-sided bounds for the option’s price. Indeed, if μ is positive
and (x/L)γ−1 ≤ 1, the right-hand side gives Carr’s upper bound, while if μ is
negative, the lower bound is obtained.

Therefore, the smaller 2μ
σ2 , the more accurate is Carr’s approximation. This

is also the case when x is close to L, because at the boundary, the two formulae
are the same.

Hedging of the Regular Down-and-In Call Option in the
General Case

As for the case of a regular DIC option without carrying costs, the Delta is
discontinuous at the boundary. By relying on the above developments and on
equation (3.6.29), the following equation is obtained

Δ+DICS(L,K,L) =
γ − 1
L

CS
E(L,K) − K

L
BinCS(L,K)

=
γ

L
CS
E(L,K) − DeltaCS(L,K) .

Thus,

(Δ+ −Δ−)DICS(L,K,L) =
γ

L
CS
E(L,K) − 2 DeltaCS(L,K) .

However, the absolute value of this quantity is not always smaller than 1, as
it was in the case without carrying costs. Therefore, depending on the level
of the carrying costs, the discontinuity can be either positive or negative.

Exercise 3.6.6.4 Recover (ii) with the help of formula (3.2.4) which ex-
presses a simple absolute continuity relationship between Brownian motions
with opposite drifts �

Exercise 3.6.6.5 A power put option (see Exercise 2.3.1.5) is an option with
payoff Sα

T (K−ST )+, its price is denoted PowPα(x,K). Prove that there exists
γ such that

DICS(x,K,L) =
1
Lγ

PowPγ−1(Kx,L2) .

Hint: From (ii) in Lemma 3.6.6.1, DICS(x,K,L) = 1
Lγ E(Sγ

T ( L2

ST
−K)+). �

3.6.7 Valuation and Hedging of Reverse Barrier Options

Valuation of the Down-and-In Bond

The payoff of a down-and-in bond (DIB) is one monetary unit at maturity,
if the barrier is reached before maturity. It is straightforward to obtain these
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prices by relying on BinDIC(x, L, L) prices and on a standard binary put.
Indeed, the payoff of the BinDIC option is one monetary unit if the underlying
value is greater than L and if the barrier is hit. The payoff of the standard
binary put is also 1 if the underlying value is below the barrier at maturity.
Being long on these two options generates a payoff of 1 if the barrier was
reached before maturity. Hence,

for x ≥ L,DIB(x, L) = BinP(x, L) + BinDIC(x, L, L)
for x ≤ L,DIB(x, L) = B(0, T ) .

By relying on equations (3.6.10, 3.6.11, 3.6.28) and on Black and Scholes’
formula, we obtain, for x ≥ L,

DIB(x, L) = BinPS(x, L) +
( x
L

)γ
BinCS(L, x)

= e−rT

[

N
(

d1

(
L

xeμT

))

+
xγ

Lγ
N
(

d2

(
LeμT

x

))]

. (3.6.30)

Example 3.6.7.1 Prove the following relationships:

DICS(x, L, L) + LBinDICS(x, L, L)

=
( x
L

)γ−1

e−μT
[
PS
E (x, Le2μT ) − L

x

L
DeltaPS

E (x, Le2μT )
]

=
( x
L

)γ−1

eμTLBinPS(x, Le2μT ) ,

DIB(x, L) = BinPS(x, L) +
( x
L

)γ−1

eμTBinPS(x, Le2μT )

− 1
L

DICS(x, L, L) . (3.6.31)

Hint: Use formulae (3.6.12) and (3.6.28).

Valuation of a Reverse DIC, Case K < L

Let us study the reverse DIC option, with strike smaller than the barrier,
that is K ≤ L. Depending on the value of the underlying with respect to the
barrier at maturity, the payoff of such an option can be decomposed. Let us
consider the case where x ≥ L.

• The option with a payoff (ST − K)+ if the underlying value is higher
than L at maturity and if the barrier was reached can be hedged with a
DIC(x, L, L) with payoff (ST − L) at maturity if the barrier was reached
and by (L−K) BinDIC(x, L, L) options, with a payoff L−K if the barrier
was reached.

• The option with a payoff (ST − K)+ if the underlying value is between
K and L at maturity (which means that the barrier was reached) can be
hedged by the following portfolio:
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−PE(x, L) + PE(x,K) + (L−K)DIB(x, L) .

Indeed the corresponding payoff is

(ST −K)+1{K≤ST ≤L} = (ST − L−K + L)1{K≤ST ≤L}

= (ST − L)1{K≤ST ≤L} + (L−K)1{K≤ST ≤L}

= (ST − L)1{ST ≤L} − (ST − L)1{ST ≤K}

+ (L−K)1{ST ≤L} − (L−K)1{ST ≤K}

= −(L− ST )+ + (K − ST )+ + (L−K)1{ST ≤L} .

This very general formula is a simple consequence of the no arbitrage
principle and can be obtained without specific assumptions concerning the
underlying dynamics, unlike the DIB valuation formula.

The hedging of such an option requires plain vanilla options, regular DIC
options with the barrier equal to the strike, and DIB(x, L) options, and is not
straightforward. The difficulty corresponds to the hedging of the standard
binary option.

In the particular case of a deterministic volatility, by relying on (3.6.31),

DICrev(x,K,L) =
(
K

L
− 1
)

DIC(x, L, L) − PE(x, L) + PE(x,K)

+ (L−K)BinP(x, L)

+ (L−K)
( x
L

)γ−1

eμTBinP(x, Le2μT ) .

3.6.8 The Emerging Calls Method

Another way to understand barrier options is the study of the first passage
time of the underlying at the barrier, and of the prices of the calls at this first
passage time. This corresponds to integration of the calls with respect to the
hitting time distribution.

Let us assume that the initial underlying value x is higher than the barrier,
i.e., x > L. We denote, as usual,

TL = inf{t : St ≤ L}

the hitting time of the barrier L.
The term erTDIB(x, L, T ) is equal to the probability that the underlying

reaches the barrier before maturity T . Hence, its derivative, i.e., the quantity
fL(x, t) = ∂T [erTDIB(x, L, T )]T=t is the density Q(TL ∈ dt)/dt, and the
following decomposition of the barrier option is obtained:

DIC(x,K,L, T ) =
∫ T

0

CE(L,K, T − τ)e−rτfL(x, τ)dτ . (3.6.32)
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The density fL is obtained by differentiating erTDIB with respect to T in
(3.6.30). Hence

fL(x, t) =
h√
2πt3

exp(− 1
2t

(h− νt)2) ,

where
h =

1
σ

ln
( x
L

)
, ν =

μ

σ
− σ

2
.

(See Subsection 3.2.2 for a different proof.)

3.6.9 Closed Form Expressions

Here, we give the previous results in a closed form.
� For K ≤ L,

DICS(L,K) = S0

(
N (z1) −N (z2) +

(
L

x

) 2r
σ2

+ 1
N (z3)

)

−Ke−rT
(
N (z4) −N (z5) +

(
L

x

) 2r
σ2

− 1
N (z6)

)

where

z1 =
1

σ
√
T

((

r +
1
2
σ2

)

T + ln
( x
K

))

, z4 = z1 − σ
√
T

z2 =
1

σ
√
T

((

r +
1
2
σ2

)

T + ln
( x
L

))

, z5 = z2 − σ
√
T

z3 =
1

σ
√
T

((

r +
1
2
σ2

)

T − ln
( x
L

))

, z6 = z3 − σ
√
T .

� In the case K ≥ L, we find that

DICS(L,K) = x

(
L

x

) 2r
σ2

+ 1
N (z7) −Ke−rT

(
L

x

) 2r
σ2

− 1
N (z8)

where

z7 =
1

σ
√
T

(

ln(L2/xK) +
(

r +
1
2
σ2

)

T

)

z8 = z7 − σ
√
T .
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3.7 Lookback Options

A lookback option on the minimum is an option to buy at maturity T
the underlying S at a price equal to K times the minimum value mS

T of
the underlying during the maturity period (here, mS

T = min0≤u≤T Su). The
terminal payoff is (ST −KmS

T )+. We assume in this section that the dynamics
of the underlying asset value under the risk-adjusted probability is given in a
Garman-Kohlhagen model by equation (3.6.25).

3.7.1 Using Binary Options

The BinDICS price formula can be used in order to value and hedge options
on a minimum. Let MinCS(x,K) be the price of the lookback option. The
terminal payoff can be written

(ST −KmS
T )+ =

∫ +∞

0

1{ST ≥k≥KmS
T } dk .

The expectation of this quantity can be expressed in terms of barrier options:

MinCS(x,K) = e−rT
EQ((ST −KmS

T )+) =
∫ +∞

0

BinDICS

(

x, k,
k

K

)

dk

=
∫ xK

0

BinDICS

(

x, k,
k

K

)

dk +
∫ ∞

xK

BinDICS

(

x, k,
k

K

)

dk

= I1 + I2 .

In the second integral I2, since x < k/K, the BinDIC is activated at time 0
and BinDICS

(
x, k, k

K

)
= BinCS(x, k), hence

I2 = e−rT

∫ ∞

xK

EQ(1{ST ≥k})dk = e−rT
EQ((ST − xK)+) = CS

E(x, xK) .

The first term I1 is more difficult to compute than I2. From Theorem 3.6.6.2,
we obtain, for k < Kx,

BinDICS

(

x, k,
k

K

)

=
(
xK

k

)γ

BinCS

(
k

K
, xK

)

,

where γ is the real number such that (Sγ
t , t ≥ 0) is a martingale, i.e.,

St = xM
1/γ
t where M is a martingale with initial value 1. From the identity

BinCS(x,K) = e−rT
Q(xM1/γ

T > K), we get:
∫ xK

0

BinDICS

(

x, k,
k

K

)

dk =
∫ xK

0

(
xK

k

)γ

BinCS

(
k

K
, xK

)

dk

= e−rT
EQ

(∫ xK

0

(
xK

k

)γ

1{kM1/γ
T >xK2}dk

)
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= e−rT (xK)γEQ

(∫ ∞

0

k−γ1{xK>k>xK2M
−1/γ
T }dk

)

.

For γ = 1, the integral can be computed as follows:
∫ xK

0

BinDICS

(

x, k,
k

K

)

dk

= e−rT (xK)γ

1 − γ
EQ

[(
(xK)1−γ − (xK2M

−1/γ
T )1−γ

)+
]

= e−rT xK

1 − γ
EQ

[(
1 −K1−γM

−(1−γ)/γ
T

)+
]

= e−rT xK

1 − γ
EQ

⎡

⎣

(

1 − K1−γSγ−1
T

xγ−1

)+
⎤

⎦ .

Using Itô’s formula and recalling that 1 − γ = 2μ
σ2 , we have

d(Sγ−1
t ) = Sγ−1

t

(

μdt− 2μ
σ
dWt

)

hence the following formula is derived

MinCS(x,K) = x

[

CS
E(1,K;σ) +

Kσ2

2μ
PS
E

(

K1−γ , 1;
2μ
σ

)]

where CS
E(x,K;σ) (resp. PS

E (x,K;σ)) is the call (resp. put) value on an
underlying with carrying cost μ and volatility σ with strike K. The price
at date t is MinCS(St,KmS

t ;T − t) where mS
t = mins≤t Ss.

For γ = 1 we obtain

MinCS(x,K) = CS
E(x, xK) + xKEQ

[(

ln
ST
xK

)+
]

.

Let CS
ln(x,K) be the price of an option with payoff (ln(ST /x)− lnK)+, then

MinCS(x,K) = CS
E(x, xK) + xKCS

ln(x, xK) .

3.7.2 Traditional Approach

The payoff for a standard lookback call option is ST −mS
T . Let us remark

that the quantity ST −mS
T is positive. The price of such an option is

MinCS(x, 1;T ) = e−rT
EQ(ST −mS

T )

whereas MinCS(x, 1;T − t), the price at time t, is given by
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MinCS(x, 1;T − t) = e−r(T−t)
EQ(ST −mS

T |Ft) .

We now forget the superscript S in order to simplify the notation. The relation
mT = mt ∧mt,T , with mt,T = inf{Su, u ∈ [t, T ]} leads to

e−rtMinCS(x, 1;T − t) = e−rT
EQ(ST |Ft) − e−rT

EQ(mt ∧mt,T |Ft) .

Using the Q-martingale property of the process (e−μtSt, t ≥ 0), the first term
is e−rte−δ(T−t)St. As far as the second term is concerned, the expectation is
decomposed as follows:

EQ(mt ∧mt,T |Ft) = EQ(mt1{mt<mt,T }|Ft) + EQ(mt,T1{mt,T <mt}|Ft) .

Using measurability and independence arguments, we obtain

EQ(mt1{mt<mt,T }|Ft) = mt Φ(T − t,mt, St)

where Φ(u,m, x) = Q(m < xmY
u ), with Y law= (S/S0). An explicit expression

for Φ is obtained from the results concerning the law of the minimum of the
drifted Brownian motion or by relying on barrier options results:

Φ(u,m, x) = N (d− σ
√
u) −

(
x

m

)1−2μ/σ2

N
(

−d+
2μ
σ

√
u

)

where

d = d1

(
xeru

m

)

=
ln
( x
m

)
+ (μ+ σ2/2)u

σ
√
u

.

The quantity
EQ(mt,T1{mt,T <mt}|Ft)

can be written Ψ(T − t,mt, St) with Ψ(u,m, x) = EQ(xmu1{xmu<m}) which
can be computed from the law of mu. The following proposition (obtained
also in the previous section, setting K = 1) is derived:

Proposition 3.7.2.1 The lookback option price is

MinS(St, 1;T − t) = Ste
−δ(T−t)N (dt) − e−r(T−t)mtN

(
dt − σ

√
T − t

)

+ e−r(T−t)Stσ
2

2μ

⎡

⎢
⎣

(
mt

St

)2μ
σ2

N
(

−dt +
2μ

√
T − t

σ

)

− er(T−t)N (−dt)

⎤

⎥
⎦

with dt =
1

σ
√
T − t

ln
(
St
mt

+
(

μ+
1
2
σ2

)

(T − t)
)

and mt = infs≤t Ss.

Comment 3.7.2.2 Other results on lookback options are presented in Conze
and Viswanathan [193] and He et al. [426]. A PDE approach for European
options whose terminal payoff involves path-dependent lookback variables is
presented in Xu and Kwok [853]. See also Elliott and Kopp [317] p. 182–183
for the case δ = 0 and Musiela and Rutkowski [661] p. 214–218 and Shreve
[795], p. 314–320.
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3.8 Double-barrier Options

The payoff of a double-barrier option is (ST −K)+ if the underlying asset has
remained in the range [L,H] for all times between 0 and maturity, otherwise,
the payoff is null. Its price is

Cdb(x,K,L,H, T ) : = EQ(e−rT (ST −K)+1{T∗>T})

where T ∗ : = TH(S) ∧ TL(S). We give the computation of

EQ(e−rT (ST −K)+1{T∗<T}) = EQ(e−rT (ST −K)+) − Cdb(x,K,L,H, T ) ,

in the case where the risk-neutral dynamics of S are

dSt = St(rdt+ σdWt) ;

the price of the double barrier will follow. With a change of probability the
quantity EQ(e−rT (ST −K)+1{T∗<T}) can be written as

e−(r+ 1
2ν

2)T
EQ((xeσBT −K)+eνBT 1{T∗<T}) ,

where B is a generic BM. The explicit computation can be performed using
the law of the pair (BT , T

∗) which may be obtained from the two-sided series
(3.5.2).

Another approach is to proceed as in Geman and Yor [384] where the
Laplace transform Φ of ϕ(t) = EQ[eνBt(xeσBt − K)+1{T∗<t}] is computed.
From Markov’s property

Φ(λ) =
∫ ∞

0

exp
(

−λ
2t

2

)

ϕ(t) dt = EQ

(∫ ∞

T∗
exp
(

−λ
2t

2

)

ψ(Bt) dt
)

= EQ

(

exp
(

−λ
2T ∗

2

)∫ ∞

0

exp
(

−λ
2t

2

)

ψ(B̃t +BT∗) dt
)

where ψ(y) = eνy(xeσy − K)+ and B̃ = (B̃t = Bt+T∗ − BT∗ ; t ≥ 0)
is a Brownian motion independent of (Bs, s ≤ T ∗). The computation of
the expectation can be simplified by splitting the expression into two parts
depending on the stopping time values:

Φ(λ) = Ψ(h)EQ

[
e−λ2T∗/21{T∗=Th}

]
+ Ψ(!)EQ

[
e−λ2T∗/21{T∗=T�}

]
,

where h = ln(H/x)σ−1, ! = ln(L/x)σ−1 and, from Exercise 1.4.1.7

Ψ(z) = E

∫ ∞

0

e−λ2t/2ψ(B̃t + z)dt =
1
λ

∫ ∞

−∞
e−λ|z−y|ψ(y)dy .

We have obtained an explicit form for
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EQ

[

exp
(

−λ
2T ∗

2

)

1{T∗=Th}

]

in the proof of Proposition 3.5.1.3; we now present the computation of Ψ(x).
� Let K ∈ [L,H] and let k = ln(K/x)σ−1, ! = ln(L/x)σ−1. For values of λ
such that ν + σ − λ < 0, and by relying on the resolvent:

Ψ(h) = g(h, λ)[Kg(h, ν − λ) − xg(h, σ + ν − λ)]
+ g(−h, λ)

[
x(g(h, σ + ν + λ) − g(k, σ + ν + λ))

−K(g(h, ν + λ) − g(k, ν + λ))
]

with g(u, α) = 1
ue

uα and

Ψ(!) =
eλ�

λ
[Kg(k, ν − λ) − xg(k, σ + ν − λ)] .

� For K < L, and z = ! or z = k, we find

Ψ(z) = g(h, λ)
(
Kg(h, ν − λ) − xg(z, σ + ν − λ)

)

+ g(−h, λ)
(
x (g(h, σ +m+ λ) − g(z, σ + ν + λ))

−K (g(h, ν + λ) − g(z, ν + λ))
)
.

The Laplace transform must now be inverted.
The main papers concerning double-barrier options are those of Kunitomo

and Ikeda [551], Geman and Yor [384], Goldman et al. [399], Pelsser [704], Hui
et al. [600], Schröder [768] and Davydov and Linetsky [226].

3.9 Other Options

We give a few examples of other traded options. We assume as previously that

dSt = St((r − δ)dt+ σdWt), S0 = x

under the risk-neutral probability Q and we denote by Ta = Ta(S) the first
time when level a is reached by the process S.

3.9.1 Options Involving a Hitting Time

Digital Options

The asset-or-nothing options depend on an exercise price K. The terminal
payoff is equal to the value of the underlying, if it is in the money at maturity
and 0 otherwise, i.e., ST1{ST ≥K}. The strike price plays the rôle of a barrier.
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The value of such an option is e−rT
EQ(ST1{ST ≥K}) and is straightforward to

evaluate. Indeed, this is the first term in the Black and Scholes formula (2.3.3).

These options can also have an up-and-in feature which depends on a
barrier. The price is e−rT

EQ(ST1{ST ≥K}1{TL>T}). They are used for hedging
barrier options.

Barrier Forward-start or Early-ending Options

In this case, the barrier is activated at time T ′, with T ′ < T where T is the
maturity. In the case of an up-and-out forward-start call option, the payoff
is (ST −K)+1{TT ′

H ≥T} with TT ′

H = inf{u ≥ T ′ : Su ≥ H}. For early-ending
options, the barrier is active only until T ′.

3.9.2 Boost Options

The BOOST (Banking On Overall Stability) options were introduced in the
market by Société Générale in 1994. They are characterized by two levels, a
and b, with a ≤ b. When the boundary of a given range [a, b] is reached for
the first time, the BOOST option terminates, and its owner receives a payoff
equal to a daily amount multiplied by the number of days during which the
underlying asset remained in the range before the first exit. A BOOST option
is, most of the time, a strictly decreasing function of the volatility; therefore
it enables its owner to bet on a decrease in the volatility.

One-level

The one-level BOOST pays, at maturity, an amount equal to the time that
the underlying asset remains continuously above a level a. Therefore, its price
is

EQ[e−rT (T ∧ Ta)] = e−rTT Q(T < Ta) + e−rT
EQ(Ta1{Ta<T}) .

Assume that a < x and let us introduce, as in Subsection 3.2.4,

Ψ(λ) : = E(e−λTa(S)1{Ta(S)<T}) = e(ν−γ)αN
(
α− γT√

T

)

+e(ν+γ)αN
(
α+ γT√

T

)

with ν = (r − δ)(σ)−1 − σ/2, γ2 = 2λ+ ν2, α = σ−1 ln(a/x).

Then E(Ta1{Ta<T}) = −Ψ ′(0), i.e.,

E(Ta1{Ta<T}) = −α
ν

[

N
(

−νT + α√
T

)

− e2ναN
(
νT + α√

T

)]

+
√
T

ν
√

2π

[

exp
[

− 1
2T

(νT − α)2
]

− e2να exp
[

− 1
2T

(νT + α)2
]]
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and

Q(T < Ta) = 1 − Ψ(0) = N
(
−α+ νT√

T

)

− e2ναN
(
α+ νT√

T

)

.

Corridor

The BOOST option value Bcor(S0, T ) is given by the expected discounted
payoff,

Bcor(S0, T ) : = EQ(e−rT∗
T ∗1{T∗<T} + e−rTT1{T∗≥T}) (3.9.1)

with
T ∗ = Ta(S) ∧ Tb(S) .

We suppose that a < S0 < b. The valuation problem reduces to the knowledge
of the law of T ∗.

Let us consider a perpetual corridor BOOST with payment at hit.
Its price is given by (3.9.1) with T = ∞, i.e.,

Bcor(S0,∞) : = EQ(e−rT∗
T ∗) .

The problem reduces to the computation of Ψ(λ) = EQ(exp(−1
2λ

2T ∗)).
Indeed, the computation of EQ(e−rT∗

T ∗) will follow after differentiation with

respect to λ: EQ(e−rT∗
T ∗) = −Ψ

′(
√

2r)√
2r

. Let us remark that

T ∗ = inf{t|Xt ≤ α or Xt ≥ β} : = T ∗(X)

whereXt = νt+Bt = ( r−δ
σ − σ

2 )t+Bt . Using the results obtained in Subsection
3.5.2, we get, in the case a

x = x
b ,

EQ(e−rT∗
) =

b

x

xθ + bθ

xθ−2 + bθ−2

with

θ = −2ν
σ

= −2(r − δ)
σ2

+ 1 .

It follows that

E(T ∗e−rT∗
) =

2b (bx)θ−2

xσ2 [xθ−2 + bθ−2]2
(x2 − b2) ln

x

b
.

Comments 3.9.2.1 (a) Many other examples are presented in Haug [425],
Kat [516], Pechtl [703], and Zhang [872].

(b) Crucial hedging problems are not considered here: we refer to Bhansali
[84] and Taleb [818].
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(c) BOOST options have been studied by Douady [263] and Leblanc [572].
Path-dependent options with payoff of the form

(∫ T

0

1{Ss≥a}ds−K

)+

1{MS
T ≤b}

are studied in Fujita et al. [367].

3.9.3 Exponential Down Barrier Option

We apply the results given in Subsections 3.3.1 and 3.2.2 to obtain the price of
an option with a deterministic exponential barrier. As usual, we work in the
Black and Scholes model where the dynamics of the underlying stock value in
the risk-neutral economy are:

dSt = St(rdt+ σdBt), S0 = x

where the risk-free rate r and the volatility σ are constant and where B is a
Brownian motion under the risk-neutral probability Q. The barrier b(t) is a
deterministic function of time

b(t) = z exp(ηt),

where z < x, η > 0 and zeηT < K. The first hitting time of the barrier is the
time τ

τ = inf{t ≥ 0, St ≤ b(t)} = inf{t ≥ 0, Ŝt ≤ z}

where Ŝt = Ste
−ηt. The dynamics of Ŝ are:

dŜt = Ŝt((r − η)dt+ σdBt), Ŝ0 = x .

We assume that the payoff (K − Sτ )+ = (K − Sτ ) is paid at hit, i.e., at time
τ in the case τ < T and that, if T ≤ τ , the payoff is (K − ST )+, paid at
T , where K is the strike price. Therefore, the value of this down-paid at hit
option with exponential barrier is given by:

P η,z
expbar(S0, T )

= EQ((K − Sτ )+e−rτ1{τ<T}) + e−rT
EQ((K − ST )+1{τ≥T})

= EQ((K − Sτ )e−rτ1{τ<T}) + e(η−r)T
EQ((e−ηTK − ŜT )+1{τ≥T})

=
∫ T

0

(K − b(t))e−rt
Q(τ ∈ dt)

+ e(η−r)T

∫ Ke−ηT

z

(Ke−ηT − y) Q(ŜT ∈ dy, m̂T > z)

where m̂T is the minimum
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m̂T = inf
u∈[0,T ]

Ŝu .

By relying on the dynamics of the process Ŝ and on Subsections 3.2.2 and
3.3.1 the two densities are known: setting

α =
ln(z/x)
σ

, and ν =
r − η

σ
− σ

2
,

we obtain

Q(τ ∈ dt) = |α| 1√
2πt3

exp
(

− 1
2t

(α− νt)2
)

dt

and, for y > z, x > z,

Q(ŜT ∈ dy,mT > z) = − d

dy
Q(ŜT ≥ y,mT > z) .

Hence, setting β(y) = ln(y/x)
σ

Q(ŜT ∈ dy,mT > z)/dy =

1
σy

√
2πT

(

exp
(

− (−β(y) + νT )2

2T

)

− e2να exp
(

− (−β(y) + 2α+ νT )2

2T

))

The value of the option follows.

Comments 3.9.3.1 By assuming that the exercise boundary of the Amer-
ican put (see � Section 3.11) written on a non-dividend-paying stock is
an exponential function of time to expiration, Omberg [686] obtains an
approximation of the put price PA. The author makes the assumption that
the exercise boundary for an American put can be approximated by

bp,z,η(t) = z∗ exp(η∗t), t ∈]0, T ]

where the two unknowns z∗ = bp(0) and η∗ are positive and constant. Each
function of this form corresponds to a possible exercise policy which is defined
as follows: to exercise the put as soon as the underlying process S reaches bp,z,η
before maturity, that is to say at time τ if τ < T , or at maturity if the put is
in the money and if τ � T . In this context, the put option value is given by
means of the previous computation:

PA(S0, T ) = sup
z,η

P η,z
expbar(S0, T )

and z∗, η∗ are the values of (z, η) which maximise this expression. By
simplifying further the option value, Omberg [686] obtains a weighted sum
of cumulative functions of the standard Gaussian law.

It is worthwhile mentioning that the above approximation is in reality
a lower bound for the put value, since an exponential exercise boundary is
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in general suboptimal. Indeed, for example, at maturity, it is known that the
exercise boundary is a non-differentiable function of time (the slope is infinite).
As shown in equation (3.11.7), the approximation of the exercise boundary
near to maturity is different from an exponential function of time. However,
as shown by Omberg, the level of accuracy obtained with this approximation
formula is high.

3.10 A Structural Approach to Default Risk

Credit risk, or default risk, concerns the case where a promised payoff is not
delivered if some event (the default) happens before the delivery date. The
default occurs at time τ where τ is a random variable.

In the structural approach, a default event is specified in terms of the
evolution of the firm’s assets. Given the value of the assets of the firm, the
aim is to deduce the value of corporate debt.

3.10.1 Merton’s Model

In this approach – pioneered by Merton [642] – the default occurs if the assets
of the firm are insufficient to meet payments on debt at maturity. The firm
is financed by the issue of bonds, and the face value L of the bonds must be
paid at time T . At time T , the bondholders will receive min(VT , L) where L
is the debt value and VT the value of the firm. Thus, writing

min(VT , L) = L− (L− VT )+

we are essentially dealing with an option pricing problem. Merton assumes
that the risk-neutral dynamics of the value of the firm are

dVt = Vt(rdt+ σdBt), V0 = v > L ,

where r is the (constant) risk-free interest rate, and σ is the constant volatility.
In that context, the contingent claim pricing methodology can be used: the
market where (Vt, t ≥ 0) is a tradeable asset is complete and arbitrage free,
the equivalent martingale measure is the historical one, hence the value of the
corporate bonds at time t is

E(e−r(T−t) min(VT , L)|Ft) = Le−r(T−t) − PE(t, Vt, L)

where PE(t, x, L) is the value at time t of a put option on the underlying V
with strike L and maturity T .

We denote by P (t, T ) = e−r(T−t) the value of a default-free zero-coupon
and by D(t, T ) the value of the defaultable zero-coupon of maturity T , with
payment L = 1, i.e.,

D(t, T ) = e−r(T−t)
E(1{VT >1} + VT1{VT <1}|Ft) .
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Then, from the valuation formula for the European put option

D(t, T ) = VtN (−d1(Vt, T − t)) + P (t, T )N (d2(Vt, T − t)) ,

where

d1(Vt, T − t) =
log(Vt) +

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

d2(Vt, T − t) =
log(Vt) +

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

.

We denote by

Y (t, T ) = − lnP (t, T )
T − t

,

and

Yd(t, T ) = − lnD(t, T )
T − t

,

the yield to maturity. The spread on corporate debt, i.e.,

S(t, T ) = Yd(t, T ) − Y (t, T )

is

S(t, T ) = − 1
T − t

ln
(

N (d2(Vt, t)) +
Vt

P (t, T )
N (−d1(Vt, t))

)

.

We can specify the probability of default given the information at date t: if
the dynamics of the firm are

dVt = Vt(μdt+ σdBt)

under the historical probability,

P(VT ≤ L|Ft) = N (−dt)

where now
dt =

1
σ
√
T − t

(
ln(Vt/L) + (μ− σ2/2)(T − t)

)

is the so-called distance-to-default.

Comment 3.10.1.1 Computation in the case where L is not assumed to
be equal to 1 can be found, e.g., in Bielecki and Rutkowski [99]. If the
default barrier is an exponential function, computations can be done using
the previous subsection. Results are given in Bielecki and Rutkowski [99].
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3.10.2 First Passage Time Models

Merton’s model does not allow for a premature default; Black and Cox [104]
extend Merton’s model to the case where safety covenants provide the firm’s
bondholders with the right to force the firm into bankruptcy and obtain the
ownership of the assets. They postulate that as soon as the firm’s asset cross
a lower threshold, the bondholders take over the firm. The safety convenant
takes the form of an exponential. In this subsection, the model is simplified.
We assume that the firm defaults when its value falls below a pre-specified
level, i.e.,

τ = TL(V ) = inf{t : Vt ≤ L},
where V0 ≥ L. In this case, the default time τ is a stopping time in the asset’s
filtration. The valuation of a defaultable claim X reduces to the problem of
pricing the claim X1{T<τ}. The valuation of the defaultable claim within the
structural approach is a standard problem which needs the knowledge of the
law of the pair (τ,X).

Let us assume that

dVt = Vt((r − δ)dt+ σdBt) ,

where δ stands for the dividend yield. The value of a defaultable T -maturity
bond with face value 1 and L ≤ 1 is D(t, T ) = P (t, T )E(1{T<τ}|Ft), i.e.,
using the results on hitting time of a barrier for a geometric BM (see
Exercise 3.3.1.2):

D(t, T ) = P (t, T )

(

N (b1(Vt, T − t)) −
[
L

Vt

]2νσ−2

N (b2(Vt, T − t))

)

where

b1(x, T − t) =
1

σ
√
T − t

(ln(x/L) + ν(T − t))

b2(x, T − t) =
1

σ
√
T − t

(ln(L/x) + ν(T − t)) .

Here, ν = r − δ − σ2/2.

We now assume that a rebate β is paid at default time when it occurs
before maturity. Assume that θ : = ν2 + 2σ2(r − δ) > 0. Then prior to the
company’s default (that is on the set {τ > t}) the price of a defaultable bond
equals

D(t, T ) = P (t, T )
(
N
(
b1(Vt, T − t)

)
− Z2νσ−2

t N
(
b2(Vt, T − t)

))

+ βVt
(
Zθσ−2+1+ζ
t N

(
b3(Vt, T − t)

)
+ Zθσ−2+1−ζ

t N
(
b4(Vt, T − t)

))
,

where Zt = L/Vt, ζ = σ−2
√
θ and
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b3(Vt, T − t) =
ln (L/Vt) + ζσ2(T − t)

σ
√
T − t

,

b4(Vt, T − t) =
ln (L/Vt) − ζσ2(T − t)

σ
√
T − t

.

The general formulae (for L different from 1 and with an exponential
barrier) can be obtained using results given in Subsection 3.9.3. See also
Bielecki et al. [91].

Extensions: Zhou’s Model

Zhou [877] studies the case where the dynamics of the firm’s value is

dVt = Vt− ((μ− λ c)dt+ σdWt + dXt)

whereW is a Brownian motion,X a compound Poisson process with the jumps
distributed as Y1 where lnY1 follows a Gaussian law with mean a and variance
b2, and c = exp(a + b2/2). This choice of parameters implies that Vteμt is a
martingale (see � Subsection 8.6.3). In the first part, Zhou studies Merton’s
problem in that setting. In the second part, he gives an approximation for the
law of the first passage if the default time is τ = inf{t : Vt ≤ L}.

Comment 3.10.2.1 Credit risk is presented in a more detailed form in
Bielecki and Rutkowski [99] and Schönbucher [765] . The reader can also
refer to the survey paper of Bielecki et al. [91]. See also � Chapter 7.

3.11 American Options

An American option gives its owner the right to exercise at any time τ between
the initial time and maturity (see Samuelson [757]1). We refer to Elliott and
Kopp [316] for a general presentation of American options and to Carr et al.
[154] for a decomposition of prices. McKean [635] was the first to exhibit the
relation between the evaluation problem and a free boundary problem.
1 We reproduce the following comments, from Jarrow and Protter [480]. This is

the paper that first coined the terms European and American options. According
to a private communication with R.C. Merton, prior to writing the paper, P.
Samuelson went to Wall Street to discuss options with industry professionals.
His Wall Street contact explained that there were two types of options available,
one more complex - that could be exercised any time prior to maturity, and one
more simple - that could be exercised only at the maturity date, and that only
the more sophisticated European mind (as opposed to the American mind) could
understand the former. In response, when Samuelson wrote the paper, he used
these as prefixes and reversed the ordering.
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Let us consider a currency (resp. a stock) and let us assume that its
dynamics under the risk-neutral probability Q, are given by the Garman-
Kohlhagen model:

dSt = St((r − δ)dt+ σdWt)

where (Wt, t ≥ 0) is a Q-Brownian motion, r and δ are the domestic and
foreign risk-free interest rates (resp. the risk-free interest rate and the dividend
rate) and σ is the currency volatility. These parameters are constant, σ is
strictly positive and at least one of the positive parameters r and δ is strictly
positive. We denote by CA(St, T − t) (resp. PA(St, T − t)) the time-t price of
an American call (resp. put) of maturity T and strike price K.

3.11.1 American Stock Options

Let us recall some well known facts on American options. The value of an
American call option (resp. put) of maturity T and strike K, is

CA(S0, T ) = sup
τ∈T (T )

EQ(e−rτ (Sτ −K)+) ,

(resp. supτ∈T (T ) EQ(e−rτ (K−Sτ )+)) where T (T ) is the set of stopping times
τ with values in [0, T ]. Obviously, the value of an American call is greater
than the value of a European call with same maturity and strike.

Lemma 3.11.1.1 The value of an American call is equal to the value of a
European call if the stock does not pay dividends before maturity (δ = 0).

Proof: Indeed, from the convexity of x → (x − Ke−rT )+, the martingale
property of the process (e−rtSt, t ≥ 0), and Jensen’s inequality, the process
((e−rtSt − Ke−rT )+, t ≥ 0) is a Q-submartingale. Hence, for any stopping
time τ bounded by T ,

EQ((e−rτSτ −Ke−rT )+) ≤ EQ(e−rT (ST −K)+) .

The inequality

EQ(e−rτ (Sτ −K)+) ≤ EQ((e−rτSτ −Ke−rT )+)

leads to supτ EQ(e−rτ (Sτ−K)+) ≤ EQ(e−rT (ST −K)+) and the result follows
(the reverse inequality is obvious). �

In the particular case of infinite maturity, an American option is called
perpetual. The value of a perpetual American call CA(x,∞) is x. Indeed, for
any t,

x− e−rtK ≤ EQ(e−rt(St −K)+) ≤ CA(x,∞) ≤ x

and the result follows when t goes to infinity. The limit of the value of a
European call maturity T , when T goes to infinity is also equal to x, as can
be seen from the Black-Scholes formula (see Theorem 2.3.2.1).
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Exercise 3.11.1.2 The payoff of a capitalized-strike American put option is
(Kert − St)+ if exercised at time t. Prove that the price of this option is the
price of a European put, with strike erTK. �

3.11.2 American Currency Options

The exercise boundaries are defined as follows. For an American currency call
(resp. put) of maturity T and for a given time t, t ∈ [0, T ],

{
bc(T − t) = inf {x ≥ 0 : x−K = CA(x, T − t)} ,
bp(T − t) = sup {x ≥ 0 : K − x = PA(x, T − t)} . (3.11.1)

The exercise boundary for the American call (resp. put) gives for each
time t before maturity the critical level at which the American option should
be exercised. In the continuation region, i.e., when the underlying asset value
is below (resp. above) the exercise boundary, the time value of the American
call is strictly positive. In the stopping region, i.e., when the underlying asset
value is above (resp. below) the exercise boundary, the time value is equal to
zero and therefore it is worthwhile to exercise the option. As we recalled, for
a non-dividend paying stock, it is never optimal to exercise the American call
option before maturity. The exercise boundary for the call is therefore infinite
before maturity. However, for currencies, it could be optimal to exercise the
American call option strictly before maturity, in order to invest at the foreign
interest rate instead of the domestic one. Hence, the exercise boundary given
by the equation (3.11.1) is finite when δ > 0.

By relying upon the proof of Proposition 2.7.1.1 for European options, the
PDE that the option price satisfies in the continuation region, is obtained and
is the same as in the European case:

σ2

2
x2 ∂

2CA

∂x2
(x, u)+(r−δ)x∂CA

∂x
(x, u)−rCA(x, u)− ∂CA

∂u
(x, u) = 0 . (3.11.2)

Proposition 3.11.2.1 The American currency call price satisfies the follow-
ing decomposition:

CA(St, T − t) = CE(St, T − t) + δSt

∫ T

t

e−δ(s−t)N (d1(St, bc(T − s), s− t))ds

− rK

∫ T

t

e−r(s−t)N (d2(St, bc(T − s), s− t))ds (3.11.3)

with

d1(x, y, u) =
ln(x/y) + (r − δ + σ2/2)u

σ
√
u

,

d2(x, y, u) = d1(x, y, u) − σ
√
u .
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Proof: Apply Itô’s lemma to the process S and the function

C̃(x, s) = e−r(s−t)CA(x, T − s)

on the interval [t, T ]. Then,

e−r(T−t)CA(ST , 0) = CA(St, T−t)+
∫ T

t

AC̃(Ss, s)ds+σ
∫ T

t

Ss
∂C̃

∂x
(Ss, s)dWs ,

(3.11.4)
where A is defined by:

A =
σ2

2
x2 ∂

2

∂x2
+ (r − δ)x

∂

∂x
+
∂

∂s
.

Now, in the continuation region the American call price satisfies the PDE
given in equation (3.11.2) and therefore AC̃(Ss, s) is equal to zero. In the
stopping region the American call is equal to its intrinsic value, and therefore,
for x > bc(s):

AC̃(x, s) = (r − δ)x+ r(K − x) = (rK − δx)1{x>bc(s)} . (3.11.5)

The last integral on the right-hand side of equation (3.11.4) is a martingale.
By applying the expectation operator to this equation and by relying on the
equality (3.11.5), we obtain

CA(St, T − t) = e−r(T−t)
EQ((ST −K)+|Ft)

−
∫ T

t

e−r(s−t)
EQ((rK − δSs)1{Ss>bc(T−s)}|Ft)ds .

From Subsection 2.7.1, where the Garman and Kohlhagen model was
derived, the decomposition given by equation (3.11.3) is obtained. �

Along the same lines, a decomposition for the put price can be derived .

Proposition 3.11.2.2 The American currency put price satisfies the follow-
ing decomposition:

PA(St, T − t) = PE(St, T − t)

+ rK

∫ T

t

e−r(s−t)N (−d2(Ss, bp(T − s), s− t))ds (3.11.6)

− δSt

∫ T

t

e−δ(s−t)N (−d1(Ss, bp(T − s), s− t))ds ,

with di given in Proposition 3.11.2.1 and bp the exercise boundary for the put
defined in (3.11.1).



3.11 American Options 195

By relying on Barles et al. [44] for non-dividend paying stock options (δ = 0),
an approximation of the American put exercise boundary near expiration T
can be given:

bp(T − t) ≈ K(1 − σ
√

(T − t) |ln(T − t)|) (3.11.7)

for t < T .
By substituting the results given by (3.11.7) into equation (3.11.6), an

approximation of the American put price is obtained, for small maturities.

3.11.3 Perpetual American Currency Options

PDE Approach

When the option’s maturity tends to infinity, the following ODE is obtained:

σ2

2
x2C ′′

A(x) + (r − δ)xC ′
A(x) − rCA(x) = 0 (3.11.8)

where now the following notation is used:

CA(x) = CA(x,+∞) .

We denote by L∗ the limit when T goes to infinity of the monotonic function
bc (see (3.11.1)). As seen later, L∗ is finite if δ > 0.

The general solution of the equation (3.11.8) is of the form a1x
γ1 + a2x

γ2

where γ1 and γ2 are the two roots of the polynomial

σ2

2
γ2 +

(

r − δ − σ2

2

)

γ − r (3.11.9)

which admits a positive and a negative root. The call price being an increasing
function of the exchange rate, only the positive root

γ1 =
−ν +

√
ν2 + 2r
σ

(3.11.10)

will be retained, and CA(x) = a1x
γ1 . It can be observed that γ1 > 1. Here ν

is defined (as in Section 3.3) by:

ν =
1
σ

(

r − δ − σ2

2

)

. (3.11.11)

(Note that if δ = 0, then γ1 = 1.) Now, the parameter a1 and the boundary
L∗ are obtained from the boundary conditions:

CA(L∗) = a1(L∗)γ1 = L∗ −K, C ′
A(L∗) = a1γ1(L∗)γ1−1 = 1

i.e., the option price and its derivative are continuous with respect to the
underlying asset value at the exercise boundary. The continuity of the
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derivative at the boundary is assumed (this last property is the smooth-
fit principle or smooth-pasting condition). It is not obvious that this property
holds, see Elliott and Kopp [316] p.203. Therefore

a1 =
L∗ −K

(L∗)γ1
, L∗ =

γ1

γ1 − 1
K ≥ K . (3.11.12)

It follows that, in the continuation region (for x < L∗), the perpetual
American call price is given by:

CA(x) = (L∗ −K)
( x
L∗

)γ1

.

By relying on equation (3.11.12)

CA(x) =
K

γ1 − 1
e
−γ1 ln

“

γ1K
γ1−1

”

xγ1 . (3.11.13)

In the stopping region, (for x ≥ L∗): CA(x) = x−K .

Martingale Approach

In order to derive the price of an American call, the martingale approach can
also be used. In this framework the option’s value is given by

CA(St) = sup
τ

EQ((Sτ −K)e−r(τ−t)|Ft) ,

where τ runs over all stopping times greater than t.
Let t = 0 and assume that the boundary is constant. By continuity of the

Brownian motion if S0 is in the continuation region (i.e., S0 is smaller than
the boundary):

CA(S0) = sup
L

[
(L−K)EQ(e−rTL)

]
(3.11.14)

where TL is the first passage time of the underlying asset value out of the
continuation region:

TL = inf {t ≥ 0 / St ≥ L} .

(See Elliott and Kopp, p. 196 [316] for a proof that it is possible to restrict
attention to that family of stopping times.) The optimal value L∗ is obtained
by equating the derivative of (L − K)EQ(e−rTL) with respect to L to zero,
hence

L∗ =
−EQ(e−rTL∗ )

[∂EQ(e−rTL)/∂L]L=L∗
+K . (3.11.15)

Therefore,

CA(S0) =
−
(
EQ(e−rTL∗ )

)2

[∂EQ(e−rTL)/∂L]L=L∗
. (3.11.16)
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Using equation (3.3.5), the Laplace transform of the hitting time TL is

EQ(e−rTL) = e
−(−ν+

√
ν2+2r)

1
σ

ln(L/S0)
= e−γ1 ln(L/S0) (3.11.17)

where the parameter γ1 is defined in (3.11.10). We can thus derive the value
of the exercise boundary from (3.11.15) which can be written L∗ = L∗

γ1
+K.

We get L∗ = γ1
γ1−1K ≥ K and by relying on equation (3.11.16), the solution

given by (3.11.13) is obtained.
The same procedure allows us to derive the put price as

PA(S0) = (K − L∗)
(
S0

L∗

)γ2

. (3.11.18)

and the exercise boundary for the perpetual American put is constant and
given by L∗ = γ2K/(γ2 − 1), where γ2 is the negative root of (3.11.9). Let us
remark that the put-call symmetry for American options (see Detemple [251])
can also be used:

PA(S0,K, r, δ) = CA(K,S0, δ, r) (3.11.19)

where option prices are now indexed by four arguments. This symmetry comes
basically from the fact that the right to sell a foreign currency corresponds
to the right to buy the domestic one, and can be proved from a change of
numéraire. Let us check that formulae (3.11.18) and (3.11.19) agree. The put-
call symmetry formula (3.11.19) implies that

PA(S0) = (!− S0)
(
K

!

)γ

where γ is the positive root of

σ2

2
γ2 +

(

δ − r − σ2

2

)

γ − δ = 0

and ! = γ
γ−1S0. Note that γ > 1 and 1 − γ satisfies

σ2

2
(1 − γ)2 +

(

r − δ − σ2

2

)

(1 − γ) − r = 0

hence 1 − γ = γ2, the negative root of (3.11.9). Now,

PA(S0) = (S0)1−γKγ(γ − 1)γ−1

(
1
γ

)γ

,

and the relation γ2 = 1 − γ yields

PA(S0) = (S0)γ2K1−γ2

(
1

−γ2

)γ2

(1 − γ2)γ2−1 ,

which is (3.11.18).
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By relying on the symmetrical relationship between American put and
call boundaries (see Carr and Chesney [147] , Detemple [251]) the perpetual
American put exercise boundary can also be obtained when T tends to
infinity:

bc(K, r, δ, T − t)bp(K, δ, r, T − t) = K2

where the exercise boundary is indexed by four arguments.

3.12 Real Options

Real options represent an important and relatively new trend in Finance
and often involve the use of hitting times. Therefore, this topic will be
briefly introduced in this chapter. In many circumstances, the standard NPV
(Net Present Value) approach could generate wrong answers to important
questions: “What are the relevant investments and when should the decision
to invest be made?”. This standard investment choice method consists of
computing the NPV, i.e., the expected sum of the discounted difference
between earnings and costs. Depending on the sign of the NPV, the criterion
recommends acceptance (if it is positive) or rejection (otherwise) of the
investment project. This approach is very simple and does not always model
the complexity of the investment choice problem. First of all, this method
presupposes that the earning and cost expectations can be estimated in a
reliable way. Thus, the uncertainty inherent to many investment projects
is not taken into account in an appropriate way. Secondly, this method is
very sensitive to the level of the discount rate and the estimation of the this
parameter is not always straightforward.

Finally, it is a static approach for a dynamical problem. Implicitly the
question is: “Should the investment be undertaken now, or never?” It neglects
the opportunity (one may use also the term option) to wait, in order to obtain
more information, and to make the decision to invest or not to invest in an
optimal way. In many circumstances, the timing aspects are not trivial and
require specific treatment. By relying on the concept of a financial option, and
more specifically on the concept of an American option (an optimal stopping
theory), the investment choice problem can be tackled in a more appropriate
way.

3.12.1 Optimal Entry with Stochastic Investment Costs

Mc Donald and Siegel’s model [634], which corresponds to one of the seminal
articles in the field of real options, is now briefly presented. As shown in their
paper, some real option problems can be more complex than usual option
pricing ones. They consider a firm with the following investment opportunity:
at any time t, the firm can pay Kt to install the investment project which
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generates a sum of expected discounted future net cash-flows denoted Vt. The
investment is irreversible. In their model, costs are stochastic and the maturity
is infinite. It corresponds, therefore, to an extension of the perpetual American
option pricing model with a stochastic strike price. See also Bellalah [68], Dixit
and Pindyck [254] and Trigeorgis [820].

Let us assume that, under the historical probability P, the dynamics of
V (resp. K), the project-expected sum of discounted positive (resp. negative)
instantaneous cash-flows (resp. costs) generated by the project- are given by:

{
dVt = Vt (α1dt+ σ1dWt)
dKt = Kt(α2dt+ σ2dBt) .

The two trends α1, α2, the two volatilities σ1 and σ2, the correlation coefficient
ρ of the two P-Brownian motions W and B, and the discount rate r, are
supposed to be constant. We also assume that r > αi, i = 1, 2.

If the investment date is t, the payoff of the real option is (Vt −Kt)+. At
time 0, the investment opportunity value is therefore given by

CRO(V0,K0) : = sup
τ∈T

EP(e−rτ (Vτ −Kτ )+)

= sup
τ∈T

EP

(

e−rτKτ

(
Vτ
Kτ

− 1
)+
)

where T is the set of stopping times, i.e, the set of possible investment dates.
Now, using that Kt = K0e

α2teσ2Bt− 1
2σ

2
2t, the same kind of change of

probability measure (change of numéraire) as in Subsection 2.7.2 leads to

CRO(V0,K0) = K0 sup
τ∈T

EQ

(

e−(r−α2)τ

(
Vτ
Kτ

− 1
)+
)

.

Here the probability measure Q is defined by its Radon-Nikodým derivative
with respect to P on the σ-algebra Ft = σ(Ws, Bs, s ≤ t) by

Q|Ft = exp
(

−σ
2
2

2
t+ σ2Bt

)

P|Ft .

The valuation of the investment opportunity then corresponds to that of a
perpetual American option. As in Subsection 2.7.2, the dynamics of X = V/K
are obtained

dXt/Xt = (α1 − α2)dt+ΣdŴt .

Here
Σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2

and (Ŵt, t ≥ 0) is a Q-Brownian motion. Therefore, from the results obtained
in Subsection 3.11.3 in the case of perpetual American option
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CRO(V0,K0) = K0(L∗ − 1)
(
V0/K0

L∗

)ε

(3.12.1)

with
L∗ =

ε

ε− 1
, (3.12.2)

and

ε =

√(
α1 − α2

Σ2
− 1

2

)2

+
2(r − α2)

Σ2
−
(
α1 − α2

Σ2
− 1

2

)

. (3.12.3)

Let us now assume that spanning holds, that is, in this context, that there
exist two assets perfectly correlated with V andK and with the same standard
deviation as V and K. We can then rely on risk neutrality, and discounting
at the risk-free rate.

Let us denote by α∗
1 and α∗

2 respectively the expected returns of assets 1
and 2 perfectly correlated respectively with V and K. Let us define δ1 and δ2
by

δ1 = α∗
1 − α1, δ2 = α∗

2 − α2

These parameters play the rôle of the dividend yields in the exchange
option context (see Section 2.7.2), and are constant in this framework (see
Gibson and Schwartz [391] for stochastic convenience yields). The quantity
δ1 is an opportunity cost of delaying the investment and keeping the option
to invest alive and δ2 is an opportunity cost saved by differing installation.
The trends r − δ1 (i.e., α1 minus the risk premium associated with V which
is equal to α∗

1 − r) and r − δ2 (equal to α2 − (α∗
2 − r)) should now be used

instead of the trends α1 and α2, respectively. In this setting, r is the risk-
free rate. Thus, equations (3.12.1) and (3.12.2) still give the solution, but
with

ε =

√(
δ2 − δ1
Σ2

− 1
2

)2

+
2δ2
Σ2

−
(
δ2 − δ1
Σ2

− 1
2

)

(3.12.4)

instead of equation (3.12.3). In the neo-classical framework it is optimal to
invest if expected discounted earnings are higher than expected discounted
costs, i.e., if Xt is higher than 1. When the risk is appropriately taken into
account, the optimal time to invest is the first passage time of the process
(Xt, t ≥ 0) for a level L∗ strictly greater than 1, as shown in equation (3.12.2).

As seen above, in the real option framework usually different stochastic
processes are involved (see also, for example, Loubergé et al. [604]). Results
obtained by Hu and Øksendal [447] and Villeneuve [829], who consider the
American option valuation with several underlyings, can therefore be very
useful.
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3.12.2 Optimal Entry in the Presence of Competition

If instead of a monopolistic situation, competition is introduced, by relying
on Lambrecht and Perraudin [561], the value of the investment opportunity
can be derived. Let us assume that the discounted sum Kt of instantaneous
cost is now constant.

Two firms are involved. Only the first one behaves strategically. Both
are potentially willing to invest a sum K in the same investment project.
They consider only this investment project. The decision to invest is supposed
to be irreversible and can be made at any time. Hence the real option is a
perpetual American option. The investors are risk-neutral. Let us denote by
r the constant interest rate. In this risk-neutral economy, the dynamics of S,
the instantaneous cash-flows generated by the investment project, are given
by

dSt = St(αdt+ σdWt) .

Let us define V as the expected sum of positive instantaneous cash-flows
S. The processes V and S have the same dynamics. Indeed, for r > α :

Vt = E

(∫ ∞

t

e−r(u−t)Sudu|Ft

)

= ert
∫ ∞

t

e−(r−α)u
E(e−αuSu|Ft)du

= ert
∫ ∞

t

e−(r−α)ue−αtStdu =
St
r − α

.

In this model, the authors assume that firm 1 (resp. 2) completely loses
the option to invest if firm 2 (resp. 1) invests first, and therefore considers the
investment decision of a firm threatened by preemption.

Firm 1 behaves strategically in an incomplete information setting. This
firm conjectures that firm 2 will invest when the underlying value reaches
some level L∗

2 and that L∗
2 is an independent draw from a distribution G. The

authors assume that G has a continuously differentiable density g = G′ with
support in the interval [LD

2 , L
U
2 ]. The uncertainty in the investment level of

the competitor comes from the fact that this level depends on competitor’s
investment costs which are not known with certainty and therefore only
conjectured.

The structure of learning implied by the model is the following. Since firm
2 invests only when the underlying S hits for the first time the threshold L∗

2,
firm 1 learns about firm 2 only when the underlying reaches a new supremum.
Indeed, in this case, there are two possibilities. Firm 2 can either invest and
firm 1 learns that the trigger level is the current St, but it is too late to invest
for firm 1, or wait and firm 1 learns that L∗

2 lies in a smaller interval than it
has previously known, i.e., in [Mt, L

U
2 ], where Mt is the supremum at time t:

Mt = sup0≤u≤t Su.
In this context, firm 1 behaves strategically, in that it looks for the optimal

exercise level L∗
1, i.e., the trigger value which maximizes the conditional
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expectation of the discounted realized payoff. Indeed, the value CS to firm
1, the strategic firm, is therefore

CS(St,Mt) = sup
L

(
L

r − α
−K

)

E

(
e−r(TL−t)1{L∗

2>L}|Ft ∨ (L∗
2 > Mt)

)

where the stopping time TL is the first passage time of the process S for level
L after time t:

TL = inf{u � t, Su � L} .

The payoff is realized only if the competitor is preempted, i.e., if L∗
2 > L.

If Mt > LD
2 , the value to the firm depends not only on the instantaneous

value St of the underlying, but also on Mt which represents the knowledge
accumulated by firm 1 about firm 2: the fact that up until time t, firm 1 was
not preempted by firm 2, i.e., L∗

2 > Mt > LD
2 . If Mt ≤ LD

2 , the knowledge of
Mt does not represent any worthwhile information and therefore

CS(St,Mt) = sup
L

(
L

r − α
−K

)

E(e−r(TL−t)1{L∗
2>L}|Ft), if Mt ≤ LD

2 .

From now on, let us assume that Mt > LD
2 . Hence, by independence between

the r.v. L∗
2 and the stopping time TL = inf{t � 0 : St � L}

CS(St,Mt) = sup
L

(CNS(St, L)P(L∗
2 > L | L∗

2 > Mt)) ,

where the value of the non strategic firm CNS(St, L) is obtained by relying on
equation (3.11.17):

CNS(St, L) =
(

L

r − α
−K

)(
St
L

)γ

,

and from equations (3.11.10–3.11.11) γ = −ν+
√

2r+ν2

σ > 0 and ν = α−σ2/2
σ .

Now, in the specific case where the lower boundary LD
2 is higher than the

optimal trigger value in the monopolistic case, the solution is known:

CS(St,Mt) = CNS

(

St,
γ

γ − 1
(r − α)K

)

, if LD
2 � γ

γ − 1
(r − α)K .

Indeed, in this case the presence of the competition does not induce any change
in the strategy of firm 1. It cannot be preempted, because the production costs
of firm 2 are too high.

In the general case, when LD
2 < γ

γ−1 (r−α)K and (r−α)K < LU
2 (otherwise

the competitor will always preempt), knowing that potential candidates for
L∗

1 are higher than Mt:

CS(St,Mt) = sup
L

(
L

r − α
−K

)(
St
L

)γ
P(L∗

2 > L)
P(L∗

2 > Mt)
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i.e.,

CS(St,Mt) = sup
L

((
L

r − α
−K

)(
St
L

)γ 1 −G(L)
1 −G(Mt)

)

.

This optimization problem implies the following result. L∗
1 is the solution of

the equation

x =
γ + h(x)

γ − 1 + h(x)
(r − α)K

with

h(x) =
xg(x)

1 −G(x)
.

The function: y → γ+y
γ−1+y is decreasing, hence the trigger level is smaller in

presence of competition than in the monopolistic case:

L∗
1 <

γ

γ − 1
(r − α)K .

Indeed, the threat of preemption generates incentives to invest earlier than in
the monopolist case.

The value to firm 1 is

CS(St,Mt) =
(

L∗
1

r − α
−K

)(
St
L∗

1

)γ 1 −G(L∗
1)

1 −G(Mt)
.

Let us now consider a specific case. If L∗
2 is uniformly distributed on the

interval [LD
2 , L

U
2 ], then:

CS(St,Mt) = sup
L

[(
L

r − α
−K

)(
St
L

)γ (LU
2 − L)/(LU

2 − LD
2 )

(LU
2 −Mt)/(LU

2 − LD
2 )

]

= sup
L

[(
L

r − α
−K

)(
St
L

)γ
LU

2 − L

LU
2 −Mt

]

.

In this case

h(x) =
x/(LU

2 − LD
2 )

(LU
2 − x)/(LU

2 − LD
2 )

=
x

LU
2 − x

and L∗
1 satisfies

x =
γ + x

LU
2 −x

γ − 1 + x
LU

2 −x

(r − α)K

i.e.,
(γ − 2)x2 + (1 − γ)(LU

2 + (r − α)K)x+ γ(r − α)KLU
2 = 0 .

Hence, for γ = 2

L∗
1 =

(γ − 1)(LU
2 + (r − α)K) +

√
Δ

2(γ − 2)
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with

Δ = (1 − γ)2(LU
2 + (r − α)K)2 − 4(γ − 2)γ(r − α)KLU

2

= (LU
2 − (r − α)K)2γ2 − 2(LU

2 − (r − α)K)2γ + (LU
2 + (r − α)K)2 .

It is straightforward to show that this discriminant is positive for any γ and
therefore that L∗

1 is well defined. For γ = 2, L∗
1 = 2(r−α)KLU

2
LU

2 +(r−α)K
.

3.12.3 Optimal Entry and Optimal Exit

Let us now modify the model of Lambrecht and Perraudin [561] as follows.
There is no competition; the decision to invest is no longer irreversible;
however, the decision to disinvest is irreversible and can be made at any
time after the decision to invest has been taken. There are entry costs Ki and
exit costs Kd.

Therefore, there are two embedded perpetual American options in such
a model: First an American call that corresponds to the investment decision
and a put that corresponds to the disinvestment decision.

The value to the firm VF , at initial time is therefore

VF (S0) = sup
Li,Ld

(
φ(Li)E(e−rTLi ) + ψ(Ld)E(e−rTLd )

)

where

φ(!) =
!

r − α
−K −Ki

ψ(!) = K − !

r − α
−Kd

and where the stopping times TLi and TLd
correspond respectively to the first

passage time of the process S at level Li (investment) and to the first passage
time of the process S at level Ld, after TLi (disinvestment):

TLi = inf{t ≥ 0, St ≥ Li}
TLd

= inf{t ≥ TLi , St ≤ Ld} .

Indeed, the right to disinvest gives an additional value to the firm. In case of
a decline of the underlying process S, for example at level Ld, by paying Kd,
the firm has the right to avoid the expected discounted losses at this level:
Ld

r−α −K.
Hence, from Markov’s property:

VF (S0) = sup
Li,Ld

E(e−rTLi )
(
φ(Li) + ψ(Ld)E(e−r(TLd

−TLi
))
)
.

From Subsection 3.11.3, one gets
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VF (S0) = sup
Li,Ld

(
S0

Li

)γ1
[

φ(Li) + ψ(Ld)
(
Li

Ld

)γ2
]

with

γ1 =
−ν +

√
2r + ν2

σ
≥ 0, γ2 =

−ν −
√

2r + ν2

σ
≤ 0

and again

ν =
α− σ2/2

σ
.

This optimization problem yields

L∗
d =

γ2

γ2 − 1
(r − α)(K −Kd) < (r − α)(K −Kd)

which corresponds to the standard exercise boundary of the perpetual put
(see Subsection 3.11.3). It is a decreasing function of the exit cost Kd. Indeed,
if this cost increases, there is less incentive to disinvest. The quantity L∗

i is a
solution of

x =
γ1

γ1 − 1
(r − α)(K +Ki) −

γ1 − γ2

γ1 − 1

(
x

L∗
d

)γ2

((r − α)(K −Kd) − L∗
d)

hence,
L∗
i ≤ γ1

γ1 − 1
(r − α)(K +Ki)

i.e., the possibility to disinvest gives to the firm incentives to invest earlier
than in the irreversible investment case.

The value to the firm is therefore

VF (S0) =
(
S0

L∗
i

)γ1
[

φ(L∗
i ) + ψ(L∗

d)
(
L∗
i

L∗
d

)γ2
]

.

3.12.4 Optimal Exit and Optimal Entry in the Presence of
Competition

Let us now assume that the firm has already invested and is in a monopolistic
situation. It has the opportunity to disinvest. The decision to disinvest is not
irreversible. However, even if the firm has the option to invest again after
the decision to quit has been made, the monopolistic situation will be over:
the firm will face competition. In this case, the firm will be threatened by
preemption and the Lambrecht and Perraudin [561] setting will be used. There
are exit costs Kd and entry costs Ki. Let us use the previous notation.

By relying on the last subsections the value VF (St) to the firm is

Vt −K + sup
Ld,Li

[
ψ(Ld)E(e−r(TLd

−t)|Ft) + φ(Li)E(e−r(TLi
−t)1L∗

2>Li |Ft)
]

i.e., setting t = 0,
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VF (S0) = V0 −K + sup
Ld,Li

(
S0

Ld

)γ2
[

ψ(Ld) + φ(Li)
(
Ld

Li

)γ1

(1 −G(Li))
]

.

Indeed, if firm 1 cannot disinvest, its value is V0 − K; however if it has the
opportunity to disinvest, it adds value to the firm. Furthermore, if firm 1
decides to disinvest, as long as it is not preempted by the competition, it has
the opportunity to invest again. This explains the last term on the right-hand
side: the maximization of the discounted payoff generated by a perpetual
American put and by a perpetual American call times the probability of
avoiding preemption.

Let us remark that the value to the firm does not depend on the supremum
Mt of the underlying. As long as it is active, firm 1 does not accumulate
any knowledge about firm 2. The supremum Mt no longer represents the
knowledge accumulated by firm 1 about firm 2. Even if Mt > LD

2 , it does not
mean that: L∗

2 � Mt > LD
2 . While firm 1 does not disinvest, the knowledge

of Mt does not represent any worthwhile information because firm 2 cannot
invest.

This optimization problem generates the following result. L∗
i is the solution

of the equation:

x =
γ1 + h(x)

γ1 − 1 + h(x)
(r − α)K

with

h(x) =
xg(x)

1 −G(x)
,

and L∗
d is the solution z of the equation

z =
γ2

γ2 − 1
(r−α)(K−Kd)+

γ1 − γ2

1 − γ2

(
z

L∗
i

)γ1

(L∗
i−(r−α)(K+Ki))(1−G(L∗

i )) .

The value to the firm is therefore:

VF (S0) = V0 −K +
(
S0

L∗
d

)γ2
[

ψ(L∗
d) + φ(L∗

i )
(
L∗
d

L∗
i

)γ1

(1 −G(L∗
i ))
]

.

A good reference concerning optimal investment and disinvestment deci-
sions, with or without lags, is Gauthier [376].

3.12.5 Optimal Entry and Exit Decisions

Let us keep the notation of the preceding subsections and still assume risk
neutrality. Furthermore, let us assume now that there is no competition.
Hence, we can restrict the discussion to only one firm. If at the initial time
the firm has not yet invested, it has the possibility of investing at a cost Ki at
any time and of disinvesting later at a cost Kd. The number of investment and
disinvestment dates is not bounded. After each investment date the option to
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disinvest is activated and after each disinvestment date, the option to invest
is activated.

Therefore, depending on the last decision of the firm before time t (to
invest or to disinvest), there are two possible states for the firm: active or
inactive.

In this context, the following theorem gives the values to the firm in these
states.

Theorem 3.12.5.1 Assume that in the risk-neutral economy, the dynamics
of S, the instantaneous cash-flows generated by the investment project, are
given by:

dSt = St(αdt+ σdWt) .

Assume further that the discounted sum of instantaneous investment cost K
is constant and that α < r where r is the risk-free interest rate.

If the firm is inactive, i.e., if its last decision was to disinvest, its value is

VFd(St) =
1

γ1 − γ2

(
St
L∗
i

)γ1
(

L∗
i

r − α
− γ2φ(L∗

i )
)

.

If the firm is active, i.e., if its last decision was to invest, its value is

VFi(St) =
1

γ1 − γ2

(
St
L∗
d

)γ2
(

L∗
d

r − α
+ γ1ψ(L∗

d)
)

+
St
r − α

−K .

Here, the optimal entry and exit thresholds, L∗
i and L∗

d are solutions of the
following set of equations with unknowns (x, y)

1 − (y/x)γ1−γ2

γ1 − γ2

(

γ1Ki − γ2

(
x

r − α
−K

)

+
x

r − α

)

= ψ(y)
(
x

y

)γ2

−Ki

(y
x

)γ1−γ2

+
x

r − α
−K

1 − (y/x)γ1−γ2

γ1 − γ2

(
y

r − α
+ γ2ψ(y)

)

= φ(x)
(y
x

)γ1

+ ψ(y)
(y
x

)γ1−γ2

with

γ1 =
−ν +

√
2r + ν2

σ
≥ 0, γ2 =

−ν −
√

2r + ν2

σ
≤ 0

and

ν =
α− σ2/2

σ
.

In the specific case where Ki = Kd = 0, the optimal thresholds are

L∗
i = L∗

d = (r − α)K .
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Proof: In the inactive state, the value of the firm is

VFd(St) = sup
Li

E

(
e−r(TLi

−t)(VFi(STLi
) −Ki)|Ft

)

where TLi is the first passage time of the process S, after time t, for the
possible investment boundary Li

TLi = inf{u ≥ t, Su ≥ Li}

i.e., by continuity of the underlying process S:

VFd(St) = sup
Li

E

(
e−r(TLi

−t)(VFi(Li) −Ki)|Ft

)
.

Along the same lines:

VFi(St) = sup
Ld

E

(
e−r(TLd

−t) (VFd(Ld) + ψ(Ld)) |Ft

)
+

St
r − α

−K

where TLd
is the first passage time of the process S, after time t, for the

possible disinvestment boundary Ld

TLd
= inf{u ≥ t, Su ≤ Ld} .

Indeed, at a given time t, without exit options, the value to the active firm
would be St

r−α − K. However, by paying Kd, it has the option to disinvest
for example at level Ld. At this level, the value to the firm is VFd(Ld) plus
the value of the option to quit K − Ld

r−α (the put option corresponding to the
avoided losses minus the cost Kd).

Therefore
VFd(St) = sup

Li

fd(Li) (3.12.5)

where the function fd is defined by

fd(x) =
(
St
x

)γ1

(VFi(x) −Ki) (3.12.6)

where
VFi(St) = sup

Ld

fi(Ld) (3.12.7)

and

fi(x) =
(
St
x

)γ2

(VFd(x) + ψ(Ld)) +
St
r − α

−K . (3.12.8)

Let us denote by L∗
i and L∗

d the optimal trigger values, i.e., the values which
maximize the functions fd and fi. An inactive (resp. active) firm will find it
optimal to remain in this state as long as the underlying value S remains below
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L∗
i (resp. above L∗

d) and will invest (resp. disinvest) as soon as S reaches L∗
i

(resp. L∗
d).

By setting St equal to L∗
d in equation (3.12.5) and to L∗

i in equation
(3.12.7), the following equations are obtained:

VFd(L∗
d) =

(
L∗
d

L∗
i

)γ1

(VFi(L∗
i ) −Ki) ,

VFi(L∗
i ) =

(
L∗
i

L∗
d

)γ2

(VFd(L∗
d) + ψ(L∗

d)) +
L∗
i

r − α
−K .

The two unknowns VFd(L∗
d) and VFi(L∗

i ) satisfy:
(

1 −
(
L∗
d

L∗
i

)γ1−γ2
)

VFd(L∗
d) = φ(L∗

i )
(
L∗
d

L∗
i

)γ1

+ ψ(L∗
d)
(
L∗
d

L∗
i

)γ1−γ2

(3.12.9)

(

1 −
(
L∗
d

L∗
i

)γ1−γ2
)

VFi(L∗
i ) = ψ(L∗

d)
(
L∗
i

L∗
d

)γ2

−Ki

(
L∗
d

L∗
i

)γ1−γ2

+
L∗
i

r − α
−K . (3.12.10)

Let us now derive the thresholds L∗
d and L∗

i required in order to obtain
the value to the firm. From equation (3.12.8)

∂fi
∂x

(Ld) =
(
St
Ld

)γ2
(

− γ2

Ld
(VFd(Ld) + ψ(Ld)) +

dVFd
dx

(Ld) −
1

r − α

)

and from equation (3.12.6)

∂fd
∂x

(Li) =
(
St
Li

)γ1
(

−γ1

Li
(VFi(Li) −Ki) +

dVFi
dx

(Li)
)

.

Therefore the equation ∂fi

∂x (Ld) = 0 is equivalent to

γ2

L∗
d

(VFd(L∗
d) + ψ(L∗

d)) =
dVFd
dx

(L∗
d) −

1
r − α

or, from equations (3.12.5) and (3.12.6):

γ2

L∗
d

(VFd(L∗
d) + ψ(L∗

d)) =
γ1

L∗
d

VFd(L∗
d) −

1
r − α

i.e.,

VFd(L∗
d) =

1
γ1 − γ2

(
L∗
d

r − α
+ γ2ψ(L∗

d)
)

. (3.12.11)

Moreover, the equation
∂fd
∂x

(Li) = 0
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is equivalent to
γ1

Li
(VFi(L∗

i ) −Ki) =
dVFi
dx

(L∗
i )

i.e, by relying on equations (3.12.7) and (3.12.8)

γ1

Li
(VFi(L∗

i ) −Ki) =
γ2

Li

(

VFi(L∗
i ) −

(
L∗
i

r − α
−K

))

+
1

r − α

i.e.,

VFi(L∗
i ) =

1
γ1 − γ2

(

γ1Ki − γ2

(
L∗
i

r − α
−K

)

+
L∗
i

r − α

)

. (3.12.12)

Therefore, by substituting VFd(L∗
d) and VFi(L∗

i ), obtained in (3.12.11) and
(3.12.12) respectively in equations (3.12.7) and (3.12.5), the values to the firm
in the active and inactive states are derived.

Finally, by substituting in (3.12.9) the value of VFd(L∗
d) obtained in

(3.12.11) and in (3.12.10) the value of VFi(L∗
i ) obtained in (3.12.12), a set

of two equations is derived. This set admits L∗
i and L∗

d as solutions.
In the specific case where Ki = Kd = 0, from (3.12.9) and (3.12.10) the

investment and abandonment thresholds satisfy L∗
i = L∗

d. However we know
that the investment threshold is higher than the investment cost and that the
abandonment threshold is smaller L∗

i ≥ (r − α)K ≥ L∗
d. Thus

L∗
i = L∗

d = (r − α)K ,

and the theorem is proved.
By relying on a differential equation approach, Dixit [253] (and also Dixit

and Pyndick [254]) solve the same problem (see also Brennan and Schwartz
[127] for the evaluation of mining projects). The value-matching and smooth
pasting conditions at investment and abandonment thresholds generate a set
of four equations, which in our notation is

VFi(L∗
d) − VFd(L∗

d) = −Kd

VFi(L∗
i ) − VFd(L∗

i ) = Ki

dVFi
dx

(L∗
d) −

dVFd
dx

(L∗
d) = 0

dVFi
dx

(L∗
i ) −

dVFd
dx

(L∗
i ) = 0 .

In the probabilistic approach developed in this subsection, the first two
equations correspond respectively to (3.12.7) for St = L∗

d and to (3.12.5) for
St = L∗

i .
The last two equations are obtained from the set of equations (3.12.5)

to (3.12.8).
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Complements on Brownian Motion

In the first part of this chapter, we present the definition of local time and
the associated Tanaka formulae, first for Brownian motion, then for more
general continuous semi-martingales. In the second part, we give definitions
and basic properties of Brownian bridges and Brownian meander. This is
motivated by the fact that, in order to study complex derivative instruments,
such as passport options or Parisian options, some knowledge of local times,
bridges and excursions with respect to BM in particular and more generally for
diffusions, is useful. We give some applications to exotic options, in particular
to Parisian options.

The main mathematical references on these topics are Chung and Williams
[186], Kallenberg [505], Karatzas and Shreve [513], [RY], Rogers and Williams
[742] and Yor [864, 867, 868].

4.1 Local Time

4.1.1 A Stochastic Fubini Theorem

Let X be a semi-martingale on a filtered probability space (Ω,F ,F,P), μ a
bounded measure on R, and H, defined on R

+ × Ω × R, a P ⊗ B bounded
measurable map, where P is the F-predictable σ-algebra. Then

∫ t

0

dXs

(∫
μ(da)H(s, ω, a)

)

=
∫
μ(da)

(∫ t

0

dXsH(s, ω, a)
)

.

More precisely, both sides are well defined and are equal.
This result can be proven for H(s, ω, a) = h(s, ω)ϕ(a), then for a general

H as above by applying the MCT. We leave the details to the reader.

4.1.2 Occupation Time Formula

Theorem 4.1.2.1 (Occupation Time Formula.) Let B be a one-dimen-
sional Brownian motion. There exists a family of increasing processes, the

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 4,
c© Springer-Verlag London Limited 2009
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local times of B, (Lx
t , t ≥ 0; x ∈ R), which may be taken jointly continuous in

(x, t), such that, for every Borel bounded function f

∫ t

0

f(Bs) ds =
∫ +∞

−∞
Lx
t f(x) dx . (4.1.1)

In particular, for every t and for every Borel set A, the Brownian occupation
time of A between 0 and t satisfies

ν(t, A) : =
∫ t

0

1{Bs∈A} ds =
∫ ∞

−∞
1A(x)Lx

t dx . (4.1.2)

Proof: To prove Theorem 4.1.2.1, we consider the left-hand side of the
equality (4.1.1) as “originating” from the second order correction term in
Itô’s formula. Here are the details.

Let us assume that f is a continuous function with compact support. Let

F (x) : =
∫ x

−∞
dz

∫ z

−∞
dyf(y) =

∫ ∞

−∞
(x− y)+f(y)dy .

Consequently, F is C2 and F ′(x) =
∫ x
−∞ f(y) dy =

∫∞
−∞ f(y)1{x>y} dy. Itô’s

formula applied to F and the stochastic Fubini theorem yield
∫ ∞

−∞
(Bt − y)+f(y)dy =

∫ ∞

−∞
(B0 − y)+f(y)dy +

∫ ∞

−∞
dyf(y)

∫ t

0

1{Bs>y}dBs

+
1
2

∫ t

0

f(Bs)ds .

Therefore

1
2

∫ t

0

f(Bs)ds =
∫ ∞

−∞
dyf(y)

(

(Bt − y)+ − (B0 − y)+ −
∫ t

0

1{Bs>y}dBs

)

(4.1.3)
and formula (4.1.1) is obtained by setting

1
2
Ly
t = (Bt − y)+ − (B0 − y)+ −

∫ t

0

1{Bs>y}dBs . (4.1.4)

Furthermore, it may be proven from (4.1.4), with the help of Kolmogorov’s
continuity criterion (see Theorem 1.1.10.6), that Ly

t may be chosen jointly
continuous with respect to the two variables y and t (see [RY], Chapter VI
for a detailed proof). �

Had we started from G′(x) = −
∫∞
x
f(y) dy = −

∫∞
−∞ f(y)1{x<y} dy, we

would have obtained the following occupation time formula
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∫ t

0

f(Bs) ds =
∫ ∞

−∞
L̃y
t f(y)dy , (4.1.5)

with
1
2
L̃y
t = (Bt − y)− − (B0 − y)− +

∫ t

0

1{Bs<y}dBs .

Therefore,

(Bt − y)− = (B0 − y)− −
∫ t

0

1{Bs<y}dBs +
1
2
L̃y
t .

Note that Ly
t − L̃y

t = Bt −B0 −
∫ t
0

1{Bs �=y}dBs = 2
∫ t

0

dBs1{Bs=y}, hence

(Bt − y)− = (B0 − y)− −
∫ t

0

1{Bs≤y}dBs +
1
2
Ly
t .

Furthermore, the integral
∫ t

0

dBs1{Bs=y} is equal to 0, because its second

order moment is equal to 0; indeed:

E

(∫ t

0

dBs1{Bs=y}

)2

=
∫ t

0

P(Bs = y)ds = 0 .

Hence, Ly = L̃y.

Comments 4.1.2.2 (a) In the occupation time formula (4.1.1), the time t
may be replaced by any random time τ .

(b) The concept and several constructions (different from the above) of
local time in the case of Brownian motion are due to Lévy [585].

(c) Existence of local times for Markov processes whose points are regular
for themselves is developed in Blumenthal and Getoor [107]. Occupation
densities for general stochastic processes are discussed in Geman and Horowitz
[377]. Local times for diffusions are presented in � Section 5.5 and in Borodin
and Salminen [109].

(d) Continuity results for Brownian local times are due to Trotter [821],
and many results can be found in the collective book [37].

4.1.3 An Approximation of Local Time

The quantity Lx
t is called the local time of the Brownian motion at level x

between 0 and t. From (4.1.1), we obtain the equality

Lx
t = lim

ε→0

1
2ε

∫ t

0

1[x−ε,x+ε](Bs) ds ,
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where the limit holds a.s.. It can also be shown that it holds in L2. This
approximation shows in particular that (Lx

t , t ≥ 0), the local time at level
x, is an increasing process. An important property (see [RY], Chapter VI) is
that, for fixed x, the support of the random measure dLx

t is precisely the set
{t ≥ 0 : Bt = x}. In other words, for x = 0, say, the local time (at level 0)
increases only on the set of zeros of the Brownian motion B. In particular

∫ t

0

f(Bs)dL0
s = f(0)L0

t .

Exercise 4.1.3.1 Let H be a measurable map defined on R
+×Ω×R. Prove

that, for any random time τ ,
∫ τ

0

H(s, ω,Bs)ds =
∫ ∞

−∞
dx

∫ τ

0

H(s, ω, x) dsLx
s ,

where the notation dsLx
s makes precise that x is fixed and the measure dsLx

s

is on R
+,B(R+). �

4.1.4 Local Times for Semi-martingales

The same approach can be applied to continuous semi-martingales X (see
� Subsection 4.1.8). In this case, the two quantities L and L̃ obtained from
equations (4.1.4) and (4.1.5) where B is changed to X can be different, and
the continuity property does not necessarily hold. There are also different
definitions of local time, the reader is referred to � Section 5.5.

4.1.5 Tanaka’s Formula

Tanaka’s formulae are variants of Itô’s formula for the absolute value and the
positive and negative parts of a BM.

Proposition 4.1.5.1 (Tanaka’s Formulae.) Let B be a Brownian motion
and Lx

t its local time at level x between 0 and t. For every t,

(Bt − x)+ = (B0 − x)+ +
∫ t

0

1{Bs>x} dBs +
1
2
Lx
t (4.1.6)

(Bt − x)− = (B0 − x)− −
∫ t

0

1{Bs≤x} dBs +
1
2
Lx
t (4.1.7)
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|Bt − x| = |B0 − x| +
∫ t

0

sgn (Bs − x) dBs + Lx
t (4.1.8)

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x ≤ 0.

Proof: The first two formulae follow directly from the definition. The last
equality is obtained by summing term by term the two previous ones. �

Comment 4.1.5.2 If Itô’s formula could be applied to |B|, without taking
care of the discontinuity at 0 of the derivative of |x|, then arguing that BM
spends Lebesgue measure zero time in a given state, one would obtain the
equality of |Bt| and

∫ t
0

sgn (Bs) dBs. This is obviously absurd, since |Bt|
is positive and

∫ t
0

sgn (Bs) dBs is a centered variable. Indeed, the process
(
∫ t
0

sgn (Bs) dBs, t ≥ 0) is a Brownian motion, see Example 1.4.1.5. Therefore,
the local time spent at level 0 by the original Brownian motion B is quite
meaningful, in that Tanaka’s formulae are expressions of the Doob-Meyer
decomposition of the sub-martingales (Bt − x)+ and |Bt − x| where 1

2L
x
t and

Lx
t are the corresponding increasing processes.

More generally, Tanaka’s formulae may be extended to develop f(Bt) as a
semi-martingale when f is locally the difference of two convex functions:

f(Bt) = f(B0) +
∫ t

0

(D−f)(Bs) dBs +
1
2

∫

R

La
t f

′′(da) (4.1.9)

where D−f is the left derivative of f and f ′′ is the second derivative in the
distribution sense, meaning

∫
f ′′(da)g(a) =

∫
f(a)g′′(a)da

for any twice differentiable function g with compact support.
Note that if f is a C1 function, and is also C2 on R \ {a1, . . . , an}, for a

finite number of points (ai, i = 1, . . . , n),

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

g(Bs)ds

where g(x)dx is the second derivative of f in the distribution sense. In that
case, there is no local time apparent in the formula.

More generally, if f is locally a difference of two convex functions, which
is C2 on R \ {a1, . . . , an}, then

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

g(Bs)ds+
1
2

n∑

i=1

Lai
t (f ′(a+

i )− f(a−i )) .
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Warning 4.1.5.3 Some authors (e.g., Karatzas and Shreve [513]) choose a
different normalization of local times starting from the occupation formula.
Hence in their version of Tanaka’s formulae, a coefficient other than 1/2
appears. These different conventions should be considered with care as they
may be a source of errors. On the other hand, the most common choice is the
coefficient 1/2, which allows the extension of Itô’s formula as in (4.1.9).

Comment 4.1.5.4 If B is a Brownian motion, a necessary and sufficient
condition for f(B) to be a semi-martingale is that f is locally a difference of
two convex functions. In [179], Chitashvili and Mania describe the functions
f(t, x) such that (f(t, Bt), t ≥ 0) is a semi-martingale. See also Chitashvili
and Mania [178], Çinlar et al. [189], Föllmer et al. [349], Kunita [546] and
Wang [834] for different generalizations of Itô’s formula.

Exercise 4.1.5.5 Scaling Properties of the Local Time. Prove that for
any λ > 0,

(Lx
λ2t; x, t ≥ 0) law= (λLx/λ

t ; x, t ≥ 0) .

In particular, the following equality in law holds true

(L0
λ2t, t ≥ 0) law= (λL0

t , t ≥ 0) . �

Exercise 4.1.5.6 Let τ� = inf{t > 0 : L0
t > !}. Prove that

P(∀! ≥ 0, Bτ�
= Bτ�− = 0) = 1 . �

Exercise 4.1.5.7 Let dSt = St(r(t)dt + σdWt) where r is a deterministic
function and let h be a convex function satisfying xh′(x) − h(x) ≥ 0. Prove
that exp(−

∫ t
0
r(s)ds)h(St) = Rth(St) is a local sub-martingale.

Hint: Apply the Itô-Tanaka formula to obtain that

R(t)h(St) = h(x) +
∫ t

0

R(u)r(u)(Suh′(Su) − h(Su))du

+
1
2

∫
h′′(da)

∫ t

0

R(s)dsLa
s + loc. mart. .

�

4.1.6 The Balayage Formula

We now give some other applications of the MCT to stochastic integration,
thus obtaining another kind of extension of Itô’s formula.

Proposition 4.1.6.1 (Balayage Formula.) Let Y be a continuous semi-
martingale and define

gt = sup{s ≤ t : Ys = 0},

with the convention sup{∅} = 0. Then
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hgtYt = h0Y0 +
∫ t

0

hgsdYs

for every predictable, locally bounded process h.

Proof: By the MCT, it is enough to show this formula for processes of the
form hu = 1[0,τ ](u), where τ is a stopping time. In this case,

hgt = 1{gt≤τ} = 1{t≤dτ} where dτ = inf{s ≥ τ : Ys = 0}.

Hence,

hgtYt = 1{t≤dτ}Yt = Yt∧dτ = Y0 +
∫ t

0

1{s≤dτ}dYs = h0Y0 +
∫ t

0

hgsdYs.

�
Let Yt = Bt, then from the balayage formula we obtain that

hgtBt =
∫ t

0

hgsdBs

is a local martingale with increasing process
∫ t
0
h2
gs
ds.

Exercise 4.1.6.2 Let ϕ : R
+ → R be a locally bounded real-valued

function, and L the local time of the Brownian motion at level 0. Prove that
(ϕ(Lt)Bt, t ≥ 0) is a Brownian motion time changed by

∫ t
0
ϕ2(Ls)ds.

Hint: Note that for hs = ϕ(Ls), one has hs = hgs , then use the balayage
formula. Note also that one could prove the result first for ϕ ∈ C1 and then
pass to the limit. �

4.1.7 Skorokhod’s Reflection Lemma

The following real variable lemma will allow us in particular to view local
times as supremum processes.

Lemma 4.1.7.1 Let y be a continuous function. There is a unique pair of
functions (z, k) such that

(i) k(0) = 0, k is an increasing continuous function
(ii) z(t) = −y(t) + k(t) ≥ 0
(iii)

∫ t
0

1{z(s)>0}dk(s) = 0 ,

This pair is given by

k∗(t) = sup
0<s≤t

(y(s)) ∨ 0, z∗(t) = −y(t) + k∗(t).
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Proof: The pair k∗(t) = sup0<s≤t(y(s))∨0, z∗(t) = −y(t)+k∗(t) satisfies the
required properties. Let us prove that the solution is unique. Let (z1, k1) and
(z2, k2) be two pairs of solutions. Then, since z1 − z2 has bounded variation,
from the integration by parts formula,

0 ≤ (z1 − z2)2(t) = 2
∫ t

0

(z1(s) − z2(s)) d(k1(s) − k2(s)) .

From (iii), the right-hand side of the above equality is equal to

−2
∫ t

0

z2(s) dk1(s) − 2
∫ t

0

z1(s) dk2(s)

which is negative. Hence, z1 = z2. �

Note that, if y is increasing, then z = 0. We now give an important
consequence of the Skorokhod lemma:

Theorem 4.1.7.2 (Lévy’s Equivalence Theorem.) Let B be a Brownian
motion starting at 0, L its local time at level 0 and Mt = sups≤tBs. The two-
dimensional processes (|B|, L) and (M −B,M) have the same law, i.e.,

(|Bt|, Lt ; t ≥ 0) law= (Mt −Bt,Mt ; t ≥ 0) .

Proof: Tanaka’s formula implies that

|Bt| =
∫ t

0

sgn(Bs)dBs + L0
t

where L0, the local time of B, is an increasing process. Therefore, (|B|, L0)
is a solution of Skorokhod’s lemma associated with the Brownian motion
βt = −

∫ t
0

sgn(Bs)dBs. Hence, L0
t = sups≤t βs. By denoting Mt = sups≤tBs,

we obtain the decompositions

|Bt| = −βt + L0
t

Mt −Bt = (−Bt) +Mt .

The pair (M −B,M) is a solution to Skorokhod’s lemma associated with the
Brownian motion B, because M increases only on the set M −B = 0. Hence,
the processes (|B|, L) and (M −B,M) have the same law. �

Comments 4.1.7.3 (a) We have proved, in Proposition 3.1.3.1 that, for any
fixed t,Mt

law= |Bt|. Here, we obtain that the processesM−B and |B| have the
same law. In particular, for fixed t, Mt −Bt

law= |Bt|. We also have Mt
law= Lt.
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(b) As a consequence of Skorokhod’s lemma, if βt =
∫ t
0

sgn(Bs)dBs, then
it is easily shown that σ(βs, s ≤ t) = σ(|Bs|, s ≤ t). See � Subsection 5.8.2
for comments. This may be contrasted with the equality obtained in 3.1.4.3:

σ(Ms −Bs, s ≤ t) = σ(Bs, s ≤ t) .

(c) There are various identities in law involving the BM and its maximum
process. From Lévy’s theorem, one obtains that

(|Bt| + Lt; t ≥ 0) law= (2Mt −Bt; t ≥ 0) .

From � Exercise 4.1.7.12, we obtain that, for every t, 2Mt−Bt
law= Rt where

R is a BES3 process (see � Chapter 6 if needed). Pitman [712] has extended
this result at the level of processes, proving that

(2Mt −Bt,Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0)

where R is a BES3 process and Jt = inf
s≥t

Rs (see � Section 5.7). Hence, it

also holds that

(|Bt| + Lt, Lt; t ≥ 0) law= (Rt, Jt; t ≥ 0) .

We now present further consequences of Lévy’s theorem:

Example 4.1.7.4 Let (τ�, ! ≥ 0) be the inverse of the local time (L0
t , t ≥ 0)

defined as τ� = inf{t : L0
t > !}, and let Tx be the first hitting time of x. Then

(Tx, x ≥ 0) law= (τx, x ≥ 0). Indeed, from Lévy’s equivalence Theorem 4.1.7.2
(Mt, t ≥ 0) law= (Lt, t ≥ 0). Hence the same equality holds for the inverse
processes. As a consequence, we note that

(Lx
t , t ≥ 0) law=

(
(L0

t − |x|)+, t ≥ 0
)
.

Indeed, on the one hand

(Lx
t , t ≥ 0) = (Lx

Tx+(t−Tx)+ , t ≥ 0) law= (L0
(t−Tx)+ , t ≥ 0)

where L0 and Tx are independent. On the other hand
(
(L0

τ�+(t−τ�)+
− !)+, t ≥ 0

)
law= (L0

(t−bτ�)+
, t ≥ 0)

where τ̂� is independent of (L0
t , t ≥ 0). To conclude, we use τ̂�

law= T� , and
take ! = |x|.
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Example 4.1.7.5 For fixed t, let θt be the first time at which the Brownian
motion reaches its maximum over the time interval [0, t]:

θt : = inf{s ≤ t |Bs = Mt} = inf{s ≤ t |Bs = sup
u≤t

Bu} .

If t = 1, we obtain

(θ1 ≤ u) =
{

sup
u≤s≤1

Bs ≤ sup
s≤u

Bs

}

=
{

sup
u≤s≤1

(Bs −Bu) +Bu ≤ sup
s≤u

Bs

}

=
{

sup
0≤v≤1−u

B̂v +Bu ≤Mu

}

,

where B̂ is a BM independent of (Bs, s ≤ u). Setting M̂u = sups≤u B̂s, we get
from Lévy’s Theorem 4.1.7.2 and Proposition 3.1.3.1

P(θ1 ≤ u) = P(M̂1−u ≤Mu −Bu) = P(|B̂1−u| ≤ |Bu|)

= P(
√

1 − u|B̂1| ≤
√
u|B1|) = P

(
|B1|
|B̂1|

≥
√

1 − u√
u

)

= P

(

C2 ≥ 1 − u

u

)

= P

(

u ≥ 1
1 + C2

)

where C follows the standard Cauchy law (see � Appendix A.4.2). Hence,
for u ≤ 1,

P(θ1 ≤ u) =
2
π

arc sin
√
u .

Finally, by scaling, for s ≤ t,

P(θt ≤ s) =
2
π

arc sin
√
s

t
,

therefore, θt is Arcsine distributed on [0, t]. Note the non-trivial identity in
law θt

law= A+
t where A+

t =
∫ t
0

1{Bs>0}ds (see Subsection 2.5.2). As a direct
application of Lévy’s equivalence theorem, we obtain

θt
law= gt = sup{s ≤ t : Bs = 0} .

Proceeding along the same lines, we obtain the equality

P(Mt ∈ dx, θt ∈ du) =
x

πu
√
u(t− u)

exp
(

−x
2

2u

)

1{0≤x,0≤u≤t} du dx

(4.1.10)
and from the previous equalities and using the Markov property

P(θ1 ≤ u|Fu) = P( sup
u≤s≤1

(Bs −Bu) +Bu ≤ sup
s≤u

Bs |Fu)

= P(M̂1−u ≤Mu −Bu|Fu) = Ψ(1 − u,Mu −Bu) .
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Here,

Ψ(u, x) = P(M̂u ≤ x) = P(|Bu| ≤ x) =
2√
2π

∫ x/
√
u

0

exp
(

−y
2

2

)

dy .

Note that, for x > 0, the density of Mt at x can also be obtained from the
equality (4.1.10). Hence, we have the equality

∫ t

0

du
x

π
√
u3(t− u)

exp
(

−x
2

2u

)

=

√
2
πt
e−x2/(2t) . (4.1.11)

We also deduce from Lévy’s theorem that the right-hand side of (4.1.10) is
equal to P(Lt ∈ dx, gt ∈ du).

Example 4.1.7.6 From Lévy’s identity, it is straightforward to obtain that
P(La

∞ = ∞) = 1.

Example 4.1.7.7 As discussed in Pitman [713], the law of the pair (Lx
1 , B1)

may be obtained from Lévy’s identity: for y > 0,

P(Lx
1 ∈ dy,B1 ∈ db) =

|x| + y + |b− x|√
2π

exp
(

−1
2
(|x| + y + |b− x|)2

)

dydb .

Proposition 4.1.7.8 Let ϕ be a C1 function. Then, the process

ϕ(Mt) − (Mt −Bt)ϕ′(Mt)

is a local martingale.

Proof: As a first step we assume that ϕ is C2. Then, from integration by
parts and using the fact that M is increasing

(Mt −Bt)ϕ′(Mt) =
∫ t

0

ϕ′(Ms) d(Ms −Bs) +
∫ t

0

(Ms −Bs)ϕ′′(Ms)dMs .

Now, we note that
∫ t
0
(Ms − Bs)ϕ′′(Ms)dMs = 0, since dMs is carried by

{s : Ms = Bs}, and that
∫ t
0
ϕ′(Ms)dMs = ϕ(Mt) − ϕ(0). The result follows.

The general case is obtained using the MCT. �

Comment 4.1.7.9 As we mentioned in Example 1.5.4.5, any solution of
Tanaka’s SDE Xt = X0 +

∫ t
0

sgn(Xs)dBs is a Brownian motion. We can check
that there are indeed weak solutions to this equation: start with a Brownian
motion X and construct the BM Bt =

∫ t
0

sgn(Xs)dXs. This Brownian motion
is equal to |X| − L, so B is adapted to the filtration generated by |X| which
is strictly smaller than the filtration generated by X. Hence, the equation
Xt = X0 +

∫ t
0

sgn(Xs)dBs has no strong solution. Moreover, one can find
infinitely many solutions, e.g., εgtXt, where ε is a ±1-valued predictable
process, and gt = sup{s ≤ t : Xs = 0}.
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Exercise 4.1.7.10 Prove Proposition 4.1.7.8 as a consequence of the bal-
ayage formula applied to Yt = Mt −Bt. �

Exercise 4.1.7.11 Using the balayage formula, extend the result of Propo-
sition 4.1.7.8 when ϕ′ is replaced by a bounded Borel function. �

Exercise 4.1.7.12 Prove, using Theorem 3.1.1.2, that the joint law of the
pair (|Bt|, L0

t ) is

P(|Bt| ∈ dx, L0
t ∈ d!) = 1{x≥0}1{�≥0}

2(x+ !)√
2πt3

exp
(

− (x+ !)2

2t

)

dx d! .

�

Exercise 4.1.7.13 Let ϕ be in C1
b . Prove that (ϕ(L0

t ) − |Bt|ϕ′(L0
t ), t ≥ 0)

is a martingale. Let T ∗
a = inf{t ≥ 0 : |Bt| = a}. Prove that L0

T∗
a

follows the
exponential law with parameter 1/a.
Hint: Use Proposition 4.1.7.8 together with Lévy’s Theorem. Then, compute
the Laplace transform of L0

T∗
a

by means of the optional stopping theorem.
The second part may also be obtained as a particular case of � Azéma’s
lemma 5.2.2.5. �

Exercise 4.1.7.14 Let y be a continuous positive function vanishing at 0:
y(0) = 0. Prove that there exists a unique pair of functions (z, k) such that

(i) k(0) = 0, where k is an increasing continuous function
(ii) z(t) + k(t) = y(t), z(t) ≥ 0
(iii)

∫ t
0

1{z(s)>0}dk(s) = 0
(iv) ∀t,∃d(t) ≥ t, z(d(t)) = 0

Hint: k∗(t) = infs≥t(y(s)). �

Exercise 4.1.7.15 Let S be a price process, assumed to be a continuous
local martingale, and ϕ a C1 concave, increasing function. Denote by S∗ the
running maximum of S. Prove that the process Xt = ϕ(S∗

t )+ϕ′(S∗
t )(St−S∗

t )
is the value of the self-financing strategy with a risky investment given by
Stϕ

′(S∗
t ), which satisfies the floor constraint Xt ≥ ϕ(St).

Hint: Using an extension of Proposition 4.1.7.8, X is a local martingale. It
is easy to check that Xt = X0 +

∫ t
0
ϕ′(S∗

s )dSs. For an intensive study of this
process in finance, see El Karoui and Meziou [305]. The equality Xt ≥ ϕ(St)
follows from concavity of ϕ. �

4.1.8 Local Time of a Semi-martingale

As mentioned above, local times can also be defined in greater generality for
semi-martingales. The same approach as the one used in Subsection 4.1.2 leads
to the following:
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Theorem 4.1.8.1 (Occupation Time Formula.) Let X be a continuous
semi-martingale. There exists a family of increasing processes (Tanaka-
Meyer local times) (Lx

t (X), t ≥ 0 ; x ∈ R) such that for every bounded
measurable function ϕ

∫ t

0

ϕ(Xs) d〈X〉s =
∫ +∞

−∞
Lx
t (X)ϕ(x) dx . (4.1.12)

There is a version of Lx
t which is jointly continuous in t and right-continuous

with left limits in x. (If X is a continuous martingale, its local time may be
chosen jointly continuous.) In the sequel, we always choose this version. This
local time satisfies

Lx
t (X) = lim

ε→0

1
ε

∫ t

0

1[x,x+ε[(Xs)d〈X〉s .

If Z is a continuous local martingale,

Lx
t (Z) = lim

ε→0

1
2ε

∫ t

0

1]x−ε,x+ε[(Zs)d〈Z〉s .

The same result holds with any random time in place of t.
For a continuous semi-martingale X = Z +A,

Lx
t (X) − Lx−

t (X) = 2
∫ t

0

1{Xs=x}dXs = 2
∫ t

0

1{Xs=x}dAs . (4.1.13)

In particular,

L0
t (|X|) = lim

ε→0

1
ε

∫ t

0

1]−ε,ε[(Xs)d〈X〉s = L0
t (X) + L0−

t (X),

hence

L0
t (|X|) = 2L0

t (X) − 2
∫ t

0

1{Xs=0}dAs .

Example 4.1.8.2 A Non-Continuous Local Time. Let Z be a continuous
martingale and X be the semi-martingale

Xt = aZ+
t − bZ−

t =
∫ t

0

dZs(a1{Zs>0} + b1{Zs<0}) +
a− b

2
L0
t (Z) .

Then, it follows from (4.1.13) that L0
t (X) − L0−

t (X) = (a − b)L0
t (Z). In

particular, for the reflected BM, i.e., for X when Zt = Bt, a = 1, b = −1,
we get L0(|B|) − L0−(|B|) = 2L0(B). Note that L0−(|B|) = 0, hence
L0(|B|) = 2L0(B).
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Example 4.1.8.3 Let Yt = |Bt|. Tanaka’s formula gives:

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt

where (Lt, t ≥ 0) denotes the local time of (Bt; t ≥ 0) at y = 0. By an
application of the balayage formula, we obtain

hgt |Bt| =
∫ t

0

hgssgn(Bs)dBs +
∫ t

0

hsdLs

having used the fact that Lgs = Ls. Consequently, replacing, if necessary, h by
|h|, we see that the process

∫ t
0
|hs|dLs is the local time at 0 of (hgtBt, t ≥ 0).

Tanaka-Meyer Formulae

As before we set sgn(x) = 1 for x > 0 and sgn(x) = −1 for x ≤ 0. Let X be
a continuous semi-martingale. For every (t, x),

|Xt − x| = |X0 − x| +
∫ t

0

sgn (Xs − x) dXs + Lx
t (X) , (4.1.14)

(Xt − x)+ = (X0 − x)+ +
∫ t

0

1{Xs>x} dXs +
1
2
Lx
t (X) , (4.1.15)

(Xt − x)− = (X0 − x)− −
∫ t

0

1{Xs≤x} dXs +
1
2
Lx
t (X) . (4.1.16)

In particular, |X − x|, (X − x)+ and (X − x)− are semi-martingales.

Proposition 4.1.8.4 (Lévy’s Equivalence Theorem for Drifted Brow-
nian Motion.) Let B(ν) be a BM with drift ν, i.e., B(ν)

t = Bt + νt, and
M

(ν)
t = sups≤tB

(ν)
s . Then

(M (ν)
t −B

(ν)
t ,M

(ν)
t ; t ≥ 0) law= (|X(ν)

t |, Lt(X(ν)) ; t ≥ 0) (4.1.17)

where X(ν) is the (unique) strong solution of

dXt = dBt − ν sgn(Xt) dt,X0 = 0 .
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Proof: Let X(ν) be the strong solution of

dXt = dBt − ν sgn(Xt) dt,X0 = 0

(see Theorem 1.5.5.1 for the existence of X) and apply Tanaka’s formula.
Then,

|X(ν)
t | =

∫ t

0

sgn (X(ν)
s )

(
dBs − ν sgn (X(ν)

s ) ds
)

+ L0
t (X

(ν))

where L0(X(ν)) is the Tanaka-Meyer local time of X(ν) at level 0. Hence,
setting βt =

∫ t
0

sgnX(ν)
s dBs,

|X(ν)
t | = (βt − νt) + L0

t (X
(ν))

and the result follows from Skorokhod’s lemma. �

Comments 4.1.8.5 (a) Note that the processes |B(ν)| and M (ν) − B(ν) do
not have the same law (hence the right-hand side of (4.1.17) cannot be replaced
by (|B(ν)

t |, Lt(B(ν)), t ≥ 0)). Indeed, for ν > 0, B(ν)
t goes to infinity as t goes

to ∞, whereas M (ν)
t − B

(ν)
t vanishes for some arbitrarily large values of t.

Pitman and Rogers [714] extended the result of Pitman [712] and proved that

(|B(ν)
t | + L

(ν)
t , t ≥ 0) law= (2M (ν)

t −B
(ν)
t , t ≥ 0) .

(b) The equality in law of Proposition 4.1.8.4 admits an extension to the
case dB(a)

t = at(B
(a)
t )dt+ dBt and X(a) the unique weak solution of

dX
(a)
t = dBt − at(X

(a)
t ) sgn(X(a)

t )dt,X(a)
0 = 0

where at(x) is a bounded predictable family. The equality

(M (a) −B(a),M (a)) law= (|X(a)|, L(X(a)))

is proved in Shiryaev and Cherny [792].

We discuss here the Itô-Tanaka formula for strict local continuous
martingales, as it is given in Madan and Yor [614].

Theorem 4.1.8.6 Let S be a positive continuous strict local martingale, τ
an FS-stopping time, a.s. finite, and K a positive real number. Then

E((Sτ −K)+) = (S0 −K)+ +
1
2

E(LK
τ ) − E(S0 − Sτ )

where LK is the local time of S at level K.
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Proof: We prove that

Mt =
1
2
LK
t − (St −K)+ + St =

1
2
LK
t + (St ∧K)

is a uniformly integrable martingale. In a first step, from Tanaka’s formula,M
is a (positive) local martingale, hence a super-martingale and E(LK

t ) ≤ 2S0.
Since L is an increasing process, it follows that E(LK

∞) ≤ 2S0 and the process
M is a uniformly integrable martingale. We then apply the optimal stopping
theorem at time τ . �

Comment 4.1.8.7 It is important to see that, if the discounted price process
is a martingale under the e.m.m., then the put-call parity holds: indeed, taking
expectation of discounted values of (ST −K)+ = ST −K + (K − ST )+ leads
to C(x, T ) = x − Ke−rT + P (x, T ). This is no more the case if discounted
prices are strict local martingales. See Madan and Yor [614], Cox and Hobson
[203], Pal and Protter [692].

4.1.9 Generalized Itô-Tanaka Formula

Theorem 4.1.9.1 Let X be a continuous semi-martingale, f a convex
function, D−f its left derivative and f ′′(dx) its second derivative in the
distribution sense. Then,

f(Xt) = f(X0) +
∫ t

0

D−f(Xs)dXs +
1
2

∫

R

Lx
t (X)f ′′(dx)

holds.

Corollary 4.1.9.2 Let X be a continuous semi-martingale, f a C1 function
and assume that there exists a measurable function h, integrable on any finite
interval [−a, a] such that f ′(y) − f ′(x) =

∫ y
x
h(z)dz. Then, Itô’s formula

f(Xt) = f(X0) +
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

h(Xs)d〈X〉s

holds.

Proof: In this case, f is locally the difference of two convex functions and
f ′′(dx) = h(x)dx. Indeed, for every ϕ ∈ C∞

b ,

〈f ′′, ϕ〉 = −〈f ′, ϕ′〉 = −
∫
dxf ′(x)ϕ′(x) =

∫
dzh(z)ϕ(z) .

�
In particular, if f is a C1 function, which is C2 on R\{a1, . . . , an}, for a finite
number of points (ai), then
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f(Xt) = f(X0) +
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

g(Xs)d〈Xc〉s .

Here μ(dx) = g(x)dx is the second derivative of f in the distribution sense
and Xc the continuous martingale part of X (see � Subsection 9.3.3).

Exercise 4.1.9.3 Let X be a semi-martingale such that d〈X〉t = σ2(t,Xt)dt.
Assuming that the law of the r.v.Xt admits a density ϕ(t, x), prove that, under
some regularity assumptions,

E(dtLx
t ) = ϕ(t, x)σ2(t, x)dt . �

4.2 Applications

4.2.1 Dupire’s Formula

In a general stochastic volatility model, with

dSt = St (α(t, St)dt+ σtdBt) ,

it follows that 〈S〉t =
∫ t
0
S2
uσ

2
udu, therefore

σ2
u =

d

du

(∫ u

0

d〈S〉s
S2
s

)

is FS-adapted. However, despite the fact that this process (the square of the
volatility) is, from a mathematical point of view, adapted to the filtration of
prices, it is not directly observed on the markets, due to the lack of information
on prices. See � Section 6.7 for some examples of stochastic volatility models.
In that general setting, the volatility is a functional of prices.

Under the main assumption that the volatility is a function of time and
of the current value of the underlying asset, i.e., that the underlying process
follows the dynamics

dSt = St (α(t, St)dt+ σ(t, St)dBt) ,

Dupire [283, 284] and Derman and Kani [250] give a relation between the
volatility and the price of European calls. The function σ2(t, x), called the
local volatility, is a crucial parameter for pricing and hedging derivatives.

We recall that the implied volatility is the value of σ such that the price
of a call is equal to the value obtained by applying the Black and Scholes
formula. The interested reader can also refer to Berestycki et al. [73] where a
link between local volatility and implied volatility is given. The authors also
propose a calibration procedure to reconstruct a local volatility.

Proposition 4.2.1.1 (Dupire Formula.) Assume that the European call
prices C(K,T ) = E(e−rT (ST − K)+) for any maturity T and any strike K



228 4 Complements on Brownian Motion

are known. If, under the risk-neutral probability, the stock price dynamics are
given by

dSt = St (rdt+ σ(t, St)dWt) (4.2.1)

where σ is a deterministic function, then

1
2
K2σ2(T,K) =

∂TC(K,T ) + rK∂KC(K,T )
∂2
KKC(K,T )

where ∂T (resp. ∂K) is the partial derivative operator with respect to the
maturity (resp. the strike).

Proof: (a) We note that, differentiating with respect to K the equality
e−rT

E((ST −K)+) = C(K,T ), we obtain

∂KC(K,T ) = −e−rT
P(ST > K)

and that, assuming the existence of a density ϕ(T, x) of ST ,

ϕ(T,K) = erT∂KKC(K,T ) .

(b) We now follow Leblanc [572] who uses the local time technology,
whereas the original proof of Dupire (see � Subsection 5.4.2) does not.
Tanaka’s formula applied to the semi-martingale S gives

(ST −K)+ = (S0 −K)+ +
∫ T

0

1{Ss>K}dSs +
1
2

∫ T

0

dLK
s (S) .

Therefore, using integration by parts

e−rT (ST −K)+ = (S0 −K)+ − r

∫ T

0

e−rs(Ss −K)+ds

+
∫ T

0

e−rs1{Ss>K}dSs +
1
2

∫ T

0

e−rsdLK
s (S) .

Taking expectations, for every pair (K,T ),

C(K,T ) = E(e−rT (ST −K)+)

= (S0 −K)+ + E

(∫ T

0

e−rsrSs1{Ss>K}ds

)

− rE

(∫ T

0

e−rs(Ss −K)1{Ss>K}ds

)

+
1
2

E

(∫ T

0

e−rsdLK
s (S)

)

.

From the definition of the local time,
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E

(∫ T

0

e−rsdLK
s (S)

)

=
∫ T

0

e−rsϕ(s,K)K2σ2(s,K)ds

where ϕ(s, ·) is the density of the r.v. Ss (see Exercise 4.1.9.3). Therefore,

C(K,T ) = (S0 −K)+ + rK

∫ T

0

e−rs
P(Ss > K) ds

+
1
2

∫ T

0

e−rsϕ(s,K)K2σ2(s,K)ds .

Then, by differentiating w.r.t. T , one obtains

∂TC(K,T ) = rKe−rT
P(ST > K) +

1
2
e−rTϕ(T,K)K2σ2(T,K) . (4.2.2)

(c) We now use the result found in (a) to write (4.2.2) as

∂TC(K,T ) = −rK∂KC(K,T ) +
1
2
σ2(T,K)K2∂KKC(K,T )

which is the required result. �

Comments 4.2.1.2 (a) Atlan [25] presents examples of stochastic volatility
models where a local volatility can be computed.

(b) Dupire result is deeply linked with Gyöngy’s theorem [414] which
studies processes with given marginals. See also Brunich [133] and Hirsch
and Yor [438, 439].

4.2.2 Stop-Loss Strategy

This strategy is also said to be the “all or nothing” strategy. A strategic
allocation (a reference portfolio) with value Vt is given in the market. The
investor would like to build a strategy, based on V , such that the value of
the investment is greater than a benchmark, equal to KP (t, T ) where K is
a constant and P (t, T ) is the price at time t of a zero-coupon with maturity
T . We assume, w.l.g., that the initial value of V is greater than KP (0, T ).
The stop-loss strategy relies upon the following argument: the investor takes
a long position in the strategic allocation.

The first time when Vt ≤ KP (t, T ) the investor invests his total wealth of
the portfolio to buy K zero-coupon bonds. When the situation is reversed, the
orders are inverted and all the wealth is invested in the strategic allocation.
Hence, at maturity, the wealth is max(VT ,K). See Andreasen et al. [18], Carr
and Jarrow [153] and Sondermann [804] for comments.

The well-known drawback of this method is that it cannot be applied
in practice when the price of the risky asset fluctuates around the floor
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Gt = KP (t, T ), because of transaction costs. Moreover, even in the case of
constant interest rate, the strategy is not self-financing. Indeed, the value of
this strategy is greater than KP (t, T ). If such a strategy were self-financing,
and if there were a stopping time τ such that its value equalledKP (τ, T ),
then it would remain equal to KP (t, T ) after time τ , and this is obviously
not the case. (See Lakner [558] for details.) It may also be noted that the
discounted process e−rt max(Vt,KP (t, T )) is not a martingale under the risk-
neutral probability measure (and the process max(Vt,KP (t, T )) is not the
value of a self-financing strategy). More precisely,

e−rt max(Vt,KP (t, T )) mart= Lt

where L is the local time of (Vte−rt, t ≥ 0) at the level Ke−rT .
Sometimes, practitioners introduce a corridor around the floor and change

the strategy only when the asset price is outside this corridor. More precisely,
the value of the portfolio is

Vt1{t<T1} + (K − ε)1{T1≤t<T2} + Vt1{T2≤t<T3} + . . .

where

T1 = inf{t : Vt ≤ K − ε}, T2 = inf{t : t > T1, Vt ≥ K + ε},
T3 = inf{t : t > T2, Vt ≤ K − ε} . . . .

The terminal value of the portfolio when the width of the corridor tends to 0
can be shown to converge a.s. to max(VT ,K)−LK

T , where LK
T represents the

local time of (Vt, t ∈ [0, T ]) at level K.

4.2.3 Knock-out BOOST

Let (a, b) be a pair of positive real numbers with b < a. The knock-out
BOOST studied in Leblanc [572] is an option which pays, at maturity, the
time that the underlying asset has remained above a level b, until the first
time the asset reaches the level a. We assume that the underlying follows a
geometric Brownian motion, i.e., St = xeσXt where X is a BM with drift ν.
In symbols, the value of this knock-out BOOST option is

KOB(a, b;T ) = EQ

(

e−rT

∫ T∧Ta

0

1(Ss>b) ds

)

.

Let α be the level relative to X, i.e., α =
1
σ

ln
a

x
. From the occupation time

formula (4.1.1) and the fact that Ly
T∧Tα

(X) = 0 for y > α, we obtain that,
for every function f

W(ν)

(∫ T∧Tα

0

f(Xs) ds

)

=
∫ α

−∞
f(y)W(ν)[Ly

Tα∧T ]dy ,
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where, as in the previous chapter W(ν) is the law of a drifted Brownian motion

(see Section 3.2). Hence, if β =
1
σ

ln
b

x
,

KOB(a, b;T ) = W(ν)

(

e−rT

∫ T∧Tα

0

1{Xs>β} ds

)

= e−rT

∫ α

β

Ψα,ν(y) dy

where Ψα,ν(y) = W(ν)(Ly
Tα∧T ).

The computation of Ψα,ν can be performed using Tanaka’s formula. Indeed,
for y < α, using the occupation time formula,

1
2
Ψα,ν(y) = W(ν)[(XTα∧T − y)+] − (−y)+ − νW(ν)

(∫ Tα∧T

0

1{Xs>y}ds

)

= W(ν)[(XTα∧T − y)+] − (−y)+ − ν

∫ α

y

Ψα,ν(z)dz

= (α− y)+W(ν)(Tα < T ) + W(ν)
[
(XT − y)+1{Tα>T}

]

− (−y)+ − ν

∫ α

y

Ψα,ν(z)dz . (4.2.3)

Let us compute explicitly the expectation of the local time in the case T = ∞
and αν > 0. The formula (4.2.3) reads

1
2
Ψα,ν(y) = (α− y)+ − (−y)+ − ν

∫ α

y

Ψα,ν(z)dz,

Ψα,ν(α) = 0 .

This gives

Ψα,ν(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
ν

(1 − exp(2ν(y − α)) for 0 ≤ y ≤ α

1
ν

(1 − exp(−2να)) exp(2νy) for y ≤ 0.

In the general case, differentiating (4.2.3) with respect to y gives for y ≤ α

1
2
Ψ ′
α,ν(y) = −W(ν)(Tα < T ) − W(ν)(Tα > T,XT > y) + 1{y<0} + νΨα,ν(y)

= −1 + W(ν)(Tα > T,XT < y) + 1{y<0} + νΨα,ν(y)

= −1 + N (
y − νT√

T
) − e2ναN (

y − 2α− νt√
T

) + 1{y<0} + νΨα,ν(y) .

It follows that Ψα,ν(y) =

2e2νy
∫ α

y

e−2νx

(

−1 + N (
x− νT√

T
) − e2ναN (

x− 2α− νt√
T

) + 1{x<0}

)

dx .
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4.2.4 Passport Options

An interesting application of local time is the study of passport options. We do
not present this problem here, mainly because this is related to optimization
problems which are beyond the scope of this book. See Delbaen and Yor [239],
Henderson [430], Henderson and Hobson [431], Shreve and Vec̆er̆ [797].

4.3 Bridges, Excursions, and Meanders

Given a process (Xt, t ≥ 0), we shall denote by X [a,b], for a pair of random
times 0 < a < b, the scaled process

X
[a,b]
t =

1√
b− a

Xa+t(b−a), 0 ≤ t ≤ 1. (4.3.1)

In what follows, B is a BM starting from 0 with natural filtration F.

4.3.1 Brownian Motion Zeros

Let Z(ω) be the random set

Z = {t ≥ 0 : Bt = 0} .

The complementary set Zc is open and is therefore a countable union of
maximal open intervals. The set Z does not have isolated points and has zero
Lebesgue measure, as a consequence of the occupation density formula (4.1.2)
where A = {0}.
Exercise 4.3.1.1 Let (τ�, ! ≥ 0) be the inverse of the local time at level 0,
defined in Example 4.1.7.4. Prove that, if u ∈ Z, then u = τs or u = τs− for
some s.
Hint: if u ∈ Z, either Lu+ε − Lu > 0 for every ε, and u = τs for s = Lu, or
L is constant and u = τs− for s = Lu. �

4.3.2 Excursions

Let t be a fixed time and let gt = sup{s ≤ t : Bs = 0} be the last passage
time at level 0 before time t and dt = inf{s ≥ t : Bs = 0} the first passage
time at level zero after time t. The Brownian excursion which straddles t
is the path

(Bgt+u ; 0 ≤ u ≤ dt − gt) .

The normalized excursion is taken to be the process (B[gt,dt]
u , 0 ≤ u ≤ 1), or

sometimes it is defined as its absolute value.
It is worth noting that gt is not an F-stopping time, whereas dt is an F-
stopping time.
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Let us remark that, for u in the interval (gt, dt), the sign of Bu remains
constant.

Bt
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Fig. 4.1 Excursion of a Brownian motion straddling t

4.3.3 Laws of Tx, dt and gt

We study here the laws of the random variables Tx, dt and gt.

Proposition 4.3.3.1 Let Tx = inf{t : Bt = x} and Mt = sups≤tBs. Then:

Tx
law= x2T1

law=
(
x

M1

)2
law=
(
x

B1

)2

.

Proof: By scaling Tx
law= x2T1 and Mt

law=
√
tM1. Furthermore,

P(T1 ≥ u) = P(Mu ≤ 1) = P(
√
uM1 ≤ 1) = P

((
1
M1

)2

≥ u

)

which implies the remaining equalities, using that B2
1

law= M2
1 (see Proposi-

tion 3.1.3.1). �

Proposition 4.3.3.2 (i) The law of du is that of u(1 + C2) where C is a
Cauchy random variable with density 1

π
1

1+x2 .
(ii) The variable gt is Arcsine distributed:
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P(gt ∈ ds) =
1
π

1
√
s(t− s)

1{s≤t} ds .

Proof: By definition, du = u + inf{v |Bu+v − Bu = −Bu}. The process
B̂ = (B̂t = Bt+u − Bu, t ≥ 0) is a Brownian motion independent of Bu. Let
T̂a be the first hitting time of a associated with this process B̂. By using results
of the previous proposition and the scaling property of Brownian motion, we
obtain

du
law= u+ T̂−Bu

law= u+B2
uT̂1

law= u+ uB2
1 T̂1

law= u

(

1 +
B2

1

B̂2
1

)

and therefore from the explicit computation of the law of B2
1/B̂

2
1 (see �

Appendix A.4.2)

du
law= u(1 + C2) , C with density

1
π

1
1 + x2

.

From {gt < u} = {t < du} we deduce, for all t and u,

du
u

law=
t

gt

law= 1 + C2 ;

consequently, gt is Arcsine distributed. �

These results can be extended to the last time before 1 when a Brownian
motion reaches level a.

Proposition 4.3.3.3 Let ga1 = sup {t ≤ 1 : Bt = a}, where sup(∅) = 1.
The law of ga1 is

P(ga1 ∈ dt) = exp
(
− a2

2t

) dt

π
√
t(1 − t)

1{0<t<1} , (4.3.2)

P(ga1 = 1) = P(|G| ≤ a)

where G is a standard Gaussian random variable. The r.v.

da1 = inf{u ≥ 1 : Bu = a}

has the same law as 1 +
(a−G)2

G̃2
where G and G̃ are independent standard

Gaussian random variables.

Proof: From the equality, with t < 1,

{ga1 ≤ t} = {Ta ≤ t} ∩ {ĝ0
1−Ta

≤ t− Ta}

where ĝ 0 is relative to the Brownian motion (B̂u = Bu+Ta −BTa , u ≥ 0), i.e.,
ĝ 0
t = sup{s ≤ t : B̂s = 0}, one obtains
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P(ga1 ≤ t) =
∫ t

0

P(Ta ∈ du)P(ĝ 0
1−u ≤ t− u} .

The laws of Ta and ĝ 0
1−u are known, and some easy computation leads to

P(ga1 ≤ t) =
a

π
√

2π

∫ t

0

dv√
1 − v

∫ v

0

du
e−a2/(2u)

√
u3(v − u)

.

It remains to recall that, from (4.1.11) the second integral on the right-hand
side is known.

Note that the right-hand side of (4.3.2) is a sub-probability, and that the
missing mass is

P(ga1 = 1) = P(Ta ≥ 1) = P(|G| ≤ a) ,

where G is the standard Gaussian variable.
Let dat (B) = inf{u ≥ t : Bu = a}. We obtain

dat (B) = t+ inf {u ≥ 0 : Bu+t −Bt = a−Bt}

= t+ T̂a−Bt

law= t+
(a−Bt)2

G2
. (4.3.3)

Here, T̂b = inf {u ≥ 0 : B̂u = b}, where B̂ is a Brownian motion independent
of Ft, and G is a standard Gaussian variable, independent of B. �

Comments 4.3.3.4 (a) Formula (4.3.2) plays an important rôle in the
discussion of quantiles of Brownian motion in Yor [866] (formula (3.b) therein).

(b) We recall that we already saw the occurrence of the Arcsine law in
Subsection 2.5.2 and Example 4.1.7.5.

Exercise 4.3.3.5 The aim of this exercise is to provide an explanation of the
fact, obtained in Proposition 4.3.3.3, that

P(|G| ≤ 1) +
∫ 1

0

P(ga1 ∈ dt) = 1 .

From the equality G2 law= 2eg1 where e is exponentially distributed with
parameter 1 and G is a standard Gaussian variable (see � Appendix A.4.2),
prove that P(|G| > a) = E(e−a2/(2g1)) and conclude. �
Exercise 4.3.3.6 Let

g(ν)
a = sup{t : Bt + νt = a}
T (ν)
a = inf{t : Bt + νt = a}

Prove that

(T (ν)
a , g(ν)

a ) law=
(

1

g
(a)
ν

,
1

T
(a)
ν

)

.

See Bentata and Yor [72] for related results. �
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4.3.4 Laws of (Bt, gt, dt)

We now study the laws of the pairs of r.v’s (Bt, dt) and (Bt, gt) for fixed t.

Proposition 4.3.4.1 The joint laws of the pairs (Bt, dt) and (Bt, gt) are
given by:

P(Bt ∈ dx, dt ∈ ds) = 1{s≥t}
|x|

2π
√
t(s− t)3

exp
(

− sx2

2t(s− t)

)

dx ds , (4.3.4)

P(Bt ∈ dx, gt ∈ ds) = 1{s≤t}
|x|

2π
√
s(t− s)3

exp
(

− x2

2(t− s)

)

dx ds . (4.3.5)

Proof: We begin with the law of (Bt, dt). From the Markov property we
derive

P(Bt ∈ dx, dt ∈ ds) = P(Bt ∈ dx)P(dt ∈ ds|Bt = x)
= P(Bt ∈ dx)Px(T0 ∈ ds− t)
= P(Bt ∈ dx)P0(Tx ∈ ds− t) ,

and the two expressions on the right-hand side of the latter equation are well
known.

For the second law, we use time inversion for the pair (B, g). Let us define
{B̂t = tB1/t, t > 0} a standard Brownian motion and let ĝ be related to B̂
via ĝu = sup{s < u : B̂s = 0}. We begin with an identity in law between dt
and g1/t:

dt = inf{s ≥ t : Bs = 0} = inf{s−1 ≥ t : B1/s = 0}
= inf{s−1 ≥ t : sB1/s = 0} = inf{s−1 ≥ t : B̂s = 0}

= 1/ sup
{

u ≤ 1
t

: B̂u = 0
}

=
1
ĝ1/t

.

Therefore, since Bt = tB̂1/t, we have

P(Bt ≤ x, gt ≤ s) = P

(

B̂1/t ≤
x

t
, d̂1/t ≥

1
s

)

.

Denoting by ft(x, s) the density of the pair (B̂t, d̂t), and using the first part
of the proof:

1
dsdx

P(Bt ∈ dx, gt ∈ ds) =
∂2

∂x∂s
P

(

B̂1/t ≤
x

t
, d̂1/t ≥

1
s

)

=
1
ts2

f1/t

(
x

t
,
1
s

)

.

The result follows from this. �
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Comment 4.3.4.2 The reader will find in Chung [183] another proof of
(4.3.5) based on the following remark, which uses the law of the pair (Bt,m

B
t )

established in Subsection 3.1.5:

P(gt ≤ s,Bs ∈ dx,Bt ∈ dy) = P(Bs ∈ dx,Bu = 0, ∀u ∈ [s, t], Bt ∈ dy)
= P(Bs ∈ dx) Px(Bt−s ∈ dy, T0 > t− s)
= P(Bs ∈ dx) P0(Bt−s + x ∈ dy, mB

t−s > −x)

=
e−x2/(2s)

√
2πs

1
√

2π(t− s)

(

exp
(

− (x− y)2

2(t− s)

)

− exp
(

− (x+ y)2

2(t− s)

))

dx dy .

By integrating with respect to dx, and differentiating with respect to s, the
result is obtained.

Exercise 4.3.4.3 Let t > 0 be fixed and θt = inf{s ≤ t |Mt = Bs} where
Mt = sups≤tBs. Prove that

(Mt, θt)
law= (|Bt|, gt)

law= (Lt, gt) .

Hint: Use the equalities (4.1.10) and (4.3.4) and Lévy’s theorem. �

4.3.5 Brownian Bridge

The Brownian bridge (bt, 0 ≤ t ≤ 1) is defined as the conditioned process
(Bt, t ≤ 1|B1 = 0). Note that Bt = (Bt−tB1)+tB1 where, from the Gaussian
property, the process (Bt − tB1, t ≤ 1) and the random variable B1 are
independent. Hence (bt, 0 ≤ t ≤ 1) law= (Bt − tB1, 0 ≤ t ≤ 1). The Brownian
bridge process is a Gaussian process, with zero mean and covariance function
s(1 − t), s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Each of the Gaussian processes X,Y and Z where

Xt = (1 − t)
∫ t

0

dBs

1 − s
; 0 ≤ t ≤ 1

Zt = tB(1/t)−1 ; 0 ≤ t ≤ 1

Yt = (1 − t)B
(

t

1 − t

)

; 0 ≤ t ≤ 1

has the same properties, and is a Brownian bridge. Note that the apparent
difficulty in defining the above processes at time 0 or 1 may be resolved by
extending it continuously to [0, 1].
Since (W1−t −W1, t ≤ 1) law= (Wt, t ≤ 1), the Brownian bridge is invariant
under time reversal.
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We can represent the Brownian bridge between 0 and y during the time
interval [0, 1] as

(Bt − tB1 + ty; t ≤ 1)

and we denote by W(1)
0→y its law on the canonical space. More generally, W(T )

x→y

denotes the law of the Brownian bridge between x and y during the time
interval [0, T ], which may be expressed as

(

x+Bt −
t

T
BT +

t

T
(y − x); t ≤ T

)

,

where (Bt; t ≤ T ) is a standard BM starting from 0.

Theorem 4.3.5.1 For every t, W(t)
x→y is equivalent to Wx on Fs for s < t.

Proof: Let us consider a more general case: suppose ((Xt; t ≥ 0), (Ft),Px)
is a real valued Markov process with semigroup

Pt(x, dy) = pt(x, y)dy,

and Fs is a non-negative Fs-measurable functional. Then, for s ≤ t, and any
function f

Ex[Fsf(Xt)] = Ex[Fs Pt−sf(Xs)] .

On the one hand

Ex[Fs Pt−sf(Xs)] = Ex[Fs
∫
f(y) pt−s(Xs, y) dy]

=
∫
f(y)Ex[Fspt−s(Xs, y)] dy .

On the other hand

Ex[Fsf(Xt)] = Ex[Ex[Fs|Xt]f(Xt)] =
∫
dyf(y)pt(x, y)E(t)

x→y(Fs) ,

where P
(t)
x→y is the probability measure associated with the bridge (for a

general definition of Markov bridges, see Fitzsimmons et al. [346]) between x
and y during the time interval [0, t]. Therefore,

E
(t)
x→y(Fs) =

Ex[Fspt−s(Xs, y)]
pt(x, y)

.

Thus

P
(t)
x→y|Fs =

pt−s(Xs, y)
pt(x, y)

Px|Fs . (4.3.6)

�
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Sometimes, we shall denote X under P
(t)
x→y by (X(t)

x→y(s), s ≤ t).

If X is an n-dimensional Brownian motion and x = y = 0 we have, for
s < t,

W(t)
0→0|Fs =

(
t

t− s

)n/2

exp
(

−|Xs|2
2(t− s)

)

W0|Fs . (4.3.7)

As a consequence of (4.3.7), identifying the density as the exponential
martingale E(Z), where Zs = −

∫ s
0

Xu

t−u dXu, we obtain the canonical

decomposition of the standard Brownian bridge (under W(t)
0→0) as:

Xs = Bs −
∫ s

0

du
Xu

t− u
, s < t, (4.3.8)

where (Bs, s ≤ t) is a Brownian motion under W(t)
0→0. (This decomposition

may be related to the harness property in � Definition 8.5.2.1.)

Therefore, we obtain that the standard Brownian bridge b is a solution of
the following stochastic equation

⎧
⎪⎨

⎪⎩

dbt = − bt
1 − t

dt+ dBt ; 0 ≤ t < 1

b0 = 0 .

Proposition 4.3.5.2 Let Xt = μt+ σBt where B is a BM, and for fixed T ,
(X(T )

0→y(t), t ≤ T ) is the associated bridge. Then, the law of the bridge does not
depend on μ, and in particular

P(X(T )
0→y(t) ∈ dx) =

dx

σ
√

2πt

√
T

T − t
exp
(

− 1
2σ2

(
x2

t
+

(y − x)2

T − t
− y2

T

))

(4.3.9)

Proof: The fact that the law does not depend on μ can be viewed as a
consequence of Girsanov’s theorem. The form of the density is straightforward
from the computation of the joint density of (Xt, XT ), or from (4.3.6). �

Proposition 4.3.5.3 Let B(t)
x→z be a Brownian bridge, starting from x at

time 0 and ending at z at time t, and M br
t = sup0≤s≤tB

(t)
x→z(s). Then, for

any m > z ∨ x,
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P
(t)
x→z(M

br
t ≤ m) = 1 − exp

(

− (z + x− 2m)2

2t
+

(z − x)2

2t

)

.

In particular, let b be a standard Brownian bridge (x = z = 0, t = 1). Then,

sup
0≤s≤1

bs
law=

1
2
R ,

where R is Rayleigh distributed with density x exp
(
−1

2x
2
)

1{x≥0}. If !a1(b)
denotes the local time of b at level a at time 1, then for every a

!a1(b) law= (R− 2|a|)+ . (4.3.10)

Proof: Let B be a standard Brownian motion andMB
t = sup0≤s≤tBs. Then,

for every y > 0 and x ≤ y, equality (3.1.3) reads

P(Bt ∈ dx ,MB
t ≤ y) =

dx√
2πt

exp
(

−x
2

2t

)

− dx√
2πt

exp
(

− (2y − x)2

2t

)

,

hence,

P(MB
t ≤ y|Bt = x) =

P(Bt ∈ dx ,MB
t ≤ y)

P(Bt ∈ dx)
= 1 − exp(− (2y − x)2

2t
+
x2

2t
)

= 1 − exp
(

−2y2 − 2xy
t

)

.

More generally,

P(sup
s≤t

Bs + x ≤ y|Bt + x = z) = P(MB
t ≤ y − x|Bt = z − x)

hence

Px( sup
0≤s≤t

B(t)
x→z(s) ≤ y) = 1 − exp

(

− (z + x− 2y)2

2t
+

(z − x)2

2t

)

.

The result on local time follows by conditioning w.r.t. B1 the equality obtained
in Example 4.1.7.7. �

Theorem 4.3.5.4 Let B be a Brownian motion. For every t, the process
B[0,gt] defined by:

B[0,gt] =
(

1√
gt
Bugt , u ≤ 1

)
(4.3.11)

is a Brownian bridge B(1)
0→0 independent of the σ-algebra σ{gt, Bgt+u, u ≥ 0}.

Proof: By scaling, it suffices to prove the result for t = 1. Let B̂t = tB1/t.
As in the proof of Proposition 4.3.4.1, d̂1 = 1

g1
. Then,
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1
√
g1
B(ug1) = u

√
g1 B̂

(
1
ug1

)

=
u
√
d̂1

[

B̂

(
1
g1

+
1
g1

(
1
u
− 1)

)

− B̂

(
1
g1

)]

=
u
√
d̂1

[

B̂

(

d̂1 + d̂1

(
1
u
− 1
))

− B̂(d̂1)
]

.

Knowing that (B̂
bd1+s − B̂bd1

; s ≥ 0) is a Brownian motion independent of F
bd1

and that B̂
bd1

= 0, the process B̃u = 1√
bd1

B̂
bd1+bd1u

is also a Brownian motion

independent of F
bd1

. Therefore tB̃( 1
t −1) is a Brownian bridge independent of

F
bd1

and the result is proved. �

Example 4.3.5.5 Let B be a real-valued Brownian motion under P and

Xt = Bt −
∫ t

0

Bs

s
ds .

This process X is an F∗-Brownian motion where F∗ is the filtration generated
by the bridges, i.e.,

F∗
t = σ

{
Bu − u

t
Bt, u ≤ t

}
.

Let Lt = exp(λBt − λ2t
2 ) and Q|Ft

= LtP|Ft
. Then Q|F∗

t
= P|F∗

t
.

Comments 4.3.5.6 (a) It can be proved that |B|[g1,d1] has the same law as
a BES3 bridge and is independent of

σ(Bu, u ≤ g1) ∨ σ(Bu, u ≥ d1) ∨ σ(sgn(B1)) .

(b) For a study of Bridges in a general Markov setting, see Fitzsimmons
et al. [346].

(c) Application to fast simulation of Brownian bridge in finance can be
found in Pagès [691], Metwally and Atiya [646]. We shall study Brownian
bridges again when dealing with enlargements of filtrations, in � Subsection
5.9.2.

Exercise 4.3.5.7 Let Ta = inf{t : |Xt| = a}. Give the law of Ta under
W(t)

0→0.

Hint: : W(t)
0→0

(
f(Ta1{Ta<t})

)
= W

(

f(Ta)1{Ta<t}
t

(t−Ta)n/2 e
− a2

2(t−Ta)

)

. �

4.3.6 Slow Brownian Filtrations

If ζ is a random time, i.e., a random variable such that ζ > 0 a.s., we define
the σ-field F−

ζ of the past up to ζ as the σ-algebra generated by the variables
hζ , where h is a generic predictable process.
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Likewise, we may define F+
ζ as the σ-algebra generated by the variables

hζ , where h is a generic F-progressively measurable process.
In particular, we consider, as in Dellacherie et al. [241] the σ-algebras F−

gt

and F+
gt

. The following properties are satisfied:

• Both (F−
gt
, t ≥ 0) and (F+

gt
, t ≥ 0) are increasing and are called the slow

Brownian filtrations, (F−
gt
, t ≥ 0) being the strict slow Brownian filtration

and (F+
gt
, t ≥ 0) the wide slow Brownian filtration.

• For fixed t, there is the double identity

F+
gt

= ∩ε>0F−
gt+ε = F−

gt
∨ σ(sgnBt) .

This shows that F+
gt

is the σ-algebra of the immediate future after gt and
the second identity provides the independent complement σ(sgnBt) which
needs to be added to F−

gt
to capture F+

gt
. See Barlow et al. [50].

4.3.7 Meanders

Definition 4.3.7.1 The Brownian meander of length 1 is the process defined
by:

mu : =
1√

1 − g1
|Bg1+u(1−g1)|; (u ≤ 1) .

We begin with a very useful result:

Proposition 4.3.7.2 The law of m1 is the Rayleigh law whose density is

x exp(−x2/2)1{x≥0} .

Consequently, m1
law=

√
2e holds.

Proof: From (4.3.5),

P(B1 ∈ dx, g1 ∈ ds) = 1{s≤1}
|x| dx ds

2π
√
s(1 − s)3

exp
(

− x2

2(1 − s)

)

.

We deduce, for x > 0,

P(m1 ∈ dx) =
∫ 1

s=0

P(m1 ∈ dx, g1 ∈ ds) =
∫ 1

s=0

P(
|B1|√
1 − s

∈ dx, g1 ∈ ds)

= dx1{x≥0}

∫ 1

0

ds
2x(1 − s)

2π
√
s(1 − s)3

exp
(

−x
2(1 − s)
2(1 − s)

)

= 2x dx1{x≥0} exp
(
−x2/2

) ∫ 1

0

ds
1

2π
√
s(1 − s)

= xe−x2/21{x≥0}dx ,
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where we have used the fact that
∫ 1

0
ds 1

π
√

s(1−s)
= 1, from the property of

the arcsin density. �

We continue with a more global discussion of meanders in connection with
the slow Brownian filtrations. For any given t, by scaling, the law of the process

m(t)
u =

1√
t− gt

|Bgt+u(t−gt)| , u ≤ 1

does not depend on t. Furthermore, this process is independent of F+
gt

and in
particular of gt and sgn(Bt). All these properties extend also to the case when
t is replaced by τ , any F−

gt
-stopping time.

Note that, from |B1| =
√

1 − g1m1 wherem1 and
√

1 − g1 are independent,
we obtain from the particular case of the beta-gamma algebra (see �
Appendix A.4.2) G2 law= 2eg1 where e is exponentially distributed with
parameter 1, G is a standard Gaussian variable, and g1 and e are independent.

Comment 4.3.7.3 For more properties of the Brownian meander, see Biane
and Yor [87] and Bertoin and Pitman [82].

4.3.8 The Azéma Martingale

We now introduce the Azéma martingale which is an (F+
gt

)-martingale and
enjoys many remarkable properties.

Proposition 4.3.8.1 Let B be a Brownian motion. The process

μt = (sgnBt)
√
t− gt, t ≥ 0

is an (F+
gt

)-martingale. Let

Ψ(z) =
∫ ∞

0

x exp
(

zx− x2

2

)

dx = 1 + z
√

2πN (z)ez
2/2 . (4.3.12)

The process

exp
(

−λ
2

2
t

)

Ψ(λμt), t ≥ 0

is an (F+
gt

)-martingale.

Proof: Following Azéma and Yor [38] closely, we project the F-martingale B
on F+

gt
. From the independence property of the meander and F+

gt
, we obtain

E(Bt|F+
gt

) = E(m(t)
1 μt|F+

gt
) = μtE(m(t)

1 ) =
√
π

2
μt . (4.3.13)

Hence, (μt, t ≥ 0) is an (F+
gt

)-martingale. In a second step, we project the
F-martingale exp(λBt − 1

2λ
2t) on the filtration (F+

gt
):
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E(exp(λBt −
λ2

2
t)|F+

gt
) = E

(

exp(λm(t)
1 μt −

λ2

2
t)|F+

gt

)

and, from the independence property of the meander and F+
gt

, we get

E

(

exp
(

λBt −
λ2

2
t

)

|F+
gt

)

= exp
(

−λ
2

2
t

)

Ψ(λμt) , (4.3.14)

where Ψ is defined in (4.3.12) as

Ψ(z) = E(exp(zm1 )) =
∫ ∞

0

x exp
(

zx− x2

2

)

dx .

Obviously, the process in (4.3.14) is a (F+
gt

)-martingale. �

Comment 4.3.8.2 Some authors (e.g. Protter [726]) define the Azéma
martingale as

√
π
2μt, which is precisely the projection of the BM on the wide

slow filtration, hence in further computations as in the next exercise, different
multiplicative factors appear.

Note that the Azéma martingale is not continuous.

Exercise 4.3.8.3 Prove that the projection on the σ-algebra F+
gt

of the F-
martingale (B2

t − t, t ≥ 0) is 2(t− gt) − t, hence the process

μ2
t − (t/2) = (t/2) − gt

is an (F+
gt

)-martingale. �

4.3.9 Drifted Brownian Motion

We now study how our previous results are modified when working with a BM
with drift. More precisely, we consider Xt = x+μ t+σ Bt with σ > 0. In order
to simplify the proofs, we write ga(X) for ga1 (X) = sup{t ≤ 1 : Xt = a}. The
law of ga(X) may be obtained as follows

ga(X) = sup {t ≤ 1 : μt+ σBt = a− x}
= sup {t ≤ 1 : νt+Bt = α} ,

where ν = μ/σ and α = (a− x)/σ. From Girsanov’s theorem, we deduce

P(ga(X) ≤ t) = E

(
1{gα≤t} exp

(

νB1 −
ν2

2

) )
, (4.3.15)

where
gα = gα1 (B) = sup {t ≤ 1 : Bt = α}.
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Then, using that |B1| = m1

√
1 − g1 where m1 is the value at time 1 of the

Brownian meander,

P(ga(X) ≤ t) = exp
(
− ν2

2

)
E

(
1{gα<t} exp

(
νεm1

√
1 − gα

) )
(4.3.16)

where ε is a Bernoulli random variable; furthermore, the random variables
gα, ε, and m1 are mutually independent. Therefore, since m1 follows the
Rayleigh law

P(m1 ∈ dy) = y exp
(

−y
2

2

)

1{y≥0} dy ,

we obtain

P(ga(X) ≤ t) = exp
(
− ν2

2

) ∫ t

0

1
π
√
u(1 − u)

exp
(
− (a− x)2

2uσ2

)
Υ (ν, u) du

: = Ψ(x, a, t), (4.3.17)

where

Υ (ν, u) = E(exp(νεm1

√
1 − u))

=
1
2

(∫ ∞

0

eνy
√

1−uye−y2/2 dy +
∫ ∞

0

e−νy
√

1−uye−y2/2 dy
)
,

that is,

Υ (ν, u) =
∫ ∞

0

cosh(νy
√

1 − u) ye−y2/2 dy.

Lemma 4.3.9.1 Let Xt = νt+Bt. We have, for t < 1

P(ga(X) > t|Ft) = 1{Ta(X)≤t}e
ν(α−Xt)H(ν, |α−Xt|, 1 − t) ,

where, for y > 0

H(ν, y, s) = e−νyN
(
νs− y√

s

)

+ eνyN
(
−νs− y√

s

)

.

Proof: From the absolute continuity relationship, we obtain, for t < 1

W(ν)(ga(X) ≤ t|Ft) = ζ−1
t W(0)(ζ11{ga(X)≤t}|Ft),

where

ζt = exp
(
νXt −

tν2

2
)
. (4.3.18)

Therefore, from the equality

{ga(X) ≤ t} = {Ta(X) ≤ t} ∩ {dat (X) > 1}

we obtain



246 4 Complements on Brownian Motion

W(0)(ζ11{ga≤t}|Ft)

= exp
(
νXt − ν2/2

)
1{Ta(X)≤t}W(0)

(
exp[ν(X1 −Xt)]1{da

t (X)>1}|Ft).

Using the independence properties of Brownian motion and equality (4.3.3),
we get

W(0)
(
exp[ν(X1 −Xt)]1{da

t (X)>1}|Ft

)

= W(0)
(
exp[νZ1−t]1{Ta−Xt (Z)>1−t}|Ft

)

= Θ(a−Xt, 1 − t)

where Zt = X1 −Xt
law= X1−t is independent of Ft under W(0) and

Θ(x, s) : = W(0)
(
eνXs1{Tx≥s}

)
= esν

2/2 − W(0)
(
eνXs1{Tx<s}

)
.

By conditioning with respect to FTx , we obtain (see Subsection 3.2.4 for the
computation of H)

W(0)
(
eνXs1{Tx<s}

)

= eνxW(0)
(
1{Tx<s}e

ν2
2 (s−Tx)W(0)

(
eν(Xs−XTx )− ν2

2 (s−Tx)|FTx

))

= eνxW(0)
(
1{Tx<s}e

ν2
2 (s−Tx)

)
= eνx+sν2/2H(ν, |x|, s) .

Therefore,

Θ(a−Xt, 1 − t) = e(1−t)ν2/2(1 − eν(a−Xt)H(ν, |a−Xt|, 1 − t))

and

W(ν)(ga(X) ≤ t|Ft) = 1{Ta(X)≤t} exp
( (t− 1)ν2

2

)
Θ(a−Xt, 1 − t)

= 1{Ta(X)≤t}

(
1 − eν(a−Xt)H(ν, |a−Xt|, 1 − t)

)
.

�

4.4 Parisian Options

In this section, our aim is to price an exotic option which we describe below,
in a Black and Scholes framework: the underlying asset satisfies the stochastic
differential equation

dSt = St((r − δ) dt+ σ dWt) (4.4.1)

where W is a Brownian motion under the risk-neutral probability Q, and
w.l.g. σ > 0. In a closed form,
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St = S0e
σXt

where Xt = Wt+νt and ν = r−δ
σ − σ

2 . The owner of an up-and-out Parisian
option (UOPa) loses its value if the stock price reaches a level H ( H is for
High) and remains constantly above this level for a time interval longer than
D (the delay). A down-and-in Parisian option (DIPa) is activated if the stock
price falls below a Low level L and remains constantly below this level for a
time interval longer than D. For a delay equal to zero, the Parisian option
reduces to a standard barrier option. When the delay is extended beyond
maturity, the UOPa option reduces to a standard European option. In the
intermediate case, the option presents its “Parisian” feature and becomes a
flexible financial tool which has some interesting properties: for instance, for
some values of the parameters, when the underlying asset price is close to
the out-barrier or when the size of the delay is small, its value is a decreasing
function of the volatility. Therefore, it allows traders to bet in a simple manner
on a decrease of volatility. Last but not least, as far as down-and-out barrier
options are concerned, an influential agent in the market who has written such
options and sees the price approaching the barrier may try to push the price
further down, even momentarily and the cost of doing so may be smaller than
the option payoff. In the case of Parisian options, this would be more difficult
and expensive.

Parisian options, or more precisely Parisian times (the time when the
option is activated or deactivated) are useful for modelling bankruptcy time;
we note that following Chapter 11 of the United States Bankruptcy Code
concerning reorganization of a business allows the firm to wait a certain time
before being declared in bankruptcy.

For a generic continuous process Y and a given t > 0, we introduce gbt (Y ),
the last time before t at which the process Y was at level b, i.e.,

gbt (Y ) = sup{s ≤ t : Ys = b}.

For an UOPa option we need to consider the first time at which the underlying
asset S is above H for a period greater than D, i.e.,

G+,H
D (S) = inf{t > 0 : (t− gHt (S))1{St>H} ≥ D}

= inf{t > 0 : (t− ght (X))1{Xt>h} ≥ D} = G+,h
D (X)

where h = ln(H/S0)/σ. If this stopping time occurs before the maturity then
the UOPa option is worthless. The price of an UOPa call option is

UOPa(S0, H,D;T ) = EQ

(
e−rT (ST −K)+1{G+,H

D (S)>T}

)

= EQ

(
e−rT (S0e

σXT −K)+1{G+,h
D (X)>T}

)

or, using a change of probability (see Example 1.7.5.5)
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UOPa(S0, H,D;T ) = e−(r+ν2/2)T
E

(
eνWT (S0e

σWT −K)+1{G+,h
D (W )>T}

)
,

where W is a Brownian motion. The sum of the prices of an up-and-in (UIPa)
and an UOPa option with the same strike and delay is obviously the price of
a plain-vanilla European call.

In the same way, the value of a DIPa option with level L is defined using

G−,L
D (S) = inf{t > 0 : (t− gLt (S))1{St<L} ≥ D}

which equals, in terms of X,

G−,�
D (X) = inf{t > 0 : (t− g�t (X))1{Xt<�} ≥ D}

with ! =
1
σ

ln(L/S0). Then, the value of a DIPa option is equal to

DIPa(S0, L,D;T ) = EQ

(
e−rT (ST −K)+1{G−,L

D (S)<T}

)

= e−(r+ν2/2)T
E

(
eνWT (S0e

σWT −K)+1{G−,�
D (W )<T}

)

: = e−(r+ν2/2)T �DIPa(S0, L,D;T ) ,

where in this section, we define the general “star” transformation of a function
f as

�f(t) = e(r+ν2/2)tf(t) .

In the case S0 > L, the computation of �DIPa(S0, L,D;T ) can be reduced
to the case L = S0, i.e., ! = 0. Indeed, for the option to be activated, the
level L has to be reached by the process S (or equivalently, the level ! has to
be reached by the process W ) before the maturity T . Therefore, introducing
T� = inf{t : Wt = !}, we obtain

�DIPa(S0, L,D;T ) = E(eνWT (S0e
σWT −K)+1{G−,�

D (W )<T})

= E

(
eν(WT −WT�

+�)(S0e
σ(WT −WT�

+�) −K)+1{G−,�
D (W )<T}

)

= eν�E
(
eνZT−T� (S0e

σ(�+ZT−T�
) −K)+1{G−,0

D (Z)<T−T�}

)

where Zt = Wt+T�
−WT�

is a BM independent of T�. Let us now introduce
F�, the cumulative distribution function of T�.

�DIPa(S0, L,D;T )

= eν�
∫ T

0

dF�(u)E(eνZT−u(S0e
σ(ZT−u+�) −K)+1{G−,0

D (Z)<T−u})

= eν�
∫ T

0

dF�(u) �DIPa(S0, S0, D;T − u) .
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We have used the fact that the computation of the law of the Parisian time
below a level ! for a Brownian motion starting at level ! reduces to the law of
the Parisian time below level 0 for a standard Brownian motion (starting from
0). Nevertheless, in the next subsection, we shall present a different approach.

4.4.1 The Law of (G−,�
D (W ) , W

G
−,�
D

)

In a first step, we compute the law of the pair (Parisian time, Brownian motion
at the Parisian time) for a level ! = 0.

Proposition 4.4.1.1 Let W be a Brownian motion and G−
D : = G−,0

D (W ).
The random variables G−

D and WG−
D

are independent and

P(WG−
D
∈ dx) =

−x
D

exp
(

− x2

2D

)

1{x<0} dx, (4.4.2)

E

(

exp
(

−λ
2

2
G−

D

))

=
1

Ψ(λ
√
D )

(4.4.3)

where Ψ(z) =
∫ ∞

0

x exp
(

zx− x2

2

)

dx = 1 + z
√

2πN (z)ez
2/2 .

Proof: We have defined in Subsection 4.3.6 the wide slow Brownian filtration
(F+

gt
, t ≥ 0). The r.v. G−

D is an (F+
gt
, t ≥ 0)- hence an (Ft, t ≥ 0)- stopping

time. From results on meanders recalled in Subsection 4.3.7, the process
(

1√
D

|WgG−
D

+ uD| , u ≤ 1
)

is a Brownian meander independent of F+
gG−

D

, since G−
D = gG−

D
+D, the r.v.

1√
D
WG−

D
is distributed as −m1, hence

P(WG−
D
∈ dx) =

−x
D

exp
(

− x2

2D

)

1{x<0} dx,

and the variables G−
D and WG−

D
are independent. From Proposition 4.3.8.1,

the process

Ψ(−λμt∧G−
D

) exp
(

−λ
2

2
(t ∧G−

D)
)

, t ≥ 0 ,

(where μ denotes the Azéma martingale) is a F+
gt

-local martingale. Since, for
λ > 0, 0 < −λμt∧G−

D
< λD, this process is bounded. Hence, using the optional

sampling theorem at G−
D, we obtain

E

(
Ψ(−λμG−

D

)
exp(

(

−λ
2

2
G−

D

)

= Ψ(0) = 1
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and the left-hand side equals Ψ(λ
√
D ) E(exp(−λ

2

2
G−

D)). The formula

E

(

exp
(

−λ
2

2
G−

D

))

=
1

Ψ(λ
√
D )

follows. �

From the above proposition, we can easily deduce the law of the pair
(G−,�

D ,WG−,�
D

) in the case ! < 0, as we now show.

Corollary 4.4.1.2 Let ! < 0. The random variables G−,�
D and WG−,�

D
are

independent and their laws are given by

P(WG−,�
D

∈ dx) =
dx

D
1{x<�} (!− x) exp

(

− (x− !)2

2D

)

(4.4.4)

E

(

exp
(

−λ
2

2
G−,�

D

))

=
exp(!λ)
Ψ(λ

√
D)

. (4.4.5)

Proof: This study may be reduced to the previous one, with the help of the
stopping time T� = T�(W ). Since

G−,�
D = T� + Ĝ−

D

where
Ĝ−

D = inf{t ≥ 0 : 1{cWt≤0}(t− g0
t (Ŵ )) ≥ D}

with Ŵt = WT�+t −WT�
, it follows, from the independence between T� and

Ĝ−
D, that

E

(

exp
(

−λ
2

2
G−,�

D

))

= E

(

exp
(

−λ
2

2
T�

))

E

(

exp
(

−λ
2

2
Ĝ−

D

))

.

The Laplace transform of the hitting time T� is known (see Proposition 3.1.6.1)
and Ĝ−

D
law= G−

D; hence, by application of equality (4.4.3)

E

(

exp
(

−λ
2

2
G−,�

D

))

=
exp(!λ)
Ψ(λ

√
D)

.

We obtain finally from (4.4.2) that

P(WG−,�
D

∈ dx) = P(Ŵ
bG−

D
− ! ∈ dx− !)

=
dx

D
1{x<�} (!− x) exp

(

− (x− !)2

2D

)

.

Note in particular that, since Ψ(0) = 1, P(G−,�
D <∞) = 1. �
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Proposition 4.4.1.3 In the case ! > 0, the random variables G−,�
D and

WG−,�
D

are independent. Their laws are characterized by

E(exp(−λG−,�
D )) = e−λD (1 − F�(D)) +

1
Ψ(

√
2λD)

H(
√

2λ, !,D) ,

where F� is the cumulative distribution function of T� and the function H is
defined in (3.2.7), and

P(W
G−,�

D

∈ dx) = 1{x≤�}dx

[

e−(x−�)2/(2D)
P(T� < D)

!− x

D

+
1√
2πD

(
e−x2/(2D) − e−(x−2�)2/(2D)

)]

.

Proof: In the case ! > 0, the first excursion below ! begins at t = 0. We now
use the obvious equality

E(exp(−λG−,�
D )) = E(1{T�<D} exp(−λG−,�

D )) + E(1{T�>D} exp(−λG−,�
D )) .

On the set {T� > D}, we have G−,�
D = D. Therefore,

E(1{T�>D} exp(−λG−,�
D )) = exp(−λD)P(T� > D)

= exp(−λD) (1 − F�(D)) .

Here, F� is the cumulative distribution function of T� (see formula 3.1.6 ).
On the set {T� < D}, we write, as in the proof of the previous corollary,
G−,�

D = T� + Ĝ−
D. Hence, on (T� < D), we have:

E

(
exp(−λG−,�

D ) | FT�

)
= exp(−λT�) E

(
exp(−λĜ−

D)
)
.

Therefore, E
(
1{T�<D} exp(−λG−,�

D )
)

=
1

Ψ(
√

2λD)
E(1{T�<D} exp(−λT�)). The

quantity E(1{T�<D} exp(−λT�)) has been computed in Subsection 3.2.4, and
is equal to H(

√
2λ, !,D) (see formula (3.2.7)).

It follows that

E(exp(−λG−,�
D )) = e−λD (1 − F�(D)) +

1
Ψ(

√
2λD)

H(
√

2λ, !,D) .

The law of W
G−,�

D

can easily be deduced from the following three equalities:

W
G−,�

D

= (!+ Ŵ
bG−

D
)1{T�<D} +WD1{T�>D}

P(!+ Ŵ
Ĝ−

D

∈ dx, T� < D) = P(T� < D)1{x≤�}(!− x) exp
(

− (x− !)2

2D

)
dx

D
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P(WD ∈ dx, T� > D) =
dx√
2πD

(

exp
(

− x2

2D

)

− exp
(

− (x− 2!)2

2D

))

1{x≤�} .

�

Comment 4.4.1.4 The independence property of a stopping time τ and the
position of the Brownian motion at that time Bτ is a fairly rare phenomenon
for Brownian stopping times; it is satisfied for τ = G−,�

D . It can be proved,
for example that, if T is a bounded stopping time such that T and WT are
independent, then T is a constant. A more general study of stopping times
which enjoy this independence property can be found in De Meyer et al.
[246, 247]. See also the following exercise.

Exercise 4.4.1.5 Let T ∗
a = inf{t : |Wt| = a}. Prove that the r.v’s T ∗

a and
WT∗

a
are independent and show that WT∗

a
is symmetric with values ±a. See

Section 3.5. �

4.4.2 Valuation of a Down-and-In Parisian Option

We have seen that the price of a down-and-in Parisian option is given by

DIPa(S0, L,D;T ) = e−(r+ν2/2)T �DIPa(S0, L,D;T )

where

�DIPa(S0, L,D;T ) = E

(
1{G−,�

D ≤T}E
(
eνWT (S0e

σWT −K)+|FG−,�
D

))
.

From the strong Markov property

�DIPa(S0, L,D;T ) = E(1{G−,�
D ≤T}PT−G−,�

D
(ψ)(WG−,�

D
))

with ⎧
⎨

⎩

ψ(y) = eνy(S0e
σy −K)+,

Ptf(z) =
1√
2πt

∫ ∞

−∞
f(y) exp

(

− (y − z)2

2t

)

dy .

Denote by ϕ the density of WG−,�
D

and recall that G−,�
D and WG−,�

D
are

independent. Then,

�DIPa(S0, L,D;T ) =
∫∞
−∞ ϕ(dz) E(1{G−,�

D ≤T}PT−G−,�
D

(ψ)(z))

=
∫∞
−∞ dy ψ(y)h�(T, y)

(4.4.6)

where the function h� is defined by

h�(t, y) =
∫ ∞

−∞
ϕ(dz) γ(t, y − z) (4.4.7)
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with

γ(t, x) = E

⎛

⎝
1{G−,�

D ≤t}
√

2π(t−G−,�
D )

exp

(

− x2

2(t−G−,�
D )

)⎞

⎠ .

Then, replacing ψ by its value, we obtain

�DIPa(S0, L;D,T ) =
∫ ∞

k

dy eνy(S0e
σy −K)h�(T, y) (4.4.8)

where k =
1
σ

ln
K

S0
. The computation of this quantity relies on the knowledge

of h�; however this function h� is only known through its time Laplace
transform ĥ� which is given in the following two theorems.

Theorem 4.4.2.1 In the case S0 > L (i.e., ! < 0) the function t → h�(t, y)
is characterized by its Laplace transform: for λ > 0,

ĥ�(λ, y) =
e�

√
2λ

D
√

2λΨ(
√

2λD)

∫ ∞

0

dz z exp
(

− z2

2D
− |y + z − !|

√
2λ
)

where Ψ(z) is defined in (4.3.12). If y > !, then

ĥ�(λ, y) =
Ψ(−

√
2λD)

Ψ(
√

2λD)
e(2�−y)

√
2λ

√
2λ

.

Proof: In the case S0 > L, from (4.4.4), the density ϕ of WG−,�
D

is

ϕ(x) = P(WG−,�
D

∈ dx)/dx =
1
D

(!− x) exp
(

− (x− !)2

2D

)

1{x≤�} .

The function h� is defined in terms of ϕ and γ. Thus, the knowledge of the
Laplace transform of γ will lead to the knowledge of ĥ�.

For λ > 0, we obtain, with an obvious change of variable,

∫ ∞

0

dt e−λtγ(t, x) = E

⎡

⎣
∫ ∞

G−,�
D

dt
e−λt

√
2π(t−G−,�

D )
exp

(

− x2

2(t−G−,�
D )

)⎤

⎦

= E(e−λG−,�
D )
∫ ∞

0

dt exp
(

−x
2

2t

)
e−λt

√
2πt

. (4.4.9)

The integral on the right of (4.4.9) is the resolvent kernel of Brownian motion

and is equal to
1√
2λ
e−|x|

√
2λ. By substituting this result in (4.4.9) and using

the Laplace transform of G−,�
D given in (4.4.5), we obtain:
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∫ ∞

0

dt e−λtγ(t, x) =
e−(|x| − !)

√
2λ

√
2λΨ(

√
2λD)

. (4.4.10)

Therefore, from the definition (4.4.7) of h�, its Laplace transform, ĥ�(λ, y) is
given by

∫ ∞

0

dt e−λth�(t, y) =
∫ �

−∞

dz

D
(!− z)e−

(�−z)2

2D

∫ ∞

0

dt e−λtγ(t, y − z)

=
∫ ∞

0

du

D
ue−

u2
2D

∫ ∞

0

dt e−λtγ(t, y + u− !)

=
e�

√
2λ

D
√

2λ Ψ(
√

2λD)

∫ ∞

0

duu exp
(

− u2

2D
− |y + u− !|

√
2λ
)

.

The corresponding integral

Kλ,D(a) : =
1
D

∫ ∞

0

duu exp
(

− u2

2D
− |u+ a|

√
2λ
)

can be easily evaluated as follows.
� If a > 0, using the change of variables u = z

√
D, we obtain

Kλ,D(a) = exp(−a
√

2λ)Ψ(−
√

2λD)

and this leads to the formula for y > !.
� If a < 0, a similar method leads to

Kλ,D(a) = ea
√

2λ + 2
√
πλDeλD

×
(

ea
√

2λ

[

N
(

−a√
D

−
√

2λD
)

−N
(
−
√

2λD
)]

−e−a
√

2λN
(

a√
D

−
√

2λD
))

.

As a partial check, note that ifD = 0, the Parisian option is a standard barrier
option. The previous computation simplifies and we obtain

ĥ�(λ, y) =
e!
√

2λ
√

2λ
e−|!− y|

√
2λ .

It is easy to invert ĥ� and we are back to the formula (3.6.28) for the price of
a DIC option obtained in Theorem 3.6.6.2 . �

Remark 4.4.2.2 The quantity Ψ(−
√

2λD) is a Laplace transform, as well

as the quantity
e(2�−y)

√
2λ

√
2λ

. Therefore, in order to invert ĥ� in the case y > !,

it suffices to invert the Laplace transform
1

Ψ(
√

2λD)
. This is not easy: see

Schröder [770] for some computation.
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Theorem 4.4.2.3 In the case S0 < L (i.e., ! > 0), the function h�(t, y) is
characterized by its Laplace transform, for λ > 0,

ĥ�(λ, y) = ĝ(t, y)

+
1

D
√

2λ Ψ(
√

2λD)
H(

√
2λ, !,D)

∫ ∞

0

dz z exp
(

− z2

2D
− |y − !+ z|

√
2λ
)

.

where g is defined in the following equality (4.4.12), and H is defined in (3.2.7).

Proof: In the case ! > 0, the Laplace transform of h�(., y) is more
complicated. Denoting again by ϕ the law of WG−,�

D
, we obtain

∫ ∞

0

dt e−λth�(t, y) = E

(∫ ∞

−∞
ϕ(dz) e−λG−,�

D
1√
2λ

exp(−|y − z|
√

2λ)
)

.

Using the previous results, and the cumulative distribution function F� of T�,
∫ ∞

0

dt e−λth�(t, y) = (4.4.11)

1
D

√
2λ Ψ(

√
2λD)

∫ ∞

0

dz z exp
(

− z2

2D
− |y − !+ z|

√
2λ
) ∫ D

0

F�(dx) e−λx

+
e−λD

2
√
λπD

∫ �

−∞
dz

(

exp
(

− z2

2D

)

− exp− (z − 2!)2

2D

)

e−|y − z|
√

2λ .

We know from Remark 3.1.6.3 that
1√
2λ

exp(−|a|
√

2λ) is the Laplace

transform of
1√
2πt

exp(−a
2

2t
). Hence, the second term on the right-hand side

of (4.4.11) is the time Laplace transform of g(·, y) where

g(t, y) =
1{t>D}

2π
√
D(t−D)

∫ �

−∞
e

(y−z)2

2(t−D)

(

e−
z2
2D − e−

(z−2�)2

2D

)

dz . (4.4.12)

We have not be able go further in the inversion of the Laplace transform.

A particular case: If y > !, the first term on the right-hand side of (4.4.11)
is equal to

Ψ(−
√

2λD)
Ψ(

√
2λD)

e−(y−�)
√

2λ

√
2λ

∫ D

0

F�(dx)e−λx .

This term is the product of four Laplace transforms; however, the inverse

transform of
1

Ψ(
√

2λD)
is not identified. �
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Comment 4.4.2.4 Parisian options are studied in Avellaneda and Wu [30],
Chesney et al. [175], Cornwall et al. [196], Dassios [213], Gauthier [376] and
Haber et al. [415]. Numerical analysis is carried out in Bernard et al. [76],
Costabile [198], Labart and Lelong [556] and Schröder [770]. An approximation
with an implied barrier is done in Anderluh and Van der Weide [14]. Double-
sided Parisian options are presented in Anderluh and Van der Weide [15],
Dassios and Wu [215, 216, 217] and Labart and Lelong [557]. The “Parisian”
time models a default time in Çetin et al. [158] and in Chen and Suchanecki
[162, 163]. Cumulative Parisian options are developed in Detemple [252],
Hugonnier [451] and Moraux [657]. Their Parisian name is due to their birth
place as well as to the meanders of the Seine River which lead many tourists
to excursions around Paris.

Exercise 4.4.2.5 We have just introduced Parisian down-and-in options
with a call feature, denoted here CDIPa. One can also define Parisian up-and-
in options PUIPa with a put feature, i.e., with payoff (K − ST )+1{G+,L

D <T} .

Prove the symmetry formula

CDIPa(S0,K, L; r, δ;D,T ) = KS0PUIPa(S−1
0 ,K−1, L−1, δ, r;D,T ) .

�

4.4.3 PDE Approach

In Haber et al. [415] and in Wilmott [846], the following PDE approach to
valuation of Parisian option is presented, in the case δ = 0. The value at
time t of a down-and-out Parisian option is a function of the three variables
t, St, t− gt, i.e., DOPa = Φ(T − t, St, t− gt) and the discounted price process
e−rtΦ(T − t, St, t− gt) is a Q-martingale. Using the fact that (gt, t ≥ 0) is an
increasing process, Itô’s calculus gives

d[e−rtΦ(t, St, t− gt)] = e−rt

[

−rΦdt+ (∂tΦ) dt+ (∂xΦ) dSt + (∂uΦ) (dt− dgt)

+
1
2
σ2S2

t (∂xxΦ) dt
]

between two jumps of gt. (Here, u is the third variable of the function Φ).
Therefore, the dt terms must sum to 0 giving

⎧
⎨

⎩

−rΦ+ ∂tΦ+ xr∂xΦ+ ∂uΦ+
1
2
σ2x2∂xxΦ = 0, for u < D

∂uΦ(t, x, 0) = 0 .

with the boundary conditions
{
Φ(t, x, u) = Φ(t, x, 0), forx ≥ L
Φ(t, x, u) = 0, foru ≥ D, x < L .
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4.4.4 American Parisian Options

American Parisian options are also considered. Grau [403] combined Monte
Carlo simulations and PDE solvers (see also Grau and Kallsen [404]) in
order to price European and American Parisian options. The PDE approaches
developed by Haber et al. [415] and Wilmott [846] can also be used in order
to value these options. In the same setting, where the risk-neutral dynamics
of the underlying are given by (4.4.1), Chesney and Gauthier [172] developed
a probabilistic approach for the pricing of American Parisian options. They
derived the following result for currency options:

Proposition 4.4.4.1 The price of an American Parisian down-and-out call
(ADOPa) can be decomposed as follows:

ADOPa (S0, L,D, T ) = DOPa (S0, L,D, T )

+ δS0

∫ T

0

e−αu
E

[
1{Wu≥b̄(u)}1{u<G−,�

D (W )} exp ((ν + σ)Wu)
]
du

− rK

∫ T

0

e−αu
E

[
1{Wu≥b̄(u)}1{u<G−,�

D (W )} exp (νWu)
]
du

where

α = r +
ν2

2
, ν =

1
σ

(

r − δ − σ2

2

)

, b̄(u) =
1
σ

ln
(
bc(T − u)

S0

)

,

! =
1
σ

ln
(
L

S0

)

≤ 0

and where {bc(T − u), u ∈ [0, T ]} is the exercise boundary (see Section 3.11
for the general definition). Here, the process W is a Brownian motion.

This decomposition can also be written as follows:

ADOPa (S0, L,D, T ) = DOPa (S0, L,D, T ) + δ

∫ T

0

DOPa(S0, bc(T − u), u)du

+ δ

∫ T

0

(
bc(T − u) − r

δ
K
)

BinDOCPa (S0, bc(T − u), u) du

where DOPa(S0, bc(T − u), u) is the price of the European Parisian down-
and-out call option with maturity u, strike price bc(T − u), barrier L and
delay D, BinDOCPa (S0, bc(T − u), u) is the price of a Parisian binary call
(see Subsections 3.6.2 and 3.6.3 for the definitions of binary calls and binary
barrier options) which generates at maturity a pay-off of one monetary unit
if the underlying value is higher than the strike price and if the first instant
–when the underlying price spends consecutively more than D units of time
under the level L1 – is greater than the maturity u. Otherwise, the payoff is
equal to zero.
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Denote by ADOPa (S0, L,D) the price of a perpetual American Parisian
option. The following proposition is obtained:

Proposition 4.4.4.2 The price of a perpetual American Parisian down-and-
out call is given by:

ADOPa (S0, L,D) = δ

∫ +∞

0

DOPa(S0, Lc, u) du

+ δ

∫ +∞

0

(
Lc −

r

δ
K
)

BinDOCPa (S0, Lc, u) du

or

ADOPa(S0, L,D) =

(

1 − Ψ(−κ
√
D)

Ψ(κ
√
D)

e2�κ

)
1
σκ

(
S0

Lc

)γ (
δLc

γ − 1
− r

γ
K

)

with κ =
√

2r + ν2, γ = −ν+
√

2r+ν2

σ and where the exercise boundary Lc is
defined implicitly by:

Lc −K =

(

1 − Ψ(−κ
√
D)

Ψ(κ
√
D)

(
L

Lc

)2 κ
σ

)
1
σκ

(
δLc

γ − 1
− r

γ
K

)

where the function Ψ is defined in equation (4.3.12).

Solutions when the excursion has already started and for the “in” barrier
case are also derived. The latter case is easier to analyze. Indeed, in this
setting, the option holder cannot do or decide anything before the option
is activated; once the option is activated then it does not have a barrier
anymore, but is just a plain vanilla American call. The exercise frontier for
an American Parisian “in” barrier option is therefore the exercise frontier of
the corresponding plain vanilla option, starting at the activation time.
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Complements on Continuous Path Processes

In this chapter, we present the important notion of time change, which will
be crucial when studying applications to finance in a Lévy process setting.
We then introduce the operation of dual predictable projection, which will
be an important tool when working with the reduced form approach in the
default risk framework (of course, it has many other applications as will appear
clearly in subsequent chapters). We present important facts about general
homogeneous diffusions, in particular concerning their Green functions, scale
functions and speed measures. These three quantities are of great interest
when valuing options in a general setting. We study applications related to
last passage times. A section is devoted to enlargements of filtrations, an
important subject when dealing with insider trading.

The books of Borodin and Salminen [109], Itô [462], Itô and McKean [465],
Karlin and Taylor [515], Karatzas and Shreve [513], Kallenberg [505], Knight
[528], Øksendal [684], [RY] and Rogers and Williams [741, 742] are highly
recommended. See also the review of Varadhan [826].

An excellent reference for the study of first hitting times of a fixed level
for a diffusion is the book of Borodin and Salminen [109] where many results
can be found. The general theory of stochastic processes is presented in
Dellacherie [240], Dellacherie and Meyer [242, 244] and Dellacherie, Meyer
and Maisonneuve [241]. Some results about the general theory of processes
can also be found in � Chapter 9.

5.1 Time Changes

5.1.1 Inverse of an Increasing Process

In this paragraph, we deal with processes on a probability space but do not
make any reference to a given filtration. Let us recall that by definition (see
Subsection 1.1.10) an increasing process is equal to 0 at time 0; it is right

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 5,
c© Springer-Verlag London Limited 2009
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http://dx.doi.org/10.1007/978-1-84628-737-4_5
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continuous and of course increasing. Let A be an increasing process and let C
be the right inverse of A, that is the increasing process defined by:

Cu = inf{t : At > u} (5.1.1)

where inf{∅} = ∞. We shall use Cu or C(u) for the value at time u of the
process C. The process C is right-continuous and satisfies

Cu− = inf{t : At ≥ u}

and {Cu > t} = {At < u}. We also have ACs ≥ s and At = inf{u : Cu > t}.
(See [RY], Chapter 0, section 4 for details.) Moreover, if A is continuous and
strictly increasing, C is continuous and C(At) = t.

Proposition 5.1.1.1 Time changing in integrals can be effected as follows:
if f is a positive Borel function

∫

[0,∞[

f(s) dAs =
∫ ∞

0

f(Cu)1{Cu<∞}du .

Proof: For f = 1[0,v], the formula reads

Av =
∫ ∞

0

1{Cu≤v}du

and is a consequence of the definition of C. The general formula follows from
the monotone class theorem. �

5.1.2 Time Changes and Stopping Times

In this section, F is a right-continuous filtration, and A is a right-continuous
adapted increasing process with right inverse C. From the identity

{Cu ≤ t} = {At ≥ u} ,

we see that (Cu, u ≥ 0) is a family of F-stopping times. This leads us to define
a time change C as a family (Cu, u ≥ 0) of stopping times such that the
map u → Cu is a.s. increasing and right continuous. We denote by FC the
filtration FC = (FCt , t ≥ 0). For every t the r.v. At is an FC-stopping time
(indeed {At < u} = {Cu > t}).

Example 5.1.2.1 We have studied a very special case of time change while
dealing with Ornstein-Uhlenbeck processes in Section 2.6. These processes are
obtained from a Brownian motion by means of a deterministic time change.
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Example 5.1.2.2 Let W be a Brownian motion and let

Tt = inf{s ≥ 0 : Ws > t} = inf
{

s ≥ 0 : max
u≤s

Wu > t

}

be the right-continuous inverse of Mt = maxu≤tWu. The process (Tt, t ≥ 0)
is increasing, and right-continuous (see Subsection 3.1.2). See � Section 11.8
for applications.

Exercise 5.1.2.3 Let (B,W ) be a two-dimensional Brownian motion and
define

Tt = inf{s ≥ 0 : Ws > t} .
Prove that (Yt = BTt , t ≥ 0) is a Cauchy process, i.e., a process with
independent and stationary increments, such that Yt has a Cauchy law with
characteristic function exp(−t|u|).
Hint: E(eiuBTt ) =

∫
e−

1
2u

2Tt(ω)
P(dω) = E(e−

1
2u

2Tt) = e−t|u|. �

5.1.3 Brownian Motion and Time Changes

Proposition 5.1.3.1 (Dubins-Schwarz’s Theorem.) A continuous mar-
tingale M such that

〈M〉∞ = ∞
is a time-changed Brownian motion. In other words, there exists a Brownian
motion W such that Mt = W〈M〉t

.

Sketch of the Proof: Let A = 〈M〉 and define the process W as
Wu = MCu where C is the inverse of A. One can then show that W is a
continuous local martingale, with bracket 〈W 〉u = 〈M〉Cu = u. Therefore,
W is a Brownian motion, and replacing u by At in Wu = MCu , one obtains
Mt = WAt . �

Comments 5.1.3.2 (a) This theorem was proved in Dubins and Schwarz
[268]. It admits a partial extension due to Knight [527] to the multidimensional
case: if M is a d-dimensional martingale such that 〈M i,M j〉 = 0, i = j
and 〈M i〉∞ = ∞,∀i, then the process W = (M i

Ci(t)
, i ≤ d, t ≥ 0) is a d-

dimensional Brownian motion w.r.t. its natural filtration, where the process
Ci is the inverse of 〈M i〉. See, e.g., Rogers and Williams [741]. The assumption
〈M〉∞ = ∞ can be relaxed (See [RY], Chapter V, Theorem 1.10).

(b) Let us mention another two-dimensional extension of Dubins and
Schwarz’s theorem for complex valued local martingales which generalize
complex Brownian motion. Getoor and Sharpe [390] introduced the notion
of a continuous conformal local martingale as a process Z = X + iY , valued
in C, the complex plane, where X and Y are real valued continuous local
martingales and Z2 is a local martingale. A prototype is the complex-valued
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Brownian motion. If Z is a continuous conformal local martingale, then, from
Z2
t = X2

t −Y 2
t +2iXtYt, we deduce that 〈X〉t = 〈Y 〉t and 〈X,Y 〉t = 0. Hence,

applying Knight’s result to the two-dimensional local martingale (X,Y ), there
exists a complex-valued Brownian motion B such that Z = B〈X〉. In fact, in
this case, B can be shown to be a Brownian motion w.r.t. (Fαu , u ≥ 0), where
αu = inf{t : 〈X〉t > u}. If (Zt, t ≥ 0) denotes now a C-valued Brownian
motion, and f : C → C is holomorphic, then (f(Zt), t ≥ 0) is a conformal
martingale. The C-extension of the Dubins-Schwarz-Knight theorem may then
be written as:

f(Zt) = ẐR t
0 |f ′(Zu)|2du, t ≥ 0 (5.1.2)

where f ′ is the C-derivative of f , and Ẑ denotes another C-valued Brownian
motion. This is an extremely powerful result due to Lévy, which expresses the
conformal invariance of C-valued Brownian motion. It is easily shown, as a
consequence, using the exponential function that, if Z0 = a, then (Zt, t ≥ 0)
shall never visit b = a (of course, almost surely). As a consequence, (5.1.2)
may be extended to any meromorphic function from C to itself, when P (Z0 ∈
S) = 0 with S the set of singular points of f .

(c) See Jacod [468], Chapter 10 for a detailed study of time changes, and
El Karoui and Weidenfeld [311] and Le Jan [569].

Exercise 5.1.3.3 Let f be a non-constant holomorphic function on C and
Z = X + iY a complex Brownian motion. Prove that there exists another
complex Brownian motion B such that f(Zt) = f(Z0)+B(

∫ t
0
|f ′(Zs)|2d〈X〉s)

(see [RY], Chapter 5). As an example, exp(Zt) = 1 +BR t
0 ds exp(2Xs). �

We now come back to a study of real-valued continuous local martingales.

Lemma 5.1.3.4 Let M be a continuous local martingale with 〈M〉∞ = ∞,
W the Brownian motion such that Mt = W〈M〉t

and C the right-inverse of
〈M〉. If H is an adapted process such that for any t,

∫ t

0

H2
sd〈M〉s

(

=
∫ 〈M〉t

0

H2
Cu
du

)

<∞ ,

then
∫ t

0

HsdMs =
∫ 〈M〉t

0

HCudWu ,

∫ Ct

0

HsdMs =
∫ t

0

HCudWu .

Lemma 5.1.3.5 Let Xt =
∫ Ct

0
HsdWs, where C is a time change with respect

to F, differentiable with respect to time. Assume that C ′
t = 0 for any t. Then,

dXt = HCt

√
C ′
t dBt ,

where B is an FC-Brownian motion.



5.1 Time Changes 263

Proof: From the previous lemma
∫ Ct

0

HsdWs =
∫ t

0

HCudWCu ,

hence, dXt = HCtdWCt . The process (WCu , u ≥ 0) is a local martingale with
bracket Cu. The process

Bt =
∫ t

0

1
√
C ′
u

dWCu

is a Brownian motion. �

Remarks 5.1.3.6 (a) Up to an enlargement of probability space, one can
generalize the previous lemma to the case where the condition C ′

t = 0 does
not hold, but where we keep the assumption that C is differentiable. (The
proof is left to the reader.)

(b) A time-changed local martingale is not necessarily a local martingale
with respect to the time-changed filtration. As seen in Example 5.1.2.2, if Tt
is the first hitting time of the level t for the Brownian motion B, the process
t → Tt is increasing and is a time change. However, BTt = t is not a local
martingale. This illustrates, although very roughly, Monroe’s theorem (see
Remark 5.1.3.6) which states that any semi-martingale (even discontinuous)
is a time changed Brownian motion. [655, 656]

However, if X is a continuous F-local martingale and C a continuous
time change, then (XCt)t≥0 is a continuous FC-local martingale. (See [RY],
Chapter V, Section 1).

Comments 5.1.3.7 (a) Changes of time are extensively used for finance
purposes in the papers of Geman, Madan and Yor [379, 385, 380, 381].

(b) The “pli cacheté” of Doeblin [255] may have been one of the first papers
studying time changes.

(c) Further extensions to Markov processes are found in Volkonski [831].
See also McKean’s paper [637] for other aspects of this major idea and
important applications to Bessel processes in � Chapter 6.

Exercise 5.1.3.8 Let Y be the solution of

dYt = (cYt + kY 2
t )dt+

√
YtdWt

Prove that Yt = Z(
∫ t
0
Ysds) where dZ(u) = (c+ kZ(u))du+ dŴu. �

Exercise 5.1.3.9 Let Z be a complex BM Zt = Xt + iYt. Consider the two
martingales |Zt|2 − 2t and

∫ t
0
(XsdYs − YsdXs). Prove that

1
2
(
|Zt|2 − 2t

)
+ i

∫ t

0

(XsdYs − YsdXs)
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is a conformal martingale which can be represented as Ẑu = βu + iγu time-
changed by

∫ t
0
|Zs|2ds with β and γ two independent BM’s. Prove that

σ(βu, u ≥ 0) = σ(|Zt|, t ≥ 0), hence γ and |Z| are independent. �

5.2 Dual Predictable Projections

In this section, after recalling some basic facts about optional and predictable
projections, we introduce the concept of a dual predictable projection1, which
leads to the fundamental notion of predictable compensators. We recommend
the survey paper of Nikeghbali [674].

Recall that a process is said to be optional if it is measurable with
respect to the σ-algebra on R

+×Ω generated by càdlàg F-adapted processes,
considered as mappings on R

+ × Ω, whereas a predictable process is
measurable with respect to the σ-algebra on R

+ × Ω generated by càg F-
adapted processes (see � Subsection 9.1.3 for comments).

5.2.1 Definitions

Let X be a bounded (or positive) process, and F a given filtration. The
optional projection ofX is the unique optional process (o)X which satisfies:
for any F-stopping time τ

E(Xτ1{τ<∞}) = E( (o)Xτ1{τ<∞}) . (5.2.1)

For any F-stopping time τ , let Γ ∈ Fτ and apply the equality (5.2.1) to the
stopping time τΓ = τ1Γ + ∞1Γ c . We get the re-inforced identity:

E(Xτ1{τ<∞}|Fτ ) = (o)Xτ1{τ<∞} .

In particular, if A is an increasing process, then, for s ≤ t:

E( (o)At − (o)As|Fs) = E(At −As|Fs) ≥ 0 . (5.2.2)

Note that, for any t, E(Xt|Ft) = (o)Xt. However, E(Xt|Ft) is defined almost
surely for any t; thus uncountably many null sets are involved, hence, a priori,
E(Xt|Ft) is not a well-defined process whereas (o)X takes care of this difficulty.

Likewise, the predictable projection of X is the unique predictable
process (p)X such that for any F-predictable stopping time τ

E(Xτ1{τ<∞}) = E( (p)Xτ1{τ<∞}) . (5.2.3)

As above, this identity reinforces as

E(Xτ1{τ<∞}|Fτ−) = (p)Xτ1{τ<∞} ,

for any F-predictable stopping time τ (see Subsection 1.2.3 for the definition
of Fτ−).
1 See Dellacherie [240] for the notion of dual optional projection.
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Example 5.2.1.1 Let τ and ϑ be two stopping times such that ϑ ≤ τ and
Z a bounded r.v.. Let X = Z1]]ϑ,τ ]]. Then, (o)X = U1]]ϑ,τ ]],

(p)X = V 1]]ϑ,τ ]]

where U (resp. V ) is the right-continuous (resp. left-continuous) version of
the martingale (E(Z|Ft), t ≥ 0).

Let τ and ϑ be two stopping times such that ϑ ≤ τ and X a positive
process. If A is an increasing optional process, then, since 1]]ϑ,τ ]](t) is
predictable

E

(∫ τ

ϑ

XtdAt

)

= E

(∫ τ

ϑ

(o)XtdAt

)

.

If A is an increasing predictable process, then

E

(∫ τ

ϑ

XtdAt

)

= E

(∫ τ

ϑ

(p)XtdAt

)

.

The notion of interest in this section is that of dual predictable
projection, which we define as follows:

Proposition 5.2.1.2 Let (At, t ≥ 0) be an integrable increasing process (not
necessarily F-adapted). There exists a unique F-predictable increasing process
(A(p)

t , t ≥ 0), called the dual predictable projection of A such that

E

(∫ ∞

0

HsdAs

)

= E

(∫ ∞

0

HsdA
(p)
s

)

for any positive F-predictable process H.
In the particular case where At =

∫ t
0
asds, one has

A
(p)
t =

∫ t

0

(p)asds (5.2.4)

Proof: See Dellacherie [240], Chapter V, Dellacherie and Meyer [244],
Chapter 6 paragraph (73), page 148, or Protter [727] Chapter 3, Section 5. �

This definition extends to the difference between two integrable (for sim-
plicity) increasing processes. The terminology “dual predictable projection”
refers to the fact that it is the random measure dtAt(ω) which is relevant when
performing that operation. If X is bounded and A has integrable variation
(not necessarily adapted), then

E((X�A(p))∞) = E(( (p)X�A)∞) .

This is equivalent to: for s < t,

E(At −As|Fs) = E(A(p)
t −A(p)

s |Fs) . (5.2.5)

If A is adapted (not necessarily predictable), then (At − A
(p)
t , t ≥ 0) is a

martingale. In that case, A(p)
t is also called the predictable compensator of A.
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More generally, from Proposition 5.2.1.2 and (5.2.5), the process (o)A−A(p)

is a martingale.

Proposition 5.2.1.3 If A is increasing, the process (o)A is a sub-martingale
and A(p) is the predictable increasing process in the Doob-Meyer decomposition
of the sub-martingale (o)A.

Example 5.2.1.4 LetW be a Brownian motion,Mt = sups≤tWs its running
maximum, and Rt = 2Mt−Wt. Then, from � Pitman’s Theorem 5.7.2.1 and
its Corollary 5.7.2.2, for any positive Borel function f ,

E(f(Mt)|FR
t ) =

∫ 1

0

dxf(Rtx) ,

hence, E(2Mt|FR
t ) = Rt and the predictable projection of 2Mt is Rt. On the

other hand, from Pitman’s theorem

Rt = βt +
∫ t

0

ds

Rs
,

where β is a Brownian motion, therefore, the dual predictable projection of
2Mt on FR

t is
∫ t
0

ds
Rs

. Note that the difference between these two projections
is the (Brownian) martingale β.

In a general setting, the predictable projection of an increasing process A
is a sub-martingale whereas the dual predictable projection is an increasing
process. The predictable projection and the dual predictable projection of an
increasing process A are equal if and only if ( (p)At, t ≥ 0) is increasing.

It will also be convenient to introduce the following terminology:

Definition 5.2.1.5 If ϑ is a random time, we call the predictable compen-
sator associated with ϑ the dual predictable projection Aϑ of the increasing
process 1{ϑ≤t}. This dual predictable projection Aϑ satisfies

E(kϑ) = E

(∫ ∞

0

ksdA
ϑ
s

)

(5.2.6)

for any positive, predictable process k.

5.2.2 Examples

In the sequel, we present examples of computation of dual predictable
projections. We end up with Azéma’s lemma, providing the law of the
predictable compensator associated with the last passage at 0 of a BM before
T , evaluated at a (stopping) time T . See also Knight [529] and � Sections 5.6
and 7.4.
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Example 5.2.2.1 Let (Bs)s≥0 be an F− Brownian motion starting from 0
and B

(ν)
s = Bs + νs. Let G(ν) be the filtration generated by the process

(|B(ν)
s |, s ≥ 0) (which coincides with the one generated by (B(ν)

s )2). We now
compute the decomposition of the semi-martingale (B(ν))2 in the filtration
G(ν) and the dual predictable projection (with respect to G(ν)) of the finite
variation process

∫ t
0
B

(ν)
s ds.

Itô’s lemma provides us with the decomposition of the process (B(ν))2 in
the filtration F:

(B(ν)
t )2 = 2

∫ t

0

B(ν)
s dBs + 2ν

∫ t

0

B(ν)
s ds+ t . (5.2.7)

To obtain the decomposition in the filtration G(ν) we remark that, on the
canonical space, denoting as usual by X the canonical process,

W(0)(eνXs |F |X|
s ) = cosh(νXs)

which leads to the equality:

W(ν)(Xs|F |X|
s ) =

W(0)(Xse
νXs |F |X|

s )

W(0)(eνXs |F |X|
s )

= Xs tanh(νXs) ≡ ψ(νXs)/ν ,

where ψ(x) = x tanh(x). We now come back to equality (5.2.7). Due to (5.2.4),
we have just shown that:

The dual predictable projection of 2ν
∫ t

0

B(ν)
s ds is 2

∫ t

0

dsψ(νB(ν)
s ) .

(5.2.8)
As a consequence,

(B(ν)
t )2 − 2

∫ t

0

dsψ(νB(ν)
s ) − t

is a G(ν)-martingale with increasing process 4
∫ t
0
(B(ν)

s )2ds. Hence, there exists
a G(ν)-Brownian motion β such that

(Bt + νt)2 = 2
∫ t

0

|Bs + νs|dβs + 2
∫ t

0

dsψ(ν(Bs + νs)) + t . (5.2.9)

Exercise 5.2.2.2 Prove that, more generally than (5.2.8), the dual pre-
dictable projection of

∫ t
0
f(B(ν)

s )ds is
∫ t
0

E(f(B(ν)
s )|G(ν)

s )ds and that

E(f(B(ν)
s )|G(ν)

s ) =
f(B(ν)

s )eνB
(ν)
s + f(−B(ν)

s )e−νB(ν)
s

2 cosh(νB(ν)
s )

.

�
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Exercise 5.2.2.3 Prove that if (αs, s ≥ 0) is an increasing predictable
process and X a positive measurable process, then

(∫ ·

0

Xsdαs

)(p)

t

=
∫ t

0

(p)Xsdαs .

In particular
(∫ ·

0

Xsds

)(p)

t

=
∫ t

0

(p)Xsds .

�

Example 5.2.2.4 Let B be a Brownian motion and Yt = |Bt|. Tanaka’s
formula gives

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt

where L denotes the local time of (Bt; t ≥ 0) at level 0. By an application
of the balayage formula (see Subsection 4.1.6), we obtain (we recall that gt
denotes the last passage time at level 0 before t)

hgt |Bt| =
∫ t

0

hgssgn(Bs)dBs +
∫ t

0

hsdLs

where we have used the fact that Lgs = Ls. Consequently, replacing, if
necessary, h by |h|, we see that the process

∫ t
0
|hs|dLs is the local time at

0 of (hgtBt, t ≥ 0). Let now τ be a stopping time such that (Bt∧τ ; t ≥ 0) is
uniformly integrable, and satisfies P(Bτ = 0) = 0. Then, it follows from the
balayage formula that, for every predictable and bounded process h

E (hgτ |Bτ |) = E

(∫ τ

0

hsdLs

)

. (5.2.10)

As an example, consider τ = T ∗
a = inf{t : |Bt| = a}; we have

E

(
hgT∗

a

)
=

1
a

E

(∫ T∗
a

0

hsdLs

)

,

whence we conclude that the predictable compensator (Aϑ
t ; t ≥ 0) associated

with ϑ := gT∗
a

is given by

Aϑ
t =

1
a
Lt∧T∗

a
.

In the general case, applying (5.2.10) to the variable ξgτ = E (|Bτ ||Fgτ ) ,
where (ξu;u ≥ 0) is a predictable process (note that P(ξgτ = 0) = 0, as a
consequence of P(Bτ = 0) = 0) we obtain
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E (kgτ ) = E

(∫ τ

0

ks
ξs
dLs

)

(5.2.11)

from which we deduce that the predictable compensator associated with gτ is

At =
∫ t∧τ

0

dLs

ξs
. (5.2.12)

In general, finding ξ may necessitate some work, but in some cases, e.g.,
τ = inf{t : |Bt| = αt}, for a continuous adapted process (αt) such that
αt ≡ αgt , no extra computation is needed, since: |Bτ | = αgτ is Fgτ measurable,
hence we can take: ξu = αu; finally At =

∫ t∧τ
0

dLs

αs
.

We finish this subsection with the following interesting lemma which, in
some generality, gives the law of Aτ .

Lemma 5.2.2.5 (Azéma.) Let B be a BM and τ a stopping time such that
(Bt∧τ ; t ≥ 0) is uniformly integrable, and satisfies P(Bτ = 0) = 0. Let A be
the predictable compensator associated with gτ . Then, Aτ is an exponential
variable with mean 1.

Proof: Since, as a consequence of equality (5.2.12), Aτ = Agτ , we have for
every λ ≥ 0

E
(
e−λAτ

)
= E

(∫ τ

0

e−λAsdAs

)

,

as a consequence of (5.2.6) applied to ϑ = gτ and kt = exp(−λAt). Thus, we
obtain

E
(
e−λAτ

)
= E

(
1 − e−λAτ

λ

)

,

or equivalently, E
(
e−λAτ

)
= 1

1+λ . The desired result follows immediately. �

Note that a corollary of this result provides the law of the local time of
the BM at the time T ∗

a = inf{t : |Bt| = a}: LT∗
a

is an exponential variable,
with mean a.

Exercise 5.2.2.6 Let F ⊂ G and let Gt −
∫ t
0
γsds be a G-martingale.

Recalling that (o)X is the F-optional projection of a process X, prove that
(o)Gt −

∫ t
0

(o)γsds is an F-martingale. �

5.3 Diffusions

In this section, we present the main facts on linear diffusions, following closely
the presentation of Chapter 2 in Borodin and Salminen [109]. We refer to
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Durrett [287], Itô and McKean [465], Linetsky [595] and Rogers and Williams
[742] for other studies of general diffusions.

A linear diffusion is a strong Markov process with continuous paths taking
values on an interval I with left-end point ! ≥ −∞ and right-end point
r ≤ ∞. We denote by ζ the life time of X (see Definition 1.1.14.1). We
assume in what follows (unless otherwise stated) that all the diffusions we
consider are regular, i.e., they satisfy Px(Ty < ∞) > 0,∀x, y ∈ I where
Ty = inf{t : Xt = y}.

5.3.1 (Time-homogeneous) Diffusions

In this book, we shall mainly consider diffusions which are Itô processes: let b
and σ be two real-valued functions which are Lipschitz on the interval I, such
that σ(x) > 0 for all x in the interval I. Then, there exists a unique solution
to

Xt = x+
∫ t

0

b(Xs)ds+
∫ t

0

σ(Xs)dWs , (5.3.1)

starting at point x ∈]!, r[, up to the first exit time T�,r = T�(X) ∧ Tr(X). In
this case, X is a time-homogeneous diffusion.

In fact, the Lipschitz assumption is not quite necessary; see Theorem
1.5.5.1 for some finer assumptions on b and σ.

Solutions of

Xt = x+
∫ t

0

b(Xs, s)ds+
∫ t

0

σ(Xs, s)dWs , (5.3.2)

with time dependent coefficients b and σ are called time-inhomogeneous
diffusions; for these processes, the following results do not apply.

From now on, we shall only consider diffusions of the type (5.3.1), and we
drop the term “time-homogeneous.” We mention furthermore that, in general
studies of diffusions (see Borodin and Salminen [109]), a rôle is also played by
a killing measure; however, since we shall not use this item in our presentation,
we do not introduce it.

5.3.2 Scale Function and Speed Measure

Scale Function

Definition 5.3.2.1 Let X be a diffusion on I and Ty = inf{t ≥ 0 : Xt = y},
for y ∈ I. A scale function is an increasing function from I to R such that,
for x ∈ [a, b]

Px(Ta < Tb) =
s(x) − s(b)
s(a) − s(b)

. (5.3.3)
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Obviously, if s∗ is a scale function, then so is αs∗ + β for any (α, β), with
α > 0 and any scale function can be written as αs∗ + β.

Proposition 5.3.2.2 The process (s(Xt), 0 ≤ t < T�,r) is a local martingale.
The scale function satisfies

1
2
σ2(x)s′′(x) + b(x)s′(x) = 0 .

Proof: For any finite stopping time τ < T�,r, the equality

Ex

(
s(Xτ ) − s(b)
s(a) − s(b)

)

=
s(x) − s(b)
s(a) − s(b)

follows from the Markov property. �

In the case of diffusions of the form (5.3.1), a (differentiable) scale function
is

s(x) =
∫ x

c

exp
(

−2
∫ u

c

b(v)/σ2(v) dv
)

du (5.3.4)

for some choice of c ∈]!, r[. The increasing process of s(X) being

At =
∫ t

0

(s′σ)2(Xu)du,

(by an application of Itô’s formula), the local martingale (s(Xt), t < T�,r) can
be written as a time changed Brownian motion: s(Xt) = βAt .

In the case of constant coefficients with b < 0 (resp. b > 0) and σ = 0, the
diffusion is defined on R, T�,r = ∞, and we may choose s(x) = exp

(
−2bx/σ2

)
,

(resp. s(x) = − exp
(
−2bx/σ2

)
) so that s is a strictly increasing function and

s(−∞) = 0, s(∞) = ∞ (resp. s(−∞) = −∞, s(∞) = 0).

A diffusion is said to be in natural scale if s(x) = x. In this case, if I = R,
the diffusion (Xt, t ≥ 0) is a local martingale.

Speed Measure

The speed measure m is defined as the measure such that the infinitesimal
generator of X can be written as

Af(x) =
d

dm
d

ds
f(x)
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where
d

ds
f(x) = lim

h→0

f(x+ h) − f(x)
s(x+ h) − s(x)

,

and
d

dm
g(x) = lim

h→0

g(x+ h) − g(x)
m(x, x+ h)

.

In the case of diffusions of the form (5.3.1), the speed measure is absolutely
continuous with respect to Lebesgue measure, i.e., m(dx) = m(x)dx, hence

Af(x) =
d

dm
d

ds
f(x) =

1
m(x)

d

dx

(
1
s′
d

dx
f

)

=
1

m(x) s′(x)
f ′′(x) − s′′(x)

m(x) (s′)2(x)
f ′(x)

=
1

m(x) s′(x)
f ′′(x) +

2 b(x)
m(x) s′(x)σ2(x)

f ′(x)

where the last equality comes from formula (5.3.4). Since in this case the
infinitesimal generator has the form

Af(x) =
1
2
σ2(x)f ′′(x) + b(x)f ′(x),

the density of the speed measure is

m(x) =
2

σ2(x)s′(x)
. (5.3.5)

The density of the speed measure satisfies

1
2
(
σ2(x)m(x)

)′′
+ (s(x)b(x)))′(x) = 0 .

It is important to consider the local martingale s(Xt) only strictly before
the hitting time of the boundary. The reader should keep in mind the example
of the reflected Brownian motion, which is not a martingale, although s(x) = x
(see � Proposition 6.1.2.4).

If X is a diffusion with scale function s, we have seen that s(Xt) = βAt ,
where β is a Brownian motion. In terms of speed measure, the increasing
process A is the inverse of

Cu =
1
2

∫ u

0

m(βs)ds =
1
2

∫
m(dz)Lz

u(β) .
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Remark 5.3.2.3 Beware that some authors define the speed measure with a

factor 1/2, that is Af(x) =
1
2
d

dm
d

ds
f(x). Our convention, without this factor

1/2 is the same as Borodin and Salminen [109].

Exercise 5.3.2.4 Prove that, if s(X) is a martingale, then, equality (5.3.3)
holds. �

5.3.3 Boundary Points

Definition 5.3.3.1 The boundary points are classified as follows:

• The left-hand point ! is an exit boundary if, for any x ∈]!, r[,
∫ x

�

m(]y, x[)s′(y)dy <∞

and an entrance boundary if, for any x ∈]!, r[,
∫ x

�

m(]!, y[)s′(y)dy <∞ .

• The right-hand point r is an exit boundary if, for any x ∈]!, r[,
∫ r

x

m(]x, y[)s′(y)dy <∞

and an entrance boundary if, for any x ∈]!, r[,
∫ r

x

m(]y, r[)s′(y)dy <∞ .

• A boundary point which is both entrance and exit is called non-singular.
• A boundary point that is neither entrance nor exit is called natural.

A diffusion reaches its non-singular boundaries with positive probability,
and it is possible to start a diffusion from a non-singular boundary.

An example where 0 is an entrance boundary is given by the BES3 process
(see � Chapter 6), or more generally by a BESδ with δ ≥ 2. We recall that
a BESδ process with δ ≥ 2 does not return to 0 after it has left this point.

Definition 5.3.3.2 Let X be a diffusion. The point ! is said to be instan-
taneously reflecting if m({!}) = 0.

For the reflected BM |B|, the point 0 is instantaneously reflecting and the
Lebesgue measure of the set {t : |Bt| = 0} is zero.
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Example 5.3.3.3 We present, following Borodin and Salminen [109], the
computation of the scale function and speed measure for some important
diffusion processes:

• Drifted Brownian motion.
Suppose Xt = Bt + νt. A scale function for X is s(x) = exp(−2νx) for
ν < 0, and s(x) = − exp(−2νx) for ν > 0. The density of the speed
measure is m(x) = 2e2νx. The lifetime is ∞.

• Geometric Brownian motion. Let dSt = St(μdt+σdBt). We have seen
in Lemma 3.6.6.1 that S1−γ

t is a martingale for γ = 2μ/σ2. Hence
– a scale function of S is s(x) = −(x1−γ)/(1 − γ) for γ = 1 and lnx for

γ = 1,
– the density of the speed measure is m(x) = 2xγ−2/σ2.
The boundary points 0 and ∞ are natural.
– If γ > 1, then limt→∞ St(ω) = ∞, a.s.,
– if γ < 1, then limt→∞ St(ω) = 0, a.s.,
– if γ = 1, then lim inft→∞ St(ω) = 0, lim supt→∞ St(ω) = ∞ a.s..

• Reflected Brownian motion.
The process Xt = |Wt| is a diffusion on [0,∞[. The left-hand point 0 is a
non-singular boundary point. The scale function is s(x) = x, the density
of the speed measure is m(x) = 2.

• Bessel processes. A Bessel process (see � Section 6.1) with dimension
δ and index ν = δ

2 − 1 is a diffusion on ]0,∞[, or on [0,∞[ depending on
the value of ν and the boundary conditions at 0.
For all values of ν, the boundary point ∞ is natural. The boundary point
0 is
– exit-non-entrance if ν ≤ −1
– nonsingular if −1 < ν < 0
– entrance-not exit if ν ≥ 0.
In the nonsingular case, the boundary condition at 0 is usually reflection or
killing. A scale function for a BES(ν)is s(x) = x−2ν for ν < 0, s(x) = lnx
for ν = 0 and s(x) = −x−2ν for ν > 0. It follows that a scale function for
a BESQ(ν) is
– s(x) = x−ν for ν < 0,
– s(x) = lnx for ν = 0 and
– s(x) = −x−ν for ν > 0.
See � Proposition 6.1.2.4 for more information.
For ν > 0, the density of the speed measure is m(x) = ν−1x2ν+1.

• Affine equation.
Let

dXt = (αXt + 1)dt+
√

2XtdWt , X0 = x .
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The scale function derivative is s′(x) = x−αe1/x and the speed density
function is m(x) = xαe−1/x.

• OU and Vasicek processes.
Let r be a (k, σ) Ornstein-Uhlenbeck process. A scale function derivative
is s′(x) = exp(kx2/σ2). If r is a (k, θ;σ) Vasicek process (see Section 2.6),
s′(x) = exp k(x− θ)2/σ2.

The first application of the concept of speed measure is Feller’s test for
non-explosion (see Definition 1.5.4.10). We shall see in the sequel that speed
measures are very useful tools.

Proposition 5.3.3.4 (Feller’s Test for non-explosion.) Let b, σ belong to
C1(R), and let X be the solution of

dXt = b(Xt)dt+ σ(Xt)dWt

with τ its explosion time. The process does not explode, i.e., P(τ = ∞) = 1 if
and only if

∫ 0

−∞
[s(x) − s(−∞)]m(x)dx =

∫ ∞

0

[s(∞) − s(x)]m(x)dx = ∞ .

Proof: see McKean [637], page 65. �

Comments 5.3.3.5 This proposition extends the case where the coefficients
b and σ are only locally Lipschitz. Khasminskii [522] developed Feller’s test
for multidimensional diffusion processes (see McKean [637], page 103, Rogers
and Williams [742], page 299). See Borodin and Salminen [109], Breiman
[123], Freedman [357], Knight [528], Rogers and Williams [741] or [RY] for
more information on speed measures.

Exercise 5.3.3.6 Let dXt = θdt+ σ
√
XtdWt, X0 > 0, where θ > 0 and, for

a < x < b let ψa,b(x) = Px(Tb(X) < Ta(X)). Prove that

ψa,b(x) =
x1−ν − a1−ν

b1−ν − a1−ν

where ν = 2θ/σ2. Prove also that if ν > 1, then T0 is infinite and that if
ν < 1, ψ0,b(x) = (x/b)1−ν . Thus, the process (1/Xt, t ≥ 0) explodes in the
case ν < 1. �

5.3.4 Change of Time or Change of Space Variable

In a number of computations, it is of interest to time change a diffusion into
BM by means of the scale function of the diffusion. It may also be of interest
to relate diffusions of the form
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Xt = x+
∫ t

0

b(Xs)ds+
∫ t

0

σ(Xs)dWs

to those for which σ = 1, that is Yt = y + βt +
∫ t
0
duμ(Yu) where β is a

Brownian motion. For this purpose, one may proceed by means of a change
of time or change of space variable, as we now explain.

(a) Change of Time

Let At =
∫ t
0
σ2(Xs)ds and assume that |σ| > 0. Let (Cu, u ≥ 0) be the inverse

of (At, t ≥ 0). Then

XCu = x+ βu +
∫ u

0

dCh b(XCh
)

From h =
∫ Ch

0
σ2(Xs)ds, we deduce dCh =

dh

σ2(XCh
)
, hence

Yu : = XCu = x+ βu +
∫ u

0

dh
b

σ2
(Yh)

where β is a Brownian motion.

(b) Change of Space Variable

Assume that ϕ(x) =
∫ x

0

dy

σ(y)
is well defined and that ϕ is of class C2. From

Itô’s formula

ϕ(Xt) = ϕ(x) +
∫ t

0

ϕ′(Xs)dXs +
1
2

∫ t

0

ϕ′′(Xs)σ2(Xs)ds

= ϕ(x) +Wt +
∫ t

0

ds

(
b

σ
(Xs) −

1
2
σ′(Xs)

)

.

Hence, setting Zt = ϕ(Xt), we get

Zt = z +Wt +
∫ t

0

b̂(Zs)ds

where b̂(z) = b
σ (ϕ−1(z)) − 1

2σ
′(ϕ−1(z)).

Comment 5.3.4.1 See Doeblin [255] for some interesting applications.
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5.3.5 Recurrence

Definition 5.3.5.1 A diffusion X with values in I is said to be recurrent if

Px(Ty <∞) = 1, ∀x, y ∈ I .

If not, the diffusion is said to be transient.

It can be proved that the homogeneous diffusionX given by (5.3.1) on ]!, r[
is recurrent if and only if s(!+) = −∞ and s(r−) = ∞. (See [RY], Chapter
VII, Section 3, for a proof given as an exercise.)

Example 5.3.5.2 A one-dimensional Brownian motion is a recurrent pro-
cess, a Bessel process (see � Chapter 6) with index strictly greater than 0
is a transient process. For the (recurrent) one-dimensional Brownian motion,
the times Ty are large, i.e., Ex(Tα

y ) <∞, for x = y if and only if α < 1/2.

5.3.6 Resolvent Kernel and Green Function

Resolvent Kernel

The resolvent of a Markov process X is the family of operators f → Rλf

Rλf(x) = Ex

(∫ ∞

0

e−λtf(Xt)dt
)

.

The resolvent kernel of a diffusion is the density (with respect to Lebesgue
measure) of the resolvent operator, i.e., the Laplace transform in t of the
transition density pt(x, y):

Rλ(x, y) =
∫ ∞

0

e−λtpt(x, y)dt , (5.3.6)

where λ > 0 for a recurrent diffusion and λ ≥ 0 for a transient diffusion. It
satisfies

1
2
σ2(x)

∂2Rλ

∂x2
+ b(x)

∂Rλ

∂x
− λRλ = 0 forx = y

and Rλ(x, x) = 1. The Sturm-Liouville O.D.E.

1
2
σ2(x)u′′(x) + b(x)u′(x) − λu(x) = 0 (5.3.7)

admits two linearly independent continuous positive solutions (the basic
solutions) Φλ↑(x) and Φλ↓(x), with Φλ↑ increasing and Φλ↓ decreasing, which
are determined up to constant factors.

A straightforward application of Itô’s formula establishes that e−λtΦλ↑(Xt)
and e−λtΦλ↓(Xt) are local martingales, for λ > 0, hence, using carefully
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Doob’s optional stopping theorem, we obtain the Laplace transform of the
first hitting times:

Ex

(
e−λTy

)
=

⎧
⎨

⎩

Φλ↑(x)/Φλ↑(y) if x < y

Φλ↓(x)/Φλ↓(y) if x > y
. (5.3.8)

Green Function

Let p(m)
t (x, y) be the transition probability function relative to the speed

measure m(y)dy:
Px(Xt ∈ dy) = p

(m)
t (x, y)m(y)dy . (5.3.9)

It is a known and remarkable result that p(m)
t (x, y) = p

(m)
t (y, x) (see Chung

[185] and page 149 in Itô and McKean [465]).
The Green function is the density with respect to the speed measure of

the resolvent operator: using p
(m)
t (x, y), the transition probability function

relative to the speed measure, there is the identity

Gλ(x, y) : =
∫ ∞

0

e−λtp
(m)
t (x, y)dt = w−1

λ Φλ↑(x ∧ y)Φλ↓(x ∨ y) ,

where the Wronskian

wλ : =
Φ′
λ↑(y)Φλ↓(y) − Φλ↑(y)Φ′

λ↓(y)
s′(y)

(5.3.10)

depends only on λ and not on y. Obviously

m(y)Gλ(x, y) = Rλ(x, y) ,

hence
Rλ(x, y) = w−1

λ m(y)Φλ↑(x ∧ y)Φλ↓(x ∨ y) . (5.3.11)

A diffusion is transient if and only if limλ→0Gλ(x, y) < ∞ for some x, y ∈ I
and hence for all x, y ∈ I.

Comment 5.3.6.1 See Borodin and Salminen [109] and Pitman and Yor
[718, 719] for an extended study. Kent [520] proposes a methodology to invert
this Laplace transform in certain cases as a series expansion. See Chung [185]
and Chung and Zhao [187] for an extensive study of Green functions. Many
authors call Green functions our resolvent.
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5.3.7 Examples

Here, we present examples of computations of functions Φλ↓ and Φλ↑ for
certain diffusions.

• Brownian motion with drift μ: Xt = μt+ σWt. In this case, the basic
solutions of

1
2
σ2u′′ + μu′ = λu

are

Φλ↑(x) = exp
[ x
σ2

(
−μ+

√
2λσ2 + μ2

)]
,

Φλ↓(x) = exp
[
− x

σ2

(
μ+

√
2λσ2 + μ2

)]
.

• Geometric Brownian motion: dXt = Xt(μdt+ σdWt).
The basic solutions of

1
2
σ2x2u′′ + μxu′ = λu

are
Φλ↑(x) = x

1
σ2 (−μ+ σ2

2 +
√

2λσ2+(μ−σ2/2)2) ,

Φλ↓(x) = x−
1

σ2 (μ−σ2
2 +

√
2λσ2+(μ−σ2/2)2) .

• Bessel process with index ν. Let dXt = dWt+
(
ν + 1

2

)
1
Xt
dt. For ν > 0,

the basic solutions of

1
2
u′′ +

(

ν +
1
2

)
1
x
u′ = λu

are
Φλ↑(x) = x−νIν(x

√
2λ), Φλ↓(x) = x−νKν(x

√
2λ) ,

where Iν and Kν are the classical Bessel functions with index ν (see �
Appendix A.5.2).

• Affine Equation.
Let

dXt = (αXt + β)dt+
√

2XtdWt ,

with β = 0. The basic solutions of

x2u′′ + (αx+ β)u′ = λu

are
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Φλ↑(x) =
(
β

x

)(ν+μ)/2

M

(
ν + μ

2
, 1 + μ,

β

x

)

,

Φλ↓(x) =
(
β

x

)(ν+μ)/2

U

(
ν + μ

2
, 1 + μ,

β

x

)

where M and U denote the Kummer functions (see � A.5.4 in the
Appendix) and μ =

√
ν2 + 4λ, 1 + ν = α.

• Ornstein-Uhlenbeck and Vasicek Processes. Let k > 0 and

dXt = k(θ −Xt)dt+ σdWt , (5.3.12)

a Vasicek process. The basic solutions of

1
2
σ2u′′ + k(θ − x)u′ = λu

are

Φλ↑(x) = exp

(
k (x− θ)2

2σ2

)

D−λ/k

(

−x− θ

σ

√
2k
)

,

Φλ↓(x) = exp

(
k (x− θ)2

2σ2

)

D−λ/k

(
x− θ

σ

√
2k
)

.

Here, Dν is the parabolic cylinder function with index ν (see � Ap-
pendix A.5.4).

Comment 5.3.7.1 For OU processes, i.e., in the case θ = 0 in equation
(5.3.12), Ricciardi and Sato [732] obtained, for x > a, that the density of
the hitting time of a is

−kek(x2−a2)/2
∞∑

n=1

Dνn,a(x
√

2k)

D′
νn,a

(a
√

2k)
e−kνn,at

where 0 < ν1,a < · · · < νn,a < · · · are the zeros of ν → Dν(−a).
The expression D′

νn,a
denotes the derivative of Dν(a) with respect to ν,

evaluated at the point ν = νn,a. Note that the formula in Leblanc et al.
[573] for the law of the hitting time of a is only valid for a = 0, θ = 0. See
also the discussion in Subsection 3.4.1.

Extended discussions on this topic are found in Alili et al. [10], Göing-
Jaeschke and Yor [398, 397], Novikov [678], Patie [697] or Borodin and
Salminen [109].

• CEV Process.
The constant elasticity of variance process (See � Section 6.4 ) follows
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dSt = St(μdt+ Sβ
t dWt) .

In the case β < 0, the basic solutions of

1
2
x2β+2u′′(x) + μxu′(x) = λu(x)

are

Φλ↑(x) = xβ+1/2eεx/2Mk,m(x), Φλ↓(x) = xβ+1/2eεx/2Wk,m(x)

where M and W are the Whittaker functions (see � Subsection A.5.7)
and

ε = sgn(μβ), m = − 1
4β
, k = ε

(
1
2

+
1
4β

)

− λ

2|μβ| .

See Davydov and Linetsky [225].

Exercise 5.3.7.2 Prove that the process

Xt = exp(aBt + bt)
(

x+
∫ t

0

ds exp(−aBs − bs)
)

satisfies

Xt = x+ a

∫ t

0

XudBu +
∫ t

0

((
a2

2
+ b

)

Xu + 1
)

du .

(See Donati-Martin et al. [258] for further properties of this process, and
application to Asian options.) More generally, consider the process

dYt = (aYt + b)dt+ (cYt + d)dWt ,

where c = 0. Prove that, if Xt = cYt + d, then

dXt = (αXt + β)dt+XtdWt

with α = a/c, β = b−da/c. From Tα(Y y) = Tcα+d(Xcx+d), deduce the Laplace
transform of first hitting times for the process Y . �

5.4 Non-homogeneous Diffusions

5.4.1 Kolmogorov’s Equations

Let
Lf(s, x) = b(s, x)∂xf(s, x) +

1
2
σ2(s, x)∂2

xxf(s, x) .

A fundamental solution of
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∂sf(s, x) + Lf(s, x) = 0 (5.4.1)

is a positive function p(x, s; y, t) defined for 0 ≤ s < t, x, y ∈ R, such that for
any function ϕ ∈ C0(R) and any t > 0 the function

f(s, x) =
∫

R

ϕ(y)p(s, x; t, y)dy

is bounded, is of class C1,2, satisfies (5.4.1) and obeys lims↑t f(s, x) = ϕ(x).
If b and σ are real valued bounded and continuous functions R

+ ×R such
that

(i) σ2(t, x) ≥ c > 0,
(ii) there exists α ∈]0, 1] such that for all (x, y), for all s, t ≥ 0,

|b(t, x) − b(s, y)| + |σ2(t, x) − σ2(s, y)| ≤ K(|t− s|α + |x− y|α) ,

then the equation
∂sf(s, x) + Lf(s, x) = 0

admits a strictly positive fundamental solution p. For fixed (y, t) the function
u(s, x) = p(s, x; t, y) is of class C1,2 and satisfies the backward Kolmogorov
equation that we present below. If in addition, the functions ∂xb(t, x),
∂xσ(t, x), ∂xxσ(t, x) are bounded and Hölder continuous, then for fixed (x, s)
the function v(t, y) = p(s, x; t, y) is of class C1,2 and satisfies the forward
Kolmogorov equation that we present below.

Note that a time-inhomogeneous diffusion process can be treated as a
homogeneous process. Instead of X, consider the space-time diffusion process
(t,Xt) on the enlarged state space R

+ × R
d.

We give Kolmogorov’s equations for the general case of inhomogeneous
diffusions

dXt = b(t,Xt)dt+ σ(t,Xt)dWt .

Proposition 5.4.1.1 The transition probability density p(s, x; t, y) defined
for s < t as Px,s(Xt ∈ dy) = p(s, x; t, y)dy satisfies the two partial differential
equations (recall δx is the Dirac measure at x):

• The backward Kolmogorov equation:
⎧
⎨

⎩

∂

∂s
p(s, x; t, y) +

1
2
σ2(s, x)

∂2

∂x2
p(s, x; t, y) + b(s, x)

∂

∂x
p(s, x; t, y) = 0 ,

lims→t p(s, x; t, y)dy = δx(dy) .

• The forward Kolmogorov equation
⎧
⎨

⎩

∂

∂t
p(s, x; t, y) − 1

2
∂2

∂y2

(
p(s, x; t, y)σ2(t, y)

)
+
∂

∂y

(
p(s, x; t, y)b(t, y)

)
= 0 ,

limt→s p(s, x; t, y)dy = δx(dy) .



5.4 Non-homogeneous Diffusions 283

Sketch of the Proof: The backward equation is really straightforward to
derive. Let ϕ be a C2 function with compact support. For any fixed t, the
martingale E(ϕ(Xt)|Fs) is equal to f(s,Xs) =

∫
R
ϕ(y)p(s,Xs; t, y)dy since X

is a Markov process. An application of Itô’s formula to f(s,Xs) leads to its
decomposition as a semi-martingale. Since it is in fact a true martingale its
bounded variation term must be equal to zero. This result being true for every
ϕ, it provides the backward equation.

The forward equation is in a certain sense the dual of the backward one.
Recall that if ϕ is a C2 function with compact support, then

Es,x(ϕ(Xt)) =
∫

R

ϕ(y)p(s, x; t, y)dy .

From Itô’s formula, for t > s

ϕ(Xt) = ϕ(Xs) +
∫ t

s

ϕ′(Xu)dXu +
1
2

∫ t

s

ϕ′′(Xu)σ2(u,Xu)du .

Hence, taking (conditional) expectations

Es,x(ϕ(Xt)) = ϕ(x) +
∫ t

s

Es,x

(

ϕ′(Xu)b(u,Xu) +
1
2
σ2(u,Xu)ϕ′′(Xu)

)

du

= ϕ(x) +
∫ t

s

du

∫

R

(

ϕ′(y)b(u, y) +
1
2
σ2(u, y)ϕ′′(y)

)

p(s, x;u, y)dy .

From the integration by parts formula (in the sense of distributions if the
coefficients are not smooth enough) and since ϕ and ϕ′ vanish at ∞:
∫

R

ϕ(y)p(s, x; t, y)dy = ϕ(x) −
∫ t

s

du

∫

R

ϕ(y)
∂

∂y
(b(u, y)p(s, x;u, y)) dy

+
1
2

∫ t

s

du

∫

R

ϕ(y)
∂2

∂y2

(
σ2(u, y)p(s, x;u, y)

)
dy .

Differentiating with respect to t, we obtain that

∂

∂t
p(s, x; t, y) = − ∂

∂y
(b(t, y)p(s, x; t, y)) +

1
2
∂2

∂y2

(
σ2(t, y)p(s, x; t, y)

)
.

�

Note that for homogeneous diffusions, the density

p(x; t, y) = Px(Xt ∈ dy)/dy

satisfies the backward Kolmogorov equation

1
2
σ2(x)

∂2p

∂x2
(x; t, y) + b(x)

∂p

∂x
(x; t, y) =

∂

∂t
p(x; t, y) .
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Comments 5.4.1.2 (a) The Kolmogorov equations are the topic studied by
Doeblin [255] in his now celebrated “ pli cacheté n0 11668”.

(b) We refer to Friedman [361] p.141 and 148, Karatzas and Shreve [513]
p.328, Stroock and Varadhan [812] and Nagasawa [663] for the multidimen-
sional case and for regularity assumptions for uniqueness of the solution to
the backward Kolmogorov equation. See also Itô and McKean [465], p.149 and
Stroock [810].

5.4.2 Application: Dupire’s Formula

Under the assumption that the underlying asset follows

dSt = St(rdt+ σ(t, St)dWt)

under the risk-neutral probability, Dupire [284, 283] established a formula
relating the local volatility σ(t, x) and the value C(T,K) of a European Call
where K is the strike and T the maturity, i.e.,

1
2
K2σ2(T,K) =

∂TC(T,K) + rK∂KC(T,K)
∂2
KKC(T,K)

.

We have established this formula using a local-time methodology in Subsection
4.2.1; here we present the original proof of Dupire as an application of the
Kolmogorov backward equation. Let f(T, x) be the density of the random
variable ST , i.e.,

f(T, x)dx = P(ST ∈ dx) .
Then,

C(T,K) = e−rT

∫ ∞

0

(x−K)+f(T, x)dx = e−rT

∫ ∞

K

(x−K)f(T, x)dx

= e−rT

∫ ∞

K

dxf(T, x)
∫ x

K

dy = e−rT

∫ ∞

K

dy

∫ ∞

y

f(T, x)dx . (5.4.2)

By differentiation with respect to K,

∂C

∂K
(T,K) = −e−rT

∫ ∞

0

1{x>K}f(T, x)dx = −e−rT

∫ ∞

K

f(T, x)dx ,

hence, differentiating again

∂2C

∂K2
(T,K) = e−rT f(T,K) (5.4.3)

which allows us to obtain the law of the underlying asset from the prices of
the European options. For notational convenience, we shall now write C(t, x)
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instead of C(T,K). From (5.4.3), f(t, x) = ert
∂2C

∂x2
(t, x), hence differentiating

both sides of this equality w.r.t. t gives

∂

∂t
f = rert

∂2C

∂x2
+ ert

∂2

∂x2

∂

∂t
C .

The density f satisfies the forward Kolmogorov equation

∂f

∂t
(t, x) − 1

2
∂2

∂x2

(
x2σ2(t, x)f(t, x)

)
+

∂

∂x
(rxf(t, x)) = 0 ,

or
∂f

∂t
=

1
2
∂2

∂x2

(
x2σ2f

)
− rf − rx

∂

∂x
f . (5.4.4)

Replacing f and ∂f
∂t by their expressions in terms of C in (5.4.4), we obtain

rert
∂2C

∂x2
+ ert

∂2

∂x2

∂

∂t
C = ert

1
2
∂2

∂x2

(

x2σ2 ∂
2C

∂x2

)

− rert
∂2C

∂x2
− rxert

∂

∂x

∂2C

∂x2

and this equation can be simplified as follows

∂2

∂x2

∂

∂t
C =

1
2
∂2

∂x2

(

x2σ2 ∂
2C

∂x2

)

− 2r
∂2C

∂x2
− rx

∂

∂x

∂2C

∂x2

=
1
2
∂2

∂x2

(

x2σ2 ∂
2C

∂x2

)

− r

(

2
∂2C

∂x2
+ x

∂

∂x

∂2C

∂x2

)

=
1
2
∂2

∂x2

(

x2σ2 ∂
2C

∂x2

)

− r
∂2

∂x2

(

x
∂C

∂x

)

,

hence,
∂2

∂x2

∂C

∂t
=

∂2

∂x2

(
1
2
x2σ2 ∂

2C

∂x2
− rx

∂C

∂x

)

.

Integrating twice with respect to x shows that there exist two functions α and
β, depending only on t, such that

1
2
x2σ2(t, x)

∂2C

∂x2
(t, x) = rx

∂C

∂x
(t, x) +

∂C

∂t
(t, x) + α(t)x+ β(t) .

Assuming that the quantities
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2σ2(t, x)
∂2C

∂x2
(t, x) = e−rtx2σ2(t, x)f(t, x)

x
∂C

∂x
(t, x) = −e−rtx

∫ ∞

x

f(t, y)dy

∂C

∂t
(t, x)

go to 0 as x goes to infinity, we obtain limx→∞ α(t)x + β(t) = 0,∀t, hence
α(t) = β(t) = 0 and
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1
2
x2σ2(t, x)

∂2C

∂x2
(t, x) = rx

∂C

∂x
(t, x) +

∂C

∂t
(t, x) .

The value of σ(t, x) in terms of the call prices follows. �

5.4.3 Fokker-Planck Equation

Proposition 5.4.3.1 Let dXt = b(t,Xt)dt+ σ(t,Xt)dBt, and assume that h
is a deterministic function such that X0 > h(0), τ = inf{t ≥ 0 : Xt ≤ h(t)}
and

g(t, x)dx = P(Xt ∈ dx, τ > t) .

The function g(t, x) satisfies the Fokker-Planck equation

∂

∂t
g(t, x) = − ∂

∂x

(
b(t, x)g(t, x)

)
+

1
2
∂2

∂x2

(
σ2(t, x)g(t, x)

)
; x > h(t)

and the boundary conditions

lim
t→0

g(t, x)dx = δ(x−X0)

g(t, x)|x=h(t) = 0 .

Proof: The proof follows that of the backward Kolmogorov equation.

� We first note that

E(ϕ(Xt∧τ )) = E(ϕ(Xt)1{t≤τ}) + E(ϕ(Xτ )1{τ<t})

=
∫

R

ϕ(x)g(t, x)dx+ E(ϕ(h(τ))1{τ<t})

=
∫

R

ϕ(x)g(t, x)dx+
∫ t

0

ϕ(h(u))μ(du)

where μ is the law of τ .

� If ϕ is a C2 function with compact support,

ϕ(Xt∧τ ) = ϕ(Xs∧τ ) +
∫ t∧τ

s∧τ
ϕ′(Xu)dXu +

1
2

∫ t∧τ

s∧τ
ϕ′′(Xu)σ2(u,Xu)du ,

hence,

E(ϕ(Xt∧τ )) = E(ϕ(Xs∧τ )) + E

(∫ t

s

1{u<τ}ϕ
′(Xu)b(u,Xu)du

)

+
1
2

E

(∫ t

s

1{u<τ}ϕ
′′(Xu)σ2(u,Xu)du

)

=
∫
ϕ(x)g(s, x)dx+

∫ s

0

ϕ(h(v))μ(dv)

+
∫ t

s

du

∫

R

dx

(

ϕ′(x)b(u, x) +
1
2
ϕ′′(x)σ2(u, x)

)

g(x, u) .
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This identity holds for any function ϕ of class C2, therefore, using integration
by parts for the last integral, and differentiation with respect to t, we get the
result. The law of τ is obtained by integration w.r.t. x. �

Using the Fokker-Planck equation, Iyengar [466], He et al. [426] and Zhou
[876] established the following result.

Proposition 5.4.3.2 Let Xi
t = αit+σiW i

t where W 1,W 2 are two correlated
Brownian motions, with correlation ρ, and let mi

t be the running minimum of
Xi. The probability density

P(X1
t ∈ dx1, X

2
t ∈ dx2,m

1
t ∈ dm1,m

2
t ∈ dm2) =

p(x1, x2, t;m1,m2)dx1dx2dm1dm2

is given by

p(x1, x2, t; m1,m2) =
ea1x1+a2x2+bt

σ1σ2

√
1 − ρ2

h(x1, x2, t;m1,m2) (5.4.5)

with

h(x1, x2, t;m1,m2) =
2
βt
e−(r2+r2

0)/(2t)
∞∑

n=1

sin
(
nπθ0
β

)

sin
(
nπθ

β

)

I(nπ)/β

(rr0
t

)

where Iν is the modified Bessel function of index ν and

a1 =
α1σ2 − ρα2σ1

(1 − ρ2)σ2
1σ2

, a2 =
α2σ1 − ρα1σ2

(1 − ρ2)σ1σ2
2

b = −α1a1 − α2a2 +
1
2
(
σ2

1a
2
1 + σ2

2a
2
2

)
+ ρσ1σ2a1a2

β = tan−1

(

−
√

1 − ρ2

ρ

)

, for ρ < 0

= π − tan−1

(√
1 − ρ2

ρ

)

, for ρ > 0

z1 =
1

√
1 − ρ2

[(
x1 −m1

σ1

)

− ρ

(
x2 −m2

σ2

)]

, z2 =
x2 −m2

σ2

z10 =
1

√
1 − ρ2

[

−m1

σ1
+ ρ

m2

σ2

]

, z20 = −m2

σ2

r =
√
z21 + z22 , tan θ =

z2
z1
, θ ∈ [0, β]

r0 =
√
z210 + z220, tan θ0 =

z20
z10

, θ0 ∈ [0, β] .
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The joint law with the maximum Mi is

P(X1
t ∈ dx1, X

2
t ∈ dx2,m

1
t ≥ m1,M

2
t ≤M2)

= p(x1,−x2, t;m1,−M2, α1,−α2, σ1, σ2,−ρ)dx1dx2

where p(x1, x2, t;m1,m2;α1, α2, σ1, σ2, ρ) is the density given in (5.4.5).

Comments 5.4.3.3 (a) The knowledge of the multidimensional laws of such
variables is important in the structural approach of credit risk. However,
the complexity of the above formula makes it difficult to implement. Let us
mention that the wrong formula given in Bielecki and Rutkowski [99] in the
first edition has been corrected in the second printing. See also the recent
paper of Patras [698] where a proof using probabilistic and geometric tools is
given and Blanchet-Scalliet and Patras [106] for application to counterparty
risk.

(b) Recently, Rogers and Shepp [739] have studied the correlation c(ρ) of
the maxima of correlated BMs. Denoting by M i

t = sups≤tW
i
s the running

supremum of the BM W i, they established that

c(ρ) = (cosα)
∫ ∞

0

du
cosh(αu)

sinh(uπ/2)
tanh(uγ)

where α is given in terms of the correlation coefficient ρ between the BMs as
α = arcsin(ρ) ∈ [π/2, π/2] and 2γ = α+ π/2.

The proof relies on three steps: the first one is to compute the joint
law of (M1

Θ,M
2
Θ) for Θ an exponential random variable with parameter λ,

independent of (W 1,W 2). If

F (x1, x2) = P(x1 ≤M1
Θ, x2 ≤M2

Θ) ,

then it is easy to check that

c(ρ) = λ

∫ ∞

0

∫ ∞

0

f(x1, x2)dx1dx2

In a second step, the authors note that, since P(M1
Θ > xi) = e−

√
2λxi , then

F (x1, x2) = e−
√

2λx1 + e−
√

2λx2 − P(M1
Θ < x1,M

2
Θ < x2) .

They introduce Xi
t = M i

t −W i
t and obtain

P(M1
Θ < x1,M

2
Θ < x2) = P(τ ≤ Θ|X1

0 = x1, X
2
0 = x2)

where τ = inf{t : X1
tX

2
t = 0}. The last step consists of the computation of

F̂ (x1, x2) = P(τ ≤ Θ|X1
0 = x1, X

2
0 = x2) = E(e−λτ |X1

0 = x1, X
2
0 = x2)

which satisfies

2λf̂(x1, x2) = (∂2
x1x1

+ 2ρ∂x1∂x2 + ∂2
x1x1

)f̂(x1, x2)

with the boundary condition f̂ = 1 on the axes.
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5.4.4 Valuation of Contingent Claims

Suppose Vf (x, T ) is the value of a contingent claim with payoff f(ST ), i.e.,
Vf (x, T ) = EQ(e−rT f(ST )) where

dSt = St((r − κ)dt+ σ(St)dWt), S0 = x

under the risk-adjusted probability Q. In terms of the transition probability
of S relative to the Lebesgue measure, that is Q(ST ∈ dy) = pT (x, y)dy the
value of the claim is:

Vf (x, T ) = EQ(e−rT f(ST )) = e−rT

∫ ∞

0

f(y)pT (x, y)dy .

Therefore, the quantity e−rT pT (x, y) can be interpreted as the price of a
security with the Dirac measure payoff δy. It is called the price of an Arrow-
Debreu security or the pricing kernel. The Laplace transform of Vf with
respect to the maturity is

V̂f (x, λ) =
∫ ∞

0

e−λTVf (x, T )dT .

This can be written as

V̂f (x, λ) =
∫ ∞

0

dTe−λT e−rT

∫ ∞

0

dyf(y)pT (x, y) =
1
λ

EQ(e−ref(Se))

where e is an exponential random variable with parameter λ which is
independent of (St, t ≥ 0); this is the so-called exponential weighing, or
Canadization, an expression due to Carr [146], who uses this tool to price
options. In terms of an Arrow-Debreu security, we obtain that

V̂f (x, λ) =
∫ ∞

0

f(y)Â(y, λ)dy .

Here, Â is the Laplace transform of the price of an Arrow-Debreu security,

Â(y, λ) =
∫ ∞

0

e−λte−rtpt(x, y)dt = Rλ+r(x, y) .

We have seen in (5.3.11) that the resolvent is given in terms of the fundamental
solutions of the ODE (5.3.7), hence

V̂f (x, λ) =

w−1
ν

(

Φν↓(x)
∫ x

0

m(y)f(y)Φν↑(y)dy + Φν↑(x)
∫ ∞

x

m(y)f(y)Φν↓(y)dy
)

where ν = r + λ.
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5.5 Local Times for a Diffusion

5.5.1 Various Definitions of Local Times

We assume that (Xt, t ≥ 0) is a regular diffusion on R, with a C1 scale function
s and speed measure m. As discussed in Itô and McKean [465], Borodin and
Salminen [109] and [RY], there exists a jointly continuous family of local times
!xt (X), sometimes called Itô-McKean local times or diffusion local times,
defined by the following occupation density formula

∫ t

0

du f(Xu) =
∫

R

m(dx) f(x)!xt (X) (5.5.1)

for all positive Borel functions f .

The process (Yt = s(Xt), t ≥ 0) is a local martingale, and, as such (see
formula (4.1.16)), it admits a Tanaka-Meyer local time (Ly

t (Y ), t ≥ 0) at
level y, which is characterized by the property that

(

(Yt − y)+ − 1
2
Ly
t (Y ) , t ≥ 0

)

is a local martingale.

Assuming that m(dx) = m(x)dx, there exists an occupation local time
λxt which is defined via the occupation time formula

∫ t

0

f(Xu)du =
∫

R

dxf(x)λxt (X) .

Lemma 5.5.1.1 Let X be a diffusion, s a scale function and Y = s(X). For
all x and t ≥ 0, one has

Lx
t (X) =

1
s′(x)

L
s(x)
t (Y ), Ls(x)

t (Y ) = 2!xt (X) .

Hence, !xt (X) is the Tanaka-Meyer diffusion local time of s(X) at level s(x).
Assuming that the density m exists,

λxt = m(x)!xt .

Proof: Let Ly(Y ) be the Tanaka-Meyer local time of Y = s(X).
∫

R

f(y)Ly
t (Y )dy =

∫ t

0

f(Yu)d〈Y 〉u =
∫ t

0

f(s(Xu))(s′(Xu))2d〈X〉u

=
∫

R

f(s(x)) (s′(x))2Lx
t (X)dx

=
∫

R

f(y) s′(s−1(y))Ls−1(y)
t (X)dy .
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Hence
Ly
t (Y ) = s′(s−1(y))Ls−1(y)

t (X)

so that

L
s(x)
t (Y ) = s′(x)Lx

t (X) . (5.5.2)

From the definition of Lx
t (X), and recalling that m(x)σ2(x) = 2

s′(x) (see
equality 5.3.5), one obtains, on the one hand

∫ t

0

d〈X〉uf(Xu) =
∫

R

f(x)Lx
t (X)dx .

On the other hand,
∫ t

0

d〈X〉uf(Xu) =
∫ t

0

σ2(Xu)f(Xu)du

=
∫

R

m(x)σ2(x)f(x)!xt (X)dx =
∫

R

2
s′(x)

f(x)!xt dx

and it follows that (see formula (5.3.2))

Lx
t (X) =

2
s′(x)

!xt (X) ,

hence, from (5.5.2), Ls(x)
t (Y ) = 2!xt (X). �

We recall that (see equality (5.3.9), there exists a density p(m) such that

Ex0(f(Xu)) =
∫
m(dx)p(m)

u (x0, x)f(x) .

Consequently

Ex0(!
x
t (X)) =

∫ t

0

du p(m)
u (x0, x) .

5.5.2 Some Diffusions Involving Local Time

Example 5.5.2.1 Skew Brownian Motion. The skew BM with parameter
α is a process Y satisfying Yt = Wt+αL0

t (Y ) where W is a Brownian motion,
L0(Y ) is the Tanaka-Meyer local time of the process Y at level 0, and α ≤ 1/2.
Note that this process, which turns out to be a continuous strong Markov
process, is not an Itô process. In order to prove the existence of the skew
Brownian motion, we look for a function ϕ of the form βy+ − γy− for two
constants β and γ such that ϕ(Yt) is a martingale, which solves an SDE. Using
Tanaka’s formula, we obtain
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ϕ(Yt) = β

(∫ t

0

1{Ys>0}dYs +
1
2
L0
t (Y )

)

− γ

(

−
∫ t

0

1{Ys≤0}dYs +
1
2
L0
t (Y )

)

= β

(∫ t

0

1{Ys>0}dWs +
1
2
L0
t (Y )

)

− γ

(

−
∫ t

0

1{Ys≤0}dWs − αL0
t (Y ) +

1
2
L0
t (Y )

)

=
∫ t

0

(
β1{Ys>0} + γ1{Ys≤0}

)
dWs +

1
2

(β − γ + 2αγ)L0
t (Y ) .

Hence, for β − γ + 2αγ = 0, β > 0 and γ > 0, the process Xt = ϕ(Yt) is a
martingale solution of the stochastic differential equation

dXt = (β1Xt>0 + γ1Xt≤0)dWt . (5.5.3)

This SDE has no strong solution for β and γ strictly positive but has a unique
strictly weak solution (see Barlow [47]).

The process Y is such that |Y | is a reflecting Brownian motion. Indeed,

dY 2
t = 2Yt(dWt + αdL0

t (Y )) + dt = 2YtdWt + dt .

Walsh [833] proved that, conversely, the only continuous diffusions whose
absolute values are reflected BM’s are the skew BM’s. It can be shown that
for fixed t > 0, Yt

law= ε|Wt| where W is a BM independent of the Bernoulli
r.v. ε, P(ε = 1) = p,P(ε = −1) = 1 − p where p = 1

2(1−α) .

The relation (4.1.13) between L0
t (Y ) and L0−

t (Y ) reads

L0
t (Y ) − L0−

t (Y ) = 2
∫ t

0

1{Ys=0}dYs .

The integral
∫ t
0

1{Ys=0}dWs is null and
∫ t
0

1{Ys=0}dL
0
s(Y ) = L0

t (Y ), hence

L0
t (Y ) − L0−

t (Y ) = 2αL0
t (Y )

that is L0−
t (Y ) = L0

t (Y )(1−2α), which proves the nonexistence of a skew BM
for α > 1/2.

Comment 5.5.2.2 For several studies of skew Brownian motion, and more
generally of processes Y satisfying

Yt =
∫ t

0

σ(Ys)dBs +
∫
ν(dy)Ly

t (Y )

we refer to Barlow [47], Harrison and Shepp [424], Ouknine [687], Le Gall
[567], Lejay [575], Stroock and Yor [813] and Weinryb [838].
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Example 5.5.2.3 Sticky Brownian Motion. Let x > 0. The solution of

Xt = x+
∫ t

0

1{Xs>0}dWs + θ

∫ t

0

1{Xs=0}ds (5.5.4)

with θ > 0 is called sticky Brownian motion with parameter θ. From Tanaka’s
formula,

X−
t = −θ

∫ t

0

1{Xs=0}ds+
1
2
Lt(X) .

The process θ
∫ t
0

1{Xs=0}ds is increasing, hence, from Skorokhod’s lemma,
Lt(X) = 2θ

∫ t
0

1{Xs=0}ds and X−
t = 0. Hence, we may write the equation

(5.5.4) as

Xt = x+
∫ t

0

1{Xs>0}dWs +
1
2
Lt(X)

which enables us to write

Xt = β

(∫ t

0

1{Xs>0}ds

)

where (β(u), u ≥ 0) is a reflecting BM starting from x. See Warren [835] for
a thorough study of sticky Brownian motion.

Exercise 5.5.2.4 Let θ > 0 and X be the sticky Brownian motion with
X0 = 0.

(1) Prove that Lx
t (X) = 0, for every x < 0; then, prove that Xt ≥ 0, a.s.

(2) Let A+
t =

∫ t
0
ds1{Xs>0}, A

0
t =

∫ t
0
ds1{Xs=0}, and define their inverses

α+
u = inf{t : A+

t > u} and α0
u = inf{t : A0

t > u}. Identify the law of
(Xα+

u
, u ≥ 0).

(3) Let G be a Gaussian variable, with unit variance and 0 expectation.
Prove that, for any u > 0 and t > 0

α+
u

law= u+
1
θ

√
u |G| ; A+

t
law=
(√

t+
G2

4θ2
− |G|

2θ

)2

deduce that

A0
t

law=
|G|
θ

√

t+
G2

4θ2
− G2

2θ2

and compute E(A0
t ).

Hint: The process Xα+
u

= W+
u + θA0

α+
u

where W+
u is a BM and A0

α+
u

is an
increasing process, constant on {u : Xα+

u
> 0}, solves Skorokhod equation.

Therefore it is a reflected BM. The obvious equality t = A+
t + A0

t leads to
α+
u = u+A0

α+
u
, and aA0

α+
u

law= L0
u. �
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5.6 Last Passage Times

We now present the study of the law (and the conditional law) of some last
passage times for diffusion processes. In this section,W is a standard Brownian
motion and its natural filtration is F. These random times have been studied
in Jeanblanc and Rutkowski [486] as theoretical examples of default times,
in Imkeller [457] as examples of insider private information and, in a pure
mathematical point of view, in Pitman and Yor [715] and Salminen [754].

5.6.1 Notation and Basic Results

If τ is a random time, then, it is easy to check that the process P(τ > t|Ft) is
a super-martingale. Therefore, it admits a Doob-Meyer decomposition.

Lemma 5.6.1.1 Let τ be a positive random time and

P(τ > t|Ft) = Mt −At

the Doob-Meyer decomposition of the super-martingale Zt = P(τ > t|Ft).
Then, for any predictable positive process H,

E(Hτ ) = E

(∫ ∞

0

dAuHu

)

.

Proof: For any process H of the form H = Λs1]s,t] with Λs ∈ bFs, one has

E(Hτ ) = E(Λs1]s,t](τ)) = E(Λs(At −As)) .

The result follows from MCT. �

Comment 5.6.1.2 The reader will find in Nikeghbali and Yor [676] a
multiplicative decomposition of the super-martingale Z as Zt = ntDt where
D is a decreasing process and n a local martingale, and applications to
enlargement of filtration.

We now show that, in a diffusion setup, At andMt may be computed explicitly
for some random times τ .

5.6.2 Last Passage Time of a Transient Diffusion

Proposition 5.6.2.1 Let X be a transient homogeneous diffusion such that
Xt → +∞ when t→ ∞, and s a scale function such that s(+∞) = 0 (hence,
s(x) < 0 for x ∈ R) and Λy = sup{t : Xt = y} the last time that X hits y.
Then,

Px(Λy > t|Ft) =
s(Xt)
s(y)

∧ 1 .
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Proof: We follow Pitman and Yor [715] and Yor [868], p.48, and use that
under the hypotheses of the proposition, one can choose a scale function such
that s(x) < 0 and s(+∞) = 0 (see Sharpe [784]).

Observe that

Px

(
Λy > t|Ft

)
= Px

(
inf
u≥t

Xu < y
∣
∣
∣Ft

)
= Px

(
sup
u≥t

(−s(Xu)) > −s(y)
∣
∣
∣Ft

)

= PXt

(
sup
u≥0

(−s(Xu)) > −s(y)
)

=
s(Xt)
s(y)

∧ 1,

where we have used the Markov property of X, and the fact that if M is a
continuous local martingale with M0 = 1, Mt ≥ 0, and lim

t→∞
Mt = 0, then

sup
t≥0

Mt
law=

1
U
,

where U has a uniform law on [0, 1] (see Exercise 1.2.3.10). �

Lemma 5.6.2.2 The FX-predictable compensator A associated with the

random time Λy is the process A defined as At = − 1
2s(y)

L
s(y)
t (Y ), where

L(Y ) is the local time process of the continuous martingale Y = s(X).

Proof: From x∧y = x− (x−y)+, Proposition 5.6.2.1 and Tanaka’s formula,
it follows that

s(Xt)
s(y)

∧ 1 = Mt +
1

2s(y)
L
s(y)
t (Y ) = Mt +

1
s(y)

!yt (X)

where M is a martingale. The required result is then easily obtained. �

We deduce the law of the last passage time:

Px(λy > t) =
(
s(x)
s(y)

∧ 1
)

+
1
s(y)

Ex(!
y
t (X))

=
(
s(x)
s(y)

∧ 1
)

+
1
s(y)

∫ t

0

du p(m)
u (x, y) .

Hence, for x < y

Px(Λy ∈ dt) = − dt

s(y)
p
(m)
t (x, y) = − dt

s(y)m(y)
pt(x, y)

= −σ
2(y)s′(y)
2s(y)

pt(x, y)dt . (5.6.1)

For x > y, we have to add a mass at point 0 equal to

1 −
(
s(x)
s(y)

∧ 1
)

= 1 − s(x)
s(y)

= Px(Ty <∞) .
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Example 5.6.2.3 Last Passage Time for a Transient Bessel Process:
For a Bessel process of dimension δ > 2 and index ν (see � Chapter 6),
starting from 0,

P
δ
0(Λa < t) = P

δ
0(inf

u≥t
Ru > a) = P

δ
0(sup

u≥t
R−2ν

u < a−2ν)

= P
δ
0

(
R−2ν

t

U
< a−2ν

)

= P
δ
0(a

2ν < UR2ν
t ) = P

δ
0

(
a2

R2
1U

1/ν
< t

)

.

Thus, the r.v. Λa = a2

R2
1U

1/ν is distributed as a2

2γ(ν+1)βν,1

law= a2

2γ(ν) where γ(ν)
is a gamma variable with parameter ν:

P(γ(ν) ∈ dt) = 1{t≥0}
tν−1e−t

Γ (ν)
dt .

Hence,

P
δ
0(Λa ∈ dt) = 1{t≥0}

1
tΓ (ν)

(
a2

2t

)ν

e−a2/(2t)dt . (5.6.2)

We might also find this result directly from the general formula (5.6.1) and
apply formula (6.2.3) for the expression of the density.

Proposition 5.6.2.4 For H a positive predictable process

Ex(HΛy |Λy = t) = Ex(Ht|Xt = y)

and, for y > x,

Ex(HΛy ) =
∫ ∞

0

Ex(Λy ∈ dt) Ex(Ht|Xt = y) .

In the case x > y,

Ex(HΛy ) = H0

(

1 − s(x)
s(y)

)

+
∫ ∞

0

Ex(Λy ∈ dt) Ex(Ht|Xt = y) .

Proof: We have shown in the previous Proposition 5.6.2.1 that

Px(Λy > t|Ft) =
s(Xt)
s(y)

∧ 1 .

From Itô-Tanaka’s formula

s(Xt)
s(y)

∧ 1 =
s(x)
s(y)

∧ 1 +
∫ t

0

1{Xu>y} d
s(Xu)
s(y)

− 1
2
L
s(y)
t (s(X)) .

It follows, using Lemma 5.6.1.1 that
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Ex(HΛx) =
1
2

Ex

(∫ ∞

0

Hu duL
s(y)
u (s(X))

)

=
1
2

Ex

(∫ ∞

0

Ex(Hu|Xu = y) duLs(y)
u (s(X))

)

.

Therefore, replacing Hu by Hug(u), we get

Ex (HΛxg(Λx)) =
1
2

Ex

(∫ ∞

0

g(u) Ex (Hu|Xu = y) duLs(y)
u (s(X))

)

. (5.6.3)

Consequently, from (5.6.3), we obtain

Px (Λy ∈ du) =
1
2
duEx

(
Ls(y)
u (s(X))

)

Ex

(
HΛy |Λy = t

)
= Ex(Ht|Xt = y) .

�

Remark 5.6.2.5 In the literature, some studies of last passage times employ
time inversion. See an example in the next Exercise 5.6.2.6.

Exercise 5.6.2.6 Let X be a drifted Brownian motion with positive drift ν
and Λν

y its last passage time at level y. Prove that

Px(Λ(ν)
y ∈ dt) =

ν√
2πt

exp
(

− 1
2t

(x− y + νt)2
)

dt ,

and

Px(Λ(ν)
y = 0) =

{
1 − e−2ν(x−y), for x > y
0 for x < y .

Prove, using time inversion that, for x = 0,

Λ(ν)
y

law=
1

T
(y)
ν

where
T (b)
a = inf{t : Bt + bt = a}

See Madan et al. [611]. �

5.6.3 Last Passage Time Before Hitting a Level

Let Xt = x + σWt where the initial value x is positive and σ is a positive
constant. We consider, for 0 < a < x the last passage time at the level a
before hitting the level 0, given as gaT0

(X) = sup {t ≤ T0 : Xt = a}, where

T0 = T0(X) = inf {t ≥ 0 : Xt = 0} .
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(In a financial setting, T0 can be interpreted as the time of bankruptcy.)
Then, setting α = (a−x)/σ, T−x/σ(W ) = inf{t : Wt = −x/σ} and dαt (W ) =
inf{s ≥ t : Ws = α}

Px

(
gaT0

(X) ≤ t|Ft

)
= P
(
dαt (W ) > T−x/σ(W )|Ft

)

on the set {t < T−x/σ(W )}. It is easy to prove that

P
(
dαt (W ) < T−x/σ(W )|Ft

)
= Ψ(Wt∧T−x/σ(W ), α,−x/σ),

where the function Ψ(·, a, b) : R → R equals, for a > b,

Ψ(y, a, b) = Py(Ta(W ) > Tb(W )) =

⎧
⎨

⎩

(a− y)/(a− b) for b < y < a,
1 for a < y,
0 for y < b.

(See Proposition 3.5.1.1 for the computation of Ψ .) Consequently, on the set
{T0(X) > t} we have

Px

(
gaT0

(X) ≤ t|Ft

)
=

(α−Wt∧T0)
+

a/σ
=

(α−Wt)+

a/σ
=

(a−Xt)+

a
. (5.6.4)

As a consequence, applying Tanaka’s formula, we obtain the following result.

Lemma 5.6.3.1 Let Xt = x + σWt, where σ > 0. The F-predictable
compensator associated with the random time gaT0(X) is the process A defined
as At = 1

2αL
α
t∧T−x/σ(W )(W ), where Lα(W ) is the local time of the Brownian

Motion W at level α = (a− x)/σ.

5.6.4 Last Passage Time Before Maturity

In this subsection, we study the last passage time at level a of a diffusion
process X before the fixed horizon (maturity) T . We start with the case where
X = W is a Brownian motion starting from 0 and where the level a is null:

gT = sup{t ≤ T : Wt = 0} .

Lemma 5.6.4.1 The F-predictable compensator associated with the random
time gT equals

At =

√
2
π

∫ t∧T

0

dLs√
T − s

,

where L is the local time at level 0 of the Brownian motion W.

Proof: It suffices to give the proof for T = 1, and we work with t < 1. Let
G be a standard Gaussian variable. Then

P

( a2

G2
> 1 − t

)
= Φ
( |a|√

1 − t

)
,
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where Φ(x) =
√

2
π

∫ x

0

exp(−u
2

2
)du. For t < 1, the set {g1 ≤ t} is equal to

{dt > 1}. It follows from (4.3.3) that

P(g1 ≤ t|Ft) = Φ

(
|Wt|√
1 − t

)

.

Then, the Itô-Tanaka formula combined with the identity

xΦ′(x) + Φ′′(x) = 0

leads to

P(g1 ≤ t|Ft) =
∫ t

0

Φ′
(

|Ws|√
1 − s

)

d

(
|Ws|√
1 − s

)

+
1
2

∫ t

0

ds

1 − s
Φ′′
(

|Ws|√
1 − s

)

=
∫ t

0

Φ′
(

|Ws|√
1 − s

)
sgn(Ws)√

1 − s
dWs +

∫ t

0

dLs√
1 − s

Φ′
(

|Ws|√
1 − s

)

=
∫ t

0

Φ′
(

|Ws|√
1 − s

)
sgn(Ws)√

1 − s
dWs +

√
2
π

∫ t

0

dLs√
1 − s

.

It follows that the F-predictable compensator associated with g1 is

At =

√
2
π

∫ t

0

dLs√
1 − s

, (t < 1) .

�

These results can be extended to the last time before T when the Brownian
motion reaches the level α, i.e., gαT = sup {t ≤ T : Wt = α}, where we set
sup(∅) = T. The predictable compensator associated with gαT is

At =

√
2
π

∫ t∧T

0

dLα
s√

T − s
,

where Lα is the local time of W at level α.

We now study the case whereXt = x+μ t+σWt, with constant coefficients
μ and σ > 0. Let

ga1 (X) = sup {t ≤ 1 : Xt = a}
= sup {t ≤ 1 : νt+Wt = α}

where ν = μ/σ and α = (a− x)/σ. From Lemma 4.3.9.1, setting

Vt = α− νt−Wt = (a−Xt)/σ ,

we obtain
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P(ga1 (X) ≤ t|Ft) = (1 − eνVtH(ν, |Vt|, 1 − t))1{T0(V )≤t},

where

H(ν, y, s) = e−νyN
(
νs− y√

s

)

+ eνyN
(
−νs− y√

s

)

.

Using Itô’s lemma, we obtain the decomposition of 1− eνVtH(ν, |Vt|, 1− t) as
a semi-martingale Mt + Ct.

We note that C increases only on the set {t : Xt = a}. Indeed, setting
ga1 (X) = g, for any predictable process H, one has

E(Hg) = E

(∫ ∞

0

dCsHs

)

hence, since Xg = a,

0 = E(1Xg �=a) = E

(∫ ∞

0

dCs1Xs �=a

)

.

Therefore, dCt = κtdL
a
t (X) and, since L increases only at points such that

Xt = a (i.e., Vt = 0), one has

κt = H ′
x(ν, 0, 1 − t) .

The martingale part is given by dMt = mtdWt where

mt = eνVt (νH(ν, |Vt|, 1 − t) − sgn(Vt)H ′
x(ν, |Vt|, 1 − t)) .

Therefore, the predictable compensator associated with ga1 (X) is
∫ t

0

H ′
x(ν, 0, 1 − s)

eνVsH(ν, 0, 1 − s)
dLa

s .

Exercise 5.6.4.2 The aim of this exercise is to compute, for t < T < 1 ,
the quantity E(h(WT )1{T<g1}|Gt), which is the price of the claim h(ST ) with
barrier condition 1{T<g1}.

Prove that

E(h(WT )1{T<g1}|Ft) = E(h(WT )|Ft) − E

(
h(WT )Φ

( |WT |√
1 − T

) ∣
∣
∣Ft

)
,

where

Φ(x) =

√
2
π

∫ x

0

exp
(

−u
2

2

)

du .

Define k(w) = h(w)Φ(|w|/
√

1 − T ). Prove that E
(
k(WT )

∣
∣Ft

)
= k̃(t,Wt),

where

k̃(t, a) = E

(
k(WT−t + a)

)

=
1

√
2π(T − t)

∫

R

h(u)Φ
( |u|√

1 − T

)
exp
(
− (u− a)2

2(T − t)

)
du.

�
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5.6.5 Absolutely Continuous Compensator

From the preceding computations, the reader might think that the F-predicta-
ble compensator is always singular w.r.t. the Lebesgue measure. This is not
the case, as we show now. We are indebted to Michel Émery for this example.

Let W be a Brownian motion and let τ = sup {t ≤ 1 : W1 − 2Wt = 0},
that is the last time before 1 when the Brownian motion is equal to half of its
terminal value at time 1. Then,

{τ ≤ t} =
{

inf
t≤s≤1

2Ws ≥W1 ≥ 0
}

∪
{

sup
t≤s≤1

2Ws ≤W1 ≤ 0
}

.

� The quantity

P(τ ≤ t,W1 ≥ 0|Ft) = P

(

inf
t≤s≤1

2Ws ≥W1 ≥ 0|Ft

)

can be evaluated using the equalities
{

inf
t≤s≤1

Ws ≥
W1

2
≥ 0
}

=
{

inf
t≤s≤1

(Ws −Wt) ≥
W1

2
−Wt ≥ −Wt

}

=

{

inf
0≤u≤1−t

(W̃u) ≥ W̃1−t

2
− Wt

2
≥ −Wt

}

,

where (W̃u = Wt+u −Wt, u ≥ 0) is a Brownian motion independent of Ft. It
follows that

P

(

inf
t≤s≤1

Ws ≥
W1

2
≥ 0|Ft

)

= Ψ(1 − t,Wt) ,

where

Ψ(s, x) = P

(

inf
0≤u≤s

W̃u ≥ W̃s

2
− x

2
≥ −x

)

= P

(
2Ms −Ws ≤

x

2
, Ws ≤

x

2

)

= P

(

2M1 −W1 ≤ x

2
√
s
, W1 ≤ x

2
√
s

)

.

� The same kind of computation leads to

P

(

sup
t≤s≤1

2Ws ≤W1 ≤ 0|Ft

)

= Ψ(1 − t,−Wt) .

� The quantity Ψ(s, x) can now be computed from the joint law of the
maximum and of the process at time 1; however, we prefer to use Pitman’s
theorem (see � Section 5.7): let Ũ be a r.v. uniformly distributed on [−1,+1]
independent of R1 := 2M1 −W1, then
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P(2M1 −W1 ≤ y,W1 ≤ y) = P(R1 ≤ y, ŨR1 ≤ y)

=
1
2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du .

For y > 0,

1
2

∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du =
1
2

∫ 1

−1

P(R1 ≤ y)du = P(R1 ≤ y) .

For y < 0 ∫ 1

−1

P(R1 ≤ y, uR1 ≤ y)du = 0 .

Therefore

P(τ ≤ t|Ft) = Ψ(1 − t,Wt) + Ψ(1 − t,−Wt) = ρ

(
|Wt|√
1 − t

)

where

ρ(y) = P(R1 ≤ y) =

√
2
π

∫ y

0

x2e−x2/2dx .

Then Zt = P(τ > t|Ft) = 1−ρ( |Wt|√
1−t

). We can now apply Tanaka’s formula
to the function ρ. Noting that ρ′(0) = 0, the contribution to the Doob-Meyer
decomposition of Z of the local time of W at level 0 is 0. Furthermore, the
increasing process A of the Doob-Meyer decomposition of Z is given by

dAt =

(
1
2
ρ′′
(

|Wt|√
1 − t

)
1

1 − t
+

1
2
ρ′
(

|Wt|√
1 − t

)
|Wt|√
(1 − t)3

)

dt

=
1

1 − t

|Wt|√
1 − t

e−W 2
t /2(1−t)dt .

We note that A may be obtained as the dual predictable projection on
the Brownian filtration of the process A(W1)

s , s ≤ 1, where (A(x)
s , s ≤ 1) is the

compensator of τ under the law of the Brownian bridge P
(1)
0→x.

5.6.6 Time When the Supremum is Reached

Let W be a Brownian motion, Mt = sups≤tWs and let τ be the time when
the supremum on the interval [0, 1] is reached, i.e.,

τ = inf{t ≤ 1 : Wt = M1} = sup{t ≤ 1 : Mt −Wt = 0} .

Let us denote by ζ the positive continuous semimartingale

ζt =
Mt −Wt√

1 − t
, t < 1.
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Let Ft = P(τ ≤ t|Ft). Since Ft = Φ(ζt), (where Φ(x) =
√

2
π

∫ x
0

exp(−u2

2 )du,
see Example 4.1.7.5) using Itô’s formula, we obtain the canonical decomposi-
tion of F as follows:

Ft =
∫ t

0

Φ′(ζu) dζu +
1
2

∫ t

0

Φ′′(ζu)
du

1 − u

(i)
= −

∫ t

0

Φ′(ζu)
dWu√
1 − u

+

√
2
π

∫ t

0

dMu√
1 − u

(ii)
= Ut + F̃t,

where Ut = −
∫ t
0
Φ′(ζu)

dWu√
1 − u

is a martingale and F̃ a predictable increasing

process. To obtain (i), we have used that xΦ′ +Φ′′ = 0; to obtain (ii), we have
used that Φ′(0) =

√
2/π and also that the process M increases only on the

set
{u ∈ [0, t] : Mu = Wu} = {u ∈ [0, t] : ζu = 0}.

5.6.7 Last Passage Times for Particular Martingales

Proposition 5.6.7.1 Let X be a continuous positive local martingale such
that X0 = x, and limt→∞Xt = 0. Let Σt = sups≤tXs the (continuous)
supremum process. We consider the last passage time of the process X at the
level Σ∞:

g = sup {t ≥ 0 : Xt = Σ∞}
= sup {t ≥ 0 : Σt −Xt = 0} . (5.6.5)

Consider the supermartingale

Zt = P (g > t | Ft) .

Then:
(i) the multiplicative decomposition of the supermartingale Z reads

Zt =
Xt

Σt
,

(ii) The Doob-Meyer (additive decomposition) of Z is:

Zt = mt − log (Σt) , (5.6.6)

where m is the F-martingale

mt = E [logΣ∞|Ft] .

Proof: We recall the Doob’s maximal identity 1.2.3.10. Applying (1.2.2) to
the martingale (Yt := XT+t, t ≥ 0) for the filtration FT := (Ft+T , t ≥ 0),
where T is a F-stopping time, we obtain that
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P
(
ΣT > a|FT

)
=
(
XT

a

)

∧ 1, (5.6.7)

where
ΣT := sup

u≥T
Xu.

Hence XT

ΣT is a uniform random variable on (0, 1), independent of FT . The
multiplicative decomposition of Z follows from

P (g > t | Ft) = P

(

sup
u≥t

Xu ≥ Σt | Ft

)

=
(
Xt

Σt

)

∧ 1 =
Xt

Σt

From the integration by parts formula applied to Xt

Σt
, and using the fact

that X, hence Σ are continuous, we obtain

dZt =
dXt

Σt
−Xt

dΣt

(Σt)2

Since dΣt charges only the set {t : Xt = Σt}, one has

dZt =
dXt

Σt
− dΣt

Σt
=
dXt

Σt
− d(lnΣt)

From the uniqueness of the Doob-Meyer decomposition, we obtain that the
predictable increasing part of the submartingale Z is lnΣt, hence

Zt = mt − lnΣt

where m is a martingale. The process Z is of class (D), hence m is a uniformly
integrable martingale. From Z∞ = 0, one obtains that mt = E(lnΣ∞|Ft). �

Remark 5.6.7.2 From the Doob-Meyer (additive) decomposition of Z, we
have 1−Zt = (1−mt) + lnΣt. From Skorokhod’s reflection lemma presented
in Subsection 4.1.7 we deduce that

lnΣt = sup
s≤t

ms − 1

We now study the Azéma supermartingale associated with the random
time L, a last passage time or the end of a predictable set Γ , i.e.,

L(ω) = sup{t : (t, ω) ∈ Γ}

(See � Section 5.9.4 for properties of these times in an enlargement of
filtration setting).
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Proposition 5.6.7.3 Let L be the end of a predictable set. Assume that all
the F-martingales are continuous and that L avoids the F-stopping times.
Then, there exists a continuous and nonnegative local martingale N , with
N0 = 1 and limt→∞Nt = 0, such that:

Zt = P (L > t | Ft) =
Nt

Σt

where Σt = sups≤tNs. The Doob-Meyer decomposition of Z is

Zt = mt −At

and the following relations hold

Nt = exp
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2
s

)

Σt = exp(At)

mt = 1 +
∫ t

0

dNs

Σs
= E(lnS∞|Ft)

Proof: As recalled previously, the Doob-Meyer decomposition of Z reads
Zt = mt − At with m and A continuous, and dAt is carried by {t : Zt = 1}.
Then, for t < T0 := inf{t : Zt = 0}

− lnZt = −
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2
s

)

+At

From Skorokhod’s reflection lemma (see Subsection 4.1.7) we deduce that

At = sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d〈m〉s
Z2
s

)

Introducing the local martingale N defined by

Nt = exp
(∫ t

0

dms

Zs
− 1

2

∫ t

0

d〈m〉s
Z2
s

)

,

it follows that
Zt =

Nt

Σt

and

Σt = sup
u≤t

Nu = exp
(

sup
u≤t

(∫ u

0

dms

Zs
− 1

2

∫ u

0

d〈m〉s
Z2
s

))

= eAt

�
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The three following exercises are from the work of Bentata and Yor [72].

Exercise 5.6.7.4 Let M be a positive martingale, such that M0 = 1 and
limt→∞Mt = 0. Let a ∈ [0, 1[ and define Ga = sup{t : Mt = a}. Prove that

P(Ga ≤ t|Ft) =
(

1 − Mt

a

)+

Assume that, for every t > 0, the law of the r.v. Mt admits a density
(mt(x), x ≥ 0), and (t, x) → mt(x) may be chosen continuous on (0,∞)2

and that d〈M〉t = σ2
t dt, and there exists a jointly continuous function

(t, x) → θt(x) = E(σ2
t |Mt = x) on (0,∞)2. Prove that

P(Ga ∈ dt) =
(

1 − M0

a

)

δ0(dt) + 1{t>0}
1
2a
θt(a)mt(a)dt

Hint: Use Tanaka’s formula to prove that the result is equivalent to
dtE(La

t (M)) = dtθt(a)mt(a) where L is the Tanaka-Meyer local time (see
Subsection 5.5.1). �

Exercise 5.6.7.5 Let B be a Brownian motion and

T (ν)
a = inf{t : Bt + νt = a}
G(ν)

a = sup{t : Bt + νt = a}

Prove that

(T (ν)
a , G(ν)

a ) law=
(

1

G
(a)
ν

,
1

T
(a)
ν

)

Give the law of the pair (T (ν)
a , G

(ν)
a ). �

Exercise 5.6.7.6 Let X be a transient diffusion, such that

Px(T0 <∞) = 0, x > 0
Px( lim

t→∞
Xt = ∞) = 1, x > 0

and note s the scale function satisfying s(0+) = −∞, s(∞) = 0. Prove that
for all x, t > 0,

Px(Gy ∈ dt) =
−1

2s(y)
p
(m)
t (x, y)dt

where p(m) is the density transition w.r.t. the speed measure m. �

5.7 Pitman’s Theorem about (2Mt − Wt)

5.7.1 Time Reversal of Brownian Motion

In our proof of Pitman’s theorem, we shall need two results about time reversal
of Brownian motion which are of interest by themselves:
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Lemma 5.7.1.1 Let W be a Brownian motion, L its local time at level 0 and
τ� = inf{t : Lt ≥ !}. Then

(Wu, u ≤ τ�|τ� = t) law= (Wu, u ≤ t|Lt = !,Wt = 0)

As a consequence,

(Wτ�−u, u ≤ τ�)
law= (Wu, u ≤ τ�)

Proof: Assuming the first property, we show how the second one is deduced.
The scaling property allows us to restrict attention to the case ! = 1. Since
the law of the Brownian bridge is invariant under time reversal (see Section
4.3.5), we get that

(Wu, u ≤ t|Wt = 0) law= (Wt−u, u ≤ t|Wt = 0) .

This identity implies

((Wu, u ≤ t), Lt|Wt = 0) law= ((Wt−u, u ≤ t), Lt|Wt = 0) .

Therefore

(Wu, u ≤ τ1|τ1 = t) law= (Wu, u ≤ t|Lt = 1,Wt = 0)

law= (Wt−u, u ≤ t|Lt = 1,Wt = 0) law= (Wτ1−u, u ≤ τ1|τ1 = t) .

We conclude that
(Wτ1−u;u ≤ τ1)(Wu;u ≤ τ1) .

�
The second result about time reversal is a particular case of a general result
for Markov processes due to Nagasawa. We need some references to the Bessel
process of dimension 3 (see � Chapter 6).

Theorem 5.7.1.2 (Williams’ Time Reversal Result.) Let W be a BM,
Ta the first hitting time of a by W and R a Bessel process of dimension 3
starting from 0, and Λa its last passage time at level a. Then

(a−WTa−t, t ≤ Ta)
law= (Rt, t ≤ Λa) .

Proof: We refer to [RY], Chapter VII. �

5.7.2 Pitman’s Theorem

Here again, the Bessel process of dimension 3 (denoted as BES3) plays an
essential rôle (see � Chapter 6).
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Theorem 5.7.2.1 (Pitman’s Theorem.) LetW be a Brownian motion and
Mt = sups≤tWs. The following identity in law holds

(2Mt −Wt,Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0)

where (Rt; t ≥ 0) is a BES3 process starting from 0 and Jt = infs≥tRs.

Proof: We note that it suffices to prove the identity in law between the first
two components, i.e.,

(2Mt −Wt; t ≥ 0) law= (Rt; t ≥ 0) . (5.7.1)

Indeed, the equality (5.7.1) implies

(2Mt −Wt, inf
s≥t

(2Ms −Ws); t ≥ 0) law=
(

Rt, inf
s≥t

Rs; t ≥ 0
)

.

We prove below that Mt = infs≥t(2Ms −Ws). Hence, the equality

(2Mt −Wt,Mt; t ≥ 0) law= (Rt, Jt; t ≥ 0) .

holds.

� We prove Mt = infs≥t(2Ms −Ws) in two steps. First, note that for s ≥ t,
2Ms −Ws ≥Ms ≥Mt hence Mt ≤ infs≥t(2Ms −Ws).

In a second step, we introduce θt = inf{s ≥ t : Ms = Ws}. Since
the increasing process M increases only when M = W , it is obvious that
Mt = Mθt . From Mθt = 2Mθt − Wθt ≥ infs≥θt(2Ms − Ws) we deduce
that Mt = infs≥θt(2Ms −Ws) ≥ infs≥t(2Ms −Ws). Therefore, the equality
Mt = infs≥t(2Ms −Ws) holds.

� We now prove the desired result (5.7.1) with the help of Lévy’s identity:
the two statements

(2Mt −Wt; t ≥ 0) law= (Rt; t ≥ 0)

and
(|Wt| + Lt; t ≥ 0) law= (Rt; t ≥ 0) ,

are equivalent (we recall that L denotes the local time at 0 of W ). Hence, we
only need to prove that, for every !,

(|Wt| + Lt; t ≤ τ�)
law= (Rt; t ≤ Λ�) (5.7.2)

where
τ� = inf{t : Lt ≥ !} and Λ� = sup{t : Rt = !}.

Accordingly, using Lemma 5.7.1.1, the equality (5.7.2) is equivalent to:
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(|Wτ�−t| + (!− Lτ�−t); t ≤ τ�)
law= (Rt; t ≤ Λ�) .

By Lévy’s identity, this is equivalent to:

(!−WT�−t; t ≤ T�)
law= (Rt; t ≤ Λ�)

which is precisely Williams’ time reversal theorem.
�

Corollary 5.7.2.2 Let R̃t = 2Mt − Wt, Rt = σ{R̃s; s ≤ t}, and let T
be an (Rt) stopping time. Then, conditionally on RT , the r.v. MT (and,
consequently, the r.v. MT −WT ) is uniformly distributed on [0, R̃T ]. Hence,
MT −WT

R̃T

is uniform on [0, 1] and independent of RT .

Proof: Using Pitman’s theorem, the statement of the corollary is equivalent
to: if (Ra

s ; s ≥ 0) is a BES3
a process, infs≥0R

a
s is uniform on [0, a], which follows

from the useful lemma of Exercise 1.2.3.10.
Consequently for x < y

P(Mu ≤ x|R̃u = y) = P(Uy ≤ x) = x/y .

�

The property featured in the corollary entails an intertwining property
between the semigroups of BM and BES3 which is detailed in the following
exercise.

Exercise 5.7.2.3 Denote by (Pt) and (Qt) respectively the semigroups of the
Brownian motion and of the BES3. Prove that QtΛ = ΛPt where

Λ : f → Λf(r) =
1
2r

∫ +r

−r

dxf(x) .

�

Exercise 5.7.2.4 With the help of Corollary 5.7.2.2 and the Cameron-
Martin formula, prove that the process 2M (μ)

t −W (μ)
t , where W (μ)

t = Wt+μt,
is a diffusion whose generator is 1

2
d2

dx2 + μ cothμx d
dx . �

5.8 Filtrations

In the Black-Scholes model with constant coefficients, i.e.,

dSt = St(μdt+ σdWt), S0 = x (5.8.1)
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where μ, σ and x are constants, the filtration FS generated by the asset prices

FS
t : = σ(Ss, s ≤ t)

is equal to the filtration FW generated by W . Indeed, the solution of (5.8.1)
is

St = x exp
((

μ− σ2

2

)

t+ σWt

)

(5.8.2)

which leads to

Wt =
1
σ

(

ln
St
S0

−
(

μ− σ2

2

)

t

)

. (5.8.3)

From (5.8.2), any function of St is a function of Wt, and FS
t ⊂ FW

t . From
(5.8.3) the reverse inclusion holds.

This result remains valid for μ and σ deterministic functions, as long as
σ(t) > 0,∀t.

However, in general, the source of randomness is not so easy to identify;
likewise models which are chosen to calibrate the data may involve more
complicated filtrations. We present here a discussion of such set-ups. Our
present aim is not to give a general framework but to study some particular
cases.

5.8.1 Strong and Weak Brownian Filtrations

Amongst continuous-time processes, Brownian motion is undoubtedly the
most studied process, and many characterizations of its law are known. It
may thus seem a little strange that, deciding whether or not a filtration F, on
a given probability space (Ω,F ,P), is the natural filtration FB of a Brownian
motion (Bt, t ≥ 0) is a very difficult question and that, to date, no necessary
and sufficient criterion has been found.

However, the following necessary condition can already discard a number
of unsuitable “candidates,” in a reasonably efficient manner: in order that
F be a Brownian filtration, it is necessary that there exists an F-Brownian
motion β such that all F-martingales may be written as Mt = c +

∫ t
0
msdβs

for some c ∈ R and some predictable process m which satisfies
∫ t
0
dsm2

s <∞.
If needed, the reader may refer to � Section 9.5 for the general definition of
the predictable representation property (PRP). This leads us to the following
definition.

Definition 5.8.1.1 A filtration F on (Ω,F ,P) such that F0 is P a.s. trivial
is said to be weakly Brownian if there exists an F-Brownian motion β such
that β has the predictable representation property with respect to F.

A filtration F on (Ω,F ,P) such that F0 is P a.s. trivial is said to be
strongly Brownian if there exists an F-BM β such that Ft = Fβ

t .
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Implicitly, in the above definition, we assume that β is one-dimensional,
but of course, a general discussion with d-dimensional Brownian motion can
be developed.

Note that a strongly Brownian filtration is weakly Brownian since the
Brownian motion enjoys the PRP. Since the mid-nineties, the study of weak
Brownian filtrations has made quite some progress, starting with the proof
by Tsirel’son [823] that the filtration of Walsh’s Brownian motion as defined
in Walsh [833] (see also Barlow and Yor [50]) taking values in N ≥ 3 rays is
weakly Brownian, but not strongly Brownian. See, in particular, the review
paper of Émery [327] and notes and comments in Chapter V of [RY].

� We first show that weakly Brownian filtrations are left globally invariant
under locally equivalent changes of probability. We start with a weakly
Brownian filtration F on a probability space (Ω,F ,P) and we consider another
probability Q on (Ω,F) such that Q|Ft = LtP|Ft .

Proposition 5.8.1.2 If F is weakly Brownian under P and Q is locally
equivalent to P, then F is also weakly Brownian under Q.

Proof: Let M be an (F,Q)-local martingale, then ML is an (F,P)-local
martingale, hence Nt := MtLt = c +

∫ t
0
nsdβs for some Brownian motion

β defined on (Ω,F ,F,P), independently from M . Similarly, dLs = !sdβs.
Therefore, we have

Mt =
Nt

Lt
= N0 +

∫ t

0

dNs

Ls
−
∫ t

0

NsdLs

L2
s

+
∫ t

0

Nsd〈L〉s
L3
s

−
∫ t

0

d〈N,L〉s
L2
s

= c+
∫ t

0

ns
Ls
dβs −

∫ t

0

Ns!s
L2
s

dβs +
∫ t

0

Ns!
2
s

L3
s

ds−
∫ t

0

ns!s
L2
s

ds

= c+
∫ t

0

(
ns
Ls

− Ns!s
L2
s

) (

dβs −
d〈β, L〉s
Ls

)

.

Thus, (β̃t := βt −
∫ t
0

d〈β,L〉s

Ls
; t ≥ 0), the Girsanov transform of the original

Brownian motion β, allows the representation of all (F,Q)-martingales. �

� We now show that weakly Brownian filtrations are left globally invariant
by “nice” time changes. Again, we consider a weakly Brownian filtration F
on a probability space (Ω,F ,P). Let At =

∫ t
0
asds where as > 0, dP⊗ ds a.s.,

be a strictly increasing, F adapted process, such that A∞ = ∞, P a.s..

Proposition 5.8.1.3 If F is weakly Brownian under P and τu is the right-
inverse of the strictly increasing process At =

∫ t
0
asds, then (Fτu , u ≥ 0) is

also weakly Brownian under P.

Proof: It suffices to be able to represent any (Fτu , u ≥ 0)-square integrable
martingale in terms of a given (Fτu , u ≥ 0)-Brownian motion β̃. Consider M̃
a square integrable (Fτu , u ≥ 0)-martingale. From our hypothesis, we know
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that M̃∞ = c +
∫∞
0
msdβs, where β is an F-Brownian motion and m is an

F-predictable process such that E
(∫∞

0
dsm2

s

)
<∞. Thus, we may write

M̃∞ = c+
∫ ∞

0

ms√
as

√
as dβs . (5.8.4)

It remains to define β̃ the (Fτu , u ≥ 0)-Brownian motion which satisfies∫ t
0

√
asdβs := β̃At . Going back to (5.8.4), we obtain

M̃∞ = c+
∫ ∞

0

mτu√
aτu

dβ̃u .

�

These two properties do not extend to strongly Brownian filtrations. In
particular, F may be strongly Brownian under P and only weakly Brownian
under Q (see Dubins et al. [267], Barlow et al. [48]).

5.8.2 Some Examples

In what follows, we shall sometimes write Brownian filtration for strongly
Brownian filtration.

Let F be a Brownian filtration, M an F-martingale and FM = (FM
t ) the

natural filtration of M .

(a) Reflected Brownian Motion. Let B be a Brownian motion and
B̃t =

∫ t
0

sgn(Bs)dBs. The process B̃ is a Brownian motion in the filtration
F|B|. From Lt = sups≤t(−B̃s), it follows that F eB

t = F |B|
t , hence, F|B| is

strongly Brownian and different from F since the r.v. sgn(Bt) is independent
of (|Bs|, s ≤ t).

(b) Discontinuous Martingales Originating from a Brownian
Setup. We give an example where there exists FM -discontinuous martingales.
Let Mt : =

∫ t
0

1{Bs<0}dBs. Tanaka’s formula leads to

B−
t = −

∫ t

0

1{Bs<0}dBs +
1
2
Lt .

The natural filtration of M , i.e., FM is equal to the natural filtration of the
process (B−

t , t ≥ 0). The FM -martingale

E

(

B+
t − 1

2
Lt|FM

t

)

= −1
2
Lt + 1{Bt>0}

√
t− gt E(m1) ,
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(where we use here the notation of Section 4.3) is discontinuous, thus FM is
not even weakly Brownian. We refer to Williams [841] for a discussion.

(c) A Note about the PRP. Let F be a filtration and suppose that for
a given F-martingale M , any F-martingale (Nt, t ≥ 0) vanishing at 0 can be
written as Nt =

∫ t
0
nsdMs. This does not imply that σ(Ms, s ≤ t) equals Ft

(in fact this is at the heart of the distinction between strongly and weakly
Brownian filtrations). For example, let B̃t =

∫ t
0

sgn (Bs) dBs. As we have seen
in the first example above, F eB

t = σ(|Bs|, s ≤ t) and is strictly smaller than F.
Nevertheless, any F-martingale (Nt, t ≥ 0) with N0 = 0 can be represented as

Nt =
∫ t

0

νsdBs =
∫ t

0

νssgn (Bs) sgn (Bs) dBs =
∫ t

0

nsdB̃s ,

where ns = νs sgn (Bs).

(d) Another Example. Let Yt =
∫ t
0
BsdWs where W and B are

independent Brownian motions. From

Yt =
∫ t

0

|Bs|sgn(Bs)dWs =
∫ t

0

|Bs|dŴs

where Ŵt =
∫ t
0

sgn(Bs)dWs, it follows that

FY
t = σ{|Bs|, Ŵs, s ≤ t} = σ{B̂s, Ŵs, s ≤ t} ,

where B̂t =
∫ t
0

sgn(Bs)dBs is a BM independent of Ŵ . Any FY -martingale
can be written as

y +
∫ t

0

ϕsdB̂s +
∫ t

0

ψsdŴs ,

for two FY -predictable processes ψ and ϕ.

(e) Filtration Generated by a Stochastic Integral with Non-
vanishing Integrator. Let Xt =

∫ t
0
HsdWs where W is a G-Brownian

motion for some filtration G, and H is a strictly positive continuous G-
adapted process (we do not require that G is the natural filtration of W ).
Then FX

t = σ(Hs,Ws; s ≤ t).

The case where the integrator may vanish is not so easy. Here are other
examples.

(f) Tsirel’son’s drift. Let

W(T )|Ft = exp
(∫ t

0

T (s,X � )dXs −
1
2

∫ t

0

T 2(s,X � )ds
)

W|Ft
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where T is Tsirel’son drift (see Example 1.5.5.6). The process

X
(T )
t = Xt −

∫ t

0

T (s,X � )ds

is a W(T )-Brownian motion whose filtration is strictly smaller than F;
however, F is the natural filtration of a W(T )-Brownian motion.

More generally, if

Wb|Ft = exp
(∫ t

0

b(s,X � )dXs −
1
2

∫ t

0

b2(s,X � )ds
)

W|Ft ,

the process

Xb
t = Xt −

∫ t

0

b(s,X·)ds

is a Wb,F-Brownian motion. Dubins et al. [267] established that there exist
infinitely many b’s such that F is not the natural filtration of a Wb Brownian
motion, i.e., F is not strongly Brownian under Wb. See also Emery and
Schachermayer [329].

(g) LetW and B be two independent Brownian motions, and let Z = BW .
From BtWt =

∫ t
0
(BsdWs +WsdBs) one obtains that B2

t +W 2
t is measurable

w.r.t FZ
t . Hence, the random variables 1√

2
|Bt +Wt| and 1√

2
|Bt−Wt| are FZ

t -

measurable. The processes β(±)
t = 1√

2
(Bt ±Wt) are independent Brownian

motions. The filtration FZ is generated by two independent reflected BMs,
hence from a) above, it is generated by two independent Brownian motions.

Exercise 5.8.2.1 Let B and W be two independent Brownian motions and
Yt = aBt + bWt. Prove that σ(Ys, s ≤ t) ⊂ σ(Bs,Ws, s ≤ t) and that the
inclusion is strict.

Let N1 and N2 be two independent Poisson processes and Yt = aN1,t +
bN2,t, where a = b. Prove that σ(Ys, s ≤ t) = σ(N1,s, N2,s, s ≤ t). �

Exercise 5.8.2.2 Let B and W be two independent Brownian motions, a
and b two strictly positive numbers with a = b and Yt = aB2

t + bW 2
t . Prove

that σ(Ys, s ≤ t) = σ(B2
s ,W

2
s , s ≤ t).

Generalize this result to the case Yt =
∑n

i=1 ai(B
i
t)

2 where ai > 0 and
ai = aj for i = j. Prove that the filtration of Y is that of an n-dimensional
Brownian motion.
Hint: Compute the bracket of Y and iterate this procedure. �

Example 5.8.2.3 Example of a martingale with respect to two different
probabilities:
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Let B = (B1, B2) be a two-dimensional BM, and R2
t = B2

1(t)+B2
2(t). The

process

Lt = exp
(∫ t

0

(B1(s)dB1(s) +B2(s)dB2(s)) −
1
2

∫ t

0

R2
sds

)

is a martingale. Let Q|Ft = LtP|Ft . The process

Xt =
∫ t

0

(B2(s)dB1(s) −B1(s)dB2(s))

is a P (and a Q) martingale. The process R2 is a BESQ under P and a CIR
under Q (see � Chapter 6). See also Example 1.7.3.10.

Comment 5.8.2.4 In [328], Emery and Schachermayer show that there
exists an absolutely continuous strictly increasing time-change such that the
time-changed filtration is no longer Brownian.

5.9 Enlargements of Filtrations

In general, if G is a filtration larger than F, it is not true that an F-martingale
remains a martingale in the filtration G (an interesting example is Azéma’s
martingale μ (see Subsection 4.3.8): this discontinuous Fμ-martingale is not an
FB-martingale, it is not even a FB-semi-martingale; see � Example 9.4.2.3).

In the seminal paper [461], Itô studies the definition of the integral of a
non-adapted process of the form f(B1, Bs) for some function f , with respect
to a Brownian motion B. From the end of the seventies, Barlow, Jeulin and
Yor started a systematic study of the problem of enlargement of filtrations:
namely which F-martingales M remain G-semi-martingales and if it is the
case, what is the semi-martingale decomposition of M in G?

Up to now, four lecture notes volumes have been dedicated to this question:
Jeulin [493], Jeulin and Yor [497], Yor [868] and Mansuy and Yor [622]. See also
related chapters in the books of Protter [727] and Dellacherie, Maisonneuve
and Meyer [241]. Some important papers are Brémaud and Yor [126], Barlow
[45], Jacod [469, 468] and Jeulin and Yor [495].

These results are extensively used in finance to study two specific problems
occurring in insider trading: existence of arbitrage using strategies adapted
w.r.t. the large filtration, and change of prices dynamics, when an F-
martingale is no longer a G-martingale.

We now study mathematically the two situations.

5.9.1 Immersion of Filtrations

Let F and G be two filtrations such that F ⊂ G. Our aim is to study some
conditions which ensure that F-martingales are G-semi-martingales, and one
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can ask in a first step whether all F-martingales are G-martingales. This last
property is equivalent to E(D|Ft) = E(D|Gt), for any t and D ∈ L1(F∞).

Let us study a simple example where G = F ∨ σ(D) where D ∈ L1(F∞)
and D is not F0-measurable. Obviously E(D|Gt) = D is a G-martingale
and E(D|Ft) is a F-martingale. However E(D|G0) = E(D|F0), and some F-
martingales are not G-martingales.

The filtration F is said to be immersed in G if any square integrable
F-martingale is a G-martingale (Tsirel’son [824], Émery [327]). This is also
referred to as the (H) hypothesis by Brémaud and Yor [126] which was defined
as:
(H) Every F-square integrable martingale is a G-square integrable martingale.

Proposition 5.9.1.1 Hypothesis (H) is equivalent to any of the following
properties:

(H1) ∀ t ≥ 0, the σ-fields F∞ and Gt are conditionally independent given Ft.
(H2) ∀ t ≥ 0, ∀Gt ∈ L1(Gt), E(Gt|F∞) = E(Gt|Ft).
(H3) ∀ t ≥ 0, ∀F ∈ L1(F∞), E(F |Gt) = E(F |Ft).

In particular, (H) holds if and only if every F-local martingale is a G-local
martingale.

Proof:

� (H) ⇒ (H1). Let F ∈ L2(F∞) and assume that hypothesis (H) is satisfied.
This implies that the martingale Ft = E(F |Ft) is a G-martingale such that
F∞ = F , hence Ft = E(F |Gt). It follows that for any t and any Gt ∈ L2(Gt):

E(FGt|Ft) = E(GtE(F |Gt)|Ft) = E(GtE(F |Ft)|Ft) = E(Gt|Ft)E(F |Ft)

which is equivalent to (H1).
� (H1) ⇒ (H). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). Under (H1),

E(FE(Gt|Ft)) = E(E(F |Ft)E(Gt|Ft))
H1= E(E(FGt|Ft)) = E(FGt)

which is (H).
� (H2) ⇒ (H3). Let F ∈ L2(F∞) and Gt ∈ L2(Gt). If (H2) holds, then it is
easy to prove that, for F ∈ L2(F∞),

E(GtE(F |Ft)) = E(FE(Gt|Ft))
H2= E(FGt) = E(GtE(F |Gt)),

which implies (H3). The general case follows by approximation.
� Obviously (H3) implies (H). �

In particular, under (H), if W is an F-Brownian motion, then it is a
G-martingale with bracket t, since such a bracket does not depend on the
filtration. Hence, it is a G-Brownian motion.
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A trivial (but useful) example for which (H) is satisfied is G = F ∨ F1

where F and F1 are two filtrations such that F∞ is independent of F1
∞.

We now present two propositions, in which setup the immersion property
is preserved under change of probability.

Proposition 5.9.1.2 Assume that the filtration F is immersed in G under
P, and let Q|Gt = LtP|Gt where L is assumed to be F-adapted. Then, F is
immersed in G under Q.

Proof: Let N be a (F,Q)-martingale, then (NtLt, t ≥ 0) is a (F,P)-
martingale, and since F is immersed in G under P, (NtLt, t ≥ 0) is a (G,P)-
martingale which implies that N is a (G,Q)-martingale. �

In the next proposition, we do not assume that the Radon-Nikodým
density is F-adapted.

Proposition 5.9.1.3 Assume that F is immersed in G under P, and define
Q|Gt = LtP|Gt and Λt = E(Lt|Ft). Assume that all F-martingales are
continuous and that the G-martingale L is continuous. Then, F is immersed
in G under Q if and only if the (G,P)-local martingale

∫ t

0

dLs

Ls
−
∫ t

0

dΛs

Λs
: = L(L)t − L(Λ)t

is orthogonal to the set of all (F,P)-local martingales.

Proof: We prove that any (F,Q)-martingale is a (G,Q)-martingale. Every
(F,Q)-martingale MQ may be written as

MQ
t = MP

t −
∫ t

0

d〈MP , Λ〉s
Λs

where MP is an (F,P)-martingale. By hypothesis, MP is a (G,P)-martingale
and, from Girsanov’s theorem, MP

t = NQ
t +

∫ t
0

d〈MP ,L〉s

Ls
where NQ is an

(F,Q)-martingale. It follows that

MQ
t = NQ

t +
∫ t

0

d〈MP , L〉s
Ls

−
∫ t

0

d〈MP , Λ〉s
Λs

= NQ
t +

∫ t

0

d〈MP ,L(L) − L(Λ)〉s .

Thus MQ is an (G,Q) martingale if and only if 〈MP ,L(L) − L(Λ)〉s = 0. �

Exercise 5.9.1.4 Assume that hypothesis (H) holds under P. Let

Q|Gt = LtP|Gt ; Q|Ft = L̂tP|Ft .
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Prove that hypothesis (H) holds under Q if and only if:

∀X ≥ 0, X ∈ F∞,
E(XL∞|Gt)

Lt
=

E(XL̂∞|Ft)

L̂t

See Nikeghbali [674]. �

5.9.2 The Brownian Bridge as an Example of Initial Enlargement

Rather than studying ab initio the general problem of initial enlargement,
we discuss an interesting example. Let us start with a BM (Bt, t ≥ 0) and
its natural filtration FB . Define a new filtration as Gt = FB

t ∨ σ(B1). In
this filtration, the process (Bt, t ≥ 0) is no longer a martingale. It is easy
to be convinced of this by looking at the process (E(B1|Gt), t ≤ 1): this
process is identically equal to B1, not to Bt, hence (Bt, t ≥ 0) is not a G-
martingale. However, (Bt, t ≥ 0) is a G-semi-martingale, as follows from the
next proposition

Proposition 5.9.2.1 The decomposition of B in the filtration G is

Bt = βt +
∫ t∧1

0

B1 −Bs

1 − s
ds

where β is a G-Brownian motion.

Proof: We have seen, in (4.3.8), that the canonical decomposition of
Brownian bridge under W(1)

0→0 is

Xt = βt −
∫ t

0

ds
Xs

1 − s
, t ≤ 1 .

The same proof implies that the decomposition of B in the filtration G is

Bt = βt +
∫ t∧1

0

B1 −Bs

1 − s
ds .

�

It follows that if M is an F-local martingale such that
∫ 1

0
1√
1−s

d|〈M,B〉|s
is finite, then

Mt = M̂t +
∫ t∧1

0

B1 −Bs

1 − s
d〈M,B〉s

where M̂ is a G-local martingale.

Comments 5.9.2.2 (a) As we shall see in � Subsection 11.2.7, Proposition
5.9.2.1 can be extended to integrable Lévy processes: if X is a Lévy process
which satisfies E(|Xt|) <∞ and G = FX ∨ σ(X1), the process
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Xt −
∫ t∧1

0

X1 −Xs

1 − s
ds,

is a G-martingale.
(b) The singularity of B1−Bt

1−t at t = 1, i.e., the fact that B1−Bt

1−t is not square
integrable between 0 and 1 prevents a Girsanov measure change transforming
the (P,G) semi-martingale B into a (Q,G) martingale. Let

dSt = St(μdt+ σdBt)

and enlarge the filtration with S1 (or equivalently, with B1). In the enlarged
filtration, setting ζt = B1−Bt

1−t , the dynamics of S are

dSt = St((μ+ σζt)dt+ σdβt) ,

and there does not exist an e.m.m. such that the discounted price process
(e−rtSt, t ≤ 1) is a G-martingale. However, for any ε ∈ ]0, 1], there exists a
uniformly integrable G-martingale L defined as

dLt =
μ− r + σζt

σ
Ltdβt, t ≤ 1 − ε, L0 = 1 ,

such that, setting dQ|Gt = LtdP|Gt , the process (e−rtSt, t ≤ 1− ε) is a (Q,G)-
martingale.

This is the main point in the theory of insider trading where the knowledge
of the terminal value of the underlying asset creates an arbitrage opportunity,
which is effective at time 1.

5.9.3 Initial Enlargement: General Results

Let F be a Brownian filtration generated by B. We consider F (L)
t = Ft∨σ(L)

where L is a real-valued random variable. More precisely, in order to satisfy
the usual hypotheses, redefine

F (L)
t = ∩ε>0 {Ft+ε ∨ σ(L)} .

We recall that there exists a family of regular conditional distributions
λt(ω, dx) such that λt(·, A) is a version of E(1{L∈A}|Ft) and for any ω, λt(ω, ·)
is a probability on R.

Proposition 5.9.3.1 (Jacod’s Criterion.) Suppose that, for each t < T ,
λt(ω, dx) << ν(dx) where ν is the law of L. Then, every F-semi-martingale
(Xt, t < T ) is also an F (L)

t -semi-martingale.
Moreover, if λt(ω, dx) = pt(ω, x)ν(dx) and if X is an F-martingale, its

decomposition in the filtration F (L)
t is

Xt = X̃t +
∫ t

0

d〈p·(L), X〉s
ps(L)

.
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In a more general setting (see Yor [868]), for a bounded Borel function f , let
(λt(f), t ≥ 0) be the continuous version of the martingale (E(f(L)|Ft), t ≥ 0).
There exists a predictable kernel λt(dx) such that

λt(f) =
∫
λt(dx)f(x) .

From the predictable representation property applied to the martingale
E(f(L)|Ft), there exists a predictable process λ̂(f) such that

λt(f) = E(f(L)) +
∫ t

0

λ̂s(f)dBs .

Proposition 5.9.3.2 We assume that there exists a predictable kernel λ̂t(dx)
such that

dt a.s., λ̂t(f) =
∫
λ̂t(dx)f(x) .

Assume furthermore that dt × dP a.s. the measure λ̂t(dx) is absolutely
continuous with respect to λt(dx):

λ̂t(dx) = ρ(t, x)λt(dx) .

Then, if X is an F-martingale, there exists a F(L)-martingale X̂ such that

Xt = X̂t +
∫ t

0

ρ(s, L)d〈X,B〉s .

Sketch of the proof: Let X be an F-martingale, f a given bounded Borel
function and Ft = E(f(L)|Ft). From the hypothesis

Ft = E(f(L)) +
∫ t

0

λ̂s(f)dBs

= E(f(L)) +
∫ t

0

(∫
ρ(s, x)λs(dx)f(x)

)

dBs .

Then, for As ∈ Fs, s < t:

E(1Asf(L)(Xt −Xs)) = E(1As(FtXt − FsXs)) = E(1As(〈F,X〉t − 〈F,X〉s))

= E

(

1As

∫ t

s

d〈X,B〉u λ̂u(f)
)

= E

(

1As

∫ t

s

d〈X,B〉u
∫
λu(dx)f(x)ρ(u, x)

)

.

Therefore, Vt =
∫ t
0
ρ(u, L) d〈X,B〉u satisfies

E(1Asf(L)(Xt −Xs)) = E(1Asf(L)(Vt − Vs)) .
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It follows that, for any Gs ∈ F (L)
s ,

E(1Gs(Xt −Xs)) = E(1Gs(Vt − Vs)) ,

hence, (Xt − Vt, t ≥ 0) is an F(L)-martingale. �

Let us write the result of Proposition 5.9.3.2 in terms of Jacod’s criterion.
If λt(dx) = pt(x)ν(dx), then

λt(f) =
∫
pt(x)f(x)ν(dx) .

Hence,

d〈λ·(f), B〉t = λ̂t(f)dt =
∫
dxf(x) dt〈p·(x), B〉t

and

λ̂t(dx) = dt〈p·(x), B〉t =
dt〈p·(x), B〉t

pt(x)
pt(x)dx

therefore,

λ̂t(dx)dt =
dt〈p·(x), B〉t

pt(x)
λt(dx) .

In the case where λt(dx) = Φ(t, x)dx, with Φ > 0, it is possible to find ψ
such that

Φ(t, x) = Φ(0, x) exp
(∫ t

0

ψ(s, x)dBs −
1
2

∫ t

0

ψ2(s, x)ds
)

and it follows that λ̂t(dx) = ψ(t, x)λt(dx). Then, if X is an F-martingale of
the form Xt = x +

∫ t
0
xsdBs, the process (Xt −

∫ t
0
ds xs ψ(s, L), t ≥ 0) is an

F(L)-martingale.

Example 5.9.3.3 We now give some examples taken from Mansuy and Yor
[622] in a Brownian set-up for which we use the preceding. Here, B is a
standard Brownian motion.

� Enlargement with B1. We compare the results obtained in Subsection
5.9.2 and the method presented in Subsection 5.9.3. Let L = B1. From the
Markov property

E(g(B1)|Ft) = E(g(B1 −Bt +Bt)|Ft) = Fg(Bt, 1 − t)

where Fg(y, 1 − t) =
∫
g(x)p1−t(y, x)dx and ps(y, x) = 1√

2πs
exp
(
− (x−y)2

2s

)
.

It follows that λt(dx) = 1√
2π(1−t)

exp
(
− (x−Bt)

2

2(1−t)

)
dx. Then



322 5 Complements on Continuous Path Processes

λt(dx) = pxt P(B1 ∈ dx)

with

pxt =
1

√
(1 − t)

exp
(

− (x−Bt)2

2(1 − t)
+
x2

2

)

.

From Itô’s formula,

dpxt = pxt
x−Bt

1 − t
dBt .

It follows that d〈px, B〉t = pxt
x−Bt

1−t dt, hence

Bt = B̃t +
∫ t

0

x−Bs

1 − s
ds .

Note that, in the notation of Proposition 5.9.3.2, one has

λ̂t(dx) =
x−Bt

1 − t

1
√

2π(1 − t)
exp
(

− (x−Bt)2

2(1 − t)

)

dx .

� Enlargement with MB = sups≤1Bs. From Exercise 3.1.6.7,

E(f(MB)|Ft) = F (1 − t, Bt,M
B
t )

where MB
t = sups≤tBs with

F (s, a, b) =

√
2
πs

(

f(b)
∫ b−a

0

e−u2/(2s)du+
∫ ∞

b

f(u)e−(u−a)2/(2s)du

)

and

λt(dy) =

√
2

π(1 − t)

{

δy(MB
t )
∫ MB

t −Bt

0

exp
(

− u2

2(1 − t)

)

du

+ 1{y>MB
t } exp

(

− (y −Bt)2

2(1 − t)

)

dy

}

.

Hence, by differentiation w.r.t. x(= Bt), i.e., more precisely, by applying Itô’s
formula

λ̂t(dy) =

√
2

π(1 − t)

{

δy(MB
t ) exp

(

− (MB
t −Bt)2

2(1 − t)

)

+ 1{y>MB
t }
y −Bt

1 − t
exp
(

− (y −Bt)2

2(1 − t)

)}

.

It follows that
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ρ(t, x) = 1{x>MB
t }
x−Bt

1 − t
+ 1{MB

t =x}
1√

1 − t

Φ′

Φ

(
x−Bt√

1 − t

)

with Φ(x) =
√

2
π

∫ x
0
e−

u2
2 du.

More examples can be found in Jeulin [493] and Mansuy and Yor [622].
Matsumoto and Yor [629] consider the case where L =

∫∞
0
ds exp(2(Bs−νs)).

See also Baudoin [61].

Exercise 5.9.3.4 Assume that the hypotheses of Proposition 5.9.3.1 hold
and that 1/p∞(·, L) is integrable with expectation 1/c. Prove that under the
probability R defined as

dR|F∞ = c/p∞(·, L)dP|F∞

the r.v. L is independent of F∞. This fact plays an important rôle in Grorud
and Pontier [411]. �

5.9.4 Progressive Enlargement

We now consider a different case of enlargement, more precisely the case where
τ is a finite random time, i.e., a finite non-negative random variable, and we
denote

Fτ
t = ∩ε>0 {Ft+ε ∨ σ(τ ∧ (t+ ε))} .

Proposition 5.9.4.1 For any Fτ -predictable process H, there exists an F-
predictable process h such that Ht1{t≤τ} = ht1{t≤τ}. Under the condition
∀t,P(τ ≤ t|Ft) < 1, the process (ht, t ≥ 0) is unique.

Proof: We refer to Dellacherie [245] and Dellacherie et al. [241], page 186.
The process h may be recovered as the ratio of the F-predictable projections
of Ht1{t<τ} and 1{t<τ}:

ht =
E(Ht1{t<τ}|Ft)

P(t < τ |Ft)
. �

Immersion Setting

Let us first investigate the case where the (H) hypothesis holds.

Lemma 5.9.4.2 In the progressive enlargement setting, (H) holds between F
and Fτ if and only if one of the following equivalent conditions holds:

(i) ∀(t, s), s ≤ t, P(τ ≤ s|F∞) = P(τ ≤ s|Ft),
(ii) ∀t, P(τ ≤ t|F∞) = P(τ ≤ t|Ft).

(5.9.1)
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Proof: If (ii) holds, then (i) holds too. If (i) holds, F∞ and σ(t ∧ τ) are
conditionally independent given Ft. The property follows. This result can
also be found in Dellacherie and Meyer [243]. �

Note that, if (H) holds, then (ii) implies that the process P(τ ≤ t|Ft) is
decreasing.

Example: assume that F ⊂ G where (H) holds for F and G. Let τ be a
G-stopping time. Then, (H) holds for F and Fτ .

General Setting

We denote by Zτ the F-super-martingale P(τ > t|Ft), also called the Azéma
supermartingale (introduced in [35]). We assume in what follows

(A) The random time τ avoids the F-stopping times, i.e., P(τ = ϑ) = 0 for
any F-stopping time ϑ.

Under (A), the F-dual predictable projection of the process Dt : = 1τ≤t,
denoted Aτ , is continuous. Indeed, if ϑ is a jump time of Aτ , it is predictable,
and

E(Aτ
ϑ −Aτ

ϑ−) = E(1τ=ϑ) = 0 ;

the continuity of Aτ follows.

Proposition 5.9.4.3 The canonical decomposition of the semi-martingale
Zτ is

Zτ
t = E(Aτ

∞|Ft) −Aτ
t = μτt −Aτ

t

where μτt : = E(Aτ
∞|Ft).

Proof: From the definition of the dual predictable projection, for any
predictable process H, one has

E(Hτ ) = E

(∫ ∞

0

HudA
τ
u

)

.

Let t be fixed and Ft ∈ Ft. Then, the process Hu = Ft1{t<u}, u ≥ 0 is
F-predictable. Then

E(Ft1{t<τ}) = E(Ft(Aτ
∞ −Aτ

t )) .

It follows that E(Aτ
∞|Ft) = Zτ

t +Aτ
t . �

Comment 5.9.4.4 It can be proved that the martingale

μτt : = E(Aτ
∞|Ft) = Aτ

t + Zτ
t

is BMO (see Definition 1.2.3.9).
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It is proved in Yor [860] that if X is an F-martingale then the processes
Xt∧τ and Xt(1−Dt) are Fτ semi-martingales. Furthermore, the decomposi-
tions of the F-martingales in the filtration Fτ are known up to time τ (Jeulin
and Yor [495]).

Proposition 5.9.4.5 Every F-martingale M stopped at time τ is an Fτ -
semi-martingale with canonical decomposition

Mt∧τ = M̃t +
∫ t∧τ

0

d〈M,μτ 〉s
Zτ
s−

,

where M̃ is an Fτ -local martingale. The process

1{τ≤t} −
∫ t∧τ

0

1
Zτ
s−
dAτ

s

is an Fτ -martingale.

Proof: Let H be an Fτ -predictable process. There exists an F-predictable
process h such that Ht1{t≤τ} = ht1{t≤τ}, hence, if M is an F-martingale, for
s < t,

E(Hs(Mt∧τ −Ms∧τ )) = E(Hs1{s<τ}(Mt∧τ −Ms∧τ ))
= E(hs1{s<τ}(Mt∧τ −Ms∧τ ))

= E
(
hs(1{s<τ≤t}(Mτ −Ms) + 1{t<τ}(Mt −Ms))

)

From the definition of Z,

E
(
hs1{s<τ≤t}Mτ

)
= −E

(

hs

∫ t

s

MudZu

)

and, noting that
∫ t

s

MudZu −MsZs + ZtMt =
∫ t

s

ZudMu + 〈M,Z〉t − 〈M,Z〉s

we get, from the martingale property of M

E(Hs(Mt∧τ −Ms∧τ )) = E(hs(〈M,μτ 〉t − 〈M,μτ 〉s))

= E

(

hs

∫ t

s

d〈M,μτ 〉u
Zτ
u−

Zτ
u−

)

= E

(

hs

∫ t

s

d〈M,μτ 〉u
Zτ
u−

E(1{u<τ}|Fu)
)

= E

(

hs

∫ t

s

d〈M,μτ 〉u
Zτ
u−

1{u<τ}

)

= E

(

hs

∫ t∧τ

s∧τ

d〈M,μτ 〉u
Zτ
u−

)

.

The result follows. �
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Pseudo-stopping Times

As we have mentioned, if (H) holds, the process (Zτ
t , t ≥ 0) is a decreasing

process. The converse is not true. The decreasing property of Zτ is closely
related with the definition of pseudo-stopping times, a notion developed from
D. Williams example (see Example 5.9.4.8 below).

Definition 5.9.4.6 A random time τ is a pseudo-stopping time if, for any
bounded F-martingale M , E(Mτ ) = M0 .

Proposition 5.9.4.7 The random time τ is a pseudo-stopping time if and
only if one of the following equivalent properties holds:

• For any local F-martingale m, the process (mt∧τ , t ≥ 0) is a local Fτ -
martingale,

• Aτ
∞ = 1,

• μτt = 1, ∀t ≥ 0,
• The process Zτ is a decreasing F-predictable process.

Proof: We refer to Nikeghbali and Yor [675]. �

Example 5.9.4.8 The first example of a pseudo-stopping time was given by
Williams [844]. Let B be a Brownian motion and define the stopping time
T1 = inf{t : Bt = 1} and the random time θ = sup{t < T1 : Bt = 0}. Set

τ = sup{s < θ : Bs = MB
s }

where MB
s is the running maximum of the Brownian motion. Then, τ is

a pseudo-stopping time. Note that E(Bτ ) is not equal to 0; this illustrates
the fact we cannot take any martingale in Definition 5.9.4.6. The martingale
(Bt∧T1 , t ≥ 0) is neither bounded, nor uniformly integrable. In fact, since the
maximum MB

θ (=Bτ ) is uniformly distributed on [0, 1], one has E(Bτ ) = 1/2.

Honest Times

For a general random time τ , it is not true that F-martingales are Fτ -semi-
martingales. Here is an example: due to the separability of the Brownian
filtration, there exists a bounded random variable τ such that F∞ = σ(τ).
Hence, Fτ

τ+t = F∞,∀t so that the Fτ -martingales are constant after τ .
Consequently, F-martingales are not Fτ -semi-martingales.

On the other hand, there exists an interesting class of random times τ such
that F-martingales are Fτ -semi-martingales.

Definition 5.9.4.9 A random time is honest if it is the end of a predictable
set, i.e., τ(ω) = sup{t : (t, ω) ∈ Γ}, where Γ is an F-predictable set.
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In particular, an honest time is F∞-measurable. If X is a transient diffusion,
the last passage time Λa (see Proposition 5.6.2.1) is honest. Jeulin [493]
established that an F∞-measurable random time is honest if and only if it
is equal, on {τ < t}, to an Ft-measurable random variable.

A key point in the proof of the next Proposition 5.9.4.10 is the following
description of Fτ -predictable processes: if τ , an F∞-measurable random time,
is honest, and if H is an Fτ -predictable process, then there exist two F-
predictable processes h and h̃ such that

Ht = ht1{τ>t} + h̃t1{τ≤t} .

(See Jeulin [493] for a proof.)

Proposition 5.9.4.10 Let τ be honest. Then, if X is an F-local martingale,
there exists an Fτ -local martingale X̃ such that

Xt = X̃t +
∫ t∧τ

0

d〈X,μτ 〉s
Zτ
s−

−
∫ τ∨t

τ

d〈X,μτ 〉s
1 − Zτ

s−
.

Proof: Let M be an F-martingale which belongs to H1 and Gs ∈ Fτ
s . We

define a Gτ predictable process H as Hu = 1Gs1]s,t](u). For s < t, one has,
using the decomposition of Gτ predictable processes:

E(1Gs(Mt −Ms)) = E

(∫ ∞

0

HudMu

)

= E

(∫ τ

0

hudMu

)

+ E

(∫ ∞

τ

h̃udMu

)

.

Noting that
∫ t
0
h̃udMu is a martingale yields E

(∫∞
0
h̃udMu

)
= 0,

E(1Gs(Mt −Ms)) = E

(∫ τ

0

(hu − h̃u)dMu

)

= E

(∫ ∞

0

dAτ
v

∫ v

0

(hu − h̃u)dMu

)

.

By integration by parts, with Nt =
∫ t
0
(hu − h̃u)dMu, we get

E(1Gs(Mt −Ms)) = E(N∞A
τ
∞) = E

(∫ ∞

0

(hu − h̃u)d〈M,μτ 〉u
)

.

Now, it remains to note that
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E

(∫ ∞

0

Hu

(
d〈M,μτ 〉u
Zu−

1{u≤τ} −
d〈M,μτ 〉u
1 − Zu−

1{u>τ}

))

= E

(∫ ∞

0

(

hu
d〈M,μτ 〉u
Zu−

1{u≤τ} − h̃u
d〈M,μτ 〉u
1 − Zu−

1{u>τ}

))

= E

(∫ ∞

0

(
hud〈M,μτ 〉u − h̃ud〈M,μτ 〉u

))

= E

(∫ ∞

0

(
hu − h̃u

)
d〈M,μτ 〉u

)

to conclude the result in the case M ∈ H1. The general result follows by
localization. �

Example 5.9.4.11 Let W be a Brownian motion, and τ = g1, the last time
when the BM reaches 0 before time 1, i.e., τ = sup{t ≤ 1 : Wt = 0}. Using the
computation of Zg1 in Subsection 5.6.4 and Proposition 5.9.4.10, we obtain
the decomposition of the Brownian motion in the enlarged filtration

Wt = W̃t −
∫ t

0

1[0,τ ](s)
Φ′

1 − Φ

(
|Ws|√
1 − s

)
sgn(Ws)√

1 − s
ds

+ 1{τ≤t} sgn(W1)
∫ t

τ

Φ′

Φ

(
|Ws|√
1 − s

)

ds

where Φ(x) =
√

2
π

∫ x
0

exp(−u2/2)du.

Comments 5.9.4.12 (a) The (H) hypothesis was studied by Brémaud and
Yor [126] and Mazziotto and Szpirglas [632], and in a financial setting by
Kusuoka [552], Elliott et al. [315] and Jeanblanc and Rutkowski [486, 487].

(b) An incomplete list of authors concerned with enlargement of filtration
in finance for insider trading is: Amendinger [12], Amendinger et al. [13],
Baudoin [61], Corcuera et al. [194], Eyraud-Loisel [338], Florens and Fougère
[347], Gasbarra et al. [374], Grorud and Pontier [410], Hillairet [436], Imkeller
[457], Imkeller et al. [458], Karatzas and Pikovsky [512], Kohatsu-Higa [532,
533] and Kohatsu-Higa and Øksendal [534].

(c) Enlargement theory is also used to study asymmetric information, see
e. g. Föllmer et al. [353] and progressive enlargement is an important tool for
the study of default in the reduced form approach by Bielecki et al. [91, 92, 93],
Elliott et al.[315] and Kusuoka [552] (see � Chapter 7).

(d) See also the papers of Ankirchner et al. [19] and Yoeurp [858].
(e) Note that the random time τ presented in Subsection 5.6.5 is not the

end of a predictable set, hence, is not honest. However, F-martingales are
semi-martingales in the progressive enlarged filtration: it suffices to note that
F-martingales are semi-martingales in the filtration initially enlarged withW1.
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5.10 Filtering the Information

A priori, one might think somewhat näıvely that the drift term in the
historical dynamics of the asset plays no rôle in contingent claims valuation.
Nevertheless, working in the filtration generated by the asset shows the
importance of this parameter. We present here some results, linked with
filtering theory. However, we do not present the theory in detail, and the
reader can refer to Lipster and Shiryaev [598] and Brémaud [124] for processes
with jumps.

5.10.1 Independent Drift

Suppose that dB(Y )
t = Y dt+dBt, B

(Y )
0 = 0 where Y is some r.v. independent

of B and with law ν. The following proposition describes the distribution
of B(Y ).

Proposition 5.10.1.1 The law of B(Y ) is Whν defined as

Whν |Ft = hν(Xt, t)W|Ft .

Here, hν(x, t) =
∫
ν(dy) exp(yx− y2

2 t).

Proof: Let F be a functional on C([0, t],R). Using the independence between
Y and B, and the Cameron-Martin theorem, we get

E[F (B(Y )
s , s ≤ t)] = E[F (sY +Bs, s ≤ t)] =

∫
ν(dy)E[F (sy +Bs, s ≤ t)]

=
∫
ν(dy)E

[

F (Bs, s ≤ t) exp
(

yBt −
y2

2
t

)]

= E[F (Bs; s ≤ t)hν(Bt, t)] .

�

We now give the canonical decomposition of B(Y ) in its own filtration. Let
Whν |Ft = hν(Xt, t)W|Ft = Lt W|Ft . Therefore, the bracket 〈X,L〉t is equal
to
∫ t
0
∂xhν(Xs, s) ds, and, from Girsanov’s theorem,

βt = Xt −
∫ t

0

ds
∂xhν
hν

(Xs, s)

is a Whν -martingale, more precisely a Whν -Brownian motion and

Xt = βt +
∫ t

0

ds
∂xhν
hν

(Xs, s) .

The canonical decomposition of B(Y ) is



330 5 Complements on Continuous Path Processes

B
(Y )
t = γt +

∫ t

0

ds
∂xhν
hν

(B(Y )
s , s) .

where γ is a BM with respect to the natural filtration of B(Y ).

The next proposition describes the conditional law of Y , given B(Y ).

Proposition 5.10.1.2 If f : R → R
+ is a Borel function, then

πt(f) : = E(f(Y )|B(Y )
s , s ≤ t) =

h(f ·ν)(B
(Y )
t , t)

hν(B
(Y )
t , t)

where h(f ·ν)(x, t) =
∫
ν(dy)f(y) exp(yx− y2

2 t) and

πt(f) = 1 +
∫ t

0

(

∂x
h(f ·ν)

hν

)

(B(Y )
s , s)dγs .

Proof: On the one hand

E(f(Y )F (B(Y )
s , s ≤ t) = E(F (Bs, s ≤ t)h(f ·ν)(Bt, t)) . (5.10.1)

On the other hand, if

Φ(B(Y )
s , s ≤ t) = E(f(Y )|B(Y )

s , s ≤ t) ,

the left-hand side of (5.10.1) is equal to

E

(
Φ(B(Y )

s , s ≤ t)F (B(Y )
s , s ≤ t)

)
= E (Φ(Bs, s ≤ t)F (Bs, s ≤ t)hν(Bt, t)) .

(5.10.2)
It follows that

πt(f) = Φ(B(Y )
s , s ≤ t) =

h(f ·ν)(B
(Y )
t , t)

hν(B
(Y )
t , t)

.

The expression of πt(f) as a stochastic integral follows directly from this
expression of πt(f) (and the martingale property of πt(f)). �

5.10.2 Other Examples of Canonical Decomposition

The above result can be generalized to the case where

dXt = dWt + (f(t)W̃t + h(t)Xt)dt

where W̃ is independent of W . In that case, studied by Föllmer et al. [353],
the canonical decomposition of X is
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Xt = βt +
∫ t

0

(f(u)ku(Xv; v ≤ u) + h(u)Xu) du

where

ku(Xs; s ≤ u) =
1

Ψ ′(u)

∫ u

0

Ψ(v) (f(v)dXv − f(v)h(v)Xvdv)

with Ψ the fundamental solution of the Sturm-Liouville equation

Ψ ′′(t) = f2(t)Ψ(t)

with boundary conditions Ψ(0) = 0, Ψ ′(0) = 1.

5.10.3 Innovation Process

The following formula plays an important rôle in filtering theory and will be
illustrated below.

Proposition 5.10.3.1 Let dXt = Ytdt + dWt, where W is an F-Brownian
motion and Y an F-adapted process. Define Ŷt = E(Yt|FX

t ), the optional
projection of Y on FX . Then, the process

Zt : = Xt −
∫ t

0

Ŷsds

is an FX-Brownian motion, called the innovation process.

Proof: Note that, for t > s,

E(Zt|FX
s ) = E(Xt|FX

s ) − E

(∫ t

0

Ŷudu|FX
s

)

= E(Wt|FX
s ) + E

(∫ t

0

Yudu|FX
s

)

−
∫ s

0

Ŷudu− E

(∫ t

s

Ŷudu|FX
s

)

.

From the inclusion FX
t ⊂ Ft and the fact that W is an F-martingale, we

obtain E(Wt|FX
s ) = E(Ws|FX

s ). Therefore, by using
∫ t

s

E(Yu|FX
s )du =

∫ t

s

E(Ŷu|FX
s )du

we obtain

E(Zt|FX
s ) = E(Ws|FX

s ) + E

(∫ t

0

Yudu|FX
s

)

−
∫ s

0

Ŷudu− E

(∫ t

s

Ŷudu|FX
s

)

= E(Xs|FX
s ) +

∫ t

s

E(Yu|FX
s )du−

∫ s

0

Ŷudu− E

(∫ t

s

Ŷudu|FX
s

)

= Xs +
∫ t

s

E(Ŷu|FX
s )du−

∫ s

0

Ŷudu− E

(∫ t

s

Ŷudu|FX
s

)

= Xs −
∫ s

0

Ŷudu .

�
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Proposition 5.10.3.1 is in fact a particular case of the more general result
that follows, which is of interest if Z is not F-adapted.

Proposition 5.10.3.2 Let Z be a measurable process such that E(
∫ t
0
|Zu|du)

is finite for every t. Then, E(
∫ t
0
Zudu|Ft) is an F-semi-martingale which

decomposes as Mt +
∫ t
0
duE(Zu|Fu), where M is a martingale.

Proof: We leave the proof to the reader. �

Example 5.10.3.3 As an example, take Zu = B1,∀u, with B a Brownian
motion. Then

E

(∫ t

0

duB1|Ft

)

= tBt = Mt +
∫ t

0

duBu .

Comment 5.10.3.4 The paper of Pham and Quenez [711] and the paper
of Lefebvre et al. [574] study the problem of optimal consumption under
partial observation, by means of filtering theory. See also Nakagawa [665]
for an application to default risk.
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A Special Family of Diffusions:
Bessel Processes

Bessel processes are intensively used in finance, to model the dynamics of asset
prices, of the spot rate and of the stochastic volatility, or as a computational
tool. In particular, computations for the celebrated Cox-Ingersoll-Ross (CIR)
and Constant Elasticity Variance (CEV) models can be carried out using
Bessel processes.

We present here some main facts about Bessel, CIR, and CEV processes in
the spirit of the survey in Göing-Jaeschke and Yor [398], and we apply these
facts to Asian options; more generally, applications to finance can be found
in, among others, Aquilina and Rogers [22], Chen and Scott [164], Dassios
and Nagaradjasarma [214], Deelstra and Parker [229], Delbaen [230], Davydov
and Linetsky [225], Delbaen and Shirakawa [238], Dufresne [279], Duffie and
Singleton [275], Grasselli [402], Heath and Platen [428], Leblanc [571, 572],
Linetsky [594], Shirakawa [790] and in Szatzschneider [816, 817].

6.1 Definitions and First Properties

6.1.1 The Euclidean Norm of the n-Dimensional Brownian Motion

Let β = (β1, β2, . . . , βn) be an n-dimensional BM where n ∈ N and define
the process R as Rt = ||βt||, i.e., R2

t =
∑n

i=1(βi)
2(t). Itô’s formula leads to

dR2
t =

∑n
i=1 2βi(t)dβi(t) + ndt.

Note that for any t > 0, P(Rt = 0) = 0, hence the process W defined as

dWt =
1
Rt

n∑

i=1

βi(t)dβi(t)

is a real-valued Brownian motion (see Exercise 1.5.3.5) and the process R
satisfies

d(R2
t ) = 2RtdWt + ndt .

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 6,
c© Springer-Verlag London Limited 2009
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Hence, setting ρt = R2
t

dρt = 2
√
ρtdWt + ndt ,

and, using Itô’s formula, which may be easily justified for n > 1, one obtains

dRt = dWt +
n− 1

2
dt

Rt
. (6.1.1)

The case n = 1 requires more care: if B is a one dimensional Brownian motion,
then Tanaka’s formula (4.1.8) asserts that |Bt| =

∫ t
0

sgn(Bs)dBs + L0
t , i.e.,

dRt = dβt + dL0
t , which is the analog of equation (6.1.1).

We shall say that R is a Bessel process (BES) of dimension n, and ρ
is a squared Bessel process (BESQ) of dimension n. The reason for the
Bessel terminology is that many quantities involving Bessel processes may
be expressed in terms of Bessel functions.

Exercise 6.1.1.1 Develop (ε+B2
t )

1/2 using Itô’s formula. Letting ε go to 0,
prove that |Bt| = Wt +L0

t , where L0 is the local time at 0 of B. Prove (6.1.1)
using the same method for n > 1.
Hint:

(ε+B2
t )

1/2 = ε1/2 +
1
2

∫ t

0

2Bs
dBs√
ε+B2

s

+
ε

2

∫ t

0

ds

(ε+B2
s )3/2

.

�

6.1.2 General Definitions

Let W be a real-valued Brownian motion. Using the elementary inequality
|
√
x−√

y| ≤
√

|x− y|, for x, y ≥ 0, the existence Theorem 1.5.5.1 proves that
for every δ ≥ 0, not necessarily an integer, and x ≥ 0, the equation

dρt = δ dt+ 2
√
|ρt| dWt, ρ0 = x (6.1.2)

admits a unique strong solution. The solution is called the squared Bessel
process of dimension δ, in short BESQδ. In the particular case when x = 0 and
δ = 0, the obvious solution ρ ≡ 0 is the unique solution. From the comparison
Theorem 1.5.5.9, if 0 ≤ δ ≤ δ′ and if ρ and ρ′ are squared Bessel processes
with dimensions δ and δ′ starting at the same point, then 0 ≤ ρt ≤ ρ′t a.s..
Therefore, ρ satisfies ρt ≥ 0 for all t and a posteriori the absolute value under
the square root in (6.1.2) is not needed.

Definition 6.1.2.1 (BESQδ) For every δ ≥ 0 and x ≥ 0, the unique strong
solution to the equation

ρt = x+ δt+ 2
∫ t

0

√
ρs dWs, ρt ≥ 0

is called a squared Bessel process with dimension δ, starting at x and is
denoted by BESQδ

x.
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In particular, this process is a diffusion, and so is any positive power of this
process.

Definition 6.1.2.2 (BESδ) Let ρ be a BESQδ
x. The process R =

√
ρ is called

a Bessel process of dimension δ, starting at r =
√
x and is denoted BESδ

r.
We also parametrize the family of Bessel processes with the index ν given by
ν = (δ/2) − 1 instead of the dimension δ. We shall write BES(ν)instead of
BESδ.

It follows from the note after the previous definition that BESδ is a diffusion.

• For δ > 1, the BESδr is the solution of

Rt = r +Wt +
δ − 1

2

∫ t

0

1
Rs

ds . (6.1.3)

In terms of the index, the BES(ν)process is the solution of

Rt = r +Wt +
(

ν +
1
2

)∫ t

0

1
Rs

ds .

• For δ < 1, the integral
∫ t

0

ds

Rs
does not converge and

Rt = r +Wt +
δ − 1

2
p.v.

∫ t

0

1
Rs

ds ,

where the principal value is defined as

p.v.
∫ t

0

1
Rs

ds =
∫ ∞

0

xδ−2(!xt − !0t )dx

and the family of diffusion local times is defined via the occupation time
formula and the speed measure (see Section 5.5):

∫ t

0

φ(Rs)ds =
∫ ∞

0

φ(x)!xt x
δ−1dx .

For a study of principal values, see Chapter 10 in Yor [868].

• For δ = 1
Rt = r +Wt +

1
2
L0
t (R) ,

where L0(R) is the local time of R at level 0.

We use the superscript (ν) for the index ν, whereas there is no bracket in
the superscript when we refer to the dimension δ. Important particular cases
are ν = 1/2 which corresponds to δ = 3, ν = 0 which corresponds to δ = 2
and ν = −1

2 which corresponds to δ = 1 (reflected BM).
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We now present scale functions of the Bessel processes as diffusions.

Definition 6.1.2.3 Let B be a one-dimensional Brownian motion. A process
with the same law as |B| is called a reflected Brownian motion.

Proposition 6.1.2.4 Let ρ be a squared Bessel process with dimension δ. A
scale function is

− x1−(δ/2) for δ > 2; lnx for δ = 2; x1−(δ/2) for δ < 2 .

Let R be a Bessel process with dimension δ. A scale function is

− x2−δ for δ > 2; lnx for δ = 2; x2−δ for δ < 2 .

Proof: The result can be checked from an application of Itô’s lemma. �

Warning 6.1.2.5 A blind application of the result “the scale function of a
Bessel process with dimension 1 is s(x) = x” would lead to the false conclusion
that |W | is a local martingale.

Example 6.1.2.6 Strict Local Martingale. Here, we give an example
of a local martingale which is not a martingale, i.e., a strict local mar-
tingale. Let M be a continuous martingale such that M0 = 1 and define
T0 = inf {t : Mt = 0} . We assume that P (T0 <∞) = 1. We introduce the
probability measure Q as Q|Ft = Mt∧T0P|Ft . It follows that

Q (T0 < t) = EP (1T0<tMt∧T0) = 0 , (6.1.4)

i.e., Q (T0 = ∞) = 1. The process X defined by (Xt = M−1
t , t ≥ 0) is a Q-

local martingale and is positive. It is not a martingale: indeed its expectation
is not constant

EQ (Xt) = EP

(
Mt∧T0

Mt

)

= P (t < T0) = 1 = X0 .

From Girsanov’s theorem, the process M̃t = Mt −
∫ t

0

d 〈M〉s
Ms

is a Q-local

martingale. In the case Mt = Bt, we get

Bt = βt +
∫ t

0

ds

Bs

where β is a Q-Brownian motion. Hence, the process B is a Q-Bessel process
of dimension 3. See Wong and Heyde [848], Elworthy et al. [319], Kotani
[539], Kotani and Sin [799] and Watanabe [837] for comments on strict local
martingales.
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6.1.3 Path Properties

Proposition 6.1.3.1 Let ρ be a δ-dimensional squared Bessel process. For
δ = 0, the point 0 is absorbing (the process remains at 0 as soon as it reaches
it). For 0 < δ < 2, the BESQδis reflected instantaneously.

Proof: In the case δ = 0, the point 0 is reached a.s.. It is obvious that the
point is absorbing. In the case 0 < δ < 2, the process ρ is a semi-martingale.
The occupation time formula leads to

t ≥
∫ t

0

1{ρs>0}ds =
∫ t

0

1{ρs>0}(4ρs)−1d〈ρ〉s

=
∫ ∞

0

(4a)−1La
t (ρ)da .

Hence, the local time at 0 is identically equal to 0 (otherwise, the integral on
the right-hand side is not convergent). From the study of the local time and
the fact that L0−

t (ρ) = 0, we obtain

L0
t (ρ) = 2δ

∫ t

0

1{ρs=0}ds .

Therefore, the time spent by ρ in 0 has zero Lebesgue measure. �

• Bessel process with dimension δ > 2: It follows from the properties
of the scale function that: for δ > 2, the BESQδ

x will never reach 0 and is
a transient process (ρt goes to infinity as t goes to infinity),
Px(Rt > 0, ∀t > 0) = 1,
Px(Rt → ∞, t→ ∞) = 1.

• Bessel process with dimension δ = 2: The BES2
x will never reach 0:

Px(Rt > 0, ∀t > 0) = 1,
Px(suptRt = ∞, inftRt = 0) = 1.

• Bessel process with dimension 0 < δ < 2: It follows from the
properties of the scale function that for 0 ≤ δ < 2 the process R reaches 0
in finite time and that the point 0 is an entrance boundary (see Definition
5.3.3.1). One has, for a > 0, P( Rt > 0, ∀t > a) = 0.

6.1.4 Infinitesimal Generator

Bessel Processes

A Bessel process R with index ν ≥ 0 (i.e., with dimension δ = 2(ν+1) ≥ 2) is
a diffusion process which takes values in R

+ and has infinitesimal generator

A =
1
2
d2

dx2
+

2ν + 1
2x

d

dx
=

1
2
d2

dx2
+
δ − 1
2x

d

dx
,
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i.e., for any f ∈ C2(]0,∞[), and R0 = r > 0 the process

f(Rt) −
∫ t

0

Af(Rs)ds, t ≥ 0

is a local martingale. In particular, if R is a BES(ν), the process 1/(Rt)2ν is
a local martingale. Hence the scale function is s(x) = −x−2ν for ν ≥ 0. For
δ > 1, a BESδ

r satisfies Er

(∫ t
0
ds(Rs)−1

)
<∞, for every r ≥ 0.

The BES1 is a reflected Brownian motion Rt = |βt| = Wt + Lt where W
and β are Brownian motions and L is the local time at 0 of Brownian motion β.

Squared Bessel Processes

The infinitesimal generator of the squared Bessel process ρ is

A = 2x
d2

dx2
+ δ

d

dx

hence, for any f ∈ C2(]0,∞[), the process

f(ρt) −
∫ t

0

Af(ρs)ds

is a local martingale.

Proposition 6.1.4.1 (Scaling Properties.) If (ρt, t ≥ 0) is a BESQδ
x, then

(1
cρct, t ≥ 0) is a BESQδ

x/c.

Proof: From

ρt = x+ 2
∫ t

0

√
ρs dWs + δ t ,

we deduce that

1
c
ρct =

x

c
+

2
c

∫ ct

0

√
ρs dWs +

δ

c
ct =

x

c
+ 2
∫ ct

0

(ρs
c

)1/2 1√
c
dWs + δt .

Setting ut =
1
c
ρct, we obtain using a simple change of variable

ut =
x

c
+ 2
∫ t

0

√
us dW̃s + δ t

where (W̃t = 1√
c
Wtc, t ≥ 0) is a Brownian motion. �
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δ = 2(1 + ν)

δ = 2 0 is polar ln R is a strict R is a semi-martingale
local-martingale

δ > 2 0 is polar R−2ν is a strict R is a semi-martingale
local-martingale

2 > δ > 1 R reflects at 0 R−2ν is a R is a semi-martingale
sub-martingale

δ = 1 R reflects at 0 R is a R is a semi-martingale
sub-martingale

1 > δ > 0 R reflects at 0 R−2ν is a R is not a semi-martingale
sub-martingale

δ = 0 0 is absorbing R2 is a martingale R is a semi-martingale

Fig. 6.1 Bessel processes

Comment 6.1.4.2 Delbaen and Schachermayer [237] allow general admis-
sible integrands as trading strategies, and prove that the three-dimensional
Bessel process admits arbitrage possibilities. Pal and Protter [692], Yen and
Yor [856] establish pathological behavior of asset price processes modelled by
continuous strict local martingales, in particular the reciprocal of a three-
dimensional Bessel process under a risk-neutral measure.

6.1.5 Absolute Continuity

On the canonical space Ω = C(R+,R+), we denote by R the canonical map
Rt(ω) = ω(t), by Rt = σ(Rs, s ≤ t) the canonical filtration and by P

(ν)
r (resp.

P
δ
r) the law of the Bessel process of index ν (resp. of dimension δ), starting at
r, i.e., such that P

(ν)
r (R0 = r) = 1. The law of BESQδ starting at x on the

canonical space C(R+,R+) is denoted by Q
δ
x.
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Proposition 6.1.5.1 The following absolute continuity relation between the
laws of a BES(ν)(with ν ≥ 0) and a BES(0) holds

P
(ν)
r |Rt =

(
Rt

r

)ν

exp
(

−ν
2

2

∫ t

0

ds

R2
s

)

P
(0)
r |Rt . (6.1.5)

Proof: Under P
(0), the canonical process R which is a Bessel process with

dimension 2, satisfies

dRt = dWt +
1

2Rt
dt .

Itô’s formula applied to the process

Dt =
(
Rt

r

)ν

exp
(

−ν
2

2

∫ t

0

ds

R2
s

)

leads to
dDt = νDt(Rt)−1dWt ,

therefore, the process D is a local martingale. We prove now that it is a
martingale.

Obviously, supt≤T Dt ≤ supt≤T (Rt/r)ν . The processR2 is a squared Bessel
process of dimension 2, and is equal in law to B2 + B̃2 where B and B̃ are
independent BMs. It follows that Rk

t is integrable for k ≥ 2. The process R
is a submartingale as a sum of a martingale and an increasing process, and
Doob’s inequality (1.2.1) implies that

E

[(

sup
t≤T

Rt

)k
]

≤ CkE[Rk
T ].

Hence, the process D is a martingale. From Girsanov’s theorem, it follows
that the process Z defined by

dZt = dWt −
ν

Rt
dt = dRt −

1
Rt

(

ν +
1
2

)

dt

is a Brownian motion under P
(ν)
r where P

(ν)
r |Rt = DtP

(0)
r |Rt . �

If the index ν = −μ is negative (i.e., μ > 0), then the absolute continuity
relation holds before T0, the first hitting time of 0:

P
(ν)
r |Rt∩{t<T0} =

(
Rt

r

)ν

exp
(

−ν
2

2

∫ t

0

ds

R2
s

)

� P
(0)
r |Rt . (6.1.6)

Comparison with equality (6.1.5) shows that,

for ν < 0, P
(−ν)
r |Rt =

R−2ν
t∧T0

r−2ν
� P

(ν)
r |Rt . (6.1.7)
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In particular, this shows that the BES3 process (μ = 1/2) is an h-transform
of Brownian motion killed at 0, which simply means

P
(1/2)
r |Rt =

Rt∧T0

r
� P

(−1/2)
r |Rt

or, if Wa denotes the law of the BM starting from a > 0 and T0 the hitting
time of 0,

P
3
a

∣
∣
Ft

=
Xt∧T0

a
� Wa

∣
∣
Ft
. (6.1.8)

(See Dellacherie et al. [241].)

Comment 6.1.5.2 The absolute continuity relationship (6.1.5) has been of
some use in a number of problems, see, e.g., Kendall [518] for the computation
of the shape distribution for triangles, Geman and Yor [383] for the pricing of
Asian options, Hirsch and Song [437] in connection with the flows of Bessel
processes and Werner [839] for the computation of Brownian intersection
exponents.

Exercise 6.1.5.3 With the help of the explicit expression for the semi-group
of BM killed at time T0 (3.1.9), deduce the semi-group of BES3 from formula
(6.1.8). �

Exercise 6.1.5.4 Let S be the solution of

dSt = S2
t dWt

where W is a Brownian motion. Prove that X = 1/S is a Bessel process of
dimension 3.

This kind of SDE will be extended to different choices of volatilities in �
Section 6.4. �

Exercise 6.1.5.5 Let R be a BES3 process starting from 1. Compute
E(R−1

t ).
Hint: From the absolute continuity relationship

E(R−1
t ) = W1(T0 > t) = P(|G| < 1/

√
t)

where G is a standard Gaussian r.v.. �

Exercise 6.1.5.6 Let R and R̃ be two independent BES3 processes. The
process Yt = R−1

t − (R̃t)−1 is a local martingale with null expectation. Prove
that Y is a strict local martingale.
Hint: Let Tn be a localizing sequence of stopping times for 1/R. If Y were a
martingale, 1/R̃t∧Tn would also be a martingale. The expectation of 1/R̃t∧Tn

can be computed and depends on t. �
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Exercise 6.1.5.7 Let R and R be two independent BES3 processes. Prove
that the filtration generated by the process Yt = R−1

t − R̃−1
t is the filtration

generated by the processes R and R̃.
Hint: Indeed, the bracket of Y , i.e.,

∫ t
0
( 1
R4

s
+ 1

eR4
s

)ds is adapted w.r.t. the

filtration (Yt, t ≥ 0) generated by Y . Hence the process ( 1
R4

t
+ 1
eR4

t

) is Y-adapted.

Now, if a and b are given, there exists a unique pair (x, y) of positive numbers
such that x − y = a, x4 + y4 = b (this pair can even be given explicitly,
noting that x4 + y4 − (x − y)4 = 2xy(xy − 2(x − y)2)). This completes the
proof. �

6.2 Properties

6.2.1 Additivity of BESQ’s

An important property, due to Shiga and Watanabe [788], is the additivity
of the BESQ family. Let us denote by P ∗ Q the convolution of P and Q, two
probabilities on C(R+,R+).

Proposition 6.2.1.1 The sum of two independent squared Bessel processes
with respective dimension δ and δ′, starting respectively from x and x′ is a
squared Bessel process with dimension δ + δ′, starting from x+ x′:

Q
δ
x ∗ Q

δ′

y = Q
δ+δ′

x+y .

Proof: Let X and Y be two independent BESQ processes starting at x
(resp. at y) and with dimension δ (resp. δ′) and Z = X + Y . We want to
show that Z is distributed as Q

δ+δ′

x+y . Note that the result is obvious from the
definition when the dimensions are integers (this is what D. Williams calls the
“Pythagoras” property). In the general case

Zt = x+ y + (δ + δ′)t+ 2
∫ t

0

(√
Xs dBs +

√
Ys dB

′
s

)
,

where (B,B′) is a two-dimensional Brownian motion. This process satisfies∫ t
0

1{Zs=0}ds = 0. Let B̂ be a third Brownian motion independent of (B,B′).
The process W defined as

Wt =
∫ t

0

1{Zs>0}

(√
Xs dBs +

√
YsdB

′
s√

Zs

)

is a Brownian motion (it is a martingale with increasing process equal to t).
The process Z satisfies

Zt = x+ y + (δ + δ′)t+ 2
∫ t

0

√
Zs dWs ,

and this equation admits a unique solution in law. �
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6.2.2 Transition Densities

Bessel and squared Bessel processes are Markov processes and their transition
densities are known. Expectation under Q

δ
x will be denoted by Q

δ
x[·]. We also

denote by ρ the canonical process (a squared Bessel process) under the Q
δ-law.

From Proposition 6.2.1.1, the Laplace transform of ρt satisfies

Q
δ
x[exp(−λρt)] = Q

1
x[exp(−λρt)]

[
Q

1
0[exp(−λρt)]

]δ−1

and since, under Q
1
x, the r.v. ρt is the square of a Gaussian variable, one gets,

using Exercise 1.1.12.3,

Q
1
x[exp(−λρt)] =

1√
1 + 2λt

exp
(

− λx

1 + 2λt

)

.

Therefore

Q
δ
x[exp(−λρt)] =

1
(1 + 2λt)δ/2

exp
(

− λx

1 + 2λt

)

. (6.2.1)

Inverting the Laplace transform yields the transition density q(ν)
t of a BESQ(ν)

for ν > −1 as

q
(ν)
t (x, y) =

1
2t

(y
x

)ν/2
exp
(

−x+ y

2t

)

Iν(
√
xy

t
) , (6.2.2)

and the Bessel process of index ν has a transition density p(ν)
t defined by

p
(ν)
t (x, y) =

y

t

(
y

x

)ν

exp
(

−x
2 + y2

2t

)

Iν

(xy
t

)
(6.2.3)

where Iν is the usual modified Bessel function with index ν. (See �
Appendix A.5.2 for the definition of modified Bessel functions.) For x = 0,
the transition probability of the BESQ(ν)(resp. of the BES(ν)) is

q
(ν)
t (0, y) = (2t)−(ν+1)[Γ (ν + 1)]−1yν exp

(
− y

2t

)
,

p
(ν)
t (0, y) = 2−νt−(ν+1)[Γ (ν + 1)]−1y2ν+1 exp

(

−y
2

2t

)

. (6.2.4)
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In the case δ = 0 (i.e., ν = −1), the semi-group of BESQ0 is

Q0
t (x, ·) = exp

(
− x

2t

)
ε0 + Q̂t(x, ·)

where ε0 is the Dirac measure at 0 and Q̂t(x, dy) has density

q0t (x, y) =
1
2t

(y
x

)−1/2

exp
(

−x+ y

2t

)

I1

(√
xy

t

)

,

while the semi-group for BES0 is

P 0
t (x, ·) = exp

(

−x
2

2t

)

ε0 + P̂t(x, ·)

where P̂t(x, dy) has density

p0t (x, y) =
x

t
exp
(

−x
2 + y2

2t

)

I1

(xy
t

)
.

Remark 6.2.2.1 From the equality (6.2.3), we can check that, if R is a BESδ

starting from x, then R2
t

law= tZ where Z has a χ2(δ, xt ) law. (See Exercise
1.1.12.5 for the definition of χ2.)

Comment 6.2.2.2 Carmona [140] presents an extension of squared Bessel
processes with time varying dimension δ(t), as the solution of

dXt = δ(t)dt+ 2
√
XtdWt .

Here, δ is a function with positive values. The Laplace transform of Xt is

Ex(exp(−λXt)) = exp
(

−λ x

1 + 2λt
−
∫ t

0

λδ(u)
1 + 2λ(t− u)

du

)

.

See Shirakawa [790] for applications to interest rate models.

Comment 6.2.2.3 The negative moments of a squared Bessel process have
been computed in Yor [863], Aquilina and Rogers [22] and Dufresne [279]

Q
(ν)
x (ρ−a

t ) =
Γ (ν + 1 − a)
Γ (ν + 1)

exp
(
− x

2t

)
(2t)−aM

(
ν + 1 − a, ν + 1,

x

2t

)

where M is the Kummer function given in � Appendix A.5.6.

Exercise 6.2.2.4 Let ρ be a 0-dimensional squared Bessel process starting
at x, and T0 its first hitting time of 0. Prove that 1/T0 follows the exponential
law with parameter x/2.
Hint: Deduce the probability that T0 ≤ t from knowledge of Q

0
x(e

−λρt). �
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Exercise 6.2.2.5 (from Azéma and Yor [38].) Let X be a BES3 starting from
0. Prove that 1/X is a local martingale, but not a martingale. Establish that,
for u < 1,

E

(
1
X1

|Ru

)

=
1
Xu

√
2
π
Φ(

Xu

1 − u
) ,

where Φ(a) =
∫ a
0
dy e−y2/2. Such a formula “ measures” the non-martingale

property of the local martingale (1/Xt, t ≤ 1). In general, the quantity
E(Yt|Fs)/Ys for s < t, or even its mean E(Yt/Ys), could be considered as
a measure of the non-martingale property of Y . �

6.2.3 Hitting Times for Bessel Processes

Expectation under P
(ν)
a will be denoted by P

(ν)
a (·). We assume here that ν > 0,

i.e., δ > 2.

Proposition 6.2.3.1 Let a, b be positive numbers and λ > 0.

P
(ν)
a (e−λTb) =

(
b

a

)ν
Kν(a

√
2λ)

Kν(b
√

2λ)
, for b ≤ a , (6.2.5)

P
(ν)
a (e−λTb) =

(
b

a

)ν
Iν(a

√
2λ)

Iν(b
√

2λ)
, for a ≤ b , (6.2.6)

where Kν and Iν are modified Bessel functions, defined in � Appendix A.5.2.

Proof: The proof is an application of (5.3.8) (see Kent [519]). Indeed, for a
Bessel process the solutions of the Sturm-Liouville equation

1
2
xu′′(x) +

(

ν +
1
2

)

u′(x) − λxu(x) = 0

are
Φλ↑(r) = c1Iν(r

√
2λ)r−ν , Φλ↓(r) = c2Kν(r

√
2λ)r−ν

where c1, c2 are two constants. �

Note that, for a > b, using the asymptotic of Kν(x), when x → ∞, we
may deduce from (6.2.5) that P

(ν)
a (Tb <∞) = (b/a)2ν . Another proof may be

given using the fact that the process Mt = (1/Rt)δ−2 is a local martingale,
which converges to 0, and the result follows from Lemma 1.2.3.10.

Here is another consequence of Proposition 6.2.3.1, in particular of formula
(6.2.5): for a three-dimensional Bessel process (ν = 1/2) starting from 0, from
equality (A.5.3) in Appendix which gives the value of the Bessel function of
index 1/2,

P
3
0

(

exp
(

−λ
2

2
Tb

))

=
λb

sinhλb
.
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For a three-dimensional Bessel process starting from a

P
3
a

(

exp
(

−λ
2

2
Tb

))

=
b

a

sinhλa
sinhλb

, for b ≥ a , (6.2.7)

P
3
a

(

exp
(

−λ
2

2
Tb

))

=
b

a
exp (−(a− b)λ) , for b < a .

Inverting the Laplace transform, we obtain the density of Tb, the hitting time
of b for a three-dimensional Bessel process starting from 0:

P
3
0(Tb ∈ dt) =

∑

n≥1

(−1)n+1π
2n2

b2
e−n2π2t/(2b2) dt .

For b < a, it is simple to find the density of the hitting time Tb for a BES3
a.

The absolute continuity relationship (6.1.8) yields the equality

E
3
a(φ(Tb)) =

1
a
Wa(φ(Tb)XTb∧T0)

which holds for b < a. Consequently

P
3
a(Tb > t) = P

3
a(∞ > Tb > t) + P

3
a(Tb = ∞) =

b

a
W0(Ta−b > t) + 1 − b

a

=
b

a
P(a− b >

√
t|G|) + 1 − b

a
.

where G stands for a standard Gaussian r.v. under P. Hence

P
3
a(Tb > t) =

b

a

√
2
π

∫ (a−b)/
√
t

0

e−y2/2 dy + 1 − b

a
.

Note that P
3
a(Tb <∞) = b

a . The density of Tb is

P
3
a(Tb ∈ dt)/dt = (a− b)

1√
2πt3

b

a
exp
(

− (a− b)2

2t

)

.

Thanks to results on time reversal (see Williams [840], Pitman and Yor
[715]) we have, for R a transient Bessel process starting at 0, with dimension
δ > 2 and index ν > 0, denoting by Λ1 the last passage time at 1,

(Rt, t < Λ1)
law= (R̂T0−u, u ≤ T0(R̂)) (6.2.8)

where R̂ is a Bessel process, starting from 1, with dimension δ̂ = 2(1−ν) < 2.
Using results on last passage times (see Example 5.6.2.3), it follows that

T0(R̂) law=
1

2γ(ν)
(6.2.9)

where γ(ν) has a gamma law with parameter ν.

Comment 6.2.3.2 See Pitman and Yor [716] and Biane et al. [86] for more
comments on the laws of Bessel hitting times. In the case a < b, the density
of Tb under P

3
a is given as a series expansion in Ismail and Kelker [460] and

Borodin and Salminen [109]. This may be obtained from (6.2.7).
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6.2.4 Lamperti’s Theorem

We present a particular example of the relationship between exponentials
of Lévy processes and semi-stable processes studied by Lamperti [562] who
proved that (powers of) Bessel processes are the only semi-stable one-
dimensional diffusions. See also Yor [863, 865] and DeBlassie [228].

Theorem 6.2.4.1 The exponential of Brownian motion with drift ν ∈ R
+

can be represented as a time-changed BES(ν). More precisely,

exp(Wt + νt) = R(ν)

(∫ t

0

exp[2(Ws + νs)] ds
)

where (R(ν)(t), t ≥ 0) is a BES(ν).

Remark that, thanks to the scaling property of the Brownian motion, this
result can be extended to exp(σWt + νt). In that case

exp(σWt + νt) = R(ν/σ2)

(

σ2

∫ t

0

exp[2(σWs + νs)] ds
)

.

Proof: Introduce the increasing process At =
∫ t
0

exp[2(Ws + νs)] ds and C
its inverse Cu = inf{t ≥ 0 : At ≥ u}. From

exp[2(Ws + νs)] = exp[2s(ν +Ws/s)] ,

it can be checked that A∞ = ∞ a.s., hence Cu < ∞,∀u < ∞ and
C∞ = ∞, a.s.. By definition of C, we get ACt = t =

∫ Ct

0
exp[2(Ws + νs)] ds.

By differentiating this equality, we obtain dt = exp[2(WCt + νCt)]dCt. The
continuous process W̃ defined by

W̃u :=
∫ Cu

0

exp(Ws + νs) dWs

is a martingale with increasing process
∫ Cu

0
exp[2(Ws+νs)] ds = u. Therefore,

W̃ is a Brownian motion. From the definition of C,

W̃At =
∫ t

0

exp(Ws + νs) dWs .

This identity may be written in a differential form

dW̃At = exp(Wt + νt) dWt .

We now prove that Ru : = exp(WCu + νCu) is a Bessel process. Itô’s formula
gives
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d[exp(Wt + νt)] = exp(Wt + νt) (dWt + νdt) +
1
2

exp(Wt + νt)dt

= dW̃At +
(

ν +
1
2

)

exp(Wt + νt)dt .

This equality can be written in an integral form

exp(Wt + νt) = 1 + W̃At +
∫ t

0

(

ν +
1
2

)

exp(Ws + νs)ds

= 1 + W̃At +
∫ t

0

(

ν +
1
2

)
exp 2(Ws + νs)
exp(Ws + νs)

ds

= 1 + W̃At +
∫ t

0

(

ν +
1
2

)
dAs

exp(Ws + νs)
.

Therefore

exp(WCu + νCu) = 1 + W̃u +
(

ν +
1
2

)∫ u

0

ds

exp(WCs + νCs)
.

Hence,

d exp(WCu + νCu) = dW̃u +
(

ν +
1
2

)
du

exp(WCu + νCu)

that is,

dRu = dW̃u +
(

ν +
1
2

)
du

Ru
.

The result follows from the uniqueness of the solution to the SDE associated
with the BES(ν)(see Definition 6.1.2.2), and from RAt = exp(Wt + νt). �

Remark 6.2.4.2 From the obvious equality

exp(σBt + νt) =
(
exp
[σ
2
Bt +

ν

2
t
])2

,

it follows that the exponential of a Brownian motion with drift is also a time-
changed Bessel squared process. This remark is closely related to the following
exercise.

Exercise 6.2.4.3 Prove that the power of a Bessel process is another Bessel
process time-changed:

q[R(ν)
t ]1/q = R(νq)

(∫ t

0

ds

[R(ν)
s ]2/p

)

where
1
p

+
1
q

= 1, ν > −1
q
. �
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6.2.5 Laplace Transforms

In this section, we give explicit formulae for some Laplace transforms related
to Bessel processes.

Proposition 6.2.5.1 The joint Laplace transform of the pair
(

R2
t ,

∫ t

0

ds

R2
s

)

satisfies

P
(ν)
r

{

exp
(

−aR2
t −

μ2

2

∫ t

0

ds

R2
s

)}

= P
(γ)
r

{(
Rt

r

)ν−γ

exp(−aR2
t )
}

(6.2.10)

=
rγ−ν

Γ (α)

∫ ∞

0

dv vα−1(1 + 2(v + a)t)−(1+γ) exp
(

− r2(v + a)
1 + 2(v + a)t

)

where γ =
√
μ2 + ν2 and α = 1

2 (γ − ν) = 1
2 (
√
μ2 + ν2 − ν).

Proof: From the absolute continuity relationship (6.1.5)

P
(ν)
r

{

exp
(

−aR2
t −

μ2

2

∫ t

0

ds

R2
s

)}

= P
(0)
r

[(
Rt

r

)ν

exp
(

−aR2
t −

μ2 + ν2

2

∫ t

0

ds

R2
s

)]

= P
(γ)
r

{(
Rt

r

)ν−γ

exp(−aR2
t )
}

.

The quantity P
(γ)
r

[(
Rt

r

)ν−γ

exp(−aR2
t )
]

can be computed as follows. From

1
xα

=
1

Γ (α)

∫ ∞

0

dv exp(−vx)vα−1 (6.2.11)

(see � formula (A.5.8) in the appendix), it follows that

P
(γ)
r

(
1

(Rt)2α

)

=
1

Γ (α)

∫ ∞

0

dv vα−1
P

(γ)
r [exp(−vR2

t )] .

Therefore, for any α ≥ 0, the equality

P
(γ)
r

(
1

(Rt)2α

)

=
1

Γ (α)

∫ 1/2t

0

dv vα−1(1 − 2tv)γ−α exp(−r2v)

follows from the identity (6.2.1) written in terms of BES(γ),

P
(γ)
r [exp(−vR2

t )] =
1

(1 + 2vt)1+γ
exp
(

− r2v

1 + 2vt

)

, (6.2.12)

and a change of variable.
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Using equality (6.2.11) again,

P
(γ)
r

[(
1
Rt

)2α

exp(−aR2
t )
]

=
1

Γ (α)

∫ ∞

0

dv vα−1
P

(γ)
r [exp(−(v + a)R2

t )] : = I .

The identity (6.2.12) shows that

I =
1

Γ (α)

∫ ∞

0

dv vα−1(1 + 2(v + a)t)−(1+γ) exp
(

− r2(v + a)
1 + 2(v + a)t

)

.

Therefore

P
(ν)
r

[

exp
(

−aR2
t −

μ2

2

∫ t

0

ds

R2
s

)]

=
rγ−ν

Γ (α)

∫ ∞

0

dv vα−1(1 + 2(v + a)t)−(1+γ) exp
(

− r2(v + a)
1 + 2(v + a)t

)

where α =
1
2
(γ − ν) =

1
2
(
√
μ2 + ν2 − ν). �

We state the following translation of Proposition 6.2.5.1 in terms of
BESQ processes:

Corollary 6.2.5.2 The quantity

Q
(ν)
x

[

exp
(

−aρt −
μ2

2

∫ t

0

ds

ρs

)]

= Q
(γ)
x

[(ρt
x

)(ν−γ)/2

exp(−aρt)
]

(6.2.13)

where γ =
√
μ2 + ν2 is given by (6.2.10).

Another useful result is that of the Laplace transform of the pair (ρt,
∫ t
0
ρsds)

under Q
δ
x.

Proposition 6.2.5.3 For a BESQδ, we have for every λ > 0, b = 0

Q
δ
x

[

exp(−λρt −
b2

2

∫ t

0

ρsds)
]

(6.2.14)

=
(
cosh(bt) + 2λb−1 sinh(bt)

)−δ/2
exp
(

−1
2
xb

1 + 2λb−1 coth(bt)
coth(bt) + 2λb−1

)

.

Proof: Let ρ be a BESQδ process starting from x:

dρt = 2
√
ρtdWt + δ dt .

Let F : R
+ → R be a locally bounded function. The process Z defined by

Zu : = exp
[∫ u

0

F (s)
√
ρsdWs −

1
2

∫ u

0

F 2(s)ρsds
]
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is a local martingale. Furthermore,

Zu = exp
[
1
2

∫ u

0

F (s)d(ρs − δs) − 1
2

∫ u

0

F 2(s)ρsds
]

.

If F has bounded variation, an integration by parts leads to
∫ u

0

F (s)dρs = F (u)ρu − F (0)ρ0 −
∫ u

0

ρsdF (s)

and

Zu = exp
[
1
2

(

F (u)ρu − F (0)x−
∫ u

0

(δF (s) +F 2(s)ρs)ds+ ρsdF (s)
)]

.

Let t be fixed. We now consider only processes indexed by u with u ≤ t.

Let b be given and choose F =
Φ′

Φ
where Φ is the decreasing solution of

Φ′′ = b2Φ, on [0, t]; Φ(0) = 1; Φ′(t) = −2λΦ(t) ,

where Φ′(t) is the left derivative of Φ at t. Then,

Zu = exp
[
1
2
(F (u)ρu − F (0)x− δ lnΦ(u)) − b2

2

∫ u

0

ρsds

]

is a bounded local martingale, hence a martingale. Moreover,

Zt = exp
[

−λρt −
1
2
(Φ′(0)x+ δ lnΦ(t)) − b2

2

∫ t

0

ρsds

]

and 1 = E(Zt), hence the left-hand side of equality (6.2.14) is equal to

(Φ(t))δ/2 exp
(x

2
Φ′(0)

)
.

The general solution of Φ′′ = b2Φ is Φ(s) = c1 sinh(bs) + c2 cosh(bs),
and the constants ci, i = 1, 2 are determined from the boundary conditions.
The boundary condition Φ(0) = 1 implies c2 = 1 and the condition Φ′(t) =
−2λΦ(t) implies

c1 = −b sinh(bt) + 2λ cosh(bt)
b cosh(bt) + 2λ sinh(bt)

.

�

Remark 6.2.5.4 The transformation F = Φ′

Φ made in the proof allows us to
link the Sturm-Liouville equation satisfied by Φ to a Ricatti equation satisfied
by F . This remark is also valid for the general computation made in the
following Exercise 6.2.5.8 .
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Corollary 6.2.5.5 As a particular case of the equality (6.2.14), one has

Q
δ
0

[

exp(−b
2

2

∫ t

0

ρsds)
]

= (cosh(bt))−δ/2
.

Consequently, the density of
∫ 1

0

ρsds is

f(u) = 2δ/2
∞∑

n=0

αn(δ/2)
2n+ δ/2√

2πu3
e−

1
2u (2n+δ/2)2 ,

where αn(x) are the coefficients of the series expansion

(1 + a)−x =
∞∑

n=0

αn(x)an .

Proof: From the equality (6.2.14),

E

(

exp
(

−b
2

2

∫ 1

0

ρsds

))

= (cosh(b))−δ/2 = e−bδ/2 2δ/2

(1 + e−2b)δ/2

= 2δ/2
∞∑

n=0

αn(δ/2)e−2bne−bδ/2 .

Using

e−ba =
∫ ∞

0

dt
a√
2πt3

e−a2/(2t)−b2t/2dt

we obtain

E

(

exp
(

−b
2

2

∫ 1

0

ρsds

))

= 2δ/2
∑

n

αn

(
δ

2

)∫ ∞

0

2n+ δ/2√
2πt3

e−(2n+δ/2)2/(2t)−b2t/2dt

and the result follows. �

Comment 6.2.5.6 See Pitman and Yor [720] for more results of this kind.

Exercise 6.2.5.7 Prove, using the same method as in Proposition 6.2.5.1
that

P
(ν)
r

[
1
Rα

t

exp
(

−μ
2

2

∫ t

0

ds

R2
s

)]

= P
(0)
r

[
Rν

t

rνRα
t

exp
(

−μ
2 + ν2

2

∫ t

0

ds

R2
s

)]

= P
(γ)
r

[
Rν−γ−α

t

rν−γ

]

,

and compute the last quantity. �
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Exercise 6.2.5.8 We shall now extend the result of Proposition 6.2.5.3 by
computing the Laplace transform

Q
δ
x

[

exp
(

−λ
∫ t

0

duφ(u)ρu

)]

.

In fact, let μ be a positive, diffuse Radon measure on R
+. The Sturm-Liouville

equation Φ′′ = μΦ has a unique solution Φμ, which is positive, decreasing on

[0,∞[ and such that Φμ(0) = 1. Let Ψμ(t) = Φμ(t)
∫ t

0

ds

Φ2
μ(s)

.

1. Prove that the function Ψμ is a solution of the Sturm-Liouville equation,
such that Ψμ(0) = 0, Ψ ′

μ(0) = 1, and the pair (Φμ, Ψμ) satisfies the
Wronskian relation

W (Φμ, Ψμ) = ΦμΨ
′
μ − Φ′

μΨμ = 1 .

2. Prove that, for every t ≥ 0:

Q
δ
x

(

exp
(

−1
2

(∫ t

0

ρsdμ(s) + λρt

)))

=
1

(
Ψ ′
μ(t) + λΨμ(t)

)δ/2 exp
(
x

2

(

Φ′
μ(0) −

Φ′
μ(t) + λΦμ(t)
Ψ ′
μ(t) + λΨμ(t)

))

,

and

Q
δ
x

(

exp
(

−1
2

∫ ∞

0

ρsdμ(s)
))

= (Φμ(∞))δ/2 exp
(x

2
Φ′
μ(0)

)
.

3. Compute the solution of the Sturm Liouville equation for

μ(ds) =
λ

(a+ s)2
ds, (λ, a > 0)

(one can find a solution of the form (a+s)α where α is to be determined).

See [RY] or Pitman and Yor [717] for details of the proof and Carmona [140]
and Shirakawa [790] for extension to the case of Bessel processes with time-
dependent dimension. �

6.2.6 BESQ Processes with Negative Dimensions

As an application of the absolute continuity relationship (6.1.6), one obtains

Lemma 6.2.6.1 Let δ ∈] − ∞, 2[ and Φ a positive function. Then, for any
x > 0

Q
δ
x

(
Φ(ρt)1{T0>t}

)
= x1− δ

2 Q
4−δ
x

(
Φ(ρt)(ρt)

δ
2−1
)
.
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Definition 6.2.6.2 The solution to the equation

dXt = δ dt+ 2
√
|Xt|dWt , X0 = x

where δ ∈ R, x ∈ R is called the square of a δ-dimensional Bessel process
starting from x.

This equation has a unique strong solution (see [RY], Chapter IX, Section
3). Let us assume that X0 = x > 0 and δ < 0. The comparison theorem
establishes that this process is smaller than the process with δ = 0, hence, the
point 0 is reached in finite time. Let T0 be the first time when the process X
hits the level 0. We have

X̃t : = XT0+t = δt+ 2
∫ T0+t

T0

√
|Xs|dWs, t ≥ 0 .

Setting γ = −δ and W̃s = −(Ws+T0 −WT0), we obtain

−X̃t = γt+ 2
∫ t

0

√
|X̃s|dW̃s, t ≥ 0 ,

hence, if Yt = −X̃t we get

Yt = γt+ 2
∫ t

0

√
|Ys|dW̃s, t ≥ 0 .

This is the SDE satisfied by a BESQγ
0 , hence −XT0+t is a BESQγ

0 . A BESQδ
x

process with x < 0 and δ < 0 behaves as minus a BESQ−δ
−x and never becomes

strictly positive.
One should note that the additivity property for BESQ with arbitrary

(non-positive) dimensions does not hold. Indeed, let δ > 0 and consider

Xt = 2
∫ t

0

√
|Xs|dβs + δt

Yt = 2
∫ t

0

√
|Ys|dγs − δt

where β and γ are independent BM’s, then, if additivity held, (Xt+Yt, t ≥ 0)
would be a BESQ0

0, hence it would be equal to 0, so that X = −Y , which is
absurd.

Proposition 6.2.6.3 The probability transition of a BESQ−γ
x , γ > 0 and

x ≥ 0 is Q
−γ
x (Xt ∈ dy) = q−γ

t (x, y)dy where

q−γ
t (x, y) = q4+γ

t (y, x) , for y > 0

= k(x, y, γ, t)e−a−b

∫ ∞

0

(z + 1)m

zm
e−bz− a

z dz , for y < 0
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where

k(x, y, γ, t) =
(
Γ
(γ

2

))−2 2−γ

γ
x1+m|y|m−1t−γ−1

and

m =
γ

2
, a =

|y|
2t
, b =

x

2t
.

Proof: We decompose the process X before and after its hitting time T0 as
follows:

Q
−γ
x [f(Xt)] = Q

−γ
x [f(Xt)1{t<T0}] + Q

−γ
x [f(Xt)1{t>T0}] .

From the time reversal, using Lemma 6.2.6.1 and noting that
(y
x

)−1− γ
2
q4−γ
t (x, y) = q4+γ

t (y, x)

we obtain
(Xt, t ≤ T0)

law= (X̃γx−t, t ≤ γx)

where X̃ is a BESQ4+γ
0 process and γx = sup{t : X̃t = x}. It follows that

Q
−γ
x [f(Xt)1{t<T0}] = Q

4+γ
0 [f(X̃γx−t)1{t<γx}]

=
∫ ∞

t

qx(s)Q
4+γ
0 [f(Xs−t)|Xs = x]ds

where qx(s)ds = Q
4+γ
0 (γx ∈ ds). Then, some standard computation leads to

Q
4+γ
0 [f(Xs−t)|Xs = x] =

∫
f(y)

q4+γ
s−t (0, y) q4+γ

t (y, x)

q4+γ
s (0, x)

dy, s > t .

From the study of the last passage times (see equality (5.6.2)) one obtains

qx(s) =
1

sΓ (ν)

( x
2s

)ν
e−x/(2s) = (2 + γ)q4+γ

s (0, x) . (6.2.15)

Hence

Q
−γ
x [f(Xt)1{t<T0}] =

∫ ∞

t

ds(2 + γ)
(∫ ∞

0

f(y)q4+γ
s−t (0, y)q4+γ

t (y, x)dy
)

and using Fubini’s theorem

Q
−γ
x [f(Xt)1{t<T0}] =

∫ ∞

0

f(y)q4+γ
t (y, x)dy .

The computation of Q
−γ
x [f(Xt)1{t>T0}] is carried out using (6.2.15) and

Q
−γ
x [T0 ∈ ds] = qx(s)ds. One obtains

Q
−γ
x [f(Xt)1{t>T0}] =

∫ t

0

(γ + 2)q4+γ
s (0, x)qγt−s(0,−y)ds .

�
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Exercise 6.2.6.4 Prove that, for δ > 2, the default of martingality of R2−δ

(where R is a Bessel process of dimension δ starting from x) is given by

E(R2−δ
0 −R2−δ

t ) = x2−δ
P

4−δ(T0 ≤ t) .

Hint: Prove that
E(R2−δ

t ) = x2−δ
P

4−δ(t < T0) .

�

6.2.7 Squared Radial Ornstein-Uhlenbeck

The above attempt to deal with negative dimension has shown a number of
drawbacks. From now on, we shall maintain positive dimensions.

Definition 6.2.7.1 The solution to the SDE

dXt = (a− bXt)dt+ 2
√

|Xt| dWt

where a ∈ R
+, b ∈ R is called a squared radial Ornstein-Uhlenbeck process

with dimension a. We shall denote by b
Q

a
x its law, and Q

a
x = 0

Q
a
x .

Proposition 6.2.7.2 The following absolute continuity relationship between
a squared radial Ornstein-Uhlenbeck process and a squared Bessel process
holds:

b
Q

a
x|Ft = exp

(

− b
4
(Xt − x− at) − b2

8

∫ t

0

Xsds

)

Q
a
x|Ft .

Proof: This is a straightforward application of Girsanov’s theorem. We have∫ t
0
XsdWs = 1

2 (Xt − x− at). �

Exercise 6.2.7.3 Let X be a Bessel process with dimension δ < 2, starting
at x > 0 and T0 = inf{t : Xt = 0}. Using time reversal theorem (see (6.2.8),
prove that the density of T0 is

1
tΓ (α)

(
x2

2t

)α

e−x2/(2t)

where α = (4 − δ)/2 − 1, i.e., T0 is a multiple of the reciprocal of a Gamma
variable. �

6.3 Cox-Ingersoll-Ross Processes

In the finance literature, the CIR processes have been considered as term
structure models. As we shall show, they are closely connected to squared
Bessel processes, in fact to squared radial OU processes.
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6.3.1 CIR Processes and BESQ

From Theorem 1.5.5.1 on the solutions to SDE, the equation

drt = k(θ − rt) dt+ σ
√
|rt|dWt , r0 = x (6.3.1)

admits a unique solution which is strong. For θ = 0 and x = 0, the solution
is rt = 0, and from the comparison Theorem 1.5.5.9, we deduce that, in the
case kθ > 0, rt ≥ 0 for x ≥ 0. In that case, we omit the absolute value and
consider the positive solution of

drt = k(θ − rt) dt+ σ
√
rtdWt , r0 = x. (6.3.2)

This solution is called a Cox-Ingersoll-Ross (CIR) process or a square-root
process (See Feller [342]). For σ = 2, this process is the square of the norm
of a δ-dimensional OU process, with dimension δ = kθ (see Subsection 2.6.5
and the previous Subsection 6.2.6), but this equation also makes sense even
if δ is not an integer.

We shall denote by k
Q

kθ,σ the law of the CIR process solution of the
equation (6.3.1). In the case σ = 2, we simply write k

Q
kθ,2 = k

Q
kθ. Now,

the elementary change of time A(t) = 4t/σ2 reduces the study of the solution
of (6.3.2) to the case σ = 2: indeed, if Zt = r(4t/σ2), then

dZt = k′(θ − Zt) dt+ 2
√
ZtdBt

with k′ = 4k/σ2 and B a Brownian motion.

Proposition 6.3.1.1 The CIR process (6.3.2) is a BESQ process trans-
formed by the following space-time changes:

rt = e−ktρ

(
σ2

4k
(ekt − 1)

)

where (ρ(s), s ≥ 0) is a BESQδ process, with dimension δ =
4kθ
σ2

.

Proof: The proof is left as an exercise for the reader. A more general case
will be presented in the following Theorem 6.3.5.1. �

It follows that for 2kθ ≥ σ2, a CIR process starting from a positive initial
point stays strictly positive. For 0 ≤ 2kθ < σ2, a CIR process starting from
a positive initial point hits 0 with probability p ∈]0, 1[ in the case k < 0
(P(T x

0 < ∞) = p) and almost surely if k ≥ 0 (P(T x
0 < ∞) = 1). In the case

0 < 2kθ, the boundary 0 is instantaneously reflecting, whereas in the case
2kθ < 0, the process r starting from a positive initial point reaches 0 almost
surely. Let T0 = inf{t : rt = 0} and set Zt = −rT0+t. Then,

dZt = (−δ + λZt)dt+ σ
√
|Zt|dBt

where B is a BM. We know that Zt ≥ 0, thus rT0+t takes values in R
−.
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Absolute Continuity Relationship

A routine application of Girsanov’s theorem (See Example 1.7.3.5 or Propo-
sition 6.2.7.2) leads to (for kθ > 0)

k
Q

kθ
x |Ft = exp

(
k

4
[x+ kθt− ρt] −

k2

8

∫ t

0

ρs ds

)

Q
kθ
x |Ft . (6.3.3)

Comments 6.3.1.2 (a) From an elementary point of view, if the process r
reaches 0 at time t, the formal equality between drt and kθdt explains that the
increment of rt is positive if kθ > 0. Again formally, for k > 0, if at time t, the
inequality rt > θ holds (resp. rt < θ), then the drift k(θ−rt) is negative (resp.
positive) and, at least in mean, r is decreasing (resp. increasing). Note also
that E(rt) → θ when t goes to infinity. This is the mean-reverting property.

(b) Here, we have used the notation r for the CIR process. As shown above,
this process is close to a BESQ ρ (and not to a BES R).

(c) Dufresne [281] has obtained explicit formulae for the moments of the
r.v. rt and for the process (It =

∫ t
0
rsds, t ≥ 0). Dassios and Nagaradjasarma

[214] present an explicit computation of the joint moments of rt and It, and,
in the case θ = 0, the joint density of the pair (rt, It).

6.3.2 Transition Probabilities for a CIR Process

From the expression of a CIR process as a time-changed squared Bessel process
given in Proposition 6.3.1.1, using the transition density of the squared Bessel
process given in (6.2.2), we obtain the transition density of the CIR process.

Proposition 6.3.2.1 Let r be a CIR process following (6.3.2). The transition
density k

Q
kθ,σ(rt+s ∈ dy|rs = x) = ft(x, y)dy is given by

ft(x, y) =
ekt

2c(t)

(
yekt

x

)ν/2

exp
(

−x+ yekt

2c(t)

)

Iν

(
1
c(t)

√
xyekt

)

1{y≥0} ,

where c(t) =
σ2

4k
(ekt − 1) and ν =

2kθ
σ2

− 1.

Proof: From the relation rt = e−ktρc(t), where ρ is a BESQ(ν), we obtain

k
Q

kθ,σ(rt+s ∈ dy|rs = x) = ektq
(ν)
c(t)(x, ye

kt)dy .

Denoting by (rt(x); t ≥ 0) the CIR process with initial value r0 = x, the
random variable Yt = rt(x)ekt[c(t)]−1 has density

P(Yt ∈ dy)/dy = c(t)e−ktft(x, yc(t)e−kt)1{y>0}

=
e−α/2

2αν/2
e−y/2yν/2Iν(

√
yα)1{y≥0}

where α = x/c(t). �
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Remark 6.3.2.2 This density is that of a noncentral chi-square χ2(δ, α) with
δ = 2(ν + 1) degrees of freedom, and non-centrality parameter α. Using the
notation of Exercise 1.1.12.5, we obtain

k
Q

kθ,σ
x (rt < y) = χ2

(
4kθ
σ2

,
x

c(t)
;
yekt

c(t)

)

,

where the function χ2(δ, α; ·), defined in Exercise 1.1.12.5, is the cumulative
distribution function associated with the density

f(x; δ, α) = 2−δ/2 exp
(

−1
2
(α+ x)

)

x
δ
2−1

∞∑

n=0

(α
4

)n xn

n!Γ (n+ δ/2)
1{x>0} ,

=
e−α/2

2αν/2
e−x/2xν/2Iν(

√
xα)1{x>0} .

6.3.3 CIR Processes as Spot Rate Models

The Cox-Ingersoll-Ross model for the short interest rate has been the object
of many studies since the seminal paper of Cox et al. [206] where the authors
assume that the riskless rate r follows a square root process under the
historical probability given by

drt = k̃(θ̃ − rt) dt+ σ
√
rtdW̃t .

Here, k̃(θ̃−r) defines a mean reverting drift pulling the interest rate towards its
long-term value θ̃ with a speed of adjustment equal to k̃. In the risk-adjusted
economy, the dynamics are supposed to be given by:

drt = (k̃(θ̃ − rt) − λrt)dt+ σ
√
rtdWt

where (Wt = W̃t + λ
σ

∫ t
0

√
rsds, t ≥ 0) is a Brownian motion under the risk-

adjusted probability Q where λ denotes the market price of risk.
Setting k = k̃ + λ, θ = k̃(θ̃/k), the Q -dynamics of r are

drt = k(θ − rt)dt+ σ
√
rtdWt .

Therefore, we shall establish formulae under general dynamics of this form,
already given in (6.3.2).

Even though no closed-form expression as a functional ofW can be written
for rt, it is remarkable that the Laplace transform of the process, i.e.,

k
Q

kθ,σ
x

[

exp
(

−
∫ t

0

duφ(u)ru

)]

is known (see Exercise 6.2.5.8).
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Theorem 6.3.3.1 Let r be a CIR process, the solution of

drt = k(θ − rt)dt+ σ
√
rtdWt .

The conditional expectation and the conditional variance of the r.v. rt are
given by, for s < t,

k
Q

kθ,σ
x (rt |Fs) = rse

−k(t−s) + θ(1 − e−k(t−s)),

Var(rt |Fs) = rs
σ2(e−k(t−s) − e−2k(t−s))

k
+
θσ2(1 − e−k(t−s))2

2k
.

Proof: From the definition, for s ≤ t, one has

rt = rs + k

∫ t

s

(θ − ru)du+ σ

∫ t

s

√
ru dWu .

Itô’s formula leads to

r2t = r2s + 2k
∫ t

s

(θ − ru)rudu+ 2σ
∫ t

s

(ru)3/2dWu + σ2

∫ t

s

rudu

= r2s + (2kθ + σ2)
∫ t

s

rudu− 2k
∫ t

s

r2udu+ 2σ
∫ t

s

(ru)3/2dWu.

It can be checked that the stochastic integrals involved in both formulae are
martingales: indeed, from Proposition 6.3.1.1, r admits moments of any order.
Therefore, the expectation of rt is given by

E(rt) = k
Q

kθ,σ
x (rt) = r0 + k

(

θt−
∫ t

0

E(ru)du
)

.

We now introduce Φ(t) = E(rt). The integral equation

Φ(t) = r0 + k(θt−
∫ t

0

Φ(u)du)

can be written in differential form Φ′(t) = k(θ − Φ(t)) where Φ satisfies the
initial condition Φ(0) = r0. Hence

E[rt] = θ + (r0 − θ)e−kt.

In the same way, from

E(r2t ) = r20 + (2kθ + σ2)
∫ t

0

E(ru)du− 2k
∫ t

0

E(r2u)du ,

setting Ψ(t) = E(r2t ) leads to Ψ ′(t) = (2kθ + σ2)Φ(t) − 2kΨ(t), hence
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Var [rt] =
σ2

k
(1 − e−kt)[r0e−kt +

θ

2
(1 − e−kt)] .

Thanks to the Markovian character of r, the conditional expectation can also
be computed:

E(rt |Fs) = θ + (rs − θ)e−k(t−s) = rs e
−k(t−s) + θ(1 − e−k(t−s)),

Var(rt |Fs) = rs
σ2(e−k(t−s) − e−2k(t−s))

k
+
θσ2(1 − e−k(t−s))2

2k
.

�
Note that, if k > 0, E(rt) → θ as t goes to infinity, this is the reason why

the process is said to be mean reverting.

Comment 6.3.3.2 Using an induction procedure, or with computations
done for squared Bessel processes, all the moments of rt can be computed.
See Dufresne [279].

Exercise 6.3.3.3 If r is a CIR process and Z = rα, prove that

dZt =
(
αZ

1−1/α
t (kθ + (α− 1)σ2/2) − Ztαk

)
dt+ αZ

1−1/(2α)
t σdWt .

In particular, for α = −1, dZt = Zt(k − Zt(kθ − σ2))dt − Z
3/2
t σdWt is the

so-called 3/2 model (see Section 6.4 on CEV processes and the book of Lewis
[587]). �

6.3.4 Zero-coupon Bond

We now address the problem of the valuation of a zero-coupon bond, i.e., we
assume that the dynamics of the interest rate are given by a CIR process under
the risk-neutral probability and we compute E

(
exp
(
−
∫ T
t
ru du

)
|Ft

)
.

Proposition 6.3.4.1 Let r be a CIR process defined as in (6.3.2) by

drt = k(θ − rt) dt+ σ
√
rtdWt ,

and let k
Q

kθ,σ be its law. Then, for any pair (λ, μ) of positive numbers

k
Q

kθ,σ
x

(

exp

(

−λrT − μ

∫ T

0

ru du

))

= exp[−Aλ,μ(T ) − xGλ,μ(T )]

with

Gλ,μ(s) =
λ(γ + k + eγs(γ − k)) + 2μ(eγs − 1)
σ2λ(eγs − 1) + γ(eγs + 1) + k(eγs − 1)

Aλ,μ(s) = −2kθ
σ2

ln
(

2γe(γ+k)s/2

σ2λ(eγs − 1) + γ(eγs + 1) + k(eγs − 1)

)

where γ =
√
k2 + 2σ2μ .
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Proof: We seek ϕ : R × [|0, T ] → R
+ such that the process

ϕ(rt, t) exp
(

−μ
∫ t

0

rsds

)

is a martingale. Using Itô’s formula, and assuming that ϕ is regular, this
necessitates that ϕ satisfies the equation

− ∂ϕ

∂t
= −xμϕ+ k(θ − x)

∂ϕ

∂x
+

1
2
σ2x

∂2ϕ

∂x2
. (6.3.4)

Furthermore, if ϕ satisfies the boundary condition ϕ(x, T ) = e−λx, we obtain

k
Q

kθ,σ
x

(

exp

(

−λrT − μ

∫ T

0

ru du

))

= ϕ(x, 0)

It remains to prove that there exist two functions A and G such that
ϕ(x, t) = exp(−A(T − t)− xG(T − t)) is a solution of the PDE (6.3.4), where
A and G satisfy A(0) = 0, G(0) = λ. Some involved calculation leads to the
proposition. �

Corollary 6.3.4.2 In particular, taking λ = 0,

k
Q

kθ,σ
x

(

exp(−μ
∫ t

0

rsds)
)

= ek
2θt/σ2

(

cosh
γt

2
+
k

γ
sinh

γt

2

)−2kθ/σ2

exp

(
−2μx

k + γ coth γt
2

)

where γ2 = k2 + 2μσ2.

These formulae may be considered as extensions of Lévy’s area formula for
planar Brownian motion. See Pitman and Yor [716].

Corollary 6.3.4.3 Let r be a CIR process defined as in (6.3.2) under the risk-
neutral probability. Then, the price at time t of a zero-coupon bond maturing
at T is

k
Q

kθ,σ
x

(

exp

(

−
∫ T

t

ru du

)
∣
∣
∣Ft

)

= exp[−A(T−t)−rtG(T−t)] = B(rt, T−t)

with
B(r, s) = exp(−A(s) − rG(s))

and
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G(s) =
2(eγs − 1)

(γ + k)(eγs − 1) + 2γ
=

2
k + γ coth(γs/2)

A(s) = −2kθ
σ2

ln
(

2γe(γ+k)s/2

(γ + k)(eγs − 1) + 2γ

)

= −2kθ
σ2

[
ks

2
+ ln

(

cosh
γs

2
+
k

γ
sinh

γs

2

)−1
]

,

where γ =
√
k2 + 2σ2 .

The dynamics of the zero-coupon bond P (t, T ) = B(rt, T − t) are, under
the risk-neutral probability

dtP (t, T ) = P (t, T ) (rtdt+ σ(T − t, rt)dWt)

with σ(s, r) = −σG(s)
√
r.

Proof: The expression of the price of a zero-coupon bond follows from the
Markov property and the previous proposition with A = A0,1, G = G0,1. Use
Itô’s formula and recall that the drift term in the dynamics of the zero-coupon
bond price is of the form P (t, T )rt. �

Corollary 6.3.4.4 The Laplace transform of the r.v. rT is

k
Q

kθ,σ
x (e−λrT ) =

(
1

2λc̃+ 1

)2kθ/σ2

exp
(

− λc̃x̃

2λc̃+ 1

)

with c̃ = c(T )e−kT and x̃ = x/c(T ), c(T ) = σ2

4k (ekT − 1).

Proof: The corollary follows from Proposition 6.3.4.1 with μ = 0. It can
also be obtained using the expression of rT as a time-changed BESQ (see
Proposition 6.3.1.1). �

One can also use that the Laplace transform of a χ2(δ, α) distributed
random variable is

(
1

2λ+ 1

)δ/2

exp
(

− λα

2λ+ 1

)

,

and that, setting c(t) = σ2(ekt − 1)/(4k), the random variable rtekt/c(t) is
χ2(δ, α) distributed, where α = x/c(t).

Comment 6.3.4.5 One may note the “affine structure” of the model: the
Laplace transform of the value of the process at time T is the exponential
of an affine function of its initial value Ex(e−λrT ) = e−A(T )−xG(T ). For a
complete characterization and description of affine term structure models, see
Duffie et al. [272].
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Exercise 6.3.4.6 Prove that if

drit = (δi − krit)dt+ σ
√
rit dW

i
t , i = 1, 2

where W i are independent BMs, then the sum r1 + r2 is a CIR process. �

6.3.5 Inhomogeneous CIR Process

Theorem 6.3.5.1 If r is the solution of

drt = (a− λ(t)rt)dt+ σ
√
rtdWt , r0 = x (6.3.5)

where λ is a continuous function and a > 0, then

(rt, t ≥ 0) law=
(

1
!(t)

ρ

(
σ2

4

∫ t

0

!(s)ds
)

, t ≥ 0
)

where !(t) = exp
(∫ t

0
λ(s)ds

)
and ρ is a squared Bessel process with dimension

4a/σ2.

Proof: Let us introduce Zt = rt exp(
∫ t
0
λ(s)ds) = rt!(t). From the integration

by parts formula,

Zt = x+ a

∫ t

0

!(s)ds+ σ

∫ t

0

√
!(s)

√
Zs dWs .

Define the increasing function C(u) = σ2

4

∫ u
0
!(s) ds and its inverse

A(t) = inf{u : C(u) = t}. Apply a change of time so that

ZA(t) = x+ a

∫ A(t)

0

!(s)ds+ σ

∫ A(t)

0

√
!(s)

√
ZsdWs .

The process σ
∫ A(t)

0

√
!(s)

√
ZsdWs is a local martingale with increasing

process σ2
∫ A(t)

0
!(s)Zsds = 4

∫ t
0
ZA(u)du, hence,

ρt : = ZA(t) = x+
4a
σ2
t+2

∫ t

0

√
ZA(u) dBu = ρ0+

4a
σ2
t+2

∫ t

0

√
ρu dBu (6.3.6)

where B is a Brownian motion. �

Proposition 6.3.2.1 admits an immediate extension.

Proposition 6.3.5.2 The transition density of the inhomogeneous process
(6.3.5) is
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P(rt ∈ dy|rs = x) (6.3.7)

=
!(s, t)

2!∗(s, t)
exp
(

−x+ y!(s, t)
2!∗(s, t)

) (
y!(s, t)
x

)ν/2

Iν

(√
xy!(s, t)
!∗(s, t)

)

dy

where ν = (2a)/σ2 − 1, !(s, t) = exp
(∫ t

s
λ(u)du

)
, !∗(s, t) = σ2

4

∫ t
s
!(s, u)du.

Comment 6.3.5.3 Maghsoodi [615], Rogers [736] and Shirakawa [790] study
the more general model

drt = (a(t) − b(t)rt)dt+ σ(t)
√
rtdWt

under the “constant dimension condition”

a(t)
σ2(t)

= constant .

As an example (see e.g. Szatzschneider [817]), let

dXt = (δ + β(t)Xt)dt+ 2
√
XtdWt

and choose rt = ϕ(t)Xt where ϕ is a given positive C1 function. Then

drt =
(

δϕ(t) +
[

β(t) +
ϕ′(t)
ϕ(t)

]

rt

)

dt+ 2
√
ϕ(t)rtdWt

satisfies this constant dimension condition.

6.4 Constant Elasticity of Variance Process

The Constant Elasticity of Variance (CEV) process has dynamics

dZt = Zt(μdt+ σZβ
t dWt) . (6.4.1)

The CEV model reduces to the geometric Brownian motion for β = 0 and to a
particular case of the square-root model for β = −1/2 (See equation (6.3.2)).
In what follows, we do not consider the case β = 0.

Cox [205] studied the case β < 0, Emanuel and MacBeth [320] the case
β > 0 and Delbaen and Shirakawa [238] the case −1 < β < 0. Note that the
choice of parametrization is

dSt = St(μdt+ σS
θ/2
t dWt)

in Cox, and
dSt = Stμdt+ σSρ

t dWt

in Delbaen and Shirakawa.
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In [428], Heath and Platen study a model where the numéraire portfolio
follows a CEV process.

The CEV process is intensively studied by Davydov and Linetsky [225, 227]
and Linetsky [592]; the main part of the following study is taken from their
work. See also Beckers [64], Forde [354] and Lo et al. [599, 601]. Occupation
time densities for CEV processes are presented in Leung and Kwok [582] in
the case β < 0. Atlan and Leblanc [27] and Campi et al. [138, 139] present
a model where the default time is related with the first time when a CEV
process with β < 0 reaches 0.

One of the interesting properties of the CEV model is that (for β < 0) a
stock price increase implies that the variance of the stock’s return decreases
(this is known as the leverage effect). The SABR model introduced in Hagan
et al. [417, 418] to fit the volatility surface, corresponds to the case

dXt = αtX
β
t dWt, dαt = ναtdBt

where W and B are correlated Brownian motions with correlation ρ. This
model was named the stochastic alpha-beta-rho model, hence the acronym
SABR.

6.4.1 Particular Case μ = 0

Let S follow the dynamics

dSt = σS1+β
t dWt

which is the particular case μ = 0 in (6.4.1). Let T0(S) = inf{t : St = 0}.

� Case β > 0. We define Xt = 1
σβS

−β
t for t < T0(S) and Xt = ∂, where ∂

is a cemetery point for t ≥ T0(S). The process X satisfies

dXt =
1
2
β + 1
β

1
Xt
dt− dWt

=
(

ν +
1
2

)
1
Xt
dt− dWt .

It is a Bessel process of index ν = 1/(2β) (and dimension δ = 2+ 1
β > 2). The

process X does not reach 0 and does not explode, hence the process S enjoys
the same properties. From St = (σβXt)−1/β = kX−2ν

t , we deduce that the
process S is a strict local martingale (see Table 6.1, page 338). The density of
the r.v. St is obtained from the density of a Bessel process (6.2.3):

Px(St ∈ dy) =
1

σ2βt
x1/2y−2β−3/2 exp

(

−x
−2β + y−2β

2σ2β2t

)

Iν

(
x−βy−β

σ2β2t

)

dy .
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The functions Φλ↑ and Φλ↓ are

Φλ↑(x) =
√
xKν

(
x−β

σβ

√
2λ
)

, Φλ↓(x) =
√
xIν

(
x−β

σβ

√
2λ
)

with ν = 1/(2β).

� Case β < 0. One defines Xt = − 1
σβS

−β
t and one checks that, on the set

t < T0(S),

dXt = dWt +
1
2
β + 1
β

1
Xt
dt .

Therefore, X is a Bessel process of negative index 1/(2β) which reaches 0,
hence S reaches 0 too.

The formula for the density of the r.v. Xt is still valid as long as the
dimension δ of the Bessel process X is positive, i.e., for δ = 2 + 1

β > 0 (or
β < −1

2 ) and one obtains

Px(St ∈ dy) =
1

σ2(−β)t
x1/2y−2β−3/2 exp

(

−x
−2β + y−2β

2σ2β2t

)

Iν

(
x−βy−β

σ2β2t

)

dy .

For −1
2 < β < 0, the process X with negative dimension (δ < 0), reaches

0 (see Subsection 6.2.6). Here, we stop the process after it first hits 0, i.e., we
set

St = (σβXt)
1/(−β)

, for t ≤ T0(X) ,
St = 0, for t > T0(X) = T0(S) .

The density of St is now given from the one of a Bessel process of positive
dimension 4− (2+ 1

β ) = 2− 1
β , (see Subsection 6.2.6), i.e., with positive index

− 1
2β . Therefore, for any β ∈ [−1/2, 0[ and y > 0,

Px(St ∈ dy) =
x1/2y−2β−3/2

σ2(−β)t
exp
(

−x
−2β + y−2β

2σ2β2t

)

I|ν|

(
x−βy−β

σ2β2t

)

dy .

It is possible to prove that

Φλ↑(x) =
√
xI|ν|

(
x−β

σ|β|
√

2λ
)

, Φλ↓(x) =
√
xK|ν|

(
x−β

σ|β|
√

2λ
)

.

In the particular case β = 1, we obtain that the solution of dSt = σS2
t dWt is

St = 1/(σRt), where R is a BES3 process.
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6.4.2 CEV Processes and CIR Processes

Let S follow the dynamics

dSt = St(μdt+ σSβ
t dWt) , (6.4.2)

where μ = 0. For β = 0, setting Yt = 1
4β2S

−2β
t , we obtain

dYt = k(θ − Yt)dt+ σ̂
√
YtdWt

with k = 2μβ, θ = σ2 2β+1
4kβ , σ̂ = −sgn(β)σ and kθ = σ2 2β+1

4β , i.e., Y follows a
CIR dynamics; hence S is the power of a (time-changed) CIR process.

� Let us study the particular case k > 0, θ > 0, which is obtained either for
μ > 0, β > 0 or for μ < 0, β < −1/2.

In the case μ > 0, β > 0, one has kθ ≥ σ2/2 and the point 0 is not reached
by the process Y . In the case β > 0, from S2β

t = 1
4β2Yt

, we obtain that S does
not explode and does not reach 0.

In the case μ < 0, β < −1/2, one has 0 < kθ < σ2/2, hence, the point 0 is
reached and is a reflecting boundary for the process Y ; from S−2β

t = 4β2Yt,
we obtain that S reaches 0 and is reflected.

� The other cases can be studied following the same lines (see Lemma 6.4.4.1
for related results).

Note that the change of variable Zt = 1
σ|β|S

−β
t reduces the CEV process

to a “Bessel process with linear drift”:

dZt =
(
β + 1
2βZt

− μβZt

)

dt+ dŴt

where Ŵt = −(sgnβ)Wt . Thus, such a process is the square root of a CIR
process (as proved before!).

6.4.3 CEV Processes and BESQ Processes

We also extend the result obtained in Subsection 6.4.1 for μ = 0 to the general
case.

Lemma 6.4.3.1 For β > 0, or β < −1
2 , a CEV process is a deterministic

time-change of a power of a BESQ process:
(
St = eμt

(
ρc(t)

)−1/(2β)
, t ≥ 0

)
(6.4.3)

where ρ is a BESQ with dimension δ = 2 + 1
β and c(t) = βσ2

2μ (e2μβt − 1).
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If 0 > β > −1
2

(
St = eμt

(
ρc(t)

)−1/(2β)
, t ≤ T0

)

where T0 is the first hitting time of 0 for the BESQ ρ.
For any β and y > 0, one has

Px(St ∈ dy) =
|β|
c(t)

eμ(2β+1/2)t exp
(

− 1
2c(t)

(
x−2β + y−2βe2μβt

)
)

× x1/2y−2β−3/2 I1/(2β)

(
1
γ(t)

x−βy−βeμβt
)

dy .

Proof: This follows either by a direct computation or by using the fact that
the process Y = 1

4β2S
−2β is a CIR(k, θ) process which satisfies

Yt = e−ktρ(σ2 e
kt − 1
4k

), t ≥ 0 ,

where ρ(·) is a BESQ process with index 2kθ
σ2 − 1 = 1

2β . This implies that

St = eμt
(

4β2ρ

(

σ2 e
2μβt − 1
8βμ

))−1/(2β)

, t ≥ 0 .

It remains to transform ρ by scaling to obtain formula (6.4.3). The density
of the r.v. St follows from the knowledge of densities of Bessel processes with
negative dimensions (see Proposition 6.2.6.3). �

Proposition 6.4.3.2 Let S be a CEV process starting from x and introduce
δ = 2 + 1

β . Let χ2(δ, α; ·) be the cumulative distribution function of a χ2

law with δ degrees of freedom, and non-centrality parameter α (see Exercise
1.1.12.5). We set c(t) = βσ2

2μ (e2μβt − 1) and ŷ = 1
c(t)y

−2βe2μβt.
For β > 0, the cumulative distribution function of St is

Px(St ≤ y) = 1 − χ2

(

δ,
x−2β

c(t)
; ŷ
)

= 1 −
∞∑

n=1

g

(

n,
x−2β

2c(t)

)

G

(

n+
1
2β
,

1
2c(t)

y−2βe2μβt
)

where

g(α, u) =
uα−1

Γ (α)
e−u, G(α, u) =

∫

v≥u

g(α, v)1v≥0dv .

For −1
2 > β ( i.e., δ > 0, β < 0) the cumulative distribution function of

St is
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Px(St ≤ y) = χ2

(

δ,
x−2β

c(t)
; ŷ
)

.

For 0 > β > −1
2 (i.e., δ < 0), the cumulative distribution function of St is

Px(St ≤ y) = 1 −
∞∑

n=1

g(n− 1
2β
,

1
2c(t)

x−2β) G
(

n,
1

2c(t)
y−2βe2μβt

)

.

Proof: Let δ = 2 + 1
β , x0 = x−2β and c(t) = βσ2

2μ (e2μβt − 1).

� If ρ is a BESQδ
x with δ ≥ 0, then ρt

law= tY , where Y law= χ2(δ,
x

t
) (see

Remark 6.2.2.1). Hence, ρc(t)
law= c(t)Z, where Z law= χ2

(

2 + 1
β ,
x−2β

2c(t)

)

. The

formula given in the Proposition follows from a standard computation.

� For δ < 0 (i.e., 0 > β > −1/2), from Lemma 6.2.6.1

Px(St ≥ y, T0(S) ≥ t) = Q
δ
x0

(ρc(t) ≥ (e−μty)−2β1{c(t)<T0(ρ)})

= xQ
4−δ
x0

(
(ρc(t))1/(2β)1{ρ(c(t))≥(e−μty)−2β}

)
.

Setting w = 1
2c(t)y

−2βe2μβt and z = 1
2c(t)x

−2β

Px(St ≥ y) = x(c(t))1/(2β)
E

(
Z1/(2β)1{Z≥2w}

)

= xe−z(2c(t))1/(2β)
∞∑

n=0

zn

n!Γ (n+ 1 − 1/(2β))

∫

v≥w

vne−vdv

= e−z
∞∑

n=0

zn−
1
2β

n!Γ (n+ 1 − 1/(2β))

∫

v≥w

vne−vdv

=
∞∑

n=0

g

(

1 + n− 1
2β
, z

)

G(n+ 1, w) =
∞∑

n=1

g

(

n− 1
2β
, z

)

G(n,w) .

�

6.4.4 Properties

From the results on Bessel processes, we obtain (recall that in the case of
negative dimension we stop the processes at level 0).

Lemma 6.4.4.1 For β < 0, the boundary {0} is reached a.s..
For β < −1/2, {0} is instantaneously reflecting.
For −1/2 < β < 0, {0} is an absorbing point.
For 0 < β, {0} is an unreachable boundary.
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From the knowledge of the density of ST , we can check that, for x > 0

Px(ST > 0) =
{
γ(−ν, ζ(T ))/Γ (−ν), β < 0

1, β > 0 ,

Ex(ST ) =
{

xeμT , β < 0
xeμT γ(ν, ζ(T ))/Γ (ν) β > 0

where ν = 1/(2β), γ(ν, ζ) =
∫ ζ
0
tν−1e−tdt is the incomplete gamma function,

and

ζ(T ) =

⎧
⎪⎨

⎪⎩

μ

βσ2(e2μβT − 1)
x−2β , μ = 0

1
2β2σ2T

x−2β , μ = 0 .

Note that, in the case β > 0, the expectation of e−μTST is not S0, hence, the
process (e−μtSt, t ≥ 0) is a strict local martingale. We have already noticed
this fact in Subsection 6.4.1 devoted to the study of the case μ = 0, using the
results on Bessel processes.

Using (6.2.9), we deduce:

Proposition 6.4.4.2 Let X be a CEV process, with β > −1. Then

Px(T0 < t) = G

(
−1
2β
, ζ(t)

)

.

6.4.5 Scale Functions for CEV Processes

The derivative of the scale function and the density of the speed measure are

s′(x) =

⎧
⎨

⎩

exp
(

μ
σ2βx

−2β
)
, β = 0

x−2μ/σ2
β = 0

and

m(x) =

⎧
⎨

⎩

2σ−2x−2−2β exp
(
− μ

σ2βx
−2β
)
, β = 0

2σ−1x−2+2μ/σ2
β = 0 .

The functions Φλ↓ and Φλ↑ are solutions of

1
2
σ2x2+2βu′′ + μxu′ − λu = 0

and are given by:
� for β > 0,

Φλ↑(x) = xβ+1/2 exp
( ε

2
cx−2β

)
Wk,n(cx−2β),

Φλ↓(x) = xβ+1/2 exp
( ε

2
cx−2β

)
Mk,n(cx−2β),
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� for β < 0,

Φλ↑(x) = xβ+1/2 exp
( ε

2
cx−2β

)
Mk,n(cx−2β) ,

Φλ↓(x) = xβ+1/2 exp
( ε

2
cx−2β

)
Wk,n(cx−2β) ,

where

c =
|μ|

|β|σ2
, ε = sign(μβ) ,

n =
1

4|β| , k = ε

(
1
2

+
1
4β

)

− λ

2|μβ| ,

andW andM are the classical Whittaker functions (see � Subsection A.5.7).

6.4.6 Option Pricing in a CEV Model

European Options

We give the value of a European call, first derived by Cox [205], in the case
where β < 0. The interest rate is supposed to be a constant r. The previous
computation leads to

EQ(e−rT (ST −K)+) = S0

∞∑

n=1

g(n, z)G
(

n− 1
2β
,w

)

−Ke−rT
∞∑

n=1

g

(

n− 1
2β
, z

)

G(n,w)

where g,G are defined in Proposition 6.4.3.2 (with μ = r), z = 1
2c(T )S

−2β
0 and

w = 1
2c(T )K

−2βe2rβT .
In the case β > 0,

EQ(e−rT (ST −K)+) = S0

∞∑

n=1

g

(

n+
1
2β
, z

)

G(n,w)

−Ke−rT
∞∑

n=1

g(n, z)G
(

n+
1
2β
,w

)

.

We recall that, in that case (Ste−rt, t ≥ 0) is not a martingale, but a strict
local martingale.

Barrier and Lookback Options

Boyle and Tian [121] and Davydov and Linetsky [225] study barrier and
lookback options.

See Lo et al. [601], Schroder [772], Davydov and Linetsky [227] and
Linetsky [592, 593] for option pricing when the underlying asset follows a
CEV model.
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Perpetual American Options

The price of a perpetual American option can be obtained by solving the
associated PDE. The pair (b, V ) (exercise boundary, value function) of an
American perpetual put option satisfies

σ2

2
x2(β+1)V ′′(x) + rxV ′(x) = rV (x), x > b

V (x) ≥ (K − x)+

V (x) = K − x, for x ≤ b

V ′(b) = −1 .

The solution is

V (x) = Kx

∫ ∞

x

1
y2

exp
(

r

σ2β
(y−2β − b−2β)

)

dy, x > b

where b is the unique solution of the equation V (b) = K − b. (See Ekström
[295] for details and properties of the price.)

6.5 Some Computations on Bessel Bridges

In this section, we present some computations for Bessel bridges, which are
useful in finance. Let t > 0 and P

δ be the law of a δ-dimensional Bessel process
on the canonical space C([0, t],R+) with the canonical process now denoted
by (Rt, t ≥ 0). There exists a regular conditional distribution for P

δ
x( � |Rt),

namely a family P
δ,t
x→y of probability measures on C([0, t],R+) such that for

any Borel set A

P
δ
x(A) =

∫
P
δ,t
x→y(A)μt(dy)

where μt is the law of Rt under P
δ
x. A continuous process with law P

δ,t
x→y is

called a Bessel bridge from x to y over [0, t].

6.5.1 Bessel Bridges

Proposition 6.5.1.1 For a Bessel process R, for each pair (ν, μ) ∈ R
+×R

+,
and for each t > 0, one has

P
(ν)
x [exp( − μ2

2

∫ t

0

ds

R2
s

)|Rt = y] =
Iγ(xy/t)
Iν(xy/t)

, (6.5.1)

where γ =
√
ν2 + μ2.

Equivalently, for a squared Bessel process, for each pair (ν, μ) ∈ R
+ ×R

+,
and for each t > 0, one has
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Q
(ν)
x

[

exp
(

− μ2

2

∫ t

0

ds

ρs

)

|ρt = y

]

=
Iγ(

√
xy/t)

Iν(
√
xy/t)

, (6.5.2)

and, for any b ∈ R,

Q
(ν)
x

[

exp
(

−b
2

2

∫ t

0

ρsds

)

|ρt = y

]

(6.5.3)

=
bt

sinh(bt)
exp
{
x+ y

2t
(1 − bt coth bt)

}
Iν [b

√
xy/sinh bt]

Iν [
√
xy/t]

.

Proof: On the one hand, from (6.2.3) and (6.2.10), for any a > 0 and any
bounded Borel function f ,

P
(ν)
x

[

f(Rt) exp
(

−μ
2

2

∫ t

0

ds

R2
s

)]

= P
(γ)
x

[(
Rt

x

)ν−γ

f(Rt)

]

=
∫ ∞

0

dy
(y
x

)ν−γ

f(y)
y

t

(y
x

)γ
exp
(

−x
2 + y2

2t

)

Iγ(xy/t) .

On the other hand, from (6.2.3), this expression equals

∫ ∞

0

dyf(y)P(ν)
x

[

exp
(

−μ
2

2

∫ t

0

ds

R2
s

)

|Rt = y

]
y

t

(y
x

)ν
exp
(

−x
2 + y2

2t

)

Iν(xy/t)

and the result follows by identification. The squared Bessel bridge case follows
from (6.2.14) and the knowledge of transition probabilities. �

Example 6.5.1.2 The normalized Brownian excursion |B|[g1,d1] is a BES3

bridge from x = 0 to y = 0 with t = 1 (see equation (4.3.1) for the notation).

6.5.2 Bessel Bridges and Ornstein-Uhlenbeck Processes

We shall apply the previous computation in order to obtain the law of hitting
times for an OU process. We have studied OU processes in Subsection 2.6.3.
Here, we are concerned with hitting time densities for OU processes with
parameter k:

dXt = dWt − kXtdt .

Proposition 6.5.2.1 Let X be an OU process starting from x and T0(X) its
first hitting time of 0: T0(X) : = inf{t : Xt = 0}.

Then Px(T0(X) ∈ dt) = f(x, t)dt, where

f(x, t) =
|x|√
2π

exp
(
kx2

2

)

exp
(
k

2
(t− x2 coth(kt))

) (
k

sinh(kt)

)3/2

.
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Proof: The absolute continuity relationship established in Subsection 2.6.3
reads

P
k,0
x |Ft = exp

[

−k
2
(W 2

t − t− x2) − k2

2

∫ t

0

W 2
s ds

]

Wx|Ft

and holds with the fixed time t replaced by the stopping time Ta, restricted
to the set Ta <∞, leading to

P
k,0
x (Ta ∈ dt) = exp

[

−k
2
(a2 − t− x2)

]

Wx

(

1{Ta∈dt} exp
(

−k
2

2

∫ t

0

W 2
s ds

))

.

Hence,

P
k,0
x (Ta ∈ dt) = exp

[

−k
2
(a2 − t− x2)

]

× Wa−x

(

1{T0∈dt} exp
(

−k
2

2

∫ t

0

(a−Ws)2ds
))

.

Let us set y = |a − x|. Under Wy, the process (Ws, s ≤ T0) conditioned by
T0 = t is a BES3 bridge of length t, starting at y and ending at 0, therefore

Wa−x

(

1{T0∈dt} exp
(

−k
2

2

∫ t

0

(a−Ws)2ds
))

= P
3
y

[

exp
(

−k
2

2

∫ t

0

(a− εRs)2ds
)∣
∣
∣
∣Rt = 0

]

Wy(T0 ∈ dt)

where ε = sgn(a− x). For a = 0, the computation reduces to that of

P
3
y

[

exp
(

−k
2

2

∫ t

0

R2
sds

)∣
∣
∣
∣Rt = 0

]

which, from (6.5.3) and (A.5.3) is equal to
(

kt

sinh(kt)

)3/2

exp
(

−y
2

2t
(kt coth(kt) − 1)

)

.

�

Comment 6.5.2.2 The law of the hitting time for a general level a requires
the knowledge of the joint law of

(∫ t
0
Rsds,

∫ t
0
R2

sds
)

under the BES3-bridge
law. See Alili et al. [10], Göing-Jaeschke and Yor [397] and Patie [697].

Exercise 6.5.2.3 As an application of the absolute continuity relationship
(6.3.3) between a BESQ and a CIR, prove that

k
Q

δ,t
x→y =

exp
(

−k
2

2

∫ t

0

ρsds

)

Q
δ,t
x→y

[

exp
(

−k
2

2

∫ t

0

ρsds

)]Q
δ,t
x→y (6.5.4)
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where k
Q

δ,(t)
x→y denotes the bridge for (ρu, 0 ≤ u ≤ t) obtained by conditioning

k
Q

δ
x by (ρt = y). For more details, see Pitman and Yor [716]. �

6.5.3 European Bond Option

Let P (t, T ∗) = B(rt, T ∗ − t) be the price of a zero-coupon bond maturing at
time T ∗ when the interest rate (rt, t ≥ 0) follows a risk-neutral CIR dynamics,
where B(r, s) = exp[−A(s) − rG(s)]. The functions A and G are defined in
Corollary 6.3.4.3. The price CEB of a T -maturity European call option on a
zero-coupon bond maturing at time T ∗, where T ∗ > T , with a strike price
equal to K is

CEB(rt, T − t) = EQ

[

exp

(

−
∫ T

t

rsds

)

(P (T, T ∗) −K)+ |Ft

]

.

We present the computation of this quantity.

Proposition 6.5.3.1 Let us assume that the risk-neutral dynamics of r are

drt = k(θ − rt)dt+ 2
√
rtdWt , r0 = x .

Then,
CEB(r, T − t) = B(r, T ∗ − t) Ψ1 −KB(r, T − t)Ψ2 (6.5.5)

where

Ψ1 = χ2

(
4kθ
σ2

,
2φ2r exp(γ(T ∗ − t))
φ+ ψ +G(T ∗ − T )

; 2r∗(φ+ ψ +G(T ∗ − T ))
)

,

Ψ2 = χ2

(
4kθ
σ2

,
2φ2r exp(γ(T ∗ − t))

φ+ ψ
; 2r∗(φ+ ψ)

)

,

φ =
2γ

σ2(exp(γ(T ∗ − t)) − 1)
, ψ =

k + γ

σ2
,

γ =
√
k2 + 2σ2 , r∗ = −A(T ∗ − T ) + ln(K)

G(T ∗ − T )
.

Here, χ2 is the non-central chi-squared distribution function defined in
Exercise 1.1.12.5. The real number r∗ is the critical interest rate defined by
K = B(r∗, T ∗−T ) for T ∗ > T below which the European call will be exercised
at maturity T .

Finally notice that K is constrained to be strictly less than A(T ∗ − T ), the
maximum value of the discount bond at time T , otherwise exercising would
of course never be done.
Proof: From P (T, T ∗) = B(rT , T ∗ − T ), we obtain
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CEB(x, T ) = EQ

[

exp

(

−
∫ T

0

rsds

)

P (T, T ∗)1{rT ≤r∗}

]

−KEQ

[

exp

(

−
∫ T

0

rsds

)

1{rT ≤r∗}

]

,

where B(r∗, T ∗ − T ) = K, that is

r∗ = −A(T ∗ − T ) + lnK
G(T ∗ − T )

.

We observe now that the processes

L1(t) = (P (0, T ))−1 exp
(

−
∫ t

0

rsds

)

P (t, T )

L2(t) = (P (0, T ∗))−1 exp
(

−
∫ t

0

rsds

)

P (t, T ∗)

are positive Q-martingales with expectations equal to 1, from the definition
of P (t, ·). Hence, using change of numéraire techniques, we can define two
probabilities Q1 and Q2 by

Qi|Ft = Li(t) Q|Ft , i = 1, 2.

Therefore,

CEB(x, T ) = P (0, T ∗)Q2(rT ≤ r∗) −KP (0, T )Q1 (rT ≤ r∗) .

We characterize the law of the r.v. rT under Q1 from its Laplace transform

EQ1(e
−λrT ) = EQ

(

e−λrT exp

(

−
∫ T

0

rsds

))

(P (0, T ))−1 .

From Corollary 6.3.4.3,

EQ1(e
−λrT ) = exp (−Aλ,1 +A0,1 − x(Gλ,1 −G0,1)) .

Let c̃1 =
σ2

2
eγT − 1
D

with D = γ(eγT + 1) + k(eγT − 1) . Then,

exp (−Aλ,1 +A0,1) =
(

1
1 + 2λc̃1

)2kθ/σ2

.

Some computations and the equality γ2 = k2 + 2σ2 yield

Gλ,1 −G0,1 =
λ

D2(1 + 2λc̃1)
[
D(γ + k + eγT (γ − k)) − 2σ2(eγT − 1)2

]

=
λ

D2(1 + 2λc̃1)
[
γ2(eγT + 1)2 − k2(eγT − 1)2 − 2σ2(eγT − 1)2

]

= λ
4γ2eγT

D(1 + 2λc̃1)
= λ

c̃1x̃1

(1 + 2λc̃1)
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where

x̃1 =
8xγ2eγT

σ2(eγT − 1)[γ(eγT + 1) + k(eγT − 1)]
.

Hence,

EQ1(e
−λrT ) =

(
1

2λc̃1 + 1

)2kθ/σ2

exp
(

− λc̃1x̃1

2λc̃1 + 1

)

and, from Corollary 6.3.4.4, the r.v. rT /c̃1 follows, under Q1, a χ2 law with
2kθ/σ2 degrees of freedom and non-centrality x̃1.

The same kind of computation establishes that the r.v. rT /c̃2 follows, under
Q2, a χ2 law with parameters c̃2, x̃2 given by

c̃2 =
σ2

2
eγT − 1

γ(eγT + 1) + (k + σ2G(T ∗ − T ))(eγT − 1)
,

x̃2 =
8xγ2eγT

σ2(eγT − 1) (γ(eγT + 1) + (k + σ2G(T ∗ − T ))(eγT − 1))
.

�

Comment 6.5.3.2 Maghsoodi [615] presents a solution of bond option
valuation in the extended CIR term structure.

6.5.4 American Bond Options and the CIR Model

Consider the problem of the valuation of an American bond put option in the
context of the CIR model.

Proposition 6.5.4.1 Let us assume that

drt = k(θ − rt)dt+ σ
√
rtdWt , r0 = x . (6.5.6)

The American put price decomposition reduces to

PA(r, T − t) = PE(r, T − t) (6.5.7)

+KEQ

[∫ T

t

exp
(

−
∫ u

t

rsds

)

ru1{ru≥b(u)}du
∣
∣
∣rt = r

]

where Q is the risk-neutral probability and b(·) is the put exercise boundary.

Proof: We give a decomposition of the American put price into two
components: the European put price given by Cox-Ingersoll-Ross, and the
American premium. We shall proceed along the lines used for the American
stock options. Let t be fixed and denote

Rt
u = exp

(

−
∫ u

t

rv dv

)

.
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We further denote by PA(r, T−u) the value at time u of an American put with
maturity T on a zero-coupon bond paying one monetary unit at time T ∗ with
T ≤ T ∗. In a similar way, to the function F defined in the context of American
stock options, PA is differentiable and only piecewise twice differentiable in
the variable r. Itô’s formula leads to

Rt
TPA(rT , 0) = PA(rt, T − t) +

∫ T

t

Rt
u L(PA)(ru, T − u) du

−
∫ T

t

Rt
u(ruPA(ru, T − u) − ∂uPA(ru, T − u) )du

+
∫ T

t

Rt
u ∂rPA(ru, T − u)σ

√
rudWu (6.5.8)

where the infinitesimal generator L of the process solution of equation (6.5.6)
is defined by

L =
1
2
σ2r

∂2

∂r2
+ k(θ − r)

∂

∂r
.

Taking expectations and noting that the stochastic integral on the right-hand
side of (6.5.8) has 0 expectation, we obtain

EQ(Rt
TPA(rT , 0)|Ft) = PA(rt, T − t) + EQ

(∫ T

t

Rt
uL(PA)(ru, T − u) du|Ft

)

+ EQ

(∫ T

t

Rt
u(ruPA(ru, T − u) − ∂uPA(ru, T − u))du|Ft

)

. (6.5.9)

In the continuation region, PA satisfies the same partial differential equation
as the European put

A(r, T − u) : = L(PA)(r, T − u) + rPA(r, T − u) − ∂uPA(r, T − u)) = 0,
∀u ∈ [t, T [,∀r ∈]0, b(u)]

where b(u) is the level of the exercise boundary at time u:

b(u) : = inf{α ∈ R
+ |PA(α, T − u) = K −B(α, T − u)}

Here, B(r, s) = exp(−A(s) − rG(s)) determines the price of the zero-coupon
bond with time to maturity s and current value of the spot interest rate r (see
Corollary 6.3.4.3). Therefore, the quantity A(r, T − u) is different from zero
only in the stopping region, i.e., when ru ≥ b(u), or, since B is a decreasing
function of r (the function G is positive), when B(ru, T −u) ≤ B(b(u), T −u).
Equation (6.5.9) can be rewritten

EQ

(
Rt

T (K −B(rT , T ∗ − T ))+|Ft

)
= PA(rt, T − t)

+ EQ

(∫ T

t

Rt
u (−L(B(ru, T − u)) + ru(K −B(ru, T − u))

+ ∂uB(ru, T − u)) 1{ru≥b(u)}du|rt = r
)
. (6.5.10)
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Another way to derive the latter equation from equation (6.5.9) makes use of
the martingale property of the process

Rt
uPA(ru, T − u), u ∈ [t, T ]

under the risk-adjusted probability Q, in the continuation region. Notice that
the bond value satisfies the same PDE as the bond option. Therefore

−L(B(ru, T − u)) + ru(K −B(ru, T − u)) + ∂uB(ru, T − u) = 0 .

Finally, equation (6.5.10) can be rewritten as follows

PA(r, T − t) = PE(r, T − t) +K

∫ T

t

EQ

(
Rt

uru1{ru≥b(u)}|Ft

)
du .

�

Jamshidian [474] computed the early exercise premium given by the latter
equation, using the forward risk-adjusted probability measure. Under this
equivalent measure, the expected future spot rate is equal to the forward rate,
and the expected future bond price is equal to the future price. This enables
the discount factor to be pulled out of the expectation and the expression for
the early exercise premium to be simplified.

Here, we follow another direction (see Chesney et al. [171]) and show how
analytic expressions for the early exercise premium and the American put
price can be derived by relying on known properties of Bessel bridges [716].
Let us rewrite the American premium as follows

EQ

(∫ T

t

Rt
uru1{ru≥b(u)}du

∣
∣
∣ rt = r

)

= EQ

(∫ T

t

duEQ

(
Rt

u|ru
)
ru1{ru≥b(u)}

∣
∣
∣ rt = r

)

.

The probability density of the interest rate ru conditional on its value at
time t is known. Therefore, the problem of the valuation of the American
premium rests on the computation of the inner expectation. More generally
let us consider the following Laplace transform (as in Scott [777])

EQ

(
Rt

u

∣
∣ rt, ru

)
.

Defining the process Z by a simple change of time

Zs = r4s/σ2 , (6.5.11)

we obtain

EQ

(
Rt

u

∣
∣(rt, ru)

)

= EQ

(

exp

(

− 4
σ2

∫ uσ2/4

tσ2/4

Zvdv

)
∣
∣Z

(
tσ2

4

)

, Z

(
uσ2

4

))

.
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In the risk-adjusted economy, the spot rate is given by the equation (6.3.2)
and from the time change (6.5.11), the process Z is a CIR process whose
volatility is equal to 2. Setting δ = 4kθ

σ2 , κ = − 4k
σ2 , we obtain

dZt = (κZt + δ) dt+ 2
√
ZtdWt ,

where (Wt, t ≥ 0) is a Q-Brownian motion. We now use the absolute
continuity relationship (6.5.4) between CIR bridges and Bessel bridges, where
the notation κ

Q
δ,T
x→y is defined

E
[
Rt

u

∣
∣ rt = x, ru = y

]

= κ
Q

δ,σ2(u−t)/4
x→y

[

exp

(

− 4
σ2

∫ uσ2/4

tσ2/4

Zsds

)]

=

Q
δ,σ2(u−t)/4
x→y

[

exp

(

−
(

4
σ2

+
κ2

2

)∫ uσ2/4

tσ2/4

Zsds

)]

Q
δ,σ2(u−t)/4
x→y

[

exp

(

−κ
2

2

∫ uσ2/4

tσ2/4

Zsds

)] .

From the results (6.5.3) on Bessel bridges and some obvious simplifications

E

[

exp
(

−
∫ u

t

rsds

)∣
∣
∣
∣ rt = x, ru = y

]

=
c sinh(κγ) exp

(
x+ y

2γ
(1 − cγ coth(cγ))

)

Iν

(
c
√
xy

sinh cγ

)

κ sinh(cγ) exp
(
x+ y

2γ
(1 − κγ coth(κγ))

)

Iν

(
κ
√
xy

sinhκγ

)

: = m(x, t, y, u)

where γ = σ2(u−t)
4 , ν = δ

2 − 1, c =
√

8
σ2 + κ2 and Iν is the modified Bessel

function. We obtain the American put price

PA(r, T−t) = PE(r, T−t)+K
∫ T

t

du

∫ ∞

b(u)

m(r, t, y, u) fu−t(r, y)dy , (6.5.12)

where f is the density defined in Proposition 6.3.2.1.
Note that, as with formula (6.5.7), formula (6.5.12) necessitates, in order

to be implemented, knowledge of the boundary b(u).

6.6 Asian Options

Asian options on the underlying S have a payoff, paid at maturity T , equal
to ( 1

T

∫ T
0
Su du−K)+. The expectation of this quantity is usually difficult to
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evaluate. The fact that the payoff is based on an average price is an attractive
feature, especially for commodities where price manipulations are possible.
Furthermore, Asian options are often cheaper than the vanilla ones. Here, we
work in the Black and Scholes framework where the underlying asset follows

dSt = St(rdt+ σdWt) ,

or
St = S0 exp[σ(Wt + νt)] ,

where W is a BM under the e.m.m. The price of an Asian option is

CAsian(S0,K) = E

⎛

⎝e−rT

(
S0

T

∫ T

0

eσ(Ws+νs) ds−K

)+
⎞

⎠ .

For any real ν, we denote A(ν)
T =

∫ T
0

exp[2(Ws + νs)]ds and AT = A
(0)
T .

The scaling property of BM leads to Ss = S0 exp(σνs) exp(2W̃σ2s/4),
where (W̃u : = σ

2W4u/σ2 , u ≥ 0) is a Brownian motion. Using W̃ , we see
that

∫ T

0

Ss ds =
4
σ2
S0

∫ σ2T/4

0

exp[2(W̃u + μu)] du law=
4
σ2
S0A

(μ)
σ2T/4

with μ =
2ν
σ

.

6.6.1 Parity and Symmetry Formulae

Assume here that
dSt = St((r − δ)dt+ σdWt) .

We denote AS
T = 1

T

∫ T
0
Sudu and CAsian

fi = CAsian
fi (S0,K; r, δ) the price of

a call Asian option with a fixed-strike, whose payoff is ( 1
T A

S
T − K)+ and

CAsian
f � = CAsian

f � (S0, λ; r, δ) the price of a call Asian option with floating strike,
with payoff (λST − 1

T A
S
T )+.

The payoff of a put Asian option with a fixed-strike is (K − 1
T A

S
T )+,

the price of this option is denoted by PAsian
fi = PAsian

fi (S0,K; r, δ). The price
of a put Asian option with floating strike, with payoff ( 1

T A
S
T − λST )+ is

PAsian
f � = PAsian

f � (S0, λ; r, δ).

Proposition 6.6.1.1 The following parity relations hold

(i) PAsian
f � = CAsian

f � +
1

(r − δ)T
(e−δT − e−rT )S0 − λS0e

−δT ,

(ii) PAsian
fi = CAsian

fi +
1

(r − δ)T
(e−δT − e−rT )S0 −Ke−rT .
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Proof: Obvious. �

We present a symmetry result.

Proposition 6.6.1.2 The following symmetry relations hold

CAsian
f � (S0, λ; r, δ) = PAsian

fi (S0, λS0; δ, r) ,

CAsian
fi (S0,K; r, δ) = PAsian

f � (S0,K/S0; , δ, r) .

Proof: This is a standard application of change of numéraire techniques.

CAsian
f � (S0, λ; r, δ) = E(e−rT (λST − 1

T
AS
T )+)

= E

⎛

⎝e−rT ST
S0
S0

(

λ− 1
T

∫ T

0

Su
ST
du

)+
⎞

⎠

= Ê

⎛

⎝e−δTS0

(

λ− 1
T

∫ T

0

Su
ST
du

)+
⎞

⎠

where P̂|FT
= e−(r−δ)T ST

S0
P|FT

. From Cameron-Martin’s Theorem, the

process Z defined as Zt = Wt − σt is a P̂-Brownian motion. From

1
T

AS
T

ST
=

1
T

∫ T

0

Su
ST
du =

1
T

∫ T

0

e(r−δ+ 1
2σ

2)(u−T )+σ(Zu−ZT )du ,

the law of AS
T

ST
under P̂ is equal to the law of

1
T

∫ T

0

e(r−δ+ 1
2σ

2)(u−T )−σZT−udu
law=

1
T

∫ T

0

e(δ−r− 1
2σ

2)s+σZsds .

The second formula is obtained using the call-put parity. �

Comment 6.6.1.3 The second symmetry formula of Proposition 6.6.1.2 is
extended to the exponential Lévy framework by Fajardo and Mordecki [339]
and by Eberlein and Papapantoleon [293]. The relation between floating and
fixed strike, due to Henderson and Wojakowski [432] is extended to the
exponential Lévy framework in Eberlein and Papapantoleon [292].

6.6.2 Laws of A
(ν)
Θ and A

(ν)
t

Here, we follow Leblanc [571] and Yor [863].
Let W be a Brownian motion, and At =

∫ t
0
e2Wsds,A†

t =
∫ t
0
eWsds. Let

f, g, h be Borel functions and

k(t) = E

(
f(At) g(A

†
t)h(e

Wt)
)
.
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Lemma 6.6.2.1 The Laplace transform of k is given by
∫ ∞

0

k(t)e−θ2t/2dt =
∫ ∞

0

du f(u)P(θ)
1

(
h(Ru)g(Ku)

R2+θ
u

)

where R is a Bessel process with index θ, starting from 1 and Kt =
∫ t
0

du
Ru

.

Proof: Let C be the inverse of the increasing process A. We have seen, in
the proof of Lamperti’s theorem (applied here in the particular case ν = 0)
that dCu = 1

R2
u
du where Ru = expWCu is a Bessel process of index 0 (of

dimension 2) starting from 1. The change of variable t = Cu leads to

ACu = t, A†
Cu

= Ku =
∫ u

0

ds

Rs
, expWCu = Ru

and
∫ ∞

0

k(t)e−θ2t/2dt = E

(∫ ∞

0

dt e−θ2t/2 f(At) g(A
†
t)h(e

Wt)
)

= E

(∫ ∞

0

du

R2
u

e−θ2Cu/2 f(u) g(Ku)h(Ru)
)

.

The absolute continuity relationship (6.1.5) leads to
∫ ∞

0

k(t)e−θ2t/2dt =
∫ ∞

0

du f(u) P
(θ)
1

(
h(Ru)g(Ku)

R2+θ
u

)

.

�

As a first corollary, we give the joint law of (expWΘ, AΘ), where Θ is an
exponential random variable with parameter θ2/2, independent of W .

Corollary 6.6.2.2

P(expWΘ ∈ dρ,AΘ ∈ du) =
θ2

2ρ2+θ
p(θ)u (1, ρ)1{u>0}1{ρ>0}dρdu

where p(θ) is the transition density of a BES(θ).

Proof: It suffices to apply the result of Lemma 6.6.2.1 with g = 1. �

We give a closed form expression for P(A(ν)
t ∈ du|Bt + νt = x). A

straightforward application of Cameron-Martin’s theorem proves that this
expression does not depend on ν and we shall denote it by a(t;x, u)du.

Proposition 6.6.2.3 If a(t;x, u)du = P(At ∈ du|Bt = x), then

1√
2πt

exp
(

−x
2

2t

)

a(t;x, u) =
1
u

exp
(

− 1
2u

(1 + e2x)
)

Ψex/u(t) (6.6.1)
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where

Ψr(t) =
r

(2π3t)1/2
exp
(
π2

2t

)

Υr(t) , (6.6.2)

Υr(t) =
∫ ∞

0

dy exp(−y2/2t) exp[−r(cosh y)] sinh(y) sin
(πy
t

)
. (6.6.3)

Proof: Consider two positive Borel functions f and g. On the one hand,

E

[∫ ∞

0

dt exp
(

−μ
2t

2

)

f(exp(Wt)) g(At)
]

=
∫ ∞

0

dt exp
(

−μ
2t

2

)∫ ∞

−∞

dx√
2πt

f(ex) exp
(

−x
2

2t

)∫ ∞

0

du g(u)a(t;x, u) .

On the other hand, from Proposition 6.6.2.2, this quantity equals
∫ ∞

0

du g(u)
∫ ∞

0

dρ

ρμ+2
f(ρ) p(μ)

u (1, ρ)

=
∫ ∞

−∞
dx exp[−(μ+ 1)x] f(ex)

∫ ∞

0

du g(u)p(μ)
u (1, ex) .

We obtain

1√
2πt

∫ ∞

0

dt exp
(

−1
2

(

μ2t+
x2

t

))

a(t;x, u) = exp (−(μ+ 1)x) p(μ)
u (1, ex) .

(6.6.4)
Using the equality

Iν(r) =
∫ ∞

0

e−
ν2u
2 Ψr(u)du ,

the explicit form of the density p
(μ)
u and the definition of Ψ , we write the

right-hand side of (6.6.4) as

1
u

exp
(

− 1
2u
(
1 + e2x

)
)∫ ∞

0

dt Ψex/u(t) exp
(

−μ
2t

2

)

.

�

Corollary 6.6.2.4 The law of A(ν)
t is P(A(ν)

t ∈ du) = ϕ(t, u)du, where

ϕ(t, u) = uν−1 1
(2π3t)1/2

exp
(
π2

2t
− 1

2u
− ν2t

2

)∫ ∞

0

dy yν exp(−1
2
uy2)Υy(t)

(6.6.5)
where Υ is defined in (6.6.3).
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Proof: From the previous proposition

P(A(ν)
t ∈ du) =

∫

R

f(t, x)a(t, x, u)dx du = ϕ(t, u)du

where

f(t, x)dx = P(Bt + νt ∈ dx) =
1√
2πt

exp
(

− 1
2t

(x− νt)2
)

dx .

Using the expression of a(t, x, u), some obvious simplifications and a change
of variable, we get

ϕ(t, u) =
1

u
√

2πt

∫ ∞

−∞
dx e−(x−νt)2/2t exp

(

−1 + e2x

2u

)

Ψex/u(t)
√

2πt ex
2/(2t)

=
1

u(2π3t)1/2
exp
(
π2

2t
− 1

2u
− ν2t

2

)∫ ∞

−∞
dx
ex(ν+1)

u
exp
(

−e
2x

2u

)

Υex/u(t)

=
1

u(2π3t)1/2
exp
(
π2

2t
− 1

2u
− ν2t

2

)∫ ∞

0

dy (yu)ν exp
(

−1
2
uy2

)

Υy(t) .

�

One can invert the Laplace transform of the pair (eWt , At) given in
Corollary 6.6.2.2 and we obtain:

Corollary 6.6.2.5 Let W be a Brownian motion and At =
∫ t
0
e2Wsds. Then,

for any positive Borel function f ,

E(f(eWt , At)) =
1

(2π3t)1/2

∫ ∞

0

dy

∫ ∞

0

dv f(y,
1
v
) e−v(1+y2)/2Υyv(t) (6.6.6)

where the function Υ was defined in (6.6.3).

Exercise 6.6.2.6 Prove that the density of the pair (exp(WΘ + νΘ), A(ν)
Θ ),

where A(ν)
t =

∫ t
0
e2(Ws+νs)ds, is

θ2

2x2+λ
xν p(λ)

a (1, x)1{x>0}1{a>0}dxda

with λ2 = θ2 + ν2. �

Proposition 6.6.2.7 Let W be a BM, At =
∫ t
0
e2Wsds and A†

t =
∫ t
0
eWsds.

The Laplace transform of (WΘ, AΘ, A
†
Θ), where Θ is an exponential random

variable with parameter θ2/2, independent of W , is

Ha,b,c(θ) = E

(

exp(−aWΘ − b2

2
AΘ − cA†

Θ)
)

=
θ2

2
41+θ

Γ (1 + θ)

∫ ∞

0

dte−ct

∫ ∞

0

dy J
y+a/4, b/2, 2θ
4 (t) yθ
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where Jx (here, x = 4) was computed in Proposition 6.2.5.3 as the Laplace
transform of the pair (ρt,

∫ t
0
ρsds) for a squared Bessel process with index ν,

starting from x as

Ja,b,ν
x (t) =

(
cosh(bt) + 2ab−1 sinh(bt)

)−ν−1
exp
(

−1
2
xb

1 + 2ab−1 coth(bt)
coth(bt) + 2ab−1

)

.

Proof: We start with the formula established in Lemma 6.6.2.1:
∫ ∞

0

k(t)e−θ2t/2dt = P
(θ)

(∫ ∞

0

du f(u)
h(Ru)g(Ku)

R2+θ
u

)

.

If R is a Bessel process with index θ, then, from Exercice 6.2.4.3 with q = 2,
Rt = 1

4 R̂
2(
∫ t
0

ds
Rs

), where R̂ is a BES with index 2θ. Using the notation of
Lemma 6.6.2.1 and introducing the inverse H of the increasing process K as
Ht = inf{u : Ku = t},

KHt = t =
∫ Ht

0

ds

Rs
.

By differentiation, we obtain dHt = RHtdt and Ht = 1
4

∫ t
0
R̂2

sds. It follows
that
∫ ∞

0

k(t)e−θ2t/2dt = 41+θ

∫ ∞

0

dt g(t) P
(2θ)

(
h(4−1R̂2

t )f(4−1
∫ t
0
R̂2

sds)

R̂
2(1+θ)
t

)

.

In particular, for f(x) = e−4bx, g(x) = e−cx and h(x) = e−4ax, we obtain

E(exp(−aWΘ − bAΘ − cA†
Θ))

= 41+θ

∫ ∞

0

dt e−ct
P

2θ

(
exp(−aR̂2

t − b
∫ t
0
R̂2

sds)

R̂
2(1+θ)
t

)

.

Using the identity r−γ = 1
Γ (γ)

∫∞
0
dy e−ryyγ−1 we transform the quantity

1
bR
2(1+θ)
t

. The initial condition R0 = 1 implies R̂0 = 2 and, denoting ρt = R̂2
t ,

P
(2θ)

(
exp(−aR̂2

t − b
∫ t
0
R̂2

sds)

R̂
2(1+θ)
t

)

=
1

Γ (1 + θ)
Q

(2θ)
4

(∫
dy yθexp(−(a+ y)ρt − b

∫ t

0

ρsds)
)

.

From 6.2.14 we know the Laplace transform of the pair (ρt,
∫ t
0
ρsds), where ρ

is a BESQ of index 2θ, starting from ρ0 = 4. �

Exercise 6.6.2.8 Check that the distribution of A(ν)
Θ is that of B/(2Γ ) where

B has a Beta(1, α) law and Γ a Gamma(β, 1) law with

α =
ν + γ

2
, β =

γ − ν

2
, γ =

√
2λ+ ν2 .

See Dufresne [282]. �
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6.6.3 The Moments of At

The moments of A(ν)
t exist because

te−2tν−+2mt ≤ A
(ν)
t ≤ te2tν

++2Mt

where mt = infs≤tWs, Mt = sups≤tWs.
Elementary arguments allow us to compute the moments of At = A

(0)
t .

Proposition 6.6.3.1 The moments of the random variable At are given by
E(An

t ) = 1
4n E(Pn(e2Wt)), where Pn is the polynomial

Pn(z) = 2n(−1)n

⎛

⎝ 1
n!

+ 2
n∑

j=1

n!(−z)j
(n− j)! (n+ j)!

⎞

⎠ .

Proof: Let μ ≥ 0 and λ > ϕ(μ+ n), where ϕ(x) = 1
2x

2. Then,

Φn(t, μ) : = E

((∫ t

0

ds eWs

)n

eμWt

)

= n!
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsnE [exp(Ws1 + · · · +Wsn + μWt)] .

The expectation under the integral sign is easily computed, using the
independent increments property of the BM as well as the Laplace transform

E [exp(Ws1 + · · · +Wsn + μWt)] =

exp [ϕ(μ)(t− s1) + ϕ(μ+ 1)(s1 − s2) + · · · + ϕ(μ+ n)sn)] .

It follows, by integrating successively the exponential functions that

∫ ∞

0

dte−λt
E

[(∫ t

0

ds eWs

)n

eμWt

]

=
n!

n∏

j=0

(λ− ϕ(μ+ j))

.

Setting, for fixed j, c(μ)
j =

∏

0≤k �=j≤n

(
ϕ(μ + j) − ϕ(μ + k)

)−1, the use of the

formula
1

∏n
j=0(λ− ϕ(μ+ j))

=
n∑

j=0

cj(μ)
1

λ− ϕ(μ+ j)

and the invertibility of the Laplace transform lead to

E

[(∫ t

0

ds eWs

)n

eμWt

]

= E(eμWtP (μ)
n (eWt))
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where P (μ)
n is the sequence of polynomials

P (μ)
n (z) = n!

n∑

j=0

c
(μ)
j zj .

In particular, we obtain

E

[(∫ t

0

dseWs

)n
]

= E(P (0)
n (eWt))

and, from the scaling property of the BM,

α2n
E

[(∫ t

0

dseαWs

)n
]

= E(P (0)
n (eαWt)) .

�
Therefore, we have obtained the moments of A(0)

t . The general case follows
using Girsanov’s theorem.

E([A(ν)
t ]n) =

n!
22n

⎛

⎝
n∑

j=0

c
(ν/2)
j exp

[
(2j2 + 2jν)t

]
⎞

⎠ .

Nevertheless, knowledge of the moments is not enough to characterize the
law of At. Recall the following result:

Proposition 6.6.3.2 (Carleman’s Criterion.) If a random variable X
satisfies

∑
(m2n)−1/2n = ∞ where m2n = E(X2n), then its distribution is

determined by its moments.

However, this criterion does not apply to the moments of A(ν)
t (see Geman

and Yor [383]). The moments of At do not characterize its law (see Hörfelt
[446] and Nikeghbali [673]). On the other hand, Dufresne [279] proved that
the law of 1/A(ν)

t is determined by its moments. We recall that the log-normal
law is not determined by its moments.

Comment 6.6.3.3 A computation of positive and negative moments can
be found in Donati-Martin et al. [259]. See also Dufresne [279, 282],
Ramakrishnan [728] and Schröder [771].

6.6.4 Laplace Transform Approach

We now return to the computation of the price of an Asian option, i.e., to the
computation of

Ψ(T,K) = E

⎡

⎣

(∫ T

0

exp[2(Ws + μs)] ds−K

)+
⎤

⎦ . (6.6.7)
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Indeed, as seen in the beginning of Section 6.6, one can restrict attention to
the case σ = 2 since

CAsian(S0,K) = e−rT S0

T
E

⎡

⎣

(∫ T

0

eσ(Ws+νs) ds− KT

S0

)+
⎤

⎦

= e−rT 4S0

σ2T
Ψ

(
σ2T

4
,
KTσ2

4S0

)

.

The Geman and Yor method consists in computing the Laplace transform
(with respect to the maturity) of Ψ , i.e.,

Φ(λ) =
∫ ∞

0

dt e−λtΨ(t,K) = E

[∫ ∞

0

dt e−λt

(∫ t

0

e2(Ws+μs) ds−K

)+
]

= E

(∫ ∞

0

dt e−λt(A(μ)
t −K)+

)

.

Lamperti’s result (Theorem 6.2.4.1) and the change of time A
(μ)
t = u yield

to

Φ(λ) = P
(μ)
1

[∫ ∞

0

du e−λCu
1

(Ru)2
(u−K)+

]

where C is the inverse of A. From the absolute continuity of Bessel laws (6.1.5)

P
(μ)
1 |Ft =

(
Rt

)μ−γ exp
(

−μ
2 − γ2

2
Ct

)

P
(γ)
1 |Ft

with γ given by λ = 1
2 (γ2 − μ2) and

Φ(λ) = P
(γ)
1

(∫ ∞

0

du
1

R2+γ−μ
u

(u−K)+
)

.

The transition density of a Bessel process, given in (6.2.3), now leads to

Φ(λ) =
∫ ∞

K

du
u−K

u

∫ ∞

0

dρ

ρ1−μ
exp
(

−1 + ρ2

2u

)

Iμ(
ρ

u
) .

It remains to invert the Laplace transform. �

Comment 6.6.4.1 Among the papers devoted to the study of the law of
the integral of a geometric BM and Asian options we refer to Buecker and
Kelly-Lyth [135], Carr and Schröder [156], Donati-Martin et al. [258], Dufresne
[279, 280, 282], Geman and Yor [382, 383], Linetsky [594], Lyasoff [606], Yor
[863], Schröder [767, 769], and Vec̆er̆ and Xu [827]. Nielsen and Sandmann
[672] study the pricing of Asian options under stochastic interest rates. In
this book, we shall not consider Asian options on interest rates. A reference
is Poncet and Quittard-Pinon [722].
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Exercise 6.6.4.2 Compute the price of an Asian option in a Bachelier
framework, i.e., compute

E

⎛

⎝

(∫ T

0

(νs+ σWs)ds−K

)+
⎞

⎠ .

�

Exercise 6.6.4.3 Prove that, for fixed t,

A
(ν)
t

law=
∫ t

0

e2(ν(t−s)+Wt−Wsds : = Y
(ν)
t

and that, as a process

dY
(ν)
t = (2(ν + 1)Y (ν)

t + 1)dt+ 2Y (ν)
t dWt .

See Carmona et al. [141], Donati-Martin et al. [258], Dufresne [277] and
Proposition 11.2.1.7. �

6.6.5 PDE Approach

A second approach to the evaluation problem, studied in Stanton [805], Rogers
and Shi [740] and Alziary et al. [11] among others, is based on PDE methods
and the important fact that the pair (St, Yt) is Markovian where

Yt : =
1
St

(
1
T

∫ t

0

Su du−K

)

.

The value CAsian
t of an Asian option is a function of the three variables: t,

St and Yt, i.e., CAsian
t = StA(t, Yt) and, from the martingale property of

e−rtCAsian
t , we obtain that A is the solution of

∂A
∂t

+
(

1
T

− ry

)
∂A
∂y

+
1
2
σ2y2 ∂

2A
∂y2

= 0 (6.6.8)

with the boundary condition A(T, y) = y+.
Furthermore, the hedging portfolio is A(t, Yt) − YtA′

y(t, Yt). Indeed

d(e−rtCAsian
t ) = σSte

−rt
(
A(t, Yt) − YtA′

y(t, Yt)
)
dWt

=
(
A(t, Yt) − YtA′

y(t, Yt)
)
dS̃t .
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6.7 Stochastic Volatility

6.7.1 Black and Scholes Implied Volatility

In a Black and Scholes model, the prices of call options with different strikes
and different maturities are computed with the same value of the volatility.
However, given the observed prices of European calls Cobs(S0,K, T ) on an
underlying with value S0, with maturity T and strike K, the Black and
Scholes implied volatility is defined as the value σimp of the volatility
which, substituted in the Black and Scholes formula, gives equality between
the Black and Scholes price and the observed price, i.e.,

BS(S0, σimp,K, T ) = Cobs(S0,K, T ) .

Now, this parameter σimp depends on S0, T and K as we just wrote. If the
Black and Scholes assumption were satisfied, this parameter would be constant
for all maturities and all strikes, and, for fixed S0, the volatility surface
σimp(T,K) would be flat. This is not what is observed. For currency options,
the profile is often symmetric in moneynessm = K/S0. This is the well-known
smile effect (see Hagan et al. [417]). We refer to the work of Crépey [207] for
more information on smiles and implied volatilities. A way to produce smiles
is to introduce stochastic volatility. Stochastic volatility models are studied in
details in the books of Lewis [587], Fouque et al. [356].

Here, we present some attempts to solve the problem of option pricing for
models with stochastic volatility.

6.7.2 A General Stochastic Volatility Model

This section is devoted to some examples of models with stochastic volatility.
Let us mention that a model

dSt = St(μtdt+ σtdW̃t)

where1 W̃ is a BM and μ, σ are FfW -adapted processes is not called a stochastic
volatility model, this name being generally reserved for the case where the
volatility induces a new source of noise. The main models of stochastic
volatility are of the form

dSt = St(μtdt+ σ(t, Yt)dW̃t)

where μ is FfW -adapted and

dYt = a(t, Yt)dt+ b(t, Yt)dB̃t

1 Throughout our discussion, we shall use tildes and hats for intermediary BMs,
whereas W and W (1) will denote our final pair of independent BMs.
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(or, equivalently,
df(Yt) = α(t, Yt)dt+ β(t, Yt)dB̃t

for a smooth function f) where B̃ is a Brownian motion, correlated with W̃
(with correlation ρ). The independent case (ρ = 0) is an interesting model,
but more realistic ones involve a correlation ρ = 0.Some authors add a jump
component to the dynamics of Y (see e.g., the model of Barndorff-Nielsen and
Shephard [55]).

In the Hull and White model [453], σ(t, y) = y and Y follows a geometric
Brownian motion. We shall study this model in the next section. In the Scott
model [775],

dSt = St(μtdt+ YtdW̃t)

where Z = ln(Y ) follows a Vasicek process:

dZt = β(a− Zt)dt+ λdB̃t

where a, β and λ are constant. Heston [433] relies on a square root process
for the square of the volatility.

Obviously, if the volatility is not a traded asset, the model is incomplete,
and there exist infinitely many e.m.m’s, which may be derived as follows. In a
first step, one introduces a BM Ŵ , independent of W̃ such that B̃t = ρW̃t +√

1 − ρ2 Ŵt. Then, any σ(B̃s, W̃s, s ≤ t) = σ(W̃s, Ŵs, s ≤ t)-martingale can
be written as a stochastic integral with respect to the pair (W̃ , Ŵ ). Therefore,
any Radon-Nikodým density satisfies

dLt = Lt(φtdW̃t + γtdŴt) ,

for some pair of predictable processes φ, γ. We then look for conditions on the
pair (φ, γ) such that the discounted price SR is a martingale under Q = LP,
that is if the process LSR is a P-local martingale. This is the case if and only if
−r+μt−σ(t, Yt)φt = 0. This involves no restriction on the coefficient γ other
than

∫ t
0
γ2
sds <∞ and the local martingale property of the process LSR.

6.7.3 Option Pricing in Presence of Non-normality of Returns:
The Martingale Approach

We give here a second motivation for introducing stochastic volatility models.
The property of non-normality of stock or currency returns which has been
observed and studied in many articles is usually taken into account by relying
either on a stochastic volatility or on a mixed jump diffusion process for the
price dynamics (see � Chapter 10).

Strong underlying assumptions concerning the information arrival dynam-
ics determine the choice of the model. Indeed, a stochastic volatility model
will be adapted to a continuous information flow and mixed jump-diffusion
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processes will correspond to possible discontinuities in this flow of information.
In this context, option valuation is difficult. Not only is standard risk-neutral
valuation usually no longer possible, but these models rest on the valuation of
more parameters. In spite of their complexity, some semi-closed-form solutions
have been obtained.

Let us consider the following dynamics for the underlying (a currency):

dSt = St

(
μdt+ σtdB̃t

)
, (6.7.1)

and for its volatility:

dσt = σt

(
f(σt)dt+ γdW̃t

)
. (6.7.2)

Here, (B̃t, t ≥ 0) and (W̃t, t ≥ 0) are two correlated Brownian motions under
the historical probability, and the parameter γ is a constant.

In the Hull and White model [453] the underlying is a stock and the
function f is constant, hence σ follows a geometric Brownian motion. In the
Scott model [775], this function has the form: f(σ) = β(a − ln(σ)) + γ2/2,
where the parameters a, β and γ are constant.

The standard Black and Scholes approach of riskless arbitrage is not
enough to produce a unique option pricing function CE . Indeed, the volatility
is not a traded asset and there is no asset perfectly correlated with it. The
three assets required in order to eliminate the two sources of uncertainty and
to create a riskless portfolio will be the foreign bond and, for example, two
options of different maturities. Therefore, it will be impossible to determine
the price of an option without knowing the price of another option on the
same underlying (See Scott [775]).

Under any risk-adjusted probability Q, the dynamics of the underlying
spot price and of the volatility are given by

⎧
⎪⎨

⎪⎩

dSt = St

(
(r − δ)dt+ σtdB̂t

)
,

dσt = σt(f (σt) − Φσ
t )dt+ γσtdWt

(6.7.3)

where (B̂t, t ≥ 0) and (Wt, t ≥ 0) are two correlated Q-Brownian motions and
where Φσ

t , the risk premium associated with the volatility, is unknown since
the volatility is not traded.

The expression of the underlying price at time T

ST = S0 exp

(

(r − δ)T − 1
2

∫ T

0

σ2
udu+

∫ T

0

σudB̂u

)

, (6.7.4)

which follows from (6.7.3), will be quite useful in pricing European options as
is now detailed.

We first start with the case of 0 correlation between B̂ and W .
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Proposition 6.7.3.1 Assume that the dynamics of the underlying spot price
(for instance a currency) and of the volatility are given, under the risk-adjusted
probability, by equations (6.7.3), with a zero correlation coefficient, where
the risk premium Φσ associated with the volatility is assumed constant. The
European call price can be written as follows:

CE(S0, σ0, T ) =
∫ +∞

0

BS(S0e
−δT , a, T )dF (a) (6.7.5)

where BS is the Black and Scholes price:

BS(x, a, T ) = xN (d1(x, a)) −Ke−rT N (d2(x, a)) .

Here,

d1(x, a) =
ln(x/K) + rT + a/2√

a
, d2(x, a) = d1(x, a) −

√
a ,

δ is the foreign interest rate and F is the distribution function (under the
risk-adjusted probability) of the cumulative squared volatility ΣT defined as

ΣT =
∫ T

0

σ2
u du . (6.7.6)

Proof: The stochastic integral which appears on the right-hand side of (6.7.4)
is a stochastic time-changed Brownian motion:

∫ t

0

σudB̂u = B∗
Σt

where (B∗
s , s ≥ 0) is a Q-Brownian motion. Therefore,

ST = S0 exp
(

(r − δ)T +B∗
ΣT

− ΣT

2

)

and the conditional law of ln(ST /S0) given ΣT is

N
(

(r − δ)T − ΣT

2
, ΣT

)

.

By conditioning with respect to ΣT , returns are normally distributed, and the
Black and Scholes formula can be used for the computation of the conditional
expectation

ĈT : = EQ(e−rT (ST −K)+|ΣT ) .

Formula (6.7.5) is therefore obtained from

EQ(e−rT (ST −K)+) = EQ(ĈT ) = EQ(BS(S0, ΣT ,K)).
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In order to use this result, the risk-adjusted distribution function F of ΣT is
needed. One method of approximating the option price is the Monte Carlo
method. By simulating the instantaneous volatility process σ over discrete
intervals from 0 to T , the random variable ΣT can be simulated. Each value
of ΣT is substituted into the Black and Scholes formula with ΣT in place of
σ2T . The sample mean converges in probability to the option price as the
number of simulations increases to infinity. The estimates for the parameters
of the volatility process could be computed by methods described in Scott [775]
and in Chesney and Scott [177] for currencies: the method of moments and
the use of ARMA processes. The risk premium associated with the volatility,
i.e., Φσ, which is assumed to be a constant, should also be estimated.

6.7.4 Hull and White Model

Hull and White [453] consider a stock option (δ = 0); they assume that the
volatility follows a geometric Brownian motion and that it is uncorrelated
with the stock price and has zero systematic risk. Hence, the drift f(σt) of
the volatility is a constant k and Φσ is taken to be null:

dσt = σt(kdt+ γdWt) . (6.7.7)

They also introduce the following random variable: VT = ΣT /T . In this
framework, they obtain another version of equation (6.7.5):

CE(S0, σ0, T ) =
∫ +∞

0

BS(S0, vT, T )dG(v) (6.7.8)

where G is the distribution function of VT .

Approximation

By relying on a Taylor expansion, the left-hand side of (6.7.8) may be
approximated as follows: introduce C(y) = BS(S0, yT, T ), then

CE(S0, σ0, T ) ≈ C(∇T ) +
1
2
d2C
dy2

(∇T )Var(VT ) + · · ·

where

∇T : =
E(ΣT )
T

= E(VT ) .

We recall the following results:
⎧
⎪⎪⎨

⎪⎪⎩

E(VT ) =
eκT − 1
κT

σ2
0

E(V 2
T ) =

(
2e(2κ+ϑ2)T

(κ+ ϑ2)(2κ+ ϑ2)T 2
+

2
κT 2

(
1

2κ+ ϑ2
− eκT

κ+ ϑ2

))

σ4
0

(6.7.9)
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where κ and ϑ are respectively the drift and the volatility of the squared
volatility:

κ = 2k + γ2, ϑ = 2γ .

When κ is zero, i.e., when the squared volatility is a martingale, the following
approximation is obtained:

CE(S0, σ0, T ) ≈ C(∇T ) +
1
2
d2C
dy2

(∇T )Var(VT ) +
1
6
d3C
dy3

(∇T )Skew(VT ) + · · ·

where Skew(VT ) is the third central moment of VT . The first three moments
are obtained by relying on the following formulae (note that the first two
moments are the limits obtained from (6.7.9) as κ goes to 0) :

E(VT ) = σ2
0 ,

E(V 2
T ) =

2(eϑ
2T − ϑ2T − 1)
ϑ4T 2

σ4
0 ,

E(V 3
T ) =

e3ϑ
2T − 9eϑ

2T + 6ϑ2T + 8
3ϑ6T 3

σ6
0 .

Closed-form Solutions in the Case of Uncorrelated Processes

As we have explained above in Proposition 6.7.3.1, in the case of uncorrelated
Brownian motions, the knowledge of the law of ΣT yields the price of a
European option, at least in a theoretical way. In fact, this law is quite
complicated, and a closed-form result is given as a double integral.

Proposition 6.7.4.1 Let (σt, t ≥ 0) be the GBM solution of (6.7.7) and
ΣT =

∫ T
0
σ2
sds. The density of ΣT is Q(ΣT ∈ dx)/dx = g(x) where

g(x) =
1
x

(
xγ2

σ2
0

)ν 1
(2π3γ2T )1/2

exp
(

π2

2γ2T
− σ2

0

2γ2x
− ν2γ2T

2

)

×
∫ ∞

0

dy yν exp
(

− 1
2σ2

0

γ2xy2

)

Υy(γ2T )

where the function Υy is defined in (6.6.3) and where ν = k
γ2 − 1

2 .

Proof: From the definition of σt, we have

σ2
t = σ2

0e
2(γWt+(k− γ2

2 )t) ,

hence Q(ΣT ∈ dx) = 1
σ2
0
h(T, x

σ2
0
) dx, where

h(T, x)dx = Q

(∫ T

0

dt e2(γWt+(k− γ2

2 )t) ∈ dx
)

.
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From the scaling property of the Brownian motion, setting ν = (k−γ2/2)γ−2,

∫ T

0

e2(γWt+(k− γ2

2 )t)dt
law=
∫ T

0

e
2(W∗

tγ2+tγ2ν)
dt =

1
γ2

∫ γ2T

0

e2(W
∗
s +sν)ds ,

where W ∗ is a Q-Brownian motion. Therefore,

h(T, x) = γ2ϕ(γ2T, xγ2)

where

ϕ(t, x)dx = Q

(∫ t

0

ds e2(W
∗
s +sν) ∈ dx

)

.

Now, using (6.6.5),

ϕ(t, x) = xν−1 1
(2π3t)1/2

exp
(
π2

2t
− 1

2x
− ν2t

2

)∫ ∞

0

dy yν exp(−1
2
xy2)Υy(t) .

�

6.7.5 Closed-form Solutions in Some Correlated Cases

We now present the formula for a European call in a closed form (up to
the computation of some integrals). We consider the general case where the
correlation between the two Brownian motions W̃ , B̃ given in (6.7.1, 6.7.2)
under the historical probability (hence between the risk-neutral Brownian
motions W, B̂ defined in (6.7.3)) is equal to ρ. Thus, we write the risk-neutral
dynamics of the stock price (δ = 0) and the volatility process as

{
dSt = St

(
rdt+ σt(

√
1 − ρ2 dW

(1)
t + ρ dWt)

)
,

dσt = σt(kdt+ γ dWt),
(6.7.10)

where the two Brownian motions (W (1),W ) are independent. In an explicit
form

ln(ST /S0) = rt− 1
2

∫ t

0

σ2
sds+ ρ

∫ t

0

σsdWs +
√

1 − ρ2

∫ t

0

σsdW
(1)
s (6.7.11)

We first present the case where the two Brownian motions W, B̂ are
independent, i.e., when ρ = 0.

Proposition 6.7.5.1 Case ρ = 0: Assume that, under the risk-neutral
probability {

dSt = St

(
r dt+ σt dW

(1)
t

)
,

dσt = σt(k dt+ γ dWt),
(6.7.12)
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where the two Brownian motions (W (1),W ) are independent. The price of a
European call, with strike K is

C = S0f1(T ) −Ke−rT f2(T )

where the functions fj are defined as

f1(T ) := E(N (d1(ΣT ))) =
∫ ∞

0

N (d1(x))g(x)dx

and
f2(T ) := E(N (d2(ΣT ))) =

∫ ∞

0

N (d2(x))g(x)dx

where the function g is defined in Proposition 6.7.4.1.

Proof: The solution of the system (6.7.12) is:
⎧
⎪⎨

⎪⎩

St = S0e
rt exp

(∫ t
0
σsdW

(1)
s − 1

2

∫ t
0
σ2
sds
)
,

σt = σ0 exp(γWt + (k − γ2/2)t) = σ0 exp(γWt + γ2νt) ,
(6.7.13)

where ν = k/γ2 − 1/2. Conditionally on FW , the process lnS is Gaussian,
and ln(ST /S0) is a Gaussian variable with mean rT −ΣT /2 and variance ΣT

where ΣT =
∫ T
0
σ2
sds. It follows that

C = S0E (N (d1(ΣT ))) −Ke−rt
E (N (d2(ΣT )))

By relying on Proposition 6.7.4.1, the result is obtained. �

We now consider the case ρ = 0, but k = 0, i.e., the volatility is a martingale.

Proposition 6.7.5.2 (Case k = 0) Assume that
⎧
⎪⎨

⎪⎩

dSt = St

(
rdt+ σt(

√
1 − ρ2 dW

(1)
t + ρ dWt)

)
,

dσt = γσt dWt .

with ρ = 1. The price of a European call with strike K is given by

C = S0f
∗
1 (γ2T ) −Ke−rT f∗2 (γ2T )

where the functions f∗j , defined as f∗j (t) := E(fj(eWt , At)), j = 1, 2, where
At =

∫ t
0
e2Wsds, are obtained as in Equation (6.6.6).Here, the functions

fj(x, y) are:

f1(x, y) = e−γ2T/8 1√
x
eρσ0(x−1)/γ e−σ2

0ρ
2y/(2γ2) N (d∗1(x, y)),

f2(x, y) = e−γ2T/8 1√
x
N (d∗2(x, y)),
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where

d∗1(x, y) =
γ

σ0

√
(1 − ρ2)y

(

ln
S0

K
+ rT +

ρσ0(x− 1)
γ

+
σ2

0y(1 − ρ2)
2γ2

)

,

d∗2(x, y) = d∗1(x, y) −
σ0

γ

√
(1 − ρ2)y .

Proof: In that case, one notices that
∫ t
0
σsdWs = 1

γ (σt − σ0) where

σt = σ0 exp(γWt − γ2t/2) .

Hence, from equation (6.7.4),

St = S0 exp
(

rt− 1
2

∫ t

0

σ2
sds+

ρ

γ
(σt − σ0) +

√
1 − ρ2

∫ t

0

σsdW
(1)
s

)

,

and conditionally on FW the law of ln(St/S0) is Gaussian with mean

rt− 1
2

∫ t

0

σ2
sds+

ρ

γ
(σt − σ0)

and variance

(1 − ρ2)
∫ t

0

σ2
sds = (1 − ρ2)Σt = (1 − ρ2)σ2

0

∫ t

0

e2(γWs−γ2s/2)ds .

The price of a call option is

EQ(e−rT (ST −K)+) = EQ(e−rTST1{ST ≥K}) −Ke−rT
Q(ST ≥ K) .

We now recall that, if Z is a Gaussian random variable with mean m and
variance β, then

P(eZ ≥ k) = N (
1√
β

(m− ln k))

E(eZ1{Z≥k}) = em+β/2N
(
β +m− ln k√

β

)

.

It follows that Q(ST ≥ K) = EQ (N (d2(σT , ΣT ))) where

d2(u, v) =
1

√
(1 − ρ2)v

(

ln
S0

K
+ rT − 1

2
v +

ρ

γ
(u− σ0)

)

= d∗2(
u

σ0
,
γ2

σ2
0

v) .

Using the scaling property and by relying on Girsanov’s theorem, setting
τ = Tγ2 and A∗

t =
∫ t
0
e2W

∗
s ds, we obtain

Q(ST ≥ K) = EQ∗

(

N
(

d2(σ0e
W∗

τ ,
σ2

0

γ2
A∗
τ )
)

e−
1
2W

∗
τ −τ/8

)

= EQ∗(f2(eW
∗
τ , A∗

τ )) ,



6.7 Stochastic Volatility 401

where
dQ∗

dQ
|Ft = e−

ν2t
2 −νWt

and W ∗
t = Wt + νt is a Q

∗ Brownian motion. Indeed the scaling property of
BM implies that

ΣT
law=

σ2
0

γ2

∫ γ2T

0

exp (2(Ws + νs)) ds =
σ2

0

γ2

∫ γ2T

0

exp (2W ∗
s ) ds =

σ2
0

γ2
A∗
τ .

where ν = −1/2, because k = 0.
For the term E(e−rTST1{ST ≥K}), we obtain easily

E(e−rTST1{ST ≥K})

= S0EQ∗

(

N
(

d1(σ0e
W∗

τ ,
σ2

0

γ2
A∗
τ )
)

× exp
(

−W
∗
τ

2
− τ

8
+
ρσ0

γ
(eW

∗
τ − 1) − ρ2σ2

0

2γ2
A∗
τ

))

= S0EQ∗(f1(eW
∗
τ , A∗

τ )) .

The result is obtained. �

6.7.6 PDE Approach

We come back to the simple Hull and White model 6.7.12, where
{
dSt = St

(
r dt+ σt dW

(1)
t

)
,

dσt = σt(k dt+ γ dWt),
(6.7.14)

for two independent Brownian motions. Itô’s lemma allows us to obtain the
equation:

dCE =
∂CE

∂x
dSt +

∂CE

∂σ
dσt +

[
∂CE

∂t
+

1
2
σ2
tS

2
t

∂2CE

∂x2
+

1
2
γ2σ2

t

∂2CE

∂σ2

]

dt .

Then, the martingale property of the discounted price leads to the following
equation:

1
2
σ2x2 ∂

2CE

∂x2
+

1
2
γ2σ2 ∂

2CE

∂σ2
+ rx

∂CE

∂x
+ σk

∂CE

∂σ
+
∂CE

∂t
− rCE = 0 .

6.7.7 Heston’s Model

In Heston’s model [433], the underlying process follows a geometric Brownian
motion under the risk-neutral probability Q (with δ = 0):
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dSt = St

(
rdt+ σtdB̂t

)
,

and the squared volatility follows a square-root process. The model allows
arbitrary correlation between volatility and spot asset returns. The dynamics
of the volatility are given by:

dσ2
t = κ(θ − σ2

t )dt+ γσtdWt .

The parameters κ, θ and γ are constant, and κθ > 0, so that the square-root
process remains positive. The Brownian motions (Wt, t ≥ 0) and (B̂t, t ≥ 0)
have correlation coefficient equal to ρ. Setting Xt = lnSt and Yt = σ2

t these
dynamics can be written under the risk-neutral probability Q as

⎧
⎨

⎩

dXt =
(

r − σ2
t

2

)

dt+ σtdB̂t ,

dYt = κ(θ − Yt)dt+ γ
√
YtdWt .

(6.7.15)

As usual, the computation of the value of a call reduces to the computation
of

EQ(ST1ST ≥K) −Ke−rT
Q(ST ≥ K) = S0Q̂(ST ≥ K) −Ke−rT

Q(ST ≥ K)

where, under Q̂, X follows dXt = (r + σ2
t /2)dt + σtdBt, where B is a Q̂-

Brownian motion. In this setting, the price of the European call option is:

CE(S0, σ0, T ) = S0Γ̂ −Ke−rTΓ ,

with
Γ̂ = Q̂(ST ≥ K), Γ = Q(ST ≥ K) .

We present the computation for Γ , then the computation for Γ̂ follows from a
simple change of parameters. The law of X is not easy to compute; however,
the characteristic function of XT , i.e.,

f(x, σ, u) = EQ(eiuXT |X0 = x, σ0 = σ)

can be computed using the results on affine models. From Fourier transform
inversion, Γ is given by

Γ =
1
2

+
1
π

∫ +∞

0

Re
(
e−iu ln(K)f(x, σ, u)

iu

)

du .

As in Heston [433], one can check that

EQ(eiuXT |Xt = x, σt = σ) = exp(C(T − t, u) +D(T − t, u)σ + iux) .

The coefficients C and D are given by
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C(s, u) = i (rus) +
κθ

γ2

(

(κ− i(ργu) + d)s− 2 ln
(

1 − geds

1 − g

))

D(s, u) =
κ− i(ργu) + d

γ2

1 − eds

1 − geds

where
g =

κ− ργu+ d

κ− i(ργu) − d
, d =

√
(κ− i(ργu))2 + γ2(iu+ u2) .

6.7.8 Mellin Transform

Instead of using a time-change methodology, one can use some transform of
the option price. The Mellin transform of a function f is

∫∞
0
dk kαf(k); for

example, for a call option price it is e−rT
∫∞
0
dk kαEQ(ST − k)+. This Mellin

transform can be given in terms of the moments of ST :

∫ ∞

0

dk kαEQ(ST − k)+ = EQ

(∫ ST

0

dk kα(ST − k)

)

= EQ

(

ST
Sα+1
T

α+ 1
− Sα+2

T

α+ 2

)

=
1

(α+ 1)(α+ 2)
EQ(Sα+2

T ) .

The value of ST is given in (6.7.4), hence, if B̂ is independent of σ

EQ(Sβ
T ) = (xe(r−δ)T )β

EQ

(

exp

(

β

∫ T

0

σsdB̂s −
β2

2

∫ T

0

σ2
sds+

β

2
(β − 1)

∫ T

0

σ2
sds

))

= (xe(r−δ)T )βEQ

(

exp

(
1
2
β(β − 1)

∫ T

0

σ2
sds

))

.

Assume now that the square of the volatility follows a CIR process. It remains
to apply Proposition 6.3.4.1 and to invert the Mellin transform (see Patterson
[699] for inversion of Mellin transforms and Panini and Srivastav [693] for
application of Mellin transforms to option pricing).
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Default Risk: An Enlargement of Filtration
Approach

In this chapter, our goal is to present results that cover the reduced form
methodology of credit risk modelling (the structural approach was presented
in Section 3.10). In the first part, we provide a detailed analysis of the
relatively simple case where the flow of information available to an agent
reduces to observations of the random time which models the default event.
The focus is on the evaluation of conditional expectations with respect to
the filtration generated by a default time by means of the hazard function.
In the second part, we study the case where an additional information flow
– formally represented by some filtration F – is present; we then use the
conditional survival probability, also called the hazard process. We present
the intensity approach and discuss the link between both approaches. After
a short introduction to CDS’s, we end the chapter with a study of hedging
defaultable claims.

For a complete study of credit risk, the reader can refer to Bielecki and
Rutkowski [99], Bielecki et al. [91, 89], Cossin and Pirotte [197], Duffie [271],
Duffie and Singleton [276], Lando [563, 564], Schönbucher [765] and to the
collective book [408]. The book by Frey et al. [359] contains interesting
chapters devoted to credit risk. The first part of this chapter is mainly based
on the notes of Bielecki et al. for the Cimpa school in Marrakech [95].

7.1 A Toy Model

We begin with the simple case where a riskless asset, with deterministic
interest rate (r(s); s ≥ 0), is the only asset available in the market. We denote
as usual by R(t) = exp

(
−
∫ t
0
r(s)ds

)
the discount factor. The time-t price of

a zero-coupon bond with maturity T is

P (t, T ) = exp

(

−
∫ T

t

r(s)ds

)

.
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Default occurs at time τ (where τ is assumed to be a positive random
variable, constructed on a probability space (Ω,G,P)). We denote by F the
right-continuous cumulative distribution function of the r.v. τ defined as
F (t) = P(τ ≤ t) and we assume that F (t) < 1 for any t ≤ T , where T
is a finite horizon (the maturity date); otherwise there would exist t0 ≤ T
such that F (t0) = 1, and default would occur a.s. before t0, which is an
uninteresting case to study.

We emphasize that the risk associated with the default is not hedgeable in
this model. Indeed, a random payoff of the form 1{T<τ} cannot be perfectly
hedged with deterministic zero-coupon bonds which are the only tradeable
assets. To hedge the risk, we shall assume later on that some defaultable
asset is traded, e.g., a defaultable zero-coupon bond or a Credit Default Swap
(CDS).

7.1.1 Defaultable Zero-coupon with Payment at Maturity

A defaultable zero-coupon bond (DZC in short) - or a corporate bond -
with maturity T and constant rebate δ paid at maturity, consists of:

• The payment of one monetary unit at time T if (and only if) default has
not occurred before time T , i.e., if τ > T .

• A payment of δ monetary units, made at maturity, if (and only if) τ < T .
We assume 0 < δ < 1. In case of default, the loss is 1 − δ.

Value of a Defaultable Zero-coupon Bond

The time-t value of the defaultable zero-coupon bond is defined as the
expectation of the discounted payoff, given the information that the default
has occurred in the past or not.

� If the default has occurred before time t, the payment of δ will be made
at time T and the price of the DZC is δP (t, T ): in that case, the payoff is
hedgeable with δ default-free zero-coupon bonds.

� If the default has not yet occurred at time t, the holder does not know when
it will occur. Then, the valueD(t, T ) of the DZC is the conditional expectation
of the discounted payoff P (t, T ) [1{T<τ}+δ1{τ≤T}] given the information that
the default has not occurred. We denote by D̃(t, T ) this predefault value (i.e.,
the value of the defaultable zero-coupon bond on the set {t < τ}) given by
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D̃(t, T ) = P (t, T )E
(
(1{T<τ} + δ1{τ≤T})

∣
∣t < τ

)

= P (t, T )
(
1 − (1 − δ)P (τ ≤ T

∣
∣t < τ)

)

= P (t, T )
(

1 − (1 − δ)
P(t < τ ≤ T )

P(t < τ)

)

= P (t, T )
(

1 − (1 − δ)
F (T ) − F (t)

1 − F (t)

)

. (7.1.1)

Note that D̃(t, T ) is a deterministic function. In fact, this quantity is a net
present value and is equal to the price of the ZC, minus the discounted
expected loss, computed under the historical probability.

We summarize these results, writing

D(t, T ) = 1{τ≤t}P (t, T )δ + 1{t<τ}D̃(t, T )

Note that the value of the DZC is discontinuous at time τ , unless F (T ) = 1
(or δ = 1). In the case F (T ) = 1, the default appears with probability one
before maturity and the DZC is equivalent to a payment of δ at maturity. If
δ = 1, the DZC is in fact a default-free zero coupon bond.

Formula (7.1.1) can be read as

D̃(t, T ) = P (t, T ) − DLGD × DP

where the Discounted Loss Given Default (DLGD) is P (t, T )(1 − δ) and
the conditional Default Probability (DP) is

DP =
P(t < τ ≤ T )

P(t < τ)
= P(τ ≤ T |t < τ) .

We now consider the general case when the payment is a function of the
default time, say δ(τ); then, the time-t value of this defaultable zero-coupon
is

D(t, T ) = 1{t<τ}D̃(t, T ) + 1{τ≤t}P (t, T )δ(τ)

where the predefault time-t value D̃(t, T ) satisfies

D̃(t, T ) = P (t, T )E(1{T<τ} + δ(τ)1{τ≤T}
∣
∣t < τ)

= P (t, T )

[
P(T < τ)
P(t < τ)

+
1

P(t < τ)

∫ T

t

δ(s)dF (s)

]

.

Hazard Function

We introduce the survival distribution function

G(t) = P(τ > t) = 1 − F (t)

and the hazard function Γ defined by Γ (t) = − ln(G(t)).
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In the case where F is continuous, Γ (t) =
∫ t
0

dF (s)
G(s) , and if F admits a

derivative f , the derivative of Γ is

γ(t) =
f(t)
G(t)

= lim
h→0

1
hP(τ > t)

P(t < τ ≤ t+ h) = P(τ ∈ dt|τ > t)/dt .

In this case,

G(t) = e−Γ (t) = exp
(

−
∫ t

0

γ(s)ds
)

.

It follows that

dtD̃(t, T ) = (r(t) + γ(t))D̃(t, T )dt− P (t, T )γ(t)δ(t)dt ,

where the notation dtD̃(t, T ) denotes the differential of D̃ with respect to t.
In the case where δ = 0

D̃(t, T ) = exp

(

−
∫ T

t

(r + γ)(s)ds

)

.

Hence, the spot rate has to be adjusted by means of a spread (equal to γ) in
order to evaluate DZCs.

If γ and δ are constant, the credit spread s(t, T ) is, on the set {t < τ},

s(t, T ) =
1

T − t
ln
P (t, T )

D̃(t, T )
= γ − 1

T − t
ln
(
1 + δ(eγ(T−t) − 1)

)

and goes to γ(1 − δ) when t goes to T .

Remark 7.1.1.1 Note that, if τ is a random time with differentiable
cumulative distribution function F , setting Λ(t) = − ln(1−F (t)) allows us to
interpret τ as the first jump time of an inhomogeneous Poisson process with
intensity the derivative of Λ. However, at this point, we insist that no hidden
Poisson process occurs in our framework, which only involves the time τ and
quantities related with it.

Exercise 7.1.1.2 Compute the dynamics of D. �

7.1.2 Defaultable Zero-coupon with Payment at Hit

Here, a defaultable zero-coupon bond with maturity T consists of:

• The payment of one monetary unit at time T if (and only if) default has
not yet occurred.

• A payment of δ(τ) monetary units, where δ is a deterministic function,
made at time τ if (and only if) τ < T .
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Value of a Defaultable Zero-coupon

Obviously, if the default has occurred before time t, the value of the DZC is
null (this was not the case for payment of the rebate at maturity). Therefore,
D(t, T ) = 1{t<τ}D̃(t, T ) where D̃(t, T ) is a deterministic function, called the
predefault price. The predefault time-t value D̃(t, T ) satisfies

D̃(t, T ) = E(P (t, T )1{T<τ} + P (t, τ)δ(τ)1{τ≤T}|t < τ)

=
P(T < τ)
P(t < τ)

P (t, T ) +
1

P(t < τ)

∫ T

t

P (t, s)δ(s)dF (s) .

Hence,

G(t)D̃(t, T ) = G(T )P (t, T ) −
∫ T

t

P (t, s)δ(s)dG(s) .

The process t→ D(t, T ) admits a discontinuity at time τ and the size of the
jump is −D̃(τ, T ).

A Particular Case

If F is differentiable,

D̃(t, T ) = P d(t, T ) +
∫ T

t

P d(t, s)δ(s)γ(s)ds

with P d(t, s) = exp
(
−
∫ s
t
[r(u) + γ(u)]du

)
. The defaultable interest rate is

r + γ and is, as expected, greater than r (the value of a DZC with δ = 0 is
smaller than the value of a default-free zero-coupon). The dynamics of D̃(t, T )
are

dtD̃(t, T ) =
(
(r(t) + γ(t))D̃(t, T ) − δ(t)γ(t)

)
dt .

It is interesting to recall (see Subsection 2.3.5) that, if X is the price of an
asset which pays a deterministic dividend rate κ(t) in a financial market with
a deterministic interest rate ρ, then

dX(t) = ρ(t)X(t)dt− κ(t)dt .

The dynamics of the predefault price can be interpreted as the price in a
default-free market of an asset paying dividend rate γ(t)δ(t), with interest rate
ρ = r + γ. The quantity γ(t) in the dividend rate represents the probability
that the dividend δ(t) is paid in the time interval [t, t+ dt].
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7.2 Toy Model and Martingales

We now present the results of the previous section in a different form, following
closely Dellacherie ([240], page 122). We denote by (Dt, t ≥ 0) the right-
continuous increasing process Dt = 1{t≥τ} and by D its natural filtration.
The filtration D is the smallest filtration which makes τ a stopping time (we
work with the usual completed filtration). The σ-algebra Dt is generated by
the sets {τ ≤ s} for s ≤ t (or by the r.v. τ ∧ t). As a consequence, and
this is a key point, every Dt-measurable random variable H is of the form
H = h(τ ∧ t) = h(τ)1{τ≤t} + h(t)1{t<τ} where h is a Borel function.

We assume in this section that the cumulative distribution function F is
continuous.

7.2.1 Key Lemma

We now give some elementary tools to compute the conditional expectation
w.r.t. Dt, as presented in Brémaud [124], Dellacherie [240], and Elliott [313].

Lemma 7.2.1.1 If X is any integrable, G-measurable r.v.

E(X|Ds)1{s<τ} = 1{s<τ}
E(X1{s<τ})

P(s < τ)
. (7.2.1)

Proof: The r.v. E(X|Ds) is Ds-measurable. Therefore, it can be written in
the form E(X|Ds) = h(τ ∧ s) = h(τ)1{s≥τ} + h(s)1{s<τ} for some function h.
By multiplying both sides by 1{s<τ}, and taking the expectation, we obtain

E[1{s<τ}E(X|Ds)] = E[ E(1{s<τ}X|Ds)] = E[1{s<τ}X]
= E(h(s)1{s<τ}) = h(s)P(s < τ) .

Hence, h(s) =
E(X1{s<τ})

P(s < τ)
, which is the desired result. �

Remark 7.2.1.2 If the cumulative distribution function F is continuous,
then τ is a D-totally inaccessible stopping time. (See Dellacherie and Meyer
[244] IV, 107.)

7.2.2 The Fundamental Martingale

Proposition 7.2.2.1 The process (Mt, t ≥ 0) defined as

Mt = Dt −
∫ τ∧t

0

dF (s)
G(s)

= Dt −
∫ t

0

(1 −Ds)
dF (s)
G(s)

= Dt − Γ (t ∧ τ)

is a D-martingale.
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Proof: Let s < t. Then, an application of (7.2.1) with X = 1{τ≤t} yields

E(Dt −Ds|Ds) = 1{s<τ}E(1{s<τ≤t}|Ds) = 1{s<τ}
F (t) − F (s)

G(s)
, (7.2.2)

On the other hand, the quantity

C : = E

[∫ t

s

(1 −Du)
dF (u)
G(u)

∣
∣Ds

]

,

is given by

C =
∫ t

s

dF (u)
G(u)

E
[
1{τ>u}

∣
∣Ds

]

= 1{τ>s}

∫ t

s

dF (u)
G(u)

(

1 − F (u) − F (s)
G(s)

)

= 1{τ>s}

(
F (t) − F (s)

G(s)

)

which, from (7.2.2) proves the result. �

7.2.3 Hazard Function

From Proposition 7.2.2.1, the Doob-Meyer decomposition of the submartin-
gale D is Mt + Γ (t ∧ τ). The predictable increasing process At = Γ (t ∧ τ)
is called the compensator of D (it is the dual predictable projection of the
increasing process D, see Section 5.2).

We now assume that F is differentiable with derivative f , therefore the
process

Mt = Dt −
∫ τ∧t

0

γ(s)ds = Dt −
∫ t

0

γ(s)(1 −Ds)ds

is a martingale; the deterministic positive function γ(s) =
f(s)

1 − F (s)
is called

the intensity of τ . We can now write the dynamics of the value of a
defaultable zero-coupon bond with recovery δ paid at hit.

Proposition 7.2.3.1 The dynamics of a DZC with recovery δ paid at hit is

dtD(t, T ) = (r(t)D(t, T ) − δ(t)γ(t)(1 −Dt)) dt− D̃(t, T )dMt . (7.2.3)

Proof: From D(t, T ) = 1{t<τ}D̃(t, T ) = (1 −Dt)D̃(t, T ) and the dynamics
of D̃(t, T ), we obtain, from the integration by parts formula,

dtD(t, T ) = (1 −Dt)dD̃(t, T ) − D̃(t, T )dDt

= (1 −Dt)
(
(r(t) + γ(t))D̃(t, T ) − δ(t)γ(t)

)
dt− D̃(t, T )dDt

= (r(t)D(t, T ) − δ(t)γ(t)(1 −Dt)) dt− D̃(t, T )dMt .

�
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We can also write (7.2.3) as

dtD(t, T ) = (r(t)D(t, T ) − δ(t)γ(t)(1 −Dt)) dt−D(t−, T )dMt .

We have just detailed the additive decomposition of (Dt, t ≥ 0), or of 1 −D;
here now is the multiplicative decomposition of (1 −Dt, t ≥ 0).

Proposition 7.2.3.2 The process Lt : = 1{τ>t} exp(Γ (t)) is a D-martingale.
In particular, for t < T ,

E(1{τ>T}|Dt) = 1{τ>t} exp

(

−
∫ T

t

γ(s)ds

)

.

The multiplicative decomposition of the supermartingale 1 −D is

1 −Dt = Lt exp (−Γ (t))

Proof: We shall give three different arguments, each of which constitutes a
proof.

a) Since the function γ is deterministic, for t > s

E(Lt|Ds) = exp(Γ (t)) E(1{t<τ}|Ds) .

From the equality (7.2.1)

E(1{t<τ}|Ds) = 1{τ>s}
G(t)
G(s)

= 1{τ>s} exp (−Γ (t) + Γ (s)) .

Hence,
E(Lt|Ds) = 1{τ>s} exp (Γ (s)) = Ls.

b) Another method is to apply the integration by parts formula for
bounded variation processes (see � Subsection 8.3.4 if needed) to the process

Lt = (1 −Dt) exp (Γ (t)) .

Then,

dLt = −eΓ (t) dDt + γ(t)eΓ (t)(1 −Dt)dt
= −eΓ (t) dMt .

c) A third (more sophisticated) method is to note that L is the exponential
martingale of M (see � Subsection 8.4.4), i.e., the solution of the SDE

dLt = −Lt−dMt , L0 = 1.

�
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Exercise 7.2.3.3 In this exercise, F is only assumed continuous on the right,
and G(t−) is the left-limit of G at point t. Prove that the process (Mt, t ≥ 0)
defined as

Mt = Dt −
∫ τ∧t

0

dF (s)
G(s−)

= Dt −
∫ t

0

(1 −Ds−)
dF (s)
G(s−)

is a D-martingale. �

7.2.4 Incompleteness of the Toy Model, non Arbitrage Prices

In order to study the completeness of the financial market, we first need to
define the tradeable assets.

If the market consists only of the risk-free zero-coupon bond, the market
is incomplete (one cannot hedge defaultable claims, i.e., the payoff of which
belongs to DT ), hence, there exists infinitely many e.m.m’s. The discounted
asset prices are constant, hence the set Q of equivalent martingale measures
is the set of probabilities equivalent to the historical one. For every Q ∈ Q,
we denote by FQ the cumulative distribution function of τ under Q, i.e.,

FQ(t) = Q(τ ≤ t) .

Assuming that FP = P(τ ≤ t) is continuous, then, since Q ∼ P, FQ is also
continuous. The range of prices is defined as the set of prices which do not
induce arbitrage opportunities. In the case of constant interest rate, the range
of prices for a contingent claim H to be delivered at maturity is equal to the
interval

] inf
Q∈Q

e−rT
EQ(H), sup

Q∈Q
e−rT

EQ(H)[

For a DZC with a constant rebate δ paid at maturity, the range of prices is
equal to the set

{EQ(e−rT (1{T<τ} + δ1{τ≤T})),Q ∈ Q} .

This set is exactly the interval ]δe−rT , e−rT [. Indeed, it is obvious that the
range of prices is included in the interval ]δe−rT , e−rT [. Now, in the set Q,
one can select a sequence of probabilities Qn which converges weakly to the
Dirac measure at point 0 (resp. at point T ) (the bounds are obtained as limit
cases: the default appears at time 0+, or never).

7.2.5 Predictable Representation Theorem

Every square integrable D-martingale terminates at h(τ), hence is of the form
E(h(τ)|Dt). We now prove that this martingale can be written as a stochastic
integral with respect to the fundamental martingale M .
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Proposition 7.2.5.1 The martingale Ht = E(h(τ)|Dt) admits the represen-
tation

E(h(τ)|Dt) = E(h(τ)) −
∫ t∧τ

0

(Hs− − h(s)) dMs .

Consequently, every square integrable D-martingale (Xt ≥ 0) can be written
as Xt = X0 +

∫ t
0
xsdMs where (xs, s ≥ 0) is a D-predictable process.

Proof: From Lemma 7.2.1.1

Ht = h(τ)1{τ≤t} + 1{t<τ}
E(h(τ)1{t<τ})

P(t < τ)

= h(τ)1{τ≤t} + 1{t<τ}(G((t))−1
E(h(τ)1{t<τ})

=
∫ t

0

h(s)dDs + 1{t<τ}(G(t))−1

∫ ∞

t

h(s)f(s)ds .

It remains to apply integration by parts (see � equation 9.1.1 ) to obtain

dHt = (h(t) −Ht−)(dDt − (1 −Dt)
f(t)
G(t)

dt) = (h(t) −Ht−)dMt

�

7.2.6 Risk-neutral Probability Measures

If DZCs with rebate paid at maturity are traded, their prices are given by the
market, and the equivalent martingale measure Q, chosen by the market, is
such that, on the set {t < τ},

D(t, T ) = P (t, T )EQ

(
[1T<τ + δ1t<τ≤T ]

∣
∣t < τ

)
.

Therefore, we can characterize the cumulative distribution function of τ under
Q from the market prices of the DZC as follows.

Zero Recovery

If a DZC of maturity T with zero recovery is traded at a price D(t, T ) which
belongs to the interval ]0, P (t, T )[ , then, under any risk-neutral probability
Q, the discounted value of D(t, T ) is a martingale (for the moment, we do
not know that the market is complete, so we cannot claim that the e.m.m. is
unique), and the following equality holds

D(t, T ) = EQ(P (t, T )1{T<τ}|Dt) = P (t, T )1{t<τ} exp

(

−
∫ T

t

λQ(s)ds

)
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where λQ(s) =
dFQ(s)/ds
1 − FQ(s)

. It is obvious that if D(t, T ) belongs to the range

of viable prices ]0, P (t, T )[, then the function λQ is strictly positive (and the
converse holds true). The process Dt −

∫ t∧τ
0

λQ(t)dt is a Q-martingale and
λQ is the Q-intensity of τ . Therefore, the value of

∫ T
t
λQ(s)ds is known for

every T as long as there are DZC bonds for each maturity, and the unique
risk-neutral intensity can be obtained from the prices of DZCs as

r(t) + λQ(t) = − ∂

∂T
lnD(t, T )|T=t .

Remark 7.2.6.1 It is important to note that there is no relation between the
risk-neutral intensity and the historical one. The risk-neutral intensity can be
greater (resp. smaller) than the historical one. The historical intensity can be
deduced from observations of default time, the risk-neutral one is obtained
from the prices of traded defaultable claims.

Fixed Payment at Maturity

If the prices of DZCs with different maturities and the same δ are known,
then from (7.1.1)

P (0, T ) −D(0, T )
P (0, T )(1 − δ)

= FQ(T )

where FQ(t) = Q(τ ≤ t), so that the law of τ is known under the e.m.m..
However, as noticed in Hull and White [454], extracting default probabilities
from bond prices is in practice, usually complicated. First, the recovery rate is
usually non-zero. Second, most corporate bonds are not zero-coupon bonds.

Payment at Hit

In this case the cumulative function can be obtained using the derivative of
the defaultable zero-coupon price with respect to the maturity. Indeed, writing
for short ∂TD for ∂

∂TD, the partial derivative of the value of the DZC at time
0 with respect to the maturity, and assuming that G = 1−F is differentiable,
we obtain

∂TD(0, T ) = g(T )P (0, T ) −G(T )P (0, T )r(T ) − δ(T )g(T )P (0, T ) ,

where g(t) = G′(t). Therefore, solving this equation leads to

Q(τ > t) = G(t) = Δ(t)
[

1 +
∫ t

0

∂TD(0, s)
1

P (0, s)(1 − δ(s))
(Δ(s))−1ds

]

,

where Δ(t) = exp
(∫ t

0

r(u)
1 − δ(u)

du

)

.
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7.2.7 Partial Information: Duffie and Lando’s Model

Duffie and Lando [273] study the case where τ = inf{t : Vt ≤ m} for V a
diffusion process which satisfies

dVt = μ(t, Vt)dt+ σ(t, Vt)dWt .

Here the process W is a Brownian motion. If the information at hand is the
Brownian filtration, and if V is adapted w.r.t. W (i.e., is a strong solution of
the SDE), the time τ is a stopping time w.r.t. this Brownian filtration F, and
hence is predictable and does not admit an intensity, i.e., there is no process
λ such that Dt −

∫ t
0
(1 − Ds)λsds is an F-martingale. We assume now that

the agents do not observe the process V , but they have only the minimal
information Dt, i.e., they know when the default appears. We assume for
simplicity a null interest rate. In the case where the cumulative distribution
of the hitting time τ admits a derivative f , we have established above that the
value of a defaultable zero-coupon of maturity T is, when the default has not
yet occurred, exp

(
−
∫ T
t
λ(s)ds

)
where λ(s) = f(s)

1−F (s) . A more general case is
presented in Subsection 7.6.1.

Remark 7.2.7.1 Duffie and Lando showed that the value of the DZC is
exp(−

∫ T
t
λ̂(s)ds), where

λ̂(t) =
1
2
σ2(t, 0)

∂ϕ

∂x
(t, 0)

and ϕ(t, x) is the conditional density of Vt when T0 > t, i.e., the differential

w.r.t. x of
P(Vt ≤ x, T0 > t)

P(T0 > t)
, where T0 = inf{t ; Vt = 0}. Even in the case

where V is a homogeneous diffusion, i.e., dVt = μ(Vt)dt + σ(Vt)dWt, the
equality between Duffie and Lando’s result and ours is not obvious. See Elliott
et al. [315] for a proof based on time reversal properties.

7.3 Default Times with a Given Stochastic Intensity

We now present a case where some additional information is available in the
market, i.e., a stochastic process plays the rôle of the hazard function. We
construct a default time from this process on an enlarged probability space.

7.3.1 Construction of Default Time with a Given Stochastic
Intensity

Let (Ω,G,F,P) be a filtered probability space. A positive F-adapted process λ
is given. We assume that there exists a r.v. Θ, constructed on Ω, independent
of F∞, with the exponential law of parameter 1: P(Θ ≥ t) = e−t. We define
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the random time τ as the first time when the process (Λt : =
∫ t
0
λs ds, t ≥ 0)

is above the random level Θ, i.e.,

τ = inf {t ≥ 0 : Λt ≥ Θ}.

In particular, {τ ≥ s} = {Λs ≤ Θ}. We assume here that Λt < ∞,∀t, and
that Λ∞ = ∞.

We shall refer to this construction as the Cox process model.

Comment 7.3.1.1 The choice of an exponential law for the r.v. Θ has no
real importance. In Wong [849], the time of default is given as

τ = inf{t : Λt ≥ Σ}

where Σ a non-negative r.v. independent of F∞. Under some regularity
assumptions, this model reduces to the previous one as we discuss now. We
recall that if X is a r.v. with continuous distribution function F , the r.v.
F (X) is uniformly distributed on [0, 1]. Let Ψ(x) = 1−e−x be the cumulative
distribution function of the exponential law. If Φ, the cumulative distribution
function of Σ, is strictly increasing, the r.v. Φ(Σ) is uniformly distributed and
Θ = Ψ−1(Φ(Σ)) is an exponential r.v. Then,

τ = inf{t : Φ(Λt) ≥ Φ(Σ)} = inf{t : Ψ−1[Φ(Λt)] ≥ Θ}

and

Ft = P(τ ≤ t|Ft) = P(Λt ≥ Σ|Ft) = 1 − exp
(
−Ψ−1(Φ(Λt))

)
.

It remains to write Ψ−1(Φ(Λt)) as
∫ t
0
γsds to recover the previous case. The

case where Φ is not strictly increasing has to be solved carefully, see for
example Bélanger et al. [67].

7.3.2 Conditional Expectation with Respect to Ft

Lemma 7.3.2.1 The conditional distribution function of τ given the σ-
algebra Ft is, for t ≥ s

P(τ > s|Ft) = exp(−Λs) .

Proof: The proof follows from the equality {τ > s} = {Λs < Θ}. From the
independence assumption and the Ft-measurability of Λs for s ≤ t, we obtain

P(τ > s|Ft) = P(Λs < Θ | Ft) = exp(−Λs).

�

In particular, for t ≥ s, P(τ > s|Ft) = P(τ > s|Fs), and, letting t → ∞,
we obtain

Gs : = P(τ > s|Fs) = P(τ > s|F∞) = e−Λs . (7.3.1)

Here, the Azéma supermartingale P(τ > t|Ft) is a decreasing process.
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Remarks 7.3.2.2 (a) For t < s, we obtain P(τ > s|Ft) = E(exp (−Λs) |Ft).
(b) If the process λ is not positive, the process Λ is not increasing and we

obtain, for s < t,

P(τ > s|Ft) = P

(

sup
u≤s

Λu < Θ

)

= exp
(

− sup
u≤s

Λu

)

.

7.3.3 Enlargements of Filtrations

Write as before Dt = 1{τ≤t} and Dt = σ(Ds ; s ≤ t). Introduce the filtration
Gt = Ft ∨ Dt, that is, the enlarged filtration generated by the underlying
filtration F and the process D. (We denote by F the original Filtration and
by G the enlarGed one.) We shall frequently write G = F∨D. The filtration
G is the smallest one which contains F and such that τ is a stopping time.

It is easy to describe the events which belong to the σ-algebra Gt on the
set {τ > t}. Indeed, if Gt ∈ Gt, then Gt ∩ {τ > t} = Ĝt ∩ {τ > t} for some
event Ĝt ∈ Ft.

Therefore, from the monotone class theorem, any Gt-measurable random
variable Yt satisfies 1{τ>t}Yt = 1{τ>t}yt, where yt is an Ft-measurable random
variable.

7.3.4 Conditional Expectations with Respect to Gt

Lemma 7.3.4.1 (Key Lemma) Let Y be an integrable r.v.. Then,

1{τ>t}E(Y |Gt) = 1{τ>t}
E(Y 1{τ>t}|Ft)
E(1{τ>t}|Ft)

= 1{τ>t}e
ΛtE(Y 1{τ>t}|Ft).

Proof: From the remarks on Gt-measurability, if Yt = E(Y |Gt), there exists
an Ft-measurable r.v. yt such that

1{τ>t}E(Y |Gt) = 1{τ>t}yt .

Taking conditional expectation w.r.t. Ft of both members of the above

equality, we obtain yt =
E(Y 1{τ>t}|Ft)
E(1{τ>t}|Ft)

. The last equality in the proposition

follows from E(1{τ>t}|Ft) = e−Λt . �

Corollary 7.3.4.2 If X is an integrable FT -measurable random variable,
then, for t < T

E(X1{T<τ}|Gt) = 1{τ>t}e
ΛtE(Xe−ΛT |Ft) . (7.3.2)
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Proof: The conditional expectation E(X1{τ>T}|Gt) is equal to 0 on the Gt-
measurable set {τ < t}, whereas for any X ∈ L1(FT ),

E(X1{τ>T}|Ft) = E(X1{τ>T}|FT |Ft) = E(Xe−ΛT |Ft).

The result follows from Lemma 7.3.4.1. �

We now compute the expectation of an F-predictable process evaluated at
time τ , and we give the F-Doob-Meyer decomposition of the increasing process
D. We denote by Ft : = P(τ ≤ t|Ft) the conditional distribution function.

Lemma 7.3.4.3 (i) If h is an F-predictable (bounded) process, then

E(hτ |Ft) = E

(∫ ∞

0

huλue
−Λu du

∣
∣
∣Ft

)

= E

(∫ ∞

0

hudFu

∣
∣
∣Ft

)

and

E(hτ |Gt) = eΛtE

(∫ ∞

t

huλudFu

∣
∣
∣Ft

)

1{τ>t} + hτ1{τ≤t}. (7.3.3)

In particular

E(hτ ) = E

(∫ ∞

0

huλu e
−Λu du

)

= E

(∫ ∞

0

hudFu

)

.

(ii) The process (Dt −
∫ t∧τ
0

λsds, t ≥ 0) is a G-martingale.

Proof: Let Bv ∈ Fv and h the elementary F-predictable process defined as
ht = 1{t>v}Bv. Then,

E(hτ |Ft) = E

(
1{τ>v}Bv|Ft

)
= E

(
E(1{τ>v}Bv|F∞)

∣
∣
∣Ft

)

= E

(
BvP(v < τ |F∞)

∣
∣
∣Ft

)
= E

(
Bve

−Λv |Ft

)
.

It follows that

E(hτ |Ft) = E

(

Bv

∫ ∞

v

λue
−Λu du

∣
∣
∣Ft

)

= E

(∫ ∞

0

huλue
−Λudu

∣
∣
∣Ft

)

and (i) is derived from the monotone class theorem. Equality 7.3.3 follows
from the key Lemma 7.3.4.1.

The martingale property (ii) follows from the integration by parts formula.
Indeed, let s < t. Then, on the one hand from the key Lemma

E(Dt −Ds|Gs) = P(s < τ ≤ t|Gs) = 1{s<τ}
P(s < τ ≤ t|Fs)

P(s < τ |Fs)

= 1{s<τ}
(
1 − eΛsE

(
e−Λt |Fs

))
.
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On the other hand, from part (i), for s < t,

E

(∫ t∧τ

s∧τ
λudu

∣
∣
∣Gs
)

= E (Λt∧τ − Λs∧τ |Gs) = E(ψτ |Gt)

= 1{s<τ}e
ΛsE

(∫ ∞

s

ψuλue
−Λudu

∣
∣
∣Fs

)

where ψu = Λt∧u − Λs∧u = 1{s<u}(Λt∧u − Λs). Consequently,

∫ ∞

s

ψuλue
−Λudu =

∫ t

s

(Λu − Λs)λue−Λudu+ (Λt − Λs)
∫ ∞

t

λue
−Λudu

=
∫ t

s

Λuλue
−Λudu− Λs

∫ ∞

s

λue
−Λudu+ Λte

−Λt

=
∫ t

s

Λuλue
−Λudu− Λse

−Λs + Λte
−Λt

= e−Λs − e−Λt .

It follows that

E(Dt −Ds|Gs) = E

(∫ t∧τ

s∧τ
λudu

∣
∣
∣Gs
)

,

hence the martingale property of the process Dt −
∫ t∧τ
0

λudu . �

Comment 7.3.4.4 Property (ii) shows that λt1{t<τ} is the G-intensity of τ
(see � Section 7.7).

Remark 7.3.4.5 As we said before in Subsection 7.2.4, if no defaultable as-
sets are traded, the defaultable market is incomplete. A change of probability
can affect the law of the r.v. Θ, hence, can affect the value of the intensity.
We shall study this problem in a more general hazard process framework in
the following section.

7.3.5 Conditional Expectations of F∞-Measurable Random
Variables

Lemma 7.3.5.1 Let X be an integrable F∞-measurable r.v.. Then

E(X|Gt) = E(X|Ft) . (7.3.4)

Proof: Let X be an integrable F∞-measurable r.v.. The σ-algebra Gt is
generated by r.v’s of the form Bth(τ ∧ t) where Bt ∈ Ft and h = 1[0,a].
Therefore, to prove that E(X|Gt) = E(X|Ft), it suffices to check that

E(Bth(τ ∧ t)X) = E(Bth(τ ∧ t)E(X|Ft))
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for any Bt ∈ Ft and any h = 1[0,a]. For t ≤ a, the equality is obvious. For
t > a, we have from the equality (7.3.1)

E
(
Bt1{τ≤a}E(X|Ft)

)
= E
(
1{τ≤a}E(BtX|Ft)

)
= E
(
BtXE(1{τ≤a}|Ft)

)

= E
(
BtXE(1{τ≤a}|F∞)

)
= E(BtX1{τ≤a}) .

The result follows. �

Remark 7.3.5.2 The equality (7.3.4) implies that every F-square integrable
martingale is a G-martingale. However, equality (7.3.4) does not apply to any
G∞-measurable r.v.; in particular, since τ is a G-stopping time and not an
F-stopping time, P(τ ≤ t|Gt) = 1{τ≤t} is not equal to P(τ ≤ t|Ft).

7.3.6 Correlated Defaults: Copula Approach

An approach to modelling dependent credit risks is the use of copulas.
If Xi, i = 1, . . . , n are random variables with cumulative distribution

function Fi, and if the Fi’s are strictly increasing, then, setting Ui = Fi(Xi)

P(Xi ≤ xi,∀i) = P(Fi(Xi) ≤ Fi(xi),∀i) = P(Ui ≤ Fi(xi),∀i)

hence, the joint law of the Xi can be characterized in terms of the joint law
of the vector U . Note that the r.v. Ui has a uniform law, and that, a priori
the Ui’s are not independent.

Basic Definitions

Definition 7.3.6.1 A mapping C defined on [0, 1]n is a copula if it satisfies:
(i) C(u1, . . . , un) is increasing with respect to each component ui,
(ii) C(1, . . . , ui, . . . , 1) = ui, for every i, for every ui ∈ [0, 1],
(iii) for every a, b ∈ [0, 1]n with a ≤ b (i.e., ai ≤ bi, ∀i)

2∑

i1=1

. . .
2∑

in=1

(−1)i1+···+inC(u1,i1 , . . . , un,in) ≥ 0 ,

where uj,1 = aj , uj,2 = bj.

A copula is the cumulative distribution function of an n-uple (U1, · · · , Un)
where the Ui are r.v’s with uniform law on the interval [0, 1]. The survival
copula is Ĉ(u1, . . . , un) = P(U1 > u1, . . . , Un > un).

Property (iii) indicates that the probability that the n-tuple belongs to
the rectangle

∏n
i=1]ai, bi] is non-negative.

Theorem 7.3.6.2 (Sklar’s Theorem.) Let F be an n-dimensional cumu-
lative distribution with margins Fi. Then there exists a copula C such that

F (x) = C(F1(x1), . . . , Fn(xn)) .
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The copula of the n-dimensional random variable (X1, . . . , Xn) gives
information on the dependence of the marginal one-dimensional random
variables Xi. From the definition, if the marginal distributions are strictly
increasing,

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un))
= P(X1 ≤ F−1

1 (u1), . . . , Xn ≤ F−1
n (un))

= P(F1(X1) ≤ u1, . . . , Fn(Xn) ≤ un) .

A particular copula is the independence copula C(u1, . . . , un) =
∏n

i=1 ui,
where the different random variables Ui are independent and uniformly
distributed.

One of the copulas used by practioners is the Gaussian copula, given by

C(v1, . . . , vn) = Nn
Σ

(
N−1(v1), . . . , N−1(vn)

)
,

where Nn
Σ is the c.d.f for the n-variate central normal distribution with the

linear correlation matrix Σ, and N−1 is the inverse of the c.d.f. for the
univariate standard normal distribution.

Copula and Threshold

As in Subsection 7.3.1, we define τi = inf{t : Λi(t) ≥ Θi} where Λi are F-
adapted, increasing processes and Θi are random variables, independent of
F∞, with a survival copula

Ĉ(u1, . . . , un) = P(Φi(Θi) > ui,∀i ≤ n)

where Φi is the cumulative distribution function of Θi, assumed to be strictly
increasing. Then, the joint law of default times may be characterized by

P(τi > ti,∀i ≤ n) = P(Λi(ti) < Θi,∀i ≤ n)
= P(Φi(Λi(ti)) < Φi(Θi),∀i ≤ n)

= E

(
Ĉ(Ψ1(t1), . . . , Ψn(tn))

)

where Ψi(t) = Φi(Λi(t)). We have also, for ti > t,∀i,

P(τi > ti,∀i ≤ n|Ft) = P(Λi(ti) < Θi,∀i ≤ n|Ft)

= E

(
Ĉ(Ψ1(t1), . . . , Ψn(tn))|Ft

)
.

In particular, if τ = infi(τi) and Y ∈ FT

E(Y 1{τi>T}|Gt) = 1{τ>t}
E(Y 1{τi>T}1{τ>t}|Ft)

P(τ > t|Ft)

= 1{τ>t}E

(

Y
Ĉ(Ψ1(t), . . . , Ψi(T ), . . . Ψn(t))

Ĉ(Ψ1(t), . . . , Ψi(t), . . . Ψn(t))

∣
∣Ft

)

.
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Comment 7.3.6.3 The reader is refered to various works, e.g., Bouyé et al
[115], Coutant et al. [200] and Nelsen [668] for definitions and properties of
copulas and to Frey and McNeil [358], Embrechts et al. [323] and Li [588] for
financial applications.

7.3.7 Correlated Defaults: Jarrow and Yu’s Model

Let us define τi = inf{t : Λi(t) ≥ Θi}, i = 1, 2 where Λi(t) =
∫ t
0
λi(s)ds and

Θi are independent random variables with exponential law of parameter 1. As
in Jarrow and Yu [481], we consider the case where λ1 is a constant and

λ2(t) = λ2 + (α2 − λ2)1{τ1≤t} = λ21{t<τ1} + α21{τ1≤t} .

Assume for simplicity that r = 0. Our aim is to compute the value of a
defaultable zero-coupon with default time τi, with a rebate δi paid at maturity:

Di(t, T ) = E(1{τi>T} + δi1{τi<T}|Gt), for Gt = D1
t ∨ D2

t .

We compute the joint law of the pair (τ1, τ2) given by the survival probability
G(s, t) = P(τ1 > s, τ2 > t).

� Case t ≤ s: For t ≤ s < τ1, one has λ2(t) = λ2t. Hence, the following
equality

{τ1 > s} ∩ {τ2 > t} = {τ1 > s} ∩ {Λ2(t) < Θ2} = {τ1 > s} ∩ {λ2t < Θ2}
= {λ1s < Θ1} ∩ {λ2t < Θ2}

leads to
for t ≤ s, P(τ1 > s, τ2 > t) = e−λ1se−λ2t . (7.3.5)

� Case t > s

{τ1 > s} ∩ {τ2 > t} = {{t > τ1 > s} ∩ {τ2 > t}} ∪ {{τ1 > t} ∩ {τ2 > t}}
{t > τ1 > s} ∩ {τ2 > t} = {t > τ1 > s} ∩ {Λ2(t) < Θ2}

= {t > τ1 > s} ∩ {λ2τ1 + α2(t− τ1) < Θ2} .

The independence between Θ1 and Θ2 implies that the r.v. τ1 = Θ1/λ1 is
independent of Θ2, hence

P(t > τ1 > s, τ2 > t) = E

(
1{t>τ1>s}e

−(λ2τ1+α2(t−τ1))
)

=
∫
du 1{t>u>s}e

−(λ2u+α2(t−u))λ1e
−λ1u

=
λ1e

−α2t

λ1 + λ2 − α2
λ1e

−α2t
(
e−s(λ1+λ2−α2) − e−t(λ1+λ2−α2)

)
;
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Setting Δ = λ1 + λ2 − α2, it follows that

P(τ1 > s, τ2 > t) =
1
Δ
λ1e

−α2t
(
e−sΔ − e−tΔ

)
+ e−λ1te−λ2t . (7.3.6)

In particular, for s = 0,

P(τ2 > t) =
1
Δ

(
λ1

(
e−α2t − e−(λ1+λ2)t

)
+Δe−λ1t

)
.

� The computation of D1 reduces to that of

P(τ1 > T |Gt) = P(τ1 > T |Ft ∨ D1
t )

where Ft = D2
t . From the key Lemma 7.3.4.1,

P(τ1 > T |D2
t ∨ D1

t ) = 1{t<τ1}
P(τ1 > T |D2

t )
P(τ1 > t|D2

t )
.

Therefore, using equalities (7.3.5) and (7.3.6)

D1(t, T ) = δ1 + 1{τ1>t}(1 − δ1)e−λ1(T−t) .

� The computation of D2 follows from

P(τ2 > T |D1
t ∨ D2

t ) = 1{t<τ2}
P(τ2 > T |D1

t )
P(τ2 > t|D1

t )

and

P(τ2 > T |D1
t ) = 1{τ1>t}

P(τ1 > t, τ2 > T )
P(τ1 > t)

+ 1{τ1 ≤ t}P(τ2 > T |τ1) .

Some easy computations lead to

D2(t, T ) = δ2 + (1 − δ2)1{τ2>t}

(
1{τ1≤t}e

−α2(T−t)

+1{τ1>t}
1
Δ

(λ1e
−α2(T−t) + (λ2 − α2)e−(λ1+λ2)(T−t))

)

.

7.4 Conditional Survival Probability Approach

We present now a more general model. We deal with two kinds of information:
the information from the asset’s prices, denoted by (Ft, t ≥ 0), and the
information from the default time τ , i.e., the knowledge of the time when
the default occurred in the past, if it occurred. More precisely, this latter
information is modelled by the filtration D = (Dt, t ≥ 0) generated by the
default process Dt = 1{τ≤t}.



7.4 Conditional Survival Probability Approach 427

At the intuitive level, F is generated by the prices of some assets, or by
other economic factors (e.g., long and short interest rates). This filtration can
also be a subfiltration of that of the prices. The case where F is the trivial
filtration is exactly what we have studied in the toy model. Though in typical
examples F is chosen to be the Brownian filtration, most theoretical results
do not rely on such a specification. We denote Gt = Ft ∨ Dt.

Special attention is paid here to the hypothesis (H), which postulates the
immersion property of F in G. We establish a representation theorem, in
order to understand the meaning of a complete market in a defaultable world,
and we deduce the hedging strategies for some defaultable claims. The main
part of this section can be found in the surveys of Jeanblanc and Rutkowski
[486, 487].

7.4.1 Conditional Expectations

The conditional law of τ with respect to the information Ft is characterized
by P(τ ≤ u|Ft). Here, we restrict our attention to the survival conditional
distribution (the Azéma’s supermartingale)

Gt : = P(τ > t|Ft) .

The super-martingale (Gt, t ≥ 0) admits a decomposition as Z − A where Z
is an F-martingale and A an F-predictable increasing process. We assume in
this section that Gt > 0 for any t and that G is continuous.

It is straightforward to establish that every Gt-random variable is equal,
on the set {τ > t}, to an Ft-measurable random variable.

Lemma 7.4.1.1 (Key Lemma.) Let X be an FT -measurable integrable r.v.
Then, for t < T

E(X1{T<τ}|Gt) = 1{τ>t}
E(X1{τ>T}|Ft)
E(1{τ>t}|Ft)

= 1{τ>t}(Gt)−1
E(XGT |Ft) .

(7.4.1)

Proof: The proof is exactly the same as that of Corollary 7.3.4.2. Indeed,

1{τ>t}E(X1{T<τ}|Gt) = 1{τ>t}xt

where xt is Ft-measurable. Taking conditional expectation w.r.t. Ft of both
sides, we deduce

xt =
E(X1{τ>T}|Ft)
E(1{τ>t}|Ft)

= 1{τ>t}(Gt)−1
E(XGT |Ft) .

�
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Lemma 7.4.1.2 Let h be an F-predictable process. Then,

E(hτ1{τ≤T}|Gt) = hτ1{τ≤t} − 1{τ>t}(Gt)−1
E

(∫ T

t

hudGu|Ft

)

.

(7.4.2)

In terms of the increasing process A of the Doob-Meyer decomposition of G,

E(hτ1{τ≤T}|Gt) = hτ1{τ≤t} + 1{τ>t}(Gt)−1
E

(∫ T

t

hudAu|Ft

)

.

Proof: The proof follows the same lines as that of Lemma 7.3.4.3. �

As we shall see, this elementary result will allow us to compute the value
of defaultable claims and of credit derivatives as CDS’s. We are not interested
with the case where h is a G-predictable process, mainly because every G-
predictable process is equal, on the set {t ≤ τ}, to an F-predictable process.

Lemma 7.4.1.3 The process Mt : = Dt −
∫ t∧τ

0

dAs

Gs
is a G-martingale.

Proof: The proof is based on the key lemma and Fubini’s theorem. We leave
the details to the reader. �

In other words, the process
∫ t∧τ

0

dAs

Gs
is the G-predictable compensator

of D.

Comment 7.4.1.4 The hazard process Γt : = − lnGt is often introduced. In
the case of the Cox Process model, the hazard process is increasing and is
equal to Λ.

7.5 Conditional Survival Probability Approach and
Immersion

We discuss now the hypothesis on the modelling of default time that we
require, under suitable conditions, to avoid arbitrages in the defaultable
market. We recall that the immersion property, also called (H)-hypothesis
(see Subsection 5.9.1) states that any square integrable F-martingale is
a G-martingale. In the first part, we justify that, under some financial
conditions, the (H)-hypothesis holds. Then, we present some consequences
of this condition and we establish a representation theorem and give an
important application to hedging.
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7.5.1 (H)-Hypothesis and Arbitrages

If r is the interest rate, we denote, as usual Rt = exp(−
∫ t
0
rsds).

Proposition 7.5.1.1 Let S be the dynamics of a default-free price process,
represented as a semi-martingale on (Ω,G,P) and FS

t = σ(Ss, s ≤ t) its
natural filtration. Assume that the interest rate r is FS-adapted and that there
exists a unique probability Q, equivalent to P on FS

T , such that the discounted
process (StRt, 0 ≤ t ≤ T ) is an FS-martingale under the probability Q.
Assume also that there exists a probability Q̃, equivalent to P on GT = FS

T ∨DT ,
such that (StRt, 0 ≤ t ≤ T ) is a G-martingale under the probability Q̃. Then,
(H) holds under Q̃ and the restriction of Q̃ to FS

T is equal to Q.

Proof: We give a “financial proof.” Under our hypothesis, any Q-square
integrable FS

T -measurable r.v.X can be thought of as the value of a contingent
claim. Since the same claim exists in the larger market, which is assumed to
be arbitrage free, the discounted value of that claim is a (G, Q̃)-martingale.
From the uniqueness of the price for a hedgeable claim, for any contingent
claim X ∈ FS

T and any G-e.m.m. Q̃,

EQ(XRT |FS
t ) = E

Q̃
(XRT |Gt) .

In particular, EQ(Z) = E
Q̃
(Z) for any Z ∈ FS

T (take X = ZR−1
T and

t = 0), hence the restriction of any e.m.m. Q̃ to the σ-algebra FS
T equals

Q. Moreover, since every square integrable (FS ,Q)-martingale can be written
as EQ(Z|FS

t ) = E
eQ
(Z|Gt), we obtain that every square integrable (FS , Q̃)-

martingale is a (G, Q̃)-martingale. �

Some Consequences

We recall that the hypothesis (H), studied in Subsection 5.9.4, reads in this
particular setting:

∀ t, P(τ ≤ t|F∞) = P(τ ≤ t|Ft) : = Ft. (7.5.1)

In particular, if (H) holds, then F is increasing. Furthermore, if F is
continuous, then the predictable increasing process of the Doob-Meyer
decomposition of G = 1 − F is equal to F and

Dt −
∫ t∧τ

0

dFs
Gs

is a G-martingale.
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Remarks 7.5.1.2 (a) If τ is F∞-measurable, then equality (7.5.1) is equiv-
alent to: τ is an F-stopping time. Moreover, if F is the Brownian filtration,
then τ is predictable and the Doob-Meyer decomposition of G is Gt = 1−Ft,
where F is the predictable increasing process.

(b) Though the hypothesis (H) does not necessarily hold true, in general,
it is satisfied when τ is constructed through a Cox process approach (see
Section 7.3).

(c) This hypothesis is quite natural under the historical probability, and
is stable under particular changes of measure. However, Kusuoka provides an
example where (H) holds under the historical probability and does not hold
after a particular change of probability. This counterexample is linked with
dependency between different defaults (see � Subsection 7.5.3).

(d) Hypothesis (H) holds in particular if τ is independent of F∞. See
Greenfeld’s thesis [406] for a study of derivative claims in that simple setting.

Comment 7.5.1.3 Elliott et al. [315] pay attention to the case when F is
increasing. Obviously, if (H) holds, then F is increasing, however, the reverse
does not hold. The increasing property of F is equivalent to the fact that every
F-martingale, stopped at time τ , is a G-martingale. Nikeghbali and Yor [675]
proved that this is equivalent to E(mτ ) = m0 for any bounded F-martingalem
(see Proposition 5.9.4.7). It is worthwhile noting that in � Subsection 7.6.1,
the process F is not increasing.

7.5.2 Pricing Contingent Claims

Assume that the default-free market consists of F-adapted prices and that
the default-free interest rate is F-adapted. Whether the defaultable market
is complete or not will be studied in the following section. Let Q

∗ be the
e.m.m. chosen by the market and G∗ the Q

∗-survival probability, assumed to
be continuous. From (7.4.1) the discounted price of the defaultable contingent
claim X ∈ FT is

RtEQ∗(X1{τ>T}RT |Gt) = 1{t<τ}(G∗
t )

−1
EQ∗(XG∗

TRT |Ft) .

If (H) holds under Q
∗ and if G∗ is differentiable, then G∗

t = exp(−
∫ t
0
λ∗sds)

and

EQ∗(XRT1{τ>T}|Gt) = 1{t<τ}EQ∗

(

X exp

(

−
∫ T

t

(rs + λ∗s)ds

)

|Ft

)

.

(7.5.2)

Particular Case: Defaultable Zero-coupon Bond

The price at time t of a default-free bond paying 1 at maturity t satisfies
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P (t, T ) = EQ∗

(

exp

(

−
∫ T

t

rs ds

)
∣
∣
∣Ft

)

,

for any e.m.m. Q
∗ (recall that the market is incomplete as long as no

defaultable asset is traded). Now, if a defaultable zero-coupon bond is traded
in the market with a price - given by the market - equal to D(t, T ), we have,
for a particular Q

∗,

D(t, T ) = EQ∗

(

1{T<τ} exp

(

−
∫ T

t

rs ds

)
∣
∣
∣Gt

)

= 1{τ>t}EQ∗

(

exp

(

−
∫ T

t

[rs + λ∗s] ds

)
∣
∣
∣Ft

)

.

The value of λ∗ is obtained from the price of the defaultable zero coupons,
and is related to the conditional law of τ given Ft as we have explained in
Subsection 7.3.1.

7.5.3 Correlated Defaults: Kusuoka’s Example

Kusuoka [552] assumes that the default times τi, i = 1, 2 are independent
exponential random variables, i.e., they have joint density

f(x, y) = λ1λ2e
−(λ1x+λ2y)1{x≥0,y≥0}

under the historical probability P. The reference filtration F is trivial and the
observation filtration is G = D1 ∨D2 where Di is the natural filtration of the
process Di

t = 1{τi≤t}. Define a measure Q as

Q|GT
= ηT P|GT

where
dηt = ηt−(κ1

tdM
1
t + κ2

tdM
2
t ), η0 = 1 ,

the (P,G)-martingales (M i, i = 1, 2) are defined by M i
t = Di

t − λi(t∧ τi) and

κit = 1{τj≤t}

(
αi
λi

− 1
)

, for i = j, i, j = 1, 2 .

Using Girsanov’s Theorem (see � Section 9.4), the processes

M̃ i
t = Di

t −
∫ t∧τi

0

λisds

where

λ1
t = λ11{τ2>t} + α11{τ2≤t} λ2

t = λ21{τ1>t} + α21{τ1≤t}
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are (Q,G)-martingales. The two default times are no longer independent
under Q. Furthermore, the (H) hypothesis does not hold under Q between
D2 and D1 ∨ D2, in particular

Q(τ1 > T |D1
t ∨ D2

t ) = 1{τ1>t}EQ

(

exp

(

−
∫ T

t

λ1
udu

)

|D2
t

)

.

7.5.4 Stochastic Barrier

We assume that the (H)-hypothesis holds under P and that F is strictly
increasing and continuous. Then, there exists a continuous strictly increasing
F-adapted process Γ such that

P(τ > t|F∞) = e−Γt .

Our goal is to show that there exists a random variable Θ, independent of F∞,
with exponential law of parameter 1, such that τ = inf {t ≥ 0 : Γt ≥ Θ}. Let
us set Θ : = Γτ . Then

{t < Θ} = {t < Γτ} = {Ct < τ},

where C is the right inverse of Γ , so that ΓCt = t. Therefore

P(Θ > u|F∞) = e−ΓCu = e−u.

We have thus established the required properties, namely, that the exponential
probability law of Θ and its independence of the σ-algebra F∞. Furthermore,
τ = inf{t : Γt > Γτ} = inf{t : Γt > Θ}.
Comment 7.5.4.1 This result is extended to a multi-default setting for a
trivial filtration in Norros [677] and Shaked and Shanthikumar [782].

7.5.5 Predictable Representation Theorems

We still assume that the (H) hypothesis holds and that F is absolutely
continuous w.r.t. Lebesgue measure with density f . We recall that

Mt : = Dt −
∫ t∧τ

0

λsds

is a G-martingale where λs = fs/Gs. Kusuoka [552] establishes the following
representation theorem:

Theorem 7.5.5.1 Suppose that F is a Brownian filtration generated by
the Brownian motion W . Then, under the hypothesis (H), every G-square
integrable martingale (Ht, t ≥ 0) admits a representation as the sum of a
stochastic integral with respect to the Brownian motion W and a stochastic
integral with respect to the discontinuous martingale M :
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Ht = H0 +
∫ t

0

φsdWs +
∫ t

0

ψsdMs

where, for any t, E

(∫ t
0
φ2
sds
)
<∞ and E

(∫ t
0
ψ2
sλsds

)
<∞.

In the case of a G-martingale of the form E(X1{T<τ}|Gt) where X is FT -
measurable, or for E(hτ |Gt) where h is predictable, one can be more precise.

Proposition 7.5.5.2 Suppose that hypothesis (H) holds, that G is continuous
and that every F-martingale is continuous.

Then, the martingale Ht = E(hτ | Gt) , where h is an F-predictable process
such that E(|hτ |) < ∞, admits the following decomposition as the sum of a
G-continuous martingale and a G-purely discontinuous martingale:

Ht = mh
0 +
∫ t∧τ

0

G−1
u dmh

u +
∫

]0,t∧τ ]

(hu − Ju) dMu . (7.5.3)

Here mh is the continuous F-martingale

mh
t = E

(∫ ∞

0

hudFu | Ft

)

,

and Jt = G−1
t (mh

t −
∫ t
0
hudFu). Moreover, Ju = Hu on the set {u < τ}.

Proof: From (7.3.3) we know that

Ht = E(hτ | Gt) = 1{τ≤t}hτ + 1{τ>t}G
−1
t E

(∫ ∞

t

hudFu | Ft

)

= 1{τ≤t}hτ + 1{τ>t}Jt . (7.5.4)

From the fact that G is a decreasing continuous process and mh a continuous
martingale, and using the integration by parts formula, we deduce, after some
easy computations, that

dJt = G−1
t dmh

t +JtGt d(G−1
t )−htG−1

t dFt = G−1
t dmh

t +JtG−1
t dFt−htG−1

t dFt .

Therefore,

dJt = G−1
t dmh

t + (Jt − ht)
dFt
Gt

or, in an integrated form,

Jt = mh
0 +
∫ t

0

G−1
u dmh

u +
∫ t

0

(Ju − hu)
dFu
Gu

.

Note that, from (7.5.4), Ju = Hu for u < τ . Therefore, on {t < τ},

Ht = mh
0 +
∫ t∧τ

0

G−1
u dmh

u +
∫ t∧τ

0

(Ju − hu)
dFu
Gu

.
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From (7.5.4), the jump of H at time τ is hτ − Jτ = hτ − Hτ−. Therefore,
(7.5.3) follows. Since hypothesis (H) holds, the processes (mh

t , t ≥ 0) and
(
∫ t
0
G−1

u dmh
u, t ≥ 0) are also G-martingales. Hence, the stopped process

(
∫ t∧τ
0

G−1
u dmh

u, t ≥ 0) is a G-martingale. �

7.5.6 Hedging Contingent Claims with DZC

We assume that (H) holds under the risk-neutral probability Q chosen by the
market, and that the process Gt = Q(τ > t|Ft) is continuous.

We suppose moreover that:

• The default-free market including the default-free zero-coupon with
constant interest rate and the risky asset S, is complete and arbitrage
free, and

dSt = St(rdt+ σtdWt) .

Here W is a Q-BM.
• A defaultable zero-coupon with maturity T and price D(t, T ) is traded on

the market.
• The market which consists of the default-free zero-coupon P (t, T ), the

defaultable zero-coupon D(t, T ) and the risky asset S is arbitrage free (in
particular, D(t, T ) belongs to the range of prices ]0, P (t, T )[ ).

We now make precise the hedging of a defaultable claim and check that any
GT -measurable square integrable contingent claim is hedgeable.

The market price of the DZC and the e.m.m. Q are related by

D(t, T )e−rt = EQ(e−rT1{T<τ}|Gt)
= 1{t<τ}G

−1
t EQ(e−rTGT |Ft) = Ltmt (7.5.5)

where mt = EQ(e−rTGT |Ft) is an F-martingale and Lt = 1{t<τ}G
−1
t .

We recall that a triple (a, b, c) of G-predictable processes is a hedging
strategy for the contingent claim Z ∈ GT if, denoting by

Zt = ate
rt + btSt + ctD(t, T )

the time-t value of this strategy, the self-financing relation

dZt = atre
rtdt+ btdSt + ctdtD(t, T )

holds and
ZT = aT e

rT + bTST + cTD(T, T ) = Z .

From the no-arbitrage hypothesis, we obtain

Zte
−rt = EQ(ZT e

−rT |Gt) .
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Terminal Payoff

In a first step we study the case of a terminal payoff of the particular form
Z = X1{T<τ} where X ∈ L2(FT ). We compute EQ(X1{T<τ}e

−rT |Gt), and we
give the hedging strategy for X1{T<τ} based on the riskless asset, the risky
asset and the defaultable zero-coupon bond.

Theorem 7.5.6.1 The hedging strategy (a, b, c) for the defaultable contingent
claim X1{T<τ}, based on the riskless bond, the asset and the defaultable zero-
coupon satisfies

ctD(t, T ) = ertEQ(Xe−rT1{T<τ}|Gt) .

Hence, atert + btSt = 0.
More precisely, let (V X

t −vXt St, vXt ) be the hedging strategy for the default-
free contingent claim XGT , and (Vt − vtSt, vt) the hedging strategy for the
default-free contingent claim GT , i.e.,

e−rtV X
t = EQ(XGT e

−rT |Ft) = x+
∫ t

0

vXs d(e
−rsSs)

e−rtVt = EQ(GT e
−rT |Ft) = x+

∫ t

0

vsd(e−rsSs) . (7.5.6)

Then, on {t < τ}

(i) ct =
V X
t

Vt
,

(ii) bt = G−1
t

(

vXt − V X
t

Vt
vt

)

,

(iii) at = −G−1
t

(

vXt − V X
t

Vt
vt

)

e−rtSt .

Obviously, at = bt = ct = 0 on {τ ≤ t}.

Proof: Let us reduce attention to the simple case r = 0. The time-t price of
the defaultable claim X1{T<τ} is Zt which is defined by

Zt = EQ(X1{T<τ}|Gt) = LtV
X
t

where Lt = 1{t<τ}G
−1
t and V X

t = EQ(XGT |Ft). The price of the DZC satisfies

D(t, T ) = LtVt . Hence Zt = EQ(X1{T<τ}|Gt) =
V X
t

Vt
D(t, T ) .

We now check that there exists a triple (a, b, c) determining a self-financing
portfolio such that atert + btSt = 0 (in particular, ctD(t, T ) = Zt, hence the
process c satisfies (i)). The self-financing condition reads

btStσdWt + ct(Lt−dVt + VtdLt) = dZt = Lt−dV
X
t + V X

t dLt ,

where we have used the fact that the martingales L and V (resp. L and V X)
are orthogonal. From the choice of c, this equality reduces to
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btStσdWt + ctLt−dVt = Lt−dV
X
t ,

i.e.,
bt + ctLt−vt = Lt−v

X
t .

Hence the form of b given in the theorem. �

Comments 7.5.6.2 (a) It is worthwhile comparing this result with the
results of Subsection 2.4.5.

(b) See Bielecki et al.[92] for a more complete study of hedging strategies,
using a martingale approach, and trading strategies satisfying atert+btSt = 0.

Rebate Part

The representation theorem also provides a hedging strategy for a rebate h
paid at hit. We assume that F is differentiable, with derivative f . We denote by
Ch
t the price of the default-free contingent claim which consists of a dividend

hf paid between time t and T , i.e.,

Ch
t e

−rt = EQ

(∫ T

t

e−rufuhudu|Ft

)

,

and by μh the associated hedging strategy:

Ch
t e

−rt +
∫ t

0

e−rufuhudu = Ch
0 +

∫ t

0

μhsd(e
−rsSs) .

Proposition 7.5.6.3 Let (a, b, c) be the hedging strategy for the rebate part,
i.e., the self-financing strategy such that

e−rt(atert + btSt + ctD(t, T )) = EQ(hτ1{τ≤T}e
−rτ |Gt) .

Then, on the set {t < τ}, one has ctD(t, T ) = ertEQ(hτ1{τ≤T}e
−rτ |Gt) − ht.

More precisely, the hedging strategy before the default time of the rebate part,
paid at hit, consists of:

(i) ct =
1
Vt

(Ch
t −G−1

t ht),

(ii) bt = G−1
t

(

μht − 1
Vt
vtC

h
t

)

+
1
Vt
vtht,

(iii) atert = St

(
1
Vt
vtht −G−1

t

(

μht +
1
Vt
vtC

h
t

))

+ ht

where V and v are defined in (7.5.6).

Proof: We give the proof for the case r = 0.
We compute the quantity EQ(hτ1{τ≤T}|Gt), which corresponds to the

price of the rebate, when the compensation is paid at hit. The representation
theorem 7.5.5.2 states that
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EQ(hτ1{τ≤T}|Gt) = Ch
0 +

∫ t∧τ

0

G−1
u μhudSu +

∫

[0,t∧τ [

(hu − Ju−)dMu ,

where, on the set {t < τ},

Jt = EQ(hτ1{τ≤T}|Gt) = G−1
t EQ

(∫ T

t

hudFu|Ft

)

= G−1
t Ch

t .

The value of a DZC given in (7.5.5) can be written D(t, T ) = 1{t<τ}G
−1
t Vt.

In particular,

dtD(t, T ) = −D(t−, T )dMt + LtdVt = −D(t−, T )dMt + LtvtdSt

It follows that

EQ

(
hτ1{τ≤T}|Gt

)
= Ch

0 +
∫ t∧τ

0

G−1
u μhudSu

−
∫

[0,t∧τ [

(hu −G−1
u Ch

u)
1

D(u, T )
[duD(u, T ) − vuLudSu]

which leads to, using that D(t, T ) = G−1
t Vt on the set {t < τ},

EQ

(
hτ1{τ≤T}|Gt

)
= V h

0 +
∫ t∧τ

0

[

G−1
u

(

vhu − Ch
u

vhu
Vu

)

+
vuhu
Vu

]

dSu

−
∫

[0,t∧τ [

(hu −G−1
u Ch

u)
1

GuVu
duD(u, T ) .

�

Comments 7.5.6.4 (a) Under the (H) hypothesis, the Kusuoka represen-
tation theorem and the form of the dynamics of a DZC imply that if the
default-free market is complete, the defaultable market is complete as soon as
a defaultable zero-coupon is traded.

(b) See also Bélanger et al. [67], Jeanblanc and Rutkowski [488] and
Bielecki et al. [89] for an extensive study of hedging strategies and Bielecki
et al. [90] and � Section 7.9 for a PDE approach, based on Itô’s calculus for
processes with jumps.

7.6 General Case: Without the (H)-Hypothesis

7.6.1 An Example of Partial Observation

As pointed out by Jamshidian [476], “one may wish to apply the general
theory perhaps as an intermediate step, to a subfiltration that is not equal
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to the default-free filtration. In that case, F rarely satisfies hypothesis (H)”.
We present here a simple case of such a situation. Assume that

dVt = Vt(μdt+ σdWt), V0 = v

i.e., Vt = veσ(Wt+νt) = veσXt , with ν = (μ− σ2/2)/σ and Xt = Wt + νt. We
denote by FW

t = σ(Ws, s ≤ t) the natural filtration of the Brownian motion
(this is also the natural filtration of X).

The default time is assumed to be the first hitting time of α with α < v,
i.e.,

τ = inf{t : Vt ≤ α} = inf{t : Xt ≤ a}

where a = σ−1 ln(α/v). Here, the reference filtration F is the filtration of the
observations of V at discrete times t1, · · · tn where tn ≤ t < tn+1, i.e.,

Ft = σ(Vt1 , . . . , Vtn , ti ≤ t)

and we compute Ft = P(τ ≤ t|Ft). Let us recall that (See Subsection 3.2.2)

P(inf
s≤t

Xs > z) = Φ(ν, t, z) , (7.6.1)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ(ν, t, z) =

⎧
⎪⎪⎨

⎪⎪⎩

N
(
νt− z√

t

)

− e2νzN
(
z + νt√

t

)

, for z < 0, t > 0,

0, for z ≥ 0, t ≥ 0,
Φ(ν, 0, z) = 1, for z < 0.

We now divide the study into three steps:
� On t < t1. In that case, for a < 0, we obtain

Ft = P(τ ≤ t) = P

(

inf
s≤t

Xs ≤ a

)

= 1 − Φ(ν, t, a) = N
(
a− νt√

t

)

+ e2νaN
(
a+ νt√

t

)

.

� On t1 < t < t2.

Ft = P(τ ≤ t|Xt1) = 1 − P(τ > t|Xt1)

= 1 − E

(

1{infs<t1 Xs>a} P

(

inf
t1≤s<t

Xs > a|FW
t1

)

|Xt1

)

The independence and stationarity of the increments of X yield

P

(

inf
t1≤s<t

Xs > a|FW
t1

)

= Φ(ν, t− t1, a−Xt1) .
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Hence
Ft = 1 − Φ(ν, t− t1, a−Xt1)P( inf

s<t1
Xs > a|Xt1) .

From Exercise 3.2.2.1, for Xt1 > a, we obtain (we omit the parameter ν in
the definition of Φ)

Ft = 1 − Φ(t− t1, a−Xt1)
[

1 − exp
(

−2 a
t1

(a−Xt1)
)]

. (7.6.2)

The case Xt1 ≤ a corresponds to default and, therefore, for Xt1 ≤ a, Ft = 1.
The process F is continuous and increasing in [t1, t2[.
When t approaches t1 from above, one has limt→t+1

Φ(t− t1, a−Xt1) = 1

for Xt1 > a, hence Ft+1 = exp
[

−2a
t1

(a−Xt1)
]

. For Xt1 > a, the jump of F

at t1 is

ΔFt1 = exp
[

−2a
t1

(a−Xt1)
]

− 1 + Φ(t1, a).

For Xt1 ≤ a, Φ(t− t1, a−Xt1) = 0 by the definition of Φ(·) and

ΔFt1 = Φ(t1, a).

� General Observation Times ti < t < ti+1 < T , i ≥ 2.
For ti < t < ti+1,

P(τ > t|Xt1 , . . . , Xti) = P

(

inf
s≤ti

Xs > a P

(

inf
ti≤s<t

Xs > a|Fti

)

|Xt1 , . . . , Xti

)

= Φ(t− ti, a−Xti)P
(

inf
s≤ti

Xs > a|Xt1 , . . . , Xti

)

.

We write Ki for the second term on the right-hand side

Ki = P

(

inf
s≤ti

Xs > a|Xt1 , . . . , Xti

)

= P

(

inf
s≤ti−1

Xs > a P

(

inf
ti−1≤s<ti

Xs > a|Fti−1 ∨Xti

)

|Xt1 , . . . , Xti

)

.

Obviously,

P

(

inf
ti−1≤s<ti

Xs > a|Fti−1 ∨Xti

)

= P

(

inf
ti−1≤s<ti

Xs > a|Xti−1 , Xti

)

= exp
(

− 2
ti − ti−1

(a−Xti−1)(a−Xti)
)

.

Therefore,

Ki = Ki−1 exp
(

− 2
ti − ti−1

(a−Xti−1)(a−Xti)
)

. (7.6.3)
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Hence,

P(τ ≤ t|Ft) = 1 if Xtj < a for at least one tj , tj < t ,

= 1 − Φ(t− ti, a−Xti)Ki, otherwise

where

Ki = k(t1, Xt1 , 0)k(t2 − t1, Xt1 , Xt2) · · · k(ti − ti−1, Xti−1 , Xti)

and k(s, x, y) = 1 − exp
(
−2

s (a− x)(a− y)
)
.

Comment 7.6.1.1 It is also possible, as in Duffie and Lando [273], to assume
that the observation at time [t] is only V[t] + ε where ε is a noise, modelled
as a random variable independent of V . Another example, related to Parisian
stopping times is presented in Ç̧etin et al. [158].

Exercise 7.6.1.2 Prove that the process ζ defined by ζt =
∑

i,ti≤tΔFti is
an F-martingale.
Hint: This is a trivial check. For details, see Jeanblanc and Valchev [489]. �

7.6.2 Two Defaults, Trivial Reference Filtration

We present some results on the case of two default times in the particular case
where the reference filtration F is the trivial filtration. We denote by G the
filtration H1 ∨H2 and by G(u, v) = P(τ1 > u, τ2 > v) the survival probability
of the pair (τ1, τ2) and by Fi(s) = P(τi ≤ s) =

∫ s
0
fi(u)du the marginal

cumulative distribution functions. We assume that G is twice continuously
differentiable. Our aim is to study the (H) hypothesis between H1 and G.

� Filtration Hi From Proposition 7.2.2.1, for any i = 1, 2, the process

M i
t = Hi

t −
∫ t∧τi

0

fi(s)
1 − Fi(s)

ds (7.6.4)

is an Hi-martingale.

� Filtration G

Lemma 7.6.2.1 The H2 Doob-Meyer decomposition of F 1|2
t : = P(τ1 ≤ t|H2

t )
is

dF
1|2
t =

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)

dM2
t +
(

H2
t ∂1h(t, τ2) − (1 −H2

t )
∂1G(t, t)
G(0, t)

)

dt

where

h(t, v) = 1 − ∂2G(t, v)
∂2G(0, v)

.
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Proof: Some easy computation enables us to write

F
1|2
t = H2

t P(τ1 ≤ t|τ2) + (1 −H2
t )

P(τ1 ≤ t < τ2)
P(τ2 > t)

= H2
t h(t, τ2) + (1 −H2

t )
G(0, t) −G(t, t)

G(0, t)
, (7.6.5)

Introducing the deterministic function ψ(t) = 1 − G(t, t)/G(0, t), the sub-
martingale F 1|2

t has the form

F
1|2
t = H2

t h(t, τ2) + (1 −H2
t )ψ(t) (7.6.6)

The function t → ψ(t) and the process t → h(t, τ2) are continuous and of
finite variation, hence the integration by parts formula leads to

dF
1|2
t = h(t, τ2)dH2

t +H2
t ∂1h(t, τ2)dt+ (1 −H2

t )ψ′(t)dt− ψ(t)dH2
t

= (h(t, τ2) − ψ(t)) dH2
t +

(
H2

t ∂1h(t, τ2) + (1 −H2
t )ψ′(t)

)
dt

=
(
G(t, t)
G(0, t)

− ∂2G(t, τ2)
∂2G(0, τ2)

)

dH2
t +

(
H2

t ∂1h(t, τ2) + (1 −H2
t )ψ′(t)

)
dt .

Now, we note that

∫ T

0

(
G(t, t)
G(0, t)

− ∂2G(t, τ2)
∂2G(0, τ2)

)

dH2
t =

(
G(τ2, τ2)
G(0, τ2)

− ∂2G(τ2, τ2)
∂2G(0, τ2)

)

1{τ2≤t}

=
∫ T

0

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)

dH2
t

and substitute it into the expression of dF 1|2 :

dF
1|2
t =

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)

dH2
t +

(
H2

t ∂1h(t, τ2) + (1 −H2
t )ψ′(t)

)
dt .

From

dH2
t = dM2

t −
(
1 −H2

t

) ∂2G(0, t)
G(0, t)

dt ,

whereM2 is an H
2-martingale, we get the Doob-Meyer decomposition of F 1|2 :

dF
1|2
t =

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)

dM2
t

−
(
1 −H2

t

)
(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)
∂2G(0, t)
G(0, t)

dt

+
(
H2

t ∂1h(t, τ2) + (1 −H2
t )ψ′(t)

)
dt

and, after the computation of ψ′(t), one obtains
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dF
1|2
t =

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)

dM2
t +
(

H2
t ∂1h(t, τ2) − (1 −H2

t )
∂1G(t, t)
G(0, t)

)

dt .

�

As a consequence:

Lemma 7.6.2.2 The (H) hypothesis is satisfied for H1 and G if and only if

G(t, t)
G(0, t)

=
∂2G(t, t)
∂2G(0, t)

.

Proposition 7.6.2.3 The process

H1
t −

∫ t∧τ1

0

a(s)
1 − F 1|2(s)

ds ,

where a(t) = H2
t ∂1h(t, τ2) − (1 −H2

t )∂1G(t,t)
G(0,t) and h(t, s) = 1 − ∂2G(t,s)

∂2G(0,s) , is a
G-martingale.

Proof: The result follows from Lemma 7.4.1.3 and the form of the Doob-
Meyer decomposition of F 1|2. �

7.6.3 Initial Times

In order that the prices of the default-free assets do not induce arbi-
trage opportunities, one needs to prove that F-martingales remain G-semi-
martingales. We have seen in Proposition 5.9.4.10 that this is the case when
the random time τ is honest. However, in the credit risk setting, default
times are not honest (see for example the Cox model). Hence, we have to
give another condition. We shall assume that the conditions of Proposition
5.9.3.1 are satisfied. This will imply that F-martingales are F ∨ σ(τ)- semi-
martingales, and of course G-semi-martingales.

For any positive random time τ, and for every t, we write qt(ω, dT ) the
regular conditional distribution of τ , and

GT
t (ω) = Q(τ > T |Ft) (ω) = qt(ω, ]T,∞[).

For simplicity, we introduce the following (non-standard) definition:

Definition 7.6.3.1 (Initial Times) The positive random time τ is called
an initial time if there exists a probability measure η on B(R+) such that

qt(ω, dT ) � η(dT ).
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Then, there exists a family of positive F-adapted processes (αut , t ≥ 0) such
that

GT
t =

∫ ∞

T

αut η(du) .

From the martingale property of (GT
t , t ≥ 0), i.e., for every T , for every s ≤ t,

GT
s = E(GT

t |Fs), it is immediate to check that for any u ≥ 0, (αut , t ≥ 0) is a
positive F-martingale. Note that Q(τ ∈ du) = αu0η(du), hence αu0 = 1.

Remark that in this framework, we can write the conditional survival
process Gt := Gt

t as

Gt = Q(τ > t|Ft) =
∫ ∞

t

αut η(du) =
∫ ∞

0

αuu∧tη(du) −
∫ t

0

αuuη(du) = Mt − Ãt

where M is an F-martingale (indeed, (αuu∧t)t is a stopped F-martingale)
and Ã an F-predictable increasing process. The process (GT

t , t ≥ 0) being
a martingale, it admits a representation as

GT
t = GT

0 +
∫ t

0

gTs dWs

where, for any T , the process (gTs , s ≥ 0) is F-predictable. In the case where
η(du) = ϕ(u)du, using the Itô-Kunita-Ventzel formula (see Theorem 1.5.3.2),
we obtain:

Lemma 7.6.3.2 The Doob-Meyer decomposition of the conditional survival
process (Gt, t ≥ 0) is

Gt
t = 1 +

∫ t

0

gss dWs −
∫ t

0

αss ϕ(s) ds . (7.6.7)

Lemma 7.6.3.3 The process

Mt := Ht −
∫ t

0

(1 −Hs)G−1
s αss ϕ(s) ds

is a G-martingale.

Proof: This follows directly from the Doob-Meyer decomposition of G given
in Lemma 7.6.3.2. �

Using a method similar to Proposition 5.9.4.10, assuming that G is
continuous, it is possible to prove (see Jeanblanc and Le Cam [482] for details)
thatif X is a square integrable F-martingale

Yt = Xt −
∫ t∧τ

0

d 〈X,G〉u
Gu

−
∫ t

t∧τ

d
〈
X,αθ

〉
u

αθu−

∣
∣
∣
∣
∣
θ=τ

(7.6.8)
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is a G-martingale. Note that, the first integral, which describes the bounded
variation part before τ , is the same as in progressive enlargement of filtration
– even without the honesty hypothesis – (see Proposition 5.9.4.10), and that
the second integral, which describes the bounded variation part after τ , is the
same as in Proposition 5.9.3.1.

Exercise 7.6.3.4 Prove that, if τ is an initial time with EQ(1/ατ∞) < ∞,

there exists a probability Q̂ equivalent to Q under which τ and F∞ are
independent.
Hint: Use Exercise 5.9.3.4. �

Exercise 7.6.3.5 Let τ be an initial time which avoids F-stopping times.
Prove that the (H)-hypothesis holds if and only if αut = αut∧u. �

Exercise 7.6.3.6 Let (Ku
t , t ≥ 0) be a family of F-predictable processes

indexed by u ≥ 0 (i.e., for any u ≥ 0, t→ Ku
t is F-predictable).

Prove that E (Kτ
t |Ft) =

∫∞
0
Ku

t α
u
t η(du) . �

7.6.4 Explosive Defaults

Let
dXt = (θ − k(t)Xt)dt+ σ

√
XtdWt

where the parameters are chosen so that P(T0 < ∞) = 1 where T0 is the
first hitting time of 0 for the process X. Andreasen [17] defines the default
time as in the Cox process modelling presented in Subsection 7.3.1, setting
the process (λt, t ≥ 0) equal to 1/Xt before T0 and equal to +∞ after time
T0. Note that the default time is not a totally inaccessible stopping time
(obviously, P(τ = T0) is not null).

The survival probability is, for Ft = FX
t ,

P(τ > T |Gt) = 1{t<τ}E

(

exp

(

−
∫ T

t

λsds

)

|Ft

)

: = 1{t<τ}L(t, T,Xt) .

The process

L(t, T,Xt) exp
(

−
∫ t

0

λsds

)

= L(t, T,Xt) exp
(

−
∫ t

0

X−1
s ds

)

is a local-martingale, hence

∂tL+ (θ − k(t)x)∂xL+
1
2
σ2x∂xxL− 1

x
L = 0 ,

and, taking into account the boundary conditions

L(t, T, 0) = 0, L(T, T, x) = 1, L(t, T,∞) = 1
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one gets

L(t, T, x) =
Γ (β − γ)
Γ (β)

M

(

γ, β,− x

2K(t, T )

)(
x

2K(t, T )

)γ

where M is the Kummer function (see � Appendix A.5.6) and

γ =
−(θ − σ2/2) +

√
(θ − σ2/2)2 + 2σ2

σ2
,

β = 2(γ + θ/σ2)

and

K(t, T ) =
σ2

4

∫ T

t

exp
(∫ u

t

k(s)ds
)

du .

Comment 7.6.4.1 Campi et al. [138] work with a model where the default
is the first time when the process X hits the barrier 0, with

dXt = Xt−(μdt+Xβ
t dWt − dNt) .

Here N is a Poisson process. In other words Xt = Yt1{t<τ} where Y is a
CEV process and τ is an exponentially distributed random variable, which is
independent of Y .

7.7 Intensity Approach

7.7.1 Definition

In the intensity approach, the default time τ is a G-stopping time for a
given filtration G. From the Doob-Meyer Theorem, there exists a unique G-
predictable increasing process ΛG such that the process Mt = Dt − ΛG

t is a
G-martingale. This process ΛG satisfies ΛG

t = ΛG
t∧τ . The continuity of ΛG is

equivalent to the fact that τ is a G-totally inaccessible stopping time.
In what follows, we assume that ΛG is absolutely continuous w.r.t.

Lebesgue measure, i.e., ΛG
t =

∫ t
0
λG
s ds. Then, the process λG, called the

G-intensity of τ , vanishes after τ .

Comment 7.7.1.1 Note that, in the Cox Process approach with F-adapted
intensity λ, or in the conditional survival probability approach (see Sec-
tion 7.4) where λ denotes the F-adapted process given by λsds = dFs/Gs, we
have λG

t = 1{τ<t}λt.

Lemma 7.7.1.2 The process Lt = 1{t<τ} exp
(
ΛG
t

)
is a local martingale.

Proof: From Itô calculus (See � Subsection 8.3.4)

dLt = exp
(
ΛG
t

)
(−dDt + (1 −Dt−)λG

t dt) = − exp
(
ΛG
t

)
dMt . �
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7.7.2 Valuation Formula

Proposition 7.7.2.1 For every integrable r.v. X ∈ GT :

E(X1{T<τ}|Gt) = 1{τ>t}
(
Vt − E(ΔVτ1{τ≤T}|Gt)

)

where Vt = eΛ
G
t E

(
Xe−ΛG

T |Gt
)
.

Proof: By application of the integration by parts formula to the product
Ut = Vt(1 −Dt), we obtain

dUt = −VtdDt + (1 −Dt)dVt −ΔVtΔDt

Writing Vt = eΛ
G
t mt, where mt = E

(
Xe−ΛG

T |Gt
)

is a G-martingale, one gets

dVt = eΛ
G
t dmt +mtλ

G
t e

ΛG
t dt = eΛ

G
t dmt + Vtλ

G
t dt ,

hence,

dUt = −Vt(dDt − λG
t dt) + (1 −Dt)eΛ

G
t dmt −ΔVtΔDt .

By integration, we obtain Ut = E(ΔVτ1{t<τ≤T} + UT |Gt). It remains to note
that UT = 1{T<τ}X, and the result follows. �

Exercise 7.7.2.2 Assume that τ is an exponential r.v. with parameter λ and
that G is the filtration generated by 1{τ≤t}. Check that λG

t = 1{t<τ}λ. Let
Yt = E (exp−(T ∧ τ)|Gt). Compute the jump of Y at time τ and deduce
E(1{t<τ≤T}|Gt) using Proposition 7.7.2.1. Of course, here, the conditional
survival methodology is more powerful. �

7.8 Credit Default Swaps

We present briefly Credit Default Swaps (CDS). The reader can consult
Bielecki et al. [94, 97], Brigo and Alphonsi [128] and Jamshidian [477] for
more details. We assume here that the interest rate r is constant.

A credit default swap (CDS) with a constant rate κ and recovery at default
δ is a contract between the buyer and the seller. The buyer (i.e., the buyer of
protection against a reference entity which defaults at time τ), pays a premium
κ to the seller till τ ∧T where T is the maturity of the CDS: the amount κdt is
paid during the time dt. If the default occurs before T , the seller pays, at the
default time, δ(τ) to the buyer. Note that we assume here that the premium is
paid in continuous time, for simplicity; usually, the premium is paid at some
predetermined dates Ti.

The function δ : [0, T ] → R represents the default protection, and κ is the
CDS rate (also termed the spread, premium or annuity of the CDS).
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The price of the CDS is the expectation of the difference of the discounted
payoffs and is given by the formula

St(κ, δ, T ; r) = ert EQ

(
e−rτδ(τ)1{τ≤T} −

∫ T∧τ

t∧τ
e−ru κdu

∣
∣
∣Gt
)
.

Here, G is the information available for the protection buyer. We shall note
in short St(κ) this price. Of course, it vanishes after time τ . Note that this
price does not remain positive: at date t, the buyer is not allowed to cancel
the contract; if St < 0, the buyer has to pay −St(κ) to the seller (or to the
new owner of this CDS) to do so.

At time 0, the price of a CDS is null: the spread κ is chosen so that

κ =
EQ

(
e−rτδ(τ)1{τ≤T}

)

EQ

(∫ T∧τ
0

e−ru du
) .

7.8.1 Dynamics of the CDS’s Price in a single name setting

In this subsection, G = F ∨ H, and Gt = Q(τ > t|Ft).

Proposition 7.8.1.1 The price of a CDS equals, for any t ∈ [0, T ],

St(κ) = 1{t<τ}
1

e−rtGt
EQ

(∫ T

t

e−ruGu(δuλu − κ) du
∣
∣
∣Ft

)

(7.8.1)

Proof: This relies on a direct and simple application of the key Lemma
7.4.1.1. �

The dynamics of the CDS’s price can now be obtained:

Proposition 7.8.1.2 If the immersion property holds, then

dSt(κ) = −St−(κ) dMt + (1−Ht)
(
rSt(κ) + κ− λtδt

)
dt+ (1−Ht)ertG−1

t dnt
(7.8.2)

where nt = EQ

( ∫ T
0
e−ruGu(δuλu − κ) du

∣
∣
∣Ft

)
.

Proof: Apply Itô’s formula. �

Comment 7.8.1.3 Note that the risk-neutral dynamics of the CDS’s dis-
counted price do not constitute a martingale. This price is indeed an ex-
dividend price. The cum-dividend price Scum(κ) satisfies, for every t ∈ [0, T ],

dtS
cum
t (κ) = rScum

t (κ) dt+
(
δt − St−(κ)

)
dMt + (1 −Ht)G−1

t ert dnt .

The case where immersion is not satisfied is presented in [97].
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7.8.2 Dynamics of the CDS’s Price in a multi-name setting

An important feature of price’s dynamics is that the price of a CDS depends
strongly of the choice of the observation filtration. We present here the case
where a second firm can default at time τ2 and where the two default times
are correlated, in the simple case of a trivial filtration F and a null interest
rate. Let us denote by G(t, s) = P(τ1 > t, τ2 > s) the survival joined law of
the two defaults, assumed to be regular. Let

S(κ)t = 1{t<τ1}E(δ(τ1) − κ(τ ∧ T − t)+|Gt)

be the price of a CDS written on τ1, with spread κ and recovery the function
δ, where G = H1 ∨ H2. Then, 1{t<τ1}St(κ) = 1{t<τ1}S̃t(κ), where an easy
computation leads to

S̃t(κ) =
1

G(t, t)

(

−
∫ T

t

δ(u)∂1G(u, t) du− κ

∫ T

t

G(u, t) du

)

. (7.8.3)

Hence the dynamics of the pre-default ex-dividend price S̃t are

dS̃t(κ) =
((
λ̃1(t) + λ̃2(t)

)
S̃t(κ) + κ1 − λ̃1(t)δ(t) − λ̃2(t)St|2(κ1)

)
dt,

where for i = 1, 2 the function λ̃i(t) = −∂iG(t,t)
G(t,t) is the (deterministic) pre-

default intensity of τi and St|2(κ) is given by the expression

St|2(κ) =
−1

∂2G(t, t)

(∫ T

t

δ(u)f(u, t) du+ κ

∫ T

t

∂2G(u, t) du

)

.

In the financial interpretation, S1|2(t) is the ex-dividend price at time t of a
CDS on the first credit name, under the assumption that the default τ2 occurs
at time t and the first name has not yet defaulted (recall that simultaneous
defaults are excluded).

Let us now consider the event {τ2 ≤ t < τ1}. It is not difficult to show
that in that case the ex-dividend price of a CDS equals

Ŝt(κ) =
1

∂2G(t, τ2)

(

−
∫ T

t

δ(u)f(u, τ2) du− κ

∫ T

t

∂2G(u, τ2) du

)

. (7.8.4)

Consequently, on the event {τ2 ≤ t < τ1} we obtain

dŜt(κ) =
(
λ1|2(t, τ2)

(
Ŝt(κ) − δ(t)

)
+ κ
)
dt,

where λ1|2(t, s) = − f(t,s)
∂2G(t,s) , evaluated at s = τ2, represents the value of the

default intensity process of τ1 with respect to the filtration H2 on the event
{τ2 < t}.
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7.9 PDE Approach for Hedging Defaultable Claims

We briefly present a PDE approach for defaultable claims. We assume that Y 1

is the price of the savings account, with deterministic interest rate. A default
free asset is supposed to be traded in the market with price dynamics

dY 2
t = Y 2

t

(
μ2,tdt+ σ2,t dWt

)
. (7.9.1)

A defaultable asset with price dynamics

dY 3
t = Y 3

t−

(
(μ3,t − κ3,tλt1{t≤τ}) dt+ σ3,t dWt + κ3,t dDt

)
, (7.9.2)

is also traded in the market. All the processes are assumed to be G-adapted,
where G is the filtration generated by W and D. Here, W is a Brownian
motion, Dt = 1{τ≤t} is the default process (see Section 7.4) and the process
Mt = Dt −

∫ t
0
(1 −Ds)λsds is assumed to be a G-martingale. The Brownian

motion W is assumed to be a G-Brownian motion, hence, the (H) hypothesis
holds between FW and G.

Our aim is to replicate a contingent claim of the form

Y = 1{T<τ}g0(Y 2
T , Y

3
T ) + 1{T≥τ}g1(Y 2

T , Y
3
T ) = G(Y 2

T , Y
3
T , DT ),

which settles at time T .

7.9.1 Defaultable Asset with Total Default

We first assume that the third asset is subject to total default, i.e., κ3 = −1,

dY 3
t = Y 3

t−

(
μ3,t dt+ σ3,t dWt − dMt

)
.

A first step is to find some condition on the coefficients such that the market
is arbitrage free.

Equivalent Martingale Measure

Let Y i,1 = Y i/Y 1 be the relative price of the ith-asset in terms of the first
one. Our goal is now to find a martingale measure Q

1 (if it exists) for the
relative prices Y 2,1 and Y 3,1. The dynamics of Y 3,1 under P are

dY 3,1
t = Y 3,1

t−

{(
μ3,t − r(t)

)
dt+ σ3,t dWt − dMt

}
.

Let Q
1 be any probability measure equivalent to P on (Ω,GT ). The asso-

ciated Radon-Nikodým density L satisfies (we use Kusuoka’s representation
Theorem 7.5.5.1)

dLt = Lt−(θt dWt + ζt dMt)

for some G-predictable processes θ and ζ.
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From Girsanov’s theorem (see � Section 9.4), the processes Ŵ and M̂ ,
given by

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t

0

1{u<τ}λuζu du, (7.9.3)

are G-martingales under Q
1. To ensure that Y 2,1 is a Q

1-martingale, we have
to choose

θt =
rt − μ2,t

σ2,t
.

For the process Y 3,1 to be a Q
1-martingale, it is necessary and sufficient that

ζ satisfies

λtζt = μ3,t − rt + σ3,t
rt − μ2,t

σ2,t
.

To ensure that Q
1 is a probability measure equivalent to P, we require that

ζt > −1. The unique martingale measure Q
1 is then given by

Lt = Et
(∫ ·

0

θu dWu

)

Et
(∫ ·

0

ζu dMu

)

.

Proposition 7.9.1.1 Assume that the process θt = rt−μ2,t

σ2,t
is bounded, and

ζt =
1
λt

(

μ3,t − rt + σ3,t
rt − μ2,t

σ2,t

)

> −1. (7.9.4)

Then the market is arbitrage free and complete. The dynamics of the relative
prices under the unique martingale measure Q

1 are

dY 2,1
t = Y 2,1

t σ2,t dŴt,

dY 3,1
t = Y 3,1

t−
(
σ3,t dŴt − dM̂t

)
.

This means that any Q
1-integrable contingent claim Y = G(Y 2

T , Y
3
T ;DT )

is attainable, and its arbitrage price equals

πt(Y ) = R−1
t E(Y RT | Gt), ∀ t ∈ [0, T ] (7.9.5)

where Rt = exp(−
∫ t
0
rsds).

7.9.2 PDE for Valuation

Since our goal is to develop the PDE approach, it will be essential to postulate
the Markovian property of our model. We assume that the coefficients μi, σi, λ
are regular functions of (t, Y 2

t , Y
3
t−).

Lemma 7.9.2.1 The process (Y 1, Y 2, Y 3, D) is a G-Markov process under
the martingale measure Q

1. For any attainable claim Y = G(Y 1
T , Y

2
T , Y

3
T ;DT )

there exists a function C : [0, T ] × R
3 × {0, 1} → R such that

πt(Y ) = C(t, Y 1
t , Y

2
t , Y

3
t ;Dt) .
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Note that, since Y 1
T is deterministic, up to a change of notation one

can restrict attention to claims of the form G(Y 2
T , Y

3
T ;DT ), the price of

which is C(t, Y 2
t , Y

3
t ;Dt). We find it convenient to introduce the pre-default

pricing function C(· ; 0) = C(t, y2, y3; 0) and the post-default pricing function
C(· ; 1) = C(t, y2, y3; 1). In fact, since Y 3

t = 0 if Dt = 1, it suffices to study
the post-default function C(t, y2; 1) = C(t, y2, 0; 1). Also, we write

b = (r − μ3)σ3 − (μ3 − r)σ2.

Let λ > 0 be the default intensity under P, and let ζ > −1 be given by formula
(7.9.4) where we do not indicate the dependence on t. (In fact, b, σ, λ and ζ
are Markovian coefficients.) We denote by ∂i, i = 1, 2 the partial derivative
with respect to yi.

Proposition 7.9.2.2 Assume that the functions C(· ; 0) and C(· ; 1) belong
to the class C1,2([0, T ] × R

+ × R
+,R). Then C(t, y2, y3; 0) satisfies the PDE

∂tC(· ; 0) + ry2∂2C(· ; 0) + (r + ζ)y3∂3C(· ; 0) +
1
2

3∑

i,j=2

σiσjyiyj∂ijC(· ; 0)

− rC(· ; 0) +
(

λ+
b

σ2

)
[
C(t, y2; 1) − C(t, y2, y3; 0)

]
= 0

subject to the terminal condition C(T, y2, y3; 0) = G(y2, y3; 0), and C(t, y2; 1)
satisfies the PDE

∂tC(· ; 1) + ry2∂2C(· ; 1) +
1
2
σ2

2y
2
2∂22C(· ; 1) − rC(· ; 1) = 0

subject to the terminal condition C(T, y2; 1) = G(y2, 0; 1).

Proof: For simplicity, we write Ct = πt(Y ). Let us define

ΔC(t, y2, y3) = C(t, y2; 1) − C(t, y2, y3; 0).

Then the jump ΔCt = Ct − Ct− can be represented as follows:

ΔCt = 1{τ=t}
(
C(t, Y 2

t ; 1) − C(t, Y 2
t , Y

3
t− ; 0)

)
= 1{τ=t}ΔC(t, Y 2

t , Y
3
t−).

We typically omit the variables (t, Y 2
t− , Y

3
t− , Dt−) in expressions ∂tC, ∂iC, ΔC,

etc. We shall also make use of the fact that for any Borel measurable function
g we have ∫ t

0

g(u, Y 2
u , Y

3
u−) du =

∫ t

0

g(u, Y 2
u , Y

3
u ) du

since Y 3
u and Y 3

u− differ for at most one value of u (for each ω).

Let ξt = 1{t<τ}λt. An application of Itô’s formula yields
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dCt = ∂tC dt+
3∑

i=2

∂iC dY
i
t +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC dt

+
(
ΔC + Y 3

t−∂3C
)
dDt

= ∂tC dt+
3∑

i=2

∂iC dY
i
t +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC dt

+
(
ΔC + Y 3

t−∂3C
)(
dMt + ξt dt

)
,

and this in turn implies that

dCt = ∂tC dt+
3∑

i=2

Y i
t ∂iC

(
μi dt+ σi dWt

)
+

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC dt

+ΔC dMt +
(
ΔC + Y 3

t−∂3C
)
ξt dt

=

⎛

⎝
3∑

i=2

μiY
i
t ∂iC +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC +

(
ΔC + Y 3

t ∂3C
)
ξt

⎫
⎬

⎭
dt

+ ∂tC +

(
3∑

i=2

σiY
i
t ∂iC

)

dWt +ΔC dMt.

We now use the integration by parts formula to derive dynamics of the relative
price Ĉt = Ct(Y 1

t )−1. We find that

Y 1
t dĈt =

3∑

i=2

σiY
i
t ∂iC dWt +ΔC dMt + (∂tC − rCt) dt

+

⎧
⎨

⎩

3∑

i=2

μiY
i
t ∂iC +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC +

(
ΔC + Y 3

t ∂3C
)
ξt

⎫
⎬

⎭
dt .

Hence, using (7.9.3), we obtain

Y 1
t dĈt =

3∑

i=2

σiY
i
t ∂iC dŴt +ΔC dM̂t − rCt dt+ ∂tC

+

⎧
⎨

⎩

3∑

i=2

μiY
i
t ∂iC +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC +

(
ΔC + Y 3

t ∂3C
)
ξt

⎫
⎬

⎭
dt

+

(
3∑

i=2

σiY
i
t θ∂iC + ζξtΔC − σ1

3∑

i=2

σiY i
t ∂iC

)

dt.

This means that the process Ĉ admits the following decomposition under Q
1
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Y 1
t dĈt = −rCt dt+

(
3∑

i=2

σiY
i
t θ ∂iC + ζξtΔC + ∂tC

)

dt

+

⎛

⎝
3∑

i=2

μiY
i
t ∂iC +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC +

(
ΔC + Y 3

t ∂3C
)
ξt

⎞

⎠ dt

+ d(a Q
1-martingale) .

From (7.9.5), it follows that the process Ĉ is a martingale under Q
1. Therefore,

the continuous finite variation part in the above decomposition necessarily
vanishes, and thus we get

0 = −rCt + ∂tC +
3∑

i=2

μiY
i
t ∂iC +

1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC

+
(
ΔC + Y 3

t ∂3C
)
ξt +

3∑

i=2

σiY
i
t θ∂iC + ζξtΔC .

Finally, we conclude that

∂tC + rY 2
t ∂2C + (r + ξt)Y 3

t ∂3C +
1
2

3∑

i,j=2

σiσjY
i
t Y

j
t ∂ijC

− rCt + (1 + ζ)ξtΔC = 0.

Recall that ξt = 1{t<τ}λ. It is thus clear that the pricing functions C(·, 0) and
C(·; 1) satisfy the PDEs given in the statement of the proposition. �

Hedging Strategy

The next result provides a replicating strategy for Y .

Proposition 7.9.2.3 The replicating strategy φ for the claim Y is given by
the formulae

φ3
tY

3
t− = −ΔC(t, Y 2

t , Y
3
t−) = C(t, Y 2

t , Y
3
t−; 0) − C(t, Y 2

t ; 1),

φ2
tσ2Y

2
t = σ3ΔC +

3∑

i=2

Y i
t σi∂iC,

φ1
tY

1
t = C − φ2

tY
2
t − φ3

tY
3
t .

Proof: As a by-product of our previous computations, we obtain

dĈt = (Y 1
t )−1

3∑

i=2

σiY
i
t−∂iC dŴt + (Y 1

t−)−1ΔC dM̂t.
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The self-financing strategy that replicates Y is determined by two components
φ2, φ3 and the following relationship:

dĈt = φ2
t dY

2,1
t + φ3

t dY
3,1
t = φ2

tY
2,1
t σ2 dŴt + φ3

tY
3,1
t−

(
σ3 dŴt − dM̂t

)
.

By identification, we obtain φ3
tY

3,1
t− = (Y 1

t )−1ΔC and

φ2
tσ2Y

2
t − σ3ΔC =

3∑

i=2

Y i
t−σi∂iC.

This yields the claimed formulae. �

Corollary 7.9.2.4 In the case of a total default claim, the hedging strategy
satisfies the condition φ1

tY
1
t + φ2

tY
2
t = 0.

Proof: A total default corresponds to the assumption that G(y2, y3, 1) = 0.
We then have C(t, y2; 1) = 0, and thus φ3

tY
3
t− = C(t, Y 1

t , Y
2
t , Y

3
t−; 0) for every

t ∈ [0, T ]. Hence, the equality φ1
tY

1
t + φ2

tY
2
t = 0 holds for every t ∈ [0, T ]

and ensures that the wealth of a replicating portfolio jumps to zero at default
time. �

7.9.3 General Case

Proposition 7.9.3.1 Let σ2 = 0 and let Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
μ2 dt+ σ2 dWt

)
,

dY 3
t = Y 3

t−

(
μ3 dt+ σ3 dWt + κ3 dMt

)
.

Assume that κ3 = 0, κ3 > −1. The market is complete and arbitrage free if
and only if σ2(r − μ3) = σ3(r − μ2).

Proof: We leave this to the reader. �

Corollary 7.9.3.2 In case of constant coefficients, the risk-neutral intensity
is equal to the historical intensity.

Proof: This follows from the determination of the unique risk-neutral
probability, which transforms the Brownian motion W into Ŵ where

dŴt = Wt −
μ2 − r

σ2
dt = Wt −

μ3 − r

σ3
dt ,

but does not change the martingale M . �
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Proposition 7.9.3.3 The price of a contingent claim Y = G(Y 2
T , Y

3
T , DT )

can be represented as πt(Y ) = C(t, Y 2
t , Y

3
t , Dt), where the pricing functions

C(· ; 0) and C(· ; 1) satisfy the following PDEs:

∂tC(t, y2, y3; 0) + ry2∂2C(t, y2, y3; 0) + y3 (r − κ3λ) ∂3C(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 0)

+ λ
(
C(t, y2, y3(1 + κ3); 1) − C(t, y2, y3; 0)

)
= rC(t, y2, y3; 0)

and

∂tC(t, y2, y3; 1) + ry2∂2C(t, y2, y3; 1) + ry3∂3C(t, y2, y3; 1) − rC(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC(t, y2, y3; 1) = 0

subject to the terminal conditions

C(T, y2, y3; 0) = G(y2, y3; 0), C(T, y2, y3; 1) = G(y2, y3; 1).

The replicating strategy φ comprises

φ2
t =

1
σ2Y 2

t

3∑

i=2

σiyi∂iC(t, Y 2
t , Y

3
t−, Dt−)

− σ3

σ2κ3Y 2
t

(
C(t, Y 2

t , Y
3
t−(1 + κ3); 1) − C(t, Y 2

t , Y
3
t−; 0)

)
,

φ3
t =

1
κ3Y 3

t−

(
C(t, Y 2

t , Y
3
t−(1 + κ3); 1) − C(t, Y 2

t , Y
3
t−; 0)

)
,

with φ1
t given by φ1

tY
1
t + φ2

tY
2
t + φ3

tY
3
t = Ct.

Proof: This is obtained by lengthy computations, as in Proposition 7.9.2.2.
We leave the details to the reader. �

Hedging of a Survival Claim

We shall illustrate Proposition 7.9.3.3 by means of an example. Consider a
survival claim of the form

Y = G(Y 2
T , Y

3
T , DT ) = 1{T<τ}g(Y 3

T ).

Then the post-default pricing function Cg(· ; 1) vanishes identically, and the
pre-default pricing function Cg(· ; 0) solves the PDE
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∂tC
g(· ; 0) + ry2∂2C

g(· ; 0) + y3 (r − κ3λ) ∂3C
g(· ; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijC
g(· ; 0) − (r + λ)Cg(· ; 0) = 0

with the terminal condition Cg(T, y2, y3; 0) = g(y3). Denote α = r − κ3λ and
β = λ(1 + κ3).

It is not difficult to check that Cg(t, y2, y3; 0) = eβ(T−t)Cα,g,3(t, y3) is a
solution of the above equation, where the function w(t, y) = Cα,g,3(t, y) is the
solution of the standard Black and Scholes PDE

∂tw + yα∂yw +
1
2
σ2

3y
2∂yyw − αw = 0

with the terminal condition w(T, y) = g(y), that is, the price of the contingent
claim g(YT ) in the Black and Scholes framework with interest rate α and
volatility parameter equal to σ3.

Let Ct be the current value of the contingent claim Y , so that

Ct = 1{t<τ}e
β(T−t)Cα,g,3(t, Y 3

t ).

The hedging strategy of the survival claim is, on the event {t < τ},

φ3
tY

3
t = − 1

κ3
e−β(T−t)Cα,g,3(t, Y 3

t ) = − 1
κ3
Ct,

φ2
tY

2
t =

σ3

σ2

(
Y 3
t e

−β(T−t)∂yC
α,g,3(t, Y 3

t ) − φ3
tY

3
t

)
.

Obviously, there is no need for the strategy on the set {τ < t}.
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Poisson Processes and Ruin Theory

We give in this chapter the main results on Poisson processes, which are
basic examples of jump processes. Despite their elementary properties they
are building blocks of jump process theory. We present various generalizations
such as inhomogeneous Poisson processes and compound Poisson processes.
These processes are not used to model financial prices, due to the simple
character of their jumps and are in practice mixed with Brownian motion, as
we shall present in � Chapter 10. However, they represent the main model in
insurance theory. We end this chapter with two sections about point processes
and marked point processes.

The reader can refer to Çinlar [188], Cocozza-Thivent [190], Karlin and
Taylor [515] and the last chapter in Shreve [795] for the study of standard
Poisson processes, to Brémaud [124] for general Poisson processes, and to
Jacod and Shiryaev [471], Kallenberg [504], Kingman [523], Last and Brandt
[565], Neveu [669], Prigent [725] and Protter [727] for point processes, and to
Mikosch [651, 652] for applications.

8.1 Counting Processes and Stochastic Integrals

A counting process is a process which increases in unit steps at isolated
times and is constant between these times. It can be constructed as follows. Let
(Tn, n ≥ 0) be a sequence of random variables defined on the same probability
space (Ω,F ,P) such that

T0 = 0, Tn < Tn+1 for Tn <∞ .

This sequence models the times when jumps occur. We define the family of
random variables, for t ≥ 0,

Nt =
{

n if t ∈ [Tn, Tn+1[
+∞ otherwise,

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 8,
c© Springer-Verlag London Limited 2009
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or, equivalently,

Nt =
∑

n≥1

1{Tn≤t} =
∑

n≥0

n1{Tn≤t<Tn+1}, N0 = 0 .

This counting process (Nt, t ≥ 0), associated with the sequence (Tn, n ≥ 0), is
increasing and right-continuous. We denote by Nt− the left-limit of Ns when
s→ t, s < t and by ΔNs = Ns −Ns− the jump process of N . The explosion
time is the r.v. T = supn Tn. In what follows, we reduce our attention to the
case T = ∞.

Let F be a given filtration. A counting process is F-adapted if and only if
the random variables (Tn, n ≥ 1) are F-stopping times. In that case, for any
n, the set {Nt ≤ n} = {Tn+1 > t} belongs to Ft.

The natural filtration of N denoted by FN where FN
t = σ(Ns, s ≤ t) is

the smallest filtration FN which satisfies the usual hypotheses and such that
N is FN -adapted.

The stochastic integral
∫ t
0
CsdNs is defined pathwise as a Stieltjes

integral for every bounded measurable process (not necessarily FN -adapted)
(Ct, t ≥ 0) by

(C�N)t : =
∫ t

0

CsdNs =
∫

]0,t]

CsdNs : =
∞∑

n=1

CTn1{Tn≤t} .

We emphasize that the integral
∫ t
0
CsdNs is here an integral over the time

interval ]0, t], where the upper limit t is included and the lower limit 0
excluded. This integral is finite since there is a finite number of jumps during
the time interval ]0, t]. We shall also write

∫ t

0

CsdNs =
∑

s≤t

CsΔNs

where the right-hand side contains only a finite number of non-zero terms. The
integral

∫∞
0
CsdNs is defined as

∫∞
0
CsdNs =

∑∞
n=1 CTn , when the right-hand

side converges.
We shall also use the differential notation d(C�N)t : = CtdNt.

We can associate a random measure to any counting process as follows.
For any Borel set Λ ⊂ R

+, for any ω, set

μ(ω,Λ) = #{n ≥ 1 : Tn(ω) ∈ Λ} .

For any ω, the map Λ → μ(ω,Λ) defines a positive measure on R
+. One can

note that μ(ω, dt) =
∑

n δTn(ω)(dt).
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The random variable Nt can be written as

Nt(ω) = μ(ω, ]0, t]) =
∫

]0,t]

μ(ω, ds)

and the Stieltjes (or stochastic) integral as
∫ t
0
CsdNs =

∫ t
0
Csμ(ds).

8.2 Standard Poisson Process

8.2.1 Definition and First Properties

The standard Poisson process is a counting process such that the random
variables (Tn+1 −Tn, n ≥ 0) are independent and identically distributed with
exponential law of parameter λ with λ > 0. Hence, the explosion time is
infinite and

P(Nt = n) = e−λt (λt)
n

n!
.

The standard Poisson process can be redefined as follows (see e.g., Çinlar
[188]): it is a counting process without explosion (i.e., T = ∞) such that
• for every s, t ≥ 0 the r.v. Nt+s −Nt is independent of FN

t ,
• for every s, t, the r.v. Nt+s −Nt has the same law as Ns.
or, in an equivalent way, a counting process without explosion whose
increments are independent and stationary.

�

�

0
T1 T2 T3 tT4 T5

1

2

3

Nt = 4

5

•

•

•

•

•

Fig. 8.1 Poisson process
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Definition 8.2.1.1 Let F be a given filtration and λ a positive constant.
The process N is an F-Poisson process with intensity λ if N is an F-
adapted process, such that for all positive numbers (t, s), the r.v. Nt+s−Nt is
independent of Ft and follows the Poisson law with parameter λs.

The random measure μ associated with a Poisson process is such that
μ(Λ) is almost surely finite for any bounded set Λ (the number of jumps in
any finite interval of time is almost surely finite), and E(μ(Λ)) = λ|Λ| where
|Λ| is the Lebesgue measure of the set Λ.

We now recall some properties of Poisson processes.
• The time Tn when the nth-jump of N occurs is the sum of n independent
exponential r.v’s, hence it has a Gamma law with parameters (n, λ):

P(Tn ∈ dt) =
(λt)n−1

(n− 1)!
λe−λt 1{t>0}dt,

and its Laplace transform, for μ > −λ, is given by

E(e−μTn) =
(

λ

λ+ μ

)n

.

• From the properties of the Poisson distribution, it follows that for every
t > 0,

E(Nt) = λt, Var (Nt) = λt

and for every x > 0, t ≥ 0, u, α ∈ R

E(xNt) = eλt(x−1) ; E(eiuNt) = eλt(e
iu−1) ; E(eαNt) = eλt(e

α−1) . (8.2.1)

• Conditionally on (Nt = n), the law of (T1, T2, . . . , Tn) is a multinomial
distribution on [0, t].
• Let, for t fixed and i ≥ 1, T (t)

i : = TNt+i − t where TNt+i is the time of
the i-th jump which occurs after t. The sequence of times (T (t)

i , i ≥ 1) has
the same law as (Ti, i ≥ 1). This property is called the lack of memory of the
Poisson process.

Exercise 8.2.1.2 Let N be a Poisson process. Prove that Ntt
−1 → λ a.s.

when t goes to infinity. �

Exercise 8.2.1.3 Let N be a Poisson process and Tn its n-th jump time.
Prove that

P(Tn ≥ s|Ft) = 1s≤Tn≤t + 1t<Tn

∫ ∞

s−t

λ(λu)n−1−Nt

(n− 1 −Nt)!
e−λu 1{u≥0} du .

�
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8.2.2 Martingale Properties

From the independence of the increments of the Poisson process, we derive
the following martingale properties:

Proposition 8.2.2.1 Let N be an F-Poisson process. For each α ∈ R, for
each bounded Borel function h, the following processes are F-martingales:

(i) Mt : = Nt − λt,

(ii) M2
t − λt = (Nt − λt)2 − λt, (8.2.2)

(iii) exp(αNt − λt(eα − 1)), (8.2.3)

(iv) exp
(∫ t

0

h(s)dNs − λ

∫ t

0

(eh(s) − 1)ds
)

,

(v)
∫ t

0

h(s)dMs ,

(vi)
(∫ t

0

h(s)dMs

)2

− λ

∫ t

0

h2(s)ds .

Proof: Let s < t. From the independence of the increments of the Poisson
process, we obtain:

(i) E(Mt −Ms|Fs) = E(Nt −Ns)−λ(t− s) = 0, hence M is a martingale.
(ii) The martingale property of M and the independence of the increments

of the Poisson process imply

E(M2
t −M2

s |Fs) = E[(Mt −Ms)2|Fs] = E[(Nt −Ns − λ(t− s))2|Fs]
= E[(Nt −Ns)2] − λ2(t− s)2

= E[N2
t−s] − λ2(t− s)2 = VarNt−s ,

hence,
E(M2

t −M2
s |Fs) = λ(t− s) ,

and the process (M2
t − λt, t ≥ 0) is a martingale.

(iii) From the form of the Laplace transform of Nt given in (8.2.1) and the
independence of the increments, E[exp[α(Nt−Ns)−λ(t−s)(eα−1)] |Fs] = 1,
hence the martingale property of the process in (iii).

Assertions (iv-v-vi) can be proved first for elementary functions h of the
form h =

∑
i ai1]ti,ti+1] and by then passing to the limit for general bounded

Borel functions h. �

Exercise 8.2.2.2 Prove that, for any β > −1, any bounded Borel function
h, and any bounded Borel function ϕ valued in ] − 1,∞[, the processes
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exp[ln(1 + β)Nt − λβt] = (1 + β)Nte−λβt,

exp
(∫ t

0

h(s)dNs + λ

∫ t

0

(1 − eh(s))ds
)

= exp
(∫ t

0

h(s)dMs + λ

∫ t

0

(1 + h(s) − eh(s))ds
)

,

exp
(∫ t

0

ln(1 + ϕ(s))dNs − λ

∫ t

0

ϕ(s)ds
)

= exp
(∫ t

0

ln(1 + ϕ(s))dMs + λ

∫ t

0

(ln(1 + ϕ(s)) − ϕ(s))ds
)

,

are martingales.
Hint: These formulae are “avatars” of those of Proposition 8.2.2.1. �

Exercise 8.2.2.3 Prove (without using the following Proposition!) that the
process (

∫ t
0
Ns−dMs, t ≥ 0) is a martingale, and that the process

∫ t
0
NsdMs

is not a martingale. �

Definition 8.2.2.4 The martingale (Mt = Nt − λt, t ≥ 0) is called the
compensated process of N , and λ the intensity of the process N .

Remarks 8.2.2.5 (a) Note that the process M is a discontinuous martingale
with bounded variation.

(b) We give an example of a martingale which is not square integrable.
Let Xt =

∫ t
0

1√
s
dMs. The process X is a martingale, however, it is not square

integrable.

The previous Proposition 8.2.2.1 can be generalized to predictable integrands:

Proposition 8.2.2.6 Let N be an F-Poisson process and let H be an F-
predictable bounded process. Then the following processes are martingales:

(i) (H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs − λ

∫ t

0

Hsds

(ii) (H�M)2t − λ

∫ t

0

H2
sds

(iii) exp
(∫ t

0

HsdNs + λ

∫ t

0

(1 − eHs)ds
)

=: E(H �M)t

= 1 +
∫ t
0
E(H �M)s−HsdMs

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.2.4)

Proof: One establishes (8.2.4) for predictable processes (Ht, t ≥ 0) of the
form Ht = KS1]S,T ](t) where S and T are two stopping times and KS is
FS-measurable. In that case,

∫ t

0

HsdMs = KS(MT∧t −MS∧t)
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and the martingale property follows. Then, one passes to the limit. The same
procedure can be applied to prove that the two processes (ii) and (iii) of (8.2.4)
are martingales. �

We have used in (iii) the notation E(H � M)t for the Doléans-Dade
exponential of the martingale

∫
HsdMs.

Comments 8.2.2.7 (a) If H satisfies E(
∫ t
0
|Hs|ds) <∞, the process in (i) is

still a martingale.
(b) The results of Exercise 8.2.2.3 are now quite clear: in general, the

martingale property (8.2.4) does not extend from predictable to adapted
processes H. Indeed, from the definition of the stochastic integral w.r.t. N ,
and the fact that for every fixed s, Ns −Ns− = 0,P a.s.,

∫ t

0

(Ns −Ns−)dMs =
∫ t

0

(Ns −Ns−)dNs − λ

∫ t

0

(Ns −Ns−)ds

= Nt − λ

∫ t

0

(Ns −Ns−)ds = Nt .

Hence, the left-hand side, where one integrates the adapted (unpredictable)
process Ns − Ns− with respect to the martingale M , is not a martingale.
Equivalently, the process

∫ t

0

NsdMs =
∫ t

0

Ns−dMs +Nt ,

is not a martingale.
(c) Property (i) of Proposition 8.2.2.6 enables us to prove that the jump

times (Ti, i ≥ 1) are not predictable. Indeed, if T1 were a predictable
stopping time, then the process (1{t<T1}, t ≥ 0) would be predictable, however
∫ t
0

1{s<T1}dMs = −λ(t∧T1) is not a martingale. More generally, assume that
Ti is predictable. Then, (

∫ t
0

1[Ti](s)dMs, t ≥ 0) would be a martingale and

E

(∫ t

0

1[Ti](s)dNs

)

= E (1Ti≤t (NTi −NTi−)) = P(Ti ≤ t)

would be equal to E

(∫ t
0

1[Ti](s)λds
)

= 0, which is absurd.

Remark 8.2.2.8 Note that (i) and (ii) of Proposition 8.2.2.1 imply that
the process (M2

t − Nt; t ≥ 0) is a martingale. Hence, there exist (at least)
two increasing processes A such that (M2

t − At, t ≥ 0) is a martingale. The
increasing process (λt, t ≥ 0) is the predictable quadratic variation of M
(denoted 〈M〉), whereas the increasing process (Nt, t ≥ 0) is the optional
quadratic variation of M (denoted [M ]). For any μ ∈ [0, 1], the process
(μNt + (1 − μ)λt; t ≥ 0) is increasing and the process



464 8 Poisson Processes and Ruin Theory

M2
t − (μNt + (1 − μ)λt) = M2

t − λt− μ(Nt − λt)

is a martingale. (See � Section 9.2 for the definition of quadratic variation if
needed.)

8.2.3 Infinitesimal Generator

Proposition 8.2.3.1 The Poisson process is a process with independent
and stationary increments, and hence is a Markov process; its infinitesimal
generator L is given by

L(f)(x) = λ[f(x+ 1) − f(x)] ,

where f is a bounded Borel function.

Proof: The Markov property follows from

E(f(Nt)|FN
s ) = E(f(Nt −Ns +Ns)|FN

s ) = F (t− s,Ns)

where F (u, x) = E(f(x + Nu)) and t ≥ s. We recall the definition of the
infinitesimal generator:

L(f)(x) = lim
t→0

1
t
(E(f(x+Nt)) − f(x)) .

Hence, from E(f(x+Nt)) =
∑∞

n=0 f(x+ n)P(Nt = n), we obtain

1
t
(E(f(x+Nt)) − f(x)) = e−λt

∞∑

n=0

f(n+ x) − f(x)
t

(λt)n

n!
.

From

e−λt
∑

n≥2

(λt)n

n!
≤ λ2t2

2

the limit of 1
t (E(f(x +Nt)) − f(x)) when t goes to 0 is equal to the limit of

e−λt λt
t (f(x+ 1) − f(x)), that is to λ(f(x+ 1) − f(x)). �

Therefore, for any bounded Borel function f , the process

Cf
t = f(Nt) − f(0) −

∫ t

0

L(f)(Ns)ds

is a martingale (see Proposition 1.1.14.2). Using that

f(Nt) − f(0) =
∫ t

0

(f(Ns− + 1) − f(Ns−)) dNs , (8.2.5)

the martingale (Cf
t , t ≥ 0) can be written as a stochastic integral with respect

to the compensated martingale (Mt = Nt − λt, t ≥ 0) as

Cf
t =

∫ t

0

[f(Ns− + 1) − f(Ns−)]dMs .
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Comment 8.2.3.2 Processes with independent and stationary increments
are called Lévy processes, the reader may refer to � Chapter 11 for a more
extended study.

Exercise 8.2.3.3 Extend formula (8.2.5) to functions f defined on R
+ × N

that are C1 with respect to the first variable, and prove that if β is a constant
with β > −1 and Lt = exp(log(1 + β)Nt − λβt), then dLt = Lt−βdMt.

More generally, let Lt = (1 + a)Nte−λat for a ∈ R. Prove that L satisfies
dLt = Lt−adMt, i.e.,

Lt = 1 +
∫ t

0

Ls− adMs = 1 + a

∫ t

0

Ls− dNs − λa

∫ t

0

Ls− ds .

Note that, for a < −1, Lt takes values in R. The process L is the Doléans-Dade
exponential of the martingale aM . �

Exercise 8.2.3.4 Let T > 0 be fixed and let ϕ : [0, T ] → R be a bounded
Borel function and N a Poisson process. Prove that there exist a predictable
process h and a constant c such that

exp

(∫ T

0

ϕ(s)dNs

)

= c+
∫ T

0

hsdNs .

Hint: Set Zt =
∫ t
0
ϕ(s)dNs. Then,

deZt =
(
eZt−+ϕ(t) − eZt−

)
dNt .

The reader may be interested to compare this simple result with the
predictable representation theorem in Subsection 8.3.5. �

8.2.4 Change of Probability Measure: An Example

IfN is a Poisson process with constant intensity λ, then, from Exercises 8.2.2.2
and 8.2.3.3, for β > −1, the process L defined by

Lt = (1 + β)Nte−λβt

is a strictly positive martingale with expectation equal to 1. Let Q be the
probability defined via Q|Ft = LtP|Ft . From

EQ(xNt) = EP(Ltx
Nt) = e−λβt

EP([(1 + β)x]Nt) = exp((1 + β)λt(x− 1))

we deduce that the r.v. Nt follows the Poisson law with parameter (1 + β)λt
under Q. Let t1 < · · · < ti < ti+1 < · · · < tn and let (xi, i ≤ n) be a sequence
of positive real numbers. The equalities
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EQ

(
n∏

i=1

x
Nti+1−Nti

i

)

= EP

(

e−λβt
n∏

i=1

((1 + β)xi)Nti+1−Nti

)

= e−λβt
n∏

i=1

e−λ(ti+1−ti) eλ(ti+1−ti)(1+β)xi

=
n∏

i=1

e(1+β)λ(ti+1−ti)(xi−1)

establish that, under Q, Nti+1 − Nti
law= Nti+1−ti is a Poisson r.v. with

parameter (1 + β)λ(ti+1 − ti) and that N has independent increments.
Therefore, the process N is a Q-Poisson process with intensity equal to
(1 + β)λ. Let us state this result as a proposition:

Proposition 8.2.4.1 Let Πλ be the probability on the canonical space which
makes the coordinate process a Poisson process with intensity λ. Then, the
following absolute continuity relationship holds:

Π(1+β)λ|Ft =
(
(1 + β)Nte−λβt

)
Πλ|Ft .

Comment 8.2.4.2 One should note the analogy between the change of
intensity of Poisson processes and the change of drift of a BM under a change
of probability. However, let us point out a major difference. If Q is equivalent
to P, we know that if B is a P-BM and B̂ is the martingale part of B
under Q, then B2

t − t is a P-martingale and B̂2
t − t is a Q-martingale (in

other words the brackets are the same, i.e., 〈B〉 = 〈B̂〉). If Q is equivalent
to P, and Mt = Nt − λt the compensated martingale associated with a
Poisson process, the process M2

t −λt is a P-martingale and the P-(predictable)
bracket of M is λt. We have proved above that the Q-(predictable) bracket of
M̂t = Nt−(1+β)λt is (1+β)λt. Hence, the predictable bracket is no longer the
same under a change of probability. See � Section 9.4 for a general Girsanov
theorem and � Subsection 11.3.1 for the case of Lévy processes.

8.2.5 Hitting Times

Let x > 0 and Tx = inf{t,Nt ≥ x}. Then, for n− 1 < x ≤ n, the hitting time
Tx = inf{t,Nt ≥ n} = inf{t,Nt = n} is equal to the time of the nth-jump of
N , and hence has a Gamma (n, λ) law.

Exercise 8.2.5.1 Let Xt = Nt + ct. Compute P(infs≤tXs ≤ a). One should
distinguish the cases c > 0 and c < 0. �
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8.3 Inhomogeneous Poisson Processes

8.3.1 Definition

Instead of considering a constant intensity λ as before, now (λ(t), t ≥ 0) is an
R

+-valued Borel function satisfying
∫ t
0
λ(u)du < ∞,∀t and

∫∞
0
λ(u)du = ∞.

An inhomogeneous Poisson process N with intensity λ is a counting
process with independent increments which satisfies, for t > s,

P(Nt −Ns = n) = e−Λ(s,t) (Λ(s, t))n

n!
(8.3.1)

where Λ(s, t) = Λ(t) − Λ(s) =
∫ t

s

λ(u)du, and Λ(t) =
∫ t

0

λ(u)du.

If (Tn, n ≥ 1) is the sequence of successive jump times associated with N ,
the law of Tn is:

P(Tn ≤ t) =
1

(n− 1)!

∫ t

0

exp(−Λ(s)) (Λ(s))n−1 dΛ(s) .

It can easily be shown that an inhomogeneous Poisson process with determin-
istic intensity is an inhomogeneous Markov process. Moreover, since Nt has a
Poisson law with parameter Λ(t), one has E(Nt) = Λ(t),Var(Nt) = Λ(t). For
any real numbers u and α, for any t ≥ 0,

E(eiuNt) = exp((eiu − 1)Λ(t)),
E(eαNt) = exp((eα − 1)Λ(t)) .

An inhomogeneous Poisson process can be constructed as a deterministic
time changed Poisson process, i.e., if N̂ is a Poisson process with constant
intensity equal to 1, then Nt = N̂Λ(t) is an inhomogeneous Poisson process
with intensity Λ.

We emphasize that we shall use the term Poisson process only when dealing
with the standard Poisson process, i.e., when Λ(t) = λt.

8.3.2 Martingale Properties

The martingale properties of a standard Poisson process can be extended to
an inhomogeneous Poisson process:

Proposition 8.3.2.1 Let N be an inhomogeneous Poisson process with
deterministic intensity λ and FN its natural filtration. The process

Mt = Nt −
∫ t

0

λ(s)ds, t ≥ 0
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is an FN -martingale. The increasing function Λ(t) : =
∫ t
0
λ(s)ds is called the

(deterministic) compensator of N .

Let φ be an FN -predictable process such that E(
∫ t
0
|φs|λ(s)ds) <∞ for ev-

ery t. Then, the process (
∫ t
0
φsdMs, t ≥ 0) is an FN -martingale. In particular,

E

(∫ t

0

φs dNs

)

= E

(∫ t

0

φsλ(s)ds
)

. (8.3.2)

As in the constant intensity case, for any bounded FN -predictable process H,
the following processes are martingales:

(i) (H�M)t =
∫ t

0

HsdMs =
∫ t

0

HsdNs −
∫ t

0

λ(s)Hsds ,

(ii) (H�M)2t −
∫ t

0

λ(s)H2
sds ,

(iii) exp
(∫ t

0

HsdNs −
∫ t

0

λ(s)(eHs − 1)ds
)

.

8.3.3 Watanabe’s Characterization of Inhomogeneous
Poisson Processes

The study of inhomogeneous Poisson processes can be generalized to the case
where the intensity is not absolutely continuous with respect to the Lebesgue
measure. In this case, Λ is an increasing, right-continuous, deterministic
function with value zero at time zero, and it satisfies Λ(∞) = ∞. If N is a
counting process with independent increments and if (8.3.1) holds, the process
(Nt −Λ(t), t ≥ 0) is a martingale and for any bounded predictable process φ,
the equality E(

∫ t
0
φs dNs) = E(

∫ t
0
φsdΛ(s)) is satisfied for any t. This result

admits a converse.

Proposition 8.3.3.1 (Watanabe’s Characterization.) Let N be a count-
ing process and Λ an increasing, continuous function with value zero at time
zero. Let us assume that the process (Mt : = Nt−Λ(t), t ≥ 0) is a martingale.
Then N is an inhomogeneous Poisson process with compensator Λ. It is a
Poisson process if Λ(t) = λt.

Proof: Let s < t and θ > 0.

eθNt − eθNs =
∑

s<u≤t

eθNu − eθNu−

=
∑

s<u≤t

eθNu−(eθ − 1)ΔNu = (eθ − 1)
∫

]s,t]

eθNu−dNu

= (eθ − 1)

(∫

]s,t]

eθNu−dMu +
∫

]s,t]

eθNudΛ(u)

)

.
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By relying on the fact that the first integral is a martingale,

E(eθNt − eθNs |Fs) = (eθ − 1)E

(∫

]s,t]

eθNudΛ(u)|Fs

)

= (eθ − 1)
∫

]s,t]

E (eθNu |Fs)dΛ(u) .

Let s be fixed and define φ(t) = E(eθNt |Fs). Then, for t > s,

φ(t) = φ(s) + (eθ − 1)
∫ t

s

φ(u)dΛ(u) .

Solving this equation leads to

φ(t) = eθNs exp
[

(eθ − 1)
∫ t

s

dΛ(u)
]

.

This shows that the process N has independent increments and that, for s < t,
the r.v. Nt −Ns has a Poisson law with parameter Λ(t) − Λ(s) . �

8.3.4 Stochastic Calculus

In this section,M is the compensated martingale of an inhomogeneous Poisson
process N with deterministic intensity (λ(s), s ≥ 0). From now on, we restrict
our attention to integrals of predictable processes, even if the stochastic
integral is defined in a more general setting.

Integration by Parts Formula

Let x and y be two predictable processes and define two processes X and Y
as

Xt = x+
∫ t

0

xsdNs, Yt = y +
∫ t

0

ysdNs .

The jumps of X (resp. of Y ) occur at the same times as the jumps of N and
ΔXs = xsΔNs, ΔYs = ysΔNs. The processes X and Y are of finite variation
and are constant between two jumps. Then, it is easy to check that

XtYt = xy +
∑

s≤t

Δ(XY )s = xy +
∑

s≤t

Xs−ΔYs +
∑

s≤t

Ys−ΔXs +
∑

s≤t

ΔXsΔYs

We shall write this equality as

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t
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where (note that (ΔNt)2 = ΔNt)

[X,Y ]t : =
∑

s≤t

ΔXsΔYs =
∑

s≤t

xsysΔNs =
∫ t

0

xsysdNs .

More generally (a general discussion is proposed in � Chapter 9 and 10), if

dXt = htdt+ xtdNt, X0 = x

dYt = h̃tdt+ ytdNt, Y0 = y ,

one still gets

XtYt = xy +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t

where

[X,Y ]t =
∫ t

0

xsysdNs .

In particular, if dXt = xtdMt and dYt = ytdMt, the process XtYt − [X,Y ]t is
a local martingale.

Itô’s Formula

For Poisson processes, Itô’s formula is obvious as we now explain. We shall
give an extension of this formula for more general processes in the following
Chapter 9.

Let N be a Poisson process and f a bounded Borel function. The trivial
equality

f(Nt) = f(N0) +
∑

0<s≤t

f(Ns) − f(Ns−) (8.3.3)

is the main step in obtaining Itô’s formula for a Poisson process.
We can write the right-hand side of (8.3.3) as a stochastic integral:

∑

0<s≤t

f(Ns) − f(Ns−) =
∑

0<s≤t

[f(Ns− + 1) − f(Ns−)]ΔNs

=
∫ t

0

[f(Ns− + 1) − f(Ns−)] dNs ,

hence, the canonical decomposition of the semi-martingale f(N) as the sum
of a martingale and an absolutely continuous adapted process is

f(Nt) = f(N0)+
∫ t

0

[f(Ns− +1)−f(Ns−)]dMs+
∫ t

0

[f(Ns− +1)−f(Ns−)]λds .

It is straightforward to generalize this result. Let
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Xt = x+
∫ t

0

xsdNs = x+
∑

Tn≤t

xTn ,

with x a predictable process. The process (Xt, t ≥ 0) has at time Tn, a jump
of size (ΔX)Tn = xTn , and is constant between two consecutive jumps. The
obvious identity

F (Xt) = F (X0) +
∑

s≤t

F (Xs) − F (Xs−) ,

holds for any bounded function F . The number of jumps before t is a.s. finite,
and the sum is well defined. This formula can be written in an equivalent
form:

F (Xt) − F (X0) =
∑

s≤t

(F (Xs) − F (Xs−))ΔNs

=
∫ t

0

(F (Xs) − F (Xs−)) dNs =
∫ t

0

(F (Xs− + xs) − F (Xs−)) dNs

where the integral on the right-hand side is a Stieltjes integral. More generally
again, we have the following result

Proposition 8.3.4.1 Let h be an adapted process, x a predictable process and

dXt = htdt+ xtdMt = (ht − xtλ(t))dt+ xtdNt

where N is an inhomogeneous Poisson process. Let F ∈ C1,1(R+ × R). Then

F (t,Xt) =
∫ t

0

[F (s,Xs− + xs) − F (s,Xs−)]dMs (8.3.4)

+
∫ t

0

(∂tF (s,Xs) + ∂xF (s,Xs)hs) ds

+
∫ t

0

(F (s,Xs− + xs) − F (s,Xs−) − ∂xF (s,Xs−)xs)λ(s)ds .

Proof: Indeed, between two jumps of the process N , dXt = (ht − λ(t)xt)dt,
and for Tn < s < t < Tn+1,

F (t,Xt) = F (s,Xs) +
∫ t

s

∂tF (u,Xu)du+
∫ t

s

∂xF (u,Xu)(hu − xuλ(u))du .

At jump times Tn, one has F (Tn, XTn) = F (Tn, XTn−) +ΔF (·, X)Tn . Hence,

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs)(hs − xsλ(s)) ds

+
∑

s≤t

(F (s,Xs) − F (s,Xs−)) .
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This formula can be written as

F (t,Xt) − F (0, X0) =
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs)(hs − xsλ(s))ds

+
∫ t

0

[F (s,Xs) − F (s,Xs−)]dNs

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)xs]dNs

=
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∫ t

0

[F (s,Xs− + xs) − F (s,Xs−) − ∂xF (s,Xs−)xs]dNs .

One can also write

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

∂xF (s,Xs−)dXs

+
∑

s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)xsΔNs] .

which is easy to memorize. The first three terms on the right-hand side are
obtained from “ordinary” calculus, the fourth term takes into account the
jumps of the left-hand side and of the stochastic integral on the right-hand
side.

Remarks 8.3.4.2 (a) In the “ds” integrals, we can write Xs− or Xs, since,
for any bounded Borel function f ,

∫ t

0

f(Xs−)ds =
∫ t

0

f(Xs)ds .

Note that since dNs a.s. Ns = Ns− + 1, one has
∫ t

0

f(Ns−)dNs =
∫ t

0

f(Ns − 1)dNs .

However, we systematically use the form
∫ t
0
f(Ns−)dNs, even though the

integral
∫ t
0
f(Ns − 1)dNs has a meaning. The reason is that
∫ t

0

f(Ns−)dMs =
∫ t

0

f(Ns−)dNs − λ

∫ t

0

f(Ns)ds

is a martingale, whereas
∫ t
0
f(Ns − 1)dMs is not.
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(b) We have named Itô’s formula a formula allowing us to write the process
F (t,Xt) as a sum of stochastic integrals, as in equation (8.3.5). In fact, the aim
of Itô’s formula is to give, under some suitable conditions on F , the canonical
decomposition of the semi-martingale F (t,Xt).

Exercise 8.3.4.3 Let N be a Poisson process with intensity λ. Prove that,
if St = S0e

μt+σNt , then

dSt = St−(μdt+ (eσ − 1)dNt)

and that S is a martingale iff μ = −λ(eσ − 1). Prove that, for a + 1 > 0,
the process (Lt = exp(Nt ln(1 + a) − λat), t ≥ 0) is a martingale and that, if
Q|Ft = LtP|Ft , the process N is a Q-Poisson process with intensity λ(1 + a).
Note the progression made from Exercise 8.2.3.3. �

Exercise 8.3.4.4 The aim of this exercise is to prove that the linear equation
dZt = Zt−μdMt, Z0 = 1 with μ > −1 has a unique solution. Assume that
Z1 and Z2 are two solutions. W.l.g., we can assume that Z2 is strictly
positive. Prove that Z1/Z2 satisfies an ordinary differential equation with
unique solution equal to 1. �

8.3.5 Predictable Representation Property

Proposition 8.3.5.1 Let FN be the natural filtration of the standard Poisson
process N and let H ∈ L2(FN

∞) be a square integrable random variable. Then,
there exists a unique FN -predictable process (ht, t ≥ 0) such that

H = E(H) +
∫ ∞

0

hsdMs

and E(
∫∞
0
h2
sds) <∞.

Proof: The family of exponential random variables

Y = exp
(∫ ∞

0

ϕ(s)dNs − λ

∫ ∞

0

(eϕ(s) − 1)ds
)

,

where ϕ is a bounded deterministic function with compact support, is total
in L2(FN

∞). Any Y in this family can be written as a stochastic integral with
respect to dM . Indeed, from Exercise 8.2.2.2 the process

Yt = exp
(∫ t

0

ϕ(s)dNs − λ

∫ t

0

(eϕ(s) − 1)ds
)

= E(Y |FN
t )

is a martingale, and is the solution of
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dYt = Yt−(eϕ(t) − 1)dMt ,

so that,

Y = 1 +
∫ ∞

0

Ys−(eϕ(s) − 1)dMs .

Hence, with the notation of the statement, hs = Ys−(eϕ(s) − 1). For more
general random variables, the result follows by passing to the limit, owing to
the isometry formula

E

(∫ ∞

0

hsdMs

)2

= λE

(∫ ∞

0

h2
sds

)

.

�

Comment 8.3.5.2 This result goes back to Brémaud and Jacod [125], Chou
and Meyer [180], Davis [219].

8.3.6 Multidimensional Poisson Processes

Definition 8.3.6.1 A process (N1, . . . , Nd) is a d-dimensional F-Poisson
process if each component N j is a right-continuous adapted process such that
N j

0 = 0 and if there exist positive constants λj such that for every t ≥ s ≥ 0
and every integer nj

P

⎡

⎣
d⋂

j=1

(N j
t −N j

s = nj)|Fs

⎤

⎦ =
d∏

j=1

e−λj(t−s) (λj(t− s))nj

nj !
.

Note that the processes (N j , j = 1, . . . , d) are independent; more generally, for
any s, the processes

(
(N j

s+t −N j
s , j = 1, . . . , d), t ≥ 0

)
are independent and

also independent of Fs.

Proposition 8.3.6.2 An F-adapted process N is a d-dimensional F-Poisson
process if and only if:

(i) each N j is an F-Poisson process,
(ii) no two N j’s jump simultaneously P a.s..

Proof: We give the proof for d = 2.
(a) We assume (i) and (ii). For any pair (f, g) of bounded Borel functions,

the process

Xt = exp
(∫ t

0

f(s)dN1
s +

∫ t

0

g(s)dN2
s

)

satisfies

Xt = 1 +
∑

0<s≤t

ΔXs = 1 +
∑

0<s≤t

Xs− [exp(f(s)ΔN1
s + g(s)ΔN2

s ) − 1] .
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From condition (ii)

Xt = 1 +
∑

0<s≤t

Xs−

[
(ef(s) − 1)ΔN1

s + (eg(s) − 1)ΔN2
s

]
,

hence, from the martingale property of the compensated process N i
t − λit:

E(Xt) = 1 + E

[∫ t

0

Xs−

(
(ef(s) − 1)λ1 + (eg(s) − 1)λ2

)
ds

]

= 1 +
∫ t

0

E[Xs]
(
(ef(s) − 1)λ1 + (eg(s) − 1)λ2

)
ds .

Therefore, solving this equation, we find

E(Xt) = exp
(∫ t

0

(ef(s) − 1)λ1ds

)

exp
(∫ t

0

(eg(s) − 1)λ2ds

)

= E

[

exp
(∫ t

0

f(s)dN1
s

)]

E

[

exp
(∫ t

0

g(s)dN2
s

)]

.

The result follows.
(b) Conversely, if N is a d-dimensional Poisson process, then (i) and (ii)

hold. �

Comment 8.3.6.3 Another proof follows from the predictable representa-
tion theorem valid for M1 and M2 individually. Let Hi ∈ L2(F i

∞) for i = 1, 2.
From Hi = E(Hi) +

∫∞
0
hisdM

i
s and the integration by parts formula, we

deduce that E(H1H2) = E(H1)E(H2) if and only if [M i,M j ] = 0.

In order to construct correlated Poisson processes, one can proceed as
follows. Let (N i, i = 1, 2, 3) be independent Poisson processes. Then the
processes N̂ = N1 +N2 and Ñ = N1 +N3 are correlated Poisson processes.

Exercise 8.3.6.4 Let (N i, i = 1, 2) be two independent Poisson processes.
Prove that N = N1 +N2 is a Poisson process. Compute the compensator of
N . Let τ i = inf{t : N i

t = 1} and τ = inf{t : Nt = 1}. Compute P(τ = τ1). �

8.4 Stochastic Intensity Processes

8.4.1 Doubly Stochastic Poisson Processes

Let F be a given filtration, where F0 is not the trivial σ-algebra; let N be a
counting process which is F-adapted and let λ be a positive process such that
for any t, λt is F0-measurable and

∫ t
0
λsds <∞,P a.s.. Let Λ(s, t) =

∫ t
s
λudu.

If
E(eiα(Nt−Ns)|Fs) = exp

(
(eiα − 1)Λ(s, t)

)
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for any t > s and any α, then N is called a doubly stochastic Poisson
process. In that case,

P(Nt −Ns = k|Fs) = exp(−Λ(s, t))
(Λ(s, t))n

n!

and the process (Nt −
∫ t
0
λudu, t ≥ 0) is an F-martingale.

Comment 8.4.1.1 Doubly stochastic intensity processes are used in finance
to model the intensity of default process (see Schönbucher [765]).

8.4.2 Inhomogeneous Poisson Processes with Stochastic Intensity

Definition 8.4.2.1 Let F be a given filtration, N an F-adapted counting
process, and (λt, t ≥ 0) a positive F-progressively measurable process such
that for every t, Λt : =

∫ t
0
λsds <∞, P a.s..

The process N is an inhomogeneous Poisson process with stochastic
intensity λ if for every positive F-predictable process (φt, t ≥ 0) the following
equality is satisfied:

E

(∫ ∞

0

φs dNs

)

= E

(∫ ∞

0

φsλsds

)

.

Therefore (Mt = Nt−Λt, t ≥ 0) is an F-local martingale and an F-martingale
if for every t, E (Λt) <∞.

Proposition 8.4.2.2 Let N be an inhomogeneous Poisson process with
stochastic intensity λ. Then, for any F-predictable process φ such that ∀t,
E(
∫ t
0
|φs|λsds) <∞, the process (

∫ t
0
φsdMs, t ≥ 0) is an F-martingale.

The intensity depends in an important manner of the reference filtration.
For example, the FN -intensity of N is E(λs|FN

s ), i.e.,

Nt −
∫ t

0

E(λs|FN
s )ds

is an FN -martingale. This is a particular case of the general filtering formula
given in Proposition 5.10.3.1.

An inhomogeneous Poisson process N with stochastic intensity λt can be
viewed as a time change of a standard Poisson process Ñ , i.e., Nt = ÑΛt .

8.4.3 Itô’s Formula

The formula obtained in Subsection 8.3.4 can be generalized to inhomogeneous
Poisson processes with stochastic intensities.
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8.4.4 Exponential Martingales

We now extend Exercise 8.2.3.3 to more general Doléans-Dade exponentials:

Proposition 8.4.4.1 Let N be an inhomogeneous Poisson process with sto-
chastic intensity (λt, t ≥ 0), and (μt, t ≥ 0) a predictable process such that,
for any t,

∫ t
0
|μs|λs ds <∞. Let (Tn, n ≥ 1) be the sequence of jump times of

N . Then, the process L, the solution of

dLt = Lt−μtdMt, L0 = 1 , (8.4.1)

is a local martingale defined by

Lt =

{
exp(−

∫ t
0
μsλs ds) if t < T1∏

n,Tn≤t(1 + μTn) exp(−
∫ t
0
μsλs ds) if t ≥ T1 .

(8.4.2)

Moreover, if μ is such that μs > −1 a.s.∀s, then

Lt = exp
[

−
∫ t

0

μsλsds+
∫ t

0

ln(1 + μs) dNs

]

.

Later, we shall simply write the equalities (8.4.2) as

Lt =
∏

n,Tn≤t

(1 + μTn) exp
(

−
∫ t

0

μsλs ds

)

with the understanding that
∏

∅ = 1.

Proof: From general results on SDE, the linear equation (8.4.1) admits a
unique solution (see also Exercise 8.3.4.4). Between two consecutive jumps,
the solution of the equation (8.4.1) satisfies

dLt = −Lt−μtλtdt

therefore, for t ∈ [Tn, Tn+1[, we obtain

Lt = LTn exp
(

−
∫ t

Tn

μsλsds

)

.

The jumps of L occur at the same times as the jumps of N and the size of
the jumps is ΔLt = Lt−μtΔNt, therefore LTn = LTn−(1+μTn). By backward
recurrence on n, we get (8.4.2). �

The local martingale L is denoted by E(μ�M) and called the Doléans-
Dade exponential of the process μ�M . The process L can also be written

Lt =
∏

0<s≤t

(1 + μsΔNs ) exp
[

−
∫ t

0

μs λs ds

]

. (8.4.3)
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Moreover, if for every t, μt > −1, then L is a positive local martingale,
therefore it is a supermartingale and

Lt = exp

⎡

⎣−
∫ t

0

μsλsds+
∑

s≤t

ln(1 + μs)ΔNs

⎤

⎦

= exp
[

−
∫ t

0

μsλsds+
∫ t

0

ln(1 + μs) dNs

]

= exp
[∫ t

0

[ln(1 + μs) − μs]λs ds+
∫ t

0

ln(1 + μs) dMs

]

.

The process L is a martingale if ∀t, E(Lt) = 1. This is the case if μ is bounded.
We shall see a more general criterion in � Subsection 9.4.3.

If μ is not greater than −1, then the process L defined in (8.4.2) is still a
local martingale which satisfies dLt = Lt−μtdMt. However it may be negative.

Example 8.4.4.2 A useful example is the case where μ ≡ −1. In this case,
we obtain that 1{t<T1} exp

(∫ t
0
λsds

)
is a local martingale. Note that we have

obtained similar results in Chapter 7 for processes with a single jump.

8.4.5 Change of Probability Measure

We establish now a particular case of the general Girsanov theorem (see �
Section 9.4 for a general case).

Proposition 8.4.5.1 Let μ be a predictable process such that μ > −1 and∫ t
0
λs|μs|ds < ∞ a.s.. Let L be the positive exponential local martingale

solution of dLt = Lt−μtdMt. Assume that L is a martingale and let Q be the
probability measure (locally equivalent to P) defined on Ft by Q|Ft = Lt P|Ft .
Then, under Q, the process Mμ defined as

Mμ
t : = Mt −

∫ t

0

μsλsds = Nt −
∫ t

0

(μs + 1)λs ds , t ≥ 0

is a local martingale.

Proof: From the integration by parts formula, we get

d(MμL)t = Mμ
t−dLt + Lt−dM

μ
t + d[L,Mμ]t

= Mμ
t−dLt + Lt−dM

μ
t + Lt−μtdNt

= Mμ
t−dLt + Lt−dMt + Lt−μtdMt = (Mμ

t−μt + 1 + μt)Lt−dMt ,

hence, the process MμL is a P-local martingale and Mμ is a Q-local
martingale. If μ and λ are deterministic, the process N is a Q-inhomogeneous
Poisson process with deterministic intensity (μ(t) + 1)λ(t). �
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Comment 8.4.5.2 We have seen that a Poisson process with stochastic
intensity can be viewed as a time-changed of a standard Poisson process. Here,
we interpret a Poisson process with stochastic intensity as a Poisson process
with constant intensity under a change of probability. Indeed, a Poisson
process with intensity 1 under P is a Poisson process with stochastic intensity
(λt, t ≥ 0) under Q

λ, where Q
λ|Ft = Lλ

t P|Ft and where dLλ
t = Lλ

t−(λt−1)dMt.

8.4.6 An Elementary Model of Prices Involving Jumps

Suppose that S is a stochastic process with dynamics given by

dSt = St−(b(t)dt+ φ(t)dMt), (8.4.4)

where M is the compensated martingale associated with an inhomogeneous
Poisson process N with strictly positive deterministic intensity λ and where
b, φ are deterministic continuous functions. We assume that φ > −1 so that
the process S remains strictly positive. The solution of (8.4.4) is

St = S0 exp
[

−
∫ t

0

φ(s)λ(s)ds+
∫ t

0

b(s)ds
]∏

s≤t

(1 + φ(s)ΔNs)

= S0 exp
[∫ t

0

b(s)ds
]

exp
[∫ t

0

ln(1 + φ(s))dNs −
∫ t

0

φ(s)λ(s)ds
]

.

Hence St exp
(
−
∫ t
0
b(s)ds

)
is a strictly positive local martingale.

We assume now that S is the dynamics of the price of a financial asset
under the historical probability measure. We denote by r the deterministic
interest rate and by Rt = exp(−

∫ t
0
r(s)ds) the discount factor. It is important

to give a necessary and sufficient condition under which the financial market
with the asset S and the riskless asset is complete and arbitrage free when
φ does not vanish. Therefore, our aim is to give conditions such that there
exists a probability measure Q, equivalent to P, under which the discounted
process SR is a local martingale.

Any FM -martingale admits a representation as a stochastic integral with
respect to M . Hence, any strictly positive FM -martingale L can be written as
dLt = Lt−μtdMt where μ is an FM -predictable process such that μ > −1 and,
if L0 = 1, the martingale L can be used as a Radon-Nikodým density. We are
looking for conditions on μ such that the process RS is a Q-local martingale
where dQ|Ft = LtdP|Ft ; or equivalently, the process (Yt = RtStLt, t ≥ 0) is a
P-local martingale. Integration by parts yields

dYt
mart= Yt− ((b(t) − r(t))dt+ φ(t)μtd[M ]t)
mart= Yt− (b(t) − r(t) + φ(t)μtλ(t)) dt .

Hence, Y is a P-local martingale if and only if μt = −b(t) − r(t)
φ(t)λ(t)

.
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Assume that μ > −1 and define Q|Ft = Lt P|Ft . The process N is an
inhomogeneous Q-Poisson process with intensity ((μ(s) + 1)λ(s), s ≥ 0) and

dSt = St−(r(t)dt+ φ(t)dMμ
t )

where (Mμ(t) = Nt −
∫ t
0
(μ(s) + 1)λ(s) ds , t ≥ 0) is the compensated Q-

martingale. Hence, the discounted price SR is a Q-local martingale. In this
setting, Q is the unique equivalent martingale measure.

The condition μ > −1 is needed in order to obtain at least one e.m.m.
and, from the fundamental theorem of asset pricing, to deduce the absence of
arbitrage property.

If μ fails to be greater than −1, there does not exist an e.m.m. and there
are arbitrages in the market. We now make explicit an arbitrage opportunity
in the particular case when the coefficients are constant with φ > 0 and
b− r

φλ
> 1, hence μ < −1. The inequality

St = S0 exp[(b− φλ)t]
∏

s≤t

(1 + φΔNs) > S0e
rt
∏

s≤t

(1 + φΔNs) > S0e
rt

proves that an agent who borrows S0 and invests in a long position in the
underlying has an arbitrage opportunity, since his terminal wealth at time T
ST−S0e

rT is strictly positive with probability one. Note that, in this example,
the process (Ste−rt, t ≥ 0) is increasing.

Comment 8.4.6.1 We have required that φ and b are continuous functions
in order to avoid integrability conditions. Obviously, we can generalize, to
some extent, to the case of Borel functions. Note that, since we have assumed
that φ(t) does not vanish, there is the equality of σ-fields

σ(Ss, s ≤ t) = σ(Ns, s ≤ t) = σ(Ms, s ≤ t) .

8.5 Poisson Bridges

Let N be a Poisson process with constant intensity λ, FN
t = σ(Ns, s ≤ t) its

natural filtration and T > 0 a fixed time. Let Gt = σ(Ns, s ≤ t;NT ) be the
natural filtration of N enlarged with the terminal value NT of the process N .

8.5.1 Definition of the Poisson Bridge

Proposition 8.5.1.1 The process

ηt = Nt −
∫ t

0

NT −Ns

T − s
ds, t ≤ T

is a G-martingale with predictable bracket

Λt =
∫ t

0

NT −Ns

T − s
ds .
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Proof: For 0 < s < t < T ,

E(Nt −Ns|Gs) = E(Nt −Ns|NT −Ns) =
t− s

T − s
(NT −Ns)

where the last equality follows from the fact that, if X and Y are independent
with Poisson laws with parameters μ and ν respectively, then

P(X = k|X + Y = n) =
n!

k!(n− k)!
αk(1 − α)n−k

where α =
μ

μ+ ν
. Hence,

E

(∫ t

s

du
NT −Nu

T − u
|Gs
)

=
∫ t

s

du

T − u
(NT −Ns − E(Nu −Ns|Gs))

=
∫ t

s

du

T − u

(

NT −Ns −
u− s

T − s
(NT −Ns)

)

=
∫ t

s

du

T − s
(NT −Ns) =

t− s

T − s
(NT −Ns) .

Therefore,

E

(

Nt−Ns−
∫ t

s

NT −Nu

T − u
du|Gs

)

=
t− s

T − s
(NT −Ns)−

t− s

T − s
(NT −Ns) = 0

and the result follows.
Therefore, η is a compensated G-Poisson process, time-changed by∫ t

0
NT −Ns

T−s ds, i.e., ηt = M̃(
∫ t
0

NT −Ns

T−s ds) where (M̃(t), t ≥ 0) is a compensated
Poisson process. �

Comment 8.5.1.2 Poisson bridges are studied in Jeulin and Yor [496]. This
kind of enlargement of filtration is used for modelling insider trading in
Elliott and Jeanblanc [314], Grorud and Pontier [410] and Kohatsu-Higa and
Øksendal [534].

8.5.2 Harness Property

The previous result may be extended in terms of the harness property.

Definition 8.5.2.1 A process X fulfills the harness property if

E

(
Xt −Xs

t− s

∣
∣
∣Fs0], [T

)

=
XT −Xs0

T − s0

for s0 ≤ s < t ≤ T where Fs0], [T = σ(Xu, u ≤ s0, u ≥ T ).
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A process with the harness property satisfies

E

(
Xt

∣
∣
∣Fs], [T

)
=
T − t

T − s
Xs +

t− s

T − s
XT ,

and conversely.

Proposition 8.5.2.2 If X satisfies the harness property, then, for any
fixed T ,

MT
t = Xt −

∫ t

0

du
XT −Xu

T − u
, t < T

is an Ft], [T -martingale and conversely.

Proof: If X satisfies the harness property, it is easy to check that MT is an
Ft], [T -martingale. Conversely, assume that MT is an Ft], [T -martingale. Let
us prove that the harness property holds, i.e.,

E

(
Xt −Xs

t− s

∣
∣Fs], [T

)

=
XT −Xs

T − s
.

From the hypothesis

E(Xt −Xs

∣
∣Fs], [T ) =

∫ t

s

duE

(
XT −Xu

T − u

∣
∣Fs], [T

)

= (XT −Xs)
∫ t

s

du

T − u
−
∫ t

s

du

T − u
E(Xu −Xs

∣
∣Fs], [T ) .

Therefore, for fixed s, T , the process ϕ(u) = E(Xu − Xs|Fs], [T ) defined for
u ≥ s, satisfies

ϕ(t) = (XT −Xs)
∫ t

s

du

T − u
−
∫ t

s

du

T − u
ϕ(u) .

It follows that ϕ is a solution of the ODE

ϕ′(t) =
XT −Xs

T − t
− ϕ(t)

1
T − t

with initial condition ϕ(s) = 0. This ODE has a unique solution given by
ϕ(t) = (t− s)XT −Xs

T−s . �

Comment 8.5.2.3 See Exercise 6.19 in Chaumont and Yor [161] for other
properties. See also Jacod and Protter [470] and Exercise 12.3 in Yor [868]. We
shall prove in � Subsection 11.2.7 that any integrable Lévy process enjoys
the harness property (see also Mansuy and Yor [621]). This property is used
in Corcuera et al. [194] for studying insider trading.
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8.6 Compound Poisson Processes

8.6.1 Definition and Properties

Definition 8.6.1.1 Let λ > 0 and let F be a cumulative distribution function
on R. A (λ, F )-compound Poisson process is a process X = (Xt, t ≥ 0)
of the form

Xt =
Nt∑

k=1

Yk, X0 = 0

where N is a Poisson process with intensity λ and the (Yk, k ≥ 1) are i.i.d.
random variables with law F (y) = P(Y1 ≤ y), independent of N (we use the
convention that

∑0
k=1 Yk = 0). We assume that P(Y1 = 0) = 0.

The process X differs from a Poisson process since the sizes of the jumps
are random variables. We denote by F (dy) the measure associated with F and
by F ∗n its n-th convolution, i.e.,

F ∗n(y) = P

(
n∑

k=1

Yk ≤ y

)

.

We use the convention F ∗0(y) = P(0 ≤ y) = 1[0,∞[(y).

Proposition 8.6.1.2 A (λ, F )-compound Poisson process has stationary and
independent increments (i.e., it is a Lévy process � Chapter 11); the
cumulative distribution function of the r.v. Xt is

P(Xt ≤ x) = e−λt
∞∑

n=0

(λt)n

n!
F ∗n(x) .

Proof: Since the (Yk) are i.i.d., one gets

E

(

exp(iλ
n∑

k=1

Yk + iμ

m∑

k=n+1

Yk)

)

= (E[exp(iλY1)] )
n (E[exp(iμY1)] )

m−n
.

Then, setting ψ(λ, n) = (E[exp(iλY1)] )
n, the independence and stationarity

of the increments (Xt −Xs) and Xs with t > s follows from

E( exp(iλXs + iμ(Xt −Xs)) ) = E(ψ(λ,Ns)ψ(μ,Nt −Ns) )
= E(ψ(λ,Ns) ) E(ψ(μ,Nt−s) ) .

The independence of a finite sequence of increments follows by induction.
From the independence of N and the random variables (Yk, k ≥ 1) and

using the Poisson law of Nt, we get
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P(Xt ≤ x) =
∞∑

n=0

P

(

Nt = n,

n∑

k=1

Yk ≤ x

)

=
∞∑

n=0

P(Nt = n)P

(
n∑

k=1

Yk ≤ x

)

= e−λt
∞∑

n=0

(λt)n

n!
F ∗n(x) .

�

�

�

T1 T2 T3 T4 T5

�
Y1

Y1

Y1 + Y2 �
Y2

�

Y3

•

•

Fig. 8.2 Compound Poisson process

8.6.2 Integration Formula

If Zt = Z0 + bt+Xt with X a (λ, F )-compound Poisson process, and if f is a
C1 function, the following obvious formula gives a representation of f(Zt) as
a sum of integrals:

f(Zt) = f(Z0) +
∫ t

0

bf ′(Zs)ds+
∑

s≤t

f(Zs) − f(Zs−)

= f(Z0) +
∫ t

0

bf ′(Zs)ds+
∑

s≤t

(f(Zs) − f(Zs−))ΔNs

= f(Z0) +
∫ t

0

bf ′(Zs)ds+
∫ t

0

(f(Zs) − f(Zs−)) dNs .
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It is possible to write this formula as

f(Zt) = f(Z0)+
∫ t

0

(bf ′(Zs)+(f(Zs)−f(Zs−)λ)ds+
∫ t

0

(f(Zs) − f(Zs−)) dMs

however this equality does not give immediately the canonical decomposition
of the semi-martingale f(Zt). Indeed, the reader can notice that the process∫ t
0

(f(Zs) − f(Zs−)) dMs is not a martingale. See � Subsection 8.6.4 for the
decomposition of this semi-martingale.

Exercise 8.6.2.1 Prove that the infinitesimal generator of Z is given, for C1

functions f such that f and f ′ are bounded, by

Lf(x) = bf ′(x) + λ

∫ ∞

−∞
(f(x+ y) − f(x))F (dy) .

�

8.6.3 Martingales

Proposition 8.6.3.1 Let X be a (λ, F )-compound Poisson process such that
E(|Y1|) < ∞. Then, the process (Zt = Xt − tλE(Y1), t ≥ 0) is a martingale
and in particular, E(Xt) = λtE(Y1) = λt

∫∞
−∞ yF (dy).

If E(Y 2
1 ) < ∞, the process (Z2

t − tλE(Y 2
1 ), t ≥ 0) is a martingale and

Var (Xt) = λtE(Y 2
1 ).

Proof: The martingale property of (Xt − E(Xt), t ≥ 0) follows from the
independence and stationarity of the increments of the process X. We leave
the details to the reader. It remains to compute the expectation of the r.v. Xt

as follows:

E(Xt) =
∞∑

n=1

E

(
n∑

k=1

Yk1{Nt=n}

)

=
∞∑

n=1

nE(Y1)P(Nt = n)

= E(Y1)
∞∑

n=1

nP(Nt = n) = λtE(Y1) .

The proof of the second property can be done by the same method; however,
it is more convenient to use the Laplace transform of X (See below,
Proposition 8.6.3.4). �

Proposition 8.6.3.2 Let Xt =
∑Nt

i=1 Yi be a (λ, F )-compound Poisson
process, where the random variables Yi are square integrable.

Then Z2
t −
∑Nt

i=1 Y
2
i is a martingale.
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Proof: It suffices to write

Z2
t −

Nt∑

i=1

Y 2
i = Z2

t − λtE(Y 2
1 ) −

(
Nt∑

i=1

Y 2
i − λtE(Y 2

1 )

)

.

We have proved that Z2
t − λtE(Y 2

1 ) is a martingale. Now, since
∑Nt

i=1 Y
2
i is a

compound Poisson process,
∑Nt

i=1 Y
2
i − λtE(Y 2

1 ) is a martingale. �

The process At =
∑Nt

i=1 Y
2
i is an increasing process such that X2

t − At is
a martingale. Hence, as for a Poisson process, we have two (in fact an infinity
of) increasing processes Ct such that X2

t −Ct is a martingale. The particular
process Ct = tλE(Y 2

1 ) is predictable, whereas the process At =
∑Nt

i=1 Y
2
i

satisfies ΔAt = (ΔXt)2. The predictable process tλE(Y 2
1 ) is the predictable

quadratic variation and is denoted 〈X〉t, the process
∑Nt

i=1 Y
2
i is the optional

quadratic variation of X and is denoted [X]t.

Proposition 8.6.3.3 Let Xt =
∑Nt

k=1 Yk be a (λ, F )-compound Poisson
process.

(a) Let dSt = St−(μdt+ dXt) (that is S is the Doléans-Dade exponential
martingale E(U) of the process Ut = μt+Xt). Then,

St = S0e
μt

Nt∏

k=1

(1 + Yk) .

In particular, if 1 + Y1 > 0,P.a.s., then

St = S0 exp

(

μt+
Nt∑

k=1

ln(1 + Yk)

)

= S0e
μt+X∗

t = S0e
U∗

t .

Here, X∗ is the (λ, F ∗)-compound Poisson process X∗
t =

∑Nt

k=1 Y
∗
k , where

Y ∗
k = ln(1 + Yk) (hence F ∗(y) = F (ey − 1)) and

U∗
t = Ut +

∑

s≤t

(ln(1 +ΔXs) −ΔXs) = Ut +
Nt∑

k=1

(ln(1 + Yk) − Yk) .

The process (Ste−rt, t ≥ 0) is a local martingale if and only if μ+λE(Y1) = r.

(b)The process
St = x exp(bt+Xt) = xeVt (8.6.1)

is a solution of
dSt = St−dV

∗
t , S0 = x

(i.e., St = x E(V ∗)t) where
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V ∗
t = Vt +

∑

s≤t

(eΔXs − 1 −ΔXs) = bt+
∑

s≤t

(eΔXs − 1) .

The process S is a martingale if and only if

λ

∫ ∞

−∞
(1 − ey)F (dy) = b .

Proof: The solution of

dSt = St−(μdt+ dXt), S0 = x

is

St = xE(U)t = xeμt
Nt∏

k=1

(1 + Yk) = xeμte
PNt

k=1 ln(1+Yk) = eμt+
PNt

k=1 Y
∗

k

where Y ∗
k = ln(1 + Yk). From

μt+
Nt∑

k=1

Y ∗
k = μt+Xt +

Nt∑

k=1

Y ∗
k −Xt = Ut +

∑

s≤t

(ln(1 +ΔXs) −ΔXs) ,

we obtain St = xeU
∗
t . Then,

d(e−rtSt) = e−rtSt−((−r + μ+ λE(Y1))dt+ dXt − λE(Y1)dt)
= e−rtSt−((−r + μ+ λE(Y1))dt+ dZt) ,

where Zt = Xt − λE(Y1)t is a martingale. It follows that e−rtSt is a local
martingale if and only if −r + μ+ λE(Y1) = 0.

The second assertion is the same as the first one, with a different choice
of parametrization. Let

St = xebt+Xt = xebt exp

(
Nt∑

1

Yk

)

= xebt
Nt∏

k=1

(1 + Y ∗
k )

where 1 + Y ∗
k = eYk . Hence, from part a), dSt = St−(bdt + dV ∗

t ) where
V ∗
t =

∑Nt

k=1 Y
∗
k . It remains to note that

bt+ V ∗
t = Vt + V ∗

t −Xt = Vt +
∑

s≤t

(eΔXs − 1 −ΔXs) .

�

We now denote by ν the positive measure ν(dy) = λF (dy). Using this
notation, a (λ, F )-compound Poisson process will be called a ν-compound
Poisson process. This notation, which is not standard, will make the various
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formulae more concise and will be of constant use in � Chapter 11 when
dealing with Lévy ’s processes which are a generalization of compound Poisson
processes. Conversely, to any positive finite measure ν on R, we can associate
a cumulative distribution function by setting λ = ν(R) and F (dy) = ν(dy)/λ
and construct a ν-compound Poisson process.

Proposition 8.6.3.4 If X is a ν-compound Poisson process, let

J (ν) =
{

α :
∫ ∞

−∞
eαxν(dx) <∞

}

.

The Laplace transform of the r.v. Xt is

E(eαXt) = exp
(

−t
∫ ∞

−∞
(1 − eαx)ν(dx)

)

forα ∈ J (ν).

The process

Z
(α)
t = exp

(

αXt + t

∫ ∞

−∞
(1 − eαx)ν(dx)

)

is a martingale.
The characteristic function of the r.v. Xt is

E(eiuXt) = exp
(

−t
∫ ∞

−∞
(1 − eiux)ν(dx)

)

.

Proof: From the independence between the random variables (Yk, k ≥ 1)
and the process N ,

E(eαXt) = E

(

exp

(

α

Nt∑

k=1

Yk

))

= E(Φ(Nt))

where Φ(n) = E

(

exp

(

α

n∑

k=1

Yk

))

= [ΨY (α)]n, with ΨY (α) = E (exp(αY1)).

Now, E(Φ(Nt)) =
∑

n[ΨY (α)]ne−λtλ
ntn

n!
= exp (−λt(1 − ΨY (α)). The martin-

gale property follows from the independence and stationarity of the increments
of X. �

Taking the derivative w.r.t. α of Z(α) and evaluating it at α = 0, we obtain
that the process Z of Proposition 8.6.3.1 is a martingale, and using the second
derivative of Z(α) evaluated at α = 0, one obtains that Z2

t − λtE(Y 2
1 ) is a

martingale.

Proposition 8.6.3.5 Let X be a ν-compound Poisson process, and f a
bounded Borel function. Then, the process
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exp

(
Nt∑

k=1

f(Yk) + t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)

is a martingale. In particular

E

(

exp

(
Nt∑

k=1

f(Yk)

))

= exp
(

−t
∫ ∞

−∞
(1 − ef(x))ν(dx)

)

.

Proof: The proof is left as an exercise. �

For any bounded Borel function f , we denote by ν(f) =
∫∞
−∞ f(x)ν(dx)

the product λE(f(Y1)). Then, one has the following proposition:

Proposition 8.6.3.6 (i) Let X be a ν-compound Poisson process and f a
bounded Borel function. The process

Mf
t =

∑

s≤t

f(ΔXs)1{ΔXs �=0} − tν(f)

is a martingale.
(ii) Conversely, suppose that X is a pure jump process and that there exists

a finite positive measure σ such that
∑

s≤t

f(ΔXs)1{ΔXs �=0} − tσ(f)

is a martingale for any bounded Borel function f , then X is a σ-compound
Poisson process.

Proof: (i) From the definition of Mf ,

E(Mf
t ) =

∑

n

E(f(Yn))P(Tn < t) − tν(f) = E(f(Y1))
∑

n

P(Tn < t) − tν(f)

= E(f(Y1))E(Nt) − tν(f) = 0 .

The proof of the proposition is now standard and results from the computation
of conditional expectations which leads to, for s > 0

E(Mf
t+s −Mf

t |Ft) = E

⎛

⎝
∑

t<u≤t+s

f(ΔXu)1{ΔXu �=0} − sν(f)|Ft

⎞

⎠ = 0 .

Another proof relies on the fact that the process

∑

s≤t

f(ΔXs)1{ΔXs �=0} =
Nt∑

k=1

f(Yk) =
Nt∑

k=1

Zk
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is a compound Poisson process, hence

Nt∑

k=1

f(Yk) − tλE(Z1) =
Nt∑

k=1

f(Yk) − tλE(f(Y1))

is a martingale.
(ii) For the converse, we write

eiuXt = 1 +
∑

s≤t

eiuXs−(eiuΔXs − 1)

= 1 +
∫ t

0

eiuXs−dMf
s + σ(f)

∫ t

0

eiuXsds

where f(x) = eiux − 1. Hence,

E(eiuXt+s |Ft) = eiuXt + σ(f)
∫ s

0

drE(eiuXt+r |Ft) .

Setting ϕ(s) = E(eiuXt+s |Ft), one gets ϕ(s) = ϕ(0) + σ(f)
∫ s
0
ϕ(r)dr, hence

E(eiuXt+s |Ft) = eiuXt exp
(

s

∫

R

σ(dx)(eiux − 1)
)

.

The remainder of the proof is standard and left to the reader. �

Introducing the random measure μ =
∑

n δTn,Yn on R
+ × R and denoting

by (f ∗ μ)t the integral1

∫ t

0

∫

R

f(x)μ(ω; ds, dx) =
Nt∑

k=1

f(Yk) ,

we obtain that

Mf
t = (f ∗ μ)t − tν(f) =

∫ t

0

∫

R

f(x)(μ(ω; ds, dx) − ds ν(dx))

is a martingale. (We shall generalize this fact when studying marked point
processes in � Section 8.8 and Lévy processes in � Chapter 11.)

Example 8.6.3.7 Let Us = αs + σWs where W is a standard Brownian
motion and let N be a Poisson process with intensity 1, independent of W .
Define the process Z as Zt = UNt (that is a time change of the drifted
Brownian motion U). Conditionally on N1 = n, the r.v. Z1 has a N (αn, σ2n)
law. The process Z is a compound Poisson process

(Zt, t ≥ 0) law=

(
Nt∑

k=1

Yk, t ≥ 0

)

where Yk
law= N (α, σ2) .

1 Later, in Chapter 11, we shall often use N(ds, dx) instead of μ(ds, dx)
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Example 8.6.3.8 Let X(i), i = 1, 2 be two compound Poisson processes

X
(i)
t =

N
(i)
t∑

k=1

Y
(i)
k

where Y (i), N (i), i = 1, 2 are independent and Y (i)
1 is a reflected normal r.v.

(i.e., with density f(y)1{y>0} where f(y) =
√

2
σ
√
π
e−y2/(2σ2)). The characteristic

function of the r.v. X(1)
t −X

(2)
t is

Ψ(u) = e−2λteλt(Φ(u)+Φ(−u))

with Φ(u) = E(eiuY1). From

Φ(u) + Φ(−u) = E(eiuY1 + e−iuY1) =
∫ ∞

0

eiuyf(y)dy +
∫ ∞

0

e−iuyf(y)dy

=
∫ ∞

−∞
eiuyf(y)dy = 2e−σ2u2/2

we obtain
Ψ(u) = exp(2λt(e−σ2u2/2 − 1)) .

This is the characteristic function of σW (N (1)
t + N

(2)
t ) where W is a BM,

evaluated at time N (1)
t +N

(2)
t .

Exercise 8.6.3.9 Let X be a (λ, F )-compound Poisson process. Compute
E(eiuXt) in the following two cases:

(a) Merton’s case [643]: The law F is a Gaussian law, with mean c and
variance δ,

(b) Kou’s case [540] (double exponential model): The law F of Y1 is

F (dx) =
(
pθ1e

−θ1x1{x>0} + (1 − p)θ2eθ2x1{x<0}
)
dx ,

where p ∈]0, 1[ and θi, i = 1, 2 are positive numbers. See � Example 10.4.4.5
for a generalization and an answer. �

Exercise 8.6.3.10 (Example of a Compound Poisson Process.) (See
Sato [761], p. 21.) LetX be a ν-compound Poisson process with ν a probability
measure of the form ν(dx) = pδ1(dx) + qδ−1(dx) where δa(dx) denotes the
Dirac measure at a and where q = 1 − p, p ∈]0, 1[. Prove that

P(Xt = k) = e−t

(
p

q

)k/2

Ik(2(pq)1/2t)

where Ik is the Bessel function (see � A.5.2). �
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Exercise 8.6.3.11 (Extension of Compound Poisson Process.) (See
Sato [761], p. 143) Let X be a ν-compound Poisson process and h a bounded
function. The sequence (Tk) is the sequence of jumps of the Poisson process
N . Let Zt =

∑Nt

k=1 h(Tk, Yk). Prove that

E(eiuZt) = exp
(∫ t

0

ds

∫
(eiuh(s,y) − 1)ν(dy)

)

.

The process Z has independent non-homogeneous increments; it is called an
additive process. �

8.6.4 Itô’s Formula

Let X be a ν-compound Poisson process, and Zt = Z0 + bt+Xt. Then, Itô’s
formula

f(Zt) − f(Z0) = b

∫ t

0

f ′(Zs)ds+
∑

k, Tk≤t

f(ZTk
) − f(ZTk−)

= b

∫ t

0

f ′(Zs)ds+
∫ t

0

∫

R

[f(Zs− + y) − f(Zs−)]μ(ds, dy)

(where μ =
∑∞

n=1 δTn,Yn) can be written as

f(Zt) − f(Z0) =
∫ t

0

ds (Lf)(Zs) +M(f)t

where Lf(x) = bf ′(x)+
∫

R
(f(x+y)−f(x)) ν(dy) is the infinitesimal generator

of Z and

M(f)t =
∫ t

0

∫

R

[f(Zs− + y) − f(Zs−)] (μ(ds, dy) − ds ν(dy))

is a local martingale.

8.6.5 Hitting Times

Let Zt = ct−
∑Nt

k=1 Yk be a (λ, F )-compound Poisson process with a drift term
c > 0 and T (x) = inf{t : x + Zt ≤ 0} where x > 0. The random variables Y
can be interpreted as losses for insurance companies. The process Z is called
the Cramer-Lundberg risk process.

� If c = 0 and if the support of the cumulative distribution function F is
included in [0,∞[, then the process Z is decreasing and

{T (x) ≥ t} = {Zt + x ≥ 0} =

{

x ≥
Nt∑

k=1

Yk

}

,
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hence,

P(T (x) ≥ t) = P

(

x ≥
Nt∑

k=1

Yk

)

=
∑

n

P(Nt = n)F ∗n(x) .

For a cumulative distribution function F with support in R,

P(T (x) ≥ t) =
∑

n

P(Nt = n)P(Y1 ≤ x, Y1 + Y2 ≤ x, . . . , Y1 + · · · + Yn ≤ x) .

� Assume now that c = 0, that the support of F is included in [0,∞[ and
that, for every u, E(euY1) < ∞. Setting ψ(u) = cu +

∫∞
0

(euy − 1)ν(dy), the
process (exp(uZt − tψ(u)), t ≥ 0) is a martingale (Corollary 8.6.3.3). Since
the process Z has no negative jumps, the level cannot be crossed with a
jump and therefore ZT (x) = −x. From Doob’s optional sampling theorem,
E(euZt∧T (x)−(t∧T (x))ψ(u)) = 1 and when t goes to infinity, one obtains

E(e−ux−T (x)ψ(u)1{T (x)<∞}) = 1 .

Hence one gets the Laplace transform of T (x)

E(e−θT (x)1{T (x)<∞}) = exψ
(θ) ,

where ψ� is the negative inverse of ψ (i.e., ψ�(θ) is the solution y of ψ(y) = θ
for θ > 0 which satisfies y < 0).

Example 8.6.5.1 (One-sided Exponential Law.)
If F (dy) = κe−κy1{y>0}dy, one obtains ψ(u) = cu− λu

κ+u , hence inverting ψ,

E(e−θT (x)1{T (x)<∞}) = exψ
(θ) ,

with

ψ�(θ) =
λ+ θ − κc−

√
(λ+ θ − κc)2 + 4θκc
2c

.

Exercise 8.6.5.2 Let Xt =
Nt∑

i=1

Yi and X∗
t =

N∗
t∑

i=1

Y ∗
i be two compound

Poisson processes, where N,N∗ are independent Poisson processes with
respective intensities λ and λ∗. We assume that the four random objects
N,N∗, Y, Y ∗ are independent and that the law of Y1 (resp. the law of Y ∗

1 )
has support in [0,∞[. Prove that e−ρ(Xt−X∗

t ) is a martingale for ρ a root of
λE(e−ρY1 − 1) + λ∗E(eρY

∗
1 − 1) = 0. �
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8.6.6 Change of Probability Measure

Two questions may be asked:
(a) Starting from a ν-compound Poisson process X under P, find some

changes of measures Q << P such that, under Q, X is still a compound
Poisson process.

(b) Given two compound Poisson processes, when are their distributions
locally equivalent?
We treat point (a) and leave (b) to the reader (see � Exercise 8.6.6.3).

Let X be a ν-compound Poisson process, ν̃ a positive finite measure on R

absolutely continuous w.r.t. ν, and λ̃ = ν̃(R) > 0. Let

Lt = exp
(
t(λ− λ̃) +

∑

s≤t

ln
(
dν̃

dν

)

(ΔXs)
)
. (8.6.2)

Proposition 8.6.3.4 proves that, if
∑Nt

k=1 Zk is a compound Poisson process,
then

exp

(
Nt∑

k=1

Zk + tλE(1 − eZ1)

)

is a martingale. It follows that

exp

(
Nt∑

k=1

f(Yk) + t

∫ ∞

−∞
(1 − ef(x))ν(dx)

)

(8.6.3)

is a martingale, hence for f = ln
(
deν
dν

)
, the process L is a martingale. Set

Q|Ft = LtP|Ft .

Proposition 8.6.6.1 Let X be a ν-compound Poisson process under P.
Define dQ|Ft = LtdP|Ft where L is given in (8.6.2). Then, the process X
is a ν̃-compound Poisson process under Q.

Proof: First we find the law of the random variable Xt =
∑Nt

k=1 Yk under Q.
Let f = ln

(
deν
dν

)
. Then

EQ(eiuXt) = EP

(

eiuXt exp

(

t(λ− λ̂) +
Nt∑

1

f(Yk)

))

=
∞∑

n=0

e−λt (λt)
n

n!
et(λ−

bλ)
(
EP(eiuY1+f(Y1))

)n

=
∞∑

n=0

e−λt (λt)
n

n!
et(λ−

bλ)

(

EP

(
dν̂

dν
(Y1) eiuY1

))n

=
∞∑

n=0

(λt)n

n!
e−tbλ

(
1
λ

∫
eiuydν̂(y)

)n

= exp
(

t

∫
(eiuy − 1) dν̂(y)

)

.
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It remains to check that X has independent and stationary increments under
Q. Using Proposition 8.6.3.5, one gets, for t > s,

EQ(eiu(Xt−Xs)|Fs) =
1
Ls

EP(Lte
iu(Xt−Xs)|Fs)

= exp
(

(t− s)
∫

(eiux − 1)ν̃(dx)
)

.

�

In that case, the change of measure changes the intensity (equivalently,
the law of Nt) and the law of the jumps, but the independence of the Y i

is preserved and N remains a Poisson process. It is possible to change the
measure using more general Radon-Nikodým densities, so that the process X
does not remain a compound Poisson process.

Exercise 8.6.6.2 Prove that the process L defined in (8.6.3) satisfies

dLt = Lt−

(∫

R

(ef(y) − 1)(μ(dt, dy) − ν(dy)dt)
)

.

�

Exercise 8.6.6.3 Prove that two compound Poisson processes with measures
ν and ν̃ are locally absolutely continuous, only if ν and ν̃ are equivalent.
Hint: Use E

((∑
s≤t f(ΔXs)

))
= tν(f). �

8.6.7 Price Process

We consider, as in Mordecki [658], the stochastic differential equation

dSt = (αSt− + β) dt+ (γSt− + δ)dXt (8.6.4)

where X is a ν-compound Poisson process.

Proposition 8.6.7.1 The solution of (8.6.4) is a Markov process with in-
finitesimal generator

L(f)(x) = (αx+ β)f ′(x) +
∫ +∞

−∞
[f(x+ γxy + δy) − f(x)] ν(dy) ,

for suitable f (in particular for f ∈ C1 with compact support).

Proof: We use Stieltjes integration to write, path by path,

f(St) − f(x) =
∫ t

0

f ′(Ss−)(αSs− + β) ds+
∑

0≤s≤t

Δ(f(Ss)) .
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Hence,

E(f(St)) − f(x) = E

(∫ t

0

f ′(Ss)(αSs + β)ds
)

+ E

⎛

⎝
∑

0≤s≤t

Δ(f(Ss))

⎞

⎠ .

From

E

⎛

⎝
∑

0≤s≤t

Δ(f(Ss))

⎞

⎠ = E

⎛

⎝
∑

0≤s≤t

f(Ss− +ΔSs) − f(Ss−)

⎞

⎠

= E

(∫ t

0

∫

R

dν(y) [f(Ss− + (γSs− + δ)y) − f(Ss−)]
)

,

we obtain the infinitesimal generator. �

Proposition 8.6.7.2 The process (e−rtSt, t ≥ 0) where S is a solution of
(8.6.4) is a local martingale if and only if

α+ γ

∫

R

yν(dy) = r, β + δ

∫

R

yν(dy) = 0 .

Proof: Left as an exercise. �

Let ν̃ be a positive finite measure which is absolutely continuous with
respect to ν and

Lt = exp

(

(λ− λ̃) +
∑

s≤t

ln
(
dν̃

dν

)

(ΔXs)

)

.

Let Q|Ft = LtP|Ft . Under Q,

dSt = (αSt− + β) dt+ (γSt− + δ)dXt

where X is a ν̃-compound Poisson process. The process (Ste−rt, t ≥ 0) is a
Q-martingale if and only if

α+ γ

∫

R

yν̃(dy) = r, β + δ

∫

R

yν̃(dy) = 0 .

Hence, there is an infinite number of e.m.m’s: one can change the intensity of
the Poisson process, or the law of the jumps, while preserving the compound
process setting. Of course, one can also change the probability so as to break
the independence assumptions.

8.6.8 Martingale Representation Theorem

The martingale representation theorem will be presented in the following
Section 8.8 on marked point processes.
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8.6.9 Option Pricing

The valuation of perpetual American options will be presented in �
Subsection 11.9.1 in the chapter on Lévy processes, using tools related to
Lévy processes. The reader can refer to the papers of Gerber and Shiu
[388, 389] and Gerber and Landry [386] for a direct approach. The case
of double-barrier options is presented in Sepp [781] for double exponential
jump diffusions, the case of lookback options is studied in Nahum [664]. Asian
options are studied in Bellamy [69].

8.7 Ruin Process

We present briefly some basic facts about the problem of ruin, where
compound Poisson processes play an essential rôle.

8.7.1 Ruin Probability

In the Cramer-Lundberg model the surplus process of an insurance

company is x + Zt, with Zt = ct − Xt, where Xt =
Nt∑

k=1

Yk is a compound

Poisson process. Here, c is assumed to be positive, the Yk are R
+-valued and

we denote by F the cumulative distribution function of Y1. Let T (x) be the
first time when the surplus process falls below 0:

T (x) = inf{t > 0 : x+ Zt ≤ 0} .

The probability of ruin is Φ(x) = P(T (x) <∞). Note that Φ(x) = 1 for x < 0.

Lemma 8.7.1.1 If ∞ > E(Y1) ≥ c
λ , then for every x, ruin occurs with

probability 1.

Proof: Denoting by Tk the jump times of the process N , and setting

Sn =
n∑

1

[Yk − c(Tk − Tk−1)] ,

the probability of ruin is

Φ(x) = P(inf
n

(−Sn) < −x) = P(sup
n
Sn > x) .

The strong law of large numbers implies

lim
n→∞

1
n
Sn = lim

n→∞

1
n

n∑

1

[Yk − c(Tk − Tk−1)] = E(Y1) −
c

λ
.

�
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8.7.2 Integral Equation

Let Ψ(x) = 1 − Φ(x) = P(T (x) = ∞) where T (x) = inf{t > 0 : x+ Zt ≤ 0}.
Obviously Ψ(x) = 0 for x < 0. From the Markov property, for x ≥ 0

Ψ(x) = E(Ψ(x+ cT1 − Y1))

where T1 is the first jump time of the Poisson process N . Thus

Ψ(x) =
∫ ∞

0

dtλe−λt
E(Ψ(x+ ct− Y1)) .

With the change of variable y = x+ ct we get

Ψ(x) = eλx/c
λ

c

∫ ∞

x

dye−λy/c
E(Ψ(y − Y1)) .

Differentiating w.r.t. x, we obtain

cΨ ′(x) = λΨ(x) − λE(Ψ(x− Y1)) = λΨ(x) − λ

∫ ∞

0

Ψ(x− y)dF (y)

= λΨ(x) − λ

∫ x

0

Ψ(x− y)dF (y) .

In the case where the Yk’s are exponential with parameter μ,

cΨ ′(x) = λΨ(x) − λ

∫ x

0

Ψ(x− y)μe−μydy .

Differentiating w.r.t. x and using the integration by parts formula leads to

cΨ ′′(x) = (λ− cμ)Ψ ′(x) .

� For β = 1
c (λ− cμ) < 0, the solution of this differential equation is

Ψ(x) = c1

∫ ∞

x

eβtdt+ c2

where c1 and c2 are two constants such that Ψ(∞) = 1 and λΨ(0) = cΨ ′(0).
Therefore c2 = 1, c1 = λ

c
λ−μc
cμ < 0 and Ψ(x) = 1 − λ

cμe
βx. It follows that

P(T (x) <∞) = λ
cμe

βx.
� If β > 0, then Ψ(x) = 0. Note that the condition β > 0 is equivalent to
E(Y1) ≥ c

λ .

8.7.3 An Example

Let Zt = ct − Xt where Xt =
Nt∑

k=1

Yk is a compound Poisson process. We

denote by F the cumulative distribution function of Y1 and we assume that
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F (0) = 0, i.e., that the random variable Y1 is R
+-valued. Yuen et al. [871]

assume that the insurer is allowed to invest in a portfolio, with stochastic

return Rt = rt+ σWt +X∗
t where W is a Brownian motion and X∗

t =
N∗

t∑

k=1

Y ∗
k

is a compound Poisson process. We assume that (Yk, Y ∗
k , k ≥ 1, N,N∗,W ) are

independent. We denote by F ∗ the cumulative distribution function of Y ∗
1 .

The risk process S associated with this model is defined as the solution
St(x) of the stochastic differential equation

St = x+ Zt +
∫ t

0

Ss−dRs , (8.7.1)

i.e.,

St(x) = Ut

(

x+
∫ t

0

U−1
s− dZs

)

where Ut = ertE(σW )t
∏N∗

t

k=1(1 + Y ∗
k ). Note that the process S jumps at the

time when the processes N or N∗ jump and that

ΔSt = ΔZt + St−ΔRt .

Let T (x) = inf{t : St(x) < 0} and Ψ(x) = P(T (x) = ∞) = P(inf
t
St(x) ≥ 0),

the survival probability.

Proposition 8.7.3.1 For x ≥ 0, the function Ψ is the solution of the implicit
equation

Ψ(x) =
∫ ∞

0

∫ ∞

0

γ

2y2+α+a
pαu(1, y)(D(y, u) +D∗(y, u)) dydu

where

pαu(z, y) =
(y
z

)α y
u
e−(z2+y2)/(2u)Iα

(zy
u

)
,

D∗(y, u) =
λ∗

λ+ λ∗

∫ ∞

−1

Ψ((1 + z)y−2(x+ 4cσ−2u)) dF ∗(z),

D(y, u) =
λ

λ+ λ∗

∫ y−2(x+4cσ−2u)

0

Ψ(y−2(x+ 4cσ−2u) − z) dF (z),

a = σ−2(2r − σ2), γ =
8(λ+ λ∗)

σ2
, α = (a2 + γ2)1/2 .

Proof: Let τ (resp. τ∗) be the first time when the process N (resp. N∗)
jumps, T = τ ∧ τ∗ and m = inft≥0 St. Note that, from the independence
between N and N∗, we have P(τ = τ∗) = 0. On the set {t < T}, one has
St = ertE(σW )t

(
x+ c

∫ t
0
e−rs[E(σW )s]−1ds

)
. We denote by V the process
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Vt = ertE(σW )t(x+ c
∫ t
0
e−rs[E(σW )s]−1ds). The optional stopping theorem

applied to the bounded martingale

Mt = E(1m≥0|Ft)

and the strong Markov property lead to

Ψ(x) = P(m ≥ 0) = M0 = E(MT ) = E(Ψ(ST )) .

Hence,

Ψ(x) = E(Ψ(Sτ )1τ<τ∗) + E(Ψ(Sτ∗)1τ∗<τ )
= E(Ψ(Vτ − Y1)1τ<τ∗) + E(Ψ(Vτ∗(1 + Y ∗

1 ))1τ∗<τ )

=
∫ ∞

0

dtλe−λt
E(Ψ(Vt − Y1)) P(t < τ∗)

+
∫ ∞

0

dtλ∗e−λ∗t
E(Ψ(Vt(1 + Y ∗

1 ))) P(t < τ)

=
∫ ∞

0

e−(λ+λ∗)t (λE[Ψ(Vt − Y1)] + λ∗E[Ψ(Vt(1 + Y ∗
1 ))]) dt .

Employing the change of variable t = 4σ−2s,

Ψ(x) =
4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)s (λΥ (s) + λ∗Υ ∗(s)) ds ,

where
Υ (s) = E[Ψ(Xs − Y1)], Υ ∗(s) = E[Ψ(Zs(1 + Y ∗

1 ))]

and

Xs = e2(as+Bs)

(

x+
4c
σ2

∫ s

0

e−2(at+Bt)dt

)

, Bs =
σ

2
W4σ−2s ,

where a = 2r
σ2 − 1. Hence, using the symmetry of BM,

Υ (s) = E

[

Ψ

(

e−2(Bs−as)

(

x+
4c
σ2

∫ s

0

e2(Bt−at)dt

)

− Y1

)]

.

Therefore

4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)sλΥ (s)ds

=
λ

λ+ λ∗
E

[

Ψ

(

e−2(BΘ−aΘ)

(

x+
4c
σ2

∫ Θ

0

e2(Bt−at)dt

)

− Y1

)]

where Θ is an exponential random variable, independent of B, with parameter
4(λ+ λ∗)σ−2. The law of the pair
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(

e−2(BΘ−aΘ),

∫ Θ

0

e2(Bt−at)dt

)

was presented in Corollary 6.6.2.2. It follows that

4
σ2

∫ ∞

0

e−4σ−2(λ+λ∗)sλΥ (s)ds =
∫ ∞

0

∫ ∞

0

γ

2y2+α+a
pαu(1, y)D(y, u)dydu .

The study of the second term can be carried out by the same method. �

Comment 8.7.3.2 See the main papers of Klüppelberg [526], Paulsen [700],
Paulsen and Gjessing [701], Yuen et al [871], the books of Asmussen [23],
Embrechts et al. [322], Mikosch [650] and Mel’nikov [639] and the thesis of
Loisel [602]. Many applications to ruin theory can be found in Gerber and his
co-authors, e.g., in [387].

8.8 Marked Point Processes

We now generalize compound Poisson processes, introducing briefly a class of
processes which are no longer Lévy processes: we introduce a spatial dimension
for the size of jumps which are no longer i.i.d. random variables; moreover,
the time intervals between two consecutive jumps are no longer independent.
Let (E, E) be a measurable space and (Ω,F ,P) a probability space.

8.8.1 Random Measure

Definition 8.8.1.1 A random measure ϑ on the space R
+ ×E is a family

of positive measures (ϑ(ω; dt, dx);ω ∈ Ω) defined on R
+ × E such that, for

[0, t]×A ∈ B⊗E, the map ω → ϑ(ω; [0, t], A) is F-measurable, and satisfying
ϑ(ω; {0} × E) = 0.

8.8.2 Definition

Let (Zn) be a sequence of random variables taking values in the measurable
space (E, E), and (Tn) an increasing sequence of positive random variables,
with - to avoid explosion - limn Tn = +∞. We define the marked point
process N = {(Tn, Zn)} by: for each Borel set A ⊂ E,

Nt(A) =
∑

n

1{Tn≤t}1{Zn∈A} .

We associate with N a random measure μ by

μ(·; [0, t], A) = Nt(A) .
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The natural filtration of N is

FN
t = σ(Ns(A), s ≤ t, A ∈ E) .

Let H be a map

(t, ω, z) ∈ (R+, Ω,E) → H(t, ω, z) ∈ R .

The map H is predictable if it is P ⊗ E measurable. The random counting
measure μ(ω; ds, dz) acts on the set of predictable processes H as

(H�μ)t =
∫

]0,t]

∫

E

H(s, z)μ(ds, dz) =
∑

n

H(Tn, Zn)1{Tn≤t}

=
Nt(E)∑

n=1

H(Tn, Zn) ,

where we have dropped ω in the notation.

Definition 8.8.2.1 The compensator of μ is the (up to a null set) unique
random measure ν such that, for every predictable process H,

(i) the process H�ν is predictable,
(ii) if moreover, the process |H|�μ is increasing and locally integrable, the

process (H�μ−H�ν) is a local martingale.

The existence of a compensator is established in Brémaud and Jacod [125],
Jacod and Shiryaev [471] and Kallenberg [505].

We now assume that E = R
d. The compensator admits an explicit repre-

sentation: let Gn(dt, dz) be a regular version of the conditional distribution
of (Tn+1, Zn+1) with respect to FN

Tn
= σ{((T1, Z1), . . . (Tn, Zn)}. Then,

ν(dt, dz) =
∑

n

1{Tn<t≤Tn+1}
Gn(dt, dz)

Gn([t,∞[×Rd)
. (8.8.1)

A proof can be found in Prigent [725], Chapter 1 Proposition 1.1.30.

Comment 8.8.2.2 See Brémaud and Jacod [125], Brémaud [124], Prigent
[725], Jacod [467] and Jacod and Shiryaev [471] for more details on marked
point processes.

Warning 8.8.2.3 The notation in various papers in the literature can be
very different from the above: authors may use N or N for various quantities.
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8.8.3 An Integration Formula

Let dXt = βtdt+
∫
E
γ(t, z)μ(dt, dz), where β and γ are predictable and let F

be a C1,1 function. Then

dF (t,Xt) = ∂tFdt+ βt ∂xFdt

+
∫

E

(F (t,Xt− + γ(t, z)) − F (t,Xt−))μ(dt, dz)

or, in an integrated form

F (t,Xt) = F (0, X0) +
∫ t

0

∂tF (s,Xs)ds+
∫ t

0

βs ∂xF (s,Xs)ds

+
Nt(E)∑

n=1

[F (Tn, XTn) − F (Tn, XT−
n

)] .

8.8.4 Marked Point Processes with Intensity and Associated
Martingales

In what follows, we assume that, for every A ∈ E , the process Nt(A) admits
the F-predictable intensity λt(A), i.e., there exists a predictable process
(λt(A), t ≥ 0) such that

Nt(A) −
∫ t

0

λs(A)ds

is a martingale. (The most common form of intensity is λt(A) = αtmt(A)
where αt is a positive predictable process and mt a deterministic probability
measure on (E, E). In that case, ν(dt, dz) = αtmt(A)dt. We shall say that the
marked point process admits (αt,mt(dz)) as P-local characteristics.)

If Xt :=
∑Nt(E)

n=1 H(Tn, Zn) where H is an F-predictable process that
satisfies

E

(∫

]0,t]

∫

E

|H(s, z)|λs(dz)ds
)

<∞

the process

Xt −
∫ t

0

∫

E

H(s, z)λs(dz)ds =
∫

]0,t]

∫

E

H(s, z) [μ(ds, dz) − λs(dz)ds]

is a martingale and in particular

E

(∫

]0,t]

∫

E

H(s, z)μ(ds, dz)

)

= E

(∫

]0,t]

∫

E

H(s, z)λs(dz)ds

)

.
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8.8.5 Girsanov’s Theorem

Let μ be the random measure of a marked point process with intensity of
the form λt(A) = αtmt(A) where mt is, as above, a deterministic probability
measure on (E, E). Let (ψt, h(t, z)) be two predictable positive processes such
that ∫ t

0

ψsαsds <∞,

∫

E

h(t, z)mt(dz) = 1 .

Let L be the local martingale solution of

dLt = Lt−

∫

E

(ψtht(z) − 1)(μ(dt, dz) − αtmt(dz)dt) .

If E(Lt) = 1, setting Q|Ft = LtP|Ft , the marked point process has the Q-local
characteristics (ψtαt, h(t, z)mt(dz)).

Exercise 8.8.5.1 Prove Proposition 8.6.6.1 using the above result. �

8.8.6 Predictable Representation Theorem

Let (Ω,F ,F,P) be a probability space where F is the filtration generated by
the marked point process N. Then, any (P,F)-square integrable martingale
M admits the representation

Mt = M0 +
∫ t

0

∫

E

H(s, x)(μ(ds, dx) − λs(dx)ds)

where H is a predictable process such that

E

(∫ t

0

∫

E

|H(s, x)|2λs(dx)ds
)

<∞ .

See Brémaud [124] for a proof. More generally

Proposition 8.8.6.1 Let W be a Brownian motion M, N a marked point
process and Ft = σ(Ws,FN

s ; s ≤ t) completed.
Let μ̃(ds, dz) = μ(ds, dx) − λs(dx)ds. Then, any (P,F)-local martingale

has the representation

Mt = M0 +
∫ t

0

ϕsdWs +
∫ t

0

∫

E

H(s, z)μ̃(ds, dz) (8.8.2)

where ϕ is a predictable process such that
∫ t
0
ϕ2
sds <∞ and H is a predictable

process such that
∫ t
0

∫
E
|H(s, x)|λs(dx)ds < ∞. If M is a square integrable

martingale, each term on the right-hand side of the representation (8.8.2) is
square integrable, and
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E

((∫ t

0

ϕsdWs

)2
)

= E

(∫ t

0

ϕ2
sds

)

E

((∫ t

0

∫

E

H(s, z)μ̃(ds, dz)
)2
)

= E

(∫ t

0

∫

E

H2(s, z)λs(dz)ds
)

Proof: We refer to Kunita and Watanabe [550], Kunita [549], and to Chapter
III in the book of Jacod and Shiryaev [471]. �

Comment 8.8.6.2 Björk et al. [103] and Prigent [725, 724] gave the first
applications to finance of Marked point processes, which are now studied by
many authors, especially in a BSDE framework.

Exercise 8.8.6.3 Check that the process

St = exp
(∫ t

0

(

βs −
1
2
σ2
s

)

ds+
∫ t

0

σsdWs

) ∏

n,Tn≤t

(1 + γ(Tn, Zn))

is a solution of

dSt = St−

(

βtdt+ σtdWt +
∫

E

γ(t, y)μ(dt, dy)
)

,

where μ is the random measure associated with the marked point process
N = {(Tn, Zn)}. �

8.9 Poisson Point Processes

We end this chapter with a brief section on Poisson point processes, which
are of major importance in the study of Brownian excursions.

8.9.1 Poisson Measures

Let (E, E) be a measurable space. A random measure μ on (E, E) is a Poisson
measure with intensity ν, where ν is a σ-finite measure on (E, E), if

(i) for every set B ∈ E with ν(B) < ∞, μ(B) follows a Poisson distribution
with parameter ν(B), and

(ii) for disjoint sets Bi, i ≤ n, the variables μ(Bi), i ≤ n are independent.

Example 8.9.1.1 Let π be a probability measure, (Yk, k ∈ N) i.i.d. random
variables with law π and N a Poisson variable with mean m, independent of

the Yk’s. The random measure
N∑

k=1

δYk
is a Poisson measure with intensity

ν = mπ. Here, δy is the Dirac measure at point y.
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8.9.2 Point Processes

Let (E, E) be a measurable space and δ an additional point. We introduce
Eδ = E ∪ δ, Eδ = σ(E , {δ}).

Definition 8.9.2.1 Let e be a stochastic process defined on a probability space
(Ω,F ,P), taking values in (Eδ, Eδ). The process e is a point process if:

(i) the map (t, ω) → et(ω) is B(]0,∞[) ⊗F-measurable,
(ii) the set Dω = {t : et(ω) = δ} is a.s. countable.

For every measurable set B of ]0,∞[×E, we set

NB(ω) :=
∑

s≥0

1B(s, es(ω)) .

In particular, if B =]0, t] × Γ , we write

NΓ
t = NB = Card{s ≤ t : e(s) ∈ Γ} .

Let the space (Ω,P) be endowed with a filtration F. A point process is
F-adapted if, for any Γ ∈ E , the process NΓ is F-adapted. For any Γ ∈ Eδ,
we define a point process eΓ by

eΓt (ω) = et(ω) if et(ω) ∈ Γ
eΓt (ω) = δ otherwise

Definition 8.9.2.2 A point process e is discrete if NE
t <∞ a.s. for every t.

It is said to be σ-discrete if there is a sequence En of sets with E = ∪En such
that each eEn is discrete.

8.9.3 Poisson Point Processes

Definition 8.9.3.1 An F-Poisson point process e is a σ-discrete point
process such that:

(i) the process e is F-adapted,
(ii) for any s and t and any Γ ∈ E, NΓ

s+t − NΓ
t is independent from

Ft and distributed as NΓ
s .

In particular, for any disjoint family (Γi, i = 1, . . . , d), the d-dimensional
process (NΓi

t , i = 1, · · · , d) is a Poisson process. Moreover, if NΓ is finite
almost surely, then E(NΓ

t ) < ∞ and the quantity 1
tE(NΓ

t ) does not depend
on t.

Definition 8.9.3.2 The σ-finite measure on E defined by

n(Γ ) =
1
t
E(NΓ

t )

is called the characteristic measure of e.
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If n(Γ ) <∞, the process NΓ
t − tn(Γ ) is an F-martingale.

Proposition 8.9.3.3 (Compensation Formula.) Let H be a predictable
positive process (i.e., measurable with respect to P ⊗Eδ) vanishing at δ. Then

E

[
∑

s≥0

H(s, ω, es(ω))

]

= E

[∫ ∞

0

ds

∫

E

H(s, ω, u)n(du)
]

.

If, for any t, E

[∫ t
0
ds
∫
E
H(s, ω, u)n(du)

]
<∞, the compensated process

∑

s≤t

H(s, ω, es(ω)) −
∫ t

0

ds

∫

E

H(s, ω, u)n(du)

is a martingale.

Proof: By the Monotone Class Theorem, it is enough to prove this formula
for H(s, ω, u) = K(s, ω)1Γ (u). In that case, NΓ

t − tn(Γ ) is an F-martingale.
�

Proposition 8.9.3.4 (Exponential Formula.) If f is a B ⊗ E-measurable
function such that

∫ t
0
ds
∫
E
|f(s, u)|n(du) <∞ for every t, then,

E

⎡

⎣exp

⎛

⎝i
∑

0<s≤t

f(s, es)

⎞

⎠

⎤

⎦ = exp
(∫ t

0

ds

∫

E

(eif(s,u) − 1)n(du)
)

.

Moreover, if f ≥ 0,

E

⎡

⎣exp

⎛

⎝−
∑

0<s≤t

f(s, es)

⎞

⎠

⎤

⎦ = exp
(

−
∫ t

0

ds

∫

E

(1 − e−f(s,u))n(du)
)

.

8.9.4 The Itô Measure of Brownian Excursions

Let (Bt, t ≥ 0) be a Brownian motion and (τs) be the inverse of the local
time (Lt) at level 0. The set ∪s≥0]τs−(ω), τs(ω)[ is (almost surely) equal to
the complement of the zeros set {u : Bu(ω) = 0}. The excursion process
(es, s ≥ 0) is defined by

es(ω)(t) = 1{t ≤ τs(ω) − τs−(ω)}B(τs−(ω) + t)(ω) , t ≥ 0.

This is a path-valued process e : R
+ ×Ω → Ω∗, where

Ω∗ = {ε : R
+ → R : ∃V (ε) <∞, with ε(V (ε) + t) = 0,∀t ≥ 0

ε(u) = 0,∀ 0 < u < V (ε), ε(0) = 0, ε is continuous } .
Hence, V (ε) is the lifetime of ε.
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The starting point of Itô’s excursion theory is that the excursion process is
a Poisson Point Process; its characteristic measure n, called Itô’s measure,
evaluated on the set Γ , i.e., n(Γ ), is the intensity of the Poisson process

NΓ
t : =

∑

s≤t

1es∈Γ .

The quantity n(Γ ) is the positive real γ such that NΓ
t − tγ is an (Fτt)-

martingale.
Here, are some very useful descriptions of n:

• Itô: Conditionally on V = v, the process

(|εu|, u ≤ v)

is a BES3 bridge of length v. The law of the lifetime V under n is

nV (dv) =
dv√
2πv3

.

Thanks to the symmetry of Brownian motion, a full description of n is

n(dε) =
∫ ∞

0

nV (dv)
1
2
(Πv

+ +Πv
−) (dε)

where Πv
+ (resp. Πv

−) is the law of the standard Bessel Bridge (resp. the
law of its negative) with dimension 3 and length v.

• Williams: Let M(ε) = supu≤v |εu|. Then, conditionally on M = m, the
two processes (εu, u ≤ Tm) and (εV−u, u ≤ V − Tm) are two independent
BES3 processes considered up to their first hitting time of m, and

nM (dm) = n(M(ε) ∈ dm) =
dm

m2
.

We leave to the reader the task of writing a disintegration formula for n
with respect to nM .

Comment 8.9.4.1 See Jeanblanc et al. [483] for applications to decomposi-
tion of Brownian paths and Feynman-Kac formula. At the moment, there are
very few applications to finance of excursion theory. One can cite Gauthier
[376] for a study of Parisian options, and Chesney et al. [173] for Asian-
Parisian options.
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General Processes: Mathematical Facts

In this chapter, we consider studies involving càdlàg processes. We pay par-
ticular attention to semi-martingales with respect to a given filtration; these
processes will always be taken with càdlàg paths. We present the definition
of stochastic integrals with respect to a square integrable martingale, and we
extend the definition to stochastic integrals with respect to a local martingale.
Then, we introduce semi-martingales, quadratic covariation processes for
semi-martingales and some general versions of Itô’s formula and Girsanov’s
theorem. We give necessary and sufficient conditions for the existence of an
equivalent martingale measure. We end the chapter with a brief survey of
valuation in an incomplete market.

The reader may refer to the lectures of Itô [464], Meyer [647] and the
books of Kallenberg [505] and Protter [727]. The general theory of stochastic
processes is presented in Dellacherie [240], Dellacherie and Meyer [242, 244],
Dellacherie, Maisonneuve and Meyer [241] and He et al. [427]. More advanced
results are given in Jacod and Shiryaev [471] and Bichteler [88]. The survey
papers of Kunita [549] and Runggaldier [750] are excellent introductions to
this subject with finance in view. Applications to finance can be found in
Prigent [725] and Shiryaev [791].

We assume that a filtered probability space (Ω,F ,F,P) is given, with
some filtration F, satisfying the usual conditions. We recall that the notation
X

mart= Y means that X − Y is a local martingale.

9.1 Some Basic Facts about càdlàg Processes

9.1.1 An Illustrative Lemma

To justify why càdlàg processes are considered throughout the development
of semi-martingales, we note the very elementary lemma:

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 9,
c© Springer-Verlag London Limited 2009

509

http://dx.doi.org/10.1007/978-1-84628-737-4_9


510 9 General Processes: Mathematical Facts

Lemma 9.1.1.1 let X be a càd process, such that Xq = 0, P-a.s., ∀q ∈ Q+.
Then, the process (Xt, t ≥ 0) is indistinguishable from 0.

In contrast, here is a non-càdlàg process, with restriction to Q+ equal to 0,
which is not indistinguishable from 0: take Xt = Nt − Nt−, where N is a
Poisson process.

9.1.2 Finite Variation Processes, Pure Jump Processes

When a process X is càdlàg, (i.e., continuous on the right and with limits
on the left), we denote by Xt− the left limit of Xs when s → t, s < t, as
previously. The jump of X at time t is denoted by ΔXt = Xt − Xt− , and
we shall call (ΔXt, t ≥ 0) the jump process of X. We recall (see Definition
1.1.10.2) that an increasing process A is a càdlàg process (At, t ≥ 0) equal to
0 at time 0, such that As ≤ At for s ≤ t. If A is an increasing process, there
exists a continuous increasing process Ac and a purely discontinuous process
Ad (i.e., Ad is equal to the sum of its jumps: Ad

t =
∑

0<s≤tΔAs) such that
A = Ac +Ad. This decomposition is obviously unique.

If U is a càdlàg function, the set {t : |U(t) − U(t−)| > a} is discrete for
each a > 0 and the set {t : U(t) = U(t−)} is at most countable. Obviously,
the same property holds (almost surely) for càdlàg processes.

If moreover the càdlàg process U has finite variation on finite intervals
(see Definition 1.1.10.8), then for every t > 0 the series Ud

t =
∑

0<s≤tΔUs is
absolutely convergent, Ud is càdlàg, it has finite variation on finite intervals
and U c = U − Ud is continuous.

Definition 9.1.2.1 If U c = 0, that is Ut =
∑

0<s≤tΔUs, the process U
is said to be a pure jump process. In general a finite variation U admits a
unique decomposition as Ut = U c

t +
∑

s≤tΔUs with U c continuous with finite
variation.

Let U be a càdlàg process with integrable variation. The Stieltjes
integral

∫∞
0
θsdUs is defined for elementary processes θ, i.e., processes of

the form θs = ϑa1]a,b](s) with ϑa a r.v., by Uθ
t : =

∫∞
0
θsdUs = ϑa (Ub − Ua)

and for θ such that
∫∞
0

|θs||dUs| < ∞ by linearity and passage to the limit.
(Hence, the integral is defined path-by-path.) Then, one defines the integral

Uθ
t =

∫ t

0

θsdUs =
∫

]0,t]

θsdUs =
∫ ∞

0

1{]0,t]}θsdUs .

Note that the jump processes of Uθ and U are related by:

ΔUθ
t = θtΔUt .
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If U and V are two finite variation processes, the Stieltjes’ integration by
parts formula can be written as follows:

UtVt = U0V0 +
∫

]0,t]

VsdUs +
∫

]0,t]

Us−dVs (9.1.1)

= U0V0 +
∫

]0,t]

Vs−dUs +
∫

]0,t]

Us−dVs +
∑

s≤t

ΔUsΔVs .

As a partial check, one can verify that the jump process of the left-hand side,
i.e., UtVt − Ut−Vt− , is equal to the jump process of the right-hand side, i.e.,
Vt−ΔUt + Ut−ΔVt +ΔUtΔVt.

We shall often write
∫ t

0

VsdUs for
∫

]0,t]

VsdUs.

Proposition 9.1.2.2 Let F be a C2 function and U a càdlàg process with
finite variation. Then, the process F (U) is also càdlàg with finite variation
and

F (Ut) = F (U0) +
∫ t

0

F ′(Us−)dUs +
∑

s≤t

[F (Us) − F (Us−) − F ′(Us−)ΔUs]

= F (U0) +
∫ t

0

F ′(Us−)dU c
s +
∑

s≤t

[F (Us) − F (Us−)] (9.1.2)

= F (U0) +
∫ t

0

F ′(Us)dU c
s +
∑

s≤t

[F (Us) − F (Us−)] ,

where U = U c + Ud is the decomposition of U into its continuous and
discontinuous parts.

Proof: The result is true for F (x) = x and if the result holds for F , by
integration by parts, it holds for xF . Hence, the result is true for polynomials
and for C1 functions by Weierstrass approximation. The C2 assumption on F
(a little bit too strong) is needed to ensure the convergence of the series. �

As for continuous path semi-martingales, we introduce, besides the
ordinary exponential, the notion of the stochastic exponential in the form
of the solution to a linear stochastic equation.

Lemma 9.1.2.3 Let U be a càdlàg process with finite variation. The unique
solution of

dYt = Yt−dUt, Y0 = y

is the stochastic exponential of U (the Doléans-Dade exponential of U) equal
to
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Yt = y exp(U c
t − U c

0 )
∏

s≤t

(1 +ΔUs) (9.1.3)

= y exp(Ut − U0)
∏

s≤t

(1 +ΔUs)e−ΔUs . (9.1.4)

Proof: Applying the integration by parts formula to the right-hand side
of (9.1.3) shows that it is a solution to the equation dYt = Yt−dUt. As for
the uniqueness, if Y i, i = 1, 2 are two solutions, then, setting Z = Y 1 − Y 2

we get Zt =
∫ t
0
Zs−dUs. Let us denote by M the running maximum of Z,

i.e.,Mt := sups≤t |Zs|, then, if Vt is the variation process of Ut

|Zt| ≤MtVt

which implies that

|Zt| ≤Mt

∫ t

0

Vs−dVs = Mt
V 2
t

2
.

Iterating, we obtain |Zt| ≤ Mt
V n

t

n! and the uniqueness follows by letting
n→ ∞. �

We will generalize later (see, e.g., � Exercise 9.4.3.5 and � Proposition
10.2.4.2) the stochastic exponential to semi-martingales.

Comment 9.1.2.4 At this point, for this class of processes, the second
formula (9.1.4) may not be so useful, but later on, in � Subsection 9.4.3,
when U is a semi-martingale, we shall need this expression.

9.1.3 Some σ-algebras

Definition 9.1.3.1 Let F be a given filtration (called the reference filtration).

• The optional σ-algebra O is the σ-algebra on R
+×Ω generated by càdlàg

F-adapted processes (considered as mappings on R
+ ×Ω).

• The predictable σ-algebra P is generated by the F-adapted càg (or
continuous) processes. The inclusion P ⊂ O holds.

These two σ-algebras P and O are equal if all F-martingales are continuous,
in particular if F is a strong (or even weak) Brownian filtration. In general

O = P ∨ σ(ΔM,M describing the set of martingales) .

The optional and predictable σ-algebras were defined with the help of stopping
times in Subsection 1.2.3.

A process is said to be predictable (resp. optional) if it is measurable
with respect to the predictable (resp. optional) σ-field. If X is a predictable
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(resp. optional) process and T a stopping time, then the stopped process XT

is also predictable (resp. optional). Every process which is càg and adapted
is predictable, every process which is càd and adapted is optional. If X is a
càdlàg adapted process, then (Xt− , t ≥ 0) is a predictable process.

A stopping time T is predictable (see Definition 1.2.3.1) if and only if
the process (1{t<T} = 1 − 1{T≤t}, t ≥ 0) is predictable, that is if and only if
the stochastic interval [[0, T [[= {(ω, t) : 0 ≤ t < T (ω)} is predictable. Note
that O = P if and only if any stopping time is predictable (this is the case if
the reference filtration is a weakly Brownian filtration; see Subsection 5.8.1).
A stopping time T is totally inaccessible if P(T = S < ∞) = 0 for all
predictable stopping times S. See Dellacherie [240], Dellacherie and Meyer
[242] and Elliott [313] for related results.

Often, when dealing with point processes, there is a space of marks (E, E)
besides the filtered probability space. In such a setting, the following definition
makes sense: a predictable function is a map H : Ω×R

+ ×E → R which
is P × E measurable.

9.2 Stochastic Integration for Square Integrable
Martingales

We present, in this section the notion of stochastic integration with respect to
a square integrable martingale. We follow closely the presentation of Meyer
[647]. We shall extend this notion to local martingales and semi-martingales
in the next section.

9.2.1 Square Integrable Martingales

We recall that H2 is the set of square integrable martingales, i.e.,
martingales such that supt<∞E(M2

t ) < ∞ (see Subsection 1.2.2). If M is
a square integrable martingale, then Mτ = E(M∞|Fτ ) for any stopping time
τ where M∞ = limt→∞Mt and ‖M‖2

2 : = E(M2
∞) = supt<∞E(M2

t ). Let
M∗

∞ = supt |Mt|. Then, (Doob’s inequality)

‖M∗
∞‖2

2 ≤ 4‖M∞‖2
2 .

Definition 9.2.1.1 Two martingales in H2 are orthogonal if their product
is a martingale.

Definition 9.2.1.2 We denote by H2,c the space of continuous square
integrable martingales and by H2,d the set of square integrable martingales
orthogonal to H2,c. A martingale in H2,d is called a purely discontinuous
martingale.
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Warning 9.2.1.3 We stress that a purely discontinuous martingale is not
necessarily of bounded variation (see Azéma’s martingale in Example 9.3.3.6).

Very often, a martingale in H2,d is said to be a compensated sum of
jumps. We explain here the meaning of this definition. If M ∈ H2,d there
exists a sequence of stopping times (Tn, n ≥ 1) such that

{(t, ω) : ΔMt(ω) = 0} ⊂ ∪n{(t, ω) : t = Tn(ω)} ,

i.e., the sequence (Tn, n ≥ 1) exhausts the set of jump times of M . Define
An
t = ΔMTn1{Tn≤t} and letMn = An−An,(p) be the compensated martingale

associated with An, where An,(p) is the dual predictable projection of An

(defined in Section 5.2)). It can be proved that, as k → ∞,
∑k

n=1M
n
t

converges in L2 to Mt.

Example 9.2.1.4 If M is the martingale associated with a Poisson process,
i.e., Mt = Nt − λt, then M is purely discontinuous and An

t = 1{Tn≤t}. It
follows that

∑k
n=1M

n
t = Nt∧Tk

− λ(t ∧ Tk).

Theorem 9.2.1.5 Any martingale M in H2,d is orthogonal to any square
integrable martingale N with no jumps in common with M . For any square
integrable martingale M ,

E

(
∑

s≤t

(ΔMs)2
)

≤ E(M2
t ) .

For a purely discontinuous martingale E(
∑

s≤t(ΔMs)2) = E(M2
t ).

Proof: We refer the reader to Meyer [647]. �

Comment 9.2.1.6 Note that the sum
∑

s≤t(ΔMs)2 is convergent and that,
in general, the sum

∑
s≤t |ΔMs| is not convergent (see � Example of Azéma’s

martingale in Example 9.3.3.6).

Proposition 9.2.1.7 (a) LetM ∈ H2,d. Then the processM2
t −
∑

s≤t(ΔMs)2

is a martingale.

(b) Let M ∈ H2,d and N ∈ H2. Then, the process MtNt−
∑

s≤tΔMsΔNs

is a martingale and E(M∞N∞) = E(
∑

sΔMsΔNs).

Proof: The proof of a) is an application of Proposition 1.2.3.7. First, if τ
is a stopping time, the stopped process Mτ is a martingale, hence E(M2

τ −∑
s≤τ (ΔMs)2) = 0. This implies that the process M2

t −
∑

s≤t(ΔMs)2 is a
martingale. �
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Definition 9.2.1.8 For any martingale M ∈ H2, we denote by M c its
projection on H2,c and by Md its projection on H2,d. Then, M = M c +Md

is the decomposition of any martingale in H2 into its continuous and purely
discontinuous parts.

The process M2 is a submartingale bounded by (M∗)2, and the process
E(M2

∞|Ft) −M2
t is a supermartingale of class (D), hence the Doob-Meyer

supermartingale decomposition Theorem 1.2.1.6 applies: there exists a unique
predictable increasing process 〈M〉 (called the predictable bracket) such
that M2 − 〈M〉 is a martingale equal to 0 at time 0.

The predictable bracket satisfies

〈M〉t = P − lim
∑

i

E((M
t
(n)
i

−M
t
(n)
i−1

)2|F
t
(n)
i−1

)

where 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
p(n) = t and supi=1,...,p(n)(t

(n)
i − t

(n)
i−1) goes to

0. Furthermore, if M is continuous, then

〈M〉t = P − lim
∑

i

(M
t
(n)
i

−M
t
(n)
i−1

)2 .

Definition 9.2.1.9 Let M c denote the continuous part of M . We define the
quadratic variation process of M as

[M ]t = 〈M c〉t +
∑

0≤s≤t

(ΔMs)2 .

For M ∈ H2, the process [M ] is an increasing integrable process, and the
process M2 − [M ] is a martingale. Indeed, M = M c +Md, hence

M2
t − [M ]t = (M c

t )2 − 〈M c〉t + (Md
t )2 −

∑

0≤s≤t

(ΔMs)2 + 2M c
tM

d
t ,

is the sum of the 3 martingales

(M c
t )2 − 〈M c〉t, (Md

t )2 −
∑

0≤s≤t

(ΔMs)2, 2M c
tM

d
t .

By polarisation, one defines for M and N in H2, the quadratic covariation
process:

〈M,N〉 =
1
2

(〈M +N〉 − 〈M〉 − 〈N〉)

which is the unique predictable process with integrable variation such that
MN − 〈M,N〉 is a martingale and

[M,N ] =
1
2

([M +N ] − [M ] − [N ])

which is the unique optional process with integrable variation such that the
process MN − [M,N ] is a martingale and Δ[M,N ]t = ΔMtΔNt.

The processes MN − [M,N ] and [M,N ] − 〈M,N〉 are martingales, and
the martingales M and N are orthogonal if and only if 〈M,N〉 is null.
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Kunita-Watanabe Inequalities

Let H and K be two measurable processes on Ω × R
+. Then

∫ ∞

0

|Hs||Ks| |d〈M,N〉s| ≤
(∫ ∞

0

H2
sd〈M〉s

)1/2 (∫ ∞

0

K2
sd〈N〉s

)1/2

∫ ∞

0

|Hs||Ks| |d[M,Ns]| ≤
(∫ ∞

0

H2
sd[M ]s

)1/2 (∫ ∞

0

K2
sd[N ]s

)1/2

.

The idea of the proof is to establish the result for elementary processes, using
the Cauchy-Schwarz inequality, and to pass to the limit using the monotone
class theorem.

9.2.2 Stochastic Integral

Now let H be a predictable elementary bounded process, i.e., a process of the
form

Ht = H0 +
n∑

i=1

hi1]ti,ti+1](t)

for a finite sequence of real numbers t0 = 0 < t1 < · · · < tn < tn+1 = ∞,
where the random variables hi ∈ Fti are bounded. We call Λ the vector space
of these elementary processes. We define, for H ∈ Λ:

∫ ∞

0

HsdMs = H0M0 +
n∑

i=1

hi(Mti+1 −Mti)

and (H�M)t : =
∫ t
0
HsdMs =

∫∞
0

1[0,t](s)HsdMs. It is easy to check that the
process H�M is a square integrable martingale and that

E((H�M)2∞) = E

(∫

[0,∞[

H2
sd〈M〉s

)

= E

(∫

[0,∞[

H2
sd[M ]s

)

.

If H is a predictable process such that E
(∫

[0,∞[
H2

sd〈M〉s
)
< ∞, then, for

any N ∈ H2, E
(∫

[0,∞[
|Hs| |d〈M,N〉s|

)
<∞.

Theorem 9.2.2.1 Let L2(M) be the set of predictable processes H such that

‖H‖L2(M) : =

[

E

(∫

[0,∞[

H2
sd〈M〉s

)]1/2

<∞ .

The linear mapping H → H�M defined on Λ admits a unique extension as
a continuous linear mapping from L2(M) to H2. Furthermore, the processes
Δ(H�M)t and HtΔMt are indistinguishable.
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The stochastic integral I = H�M is the unique martingale in H2 such
that, for any N ∈ H2

E(I∞N∞) = E

(∫

[0,∞[

Hsd〈M,N〉s

)

.

Moreover, one has

〈I,N〉t =
∫ t

0

Hsd〈M,N〉s , [I,N ]t =
∫ t

0

Hs d[M,N ]s .

If H ∈ L2(M), the continuous and the discontinuous parts of H�M are H�M c

and H�Md. It is important to note that if M is a martingale with integrable
variation, and H a predictable process such that E

(∫∞
0
H2

sd[M ]s
)
< ∞ and

E
(∫∞

0
|Hs| |dMs|

)
<∞, then the stochastic integral and the Stieltjes integral

are equal.

9.3 Stochastic Integration for Semi-martingales

We now present the extension of stochastic integrals for a local martingale,
then for a semi-martingale.

9.3.1 Local Martingales

In order to extend the definition of stochastic integrals to local martingales
(see Subsection 1.2.4), we recall a result that will reduce the problem to the
case of H2 martingales and integrable quadratic variation processes.

Lemma 9.3.1.1 Let M be a local martingale. There exists a sequence Tn of
stopping times such that, for any n the stopped martingale MTn is of the form
Nn + Un, where Nn ∈ H2 and Un is a process with integrable variation.

Sketch of the Proof: In a first step, one establishes that there exists a
sequence of stopping times Tn such that the stopped processes Mn = MTn

are martingales and E(|MTn | |Fs)1{s<Tn} is bounded. Then, one denotes
Ct = Mn

t 1{Tn≤t} = Mn
Tn

1{Tn≤t} and Xt = Mn
t 1{Tn≤t} = Mn

t − Ct. Let
C(p) denote the dual predictable projection of the integrable variation process
C, and set U = C − C(p) and N = X + C(p) = M − U . It remains to prove
that the local martingale N is in H2 (see [647]). �

One starts by a definition of the quadratic variation of a local martingale.
This is extremely important, as it is the main tool for defining stochastic
integrals with respect to local martingales.

If M is a local martingale, its continuous part, defined in Definition 9.2.1.8
admits a predictable (in fact a continuous) bracket, denoted 〈M c,M c〉.
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Definition 9.3.1.2 The quadratic variation of a local martingale M is

[M,M ]t = 〈M c,M c〉t +
∑

s≤t

(ΔMs)2 .

It is important to emphasize that, for any local martingale M , the quantity∑

0≤s≤t

(ΔMs)2 is well defined. Note that in general, [M,M ] is optional and not

predictable.

The process [M,M ] is an increasing process such that, by definition
Δ[M,M ]t = (ΔMt)2. The quadratic variation of M is the limit in probability
of the sum of the square of the increments, i.e.,

[M,M ]t = P − lim
p(n)∑

i=1

(Mtni
−Mtni−1

)2 , (9.3.1)

where 0 = t0 ≤ tn1 · · · ≤ tnp(n) = t and supi(tni − tni−1) goes to 0.
The continuous part of the increasing process [M,M ] is denoted by

[M,M ]c, hence
[M,M ]t = [M,M ]ct +

∑

0≤s≤t

(ΔMs)2

and it follows that [M,M ]ct = 〈M c,M c〉t.
We now define the stochastic integral of a locally bounded predictable

process with respect to a local martingale. Recall that a process is locally
bounded if there exists a sequence of stopping times Tn and constants Kn

such that |Ht|1{t≤Tn} ≤ Kn.

Theorem 9.3.1.3 Let M be a local martingale and H a locally bounded pre-
dictable process. There exists a (unique) local martingale H�M =

∫ ·
0
HsdMs

such that
[H�M,N ] = H�[M,N ]

for any bounded martingale N .

Sketch of the Proof: One defines the martingale H�Mn for Mn = MTn

where (Tn;n ≥ 1) is a sequence of stopping times such that the decomposition
given in Lemma 9.3.1.1 of the local martingale holds true, and H is bounded.
It remains to check that there exists a process denoted H�M such that
H�Mn = (H�M)Tn (see [647]). �

Example 9.3.1.4 Let Mt = Nt − λt where N is a Poisson process with
parameter λ. From the equality (8.2.2), the predictable quadratic variation
〈M,M〉 (the predictable bracket) of M is λt. The quadratic variation [M,M ]
of M is N . Indeed, the process M2 −N is a martingale, hence, the quadratic
variation of M is N , since ΔN = (ΔN )2.
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9.3.2 Quadratic Covariation and Predictable Bracket of Two
Local Martingales

Proposition 9.3.2.1 Let M be a local martingale. The quadratic varia-
tion process ([M,M ]t, t ≥ 0) satisfies

[M,M ]t = M2
t −M2

0 − 2
∫ t

0

Ms−dMs . (9.3.2)

The process M2
t − [M,M ]t is a local martingale.

Proof: We assume that M0 = 0. Let tni , i ≤ p(n) be an increasing finite
sequence of real numbers with tn0 = 0 and tnp(n)+1 = t. For fixed n, write (with
ti = tni )

M2
t =

p(n)∑

i=0

M2
ti+1

−M2
ti =

p(n)∑

i=0

(Mti +ΔMti,ti+1)
2 −M2

ti

= 2
p(n)∑

i=0

MtiΔMti,ti+1 +
p(n)∑

i=0

(ΔMti,ti+1)
2

where ΔMti,ti+1 = Mti+1 −Mti and pass to the limit when n goes to infinity
and sup(tni − tni−1) goes to 0. �

Let M and N be two local martingales. The quadratic covariation of two
local martingales is defined via the polarization identity

[M +N,M +N ] = [M,M ] + [N,N ] + 2[M,N ] .

By polarisation of formula (9.3.2) the quadratic covariation of M and N
satisfies

[M,N ]t = MtNt −M0N0 −
∫ t

0

Ms−dNs −
∫ t

0

Ns−dMs . (9.3.3)

It follows that

Δ[M,N ]t = Δ(MN)t −Mt−ΔNt −Nt−ΔMt

= MtNt −Mt−Nt− −Mt−(Nt −Nt−) −Nt−(Mt −Mt−)
= ΔMtΔNt .

Proposition 9.3.2.2 The quadratic covariation of the local martingales M
and N is the unique càdlàg process [M,N ] with finite variation, such that

(i) MN − [M,N ] is a local martingale,
(ii) Δ[M,N ]t = ΔMtΔNt.
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The quadratic covariation [M,N ] is the limit in probability of

p(n)∑

i=0

(Mtni
−Mtni−1

)(Ntni
−Ntni−1

) (9.3.4)

when n goes to infinity and sup(tni − tni−1) goes to zero, where the sequence
tni satisfies 0 = tn0 < tn1 < · · · < tnp(n)+1 = t.

Let M and N be local martingales equal to 0 at time 0, such that the
productMN is a special semi-martingale (see � Subsection 9.3.4). We denote
by 〈M,N〉 (mixed predictable bracket) the unique predictable process
with finite variation such that MN − 〈M,N〉 is a local martingale equal to 0
at time 0. If M is locally square integrable, we denote by 〈M〉 its predictable
bracket, that is 〈M〉 = 〈M,M〉.

We shall see later under which sufficient condition does the mixed
predictable bracket exist. In particular, if M and N are continuous, the
mixed predictable bracket exists and is the (continuous) quadratic covariation
process defined in Subsection 1.3.1.

IfM andN are two local martingales and if the predictable bracket 〈M,N〉
exists, then the process [M,N ] − 〈M,N〉 is a local martingale.

Example 9.3.2.3 If M is the compensated martingale associated with a
Poisson process N and if W is a Brownian motion with respect to the same
filtration

[W,W ]t = t, [M,M ]t = Nt, [W,M ]t = 0 .

Example 9.3.2.4 Let (Nt, t ≥ 0) be a Poisson process with constant
intensity λ, and M the associated compensated martingale.

(a) Let f and g be two square integrable functions (or predictable square
integrable processes) and

Xt =
∫ t

0

f(s)dMs, Yt =
∫ t

0

g(s)dMs .

Then,

[X,Y ]t =
∑

s≤t

f(s)g(s)ΔNs, 〈X,Y 〉t =
∫ t

0

f(s)g(s)λds .

(b) Let (Yi, i ≥ 1, Zi, i ≥ 1) be i.i.d. random variables, independent of N ,
and define the compound Poisson processes

Ut =
Nt∑

i=1

Yi, Vt =
Nt∑

i=1

Zi .

Then

[U, V ]t =
Nt∑

i=1

YiZi, 〈U, V 〉t = tλE(Y1Z1) .
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9.3.3 Orthogonality

Definition 9.3.3.1 Two local martingales are orthogonal if their product is
a local martingale.

In particular, if M and N are independent, they are orthogonal in the
filtration generated by M and N . The converse does not hold (see Exercise
1.5.2.2). We illustrate this fact with a new example.

Let Z = X+ iY a complex Brownian motion (see Subsection 5.1.3). Then,
the two processes At =

∫ t
0
(XsdYs − YsdXs) and ρt =

∫ t
0
(XsdXs + YsdYs) =

(|Zt|2−2t)/2 are orthogonal, but not independent: indeed they have the same
predictable variation process which is not deterministic, as would be the case
if the martingales A and ρ were independent.

Example 9.3.3.2 We present further examples of orthogonal martingales.

• The two local martingales X and Y in Example 9.3.2.4 are orthogonal if
fg = 0, ds× P a.s..

• If MU and MV are the compensated martingales associated with the
compound Poisson process defined in Example 9.3.2.4, they are orthogonal
whenever E(Y1Z1) = 0. Note that the covariation process [MU ,MV ] is not
equal to 0, it is a local martingale.

• If X is a Lévy process (see � Chapter 11) without drift and continuous
part, with Lévy measure ν, the martingales

∑
s≤t f(ΔXs)− t

∫
ν(dx)f(x)

and
∑

s≤t g(ΔXs) − t
∫
ν(dx)g(x) (see � Exercise 11.2.3.13) are orthog-

onal iff
∫
ν(dx)f(x)g(x) = 0 and are independent iff fg = 0.

Definition 9.3.3.3 A local martingale X is purely discontinuous (a
compensated sum of jumps) if X0 = 0 and if it is orthogonal to any continuous
local martingale.

The preceding definition is justified by the following: from Corollary
9.3.7.2, any martingale with bounded variation is orthogonal to any continuous
martingale. We emphasize again, as we did in Warning 9.2.1.3, that the
expression purely discontinuous martingale comes as a whole, and one should
not confuse this notion with that of a purely discontinuous bounded variation
process.

Example 9.3.3.4 If N is a Poisson process of intensity λ, the compensated
martingale (Mt = Nt − λt, t ≥ 0) is a purely discontinuous martingale. In
that case,

∑
s≤tΔMs = Nt.

Theorem 9.3.3.5 (Canonical Decomposition.) Every local martingale
M can be uniquely decomposed as follows: M = m + M c + Md where M c

is a continuous local martingale, M c
0 = 0, Md is a purely discontinuous local

martingale Md
0 = 0 and m = M0 is an F0-measurable random variable.
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Example 9.3.3.6 The Azéma martingale μt = (sgnBt)
√
t− gt (see Propo-

sition 4.3.8.1) is a purely discontinuous martingale in its own filtration. From
Exercise 4.3.8.3, its predictable bracket is t/2. Its continuous martingale part
equals 0 and its quadratic variation process is

[μ]t =
∑

s≤t

(Δμs)2 = gt .

It is important to note that
∑

s≤t |Δμs| = ∞, P a.s. (see Protter [727] for a
proof). The Azéma martingale satisfies the equation

d[μ]t =
dt

2
− μt−dμt .

Indeed,

μ2
t = 2

∫ t

0

μs−dμs + [μ]t

that is t − gt = 2
∫ t
0
μs−dμs + gt or gt = −

∫ t
0
μs−dμs + t

2 which leads
immediately to [μ]t = t

2 −
∫ t
0
μs−dμs. This is an example of the so-called

structure equations, which are equations of the form

d[M,M ]t = αtdt+ ΦtdMt ,

where M is required to be a local martingale and α and Φ are predictable
functionals of M . The particular case

d[M,M ]t = dt+ βMt−dMt ,

admits a unique weak solution. For −2 ≤ β < 0, [M,M ]c = 0 and M is
bounded.

Comment 9.3.3.7 See � Subsection 10.6.2, Dellacherie et al. [241], Emery
[325, 326], Protter [727] and Chapter 15 in Yor [868] for a general study of
structure equations.

9.3.4 Semi-martingales

We give several results on semi-martingales. We refer the reader to Meyer
[647] or Protter [727] for the proofs of these results.

Definition 9.3.4.1 An F-semi-martingale is a càdlàg process X which can
be written as X = M + A where M is an F-local martingale and where A is
an F-adapted càdlàg process with finite variation with value 0 at time 0.

In general, this decomposition is not unique, and we shall speak about
decompositions of semi-martingales. It is necessary to add some conditions
on the finite variation process to get the uniqueness.
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Definition 9.3.4.2 A special semi-martingale is a semi-martingale with
a predictable finite variation part. Such a decomposition X = M + A with A
predictable, is unique. We call it the canonical decomposition of X, if it
exists.

The class of semi-martingales is stable under time-changes (see Section 5.1)
and mutual absolute continuity changes of probability measures. Moreover, if
X is a semi-martingale, then f(X) is a semi-martingale if and only if f ′′ is a
Radon measure (see Çinlar et al. [189]).

Example 9.3.4.3 Local martingales, super-martingales, finite variation pro-
cesses, càdlàg adapted processes with independent and stationary increments,
Itô and Lévy processes are semi-martingales.

Examples of non-semi-martingales: If B is a Brownian motion, the
process |Bt|α is not a semi-martingale for 0 < α < 1 (the second derivative of
the function f(x) = |x|α is not a Radon measure).

The process St =
∫ t
0
φ (Bs) ds where φ does not belong to L1

loc (and if
the integral

∫ t
0
φ (Bs) ds is defined) has zero quadratic variation but infinite

variation, hence is not an F-semi-martingale.
As an example, let St =

∫ t
0

ds
Bs

= limε→0

∫
da
a L

a
t 1{|a|≥ε}. See Subsec-

tion 6.1.2.

Example 9.3.4.4 The Poisson process N with parameter λ is a special semi-
martingale with canonical decomposition Nt = Mt+λt. Note that we can also
write a decomposition as Nt = 0 + Nt, where on the right-hand side, N is
considered as an increasing process. Hence, the semi-martingale N admits at
least two (optional) decompositions. (See Chapter 8.)

If |ΔX| ≤ C where C is a constant, then the semi-martingale X is
special and its canonical decomposition X = M + A satisfies |ΔA| ≤ C and
|ΔM | ≤ 2C. In particular, if X is a continuous semi-martingale, it is special
and the processes M and A in its canonical decomposition X = M + A are
continuous.

Note that, if Ft ⊂ Gt for every t, i.e., if F is a subfiltration of G, then an F-
semi-martingale is a G-semi-martingale if and only if any F-local martingale
is a G-semi-martingale (see Section 5.9). We recall the following result of
Stricker [807]:

Proposition 9.3.4.5 Let F and G be two filtrations such that for all t ≥ 0,
Ft ⊂ Gt. If X is a G-semi-martingale which is F-adapted, then it is also an
F-semi-martingale.

Let X be a semi-martingale such that ∀t ≥ 0,
∑

s≤t |ΔXs| < ∞. The
process (Xt −

∑
s≤tΔXs, t ≥ 0) is a continuous semi-martingale with unique

decomposition M + A where M is a continuous local martingale and A a
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continuous process with bounded variation. The continuous martingale M
is called the continuous martingale part of X, it is denoted by Xc, and
[X,X]c = [Xc, Xc] = 〈Xc〉. Note however that not every semi-martingale
satisfies

∑
s≤t |ΔXs| < ∞ and looking for the continuous martingale part of

X may be more complicated (see � Chapter 11). If X is a martingale such
that

∑
s≤t |ΔXs| < ∞, it does not imply in general that the processes X

and (Xc
t +

∑
s≤tΔXs, t ≥ 0) are equal. In fact, Xt = Xc

t +
∑

s≤tΔXs if
and only if

∑
s≤tΔXs is a local martingale. This is a strong condition: for

example, under the assumption ΔXs = Hs1{ΔXs �=0} with H predictable, this
condition is satisfied only for continuous martingales. Indeed, in that case, the
process

∑
s≤t(ΔXs)2 =

∑
s≤tHsΔXs is a positive local martingale, hence a

super-martingale, its expectation equals 0, hence the continuity of X follows.

Proposition 9.3.4.6 If X and Y are semi-martingales and if Xc , Y c are
their continuous martingale parts, their quadratic covariation is

[X,Y ]t = 〈Xc, Y c〉t +
∑

s≤t

(ΔXs)(ΔYs) .

Proof: In a first step, we note that [Xc] = [X]c, and we extend this
equality by polarization. Then, we note that the jumps of [X,Y ]t and
〈Xc, Y c〉t +

∑
s≤tΔXsΔYs are the same. �

9.3.5 Stochastic Integration for Semi-martingales

If X is a semi-martingale with decomposition M+A, then for any predictable,
locally bounded process H, we can define the process

(H�X)t : =
∫ t

0

Hs dXs =
∫ t

0

Hs dMs +
∫ t

0

Hs dAs ,

where
∫ t
0
Hs dAs is a Stieltjes integral.

The process (H�X)t does not depend on the decomposition of the semi-
martingale X. It is a semi-martingale, in particular it is a càdlàg adapted
process. The map H → H�X is linear and the map X → H�X is linear, the
process H�X is a semi-martingale.

If X is a semi-martingale and H a predictable process, the jump process
of the stochastic integral of H with respect to X is equal to H times the
jump process of X: (Δ(H�X))t = Ht(ΔX)t. It can also be checked that
H�Xc = (H�X)c.

Comment 9.3.5.1 See Dellacherie and Meyer [244] Chapter 8, Jacod [468],
Jacod and Shiryaev [471] Chapter 1, Kallenberg [505] and Protter [727]
Chapter 2, for more information on stochastic integration.
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9.3.6 Quadratic Covariation of Two Semi-martingales

We examine which of the previous constructions and properties of [X,Y ] may
be extended to pairs of semi-martingales. The quadratic covariation of two
semi-martingales is the finite variation process defined by the integration by
parts formula

[X,Y ] = XY −X0Y0 −X−�Y − Y−�X .

For every predictable bounded process H, the quadratic covariation of
Y and of H�X (the stochastic integral of H with respect to X), is the
stochastic integral of H with respect to the quadratic covariation of X and
Y : [H�X, Y ] = H�[X,Y ].

If eitherX or Y has locally finite variation, then the sum
∑

0<s≤t |ΔXs| |ΔYs|
is almost surely finite and the quadratic covariation of the pair (X,Y ) is given
by [X,Y ]t = X0Y0 +

∑
0<s≤tΔXsΔYs. For general semi-martingales X and

Y , we have

∑

0<s≤t

|ΔXs| |ΔYs| ≤

⎛

⎝
∑

0<s≤t

(ΔXs)2

⎞

⎠

1/2 ⎛

⎝
∑

0<s≤t

(ΔYs)2

⎞

⎠

1/2

hence the sum
∑

0<s≤t |ΔXs| |ΔYs| is almost surely finite.
Note that, if P and Q are equivalent, the quadratic covariations of the

semi-martingales X and Y under P and under Q are the same.

An adapted increasing process A is said to be a compensator for the
semi-martingale Y if Y − A is a local martingale. For example if X is a
local martingale, the process [X,X] is a compensator for X2. In general,
a semi-martingale admits many compensators. If there exists a predictable
compensator, then it is unique (among predictable compensators). Once more,
we note that in general, [X,X] is optional and not predictable.

Remark 9.3.6.1 If M and N are two pure jump martingales with the same
jumps, they are equal. Indeed, the differenceM−N is a continuous martingale
which is orthogonal to itself, hence is equal to 0.

9.3.7 Particular Cases

The integration by parts formula

XtYt = X0Y0 +
∫ t

0

Xs−dYs +
∫ t

0

Ys−dXs + [X,Y ]t ,

can be simplified, as presented in Yoeurp [857], under some additional
hypotheses.
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Proposition 9.3.7.1 Let X be a semi-martingale.

(a) If A is a bounded variation process

XtAt = X0A0 +
∫ t

0

XsdAs +
∫ t

0

As−dXs (9.3.5)

and [X,A] = ΔX�A.
(b) If A is a predictable process with bounded variation

XtAt = X0A0 +
∫ t

0

Xs−dAs +
∫ t

0

AsdXs (9.3.6)

and [X,A] = ΔA�X.

Proof: Part a: If A is a bounded variation process
∫ t

0

Xs−dAs + [X,A]t =
∫ t

0

Xs−dAs +
∑

s≤t

ΔXsΔAs

=
∫ t

0

(Xs− +ΔXs)dAs =
∫ t

0

XsdAs .

Part b: If M is a martingale and A a predictable process with bounded
variation, Yoeurp [857] established that

[M,A]t =
∑

s≤t

ΔMsΔAs =
∑

n,Tn≤t

ΔATn ΔMTn

=
∫ t

0

∑

n

ΔATn 1{Tn=s}dMs =
∫ t

0

ΔAs dMs

where (Tn) is a sequence of stopping times which exhaust the jumps, therefore,
the process [M,A]t is a local martingale. If A is a predictable process with
bounded variation
∫ t

0

As−dXs + [X,A]t =
∫ t

0

As−dXs +
∑

s≤t

ΔXsΔAs

=
∫ t

0

As−dXs +
∫ t

0

(As −As−)dXs =
∫ t

0

AsdXs .

�

We recall that the notation X
mart= Y means that X − Y is a local

martingale.
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Corollary 9.3.7.2 Assume that M is a local martingale and A a bounded
variation process. Then

MtAt
mart=

∫ t
0
MsdAs .

Consequently, if M is continuous and A is a local martingale with bounded
variation, the process MA is also a local martingale.

If A is a predictable bounded variation process,

MtAt
mart=

∫ t
0
Ms−dAs .

Then, here, we recover partly the orthogonality between continuous local
martingales and purely discontinuous martingales (Definition 9.3.3.3).

9.3.8 Predictable Bracket of Two Semi-martingales

We first discuss the predictable bracket of two martingales, which we have
defined earlier. We now give some conditions for the existence of this bracket.
If the quadratic covariation process is locally integrable, then the predictable
bracket exists. In particular this is the case if X and Y are locally square
integrable and 〈X,Y 〉 may be defined as the dual predictable projection of
[X,Y ].

If X is a semi-martingale such that X = M +A where M is locally square
integrable and A predictable, one can define its predictable bracket as follows.
Note that

[M +A]t = [M ]t + 2[M,A]t + [A]t .

We have seen in Proposition 9.3.7.1 that the process [M,A]t =
∫ t
0
ΔAsdMs is

a local martingale, hence [M+A]t
mart= 〈M〉t+[A]t. Since [A] is predictable, the

process 〈X〉 : = 〈M〉 + [A] is predictable too and is called the predictable
bracket of the semi-martingale X. If X is a continuous semi-martingale,
〈X〉t = 〈M〉t.

In the general case, one defines 〈X〉t as the dual predictable projection of
[X]t. The polarization formula is used to define the mixed predictable bracket
〈X,Y 〉.

Warning 9.3.8.1 In general, if X = M + A is a semi-martingale with
predictable bracket 〈X〉, the process X2

t − 〈X〉t is not a martingale. Indeed,

X2
t − 〈X〉t = M2

t +A2
t + 2MtAt − 〈M〉t − [A]t .
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Using

A2
t + 2MtAt − [A]t = 2MtAt + 2

∫ t

0

As−dAs
mart= 2

∫ t

0

Xs−dAs

one obtains

X2
t

mart= 〈X〉t + 2
∫ t

0

Xs−dAs .

If P and Q are equivalent probabilities, the mixed predictable bracket
of the continuous semi-martingales X and Y is the same under these
two probabilities. This is no longer true if discontinuous martingales are
considered. (See the case of Poisson processes in Comment 8.2.4.2.)

9.4 Itô’s Formula and Girsanov’s Theorem

We give here, without proof, a general Itô formula (see Protter [727] for a
proof).

9.4.1 Itô’s Formula: Optional and Predictable Forms

Itô’s formula is an extremely powerful tool. It is, therefore, worthwhile writing
it in different ways. We recall that we have discussed Itô’s formula for
continuous semi-martingales in Subsection 1.5.3.

IfX is a semi-martingale,Xc its continuous martingale part and f a C2(R)
function, then the sum

∑
s≤t |f(Xs)−f(Xs−)−f ′(Xs−)ΔXs| is almost surely

finite for any t and one has the optional Itô formula

f(Xt) = f(X0) +
∫ t
0
f ′(Xs−)dXs + 1

2

∫ t

0

f ′′(Xs)d〈Xc〉s

+
∑

0<s≤t

[f(Xs) − f(Xs−) − f ′(Xs−)ΔXs] .

Note that in the particular case where X is continuous, we recover Itô’s
formula established in Theorem 1.5.3.1:

f(Xt) = f(X0) +
∫ t

0

f ′(Xs)dXs +
1
2

∫ t

0

f ′′(Xs)d〈X〉s .

Coming back to the general case, we recall that

〈Xc〉t = [Xc]t = [X]ct = [X]t −
∑

s≤t

(ΔXs)2 .
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If X is a special semi-martingale, and [X] is locally integrable, then, for any
f ∈ C2, f(Xt) is a special semi-martingale.

More generally, letX = (X1, . . . , Xd) be a semi-martingale and f a C2(Rd)
function. Let us denote by M i,c the continuous martingale part of Xi. Then,

f(Xt) = f(X0) +
d∑

i=1

∫ t

0

∂if(Xs−)dXi
s +

1
2

∫ t

0

d∑

i,j=1

∂ijf(Xs−) d〈M i,c,M j,c〉s

+
∑

s≤t

[

f(Xs) − f(Xs−) −
d∑

i=1

∂if(Xs−)ΔXi
s

]

. (9.4.1)

Obviously, this formula entails the form of Itô’s formula for f(Mt, At) where
M is a multidimensional martingale, and A a multidimensional process with
bounded variation.

Definition 9.4.1.1 A process X is a pseudo-continuous semi-martin-
gale (PCSM) if its additive decomposition is X = M + V where M is a local
martingale and V is an adapted process with finite variation such that:

(i) V is continuous (hence, predictable),
(ii) ΔXs = Hs1{ΔXs �=0} where H is predictable,
(iii) the predictable compensator A of∑

s≤t

(ΔXs)2 =
∑

s≤t

(ΔMs)2 =
∑

s≤t

H2
s1{ΔXs �=0} is continuous.

In particular, PCSM’s are special semi-martingales. Note that, if X is a
PCSM, the predictable compensator of

∑

s≤t

Φ(ΔXs)1{ΔXs �=0} =
∑

s≤t

Ψ(Hs)(ΔXs)2

is
∫ t
0
Ψ(Hs)dAs, where Ψ(x) = Φ(x)

x2 1{x�=0}.
If X is a PCSM with decomposition Xt = M c

t +Md
t +Vt, and f a smooth

function, then f(X) is a PCSM. We present the canonical decomposition of
the special semi-martingale f(X): from Itô’s formula

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs +
1
2

∫ t

0

f ′′(Xs−)d〈M c,M c〉s

+
∑

s≤t

[f(Xs− +Hs) − f(Xs−) − f ′(Xs−)Hs] 1{ΔXs �=0} ,

= f(X0) +
∫ t

0

f ′(Xs−)dXs +
1
2

∫ t

0

f ′′(Xs−)d〈M c,M c〉s

+
∑

s≤t

f (T )(Xs− , Hs)(ΔXs)2 ,
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where f (T )(x, h) = f(x+h)−f(x)−f ′(x)h
h2 1{h�=0} (here, T stands for Taylor). In

particular,

f (T )(Xs− , Hs) =
∫ 1

0

dx(1 − x)f ′′(Xs− + xHs) .

We note that the jumps of
∫ t

0

f(Xs− +Hs) − f(Xs−) − f ′(Xs−)Hs

Hs
1{Hs �=0} dM

d
s

are

f(Xs− +Hs) − f(Xs−) − f ′(Xs−)Hs

Hs
(ΔXs) = f (T )(Xs− , Hs)(ΔXs)2 .

From the hypothesis, the process

∑

s≤t

f (T )(Xs− , Hs)(ΔXs)2 −
∫ t

0

f (T )(Xs− , Hs)dAs

is a martingale, and it has the same jumps as
∫ t

0

f(Xs− +Hs) − f(Xs−) − f ′(Xs−)Hs

Hs
dMd

s ,

hence, these two purely discontinuous martingales are equal.

Proposition 9.4.1.2 Let X be a PCSM with decomposition M + V and let
f be a function in C2

b . Then,

f(Xt) = Mf
t + V f

t = Mf,c
t +Mf,d

t + V f
t

where

Mf,c
t =

∫ t

0

f ′(Xs−)dM c
s =

∫ t

0

f ′(Xs)dM c
s ,

V f
t =

∫ t

0

f ′(Xs−)dVs +
1
2

∫ t

0

f ′′(Xs)d〈M c〉s +
∫ t

0

f (T )(Xs− , Hs)dAs ,

Mf,d
t =

∫ t

0

f (T )(Xs− , Hs)(d[Md,Md]s − dAs) .

Exercise 9.4.1.3 Let N be an inhomogeneous Poisson process with intensity
λ(t), M its compensated martingale, W a Brownian motion and

dXt = htdt+ ftdWt + gtdMt ,

where f, g and h are (bounded) predictable processes. Using the identity
∑

s≤t φsΔNs =
∫ t
0
φsdNs, prove that
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F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds+
∫ t

0

∂xF (s,Xs)hsds

+1
2

∫ t

0

∂xxF (s,Xs)f2
s ds

+
∫ t

0

[F (s,Xs + gs) − F (s,Xs) − ∂xF (s,Xs)gs]λs ds

+
∫ t

0

∂xF (s,Xs)fsdWs +
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−)] dMs .

�

9.4.2 Semi-martingale Local Times

Let X be a semi-martingale.

Proposition 9.4.2.1 The measure ϕ→
∫ t
0
ϕ(Xs)d〈Xc〉s is absolutely contin-

uous with respect to the Lebesgue measure. Its Radon-Nikodym density may
be defined as Lx

t the local time at x which satisfies the Itô-Tanaka formula:

(Xt − x)+ = (X0 − x)+ +
∫

]0,t]

1{Xs−>x}dXs +
∑

0<s≤t

1{Xs−>x}(Xs − x)−

+
∑

0<s≤t

1{Xs−≤x}(Xs − x)+ +
1
2
Lx
t .

This result is generalized to:

Theorem 9.4.2.2 Let f be a convex function and X be a real-valued semi-
martingale. Then, f(X) is a semi-martingale and

f(Xt) = f(X0) +
∫

]0,t]

f ′(Xs−) dXs +
1
2

∫ ∞

−∞
f ′′(dx)Lx

t +At

where f ′ is the left derivative of f and A is an adapted purely discontinuous
increasing process. Moreover

ΔAt = f(Xt) − f(Xt−) − f ′(Xt−)ΔXt .

Proof: See Meyer [647], Protter [727] Chapter IV, Section 7. �

Example 9.4.2.3 Azéma Martingale: It can be proved (see Protter [727])
that the local times at all levels except 0 of Azéma’s martingale (see
Subsection 4.3.8 for the definition of this martingale) are 0 and that the
local time at 0 for Brownian motion coincides with the local time at 0 of the
Azéma martingale. An important consequence is that Azéma’s martingale
is not a semi-martingale for the Brownian filtration: Indeed, if it were,
then its (continuous) martingale part would have zero quadratic variation,
hence would be zero. Consequently, Azéma’s martingale would have bounded
variation, which is false.
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9.4.3 Exponential Semi-martingales

We generalize the definition of stochastic exponential introduced for bounded
variation processes in Lemma 9.1.2.3.

Definition 9.4.3.1 Let (Xt, t ≥ 0) be a real-valued F-semi-martingale. The
stochastic differential equation

Yt = 1 +
∫ t

0

Ys−dXs

has a unique càdlàg F–adapted solution denoted by (E(X)t, t ≥ 0), and is
called the Doléans-Dade exponential of X:

E(X)t = exp
(

Xt −X0 −
1
2
〈Xc, Xc〉t

)∏

s≤t

(1 +ΔXs)e−ΔXs .

The process E(X) has strictly positive values if and only if ΔXs > −1 for
all s. If ΔXs ≥ −1,∀s and τ = inf{t : ΔXt = −1}, the exponential is equal
to zero after τ , and is strictly positive before τ .

If X is a local martingale and ΔXs > −1, the process E(X) is a positive
local martingale and, therefore, a super-martingale and converges when t goes
to infinity, to some random variable E(X)∞ with E(E(X)∞) ≤ 1. It is a
martingale if and only if its expectation is 1, i.e., E(E(X)t) = 1 for all t.

The process E(X) is a uniformly integrable martingale if and only if
E(E(X)∞) = 1.

The pure jump process
∏

s≤t(1 +ΔXs)e−ΔXs has finite variation.
A condition which ensures the uniform integrability of E(X) is ΔX > −1

and

E

(

exp
(

1
2
〈Xc〉∞

)∏

t

(1 +ΔXt) exp
(

− ΔXt

1 +ΔXt

))

<∞ .

(see Lépingle and Mémin [580]). If the martingale X is continuous, the usual
formula is obtained: the process

Yt = exp
(

Xt −X0 −
1
2
〈X〉t

)

is the solution of dYt = YtdXt, Y0 = 1 . If X and Y are semi-martingales, then

E(X)E(Y ) = E(X + Y + [X,Y ]) .

If the martingale X is BMO (i.e., if supτ∈T E([X]∞ − [X]τ−) < m where
T is the set of stopping times) and if ΔX > 1 − δ, with 0 < δ < ∞, then
E(X) is a martingale. (See Doléans-Dade and Meyer [257]).

The mapping X → E(X) = Z can be inverted under some assumptions
on Z. As Choulli et al. [181], Kallsen and Shiryaev [508, 509] and Jamshidian
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[475], we call its reciprocal function the stochastic logarithm: if Z is a
semi-martingale such that Z and Z− are R \ {0}-valued, there exists a unique
semi-martingale X, denoted L(Z) such that X0 = 0 and Z = Z0E(X). Indeed,
from

Zt = Z0 +
∫ t

0

Zs−dXs ,

we get Xt =
∫ t
0

1
Zs−

dZs.

In particular, any semi-martingale of the form S = eX where X is a semi-
martingale can be written as a stochastic exponential S = E(X̃) where

X̃t = L(S)t = Xt +
1
2
〈X〉ct +

∑

s≤t

(eΔXs − 1 −ΔXs) .

Remark 9.4.3.2 Symbolic Calculus on Semi-martingales. If f is a
smooth function, we denote F (x) =

∫ x
0
dyf(y). IfX is a given semi martingale,

one may define, in a similar way, the process F(X)t as

F(X)t =
∫ t

0

f(Xs−)dXs .

Setting Yt = F(X)t, if f(Xs) and f(Xs−) do not vanish, we can invert the
mapping as

Xt = x+
∫ t

0

dYs
f(Xs−)

this last equality being a SDE, i.e., dXt = ϕ(Xt−)dYt, with ϕ = 1/f . The
case ϕ(x) = x leads to Xt = E(Y )t and, if Xs and Xs− do not vanish,
Yt =

∫ t
0

1
Xs−

dXs = L(X)t.

Exercise 9.4.3.3 Let Z be an R-valued semi-martingale such that Z and Z−
do not vanish. Prove that

L(Z)t = ln
(∣
∣
∣
∣
Zt

Z0

∣
∣
∣
∣

)

+
∫ t

0

1
2Z2

s−
d〈Zc〉s −

∑

s≤t

(

ln
∣
∣
∣
∣
Zs

Zs−

∣
∣
∣
∣+ 1 − Zs

Zs−

)

.

�

Exercise 9.4.3.4 Prove that ifX,Y are two semi-martingales such that their
stochastic logarithms are well defined, then

L(XY ) = L(X) + L(Y ) + [L(X),L(Y )] .

�
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Exercise 9.4.3.5 Let X be a semi-martingale. Check that the solution of the
SDE dSt = St−(b(t)dt+ σ(t)dXt) is

St = S0 exp(Ut)Πt

where

Ut =
∫ t

0

σ(s)dXs +
∫ t

0

b(s)ds− 1
2

∫ t

0

σ2(s)d〈Xc〉s ,

Πt =
∏

0<s≤t

(1 + σ(s)ΔXs) exp(−σ(s)ΔXs) .

�

9.4.4 Change of Probability, Girsanov’s Theorem

Let Q be equivalent to P on Ft, for all t and Q|Ft = Lt P|Ft where L is a strictly
positive P-martingale. Any P-local martingale X is a Q semi-martingale and
the semi-martingale decompositions are given by the following theorem:

Theorem 9.4.4.1 Let X be a local martingale with respect to P. Then,

(i)

Xt −
∫ t

0

d[X,L]s
Ls

is a Q-local martingale. (9.4.2)

(ii) If [X,L] is P-locally integrable (which implies that 〈X,L〉 exists)
the process

Xt −
∫ t

0

d〈X,L〉s
Ls−

is a Q-local martingale. (9.4.3)

We may call the process in (9.4.2) the optional Girsanov’s transform of X
and the process in (9.4.3) the predictable Girsanov’s transform of X.

Proof: (i) Using Corollary 9.3.7.2 and setting Zt = Xt −
∫ t

0

d[X,L]s
Ls

, the

integration by parts formula yields

ZtLt
mart= LtXt −

∫ t

0

d[X,L]s
mart= 0 ,

where mart= refers to P.
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(ii) Note that At :=
∫ t
0

d〈X,L〉s

Ls−
is a predictable process with bounded

variation. The process Yt = Xt−
∫ t
0

d〈X,L〉s

Ls−
is a Q-local martingale if and only

if the process Y L is a P-local martingale. The integration by parts formula
leads to

YtLt = Y0L0 +
∫ t

0

Ys−dLs +
∫ t

0

Ls−dYs + [Y, L]t

mart= −
∫ t

0

Ls−dAs + [Y, L]t = −
∫ t

0

Ls−dAs + [X,L]t − [A,L]t

mart= −〈X,L〉t + [X,L]t −Σs≤tΔAsΔLs .

The difference −〈X,L〉t + [X,L]t and the sum
∑

s≤tΔAsΔLs =
∫ t
0
ΔAsdLs

are local martingales. (Note that ΔA is predictable.) �

As a check, we prove directly the following consequence of (i) and (ii), i.e.,
the process ∫ t

0

d[X,L]s
Ls

−
∫ t

0

d〈X,L〉s
Ls−

is a Q-local martingale (in other terms, under Q, the predictable compensator

of
∫ t

0

d[X,L]s
Ls

is
∫ t

0

d〈X,L〉s
Ls−

). Let h be any predictable bounded process.

Let us verify that

EQ

(∫ t

0

hs
d[X,L]s
Ls

)

= EQ

(∫ t

0

hs
d〈X,L〉s
Ls−

)

.

The left-hand side is equal to:

EP

(

Lt

∫ t

0

hs
d[X,L]s
Ls

)

= EP

(∫ t

0

hsd[X,L]s

)

.

From (9.3.5), the right-hand side is

EP

(

Lt

∫ t

0

hs
d〈X,L〉s
Ls−

)

= EP

(∫ t

0

hsd〈X,L〉s
)

,

hence, the equality between the left- and the right-hand sides. The following
exercise amplifies the previous argument:

Exercise 9.4.4.2 Let A be an increasing process, with Q and P as above.
Prove that the Q-compensator of

∫ t
0

dAs

Ls
is
∫ t
0

dAp,P
s

Ls−
, where Ap,P is the P-

compensator of A.
Hint: Let H be a positive predictable process. Then,
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EQ

(∫ t

0

Hs
dAs

Ls

)

= EP

(

Lt

∫ t

0

Hs
dAs

Ls

)

= EP

(∫ t

0

HsdAs

)

= EP

(∫ t

0

HsdA
p,P
s

)

.

�
Comment 9.4.4.3 It is worth remarking that any Q-local martingale may
be obtained as a Girsanov transform of a P-local martingale. Indeed, let M be
a Q-local martingale such that M0 = 0. Writing M = N/L where N = ML
is a P-local martingale, we obtain

Nt

Lt
=
∫ t

0

1
Ls−

dNs +
∫ t

0

Ns−d(1/Ls) + [N,L−1]t .

We now assume for simplicity that L and N are continuous and leave the
general case to the reader. From the three equalities

d

(
1
Lt

)

= −dLt

L2
t

+
d〈L〉t
L3
t

,

∫ t

0

Nsd(1/Ls) = −
∫ t

0

Ns

L2
s

dLs +
∫ t

0

Ns

L3
s

d〈L〉s ,

〈N,L−1〉t = −
∫ t

0

1
L2
s

d〈N,L〉s ,

we obtain

Mt =
∫ t

0

1
Ls

(

dNs −
d〈N,L〉s
Ls

)

−
∫ t

0

Ns

L2
s

(

dLs −
d〈L〉s
Ls

)

.

This last formula can be written as

Mt = Xt −
∫ t

0

d〈X,L〉s
Ls

where X is the P-local martingale

Xt =
∫ t

0

LsdNs −NsdLs

L2
s

.

It follows that M is obtained from N through a Girsanov’s transformation.

Example 9.4.4.4 Let Q be locally equivalent to the Wiener measure (on Ft)
and let X be the coordinate process. The process X̃t : = Xt −

∫ t
0

d〈X,L〉s

Ls
is

a Brownian motion which generates the (Q,F)-local martingales: any (Q,F)-
local martingale can be represented as a stochastic integral w.r.t. X̃. This
fact is widely used in finance: the model is often written under the historical
probability measure, and the representation theorem is written under the risk-
neutral probability measure. This discussion is related to that in Subsection
5.8.1 about strong and weak Brownian filtrations.
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Corollary 9.4.4.5 For ζ a P-local martingale, if Q = E(ζ) P, and if X is a
P-local martingale such that 〈X, ζ〉 exists, then X̃ = X − 〈X, ζ〉 is a Q-local
martingale.

Proof: Indeed, in that case, Lt = E(ζ)t satisfies dLt = Lt−dζt, hence
d〈X,L〉t = Lt−d〈X, ζ〉t. �

Example 9.4.4.6 Let W be a Brownian motion and let Mt = Nt−
∫ t
0
λ(s)ds

be the compensated martingale associated with an inhomogeneous Poisson
process. Let L be the Radon-Nikodým density defined as the solution to

dLt = Lt− [ψtdWt + γtdMt] , L0 = 1

where (ψ, γ) are predictable processes, and Q|Ft = Lt P|Ft . We assume here
that L is a strictly positive martingale. The process Wψ defined as

Wψ
t : = Wt −

∫ t

0

ψs ds

is a Q-Brownian motion and

Mγ
t : = Mt −

∫ t

0

λ(s)γsds = Nt −
∫ t

0

λ(s)(1 + γs)ds

is a Q-local martingale.

9.5 Existence and Uniqueness of the e.m.m.

Let S be a càdlàg adapted process on a filtered probability space (Ω,F ,F,P) .
This process represents the price of some financial asset. We restrict our study
to the case of a finite horizon T , and we assume that there exists another asset,
the savings account with constant value (in other words, the interest rate is
null).

9.5.1 Predictable Representation Property

We recall the definition given in Chapter 1:

Definition 9.5.1.1 The process (St, 0 ≤ t ≤ T ) admits an F-equivalent
martingale measure (e.m.m.) if there exists a probability measure Q on FT ,
equivalent to P, such that the process (St, t ≤ T ) is a Q-F-local martingale.

We denote by MP (S) the set of e.m.m’s, i.e., the set of probabilities
equivalent to P such that S is a Q-local martingale. Of particular importance,
is the case when MP (S) is a singleton.
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Definition 9.5.1.2 Let S be an (F,P)-semi-martingale and Q ∈ MP (S).
The process S enjoys the F-predictable representation property (PRP) under
Q if any (Q,F)-local martingale M admits a representation of the form

Mt = m+
∫ t

0

msdSs, t ≤ T

where m is a constant and (ms, s ≤ T ) is F-predictable.

We do not assume that F is the natural filtration of S.

Comment 9.5.1.3 In this section, our aim is to give some important results
on e.m.m’s. In finance, the existence of an e.m.m. is linked with the property
of absence of arbitrage. We do not give a full discussion of this link for which
the reader can refer to the papers of Stricker [809, 808] and Kabanov [500].
The books of Björk [102] and Steele [806] contain useful comments and the
book of Delbaen and Schachermayer [236] is an exhaustive presentation of
arbitrage theory.

9.5.2 Necessary Conditions for Existence

For Q ∈ MP (S) we denote by (Λt, t ≤ T ) the right-continuous version of the
restriction to the σ-algebra Ft of the Radon-Nikodým density of P|Ft with
respect to Q|Ft defined as P|Ft = Λt Q|Ft . We prove that, if S is a continuous
process and if MP (S) is non-empty, then S is a semi-martingale and that its
finite variation part is absolutely continuous with respect to the bracket of the
semi-martingale S, this last property being called the structure condition.

Theorem 9.5.2.1 Structure condition: If S is a continuous process and
if the set MP (S) is non-empty, then S is a P-semi-martingale with decom-
position S = M + A such that the finite variation process A is absolutely
continuous with respect to the bracket 〈S〉, i.e., there exists a process H such
that At =

∫ t
0
Hsd〈S〉s. Moreover, the integrability condition

∫ t

0

H2
sd〈S〉s <∞ (9.5.1)

holds.

Proof: Let S be a continuous process and Q ∈ MP (S). The process Λ,
defined as P|Ft = Λt Q|Ft , is a strictly positive Q-martingale. The process S
is a Q-local martingale (by definition of Q), hence, from Girsanov’s theorem,

the process S̃t : = St −
∫ t

0

d〈S,Λ〉s
Λs−

is a (P,F)-local martingale. The continuity

of S implies that 〈S,Λ〉 = 〈S,Λc〉. Therefore, St = S̃t+At where the processes
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S̃ and A are continuous (At =
∫ t

0

d〈S,Λc〉s
Λs−

), and S̃ is a P-local martingale.

Hence, S is a P-semi-martingale. Now, from the Kunita-Watanabe inequality,
for any process ϕ such that

∫ T
0
ϕs

2d〈S〉s <∞,

∫ T

0

|ϕs| |d〈S,Λc〉s| ≤
(∫ T

0

ϕs
2d〈S〉s

)1/2

〈Λc〉1/2T

hence the absolute continuity of dAs with respect to d〈S〉s and the existence
of H such that dAs = Hsd〈S〉s. From a similar argument,

∫ T

0

|ϕs| |Hs||d〈S,Λc〉s| ≤ C

(∫ T

0

ϕs
2d〈S〉s

)1/2

which implies that
∫ T
0
H2

sd〈S,Λc〉s <∞. �

Comments 9.5.2.2 (a) In particular, if the continuous process S is not
a semi-martingale, there does not exist an e.m.m. Q such that S is a Q-
martingale. This remark is important in finance: it is well known that a
fractional Brownian motion (except for a BM) is not a semi-martingale
(however, see Cheridito [165] where it is proved that a sum of a BM and a fBM
may be a semi-martingale). Hence, the important problem: are there arbitrage
opportunities in a fractional Brownian motion framework? The difficulty relies
on a definition of a stochastic integral w.r.t. fractional Brownian motion. We
do not give a complete list of references, and we mention only the paper of
Coutin [201]. In [737], Rogers constructs an arbitrage, and in [202], Coviello
and Russo avoid arbitrages using forward integrals. The full discussion is still
open.

(b) The absolute continuity condition for the bounded variation part
with respect to the predictable bracket of S is a cornerstone in the papers
of Delbaen et al. [231, 232] and Mania and Tevzadze [619] while studying
the closedness in L2 of the set of stochastic integrals, and the existence of a
minimal entropy martingale measure.

Example 9.5.2.3 Example of a Semi-martingale S of the Form M+A
with At =

∫ t
0
λsd〈S〉s Such That MP (S) is Empty. Let us consider the

process:

St : = Bt + λ

∫ t

0

ds

s
Bs .

The process Hs = Bs

s is not square integrable (see Jeulin [493], Jeulin and

Yor [496]):
∫ t

0

B2
s

s2
ds = ∞, hence the set MP (S) is empty. Delbaen and

Schachermayer [234] define and obtain some examples of immediate arbitrages
that is arbitrages which occur immediately after 0 (in the above example, the
lack of integrability of Hs is in the neighborhood of 0).
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We now assume that S is locally square integrable and that MP (S) is not
empty, and we decompose the Q-local martingale S, where Q ∈ MP (S), into
the sum of its continuous and purely discontinuous parts:

St = Sc
t + Sd

t .

Theorem 9.5.2.4 Suppose that S enjoys the PRP under Q and that 〈S〉 is
continuous. Then,

(i) ΔSt = mt1{ΔSt �=0}, where m is predictable,
(ii) the random measures 〈Sc〉 and 〈Sd〉 are mutually singular.

Proof: The process [Sd]t − 〈Sd〉t is a Q-local martingale. From the PRP of
S under Q, we have

[Sd]t − 〈Sd〉t =
∫ t

0

msdSs , (9.5.2)

for some predictable process m. Since 〈S〉 is continuous, 〈Sd〉 is continuous;
recall that [Sd]t =

∑

s≤t

(ΔSs)2, hence, we get ΔSt = mt1{ΔSt �=0}.

Moreover, from the PRP assumption,

Sc
t =

∫ t

0

ϕ(c)
s dSs, S

d
t =

∫ t

0

ϕ(d)
s dSs

for some predictable processes ϕ(c) and ϕ(d). Then, since 〈Sc, Sd〉 = 0, we
obtain ∫ t

0

ϕ(c)
s ϕ(d)

s d〈S〉s = 0

Therefore,
0 = ϕ(c)

s ϕ(d)
s d〈S〉s ,

or, equivalently
(ϕ(c)

s )2(ϕ(d)
s )2 = 0, d〈S〉 a.s..

Then, using the fact that

d〈Sc〉s = (ϕ(c)
s )2 d〈S〉s, d〈Sd〉s = (ϕ(d)

s )2d〈S〉s

the property (ii) follows. �
Note that under the hypotheses of the above theorem, S is a PCSM (see

Definition 9.4.1.1).
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Sufficient Condition for Existence

Theorem 9.5.2.5 Let S be an (F,Q)-local martingale and suppose that:

(i) every continuous F-martingale is a stochastic integral with respect to Sc,
(ii) every discontinuous F-martingale is a stochastic integral with respect

to Sd,
(iii) the random measures 〈Sc〉 and 〈Sd〉 have disjoint supports.

Then S enjoys the PRP.

Proof: Let M = M c + Md be a martingale. It admits a representation of
the form

Mt = m+
∫ t

0

m(c)
s dSc

s +
∫ t

0

m(d)
s dSd

s .

Let Γc (resp. Γd ) be the support of the measure d〈Sc〉t (resp. d〈Sd〉t). Then

Sc
t =

∫ t

0

1Γc(s)dSs, S
d
t =

∫ t

0

1Γd
(s)dSs .

Indeed

E

(

Sc
t −
∫ t

0

1Γc(s)dSs

)2

= E

(

〈Sc〉t − 2
∫ t

0

1Γc(s)d〈Sc〉s +
∫ t

0

1Γc(s)d〈S〉s
)

= E

(∫ t

0

1Γc(s)(d〈S〉s − 〈Sc〉s)
)

= E

(∫ t

0

1Γc(s)(d〈Sd〉s
)

= 0 .

Hence

Mt = M c
t +Md

t = m+
∫ t

0

[
m(c)

s 1Γc(s) +m(d)
s 1Γd

(s)
]
dSs .

�

We first present a case where the PRP property is not satisfied, and an
example where it is.

Let B be a Brownian motion and Π the compensated martingale
associated with a Poisson process N of intensity λ = 1 in the same filtration
(hence B and Π are independent). We leave it to the reader to write the result
for a general fixed λ or even for a deterministic function λ(t).

(1) Let St = Bt + Πt. This process does not satisfy the PRP. Note that
(i) in Theorem 9.5.2.4 is satisfied, but (ii) is not: indeed, 〈Sc〉t = 〈Sd〉t = t.

(2) Let dXt = f(t)dBt+g(t)dΠt where f and g are deterministic functions
such that fg = 0. The filtration FX is the filtration generated by the processes
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(
∫ t
0
f(s)dBs, t ≥ 0) and (

∫ t
0
g(s)dΠs, t ≥ 0) and is included in FB ∨ FN . Let

us set dX̃t = f(t)dBt + g(t)dNt. The set S which contains all the r.v.’s

Φ∞ = exp
(∫ ∞

0

ϕsdX̃s −
1
2

∫ ∞

0

ϕ2
sf

2(s)ds−
∫ ∞

0

ds
(
eϕsg(s) − 1

))

where ϕ belongs to the set Δ of deterministic functions, is total in L2(FX
∞,P).

Indeed, if Y ∈ L2(FX
∞,P) is orthogonal to Φ∞, then Y is orthogonal to

exp(
∫∞
0
ϕsdX̃s) for every ϕ ∈ Δ, hence to Y itself.

The process X enjoys the PRP w.r.t. FX . Indeed,

exp
(∫ t

0

ϕsdX̃s −
1
2

∫ t

0

ϕ2
sf

2(s)ds−
∫ t

0

ds
(
eϕsg(s) − 1

))

= exp
(∫ t

0

ϕsf(s)dBs −
1
2

∫ t

0

ϕ2
sf

2(s)ds
)

× exp
(∫ t

0

ϕsg(s)dNs − λ

∫ t

0

ds
(
eϕsg(s) − 1

))

= E(1)
t E(2)

t

and the two martingales E(i) are orthogonal. It follows that

E(1)
t E(2)

t = 1 +
∫ t

0

E(1)
s E(2)

s− ϕsf(s)dBs +
∫ t

0

E(1)
s E(2)

s− ϕsg(s)dΠs

= 1 +
∫ t

0

E(1)
s E(2)

s− ϕsdXs ,

since fg = 0.

9.5.3 Uniqueness Property

Theorem 9.5.3.1 Let S be a continuous F-adapted process. Suppose that
MP (S) is not empty and let Q ∈ MP (S). The following two properties are
equivalent:

(i) PRP holds under Q with respect to S,
(ii) The set MP (S) is a singleton.

Proof: (i) implies (ii): Let Q and Q
∗ belong to MP (S) and let q be the

Radon-Nikodým density of Q
∗ w.r.t. Q: Q

∗|Ft = qtQ|Ft . The canonical
decomposition of S as a Q

∗-semi-martingale is

St = S̃t +
∫ t

0

d〈S, q〉s
qs−

where S̃ is a Q
∗-local martingale. Since S is a Q

∗-local martingale, 〈S, q〉 = 0,
hence the Q-martingale q is orthogonal to S under Q, which is not possible
unless q = 1, because S enjoys the PRP under Q, hence Q

∗ = Q.
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(ii) implies (i). If (i) does not hold, there exists a locally bounded non-
trivial martingale orthogonal to S, say q0 (see Jacod and Yor [472] and Protter
[727] for details). By stopping we may assume that q0 is uniformly bounded,
say by 1/2, and q00 = 0 and we consider qt = 1+q0t . The probability Q

∗ defined
by Q

∗|Ft = qtQ|Ft belongs to MP (S) and is different from Q. �

A Particular Case

We recall a result in a simple case, when the coefficient of the Brownian
motion, i.e., the volatility, may vanish (see Steele [806]).

Proposition 9.5.3.2 Let W be the Wiener measure, X the canonical process
Xt(ω) = ω(t) and Zt =

∫ t
0
Φ(s, ω)dXs where Φ ∈ L2

loc(X). There exists a
unique probability Q equivalent to W such that Z is a (Q,F)-local martingale
if and only if

{(s, ω) : Φ(s, ω) = 0} (9.5.3)

is ds× dW negligible. (Of course, then, this unique probability coincides with
W.)

Proof: � Suppose that (9.5.3) does not hold. Then, for any λ = 0 the process

Lλ
t = exp

(

λ

∫ t

0

1{Φ(s,ω)=0}dXs −
1
2
λ2

∫ t

0

1{Φ(s,ω)=0}ds

)

is a martingale which is not identically equal to 1. Let Q
λ|Ft = Lλ

t W|Ft ;
the process Xλ

t = Xt − λ
∫ t
0

1{Φ(s,ω)=0}ds is a (Qλ,F)-local martingale and
Zt =

∫ t
0
Φ(s, ω)dXλ

s , hence there is an infinity of e.m.m’s.
� The converse study is easy. �

9.5.4 Examples

Lemma 9.5.4.1 Let M and N be two martingales in their own respective
filtrations.

(i) If M has the FM -PRP, if N has the FN -PRP, and if M and N are
FM ∨ FN -martingales, then they are orthogonal in FM ∨ FN if and only if
they are independent.

(ii) If M has the FM -PRP and N the FN -PRP, and if M and N are
independent, then the pair (M,N) enjoys the FM ∨ FN -PRP.

Proof: (i) Take Φ ∈ L2(FM
∞ ) and Ψ ∈ L2(FN

∞). Then,

Φ = E(Φ) +
∫ ∞

0

ϕsdMs, Ψ = E(Ψ) +
∫ ∞

0

ψsdNs .
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Now, we consider these stochastic integrals as written in FM ∨ FN and from
the orthogonality hypothesis, we deduce

E(ΦΨ) = E(Φ)E(Ψ) .

(ii) Under the hypotheses, we have, with the previous notation

ΦΨ = E(ΦΨ) +
∫ ∞

0

Ψs−ϕsdMs +
∫ ∞

0

Φs−ψsdNs

where

Ψs = E(Ψ |FN
s ) = E(Ψ |FN

s ∨ FM
∞ ) ,

Φs = E(Φ|FM
s ) = E(Φ|FM

s ∨ FN
∞) .

The general representation result follows from the totality of the products ΦΨ
in L2(FM

∞FN
∞). �

While using this result, it is important to prove that M and N are
martingales in the ”large” filtration FM∨FN . One may recall that it is possible
to construct a Poisson process adapted to a Brownian filtration FB, i.e., a
Poisson process N such that FN ⊂ FB (see Jeulin [494]), so that a fortiori it
is not true that a Poisson process and a Brownian motion constructed on the
same probability space are independent.

Theorem 9.5.4.2 Suppose that the SDE

dSt = b(St)dt+ σ(St)dBt

admits a unique weak solution. Then, any FS-local martingale can be written
as Mt = m+

∫ t
0
msdS

mar
s where Smar is the martingale part of S, i.e.,

Smar
t = St − S0 −

∫ t

0

b(Su)du =
∫ t

0

σ(Su)dBu .

Proof: See Hunt and Kennedy [455] and Jacod and Yor [472]. �

9.6 Self-financing Strategies and Integration by Parts

We present a simple, but useful application of the integration by parts formula
for the characterization of self-financing strategies in finance.
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9.6.1 The Model

Assume that there is a financial market where S1
t , S

2
t , . . . , S

k
t represent values

at time t of k assets. Here, S1, S2, . . . , Sk are semi-martingales on some
probability space (Ω,F ,F,P), satisfying the usual conditions. We assume that
S1 is stricly positive. We emphasize that a priori, there is no riskless asset
being traded in the market. Let π = (π1, π2, . . . , πk) be a trading strategy; in
particular, the processes πi are F-predictable. The component πit represents
the number of units of the i-th asset held in the portfolio at time t. Then the
wealth Vt(π) of the trading strategy π = (π1, π2, . . . , πk) equals

Vt(π) =
k∑

i=1

πitS
i
t (9.6.1)

and we say that π is a self-financing strategy if

Vt(π) = V0(π) +
k∑

i=1

∫ t

0

πiu dS
i
u . (9.6.2)

By combining the last two formulae, we obtain

dVt(π) =

(

Vt(π) −
k∑

i=2

πitS
i
t

)

(S1
t )

−1 dS1
t +

k∑

i=2

πit dS
i
t .

The latter representation shows that the wealth process only depends on k−1
components of π.

9.6.2 Self-financing Strategies and Change of Numéraire

Choosing S1 as a numéraire, and denoting

V 1
t (π) = Vt(π)(S1

t )
−1, Si,1

t = Si
t(S

1
t )

−1,

we get the following well-known result which proves that the self-financing
property does not depend on the choice of the numéraire,

Lemma 9.6.2.1 (i) Let π = (π1, π2, . . . , πk) be a self-financing strategy.
Then we have

V 1
t (π) = V 1

0 (π) +
k∑

i=2

∫ t

0

πiu dS
i,1
u , ∀ t ∈ [0, T ]. (9.6.3)

(ii) Conversely, let X be an FT -measurable random variable, and assume
that there exist x ∈ R and predictable processes πi, i = 2, . . . , k such that

X = S1
T

(

x+
k∑

i=2

∫ t

0

πiu dS
i,1
u

)

.

Then there exists a predictable process π1 such that the strategy π is self-
financing and replicates X.
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Proof: We give the proof for k = 2.
(i) Let V = (Vt(π), t ≥ 0) be the value of a self-financing strategy π,

and V 1 = V/S1 the value of this strategy in the numéraire S1. From the
integration by parts formula

d(V 1
t ) = Vt−d(S1

t )
−1 + (S1

t−)−1dVt + d[(S1)−1, V ]t .

From the self-financing condition

d(V 1
t ) = π1

tS
1
t−d(S

1
t )

−1 + π2
tS

2
t−d(S

1
t )

−1 + (S1
t−)−1π1

t dS
1
t

+ π2
t (S

1
t−)−1dS2

t + π1
t d[(S

1)−1, S1]t + π2
t d[(S

1)−1, S2]t
= π1

t

(
S1
t−d(S

1)−1
t + (S1)−1

t− dS
1
t + d[(S1)−1, S1]t

)

+ π2
t

(
S2
t−d(S

1
t )

−1 + (S1
t−)−1dS2

t− + d[(S1)−1, S2]t
)
.

We now note that

S1
t−d(S

1
t )

−1 + (S1
t−)−1dS1

t + d[(S1)−1, (S1)]t = d(S1(S1)−1)t = 0

and
S2
t−d(S

1
t )

−1 + (S1
t−)−1dS2

t + d[(S1)−1, S2]t = d((S1
t )

−1S2
t )

hence,
dV 1

t = π2
t dS

2,1
t .

We now prove part (ii). We define

V 1
t = x+

k∑

i=2

∫ t

0

πiu dS
i,1
u , (9.6.4)

and we set

π1
t = V 1

t −
k∑

i=2

πitS
i,1
t = (S1

t )
−1

(

Vt −
k∑

i=2

πitS
i
t

)

,

where Vt = V 1
t S

1
t . From the definition of V , we have dV 1

t =
∑k

i=2 π
i
t dS

i,1
t and

thus

dVt = d(V 1
t S

1
t ) = V 1

t−dS
1
t + S1

t−dV
1
t + d[S1, V 1]t

= V 1
t−dS

1
t +

k∑

i=2

πit
(
S1
t− dS

i,1
t + d[S1, Si,1]t

)
.

From the obvious equality

dSi
t = d(Si,1

t S1
t ) = Si,1

t− dS
1
t + S1

t−dS
i,1
t + d[S1, Si,1]t,

it follows that
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dVt = V 1
t−dS

1
t +

k∑

i=2

πit

(
dSi

t − Si,1
t− dS

1
t

)

=

(

V 1
t− −

k∑

i=2

πitS
i,1
t−

)

dS1
t +

k∑

i=2

πit dS
i
t .

The needed equality dVt =
∑k

i=1 π
i
t dS

i
t holds if

π1
t = V 1

t −
k∑

i=2

πitS
i,1
t = V 1

t− −
k∑

i=2

πitS
i,1
t− ,

i.e., if ΔV 1
t =

∑k
i=2 π

i
tΔS

i,1
t , which is the case from the definition (9.6.4) of

V 1
t . Note also that the process π1 is indeed predictable. �

For more examples, in particular for a study of constrained strategies, see
Bielecki et al [92, 93].

9.7 Valuation in an Incomplete Market

We study a market in which both a savings account with constant interest
rate r, and d risky assets (Si, i = 1, . . . , d) are traded. We shall denote for
simplicity by πtSt the amount of money invested in the risky assets (that
is, we set πtSt =

∑d
i=1 π

i
tS

i
t) and S̃t = Ste

−rt is the discounted price. We
assume here that the market is incomplete and arbitrage free. More precisely,
we assume that the set MP(S̃) of e.m.m’s is not empty and not reduced to a
singleton. By definition of an incomplete market, if H is a contingent claim,
it is in general not possible to construct a hedging strategy for H, i.e., a
self-financing portfolio with terminal value equal to H (note that contingent
claims of the form H = erT

(
x+

∫ T
0
πsdS̃s

)
such as for example c + κST ,

are hedgeable). We recall that some extra conditions are required to avoid
doubling strategies, the most common one being that the value of the strategy
is bounded below.

The set
{EQ(He−rT ),Q ∈ MP(S̃)}

is called the set of viable prices. If the asset H is traded at price EQ(He−rT )
for Q ∈ MP(S̃), this does not induce arbitrage opportunities. If the asset H
is traded at a price which is not in the set of viable prices, this induces
an arbitrage opportunity. We present briefly some methods of evaluating
contingent claims in an incomplete market.

One way is to find a hedging strategy which replicates as best as possible
the contingent claim. The dual approach is to choose a particular equivalent
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martingale measure, e.g., the Föllmer-Schweizer minimal probability measure
or the minimal entropy measure. In that setting, one gives an arbitrary value
to the market price of risk.

Another method is to relate the price of the contingent claim to a utility
function approach. We now present briefly these three approaches.

9.7.1 Replication Criteria

Super-replication

The super-replication price of H is the smallest initial wealth v such that
there exists a self-financing strategy π which super-hedges the contingent
claim, i.e., in the case r = 0, v satisfies

v = inf{w : ∃π, w +
∫ T

0

πsdSs ≥ H }.

(See � Subsection 10.5.3 for an example). The super-replication price v is
also called the selling price. It is proved in El Karoui and Quenez [307] that
this super-replication price is the supremum of the viable prices, i.e.,

sup
Q∈MP(eS)

EQ(e−rTH) .

See also Kramkov [543]. However, from the practitioner’s viewpoint, this price
is too large (see � Subsection 10.5.2 for an example). In the case of stochastic
volatility (see Frey and Sin [360]) the selling price of a European option is
often infinite, except if the volatility is bounded (see El Karoui et al. [301]).
This method can be applied in models where transaction costs are taken into
account, with the same drawback: for example, the super-replication price for
a call is the price of the underlying asset (see Soner et al. [796], Hubalek and
Schachermayer [449]).

Quadratic Hedging

Föllmer and Sonderman [352] suggest minimizing the quadratic error under
the historical probability measure, i.e., finding v and π which minimize

EP((H − V v,π
T )2)

over initial wealth v and self-financing strategies π, where V v,π
T = x+

∫ T
0
πsdSs

is the terminal wealth associated to the strategy π (we assumed that the
interest rate is null). The solution is the L2-projection of H on the vector
space x +

∫ T
0
πsdSs. (One needs to find some conditions which ensure that

this space is closed, see Delbaen et al. [232].)
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It can be proved that there exists, at least in markets with continuous
asset prices, a Radon-Nikodým density Lqh which does not depend on the
choice of H such that v = EP(e−rTHLqh). Despite this explicit solution to
the original question, again practitioners dislike this criterion, which gives the
same weight for losses and gains of V relative to H. There are also asymmetric
criteria, but then the mathematical theory is more involved and results are
less explicit. We refer to the book of Föllmer and Schied [350] for a complete
study.

In the case of weather derivatives, or in a default risk setting, an interesting
question is the measurability criteria for the strategies. Indeed, even if the
market is incomplete, it is possible to include the information about the
weather or on the default in the choice of the portfolio (see Bielecki et al.
[89] in the case of credit risk).

9.7.2 Choice of an Equivalent Martingale Measure

This method consists in the choice of an equivalent martingale measure (or a
state price density) in an appropriate way. One possibility is to minimize
EP(f(LT )) over the set of Radon-Nikodým densities for a given convex
function f . However, the solution depends on the choice of numéraire. We
now present two different, but classical, choices of convex functions.

Minimal Entropy Measure: f(x) = x ln x

Let P and Q be two equivalent probability measures. The relative entropy of
Q w.r.t. P corresponds to the choice f(x) = x lnx and is

H(Q|P) = EQ

(

ln
(
dQ

dP

))

= EP

(
dQ

dP
ln
(
dQ

dP

))

. (9.7.1)

Let S denote the value of the asset and MP

(
S̃
)

the set of e.m.m’s. Any
probability Q

∗ such that

i) Q
∗ ∈ MP

(
S̃
)

ii) ∀Q ∈ MP

(
S̃
)
, H(Q∗|P) ≤ H(Q|P)

is called a minimal entropy measure. See Choulli and Stricker [182], Delbaen
et al. [231], Frittelli [362], Frittelli et al. [364], Hobson [441] and Miyahara
[654] for a complete study. In Rouge and El Karoui [310], the authors provide
a general framework for pricing contingent claims, using a BSDE approach.
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Mean Variance Hedging: f(x) = x2

Any probability Q
∗ such that

(i) Q
∗ ∈ MP(S̃)

(ii) EP((dQ∗/dP)2) = inf{EP((dQ/dP)2),Q ∈ MP(S̃) }

is called a minimal measure. The existence of Q
∗ is established in Mania and

Schweizer [618] for continuous processes. The existence of Q
∗ in the case of

discontinuous processes can fail. In the case r = 0, this probability is related
to the existence of a strategy π and an initial wealth v which minimize, for a
given H

EP

⎛

⎝

(

v +
∫ T

0

πsdSs −H

)2
⎞

⎠ .

See also Föllmer and Schweizer [351].

9.7.3 Indifference Prices

Another method, studied by Davis [220], is to value contingent claims for an
agent endowed with a particular utility function. Related results have been
obtained by a number of authors in various contexts.

A different approach was initiated by Hodges and Neuberger [444]. We
briefly explain the framework of this approach. Let x be the initial endowment
of an agent and U a utility function. The reservation price of the contingent
claim H is defined as the infimum of h’s such that

sup
π

E[U(V x+h,π
T −H)] ≥ sup

π
E[U(V x,π

T )] ,

where the supremum is taken over the admissible strategies. The agent selling
the contingent claim starts with an initial endowment x+h. Using the strategy
π, he obtains a portfolio with terminal value V x+h,π

T and he has to deliver the
contingent claim H; hence, his terminal wealth is V x+h,π

T −H. He agrees to
sell the claim if his utility supπ E[U(V x+h,π

T −H)] is greater than his utility
when he does not sell the claim. The particular case where U is an exponential
function is studied in detail in Rouge and El Karoui [310], whereas Delbaen
et al. [231] make precise the link between this approach and the one based on
entropy.

We do not discuss here these interesting approaches which are based on
optimization portfolio theory (see Karatzas and Shreve [514]), but we refer the
reader to the papers of Hugonnier [452], Bouchard-Denize [111], Henderson
[430] and Musiela and Zariphopoulou [662], to the book of Pham [710] and to
the collective book [142].
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Mixed Processes

In this chapter, we present stochastic calculus for mixed processes (also
often called jump-diffusions), i.e., loosely speaking they are processes whose
dynamics are driven by a pair of processes consisting of a Brownian motion
and a compound Poisson process. The jump-diffusion approach models the
large number of small movements from the diffusion process part, while the
jump process part captures rare large moves. It is worthwhile mentioning
that a jump-diffusion process is not a diffusion, in the usual acceptance of
this terminology, i.e., a Markov process with continuous paths; however, we
keep this commonly used terminology of jump-diffusion. We draw the reader’s
attention to the fact that, in general, mixed processes in our sense are not
Markov processes.

10.1 Definition

For the moment, up to Subsection 10.4.4, we only consider the restricted class
of mixed processes of the form

Xt = X0 +
∫ t

0

hs ds+
∫ t

0

fsdWs +
∫ t

0

gsdMs .

Here, W is a Brownian motion and (Mt = Nt −
∫ t
0
λ(s)ds, t ≥ 0) is the

compensated martingale associated with an inhomogeneous Poisson process
N with deterministic intensity λ(t). The processes M and W are independent
(a justification of this independence assumption is presented in � Proposition
10.2.6.2) and f, g, h are predictable processes (with respect to the filtration
generated by the pair (W,M)) such that, for any t

∫ t

0

|hs|ds <∞,

∫ t

0

f2
s ds <∞,

∫ t

0

|gs|λ(s)ds <∞ a.s..

In what follows, we write X = (f, g, h) for such processes. In this general
setting, a mixed process is not a Markov process. The continuous martingale

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 10,
c© Springer-Verlag London Limited 2009
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part of the semi-martingale X is
∫ t
0
fsdWs and the purely discontinuous

martingale part is
∫ t
0
gsdMs.

In the particular case where the coefficients f, g, h are constant, or
deterministic functions of time, the filtration generated by the process X is
equal to the filtration generated by the pair (W,M) and the process X is an
inhomogeneous Markov process.

We shall also consider, in � Subsection 10.2.4, the case of stochastic
differential equations where the coefficients f, g, h are defined in terms of a
given function of time and space, i.e., fs = f̂(s,Xs−).

The jump times of the process X are those of N , the jump size of X is
ΔXt = Xt −Xt− = gtΔNt.

Clearly, the model could be extended to the case where W and N are
multidimensional processes (see Shirakawa [789]) or to the case where M is
the compensated martingale of a compound Poisson process. To keep the
notation simple, we shall consider only one-dimensional processes and the
case where M is the compensated martingale of a Poisson process (except in
Subsection 10.4.4).

Some authors prefer to write the dynamics of a jump-diffusion process
using the Poisson process N instead of the compensated martingale. We have
chosen to write the dynamics in terms of martingales in order to recognize
easily the martingale part. However, writing the dynamics

Xt = X0 +
∫ t

0

ĥs ds+
∫ t

0

fsdWs +
∫ t

0

gsdNs ,

with ĥs = hs − gsλ(s) is more convenient for recognizing the jump part.

10.2 Itô’s Formula

Let X = (f, g, h) and Y = (f̃ , g̃, h̃) be two mixed processes driven by the
same pair consisting of a Brownian motion W and an inhomogeneous Poisson
process N :

dXt = htdt+ ftdWt + gtdMt = (ht − gtλ(t))dt+ ftdWt + gtdNt ,

dYt = h̃tdt+ f̃tdWt + g̃tdMt = (h̃t − g̃tλ(t))dt+ f̃tdWt + g̃tdNt .

We study the stability of this class of mixed processes under multiplication
and composition with a regular function.

10.2.1 Integration by Parts

The integration by parts formula (9.3.3) reads

d(XY ) = X− dY + Y− dX + d[X,Y ]
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with

d[X,Y ]t = ftf̃tdt+ gtg̃tdNt = (ftf̃t + gtg̃tλ(t))dt+ gtg̃tdMt .

Hence,

d(XtYt) = (h̃tXt− + htYt− + ftf̃t + gtg̃tλ(t)) dt
+ (f̃tXt− + ftYt−)dWt + (g̃tXt− + gtYt− + gtg̃t)dMt ,

from which we conclude that XY is a mixed process. Recall that, with respect
to the dt and dWt differentials, Xt− and Yt− may be replaced by Xt and Yt,
whereas the presence of left limits with respect to dMt is important.

10.2.2 Itô’s Formula: One-dimensional Case

The following result is obtained from the general Itô formula (9.4.1). We shall
write Itô’s formula in two forms, the “optional” one and the “predictable”
one.

Proposition 10.2.2.1 (Optional Itô Formula.) Let W be a Brownian
motion and M the compensated martingale associated with a Poisson process
N with deterministic intensity λ, independent of W . Let F be a C1,2 function
defined on R

+ × R, and X a mixed process with dynamics

dXt = htdt+ ftdWt + gtdMt .

Then,

F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds+
∫ t

0

∂xF (s,Xs−)dXs

+
1
2

∫ t

0

∂xxF (s,Xs)f2
s ds

+
∑

s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)ΔXs] .

Here, the sum is taken over the almost surely finite number of jump times
which occur prior to t and is equal to

∫ t

0

[F (s,Xs− + gs) − F (s,Xs−) − ∂xF (s,Xs−)gs] dNs .

We may justify our terminology optional Itô formula from the fact that,
in general, the last term is only optional, in contrast with the last term in the
predictable Itô formula (10.2.1).

In the integral with respect to ds, Xs− or Xs can be used. Hence, writing
Itô’s formula in a differential form, one obtains
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dF (t,Xt) = ∂tF (t,Xt) dt+ ∂xF (t,Xt−)dXt + · · ·

or
dF (t,Xt) = ∂tF (t,Xt−) dt+ ∂xF (t,Xt−)dXt + · · · .

We like to emphasize that these formulae are easy to memorize. Let us write

dXt = htdt+ ftdWt + gtdMt .

In order to obtain Itô’s formula, we begin with “standard terms”

∂tF dt+ ∂xF dXt + 1
2f

2
t ∂xxF dt . (S)

Next, we concentrate on the jumps terms both in (S) and in F (t,Xt): the
process F (t,Xt), has a jump of size F (t,Xt) − F (t,Xt−) when the process
X jumps; the standard term (S) has a jump of size ∂xF (t,Xt−)ΔXt when X
jumps. It suffices to add to (S) the jumps of F (t,Xt) and to subtract its own
jumps to obtain Itô’s formula.

We now present the predictable Itô Formula.

Proposition 10.2.2.2 (Predictable Itô Formula.) Let W be a Brownian
motion and M the compensated martingale associated with an inhomogeneous
Poisson process N with deterministic intensity λ, independent of W . Let F
be a C1,2 function defined on R

+ × R, and

dXt = htdt+ ftdWt + gtdMt .

Then,

F (t,Xt) = F (0, X0) +
∫ t

0

∂xF (s,Xs)fsdWs

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−)] dMs

+
∫ t

0

[

∂tF (s,Xs) + hs∂xF (s,Xs) +
1
2
f2
s ∂xxF (s,Xs)

+λ(s)[F (s,Xs + gs) − F (s,Xs) − ∂xF (s,Xs)gs]
]

ds .

(10.2.1)

It follows that the process (F (t,Xt), t ≥ 0) is a local martingale if and only if

∂tF (t,Xt) + ht∂xF (t,Xt) +
1
2
f2
t ∂xxF (t,Xt)

+ λ(t)[F (t,Xt + gt) − F (t,Xt) − gt∂xF (t,Xt)] = 0, dt× dP a.s..
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The use of the predictable Itô formula was important in obtaining this
last result. In the case where the coefficients f, g, h, λ are constant (or
deterministic, or even functions of time and state), we are led to solve the
PDEI (Partial Differential Equation with Integral term)

∂tF (t, x) + h∂xF (t, x) +
1
2
f2∂xxF (t, x)

+ λ[F (t, x+ g) − F (t, x) − g ∂xF (t, x)] = 0 , ∀x ∈ R,∀t ≥ 0.

Exercise 10.2.2.3 Let dXt = htdt+σtdWt +ϕtdMt be a mixed process and
St = eXt . Prove that the dynamics of S are

dSt = St−

((

ht +
1
2
σ2
t + (eϕt − 1 − ϕt)λ(t)

)

dt+ σtdWt + (eϕt − 1)dMt

)

.

Conversely, if
dSt = St−(μtdt+ σtdWt + ψtdMt)

with ψt > −1, prove that St = eYt , where Y is a mixed process. �
Exercise 10.2.2.4 Let dSt = St−(bdt+ σdWt + φdMt) where b, σ and φ are
constant coefficients and φ > −1. Let Yt = (St)−1. Prove that

dYt = −Yt−
{(

b− σ2 + λ

(
φ

1 + φ
− φ

))

dt+ σdWt +
φ

1 + φ
dMt

}

.

Hint: The jumps of S occur when the Poisson process N jumps, and the sizes
of the jumps are ΔSt = φSt−ΔNt, hence St = St−(1+φΔNt). The coefficient
of dM (or of dN) may also be obtained by looking at the size of the jumps of
the process S−1. �

10.2.3 Multidimensional Case

Let F be a C1,2 function defined on R
+ × R

d and let Xt = (Xi(t), i ≤ d) be
a d-dimensional mixed process with components having dynamics

Xi(t) = Xi(0) +
∫ t

0

hi(s) ds+
∫ t

0

fi(s)dWs +
∫ t

0

gi(s)dMs ,

where for simplicity, we have taken W and M uni-dimensional and where
gi are predictable processes and fi, hi are optional. Then, the optional Itô
formula is

F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds+
d∑

i=1

∫ t

0

∂xiF (s,Xs−)dXi(s)

+
1
2

d∑

i,j=1

∫ t

0

∂xixjF (s,Xs)fi(s)fj(s) ds

+
∑

s≤t

[F (s,Xs) − F (s,Xs−) −
d∑

i=1

∂xiF (s,Xs−)gi(s)ΔNs] ,
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A further multidimensional generalization (with a d-dimensional Brownian
motion and a k-dimensional Poisson process) could be developed.

Exercise 10.2.3.1 Prove that the predictable Itô’s formula is

F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds

+
d∑

i=1

∫ t

0

∂iF (s,Xs)fi(s)dWs +
d∑

i=1

∫ t

0

∂iF (s,Xs)hi(s)ds

+
1
2

d∑

i,j=1

∫ t

0

∂ijF (s,Xs)fi(s)fj(s) ds

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−)] dMs

+
∫ t

0

[F (s,Xs + gs) − F (s,Xs) −
d∑

i=1

∂iF (s,X(s))gi(s)]λ(s) ds ,

where Xs = (Xi
s; i = 1, . . . , d). �

10.2.4 Stochastic Differential Equations

Proposition 10.2.4.1 Assume that λ is bounded and μ, σ, φ are functions:
R

+ × R → R which satisfy

|μ(t, x) − μ(t, y)| + |σ(t, x) − σ(t, y)| + |φ(t, x) − φ(t, y)| ≤ C|x− y|,∀t, x, y
|μ(t, 0)| + |σ(t, 0)| + |φ(t, 0)| ≤ C, ∀t .

Then the SDE

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt + φ(t,Xt−)dMt, X0 = x0 given,

admits a unique (pathwise) solution. The solution is an inhomogeneous
Markov process.

Proof: See Bass [58, 57], Doléans-Dade and Meyer [256], Ikeda and Watanabe
[456] or Jacod and Shiryaev [471]. �

Proposition 10.2.4.2 Let W be a Brownian motion, N the random measure
associated with a ν-compound Poisson process, and βi, γi, δi, i = 0, 1 continu-
ous functions, with δ1 > −1. The solution of the equation

dXt = (β0(t) + β1(t)Xt) dt+ (γ0(t) + γ1(t)Xt) dWt

+
∫

(δ0(t, x) + δ1(t, x)Xt−)N(dt, dx)
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is

Xt = Z−1
t β(t)

(

1 +
∫ t

0

Zs

β(s)
(β0(s) − γ0(s)γ1(s))ds

+
∫ t

0

Zs

β(s)
γ0(s)dWs +

∫ t

0

Zs−

β(s)

∫
δ0(s, x)N(ds, dx)

)

where

Zt = E(−γ1�W )t exp
(

−
∫ t

0

∫
ln(1 + δ1(s, x))N(ds, dx)

)

and β(t) = exp
∫ t
0
β1(u)du.

Proof: The proof is obtained from Itô’s calculus using the method of
variation of constants. This is a particular case of affine equations of the
form dXt = Xt−dYt + dHt. See Gapeev [372] for a study of the solutions in
this particular case. �

Comment 10.2.4.3 Despite the affine property of the coefficients, this
model is not what is called in mathematical finance an affine model. We shall
present the later in � Subsection 10.4.4.

10.2.5 Feynman-Kac Formula

As in the Brownian motion case (see Subsection 1.5.6), we can interpret the
expectations of certain functionals (see below) as the values of solutions of
integro-differential equations. Consider the case where

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt + φ(t,Xt−)dMt .

The Markov property implies that, if h is a real-valued Borel function and T
a fixed time, the conditional expectation E(h(XT )|Ft) is of the form H(t,Xt).
Let us assume that H is a C1,2 function. Since H(t,Xt) is a martingale, its
predictable finite variation part is equal to zero. Therefore, from (10.2.1), we
are led to consider the PDEI
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂H

∂t
(t, x) + μ(t, x)

∂H

∂x
(t, x) +

σ2(t, x)
2

∂2H

∂x2
(t, x)

+λ(t) [H(t, x+ φ(t, x) ) −H(t, x) − φ(t, x)
∂H

∂x
(t, x)] = 0 ,

H(T, x) = h(x) .
(10.2.2)

If H solves (10.2.2), then H(t,Xt) is a local martingale. If h is bounded, we
obtain

E(h(XT )|Ft) = H(t,Xt) .
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10.2.6 Predictable Representation Theorem

Let M be the compensated martingale associated with an inhomogeneous
Poisson process N with deterministic intensity and W a Brownian motion
defined on the same space. We assume that W and M are independent and
we denote by F the canonical filtration generated by the pair (W,N) i.e.,
Ft = σ(Ws, Ns , s ≤ t) = σ(Ws,Ms , s ≤ t).

Theorem 10.2.6.1 Let Z be a square integrable F-martingale. Then, there
exist two predictable processes (ϕ,ψ) such that Z = z + ϕ�W + ψ�M , with

E

(∫ t

0

ϕ2
sds

)

<∞ , E

(∫ t

0

ψ2
sλ(s)ds

)

<∞, ∀t .

If Z is a local martingale, there exist two predictable processes (ϕ,ψ) such
that Z = z + ϕ�W + ψ�M .

Proof: Let F ∈ L2(FW
∞ ) and G ∈ L2(FN

∞). Then, from the predictable
representation theorem for a Brownian filtration (resp. for a Poisson filtration)
there exist two predictable processes ϕ and ψ such that

F = E(F ) +
∫ ∞

0

ϕsdWs, G = E(G) +
∫ ∞

0

ψsdMs,

with

E

(∫ ∞

0

ϕ2
sds

)

<∞, E

(∫ ∞

0

ψ2
sλ(s)ds

)

<∞ .

Define

Ft = E(F |FW
t ) = E(F ) +

∫ t

0

ϕsdWs, Gt = E(G|FN
t ) = E(G) +

∫ t

0

ψsdMs .

These processes are F-martingales and, since W and M are independent (see
Lemma 9.5.4.1), the integration by parts formula yields

FtGt = F0G0 +
∫ t

0

Fs−dGs +
∫ t

0

Gs−dFs

= F0G0 +
∫ t

0

Fs−ψsdMs +
∫ t

0

Gs−ϕsdWs .

The result for square integrable martingales now follows from the totality in
L2(F∞) of these products FG. The result for local martingales can be easily
deduced. �

We now discuss the independence assumption:

Proposition 10.2.6.2 Let G be a given filtration. If W is a G-Brownian
motion and N a G-Poisson process, then W and N are independent.
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Proof: Let F ∈ L2(FW
∞ ) and G ∈ L2(FN

∞). With the same notation as in
the proof of the previous theorem, we obtain

FG = E(F )E(G) +
∫ ∞

0

FsdGs +
∫ ∞

0

Gs−dFs

and E(FG) = E(F )E(G). Note that we have used the fact that (Fs, s ≥ 0)
and (Gs, s ≥ 0) are G-martingales. �

Comment 10.2.6.3 See Chou and Meyer [180], Davis [219, 222], Jacod [468]
and Watanabe [837] for complements. Note again that the hypothesis that W
is a Brownian motion and N a Poisson process in the same filtration is very
important.

10.3 Change of Probability

Throughout this section, we always assume that W is a Brownian motion
and M is the compensated martingale of an inhomogeneous Poisson process
with deterministic intensity λ(t), with W and M independent. The filtration
generated by W and M is denoted by F.

10.3.1 Exponential Local Martingales

Let γ and ψ be two F-predictable processes such that γt > −1. The solution
of

dLt = Lt−(ψtdWt + γtdMt), L0 > 0 (10.3.1)

is the strictly positive exponential local martingale

Lt = L0

∏

s≤t

(1 + γsΔNs) e−
R t
0 γsλ(s)ds exp

(∫ t

0

ψsdWs −
1
2

∫ t

0

ψ2
sds

)

= L0 exp
(∫ t

0

ln(1 + γs)dNs −
∫ t

0

λ(s)γsds+
∫ t

0

ψsdWs −
1
2

∫ t

0

ψ2
sds

)

= L0 exp
(∫ t

0

ln(1 + γs)dMs +
∫ t

0

[ln(1 + γs) − γs]λ(s)ds
)

× exp
(∫ t

0

ψsdWs −
1
2

∫ t

0

ψ2
sds

)

.

In the last expression, the exponential term is the Doléans-Dade exponential
martingale of ψ�W , whereas the first one is the Doléans-Dade exponential
martingale of γ�M , therefore one can write

Lt = L0 E(γ�M)t E(ψ�W )t .
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Since the process L is a positive local martingale, it is a martingale if and
only if E(Lt) = L0,∀t. It suffices that

E

(

exp
(

sup
t≤T

∫ t

0

ln(1 + γs)dNs

))

< ∞ ,

E

(

exp
(

sup
t≤T

∫ t

0

ψsdWs

))

< ∞ .

Comment 10.3.1.1 The study of uniformly integrable exponential martin-
gales in that setting can be found in many papers, including Cherny and
Shiryaev [169] and Lépingle and Mémin [580]. See also the list at the end of
this book in Appendix B.

10.3.2 Girsanov’s Theorem

From the representation theorem 10.2.6.1, if P and Q are equivalent proba-
bilities, there exist two predictable processes ψ and γ, with γ > −1 such that
the Radon-Nikodým density L of Q with respect to P is of the form

dLt = Lt−(ψtdWt + γtdMt) .

Then, from Theorem 9.4.4.1, W̃ and M̃ are Q-local martingales where

W̃t = Wt −
∫ t

0

ψsds, M̃t = Mt −
∫ t

0

λ(s)γsds .

If γ is deterministic, the process N is a Q-inhomogeneous Poisson process
with deterministic intensity (λ(t)(1 + γ(t)), t ≥ 0) and W̃ and M̃ are Q-
independent. In the general case, W̃ and M̃ can fail to be independent as
shown in the following example.

Example 10.3.2.1 Suppose that the intensity of the Poisson process N is
equal to 1 and let dLt = Lt−γtdMt, L0 = 1 where γ is a non-deterministic
FW -predictable process. Denote by Q

γ the probability Q
γ |Ft = Lt P|Ft . The

filtration of Mγ is that of both M and
∫ t
0
γsds, hence, the processes W and

Mγ are not independent.

Comments 10.3.2.2 (a) Define Q|FT
= LT P|FT

, where L follows (10.3.1)
with γ > −1. If E(LT ) < 1 (this implies that L is a strict local martingale),
then Q is a positive finite measure on FT , but this measure is not a probability
measure.

(b) If L satisfies (10.3.1) and is a martingale without the condition γ > −1,
then the measure Q is no longer a positive measure. Nevertheless, one can
define a Q-martingale as a process Z such that ZL is a P-martingale. See
Ruiz de Chavez [748] and Begdhadi-Sakrani [65] for an extended study and
Gaussel [375] for an application to finance.
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Exercise 10.3.2.3 Let (μ, σ, ai, i = 1, 2) be given constants with ai > 0 and
Xt = μt+σBt+a1N

(1)
t −a2N

(2)
t where B is a BM and (N (i), i = 1, 2) are two

independent Poisson processes with respective intensities λi. Let Ψ be defined
by E(eθXt) = etΨ(θ) and Q|Ft = eθXt−tΨ(θ)

P|Ft be a change of probability.
Let r be a given number.

Characterize θ such that (e−rt+θXt , t ≥ 0) is a Q-martingale.
This is a particular Esscher transform; see � Subsection 11.3.1 for a more

general setting. �

10.4 Mixed Processes in Finance

Bachelier [39] assumed that the dynamics of asset prices are Brownian motion
with drift, and Samuelson, in order to preserve positivity of prices worked with
the ordinary (or stochastic) exponential of drifted Brownian motion. Following
this idea, we introduce dynamics of prices as (stochastic) exponentials of
mixed processes (see Exercise 10.2.2.3). LetM be the compensated martingale
associated with a Poisson process N with deterministic intensity (λ(t), t ≥ 0),
and W an independent Brownian motion. The dynamics of the price are
supposed to be given by

dSt = St−(btdt+ σtdWt + φtdMt) (10.4.1)

where b, σ and φ are predictable processes. In a closed form

St = S0 exp
(∫ t

0

bsds

)

E(σ�W )t E(φ�M)t .

The jumps of S occur when the process N jumps, and ΔSt = St−φtΔNt,
hence St = St−(1 + φtΔNt). Therefore, in order that the price S remains
positive, we assume that φ > −1.

Note that the process

St exp
(

−
∫ t

0

bsds

)

, t ≥ 0

is a local martingale.

10.4.1 Computation of the Moments

In the constant coefficients case, with φ > −1, the solution of (10.4.1) may be
written as

St = S0 exp
[(

b− φλ− σ2

2

)

t+ σWt + [ln(1 + φ)]Nt

]

= S0e
Xt (10.4.2)
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where X is the Lévy process (see � Chapter 11 for information on
Lévy processes)

Xt =
(

b− φλ− σ2

2

)

t+ σWt + [ln(1 + φ)]Nt . (10.4.3)

The moments of the r.v. St can be computed as follows: first, we have

(
e−btSt

)k
= Sk

0 exp
(

k ln(1 + φ)Nt − λkφt+ σkWt −
tkσ2

2

)

= Sk
0 E(φkM)t E(σkW )t exp

[

t

(

λ[φk − kφ] +
1
2
σ2k(k − 1)

)]

where φk = (1 + φ)k − 1. Therefore,

Sk
t = Z

(k)
t exp(tg(k))

where we have denoted by Z(k) the martingale

Z
(k)
t = Sk

0E(φkM)t E(σkW )t = Sk
0 exp(kXt − tg(k)) (10.4.4)

and g(k) is the Laplace exponent (see � Subsection 11.2.3 for a generalization
to Lévy processes)

g(k) = bk +
1
2
σ2k(k − 1) + λ[(1 + φ)k − 1 − kφ] . (10.4.5)

Therefore, E(Sk
t ) = Sk

0 exp(tg(k)). In particular,

E(S2
t ) = S2

0 exp((2b+ σ2 + λφ2)t) .

Note that, for every θ, the process exp(θXt − tg(θ)) is a martingale.

Exercise 10.4.1.1 Let S be given by (10.4.2). Give the dynamics of Sk. �

10.4.2 Symmetry

We present a put-call symmetry in the case where, under a domestic risk-
neutral probability Q, the dynamics of the process S are assumed to be,

dSt = St−((r − δ)dt+ σdWt + φdMt)

where Mt = Nt−λt is a Q-martingale and r, δ, σ, φ are constants with φ > −1.
Setting Xt = (−φλ − σ2

2 )t + σWt + [ln(1 + φ)]Nt and Zt = exp(Xt − tg(1)),
where g is defined in (10.4.5) and setting b = r − δ, one obtains

St = S0e
(r−δ)tZt = S0e

(r−δ)t exp(Xt − tg(1))

where Z is a Q-martingale (see equality (10.4.4)).
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We can write

EQ(e−rt(K − St)+) = EQ

(

e−δtZt

(
KS0

St
− S0

)+
)

= E
bQ

(

e−δt

(
KS0

St
− S0

)+
)

,

where Q̂|Ft = Zt Q|Ft . Under the foreign risk-neutral probability Q̂, the
process Y = 1/S follows (see Exercise 10.2.2.4):

dYt = Yt−((δ − r)dt− σdŴt −
φ

1 + φ
dM̂t)

where Ŵt = Wt − σt is a Q̂-BM and M̂t = Nt − λ(1 + φ)t is a Q̂-martingale.
Hence, denoting by CE (resp. PE) the price of a European call (resp. put) on
the underlying S with strike K,

PE(x,K, r, δ;σ, φ, λ) = CE

(

K,x, δ, r;σ,− φ

1 + φ
, λ(1 + φ)

)

.

The same method establishes that American call and put prices satisfy

PA(x,K, r, δ;σ, φ, λ) = KxCA

(
1
x
,

1
K
, δ, r, ;σ,

−φ
1 + φ

, λ(1 + φ)
)

.

Therefore, if bp(r, δ;φ, λ) (resp. bc(δ, r;
−φ

1 + φ
, λ(1+φ))) is the put (resp. call)

exercise boundary, then

bp(r, δ;φ, λ) bc

(

δ, r;
−φ

1 + φ
, λ(1 + φ)

)

= K2 .

Comment 10.4.2.1 The put-call symmetry formulae for currency are well
known in the case of continuous processes (see e.g., Detemple [251]). Fajardo
and Mordecki [339] and Mordecki [659] establish, from the Wiener-Hopf
decomposition, a general symmetry relationship for Lévy processes. See also
Eberlein and Papapantoleon [293] and Eberlein et al. [294].

10.4.3 Hitting Times

We assume that the dynamics of the underlying process St = S0e
Xt are given

as in (10.4.2) by

St = S0 exp
[(

b− φλ− σ2

2

)

t+ σWt + [ln(1 + φ)]Nt

]

.
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Let us denote by TL(S) the first passage time of the process S at level L, for
L > S0, i.e.,

TL(S) = inf{t ≥ 0 : St ≥ L}
and by T�(X) = TL(S) the companion first passage time of the process X at
level ! = ln(L/S0), for ! > 0, i.e., T�(X) = inf{t ≥ 0 : Xt ≥ !}.

Assuming that the process S has no positive jumps, i.e., in the case where
φ ∈]−1, 0[, we apply the optional sampling theorem to the bounded martingale
(Z(k)

t∧T�
, t ≥ 0) where Z(k)

t = exp(kXt− tg(k)) and k > 0. Then, relying on the
continuity of the process S (hence of X) at the stopping time T�, we obtain
the following formula:

E[exp(−g(k)T�)] = exp(−k!) .

Inverting the Laplace exponent g(k) we obtain the Laplace transform

E(exp(−uT�)) =
{

exp(−g−1(u) !), for ! > 0
1 otherwise . (10.4.6)

Here, g−1(u) is the positive root of g(k) = u. Indeed, the function k → g(k)
is strictly convex, and, therefore, the equation g(k) = u admits no more than
two solutions; a straightforward computation proves that for u ≥ 0, there
are two solutions, one of them is greater than 1 and the other one negative.
Therefore, by solving numerically the latter equation, the positive root g−1(u)
can be obtained, and the Laplace transform of T� is known.

If the jump size is positive, there is a non-zero probability that XT�
is

strictly greater than !. In this case, we introduce the overshoot O�)

O� = XT�
− ! . (10.4.7)

The difficulty is to obtain the law of the overshoot. See � Subsection 10.6.2
and references therein for more information on overshoots in the general case
of Lévy processes.

Exercise 10.4.3.1 (See Volpi [832]) Let Xt = bt + Wt + Zt where W is
a Brownian motion and Zt =

∑Nt

k=1 Yk a (λ, F )-compound Poisson process
independent of W . The first passage time above the level x is

Tx = inf{t : Xt ≥ x}

and the overshoot is Ox = XTx − x. Let Φx be the Laplace transform of the
pair (Tx, Ox), i.e.,

Φx(θ, μ, x) = E(e−θTx−μOx1{Tx<∞}) .

Let τ1 be the first jump time of N . We wish to establish an integral equation
for Φx using the following computation:
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(1) Prove that

E(e−θTx−μOx1{Tx<τ1}) = e(b−α)x

where α =
√
b2 + 2(θ + λ).

(2) Prove that

E(e−θTx−μOx1{Tx=τ1}) =
e(b−α)x

α(μ− b+ α)

∫

[0,x[

(e(α−b)y − e−μy)F (dy)

+
1

α(μ− b− α)

∫

[x,∞[

(e(b−α)(y−x) − e−μ(y−x))F (dy)

+
eμx − e(b−α)x

α(μ− b+ α)

∫

[x,∞[

e−μyF (dy)

+
e(b−α)x

α(μ− b− α)

∫

[0,∞[

(e−(α+b)y − e−μy)F (dy) .

(3) Prove that

E(e−θTx−μOx1{τ1<Tx<∞})

=
1
α

∫

R

F (dy)
∫ (x−y)∧x

−∞
ebz(e−α|z| − e(2x−z)α)Φx−z−y(θ, μ)dz .

(4) Deduce an equation for Φ by adding the three components above. �

10.4.4 Affine Jump-Diffusion Model

These affine processes are defined as the solutions of the following equa-
tion (10.4.8):

Proposition 10.4.4.1 Suppose that

dXt = μ(Xt)dt+ σ(Xt)dWt + dZt (10.4.8)

where μ and σ2 are affine functions μ(x) = μ0 + μ1x ; σ2(x) = σ0 + σ1x and
Z is a ν-compound Poisson process such that

∫
ezyν(dy) < ∞,∀z. Then, for

any affine function ψ(x) = ψ0 + ψ1x, for all θ, there exist two functions α
and β such that,

E

(

eθXT exp

(

−
∫ T

t

ψ(Xs)ds

)
∣
∣
∣Ft

)

= eα(t)+β(t)Xt .

Proof: It suffices to prove the existence of α and β such that the process

eα(t)+β(t)Xt exp
(

−
∫ t

0

ψ(Xs)ds
)
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is a martingale, and α(T ) = 0, β(T ) = θ. From Itô’s calculus, this leads to a
Riccati ODE and to a linear ODE:

β′(t) = ψ1 − μ1β(t) − 1
2
σ1β

2(t) ,

α′(t) = ψ0 − μ0β(t) − 1
2
σ0β

2(t) − λ(ν̂(β(t)) − 1)

where ν̂(z) =
∫
ezyν(dy). It remains to check that there exists a solution

satisfying the boundary conditions. �

Comment 10.4.4.2 See Duffie et al. [274, 272] for a generalization of this
model.

Exercise 10.4.4.3 Let λ(t, x) = λ1 + λ2x. Prove that

dXt = μ(Xt)dt+ σ(Xt)dWt + dMt

where M is the compensated martingale of an inhomogeneous Poisson process
with intensity λ(t,Xt) has a solution.
Hint: Start from the previous process (10.4.8) and make a change of
probability. �

A Particular Case

As an example, let us study the case where S is an exponential of an affine
process with constant coefficients (see Exercise 10.2.2.3).

Proposition 10.4.4.4 Let W be a Brownian motion and Z a ν-compound

Poisson process independent of W of the form Zt =
Nt∑

n=1

Yn. Let

dSt = St−(μdt+ σdWt + dZt) , (10.4.9)

where μ and σ are constants. The infinitesimal generator of S is given by

Lf = ∂tf + xμ∂xf +
1
2
σ2x2∂xxf +

∫

R

(f(x(1 + y), t) − f(x, t)) dν(y)

for f sufficiently regular. The process (Ste−rt, t ≥ 0) is a martingale if and
only if E(|Y1|) <∞ and μ+ λE(Y1) = r.

If Y1 ≥ −1 a.s., the process S can be written in an exponential form as

St = S0e
Xt , Xt = bt+ σWt + Vt

where b = μ− 1
2σ

2 and V is the (λ, F̃ )-compound Poisson process
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Vt =
Nt∑

n=1

ln(1 + Yn) =
Nt∑

n=1

Un ,

with F̃ (u) = F (eu − 1).
If moreover E(eθU1) <∞ for all θ,

E(Sθ
t ) = Sθ

0e
tΨ(θ)

where
Ψ(θ) = θb+

1
2
σ2θ2 − λ

∫ ∞

−∞
(1 − eθu) F̃ (du) .

Proof: The expression of the infinitesimal generator is straightforward, the
details are left to the reader. In order to give conditions which imply that
(Ste−rt, t ≥ 0) is a local martingale, it suffices to write its dynamics as

d(e−rtSt) = e−rtSt−((−r + μ+ λE(Y1))dt+ σdWt + dZt − λE(Y1)dt) ,

and to use the martingale property of the process (Zt − λE(Y1)t, t ≥ 0).
If Y1 ≥ −1, the solution of (10.4.9) is

St = S0e
μteσWt− 1

2σ
2t exp

(
Nt∑

n=1

ln(1 + Yn)

)

= S0e
bt+σWt+Vt = S0e

Xt

with

Xt = bt+ σWt + Vt, Vt =
Nt∑

n=1

ln(1 + Yn)

and b = μ − 1
2σ

2. Then, denoting by F̃ the cumulative distribution function
of ln(1 + Y1) (i.e., F̃ (y) = F (ey − 1)), if E(eθ ln(1+Y1)) <∞,

E(Sθ
t ) = Sθ

0E(eθXt) = Sθ
0e

θbte
1
2σ

2θ2t
E(eθVt)

= Sθ
0e

θbte
1
2σ

2θ2t exp
(

−tλ
∫ ∞

−∞
(1 − eθu)F̃ (du)

)

,

where the last equation follows from Proposition 8.6.3.4. �

Example 10.4.4.5 We present two examples of jump-diffusion processes. We
assume that

Xt = μt+ σWt +
Nt∑

i=1

Yi

where
∑Nt

k=1 Yk is a compound Poisson process.
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• Merton’s Model. Merton [643] chooses a model where prices are of the
form St : = xeXt with Xt = bt + σWt +

∑Nt

k=1 Yk where the law of Y1 is
Gaussian, with mean μ and variance α2. In differential form

dSt = St−

((

b+
1
2
σ2

)

dt+ σdWt + dZt

)

with Zt =
∑Nt

k=1 Ỹk where the r.v’s Ỹn are log-normal. In that case, the
density of the r.v. Xt is easily obtained by conditioning on the number of
jumps, i.e., by Nt = n, and

P(Xt ∈ dx) = e−λt
∞∑

n=0

(λt)n

n!
1

√
2π(σ2t+ nα2)

e−(x−bt−nμ)2/2(σ2t+nα2)dx ,

Ψ(θ) =
1
2
σ2θ2 + bθ + λ(1 − e−μθ+α2θ2/2) .

• Kou’s Double-exponential Jumps Model. A particular jump-diffusion
model is the double exponential jumps model, introduced by Kou [540] and
Kou and Wang [541, 542]. In this model

Xt = μt+ σWt +
Nt∑

i=1

Yi ,

where the density of the law of Y1 is

ν(dx) =
(
pη1e

−η1x1{x>0} + (1 − p)η2eη2x1{x<0}
)
dx .

Here, ηi are positive real numbers, and p ∈ [0, 1]. With probability p (resp.
(1 − p)), the jump size is positive (resp. negative) with exponential law
with parameter η1 (resp. η2). Then,

E(eiuXt) = exp
(

t

{

−1
2
σ2u2 + ibu+ λ

(
pη1

η1 − iu
+

(1 − p)η2
η2 + iu

− 1
)})

,

and E(eβXt) = exp(Ψ(β)t) is defined for −η2 < β < η1 where

Ψ(β) = βμ+
1
2
β2σ2 + λ

(
pη1
η1 − β

+
(1 − p)η2
β + η2

− 1
)

(in terms of Lévy processes (see � Subsection 11.2.3), Ψ is the Laplace
exponent). Let Tx = inf{t : Xt ≥ x}. Then, Kou and Wang [541] establish
that, for r > 0, y > 0, and x > 0,

E(e−rTx) =
η1 − β1

η1

β2

β2 − β1
e−xβ1 +

β2 − η1
η1

β1

β2 − β1
e−xβ2 ,
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E(e−rTx1{XTx−x>y}1{Tx<∞}) = eη1y
η1 − β1

η1

β2 − η1
β2 − β1

(
e−xβ1 − e−xβ2

)
,

E(e−rTx1{XTx=x}) =
η1 − β1

β2 − β1
e−xβ1 +

β2 − η1
β2 − β1

e−xβ2

and, for −η2 < θ < η1

E(eθXTx−rTx) = eθx
(
η1 − β1

β2 − β1

β2 − θ

η1 − θ
e−xβ1 +

β2 − η1
β2 − β1

β1 − θ

η1 − θ
e−xβ2

)

where 0 < β1 < η1 < β2 are roots of G(β) = r. The method is based
on finding an explicit solution of Lu = ru where L is the infinitesimal
generator of the process X.

10.4.5 General Jump-Diffusion Processes

Let W be a Brownian motion and p(ds, dz) the random measure associated
with a marked point process. Let Ft = σ(Ws, p ([0, s], A), A ∈ E ; s ≤ t). The
solution of

dSt = St−

(

μtdt+ σtdWt +
∫

R

ϕ(t, x)p(dt, dx)
)

can be written in an exponential form as

St = S0 exp
(∫ t

0

[

μs −
1
2
σ2
s

]

ds+
∫ t

0

σsdWs

) Nt∏

n=1

(1 + ϕ(Tn, Zn))

where Nt = p((0, t],R) is the total number of jumps on the time interval [0, t].
See Björk et al. [103] and Mercurio and Runggaldier [640] for applications to
finance.

10.5 Incompleteness

We consider a financial market with finite horizon T , where a risky asset with
price S is traded as well as the savings account, with deterministic interest rate
(r(t), t ≥ 0). We denote by R(t) the discount factor R(t) = exp

(
−
∫ t
0
r(s)ds

)
.

The natural filtration of S is denoted by F. In an incomplete arbitrage free
market, the set Q of e.m.m’s contains several equivalent probability measures
and perfect hedging is not possible. More precisely, pricing a contingent claim
H using an e.m.m. Q as EQ(R(T )H) does not correspond to the initial price
of a hedging strategy. However, trading the contingent claim H at price
EQ(R(T )H) for some Q ∈ Q, does not induce an arbitrage opportunity. Due
to the convexity of the set Q of e.m.m’s, the set {EQ(R(T )H),Q ∈ Q} is an
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interval, and any choice of initial price outside this interval would induce an
arbitrage.

We assume here that the dynamics of S under the historical probability
follow a particular case of (10.4.1), i.e.,

dSt = St−(b(t)dt+ σ(t)dWt + φ(t)dMt), S0 = x. (10.5.1)

Here, b, σ and φ are deterministic bounded Borel functions assumed to
satisfy |σ(t)| > ε, φ(t) > −1, ε < |φ(t)| < c where ε and c are strictly
positive constants. The process W is a Brownian motion and M is the
compensated martingale associated with an inhomogeneous Poisson process
having deterministic intensity λ.

In this section, we address the problem of the range of viable prices and we
give a dual formulation of the problem in terms of super-strategies for mixed
diffusion dynamics.

10.5.1 The Set of Risk-neutral Probability Measures

In a first step, we determine the set of equivalent martingale measures. Note
that

d(RS)t = R(t)St−([b(t) − r(t)]dt+ σ(t)dWt + φ(t)dMt) . (10.5.2)

Proposition 10.5.1.1 The set Q of e.m.m’s is the set of probability measures
P
ψ,γ such that P

ψ,γ |Ft = Lψ,γ
t P|Ft where Lψ,γ

t : = Lψ
t (W )Lγ

t (M) is the
product of the Doléans-Dade martingales

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lψ
t (W ) = E(ψ�W )t = exp

[∫ t

0

ψsdWs −
1
2

∫ t

0

ψ2
sds

]

,

Lγ
t (M) = E(γ�M)t = exp

[∫ t

0

ln(1 + γs)dNs −
∫ t

0

λ(s)γsds
]

.

In these formulae, the predictable processes ψ and γ satisfy the following
constraint

b(t) − r(t) + σ(t)ψt + λ(t)φ(t)γt = 0 , dP ⊗ dt a.s.. (10.5.3)

Here, Lγ(M) is assumed to be a strictly positive P-martingale. In particular,
the process γ satisfies γt > −1.

Proof: Let Q be an e.m.m. with Radon-Nikodým density equal to L. Using
the predictable representation theorem for the pair (W,M), the strictly
positive P-martingale L can be written in the form

dLt = Lt− [ψtdWt + γtdMt]
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where (ψ, γ) are predictable processes. It remains to choose this pair such
that the process RSL is a P-martingale. Itô’s lemma gives formula (10.5.3).
Indeed,

d(RSL)t = RtSt−dLt + Lt−d(RS)t + d[RS,L]t
mart= (LRS)t−(b(t) − r(t) + σ(t)ψt + λ(t)φ(t)γt)dt .

�
The terms −ψ and −γ are respectively the risk premium associated with

the Brownian risk and the jump risk.

Definition 10.5.1.2 Let us denote by Γ the set of predictable processes γ
such that Lψ,γ is a strictly positive P-martingale.

As recalled in Subsection 10.3.2, the process Wψ defined by

Wψ
t : = Wt −

∫ t

0

ψs ds

is a P
ψ,γ-Brownian motion and the process Mγ with Mγ

t : = Mt−
∫ t
0
λ(s)γsds

is a P
ψ,γ-martingale. In terms of these P

ψ,γ-martingales, the price process
follows

dSt = St− [r(t)dt+ σ(t)dWψ
t + φ(t)dMγ

t ]

and satisfies
R(t)St = x E(σ�Wψ)t E(φ�Mγ)t .

We shall use the decomposition

Wψ
t = Wt +

∫ t

0

θ(s)ds+
∫ t

0

λ(s)φ(s)
γs
σ(s)

ds

where θ(s) = b(s)−r(s)
σ(s) . Note that, in the particular case γ = 0, under P

−θ,0,
the risk premium of the jump part is equal to 0, the intensity of the Poisson
process N is equal to λ and the process Wt +

∫ t
0
θ(s)ds is a Brownian motion

independent of N .

Warning 10.5.1.3 In the case where γ is a deterministic function, the
inhomogeneous Poisson process N has a P

ψ,γ deterministic intensity equal to
λ(t)(1+γ(t)). The martingaleMγ has the predictable representation property
and is independent of Wψ. This is not the case when γ depends on W and the
pair (Wψ,Mγ) can fail to be independent under P

ψ,γ (see Example 10.3.2.1).

Comment 10.5.1.4 For a general study of changes of measures for jump-
diffusion processes, the reader can refer to Cheridito et al. [166].
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10.5.2 The Range of Prices for European Call Options

As the market is incomplete, it is not possible to give a hedging price for
each contingent claim B ∈ L2(FT ). In this section, we shall write P

γ = P
ψ,γ

where ψ and γ satisfy the relation (10.5.3); thus ψ is given in terms of γ
and γ > −1. At time t, we define a viable price V γ

t for the contingent
claim B using the conditional expectation (with respect to the σ-field Ft)
of the discounted contingent claim under the martingale-measure P

γ , that is,
R(t)V γ

t : = E
γ(R(T )B|Ft).

We now study the range of viable prices associated with a European call
option, that is, the interval ] infγ∈Γ V

γ
t , supγ∈Γ V

γ
t [, for B = (ST −K)+.

We denote by BS the Black and Scholes function, that is, the function such
that

R(t)BS(x, t) = E(R(T )(XT −K)+ |Xt = x) , BS(x, T ) = (x−K)+

when
dXt = Xt(r(t)dt+ σ(t) dWt) . (10.5.4)

In other words,

BS(x, t) = xN (d1) −K(RT /Rt)N (d2)

where

d1 =
1

Σ(t, T )

(

ln
( x
K

)
+
∫ T

t

r(u)du+
1
2
Σ2(t, T )

)

,

and Σ2(t, T ) =
∫ T
t
σ2(s)ds. We recall (see end of Subsection 2.3.2) that BS

is a convex function of x which satisfies

L(BS)(x, t) = r(t)BS(x, t) (10.5.5)

where

L(f)(x, t) =
∂f

∂t
(x, t) + r(t)x

∂f

∂x
(x, t) +

1
2
x2σ2(t)

∂2f

∂x2
(x, t) .

Furthermore, |∂xBS(x, t)| ≤ 1.

Theorem 10.5.2.1 Let P
γ ∈ Q. Then, any associated viable price of a

European call is bounded below by the Black and Scholes function, evaluated at
the underlying asset value, and bounded above by the underlying asset value,
i.e.,

R(t)BS(St, t) ≤ E
γ(R(T ) (ST −K)+|Ft) ≤ R(t)St .

The range of viable prices V γ
t = R(T )

R(t) E
γ((ST −K)+|Ft), is exactly the interval

]BS(St, t), St[.
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Proof: We give the proof in the case t = 0, the general case follows from the
Markov property. Setting

Λ(f)(x, t) = f((1 + φ(t))x, t) − f(x, t) − φ(t)x
∂f

∂x
(x, t) ,

Itô’s formula (10.2.1) for mixed processes leads to

R(T )BS(ST , T ) = BS(S0, 0)

+
∫ T

0

[L(RBS)(Ss, s) +R(s)λ(s)(γs + 1)Λ(BS)(Ss, s)] ds

+
∫ T

0

R(s)Ss−
∂BS
∂x

(Ss− , s) (σ(s)dW γ
s + φ(s)dMγ

s )

+
∫ T

0

R(s)Λ(BS)(Ss− , s) dM
γ
s .

The convexity of BS(·, t) implies that Λ(BS)(x, t) ≥ 0 and the Black-
Scholes equation (10.5.5) implies L[RBS] = 0. The stochastic integrals are
martingales; indeed

∣
∣∂BS

∂x (x, t)
∣
∣ ≤ 1 implies that |ΛBS(x, t)| ≤ 2xc where c is

the bound for the size of the jumps φ. Taking expectation with respect to P
γ

gives

E
γ(R(T )BS(ST , T )) = E

γ(R(T )(ST −K)+)

= BS(S0, 0) + E
γ

(∫ T

0

R(s)λ(s)(γs + 1)ΛBS(Ss, s) ds

)

.

The lower bound follows. The upper bound is a trivial one.

To establish that the range is the whole interval, we can restrict our
attention to the case of constant parameters γ. In that case, Wψ and Mγ

are independent, and the convexity of the Black-Scholes price and Jensen’s
inequality would lead us easily to a comparison between the P

γ price and the
Black-Scholes price, since

V γ(0, x) = E(BS(xE(φMγ)T , T )) ≥ BS(xE(E(φMγ)T ), T ) = BS(x, T ) .

We establish the following lemma.

Lemma 10.5.2.2 We have

lim
γ→−1

E
γ((ST −K)+) = BS(x, 0)

lim
γ→+∞

E
γ((ST −K)+) = x .

Proof: From the inequality |ΛBS(x, t)| ≤ 2xc , it follows that
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0 ≤ E

(∫ T

0

R(s)λ(s)(γ + 1)ΛBS(Ss, s) ds

)

≤ 2(γ + 1)c
∫ T

0

λ(s)Eγ(R(s)Ss) ds

= 2(γ + 1)cS0

∫ T

0

λ(s) ds

where the right-hand side converges to 0 when γ goes to −1. It can be noted
that, when γ goes to −1, the risk-neutral intensity of the Poisson process goes
to 0, that is there are no more jumps in the limit.

The equality for the upper bound relies on the convergence (in law) of ST
towards 0 as γ goes to infinity. The convergence of E

γ((K−ST )+) towards K
then follows from the boundedness character and the continuity of the pay-
off. The put-call parity gives the result for a call option. See Bellamy and
Jeanblanc [70] for details. �

The range of prices in the case of American options is studied in Bellamy
and Jeanblanc [70] and in the case of Asian options in Bellamy [69]. The
results take the following form:

• Let
R(t)Pγ(St, t) = esssupτ∈T (t,T )E

γ(R(τ)(K − Sτ )+ |Ft )

be a discounted American viable price, evaluated under the risk-neutral
probability P

γ (see Subsection 1.1.1 for the definition of esssup). Here,
T (t, T ) is the class of stopping times with values in the interval [t, T ]. Let
PAm be defined as the American-Black-Scholes function for an underlying
asset following (10.5.4), that is,

PAm(Xt, t) : = esssupτ∈T (t,T )E
γ(R(τ)(K −Xτ )+ |Xt ) .

Then
PAm(St, t) ≤ Pγ(St, t) ≤ K .

• The range of Asian-option prices is the whole interval

]xA(x, 0),
xR(T )
T

∫ T

0

1
R(u)

du[

where A is the function solution of the PDE equation (6.6.8) for the
evaluation of Asian options in a Black-Scholes framework.

Comments 10.5.2.3 (a) As we shall establish in the next section 10.5.3,
R(t)BS(St, t) is the greatest sub-martingale with terminal value equal to the
terminal pay-off of the option, i.e., (K − ST )+.
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(b) El Karoui and Quenez [307] is the main paper on super-replication
prices. It establishes that when the dynamics of the stock are driven by a
Wiener process, then the supremum of the viable prices is equal to the minimal
initial value of an admissible self-financing strategy that super-replicates the
contingent claim. This result is generalized by Kramkov [543]. See Mania [617]
and Hugonnier [191] for applications.

(c) Eberlein and Jacod [290] establish the absence of non-trivial bounds
on European option prices in a model where prices are driven by a purely
discontinuous Lévy process with unbounded jumps. The results can be
extended to a more general case, where St = eXt where X is a Lévy
process.(See Jakubenas [473].) These results can also be extended to the
case where the pay-off is of the form h(ST ) as long as the convexity of the
Black and Scholes function [which is defined, with the notation of (10.5.4),
as E(h(XT )|Xt = x)], is established. Bergman et al. [75], El Karoui et al.
[302, 301], Hobson [440] and Martini [625] among others have studied the
convexity property. See also Ekström et al. [296] for a generalization of this
convexity property to a multi-dimensional underlying asset. The papers of
Mordecki [413] and Bergenthum and Rüschendorf [74] give bounds for option
prices in a general setting.

10.5.3 General Contingent Claims

More generally, let B be any contingent claim, i.e., B ∈ L2(FT ). This
contingent claim is said to be hedgeable if there exists a process π and a
constant b such that R(T )B = b+

∫ T
0
πs d[RS]s.

Let Xy,π,C be the solution of

dXt = r(t)Xtdt+ πtXt− [σ(t)dW 0
t + φ(t)dMt] − dCt

X0 = y .

Here, (π,C) belongs to the class V(y) consisting of pairs of adapted processes
(π,C) such that Xy,π,C

t ≥ 0, ∀t ≥ 0, π being a predictable process and C an
increasing process. The minimal value

inf{y : ∃(π,C) ∈ V(y) , Xy,π,C
T ≥ B}

which represents the minimal price that allows the seller to hedge his position,
is the selling price of B or the super-replication price.

The non-negative assumption on the wealth process precludes arbitrage
opportunities.

Proposition 10.5.3.1 Here, γ is a generic element of Γ (see Definition
10.5.1.2). We assume that supγ E

γ(B) <∞. Let

] inf
γ

E
γ(R(T )B), sup

γ
E
γ(R(T )B)[
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be the range of prices. The upper bound supγ E
γ(R(T )B) is the selling price

of B.
The contingent claim is hedgeable if and only if there exists γ∗ ∈ Γ such

that supγ E
γ(R(T )B) = E

γ∗
(R(T )B). In this case E

γ(R(T )B) = E
γ∗

(R(T )B)
for any γ.

Proof: Let us introduce the random variable

R(τ)Vτ : = ess supγ∈ΓE
γ [BR(T ) |Fτ ]

where τ is a stopping time. This defines a process (R(t)Vt, t ≥ 0) which is a
P
γ-super-martingale for any γ. This super-martingale can be decomposed as

R(t)Vt = V0 +
∫ t

0

μsdW
γ
s +

∫ t

0

νsdM
γ
s −Aγ

t (10.5.6)

where Aγ is an increasing process. It is easy to check that μ and ν do not
depend on γ and that

Aγ
t = A0

t +
∫ t

0

(
μs φs
σ(s)

− νs

)

λ(s)γsds (10.5.7)

where A0 is the increasing process obtained for γ = 0. It is useful to write the
decomposition of the process RV under P

0 as:

R(t)Vt = V0 +
∫ t

0

μs
σ(s)

[σ(s)dW 0
s + φ(s)dMs] −

∫ t

0

R(s)dCs

where the process C is defined via

R(t) dCt : = dA0
t +
(
μt φ(t)
σ(t)

− νt

)

(dNt − λ(t)dt) . (10.5.8)

Note that W 0 is the Brownian motion W γ for γ = 0 and that M0 = M .

Lemma 10.5.3.2 The processes μ and ν defined in (10.5.6) satisfy:

(a)
μt φ(t)
σ(t)

− νt ≥ 0, a.s. ∀t ∈ [0, T ].

(b) The process C, defined in (10.5.8), is an increasing process.

Proof of the Lemma

� Part a: Suppose that the positivity condition is not satisfied and introduce

Ft : = {ω :
(
μt φ(t)
σ(t)

− νt

)

(ω) < 0}. Let n ∈ N. The process γn defined by

γnt = n1Ft belongs to Γ (see Definition 10.5.1.2) and for this process γn the
r.v.
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Aγn

t = A0
t+
∫ t

0

(
μs φ(s)
σ(s)

− νs

)

λ(s)γns ds = A0
t−n

∫ t

0

(
μs φ(s)
σ(s)

− νs

)−
λ(s)ds

fails to be positive for large values of n.

� Part b: The process C defined as

R(t)dCt = dA0
t +
(
μt φ(t)
σ(t)

− νt

)

(dNt − λ(t)dt)

= dA0
t −
(
μt φ(t)
σ(t)

− νt

)

λ(t)dt+
(
μt φ(t)
σ(t)

− νt

)

dNt (10.5.9)

will be shown to be the sum of two increasing processes. To this end, notice
that, on the one hand

μt φ(t)
σ(t)

− νt ≥ 0

which establishes the positivity of
(
μt φ(t)
σ(t)

− νt

)

dNt. On the other hand,

passing to the limit when γ goes to −1 on the right-hand side of (10.5.7)
establishes that the remaining part in (10.5.9),

A0
t −
∫ t

0

(
μs φ(s)
σ(s)

− νs

)

λ(s) ds ,

is an increasing (optional) process. �

We now complete the proof of Proposition 10.5.3.1. It is easy to check that
the triple (V, π, C), with VtRt πt =

μt
σ(t)

and C being the increasing process

defined via (10.5.8) satisfies

dVt = r(t)Vtdt+ πtVt− [σ(t)dW 0
t + φ(t)dMt] − dCt .

As in El Karoui and Quenez [307], it can be established that a bounded
contingent claim B is hedgeable if there exists γ∗ such that

E
γ∗

[R(T )B] = sup
γ∈Γ

E
γ [R(T )B] .

In this case, the expectation of the discounted value does not depend on the
choice of the e.m.m.: E

γ [R(T )B] = E
γ∗

[R(T )B] for any γ. In our framework,
this is equivalent to A0

t = 0, dt× dP a.s., which implies, from the second part
of the lemma, that μt φ(t)

σ(t) − νt = 0. In this case B is obviously hedgeable. �

Comment 10.5.3.3 The proof goes back to El Karoui and Quenez [306, 307]
and is used again in Cvitanić and Karatzas [208], for price processes driven
by continuous processes. Nevertheless, in El Karoui and Quenez, the reference
filtration may be larger than the Brownian filtration. In particular, there may
be a Poisson subfiltration in the reference filtration.
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10.6 Complete Markets with Jumps

In this section, we present some models involving jump-diffusion processes for
which the market is complete.

Our first model consists in a simple jump-diffusion model whereas our
second model is more sophisticated.

10.6.1 A Three Assets Model

Assume that the market contains a riskless asset with interest rate r and two
risky assets (S1, S2) with dynamics

dS1
t = S1

t−(b1(t)dt+ σ1(t)dWt + φ1(t)dMt)
dS2

t = S2
t−(b2(t)dt+ σ2(t)dWt + φ2(t)dMt) ,

whereW is a Brownian motion andM the compensated martingale associated
with an inhomogeneous Poisson process with deterministic intensity λ(t). We
assume that W and M are independent. Here, the coefficients bi, σi, φi and λ
are deterministic functions and φi > −1. The unique risk-neutral probability
Q is defined by (see Subsection 10.5.1) Q|Ft = Lψ,γ

t P|Ft , where

dLt = Lt− [ψtdWt + γtdMt] .

Here, the processes ψ and γ are FW,M -predictable, defined as a solution of

bi(t) − r(t) + σi(t)ψt + λ(t)φi(t)γt = 0, i = 1, 2 .

It is easy to check that, under the conditions

|σ1(t)φ2(t) − σ2(t)φ1(t)| ≥ ε > 0 ,

γ(t) =
[b2(t) − r(t)]σ1(t) − [b1(t) − r(t)]σ2(t)

λ (σ2(t)φ1(t) − σ1(t)φ2(t))
> −1 ,

there exists a unique solution such that L is a strictly positive local martingale.
Hence, we obtain an arbitrage free complete market.

Comments 10.6.1.1 (a) See Jeanblanc and Pontier [490] and Shirakawa
[789] for applications to option pricing. Using this setting makes it possible to
complete a financial market where the only risky asset follows the dynamics
(10.4.1), i.e.,

dSt = St−(btdt+ σtdWt + φtdMt) ,

with a second asset, for example a derivative product.
(b) The same methodology applies in a default setting. In that case if

dS0
t = rS0

t dt

dS1
t = S1

t (μ1dt+ σ1dWt)
dS2

t = S2
t−(μ2dt+ σ2dWt + ϕ2dMt)
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are three assets traded in the market, where S0 is riskless, S1 is default free and
S2 is a defaultable asset, the market is complete (see Subsection 7.5.6). Here,
W is a standard Brownian motion and M is the compensated martingale of
the default process, i.e., Mt = 1{τ≤t}−

∫ t∧τ
0

λsds (see Chapter 7). Vulnerable
claims can be hedged (see Subsection 7.5.6). See Bielecki et al. [90] and Ayache
et al. [33, 34] for an approach using PDEs.

10.6.2 Structure Equations

It is known from Emery [325] that, if X is a martingale and β a bounded
Borel function, then the equation

d[X,X]t = dt+ β(t)dXt (10.6.1)

has a unique solution. This equation is called a structure equation (see
also Example 9.3.3.6) and its solution enjoys the predictable representation
property (see Protter [727], Chapter IV). Relation (10.6.1) implies that the
process X has predictable quadratic variation d〈X,X〉t = dt. If β(t) is a
constant β, the martingale solution of

d[X,X]t = dt+ βdXt (10.6.2)

is called Azéma-Emery martingale with parameter β.

Dritschel and Protter’s Model

In [266], Dritschel and Protter studied the case where the dynamics of the
risky asset are

dSt = St−σdZt

where Z is a semi-martingale whose martingale part satisfies (10.6.2) with
−2 ≤ β < 0 and proved that, under some condition on the drift of Z, the
market is complete and arbitrage free.

Privault’s Model

In [485], the authors consider a model where the asset price is driven by
a Brownian motion on some time interval, and by a Poisson process on
the remaining time intervals. More precisely, let φ and α be two bounded
deterministic Borel functions, with α > 0, defined on R

+ and

λ(t) =
{
α2(t)/φ2(t) if φ(t) = 0,
0 if φ(t) = 0 .

We assume, to avoid trivial results, that the Lebesgue measure of the set
{t : φ(t) = 0} is neither 0 nor ∞. Let B be a standard Brownian motion,
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and N an inhomogeneous Poisson process with intensity λ. We denote by i
the indicator function

i(t) = 1{φ(t)=0}

We assume that B and N are independent and that limt→∞ λ(t) = ∞ and
λ(t) <∞, ∀t. The process (Xt, t ≥ 0) defined by

dXt = i(t)dBt +
φ(t)
α(t)

(dNt − λ(t)dt) , X0 = 0 (10.6.3)

satisfies the structure equation

d[X,X]t = dt+
φ(t)
α(t)

dXt .

From X, we construct a martingale Z with predictable quadratic variation
d〈Z,Z〉t = α2(t)dt, by setting

dZt = α(t)dXt, Z0 = 0,

that is,
dZt = i(t)α(t)dBt + φ(t) (dNt − λ(t)dt) , Z0 = 0.

Proposition 10.6.2.1 The martingale Z satisfies

d[Z,Z]t = α2(t)dt+ φ(t)dZt, (10.6.4)

and d〈Z,Z〉t = α2(t)dt.

Proof: Using the relations d[B,N ]t = 0 and i(t)φ(t) = 0, we have

d[Z,Z]t = i(t)α2(t)dt+ φ2(t)dNt

= i(t)α2(t)dt+ φ(t)
(

dZt − i(t)α(t)dBt + (1 − i(t))
α2(t)
φ(t)

dt

)

= α2(t)dt+ φ(t)dZt .

�
From the general results on structure equations which we have already
invoked, the martingale Z enjoys the predictable representation property.

Let S denote the solution of the equation

dSt = St−(μ(t)dt+ σ(t)dZt),

with initial condition S0 where the coefficients μ and σ are assumed to be
deterministic. Then,

St = S0 exp
(∫ t

0

σ(s)α(s)i(s)dBs −
1
2

∫ t

0

i(s)σ2(s)α2(s)ds
)

× exp
(∫ t

0

(μ(s) − φ(s)λ(s)σ(s))ds
) Nt∏

k=1

(1 + σ(Tk)φ(Tk)) ,

where (Tk)k≥1 denotes the sequence of jump times of N .
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Proposition 10.6.2.2 Let us assume that φ(t) r(t)−μ(t)
σ(t)α2(t) > −1, and let

ψ(t) : = φ(t)
r(t) − μ(t)
σ(t)α2(t)

.

Then, the unique e.m.m. is the probability Q such that Q|Ft = LtP|Ft ,where
dLt = Lt−ψ(t)dZt, L0 = 1.

Proof: It is easy to check that

d(StLtR(t)) = St−Lt−R(t)σ(t)dZt ,

where R(t) = ert, hence SRL is a P-local martingale. �

We now compute the price of a European call written on the underlying
asset S. Note that the two processes (B̃t = Bt−

∫ t
0
ψ(s)i(s)α(s)ds, t ≥ 0) and

(Nt −
∫ t
0
λ(s)(1 + φ(s))ds, t ≥ 0) are Q-martingales. Furthermore,

St = S0 exp
(∫ t

0

σ(s)α(s)i(s)dB̃s −
1
2

∫ t

0

i(s)σ2(s)α2(s)ds
)

× exp
(∫ t

0

(r(s) − φ(s)λ(s)σ(s)(1 + ψ(s))) ds
) Nt∏

k=1

(1 + σ(Tk)φ(Tk)) .

In order to price a European option, we compute EQ [R(T )(ST −K)+].
Let

BS(x, T ; r, σ2;K) = E[e−rT (xerT−σ2T/2+σWT −K)+]

denote the classical Black-Scholes function, where WT is a Gaussian centered
random variable with variance T . In the case of deterministic volatility
(σ(s), s ≥ 0) and interest rate (r(s), s ≥ 0), the price of a call in the Black-
Scholes model is

BS(x, T ;R,Σ(T );K), with R =
1
T

∫ T

0

r(s)ds and Σ(T ) =
1
T

∫ T

0

σ2(s)ds.

Let Γ σ(t) =
∫ t
0
i(s)α2(s)σ2(s)ds denote the variance of

∫ t
0
i(s)α(s)σ(s)dB̃s,

and Γ (t) =
∫ t
0
γ(s)ds, where γ(t) = λ(t)(1+φ(t)ψ(t)) denote the compensator

of N under Q.

Proposition 10.6.2.3 In this model, the price of a European option is

EQ

[

exp

(

−
∫ T

0

r(s)ds

)

(ST −K)+
]

= exp (−ΓT )
∞∑

k=0

1
k!

∫ T

0

· · ·
∫ T

0

dt1 · · · dtk γt1 · · · γtk

BS
(

S0 exp

(

−
∫ T

0

(φγσ)(s)ds

)
k∏

i=1

(1 + σ(ti)φ(ti)) , T ;R,
Γ σ
T

T
;K

)

.
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Proof: We have

EQ

[
R(T )(ST −K)+

]
=

∞∑

k=0

EQ

[
R(T )(ST −K)+ | NT = k

]
Q(NT = k),

with Q(NT = k) = exp(−ΓT )(ΓT )k/k!. Conditionally on {NT = k}, the jump
times (T1, . . . , Tn) have the law

1
Γ k
T

1{0<t1<···<tk<T}γt1 · · · γtkdt1 · · · dtk,

since the process (NΓ−1
t
, t ≥ 0) is a standard Poisson process. Hence,

conditionally on {N(Γ−1(ΓT )) = k} = {NT = k}, its jump times
(ΓT1 , . . . , ΓTk

) have a uniform law on [0, ΓT ]k (see Subsection 8.2.1). We then
use the fact that B̃ and N are also independent under Q, since (μ(t), t ≥ 0)
is deterministic, and the identity in law

ST
law= S0XT e

−
R T
0 φ(s)λ(s)σ(s)ds

NT∏

k=1

(1 + σ(Tk)φ(Tk)) ,

where

XT = exp

(∫ T

0

r(s)ds− Γ σ
T /2 +

(
Γ σ
T

T

)1/2

WT

)

,

with WT is independent of N .

Comment 10.6.2.4 Within the framework of Privault, the valuation and
hedging of European options is presented in Jeanblanc and Privault [485], the
valuation of exotic options is studied in El-Khatib [312].

The reader can refer to Hobson and Rogers [442] for a different model of
complete market with jumps.

10.7 Valuation of Options

Several articles have focused on the valuation of European options when the
underlying value follows a jump-diffusion process. Merton [643] was the first
one to obtain a closed form solution assuming that the market price of jump
is null (see Subsection 10.5.1). Kou and Wang [542] have studied the case of
double exponential jumps. Jump-diffusion models with stochastic volatility
and interest rate have also been developed (see for example Scott [776]). The
problem of American option valuation is more complex. It was investigated
by several authors. Bates [59] derived the early exercise premium by relying
on an extension of the MacMillan [608] and Barone-Adesi and Whaley [56]
approaches in a jump-diffusion setting.
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As shown by Chesney and Jeanblanc [174], this extension generates good
results only if the underlying process is continuous at the exercise boundary
with probability one (e.g., in the case of perpetual currency calls, when jumps
are negative). Otherwise, if the overshoot is strictly positive at the exercise
boundary (positive jumps for the currency in the call case) the pricing problem
is more difficult to tackle and one should be very cautious when applying a
MacMillan approximation. Therefore, a new approach is developed in the
paper [174].

Pham [709] considers the American put option valuation in a jump-
diffusion model (Merton’s assumptions), and relates this problem (which is
indeed an optimal stopping problem) to a parabolic integro-differential free
boundary problem. By extending the Riesz decomposition obtained by Carr et
al. [154] for a diffusion model, Pham derives a decomposition of the American
put price as the sum of a European price and an early exercise premium. The
latter term requires the identification of the exercise boundary. In the same
context, Zhang [873, 875] relies on variational inequalities and shows how to
use numerical methods, (finite difference methods), to price the American
put. Zhang [874] describes this problem as a free boundary problem, and by
using the MacMillan approximation obtains a price for the perpetual put, and
an approximation of the finite maturity put price. These results are obtained
only when jumps are positive. Mastroeni and Matzeu [628, 627] obtain an
extension of Zhang results in a multidimensional state space.

Boyarchenko and Levendorskii [119], Mordecki [659, 658] and Gerber
and Shiu [388] also consider the American option pricing problem. They
obtain solutions which are explicit only if the distribution of the jump size is
exponential or if the jump size is negative for a call (resp. positive for a put).
Mordecki [659] establishes the value of the boundary for a perpetual option
in terms of the law of the extrema of the underlying Lévy process.

The structure of this section is as follows. We first present the valuation of
European calls. We give the explicit solution when the jumps are log-normally
distributed. In the case of constant jump size, the PDE for option pricing is
then obtained. In Subsection 10.7.2, the perpetual American currency call
option and its exercise boundary are considered. Exact analytical solutions
are derived when the jump size is negative, i.e., when the overshoot of the
exercise boundary is equal to 0. They are based on the computation of the
Laplace transform of the first passage time of the process at the exercise
boundary, which is obtained by use of the optimal sampling theorem. As in
Zhang [874] or Bates [59], we then show, in Subsection 10.7.2, how an accurate
approximation for the valuation of finite maturity options can be obtained by
relying on the perpetual maturity case. See also � Chapter 11 for a study if
the jumps can take positive values.
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10.7.1 The Valuation of European Options

In this subsection, we suppose that the price of the risky asset has dynamics

dSt = St−(μdt+ σdWt + dMt)

where W is a Brownian motion and M is the compensated martingale
associated with a compound Poisson process, i.e., Mt =

∑Nt

k=1 Yk − tλE(Y1).
The coefficients μ, σ, λ are constant. We assume that the law of the jumps Yk
has support in ]− 1,∞[, so that S remains strictly positive. In a closed form,

St = S0e
μt exp

(

σWt −
1
2
σ2t

)

exp(−tλE(Y1))
Nt∏

k=1

(1 + Yk) .

When S is an exchange rate, Merton [643], Lamberton and Lapeyre [559]
and Nahum [664] choose to evaluate the derivatives under the e.m.m. Q

under which the underlying spot foreign exchange rate (St, t ≥ 0) follows
the dynamics

dSt = St−((r − δ)dt+ σdŴt + dMt)

where Ŵ is a Q-Brownian motion and Mt =
∑Nt

k=1 Yk − tλE(Y1) is a Q-
martingale. In an explicit form,

St = S0 exp
((

r −m− 1
2
σ2

)

t+ σŴt

) Nt∏

k=1

(1 + Yk) , (10.7.1)

where m = δ + λE(Y1). In particular, the Poisson process N has the same
intensity under P and Q, the law of Y1 is the same under both probabilities
(note that, in particular, EQ(Y1) = EP(Y1)) and

∑Nt

k=1 Yk is a Q-compound
Poisson process. As in Merton [643], there is no risk premium for jumps.

The price of a European call can be evaluated as follows: from (10.7.1),
we deduce

e−rT
EQ

(
(ST −K)+)

)

=
∞∑

n=0

e−(r+λ)T (λT )n

n!
EQ

[(

S0e
(r−m)TE(σŴ )T

n∏

k=1

(1 + Yk) −K

)+]

(10.7.2)

=
∞∑

n=0

e−λT (λT )n

n!

∫ ∞

−1

∫ ∞

−1

F (dy1) · · ·F (dyn)

× e−rT
EQ

[(

S0e
(r−m)TE(σŴ )T

n∏

k=1

(1 + yk) −K

)+]

=
∞∑

n=0

e−λT (λT )n

n!

∫ ∞

−1

∫ ∞

−1

F (dy1) · · ·F (dyn)BS
(

S0e
−mT

n∏

k=1

(1 + yk), r, σ, T

)
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where BS is the value of a plain vanilla call given by

BS(S0, θ, Σ, T ) = S0N (d1) −Ke−θTN (d2) , (10.7.3)

d1 =
ln(S0/K) + (θ +Σ2/2)T

Σ
√
T

, d2 = d1 −Σ
√
T .

In the case where 1 + Y1
law= eZ , where Z is a Gaussian r.v., we obtain, as

in Merton, a more pleasant form, using the stability of independent Gaussian
random variables under addition in the equality (10.7.2).

Proposition 10.7.1.1 When ln(1+Y ) law= N (μ, α2), the price of a European
call with maturity T is given by

C(S0, T ) =
∞∑

n=0

e−λT (λT )n

n!
e(θn−r)TBS(S0, θn, Σn, T ) (10.7.4)

where BS is the value of a plain vanilla call defined in (10.7.3), with
⎧
⎨

⎩

θn = r − δ − λE(Y1) + n ln(1+E(Y1))
T

Σ2
n = σ2 + nα2/T ,

. (10.7.5)

Proof: Assume that the 1 + Yj are independent log-normally distributed

r.v’s, i.e., ln(1 + Y1)
law= N (μ, α2). The expectation

EQ

[(

e(r−m)TE(σŴ )t
n∏

j=1

(1 + Yj) −K

)+]

in equation (10.7.2) is equal to

EQ

⎡

⎣

(

exp

((

r −m− σ2

2

)

T +
n∑

k=1

ln(1 + Yk) + σŴT

)

−K

)+
⎤

⎦ .

The r.v.
∑n

k=1 ln(1+Yk)+σŴT is normally distributed with expectation and
variance respectively equal to nμ and nα2 + σ2T = TΣ2

n. Therefore,

(

r −m− σ2

2

)

T +
n∑

k=1

ln(1 + Yk) + σŴT

=
(

r − δ − λE(Y1) −
σ2

2

)

T +
n∑

k=1

ln(1 + Yk) + σŴT

law= θnT +Σn

√
TG− Σ2

nT

2
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where Σn and θn are given by equations (10.7.5) and G is a standard Gaussian
variable.

It is straightforward to obtain the result given by formula (10.7.4). Indeed,
the latter expectation corresponds to the payoff of a standard European call,
with underlying adjusted drift and volatility respectively equal to θn and Σn.

The term e(θn−r)TBS(S0, θn, Σn, T ) in formula (10.7.4) is, therefore, the
value of the option conditional on knowing that exactly n Poisson jumps will
occur during the life of the option. The call price is a weighted average of
these prices. The weights are the probabilities that a Poisson random variable
takes the value n, for n ∈ N. �

Comments 10.7.1.2 (a) See Lipton [597] for a general discussion.
(b) The valuation of lookback options is studied in Nahum [664].
(c) Sepp [780] studies the barrier options by means of the Laplace

transform in time of the price.
(d) Asian options are presented in Bayraktar and Xing [62] and in

Boughamoura et al. [113] in a Lévy setting.

PDE for Option Prices

Suppose now that the dynamics of the risky asset (the currency) are

dSt = St−((r − δ)dt+ σdWt + φdMt) (10.7.6)

under the chosen risk-neutral probability. Here, W is a BM and M is the
compensated martingale of a Poisson process with constant intensity λ and
the coefficients r, δ, σ and φ > −1 are supposed to be constant. Our aim is to
compute C(St, T − t) = E(e−r(T−t)h(ST )|Ft) where h is a smooth function.
Applying the Feynman-Kac formula we obtain that, if C satisfies

σ2

2
x2 ∂

2C

∂x2
(x, τ) + (r − δ − φλ)x

∂C

∂x
(x, τ) − rC(x, τ) − ∂C

∂τ
(x, τ)

+ λ[C((1 + φ)x, τ) − C(x, τ)] = 0 (10.7.7)
C(x, 0) = h(x)

where τ = T − t, then C(St, T − t) is the value of the European call. However
this kind of PDE is difficult to solve.

10.7.2 American Option

We apply the previous computation to the case of an American option. We
suppose that the dynamics of the underlying asset are given by (10.7.6) and
that the jump size is constant and equal to φ. The discounted American call
price is a martingale in the continuation region. This means that if the spot
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price x is lower than the exercise boundary value at time t, the American call
value CA satisfies (10.7.7).

If the jump is positive, and if x belongs to the interval [ x̄
1+φ , x̄], where x̄

is the exercise boundary level at time t, the American call value satisfies

σ2

2
x2 ∂

2CA

∂x2
(x, τ) + (r − δ − φλ)x

∂CA

∂x
(x, τ) − rCA(x, τ)

− ∂CA

∂τ
(x, τ) + λ((1 + φ)x−K − CA(x, τ)) = 0 ,

because in this case, after the jump, the American call value is equal to its
intrinsic value.

The Valuation of the Perpetual American Option: Negative Jumps

We now assume that the jump is negative −1 < φ ≤ 0. Zhang’s results
[874] concerning the perpetual option value and the exercise boundary will be
rederived in this context.

The exercise boundary is defined as follows: for a given time t ∈ [0, T ]

bc(T − t) = inf {x ≥ 0 : x−K = CA(x, T − t)} . (10.7.8)

It is worth mentioning that, with a strictly positive foreign interest rate,
American and European call options have different prices. When the maturity
tends to infinity, the exercise boundary admits a limit b∗c (see Mordecki [659]).
As shown below, this limit b∗c is finite (for δ > 0). The option value is given
by:

CA(S0,+∞) = sup
τ

E((Sτ −K)e−rτ ) : = CA(S0) (10.7.9)

where τ runs over stopping times. Here, the +∞ indicates that the maturity
is infinite. It is proved in Mordecki [659] that one can restrict attention to the
case of first passage time stopping times. Since the jump size is negative, the
process is continuous on the boundary, therefore,

CA(S0) = sup
L≥S0

[(L−K)E(e−rTL)] = (b∗c −K)E(e−rTb∗c ) (10.7.10)

where TL is the first passage time of the process S out of the continuation
region :

TL = inf {t ≥ 0 : St ≥ L} .

From (10.4.6), with ! = ln(L/S0), the Laplace transform of the hitting time
is

EQ(e−rTL) =
(
S0

L

)ρ

∧ 1

where ρ is equal to g−1(r) (defined in 10.4.6) and is strictly greater than 1.
Indeed, in the case of the call, we use the positive root k of g(k) = r because we
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want the call value to be an increasing function of the underlying asset value.
(See (10.4.5) for the definition of the Laplace exponent g(k).) We can thus
derive the value of the exercise boundary as the value where the supremum
in equation (10.7.10) is attained:

b∗c =
ρK

ρ− 1
. (10.7.11)

In the continuation region, (i.e., if S0 <
ρK
ρ−1 ), the option value is:

CA(S0) =
(
S0

b∗c

)ρ

(b∗c −K) . (10.7.12)

Without jumps (λ = 0), we obtain the known formula (3.11.13). Indeed,
in this case g(k) = (r − δ)k + 1

2σ
2k(k − 1), hence ρ = −ν+

√
ν2+2r
σ with

ν =
(
r − δ − σ2/2

)
/σ .

Put prices can be obtained by the symmetry formula (see Subsection
10.4.2), used in the case φ > 0:

PA(S0,K, r, δ;σ, φ, λ) = KS0CA(1/S0, 1/K, δ, r;σ,−
φ

1 + φ
, λ(1 + φ)) .

Do not forget, when applying this formula, that the price of the put on the
left-hand side is evaluated under the risk-neutral probability in the domestic
economy, whereas on the right-hand side, the call should be evaluated under
the foreign risk-neutral probability. By relying on Subsection 10.4.2, the
exercise boundary of the put can be obtained:

bp(K,T − t, r, δ;φ, λ) bc(K,T − t, δ; r,
−φ

1 + φ
, λ(1 + φ)) = K2 , (10.7.13)

where now φ > 0.

An Approximation of the American Option Value

Let us now rely on the Barone-Adesi and Whaley approach [56] and on Bates’s
article [59]. If the American and European option values satisfy the same linear
PDE (10.7.7) in the continuation region, their difference DC (the American
premium) must also satisfy this PDE in the same region. Write:

DC(S0, T ) = yf(S0, y)

where y = 1 − e−rT , and where f is a function of two arguments that has
to be determined. In the continuation region, f satisfies the following PDE
which is obtained by a change of variables:
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σ2

2
x2 ∂

2f

∂x2
+(r−δ)x∂f

∂x
−rf
y
−(1−y)r ∂f

∂y
−λ[φx∂f

∂x
−f((1+φ)x, y)+f(x, y)] = 0 .

Let us now assume that the derivative of f with respect to y may be neglected.
Whether or not this is a good approximation is an empirical issue that we do
not discuss here.

The equation now becomes an ODE

σ2

2
x2 ∂

2f

∂x2
+ (r − δ)x

∂f

∂x
− rf

y
− λ[φx

∂f

∂x
− f((1 + φ)x, y) + f(x, y)] = 0 .

The value of the perpetual option satisfies almost the same ODE. The
only difference is that y is equal to 1 in the perpetual case, and therefore we
have r/y instead of r in the third term of the left-hand side. The form of the
solution is known (see (10.7.12)):

f(S0, y) = zSρ
0 .

Here, z is still unknown, and ρ is the positive solution of equation g(k) = r/y.
When S0 tends to the exercise boundary bc(T ), by the continuity of the

option value, the following equation is satisfied from the definition of the
American premium DC(x, T ):

bc(T ) −K = CE(bc(T ), T ) + yz bc(T )ρ , (10.7.14)

and by use of the smooth-fit condition1, the following equation is obtained:

1 =
∂CE

∂x
(bc(T )), T ) + yzρ(bc(T ))ρ−1 . (10.7.15)

In a jump-diffusion model this condition was derived by Zhang [873] in the
context of variational inequalities and by Pham [709] with a free boundary
formulation. We thus have a system of two equations (10.7.14) and (10.7.15)
and two unknowns z and bc(T ). This system can be solved: bc(T ) is the implicit
solution of

bc(T ) = K − CE(bc(T ), T ) +
(

1 − ∂CE

∂x
(bc(T ), T )

)
bc(T )
ρ

.

If S0 > bc(T ), CA(S0, T ) = S0−K. Otherwise, if S0 < bc(T ), the approximate
formula is

CA(S0, T ) = CE(S0, T ) +A(S0/bc(T ))ρ (10.7.16)

with

A =
(

1 − ∂CE

∂x
(bc(T ), T )

)
bc(T )
ρ

.

1 The smooth-fit condition ensures that the solution of the PDE is C1 at the
boundary. See Villeneuve [830].
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Here, (see (10.7.4)),

CE(S0, T ) =
∞∑

n=0

e−λT (λT )n

n!
eΓnTBS(S0, r + Γn, σ, T )

and BS is the Black and Scholes function:

BS(S0, θ, σ, T ) = S0N (d1) −Ke−θTN (d2) ,

Γn = −δ − φλ+
n ln(1 + φ)

T
,

d1 =
ln(S0/K) + (θ + σ2

2 )T

σ
√
T

, d2 = d1 − σ
√
T .

This approximation was obtained by Bates [59], for the put, in a more
general context in which 1 + φ is a log-normal random variable. This means
that his results could even be used with positive jumps for an American call.
However, as shown in Subsection 10.7.2, in this case the differential equation
whose solution is the American option approximation value, takes a specific
form just below the exercise boundary. Unfortunately, there is no known
solution to this differential equation. Positive jumps generate discontinuities
in the process on the exercise boundary, and therefore the problem is more
difficult to solve (see � Chapter 11).



11

Lévy Processes

In this chapter, we present briefly Lévy processes and some of their applica-
tions to finance. Lévy processes provide a class of models with jumps which
is sufficiently rich to reproduce empirical data and allow for some explicit
computations.

In a first part, we are concerned with infinitely divisible laws and in
particular, the stable laws and self-decomposable laws. We give, without
proof, the Lévy-Khintchine representation for the characteristic function of
an infinitely divisible random variable.

In a second part, we study Lévy processes and we present some martingales
in that setting. We present stochastic calculus for Lévy processes and changes
of probability. We study more carefully the case of exponentials and stochastic
exponentials of Lévy processes.

In a third part, we develop briefly the fluctuation theory and we proceed
with the study of Lévy processes without positive jumps and increasing
Lévy processes.

We end the chapter with the introduction of some classes of Lévy processes
used in finance such as the CGMY processes and we give an application of
fluctuation theory to perpetual American option pricing.

The main books on Lévy processes are Bertoin [78], Doney [260], Itô
[463], Kyprianou [553], Sato [761], Skorokhod [801, 802] and Zolotarev [878].
Each of these books has a particular emphasis: Bertoin’s has a general
Markov processes flavor, mixing deeply analysis and study of trajectories,
Sato’s concentrates more on the infinite divisibility properties of the one-
dimensional marginals involved and Skorokhod’s describes in a more general
setting processes with independent increments. Kyprianou [553] presents a
study of global and local path properties and local time. The tutorial papers
of Bertoin [81] and Sato [762] provide a concise introduction to the subject
from a mathematical point of view.

Various applications to finance can be found in the books by Barndorff-
Nielsen and Shephard [55], Boyarchenko and Levendorskii [120], Cont and
Tankov [192], Overhaus et al. [690], Schoutens [766]. Barndorff-Nielsen and

M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial
Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4 11,
c© Springer-Verlag London Limited 2009
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Shephard deal with simulation of Lévy processes and stochastic volatility,
Cont and Tankov with simulation, estimation, option pricing and integro-
differential equations and Overhaus et al. (the quantitative research team of
Deutsche Bank) with various applications of Lévy processes in quantitative
research, (as equity linked structures and volatility modeling); Schoutens
presents the mathematical tools in a concise manner.

The books [554] and [53] contain many interesting papers with application
to finance. Control theory for Lévy processes can be found in Øksendal and
Sulem [685].

11.1 Infinitely Divisible Random Variables

11.1.1 Definition

In what follows, we denote by x � y the scalar product of x and y, two elements
of R

d, and by |x| the euclidean norm of x.

Definition 11.1.1.1 A random variable X taking values in R
d with dis-

tribution μ is said to be infinitely divisible if its characteristic function
μ̂(u) = E(eiu �X) where u ∈ R

d, may be written for any integer n as the
nth-power of a characteristic function μ̂n, that is if

μ̂(u) = (μ̂n(u))n .

By a slight abuse of language, we shall also say that such a characteristic
function (or distribution function) is infinitely divisible. Equivalently, X is
infinitely divisible if

∀n, ∃(X(n)
i , i ≤ n, i.i.d.) such that X

law= X
(n)
1 +X

(n)
2 + · · · +X(n)

n .

Example 11.1.1.2 A Gaussian variable, a Cauchy variable, a Poisson vari-
able and the hitting time of the level a for a Brownian motion are examples
of infinitely divisible random variables. Gamma, Inverse Gaussian, Normal
Inverse Gaussian and Variance Gamma variables are also infinitely divisible
(see � Examples 11.1.1.9 for details and � Appendix A.4.4 and A.4.5 for
definitions of these laws). A uniformly distributed random variable, and more
generally any bounded random variable is not infinitely divisible. The next
Proposition 11.1.1.4 will play a crucial rôle in the description of infinitely
divisible laws.

Definition 11.1.1.3 A Lévy measure on R
d is a positive measure ν on

R
d \ {0} such that ∫

Rd\{0}
(1 ∧ |x|2) ν(dx) <∞ ,

i.e.,
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∫

|x|>1

ν(dx) <∞ and
∫

0<|x|≤1

|x|2ν(dx) <∞ .

In Feller [343], Lukacs [605], Sato [761] and Zolotarev [878], the reader will
find more properties of infinitely divisible random variables, as well as the
proofs of the following results.

Proposition 11.1.1.4 (Lévy-Khintchine Representation.) If X is an
infinitely divisible random variable with characteristic function μ̂, there exists
a unique triple (m,A, ν) where m ∈ R

d, A is a positive matrix and ν is a
Lévy measure such that

μ̂(u) = exp
(

iu �m− 1
2u �Au+

∫

Rd

(eiu � x − 1 − iu �x1{|x|≤1})ν(dx)
)

(11.1.1)

Sketch of the Proof: The Lévy-Khintchine representation formula may
be obtained by proving that an infinitely divisible random variable is the limit
in law of random variables of the form

Z(n) +
N

(n)
1∑

k=1

Y
(n)
k

where Z(n) is a Gaussian r.v. and
∑N

(n)
1

k=1 Y
(n)
k a compound Poisson process

(see Section 8.6) evaluated at time t = 1. The characteristic function for a
compound Poisson process is given in Proposition 8.6.3.4. See Bertoin [78] or
Sato [761] for a complete proof of this representation formula. �

� When
∫

Rd\{0} 1{|x|≤1}|x|ν(dx) <∞, we can write (11.1.1) in the reduced
form

μ̂(u) = exp
(

iu �m0 −
1
2
u �Au+

∫

Rd

(eiu � x − 1)ν(dx)
)

, (11.1.2)

where m0 = m −
∫

Rd x1{|x|≤1}ν(dx). We shall use this reduced form
representation whenever possible.

� When
∫

Rd 1{|x|>1}|x|ν(dx) <∞, it is possible to write (11.1.1) in the form

μ̂(u) = exp
(

iu � m̃− 1
2
u �Au+

∫

Rd

(eiu � x − 1 − iu �x)ν(dx)
)

,

where m̃ = m +
∫
|x|>1

x ν(dx). In that case, by differentiation of the Fourier
transform μ̂(u) with respect to u,
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E(X) = −iμ̂′(0) = m̃ = m+
∫

|x|>1

x ν(dx) .

If the r.v. X is positive, the Lévy measure ν is a measure on ]0,∞[ with∫
]0,∞[

(1 ∧ x)ν(dx) < ∞ (see � Proposition 11.2.3.11). It is more natural, in
this case, to consider, for λ > 0, E(e−λX) the Laplace transform of X, and
now, the Lévy-Khintchine representation takes the form

E(e−λX) = exp

(

−
(

λm0 +
∫

]0,∞[

ν(dx)(1 − e−λx)

))

.

Remark 11.1.1.5 The following converse of the Lévy-Khintchine represen-
tation holds true: any function ϑ of the form

ϑ(u) = exp
(

iu �m− u �Au+
∫

Rd

(eiu � x − 1 − iu �x1{|x|≤1})ν(dx)
)

where ν is a Lévy measure and A a positive matrix, is a characteristic function
which is obviously infinitely divisible (take mn = m/n,An = A/n, νn = ν/n).
Hence, there exists μ, infinitely divisible, such that ϑ = μ̂.

Warning 11.1.1.6 Some authors use a slightly different representation for
the Lévy-Khintchine formula. They define a centering function (also called
a truncation function) as an R

d-valued measurable bounded function h such
that (h(x) − x)/|x|2 is bounded. Then they prove that, if X is an infinitely
divisible random variable, there exists a triple (mh, A, ν), where ν is a
Lévy measure, such that

μ̂(u) = exp
(

iu �mh − 1
2
u �Au+

∫

Rd

(eiu � x − 1 − iu �h(x))ν(dx)
)

.

Common choices of centering functions on R are h(x) = x1{|x|≤1}, as in
Proposition 11.1.1.4 or h(x) = x

1+x2 (Kolmogorov centering). The triple
(mh, A, ν) is called a characteristic triple. The parameters A and ν do not
depend on h; when h is the centering function of Proposition 11.1.1.4, we do
not indicate the dependence on h for the parameter m.

Remark 11.1.1.7 The choice of the level 1 in the common centering function
h(x) = 1{|x|≤1} is not essential and, up to a change of the constant m, any
centering function hr(x) = 1{|x|≤r} can be considered.

Comment 11.1.1.8 In the one-dimensional case, when the law of X admits
a second order moment, the Lévy-Khintchine representation was obtained by
Kolmogorov [536]. Kolmogorov’s measure ν̃ corresponds to the representation

exp
(

ium+
∫

R

eiux − 1 − iux

x2
ν̃(dx)

)

.
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Hence, ν(dx) = 1{x�=0}ν̃(dx)/x2 and the mass of ν̃ at 0 corresponds to the
Gaussian term.

Example 11.1.1.9 We present here some examples of infinitely divisible laws
and give their characteristics in reduced form whenever possible (see equation
(11.1.2)).

• Gaussian Laws. The Gaussian law N (a, σ2) has characteristic function
exp(iua− u2σ2/2). Its characteristic triple in reduced form is (a, σ2, 0).

• Cauchy Laws. The Cauchy law with parameter c > 0 has the character-
istic function

exp(−c|u|) = exp
(
c

π

∫ ∞

−∞
(eiux − 1)x−2dx

)

.

Here, we make the convention
∫ ∞

−∞
(eiux − 1)x−2dx = lim

ε→0

∫ ∞

−∞
(eiux − 1)x−21{|x|≥ε}dx .

The reduced form of the characteristic triple for a Cauchy law is

(0, 0, cπ−1x−2dx) .

• Gamma Laws. If X follows a Γ (a, ν) law, its Laplace transform is, for
λ > 0,

E(e−λX) =
(

1 +
λ

ν

)−a

= exp
(

−a
∫ ∞

0

(1 − e−λx)e−νx dx

x

)

.

Hence, the reduced form of the characteristic triple for a Gamma law is
(0, 0,1{x>0} ax

−1e−νxdx).
• Brownian Hitting Times. The first hitting time of a > 0 for a Brownian

motion has characteristic triple (in reduced form)
(

0, 0,
a√
2π

x−3/21{x>0}dx

)

.

Indeed, we have seen in Proposition 3.1.6.1 that E(e−λTa) = e−a
√

2λ.
Moreover, from � Appendix A.5.8

√
2λ =

1√
2Γ (1/2)

∫ ∞

0

(1 − e−λx)x−3/2dx ,

hence, using that Γ (1/2) =
√
π

E(e−λTa) = exp
(

− a√
2π

∫ ∞

0

(1 − e−λx)x−3/2dx

)

.
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• Inverse Gaussian Laws. The Inverse Gaussian laws (see � Appendix
A.4.4) have characteristic triple (in reduced form)

(

0, 0,
a√

2πx3
exp
(

−1
2
ν2x

)

1{x>0}dx

)

.

Indeed

exp
(

− a√
2π

∫ ∞

0

dx

x3/2
(1 − e−λx) e−ν2x/2

)

= exp
(

− a√
2π

∫ ∞

0

dx

x3/2

(
(e−ν2x/2 − 1) + (1 − e−(λ+ν2/2)x)

))

= exp(−a(−ν +
√
ν2 + 2λ)

is the Laplace transform of the first hitting time of a for a Brownian motion
with drift ν.

11.1.2 Self-decomposable Random Variables

We now focus on a particular class of infinitely divisible laws.

Definition 11.1.2.1 A random variable is self-decomposable (or of class
L) if

∀c ∈]0, 1[, ∀u ∈ R, μ̂(u) = μ̂(cu)μ̂c(u) ,

where μ̂c is a characteristic function.

In other words, X is self-decomposable if

for 0 < c < 1, ∃Xc such that X
law= cX +Xc

where on the right-hand side the r.v’s X and Xc are independent. Intuitively,
we “compare” X with its multiple cX, and need to add a “residual” variable
Xc to recover X.

We recall some properties of self-decomposable variables (see Sato [761] for
proofs). Self-decomposable variables are infinitely divisible. The Lévy measure
of a self-decomposable r.v. is of the form

ν(dx) =
h(x)
|x| dx

where h is increasing for x > 0 and decreasing for x < 0.

Proposition 11.1.2.2 (Sato’s Theorem.) If the r.v. X is self-decomposa-
ble, then X

law= Z1 where the process Z satisfies Zct
law= cZt and has

independent increments.
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Processes with independent increments are called additive processes in
Sato [761], Chapter 2. Self-decomposable random variables are linked with
Lévy processes in a number of ways, in particular the following Jurek-Vervaat
representation [499] of self-decomposable variables X, which, for simplicity,
we assume to take values in R

+. For the definitions of Lévy processes and
subordinators, see � Subsection 11.2.1.

Proposition 11.1.2.3 (Jurek-Vervaat Representation.) A random vari-
able X ≥ 0 is self-decomposable if and only if it satisfies X law=

∫∞
0
e−sdYs ,

where (Ys, s ≥ 0) denotes a subordinator, called the background driving
Lévy process (BDLP) of X.

The Laplace transforms of the random variables X and Y1 are related by
the following

E(exp(−λY1)) = exp
(

λ
d

dλ
ln E(exp(−λX))

)

.

Example 11.1.2.4 We present some examples of self-decomposable random
variables:

• First Hitting Times for Brownian Motion. Let W be a Brownian
motion. The random variable Tr = inf{t : Wt = r} is self-decomposable.
Indeed, for 0 < λ < 1,

Tr = Tλr + (Tr − Tλr)

= λ2T̂r + (Tr − Tλr)

where T̂r = 1
λ2Tλr

law= Tr, and T̂r and (Tr − Tλr) are independent, as a
consequence of both the scaling property of the process (Ta, a ≥ 0) and
the strong Markov property of the Brownian motion process at Tλr (see
Subsection 3.1.2).

• Last Passage Times for Transient Bessel Processes. Let R be a
transient Bessel process (with index ν > 0) and

Λr = sup{t : Rt = r} .

The random variable Λr is self-decomposable. To prove the self-decompo-
sability, we use an argument similar to the previous one, i.e., independence
for pre- and post-Λr processes, although Λr is not a stopping time.

Comment 11.1.2.5 See Sato [760], Jeanblanc et al. [484] and Shanbhag and
Sreehari [783] for more information on self-decomposable r.v’s and BDLP’s.
In Madan and Yor [613] the self-decomposability property is used to construct
martingales with given marginals. In Carr et al. [152] the risk-neutral process
is modeled by a self-decomposable process.
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11.1.3 Stable Random Variables

Definition 11.1.3.1 A real-valued r. v. is stable if for any a > 0, there exist
b > 0 and c ∈ R such that [μ̂(u)]a = μ̂(bu) eicu . A random variable is strictly
stable if for any a > 0, there exists b > 0 such that [μ̂(u)]a = μ̂(bu) .

In terms of r.v’s, X is stable if

∀n, ∃(βn, γn), such that X
(n)
1 + · · · +X(n)

n
law= βnX + γn

where (X(n)
i , i ≤ n) are i.i.d. random variables with the same law as X.

For a strictly stable r.v., it can be proved, with the notation of the
definition, that b (which depends on a) is of the form b(a) = ka1/α with
0 < α ≤ 2. The r.v. X is then said to be α-stable. For 0 < α < 2, an α-stable
random variable satisfies E(|X|γ) <∞ if and only if γ < α. The second order
moment exists if and only if α = 2, and in that case X is a Gaussian random
variable, hence has all moments.

A stable random variable is self-decomposable and hence is infinitely
divisible.

Proposition 11.1.3.2 The characteristic function μ of an α-stable law can
be written

μ̂(u) =

⎧
⎨

⎩

exp(imu− 1
2σ

2u2), forα = 2
exp (imu− γ|u|α[1 − iβ sgn(u) tan(πα/2)]) , forα = 1, = 2

exp (imu− γ|u|(1 + iβ ln |u|)) , α = 1

where β ∈ [−1, 1] and m, γ, σ ∈ R. For α = 2, the Lévy measure of an α-stable
law is absolutely continuous with respect to the Lebesgue measure, with density

ν(dx) =
{

c+x−α−1dx if x > 0
c−|x|−α−1dx if x < 0 . (11.1.3)

Here, c± are positive real numbers given by

c+ =
1
2
(1 + β)

αγ

Γ (1 − α) cos(απ/2)
,

c− =
1
2
(1 − β)

αγ

Γ (1 − α) cos(απ/2)
.

Conversely, if ν is a Lévy measure of the form (11.1.3), we obtain the
characteristic function of the law on setting β = (c+ − c−)/(c+ + c−) .
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For α = 1, the definition of c± can be given by passing to the limit: c± = 1±β.
For β = 0,m = 0, X is said to have a symmetric stable law. In that case

μ̂(u) = exp(−γ|u|α) .

Example 11.1.3.3 A Gaussian variable is α-stable with α = 2. The Cauchy
law is stable with α = 1. The hitting time T1 = inf{t : Wt = 1} where W is
a Brownian motion is a (1/2)-stable variable.

Comment 11.1.3.4 The reader can refer to Bondesson [108] for a particular
class of infinitely divisible random variables and to Samorodnitsky and Taqqu
[756] and Zolotarev [878] for an extensive study of stable laws and stable
processes. See also Lévy-Véhel and Walter [586] for applications to finance.

11.2 Lévy Processes

11.2.1 Definition and Main Properties

Definition 11.2.1.1 Let (Ω,F ,P) be a probability space. An R
d-valued

process X such that X0 = 0 is a Lévy process if

(a) for every s, t ≥ 0 , Xt+s −Xs is independent of FX
s ,

(b) for every s, t ≥ 0 the r.v’s Xt+s −Xs and Xt have the same law,
(c) X is continuous in probability, i.e., for fixed t, P(|Xt − Xu| > ε) → 0

when u→ t for every ε > 0.

It can be shown that up to a modification, a Lévy process is càdlàg (it is in
fact a semi-martingale, see � Corollary 11.2.3.8).

Example 11.2.1.2 Brownian motion, Poisson processes and compound Pois-
son processes are examples of Lévy processes (see Section 8.6). If X is a
Lévy process, C a matrix and D a vector, CXt +Dt is also a Lévy process.
More generally, the sum of two independent Lévy processes is a Lévy process.

One can easily generalize this definition to F-Lévy processes, where F is
a given filtration, by changing (a) into:

(a’) for every s, t, Xt+s −Xs is independent of Fs.

Another generalization consists of the class of additive processes that satisfy
(a) and often (c), but not (b). Natural examples of additive processes are
the processes (Ta, a ≥ 0) of first hitting times of levels by a diffusion Y , a
consequence of the strong Markov property.

A particular class of Lévy processes is that of subordinators:
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Definition 11.2.1.3 A Lévy process that takes values in [0,∞[ (equivalently,
which has increasing paths) is called a subordinator.

In this case, the parameters in the Lévy-Khintchine formula are m ≥ 0, σ = 0
and the Lévy measure ν is a measure on ]0,∞[ with

∫
]0,∞[

(1 ∧ x)ν(dx) <∞.
This last property is a consequence of � Proposition 11.2.3.11.

Proposition 11.2.1.4 (Strong Markov Property.) Let X be an F-Lévy
process and τ an F-stopping time. Then, on the set {τ <∞} the process Yt =
Xτ+t −Xτ is an (Fτ+t, t ≥ 0)-Lévy process; in particular, Y is independent
of Fτ and has the same law as X.

Proof: Let us set ϕ(t;u) = E(eiuXt). Let us assume that the stopping time τ
is bounded and let A ∈ Fτ . Let uj , j = 1, . . . , n be a sequence of real numbers
and 0 ≤ t0 < · · · < tn an increasing sequence of positive numbers. Then,
applying the optional sampling theorem several times, for the martingale
Zt(u) = eiuYt/E(eiuYt),

E

(
1Ae

i
Pn

j=1 uj(Ytj
−Ytj−1

)
= E

⎛

⎝1A

∏

j

Zτ+tj (uj)
Zτ+tj−1(uj)

ϕ(tj − tj−1, uj)

⎞

⎠

= P(A)
∏

j

ϕ(tj − tj−1, uj) .

The general case is obtained by passing to the limit. �

Proposition 11.2.1.5 Let X be a one-dimensional Lévy process. Then, for
any fixed t,

(Xu, u ≤ t) law= (Xt −X(t−u)−, u ≤ t) . (11.2.1)

Consequently, (Xt, infu≤tXu) law= (Xt, Xt − supu≤tXu). Moreover, for any
α ∈ R, the process (eαXt

∫ t
0
du e−αXu , t ≥ 0) is a Markov process and for any

fixed t, (

eXt , eXt

∫ t

0

e−Xs−ds

)
law=
(

eXt ,

∫ t

0

eXs−ds

)

.

Proof: It is straightforward to prove (11.2.1), since the right-hand side has
independent increments which are distributed as those of the left-hand side.
The proof of the remaining part can be found in Carmona et al. [141] and
Donati-Martin et al. [258]. �

Proposition 11.2.1.6 If X is a Lévy process, for any t > 0, the r.v. Xt is
infinitely divisible.

Proof: Using the decomposition Xt =
∑n

k=1(Xkt/n −X(k−1)t/n) we observe
the infinitely divisible character of any variable Xt. �
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We shall prove later (see � Corollary 11.2.3.8) that a Lévy process is a
semi-martingale. Hence, the integral of a locally bounded predictable process
with respect to a Lévy process is well defined.

Proposition 11.2.1.7 Let (X,Y ) be a two-dimensional Lévy process. Then

Ut = e−Xt

(

u+
∫ t

0

eXs−dYs

)

, t ≥ 0

is a Markov process, whose semigroup is given by

Qt(u, f) = E

(

f(ue−Xt +
∫ t

0

e−Xs−dYs)
)

.

Comment 11.2.1.8 The last property in Proposition 11.2.1.5 is a particular
case of Proposition 11.2.1.7.

Exercise 11.2.1.9 Prove that (eαXt
∫ t
0
du e−αXu , t ≥ 0) is a Markov process

whereas
∫ t
0
du eαXu is not. Give an explanation of this difference.

Hint: For s < t, write

Yt = eαXt

∫ t

0

du e−αXu = eα(Xt−Xs)eαXsYs + eα(Xt−Xs)

∫ t

s

e−α(Xu−Xs)du

and use the independence property of the increments of X. �

11.2.2 Poisson Point Processes, Lévy Measures

Let X be a Lévy process. For every bounded Borel set Λ ∈ R
d, such that

0 /∈ Λ̄, where Λ̄ is the closure of Λ, we define

NΛ
t =

∑

0<s≤t

1Λ(ΔXs)

to be the number of jumps up to time t which take values in Λ. The map
Λ→ NΛ

t (ω) defines a σ-finite measure on R
d \ 0 denoted by Nt(ω, dx).

Definition 11.2.2.1 The σ-additive measure ν defined on R
d \ 0 by

ν(Λ) = E(NΛ
1 )

is called the Lévy measure of the process X.

We shall soon show (see � Remark 11.2.3.3) that the Lévy measure is indeed
the same measure which occurs in the Lévy-Khintchine representation of the
r.v. X1.
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Proposition 11.2.2.2 Let X be a Lévy process with Lévy measure ν.
(i) Assume ν(Λ) <∞. Then, the process

NΛ
t =

∑

0<s≤t

1Λ(ΔXs), t ≥ 0

is a Poisson process with intensity ν(Λ).
(ii) Let Λi be a finite collection of sets and assume that, ∀i, ν(Λi) < ∞.

The processes NΛi are independent if and only if ν(Λi ∩ Λj) = 0, i = j,
in particular if the sets Λi are disjoint. If Λ = ∪iΛi, with disjoint Λi, then
NΛ =

∑
iN

Λi is a Poisson process with intensity
∑

i ν(Λi).

Proof: (i) The process NΛ has independent and stationary increments,
its paths are increasing and right continuous and increase only by jumps of
size 1, hence it is a Poisson process (Watanabe’s characterization, Proposi-
tion 8.3.3.1).

(ii) We give the proof for two sets Λ and Γ .
(a) We first assume that Λ and Γ are disjoint. The processes NΛ and NΓ

are Poisson processes in the same filtration and they never jump at the same
time. Hence, they are independent (see Proposition 8.3.6.2).

(b) Conversely, assume that NΛ and NΓ are independent. From the
independence property, for any pair (λ, μ) of positive real numbers

E
(
exp
(
−(λNΓ

t + μNΛ
t )
))

= E
(
exp
(
−λNΓ

t

))
E
(
exp
(
−μNΛ

t

))
,

hence

exp
(

−t
∫
ν(dx)

(
1 − e−(λ1Γ (x)+μ1Λ(x))

))

= exp
(

−t
∫
ν(dx)

(
1 − e−λ1Γ (x)

))

exp
(

−t
∫
ν(dx)

(
1 − e−μ1Λ(x)

))

.

It follows that
∫

Λ∩Γ
ν(dx)(1 − e−(λ+μ)) +

∫

Λ\Γ
ν(dx)(1 − e−λ) +

∫

Γ\Λ
ν(dx)(1 − e−μ)

=
∫

Γ

ν(dx)(1 − e−λ) +
∫

Λ

ν(dx)(1 − e−μ) ,

therefore
∫

Λ∩Γ
ν(dx)(1 − e−(λ+μ)) =

∫

Λ∩Γ
ν(dx)(1 − e−λ) +

∫

Λ∩Γ
ν(dx)(1 − e−μ)

which implies that ν(Γ ∩ Λ) = 0. �

It follows that, if ν(Γ ) < ∞, the process (NΓ
t − ν(Γ )t, t ≥ 0) is a

martingale. Note that if Γ and Λ are disjoint, NΓ and NΛ are independent,
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and the processes NΓ
t − ν(Γ )t and NΛ

t − ν(Λ)t are orthogonal martingales.
The jump process of a Lévy process is a Poisson point process (see Section 8.9).

Let Λ be a Borel set of R
d with 0 /∈ Λ̄, and f a positive Borel function

defined on Λ. We have, by definition of Nt,
∫

Λ

f(x)Nt(ω, dx) =
∑

0<s≤t

f(ΔXs(ω))1Λ(ΔXs(ω)) .

Proposition 11.2.2.3 (Compensation Formula.) Let f be a positive
function such that f(0) = 0. Then,

E

(
∑

0<s≤t

f(ΔXs)

)

= t

∫

Rd

f(x)ν(dx) .

(i) If
∫

Rd f(x)ν(dx) < ∞, then
∑

0<s≤t f(ΔXs) is a Lévy process, with
Lévy measure ν ◦ f−1, the image of ν by f . The process

Mf
t :=

∑

0<s≤t

f(ΔXs) − t

∫

Rd

f(x)ν(dx)

is a martingale. More generally, if H is a positive predictable function (i.e.,
H : Ω × R

+ × R
d → R

+ is P × B measurable) such that Hs(ω, 0) = 0

E

[
∑

s≤t

Hs(ω,ΔXs)

]

= E

[∫ t

0

ds

∫
dν(x)Hs(ω, x)

]

.

(ii) Let Λ be a Borel set in R
d such that 0 /∈ Λ̄ and g : = f1Λ. Then if

g ∈ L1(dν) ∩ L2(dν), the process (Mg
t )2 − t

∫
Λ
f2(x)ν(dx) is a martingale. In

particular,

E

(∫

Λ

f(x)Nt(·, dx) − t

∫

Λ

f(x)ν(dx)
)2

= t

∫

Λ

f2(x)ν(dx) .

Proof: In a first step, these results are established for functions f of the
form f(x) =

∑
αi1Ai(x) where the sets Ai are disjoint, using properties

of compound Poisson processes. Then, it suffices to use the dominated
convergence theorem. �

Example 11.2.2.4 The Gamma process is a Lévy process with Lévy measure
dxx−1e−x, and for α > 0, the process

∑
0<s≤t(Δγs)

α is a subordinator with

Lévy measure να(dy) = α−1 dy y−1e−y1/α

.

In the particular cases of Poisson processes and compound Poisson processes,
the compensation formula in Proposition 11.2.2.3 was already obtained
respectively as a direct consequence of (8.2.4) for Poisson processes and as
a consequence of Proposition 8.6.3.6 for compound Poisson processes.
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One can extend the exponential formula (8.6.2) to Lévy processes:

Proposition 11.2.2.5 (Exponential Formula.) Let X be a Lévy process
and ν its Lévy measure.

(i) For any t ∈ R
+, ui ≥ 0, and f satisfying
∫

Λ

(1 − e−u � f(x))ν(dx) <∞ ,

one has:

E

(

exp
(

−u �
∫

Λ

f(x)Nt(·, dx)
))

= exp
(

−t
∫

Λ

(1 − e−u � f(x))ν(dx)
)

.

(ii) For every t and every Borel function f defined on R
+ × R

d such that∫ t
0
ds
∫
|1 − ef(s,x)|ν(dx) <∞, one has

E

⎡

⎣exp

⎛

⎝
∑

s≤t

f(s,ΔXs)1{ΔXs �=0}

⎞

⎠

⎤

⎦ = exp
(
−
∫ t

0

ds

∫

R

(1 − ef(s,x))ν(dx)
)
.

Exercise 11.2.2.6 Let X be a Lévy process with finite variance. Check that
E(Xt) = tE(X1) and Var(Xt) = tVar(X1). �

Exercise 11.2.2.7 Prove that, if f ∈ L2(ν1Λ),

Var
∫

Λ

f(x)N(t, dx) = t

∫

Λ

f2(x)ν(dx) .

Prove that E((NΛ
t )2) = t2(ν(Λ))2 + t ν(Λ). �

Exercise 11.2.2.8 This exercise will provide another proof of Proposition
11.2.2.2. Assuming that NΓ and NΛ are independent, prove that ν(Γ∩Λ) = 0.
Hint: The integration by parts formula leads to

NΓ
t N

Λ
t =

∫ t

0

NΓ
s−dN

Λ
s +

∫ t

0

NΛ
s−dN

Γ
s +

∑

s≤t

ΔNΓ
s ΔN

Λ
s

=
∫ t

0

NΓ
s−dN

Λ
s +

∫ t

0

NΛ
s−dN

Γ
s +

∑

s≤t

ΔNΓ∩Λ
s .

Hence

E(NΓ
t N

Λ
t ) = ν(Λ)E

(∫ t

0

NΓ
s ds

)

+ ν(Γ )E
(∫ t

0

NΛ
s ds

)

+ tν(Γ ∩ Λ)

= t2ν(Γ )ν(Λ) + tν(Γ ∩ Λ) .

It remains to note that E(NΓ
t N

Λ
t ) = t2ν(Λ)ν(Γ ), because of our hypothesis of

independence, thus ν(Λ ∩ Γ ) = 0. We might also have obtained the result by
noting that

∑
s≤tΔN

Γ
s ΔN

Λ
s = 0, since the independent processes NΓ and

NΛ do not have common jumps. �
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Exercise 11.2.2.9 Let X be a real-valued Lévy process. Prove the following
assertions:

1. If E(|X1|) <∞, then (Xt − tE(X1), t ≥ 0) is a martingale.
2. If E(exp(λXt)) < ∞, then (exp(λXt)[E(exp(λXt))]−1, t ≥ 0) is a

martingale. (See also � Subsection 11.3.1.)
3. If μ̂t(u) = E(eiuXt), the process (eiuXt/μ̂t(u), t ≥ 0) is a martingale.
4. For t, s ≥ 0, μ̂t+s = μ̂tμ̂s and μ̂t does not vanish.

�

Exercise 11.2.2.10 Let Λ be such that 0 /∈ Λ̄ and f ∈ L1(ν1Λ). Prove that
the process

∫
Λ
f(x)Nt(·, dx) is a compound Poisson process. �

Exercise 11.2.2.11 The Ornstein-Uhlenbeck Process Driven by a
Lévy Process. The OU process driven by the Lévy process (Xt, t ≥ 0) with
initial state U0 and parameter c is the solution of

Ut = U0 +Xt − c

∫ t

0

Usds .

Check that

Ut = e−ct

(

U0 +
∫ t

0

ecsdXs

)

.

Hint: This is a particular case of Proposition 11.2.1.7. See Novikov [678] and
Hadjiev [416] for a study of these OU processes. �

Exercise 11.2.2.12 The Structure of Compound Poisson Processes.
Let (Yn) be a sequence of random variables, and (Tn) an increasing sequence
of random times such that the series

∑
n |Yn|1{Tn≤t} converges and that

the process Xt =
∑

n Yn1{Tn≤t} is a Lévy process. Prove that the random
variables (Sn = Tn−Tn−1, n ≥ 1) are i.i.d. with exponential law and that the
(Yn, n ≥ 0) are i.i.d. and independent of (Sn, n ≥ 1). �

Exercise 11.2.2.13 Let X be a Lévy process and Qt =
∑

s≤t(ΔXs)2. Prove
that

E(e−λQt) = exp
(

−t
∫ ∞

−∞
(1 − e−λx2

)ν(dx)
)

.

See Carr et al. [151] for some applications to finance. �

Exercise 11.2.2.14 (a) Prove that, if (Xt, t ≥ 0) is a Lévy process, then for
every n ∈ N, one has

(Xnt, t ≥ 0) law= (X(1)
t +X

(2)
t + · · · +X

(n)
t , t ≥ 0) (11.2.2)

where the X(i)
t are n independent copies of X.
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(b) Let (Xt, t ≥ 0) be a Lévy process starting from 0, and let a, b > 0.
Define

Yt =
∫ bt

at

du

u
Xu, t ≥ 0.

Prove that Y also satisfies (11.2.2), although the process (Yt, t ≥ 0) is not a
Lévy process, unless Xu = cu, u ≥ 0.

(c) Prove that, if the process (Xt, t ≥ 0) satisfies (11.2.2), then the process
X considered as a r.v. with values in D([0,∞[) is infinitely divisible.

Let us call processes that satisfy (11.2.2) IDT processes (infinitely divisible
in time). This exercise shows that there are many IDT processes which are
not Lévy processes. See Mansuy [620] and Es-Sebaiy and Ouknine [334]. �

11.2.3 Lévy-Khintchine Formula for a Lévy Process

Proposition 11.2.3.1 Let X be a Lévy process taking values in R
d. Then,

for each t, the r.v. Xt is infinitely divisible and its characteristic function is
given by the Lévy-Khintchine formula: for u ∈ R

d,

E(exp(iu �Xt))

= exp
(

t

(

iu �m− u �Au
2

+
∫

Rd

(eiu � x − 1 − iu �x1|x|≤1)ν(dx)
))

,

where m ∈ R
d, A is a positive semi-definite matrix, and ν is a Lévy measure

on R
d \{0}. The r.v. Xt admits the characteristic triple (tm, tA, tν). We shall

say in short that X is a (m,A, ν) Lévy process.

Proof: Let X be a Lévy process. We have seen that Xt is an infinitely
divisible random variable. In particular the distribution of X1 is infinitely
divisible and admits a Lévy-Khintchine representation (see Proposition
11.1.1.4). The Lévy-Khintchine representation for Xt is then obtained from
that of X1, first for t ∈ N, then for t ∈ Q

+ and for any t, using the continuity
in law w.r.t. time for Lévy processes. �

Exercise 11.2.3.2 Express the Lévy-Khintchine representation of the r.v.∑n
i=1 λi(Xti+1 − Xti) in terms of the Lévy-Khintchine representation of the

process X, or of the r.v. X1. �

Remark 11.2.3.3 Let us check in a particular case that the Lévy measure
which appears in the Lévy-Khintchine formula is the same as the one which
appears in Definition 11.2.2.1 when X is a real-valued Lévy process with
bounded variation (i.e., the difference of two subordinators) and without drift
term (see Bertoin [78] for the general case). From

eiuXt = 1 +
∑

s≤t

(
eiuXs − eiuXs−

)
= 1 +

∑

s≤t

eiuXs−(eiuΔXs − 1) ,
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we obtain

E(eiuXt) = 1 + E

⎛

⎝
∑

s≤t

eiuXs−(eiuΔXs − 1)

⎞

⎠

= 1 + E

(∫ t

0

ds eiuXs−

∫
ν(dx)(eiux − 1)

)

,

where, in the second equality, we have used the compensation formula in
Proposition 11.2.2.3. Therefore, setting μ̂t(u) = E(eiuXt), we get the linear
integral equation

μ̂t(u) = 1 +
∫ t

0

ds μ̂s(u)
∫
ν(dx)(eiux − 1) .

(The integral
∫
ν(dx)(1 ∧ |x|) is finite.) Solving this linear equation leads to

the Lévy-Khintchine formula.

Definition 11.2.3.4 The continuous function Φ : R
d → C such that

E [exp(iu �X1)] = exp(−Φ(u))

is called the characteristic exponent (sometimes the Lévy exponent) of the
Lévy process X.

If E
[
eλ �X1

]
< ∞ for any λ with positive components, the function Ψ

defined on [0,∞[d, such that

E [exp(λ �X1)] = exp(Ψ(λ))

is called the Laplace exponent of the Lévy process X.
It follows that

E [exp(iu �Xt)] = exp(−tΦ(u))

and, if Ψ(λ) exists,
E [exp(λ �Xt)] = exp(tΨ(λ))

and
Ψ(λ) = −Φ(−iλ) .

From Proposition 11.2.3.1,

Φ(u) = −iu �m+ 1
2u �Au−

∫
(eiu � x − 1 − iu �x1|x|≤1)ν(dx)

Ψ(λ) = λ �m+ 1
2λ �Aλ+

∫
(eλ � x − 1 − λ �x1|x|≤1)ν(dx)

(11.2.3)

� If ν(Rd \ 0) <∞, the process X has a finite number of jumps in any finite
time interval. In finance, when ν(Rd) < ∞, one refers to finite activity.
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If moreover A = 0, the process X is a compound Poisson process with
“drift.”

� If ν(Rd \ 0) = ∞, the process corresponds to infinite activity. Assume
moreover that A = 0. Then

• If
∫
|x|≤1

|x|ν(dx) < ∞, the paths of X are of bounded variation on any
finite time interval.

• If
∫
|x|≤1

|x|ν(dx) = ∞, the paths of X are no longer of bounded variation
on any finite time interval.

Example 11.2.3.5 We present examples of Lévy processes and their char-
acteristics.

• Drifted Brownian Motion. The process (mt+σBt, t ≥ 0) where B is a
BM is a Lévy process with characteristic exponent −ium+u2σ2/2, hence,
its Lévy measure is zero. We shall see that the family of Lévy processes
with zero Lévy measure consists precisely of all the Lévy processes with
continuous paths, which are exactly (mt+ σBt, t ≥ 0) for any m,σ ∈ R.

• Poisson Process. The Poisson process with intensity λ is a Lévy process
with characteristic exponent (see (8.2.1))

λ(1 − eiu) =
∫

(1 − eiux)λ δ1(dx)

hence its Lévy measure is λ δ1, where δ is the Dirac measure.
• Compound Poisson Process. Let Xt =

∑Nt

k=1 Yk be a ν-compound
Poisson process. Its characteristic exponent is (see Proposition 8.6.3.4)

Φ(u) =
∫

(1 − eiux) ν(dx) .

Its Lévy measure is ν(dx) = λF (dx), where F is the common law of all
the Yk’s, and λ the intensity of the Poisson process N .

• Process of Brownian Hitting Times. Let W be a BM. The process
(Tr, r ≥ 0) where Tr = inf{t : Wt ≥ r} is an increasing Lévy process.
The process (−Tr, r ≥ 0) admits as Laplace exponent −

√
2λ. Hence, the

Lévy measure of the Lévy process Tr is ν(dx) = dx1{x>0}/
√

2πx3. We have
recalled above that if a Lévy process is continuous, then, it is a Brownian
motion with drift. Hence, the process (Tr, r ≥ 0) is not continuous.

• Stable Processes. With any stable r.v. of index α, we may associate a
Lévy process which will be called a stable process of index α. The process
Tr is a stable process (in fact a subordinator) of index 1/2. The linear
Brownian motion (resp. the Cauchy process) is symmetric stable of index
2 (resp. 1).

Comment 11.2.3.6 The Laplace exponent is also called the cumulant
function. When considering X as a semi-martingale, the triple (m,σ2, ν)
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is the triple of predictable characteristics of X (see Jacod and Shiryaev
[471]). Obviously, the characteristics of the dual process X̂ = −X are
(−m,σ2, ν̂) where ν̂(dx) = ν(−dx). The Laplace exponent of the dual process
is Ψ̂(λ) = Ψ(−λ).

Proposition 11.2.3.7 (Lévy-Itô’s Decomposition.) If X is an R
d-valued

Lévy process, it can be decomposed into

X = Y (0) + Y (1) + Y (2) + Y (3)

where Y (0) is a constant drift, Y (1) is a linear transform of a Brownian
motion, Y (2) is a compound Poisson process with jump sizes greater than
or equal to 1 and Y (3) is a Lévy process with jump sizes smaller than 1. The
processes Y (i) are independent.

Sketch of the proof: The characteristic exponent of the Lévy process can
be written

Φ = Φ(0) + Φ(1) + Φ(2) + Φ(3)

with

Φ(0)(λ) = −im �λ, Φ(1)(λ) =
1
2
λ �Aλ ,

Φ(2)(λ) =
∫

(1 − eiλ � x)1{|x|>1} ν(dx) ,

Φ(3)(λ) =
∫

(1 − eiλ � x + iλ �x)1{|x|≤1}ν(dx) .

Each Φ(i) is a characteristic exponent. The function Φ(2) can be viewed as the
characteristic exponent of a compound Poisson process with Lévy measure
1{|x|≥1}ν(dx) (see Proposition 8.6.3.4). In the case

∫
{|x|≤1} |x|ν(dx) <∞, and

in particular if ν is finite, one can write

Φ(3)(λ) = −iλ � m̃0 +
∫

(1 − eiλ � x)1{|x|≤1})ν(dx)

and one can construct a Lévy process with characteristic exponent Φ(3).
This approach fails if

∫
{|x|<1} |x|ν(dx) = ∞. In that case, one constructs

a Lévy process with Lévy measure ν by approximating Φ(3) by

Φ(3,ε)(λ) =
∫

(1 − eiλ � x − iλ �x)1{ε<|x|≤1}ν(dx) ,

and letting ε → 0. See Chapter 4 in Sato [761] or Chapter 1 in Bertoin [79]
for details. �
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This result is often used to yield the following representation:

Xt = mt+ Zt +
∫ t
0

∫
x1{|x|≤1}Ñ(ds, dx) +

∫ t
0

∫
x1{|x|>1}N(ds, dx)

(11.2.4)

where Z is an R
d-valued Brownian motion with correlation matrix A, N the

random measure1 of the jumps of X, and Ñ(dt, dx) = N(dt, dx) − dt ν(dx) is
the compensated martingale measure. In other words,

Xt = mt+ Zt +
∫ t

0

∫
x1{|x|≤1}Ñ(ds, dx) +

∑

s≤t

ΔXs1{|ΔXs|>1} .

� If
∫
{|x|≤1} |x|ν(dx) <∞, the process X can be represented as

Xt = m0t+ Zt +
∫ t

0

∫
xN(ds, dx)

where m0 = m −
∫
x1{|x|≤1}ν(dx). If ν is a finite measure, the process

∫ t
0

∫
xN(ds, dx) is a compound Poisson process: indeed, let Tk, k ≥ 1 be the

jump times of X and Nt =
∑

1{Tk≤t} the associated counting process. The
process N is a Poisson process with intensity λ = ν(Rd \ 0). Furthermore,
the random variables Yk =

∫
xN({Tk}, dx) are i.i.d. with law ν(dx)/λ and

∑Nt

1 Yk =
∫ t
0

∫
xN(ds, dx).

� If
∫
{|x|≤1} |x|ν(dx) = ∞, it is not possible to separate the integral

∫

|x|≤1

x(Nt(·, dx) − tν(dx))

into the two parts
∫
|x|≤1

xNt(·, dx) and t
∫
|x|≤1

xν(dx) which may both be
ill-defined.

Corollary 11.2.3.8 A Lévy process is a semi-martingale.

Proof: This is a consequence of the Lévy-Itô decomposition. �

Comment 11.2.3.9 As a direct consequence, the series
∑

s≤t(ΔXs)2 con-
verges, and for any constant a the process

∑

s≤t

(
(ΔXs)2 ∧ a

)
− t

∫
(x2 ∧ a) ν(dx)

1 We indicate these random measures in boldface to avoid possible confusion with
Poisson processes which are always denoted by N .
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is a martingale. It follows that
∫

(x2 ∧ a) ν(dx) < ∞, which justifies the
integrability condition on the Lévy measures.

Lemma 11.2.3.10 Let F be a C2 function and X a Lévy process. Then, the
series ∑

s≤t

|F (ΔXs) − F (0) − F ′(0)ΔXs|

converges.

Proof: The series
∑

0<s≤t 1{|ΔXs|>1}(F (ΔXs) − F (0) − F ′(0)ΔXs) is obvi-
ously convergent. Furthermore, the inequality

0 ≤ |F (x) − F (0) − xF ′(0)| ≤ cx2

for |x| ≤ 1 and the convergence of the series
∑

s≤t(ΔXs)2 imply that the
series

∑
0<s≤t 1{|ΔXs|≤1}|F (ΔXs) − F (0) − F ′(0)ΔXs| is also convergent. �

Proposition 11.2.3.11 Let X be a (m,σ2, ν)-Lévy process taking values in
R. Then, X is increasing if and only if

σ = 0, ν(−∞, 0) = 0,
∫

1{x≤1}x ν(dx) <∞, m0 = m−
∫

1{x≤1}x ν(dx) ≥ 0 .

Proof: If ν(−∞, 0) = 0, the process X has no negative jumps. Hence,
assuming moreover that σ = 0, and the convergence of

∫
xν(dx), we obtain

Xt =
∫ t
0

∫
xN(ds, dx) + tm0 and, if m0 ≥ 0, X is increasing.

For the converse, since X has no negative jumps, ν(−∞, 0) = 0. The proof
of
∫

1{x≤1}x ν(dx) < ∞ relies on the remark that an increasing function
remains increasing after deleting a finite number of its jumps. We shall delete
jumps of size greater than ε. Then, setting Xε

t =
∫ t
0

∫
]ε,∞[

xN(dx, ds), the
process Xt −Xε

t is increasing, hence Xt −Xε
t ≥ 0. It follows that

lim
ε→0

Xε
t =

∫ t

0

∫

R+
xN(dx, ds) =: X̂t

exists and is bounded by Xt. Now,

E(e−λXε
t ) = exp

(

t

∫

]ε,∞[

(e−λx − 1)ν(dx)

)

= exp

(

t

∫

]ε,∞[

(e−λx − 1 + λx1{x≤1})ν(dx) − tλ

∫

]ε,1]

xν(dx)

)

.

As ε tends to 0, the quantity E(e−λXε
t ) tends to E(e−λ bXt) and the quantity∫

]ε,∞[
(e−λx − 1 + λx1{x≤1})ν(dx) tends to

∫
R+(e−λx − 1 + λx1{x≤1})ν(dx)

which is finite. It follows that
∫
]0,1]

xν(dx) < ∞. The conclusion of the proof
can be found in Sato [761], Theorem 21.5 page 137. �
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Exercise 11.2.3.12 Let X be a (m,σ2, ν) real-valued Lévy process. Check
that the quadratic variation of the semi-martingale X is

[X]t = σ2t+
∫ t

0

∫

R

x2N(ds, dx) .

The predictable quadratic variation of X is

〈X〉t = σ2t+ t

∫

R

x2ν(dx) ,

as long as
∫

R
x2ν(dx) <∞. �

Exercise 11.2.3.13 Let X be a Lévy process without drift or continuous
part, and f ∈ L1(ν). Prove that Mf

t :=
∑

s≤t f(ΔXs) − t
∫
ν(dx)f(x) is

a martingale. Prove that, for f, g satisfying some integrability conditions,
〈Mf ,Mg〉t = t

∫
ν(dx) f(x) g(x). �

11.2.4 Itô’s Formulae for a One-dimensional Lévy Process

LetX be a (m,σ2, ν) real-valued Lévy process and f ∈ C1,2(R+×R,R). Then,
since X is a semi-martingale, we can apply Itô’s formula in the optional or
predictable form:
� The optional Itô’s formula is

f(t,Xt) = f(0, X0) +
∫ t

0

∂tf(s,Xs)ds

+
σ2

2

∫ t

0

∂xxf(s,Xs)ds+
∫ t

0

∂xf(s,Xs−)dXs

+
∑

s≤t

f(s,Xs− +ΔXs) − f(s,Xs−) − (ΔXs) ∂xf(s,Xs−) .

� If f and its first and second derivatives w.r.t. x are bounded, the predictable
Itô’s formula is

df(t,Xt) = ∂xf(t,Xt)σdWt +
∫

R

(f(t,Xt− + x) − f(t,Xt−)) Ñ(dt, dx)

+
[
1
2
σ2∂xxf(t,Xt) +m∂xf(t,Xt) + ∂tf(t,Xt)

+
∫

R

(
f(t,Xt− + x) − f(t,Xt−) − x ∂xf(t,Xt−)1|x|≤1

)
ν(dx)

]

dt .

The quantity ∂xf(t,Xt)σdWt +
∫
x∈R

(f(t,Xt− + x) − f(t,Xt−)) Ñ(dt, dx) is
the local martingale part of the semi-martingale f(t,Xt), written in “differ-
ential ” form, and
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[
1
2
σ2∂xxf(t,Xt) +m∂xf(t,Xt) + ∂tf(t,Xt)

+
∫

R

[
f(t,Xt− + x) − f(t,Xt−) − x ∂xf(t,Xt−)1|x|≤1

]
ν(dx)

]

dt

is the continuous finite variation part, again written in differential form. One
may note that this formula is a generalization of the formula obtained for
compound Poisson processes (see Subsection 8.6.4).

11.2.5 Itô’s Formula for Lévy-Itô Processes

In this section, we step out of the framework of Lévy processes, by considering
the more general class of Lévy-Itô processes

dXt = atdt+ σtdWt +
∫

1{|x|≤1}γt(x)Ñ(dt, dx) +
∫

1{|x|>1}γt(x)N(dt, dx) ,

(11.2.5)

where we assume that a and σ are adapted processes, γ(x) is predictable and
that the integrals are well defined. These processes are semi-martingales. Itô’s
formula can be generalized as follows

Proposition 11.2.5.1 (Itô’s Formula for Lévy-Itô Processes.) Let X
be defined as in (11.2.5). If f is bounded and f ∈ C1,2

b , then the process
Yt := f(t,Xt) is a semi-martingale:

dYt = ∂xf(t,Xt)σtdWt +
∫

|x|≤1

(f(t,Xt− + γt(x)) − f(t,Xt−)) Ñ(dt, dx)

+
(

∂tf(t,Xt) + ∂xf(t,Xt)at +
1
2
σ2
t ∂xxf(t,Xt)

)

dt

+
∫

|x|>1

(f(t,Xt− + γt(x)) − f(t,Xt−))N(dt, dx)

+

(∫

|x|≤1

(f(t,Xt− + γt(x)) − f(t,Xt−) − γt(x)∂xf(t,Xt−)) ν(dx)

)

dt .

Note that in the last integral, we do not need to write (Xt−); (Xt) would also
do, but the minus sign may help to understand the origin of this quantity.
More generally, let Xi, i = 1, . . . , n be n processes with dynamics

Xi
t = Xi

0 + V i
t +

m∑

k=1

∫ t

0

fi,k(s)dW k
s +

∫ t

0

∫

|x|>1

gi(s, x)N(ds, dx)

+
∫ t

0

∫

|x|≤1

hi(s, x)(N(ds, dx) − ν(dx) ds)
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where V is a continuous bounded variation process. Then, for Θ a C2
b function

Θ(Xt) = Θ(X0) +
n∑

i=1

∫ t

0

∂xiΘ(Xs)dV i
s +

n∑

i=1

m∑

k=1

∫ t

0

fi,k(s)∂xiΘ(Xs)dW k
s

+
1
2

n∑

i,j=1

∫ t

0

m∑

k=1

fi,k(s)fj,k(s)∂xixjΘ(Xs)ds

+
∫ t

0

∫

|x|>1

(Θ(Xs− + g(s, x)) −Θ(Xs−))N(ds, dx)

+
∫ t

0

∫

|x|≤1

(Θ(Xs− + h(s, x)) −Θ(Xs−))Ñ(ds, dx)

+
∫ t

0

∫

|x|≤1

(Θ(Xs− + h(s, x)) −Θ(Xs−) −
n∑

i=1

hi(s, x)∂xiΘ(Xs−))ds ν(dx) .

Exercise 11.2.5.2 Let W be a Brownian motion and N a random Poisson
measure. Let Xi

t =
∫ t
0
ϕi
sdWs +

∫ t
0

∫
ψi(s, x)Ñ(ds, dx), i = 1, 2 be two real-

valued martingales.
Prove that [X1, X2]t =

∫ t
0
ϕ1
sϕ

2
sds +

∫ t
0

∫
ψ1(s, x)ψ2(s, x)N(ds, dx) and

that, under suitable conditions

〈X1, X2〉t =
∫ t

0

ϕ1
sϕ

2
sds+

∫ t

0

∫
ψ1(s, x)ψ2(s, x) ν(dx) ds .

�

Exercise 11.2.5.3 Prove that, if

St = S0 exp

(

bt+ σWt +
∫ t

0

∫

|x|≤1

xÑ(ds, dx) +
∫ t

0

∫

|x|>1

xN(ds, dx)

)

then

dSt = St−

((

b+
1
2
σ2

)

dt+ σdWt +
∫

|x|≤1

(ex − 1 − x)ν(dx) dt

+
∫

|x|≤1

(ex − 1)Ñ(dt, dx) +
∫

|x|>1

(ex − 1)N(dt, dx)

)

.

�

Exercise 11.2.5.4 Geometric Itô-Lévy process This is a generalization
of the previous exercise. Prove that the solution of

dXt = Xt−

(

adt+ σdWt +
∫

|x|≤1

γ(t, x)Ñ(dt, dx) +
∫

|x|>1

γ(t, x)N(dt, dx)

)
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and X0 = 1 where γ(t, x) ≥ −1 and a, σ are constant, is

Xt = exp
((

a− 1
2
σ2

)

t+ σWt +
∫ t

0

ds

∫

|x|≤1

(ln(1 + γ(s, x)) − γ(s, x)) ν(dx)

+
∫ t

0

∫

|x|≤1

ln(1 + γ(s, x))Ñ(ds, dx) +
∫ t

0

∫

|x|>1

ln(1 + γ(s, x))N(ds, dx)
)

.

�

Exercise 11.2.5.5 Let f be a predictable (bounded) process and g(t, x) a
predictable function. Let g1 = g1|x|>1 and g2 = g1|x|≤1. We assume that
eg1 − 1 is integrable w.r.t. Ñ and that g2 is square integrable w.r.t. Ñ. Prove
that the solution of

dXt = Xt−

(

ftdWt +
∫

(eg(t,x) − 1)Ñ(dt, dx)
)

is

Xt = E(f�W )t exp
(

Nt(g1) −
∫ t

0

∫
(eg1(s,x) − 1)ν(dx) ds

)

exp
(

Ñt(g2) −
∫ t

0

∫
(eg2(s,x) − 1 − g2(s, x))ν(dx) ds

)

where Nt(g) =
∫ t
0

∫
g(s, x)N(ds, dx) and Ñt(g) =

∫ t
0

∫
g(s, x)Ñ(ds, dx). �

Exercise 11.2.5.6 Let St = eXt where X is a (m,σ2, ν)-one dimensional
Lévy process and λ a constant such that E(eλXT ) = E(Sλ

T ) < ∞. Using the
fact that

(e−tΨ(λ)Sλ
t = eλXt−tΨ(λ), t ≥ 0)

is a martingale, prove that Sλ is a special-semimartingale with canonical
decomposition

Sλ
t = Sλ

0 +M
(λ)
t +A

(λ)
t

where A(λ)
t = Ψ(λ)

∫ t
0
Sλ
s ds. Prove that

〈M (λ),M (μ)〉t = (Ψ(λ+ μ) − Ψ(λ) − Ψ(μ))
∫ t

0

Sλ+μ
u du .

�

11.2.6 Martingales

We now come back to the Lévy processes framework. Let X be a real-valued
(m,σ2, ν) Lévy process.
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Proposition 11.2.6.1 (a) An F-Lévy process is a martingale if and only if
it is an F-local martingale.

(b) Let X be a Lévy process such that X is a martingale. Then, the process
E(X) is a martingale.

Proof: See He et al. [427], Theorem 11.4.6. for part (a) and Cont and Tankov
[192] for part (b). �

Proposition 11.2.6.2 We assume that, for any t, E(|Xt|) < ∞, which is
equivalent to

∫
1{|x|≥1}|x|ν(dx) < ∞. Then, the process (Xt − E(Xt), t ≥ 0)

is a martingale; hence, the process (Xt, t ≥ 0) is a martingale if and only if
E(Xt) = 0, i.e., m+

∫
1{|x|≥1}xν(dx) = 0 .

Proof: The first part is obvious. The second part of the proposition follows
from the computation of E(Xt) which is obtained by differentiation of the
characteristic function E(eiuXt) at u = 0. The condition

∫
1{|x|≥1}|x|ν(dx) <

∞ is needed for Xt to be integrable. �

Proposition 11.2.6.3 (Wald Martingale.)
For any λ such that Ψ(λ) = ln E(eλX1) < ∞, the process (eλXt−tΨ(λ), t ≥ 0)
is a martingale .

Proof: Obvious from the independence of increments. �

Note that Ψ(λ) is well defined for every λ > 0 in the case where the
Lévy measure has support in (−∞, 0[. In that case, the Lévy process is said
to be spectrally negative (see � Section 11.5).

Corollary 11.2.6.4 The process (eXt , t ≥ 0) is a martingale if and only if∫
|x|≥1

exν(dx) <∞ and

1
2
σ2 +m+

∫
(ex − 1 − x1{|x|≤1})ν(dx) = 0 .

Proof: This follows from the above proposition and the expression of Ψ(1). �

Proposition 11.2.6.5 (Doléans-Dade Exponential.) Let X be a real-
valued (m,σ2, ν)-Lévy process and Z the Doléans-Dade exponential of X, i.e.,
the solution of dZt = Zt−dXt, Z0 = 1. Then

Zt = eXt−σ2t/2
∏

0<s≤t

(1 +ΔXs)e−ΔXs := E(X)t .

It is important to note that the product
∏

0<s≤t

(1 + |ΔXs|)e−ΔXs =
∏

0<s≤t

e−ΔXs+ln(1+|ΔXs|)
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is convergent: indeed, the product
∏

0<s≤t

(1 + |ΔXs|1{|ΔXs|>1/2}) e−ΔXs

is obviously convergent, and the inequality 0 < x − ln(1 + x) < x2 for
|x| < 1/2 together with the convergence of the series

∑
s≤t(ΔXs)2 prove

that the product
∏

s≤t(1 + |ΔXs|1{|ΔXs|>1/2})e−ΔXs is convergent too. Note
that, with obvious definition, (E(X)t, t ≥ 0) is a multiplicative Lévy process.

We now investigate, as in Goll and Kallsen [400] the link between Doléans-
Dade exponentials and ordinary exponentials (this is very close to the previous
Exercises 11.2.5.3 and 11.2.5.4).

Proposition 11.2.6.6 Let X be a real-valued (m,σ2, ν)-Lévy process.

(i) Let St = eXt be the ordinary exponential of the process X. The
stochastic logarithm of S (i.e., the process Y which satisfies St = E(Y )t)
is a Lévy process and is given by

Yt := L(S)t = Xt +
1
2
σ2t−

∑

0<s≤t

(
1 +ΔXs − eΔXs

)
.

The Lévy characteristics of Y are

mY = m+
1
2
σ2 +

∫ (
(ex − 1)1{|ex−1|≤1} − x1{|x|≤1}

)
ν(dx) ,

σ2
Y = σ2 ,

νY (A) = ν({x : ex − 1 ∈ A}) =
∫

1A(ex − 1) ν(dx) .

(ii) Let Zt = E(X)t the Doléans-Dade exponential of X. If Z > 0, the
ordinary logarithm of Z is a Lévy process L given by

Lt := ln(Zt) = Xt −
1
2
σ2t+

∑

0<s≤t

(ln(1 +ΔXs) −ΔXs) .

Its Lévy characteristics are

mL = m− 1
2
σ2 +

∫ (
ln(1 + x)1{| ln(1+x)|≤1} − x1{|x|≤1}

)
ν(dx) ,

σ2
L = σ2 ,

νL(A) = ν({x : ln(1 + x) ∈ A}) =
∫

1A(ln(1 + x)) ν(dx) .

Proof: We only prove part (i) and leave part (ii) to the reader. Note that
the series

∑
0<s≤t(1 + ΔXs − eΔXs) is absolutely convergent by application

of Lemma 11.2.3.10.
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The process Yt = Xt+ 1
2σ

2t−
∑

0<s≤t

(
1 +ΔXs − eΔXs

)
is a Lévy process,

σ2
Y = σ2, and ΔYt = eΔXt − 1. This implies νY (dx) = (ex − 1) ν(dx). Using

the equality

∑

s≤t

(
1 +ΔXs − eΔXs

)
=
∫ t

0

∫
(1 + x− ex)N(ds, dx)

we obtain that the Lévy-Itô decomposition of Y is (where mY is defined in
Proposition 11.2.6.6)

Yt = mt+ σBt +
∫ t

0

∫

{|x|≤1}
xÑ(ds, dx) +

∫ t

0

∫

{|x|>1}
xN(ds, dx) +

1
2
σ2t

−
∫ t

0

∫
(1 + x− ex)N(ds, dx)

= mY t+ σBt +
∫ t

0

∫
(ex − 1)1{|ex−1|≤1}Ñ(ds, dx)

+
∫ t

0

∫
(ex − 1)1{|ex−1|>1}N(ds, dx)

= mY t+ σBt +
∫ t

0

∫
y1{|y|≤1}ÑY (ds, dy) +

∫ t

0

∫
y1{|y|>1}NY (ds, dy) .

The result follows. �

The following proposition may help the reader to become more familiar
with another class of martingales for Lévy processes.

Proposition 11.2.6.7 (Asmussen-Kelly-Whitt Martingale.) Let X be
a real-valued (m,σ2, ν)-Lévy process:

Xt = mt+ σBt +
∫ t

0

∫

{|x|≤1}
xÑ(ds, dx) +

∫ t

0

∫

{|x|>1}
xN(ds, dx) .

Let Zt = Σt−Xt, where Σt = sups≤tXs and Σc is the continuous part of the
increasing process Σ. Let f be a C2 function. Then, the process

f(Zt) − f(Z0) − f ′(0)Σc
t −

σ2

2

∫ t

0

f ′′(Zs)ds+m

∫ t

0

f ′(Zs)ds

−
∫ t

0

ds

∫
ν(dx)[f(Zs− + hs(x)) − f(Zs−) + x1{|x|≤1}f

′(Zs−)]

is a local martingale, where ht(x) = −(x ∧ Zt−) is a predictable function.

Proof: Note that if, at time t, the process X has a jump of size x smaller
than Zt− then Zt = Zt− − x; if the process X has a jump of size x greater
than Zt− then Σt = Xt and Zt = 0. In other words, the jumps of the process
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Z are ΔZt = ht(ΔXt) with ht(x) = −(x ∧ Zt−) a predictable function. From
Itô’s formula, the process

Yt = f(Zt) − f(Z0) −
∫ t

0

f ′(Zs)dΣs −
σ2

2

∫ t

0

f ′′(Zs)ds+m

∫ t

0

f ′(Zs)ds

−
∫ t

0

ds

∫
ν(dx)[f(Zs− + hs(x)) − f(Zs−) − hs(x)1{|x|≤1}f

′(Zs−)]

is a local martingale.
We split the last integral into two parts

∫ t

0

ds

∫ Zs−

−∞
ν(dx)[f(Zs− + hs(x)) − f(Zs−) + x1{|x|≤1}f

′(Zs−)]

+
∫ t

0

ds

∫ ∞

Zs−

ν(dx)[f(Zs− + hs(x)) − f(Zs−) + Zs−1{|x|≤1}f
′(Zs−)] .

We denote by Σc the continuous part of the increasing process Σ and by
Σd

t =
∑

s≤t

ΔΣs its discontinuous part, then

∫ t

0

f ′(Zs−)dΣs =
∫ t

0

f ′(Zs)dΣc
s +
∫ t

0

f ′(Zs−)dΣd
s .

The support of the measure dΣc
t is

{t : Xt− = Xt = Σt = Σt−} = {t : Zt = Zt− = 0}

hence
∫ t

0

f ′(Zs−)dΣc
s = f ′(0)Σc

t . It remains to use

−
∫ t

0

f ′(Zs)dΣd
s +

∫ t

0

ds f ′(Zs)
∫ ∞

Zs

ν(dx)Zs1{|x|≤1}

=
∫ t

0

ds f ′(Zs)
∫ ∞

Zs

ν(dx)x1{|x|≤1} .

�
We recall that a spectrally negative Lévy process is a Lévy process whose
Lévy measure ν has its support in ] −∞, 0[.

Corollary 11.2.6.8 Let X be a spectrally negative Lévy process. Then, the
one-sided maximum of X, i.e., Σt = sups≤tXs is continuous. For a > 0, the
process

e−a(Σt−Xt) + aΣt − Ψ(a)
∫ t

0

e−a(Σs−Xs)ds

is a local martingale, where
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Ψ(a) =
σ2

2
a2 + am+

∫ 0

−∞
ν(dx)

(
eax − 1 − ax1{|x|≤1}

)

is the Laplace exponent of X.

Proof: We apply the previous proposition for f(x) = e−ax. Since X is a
spectrally negative Lévy process, the process Σ is continuous. We obtain that

e−a(Σt−Xt) + aΣt −
σ2

2

∫ t

0

a2e−a(Σs−Xs)ds−m

∫ t

0

ae−a(Σs−Xs)ds

−
∫ t

0

ds

∫
ν(dx)

(
e−a(Σs−Xs−x) − e−a(Σs−Xs) − ae−a(Σs−Xs)x1{|x|≤1}

)

is a local martingale. This last expression is equal to

e−a(Σt−Xt) + aΣt −
∫ t

0

ds e−a(Σs−Xs)Ψ(a) .

�

In the case where X = B is a Brownian motion, we obtain that

e−a(Σt−Bt) + aΣt −
a2

2

∫ t

0

ds e−a(Σs−Bs)

is a martingale, or

e−a|Bt| + aLt −
a2

2

∫ t

0

ds e−a|Bs|

is a martingale, where L is the local time at 0 for B.

11.2.7 Harness Property

Proposition 11.2.7.1 Any Lévy process such that E(|X1|) < ∞ enjoys the
harness property given in Definition 8.5.2.1.

Proof: Let X be a Lévy process. Then, for s < t

E[exp(i(λXs + μXt))] = exp(−sΦ(λ+ μ) − (t− s)Φ(μ)) .

Therefore, by differentiation with respect to λ, and taking λ = 0,

iE[Xs exp(iμXt)] = −sΦ′(μ) exp(−tΦ(μ))

which implies
tE[Xs exp(iμXt)] = sE[Xt exp(iμXt)] .

It follows that
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E

[
Xs

s

∣
∣
∣σ(Xu, u ≥ t)

]

=
Xt

t
.

Then, using the homogeneity of the increments and recalling the notation
Fs], [T = σ(Xu, u ≤ s, u ≥ T ) already given in Definition 8.5.2.1

E

(
Xt −Xs

t− s

∣
∣Fs], [T

)

=
XT −Xs

T − s
.

�

See Proposition 8.5.2.2, and Mansuy and Yor [621] for more comments on
the harness property.

Exercise 11.2.7.2 The following amplification of Proposition 11.2.7.1 is due
to Pal. Let X be a Lévy process and τ = (tk, k ∈ N) a sequence of subdivisions
of R

+ and define F (τ) = σ(Xtk , k ∈ N).
Prove that E(Xt|F (τ)) = X

(τ)
t where

X
(τ)
t =

∑

k

(

Xtk +
t− tk

tk+1 − tk

(
Xtk+1 −Xtk

)
)

1tk<t≤tk+1

is the linear interpolation of X along the subdivision τ . If τ ⊂ τ ′, prove that

E(X(τ)
t |F (τ ′)) = X

(τ ′)
t .

Hint: Write, for tk < t < tk+1

E

(
Xt −Xtk

t− tk
|Xtk , Xtk+1

)

=
1

tk+1 − tk

(
Xtk+1 −Xtk

)
.

�

11.2.8 Representation Theorem of Martingales in a Lévy Setting

Proposition 11.2.8.1 Let X be an R
d-valued Lévy process and FX its

natural filtration. Let M be an FX-local martingale. Then, there exist an R
d-

valued predictable process ϕ = (ϕi) and ψ : R
+ × Ω × R

d → R a predictable
function such that ∫ t

0

(ϕi
s)

2ds <∞, a.s.,

∫ t

0

∫

|x|≤1

|ψ(s, x)|ds ν(dx) <∞, a.s.,
∫ t

0

∫

|x|>1

ψ2(s, x)ds ν(dx) <∞, a.s.

and

Mt = M0 +
d∑

i=1

∫ t

0

ϕi
sdW

i
s +
∫ t

0

∫

Rd

ψ(s, x)Ñ(ds, dx) .
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Moreover, if (Mt, t ≤ T ) is a square integrable martingale, then

E

⎡

⎣

(∫ T

0

ϕi
sdW

i
s

)2
⎤

⎦ = E

[∫ T

0

(ϕi
s)

2ds

]

<∞ ,

E

⎡

⎣

(∫ T

0

∫
ψ(s, x)Ñ(ds, dx)

)2
⎤

⎦ = E

[∫ T

0

ds

∫
ψ2(s, x)ν(dx)

]

<∞ .

The processes ϕi, ψ are essentially unique.

Proof: See Kunita and Watanabe [550] and Kunita [549]. �

Proposition 11.2.8.2 If L is a strictly positive local martingale such that
L0 = 1, then there exist

a predictable process f = (f1, . . . , fd) such that
∫ T
0
|fs|2ds <∞,

a predictable function g where
∫ T

0

∫

|x|≤1

|eg(s,x) − 1|ds ν(dx) <∞,

∫ T

0

∫

|x|>1

g2(s, x) ds ν(dx) <∞ ,

such that

dLt = Lt−

(
d∑

i=1

fi(t)dW i
t +
∫

(eg(t,x) − 1)Ñ(dt, dx)

)

.

In a closed form, we obtain

Lt = exp

(
d∑

i=1

∫ t

0

fi(s)dW i
s −

1
2

∫ t

0

|fs|2ds
)

× exp

(

Nt(g0) −
∫ t

0

ds

∫

|x|≤1

(eg0(s,x) − 1) ν(dx)

)

× exp

(

Ñt(g1) −
∫ t

0

ds

∫

|x|>1

(eg1(s,x) − 1 − g1(s, x)) ν(dx)

)

,

with g0(s, x) = 1{|x|≤1}g(s, x), g1(s, x) = 1{|x|>1}g(s, x).

Comment 11.2.8.3 Nualart and Schoutens [682] have established the fol-
lowing predictable representation theorem for Lévy processes which satisfy∫

1{|x|≥1}e
δ|x|ν(dx) < ∞ for some δ > 0. These processes have moments of

all orders. The processes

X(1)
s = Xs

X(i)
s =

∑

0<u≤s

(ΔXu)i , i ≥ 2

are Lévy processes and, from Proposition 11.2.2.3, E(X(i)
s ) = s

∫
xiν(dx).
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Let Y (i) be martingales defined as Y (1)
s = Xs − E(Xs) and, for i ≥ 2,

Y (i)
s =

∑

0<u≤s

(ΔXu)i − E

⎛

⎝
∑

0<u≤s

(ΔXu)i

⎞

⎠ .

Let H(i) be a set of pairwise strongly orthogonal martingales, obtained by the
Gram-Schmidt orthogonalization procedure of Y (i). Then, for F ∈ L2(FT ),
there exist predictable processes (ϕ(i)) such that

F = E(F ) +
∞∑

i=1

∫ T

0

ϕ(i)
s dH

(i)
s .

See Corcuera et al. [195] and Leon et al. [577] for applications.

11.3 Absolutely Continuous Changes of Measures

11.3.1 Esscher Transform

Let X be a Lévy process, and assume that E(eθ �Xt) < ∞ for some θ ∈ R
d.

We define a probability P
(θ), locally equivalent to P by the formula

P
(θ)|Ft =

eθ �Xt

E(eθ �Xt)
P|Ft . (11.3.1)

Note that, from Proposition 11.2.6.3, the process

Lt =
eθ �Xt

E(eθ �Xt)
= eθ �Xt−tΨ(θ)

is a martingale. This particular choice of measure transformation, (called a θ-
Esscher transform, or exponential tilting) preserves the Lévy process property
as we now prove.

Proposition 11.3.1.1 Let X be a P-Lévy process with parameters (m,A, ν).
Let θ be such that E(eθ �Xt) <∞ and suppose that P

(θ) is defined by (11.3.1).
Then X is a P

(θ)-Lévy process and the Lévy-Khintchine representation of X
under P

(θ) is

EP(θ)(eiu �Xt) = exp
(

iu �m(θ) − u �Au
2

+
∫

Rd

(eiu � x − 1 − iu �x1|x|≤1)ν(θ)(dx)
)

with

m(θ) = m+
1
2
(A+AT )θ +

∫

|x|≤1

x(eθ � x − 1)ν(dx) ,

ν(θ)(dx) = eθ � xν(dx) .
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The characteristic exponent of X under P
(θ) is

Φ(θ)(u) = Φ(u− iθ) − Φ(−iθ) ,

and the Laplace exponent is Ψ (θ)(u) = Ψ(u+ θ) − Ψ(θ) for u ≥ min(−θ, 0).

Proof: It is not difficult to prove that X has independent and stationary
increments under P

(θ). The characteristic exponent of X under P
(θ) is Φ(θ)

such that

e−tΦ(θ)(u) = EP(θ)(eiu �Xt) = E(eiu �Xt+θ �Xt)etΦ(−iθ)

= e−t(Φ(u−iθ)−Φ(−iθ)) .

A simple computation leads to

Φ(u− iθ) − Φ(−iθ) = −iu �m+
1
2
u �Au− 1

2
iu �Aθ − 1

2
iθ �Au

−
∫ (

eθ � x(eiu � x − 1) − iu �x1{|x|≤1}
)
ν(dx)

= −iu �
(

m+
1
2
(A+AT )θ +

∫
(eθ � x − 1)x1{|x|≤1}ν(dx)

)

+
1
2
u �Au+

∫
eθ � x(eiu � x − 1 − iu �x1{|x|≤1})ν(dx) .

Hence, X1 has the required Lévy-Khintchine representation under P
(θ). �

Corollary 11.3.1.2 Let X be a (m,σ2, ν) real-valued Lévy process and β
such that ∫

|eβx(ex − 1) − x1{|x|≤1}| ν(dx) <∞

and

m+
(

β +
1
2

)

σ2 +
∫ (

eβx(ex − 1) − x1{|x|≤1}
)
ν(dx) = 0 .

Let P
(β)|Ft =

eβXt

E(eβXt)
P|Ft . Then, the process (eXt , t ≥ 0) is a P

(β)-

martingale.

Proof: This is a consequence of Proposition 11.3.1.1 and Corollary 11.2.6.4.�

Comment 11.3.1.3 The Esscher transform was introduced by Esscher [335]
and again by Gerber and Shiu [388]. See Bühlmann et al. [136] for a discussion
on Esscher transforms in finance and Fujiwara and Miyahara [369] for some
relations between the Esscher transform and minimal entropy measure.
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Exercise 11.3.1.4 Let X be a real-valued Lévy process such that, for any
λ, E(eλXt) <∞ and define

P
(λ)|Ft =

eλXt

E(eλXt)
P|Ft .

Prove that (P(λ))(μ) = P
(λ+μ) and that if St = S0e

Xt , then, for any μ, for any
positive Borel function g,

E
(λ)[Sμ

t g(St)] = E
(λ)[Sμ

t ] E
(λ+μ)[g(St)] .

Extend this formula to R
d-valued Lévy processes. �

Exercise 11.3.1.5 Prove that the Esscher transforms of the 1/2-stable
process are the inverse Gaussian processes. (See � Example 11.6.1.2 for the
definition of Inverse Gaussian processes.) �

Exercise 11.3.1.6 Prove that the Esscher transforms of a double exponential
process are double exponential processes. �

Exercise 11.3.1.7 Let γ be a Γ (1, 1) process:

E(e−λγt) = exp
(

−t
∫ ∞

0

dx

x
e−x(1 − e−λx)

)

=
1

(1 + λ)t
.

(a) Prove the double identity, for 1 + μ > 0

E(e−λγte−μγt(1 + μ)t) =
1

(1 + λ
1+μ )t

= E(e−
λ

1+μγt) .

(b) Conclude that the (−μ)-Esscher transform of γt is 1
1+μγt, in other

terms, any multiple (aγt, t ≥ 0) is an Esscher transform of (γt, t ≥ 0).
(c) Prove that, for a > 0, the process (a γt

γT
, t ≤ T ) is distributed as the γ

bridge process on [0, T ], starting from 0 and ending at a, at time T . �

11.3.2 Preserving the Lévy Property with Absolute Continuity

Given a Lévy process X under P with generating triple (m,A, ν), we define,
following Sato [761], its compensated jump part as

Xν
t = lim

ε→0

∑

(s,ΔXs)∈(0,t]×{|x|>ε}
ΔXs − t

∫

ε<|x|≤1

x ν(dx) .

We now examine which other Girsanov-type transformations than Esscher
transforms preserve the Lévy property of a Lévy process.
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Proposition 11.3.2.1 Let (X,P) (resp. (X,P∗)) be Lévy processes with
generating triples (m,A, ν) (resp. (m∗, A∗, ν∗)). The following statements are
equivalent:

(i) P and P
∗ are locally equivalent,

(ii) A = A∗, dν∗(x) = eϕ(x)dν(x) with the function ϕ satisfying
∫

Rd

(eϕ(x)/2 − 1)2ν(dx) <∞

and
m∗ −m−

∫

|x|≤1

x (ν∗ − ν)(dx) ∈ R(A)

where R(A) = {Ax, x ∈ R
d}.

Furthermore, if the previous conditions (ii) are satisfied

P
∗|Ft = eUt P|Ft ,

where

Ut = η � (Xt −Xν
t ) − t

2
η �Aη − tm � η

+ lim
ε→0

∑

s≤t, |ΔXs|>ε

ϕ(ΔXs) − t

∫

ε<|x|≤1

(eϕ(x) − 1)ν(dx) ,

and η is such that m∗ −m−
∫
|x|≤1

x (ν∗ − ν)(dx) = Aη.

Proof: See Sato [761], Theorem 33.1. Note that (eUt , t ≥ 0) is a martingale
and that U is a Lévy process with generating triple

σ2
U = η �Aη,

mU = −1
2
η �Aη −

∫

R

(ey − 1 − y1{|y|≤1}(y)) νU (dy) ,

νU = (ϕ(ν)) |R\{0}

i.e., νU is the image of ν by ϕ. �

Example 11.3.2.2 Let X1 and X2 be CGMY Lévy processes (see � Section
11.8) with parameters (C,Gi,Mi, Y ), i = 1, 2. Then, it is easy to check that
the hypotheses of Proposition 11.3.2.1 are satisfied. See Cont and Tankov [192]
Chapter 9, Example 9.2 for the case of tempered stable processes.
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11.3.3 General Case

To complete this discussion, we study the Girsanov transformation of
Lévy processes using a general positive martingale density L. In this generality,
the Lévy property will be lost under the new probability. From the previous
martingale representation Theorem 11.2.8.2, we can and do associate with the
martingale L a pair (f, g) such that

dLt = Lt−

(
d∑

i=1

f itdW
i
t +
∫

(eg(t,x) − 1)[N(dt, dx) − ν(dx) dt]

)

. (11.3.2)

Sometimes, we shall denote this process L by L(f, g).

Proposition 11.3.3.1 Let Q|Ft = Lt(f, g) P|Ft where L(f, g) is defined in
(11.3.2). Then, with respect to Q:

(i) The process W f defined by W f
t : = Wt−

∫ t
0
fsds is a Brownian motion.

(ii) The random measure N is compensated by eg(s,x)ds ν(dx) meaning that
for any Borel function h such that

∫ T

0

ds

∫

R

|h(s, x)|eg(s,x)ν(dx) <∞ ,

the process

Mh
t : =

∫ t

0

∫

R

h(s, x)
(
N(ds, dx) − eg(s,x)ν(dx) ds

)

is a local martingale.

Proof: Using Itô’s calculus, it is easy to check that W fL and MhL are P-
martingales. �

The P-Lévy process X is a Q-semi-martingale; in general, it is not a
Lévy process, nor an additive process. One should note the important gap
between the framework of Propositions 11.3.2.1 and 11.3.3.1: with the latter,
the Markovian property may be lost.

Comment 11.3.3.2 A frequently asked question is to find a condition for
a local exponential martingale to be a martingale. In order that L(f, g) is a
martingale, Kunita [549] gives the following condition: if (f, g) satisfies

E

[

exp

(∫ t

0

(

af2 +
∫

|g|>δ

e2ag
+
dν + 2ae2aδ

∫

|g|≤δ

g2dν

)

ds

)]

<∞

for some a > 1 and some δ > 0, then L(f, g) is a martingale.
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11.4 Fluctuation Theory

Here, X is a real-valued Lévy process. We are interested in the law of the
running maximum.

11.4.1 Maximum and Minimum

We start with a simple lemma.

Lemma 11.4.1.1 Let X be a Lévy process and Θ be an exponential variable
with parameter q, independent of X. Then, the pair (Θ,XΘ) has an infinitely
divisible law, and its Lévy measure is μ(dt, dx) = t−1e−qt

P(Xt ∈ dx)dt.

Proof: For any pair α, β, with α > 0, we have

E(e−αΘ+iβXΘ) =
∫ ∞

0

qe−qte−tα−tΦ(β)dt

= exp
(∫ ∞

0

(e−tα−tΦ(β) − 1)t−1e−qtdt

)

where in the second equality, we have used the Frullani integral
∫ ∞

0

(1 − e−λt)t−1e−btdt = ln
(

1 +
λ

b

)

.

It remains to write
∫ ∞

0

(e−tα−tΦ(β) − 1)t−1e−qtdt =
∫ ∞

0

∫

R

(e−tα+iβx − 1) P(Xt ∈ dx) t−1e−qtdt .

�

Let Σt = sups≤tXs be the running maximum of the Lévy process X. The
reflected process Σ −X enjoys the strong Markov property.

Proposition 11.4.1.2 (Wiener-Hopf Factorization.) Let Θ be an ex-
ponential variable with parameter q, independent of X. Then, the random
variables ΣΘ and XΘ −ΣΘ are independent and

E(eiuΣΘ)E(eiu(XΘ−ΣΘ)) =
q

q + Φ(u)
. (11.4.1)

Sketch of the proof: Note that

E(eiuXΘ) = q

∫ ∞

0

E(eiuXt)e−qtdt = q

∫ ∞

0

e−tΦ(u)e−qtdt =
q

q + Φ(u)
.

Using excursion theory, the random variables ΣΘ and XΘ −ΣΘ are shown to
be independent (see Bertoin [78]), hence
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E(eiuΣΘ )E(eiu(XΘ−ΣΘ)) = E(eiuXΘ) =
q

q + Φ(u)
.

�
The equality (11.4.1) is known as the Wiener-Hopf factorization, the
factors being the characteristic functions E(eiuΣΘ) and E(eiu(XΘ−ΣΘ)). We
now prepare for the computation of these factors.

There exists a family (Lx
t ) of local times of the reflected process Σ − X

which satisfies ∫ t

0

dsf(Σs −Xs) =
∫ ∞

0

dxf(x)Lx
t

for all positive functions f . We then consider L = L0 and τ its right continuous
inverse τ� = inf{u > 0 : Lu > !}. Introduce

H� = Στ�
for τ� <∞, H� = ∞ otherwise . (11.4.2)

The two-dimensional process (τ,H) is called the ladder process and is a
Lévy process.

Proposition 11.4.1.3 Let κ be the Laplace exponent of the ladder process
defined as

e−�κ(α,β) = E(exp(−ατ� − βH�)) .

There exists a constant k > 0 such that

κ(α, β) = k exp
(∫ ∞

0

dt

∫ ∞

0

t−1(e−t − e−αt−βx) P(Xt ∈ dx)
)

.

Sketch of the proof:

Using excursion theory, and setting GΘ = sup{t < Θ : Xt = Σt}, it can be
proved that

E(e−αGΘ−βΣΘ ) =
κ(q, 0)

κ(α+ q, β)
. (11.4.3)

The pair of random variables (Θ,XΘ) can be decomposed as the sum of
(GΘ, ΣΘ) and (Θ − GΘ, XΘ − ΣΘ), which are shown to be independent
infinitely divisible random variables. Let μ, μ+ and μ− denote the respective
Lévy measures of these three two-dimensional variables. The Lévy measure
μ+ (resp μ−) has support in [0,∞[×[0,∞[ (resp. [0,∞[×] − ∞, 0]) and
μ = μ+ + μ−. From Lemma 11.4.1.1, the Lévy measure of (Θ,XΘ) is
t−1e−qt

P(Xt ∈ dx) dt and noting that this quantity is

t−1e−qt
P(Xt ∈ dx) dt1{x>0} + t−1e−qt

P(Xt ∈ dx) dt1{x<0}

one establishes that μ+(dt, dx) = t−1e−qt
P(Xt ∈ dx) dt 1{x>0}.

It follows from (11.4.3) that

κ(q, 0)
κ(α+ q, β)

= exp
(

−
∫ ∞

0

∫ ∞

0

(1 − e−αt−βx)μ+(dt, dx)
)

.
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Hence,

κ(α+ q, β) = κ(q, 0) exp
(∫ ∞

0

dt

∫ ∞

0

t−1(1 − e−αt−βx)e−qt
P(Xt ∈ dx)

)

.

In particular, for q = 1,

κ(α+ 1, β) = κ(1, 0) exp
(∫ ∞

0

dt

∫ ∞

0

t−1(e−t − e−(α+1)t−βx)P(Xt ∈ dx)
)

.

�

Note that, for α = 0 and β = −iu, one obtains from equality (11.4.3)

E(eiuΣΘ ) =
κ(q, 0)
κ(q,−iu) .

From Proposition 11.2.1.5, setting mt = infs≤tXs, we have

mΘ
law= XΘ −ΣΘ .

Let X̂ : = −X be the dual process of X. The Laplace exponent of the dual
ladder process is, for some constant k̂,

κ̂(α, β) = k̂ exp
(∫ ∞

0

dt

∫ ∞

0

t−1(e−t − e−αt−βx)P(−Xt ∈ dx)
)

= k̂ exp
(∫ ∞

0

dt

∫ 0

−∞
t−1(e−t − e−αt−βx)P(Xt ∈ dx)

)

.

From the Wiener-Hopf factorization and duality, one deduces

E(eiumΘ ) =
κ̂(q, 0)
κ̂(q, iu)

and

E(eiu(XΘ−ΣΘ)) =
κ̂(q, 0)
κ̂(q, iu)

= E(eiumΘ ) .

Note that, by definition

κ(q, 0) = k exp
(∫ ∞

0

dt t−1(e−t − e−qt)P(Xt ≥ 0)
)

,

κ̂(q, 0) = k̂ exp
(∫ ∞

0

dt t−1(e−t − e−qt)P(Xt ≤ 0)
)

,

hence,

κ(q, 0)κ̂(q, 0) = kk̂ exp
(∫ ∞

0

dt t−1(e−t − e−qt)
)

= kk̂q ,
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where the last equality follows from Frullani’s integral, and we deduce the
following relationship between the ladder exponents

κ(q,−iu) κ̂(q,−iu) = kk̂ (q + Φ(u)) . (11.4.4)

Example 11.4.1.4 In the case of the Lévy process Xt = σWt + μt, one has
Φ(u) = −iμu+ 1

2σ
2u2, hence the quantity q

q+Φ(u) is

q

q − iμu+ 1
2σ

2u2
=

a

a+ iu

b

b− iu

with

a =
μ+

√
μ2 + 2σ2q

σ2
, b =

−μ+
√
μ2 + 2σ2q

σ2
.

The first factor of the Wiener-Hopf factorization E(eiuΣΘ) is the characteristic
function of an exponential distribution with parameter a, and the second
factor E(eiu(XΘ−ΣΘ)) is the characteristic function of an exponential on the
negative half axis with parameter b.

Comment 11.4.1.5 Since the publication of the paper of Bingham [100],
many results have been obtained about fluctuation theory. See, e.g., Doney
[260], Greenwood and Pitman [407], Kyprianou [553] and Nguyen-Ngoc and
Yor [670].

11.4.2 Pecherskii-Rogozin Identity

For x > 0, denote by Tx the first passage time above x defined as

Tx = inf{t > 0 : Xt > x}
and by Ox = XTx − x the overshoot which can be written

Ox = ΣTx − x = Hηx − x

where ηx = inf{t : Ht > x} and where H is defined in (11.4.2). Indeed,
Tx = τ(ηx).

Proposition 11.4.2.1 (Pecherskii-Rogozin Identity.) For every triple of
positive numbers (α, β, q),

∫ ∞

0

e−qx
E(e−αTx−βOx)dx =

κ(α, q) − κ(α, β)
(q − β)κ(α, q)

. (11.4.5)

Proof: See Pecherskii and Rogozin [702], Bertoin [78] or Nguyen-Ngoc and
Yor [670] for different proofs of the Pecherskii-Rogozin identity. �

Comment 11.4.2.2 Roynette et al. [745] present a general study of over-
shoot and asymptotic behavior. See Hilberink and Rogers [435] for application
to endogeneous default, Klüppelberg et al. [526] for applications to insurance.
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11.5 Spectrally Negative Lévy Processes

A spectrally negative Lévy process X is a real-valued Lévy process with
no positive jumps, equivalently its Lévy measure is supported by (−∞, 0).
Then, X admits positive exponential moments

E(exp(λXt)) = exp(tΨ(λ)) <∞, ∀λ > 0

where

Ψ(λ) = λm+
1
2
σ2λ2 +

∫ 0

−∞
(eλx − 1 − λx1{−1<x<0})ν(dx) .

We recall that the process eλXt−tΨ(λ) is a martingale. Introduce the inverse
of Ψ ,

Ψ �(q) = inf{λ ≥ 0 : Ψ(λ) ≥ q} .

Then, the process
(exp(Ψ �(q)Xt − tq), t ≥ 0)

is a martingale.

11.5.1 Two-sided Exit Times

We present here some results on two-sided exit times. We look for formulae
for two-sided exit, i.e., for 0 < x < a,

T−
0 = inf{t ≥ 0 : Xt ≤ 0} ,
T+
a = inf{t ≥ 0 : Xt ≥ a} .

Assume now that X is a spectrally negative F-Lévy process with X0 = x.
Then, the process (expλ(Xt − x) − tψ(λ)) is a (Px,F) martingale and, for
a > x, the optional stopping theorem (with a careful check of integrability
conditions) implies

Ex(e−qT+
a 1{T+

a <∞}) = e−Ψ(q)(a−x) .

We can express the Laplace transforms of the two-sided exit times in terms
of a family of two scale functions z(q) and w(q), q > 0

Ex

[
exp(−qT−

0 )
]

= z(q)(x) − q

Ψ �(q)
w(q)(x) ,

Ex

[
exp(−qT+

a )1{T+
a <T−

0 }

]
= w(q)(x)/w(q)(a) ,

Ex

[
exp(−qT−

0 )1{T−
0 <T+

a }

]
= z(q)(x) − z(q)(a)w(q)(x)/w(q)(a) .

The functions z(q) and w(q) are characterized via their Laplace transforms
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∫ ∞

0

e−βxw(q)(x)dx =
1

Ψ(β) − q
, forβ > Ψ �(q) , (11.5.1)

z(q)(x) = 1 + q

∫ x

0

w(q)(y)dy .

As a consequence, one obtains
∫ ∞

0

e−βxz(q)(x)dx =
Ψ(β)

β(Ψ(β) − q)
, β > Ψ �(q) .

11.5.2 Laplace Exponent of the Ladder Process

Proposition 11.5.2.1 Let X be a spectrally negative Lévy process and Θ be
an exponential variable with parameter q, independent of X. Then, ΣΘ has
an exponential law with parameter Ψ �(q).

Proof: For any x > 0,

P(ΣΘ ≥ x) = P(Tx ≤ Θ) = E

(∫ ∞

Tx

qe−qtdt

)

= E(e−qTx) = e−xΨ(q) ,

where we have used the fact that, since X is spectrally negative, XTx = x. �

Proposition 11.5.2.2 The Laplace exponent of the ladder process is

κ(α, β) = Ψ �(α) + β .

The Laplace exponent of the dual ladder process is

κ̂(α, β) = kk̂
α− Ψ(β)
Ψ �(α) − β

.

Proof: The absence of positive jumps ensures that Ht = Στt = t, and

κ(α, β) = Ψ �(α) + β, κ̂(α, β) = kk̂
α− Ψ(β)
Ψ �(α) − β

.

(See formula (11.4.4)). �

11.5.3 D. Kendall’s Identity

Kendall’s identity states that for a Lévy process with no positive jumps, if
x > 0 and Tx = inf{t : Xt ≥ x}, then

tP(Tx ∈ dt) dx = xP(Xt ∈ dx) dt
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In particular, ifXt admits a density pX(t, x), then Tx has a density pT (t, x)
and

tpT (t, x) = xpX(t, x) .

(See Borovkov and Burq [110] or Dozzi and Vallois [265] for a proof.) Note
that, in the case of Brownian motion, this equality was obtained in 3.1.4.1.

Example 11.5.3.1 Let Xt = λt− γt where γ is a Gamma process. Then

E(f(λt− γt)) =
1

Γ (t)

∫ ∞

0

dyf(λt− y) yt−1e−y

=
1

Γ (t)

∫ λt

−∞
dxf(x)(λt− x)t−1e−(λt−x)

hence,

pT (t, x) =
x

t
pX(t, x) =

x

Γ (1 + t)
(λt− x)t−1e−(λt−x)1{x<λt} .

11.6 Subordinators

11.6.1 Definition and Examples

Recall (see Definition 11.2.1.3) that a Lévy process Z which takes values in
[0,∞[ is called a subordinator. The Laplace transform E(e−θZt) of Zt exists
for θ ≥ 0 and is

E(e−θZt) = exp

(

−t
(

mθ +
∫

]0,∞[

(1 − e−θx)ν(dx)

))

.

The constant m is called the drift of Z. If Z has no drift and f is a positive
function, the exponential formula leads to

E

(

exp−
∫ ∞

0

f(s)dZs

)

= exp
(

−
∫ ∞

0

ds

∫
(1 − e−xf(s))ν(dx)

)

.

The term subordinator originates from the following operation:

Definition 11.6.1.1 Let Z be a subordinator and X an independent Lévy pro-
cess. The process X̃t = XZt is a Lévy process, called the subordinated
Lévy process, i.e., it is the X process subordinated by Z.

Example 11.6.1.2 We present some examples of subordinators (S) and
subordinated processes (SP), in various degrees of generality:
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• Compound Poisson Process (S). A ν-compound Poisson process X
where the support of ν is included in ]0,∞[, is a subordinator. If X is a
ν-compound Poisson process, its quadratic variation

[X]t =
∑

s≤t

(ΔXs)2 =
Nt∑

k=1

Y 2
k

is a compound Poisson process and a subordinator.
• (S) Let B be a BM, and

τr = inf{t ≥ 0 : Bt ≥ r} .

The process (τr, r ≥ 0) is a 1/2-stable subordinator, whose Lévy measure

is
1√

2π x3/2
1{x>0}dx (see Example 11.2.3.5).

• (SP) Let X be a Brownian motion and Z an independent subordinator.
Then, if X̃t = XZt , and ν̃ denotes the Lévy measure of X̃, we have

E(eiθ eXt) = E

(

exp−θ
2

2
Zt

)

= exp
(

−t
∫

R+
ν(dz)(1 − e−θ2z/2)

)

= exp
(

−t
∫

R+
ν̃(dx)(1 − eiθx)

)

.

Using

1 − e−θ2z/2 =
1√
2πz

∫ ∞

−∞
dx e−

x2
2z (1 − eiθx) ,

we obtain

ν̃(dx) = dx

∫

R+
ν(dz)

1√
2πz

e−
x2
2z

a formula which goes back at least to Huff [450].
• Cauchy Process (SP). We present the most well-known example of the

subordination operation. Let B be a Brownian motion and, for t ≥ 0
define τt = inf{s ≥ 0 : Bs ≥ t}. Let W be a BM, independent of B.
The process X̃t = Wτt is a Cauchy process (i.e., Wτt has the Cauchy law
with parameter t) whose Lévy measure is dx/(πx2). The proof relies on
the equality

E(eiu eXt) = E

(

exp−u
2

2
τt

)

= e−|u|t .

This result will be vastly generalized in the following Proposition 11.6.2.1.
• Gamma Process (S). The Gamma process (G(t; a, ν), t ≥ 0) is a

Lévy process with G(1; a, ν) having a Gamma Γ (a, ν) distribution (See



636 11 Lévy Processes

Example 11.1.1.9 or Appendix.) The Gamma process is an increasing Lévy
process, hence a subordinator, with Lévy measure

a

x
exp(−xν)1{x>0}dx .

11.6.2 Lévy Characteristics of a Subordinated Process

Proposition 11.6.2.1 (Changes of Lévy Characteristics Under Sub-
ordination.) Let X be a (mX , AX , νX) Lévy process and Z a subordinator
with drift β and Lévy measure νZ , independent of X.The process X̃t = XZt

is a Lévy process with characteristic exponent

Φ(u) = im̃ �u+
1
2
u � Ãu−

∫
(eiu � x − 1 − iu �x1{|x|≤1})ν̃(dx)

with

m̃ = βmX +
∫ ∫

νZ(ds)1{|x|≤1}xP(Xs ∈ dx) ,

Ã = βAX ,

ν̃(dx) = βνX(dx) +
∫ ∞

0

νZ(ds)P(Xs ∈ dx) .

Proof: The proof may be performed in two parts. First, one establishes that
X̃ is a Lévy process, and second, its Lévy characteristics may be computed.
We refer to Sato [761], Theorem 30.1 for the details. �

Comment 11.6.2.2 A precise study of subordinators with many examples
may be found in Bertoin [79, 80].

Exercise 11.6.2.3 Let B be a Brownian motion, Xt = μt + σBt and N a
Poisson process with intensity λ independent of B. Prove that the process
Zt = XNt is a compound Poisson process. Give the law of Z1. (See also
Exercise 8.6.3.7.) �

11.7 Exponential Lévy Processes as Stock Price
Processes

We now present, in the following sections, some applications to finance.

11.7.1 Option Pricing with Esscher Transform

Let St = S0e
rt+Xt where under the historical probability P the process X is

a real-valued Lévy process with characteristic triple (m,σ2, ν). The process S
is called an exponential Lévy process.
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Let us assume that E(eαX1) < ∞, for α ∈ [−ε, ε]. In terms of the
Lévy measure ν, this condition can be written

∫
1{|x|≥1}e

αxν(dx) <∞ .

This implies that X has finite moments of all orders.

Proposition 11.7.1.1 We assume that E(eαX1) < ∞ for any α in an open
interval ]a, b[ with b − a > 1 and that there exists a real number θ such that
Ψ(θ) = Ψ(θ+ 1). Then, the process e−rtSt = S0e

Xt is a martingale under the

Esscher transform P
(θ) defined as P

(θ)|Ft = ZtP|Ft where Zt =
eθXt

E(eθXt)
.

Proof: In order to prove that (eXt , t ≥ 0) is a martingale, since X
is a Lévy process under the Esscher transform Z, one has to check that
EP(θ)(eXt) = 1, which follows from the choice of θ and

EP(θ)(eXt) =
1

EP(eθXt)
EP(e(θ+1)Xt) = et(Ψ(θ+1)−Ψ(θ)) .

�

We assume that the e.m.m. chosen by the market is the probability P
(θ)

defined in Proposition 11.7.1.1. The value of a contingent claim h(ST ) is

Vt = e−r(T−t)
EP(θ)(h(ST )|Ft)

= e−r(T−t) 1
EP(eθXT )

EP(h(yer(T−t)+XT−t)eθXT−t)
∣
∣
y=St

.

11.7.2 A Differential Equation for Option Pricing

Let St = S0e
Xt where X is a (m,σ2, ν)-Lévy process under the risk-neutral

probability Q. We assume that EQ(eXt) <∞.
By definition of a risk-neutral probability, the discounted price process

(Zt = e−rtSt/S0, t ≥ 0) is a Q-strictly positive martingale with initial value
equal to 1. We know that eXt−tΨ(1) is a martingale, hence Z is a martingale if
Ψ(1) = r. In other terms, we assume that the Q-characteristic triple (m,σ2, ν)
of X is such that

m = r − σ2/2 −
∫

(ey − 1 − y1{|y|≤1})ν(dy) .

Assume that H is a function which is regular enough so that

V (t, S) = e−r(T−t)
EQ(H(ST )|St = S)

belongs to C1,2. Then, since e−rtV (t, St) is a Q-martingale, Itô’s formula yields
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rV =
1
2
σ2S2∂SSV + ∂tV + rS∂SV

+
∫

R

(V (t, Sey) − V (t, S) − S(ey − 1)∂SV (t, S)) ν(dy) .

Introducing the function u(t, y) = er(T−t)V (t, S0e
y) where y = ln(S/S0), we

see that u satisfies

∂tu +
(

r − σ2

2

)

∂yu+
1
2
σ2∂yyu

+
∫

(u(t, y + z) − u(t, z) − y(ez − 1)∂yu(τ, x)) ν(dz) = 0 .

See Cont and Tankov [192] Chapter 12, for regularity conditions.

11.7.3 Put-call Symmetry

Let us study a financial market with a riskless asset with constant interest rate
r, and a price process (a currency) St = S0e

Xt where X is a Q-Lévy process
such that E(eXt) <∞. The choice of Q as an e.m.m. implies that the process
(Zt = e−(r−δ)tSt/S0, t ≥ 0) is a Q-strictly positive martingale with initial
value equal to 1. We know that eXt−tΨ(1) is a martingale, hence Z is a
martingale if Ψ(1) = r−δ. In other words, we assume that the Q-characteristic
triple (m,σ2, ν) of X is such that

m = r − δ − σ2/2 −
∫

(ey − 1 − y1{|y|≤1})ν(dy) .

Then,

EQ(e−rT (ST −K)+) = EQ(e−δTZT (S0 −KS0/ST )+)
= E

bQ
(e−δT (S0 −KS0/ST )+)

with Q̂|Ft = ZtQ|Ft . The process X is a Q̂-Lévy process, with characteristic
exponent Ψ(λ+1)−Ψ(1) (see Proposition 11.3.1.1). The process S0/St = e−Xt

is the exponential of the Lévy process, Y = −X which is the dual of the
Lévy process X, and the characteristic exponent of Y is Ψ(1 − λ) − Ψ(1).
Hence, the following symmetry between call and put prices holds:

CE(S0,K, r, δ, T, Ψ) = PE(K,S0, δ, r, T, Ψ̃) ,

where Ψ̃(λ) = Ψ(1 − λ) − Ψ(1).

Comment 11.7.3.1 This result was proved by Fajardo and Mordecki [339]
and generalized by Eberlein and Papapantoleon [293].
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11.7.4 Arbitrage and Completeness

We give here some results related to arbitrage opportunities. The reader can
refer to Cherny and Shiryaev [170] and Selivanov [778] for proofs. Let X be
a (m,σ2, ν) Lévy process, not identically equal to 0 and St = eXt for t < T .
The set

M = {Q ∼ P : S is an (F,Q)-martingale}

is empty if and only if X is increasing or if X is decreasing. If M is not
empty, then M is a singleton if and only if one of the following two conditions
is satisfied: σ = 0, ν = λδa, or σ = 0, ν = 0 . Hence, there is no arbitrage
in a Lévy model (except if the Lévy process is increasing or decreasing) and
the market is incomplete, except in the basic cases of a Brownian motion and
of a Poisson process.

The same kind of result holds for a time-changed exponential model: if
St = eX(τt) where τ is an increasing process, independent of X, such that
P(τT > τ0) > 0, then the set M = {Q ∼ P : S is an (Ft,Q)-martingale} is
empty if and only if X is increasing or decreasing. If M is not empty, then
M is a singleton if and only if τ is deterministic and continuous and one of
the following two conditions is satisfied: σ = 0, ν = λδa, or σ = 0, ν = 0 .

Comment 11.7.4.1 Esscher transforms appear while looking for specific
changes of measures, which minimize some criteria, such as variance minimal
martingale measure, fq-minimal martingale measure or minimal entropy
martingale measure. See Fujiwara and Miyahara [369] and Klöppel et al.[525].

11.8 Variance-Gamma Model

In a series of papers, Madan and several co-authors [155, 609, 610, 612]
introduce and exploit the Variance-Gamma Model (see also Seneta [779]).
The Variance-Gamma process is a Lévy process where Xt has a Variance-
Gamma law (see � Subsection A.4.6) VG(σ, ν, θ). Its characteristic function
is

E(exp(iuXt)) =
(

1 − iuθν +
1
2
σ2νu2

)−t/ν

.

The Variance-Gamma process may be characterized as a time-changed BM
with drift as follows: let W be a BM, and γ(t) a G(t; 1/ν, 1/ν) process
independent of W . Then

Xt = θγ(t) + σWγ(t)

is a VG(σ, ν, θ) process. The Variance-Gamma process is a finite variation
process and is the difference of two increasing Lévy processes. More precisely,
it is the difference of two independent Gamma processes
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Xt = G(t; ν−1, ν1) −G(t; ν−1, ν2) ,

where νi, i = 1, 2 are given below. Indeed, the characteristic function can be
factorized:

E(exp(iuXt)) =
(

1 − iu

ν1

)−t/ν (

1 +
iu

ν2

)−t/ν

with

ν−1
1 =

1
2

(
θν +

√
θ2ν2 + 2νσ2

)
> 0 ,

ν−1
2 =

1
2

(
−θν +

√
θ2ν2 + 2νσ2

)
> 0 .

The Lévy density of the process X is

1
ν

1
|x| exp(−ν2|x|), for x < 0 ,

1
ν

1
x

exp(−ν1x), for x > 0 .

The Variance-Gamma process has infinite activity. The density of the r.v. X1

is

2eθx/σ
2

ν1/ν
√

2πσΓ (1/2)

(
x2

θ2 + 2σ2/ν

) 1
2ν − 1

4

K 1
ν − 1

2

(
1
σ2

√
x2(θ2 + 2σ2/ν)

)

where Kα is the modified Bessel function.
In the risk-neutral world, stock prices driven by a Variance-Gamma process

have dynamics

St = S0 exp
(

rt+Xt +
t

ν
ln
(

1 − θν − σ2ν

2

))

.

Indeed, from

E(eXt) = exp
(

− t

ν
ln
(

1 − θν − σ2ν

2

))

,

we get that the process (Ste−rt, t ≥ 0) is a martingale. The parameters ν and
θ give control on skewness and kurtosis.

The tempered stable process is a Lévy process without Gaussian
component and with Lévy density

C+

x1+Y+
e−xM+1{x>0} +

C−
|x|1+Y−

exM−1{x<0}

where C± > 0,M± ≥ 0, and Y± < 2. It was introduced by Koponen [537] and
used by Bouchaud and Potters [112] for financial modelling.
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The CGMY model, introduced by Carr et al. [150] is a particular case
of the tempered stable process (i.e., the case where C+ = C− = C and
Y+ = Y− = Y ). The Lévy density is

C

xY +1
e−Mx1{x>0} +

C

|x|Y +1
eGx1{x<0}

with C > 0,M ≥ 0, G ≥ 0 and Y < 2.
If Y < 0, there is a finite number of jumps in any finite interval; if not, the

process has infinite activity. If Y ∈ [1, 2[, the process has infinite variation.
This process is also called KoBol (see Schoutens [766]).

11.9 Valuation of Contingent Claims

11.9.1 Perpetual American Options

In this section, we present the model derived in Chesney and Jeanblanc [174].
Suppose that the dynamics of the risky asset (a currency or a paying dividend
asset) are

St = S0e
Xt (11.9.1)

under the chosen risk-neutral probability Q where X is a Lévy process with
parameters (m,σ2, ν). We assume that E(eλX1) <∞ for every λ ∈ R. As seen
in Subsection 11.7.3, one has

− (r − δ) +m+
1
2
σ2 +

∫
(ex − 1 − x1|x|≤1)ν(dx) = 0 . (11.9.2)

By definition, the value of a perpetual American call with strike K is
CA(S0) = supτ∈T E((Sτ − K)e−rτ ) where T is the set of stopping times.
Mordecki [659] has proved that one can reduce attention to first hitting times,
i.e., to stopping times τ of the form

T (L) = inf{t ≥ 0 : St ≥ L} ,

where L is a fixed boundary, with L ≥ S0. Therefore,

CA(S0) = sup
L

E

(
(ST (L) −K)e−rT (L)

)
.

Let us define f as

f(x, L) = E

(
e−rT (L)(x exp(XT (L)) −K)

)
.

Then, the value of the American call is

CA(x) = sup
L≥x

f(x, L) .
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Let ! = ln(L/x), TX(!) = inf{t ≥ 0, Xt ≥ !} the hitting time of ! for the
process X, and O� the overshoot defined in terms of X by XT (�) = ! + O� .
(Obviously, TX(!) = TS(L) : = T�.) We introduce the function

g(x, !) = f(x, L) = f(x, xe�) = xE(e−rT�+XT� ) −KE(e−rT�)
= xe�E(e−rT�+0�) −KE(e−rT�) .

Then, CA(x) = sup�≥0 g(x, !) .

General Formula

On the one hand, we define

ϕ(q, x) = xα(q, r) −Kβ(q, r)

with

α(q, r) =
∫ +∞

0

e−q�
E(e−rT�+O�)d! , (11.9.3)

β(q, r) =
∫ +∞

0

e−q�
E(e−rT�)d! . (11.9.4)

It is then not difficult to check that

ϕ(q, x) =
∫ ∞

0

e−q�ḡ(x, !)d!

where

ḡ(x, !) = g(xe−�, !) = xE(e−rT�+O�) −KE(e−rT�) = f(xe−�, x) .

Thus

ϕ(q, x) =
∫ ∞

0

e−q�ḡ(x, !)d! =
∫ x

0

e−q ln(x/y)ḡ(x, ln(x/y))
1
y
dy

=
∫ x

0

1
y
f(y, x)e−q ln(x/y)dy . (11.9.5)

On the other hand, as in Gerber and Landry [386], by definition of the
perpetual call exercise boundary bc:

for x < bc, f(x, bc) = sup
L≥x

f(x, L)

hence, assuming that f is differentiable,

∂f

∂L
(x, bc) = 0, x < bc . (11.9.6)
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Therefore, by differentiation of (11.9.5) with respect to x at point bc

∂ϕ

∂x
(q, bc) =

f(bc, bc)
bc

− q

bc
ϕ(q, bc)

hence
α(q, r) =

bc −K

bc
− q

bc
(bcα(q, r) −Kβ(q, r)) .

Now, due to the Pecherski-Rogozin identity (see Subsection 11.4.2), the
functions α and β are known in terms of the ladder exponent κ:

α(q, r) =
κ(r, q) − κ(r,−1)

(q + 1)κ(r, q)
, β(q, r) =

κ(r, q) − κ(r, 0)
qκ(r, q)

(11.9.7)

and an easy computation leads to

bc =
κ(r, 0)
κ(r,−1)

K . (11.9.8)

Proposition 11.9.1.1 The boundary of a perpetual American call is given
by

bc =
κ(r, 0)
κ(r,−1)

K

where κ is the ladder exponent of X.

Comment 11.9.1.2 If E(eX1) < ∞, using the Wiener-Hopf factorization,
Mordecki [659] proves that the boundaries for perpetual American options
are given by

bp = KE(emΘ), bc = KE(eΣΘ)

where mt = infs≤tXs and Θ is an exponential r.v. independent of X with

parameter r, hence bcbp =
rK2

1 − ln E(eX1)
. This last equality follows from

E(eiumΘ )E(eiuΣΘ ) =
κ(r, 0)κ̂(r, 0)

κ(r,−iu)κ̂(r, iu) =
r

r + Φ(u)

with Φ(u) = − ln E(eiuX1). The equality between E(eΣθ ) and κ(r,0)
κ(r,−1) is

obtained in Nguyen-Ngoc and Yor [671] using Wiener-Hopf decomposition.

A Particular Case: X without Positive Jumps

If the process X has no positive jumps, then, we obtain the well-known result
derived e.g. in Zhang [874] (see Subsection 10.7.2). Indeed, in that case, if Ψ
is the Laplace exponent of X,
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κ(α, β) = Ψ �(α) + β

where Ψ �(z) is the positive number y such that Ψ(y) = z. Hence

bc = K
Ψ �(r)

Ψ �(r) − 1
.

Note that

Ψ(λ) = λm+ λ2σ
2

2
+
∫

(eλx − 1 − λx1|x|≤1)ν(dx) . (11.9.9)

The function Ψ is convex, Ψ(0) = 0 and Ψ(1) = r − δ. (This last property is
a consequence of the martingale criterion (11.9.2).)

A Second Particular Case: X without Negative Jumps

We now assume that the jumps of X are positive hence the dual process
X̂ = −X has no positive jumps. Then

κ(u, k) =
u− Ψ̂(k)

Ψ̂ �(u) − k
(11.9.10)

where Ψ̂ is the Lévy exponent of −X, given by Ψ̂(k) = Ψ(−k) and Ψ̂ �(z) is
the positive root of Ψ̂(y) = z. Relying on equations (11.9.8) and (11.9.10), the
exercise boundary is given by:

bc =
r − Ψ̂(0)

Ψ̂ �(r)

Ψ̂ �(r) + 1

r − Ψ̂(−1)
K .

Using that Ψ̂(0) = 0, Ψ̂(−1) = Ψ(1) = r − δ, and Ψ̂ �(r) = −Ψ �,n(r), where
Ψ �,n(r) is the negative root of Ψ(k) = r, we obtain the following proposition:

Proposition 11.9.1.3 The exercise boundary for a perpetual call written on
the exponential of a Lévy process without negative jumps is

bc =
r

δ

Ψ �,n(r) − 1
Ψ �,n(r)

K . (11.9.11)

Comment 11.9.1.4 It is straightforward to check that in the case ν = 0,
the formula coincides with the usual formula (3.11.12). Indeed, in this case,

r

δ

Ψ �,n
0 (r) − 1

Ψ �,n
0 (r)

=
Ψ �

0(r)

Ψ �
0(r) − 1

(11.9.12)

where Ψ0 is the Lévy exponent in the case φ = 0, so that Ψ �
0(r) is the positive

root of bk+ 1
2σ

2k(k− 1) = r and Ψ �,n
0 (r) is the negative root. Usual relations

between the sum and the product of roots and the coefficients for a second
order polynomial, lead to the result, bc = γ1

γ1−1K with γ1 = −ν+
√
ν2+2r
σ (see

(3.11.10)).
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The Perpetual American Currency Put

The put case can be solved by using the symmetrical relationship (see Fajardo
and Mordecki [339]) between the American call and put boundaries:

bp(K, r, δ, Ψ)bc(K, δ, r, Ψ̃) = K2

where
Ψ̃(u) = Ψ(1 − u) − Ψ(1) . (11.9.13)

And by relying on (11.9.11), the exercise boundary bp of the perpetual put in
a jump-diffusion setting with negative jumps can be obtained:

bp =
rK

δ

Ψ̃ �,n(δ)

Ψ̃ �,n(δ) − 1
. (11.9.14)

The case where the size of the jumps of X is a strictly positive constant
ϕ corresponds to ν(dx) = λδϕ(dx), with λ > 0. Set φ = eϕ − 1. In that case,
the Laplace exponent of the Lévy process X is

Ψ(u) = uμ+ u2σ
2

2
+ λ(euϕ − 1)

= u

(

r − δ − σ2

2

)

+ u2σ
2

2
+ λ((1 + φ)u − 1 − uφ)

with μ = r − δ − λφ− σ2

2 . Recall that in the case of jumps of constant size

bp(K, r, δ, λ, ϕ)bc(K, δ, r, λ(1 + ϕ),− ϕ

1 + ϕ
) = K2 .

The price of a perpetual American call option can be decomposed as

CA(x) = δx

+∞∑

n=0

1
n!

∫ +∞

0

e−(δ+λ(1+φ))s(λ(1 + φ)s)nN (d1(bc, n; s))ds

− rK

+∞∑

n=0

1
n!

∫ +∞

0

e−(r+λ)s(λs)nN (d2(bc, n; s))ds (11.9.15)

with

d1(z, n; s) =
ln(x/z) + (r − δ − λφ+ σ2/2)s+ n ln(1 + φ)

σ
√
s

,

d2(z, n; s) = d1(z, n; s) − σ
√
s .

Comment 11.9.1.5 The perpetual exercise boundary for the put can also be
obtained by relying on the procedure used for the call. It can also be checked
that, when there is no dividend and when the Lévy measure corresponds to a
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compound Poisson process, this formula is the same as in Gerber and Landry
[386], i.e.,

bc = rK

(

m+ σ2 +
∫

(xex − x1|x|≤1)ν(dx)
)−1

.

See Chesney and Jeanblanc [174] for details.

Comment 11.9.1.6 The problem of American options is studied in Alili
and Kyprianou [8], Asmussen et al. [24], Boyarchenko and Levendorskii [117],
Chan [160, 159], Kyprianou and Pistorius [555] and Mordecki [658]. Russian
options are presented in Avram et al. [32], Asmussen et al. [24] and Mordecki
and Moreira [660]. Barrier and lookback options are studied in Avram et al.
[31] and Nguyen-Ngoc and Yor [670, 671].

Il faut imaginer Sisyphe heureux.
A. Camus, Le Mythe de Sisyphe



A

List of Special Features, Probability Laws,
and Functions

A.1 Main Formulae

For the reader’s convenience, we give here a list of some main formulae and
the page numbers where they appeared. They are presented, for each topic,
in alphabetical order. We have not given details of notation, which should be
clear from the context.

A.1.1 Absolute Continuity Relationships

Cameron-Martin’s Formula. (Page 73)

W(ν)[F (Xt, t ≤ T )] = W(0)[eνXT −ν2T/2F (Xt, t ≤ T )]

Girsanov’s Theorem. (Page 73)

W(f)[F (Xt, t ≤ T )]

= W(0)

[

exp

(∫ T

0

f(Xs)dXs −
1
2

∫ T

0

f2(Xs)ds

)

F (Xt, t ≤ T )

]

Squared Radial Ornstein-Uhlenbeck Processes and Squared Bessel
Processes. (Page 356)

b
Q

a
x|Ft = exp

(

− b
4
(Xt − x− at) − b2

8

∫ t

0

Xsds

)

Q
a
x|Ft
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Markets, Springer Finance, DOI 10.1007/978-1-84628-737-4,
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Poisson Processes of Intensities λ and (1 + β)λ. (Page 466)

Π(1+β)λ|Ft =
(
(1 + β)Nte−λβt

)
Πλ|Ft

A.1.2 Bessel Processes

The CIR Process r is a space-time changed BESQ process ρ. (Page 357)

rt = e−ktρ

(
σ2

4k
(ekt − 1)

)

Laplace Transform for the BESQ. (Page 343)

Q
δ
x[exp(−λρt)] =

1
(1 + 2λt)δ/2

exp
(

− λx

1 + 2λt

)

Scale Functions.
For a squared Bessel process (Page 336)

−x1−(δ/2) for δ > 2; lnx for δ = 2; x1−(δ/2) for δ < 2

Transition Densities. (Page 343)
For a squared Bessel process of index ν

q
(ν)
t (x, y) =

1
2t

(y
x

)ν/2
exp
(

−x+ y

2t

)

Iν

(√
xy

t

)

For a Bessel process of index ν

p
(ν)
t (x, y) =

y

t

(
y

x

)ν

exp
(

−x
2 + y2

2t

)

Iν

(
xy

t

)
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A.1.3 Brownian Motion

Let W be a Brownian motion, and Mt = sups≤tWs.

Brownian Bridges.
The following processes are Brownian bridges on [0, T ] (Page 237)

Xt = (T − t)
∫ t

0

dWs

T − s
; 0 ≤ t ≤ T

Yt = (T − t)W
(

t

T − t

)

, 0 ≤ t ≤ T

Hitting Times.

Law of the hitting time of y > 0 for a drifted BM: Xt = Wt + νt, ν > 0
(Page 148)

P(Ty(X) ∈ dt) =
y√
2πt3

exp
(

− 1
2t

(y − νt)2
)

1{t≥0} dt

Joint law of Wt and first hitting time of 0. (Page 142)

Pz(Wt ∈ dx, T0 ≥ t) =
1{x≥0}√

2πt

[

exp
(

− (z − x)2

2t

)

− exp
(

− (z + x)2

2t

)]

dx

Joint Law of B and its Local Time. (Page 222)

P(|Bt| ∈ dx, L0
t ∈ d!) = 1{x≥0}1{�≥0}

2(x+ !)√
2πt3

exp
(

− (x+ !)2

2t

)

dx d!

Lévy’s Equivalence Theorem. (Page 218)

(|Wt|, Lt ; t ≥ 0) law= (Mt −Wt,Mt ; t ≥ 0)

Occupation Time Formula. (Page 212)

∫ t

0

f(Ws) ds =
∫ +∞

−∞
Lx
t f(x) dx
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Reflection Principle.(Page 136) for y ≥ 0, x ≤ y

P(Wt ≤ x ,Mt ≥ y) = P(Wt ≥ 2y − x)

Joint law of Wt and Mt (Page 137)

P(Wt ∈ dx,Mt ∈ dy) = 1{y≥0}1{x≤y}
2(2y − x)√

2πt3
exp
(

− (2y − x)2

2t

)

dx dy

Tanaka’s Formulae. (Pages 214 and 215)

(Wt − x)+ = (W0 − x)+ +
∫ t

0

1{Ws>x} dWs +
1
2
Lx
t

|Wt − x| = |W0 − x| +
∫ t

0

sgn (Ws − x) dWs + Lx
t

f(Wt) = f(W0) +
∫ t

0

(D−f)(Ws) dWs +
1
2

∫

R

La
t f

′′(da)

A.1.4 Diffusions

Scale Function. (Page 271)

s(x) =
∫ x

c

exp
(

−2
∫ u

c

b(v)/σ2(v) dv
)

du

Speed Measure Density. (Page 272)

m(x) =
2

σ2(x)s′(x)

A.1.5 Finance

Dupire’s Formula. (Page 228)

1
2
K2σ2(T,K) =

∂TC(K,T ) + rK∂KC(K,T )
∂2
KKC(K,T )

Let dSt = St((r − δ)dt+ σdWt), and let CE (x,K; r, δ;T − t) be the price of
a call option at time t, with strike K.
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Black and Scholes’ Formula. (Pages 97 and 160)

CE (x,K; r, δ;T − t) = xe−δ(T−t)N
[

d1

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

−Ke−r(T−t)N
[

d2

(
xe−δ(T−t)

Ke−r(T−t)
, T − t

)]

where

d1(y, u) : =
1√
σ2u

ln(y) +
1
2

√
σ2u

d2(y, u) : = d1(y, u) −
√
σ2u

A.1.6 Girsanov’s Theorem

(Page 534) Let X be a local martingale with respect to P and

Q|Ft = LtP|Ft

Then, Xt −
∫ t

0

d[X,L]s
Ls

is a Q-local martingale.

If [X,L] is P-locally integrable, Xt −
∫ t
0

d〈X,L〉s

Ls−
is a Q-local martingale.

A.1.7 Hitting Times

Laplace transform of the first hitting times for diffusions. (Page 278)

Ex

(
e−λTy

)
=
{
Φλ↑(x)/Φλ↑(y) if x < y
Φλ↓(x)/Φλ↓(y) if x > y

A.1.8 Itô’s Formulae

Integration by parts formula for general semi-martingales. (Page 469)

XtYt = X0Y0 +
∫ t

0

Ys−dXs +
∫ t

0

Xs−dYs + [X,Y ]t
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Optional Itô’s Formula for General Semi-martingales. (Page 528)

f(Xt) = f(X0) +
∫ t

0

f ′(Xs−)dXs +
1
2

∫ t

0

f ′′(Xs)d〈Xc〉s

+
∑

0<s≤t

[f(Xs) − f(Xs−) − f ′(Xs−)ΔXs]

Itô–Kunita-Ventzel’s Formula. (Page 40)

dFt(x) =
n∑

j=1

f jt (x)dM j
t

Let X = (X1, . . . , Xd) be a continuous semi-martingale. Then

Ft(Xt) = F0(X0) +
n∑

j=1

∫ t

0

f js (Xs)dM j
s +

d∑

i=1

∫ t

0

∂Fs
∂xi

(Xs)dXi
s

+
d∑

i=1

n∑

j=1

∫ t

0

∂fs
∂xi

(Xs)d〈M j , Xi〉s +
1
2

d∑

i,k=1

∫ t

0

∂2Fs
∂xi∂xk

d〈Xk, Xi〉s .

Mixed Processes.
Let dXt = htdt+ ftdWt + gtdMt where dMt = dNt − λ(t)dt.

Optional Itô’s Formula for Mixed Processes. (Page 553)

F (t,Xt) = F (0, X0) +
∫ t

0

∂sF (s,Xs) ds+
∫ t

0

∂xF (s,Xs−)dXs

+
1
2

∫ t

0

∂xxF (s,Xs)f2
s ds

+
∑

s≤t

[F (s,Xs) − F (s,Xs−) − ∂xF (s,Xs−)ΔXs]
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Predictable Itô’s Formula for Mixed Processes. (Page 612)

F (t,Xt) = F (0, X0) +
∫ t

0

∂xF (s,Xs)fsdWs

+
∫ t

0

[F (s,Xs− + gs) − F (s,Xs−)] dMs

+
∫ t

0

[

∂tF (s,Xs) + hs∂xF (s,Xs) +
1
2
f2
s ∂xxF (s,Xs)

+λ(s)[F (s,Xs + gs) − F (s,Xs) − ∂xF (s,Xs)gs]
]

ds

Optional Itô formula for Lévy Processes. (Page 612)

f(t,Xt) = f(0, X0) +
∫ t

0

∂tf(s,Xs)ds

+
σ2

2

∫ t

0

∂xxf(s,Xs)ds+
∫ t

0

∂xf(s,Xs−)dXs

+
∑

s≤t

(f(s,Xs− +ΔXs) − f(s,Xs−) − (ΔXs) ∂xf(s,Xs−))

Predictable Itô Formula for Lévy Processes.(Page 612)

df(t,Xt) = ∂xf(t,Xt)σdWt +
∫

R

(f(t,Xt− + x) − f(t,Xt−)) Ñ(dt, dx)

+
[
1
2
σ2∂xxf(t,Xt) +m∂xf(t,Xt) + ∂tf(t,Xt)

+
∫

R

(
f(t,Xt− + x) − f(t,Xt−) − x ∂xf(t,Xt−)1|x|≤1

)
ν(dx)

]

dt

A.1.9 Lévy Processes

Lévy-Khintchine Representation. (Page 593)

μ̂(u) = exp
(

iu �m− 1
2
u �Au+

∫

Rd

(eiu � x − 1 − iu �x1|x|≤1)ν(dx)
)
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Laplace and Characteristic Exponents. (Page 607)

Φ(u) = −iu �m+
1
2
u �Au−

∫
(eiu � x − 1 − iu �x1|x|≤1)ν(dx)

Ψ(λ) = λ �m+
1
2
λ �σ2λ+

∫
(eλ � x − 1 − λ �x1|x|≤1)ν(dx)

Subordination. (Page 636)
The characteristics of X̃t = XZt are

ã = βaX +
∫ ∫

νZ(ds)1{|x|≤1}xP(Xs ∈ dx)

Ã = βAX

ν̃(dx) = βνX(dx) +
∫ ∞

0

νZ(ds)P(Xs ∈ dx)

A.1.10 Semi-martingales

Tanaka-Meyer Formula. (Page 224)

|Xt − x| = |X0 − x| +
∫ t

0

sgn (Xs − x) dXs + Lx
t (X)

(Xt − x)+ = (X0 − x)+ +
∫ t

0

1{Xs>x} dXs +
1
2
Lx
t (X)
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A.2 Processes

Process Law Equation Page

Drifted BM W(μ) drift μ dXt = μdt+ dWt 32

Squared Bessel Q
δ δ dρt = δdt+ 2

√
ρt dWt 334

BESQδ

Bessel dimension 334

BESδ
P
δ δ > 1 dRt = dWt +

δ − 1
2

1
Rt

dt

CIR a
Q

b,σ drt = (a− brt)dt 357
+σ

√
rtdWt

CEV dSt = St(μdt+ σSβ
t dWt) 365

A.3 Some Main Models

Model Parameters Dynamics Page

Black and 94
Scholes r, σ dSt = St(rdt+ σdWt)

Garman and r, δ, σ 129
Kohlhagen dSt = St((r − δ)dt+ σdWt)

Hull and White k, θ, σ drt = k(t)(θ(t) − rt)dt 120
(interest rate) Borel funct. +σ(t)dWt

Vasicek k, θ, σ drt = k(θ − rt)dt+ σdWt 120

CIR or square root k, θ, σ drt = k(θ − rt) dt+ σ
√
rtdWt 357

CEV μ, σ, β dSt = St(μdt+ σSβ
t dWt) 365

Hull and White μ, a, λ dSt = St(μdt+ σtdWt) 393
(stochastic vol.) dσt = σt(adt+ λdBt)
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A.4 Some Important Probability Distributions

A.4.1 Laws with Density

Law Density Characteristic function
Φ(u) = E(eiuX)

or Mellin function
M(λ) = E(Xλ)

Exponential λe−λx1{x>0} Φ(u) =
λ

λ− iu

Gaussian
1

σ
√

2π
exp
(

− (x−m)2

2σ2

)

Φ(u) = exp(ium− 1
2σ

2u2)

Cauchy
1
π

a

a2 + x2
Φ(u) = exp(−a|u|)

Arcsine
1
π

1
√
s(1 − s)

10≤s≤1 M(λ) =
B(λ+ 1/2, 1/2)
B(1/2, 1/2)

Beta (a,b)
ta−1(1 − t)b−1

B(a, b)
10≤t≤1 M(λ) =

B(a+ λ, b)
B(a, b)

Gamma(α)
tα−1e−t

Γ (α)
10≤t M(λ) =

Γ (α+ λ)
Γ (α)

A.4.2 Some Algebraic Properties for Special r.v.’s

• If C follows a Cauchy law with parameter a = 1, the random variable
1

1 + C2
follows the Arcsine law.

• If G and Ĝ are two independent standard Gaussian r.v’s., then
G

Ĝ
follows

a Cauchy law with parameter a = 1.
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• “Beta-Gamma” algebra: If γa is a gamma r.v. with parameter a, then

γa
law= βa,bγa+b

where βa,b is a beta(a, b) r.v. independent of γa+b.

A particular case of the beta-gamma algebra is

G2 law= 2γ1/2
law= 2β1/2,1/2e

where G is a gaussian variable, e law= γ1 is a standard exponential variable,
independent of the arc-sine variable β1/2,1/2.

See Chaumont and Yor [161] and Dufresne [278] for other algebraic properties.

A.4.3 Poisson Law

P(X = n) e−λλ
n

n!

Characteristic function exp
(
λ(eiu − 1)

)

Poisson law, λ > 0

Mean λ

Variance λ
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A.4.4 Gamma and Inverse Gaussian Law

Density
νa

Γ (a)
xa−1e−xν1{x>0}

Characteristic function (1 − iu/ν)−a

Γ (a, ν) Mean a/ν

a, ν > 0 Variance a/ν2

Lévy density ax−1e−νx1x>0

Density
a√
2π
eaνx−3/2

× exp
(

−1
2
(a2x−1 + ν2x)

)

1{x>0}

Characteristic function exp
(
−a(

√
ν2 − 2iu− ν)

)

IG(a, ν) Mean a/ν

Variance a/ν3

Lévy density
a√

2πx3
exp
(

−1
2
ν2x

)

1{x>0}

If X follows a Γ (a, ν) law, then cX follows a Γ (a, ν/c) law.
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A.4.5 Generalized Inverse Gaussian and Normal Inverse Gaussian

GIG(θ, a, ν), a > 0, ν > 0

Density
(ν/a)θ

2Kθ(aν)
xθ−1 exp

(

−1
2
(a2x−1 + ν2x)

)

1{x>0}

Characteristic f.
1

Kθ(aν)
(
1 − 2iu/ν2

)θ/2
Kθ(aν

√
1 − 2iuν−2)

Mean aKθ+1(aν)/(νKθ(aν))

Variance a2ν2K−2
θ (aν)

(
Kθ+2(aν)Kθ(aν) +K2

θ+1(aν)
)

Lévy density x−1e−ν2x/2
(
a2
∫∞
0
e−xyg(y)dy + max(0, θ)

)

g(y) =
(
π2a2y

[
J2
|θ|(a

√
2y) +N2

|θ|(a
√

2y))
])−1
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NIG(α, β, μ, δ), |β| < α, δ > 0

Density a

[

q

(
x− μ

δ

)]−1

K1

(

δ α q

(
x− μ

δ

))

eβ(x−μ)

q(x) =
√

1 + x2 a = π−1α exp
(
δ
√
α2 − β2

)

Characteristic f. exp
(
−δ
(√

α2 − (β + iu)2 −
√
α2 − β2

)
− iuμ

)

Mean
δβ

√
α2 − β2

+ μ

Variance α2δ(α2 − β2)3/2

Lévy density
δα

π

eβx

K1(α|x|)
|x|

In particular IG(a, ν) = GIG(−1
2 , a, ν).
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A.4.6 Variance Gamma VG(σ, ν, θ)

Density c|x| 1
ν − 1

2 eθ/σ
2
K 1

ν − 1
2

(√
θ2+2σ2/ν

σ2 |x|
)

c = σ
√

ν
2π

(θ2ν+2σ2)
1
4− θ

2ν

Γ (1/ν)

VG(σ, ν, θ) Characteristic function
(

1 − iuθν +
1
2
σ2νu2

)−1/ν

Mean θ

Variance σ2 + νθ2

Lévy density 1
ν|x|e

Ax−B|x|

A = θ
σ2 , B =

√
θ2+2σ2/ν

σ2

A.4.7 Tempered Stable TS(Y ±, C±, M±)

Lévy density ν(x) =
C+

xY ++1
e−M+x1x>0 +

C−

|x|Y −+1
eM−x1x<0

Characteristic function Γ (−Y +)MY +

+ C+
(
(1 − iu

M+
)Y

+ − 1 + iuY +

M+

)

(for Y ± = 1, 0) +Γ (−Y −)MY −

− C−
(
(1 + iu

M−
)Y

− − 1 − iuY −

M−

)

Mean 0

Variance Γ (2 − Y +)C+MY +−2
+

+Γ (2 − Y −)C−MY −−2
−
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A.5 Special Functions

A.5.1 Gamma and Beta Functions

Let a, b ∈ R
+

Γ (a) =
∫ +∞

0

xa−1 exp(−x)dx ,

B(a, b) =
Γ (a)Γ (b)
Γ (a+ b)

A.5.2 Bessel Functions

The Bessel functions of the first kind Jν and of the second kind Nν are
solutions to the Bessel equation with parameter ν

z2u′′ + zu′ + (z2 − ν2)u = 0 .

Jν(z) = (z/2)ν
∞∑

k=0

(−z2/4)k

k!Γ (ν + k + 1)

Nν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
.

The modified Bessel functions Iν and Kν are solutions to the Bessel equation
with parameter ν

z2u′′(z) + zu′(z) − (z2 + ν2)u(z) = 0

and are given by:

Iν(z) =
(
z

2

)ν ∞∑

n=0

z2n

22n n!Γ (ν + n+ 1)

Kν(z) =
π(I−ν(z) − Iν(z))

2 sinπν
.

Some recurrence relations:

d

dz
(zνIν(z)) = zνIν−1(z)

d

dz
(zνKν(z)) = −zνKν−1(z)

d

dz
(z−νIν(z)) = z−νIν+1(z)

d

dz
(z−νKν(z)) = −z−νKν+1(z)

Iν−1(z) − Iν+1(z) =
2ν
z
Iν(z) Kν−1(z) −Kν+1(z) = −2ν

z
Kν(z)

(A.5.1)
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The Bessel function Kν can be written in integral form

Kν(x) =
1
2

∫ ∞

0

yν−1 exp
(

−1
2
x

(

y +
1
y

))

dy, x > 0 . (A.5.2)

Explicit formulae for some values of ν:

I1/2(z) =
√

2/πz sinh z, I3/2(z) =
√

2/πz (cosh z − z−1 sinh z)

I5/2(z) =
√

2/πz ((1 + 3z−2) sinh z − 3z−1 sinh z)

K1/2(z) =

√
2
πz
e−z, K3/2(z) =

√
2
πz

(

1 +
1
z

)

e−z . (A.5.3)

A.5.3 Hermite Functions

The equation
u′′ − 2zu′ + 2νu = 0

admits fundamental solutions of the form Hν(±z) where

Hν(z) =
1

2Γ (−ν)

∞∑

k=0

(−1)k

k!
Γ

(
k − ν

2

)

(2z)k .

A.5.4 Parabolic Cylinder Functions

The Weber equation

u′′ +
(

ν +
1
2
− z2

4

)

u = 0

has as a particular solution the parabolic cylinder function Dν(z) where

Dν(z) = exp
(

−z
2

4

)

2−ν/2
√
πHν(z/

√
2)

and Hν is the Hermite function.

D′
−ν(z) = −z

2
D−ν(z) − νD−ν−1(z) .

A.5.5 Airy Function

The Airy function (Ai)(x) is a solution of the Sturm-Liouville equation

u′′(x) = xu(x), u(0) = 1 ,

and is given by

(Ai)(x) =
1
π

(x
3

)1/2

K1/3

(
2
3
x3/2

)

.
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A.5.6 Kummer Functions

The Kummer functions M(α, γ;x) and U(α, γ;x) are solutions of

xu′′ + (γ − x)u′ − αu = 0

and are given by

M(α, γ;x) =
∑

k

(α)k
(γ)k

xk

k!
(A.5.4)

U(α, γ;x) =
π

sinπγ

(
M(α, γ;x)

Γ (1 + α− γ)Γ (γ)
+ x1−γM(1 + α− γ, 2 − γ;x)

Γ (α)Γ (2 − γ)

)

where (α)k = α(α+ 1) · · · (α+ k − 1) (See Lebedev [570] and Slater [803].)
The Kummer function M is also called the confluent hypergeometric

function, and is denoted 1F1. When 0 < α < γ, one has

M(α, γ;x) =
Γ (γ)

Γ (γ − α)Γ (α)

∫ 1

0

exttα−1(1 − t)γ−α−1dt

U(α, γ;x) =
1

Γ (α)

∫ ∞

0

e−xttα−1(1 + t)γ−α−1dt ,

The solutions of
x2u′′ + (αx+ 1)u′ = λu

are Φλ↑(x) and Φλ↓(x) defined as

Φλ↑(x) =
(

1
x

)(ν+μ)/2

M

(
ν + μ

2
, 1 + μ,

1
x

)

Φλ↓(x) =
(

1
x

)(ν+μ)/2

U

(
ν + μ

2
, 1 + μ,

1
x

)

where M and U denote the Kummer functions and μ =
√
ν2 + 4λ, 1 + ν = α.

It follows that the solutions of

x2u′′ + (αx+ β)u′ = λu

are Φλ↑(x/β) and Φλ↓(x/β).

A.5.7 Whittaker Functions

The Whittaker functions Wk,m and Mk,m are solutions of the second order
differential equation

u′′ +
(

−1
4

+
k

x
− m2 − 1/4

x2

)

u = 0 .

Whittaker functions are related to the Kummer functions:

Wk,m(x) = e−x/2xm+1/2 U(m− k + 1/2; 1 + 2m;x)

Mk,m(x) = e−x/2xm+1/2M(m− k + 1/2; 1 + 2m;x)
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A.5.8 Some Laplace Transforms
∫ ∞

0

exp(−λx)f(x)dx = Ψ(λ) . (A.5.5)

Function Laplace transform

xα−1 Γ (α)
λα

1√
2πx3/2

∑

n∈Z

(v − u+ 2nv)e−(v−u+2nv)2/2x sinh(u
√

2λ)
λ sinh(v

√
2λ)

π2

b2

∑

n≥1

(−1)n+1n2e−n2π2x/(2b2) b
√

2λ
sinh(b

√
2λ)

|a|√
2πx3

exp(− a
2

2x
) e−|a|

√
2λ
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Rouault, and Ch. Stricker, editors, Séminaire de Probabilités XL, volume 1899
of Lecture Notes in Mathematics. Springer-Verlag, 2007.

20. J-P. Ansel and Ch. Stricker. Quelques remarques sur un théorème de Yan. In
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115. E. Bouyé, V. Durrleman, A. Nikeghbali, G. Riboulet, and Th. Roncalli. Copulas

for finance, a reading guide and some applications. Unpublished manuscript,
www.creditlyonnais.fr, 2000.

116. J. Bowie and P. Carr. Static simplicity. Risk, 7:45–49, 1994.
117. S.I. Boyarchenko and S.Z. Levendorskii. Option pricing and hedging under
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140. Ph. Carmona. Généralisation de la loi de l’arc sinus et entrelacements de
processus de Markov. Thèse, Paris 6, 1994.
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Annals of Applied Prob., 9:504–528, 1999.



References 675

160. T Chan. American options driven spectrally by one-sided Lévy process. In A.E.
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of Asian, Parisian and barrier options. In M.A.H. Dempster and S. Pliska,
editors, Mathematics of Derivative Securities, Publication of Newton Institute,
pages 61–87. Cambridge University Press, 1997.

174. M. Chesney and M. Jeanblanc. Pricing American currency options in an
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Meyer, editor, Séminaire de Probabilités XI, volume 581 of Lecture Notes in
Mathematics, pages 383–389. Springer-Verlag, 1977.

258. C. Donati-Martin, R. Ghomrasni, and M. Yor. On certain Markov processes
attached to exponential functionals of Brownian motion: Applications to Asian
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351. H. Föllmer and M. Schweizer. Hedging of contingent claims under incomplete
information. In M.H.A. Davis and R.J. Elliott, editors, Applied Stochastic
Analysis, pages 101–134, London, 1990. Gordon and Breach.
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à P-A. Meyer et J. Neveu, volume 236 of Astérisque, pages 163–170. SMF,
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exponentielles. Z. Wahr. Verw. Gebiete, 42:175–203, 1978.

581. H.R. Lerche. Boundary crossing of Brownian motion, volume 40 of Lecture
Notes in Statistics. Springer-Verlag, 1986.

582. K.S. Leung and Y.K. Kwok. Distribution of occupation times for CEV
diffusions and pricing of a α quantile option. Quantitative Finance, 7:87–94,
2007.

583. S. Levental and A.V. Skorokhod. A necessary and sufficient condition for
absence of arbitrage with tame portfolio. The Annals of Applied Prob., 5:906–
925, 1995.
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761. K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge
University Press, Cambridge, 1999.
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763. W. Schachermayer. Introduction to the mathematics of financial markets. In P.
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VI, 1982.

858. Ch. Yoeurp. Grossissement de filtration et théorème de Girsanov généralisé.
In Th. Jeulin and M. Yor, editors, Grossissements de filtrations: exemples et
applications, volume 1118. Springer, 1985.

859. M. Yor. Sur quelques approximations d’intégrales stochastiques. In Séminaire
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Instantaneously reflecting, 273
Integral

Stieltjes, 458
stochastic - w.r.t. counting process,

458
Integration by parts, 526

for continuous martingales, 38
for mixed processes, 553
for Poisson processes, 469
for processes, 519
for Stieltjes, 511

Intensity
approach for default time, 445
of a Poisson process, 462
of a random time, 413
of an inhomogeneous Poisson

process, 467
Interest rate, 80
Inverse

of a time change, 260
of an increasing process, 260
of local time, 219

Inverse Gaussian law, 596
Itô’s formula

for Poisson processes, 470
for Lévy processes, 614
for compound Poisson processes, 484
for continuous semi-martingales, 38
for general semi-martingales, 528
for mixed processes, 552

Itô-Tanaka’s formula for
semi-martingales, 531

Kendall’s identity, 141, 634
Kolmogorov

backward equation, 282
continuity criteria, 11
forward equation, 282

Kusuoka’s example, 431

Lévy
process, 599
characterization of a BM, 32
Geometric - process, 614
measure, 592, 601
process, 575

Lévy’s equivalence theorem, 224
Ladder process, 629, 633
Laplace transform of

hitting time for a drifted BM, 148
a Gaussian law, 13
hitting time for a BES, 345
hitting time for a BM, 143
hitting time for a GBM, 152

Last passage time, 232, 294
at a level b before time t, 247
before hitting a level, 297
before maturity, 298
of a transient diffusion, 294, 295

Law
Arc sine, 114, 234
Arcsine, 220, 233
Cauchy, 233, 595
chi-squared, 14
Gamma, 460, 592, 595, 657
Gaussian, 13
Inverse Gaussian, 148, 596
NIG, 592
Normal Inverse Gaussian, 150
of hitting time of a barrier for a

drifted BM, 148
Rayleigh, 240, 242, 245
Variance Gamma, 592

Lemma
Skorokhod, 218

Life time, 16
Local

martingale, 25
super-martingale, 26
volatility, 227

Local time, 212, 213
diffusion, 290
for a semi-martingale, 222, 531
Itô-McKean, 290
occupation time, 290
Tanaka-Meyer, 290

Localizing sequence, 25
Locally

integrable increasing process, 26
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square integrable martingale, 26
Locally equivalent probabilities, 66

Malliavin’s derivative, 57
Market

complete, 88
Markov

process, 15, 464, 600
strong - property, 17

Martingale
Asmussen-Kelly-Whitt, 620
Azéma, 243, 522
exponential, 532
local, 25, 517
orthogonality, 28
purely discontinuous, 521
square integrable, 21, 513
Wald, 616

Maximum
of a Lévy process, 628
of a BM over [0, t], 136, 218

Mean reverting property, 120
Measurable

map, 3
space, 3

Measure
Lévy , 592
random, 458, 490, 501, 502, 505

Mellin transform, 403
Merton’s model, 491, 568, 584
Minimal entropy measure, 549
Mixed process, 551
Model

Black and Scholes, 93
CEV, 365
CGMY, 641
Cox-Ingersoll-Ross, 333
Dritschel and Protter, 579
Garman-Kohlhagen, 130
Hull and White, 120
Privault, 579
Vasicek, 120

Modification, 11
Multiplicative decomposition, 54, 303,

304, 414

Natural scale, 271
Negligible sets, 5
Numéraire, 105, 162

Occupation time
for a Brownian motion, 113
for a drifted BM, 114
formula, 212, 223

Options
American - for exponential

Lévy model, 641
American - in a Black and Scholes

model, 191
American - in a CEV model, 373
Asian, 381
barrier, 164
barrier forward-start, 184
boost, 184
call - in a CEV model, 372
cumulative, 116
down-and-in binary call, 165
down-and-in bond, 165
down-and-out call, 164
exchange, 130
knock-in, 164
knock-out, 164
Knock-out BOOST, 230
out-of-the-money, 160
Parisian, 247
power, 97
quanto, 132
real, 198
regular, 165
regular binary, 167
regular up-and-in put, 167
up-and-in call, 165
up-and-out call, 164

Orthogonality, 28, 513, 521
Overshoot, 564, 631

Parabolic cylinder functions, 663
Parity put-call, 84, 226
Partial information, 418, 437
Pitman’s Theorem, 307
Poisson

bridge, 480
measures, 505

Poisson process
doubly stochastic, 476
inhomogeneous - with stochastic

intensity, 476
Polar set, 18
Polarization identity, 28, 519
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Portfolio, 81
hedging, 88
numéraire, 93
self-financing, 82

Position
long, 83
short, 83

Predictable
σ-algebra, 23
bracket, 27, 515
compensator, 266
function, 43, 513
process, 513
stopping time, 32, 513

Predictable representation theorem, 55
for a pair BM and PP, 558
for compound Poisson processes, 496
for default risk, 416, 432
for marked point processes, 504
for Poisson process, 473

Principal value, 335
Probabilities

absolutely continuous, 7
equivalent, 8

Probability measure, 5
Probability space, 5
Probability transition density

for BM, 31
Process

BESQδ
x, 335

BESδ, 335
adapted, 10
Cauchy, 261, 635
CEV, 116, 280, 365
CIR, 357, 361
compensated, 462
compound Poisson, 483, 608
counting, 457
Cramer-Lundberg, 492
elementary predictable, 36
finite variation, 12
Gamma, 634, 635
Gaussian, 15
generalized Vasicek, 120
homogeneous, 16
increasing, 10, 510
inhomogeneous Poisson, 467
inverse Gaussian, 625
Lévy, 599

Lévy-Itô, 613
marked point, 502
multidimensional OU, 128
Normal Inverse Gaussian, 636
optional, 264, 513
Ornstein-Uhlenbeck, 120, 153, 280,

374, 605
point, 506
Poisson, 459
Poisson point, 506
predictable, 23, 264, 513
progressively measurable, 11
SABR, 366
square of a GV, 127
square OU, 128
square-root, 357
squared radial Ornstein-Uhlenbeck,

356
stopped, 23
tempered stable, 640
Variance-Gamma, 639
Vasicek, 120, 275, 280
with independent increments, 12
with stationary increments, 12

Projection
dual predictable, 265
optional, 264
predictable, 264

Pure jump process, 510
Put option, 97

Quadratic covariation
of a square integrable martingale,

515
of local martingales, 519, 520
of semi-martingales, 525
predictable - of continuous

semi-martingales, 29
Quadratic variation

of a continuous local martingale, 27
of a local martingale, 517

Quantiles, 119

Radon-Nikodým density, 7, 66
Random time, 22, 24

honest, 327
Random variable, 4
Range of prices, 415, 572
Rayleigh law, 240, 245
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Reflection principle, 136
Regular diffusion, 270
Representation

Lévy-Khintchine, 593
Resolvent, 144

kernel, 277
of a Markov process, 17

Risk premium, 91, 94
Risk-neutral probability

Black and Scholes framework, 96
for DZC, 416

Running maximum, 41, 326

Scale function, 271
for a CEV, 371
for BESQ, 336
for Bessel processes, 274
for Brownian motion, 274
for Geometric BM, 274
for reflected Brownian motion, 274
for Vasicek process, 275

Scaling
for squared Bessel processes, 338
property for BM, 32

Securities, 80
Self-decomposable r.v., 596
Self-financing condition

with consumption, 64
Self-financing strategy, 81, 104, 544
Selling price, 575
Semi-group of an time-homogeneous

Markov process, 16
Semi-martingale, 27, 522

pseudo-continuous, 529
special, 522

Short-selling, 81
σ-algebra

optional, 512
predictable, 512

Smooth-fit principle, 196
Solution

strictly weak - for SDE, 43
strong - for SDE, 43
weak - for SDE, 43

Spectrally negative Lévy process, 632
Speed measure, 271

for a CEV, 371
for Brownian motion, 274
for Geometric BM, 274

for reflected Brownian motion, 274
Spread

credit, 410
Stable

process, 608
random variable, 598

State-price density, 93
Stieltjes integral, 510
Stochastic

exponential, 52, 617
logarithm, 533, 617

Stochastic Differential Equations
and mixed processes, 556
existence theorem, 43

Stop-Loss strategy, 229
Stopped process, 22
Stopping time, 21

predictable, 22, 513
pseudo, 24, 326, 430
totally inaccessible, 22, 513

Strategy
admissible, 85
hedging, 87

Stratonovich integral, 41, 51
Strict local martingale, 26, 77, 226,

336, 339, 341, 371, 372, 560
Strong solution for SDE, 43
Structure condition, 538
Structure equation, 522, 579, 580
Sturm-Liouville equation, 353
Subordinator, 600, 634
Super-replication price, 548, 575
Survival distribution

function, 409
Symmetry, 160

American boundaries, 198, 588
American put-call, 197
Asian option, 383
European put-call, 162
for Parisian options, 256
in a jump-diffusion model, 562
put-call - for mixed processes, 562,

588

Tanaka’s formulae
for Brownian motion, 214

Tanaka-Meyer formulae
for semi-martingales, 224

Tempered stable process, 640
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Cameron-Martin, 73
Doob’s optional sampling, 23
Doob-Meyer, 20
Dubins Schwarz, 261
Dudley, 60
Girsanov, 69, 73, 531
Girsanov - for a pair BM and PP ,

560
Lévy, 218
Lamperti, 347
Monroe, 263
Pitman, 307
Sklar, 423
Stochastic Fubini, 211

Time
changed, 260, 276, 347, 348, 357,

390, 395
Wiliams - reversal, 307

Time inversion, 32
Transition density

for a BES, 343
for a BESQ, 343
for a CIR, 358

Transition probability, 15
Tsirel’son example, 49

ucp convergence, 12
Uniform integrability, 18, 532
Uniformly integrable

martingale, 75, 532
Uniqueness

in law for SDE, 43
pathwise - for SDE, 43

Variance-Gamma process, 639
Version, 11
Volatility

implied, 392
local, 227

Watanabe’s characterization, 468
Wiener-Hopf factorization, 629
Williams’ time reversal result, 307
Wronskian, 278

Zero-coupon bond, 81
defaultable, 408
deterministic case, 408
in a CIR framework, 362
in an OU framework, 123
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