
6

Virtual Storage

Nil posse creari de nilo
– Lucretius, De Rerum Natura, I, 155

6.1 Introduction

In this chapter, mechanisms to support virtual storage will be modelled. Vir-
tual storage affords a considerable number of advantages to the operating
system designer and user. Virtual storage is allocated in units of a page and
pages can be collected into independent segments; virtual storage defines clear
boundaries between address spaces so that each process can maintain its own
address space. This clearly provides a measure of protection between processes
but requires additional methods for exchanging data between processes.

In virtual storage systems, main store is shared between processes in the
usual way but is defined as a sequence of page frames, each a block of store
one page long. The storage belonging to each process is swapped into main
store when required and copied to a paging disk (or some other mass-storage
device) when not required. Strategies for selecting pages to copy to the paging
disk and for determining which page to bring into main store must be defined.

6.2 Outline

The storage system to be designed is to have the following features:

• The virtual store should have four segments: one each for code, data, stack
and heap.

• The system uses demand paging with reference counting for victim selec-
tion.

• Pages can be shared (and unshared) between processes.
• Segments can be shared (and unshared) between processes;

240 6 Virtual Storage

• Storage should be mapped in the sense that disk blocks can be directly
mapped to main-store pages and vice versa.

• Message passing will be used for IPC.

The virtual storage system is composed of:

• A page-fault handler. This is invoked when a page fault occurs. It deter-
mines the identity of the logical page that caused the page fault. It invokes
the page-fault driver process and passes to it the identifier of the faulting
process and the page number. It unreadies the faulting process.

• A page-fault driver. This takes a message from the page-fault ISR and
sends a message to the paging disk to retrieve the page whose reference
caused the fault. If there are no free page frames in (main) physical store,
it selects a victim page in physical store and sends it to the paging disk.
When the faulting page is received from the paging disk, it is copied into a
main store page whose physical address is identified with the logical page
number in the faulting process. The faulting process is then readied and
the driver waits for the next page fault.

The above scheme is sub-optimal. As part of the model, optimisations
are suggested, particularly for the interactions between the driver and paging
disk.

Even though it is sub-optimal, the above scheme is logically sufficient. It is,
therefore, appropriate to concentrate on it as the model for this chapter. This
exemplifies the method adopted in this book: capturing the logical functioning
of the model is much more important than optimisation. The optimisation
included here is introduced as an example of how it can be done without too
much of a compromise to the model.

The structure of this kernel is shown in Figure 6.1. Comparison of this
figure with the corresponding one in Chapter 4 (Figure 4.1) reveals their
similarities. In the current kernel, virtual and not real storage forms the basis
of the system. Apart from the need for structures and operations to support
virtual storage (the subject of this chapter), the main difference lies in the
kernel bootstrapping operations (which are not considered in this book).

6.3 Virtual Storage

In this section, the basic structures required to model a virtual store are
introduced.

The following axiomatic definition defines the number of real pages (pages
in real store or physical pages) and the size of the page frame. Neither constant
is assigned a value, so the specification is of the loose variety.

numrealpages : N

framesize : N

The basic virtual address is represented by an atomic type:

6.3 Virtual Storage 241

ISR ISRTLB Clock

IPC

Process Abstraction

V-Store Manager i/o
 r

/g
s

System
Calls

User
Processes

al
ar

m
s

Context
Switch

Process
Table

Device
Processor

Page
Tables

Physical
Store Mgr.

Kernel Interface
Routines

Paging
Disk

Process
Page

Placement

Clock
Process

Low-Level
Scheduler

Page Fault ISRs

Kernel
Primitive

System
Processes

P
ag

es
 lo

ck
ed

 in
 s

to
re

(A
lw

ay
s

re
si

de
nt

)
P

ag
es

 n
ot

 lo
ck

ed
 in

 s
to

re
(T

em
po

ra
ril

y
re

si
de

nt
)

… …

Fig. 6.1. The layer-by-layer organisation of the kernel, including virtual storage-
management modules.

242 6 Virtual Storage

[VIRTUALADDRESS]

maxvirtpagespersegment : N

This is the maximum number of virtual pages that a process can own.

PAGEOFFSET == 1 . . framesize
PHYSICALPAGENO == 1 . . numrealpages
LOGICALPAGENO == N

where:

• PAGEOFFSET denotes the offsets into a page;
• PHYSICALPAGENO denotes the indices of pages in the main-store page

frame;
• LOGICALPAGENO denotes the indices of logical pages (pages belonging

to a process).

Note that LOGICALPAGENO is not bounded above. The reason for this is
that the actual number of logical pages that a process can have is a hardware-
dependent factor and is not relevant to the current exercise.

For every virtual address, the hardware performs an address translation
that maps the virtual address to a logical frame number and an offset into
that frame. The signature of this function, addresstrans, is:

addresstrans : VIRTUALADDRESS → DECODEDADDRESS

The definition of this function is hardware-specific and is, in any case, not
particularly relevant to the current exercise.

The type DECODEDADDRESS is defined as:

DECODEDADDRESS == LOGICALPAGENO × FRAMEOFFSET

and has the following projections:

dlogicalpage : DECODEDADDRESS → LOGICALPAGENO
dpageoffset : DECODEDADDRESS → PAGEOFFSET

∀ addr : DECODEDADDRESS •
dlogicalpage(addr) = fst addr
dpageoffset(addr) = snd addr

For a segmented, paged architecture, the address-decoding function can
be defined as:

saddresstrans : VIRTUALADDRESS → SDECODEDADDRESS

where:

6.3 Virtual Storage 243

SDECODEDADDRESS == SEGMENT × LOGICALPAGENO × PAGEOFFSET

and:

saddrseg : SDECODEDADDRESS → SEGMENT
spageno : SDECODEDADDRESS → LOGICALPAGENO
spagoffset : SDECODEDADDRESS → PAGEOFFSET

∀ saddr : SDECODEDADDRESS •
saddrseg(saddr) = fst saddr
spageno(saddr) = fst(snd saddr)
spagoffset(saddr) = snd2 saddr

The PAGEMAP translates logical to physical page numbers. PAGE-
FRAME translates physical page numbers to the actual pages in store. Finally,
PAGE defines a storage page as a vector of PSU ; the vector has PAGEOFF-
SET elements. (PSU is, it will be recalled, the Primary Storage Unit, which
is assumed to be a byte.)

PAGEMAP == LOGICALPAGENO � �→ PHYSICALPAGENO
PAGEFRAME == PHYSICALPAGENO → PAGE
PAGE == PAGEOFFSET → PSU

The empty page is defined as follows:

NullPage : PAGE

NullPage = (λ i : PAGEOFFSET • 0)

It is a page (vector of bytes), PAGEOFFSET bytes long, with each byte set
to zero.

Pages are associated with a number of flags, including, among others:

• in core (i.e., in main store);
• locked In (i.e., must always remain in main store);
• shared (i.e., shared between at least two processes).

For each process, these properties can be represented by sets (thus simplifying
the modelling of pages).

For the remainder of this section, a segmented virtual store will be mod-
elled. The hardware nearest to the model presented here is the Intel X86
series. The reader is warned that this is a logical model of segmented, paged
storage, not an exact rendition of any existing hardware implementations.
Furthermore, details such as the Translation Lookaside Buffer, or TLB, (the
associative store that typically holds a few entries from the current process’
page table) are not modelled in detail, the reason being that, as usual, hard-
ware differs considerably in implementation and, in particular, the size of the
TLB can vary considerably among MMUs1.
1 Memory Management Unit.

244 6 Virtual Storage

Although most segmented hardware supports more than four segments
per process, for the present, only three segments will be considered. Linux on
X86 requires three segments: one each for code, stack and data, although the
hardware permits a maximum of 16 segments (the virtual address size is 32
bits). The segment names are as follows:

SEGMENT == {code, data, stack, heap, . . .}
A great many programming languages now require heap (dynamic) storage.
A problem for dynamic store, as with stacks, is that, quite frequently, it has
to be expanded. Within a three-segment organisation, the heap is part of
either the stack or data segment; this can limit the maximum size of the
heap somewhat on 32-bit machines. To simplify manipulation, it is assumed
here that the data segment contains static data (global variables, literal pools,
fixed-length buffers and so on) and the heap is given its own segment. The
heap can, therefore, grow to the maximum segment size at runtime, as can
the stack segment.

usedsegment : SEGMENT

∀ s : SEGMENT •
usedsegment(s) ⇔ s ∈ {code, data, stack, heap}

It is now possible to define per-process page tables.
Each segment is composed of a number of pages. The following function

translates a physical address and segment into a logical page number:

pages in segment : APREF × SEGMENT ×
(APREF � �→ SEGMENT � �→ F LOGICALPAGENO) →

F LOGICALPAGENO

∀ p : APREF ; sg : SEGMENT ; f : APREF � �→ SEGMENT � �→
F LOGICALPAGENO •

pages in segment(p, sg , f) = f (p)(sg)

The following (inverse) functions mark and unmark pages. They are
higher-order functions that take the specification of a page and a page at-
tribute map as arguments and return the modified page attribute map.

mark page : APREF × SEGMENT × LOGICALPAGENO×
(APREF � �→ SEGMENT � �→ F LOGICALPAGENO) →

(APREF � �→ SEGMENT � �→ F LOGICALPAGENO)
unmark page : APREF × SEGMENT × LOGICALPAGENO×

(APREF � �→ SEGMENT � �→ F LOGICALPAGENO) →
(APREF � �→ SEGMENT � �→ F LOGICALPAGENO)

∀ p : APREF ; sg : SEGMENT ; lpno : LOGICALPAGENO ;
f : APREF � �→ SEGMENT � �→ F LOGICALPAGENO •

mark page(p, sg , lpno, f) = f (p) ⊕ {sg �→ (f (p)(sg) ∪ {lpno})}
unmark page(p, sg , lpno, f) = f (p) ⊕ {sg �→ (f (p)(sg) \ {lpno})}

6.3 Virtual Storage 245

It is now proved that these two functions are mutual inverses.

Proposition 124. mark page and unmark page−1 are mutually inverse.

Proof. Write f (p)(sg) = h, then:

mark = f (p) ⊕ {sg �→ (h ∪ {lpno})}
unmark = f (p) ⊕ {sg �→ (h \ {lpno})}

Calculating the value of unmark ◦ mark , we obtain:

(f (p) ⊕ {sg �→ (h ∪ {lpno})}) ⊕ {sg �→ (h \ {lpno})}
Writing f (p)(sg) = s, then mark = s ∪ {lpno} and unmark = s \ {lpno}, so:

unmark ◦ mark
= (s \ {lpno}) ◦ (s ∪ {lpno})
= (s ∪ {lpno}) \ {lpno}
= s

Conversely:

mark ◦ unmark
= (s ∪ {lpno}) ◦ (s \ {lpno})
= (s \ {lpno}) \ {lpno}
= s

Therefore, mark and unmark are mutual inverses and the proposition is
proved. �

The page table abstraction can be modelled as follows. The variable free-
pages represents those pages in main store that are not allocated to any
process. The page table proper is pagetable. The variables executablepages,
writablepages and readablepages are intended to refer to pages the owner has
marked executable (i.e., code pages), read-only (e.g., a constant data seg-
ment) and read-write (e.g., a stack). Pages can be shared between processes
and some are locked into main store. When a page is locked, it cannot be
removed from main store. The kernel’s own storage is often marked as locked
into main store. It is so locked because a page fault could prevent the kernel
from responding in time to a circumstance. It is also necessary to keep track
of those pages that are currently in main store: these are referred to as being
“in core”, hence the name of the variable, incore. The pagecount counts the
number of pages in each segment of each process. There is an a priori limit to
the number of pages in a segment and pagecount is intended to keep track of
this and to provide a mechanism for raising an error condition if this limit is
exceeded. The final variable, smap, is a relation between elements of PAGE-
SPEC ; it denotes those pages that are shared and it will be explained in more
detail below.

246 6 Virtual Storage

There are different ways to organise page tables. The simplest is a linear
sequence of page references. As virtual storage sizes increase, simple linear
structures do not perform well, so tree-like structures are to be preferred.
These trees can be arranged to perform mapping on two or three levels. The
model defined here is intended to be suggestive of a tree structure, even though
it can also be implemented as a table.

The class that follows defines an abstract data type. It represents the page
table type. The type exports a large number of operations and has the most
complex invariant in this book.

PageTables
�(INIT ,HaveFreePages,NumberOfFreePages,AllocateFreePage,

MakePageFree,PhysicalPageNo, InitNewProcessPageTable,

RemoveProcessFromPageTable,AddPageToProcess,HasPageInStore,

IncProcessPageCount ,DecProcessPageCount ,
LatestPageCount ,UpdateMainstorePage,

RemovePageFromProcessTable,RemovePageProperties,
RemovePageFromProcess, IsPageInMainStore,MarkPageAsIn,

MarkPageAsOut , IsSharedPage,MarkPageAsShared ,

UnsharePage, IsLockedPage,LockPage,UnlockPage,

MakePageReadable,MakePageNotReadable,MakePageExecutable,

IsPageExecutable,MakePageNotExecutable,MakePageWritable,

IsPageWritable,MakePageNotWritable)

freepages : F PHYSICALPAGENO
pagetable : APREF � �→ SEGMENT � �→ PAGEMAP
executablepages,writablepages, readablepages,
sharedpages, lockedpages,
incore : APREF � �→ SEGMENT � �→ F LOGICALPAGENO
pagecount : APREF � �→ SEGMENT � �→ N

smap : PAGESPEC ↔ PAGESPEC

InvPageTables

0 ≤ #freepages ≤ numrealpages

dom incore ⊆ dom pagetable
dom sharedpages ⊆ dom pagetable
dom lockedpages ⊆ dom pagetable
dom pagecount = dom pagetable
dom executablepages = dom pagetable
domwritablepages = dom pagetable
dom readablepages = dom pagetable

6.3 Virtual Storage 247

INIT
freepages ′ = ∅

dom pagetable ′ = ∅

dom sharedpages ′ = ∅

dom lockedpages ′ = ∅

dom incore ′ = ∅

dom pagecount ′ = ∅

dom executablepages ′ = ∅

domwritablepages ′ = ∅

dom readablepages ′ = ∅

dom smap = ∅

HaveFreePages =̂ . . .

NumberOfFreePages =̂ . . .

AllocateFreePage =̂ . . .

MakePageFree =̂ . . .

PhysicalPageNo =̂ . . .

InitNewProcessPageTable =̂ . . .

RemoveProcessFromPageTable =̂ . . .

AddPageToProcess =̂ . . .

HasPageInStore =̂ . . . IncProcessPageCount =̂ . . .

DecProcessPageCount =̂ . . .

LatestPageCount =̂ . . .

UpdateMainstorePage =̂ . . .

RemovePageFromPageTable =̂ . . .

RemovePageProperties =̂ . . .

RemovePageFromProcess =̂ . . .

IsPageInMainStore =̂ . . .

MarkPageAsIn =̂ . . .

MarkPageAsOut =̂ . . .

IsSharedPage =̂ . . .

MarkPageAsShared =̂ . . .

UnsharePage =̂ . . .

IsLockedPage =̂ . . .

LockPage =̂ . . .

UnlockPage =̂ . . .

248 6 Virtual Storage

MakePageReadable =̂ . . .

MakePageNotReadable =̂ . . .

MakePageExecutable =̂ . . .

IsPageExecutable =̂ . . .

MakePageNotExecutable =̂ . . .

MakePageWritable =̂ . . .

IsPageWritable =̂ . . .

MakePageNotWritable =̂ . . .

It will be noted that the invariant is partially stated in the class definition.
The remainder is specified by the InvPageTables schema defined below after
the other operations have been defined. This will bring the invariant closer to
some of the proofs in which it is required.

The following schema represents the test that there are pages in main store
(physical pages) that are free.

HaveFreePages
freepages �= ∅

NumberOfFreePages
np! : N

np! = #freepages

The following operation models the allocation of a free page to a process.
It removes the page denoted by ppno! from the set of free pages, freepages.

AllocateFreePage
∆(freepages)
ppno! : PHYSICALPAGENO

ppno! ∈ freepages
freepages ′ = freepages \ {ppno!}

Proposition 125. AllocateFreePage implies that #freepages ′ = freepages+1.

Proof.

#freepages ′

= #(freepages \ {ppno?})
= #freepages − #{ppno?}
= #freepages − 1

�

6.3 Virtual Storage 249

Proposition 126. If freepages = n, AllocateFreePagen implies freepages ′ =
0.

Proof. By induction, using the last proposition. �

The next operation returns a page to the set of free pages.

MakePageFree
∆(freepages)
ppno? : PHYSICALPAGENO

freepages ′ = freepages ∪ {ppno?}

Proposition 127. MakePageFree implies that #freepages ′ = #freepages −1.

Proof.

#freepages ′

= #(freepages ∪ {ppno?})
= #freepages + #{ppno?}
= #freepages + 1

�

Proposition 128. AllocateFreePage[p/ppno!] o
9 MakePageFree[p/ppnp?] im-

plies that freepages ′ = freepages.

Proof. The sequential composition can be written as:

∃ freepages ′′ : F PHYSICALPAGENO | freepages ′′ = freepages \ {ppno!} •
freepages ′ = freepages ∪ {ppno?}

Renaming and simplifying:

freepages ′ = (freepages \ {p}) ∪ {p}

Then:

(freepages \ {p}) ∪ {p}
= (freepages \ {p}) ∪ {p}
= freepages ∪ ({p} \ {p})
= freepages ∪ ∅

= freepages

�

The PhysicalPageNo operation contains a use of the pagetable variable.
This variable is a higher-order function. Its use might appear a little odd.

250 6 Virtual Storage

Essentially, to obtain the physical page number corresponding to a logical
page number, the process has to locate the segment in which the page occurs
and then translate the logical page number.

PhysicalPageNo
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
ppgno! : PHYSICALPAGENO

ppgno! = pagetable(p?)(sg?)(lpno?)

When a process is allocated, it is given an entry in the page table. The
following schema models this operation. It just adds the process’ identifier as
a key in the subtables and sets everything to zero (empty or ∅).

InitNewProcessPageTable
∆(incore, sharedpages, lockedpages)
p? : APREF

pagetable ′ = pagetable ∪ {p? �→ code �→ ∅} ∪ {p? �→ data �→ ∅}
∪{p? �→ stack �→ ∅} ∪ {p? �→ heap �→ ∅}

incore ′ = (incore ∪ {p? �→ code �→ ∅}) ∪ ({p? �→ data �→ ∅}
(∪{p? �→ stack �→ ∅}(∪{p? �→ heap �→ ∅})))

sharedpages ′ = (sharedpages ∪ {p? �→ code �→ ∅}) ∪ ({p? �→ data �→ ∅}
(∪{p? �→ stack �→ ∅}(∪{p? �→ heap �→ ∅})))

lockedpages ′ = (lockedpages ∪ {p? �→ code �→ ∅}) ∪ ({p? �→ data �→ ∅}
(∪{p? �→ stack �→ ∅}(∪{p? �→ heap �→ ∅})))

Proposition 129. InitNewProcessPageTable implies that the new process has
no pages.

Proof. For a process to have pages, it must have at least one page
in at least one segment. However, for a process, p, and all segments, sg ,
pagetable ′(p)(sg) = ∅. �

Corollary 11. InitNewProcessPageTable implies that the new process has no
in-core pages.

Proof. Similar to the above. �

Similar results can be proved for all other page attributes, e.g., locked
pages.

Conversely, when a process terminates or is killed, its storage is returned
to the free pool and all of the information associated with it in the page tables
is removed. The following schema models this operation:

6.3 Virtual Storage 251

RemoveProcessFromPageTable
∆(pagetable, incore, sharedpages, lockedpages)
p? : APREF

pagetable ′ = {p?} −� pagetable
incore ′ = {p?} −� incore
sharedpages ′ = {p?} −� sharedpages
lockedpages ′ = {p?} −� lockedpages

Proposition 130. The predicate of RemoveProcessFromPageTable implies
that p �∈ dompagetable.

Proof. The first line of the predicate is pagetable ′ = {p?}−�pagetable. Taking
domains:

dom pagetable ′ = dom({p?} −� pagetable)
= (dom pagetable) \ {p?}

�

Proposition 131. For any p : APREF, RemoveProcessFromPageTable[p/p?]
implies that the process:

1. is no longer incore, swappable, etc.; and
2. is no longer in the page table for its owning process.

Proof. Each conjunct of the predicate employs the domain subtraction op-
eration (−�) to remove p from the domain of each function. This implies that
p is removed from each table. �

Propositions about page attributes can be proved. They follow the pattern
of the last proposition.

When the storage image of a process is augmented by the addition of fresh
pages, the following operation is the basic one used to extend the process’
page table entry. Each page is specified as a process reference, a segment and
a logical page number; in addition, the physical page number of the page to be
added is also included. Since the process and segment are already present in
the table, the logical to physical page number mapping is added to the table
at the specified point.

AddPageToProcess
∆(pagetable)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
ppno? : PHYSICALPAGENO

pagetable ′ = pagetable(p?)(sg?) ∪ {lpno? �→ ppno?}

252 6 Virtual Storage

There now follows a predicate that returns true when the process specified
by p? has at least one page in main store:

HasPageInStore
p? : APREF

p? ∈ dom incore

The per-segment page count is incremented by the following schema:

IncProcessPageCount
∆(pagecount)
p? : APREF
sg? : SEGMENT

pagecount ′ = pagecount(p?) ⊕ {sg? �→ pagecount(p?)(sg?) + 1}

The counter is decremented by the following schema:

DecProcessPageCount
∆(pagecount)
p? : APREF

pagecount ′ = pagecount(p?) ⊕ {p? �→ pagecount(p?)(sg?) − 1}

When a page is added to a segment, the page count is incremented. When a
page is removed from a segment, the page count is decremented. The current
value of the page count is obtained by the following schema:

LatestPageCount
p? : APREF
sg? : SEGMENT
lpno! : LOGICALPAGENO

lpno! = pagecount(p?)(sg?)

If the logical to physical page mapping is changed, the following schema
performs the update in the page table.

UpdateMainStorePage
∆(pagetable)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
ppno? : PHYSICALPAGENO

pagetable ′ = pagetable(p?)(sg?) ⊕ {lpno? �→ ppno?}

6.3 Virtual Storage 253

When a page is removed from the page table, the entry representing it
must be removed. The removal operation is defined as follows:

RemovePageFromPageTable
∆(pagetable)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

(∃ pmap : PAGEMAP | pmap = pagetable(p?)(sg?) •
pagetable ′ = pagetable(p?) ⊕ {sg? �→ ({lpno?} −� pmap)})

The removal of a page also requires the removal of the attributes of that
page. The attributes are removed using the unmark page function (when a
page is allocated, the attributes it possesses are marked using the mark page
function).

RemovePageProperties
∆(executablepages, readablepages,writablepages, sharedpages,

lockedpages, incore)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

executablepages ′ = unmark page(p?, sg?, lpno?, executablepages)
readablepages ′ = unmark page(p?, sg?, lpno?, readablepages)
writablepages ′ = unmark page(p?, sg?, lpno?,writablepages)
sharedpages ′ = unmark page(p?, sg?, lpno?, sharedpages)
lockedpages ′ = unmark page(p?, sg?, lpno?, lockedpages)
incore ′ = unmark page(p?, sg?, lpno?, incore)

Finally, the high-level operation to remove a page from a process is defined
as follows:

RemovePageFromProcess =̂
RemovePageFromProcessTableo

9

MakePageFreeo
9

RemovePageProperties

It is possible to determine whether a page is in main store by determin-
ing whether it is in the incore attribute. The following schema defines this
predicate. Note that it uses the pages in segment function.

IsPageInMainStore
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ pages in segment(p?, sg?, incore)

254 6 Virtual Storage

Proposition 132. IsPageInMainStore iff lpno? is an in-core page.

Proof. The predicate states that lpno? ∈ pages in segment(p?, sg?, incore).
By the definition of pages in segment ,

lpno? ∈ incore(p?)(sg?)

�

Proposition 133. IsSharedPage iff lpno? is a shared page; that is, iff lpno?
is an element of sharedpages(p)(sg), for some p and sg.

Proof. Similar to the previous proof. �

Proposition 134. IsLockedPage iff lpno? is a locked page; that is, iff lpno?
is an element of lockedpages.

Proof. Similar to the previous proof. �

When a page is swapped into main store, it is marked as being “in”. The
following schema performs this marking. The schema that immediately follows
marks pages as “out” (i.e., as not being main-store resident).

MarkPageAsIn
∆(incore)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

incore ′ = mark page(p?, sg?, lpno?, incore)

Proposition 135. MarkPageAsIn implies that lpno? is an element of incore ′.

Proof. As can be seen from the schema, the predicate is incore ′ =
mark page(p?, sg?, lpno?, incore). Substituting the definition of mark page:

incore ′ = mark page(p?, sg?, lpno?, incore)
= incore(p?) ⊕ {sg �→ (incore(p?)(sg) ∪ {lpno?})}

�

Proposition 136. For fixed arguments, p : APREF, s : SEGMENT and
l : LOGICALPAGENO, MarkPageAsIn[p/p?, s/sg?, l/lpno?]n has the same
effect as MarkPageAsIn[p/p?, s/sg?, l/lpno?].

6.3 Virtual Storage 255

Proof. This proposition is to be taken as:

MarkPageAsInn ⇔ MarkPageAsIn

The proposition is proved by substitution from the following general property
of sets:

(S ∪ {x}) ∪ {x} = S ∪ {x}
(i.e., the absorbtive law of set union). �

MarkPageAsOut
∆(incore)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

incore ′ = unmark page(p?, sg?, lpno?, incore)

Proposition 137. MarkPageAsOut is satisfied iff lpno? is not an element of
incore.

Proof. Substituting the definition of unmark page into the predicate of the
schema MarkPageAsOut :

incore ′ = unmark page(p?, sg?, lpno?, incore)
= incore(p?) ⊕ {sg? �→ (incore(p?)(sg?) \ {lpno?})}

�

Proposition 138. For fixed arguments, p : APREF, s : SEGMENT and
l : LOGICALPAGENO, MarkPageAsOut [p/p?, s/sg?, l/lpno?]n has the same
effect as MarkPageAsOut [p/p?, s/sg?, l/lpno?].

Proof. The statement of the proposition is to be taken as:

MarkPageAsOutn ⇔ MarkPageAsOut

The proposition is proved by substitution from the following general property
of sets:

(S \ {x}) \ {x} = S \ {x}
�

Proposition 139. MarkPageAsIn[l/lpno?]o9MarkPageAsOut [l/lpno?] implies
that incore ′ = incore.

256 6 Virtual Storage

Proof. Writing out the predicates and performing the obvious substitutions:

unmark page(p?, sg?, lpno?,mark page(p?, sg?, lpno?, incore))

The result follows from the fact that unmark page and mark page are mutu-
ally inverse. �

Proposition 140. MarkPageAsOut [l/lpno?]o9MarkPageAsIn[l/lpno?] implies
that incore = incore ′.

Proof. Writing out the predicates and performing the obvious substitutions:

mark page(p?, sg?, lpno?, unmark page(p?, sg?, lpno?, incore))

The result follows from the fact that unmark page and mark page are mutu-
ally inverse. �

The next few schemata set and unset attributes in pages. The attributes
are represented by the various tables in the PageTables class, such as shared -
pages, readable and locked . The schemata naturally fall into three sets: one to
perform a test and one to set the attribute and one to unset it. The schemata
in each of these sets have the same structure. That structure is the obvious
one and is quite simple. For these reasons, the schemata will not be described
in English: the formal notation can stand on its own.

IsSharedPage
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ pages in segment(p?, sg?, sharedpages)

MarkPageAsShared
∆(sharedpages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

sharedpages ′ = mark page(p?, sg?, lpno?, sharedpages)

UnsharePage
∆(sharedpages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

sharedpages ′ = unmark page(p?, sg?, lpno?, sharedpages)

6.3 Virtual Storage 257

IsLockedPage
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ pages in segment(p?, sg?, lockedpages)

LockPage
∆(lockedpages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lockedpages ′ = mark page(p?, sg?, lpno?, lockedpages)

UnlockPage
∆(lockedpages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lockedpages ′ = unmark page(p?, sg?, lpno?, lockedpages)

MakePageReadable
∆(readablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

readablepages ′ = mark page(p?, sg?, lpno?, readablepages)

IsPageReadable
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ readablepages(p?)(sg?)

MakePageNotReadable
∆(readablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

readablepages ′ = unmark page(p?, sg?, lpno?, readablepages)

258 6 Virtual Storage

MakePageExecutable
∆(executablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

executablepages ′ = mark page(p?, sg?, lpno, executablepages)

IsPageExecutable
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ executablepages(p?)(sg?)

MakePageNotExecutable
∆(executablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

executablepages ′ = unmark page(p?, sg?, lpno, executablepages)

MakePageWritable
∆(writablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

writablepages ′ = mark page(p?, sg?, lpno,writablepages)

IsPageWritable
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

lpno? ∈ writablepages(p?)(sg?)

MakePageNotWritable
∆(writablepages)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

writablepages ′ = unmark page(p?, sg?, lpno,writablepages)

6.3 Virtual Storage 259

Finally, we come to InvPageTables, the page table invariant. As can be
seen, this is quite an invariant. Because of its length, it was not possible to
make it fit within the Object-Z class box without obfuscating the specification
even more. The invariant is mostly concerned with ensuring that each page
is represented correctly. For example, no free page has a corresponding page-
table entry; all locked pages are always in main store, and so on. Readers can
inspect the various clauses of the invariant for themselves.

This invariant clearly demonstrates the need for higher-order logics!

InvPageTables =̂
(∀ ppno : PHYSICALPAGENO •

ppno ∈ freepages ⇔
¬ (∃ p : APREF ; sg : SEGMENT ; lpno : LOGICALPAGENO •

ppno = pagetables(p)(sg)(lpno)))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom lockedpages ∧ sg ∈ dom lockedpages(p) ⇒

lockedpages(p)(sg) ⊆ incore(p)(sg))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom incore ∧ sg ∈ dom incore(p) ⇒

incore(p)(sg) ⊆ dom pagetable(p)(sg))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom sharedpages ∧ sg ∈ dom sharedpages(p) ⇒

sharedpages(p)(sg) ⊆ dom pagetable(p)(sg))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom lockedpages ∧ sg ∈ dom lockedpages(p) ⇒

lockedpages(p)(sg) ⊆ dom pagetable(p)(sg))

These clauses are intended to represent the disjointness of segments.

(∀ p : APREF | p ∈ dom pagetable •
(∀ sg1, sg2 : SEGMENT •

(sg1 �= sg2 ∧
sg1 ∈ dom pagetable(p) ∧ sg2 ∈ dom pagetable(p)) ⇒

dom pagetable(p)(sg1) ∩ dom pagetable(p)(sg2) = ∅))

(∀ p : APREF | p ∈ dom pagetable •
(∀ sg1, sg2 : SEGMENT •

(sg1 �= sg2 ∧
sg1 ∈ dom pagetable(p) ∧ sg2 ∈ dom pagetable(p)) ⇒

ran pagetable(p)(sg1) ∩ ran pagetable(p)(sg2) = ∅))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom executablepages ∧ sg ∈ executablepages(p) ⇒

executablepages(p)(sg) ⊆ dom pagetable(p)(sg))

(∀ p : APREF ; sg : SEGMENT •
p ∈ dom readablepages ∧ sg ∈ readtablepages(p) ⇒

readablepages(p)(sg) ⊆ dom pagetable(p)(sg))

260 6 Virtual Storage

(∀ p : APREF ; sg : SEGMENT •
p ∈ domwritablepages ∧ sg ∈ writablepages(p) ⇒

writablepages(p)(sg) ⊆ dom pagetable(p)(sg))

(∀ pg : PAGESPEC | pg ∈ dom pmap •
(∃ p : APREF ; sg : SEGMENT ; lpno : LOGICALPAGENO •

(p = pgspecpref (pg) ∧
sg = pgspecseg(pg) ∧
lpno = pgspeclpno(pg)) ⇒

(p ∈ dom pagetable ∧ sg ∈ dom pagetable(p) ∧
lpno ∈ dom pagetable(p)(sg))))

(∀ pg : PAGESPEC | pg ∈ ran pmap •
(∃ p : APREF ; sg : SEGMENT ; lpno : LOGICALPAGENO •

(p = pgspecpref (pg) ∧
sg = pgspecseg(pg) ∧
lpno = pgspeclpno(pg)) ⇒

(p ∈ dom pagetable ∧ sg ∈ dom pagetable(p) ∧
lpno ∈ dom pagetable(p)(sg))))

Proposition 141.

InitNewProcessPageTable ⇒
(∀ s : SEGMENT •

incore = ∅

∧ sharedpages = ∅

∧ lockedpages = ∅)

Proof. By the predicate of the InitNewProcessPageTable predicate. �

Proposition 142. ∀ p : PAGE • locked(p) ⇔ ¬ swappable(p)

Proof. The class invariant states that dom lockedpages ⊆ dom pagetables.
This permits us to infer that:

∀ p : LOGICALPAGENO •
p ∈ lockedpages(p)(sg)

⇒ p ∈ (dom pagetable(p)(sg))

for all p ∈ IPREF and sg ∈ SEGMENT .
Again, by the same invariant:

lockedpages(p)(sg) ⊆ incore(p)(sg)

(again, for all p and sg as above).
These two formulæ ensure that every locked page exists in store.

⇒: By the predicate of PageFaultDriver .findVictimLogicalPage (q.v.):

6.3 Virtual Storage 261

pagetable(p)(sg)(l) = v ! ∧ l �∈ lockedpage

First, applying the substitutions [p/p!, sg/sg !, l/l !], then simplifying and re-
arranging the predicate of findVictimLogicalPage, we obtain:

p ∈ dom pagetable
∧ sg ∈ dom pagetable(p)
∧ l ∈ dom pagetable(p)(sg)
∧ l �∈ lockedpages(p)(sg)
∧ pagetable(p)(sg)(l) = v

where v is the page to be swapped.
From this, it can be concluded that v cannot be a locked page.

⇐. If a page is not swappable, it is locked. Consider the set of swappable pages,
S , by the definition of findVictimLogicalPage in the substitution instance
above, any logical page, l , cannot be in S because l �∈ lockedpages(p)(sg). �

Proposition 143. For all processes, lockedpages ∩ swappablepages = ∅.

Proof. This follows immediately from the previous proposition. �

Proposition 144. If a page, p, is in main store, IsPageInMainStore[p/...] is
satisfied.

Proof. By the predicate of IsPageInMainStore, it is clear that

lpno? ∈ pages in segment(p, s, incore)

and that: pages in segment(x , y , f) = f (x)(y); its range is a set.
For a page actually to be in store, the following must be satisfied:

IsPageInMainstore implies that:
(∃ p : IPREF ; sg : SEGMENT ; pp : PHYSICALPAGENO •

pagetable(p)(sg)(lpno) = pp
∧ pp �∈ freepages)

By the invariant:

∀ pp : PHYSICALPAGENO •
pp ∈ freepages ⇒

¬ (∃ p : IPREF ; sg : SEGMENT ; l : LOGICALPAGENO •
pp = pagetables(p)(sg)(l)

By the application of contraposition (p ⇒ q ⇔ q ⇒ p), the result is obtained.
It is now necessary to show that

l ∈ incore(p)(sg) ⇒
(∃ pp1 : PHYSICALPAGENO • pagetables(p)(sg)(l) = pp)

This can be done using the invariant. �

262 6 Virtual Storage

Proposition 145. If a page, p, is locked, IsPageInMainStore[p/...] is satis-
fied.

Proof. Similar to that of the last proof. �

Proposition 146. A locked page can never be swapped out.

Proof. By Propositions 142 and 144. �

Proposition 147. A free page is in the process table of no process.

Proof. Assume that process, p, has segment, s, in which the logical page
number, l is mapped to physical page, n. In this case, n = pagetable(p)(s)(l).

By the class invariant,

∀ ppno : PHYSICALPAGENO •
ppno ∈ freepages ⇔

¬ (∃ pid : APREF ; sg : SEGMENT ; lpn : LOGICALPAGENO •
ppno = pagetable(pid)(sg)(lpn))

By Universal Instantiation:

n ∈ freepages ⇔
¬ (∃ pid : APREF ; sg : SEGMENT ; lpn : LOGICALPAGENO •

n = pagetable(pid)(sg)(lpn))

From the assumption that n ∈ freepages, a contradiction ensues. Therefore,

n �∈ freepages

as required. �

Proposition 148. A free page is not incore.

Proof. The invariant states that:

∀ ppno : PHYSICALPAGENO •
ppno ∈ freepages ⇔

¬ (∃ pid : APREF ; sg : SEGMENT ; lpn : LOGICALPAGENO •
ppno = pagetable(pid)(sg)(lpn))

This implies that:

freepages ∩ pagetable(p)(sg) = ∅ (6.1)

The class invariant also states that:

6.3 Virtual Storage 263

p ∈ dom incore ∧ sg ∈ dom incore(p) ⇒
incore(p)(sg) ⊆ dom pagetable(p)(sg)

This and equation (6.1) above imply that pg ∈ freepages ⇔ ¬ incore(p)(sg)(l)
for all values of p, sg and l . �

Proposition 149. A free page is not:

1. executable;
2. readable; or
3. writable.

Proof. Since a free page is not in the page table, it follows from the invariant
that it cannot have any of these attributes. �

6.3.1 The Paging Disk Process

The paging disk holds pages while they are not in main store. The virtual store
software copies pages to and from the paging disk to implement the swapping
process that underlies the huge address space illusion. Pages are swapped out
of store when they are not required and swapped back in when their owning
process (or one of them, if the page is shared) refers to them.

The paging disk is part of the subsystem whose design will be discussed in
the next few subsections. The subsystem’s organisation and interactions are
shown in Figure 6.2. It consists of an ISR, a handler or driver process and the
paging disk proper.

The paging disk is assumed to be infinite in size. It is represented by a
mapping from logical to physical pages (pagemap). In addition, the disk has an
interface to the message-passing system (msgmgr) so that it can communicate
with the other processes in the storage-management subsystem. For most of
the time, pagemap will be the focus of attention.

The class defining the paging disk process is now defined.

PagingDiskProcess
�(INIT ,PageIsOnDisk ,StorePageOnDisk ,RetrievePageFromDisk ,

RemoveProcessFromPagingDisk ,OnPageRequest)

pagemap : APREF � �→ SEGMENT � �→ LOGICALPAGENO � �→ PAGE
msgmgr : MsgMgr

264 6 Virtual Storage

allocate
delete
expand
mark

…

Virtual
Store Mgr.

Physical
Store

Page
Tables

Paging
Disk

Page Fault
Handler
Process

ISR

H/W Page
Fault Signal

Fig. 6.2. Interactions between virtual storage components.

INIT
msgs? : MsgMgr

msgmgr ′ = msgs?
dom pagemap′ = ∅

PageIsOnDisk =̂ . . .

StorePageOnDisk =̂ . . .

RetrievePageFromDisk =̂ . . .

RemoveProcessFromPagingDisk =̂ . . .

OnPageRequest =̂ . . .

6.3 Virtual Storage 265

The following schema is a predicate that is true when the specified page
of the specified process is present on the paging disk.

PageIsOnDisk
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

p? ∈ dom pagemap
sg? ∈ dom pagemap(p?)
lpno? ∈ dom pagemap(p?)(sg?)

Pages are stored on the paging disk when they are swapped out of main
store. In order for a page to be stored on the paging disk, it must be placed
there and indexed properly. The StorePageOnDisk operation does this:

StorePageOnDisk
∆(pagemap)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
pg? : PAGE

pagemap′ = pagemap ⊕ {p? �→ {sg? �→ {lpno? �→ pg?}}}

Proposition 150. If a logical page image is already on disk and that page is
swapped out again, that page image is overwritten.

Proof. Let p = pagemap(p?)(sg?)(lpno?) and let pg? be pagemap′(p?)(sg?)
(lpno?), so {p? �→ {sg? �→ {lpno? �→ p}}} ∈ pagemap and {p? �→ {sg? �→
{lpno? �→ pg?}}} ∈ pagemap′. Therefore, pagemap′ = pagemap ⊕ {p? �→
{sg? �→ {lpno? �→ pg?}}}. �

When its owning process references a page that is not in main store, the
paging disk is instructed to retrieve it from the paging disk. The following
schema models the basics of this operation:

RetrievePageFromDisk
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
pg ! : PAGE

pg ! = pagemap(p?)(sg?)(lpno?)

When a process terminates (or is terminated), all of its pages must be
removed from the paging disk. In our model, this can be done very easily by

266 6 Virtual Storage

removing the process’ identifier from the domain of the pagemap. This removes
all references to the process from the map—hence, removes the process from
the disk, thus:

RemoveProcessFromPagingDisk
∆(pagemap)
p? : APREF

pagemap′ = {p?} −� pagemap

Proposition 151. The predicate of RemoveProcessFromPagingDisk implies
that p �∈ dompagemap′.

Proof.

dom pagemap′

= dom({p?} −� pagemap)
= (dom pagemap) \ {p?}

Therefore, p �∈ dom pagemap′. �

The paging disk has an operation that handles requests for operations.
The operations it can perform are:

• store a page (STOPG);
• retrieve a page (GTPG), and
• delete a process from the paging disk (DELPROCPG).

The following schema defines this operation. The schema uses overloaded calls
to the RcvMessage primitive provided by the message-handling subsystem.
The operation is really just a large “or” based on the type of message that
has just been received. The infinite loop is modelled by the exterior universal
quantifier. While the operation has nothing to do, it waits for the next message
to arrive.

OnPageRequest
∀ i : 1 . . ∞ •

(∃ pdsk , fhandler : APREF ; msg : MSG |
pdsk = pagedisk ∧ fhandler = faultdrvr •

msgmgr .RcvMessage[pdsk/caller?, fhandler/src?,msg/m!]
∧ (∃ p : APREF ; sg : SEGMENT ;

lpno : LOGICALPAGENO ; pg : PAGE •
(msg = STOPG〈〈p, sg , lpno, pg〉〉

∧ storePageOnDisk [p/p?, sg/sg?, lpno/lpno?, pg/pg?])

6.3 Virtual Storage 267

∨ (msg = GTPG〈〈p, sg , lpno〉〉
∧ retrievePageFromDisk [p/p?, sg/sg?, lpno/lpno?, pg/pg !]
∧ (∃ rpmsg : MSG | rpmsg = ISPG〈〈p, sg , lpno, pg〉〉 •

msgmgr .SendMessage
[fhandler/dest?, pdsk/src?, rpmsg/m?]))

∨ (msg = DELPROCPG〈〈p〉〉
∧ removeProcessFromPagingDisk [p/p?])))

Proposition 152. OnPageRequest does what it should.

Proof. The proof is by cases on message type. It is assumed that all domains
are correct so the error cases ignored in the schema need not be introduced
here.
Case 1. m = STOPG , a request to store a page on disk. The predicate of
storePageOnDisk [p/p?, sg/sg?, lpno/lpno?, pg/pg?] states:

pagemap′ = pagemap ⊕ {p �→ {sg �→ {lpno �→ pg}}}

so pg? = pagemap′(p)(sg)(lpno).
Case 2. m = GTPG , a request to retrieve a page. This follows from the fact
that retrievePageOnDisk is a function: pg? = pagemap(p?)(sg?)(lpno?).
Case 3. m = DELPROCPG . By the last proposition. �

6.3.2 Placement: Demand Paging and LRU

There are significant issues to be resolved in the design of the virtual storage
mechanism. This section deals with the general area of placement. Placement
is concerned with where pages are to be removed and included in main store.
When a process refers to a page that is not currently in main store, it generates
a page fault, an asynchronous signal that interrupts the process and leads
to the satisfaction of the reference. To do this, the support software has to
identify the page that is being referenced and then identify a page in physical
store that can be swapped out to the paging disk, thus making space for the
referenced page to be copied into main store. The issue is slightly complicated
by the fact that the system might have some free physical pages in main store
(indeed, it might be a policy to keep a block of such pages in reserve). For
present purposes, it is assumed that all physical pages are allocated and that
there is no pool of free pages kept in reserve.

The placement algorithm just outlined is demand paging. This is the most
common approach. It is documented, like many other possible approaches, in
most textbooks on operating systems (e.g., [26, 11, 29, 5]). Demand paging is
the most commonly used approach and makes reasonable assumptions about
the hardware and the software. It just assumes that the hardware can detect

268 6 Virtual Storage

a page fault and that the software can find the referenced page and locate the
page in main store where it can be stored; if there is no free page, demand
paging assumes that there is a way to find a victim page that can be swapped
out to make space.

ISR
Page
Fault

Handler

Physical
Store

Paging
Disk

Process

Hardware Page
Fault (signal)

process Id

page
request

replacement
page

+ faulting
address

Fig. 6.3. Process organisation for handling page faults.

The placement algorithm used in this model has two identifiable aspects:

1. finding pages to remove;
2. pages to include.

The second aspect is solved for us: the pages to include are always those that
cause a page fault when referenced by a process.

The general organisation of the processes that handle page faults is shown
in Figure 6.3.

6.3.3 On Page Fault

A page fault occurs when a virtual address refers to a page that is not in
physical store.

When such a fault occurs, it is assumed that the address causing the
fault is available to the operating system. From this address, it is assumed
that the following parameters can be computed: segment number, logical page
number and the offset into the logical page. In addition, it is assumed that the

6.3 Virtual Storage 269

identity of the process causing the page fault can be determined (it should be
the currently running process on a uni-processor; in the terms of this book,
the value of currentp).

The case in which a page is shared is identical. The important thing to
remember is that the owning process causes the page fault. If a page is shared,
the important thing is for the page not to be swapped in (or out) more than
once. That is why the smap is included in PageTables. When a shared page is
to be swapped, this map is consulted. If the page is shared, it should already
be in store. Conversely, if a page is to be swapped in, the smap should be
consulted for the same reason.

In this section, a page that is to be removed from main store in order to
free a page frame will be called a victim or candidate. It is always a restriction
on victim page selection that victim pages are never locked into main store.

To define a relatively simple candidate-finding algorithm, it is necessary
to associate page frames in main store with a bit that is set by the hardware
whenever a page is referenced and a counter. The counter is a single byte
whose value is computed by rotating the reference bit into the top bit of the
counter byte and or-ing the counter with the contents of the counter shifted
down one bit (ignoring the bottom bit). The types of the reference bit and
the counter are:

BIT == {0, 1}
N256 == 0 . . 255

(N256 is just the naturals 0 . . 216 − 1—i.e., a 16-bit unsigned.)
The computation of the counter value forms part of the predicate of schema

ComputeHitCounts. To define a swap-out procedure, it is necessary to extend
PageFrames a little so that information on page usage is represented.

The class and its operations are relatively straightforward.

PageFrames
�(INIT ,GetPage,OverwritePhysicalPage,ClearRefBitsAndCounter ,

ComputeHitCounts, IsVictim,VictimPhysicalPageNo)

frames : PAGEFRAME
refbit : PHYSICALPAGENO � �→ BIT
count : PHYSICALPAGENO � �→ N256

dom count = dom refbit
dom count ⊆ dom frames
#dom refbit = numrealpages

270 6 Virtual Storage

INIT
(∀ i : 1 . . numrealpages •

frames ′(i) = NullPage)
dom refbit ′ = ∅

dom count ′ = ∅

GetPage =̂ . . .

OverwritePhysicalPage =̂ . . .

ClearRefBitsAndCounter =̂ . . .

ComputeHitCounts =̂ . . .

IsVictim =̂ . . .

VictimPhysicalPageNo =̂ . . .

GetPage
pageno? : PHYSICALPAGENO
fr ! : PAGE

1 ≤ pageno? ≤ numrealpages
fr ! = frames(pageno?)

This operation retrieves a page.
The infix function after is required by the next schema. Its definition is

repeated for convenience:

after : seqX × N → seqX

∀m : seqX ; offset : N •
dom(m after offset) = (1 . . #m − offset) ∧
(∀n : N •

(n + offset) ∈ domm ⇒ (m after offset)(n) = m(n + offset))

OverwritePhysicalPage
∆(frames)
pageno? : PHYSICALPAGENO
pg? : PAGE

frames ′ = frames ⊕ {pageno? �→ pg?}

This operation overwrites a page in main store. The input pageno? is the index
of the page frame in main store and pg? is a page full of data.

Proposition 153. The predicate of the substitution instance of the predicate
OverwritePhysicalPage[p/pageno?, pg/pg?] replaces the page indexed by p in
frames by the page, pg and only that page.

6.3 Virtual Storage 271

Proof. The ⊕ operation can be defined as:

(f ⊕ g)(x) =
{

f (x), x ∈ dom f
g(x), otherwise.

Then, for the predicate of the schema:

(frames ⊕ {pageno? �→ pg?})(x) =
{

frames(x), x ∈ dom frames
{pageno? �→ pg?}, x = pageno?

�

The clearing of the reference bits and reference counter in a physical page
is defined as follows:

ClearRefBitsAndCounter
∆(refbit , count)
ppno? : PHYSICALPAGENO

refbit ′ = refbit ⊕ {ppno? �→ 0}
count ′ = count ⊕ {ppno? �→ 0}

The following operation computes the hit count for each page. That is, it
computes the number of times the page has been referenced since it was copied
into main store. It must be performed on a cyclic basis but this model does
not specify how the cycle is implemented—hardware is the optimal way to
compute such counts because the counter must be updated on each reference.
The computation operation is defined by the following schema:

ComputeHitCounts
∆(pcount , count)

(∀ i : PHYSICALPAGENO | i ∈ dom frames •
(∃ pcount : N265 •

pcount = (count(i)/2)mod 256 + refbit(i) ∗ 27 ∧
count ′ = count ⊕ {i �→ pcount}))

The lowest count value is chosen as the victim:

IsVictim
(∃ j : PHYSICALPAGENO | j ∈ dom count •

count(j) = min(ran count))

The physical page of the victim must be obtained:

VictimPhysicalPageNo
victim! : PHYSICALPAGENO

(∃ : PHYSICALPAGENO | i ∈ dom count •
∧ count(i) = min(ran count)
∧ i = victim!)

272 6 Virtual Storage

This algorithm is not foolproof but is a reasonable, hardware-independent
choice. There are many alternative algorithms in the literature (see, for ex-
ample, [26] or [29]) but the best will always be determined by the hardware
on which the operating system runs. The assumption made here is a mini-
mal one (because many processors implement reference bits in page frames);
some machines might provide reference counters directly, while others might
record the time of the last reference to each page. It is to be hoped that,
in the future, victim determination will be considerably simplified by more
co-operative hardware.

The FindVictim operation is “safe” in the sense that it will always find
an in-core page. The reason for this is that the pageout operation defined
above requires that ¬ HaveFreePages be true before FindVictim is called.
This ensures that none of the candidate pages is in freepages.

PGMSG ::= DELPROCPG〈〈AREF 〉〉
| GETPG〈〈AREF × SEGMENT × LOGICALPAGENO〉〉
| STOPG〈〈AREF × SEGMENT × LOGICALPAGENO × PAGE〉〉
| ISPG〈〈AREF × SEGMENT × LOGICALPAGENO × PAGE〉〉

FMSG ::= BADADDR〈〈APREF × SEGMENT × LOGICALPAGENO〉〉

The ISR handling page faults can be defined as the following class. It is a
subclass of the message-based ISR defined in the last chapter.

PageFaultISR
�(INIT ,

OnPageInterrupt)

GenericMsgISR

sched : LowLevelScheduler
ptab : ProcessTable

INIT
schd? : LowLevelScheduler
pt? : ProcessTable

sched ′ = schd? ∧ ptab′ = pt?

6.3 Virtual Storage 273

OnPageInterrupt
intaddr? : VIRTUALADDRESS

∃ fmsg : FMSG ; cp : APREF ; sg : SEGMENT ;
lpno : LOGICALPAGENO ; offset : N •

saddrseq(saddresstrans(intaddr?)) = sg
∧ spageno(saddresstrans(intaddr?)) = lpno
∧ sched .CurrentProcess[cp/cp!] ∧ sched .MakeUnready [cp/pid?]
∧ ptab.DescrOfProcess[cp/pid?, pd/pd !]
∧ ctxt .SwapOut ∧ fmsg = BADADDR〈〈cp, sg , lpno〉〉
∧ (∃ isrid , fdvrid : APREF | fdrvrd = faultdrvr •

SendInterruptMsg [fdrvrid/driver?, fmsg/m?])
o
9ctxt .SwapIn

When a page fault occurs, the ISR sends a message to the PageFault-
Driver. The page-fault handler or driver is defined by the following class. As
is usual with classes that represent processes, it exports only one operation,
here DoOnPageFault . The driver also contains routines that access page ta-
bles but they are not exported. The idea is that once the driver starts, it has
exclusive access to these data structures. The data structures, however, still
need to be protected by locks.

PageFaultDriver
�(INIT ,DoOnPageFault)

sched : LowLevelScheduler ; ptab : ProcessTable; pts : PageTables;
vsm : VStoreManager ; pfs : PageFrames; msgman : MsgMgr
lck : Lock

INIT
mmgr? : MsgMgr ; sch? : LowLevelScheduler
ptb? : ProcessTable; pgtabs? : PageTables
vstoreman? : VStoreManager
pgfrms? : PageFrames; lk? : Lock

msgman ′ = mmgr? ∧ sched ′ = sch? ∧ ptab′ = ptb? ∧ pts ′ = pgtabs?
vsm ′ = VStoreManager ∧ pfs ′ = PageFrames ∧ lck ′ = lk?

274 6 Virtual Storage

findVictimLogicalPage =̂ . . .

haveVictim =̂ . . .

findVictimPage =̂ . . .

swapPageToDisk =̂ . . .

retrievePageFromDisk =̂ . . .

storePageOnDisk =̂ . . .

genOnPageFault =̂ . . .

onPageFault =̂ . . .

DoOnPageFault =̂ . . .

The driver has to find a victim page to swap out when there is no free
store. The following schema defines this operation. The page to be swapped
out is a logical one at this point. The schema maps the logical page to a
physical page by another operation.

findVictimLogicalPage
p! : APREF
sg ! : SEGMENT
lpno! : LOGICALPAGENO
victim! : PHYSICALPAGENO

(∃ p : APREF ; s : SEGMENT ; l : LOGICALPAGENO |
p ∈ dom pagetable ∧ sg ∈ dom pagetable(p)

∧ l ∈ dom pagetable(p)(sg) •
pagetable(p)(sg)(l) = victim!
∧ l �∈ lockedpages(p)(sg)
∧ p! = p ∧ sg ! = s ∧ lpno! = l)

The schema simplifies to:

p! : APREF
sg ! : SEGMENT
lpno! : LOGICALPAGENO
victim! : PHYSICALPAGENO

p! ∈ dom pagetable ∧ sg ! ∈ dom pagetable(p!)
∧ lpno! ∈ dom pagetable(p!)(sg !)
∧ pagetable(p!)(sg !)(lpno!) = victim!
∧ lpno! = �∈ lockedpages(p!)(sg !)

The following definition is a synonym. It tests the reference count of the
victim physical page.

6.3 Virtual Storage 275

haveVictim =̂ pfs.IsVictim

The final operation to locate a victim page is the following:

findVictimPage =̂
pfs.VictimPhysicalPageNo[victim/victim!]

∧ findVictimLogicalPage[victim/victim!]

It is possible to put a few properties of pages on a more formal basis.

Proposition 154. Locked pages can never be victims.

Proof. The predicate of findVictimLogicalPage contains the conjunct l �∈
lockedpages(p)(sg), where l is the logical page number, p the process identifier
and sg the segment. �

Proposition 155. Free pages can never be victims.

Proof. Since free pages do not belong to any process (by Proposition 147),
they do not appear in pagetable, so they cannot be victims because the quan-
tifier in findVictimLogicalPage ranges over pagetable. �

Proposition 156. Faulting processes are not ready.

Proof. The predicate of PageFaultISR.OnPageInterrupt contains a refer-
ence to the schema MakeUnready [cp/pid?], where cp is the current process
(i.e., cp = currentp), so it is the process that caused the page fault. The action
of MakeUnready is to remove the process from the ready queue. �

Proposition 157. A faulting process cannot be executed.

Proof. By the previous proposition, MakeUnready implies that cp cannot
be scheduled until it is returned to the ready queue. Furthermore, cp cannot
continue because OnPageInterrupt calls sched .ScheduleNext to select the next
process to run; this process will not be cp. �

Corollary 12. A faulting process is blocked.

Proof. This is a consequence of the previous proposition. �

The operation that actually swaps a page from main store to the paging
disk is the following:

276 6 Virtual Storage

swapPageToDisk =̂
(findVictimPage[p/p!, sg/sg !, lpno/lpno!]

∧ vsm.MarkSharedLogicalPageAsOut [p/p?, sg/sg?, lpno/lpno?]
∧ pfs.GetPage[pg/fr !, victim!/pageno?]
∧ storePageOnDisk [p/p?, sg/sg?, lpno/lpno?, pg/pg?]
∧ pfs.ClearRefBitsAndCounter [victim!/ppno?]
∧ storePageOnDisk [p/p?, sg/sg?, lpno/lpno?, pg/pg?])

\{pg , p, sg , lpno}
∨ Skip

First, a victim is located and then marked as being not in store (MarkShared-
LogicalPageAsOut). The page causing the page fault is then demanded from
the paging disk and the victim is sent to the disk for temporary storage. The
reference bits of the victim are then cleared so that the referenced page (the
one causing the page fault) can be written to it by storePageOnDisk.

The next operation to be defined is retrievePageFromDisk. This operation,
as its name suggests, communicates with the paging disk process to locate the
page that is to be brought into main store as a consequence of the last page
fault. The reference to this page is, in fact, the one that caused the page fault
that resulted in the current execution of the PageFaultDriver . It is defined by
the following schema:

retrievePageFromDisk
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
pg ! : PAGE

(∃msgo ,msgr : PGMSG ; src, dest : APREF ; pg : PAGE |
msgo = GETPG〈〈p?, sg?, lpno?〉〉

∧ src = faultdrvr ∧ dest = pagedsk •
msgman.SendMsg [src/src?, dest/dest?,msgo/m?]o9
(msgman.RcvMsg [src/caller?, dest/src?,msgr/m!]

∧ msgr = ISPG〈〈p?, sg?, lpno?, pg !〉〉))

As can be seen, this operation mostly handles messages. First, the operation
sends a message requesting that the paging disk retrieve the page specified by
the parameters p?, sg? and lpno?; the page is represented by pg !. The page,
pg !, is returned by the paging disk in the ISPG message.

The operation to store a page on disk is similar to the last one.

6.3 Virtual Storage 277

storePageOnDisk
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
pg? : PAGE

(∃msg : PGMSG ; src, dest : APREF |
msg = STOPG〈〈p?, sg?, lpno?, pg?〉〉
∧ src = faultdrvr ∧ dest = pagedsk •

mgman.SendMsg [src/src?, dest/dest?,msg/m?])

Again, this operation mostly deals with messages. In this case, it contains just
one send operation. Messages of type STOPG request the paging disk to store
the page specified by p?, sg?, lpno?; the page is denoted by pg?.

The next operation schema defines the operation performed whenever a
page fault occurs. This is a complex operation and its definition reflects this
complexity. The operation receives a message containing a specification of the
page that was referenced and determined (by the hardware) not to be in main
store (it is on the paging disk).

The operation determines whether there are any page frames free in main
store. If there are, the page is located on the disk and copied into a free
page. To do this, the operation sends a message to the paging-disk process
requesting the page.

If there are no page frames free in main store, a page that is currently
resident in main store must be placed on the paging disk in order to make
space for the one that caused the page fault. A suitable resident page must
have a low frequency of reference in the near future and the reference-count
mechanism specified above is used to determine which it is. This page is
referred to as the victim in the following schema and the schemata defining
the selection operations. It should be noted that the victim can belong to any
process whatsoever but cannot be a page that is locked into main store. The
victim is swapped to the paging disk and the one causing the page fault is
retrieved and copied into the newly vacated page frame in main store. The
process that caused the page fault is then returned to the ready queue and
the ISR waits for the next page fault.

It should be noted that the victim can never be a locked page (i.e., a page
locked into main store). This condition is imposed so that, in particular, pages
locked into main store by the kernel (typically pages containing kernel code
and data structures) cannot be swapped out. It is undesirable to swap kernel
pages out of store because they might be involved in the operation currently
being performed or they might be ISRs and the scheduler.

In some kernel designs, it is possible for kernel processes to be stored in
swappable pages. In such a case, the pages would contain data or processes
that are considered to be of lower importance, implementing operations that
the kernel can afford to have blocked while some of their store is paged out.

278 6 Virtual Storage

The kernel assumed here is the one modelled in Chapter 4 and extended
in Chapter 5. It is assumed that all of its components (data structures and
processes) must be stored in pages that are locked into main store (and hence
are stored in pages with the locked attribute). (The schemata defined above
for victim selection, it should be noted, depend on the commutativity of con-
junction.)

genOnPageFault =̂
∃ fmsg : FMSG ; me, src : APREF | me = faultdrvr ∧ src = hardware •

msgman.RcvMessage[me/dest?, src/src?, fmsg/m!]
∧ (∃ fpid : APREF ; fs : SEGMENT ;

flpno : LOGICALPAGENO ;
destpg : PHYSICALPAGENO •

fmsg = BADADDR〈〈fpid , fs,flpno〉〉
((lck .Locko

9

((pts.HaveFreePages ∧ pts.AllocateFreePage[destpg/ppno!])
∨ (haveVictim

∧ swapPageToDisk [destpg/victim!])) ∧ lck .Unlock)o9
(lck .Locko

9

(retrievePageFromDisk [fpid/p?, fs/sg?,flpno/lpno?, page/pg !]
∧ pfs.ClearRefBitsAndCounter [destpg/ppno?]
∧ pfs.OverwritePhysicalPage[page/pg?, destpg/pageno?]
∧ vsm.MarkSharedLogicalPageAsIn

[fpid/p?, fs/sg?,flpno/lpno?]
∧ lck .Unlock)))

o
9(lck .Lock ∧ sched .MakeReady [fpid/pid?])
o
9(sched .ScheduleNext ∧ lck .Unlock))

onPageFault =̂ (sched .CurrentProcess[p/cp!] ∧ genOnPageFault [p/p?]) \ {p}

DoOnPageFault =̂
(∀ i : 1 . . ∞ • onPageFault)

Proposition 158. If there are free pages, no page is swapped out.

Proof. The first component of the sequential composition in the predicate
of genOnPageFault contains the disjunction:

(pts.HaveFreePages ∧ pts.AllocateFreePage[destpg/ppno!])
∨ (haveVictim ∧ swapPageToDisk [destpg/victim!])

If there are free pages, pts.HaveFreePages is satisfied. �

Proposition 159. If there are no free pages in main store, a page is swapped
out.

6.3 Virtual Storage 279

Proof. There is a disjunction in the composition forming genOnPageFault ’s
predicate:

(pts.HaveFreePages ∧ pts.AllocateFreePage[destpg/ppno!])
∨ (haveVictim ∧ swapPageToDisk [destpg/victim!])

In this case, if HaveFreePages is not satisfied, ¬ HaveFreePages must be sat-
isfied and the swap is performed by swapPageToDisk . �

Proposition 160. If a process fault occurs, the referenced page overwrites a
page frame freed by swapping out.

Proof. In the previous proposition, the page destpg was swapped out to
disk. In the second component of genOnPageFault ’s predicate, the operation
overWritePhysicalPage occurs as a conjunct. By p ∧ q � p, the result follows.
�

Proposition 161. If a process faults, the referenced page is brought into store.

Proof. The operation retrievePageFromDisk [page/pg] is a conjunct in the
second component of the sequential composition in genOnPageFault . �

Proposition 162. If there are free pages, only a free page is written when a
page is swapped in.

Proof. The predicate of schema genOnPageFault contains the following
references:

pts.AllocateFreePage[destpg/ppno!] . . . o
9 . . .

retrievePageFromDisk [. . . , page/pg !]
pts.OverwritePhysicalPage[page/pg?, destpg/pageno?]

The physical page, destpg , is the one overwritten by page in the operation
defined by the schema OverwritePhysicalPage. The physical page destpg is
allocated by AllocateFreePage. The page retrieved from disk is page; it is re-
trieved by retrievePageFromDisk (the omitted arguments refer to the faulting
process). �

Proposition 163. Newly swapped pages have a zero reference count.

Proof. Reference bits are cleared in the newly swapped page by genOnPage-
Fault. The second component of this schema’s predicate contains, as one of its
conjuncts, a reference to pfs.ClearRefBitsAndCounter [destpg/ppno?]—this is
a reference to a page frame in physical store, not to the contents (which is
denoted by page in this predicate). �

280 6 Virtual Storage

Proposition 164. Newly swapped pages cannot be victims unless all pages
are victims.

Proof. By the victim-finding operation, the victim has the minimum refer-
ence count:

IsVictim
(∃ j : PHYSICALPAGENO | j ∈ dom count •

count(j) = min(ran count))

A newly swapped-in page—one that has not yet been referenced—has a
reference count of 0. To become a victim, there must be no page with reference
count > 0. �

A process can be waiting on a device when one of its pages is chosen
to swap out. If the driver copies data and puts it into buffers associated
with the waiting process’ PCBs, there is only the issue of swapping out the
page. However, there is no way a priori of knowing whether the page just
swapped out will cause a page fault when its owning process next executes.
Since swapping out does not affect the operations of the device upon which
the victim is waiting, it would appear valid just to pick any process that is
not locked into main store.

The reader should note that, logically, this is perfectly adequate. As a
proposed implementation, this is unlikely to work well. It is to be expected
that page faults will be relatively frequent. The paging disk has a latency time
that must be taken into account. When a user process causes a page fault,
it must be blocked. Clearly, processes ought to be blocked for the shortest
possible time. The paging disk, however, serialises requests. All of this suggests
that the swapin/swapout operations should be as fast as possible.

Moreover, the specification, as it stands, allows the ISR to respond to as
many interrupts as it can but it must also wait for the driver. The driver’s
message input is restricted to one immediate and one outstanding message.
This suggests that the ISR should enqueue messages on the driver and imme-
diately halt.

Furthermore, the context of the faulting process must be swapped immedi-
ately. This is because it cannot progress and must be taken off the processor:
alternatives are hard to discern. Removal of the current process’ registers from
the processor by the ISR is, therefore, justified.

Similarly, the page disk can lose requests if it just hangs between instruct-
ing a disk search and reading the result.

This subsystem also shows limitations with the message-passing régime.
Because a synchronous method has been adopted, the sender must wait if the
receiver is not in a state to receive. This has the implication that, should the
page disk process not be ready to accept another request (either because it is
waiting for the disk or because it is processing another request), the page-fault

6.3 Virtual Storage 281

handler will have to wait. This has the implication that the page-fault handler
might miss an interrupt.

The presence of operations to add and remove process data from the paging
disk complicates matters also. Luckily, these requests will be less common than
simple page faults.

PDPFH Dsk

Store

i

s

fault

ok

get

done

ISR

Fig. 6.4. The actual specification.

The question for us is the following. Even though the classes and operations
presented above provide an adequate logical model, they do not take into
consideration all of the pragmatic issues. Should the specification be altered
to reflect these pragmatic issues?

The specification presented above can be represented diagrammatically
as in Figure 6.4. As can be seen, the virtual-storage management subsystem
consists of the ISR (denoted by ISR in the figure), the page-fault driver process
(denoted by PFH in the figure) and the disk driver process (denoted by PD).
The figure also includes the disk itself (denoted by DSK) and main store
(denoted by STORE).

The arrows in Figure 6.4 denote the messages or interactions between
processes. The arrow labelled i denotes the message sent by the ISR to the
page-fault handling process (PFH). This message contains the specification
of the page that was referenced (in terms of the segment and logical page
numbers) and the process (its APREF). The page-fault handler sends a fault
message containing the same information to the paging-disk process, which in
turn sends a request (as a get message) to the disk proper (actually, to the
disk driver). The disk driver retrieves the page and sends a done message to
the paging-disk handler. The done message denotes the fact that the retrieval
has been successfully completed.

Once the page has been written to main store, process PD sends an ok
message to the page-fault handler process, PFH . On reception of the ok , the
page-fault handler can wait for another page fault.

282 6 Virtual Storage

It is clearly a highly desirable property for any optimisations of the basic
(logical) specification to behave in the same way as the specification. It is
also highly desirable, given the present context, to be able to demonstrate
this in a formal way. In order to achieve this, the proposed optimisations are
formalised as CCS [21] processes so that they can be manipulated in formally
sound ways. CCS is chosen as the representation because we are interested
in the interactions between the component processes of the subsystem, not
in the specification of the components. The processes to be modelled do not
have properties suggestive of the use of the π-calculus (e.g., mobility), so CCS
appears sufficient.

The subsystem can be represented in CCS as the following set of equations:

ISR = ī .ISR
PFH = i .fault .ok .PFH
PD = fault .get .done.s̄.ok .PD
DSK = get .done.DSK
STORE = s.STORE

The overall arrangement is represented in CCS as:

VM1 = (ISR | PFH | PD | DSK | STORE) \ {i , fault , ok , get , done, s}
(Note that actions are hidden using the \ operation.)

PD

Q

PFH Dsk

Store

i

s

en
q deq

ok

get

done

ISR

Fig. 6.5. The specification using a queue.

As noted above, the design depicted in Figure 6.4 and represented by the
above set of CCS process definitions can be optimised. An obvious optimisa-

6.3 Virtual Storage 283

tion is to introduce a queue of requests between the page-fault handler (PFH)
and paging-disk process (PD). This is the arrangement shown in Figure 6.5.
In the arrangement shown in Figure 6.5, the PFH process places new requests
into the queue. The queue is represented by the process named Q in the figure,
and the operation of sending a request (really, just an enqueuing of the re-
quest) is represented by the enq arrow. Requests are removed from the queue
process by the paging-disk process, PD , in exactly the same way they are in
the first case. When the page has been copied to main store, the paging-disk
process, PD sends the page-fault handling process an ok to inform it that: (i)
the copy has been performed and that (ii) the process that caused the fault
just rectified can now be unblocked.

The argument is that this second version can process more page faults
per unit time. In this case, PFH does not now wait for the page fault to be
rectified before it can wait for a new fault. Instead, it passes the request to
the rest of the subsystem and then immediately blocks on the page-fault ISR.

This second arrangement can be represented by CCS processes as follows:

VM2 = init .(ISR | PFH2 | Q | PD2 | DSK | STORE)
\{i , enq , deq , ok , done, get , init , s}

For the definition of this subsystem, processes ISR, DSK and STORE remain
as in the first case. The remaining processes must be redefined as follows (the
subscripts will be explained below).

PFH2 = i .enq .ok .PFH2

Q = init .enq .Q1

Q1 = enq .Q1 + deq .Q1
PD2 = deq .get .done.s̄.ok .PD2

It is clearly necessary to distinguish between the two versions of PFH that
have been defined at this point (a third version will be added shortly). For
this reason, subscripts were introduced into the specifications.

It would be useful for these two specifications (models) to be equivalent
in some sense. One important sense is that they should be observationally
equivalent; another is that they should be bisimilar.

The property of observational equivalence of two processes is very much the
intuitive one: two processes are observationally equivalent when they cannot
be distinguished by an external observer. In other words, the externally visible
events that can be perceived by an external observer are determined by the
observer to be the same in content and in order, no matter which process is
observed. In the cases of VM1 and VM2, the externally observable events are
restricted by the hiding operator (\, as in Z).

Bisimilarity is an equivalence that also takes hidden actions into account.
(Those readers unfamiliar with the concept should consult [21], Chapter 4,
for an extended treatment.)

It is now possible to engage in formal reasoning about processes VM1
and VM2 and to prove two important propositions about them. Rather than

284 6 Virtual Storage

engaging in a hand proof, it was considered interesting to employ automation.
To this end, the Concurrency Workbench of the New Century [8] was employed
as a tool. The Concurrency Workbench can be used to determine a number of
properties of CCS and CSP processes, including observational equivalence and
bisimilarity. The propositions concerning equivalence of the various versions
of the subsystem were all proved using the Concurrency Workbench.

Proposition 165. Processes VM1 and VM2 are observationally equivalent.

Proof. Both VM1 and VM2 were encoded in the input format required by
the CWB and tested using the eq -S obseq command. The CWB system
determined that VM1 and VM2 are observationally equivalent. �

Matters are different when it comes to bisimilarity. Processes VM1 and
VM2 are quite dissimilar in internal structure, and process VM2 offers an
initial event, init , which initialises the process Q , so it does not appear, at
first sight, that VM1 and VM2 will be bisimilar. Indeed, this is the case.

Proposition 166. Processes VM1 and VM2 are not bisimilar.

Proof. Both VM1 and VM2 were encoded in the input format required by
the CWB and tested using the eq -S bisim command. The CWB system
determined that VM1 and VM2 are not bisimilar. �

PDQ

PFH

PFH

Dsk

Store

i

s

enq deq

ok

get

done

ISR

Fig. 6.6. The ideal specification.

6.3 Virtual Storage 285

Finally, a second specification can be considered as an optimisation. This
version retains the queue of requests. It differs from the second version by
creating a new instance of the PFH process whenever an interrupt occurs.
This instance performs the same operations as in the second version but im-
mediately terminates (denoted by the 0 process). The CCS specification is
(again, subscripts are used to differentiate between versions):

VM3 = init .(ISR | PFH3 | Q | PD2 | DSK | STORE)
\{i , enq , deq , ok , done, get , init , s}

where:

PFH3 = i .(enq .ok .0 | PFH3)

Proposition 167. VM3 is observationally equivalent to VM2.

Proof. The models for VM2 and VM3 were encoded in the input format re-
quired by the CWB and tested using the eq -S obseq command. The CWB
system determined that the two are observationally equivalent. �

Proposition 168. VM3 is bisimilar to VM2.

Proof. The models for VM2 and VM3 were encoded in the input format re-
quired by the CWB and tested using the eq -S obseq command. The CWB
system determined that the two are bisimilar. �

From the first of these two results, we have the next proposition:

Proposition 169. Process VM1 is observationally equivalent to VM3.

Proof. By transitivity of the equivalence relation.
(In addition, the encoded models were tested using the eq -S obseq com-

mand and the result was supported by the CWB system.) �

We also have the following negative result:

Proposition 170. Processes VM1 and VM3 are not bisimilar.

Proof. Again, by transitivity of the equivalence relation, this result would
be expected.

(In addition, the CWB supported the claim.) �

The last result is not as bad as it sounds. All that is required, here, is that
the processes appear the same as far as an external observer is concerned.
This property is sufficient for the optimisations to be considered equivalent
to the original. However, as far as this chapter is concerned, the first version
(the one referred to as the “logical” one) is the one that will be adopted.

With this discussion of optimisation out of the way, it is possible to return
to the main theme. There follow some propositions dealing with the properties
of the logical (Z) model of page faults.

286 6 Virtual Storage

Proposition 171. Page faults are serviced in the order in which they occur.

Proof. There are two senses:

1. Each page fault is an interrupt. In this sense, page faults are all processed
in order.

2. In this sense, page faults are serviced by the handler process which services
messages sent to it by the page-fault ISR. These messages are sent in
temporal (sequence) order. That the handler process operates upon these
messages in the correct order is a consequence of the correctness of the
message-passing operations.

Each sense implies the statement of the proposition. �

Proposition 172. Every page fault is serviced eventually (i.e., the page-fault
mechanism is fair).

Proof. This proof follows from the correctness and fairness of the message-
passing operations. �

Proposition 173. The process causing a page fault has status pstrunning
when the fault occurs.

Proof. Only a running process can cause a page fault.
ISRs cannot cause faults and are not processes.
Drivers are processes. They are locked into main store and, by hypothesis,

have all the necessary pages locked in as well.
Only user processes have pages that can be swapped into and out of store.
The fact that a fault occurs implies that the process causing it is executing.

There can only be one process that is executing at any one time (i.e., is the
current value of currentp and has a status of pstrunnning).

This is a property of the scheduler. �

Proposition 174. A faulting process is not unblocked until the replacement
page has been swapped into physical store.

Proof. The service operation onPageFault first blocks the faulting process by
setting its state to pstwaiting and by removing it from the processor. Therefore
blockFaultingProcess implies that currentp �= currentp′ ∧ regs ′ �= regs, where
regs are hardware registers.

The onPageFault operation takes the form of a sequential composition.
There are three operations, thus forming a composition of the form S1 o

9 S2 o
9

S3. The second operation is itself a sequential composition; it is this part
that performs the swapping operation. The operations are, therefore, totally
ordered and the order can be directly related to temporal succession.

6.3 Virtual Storage 287

Let p denote the faulting process and let the composition be written as
above. Then postS1 ⇒ status(p) = pstwaiting and currentp′ �= p.

Throughout S2, status(p) = pstwaiting.
Finally, preS3 ⇒ status(p) = pstwaiting, while postS3 ⇒ status(p) =

pstready but p �= currentp—the last being a property of MakeReady. It can-
not be true because the service process is currently executing. �

Proposition 175. If a process, p, causes a page fault, that process is not
marked ready until the faulting page has been replaced.

Proof. This follows immediately from the previous proposition. �

Proposition 176. After execution of onPageFault, there is exactly one phys-
ical page in physical store such that its logical page number in the faulting
process maps to the physical page number.

Proof. The proposition implies that exactly one page is mapped into store
by the page-fault mechanism.

Inspection of the predicate of genOnPageFault shows that only one page
is introduced into store. �

Proposition 177. If a process, p, causes a page fault, after that page fault
has been serviced, the process is in the ready state.

Proof. That the process is blocked follows immediately from Proposition
174. The predicate of genOnPageFault contains an instance of MakeReady
with the faulting process’ identifier substituted for the formal parameter. �

Proposition 178. If a page fault occurs and a page has to be swapped out,
that page can be a page belonging to the faulting process or to another process.

Proof. There are two cases to consider.
Case 1: If there are free pages, they are consumed. Only the faulting process
is affected.
Case 2: HaveVictim is called. The victim page is found in physical store by
pfs.IsVictim:

findVictimPage =̂
pfs.VictimPhysicalPageNo
∧ findVictimLogicalPage

The value returned by pfs.VictimPhysicalPageNo is just a physical page
number with the minimum reference count. The schema does not mention
processes. Similarly, findVictimLogicalPage in this class merely looks up the

288 6 Virtual Storage

owning process’ identifier and the segment in which the page occurs, as well
as the logical page number of the victim page. Therefore, the page can belong
to any process in the system except those that lock it into main store (i.e.,
driver and system processes). �

Proposition 179. If a page fault occurs and there are free pages in physical
store, physical store is updated; only one process is affected.

Proof. By the definition of onPageFault :

pts.HaveFreePages ∧ pts.AllocateFreePages

implies that the physical page to which the swapped-in page is to be written
is a free page in physical store.

In this case, only the faulting process is affected. This is because the allo-
cation of a free page relates only to a single process (the process to which the
allocation is made). �

Corollary 13. If a page fault occurs within process, p, and if a page has to
be swapped out, only a maximum of two processes are affected by the page-
swapping operation.

Proof. Immediate from the two preceding propositions. �

Proposition 180. No pages are swapped unless a page fault occurs.

Proof. Inspection reveals that only the schema genOnPageFault references
the relevant operations. �

6.3.4 Extending Process Storage

Processes very often make requests to increase the amount of store they use.
In a paged system, this allocates more pages to the process. This subsection
contains a model of the operations. It is rarer for processes to release store but
operations to perform this task are defined as well. Pages can also be shared
between processes. Sharing can be used, for example, to implement message
passing in virtual storage.

First, there is a problem with allocating pages. The problem is that there
might not be a physical page free when the request is made. The system could
block the requesting process until there is a free page in the page frame. This
solution does not fit well with the aims of virtual storage. Furthermore, when
a new process is created, it will request a set of pages to hold code, data, stack,

6.3 Virtual Storage 289

etc. It would not be acceptable to block the creation of the process until main
store becomes free.

A solution more in keeping with the purpose of virtual store is the fol-
lowing. When a request is made to allocate a new page and there is no free
physical store, an empty page is allocated on disk. The new page is allocated
to the requesting process and can be written to by the requesting process.

This mechanism can be used when allocating extra pages to a new page.
Therefore, it is necessary to begin with the definition of the empty page:

pageofzeroes : PAGE

∀ pg : PAGE •
pageofzeroes = λ i : 1 . . framesize • 0

This structure need not be held in a page; it can be produced in a loop and
then set into a buffer of smaller size. Ideally, it should be packed into a single
disk block and then handed to the paging disk. This needs to be iterated n
times, where n is the number of disk blocks per page.

Pages must be specified when allocating, deallocating and sharing. A
method for specifying them is required. Here, we define a structure for this
purpose:

PAGESPEC == APREF × SEGMENT × LOGICALPAGENO

The following axiomatic definitions are required to manipulate objects of type
PAGESPEC. The relation that comes first will be discussed below. The rest
of the definitions are: the constructor function (mkpgspec) and the accessor
functions (pgspecpref to obtain the process reference, pgspecseg to obtain the
segment name and pgspeclpno to obtain the logical page number).

smap : PAGESPEC ↔ PAGESPEC
mkpgspec : APREF × SEGMENT × LOGICALPAGENO → PAGESPEC
pgspecpref : PAGESPEC → APREF
pgspecseg : PAGESPEC → SEGMENT
pgspeclpno : PAGESPEC → LOGICALPAGENO

∀ p : APREF ; sg : SEGMENT ; lpno : LOGICALPAGENO •
mkpgspec(p, sg , lpno) = (p, sg , lpno)

∀ ps : PAGESPEC •
pgspecpref (ps) = fst ps
pgspecseg(ps) = fst(snd ps)
pgspeclpno(ps) = snd2 ps

The type PAGESPEC could have been defined earlier in this chapter. If it had
been used there, it would have been necessary to represent and manipulate
all virtual addresses and page references in terms of PAGESPEC . Although
this seems attractive, we believe, it would have complicated the specifications
somewhat.

290 6 Virtual Storage

The axiomatic definitions begin with smap, a relationship between el-
ements of PAGESPEC . This is the sharing map. When two elements of
PAGESPEC are in the relation, the processes mentioned as the first com-
ponent of PAGESPEC share the page referred to by the two PAGESPEC s.

The operations to allocate, deallocate and share pages are collected into a
(somewhat ad hoc) class called VStoreManager. The class is intended to act
as a component in an interface library. It exports most of its operations so
that a wide variety of combined operations can be defined elsewhere.

VStoreManager
�(INIT ,AddNewMainStorePageToProcess,AddNewVirtualPageToProcess,

CanAddPageToProcess,MarkLogicalPageAsShared ,UnshareLogicalPage,

WithdrawLogicalPage,SharedLogicalPageSharers, IsSharedLogicalPage,

RemoveSharedLogicalPageOwner ,RemoveLogicalPageSharer ,

RawShareLogicalPageBetweenProcesses,ShareLogicalPageBetweenProcesses,
ReturnSharedLogicalPageToOwner ,MarkSharedLogicalPageAsIn,

MarkSharedLogicalPageAsOut ,ShareLogicalSegment ,
ReleaseSharedSegment ,ReleaseSegmentPagesExcept ,
CanReleaseSegment ,SharedPagesInSegment ,CanReleaseProcessVStore)

pts : PageTables
pfs : PageFrames

INIT
pgtabs? : PageTables
pfrms? : PageFrames

pts ′ = pgtabs?
pfs ′ = pfrms?

makeEmptyPage =̂ . . .

AddNewMainStorePageToProcess =̂ . . .

AddNewVirtualPageToProcess =̂ . . .

CanAddPageToProcess =̂ . . .

MarkLogicalPageAsShared =̂ . . .

UnshareLogicalPage =̂ . . .

WithdrawLogicalPage =̂ . . .

SharedLogicalPageSharers =̂ . . .

IsSharedLogicalPage =̂ . . .

RemoveSharedLogicalPageOwner =̂ . . .

RemoveLogicalPageSharer =̂ . . .

RawShareLogicalPageBetweenProcesses =̂ . . .

6.3 Virtual Storage 291

ShareLogicalPageBetweenProcesses =̂ . . .

ReturnSharedLogicalPageToOwner =̂ . . .

MarkSharedLogicalPageAsIn =̂ . . .

MarkSharedLogicalPageAsOut =̂ . . .

ShareLogicalSegment =̂ . . .

ReleaseSharedSegment =̂ . . .

ReleaseSegmentPagesExcept =̂ . . .

CanReleaseSegment =̂ . . .

SharedPagesInSegment =̂ . . .

CanReleaseProcessVStore =̂ . . .

First, there is the hidden operation that creates an empty page:

makeEmptyPage
pg ! : PAGE

pg ! = pageofzeroes

This operation is hidden because it is somewhat undesirable for everyone to
manipulate the buffers in which new pages are created.

The operation to add a new page to a process using a free-store page is
the following. It allocates the page frame, adds the page to the process and
clears the page (this is not really necessary but is a nice feature2).

AddNewMainStorePageToProcess =̂
(pts.HaveFreePages

∧ ((pts.IncProcessPageCount o
9 (pts.LatestPageCount)

∧ pts.AllocateFreePage[ppno/ppno!]
∧ pts.AddPageToProcess[ppno/ppno?, lpno!/lpno?]
∧ makeEmptyPage[pg/pg?]
∧ pts.OverwritePhysicalPage[ppno/pageno?, pg/pg?]) \ {ppno}))

Note that an alternative is to swap out a process’ page. The approach here is
simpler but much more profligate.

The next operation uses the prceding one and then stores the page that it
has created on the paging disk. Note that the operation requires there to be
at least one page-sized buffer in the kernel.

AddNewVirtualPageToProcess =̂
(¬ pts.HaveFreePages

∧ (pts.IncProcessPageCount o
9 pts.LatestPageCount)

2 Some (civilised?) operating systems perform this operation on allocating new
store.

292 6 Virtual Storage

∧ (∃ ppno : PHYSICALPAGENO | ppno = 1 •
(makeEmptyPage[pg/pg !]

∧ pts.AddPageToProcess[lpno!/lpno?, ppno/ppno?]
∧ StorePageOnDisk [lpno!/lpno?, pg/pg?])) \ {pg})

The value assigned to ppno is purely arbitrary. The physical page number
of any page on disk has no relevance because it will be mapped to another
physical page when swapped into main store.

The following is a predicate. It is true if the process denoted by p? can
add at least one page to its sg? segment.

CanAddPageToSegment
p? : APREF
sg? : SEGMENT

pagecount(p?)(sg?) < maxvirtpagespersegment

The actual operation to add a new page to a process is the following.
Depending upon the state of main store, it adds the page directly or stores it
on the paging disk:

AddNewPageToProcess =̂
AddNewMainStorePageToProcess

∨ AddNewVirtualPageToProcess

Proposition 181. If there are no free pages in main store, a zero page is
created for it and written to disk.

Proof. The schema AddNewPageToProcess is a disjunction:

AddNewMainStorePageToProcess
∨ AddNewVirtualPageToProcess

Each disjunct is a conjunction, with mutually exclusive first conjuncts.
In particular, AddNewVirtualPageToProcess has a predicate containing

the following:

makeEmptyPage[pg/pg !]
∧
. . .

∧ StorePageOnDisk [. . . , pg/pg?]

The existential quantifier can be removed by the one-point rule, and the result
follows from the fact that p ∧ q ⇒ p. �

Proposition 182. If there are free pages, one is allocated for the newly cre-
ated page.

6.3 Virtual Storage 293

Proof. Similar to the above, concentrating on AddNewMainStorePage.
Again, p ∧ q � p allows the conclusion to be drawn. �

The only thing that needs to be done when a page is shared between
processes is to mark it. This is actually done by adding PAGESPEC s to the
sharing map, smap:

MarkLogicalPageAsShared
∆(smap)
ownproc?, shareproc? : APREF
ownseg?, shareseg? : SEGMENT
ownlp?, sharelp? : LOGICALPAGENO

(∃ atrip1, atrip2 : PAGESPEC •
atrip1 = mkpgspec(ownproc?, ownseg?, ownlp?) ∧
atrip2 = mkpgspec(shareproc?, shareseg?, sharelp?) ∧
smap′ = smap ∪ {(atrip1, atrip2)})

Unsharing, conversely, removes a pair of PAGESPEC s from the sharing
map:

UnshareLogicalPage
∆(smap)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

smap′ = smap −� {mkpgspec(p?, sg?, lpno?)}

If a page is to be reallocated or removed from store completely, it must be
totally removed from the sharing map:

WithdrawLogicalPage
∆(smap)
owner? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

smap′ = {mkpgspec(p?, sg?, lpno?)} −� smap

In later operations, it is necessary to determine which processes share a
given page. The page is specified by the sg? and lpno? inputs and is shared
by (at least) p?. The relational image is used to determine all the sharing
PAGESPEC s and, hence, the sharing processes:

294 6 Virtual Storage

SharedLogicalPageSharers
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO
srs! : F PAGESPEC

smap(| {mkpgspec(p?, sg?, lpno?)} |) = srs!

The following predicate is true when the page is shared:

IsSharedLogicalPage
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

mkpgspec(p?, sg?, lpno?) ∈ dom smap

When, say, a process terminates or when a shared page used to contain a
message is withdrawn, the entry for the page must also be removed from the
smap:

RemoveSharedLogicalPageOwner
∆(smap)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

smap′ = {mkpgspec(p?, sg?, lpno?)} −� smap

All the sharers of a page can be removed from the smap by the following
operation:

RemoveLogicalPageSharers
∆(smap)
p? : APREF
sg? : SEGMENT
lpno? : LOGICALPAGENO

(∃ pg : PAGESPEC | pg = mkpgspec(p?, sg?, lpno?) •
smap′ = smap −� {pg})

The following pair of schemata define the operation of sharing a page
between two processes. The first schema defines the actual operation, while
the second hides the logical page number. The first operation returns the
logical page number of the shared page. Sometimes, this is something of a
nuisance, so the second operation hides it. The first operation returns the
page number so that it can be referenced, while the second hides the page

6.3 Virtual Storage 295

number—approximately, it states that a page is shared but does not say which
it is.

RawShareLogicalPageBetweenProcesses =̂
((pts.IsLockedPage[owner?/p?, ownseg?/sg?, ownlpno?/lpno?]

∧ pts.LockPage[sharer?/p?, shareseg?/sg?, sharelpno!/lpno?])
∨ Skip)

∧ NextNewLogicalPageNo[sharer?/p?, shareseg?/sg?, sharelpno!/lpno!]
∧ (pts.PhysicalPageNo[owner?/p?, ownseg?/sg?, ownlpno?/lpno?, ppno/ppno!]
∧ pts.AddPageToProcess[sharer?/p?, shareseg?/sg?, sharelpno!/lpno?]
∧ MarkLogicalPageAsShared [owner?/ownproc?, sharer?/shareproc?,

ownlpno?/ownlp?, sharelpno!/sharelp?]
∧ pts.MarkPageAsShared [owner?/p?, ownseg?/sg?, ownlpno?/lpno?]
∧ pts.MarkPageAsShared [sharer?/p?, shareseg?/sg?, sharelpno!/lpno?])

\{ppno}

ShareLogicalPageBetweenProcesses =̂
RawShareLogicalPageBetweenProcesses \ {sharelpno!}

Proposition 183. If two processes share a page, pg, that page will appear in
the page tables of both processes.

Proof. The page, pg?, is already assumed to be in the page table of
its owning process. The predicate of RawShareLogicalPageBetweenProcesses
contains, AddPageToProcess[sharer?/p?, shareseg?/sg?, sharelpno!/lpno?] as
a conjunct. The arguments to the substitution refer to the process that is
receiving the page. �

Proposition 184. Schema RawShareLogicalPageBetweenProcesses makes the
specified page shared by both processes.

Proof. The predicate of RawShareLogicalPageBetweenProcesses contains an
instance of MarkPageAsShared , which simplifies to smap′ = smap∪{(s1, s2)},
where:

s1 = mkpgspec(ownproc?, ownseg?, ownlp?)

and
s2 = mkpgspec(sharer?, shareseg?, sharelp?)

and where ownproc? is the owning process identifier and sharer? is the iden-
tifier of the process being granted the right to share the page; ownseg? and
shareseg? denote the segments in the owner and sharer’s spaces; ownlp? is the
owning process’ logical page number and sharelp? is the logical page number
in the sharer’s segment. �

296 6 Virtual Storage

The only point to note about the following is that it unshares the page in
question.

ReturnSharedLogicalPageToOwner =̂
pts.IsSharedPage[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]
∧ pts.UnsharePage[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]
∧ pts.RemovePageProperties[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]
∧ pts.RemovePageFromPageTable[sharer?/p?, shareseg?/sg/,

sharelpno?/lpno?]
∧ UnshareLogicalPage[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]

Proposition 185. When a page is unshared, it is removed from one of the
page tables.

Proof. The operation ReturnSharedLogicalPageToOwner removes the spec-
ified page from one of the processes that share it. This is done by removing
the page from the sharer’s page table by means of the conjunct:

RemovePageFromPageTable[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]

The other conjuncts cancel various attributes, in particular:

RemovePageProperties[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]

as well as removing the information that this page is shared by process sharer?
by

UnsharePage[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]

and

UnshareLogicalPage[sharer?/p?, shareseg?/sg/, sharelpno?/lpno?]

. �

Shared pages need to be marked as in-store or out-of-store. The following
pair of schemata define these operations. They will be used below.

MarkSharedLogicalPageAsIn =̂
(pts.IsSharedPage ∧ pts.MarkPageAsIn ∧

(SharedLogicalPageSharers[srs/srs!] ∧
(∀ pg : PAGESPEC | pg ∈ srs •

(∃ p : APREF ; sg : SEGMENT ;
lpno : LOGICALPAGENO •

pg = mkpgspec(p, sg , lpno)
∧ pts.MarkPageAsIn[p/p?, sg/sg?, lpno/lpno?])) \ {srs}))

∨ pts.MarkPageAsIn

Proposition 186. When a shared page is swapped in, it is swapped in in all
sharing processes.

6.3 Virtual Storage 297

Proof. The operation MarkPageAsIn occurs within the scope of the univer-
sal quantifier which ranges over elements of PAGESPEC . These elements are
exactly those describing the shared page in processes other than its owner.
The operation MarkPageAsIn is applied to each descriptor (rather, to its com-
ponents) and records the fact that the page has entered main store in each of
the processes that share it. �

MarkSharedLogicalPageAsOut =̂
(pts.IsSharedPage ∧ pts.MarkPageAsOut ∧

(SharedLogicalPageSharers[srs/srs!] ∧
(∀ pg : PAGESPEC | pg ∈ srs •

(∃ p : APREF ; sg : SEGMENT ;
lpno : LOGICALPAGENO •

mkpgspec(p, sg , lpno) = pg ∧
pts.MarkPageAsOut [p/p?, sg/sg?, lpno/lpno?]))) \ {srs})

∨ pts.MarkPageAsOut

Proposition 187. When a shared page is swapped out, it is swapped out in
all sharing processes.

Proof. The operation defined by MarkPageAsOut occurs inside the univer-
sal quantifier in the predicate of MarkSharedLogicalPageAsOut . The universal
quantifier ranges over all PAGESPEC elements that are related to the pro-
cess in which the page is being swapped. Each element of type PAGESPEC
records the process identifier, segment identifier and logical page number of
the page in the sharing processes. Therefore, the quantifier ranges over all de-
scriptions of the page in the sharing process. The MarkPageAsOut operation
is applied to each of these descriptions, thus recording the fact that the page
is swapped out. �

Proposition 188. The operation MarkSharedLogicalPageAsOut can never
mark a locked page as swapped out.

Proof. By Proposition 154. �

The next schema defines the operation to return the next logical page
number available in the segment, sg?, of process p? (both sg? and p? are
inputs to the schema):

NextNewLogicalPageNo =̂
pts.IncProcessPageCount o

9 pts.LatestPageCount

Segments, too, can be shared and unshared. This is not obviously useful
but it turns out to be. When a process spawns a copy of itself or creates a child
process that shares its code, the code segment can be shared if it is read-only
(executable is a page attribute defined at the start of this chapter).

298 6 Virtual Storage

ShareLogicalSegment
ownerp?, sharerp? : APREF
ownerseg?, sharerseg? : SEGMENT

(∀ lpno : LOGICALPAGENO |
lpno ∈ dom pagetable(ownerp?)(sharerp?) •

(∃ ps1, ps2 : PAGESPEC ; nxtlpno : LOGICALPAGENO •
ps1 = mkpgspec(ownerp?, ownerseg?, lpno) ∧
NextNewLogicalPageNo[nxtlpno/lpno!] ∧

ps2 = mkpgspec(sharerp?, sharerseg?,nxtlpno) ∧
pts.MarkPageAsShared

[ownerp?/p?, ownerseg?/sg?, lpno/lpno?] ∧
MarkLogicalPageAsShared [lpno/ownlp?,nxtlpno/sharelp?]))

ReleaseSharedSegment
∆(pagetable)
p? : APREF
sg? : SEGMENT

pagetable ′ = {sg?} −� pagetable(p?)

ReleaseSegmentPagesExcept
∆(pagetable)
p? : APREF
sg? : SEGMENT
except? : F LOGICALPAGENO

pagetable ′ = ((dom pagetable(p?)(sg?)) \ except?) −� pagetable(p?)(sg?)

Proposition 189. If except? = ∅, ReleaseSegmentPagesExcept implies that
the predicate of CanReleaseSegment is satisfied.

Proof. The predicate of CanReleaseSegment is:

dom pagetable(p?)(sg?) = ∅

The predicate of ReleaseSegmentPagesExcept is:

pagetable ′ = ((dom pagetable(p?)(sg?)) \ except?) −� pagetable(p?)(sg?)

Clearly (substituting ∅ for except?):

((dom pagetable(p?)(sg?)) \ ∅) = dom pagetable(p?)(sg?)

Now,

6.4 Using Virtual Storage 299

(dom pagetable(p?)(sg?)) −� pagetable(p?)(sg?)

implies that dom pagetable(p?)(sg?) = ∅. This is the predicate of the schema
CanReleaseSegment , so we are done. �

Proposition 190. A process whose entire virtual store has been released has
no pages.

Proof. Obvious given the last proposition and the appropriate schema def-
initions. �

The following predicate is true if and only if all the pages in the segment,
sg?, have been deallocated:

CanReleaseSegment
p? : APREF
sg? : SEGMENT

dom pagetable(p?)(sg?) = ∅

The pages in the segment sg? of process p? are output by this operation.
They constitute the set sps!.

SharedPagesInSegment
p? : APREF
sg? : SEGMENT
sps! : F LOGICALPAGENO

(∃ psg : F PAGESPEC •
psg = smap(| {pg : PAGESPEC ; lpn : LOGICALPAGENO |

pg = mkpgspec(p?, sg?, lpn) • pg} |) ∧
sps! = {pg : PAGESPEC ; lpno : LOGICALPAGENO | pg ∈ pgs •

pgspeclpno(pg)})

If a process has no pages and no segments (i.e., they have never been
allocated or all have been released), its page-table entry can be released. The
following schema is a predicate defining this case.

CanReleaseProcessVStore
p? : APREF

dom pagetable(p?) = ∅

6.4 Using Virtual Storage

6.4.1 Introduction

This section is a rather looser model than the above model. It deals with the
user-level interfaces. The view of virtual store is that much more akin to real

300 6 Virtual Storage

store: a linear sequence of locations that can be addressed sequentially. The
concept of the virtual address is also different in this section. Instead of a
complex structure, virtual addresses are considered atomic, in effect a subset
of N.

6.4.2 Virtual Addresses

From this point on, the specification will deal with virtual addresses, not with
logical and physical pages. This amounts to the user process’ perspective
on virtual storage. Hitherto, all the perspective has been that of the virtual
storage constructor, so virtual address spaces and virtual addresses have been
seen in terms of their components.

For this reason, the following is required:

AllocatePageReturningStartVAddress =̂
AddNewPageToProcess ∧ ComputePageVAddress[lpno!/lpno?]

This operation, as its name suggests, allocates a page and returns the virtual
address of its start. (Note that the logical page number is not hidden; there
are reasons for this, as will be seen.)

The following operation computes a virtual address from its components.

ComputePageVAddress
lpno? : LOGICALPAGENO
vaddr ! : N

vaddr ! = (lpno? − pgallocstart) ∗ framesize

Here, pgallocstart is a constant. It is defined as:

pgallocstart : N

pgallocstart = 0

The value of 0 is completely arbitrary, as is now explained.
Some systems map a virtual copy of the operating system onto the vir-

tual address space of each user space (and some privileged processes, too).
The virtual copy can be allocated at the start or at the end of virtual store.
The allocation of user-process pages has to respect this. Furthermore, there
are special addresses that are reserved by the hardware; for example, inter-
rupt vectors, device buffers and status words. These, too, must be allocated
somewhere that cannot be directly accessed by untrusted user processes.

The pgallocstrt represents the logical page number of the first page in a
segment that can be allocated.

For clarity and simplicity, it will be assumed here that the operating system
virtual copy is located entirely in its own space. Transfer to the operating

6.4 Using Virtual Storage 301

system from user space is achieved by a “mode switch”. The mode switch
activates additional instructions, for example those manipulating interrupts
and the translation lookaside buffer. How the mode switch is performed is
outside the scope of this book for reasons already given. Mode switches are,
though, very common on hardware that supports virtual store.

In some systems, there are parts of the kernel space that are shared be-
tween all processes in the system. These pages are pre-allocated and added
to the process image when it is created. Because they are pre-allocated, the
allocation of user pages in that process must be allocated at some page whose
logical page number is greater than zero. The constant pgallocstart denotes
this offset.

Usually, the offset is used in the data segment only. For simplicity, the
offset is here set to 0. Moreover, it is uniformly applied to all segments (since
it is 0, this does not hurt).

The one hard constraint on virtual store is that some physical pages must
never be allocated to user space. These are the pages that hold the device
registers and other special addresses just mentioned.

Virtual-store pages are frequently marked as:

• execute only (which implies read-only);
• read-only;
• read-write.

Sometimes, pages are marked write-only. This is unusual for user pages but
could be common if device buffers are mapped to virtual store pages.

The operations required to mark pages alter the attributes defined at the
start of this chapter. The operations are relatively simple to define and are
also intuitively clear. They are operations belonging to the class defined below
in Section 6.5.2; in the meanwhile, they are presented without comment.

MarkPageAsReadOnly =̂
MakePageReadable ∧
((IsPageWritable ∧ MakePageNotWritable) ∨
((IsPageExecutable ∧ MakePageNotExecutable)))

MarkPageAsReadWrite =̂
(MakePageReadable o

9 MakePageWritable) ∧
(IsPageExecutable ∧ MakePageNotExecutable)

MarkPageAsCode =̂
(MakePageExecutable o

9 MakePageReadable) ∧
(IsPageExecutable ∧ MakePageNotExecutable)

An extremely useful, but generic, operation is the following. It allocates n
pages at the same time:

302 6 Virtual Storage

AllocateNPages =̂
(∀ p : 1 . . numpages? •

(p = 1 ∧ AllocatePageReturningStartVAddress[startaddr?/vaddr !])
∨ (p > 1 ∧

(∃ vaddr : VADDR •
AllocatePageReturningStartVAddress[vaddr/vaddr !])))

As it stands, this operation is not of much use in this model. The reason for
this is that it does not set page attributes, in particular the read-only, execute-
only and the read-write attributes. For this reason the following operations are
defined. The collection starts with the operation for allocating n executable
pages.

The following allocation operation is used when code is marked as exe-
cutable and read-only. This is how Unix and a number of other systems treat
code.

AllocateNExecutablePages =̂
(∀ p : 1 . . numpages? •

(p = 1 ∧ AllocatePageReturningStartVAddress[startaddr?/vaddr !]
∧ MarkPageAsCode)

∨ (p > 1 ∧
(∃ vaddr : VADDR •

AllocatePageReturningStartVAddress[vaddr/vaddr !] ∧
MarkPageAsCode)))

Similarly, the following operations allocate n pages for the requesting pro-
cess. It should be remembered that the pages might be allocated on the paging
disk and not in main store.

AllocateNReadWritePages =̂
(∀ p : 1 . . numpages? •

(p = 1 ∧ AllocatePageReturningStartVAddress[startaddr?/vaddr !]
∧ MarkPageAsReadWrite)

∨ (p > 1 ∧
(∃ vaddr : VADDR •

AllocatePageReturningStartVAddress[vaddr/vaddr !] ∧
MarkPageAsReadWrite)))

AllocateNReadOnlyPages =̂
(∀ p : 1 . . numpages? •

(p = 1 ∧ AllocatePageReturningStartVAddress[startaddr?/vaddr !]
∧ MarkPageAsReadOnly)

∨ (p > 1 ∧
(∃ vaddr : VADDR •

AllocatePageReturningStartVAddress[vaddr/vaddr !] ∧
MarkPageAsReadOnly)))

6.4 Using Virtual Storage 303

To support the illusion of virtual storage, virtual addresses can be thought
of as just natural numbers (including 0):

VADDR == N

and the virtual store for each process can be considered a potentially infinite
sequence of equal-sized locations:

VirtualStore
vlocs : seqPSU
maxaddr : N

#locs = maxaddr

It must be emphasised that each virtual address space has its own copy of
the VirtualStore schema. Page and segment sharing, of course, make regions
of store belonging to one virtual address space appear (by magic?) as part of
another.

The usual operations (read and write) will be supported. However, when
the relevant address is not present in real store, a page fault occurs and the
OnPageFault driver is invoked with the address to bring the required page
into store.

For much of the remainder, a block-copy operation is required. This is
used to copy data into pages based on addresses. For the time being, it can
be assumed that every address is valid (the hardware should trap this, in any
case).

CopyVStoreBlock
∆VirtualStore
data? : seqPSU
numelts? : N

destaddr? : VADDR

vlocs ′ = (λ i : 1 . . (destaddr? − 1) • vlocs(i))
�〈data?〉 � (vlocs after (destaddr? + numelts?))

If any of the addresses used in this schema are not in main store, the page-
faulting mechanism will ensure that it is loaded.

Operations defining the user’s view of virtual store are collected into the
following class. It is defined just to collect the operations in one place. (In the
next section, the operations are not so collected—they are just assumed to be
part of a library and are, therefore, defined in Z.)

The class is defined as follows. The definition is somewhat sparse and con-
tains only two operations, CopyVStoreBlock and CopyVStoreFromVStore. In
a full implementation, this class could be extended considerably. The point,
here, though, is merely to indicate that operations similar to those often im-
plemented for real store can be implemented in virtual storage systems at

304 6 Virtual Storage

a level above that at which virtual addresses are manipulated as complex
entities.

UsersVStore
�(INIT ,CopyVStoreBlock ,CopyVStoreFromVStore)

vlocs : seqPSU
maxaddr : N

#locs = maxaddr

INIT
maxaddress? : N

maxaddr ′ = maxaddress?

CopyVStoreBlock =̂ . . .

CopyVStoreFromVStore =̂ . . .

Data can be copied into a virtual-store page (by a user process) by the
following operation:

CopyVStoreBlock
∆VirtualStore
data? : seqPSU
numelts? : N

destaddr? : VADDR

vlocs ′ = (λ i : 1 . . (destaddr? − 1) • vlocs(i))
�〈data?〉 � (vlocs after (destaddr? + numelts?))

A similar operation is the following. It copies one piece of virtual store
to another. It is useful when using pages as inter-process messages: the data
comprising the message’s payload can be copied into the destination (which
might be a shared page in the case of a message) from the page in which it
was assembled by this operation:

CopyVStoreFromVStore
∆VirtualStore
fromaddr? : VADDR
toaddr? : VADDR
numunits? : N1

(∃ endaddr : VADDR | endaddr = fromaddr? + numunits? − 1 •
vlocs ′ = (λ i : 1 . . (toaddr? − 1) • vlocs(i))

�(λ j : fromaddr? . . endaddr • vlocs(j))
�(vlocs after endaddr + 1))

6.4 Using Virtual Storage 305

6.4.3 Mapping Pages to Disk (and Vice Versa)

Linux contains an operation called memmap in its library. This maps virtual
store to disk store and is rather useful (it could be used to implement persistent
store as well as other things, heaps for instance).

A class is defined to collect the operations together. Again, this class is
intended only as an indication of what is possible. In a real system, it could
be extended considerably; for example, permitting the controlled mapping of
pages between processes, archiving of pages, and so on.

PageMapping
�(INIT ,MapPageToDisk ,MapPageFromDiskExtendingStore)

usrvm : UserVStore
pfr : PageFrames

INIT
uvm? : UserVStore
pgfrm? : PageFrames

usrvm ′ = uvm?
pfr ′ = pgfrm?

MapPageToDisk =̂ . . .

MapPageFromDiskExtendingStore =̂ . . .

writePageToDisk =̂ . . .

readPageFromDisk =̂ . . .

The operations in this class are all fairly obvious, as is their operation.
Commentary is, therefore, omitted.

writePageToDisk
. . .

diskparams? : . . .

pg? : PAGE

. . .

MapPageToDisk =̂
(pgt .PhysicalPageNo[ppno/ppgno!] ∧

pfr .GetPage[ppno/pageno?, pg/fr !] ∧
writePageToDisk [pg/pg?]) \ {ppno, pg}

306 6 Virtual Storage

readPageFromDisk
. . .

diskparams? : . . .

pg ! : PAGE

. . .

This operation extends the store of the requesting process. It is used when
reading pages from disk. The disk page is added to the process’ virtual storage
image.

MapPageFromDiskExtendingStore =̂
usrvm.AllocatePageReturningStartVAddress[pageaddr !/vaddr !]o9

(readPageFromDisk [pg/pg !] ∧
(∃ sz : N | sz = framesize •

usrvm.CopyVStoreBlock
[sz/numelts?, pg/data?, pageaddr !/destaddr?]))

\{pg}

There ought to be an operation to delete the page from the image. However,
only the most careful programmers will ever use it, so the operation is omitted.
It is, in any case, fairly easy to define.

Note that there is no operation to map a disk page onto an existing virtual-
store page. This is because it will probably be used extremely rarely.

The operations in this class could be extended so that the specified disk as
well as the paging disk get updated when the frame’s counter is incremented.
This would automatically extend the disk image. A justification for this is
that it implements a way of protecting executing processes from hardware
and software failure. It can be used as a form of journalling.

This scheme can also be used on disk files. More generally, it can also
work on arbitrary devices. This could be an interesting mechanism to explore
when considering virtual machines of greater scope (it is an idea suggested by
VME/B). Since this is just speculation, no more will be said on it.

6.4.4 New (User) Process Allocation and Deallocation

This section deals only with user-process allocation and deallocation. The
general principles are the same for system processes but the details might
differ slighty (in particular, the default marking of pages as read-only, etc.).

When a new process is created, the following schema is used. In addition,
the virtual-store-management pages must be set up for the process. This will
be added to the following schema in a compound definition.

6.4 Using Virtual Storage 307

UserStoreMgr
�(INIT ,MarkPageAsReadOnly ,MarkPageAsReadWrite,MarkPageAsCode,

AllocateNPages,AllocateNExecutablePages ,AllocateNReadWritePages ,
AllocateNReadOnlyPages ,CopyVStoreBlock ,CopyVStoreFromVStore,

AllocateNewProcessStorage,ReleaseSharedPages,
FinalizeProcessPages,AllocateCloneProcessStorage)

usrvm : UserVStore
pgt : PageTables

INIT
uvm? : UserVStore
ptbl? : PageTables

usrvm ′ = uvm?
pgt ′ = ptbl?

MarkPageAsReadOnly =̂ . . .

MarkPageAsReadWrite =̂ . . .

MarkPageAsCode =̂ . . .

AllocateNPages =̂ . . .

AllocateNExecutablePages =̂ . . .

AllocateNReadWritePages =̂ . . .

AllocateNReadOnlyPages =̂ . . .

CopyVStoreBlock =̂ . . .

CopyVStoreFromVStore =̂ . . .

AllocateNewProcessStorage =̂ . . .

ReleaseSharedPages =̂ . . .

FinalizeProcessPages =̂ . . .

AllocateCloneProcessStorage =̂ . . .

AllocateNewProcessStorage
p? : APREF
codepages? : seqPSU
codesz?, stacksz?, datasz?, heapsz? : N

(∃ sg : SEGMENT ; codeszunits : N |
sg = code ∧ codeszunits = #codepages? •

308 6 Virtual Storage

AllocateNExecutablePages
[codesz?/numpages?, addr/startaddr !]o9

usrvm.CopyVStoreBlock
[codepages?/data?, codeszunits/numelts?,

addr/destaddr?])

(∃ sg : SEGMENT | sg = data •
AllocateNReadOnlyPages [datasz?/numpages?])

(∃ sg : SEGMENT | sg = stack •
AllocateNReadWritePages [stacksz?/numpages?])

(∃ sg : SEGMENT | sg = heap •
AllocateNReadWritePages [heapsz?/numpages?])

ReleaseSharedPages
∆(smap)
p? : APREF

(∀ ps : PAGESPEC | ps ∈ dom smap ∧ pgspecpref (ps) = p? •
(∃ s : PAGESPEC | (ps, s) ∈ smap •

smap′ = smap \ {(ps, s)}))
∧ (∀ ps : PAGESPEC | ps ∈ ran smap ∧ psgpecpref (ps) = p? •

(∃ s : PAGESPEC | (s, ps) ∈ smap •
smap′ = smap \ {(s, ps)}))

Once this schema has been executed, the process can release all of its
pages:

FinalizeProcessPages =̂
pgt .RemovePageProperties ∧ pgt .RemoveProcessFromPageTable

AllocateCloneProcessStorage
p? : APREF
clonedfrom? : APREF
stacksz?, datasz?, heapsz? : N

(∃ sg : SEGMENT | sg = code •
ShareLogicalSegment [clonedfrom?/ownerp?, p?/sharerp?,

sg/ownerseg?, sg/sharerseg?])

(∃ sg : SEGMENT | sg = data •
AllocateNReadOnlyPages [datasz?/numpages?])

(∃ sg : SEGMENT | sg = stack •
AllocateNReadWritePages [stacksz?/numpages?])

(∃ sg : SEGMENT | sg = heap •
AllocateNReadWritePages [heapsz?/numpages?])

6.5 Real and Virtual Devices 309

This works because of the following argument. The first of the two
schemata (ReleaseSharedPages) above first removes the process from all of
the pages that it shares but does not own. Then it removes itself from all of
those shared pages that it does own. This leaves it with only those pages that
belong to it and are not shared with any other process.

If a child process performs the first operation, it will remove itself from
all of the pages it shares with its parents; it will also delete all of the pages
it owns. The parent is still in possession of the formerly shared pages, which
might be shared with other processes. As long as the parent is blocked until
all of its children have terminated, it cannot delete a page that at least one of
its children uses. Thus, when all of a process’ children have terminated, the
parent can terminate, too. Termination involves execution of the operations
defined by ReleaseSharedPages and FinalizeProcessPages.

The only problem comes with clones. If the clone terminates before the
original, all is well. Should the original terminate, it will delete pages still
in use by the clone. Therefore, the original must also wait for the clone to
terminate.

An alternative—one that is possible—is for the owner to “give” its shared
pages to the clone. Typically, the clone will only require the code segment and
have an empty code segment of its own. If the code segment can be handed
over to the clone in one operation (or an atomic operation), the original can
terminate without waiting for the clone or clones. Either is possible.

The allocation of child processes is exactly the same as cloning. The dif-
ference is in the treatment of the process: is it marked as a child or as a
completely independent process? Depending upon the details of the process
model, a child process might share code with its parent (as it does in Unix
systems), whereas an independent process will tend to have its own code (or
maybe a copy of its creator’s code). In all cases, the data segment of the new
process, as well as its stack, will be allocated in a newly allocated set of pages.
In this chapter’s model, data and stack will be allocated in newly allocated
segments. The mechanisms for sharing segments of all kinds have been mod-
elled in this chapter, as have those for the allocation of new segments (and
pages). The storage model presented in this chapter can, therefore, support
many different process models.

6.5 Real and Virtual Devices

There is often confusion between real and virtual devices. It is sometimes
thought that the use of virtual store implies the use of virtual devices. This is
not so. In most operating systems with virtual store, the devices remain real,
while in some real-store operating systems, devices are virtual.

Virtual devices are really interfaces to actual, real ones. Virtual devices
can be allocated on the basis of one virtual device to each process. The virtual
device sends messages to and receives them from the device process. Messages

310 6 Virtual Storage

are used to implement requests and replies in the obvious fashion. Messages
to the real device from the virtual devices are just enqueued by the device
process and serviced in some order (say, FIFO).

The interface to the virtual device can also abstract further from the real
device. This is because virtual devices are just pieces of software. For example,
a virtual disk could just define read and write operations, together with return
codes denoting the success of the operation. Underneath this simple interface,
the virtual device can implement more complex interfaces, thus absolving the
higher levels of software from the need to deal with them. This comes at the
cost of inflexibility.

This model can be implemented quite easily using the operations already
defined in this book. Using message passing, it can be quite nicely structured.

There is another sense in which devices can be virtualised. Each device
interface consists of one or more addresses. Physical device interfaces also in-
clude interrupts. Operations performed on these addresses control the device
and exchange data between device and software. The addresses at which the
device interface is located are invariably fixed in the address map. However,
in a virtual system, there is the opportunity to map the pages containing
device interfaces are mapped into the address space of each process. (This
can be done, of course, using the sharing mechanism defined in this chapter.)
This allows processes directly to address devices. However, some form of syn-
chronisation must be included so that the devices are fairly shared between
processes (or virtual address spaces). Such synchronisation would have to be
included within the software interface to each device and this software can be
at as low a level as desired.

A higher-level approach is to map standard addresses (by sharing pages)
into each address space but to include a more easily programmed interface.
Again, the mechanisms defined in this book can be used as the basis for this
scheme.

6.6 Message Passing in Virtual Store

At a number of points in this chapter, the idea of using shared pages (or sets
of shared pages) to pass messages between processes has been raised. The
basic mechanisms for implementing message passing have also been defined.

When one process needs to send a message to another, it will allocate
a page and mark it as shared with the other process. Data will typically be
placed in the page before sharing has been performed. The data copy operation
can be performed by one of the block-copy operations, CopyVStoreBlock or
CopyVStoreFromVStore (Section 6.5.1).

The receiving process must be notified of the existence of the new page
in its address space. This can be achieved as either a synchronous or an
asynchronous event—the storage model is completely neutral with respect to

6.7 Process Creation and Termination; Swapping 311

this. In a system with virtual storage, message passing will be implemented as
system calls, so notification can be handled by kernel operations. For example,
the synchronous message-passing primitives defined in Chapter 5 can easily be
modified to do this. What is required is that the message call point to a page
and not to a small block of storage. Equally, the asynchronous mechanism
outlined in Chapter 3 can be modified in a similar fashion.

Message passing based on shared pages will be somewhat slower at runtime
than a scheme based upon passing pointers to shared storage blocks (buffers),
even when copying buffers between processes is required. The reason for this
is clear from an inspection of the virtual storage mechanisms. For this reason,
it would probably be best to implement two message-passing schemes: one
for kernel and one for user messages. The kernel message scheme would be
based on shared buffers within kernel space; user messages would use the
shared-page mechanism outlined above.

In some cases, additional system processes are required in addition to those
executing inside the kernel address space and they will be allocated their own
virtual store. In order to optimise message passing between these processes
and the kernel, a set of pages can be declared as shared but not incore (i.e.,
not locked into main store). The set of pages can be pre-allocated by the
kernel at initialisation time, so no new pages need to be allocated. All that
remains is for the pages to be given to the processes. This can be achieved
using the primitives defined in this chapter.

6.7 Process Creation and Termination; Swapping

Process creation, activation and termination are unaffected by the virtual
storage mechanisms. The virtual storage subsystem must be booted before
any processes are created, so all processes, even those inside the kernel, are
created in virtual address space. The primitives to allocate and deallocate
storage have been defined above (Sections 6.5.1 and 6.5.3). The operations
to create and delete processes can be implemented in a way analogous to
those defined in Chapter 4 (and assumed in Chapter 5), with the virtual-store
primitives replacing those handling real store. The most significant difference
between the two schemes is that the virtual-store allocation operations are
not as limited in the amount of store they can allocate. The virtual storage
operations are only limited by the number of pages permitted in a segment
and not be the size of main store.

Virtual store also has advantages where swapping is concerned. It is possi-
ble to include a swapping system in a virtual-store-based system. As with the
scheme defined in detail in Chapter 4, the swapper will transfer entire process
images between main store and the swap disk (or swap file). Under virtual
storage, the swapper treats the page as the basic unit for transfer. The swap-
per reads the page table and swaps physical pages to disk. Not all segments
need be swapped to disk; code segments might be retained in main store while

312 6 Virtual Storage

there are active child processes. The process is, however, complicated by the
fact that a process image is likely to be shared between the paging disk and
main store.

