
1

Introduction

Dimidium facti qui coepit habet; sapere aude.
– Horace, Epistles, I, ii, 40

1.1 Introduction

Operating systems are, arguably, the most critical part of any computer sys-
tem. The kernel manages the computational resources used by applications.
Recent episodes have shown that the operating system is a significant thorn
in the side of those desiring secure systems. The reliability of the entire op-
erating system, as well as its performance, depends upon having a reliable
kernel. The kernel is therefore not only a significant piece of software in its
own right, but also a critical module.

Formal methods have been used in connection with operating systems for
a long time. The most obvious place for the application of mathematics is
in modelling operating system queues. There has been previous work in this
area, for example:

• the UCLA Security Kernel [32];
• the work by Bevier [2] on formal models of kernels;
• Horning’s papers on OS specification [3]
• the NICTA Workshop in 2004 on operating systems verification [23];
• Zhou and Black’s work [37].

Much of the formal work on operating systems has been verificational in
nature. That is, given some working software, an attempt is made to justify
that software by constructing a formal model. This is clearly in evidence in the
NICTA Workshop [23] papers about the L4 kernel [13, 31]. Formal methods
in this case are used in a descriptive fashion. Certainly, if the model is good
enough, it can be used to reason about the reliability of the implemented
software; it can also be used to clarify the relationships between the modules in



2 1 Introduction

that software. However, the descriptive approach requires an adequate model,
and that can be hard to obtain.

What is proposed in this book is a prescriptive approach. The formal
model should be constructed before code is written. The formal model is then
used in reasoning about the system as an abstract, mathematical entity. Fur-
thermore, a formal model can be used for other purposes (e.g., teaching kernel
design, training in the use and configuration of the kernel). C. A. R. Hoare has
complained that there are too many books on operating systems that just go
through the concepts and present a few case studies—there are a great many
examples from which to choose; what is required, he has repeatedly argued,
is detailed descriptions of new systems1.

The formal specification and derivation of operating system kernels is also
of clear benefit to the real-time/embedded systems community. Here, the ker-
nels tend to be quite simple and their storage management requirements less
complex than in general-purpose systems like Linux, Solaris and Windows
NT. Embedded systems must be as reliable as possible, fault tolerant and
small. However, a kernel designed for an embedded application often contains
most of the major abstractions employed by a large multiprogramming sys-
tem; from this, it is clear that the lessons learned in specifying a small kernel
can be generalised and transferred to the process of specifying a kernel for
a larger system. Given the networking of most systems today, some of the
distinctions between real-time and general-purpose systems are, in any case,
disappearing (network events must be handled in real time, after all).

For the reasons given in the last paragraph, the first specification in this
book is of a kernel that could be used in an embedded or real-time system. It
exports a process abstraction and a rich set of inter-process communication
methods (semaphores, shared buffers and mailboxes or message queues). This
kernel is of about the same complexity as µC/OS [18], a small kernel for
embedded and real-time applications.

1.2 Feasibility

It is often argued that there are limits to what can be formally specified. There
are two parts to this argument:

• limits to what can profitably be specified formally.
• a priori limits on what can be formally specified.

The first is either a philosophical, pragmatic or economic issue. As a philo-
sophical argument, there is Gödel’s (second) theorem. As an economic ar-
gument, the fact that formal specification and derivation take longer than
1 This is not to denigrate any of them. Most contain lucid explanations of the

concepts. The point is that they tend only to repeat the principles and sketch
well-known systems.



1.2 Feasibility 3

traditional design and construction methods is usually taken as an argument
that they are only of “academic interest”. This argument ignores the fact that
the testing phase can be reduced or almost entirely omitted because code is
correct with respect to the specification. (Actually, a good testing schedule
can be used to increase confidence in the software.) In the author’s experi-
ence, formally specified code (and by this is meant specification supported by
proofs) works first time and works according to specification.

The existence of a formal model also has implications for maintenance
and modification. The consequences of a “small patch” are often impossible
to predict. With a formal model, the implications can be drawn out and
consequences derived. With informal methods, this cannot be done and users
are disappointed and inconvenienced (or worse).

As to what can profitably be specified, it would appear that just about
any formal specification can be profitable, even the swap program. There was
a notion a few years ago that only safety-critical components should be for-
mally specified; the rest could be left to informal methods. This might be
possible if the dependencies between safety-critical and noncritical compo-
nents can be identified with 100% accuracy. The problem is that this is not
often undertaken. Again, formal methods reveal the dependencies.

So what about the argument that programmers cannot do formal specifi-
cation, that only mathematicians can do it? One argument is that we should
be teaching our people rather more than how to read syntax and hack code;
they should be taught abstractions right from the start. This is not something
one readily learns from lectures on syntax and coding methods; it is not even
something that can be learned from lectures on design using informal tools
or methods (waterfalls, ‘extreme’ programming, etc.). Much of the mathe-
matics used in formal specifications is quite simple and its use requires and
induces clearer thinking about what one is doing and why. There is a clear
problem with the way in which computer scientists are trained and with the
perceptions, abilities and knowledge of many of those who train them.

The second argument is that it is just impossible to specify everything
in a formal way. Programs, and processes for that matter, are structured
entities that can be described in formal ways. This is admitted by the other
side, but there are things like compilers, operating systems, command and
control systems and a whole list of other kinds of systems that simply cannot
be formally specified. The reason usually given is that they are too complex
or complicated. Operating systems have the additional problem that they
deal with hardware and “you can’t specify that”. There are many possible
answers; for example, to point to hardware specification languages, to point
to specifications of hardware or to point out that a piece of hardware can
be modelled in an abstract fashion. Critics object that the specification will
be too abstract to be of use—it cannot capture every aspect of the hardware
device. This is true: abstractions do not capture every detail, only the relevant
ones.



4 1 Introduction

For example, a model of a disk drive might include read and write opera-
tions and might contain a mapping from disk locations to data. Such a model
would be of considerable use. The objection from the doubter is that such a
model does not include disk-head seek time. Of course, seek times are relevant
at low levels (and temporal logic can help—the specification says “eventually
the disk returns a buffer of data or a failure report”).

The next objection is that it is impossible to model those aspects of the
processor required to specify a kernel. And so it goes on.

The only way to silence such objections is to go ahead and engage in the
exercise. That is one reason for writing this book: it is an existence proof.

1.3 Why Build Models?

It has always been clear to the author that a formal specification could serve
as more than a basis for refinement to code. A formal specification constitutes
a formal model; important properties can be proved before any code is written.
This was one of the reasons for writing [10]. In addition to that book, formal
models and proofs were used by the author as a way of exploring a number of
new systems during the 1990s without having to implement them (they were
later implemented using the formal models). The approach has the benefit
that a system’s design or, indeed, an entire approach to a system, can be
explored thoroughly without the need for implementation. The cost (and risk)
of implementation can thereby be avoided.

In the case of operating systems, implementation can be lengthy (and
therefore costly) and require the construction of drivers and other “messy”
parts2. The conventional approach to OS (and other software) design requires
an implementation so that properties can be determined empirically. Deter-
mining properties of all software at present is a wholly empirical exercise; not
all consequences of a given collection of design decisions are made apparent
without prolonged experience with the software. The formal approach will
never (and should never) obviate empirical methods; instead, it allows the
designer to determine properties of the system a priori and to justify them in
unambiguous terms.

The production of a formal model of a system poses the same problems
as does a conventional design and implementation. Interfaces have to be de-
fined, as must behaviours. However, a formal model affords the opportunity
to state the design in an unambiguous form in which properties can be stated
2 OS Kit from the University of Utah—see the Computer Science Department’s

Web site—is a considerable aid in constructing new systems by providing Inter-
rupt Service Routines (ISRs), drivers and other basic components that can be
slotted together to form a substrate upon which to build the upper layers of an
operating system. OS Kit is a software kit, not a formal specification or modelling
tool.



1.4 Classical Kernels and Refinement 5

as propositions to be proved. The proof of such properties makes an essen-
tial contribution to the exercise by justifying the claims. Proofs provide more
insight into the design, even if they seem to be proofs of obvious properties
(there are lots of examples above). The point is that the statement of a prop-
erty as a proposition to be proved makes that property explicit; otherwise, it
will remain implicit or just another line in the formal statement of the model.

The properties proved as part of formal modelling reveal characteristics
of the software in a way that cannot be obtained by implementation—it can
be construed as an exploration without the expense (and frustration) of im-
plementation. This is, of course, not to deny implementation: the goal of all
software projects is the production of working code. The point is that formal
models provide a level of exploration that is not obtained by a purely em-
pirical approach. Furthermore, formal models document the system and its
properties: they can serve as information, inspiration or warnings to others.

A further advantage of the formal approach is that it always leaves imple-
mentation as an option. With the conventional approach, implementation is
a necessity.

1.4 Classical Kernels and Refinement

The focus in this book is on what might be called the “classical” operating
system kernel. This is the kind of kernel that is amply documented in the
literature (the books and papers cited in this paragraph are all good exam-
ples). It is the approach to kernel design that has evolved since the early
days of computers through such systems as the TITAN Supervisor [34], the
the operating system [19] and Brinch Hansen’s RC4000 supervisor [5]; it is
the approach to kernels described in standard texts on operating systems (for
example, [29, 11, 26] to cite but three from the past twenty years).

The classical operating system kernel is to be found in most of the systems
today: Unix, POSIX and Linux, Microsoft’s NT, IBM’s mainframe operating
systems and many real-time kernels. In days of greater diversity, it was the
approach adopted in the design of Digital Equipment’s operating systems:
RSTS, RSX11/M, TOPS10, TOPS20, VMS and others. Other, now defunct
manufacturers also employed it for their product ranges, each with a different
choice of primitives and interfaces depending upon system purpose, scope and
hardware characteristics. Such richness was then perceived as a nuisance, not
a reservoir of ideas.

The classical approach regards operating system kernels as layered enti-
ties: a layer of primitives must be defined to execute above the hardware,
providing a collection of abstractions to be employed by the remainder of the
system. Above this layer are arranged layers of increasing abstraction, includ-
ing storage management, various clocks and alarms. Finally, there comes the
layer in which file management, database interfaces and interfaces to network



6 1 Introduction

services appear. At the very top of the hierarchy, there is usually a mecha-
nism that permits user code to invoke system services; this mechanism has
been variously called SVCs, Supervisor Calls, System Calls, or, sometimes,
Extracodes.

This approach to the design of operating systems can be traced back at
least to the the operating system of Dijkstra et al. [19]. (It could be argued
that the the system took many current ideas and welded them into a coher-
ent and elegant whole.) The layered approach makes for easier analysis and
design, as well as for a more orderly construction process. (It also assists in the
organisation of the work of teams constructing such software, once interfaces
have been defined.) It is sometimes claimed that layered designs are inherently
slower than other approaches, but with the kernel some amount of layering is
required; raw hardware provides only electrical, not software, interfaces.

The classical approach has been well-explored as a space within which
to design operating system kernels, as the list of examples above indicates.
This implies that the approach is relatively stable and comparatively well-
understood; this does not mean, of course, that every design is identical or
that all properties are completely determined by the approach.

The classical model assumes that interacting processes, each with their own
store, are executed. Execution is the operation of selecting the next process
that is ready to run. The selection might be on the basis of which process
has the highest priority, which process ran last (e.g., round-robin) or on some
other criterion. Interaction between processes can take the form of shared
storage areas (such as critical sections or monitors), messages or events. Each
process is associated with its own private storage area or areas. Processes
can be interrupted when devices are ready to perform input/output (I/O)
operations. This roughly defines the layering shown in Figure 1.1.

At the very bottom are located the ISRs (Interrupt Service Routines).
Much of the work of an ISR is based on the interface presented by the device.
Consequently, there is little room in an ISR for very much abstraction (al-
though we have done our best below): ideally, an ISR does as little as possible
so that it terminates as soon as possible.

One layer above ISRs come the primitive structures required by the rest
of the kernel. The structures defined at this level are exported in various ways
to the layers above. In particular, primitives representing processes are imple-
mented. The process representation includes storage for state information (for
storage of registers and each process’ instruction pointer) and a representation
of the process’ priority (which must also be stored when not required by the
scheduling subsystem). Other information, such as message queues and stor-
age descriptors, are also associated with each process and stored by operations
defined in this layer.

Immediately above this there is the scheduler. The scheduler determines
which process is next to run. It also holds objects representing processes that
are ready to execute; they are held in some form of queue structure, which
will be referred to as the ready queue. There are other operations exported by



1.4 Classical Kernels and Refinement 7

IPC

Process Abstraction

i/o
 r

/g
s

System
Calls

User
Processes

al
ar

m
s

Context
Switch

Device

Software

Hardware

Device H/W 
Clock

Device

Process
Table

Device
Processes

(drivers)

Swap
Tables

Swap
Disk

Kernel Interface Routines

Swapper
Process

Clock
Process

Low-Level
Scheduler

ISRs

Kernel
Primitive

System
Processes

ISRISR ISRClock

Fig. 1.1. The layers of the classical kernel model.

the scheduler, for example, removal of a ready or running process from the
ready queue or an operation for the self-termination of the current process.
Context switches are called from this layer (as well as others).

Above the process representation and the scheduler comes the IPC layer.
It usually requires access not only to the process representation (and the
process-describing tables) but also to the scheduler so that the currently exe-
cuting process can be altered and processes entered into or removed from the
ready queue. There are many different types of IPC, including:

• semaphores and shared memory;
• asynchronous message exchange;
• synchronous message exchange (e.g., rendezvous);



8 1 Introduction

• monitors;
• events and Signals.

Synchronisation as well as communication must be implemented within this
layer. As is well-documented in the literature, all of the methods listed above
can perform both functions.

Some classical kernels provide only one kind of IPC mechanism (e.g., the
[19], solo [6]). Others (e.g., Linux, Microsoft’s NT, Unix System V) provide
more than one. System V provides, inter alia, semaphores, shared memory and
shared queues, as well as signals and pipes, which are, admittedly, intended for
user processes. The essential point is that there is provision for inter-process
synchronisation and communication.

With these primitive structures in place, the kernel can then be extended
to a collection of system operations implemented as processes. In particular,
processes to handle storage management and the current time are required.
The reasons for storage management provision clear; those for a clock are,
perhaps, less so.

Among other things, the clock process has the following uses:

• It can record the current time of day in a way that can be used by processes
either to display it to the user or employ it in processing of some kind or
another.

• It can record the time elapsed since some event.
• It can provide a sleep mechanism for processes. That is, processes can

block on a request to be unblocked after a specified period of time has
elapsed.

• It can determine when the current process should be pre-empted (if it is a
pre-emptable process—some processes are not pre-emptable, for example,
some or all system processes).

In addition to a storage manager and a clock, device drivers are often
described as occurring in this layer. The primary reason for this is that pro-
cesses require the mechanisms defined in the layers below this one—it is the
first layer at which processes are possible.

The processes defined in this layer are often treated differently from those
above. They can be assigned fixed priorities and permitted either to run to
completion or until they suspend themselves. For example, device drivers are
often activated by the ISR performing a V (Signal) operation on a semaphore.
The driver then executes for a while, processing one or more requests until
it performs a P operation on the semaphore (an equivalent with messages is
also used, as is one based on signals).

The characteristics of the processes in this layer are that:

• They are trusted.
• Their behaviour is entirely predictable (they complete or block).
• They run for relatively short periods of time when executed.



1.4 Classical Kernels and Refinement 9

The only exception is the storage manager, which might have to perform
a search for unallocated blocks of store. (The storage manager specified in
Chapter 4 does exactly this.) However, free store is represented in a form that
facilitates the search.

Above this layer, there comes the interface to the kernel. This consists
of a library of system calls and a mechanism for executing them inside the
kernel. Some kernels are protected by a binary semaphore, while others (Mach
is a good, clear example) implement this interface using messages. Above this
layer come user processes.

Some readers will now be asking: what about the file system and other
kinds of persistent, structured storage? This point will be addressed below
when defining the scope of the kernels modelled in this book (Section 1.7).

The classical model can therefore be considered as a relatively high-level
specification of the operating system kernel. It is possible to take the position
that all designs, whether actual or imagined, are refinements of this specifica-
tion.

As a high-level specification, the approach has its own invariants that must
be respected by these refinements. The invariants are general in nature, for
example:

• Each process has a state that can be uniquely represented as a set of
registers and storage descriptors.

• Each process is in exactly one state at any time. One possible set of states
of a process is: ready (i.e., ready to execute), running (executing), waiting
or (blocked) and terminated.

• Each process resides in at most one queue at any time3.
• Each process can request at most one device at any one time. This is a

corollary to the queues invariant.
• Each process owns one or more regions of storage that are disjoint from

each other and from all others. (This has to be relaxed slightly for virtual
store: each process owns a set of pages that is disjoint from all others.)

• There is exactly one process executing at any one time. (This clearly needs
generalising for multi-processor machines; however, this book deals only
with uni-processors.)

• When a process is not executing, it does nothing. This implies that pro-
cesses cannot make requests to devices when they are not running, nor can
they engage in inter-process communications or any other operations that
might change their state.

• An idle process is often employed to soak up processor cycles when there
are no other processes ready to execute. The idle process is pre-empted as
soon as a “real” process enters the scheduler.

3 It might be thought that each process must be on exactly one queue. There are
designs, such as the message-passing kernel of Chapter 5, in which processes do
not reside in queues—in this case, when waiting to receive a message.



10 1 Introduction

• The kernel has a single mechanism that shares the processor fairly between
all processes according to need (by dint of being the unique running pro-
cess) or current importance (priority).

• Processes can synchronise and communicate with each other;
• Storage is flat (i.e., it is a contiguous sequence of bytes or words); it is

randomly addressed (like an array).
• Only one user process can be in the kernel at any one time.

These invariants and the structres to which they relate can be refined in
various ways. For example:

• Each process can share a region of its private storage with another process
in order to share information with that other process.

• User processes may not occupy the processor for more than n µseconds
before blocking. (n is a parameter that can be set to 1 or can vary with
load.)

• A process executes until either it has exceeded its allocated time or a
process of higher priority becomes ready to execute.

Multi-processor systems also require that some invariants be altered or re-
laxed. The focus in this book is on single-processor systems.

It is sometimes claimed that modern operating systems are interrupt-
driven (that is, nothing happens until an interrupt occurs). This is explained
by the fact that many systems perform a reschedule and a context switch
at the end of their ISRs. A context switch is always guaranteed to occur be-
cause the hardware clock periodically interrupts the system. While this is true
for many systems, it is false for many others. For example, if a system uses
semaphores as the basis for its IPC, a context switch occurs at the end of the
P (Wait) operation if there is already a process inside the critical section. A
similar argument applies to signal-based systems such as the original Unix.

Because this book concentrates on classical kernel designs and attempts
to model them in abstract terms, each model can be seen as a refinement of
the more abstract classical kernel model. Such a refinement might be partial
in the sense that not all aspects of the classical model are included (this is
exemplified by the tiny kernel modelled as the first example) or of a greater or
total coverage (as exemplified by the second and third models, which contain
all aspects of the classical design in slightly different ways).

Virtual store causes a slight problem for the classical model. The layers of
the classical organisation remain the same, as do their invariants. The princi-
ples underlying storage and the invariants stated above also remain invariant.
However, the exact location of the storage management structures is slightly
different.

The storage management of a classical kernel is a relatively simple matter:
the tables are of fixed size, as are queue lengths (the maximum possible queue
length is just the number of processes that can be supported by the kernel).
The kernel stack (if used) will tend to be small (it must be allocated in a



1.5 Hardware and Its Role in Models 11

fixed-size region of store, in any case). The basics of virtual storage allocation
and deallocation are simple: allocation and deallocation are in multiples of
fixed-sized pages.

The problem is the following: the kernel must contain a page-fault handler
and support for virtual storage. Page tables tend to be relatively large, so it
makes sense to use virtual store to allocate them. This implies that virtual
storage must be in place in order to implement virtual storage. The problem
is solved by bootstrapping virtual storage into the kernel; the kernel is then
allocated in pages that are locked into main store. The bootstrapping process
is outside the layered architecture of the classical kernel, so descriptions in
the literature of virtual storage tend to omit the messy details. Once a virtual
store has been booted, the storage manager process can operate in the same
place as in real-store kernels.

Virtual storage introduces a number of simplifications into a kernel but at
the expense of a more complex bootstrap and a more involved storage man-
ager (in particular, it needs to be optimised more carefully, a point discussed
in some detail in Chapter 6). Virtual machines also introduce a cleaner sepa-
ration between the kernel and the rest of the system but imposes the need to
switch data between virtual machines (an issue that is omitted from Chapter
6 because there are many solutions).

The introduction of virtual storage and the consequent abstraction of vir-
tual machines appears at first to move away from the classical kernel model.
However, as the argument above and the model of Chapter 6 indicate, there
is, in fact, no conflict and the classical model can be adapted easily to the
virtual storage case. A richer and more radical virtual machine model, say
Iliffe’s Basic Language Machine [17], might turn out to be a different story
but one that is outside the scope of the present book and its models.

1.5 Hardware and Its Role in Models

Hardware is one of the reasons for the existence of the kernel. Kernels ab-
stract from the details of individual items of hardware, even processors in the
case of portable kernels. Kernels also deal directly with hardware by saving
and restoring general-purpose registers on context switches, setting flags and
executing ISRs.

The kernel is also where interrupts are handled by ISRs and devices han-
dled by their specific drivers. No model of an operating system kernel is com-
plete without a model (at some level of abstraction) of the hardware on which
it is assumed to execute.

In the models below, there is only relatively little material devoted to
hardware. Most of this is general and included in Chapter 2. This must be
accounted for.

First, consider interrupts. Each processor type has its own way of dealing
with interrupts. First, there is the question of vectored or non-vectored inter-



12 1 Introduction

rupts: some processors (the majority) offer vectored interrupts, while others
do not. Next, what are the actions performed by the processor when an in-
terrupt occurs? Some processors do very little other than indicate that the
interrupt has actually occurred. If the processor uses vectored interrupts, it
will execute the code each interrupt vector element associates with its inter-
rupt. Although not modelled below, an interrupt vector would be a mapping
between the interrupt number, say, and the code to be executed, and some
entries in the vector might be left empty. Some processors save the contents
of the general-purpose registers (or a subset of them) in a specific location.
This location might be a fixed area of store, an area of store pointed to by a
register that is set by the hardware interrupt or it might be on the top of the
current stack (it might be none of these).

After the code of an ISR has executed, there must be a return to normal
processing. Some processors are designed so that this is implemented as a
jump, some implement it as a normal subroutine return, while still others
implement it as a special instruction that performs some kind of subroutine
return and also sets flags. The advantage of the subroutine return approach is
that the saved registers are restored when the ISR terminates—this is a little
awkward if a reschedule occurs and a context switch is required, but that is a
detail.

There are other properties of interrupts that differentiate processors, the
most important of which the prioritised interrupts. It is not possible to con-
sider all the variations. Instead, it is necessary to take an abstract view, as
abstract as is consistent with the remainder of the model. The most abstract
view is that processors have a way of indicating that an asynchronous hard-
ware event has occurred.

Interrupts are only one aspect of the hardware considerations. The number
of general-purpose registers provided by a processor is another. Kernels do
not, at least do not typically, alter the values in particular registers belonging
to the processes it executes (e.g., to return values, as, e.g., in a subroutine
call). For this reason, the register set can be modelled as an abstract entity;
it consists of a set of registers (the maximum number is assumed known, and
it might be 0 as in a stack machine, but not used anywhere other than in
the definition of the abstractions) and a pair of operations, one to obtain the
registers’ values from the hardware and one to set hardware register values
from the abstraction.

There is also the issue of whether the processor must be in a special ker-
nel mode when executing the kernel. Kernel mode often enables additional
instructions that are not available to user-mode processes.

There are many such issues pertaining to hardware. Most of the time,
they are of no interest when engaging in a modelling or high-level specification
exercise; they become an issue when refinement is underway. The specification
of a low-level scheduler has precious little to do with the exact details of the
rti instruction’s operation. What is required is that the specification or model



1.6 Organisation of this Book 13

be structured in such a way that, when these details become significant, they
can be handled in the most appropriate or convenient way.

The diversity of individual devices connected to a processor also provides
a source either of richness or frustration. Where there are no standards, device
manufacturers are free to construct the interfaces that are most appropriate
to their needs. Where there are standards, there can be more uniformity but
there can also be details like requiring a driver to wait n µs before performing
the next instruction or to wait m µs before testing a pin again to confirm that
it has changed its state.

Again, the precise details of devices are considered a matter of refinement
and abstract interfaces are assumed or modelled if required. (The hardware
clock and the page-fault mechanism are two cases that are considered in de-
tail below.) In these cases, the refinement argument is supported by device-
independent I/O, portable operating systems work over many years and by
driver construction techniques such as that used in Linux [25]. The refinement
argument is, though, strengthened by the fact that the details of how a device
interface operates are only the concern to the driver, not to the rest of the
kernel; only when refining the driver do the details become important.

Nevertheless, the hardware and its gross behaviour are important to the
models. For this reason, a small model of an ideal processor is defined and
included in the common structures chapter (Chapter 2). The hardware model
includes a single-level interrupt mechanism and the necessary interactions be-
tween hardware and kernel software are represented. The real purpose of this
model is to capture the interactions between hardware and software; this is an
aspect of the models that we consider of some importance (indeed, as impor-
tant as making explicit the above assumptions about hardware abstraction).

1.6 Organisation of this Book

The organisation of this book is summarised in this section. Chapters 2 to 6
contain the main technical material, and the last chapter (Chapter 7) contains
a summary of what has been done. It also contains some suggestions about
where to go next.

Very briefly, the technical chapters are as follows.
Chapter 2. Common structures. This chapter contains the Z specification

of a number of structures that are common to most kernels. These struc-
tures include FIFO queues, process tables and semaphores. Also included is a
hardware model. This is very simple and quite general and is included just to
orient the reader as well as to render explicit our assumptions about the hard-
ware. CCS [21] is used for the operational part of this model. Some relevant
propositions are proved in this chapter.

Chapter 3. A simple kernel. This kernel is of the type often found in real-
time and embedded systems. It is relatively simple and open. It serves as an
introduction to the process of modelling kernels. The focus, as far as formally



14 1 Introduction

proved properties are concerned, is the priority queue that is used by this
kernel’s scheduler.

Chapter 4. The swapping kernel. This is a kernel of the kind often found
in mini-computers such as the PDP-11/40 and 44 that did not have virtual
storage. It includes IPC (using semaphores), process management and stor-
age management. The system includes a process-swapping mechanism that
periodically swaps processes to backing store. The kernel uses interrupts for
system calls, as is exemplified by the clock process (the sole example of a
device driver). The chapter contains proofs of many properties.

Chapter 5. This is a variation on the kernel modelled in Chapter 4. The
difference is that IPC is now implemented as message passing. This requires
changes to the system processes, as well as the addition of generic structures
for handling interrupts and the context switch. The kernel interface is imple-
mented using message passing. A number of properties are proved.

Chapter 6. The main purpose of this chapter is to show that virtual storage
can be included in a kernel model. Virtual storage is today too important to
ignore; in the future, it is to be expected that embedded processors will include
virtual storage4. Many properties are proved.

1.7 Choices and Their Justifications

It is worth explaining some of the choices made in this book.
Originally, the models were written in Z [28]. Unfortunately, a considerable

amount of promotion was required. The presence of framing schemata in the
specification tended, in our belief, to obscure the details of the models. Object-
Z [12, 27] uses a reference-based model that makes promotion a transparent
operation.

Chapter 2 still contains a fair amount of pure Z: this is to orient readers
who are more familiar with Z than Object-Z and give them some idea of the
structures used in the rest of the book. The chapter contains some framing
schemata and promoted operations. The reader should be able to see how
framing gets in the way of a clear presentation. Chapter 2 also contains some
CCS.

Object-Z is an object-oriented specification language. Although the models
in this book in no way demand object-oriented specification or implementa-
tion, the modularity of Object-Z again seems to make each model’s structure
clearer since operations can be directly related to the modular structure to
which they naturally belong. During the specification in Object-Z, objects
were considered more in the light of modules (as in Modula2) or Ada packages.
Every effort, however, has been made to conform to Object-Z’s semantics, so
it could be argued that the specifications are genuinely object-oriented; this
is an issue we prefer to ignore.
4 The StrongArm processor has, for example, included virtual storage support

since before the year 2000.



1.7 Choices and Their Justifications 15

As can be inferred from the comment above, CCS [21] is used in a few
places. CCS was chosen over CSP [16], π-calculus [22, 33] or some other process
algebra (e.g., [1]) because it expresses everything required of it here in a
compact fashion. The Concurrency Workbench [8] is available to support work
in CCS, as will be seen in Chapter 6. Use of CCS is limited to those places
where interactions between component processes must be emphasised or where
interactions are the primary issue.

The use of Woodcock et al.’s Circus specification [7] language was con-
sidered and some considerable work was done in that language. In order to
integrate a Circus model with the remainder of the models and to model a
full kernel in Circus, it would have been necessary to model message pass-
ing and the proof that the model coincided with the one assumed by Circus
would have to have been included. Another notation would have tended to
distract readers from the main theme of this book, as would the additional
equivalence proofs.

It was originally intended to include a chapter on a monitor-based kernel.
The use of monitors makes for a clearly structured kernel, but this structure
only appears above the IPC layer. Eventually, it turned out that:

1. the chapter added little or nothing to the general argument; and
2. Inclusion of the chapter would have made an already somewhat long book

even longer.

For this reason, the chapter was omitted. This is a pity because, as just noted,
monitors make for nicely structured concurrent programs and the specifica-
tion of monitors and monitor-using processes in Object-Z is in itself a rather
pleasing entity.

Some readers will be wondering why there are no refinements included
in this book. Is this because there have been none completed (for whatever
reason, for example because they do not result in appropriate software) or for
some other reason? We have almost completed the refinement of two different
kernels similar to the swapping kernel (but without the swap space), one
based on semaphores and one based on messages. The target for refinement
is Ada. These refinements will have been completed by the time this book
is published. The reasons for omitting them are that there was no time to
include them in this book and that they are rather long (the completed one
is more than 100 A4 pages of handwritten notes). It is hoped that the details
of these refinements, as well as the code, will be published in due course.

It cannot be stressed enough times that the models presented in this book
are logical models. The intention is that they should be the subject of reason-
ing. In order to refine the models to code, some extra work has to be done;
for example, some sequential compositions will have to be introduced and
predicates rearranged or regrouped. The aim here is to make the constructs
as clear as possible, even if this means that the grouping of predicates is not
optimal for a refinement attempt.



16 1 Introduction

It is a natural question to ask why temporal logic has not been used in this
book. The work by Bevier [2] uses temporal logic. Temporal logic is a natural
system for specifying concurrent and parallel programs and systems. The an-
swer is that temporal logic is simply not necessary. Everything can be done
in Z or Object-Z. A process algebra (CCS [21]) is used in a few cases to de-
scribe interactions between components and to prove behavioural equivalence
between interacting processes. The approach adopted here is directly analo-
gous to the use of a sequential programming language to program a kernel:
the result might be parallel but the means of achieving it are sequential.

This book concentrates on what is referred to as the “classical” kernel
paradigm. The reason for excluding other kernel designs, say those based on
events, is that they are not as widely known. In order to demonstrate that
formal models are possible for kernels, it would appear wiser to attempt the
most widely known paradigm. The classical kernel comes in many different
flavours, so the scope for different models is relatively broad.




