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Key Points

• Homeostatic control of the cardiovascular system depends 
on a variety of metabolic, humoral, and neuroadrenergic 
influences. These factors physiologically interact with 
each other and participate, together with endothelial 
factors, in the regulation of cardiac as well as vascular 
function.

• Both endothelial and sympathetic functions undergo a 
variety of physiologic adjustments, participating in the 
cardiovascular responses to postural changes, to environ-
mental temperature modifications, to stress, and to phys-
ical exercise. They also participate in the cardiovascular 
modifications typical of the aging process.

• In cardiovascular and metabolic diseases, sympathetic 
and endothelial alterations represent the key factors 
for the pathophysiology of the clinical conditions, its 
complications, and prognosis. They also represent 
the target for nonpharmacologic and pharmacologic 
interventions.

Cardiovascular homeostasis represents the mechanism(s) 
through which organ perfusion, metabolic balance, and ther-
moregulation are modulated to meet the body’s require-
ments. This demands complex interplays among local, 
humoral, and neural factors to modify cardiac and vascular 
performance according to the changing requirements of 
daily life. In diseases of the cardiovascular system (as well 
as of other organs, such as the kidney and the liver), these 
regulatory mechanisms are disturbed with consequent 
abnormalities in circulatory control.

Cardiovascular Regulation in 
Physiologic Conditions

Local Factors

Endothelial cells play a leading local homeostatic role by 
secreting vascular relaxing and contracting substances that 
act locally to modify the tone of the underlying smooth 
muscle.1,2 The major relaxing factor is nitric oxide (NO); 
others are prostaglandin I2, (also termed prostacyclin), 
endothelium-derived hyperpolarizing factor,2 and C-type 
natriuretic peptide (CNP). The major contracting factor is 
endothelin (ET)-1; others are angiotensin II (Ang II) and vaso-
constrictor metabolites of arachidonic acid. These locally 
synthesized substances also modulate the response of the 
underlying vascular smooth muscle to hormones, neuro-
transmitters, and platelet products (Fig. 70.1). In addition, the 
endothelium releases tissue plasminogen activator (tPA) 
involved in the modulation of the fibrinolytic process.

Endothelium-Derived Relaxing Factors

In the endothelial cells, the constitutive enzyme nitric oxide 
synthase (eNOS) converts L-arginine to L-citrulline with a 
release of NO. A cofactor, tetrahydrobiopterin, is required for 
activation of nitric oxide synthase (NOS).3 Nitric oxide acti-
vates soluble guanylate cyclase in the underlying smooth 
muscle, and the resultant increase in cyclic guanosine mono-
phosphate causes its relaxation. The NO is inactivated within 
a few seconds by superoxide anions.
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Nitric oxide not only is a potent vasodilator but also 
inhibits platelet aggregation and leukocyte adhesion to 
endothelial cells and suppresses the proliferation and migra-
tion of vascular smooth muscle cells. The expression of 
eNOS is regulated by the action of shear stress on the 
endothelial cells and by the cyclic circumferential stretch 
of the blood vessels.4 Unidirectional shear stress increases 
eNOS messenger RNA (mRNA) expression via a transcrip-
tional mechanism, whereas oscillatory shear stress and 
cyclic stretch do this through posttranscriptional regulatory 
events.5 The earliest mechanochemical signal transduction 
is activation of specific G proteins in the endothelium within 
1 second of flow-induced signaling.6 The biologic effects of 
NO are determined by the amount released and its inactiva-
tion by superoxide anions (O2

−). The endothelial cells are a 
source of superoxide, and NOS can produce superoxide.7 Tet-
rahydrobiopterin determines the balance of O2

− and NO pro-
duction from eNOS after prolonged stretch of human aortic 
endothelial cells,8 its deficiency favoring a coronary circula-
tory dysfunction.9

Nitric oxide synthase also may catalyze formation of 
hydrogen peroxide (H2O2). This is favored by low endogenous 
concentrations of L-arginine, tetrahydrobiopterin, or both. 
Although H2O2 is a potent vasodilator, prolonged increased 
concentrations of H2O2 may be harmful to endothelial and 
smooth muscle cells, leading to a shift in the balance between 
the production of protective NO and deleterious O2

−.10,11 In 
addition, O2

− from the adventitia of the blood vessel can 
inactivate NO.12 Oxygen-derived free radicals have been 
implicated in the pathogenesis of atherosclerosis and vascu-
lar restenosis.13 Hypercholesterolemia, diabetes, and ischemia 
followed by reperfusion are also associated with increased 

vascular O2
− production. Native low-density lipoproteins and 

Ang II have been reported to stimulate O2
− production from 

endothelial and vascular smooth muscle cells. Moreover, the 
proliferative response of smooth muscle cells to platelet-
derived growth factor is mediated by H2O2. Pulsatile stretch 
applied to human coronary artery smooth muscle cells 
causes their proliferation, which is associated with increased 
oxidative stress. This increase promotes DNA synthesis in 
these muscles.14

Nitric oxide forms complexes with various biomolecular 
carriers such as nitrosothiol (RS-NO) that retain biologic 
activity. Studies on the forearm resistance vessels of normal 
human beings indicate that RS-NO contributes to vascular 
smooth muscle relaxation.15 Basal and flow-induced release 
of NO from vascular endothelium can be mediated via local 
cholinergic mechanisms. The flow may cause acetylcholine 
release from certain endothelial cells, which stimulates NO 
release from these cells or from neighboring endothelial 
cells.16

There are several receptors in the endothelial cells that, 
if activated, cause a release of NO. Some of the norepine-
phrine released when the sympathetic nerves are activated 
stimulates α2-adrenoceptors on the endothelial cells. The 
resultant release of NO attenuates the vasoconstriction.17

Other agonists include bradykinin, histamine, and sub-
stances released from platelets [adenosine triphosphate, 5-
hydroxytryptamine (serotonin), and thromboxane A2]. Nitric 
oxide, but not prostacyclin, is essential for flow-mediated 
dilatation of large human arteries.18

There are two other important roles for NO: first, to 
maintain a balance in the kidney between oxygen consump-
tion and sodium reabsorption19; and second, NO released 
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FIGURE 70.1. Endothelium-derived vasoactive substances. Nitric 
oxide (NO) is released from endothelial cells in response to shear 
stress and to activation of a variety of receptors. It exerts vasodilat-
ing and antiproliferative effects on smooth muscle cells and inhibits 
thrombocyte-aggregation and leukocyte-adhesion. Endothelin-1 
(ET-1) exerts its major vascular effects of vasoconstriction and cell 
proliferation through activation of specific ETA receptors on vascu-
lar smooth muscle cells. In contrast, endothelial ETB receptors 
mediate vasodilation via release of NO and prostacyclin. Addition-

ally, ETB receptors in the lung were shown to be a major pathway 
for the clearance of ET-1 from plasma. ACE, angiotensin-converting 
enzyme; Ach, acetylcholine; AII, angiotensin II; AT1, angiotensin 1 
receptor; BK, bradykinin; COX, cyclooxygenase; ECE, endothelin-
converting enzyme; EDHF, endothelium-derived hyperpolarizing 
factor; ETA and ETB, endothelin A and B receptor; ET-1, endothelin-1; 
PGH2, prostaglandin H2; PGI2, prostacyclin; S, serotoninergic recep-
tor; Thr, thrombin; T, thromboxane receptor; TXA2, thromboxane; 
5–HT, 5–hydroxytryptamine (serotonin).
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from the vascular endothelium plays an important role in 
the regulation of tissue mitochondrial respiration in skeletal 
muscle20 and in the regulation of cardiac contractile 
function.21 Another important finding is that in healthy 
conscious adults, the pulmonary vascular resistance is main-
tained in part through the continuous local production of 
NO.22 Pulsatile stretch in coronary arteries also can release 
endothelium-derived hyperpolarizing factor.23 C-type natriu-
retic peptide (CNP) is produced in endothelial cells and has 
been proposed to mediate vascular relaxation by causing 
endothelium-dependent hyperpolarization. To study this in 
porcine coronary arteries, the endothelium-dependent relax-
ation and hyperpolarization of CNP and bradykinin were 
compared. In contrast to bradykinin, CNP induced endothe-
lium-independent and weaker relaxation and hyperpolariza-
tion of coronary artery vascular smooth muscle, suggesting 
that it is an unlikely mediator of endothelium-dependent 
hyperpolarization of porcine coronary arteries.24

Endothelium-Derived Contracting Factors

Endothelin-1, which is produced by endothelial cells of blood 
vessels, is a potent vasoconstrictor peptide. It is a member of 
a family of 21-amino-acid peptides consisting of three isos-
forms: ET-1, ET-2, and ET-3. ET-1 is the only one produced 
by endothelial cells. It has additional actions including inter-
actions with the sympathetic nervous and renin-angiotensin 
system, potentiation of responses to other constrictor agents, 
and stimulation of mitogenesis of vascular smooth cells and 
cardiomyocytes.25,26 It also appears to have major effects on 
cardiac, renal, and cerebral function.27

The mechanism of ET-mediated vasoconstriction involves 
binding to specific receptors on vascular smooth muscle and 
direct activation of voltage-operated calcium channels in 
vascular smooth muscle membrane. Two distinct comple-
mentary DNAs (cDNAs) of ET receptors have been identi-
fied. The ETA receptor is expressed in vascular smooth muscle 
cells, whereas the ETB receptor has been localized to the 
endothelial and smooth muscle cells. The ETB receptor may 
have a dual vasoconstrictive and vasodilatory effect.28 An 
ETA/B receptor antagonist decreases peripheral vascular 
resistance and, to a lesser extent, arterial blood pressure. It 
increases circulating ET concentrations and blocks forearm 
vasoconstriction to exogenous ET-1. These results suggest 
that endogenous generation of ET-1 plays an important physi-
ologic role in the maintenance of peripheral vascular tone 
and blood pressure in humans.29 While in vivo selective ETA

receptor antagonism causes forearm vasodilatation in resist-
ance vessels due mostly to increased NO generation, stimu-
lation of ETA receptors triggers acute vasoconstriction of 
large conduit arteries.30 The ETB receptor antagonism causes 
local vasoconstriction, indicating that these receptors in 
blood vessels respond to ET-1 predominantly by causing 
vasodilatation.31 Acute elevations in plasma ET-1 concentra-
tions in the coronary artery within a pathophysiologic range 
do not impair blood flow to normal or collateral vessel-
dependent myocardium. This is because increased prostacy-
clin production in response counteracts the vasoconstrictor 
properties of ET-1.32

There are complex interactions between endothelium-
derived substances, including ET-1 and NO. ET-1 induces the 

formation of NO, which is believed to mediate its vasode-
pressor action. Furthermore, endothelium-derived NO inhib-
its the synthesis and may also counteract the vasoconstrictor 
and vasopressor actions of ET-1. In addition, both NO and 
ET-1 have been implicated in the regulation of blood and 
plasma volume and albumin extravasation in various vascu-
lar beds.33 Other endothelium-derived contracting factors 
that are less important than ET-1 are angiotensin II, throm-
boxane A2, prostaglandin H2, and oxygen-derived free radi-
cals (Fig. 70.1).25,34

Autonomic Nerves, Neurotransmitters, and 
Vascular Receptors

In 1946, Von Euler demonstrated that norepinephrine was 
released on activation of the sympathetic nerves. Adenosine 
triphosphate and neuropeptide Y are cotransmitters in these 
nerves. In the smooth muscle of the systemic vessels, nore-
pinephrine excites α1-and α2-adrenoceptors, adenosine tri-
phosphate P2χ purinoceptors, and neuropeptide Y1 receptors 
to cause vasoconstriction.35 In contrast, in the coronary arter-
ies, the simultaneous activation of β-adrenoceptors and P2χ

receptors results in their dilation. Neuropeptide Y also 
enhances the activity of norepinephrine and adenosine tri-
phosphate on their receptors.36 α2-Adrenoceptors and neu-
ropeptide Y2 receptors also are present on the sympathetic 
nerve varicosities. If these are activated, there is a decrease in 
the output of norepinephrine and adenosine triphosphate.

Interactions between sympathetic and parasympathetic 
influences at cardiac level have traditionally been defined in 
terms of their classic neurotransmitters: norepinephrine and 
acetylcholine. It is known that neuropeptides, which are 
released from the sympathetic nerves during their activation, 
have powerful and long-lasting inhibitory actions on vagal 
transmission in the heart.37 Long-term sympathectomy 
causes a decrease in eNOS, 5-hydroxytryptamine, and sub-
stance P, and an increase in ET-1 immunoreactivity in the 
thoracic aortic endothelium of the rat.38 In addition, nerves 
that function by releasing NO have been discovered (nitroxi-
dergic or nitrergic nerves) and, in the vessels from different 
species so far examined, are distributed to the cerebral, 
femoral, mesenteric, penile, renal, and retinal arteries.39,40

A local sympathetic venoarteriolar axon reflex has been 
identified that contributes to the maintenance of arterial 
blood pressure in humans on assumption of the upright posi-
tion.41 In secondary Raynaud’s phenomenon the presence of 
an impaired venoarteriolar reflex has a high prevalence and 
indicates the occurrence of a local vasomotor dysfunction.42

Cardiovascular Reflexes

Changes in sympathetic outflow are governed by arterial 
baroreceptors and chemoreceptors, cardiopulmonary mech-
anoreceptors, and receptors located in skeletal muscles that 
are activated by muscular contraction (Fig. 70.2). Changes in 
sympathetic outflow also can occur due to primary changes 
in the activity of particular centers in the brain. To meet the 
various stresses to which the human body is exposed, the 
sympathetic outflow occurs in a differentiated pattern. Thus, 
in response to reflex or central stimuli, the efferent sympa-
thetic activity varies among the different organs and tissues, 
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and in the same organ or tissue can vary between resistance 
and capacitance vessels. In some instances, sympathetic 
activity may increase in some organs and decrease in others. 
For example, in essential hypertension, obesity, and conges-
tive heart failure (CHF), sympathetic nerve activity is 
increased to muscle, but not to skin, vessels.43

Arterial blood pressure and heart rate change not only in 
relation to behavioral and environmental factors but also as 
a result of cyclic fluctuations unrelated to external stimuli. 
Blood pressure variability includes rhythmic and nonrhyth-
mic oscillations.44 Physical training improves the barorecep-
tor control of the systemic circulation via the sympathetic 
nervous system, and this effect may be different from the 
concomitant effect of training on arterial or baroreceptor 
control of cardiac sympathetic activity.45 In addition to the 
importance of local factors at the site of the mechanorecep-
tors in the carotid sinus and aortic arch in regulation of the 
autonomic outflow to the heart and circulation, studies in 
conscious rabbits have shown that NO in the brainstem plays 
an important role in the rapid central adaptation of baroreflex
control of sympathetic nerve activity.46 Also, an elevated 
level of Ang II is critical for the inhibitory effect of NO on 
sympathetic outflow.47 Similar findings have been recently 
reported in human beings.26,48 Mechanoreceptors in the heart 
and lungs are important in the reflex control of the circula-
tion. In humans, this reflex influence includes vascular 
resistance, plasma renin activity, and plasma vasopressin 
levels, indicating a role for these receptors in both blood 
volume and blood pressure control.49

Nitroxidergic (Nitrergic) Nerves

Nitroxidergic nerves have a constitutive neuronal isoform of 
NOS and cause vasodilatation through the release of NO. 
Because NO is a labile-free radical, unlike other transmit-
ters, it is not stored in synaptic vesicles and is not released 

by exocytosis but instead diffuses from the nerve terminals 
into adjacent cells.39,40,50

Interactions Between Neurotransmitters and 
Endothelial Cells

Are the actions on the vascular system of the neurotransmit-
ters and the endothelium-derived vasoactive substances the 
sum of their separate effects, or are they modified by interac-
tions between them? This depends on the ability of any 
neurotransmitter to diffuse through the vascular wall and to 
affect the specific endothelial receptors.51 In the coronary 
arteries, acetylcholine released from the vagal nerves causes 
their dilatation through the activation of a muscarinic recep-
tor on the endothelial cells, leading to a release of NO.52 In 
other studies aimed at examining whether autonomic influ-
ences modulate vascular NO-mediated vasodilatation or 
even directly contribute to production of NO via nitroxider-
gic fibers, it was found that tonic NO-dependent vasodilata-
tion can be physiologically maintained in unanesthetized, 
unrestrained rats regardless of autonomic or humoral adren-
ergic influences.53

Humoral Factors

Angiotensin II

The vasoconstrictor peptide Ang II plays an important role 
in the control of systemic blood pressure. In addition to its 
direct action on blood vessels, it facilitates sympathetic 
influences on the cardiovascular system, by acting both at 
a central and a peripheral neural level, thereby potentiating 
the vasoconstrictor effects induced by adrenergic stimuli 
(Fig. 70.3).54

It seems that Ang II can stimulate the synthesis of eNOS 
and hence enhance the production of NO.26,48 It is suggested 
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that in the renal circulation, this Ang II–NO interaction may 
protect the preglomerular vessels from the constrictor effect 
of Ang II.55 In patients with coronary artery disease, angi-
otensin-converting enzyme (ACE) inhibitors attenuate sym-
pathetic coronary vasoconstriction, not only when the drugs 
are systemically administered,56 but also when small doses 
of the compounds are infused at the level of the coronary 
circulation (Fig. 70.4).57 This finding suggests that not only 
systemic but also the local renin-angiotensin system is 
important for preserving cardiovascular homeostasis via an 
interaction with endothelial factors.

Estrogens

Both endothelial and vascular smooth muscle cells possess 
estrogen receptors. Estrogens regulate the transcription of 
numerous genes, and its cellular actions are mediated through 
the translation of specific mRNA transcripts and synthesis 
of proteins. It stimulates the native synthesis of NO in blood 
vessels, heart, and skeletal muscles.58,59 This may be achieved 
via both genomic and nongenomic pathways.60

Estrogens enhance the binding activity of the transcrip-
tion factor Spl, whose function is essential for eNOS tran-
scription. Even modest increases in eNOS expression may 
display protective effects against cardiovascular disease.61

Other potential protective mechanisms of estrogen are 
represented by (1) the suppression of a prostaglandin H syn-
thase-dependent vasoconstriction,62 and (2) the inhibition of 
cyclooxygenase-dependent production of oxidative stress.63

In perimenopausal woman, estrogens supplementation 
reduces arterial blood pressure and enhances basal NO 
release in forearm resistance arteries.64

Adrenomedullin

Adrenomedullin is a recently identified vasorelaxing and 
natriuretic peptide. It may exert regulatory effects on cardiac 
function, because adrenomedullin and its binding sites 
have been detected in the heart. It enhances cardiac contrac-
tility via cyclic adenosine monophosphate–independent 
mechanisms.65

Insulin and Insulin-Like Growth Factor I

There are three peptide hormones in the insulin growth 
factor family-insulin and insulin-like growth factors (IGFs)-I 
and -II. Insulin is synthesized and secreted by the pancreas. 
Although the liver is the main source of circulating IGF-I 
levels, it is also formed in endothelial and vascular smooth 
muscle cells. In addition to their metabolic and growth-
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promoting actions, these peptides trigger both vasoconstric-
tor and vasodilator effects on the vascular system.66,67

Some studies suggest that endothelium-derived NO 
mediates the vasodilator actions of insulin and IGF-I,68 but 
others have disagreed. We must recognize, however, the het-
erogeneity of endothelium-mediated responses in different 
arteries and veins, even within the same species. In isolated 
porcine coronary arteries, both insulin and IGF-I caused 
non–endothelium-dependent coronary relaxation, probably 
through a mechanism involving the activation of potassium 
channels.69

Aging Process

Human aging is associated with a number of complex and 
diverse changes in the cardiovascular function and structure. 
These include, for example, a slight increase in left ventricu-
lar wall thickness, a slight reduction in diastolic function, a 
clear-cut decrease in the cardiac content and function of β-
adrenergic receptors as well as an impairment in arterial 
distensibility.70,71 Findings provide support for the concept 
that cardiopulmonary and integrative baroreflex control of 
sympathetic nerve activity during acute hypovolemia is 
enhanced rather than depressed in healthy older humans.72

This may help minimize the functional impact of a marked 
age-related reduction in peripheral vasoconstrictor respon-
siveness to sympathetic neural stimulation and contribute 
to the effective regulation of arterial blood pressure in older 
adults during orthostatic challenge.71 Aging in humans, 
however, is associated with an impairment of arterial blood 
pressure homeostasis. This is reflected by an increased blood 
pressure variability and a greater decrease in pressure during 
orthostatic stress compared with younger subjects. This 
impairment is explained in part by a decreased buffering role 
of the arterial baroreflex,49 which, however, appears to selec-
tively affect the modulation of sinus node activity (and thus 
of heart rate), with no impairment in the baroreceptor control 
of efferent sympathetic nerve traffic (and thus of blood pres-
sure) being described in patients at advanced ages.73,74 Several 
other neurovascular disorders, including a diminished 
endothelium-dependent vasodilatation and a generalized 
sympathetic activation (probably dependent not on a barore-
flex dysfunction but rather on an age-related increase in body 
weight with an accompanying insulin resistance state), have 
been demonstrated in aging humans.75–77 In aging rats, eNOS 
activity and NO production are reduced, which could explain 
the observations in humans.78,79

Orthostatic Stress

Gravitational stresses, which are common daily events for 
humans, result in a reduction in central blood volume due 
to the displacement of circulating blood to the lower parts 
of the body. Complex adjustments in the cardiovascular 
system are required to offset the decrease in cardiac filling 
pressure. Such changes are necessary to sustain arterial 
blood pressure at an appropriate level, thus guaranteeing an 
adequate perfusion of vital organs, especially the brain. 
These adjustments must compensate for both the initial and 
the sustained orthostatic stresses. The rapid short-term adap-
tations are mediated primarily by the cardiovascular reflexes, 

with humoral agents reinforcing these reflexes during severe 
and prolonged orthostatic stress.49

Pressure receptors (mechanoreceptors) in the heart and 
great vessels continuously relay information on blood pres-
sure in these areas to the cardiovascular centers in the brain 
system. A decrease in blood pressure excites the centers with 
a resultant increase in sympathetic and a decrease in vagal 
outflow and vice versa.49 An enhanced sympathetic drive to 
the heart and blood vessels and a decreased cardiac vagal 
activity trigger an increase in heart rate and cardiac output 
and constriction of resistance vessels in skeletal muscle, in 
the renal and splanchnic bed, and of the venous capacitance 
vessels in the splanchnic bed. The latter contributes impor-
tantly to maintenance of the cardiac filling pressures and, 
hence, of the stroke volume. The marked sensitivity and 
rapidity of the reflex responses of the splanchnic capacitance 
vessels to a very low frequency of sympathetic discharge 
indicate their importance in regulation of the stroke volume. 
An important adjunct to the central activation of the vaso-
motor outflow is the local sympathetic venoarteriolar axon 
reflex.41 In addition, if the orthostatic stress is accompanied 
by contraction of the postural muscles, the decrease in vagal 
and the increase in sympathetic outflow can be potentiated 
and sustained by two mechanisms. One is a “central 
command” related to the motor signals from higher brain 
centers that stimulates the brainstem cardiovascular centers, 
and the other is a feedback reflex from the contracting 
muscles due to activation of their mechanoreceptors and 
metaboreceptors. The three main humoral factors involved 
in the maintenance of cardiovascular homeostasis during 
prolonged orthostatic stress are the renin-angiotensin-
aldosterone system, vasopressin, and the atrial natriuretic 
peptides.80

Mental Stress

Mental stress in humans results in arterial hypertension and 
tachycardia. In the offspring of hypertensive parents, sympa-
thetic activation during mental stress is increased compared 
with the offspring of normotensive parents.81 Mental stress 
also causes a neurogenically mediated vasodilatation in the 
skeletal muscle. The dilatation is absent after surgical sym-
pathectomy and is blunted after intraarterial administration 
of atropine. It has been shown that NO plays a key role in 
the autonomic control of the circulation during stress, with 
most of the NO release being due to autonomic nerve cholin-
ergic stimulation of the vascular endothelium in the 
muscles.82 In line with these findings, recent data provide 
evidence that acute mental stress, even when of short lasting 
duration, may exert adverse effects on endothelium by 
impairing NO-dependent vasodilation.83

Thermal Stress

Although maintenance of a constant body temperature 
results from the interplay between a number of homeostatic 
mechanisms, the human body undergoes a variety of cardio-
vascular modifications to counteract acute changes in envi-
ronmental temperature. Acute exposure to cold stress elicits 
cutaneous vasoconstriction, which is coupled with a marked 
increase in sympathetic nerve firing rate to the skin vascular 
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district (Fig. 70.5).84 Conversely, heat stress triggers a pro-
nounced cutaneous vasodilation, which in turn is linked to 
a significant decrease in skin sympathetic nerve traffic (Fig. 
70.6).84 Both the vascular and skin sympathetic neural 
responses appear to be altered in older individuals, the 
impairment representing one of the pathophysiologic hall-
marks typical of the aging process (Figs. 70.5 and 70.6). 85

Muscular Exercise

Muscular exercise constitutes the major recurrent normal 
stress on the cardiovascular system, and several reviews have 
emphasized the complexity of events that involve the regula-
tion and integration of multiple systems, such as dilatation 
of the resistance vessels in the active muscle to provide the 
additional blood to meet their increased metabolic demand. 
The mechanisms are still unsettled after investigations that 
started in the 19th century. The muscle vasodilatation is 
accompanied by the appropriate increase in cardiac output. 
As exercise augments in severity, it is necessary to decrease 
the blood flow to other vascular beds to allow arterial blood 
pressure to increase. This is accomplished via the participa-
tion of the so-called central cardiovascular control mecha-
nisms and local vascular control factors. The first ones refer 
to the central command, which integrates information stem-
ming from arterial baroreceptors, cardiopulmonary recep-
tors, as well as from ergoreceptors and metaboreceptors 
in the active muscle.86 In addition, the so-called central 
command modulates autonomic outflow. The venous return, 
and hence the stroke volume, is sustained by the skeletal 
muscle pump and the reflex constriction of the splanchnic 
capacitance vessels. When static versus rhythmic exercise 
is performed, the so-called blood pressure-raising reflex is 
evoked from the active muscles.86

Although NO from the vascular endothelium may have 
a modest role in exercise hyperemia, in humans its presence 
is not essential for a nearly normal vasodilatation in skeletal 
muscles.87 In the heart of the dog, it is estimated that NO is 
able to produce about one fourth of the coronary vasodilata-
tion that occurred in response to exercise when all vasodila-
tor systems were intact.88 However, although NO production 
by the coronary circulation is increased with exercise, it does 
not affect levels of coronary blood flow, because it shifts the 
relationship between cardiac work and myocardial oxygen 
consumption, suggesting that endogenous NO modulates 
myocardial metabolism.89 Chronic exercise in dogs increases 
eNOS gene expression, presumably by increasing endothelial 
shear stress, and this may contribute to the beneficial effects 
of sustained exercise on the cardiovascular system.89

Alterations in Cardiovascular Regulation in 
Pathologic States

Vasovagal Syncope

During vasovagal syncope, profound bradycardia and 
hypotension occur. Atropine administration can prevent the 
bradycardia but not the hypotension, suggesting that marked 
peripheral vasodilation is a major cause of the fall in arterial 
blood pressure. This concept has been confirmed, because 
vasovagal syncope can be seen in patients who have under-
gone heart transplantation and in patients subjected to 
cardiac pacing. In both cases, indeed, there is no bradycardia 
but there is hypotension during the syncopal attacks. The 
major site of the vasodilation is in the skeletal muscle dis-
trict, and muscle sympathetic nerve activity is suppressed 
just before and during vasovagal attacks, indicating that 
sympathetic withdrawal contributes to the dilatation. 
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FIGURE 70.5. Effects of cold exposure on absolute skin tempera-
ture (skin T, upper panel) and on skin sympathetic nerve traffic
(SSNA, lower panel) in young (open circles), middle-aged (closed 
squares), and elderly (triangles subjects). Data are shown as mean ±
standard error of the mean (SEM) for the control normothermic 
period (control), during cold exposure (stimulus) and at the restora-
tion of baseline temperature (recovery). Asterisks refer to the statis-
tical significance between groups (*†p < .05; **††p < .01).

FIGURE 70.6. Effects of heat exposure on absolute skin tempera-
ture (skin T, upper panel) and on skin sympathetic nerve traffic
(SSNA, lower panel) in young (open circles), middle-aged (closed 
squares), and elderly (triangles subjects). Data are shown as mean ±
SEM for the control normothermic period (control), during cold 
exposure (stimulus) and at the restoration of baseline temperature 
(recovery). Asterisks and symbols refer to the statistical significance 
between groups (*†p < .05; **††p < .01).
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However, the skeletal muscle vasodilation seen during 
syncope is greater than that caused by sympathetic with-
drawal alone, and it is absent in limbs that have undergone 
surgical sympathectomy or local anesthetic nerve block. 
These observations suggest a role for neurally mediated 
active vasodilation during syncope. The afferent neural path-
ways that evoke the profound vasodilation during vasovagal 
attacks remain to be identified. The neural pathways respon-
sible for the active component of the dilation are also 
unknown. Recent evidence has demonstrated that choliner-
gic, β-adrenergic, and nitroxidergic (NO) vasodilator mecha-
nisms are not essential for the dilation.90

Patients with orthostatic vasovagal reactions have 
impaired vagal baroreflex responses to arterial pressure 
changes below resting levels but normal initial responses to 
upright tilt. The final trigger of human orthostatic vasovagal 
reactions appears to be the abrupt disappearance of muscle 
sympathetic nerve activity.91 Contrary to previous concepts, 
however, recent findings indicate that patients with a history 
of vasovagal syncope, compared to age-matched healthy con-
trols, exhibit not only an increased resting peripheral sym-
pathetic neural drive, but also impaired sympathoexcitatory 
responses to maneuvers capable of stimulating cardiopulmo-
nary receptors.92

Smoking

Cigarette smoking has been historically known as a stimulus 
capable to markedly activate the sympathetic nervous func-
tion. This stimulation, however, has mainly a peripheral 
nature because (1) epinephrine and, to a lesser extent, norepi-
nephrine release from the adrenal glands is markedly 
increased by the smoking act and (2) central sympathetic 
outflow is concomitantly inhibited during smoking, presum-
ably because of a baroreflex activation brought about by the 
smoking-related pressor response.93 Similar effects have been 

described during passive smoking.94 Baroreflex sensitivity is 
impaired in habitual smokers, which may contribute to the 
smoking-related increase in arterial blood pressure and heart 
rate and to the decrease in heart rate variability during 
smoking.95

Long-term cigarette smoking is associated with an 
impaired endothelium-dependent coronary vasodilation re -
gardless of the presence or absence of coronary atheroscle-
rotic lesions,96 the phenomenon probably being dependent on 
a nicotine-dependent deficiency in NO bioactivity.97 The 
antioxidant vitamin C, as well as a potent reducing agent, 
tetrahydrobiopterin, improves endothelium-dependent re -
sponses in chronic smokers.11,98 This observation supports 
the concept that endothelial dysfunction in chronic smokers 
is at least in part mediated by an enhanced production of 
oxygen-derived free radicals.99 Coronary endothelial dys-
function also may occur in passive as well as in active 
smokers.100

Obesity and Obstructive Sleep Apnea

Human obesity is characterized by marked changes in the 
hemodynamic and metabolic states. In normotensive obese 
subjects, postganglionic sympathetic nerve firing rate to the 
leg muscles was twice that seen in lean control subjects.101

This sympathetic activation is associated from a physiopath-
ologic viewpoint with a number of abnormalities, which 
include (1) an arterial baroreflex dysfunction,101 (2) a decrease 
in insulin sensitivity with a concomitant elevation of circu-
lating insulin levels and consequent proexcitatory effects on 
central adrenergic drive,102 and (3) an increase in plasma 
leptin levels that may also favor a hyperadrenergic state.103

Other aspects of the sympathetic overactivity characterizing 
human obesity include the evidence that the neural abnor-
malities are more frequent in abdominal rather than in 
peripheral obesity104 (Fig. 70.7) and appear to be markedly 
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potentiated by the concomitance of hypertension and con-
gestive heart failure,105 that is, two cardiovascular diseases 
frequently complicating the obese state of marked clinical 
severity. Another frequent complication of obesity is the 
obstructive sleep apnea syndrome, which is capable of poten-
tiating the sympathetic activation of the obese state,106 thus 
exposing the patient to the adverse consequences (including 
the proarrhythmogenic ones) of a further hyperadrenergic 
activation.

In obese normotensive subjects, a reduction in body 
weight induced by a hypocaloric diet with normal sodium 
content exerts a marked reduction in sympathetic activity 
due to central sympathoinhibition.107 This can be the conse-
quence of an increased insulin sensitivity but also of a res-
toration of the baroreflex control of the cardiovascular system 
with weight loss. This has clinical implications because the 
removal of the sympathetic activation through weight loss 
has favorable effects on the high prevalence of hypertension, 
CHF, ischemic heart disease, and sudden death typical of 
obese people. The suppression of sympathetic activity associ-
ated with the correction of an overweight condition, however, 
may not have an entirely favorable significance because in 
obese subjects a sympathetic activation may favor energy 
consumption and thus oppose further body weight increase; 
its suppression by body weight loss may thus predispose to 
a weight regain (“weight cycling phenomenon”).107 The pro-
found cardiovascular alterations characterizing the obese 
state are not confined to neural reflex abnormalities, however. 
Human obesity is also characterized by a well-documented 
endothelial dysfunction, which appears to be detectable 
in the early stages of the disease.108 It is likely that the 
obesity-related metabolic abnormalities participate in the 
phenomenon.

Diabetes and Metabolic Syndrome

There appears to be diminished basal NO production in 
diabetes. Decreases in endothelium-dependent relaxation 
are common in both conduit and resistant arteries of chemi-
cally induced experimental diabetic animals. In humans, 
endothelial dysfunction was first reported in penile corpora 
cavernosa of patients with insulin-dependent and non–
insulin-dependent diabetes mellitus, but it is still unclear 
whether the response of the vascular smooth muscle to NO 
is compromised.109 The time of onset of these changes in the 
clinical course of the disease appears to have relevance. In 
addition, diabetes is associated with an enhanced production 
of endothelium-derived contracting factors derived from the 
cyclooxygenase pathway.

Experimental evidence supports the notion that hyper-
glycemia decreases endothelium-derived NO. Indeed when 
normal aortic rings are incubated in a hyperglycemic milieu, 
endothelium-dependent relaxation is impaired. Similarly, 
endothelium-dependent vasodilation is reduced in healthy 
subjects during a hyperglycemic clamp.110 Hyperglycemia 
induces a series of cellular events that increase the produc-
tion of reactive oxygen, thus inactivating NO to form per-
oxynitrite.111 Hyperglycemia may initiate this process by 
increasing superoxidase anion production via the mitochon-
drial electron transport chain.112 Another metabolic factor of 
key importance in diabetes mellitus is represented by insulin 

resistance. Insulin stimulates NO production from endothe-
lial cells by increasing the activity of NOS via activation of 
specific kinases.109 Thus while in healthy subjects insulin 
increases endothelium-dependent vasodilation, in insulin-
resistant patients the insulin-dependent vasodilatory process 
is impaired.109 Vitamin C selectively restores the impaired 
endothelium-dependent vasodilation in the forearm resis-
tance vessels of patients with insulin-dependent diabetes 
mellitus.113 Similarly, drug therapies that increase insulin 
sensitivity, such as metformin and thiazolidinediones, 
improve endothelium-dependent vasodilation.109,114 These 
findings indicate that NO degradation by oxygen-derived free 
radicals contributes to abnormal vascular reactivity in 
humans with this disease.

The above-mentioned vascular and endothelial abnor-
malities of the diabetic state are associated with (and proba-
bly exacerbated by) alterations in sympathetic function. 
Evidence exists that these adrenergic abnormalities are of 
early occurrence in the disease development and potentiated 
by the concomitance of other cardiovascular diseases.105,115

This is particularly the case for the so called metabolic syn-
drome, that is, a cluster of cardiovascular risk factors (such 
as hyperglycemia, insulin resistance, low high-density lipo-
protein, blood pressure levels greater than 130/85 mm Hg, 
and visceral obesity) characterized by an endothelial dys-
function and by a marked sympathetic activation.116

Hypertension

Baroreceptor modulation of heart rate is impaired in patients 
with either essential or secondary hypertension, but there is 
controversy as to whether there are changes in the modula-
tion of vasomotor tone due to the impairment of sympathetic 
control of systemic vascular resistance.117 In moderate and 
more severe essential hypertensive patients, stimulation and 
deactivation of baroreceptors by alteration of arterial blood 
pressure through vasoactive drug infusions cause much less 
reflex bradycardia and tachycardia, respectively, than in age-
matched normotensive subjects. However, the concomitant 
reflex inhibition and excitation of muscle sympathetic nerve 
traffic are superimposable in normotensive and hypertensive 
groups. Thus, in essential hypertension, the well-known 
impairment of the baroreflex ability to modulate the sinus 
node is not accompanied by any similar impairment of the 
baroreflex sympathetic modulation, which is of fundamental 
importance for the main baroreflex function (i.e., homeo-
static blood pressure control).118

Concerning the role of NO, in studies with spontane-
ously hypertensive rats, it appears that the L-arginine–NO 
pathway in the rostral ventrolateral medulla is impaired and 
this may contribute to the increase in arterial pressure.119

This translates in studies in the human forearm circulation 
into the evidence that release of NO is reduced in patients 
with uncomplicated essential hypertension.120 In prehyper-
tensive rats, dysfunctional constitutive nitric oxide synthase 
(cNOS) may contribute to the development of hyperten-
sion.121 This also may explain why eNOS expression and 
function are increased rather than decreased despite normal 
endothelial function in spontaneously hypertensive rats.122

As mentioned previously, a cofactor, tetrahydrobiopterin, 
is required for activation of NOS and the release of NO.11
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Tetrahydrobiopterin is also a potent reducing agent, and it 
is possible that prolonged oxidative stress may change the 
redox environment in endothelium and vascular smooth 
muscle cells, leading to a depletion of reduced tetrahydrobi-
opterin. As a consequence, there may be an impairment of 
NOS and hence of NO production.123 Endothelial relaxation 
also is reduced because of endothelium-dependent produc-
tion of vasoconstrictor prostanoids. Antihypertensive therapy 
improves endothelium-dependent hyperpolarization in spon-
taneously hypertensive rats.124 In Sprague-Dawley rats, Ang 
II–mediated hypertension is associated with an enhanced 
production of ET-1 in vivo.125 Endothelin-1 partially mediates 
Ang II–induced vascular changes in vivo. Studies with 
Wistar-Kyoto rats suggest that the angiotensin type I (AT1xxx) 
receptor antagonists, but not calcium antagonists, modulate 
tissue ET-1.126 In the rat, chronic ETA receptor blockade par-
tially prevents Ang II–induced hypertension and the altera-
tions in the endothelial function.127

In asymptomatic elderly hypertensive patients with the 
ACE DD genotype, it is speculated that the ACE D allele is 
a risk factor for the development of hypertension associated 
with endothelial cell damage.128 Concerning the role of 
genetic versus environmental factors in essential hyperten-
sion, it has been shown that handgrip exercise resulted in a 
sustained ET-1 release into the bloodstream during recovery 
in the normotensive young male offspring of hypertensive 
parents compared with the offspring of normotensive 
parents.129 The endothelial dysfunction observed in hyper-
tensive blood vessels is likely to be a consequence rather 
than a cause of the disease process.34

In epidemiologic and clinical studies, essential hyperten-
sion has been correlated with insulin resistance and hyper-
insulinemia in humans. However, the results of studies in 
obese hypertensive patients argue against the hypothesis of 
a casual pressor effect of insulin as the “missing link” 
between insulin resistance and essential hypertension.130 In 

rats, AT1 receptors have a determinant role in the pathogen-
esis of insulin-induced hypertension.131 It appears that endog-
enous dopamine and renal DIA receptors have an important 
role in the regulation of sodium and body volume homeosta-
sis. There is evidence that a defective renal dopaminergic 
receptor signaling system contributes to the development 
and maintenance of hypertension, but the nature of the 
defect in this system is unsolved.132

Heart Failure

In patients with CHF, baroreceptor regulation of the auto-
nomic drive to the heart and systemic vessels is impaired. 
This dysfunction in part may account for the fact that sym-
pathetic neural outflow is increased. Studies have shown 
that compared with age-matched control subjects, patients 
with mild symptoms of CHF and only a limited impairment 
of cardiac function display increased sympathetic nerve 
activity. This indicates that in this disease there is an early 
impairment of reflex sympathetic restraint, possibly as a 
consequence of a reduction in arterial compliance, with a 
resultant decreased responsiveness of the baroreceptors 
to pressure stimuli.133 Evidence has been provided that the 
sympathetic activation (1) has prognostic relevance, (2) is 
linked to the insulin resistance state typical of the disease 
itself, and (3) is similar regardless of the ischemic or idio-
pathic nature of the disease (Fig. 70.8).134 Chronic ACE inhib-
itor treatment is accompanied by a marked reduction in 
central sympathetic outflow. This reduction may depend on 
a persistent restoration of baroreflex restraint on the sympa-
thetic neural drive.135 Similar sympathoinhibitory effects 
have been shown during long-term transdermal clonidine 
administration.136

In the peripheral resistance arteries in patients with CHF, 
an endothelial dysfunction has been documented. There is 
an impaired flow-dependent, endothelium-mediated dilation 
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of conduit arteries, and the formation and basal release of 
NO are decreased in the coronary circulation in the absence 
of coronary artery disease.137 Physical training restores 
endothelium-mediated flow-dependent dilatation in these 
patients, possibly via enhanced endothelial release of NO, 
while the improvement associated with vitamin C adminis-
tration results from an increased availability of NO.138,139

Endothelin may participate in the adaptations to acute reduc-
tions in perfusion pressure in CHF. The kidney, lung, heart, 
and peripheral vasculature are sites of ET mRNA expression 
that may contribute to its elevation. The mechanisms con-
tributing to its increase in CHF probably include increased 
atrial and venous pressures and reduced perfusion pressure 
and shear stress. The vasoconstrictor action of ET may be 
beneficial in the early phases of CHF, augmenting cardiac 
preload via venoconstriction and increasing systemic vascu-
lar resistance to guarantee an adequate perfusion pressure 
despite the counteraction of NO and atrial natriuretic pep-
tides. However, as the heart failure progresses, the increasing 
action of ET contributes to the deterioration of cardiac func-
tion.138,139 Concerning the role of ET receptors in CHF, ETA

receptors exert a pathophysiologic vasoconstrictive effect, 
whereas ETB receptors generally have a vasodilative action. 
Hence, for the treatment of CHF, it seems that a selective 
ETA receptor antagonist may offer therapeutic benefits.138,139

Hypercholesterolemia

The induction of hypercholesterolemia in animals with 
high-fat or high-cholesterol diets impairs endothelium-
dependent relaxations. This impairment is also seen in 
genetically hyperlipidemic rabbits and in humans with 
atherosclerosis, hypercholesterolemia or both.34 Interest-
ingly, the endothelial dysfunction associated with hypercho-
lesterolemia appears to be manifest even after an acute 
high-fat meal, a finding suggesting the fast development of 
the adverse effects of this metabolic condition on the vascu-
lar function.140 In the pig, experimental hypercholesterolemia 
is characterized by an enhanced coronary vasoconstriction 
and an attenuated NO activity. This is associated with a 
decrease in eNOS immunoreactivity without a change in ET 
receptor density or binding affinity.141

Atherosclerosis

Oxidized low-density lipoproteins (LDLs) at high plasma 
concentrations are a major risk factor for the development of 
atherosclerosis. They may contribute to this via various 
mechanisms, including being a chemoattractive substance 
for monocytes, enhancing lipid accumulation by monocytes, 
impairing metabolic activity of vascular cells, and altering 
endothelial function. Concerning the latter, in addition to 
causing vasodilatation, NO inhibits platelet adherence and 
aggregation, vascular smooth muscle proliferation, and endo-
thelial cell-leukocyte interactions. Thus, a reduction in NO 
synthesis in endothelial cells or in its release may be involved 
in the development of atherosclerosis. It seems that an 
oxidized form of LDL specifically impairs endothelium-
dependent vasodilatation by reducing NO synthesis through 
enhanced production of superoxide anion and a consequent 
reduction in the cellular level of L-arginine.142 This may 

explain why eNOS expression, as well as NO production, is 
reduced in atherosclerotic arteries.143

Gene Transfer

Gene therapy involves the transfer of a functional gene into 
host cells to correct the malfunction of a specific gene or to 
alleviate the symptoms of a disease. Vascular gene transfer 
refers to the introduction of genes into relevant cells of the 
blood vessels wall. For gene transfer to the cardiovascular 
system, adenoviral vectors are the most efficient means of 
transfer.144

The eNOS genes have been expressed in dog basilar arter-
ies by a replication-incompetent adenovirus. The expression 
of recombinant eNOS in endothelial cells may prove useful 
in the site-specific therapy of vascular diseases characterized 
by endothelial dysfunction, such as atherosclerosis and 
hypertension. In addition, adventitial fibroblasts differenti-
ate into myofibroblasts and migrate into the intima. Because 
recombinant eNOS can be targeted to these fibroblasts, this 
might inhibit cellular proliferation.144

In pigs, percutaneous adenovirus-mediated NOS gene 
transfer after angioplasty in coronary arteries restored NO 
production. In canine basilar arteries affected by subarach-
noid hemorrhage, after successful eNOS gene transfer to the 
spastic vessel, the impaired NO-mediated relaxation was 
partially restored through the local (adventitial) production 
of NO.145 In humans, intimal proliferation in the veins is due 
to smooth muscle cells from these vessels, in which platelet-
derived growth factor increases mitogen-activated protein 
kinase in vein muscle and downregulates cell cycle inhibitor 
in the vein muscle, not in the artery muscle. These findings 
may contribute to the longer patency of arterial versus venous 
grafts.146 The question may be asked as to whether eNOS 
gene transfer in the latter would improve their patency. To 
add to the complexity, functional thrombin receptors are 
present on the endothelium and smooth muscle cells of 
human coronary bypass vessels, both internal mammary 
artery and saphenous vein. These receptors on the endothe-
lium mediate relaxation in the artery but not in the vein. In 
addition, thrombin causes greater contraction and prolifera-
tion in the smooth muscle cells of the saphenous vein.147 A
deletion polymorphism in the ACE gene is associated with a 
high serum level of ACE, with the resultant risk of myocar-
dial infarction. Angiotensin-like receptors include at least 
two different subtypes: AT1 and AT2. In Sprague-Dawley 
rats, antisense oligodeoxynucleotides directed at AT1 recep-
tors mRNA prevented an increase in plasma Ang II imme-
diately after ischemia-reperfusion.148,149

Summary

Basic and clinical studies performed in the past decade have 
facilitated remarkable expansion in our knowledge of the 
complex pathophysiologic background characterizing cardio-
vascular diseases in human beings. Evidence has also been 
provided that complex but crucial relationships among meta-
bolic, humoral, neural, and hemodynamic factors take place 
in different pathologic states, affecting both blood vessels 
and cardiac muscle performance and structure. These 
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relationships represent the target for specific pharmacologic 
interventions aimed at reducing cardiovascular morbidity 
and improving cardiovascular health.
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