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Key Points

• Hypertrophic cardiomyopathy (HCM) is a primary disor-
der of the myocardium that is characterized by ventricu-
lar hypertrophy in the absence of identifiable precipitating 
factors, such as hypertension and aortic stenosis.

• Hypertrophic cardiomyopathy is important as a cause of 
sudden death in young adults.

• Hypertrophic cardiomyopathy is a familial disorder that 
is inherited as an autosomal dominant trait. Sporadic 
cases may occur presumably as a consequence of de novo 
gene mutations.

• More than 250 HCM-causing mutations have been 
reported, and mutations in the β-myosin heavy chain 
and cardiac myosin-binding protein C predominate and 
account for approximately 80% of the reported cases.

• Obstructive HCM is caused by proximal ventricular 
septal hypertrophy; some individuals have midventricu-
lar obstruction due to hypertrophy, and some individuals 
have midventricular obstruction due to hypertrophy at 
the level of the papillary muscles. Impaired diastolic 
relaxation is also present.

• Myocardial ischemia may occur in both obstructive and 
nonobstructive types.

• Transthoracic echocardiography is the primary diagnos-
tic modality.

Definition

Hypertrophic cardiomyopathy (HCM) is a primary disorder 
of the myocardium that is characterized by ventricular 
hypertrophy in the absence of identifiable precipitating 
factors such as hypertension and aortic stenosis. Myocardial 
hypertrophy may affect either ventricle but usually involves 

the left ventricle (LV). The hallmark diagnostic feature of 
HCM has been considered to be asymmetric hypertrophy 
of the interventricular septum (Fig. 56.1). However, two-
dimensional echocardiographic studies have demonstrated 
that the distribution and severity of LV hypertrophy may 
vary widely.1–3 Ventricular septal hypertrophy may be associ-
ated with systolic anterior motion of the mitral valve and 
subaortic obstruction of the LV outflow tract. Histologic 
examination of ventricular myocardium typically shows 
myocyte hypertrophy, myocyte and myofibrillar disarray, 
and interstitial fibrosis (Fig. 56.2).

The clinical manifestations of HCM range from minor 
symptoms such as palpitations and dizziness to syncope and 
sudden death. Hypertrophic cardiomyopathy is particularly 
important as a cause of sudden death in young adults.4 The 
differential diagnosis of myocardial hypertrophy in young 
adults may be difficult, particularly for those engaged in 
competitive athletic activities. The occurrence of sudden 
death in a number of elite athletes with HCM has focused 
considerable medical and media attention on this disease. 
Although initially considered to be a relatively uncommon 
disorder, recent observations have estimated the prevalence 
of HCM in the general population to be 1 in 500.5 Since its 
first description in 1869,6 numerous clinical and hemody-
namic studies have been performed in attempts to elucidate 
the pathophysiology of HCM. The various terms ascribed 
over this time period—hypertrophic obstructive cardiomy-
opathy (HOCM), asymmetric septal hypertrophy (ASH), and 
idiopathic hypertrophic subaortic stenosis (IHSS)—reflect 
the traditional emphasis on the anatomic and hemodynamic 
features of the interventricular septum and LV outflow tract. 
Over the last decade, the results of molecular genetics studies 
have revealed fundamental insights that challenge previous 
concepts of the pathogenesis of HCM. The discovery that 
HCM is primarily caused by mutations in genes that encode 
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ited heart disease caused by a single gene defect, and thus 
it serves as a paradigm for the study of cardiovascular genetic 
disorders. Current concepts of the pathogenesis, clinical 
evaluation, natural history, and treatment of HCM are 
reviewed in this chapter.

Pathogenesis

Genetic Linkage Analyses

Hypertrophic cardiomyopathy is a familial disorder that is 
inherited as an autosomal dominant trait. Hence, the chance 
that a child of an affected parent will develop HCM is 50%, 
and males and females are equally likely to be affected (Fig. 
56.3). Sporadic cases of HCM may occur,7,8 arising presum-
ably from de novo gene mutations. Individuals with sporadic 
disease also have a 50% likelihood of transmitting HCM to 
each of their offspring. Genome-wide linkage analyses and 
mutation screening in families have demonstrated that HCM 
is a genetically heterogeneous disorder (Table 56.1 and Fig. 
56.4).

Hypertrophic Cardiomyopathy Disease Genes

The first HCM disease gene described was the β-myosin 
heavy chain (MHC) gene that mapped to chromosome 
14q12.9,10 Mutations have been found subsequently in five 
additional genes that encode proteins associated with the 
thick filament: α-MHC (chromosome 14q12),11 cardiac 
myosin binding protein C (cMyBP-C, chromosome 11p11),12–14

essential myosin light chain (chromosome 3p21),15 regulatory 
myosin light chain (chromosome 12q23-q24),15 and myosin 
light chain kinase (chromosome 20q13).16 Mutations have 
also been found in five genes that encode thin filament pro-
teins: cardiac troponin T (chromosome 1q32),17,18 cardiac tro-
ponin I (chromosome 19q13),19cardiac troponinC (chromosome 
3p21-p14),20 α-tropomyosin (chromosome 15q22),18,21 and 
cardiac actin (chromosome 15q14).22 Recently, mutations in 
four genes that encode intra- and extrasarcomeric cytoskele-
tal proteins have been associated with an HCM-like 

FIGURE 56.1. Gross heart morphology in an individual who had 
HCM. This section is cut in a longitudinal plane and shows the four 
cardiac chambers. The left ventricle is markedly hypertrophied with 
a reduced cavity size. An asymmetric pattern of hypertrophy is 
present, with predominant involvement of the interventricular 
septum. The left atrium is enlarged. The right ventricle and right 
atrium appear relatively normal.

A B

FIGURE 56.2. Histologic specimens of left ventricular myocar-
dium from an individual with HCM (A) and a normal heart (B). The 
myocardial sections are stained with hematoxylin and eosin. His-
topathologic findings in HCM are typified by myocyte hypertrophy 

with loss of the orderly alignment of sarcomeres (myofibrillar dis-
array). Myocyte nuclei are enlarged and hyperchromatic. An 
increased amount of loose intercellular connective tissue is 
present.

sarcomere proteins has provided an important new frame-
work for understanding the diverse pathologic and clinical 
manifestations of HCM and a basis for new strategies for 
diagnosis, prognostic stratification, and therapy. Hypertro-
phic cardiomyopathy is one of the first examples of an inher-
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FIGURE 56.3. Pedigrees in 2 families with HCM caused by muta-
tions in the β-myosin heavy chain (β-MHC) gene (A) and cardiac 
myosin binding protein C gene (B). Generation numbers are indi-
cated in Roman numerals. Squares denote male family members 
and circles, females. Affected individuals are indicated by solid 
symbols, and unaffected individuals by clear symbols; individuals 
in whom the affection status is unknown are indicated by gray 
symbols. Diagonal slashes denoted deceased family members. Indi-
viduals who have the disease (affected) haplotype in genetic linkage 

analyses are shown as “+” (positive), whereas those without the 
disease haplotype are shown as “−” (negative). In families with β-
MHC gene mutations, the disease penetrance is high; that is, the 
majority of genotype-positive individuals are also phenotype-
positive. In families with cardiac myosin binding protein C gene 
mutations, symptoms and signs of HCM may not appear until late 
adulthood; consequently, some individuals in younger generations 
may be genotype-positive but phenotype-negative.

TABLE 56.1. Disease genes associated with hypertrophic cardiomyopathy

Chromosome locus Gene Protein Prevalence (%)

14q12 MYH7 β-MHC 40
11p11 MYBPC3 Cardiac MyBP-C >30
1q32 TNNT2 Cardiac troponin T <15
19q13 TNNI3 Cardiac troponin I <10
15q22 TPM1 α-tropomyosin <5
12q23-q24 MYL2 Regulatory MLC <3
15q14 ACTC Cardiac actin <3
3p21 MYL3 Essential MLC <1
14q12 MYH6 α-MHC <1
3p21-p14 TNNC1 Cardiac troponin C <1
20q13 MYLK2 Myosin light chain kinase <1
2q24 TTN Titin <1
11p15 CLP Cardiac muscle LIM protein <1
17q12 TCAP Telethonin <1
3p25 CAV3 Caveolin-3 <1
6q22 PLB Phospholamban <1

± Tropomyosin

Troponin T Troponin I

Myosin binding
protein C Actin

Myosin
light chain

“ Myosin
heavy chain

FIGURE 56.4. HCM is caused by mutations in genes that encode 
sarcomere proteins. The components of the sarcomere in which 
HCM-causing mutations have been identified most commonly are 
shown in this schematic: thick filament proteins (myosin heavy 
chain, regulatory myosin light chain, essential myosin light chain), 
thin filament proteins (cardiac troponin T, cardiac troponin I, 
α-tropomyosin and cardiac actin), and cardiac myosin binding 
protein C.
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phenotype: titin (chromosome 2q24),23 muscle LIM protein 
(chromosome 11p15),24 Tcap (chromosome 17q12),25 and cave-
olin-3 (chromosome 3p25).26 A mutation in a sarcoplasmic 
reticulum Ca2+-regulatory protein gene, phospholamban 
(chromosome 6q22),27 has also been identified.

Gene Mutations

More than 250 HCM-causing mutations have been reported 
(go to http://www.cardiogenomics.org). At least 50% of famil-
ial HCM and 20% to 30% of sporadic HCM result from 
mutations in one of the known disease genes. Mutations in 
the β-MHC and cMyBP-C genes predominate, and together 
account for approximately 80% of genotyped cases. A variety 
of mutation types have been found, including missense 
mutations that result in a single nucleotide substitution, 
deletions, insertions, and splicing variants, which encode 
full-length or truncated proteins. In most cases, individuals 
with HCM-causing mutations are heterozygous at the disease 
locus, that is, one copy (allele) of the gene has a DNA sequence 
change and the second copy has normal DNA sequence. Iso-
lated cases have been described of individuals who are homo-
zygous at a disease locus, that is, both copies of the gene 
have DNA sequence variants.28,29 Cases of compound-
heterozygosity, that is, mutations in more than one disease 
gene, and double-heterozygosity, that is, more than one muta-
tion in one gene, have also been identified.30 Homozygosity 
and complex genotypes have been associated with more 
severe clinical phenotypes. In general, unrelated individuals 
have “unique” mutations, although sequence variants may 
occur relatively more frequently at certain sites, that is, 
mutation “hot spots.” Taken together, these findings have 
important implications for genetic screening strategies. 
Screening should not be stopped when one mutation is iden-
tified, and the coding sequence of all known disease genes 
should ideally be evaluated in all cases.

One important question in understanding the pathogen-
esis of HCM is determination of the mechanism by which a 
defect in a single gene allele produces a dominant phenotype. 
Because the majority of HCM mutations are missense muta-
tions, the mechanism by which these cause disease has been 
assumed to be through dominant negative actions. In this 
model, the mutant protein is incorporated into the sarcomere 
but prevents appropriate assembly or function of myofibrils 
by acting as a “poison polypeptide.” An alternative hypoth-
esis is that these mutations function as null alleles (“haplo-
insufficiency”), which result in an imbalance of stoichiometry 
of sarcomere proteins. The haploinsufficiency model has 
been proposed as a potential mechanism to explain HCM 
caused by gene mutations that encode truncated proteins, 
such as cMyBP-C and cardiac troponin T.

Differential Diagnosis

Affected individuals in families that map to the chromosome 
7q36 locus have a distinct phenotype comprised of LV hyper-
trophy and ventricular preexcitation [Wolff-Parkinson-White 
(WPW) syndrome.31 While this was long considered to be an 
HCM variant, the discovery of mutations in the γ2-regulatory 
subunit of an adenosine monophosphate (AMP)-activated 

protein kinase (AMPK) has now shown this disorder to be an 
autosomal dominant–inherited myocardial metabolic storage 
disease, that is, characterized by glycogen accumulation 
in cardiomyocytes.32–34 The clinical course of patients with 
AMPK mutations is remarkable for progressive development 
of conduction system disease, manifested as atrioventricular 
block, which is an atypical finding in HCM.

Mutations in the lysosome-associated membrane protein 
2 (LAMP2) gene typically cause an X-linked multisystem 
glycogen-storage disease (Danon’s disease), but can also 
present with predominant cardiac involvement. Clinical fea-
tures that are suggestive of LAMP2 defects include male 
gender, early-onset severe LV hypertrophy, ventricular pre-
excitation, and elevated serum levels of creatine kinase and 
alanine aminotransferase.35 The typical clinical course for 
affected males is progressive deterioration of cardiac func-
tion and significant arrhythmias early in adulthood; in many, 
fulminant heart failure ensues. The natural history of women 
who carry one mutant LAMP2 gene may not be entirely 
benign; cardiac dysfunction early in middle age has been 
observed in affected women in some families.

Glycogen storage disorders should be considered in the 
differential diagnosis of unexplained LV hypertrophy, and 
have been shown to account for approximately 50% of cases 
of LV hypertrophy with preexcitation.35 Identification of 
these disorders has important implications not only for the 
long-term management of affected individuals, but also for 
defining genetic risk in family members. Gene-based diag-
nosis provides precise resolution of whether unexplained LV 
hypertrophy is HCM or a glycogen-store cardiomyopathy.

Functional Consequences of Hypertrophic 
Cardiomyopathy Gene Mutations

Mechanisms of Muscle Contraction

To determine the consequences of HCM gene mutations, 
an understanding of the cardiomyocyte sarcomere is first 
required. The sarcomere is the fundamental structural and 
functional unit of cardiac muscle that consists of an inter-
digitating system of thick and thin filaments. A widely 
accepted theory to explain the mechanism of muscle con-
traction is the cross-bridge hypothesis.36 In this model, force 
generation results from the sliding movement of thick fila-
ments relative to thin filaments; this is achieved by cyclical 
attachment and detachment of myosin cross-bridges to actin. 
Adenosine triphosphate (ATP) binds to the myosin head 
during the cross-bridge attachment phase. Hydrolysis of ATP 
then provides energy for the detachment and subsequent 
reattachment of the cross-bridges that causes a step-like dis-
placement of the thin filament relative to the thick fila-
ment.37 The troponin-tropomyosin complex constitutes the 
Ca2+-sensitive switch that regulates this process. Troponin I 
is an inhibitory component of the troponin-tropomyosin 
complex, which binds actin and inhibits actomyosin adenos-
ine triphosphatase (ATPase) activity in the absence of Ca2+.
Ca2+ binding to troponin C causes the troponin-tropomyosin 
complex to release the myosin binding domain of actin, 
permitting the interaction of actin and myosin heads.38

The myosin light chains maintain optimal speed and effi -



h y p e rt rop h ic  c a r diom yopat h y 12 6 5

ciency of cross-bridge cycling.39–41 Myosin binding protein C 
contributes to the organization and assembly of thick fila-
ments42–45 and modulates cross-bridge function by regulating 
the position of the myosin head relative to the thin 
filament.46–48

β-MHC Gene Mutations

Cardiac myosin is a hexamer composed of two MHCs, two 
essential light chains, and two regulatory light chains. 
Myosin heavy chains contain a globular head connected 
through a neck region to a rod-like tail. The myosin heads 
contain binding sites for actin and ATP and constitute the 
motor domain of the myosin molecule.37,49 The majority of 
β-MHC mutations are located in the myosin head, and hence 
are predicted to disrupt mechanical and catalytic compo-
nents of actin-myosin interaction50 (Fig. 56.5).

A widely used method for assessment of the rate of cross-
bridge cycling is the in vitro motility assay, which measures 
the velocity of translocation of single actin filaments by 
single myosin filaments bound to a nitrocellulose-coated 
surface. Reduced filament sliding velocities have been dem-
onstrated in a number of studies that have examined the 
properties of human and recombinant mutant β-MHC.51–53

Functional studies of skinned skeletal muscle fibers from 
patients with β-MHC gene mutations have also generally 
shown decreased velocity of shortening and force genera-
tion.54 For example, the Arg403Gln β-MHC mutation has 
been associated with depressed contractile function in pa -
tients’ skeletal muscle,54 and also in muscle strips from mice 
bearing the equivalent α-MHC mutation (α-MHC403/+).55,56

Surprisingly, myosin purified from α-MHC403/+ hearts was 
shown to have faster actin sliding velocity, increased actin-

activated ATPase activity, and increased force generation 
compared with control samples.57 These apparently conflict-
ing findings can be reconciled most readily by differences in 
the techniques used to evaluate contractile performance. 
While studies of purified actin and myosin might intuitively 
seem to be the optimal technique for assessing the functional 
consequences of β-MHC gene mutations, these do not take 
into account the effects of factors such as other protein com-
ponents of the sarcomere, structural changes in the myocar-
dial walls, and hemodynamic loading conditions that affect 
contractile performance in the intact muscle and in vivo.
Abnormalities of myocyte regulation of Ca2+ have also been 
shown in α-MHC403/+ mice. Mutant mouse hearts have normal 
cytosolic Ca2+ levels but reduced sarcoplasmic reticulum Ca2+

stores, reduced levels of the Ca2+-binding protein calseques-
trin, require higher Ca2+ concentrations to achieve the same 
contractile force as control hearts, and exhibit an exaggerated 
hypertrophic response to agents that affect myocyte Ca2+

levels.58,59 Administration of the L-type Ca2+ channel inhibi-
ter, diltiazem, to young α-MHC403/++ mice significantly atten-
uates the development of functional changes and hypertrophy.59

On the basis of these findings, it has been proposed that 
mutant sarcomeres sequester Ca2+ and act as an ion trap. Dif-
ferences in the Ca2+ sensitivity for force production have 
recently been demonstrated for other HCM-causing MHC 
mutations.60,61

It has been proposed that abnormal myocardial energet-
ics may have an important role in the pathophysiology asso-
ciated with β-MHC gene mutations. Hypo- or hyperfunction 
of the sarcomere and heterogeneity in the effects of mutant 
protein between individual fibers within a single muscle 
could result in mechanical inefficiency of force generation 
and an energy-requiring state. Altered mitochondrial struc-
ture and function, potentially due to accumulation of Ca2+,
have been observed in α-MHC mice and might also contrib-
ute to energy depletion.62 Changes in myocardial energetics 
have been demonstrated in α-MHC403/+ mice,63 but have yet 
to be evaluated comprehensively in human HCM.

Cardiac Myosin Binding Protein C Gene Mutations

Cardiac MyBP-C is located in the A-bands of the sarcomere, 
where it is arrayed in a series of seven to nine transverse 
stripes spaced at 43-nm intervals. It is thought to have both 
structural and regulatory roles in the sarcomere. Cardiac 
MyBP-C has multiple immunoglobulin C2-like and fibronec-
tin type 3 domains, a cardiac-specific region, a phosphoryla-
tion region, and binding sites for myosin and titin. Although 
missense mutations, insertions, deletions, and splice muta-
tions have been identified, the majority of cMyBP-C muta-
tions cause truncation of the encoded protein with loss of 
the myosin and titin binding domains.13,14,64,65 Western blot 
analyses of transfected myoblasts and cardiac tissue from 
humans and mice have yielded varying results for the expres-
sion levels of mutant cMyBP-C protein. The truncated pro-
teins have been able to be identified in some studies, but not 
in others.66,67 Overexpression of truncated cMyBP-C may be 
accompanied by a compensatory reduction of wild-type 
protein.68

Three mouse models of cMyBP-C deficiency have been 
reported. One of these models was generated by expression 

FIGURE 56.5. Computer reconstruction of the three-dimensional 
crystal structure of myosin, based on x-ray coordinates for chicken 
skeletal muscle myosin reported by Rayment et al.266 The protein 
backbone is shown in white. Binding sites for myosin (green) and 
adenosine triphosphate (ATP) (yellow) are indicated. Essential and 
regulatory myosin light chains are shown in blue and purple, respec-
tively. HCM-causing mutations in the myosin heavy chain are 
denoted by red spheres; mutations in the essential and regulatory 
myosin light chains by orange spheres. Note the clustering of muta-
tions in the ATP binding domain. This image was generated using 
RasMol software.267
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of a cMyBP-C transgene that encoded a truncated protein 
lacking the myosin and titin binding domains.68 The mutant 
protein was stable but did not incorporate efficiently into 
sarcomeres, resulting in a striking pattern of sarcomere dis-
organization. Functional studies showed normal contraction 
and relaxation parameters with a leftward shift in the pCa-
force curve and reduced power output. In a second model, a 
similar cMyBP-C truncation was generated using homolo-
gous recombination techniques.69 Homozygous (MyBPCt/t)
mice exhibited dilated cardiomyopathy from birth with 
subsequent development of progressive LV hypertrophy, 
myofibrillar disarray, and fibrosis. On electron microscopy, 
sarcomere assembly appeared normal with the exception of 
absence of the M bands. In vivo hemodynamic studies in the 
MyBPCt/t mice demonstrated significant impairment of both 
systolic and diastolic LV function. MyBPCt/t myocytes showed 
prolonged time to 50% decay of Ca2+ transients, and reduced 
SERCA2a protein levels. Heterozygous (MyBPCt/+) mice 
developed late-onset LV hypertrophy (>125 weeks), with 
normal cardiac function and histology.70 Studies of cMyBP-C 
knockout mice demonstrate that homozygous (MyBPC−/−)
mice develop significant LV hypertrophy with depressed sys-
tolic and diastolic function, while heterozygous (MyBPC+/−)
mice are indistinguishable from wild-type littermates.71 A
rightward shift in the pCa-tension relationship was found in 
MyBPC−/−, but not in MyBPC+/− mice. Evaluation of skinned 
myocytes showed increases in the peak normalized power 
output and rate constant of force development in MyBPC−/−

mice.72 These data suggest that the extent of sarcomeric 
perturbation is dependent on the relative amounts of mutant 
and normally functioning wild-type cMyBP-C protein. While 
abnormalities of Ca2+ homeostasis have been implicated in 
the pathophysiology of cMyBP-C mutations, it is notable that 
normalization of Ca2+ cycling parameters by genetic crosses 
between cMyBP-C and phospholamban-deficient mice fails 
to rescue the cardiomyopathic phenotype.73 Further studies 
are required to identify the critical molecular defects that 
result from cMyBP-C insufficiency.

Cardiac Troponin T, I, and C Gene Mutations

The troponin complex is comprised of three subunits—tro-
ponin T, troponin I, and troponin C—and has a key role in 
the regulation of muscle contraction. Mutations in all three 
components of the troponin complex have been associated 
with the development of HCM. Troponin T mutations have 
been reported most frequently. The cardiac troponin T mol-
ecule consists of a long N-terminal region (residues 1 to 187) 
that lies adjacent to tropomyosin along the thin filament, 
and a globular C-terminal region (residues 188 to 288). Resi-
dues 70 to 170 are critical for the stability and function of 
the troponin complex, and for interactions with actin.74

Hypertrophic cardiomyopathy–causing mutations have been 
identified in the both the N- and C-terminal regions. A 
number of in vitro studies have been performed to determine 
the functional consequences of troponin T mutations. 
Similar to β-MHC studies, the effects of mutant protein on 
Ca2+ sensitivity and force development have varied with the 
different experimental methods used.75–82

Several groups of investigators have generated transgenic 
mouse models to study the effects of troponin T mutations 

in vivo. Mice that express either truncated troponin T or 
Arg92Gln troponin T transgenes exhibit characteristic func-
tional and histologic features of HCM, including LV diastolic 
dysfunction, myofibril disarray, and a variable extent of fibro-
sis.83–85 Mice with truncated troponin T and those with low 
levels (1–10%) of the Arg92Gln transgene show LV systolic 
dysfunction, whereas mice with higher levels (30%, 67%, and 
92%) of the Arg92Gln transgene develop dose-related hyper-
contractile function, consistent with a dominant-negative 
effect of mutant protein on systolic performance.83–86 Notably, 
none of these murine models of cardiac troponin T muta-
tions have developed LV hypertrophy, analogous to observa-
tions of minimal or absent hypertrophy in patients with 
cardiac troponin T mutations. Left ventricle hypertrophy has 
not been detected also in transgenic mice that bear an 
Ile79Asn mutation, either under resting conditions or with 
chronic exercise training.87 Skinned fibers from the hearts of 
these mice showed increased Ca2+ sensitivity of ATPase 
activity and force, with an increased rate of force develop-
ment, slowed relaxation and increased resting tension.

Interventions that further increase heart rate or contrac-
tility appear to exacerbate the cardiac dysfunction associated 
with troponin T deficiency. Stimulation with adrenergic ago-
nists was found to induce sudden death both in mice with 
truncated troponin T and also in those with Arg92Gln tro-
ponin T.88 Sudden death was observed in male, but not in 
female, mice, indicating additional gender-related factors in 
adrenergic responsiveness. In addition, Arg92Gln transgenic 
mice not only show baseline changes in mitochondrial ultra-
structure and in the free energy of ATP hydrolysis, but also 
exhibit an inability to increase contractile performance with 
inotropic challenge.89 Taken together, these findings suggest 
that a common feature of troponin T mutations is altered 
Ca2+ regulation of force production and reduced energetic 
efficiency of muscle contraction. These changes appear to 
activate hypertrophic pathways to a lesser extent than other 
HCM-causing gene mutations, but do result in an increased 
propensity for cardiac arrhythmias and sudden death, which 
may be exacerbated by increased cardiac workloads.

Troponin I is composed of three domains: an N-terminal 
region (residues 34 to 71) that contains protein kinase C 
phosphorylation sites, an inhibitory region (residues 128 to 
147) that also contains a protein kinase C phosphorylation 
site, and a switch region (residues 147 to 163) that contains 
a p21-activated kinase site. Ca2+-dependent binding of the 
inhibitory region with actin and troponin C is critical for 
muscle contraction and relaxation, respectively. Troponin I 
interacts with troponin C at multiple sites to form an anti-
parallel dimer. Hypertrophic cardiomyopathy–causing muta-
tions have been located in the inhibitory and switch regions 
of troponin I. In vitro functional studies suggest that these 
mutations may variably alter actin binding, the Ca2+ sensitiv-
ity of actomyosin ATPase activity, and the stability of tropo-
nin I/troponin C interactions.90–93 Transgenic mice expressing 
an Arg145Gly cardiac troponin I at a low level (1.2-fold) have 
no overt phenotype, while a higher level of transgene expres-
sion (3.5-fold) causes hypercontractility, diastolic dysfunc-
tion, histologic changes, and premature death.94 Similar to 
troponin T mice, troponin I mutant mice do not show LV 
hypertrophy. Skinned muscles from the hearts of Arg145Gly 
mice show a significant increase in Ca2+ sensitivity, with no 
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changes in shortening velocity, or maximum power, com-
pared with control littermates. It has been proposed that 
mutations in cardiac troponin I impair its function as a Ca2+

sensitive switch, causing the thin filament to remain longer 
in an “on” position.

Mutations in cardiac troponin C are a rare cause of HCM, 
and to date, only one sporadic case has been identified.20

Troponin C mutations would be predicted to alter Ca2+

binding or interactions with other components of the tropo-
nin complex.

α-Tropomyosin Gene Mutations

α-Tropomyosin proteins form long rods composed of α-
helical coiled-coil dimers that lie in a head-to-tail arrange-
ment in the major groove of actin filaments, spanning seven 
actin monomers. α-Tropomyosin has two binding sites for 
troponin T, only one of which is Ca2+ sensitive. The effects 
of two mutations in the Ca2+-sensitive troponin T binding 
region, at residues 175 and 180, have been studied in most 
detail. In a transgenic mouse model, overexpression of 
Asp175Asn α-tropomyosin was associated with reciprocal 
reductions in endogenous α-tropomyosin RNA and protein 
levels.95 The mutant mice showed LV hypertrophy and his-
tologic features of HCM, with slowed contraction and relax-
ation times, a leftward shift in the pCa-force relationship, 
and blunted responses to exercise and β-adrenergic stimula-
tion. Skeletal muscle fibers from patients with Asp175Asn 
α-tropomyosin also showed increased Ca2+ sensitivity of 
force production, when compared with controls.96 In one 
study, Glu180Gly α-tropomyosin transgenic mice showed 
severe LV hypertrophy and histologic changes,97 whereas in 
another study, mice with the same mutation failed to develop 
these phenotypic features.98 Single myocytes from these 
mice exhibited increased Ca2+ sensitivity of force production 
and diastolic dysfunction. The Asp175Asn and Glu180Gly 
α-tropomyosin mutations have recently been compared in 
transgenic rats.99 With both mutations, molecular markers 
of cardiac hypertrophy were induced. In skinned fibers from 
Asp175Asn mutant rats, Ca2+ sensitivity was decreased and 
was accompanied by an increase in the frequency and ampli-
tude of spontaneous Ca2+ waves. Ca2+ sensitivity in Glu180Gly 
mutant rats was unchanged. In yeast, a number of α-
tropomyosin mutations, including Glu180Gly, did not 
change the cooperativity of thin filament activation with 
increasing Ca2+ concentrations, but did exhibit thermally 
induced unfolding of the α-tropomyosin molecule.100 Col-
lectively, these studies suggest model-dependent and 
mutation-dependent effects. While it has been proposed that 
altered Ca2+ sensitivity is the principal consequence of α-
tropomyosin mutations, an alternate possibility is that 
structural instability of the mutant molecule critically alters 
protein interactions and Ca2+ handling.

Myosin Light Chain Gene Mutations

Myosin light chains belong to a large family of Ca2+-binding 
proteins that is characterized by a helix-loop-helix of Ca2+

binding sites (EF hands). They are thought to contribute to 
the mechanical efficiency of cross-bridge cycling and the 
velocity of contraction. Cardiac muscle has two regulatory 

(phosphorylatable) and two essential (alkali) light chains. 
Mutations in the slow/ventricular isoforms have been associ-
ated with HCM. Two mutations, Met149Val in the essential 
myosin light chain and Glu22Lys in the regulatory myosin 
light chain, have been evaluated in vitro and in transgenic 
mice.15,101–103 As noted for other mutant proteins, the results 
of functional analyses have varied with the techniques used. 
A number of studies have found, however, increased Ca2+

sensitivity of myofibrillar ATPase, and a leftward shift in 
the pCa-force relationship, indicating that myosin light 
chain mutations are likely to alter power output via a Ca2+

-dependent mechanism.

“Compensatory” Hypertrophy

Primary Defects

A large body of experimental data indicate that HCM 
mutations are associated with altered sarcomere structure 
and function. These findings provide the basis for the current 
and widely accepted concept that LV hypertrophy in HCM 
is a “compensatory” rather than a primary phenomenon. 
The precise nature of the defects that elicit a hypertrophic 
response in cardiomyocytes has not as yet been established. 
Alterations of sarcomere structure may result in hypo- or 
hypercontractile function, altered Ca2+ affinity or localiza-
tion, or an energetically inefficient state. Any one, or a com-
bination, of these factors could potentially be the critical 
molecular trigger for hypertrophy development. Although 
HCM has traditionally been regarded as a disease of the sar-
comere, because the majority of disease genes have encoded 
protein components of the thick and thin filaments, recent 
reports of mutations in genes encoding extrasarcomeric pro-
teins, such as titin, muscle LIM protein, Tcap, caveolin-3, 
and phospholamban,23–27 which are involved in the mainte-
nance of myocyte cytoarchitecture, stretch sensing, and Ca2+

homeostasis, have challenged this view and posed new ques-
tions about the definition of this disease. Can any cause of 
heritable but otherwise “unexplained” LV hypertrophy (with 
or without myofibrillar disarray) be considered under the 
umbrella of HCM? Or should a diagnosis of HCM be reserved 
for the classic disease associated with sarcomere protein gene 
mutations? These distinctions are important, because there 
may be different implications for the natural history of 
disease and patient management. Further insights into the 
nature of the hypertrophic “triggers” and interactions 
between the sarcomere and the extrasarcomeric cytoskeleton 
may help to resolve these questions.

Hypertrophic Response

The severity of LV hypertrophy can vary considerably in 
murine models, in humans with different mutations, and 
between individuals with the same mutation within fami-
lies. This spectrum may be related to trigger factors, such 
as the nature, severity, or “dose” of the primary defect. For 
example, the finding that heterozygous mice bearing α-
MHC and cMyBP-C binding protein-C mutations develop 
HCM, whereas homozygous mice with the same mutations 
develop dilated cardiomyopathy, might be explained by a 
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gene-dosage effect.58,69,70,104 Comparative studies of myosin 
from individuals heterozygous and homozygous for β-MHC 
mutations indicate, however, that the amount of mutant 
protein can correlate poorly with muscle performance and 
clinical phenotype.105 The extent of hypertrophy develop-
ment might also be related to factors that modify the “effec-
tor” arm of the hypertrophic response. A combination of 
genetic, environmental and comorbidity factors are likely to 
be involved.

Left Ventricular Pathophysiology

Systolic Function

Left ventricular systolic function in HCM is usually normal 
or hyperdynamic. Reduced systolic function and wall thin-
ning may occur in patients with long-standing chronic 
disease (“burnt out” HCM) due to replacement of myocytes 
by myocardial fibrosis. Hypertrophic cardiomyopathy may 
be classified as obstructive or nonobstructive, depending on 
the presence or absence of a systolic pressure gradient across 
the LV outflow tract. Obstructive HCM occurs in less than 
25% of cases. The subaortic gradient results from a mechani-
cal impediment to LV outflow produced by the combination 
of (1) asymmetric hypertrophy (ASH) of the proximal inter-
ventricular septum, and (2) systolic anterior motion (SAM) 
of the mitral valve with subsequent mitral leaflet-septal 
contact. The mechanism of SAM has been controversial but 
it has been postulated that the anterior mitral valve leaflet
is drawn upward toward the septum by a Venturi effect pro-
duced by high-velocity blood flow through the narrowed 
outflow tract.106,107 Subaortic obstruction to LV blood outflow 
gives rise to the “spike-and-dome” pattern on arterial pulse 
tracings. This waveform is characterized by a brisk upstroke 
due to rapid early ejection of blood from the LV, a decline in 
pressure with the onset of obstruction to outflow, and then 
a secondary pressure rise with late systolic ejection of the 
residual LV blood volume. Angulation and SAM of the ante-
rior mitral valve leaflet also causes the mitral leaflets to 
coapt in the body of the leaflets rather than at the leaflet tips. 
A funnel-shaped opening created by the distal portions of 
both leaflets results in a posterior-directed jet of mitral regur-
gitation during middle and late systole.108 The severity of 
mitral regurgitation has been shown to correlate with the 
length over which the mitral leaflets coapt, the relative mis-
match of anterior to posterior leaflet length, and decreasing 
posterior leaflet mobility.109

The subaortic gradient in HCM has been described as 
“dynamic” because the magnitude of the pressure gradient 
can be varied by provocative maneuvers. The outflow tract 
obstruction is increased by maneuvers that reduce LV 
preload or afterload or that increase myocardial contractility 
(such as standing from a sitting or squatting position, Val-
salva maneuver, exercise, or pharmacologic interventions 
such as administration of nitroglycerin or amyl nitrate). 
Conversely, the outflow tract obstruction is reduced by 
maneuvers that increase LV preload or afterload or that 
reduce myocardial contractility (such as squatting, passive 
leg elevation, handgrip, or administration of phenylephrine 
or beta-blocking drugs).107 In asymptomatic individuals, 

provocative maneuvers may be used to unmask latent 
obstruction.

Although obstructive HCM is caused by proximal ven-
tricular septal hypertrophy in the majority of cases, a minor-
ity of individuals may exhibit midventricular obstruction 
due to hypertrophy at the level of the papillary muscles. Left 
ventricle preload, afterload, and contractility influence the 
severity of midventricular obstruction. Other features of 
subaortic obstruction such as the “spike-and-dome” arterial 
pulse waveforms and mitral regurgitation are not observed, 
however, with midventricular obstruction.107

Diastolic Function

Impaired diastolic relaxation is a characteristic feature 
of human HCM that has been reproduced in mouse 
models.55,63,69,83,84,110 The diastolic dysfunction has been 
attributed to a combination of prolonged LV relaxation and 
increased LV chamber stiffness. Studies in mouse models of 
HCM have provided insights into both of these processes. 
First, the detection of diastolic dysfunction prior to overt 
evidence of histologic change in mutant mice suggests that 
this physiologic abnormality is a primary consequence of 
sarcomere gene mutations. Slowed cross-bridge cycling rates 
in mutant sarcomeres may directly lead to prolonged activa-
tion of the thin filament and reduced diastolic relaxation.63

Increased or prolonged Ca2+ availability to the myofibril 
may also prolong diastolic relaxation. Left ventricle relax-
ation is influenced also by load-dependent factors that may 
be abnormal in HCM, including end-systolic LV pressure 
and volume, wall stress, coronary artery blood flow, and 
regional asynchrony of LV wall motion.106 The secondary 
development of structural changes, such as hypertrophy and 
fibrosis, causes LV chamber remodeling and increased 
chamber stiffness that further exacerbate diastolic filling. 
Georgakopoulos and colleagues110 performed sequential in 
vivo hemodynamic studies in α-MHC403/+ mice and found 
delayed pressure development in mice aged 6 weeks; by 20 
weeks, reductions of cardiac output and increased end-
systolic chamber stiffness were also present, coincident 
with the development of LV hypertrophy and fibrosis (Fig. 
56.6). Blanchard and colleagues55 also demonstrated increased 
diastolic stiffness in resting LV papillary muscle strips from 
α-MHC403/+ mice. Intracellular Ca2+ overload and myocar-
dial ischemia are two factors that may contribute to myocyte 
dysfunction and ultimately to myocyte death. Myocyte loss 
and replacement fibrosis have been observed to a greater 
extent in homozygous (α-MHC403/403) than in heterozygous 
α-MHC403/+ mutant mice, suggesting that there may be a 
threshold level for cell viability with increases in the pro-
portion of mutant protein.104 Elevated LV end-diastolic pres-
sures due to diastolic dysfunction, increased end-systolic 
pressure with LV outflow obstruction, and mitral regurgita-
tion may contribute to elevation of left atrial pressure, left 
atrial enlargement, and a subsequent increased risk for the 
development of atrial fibrillation. The onset of atrial fibril-
lation may precipitate severe hemodynamic compromise in 
individuals with LV diastolic dysfunction since LV filling is 
reliant to a greater extent on left atrial contraction. Atrial 
fibrillation is also associated with an increased risk of 
thromboembolic events.
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Myocardial Ischemia

Myocardial ischemia may occur in both obstructive and non-
obstructive HCM. Several mechanisms for myocardial isch-
emia in HCM have been proposed, including (1) increased 
myocardial oxygen demand, due to increased LV mass and 
wall stress; and (2) reduced myocardial oxygen supply, due to 
decreased coronary perfusion pressure secondary to LV 
outflow obstruction, elevated diastolic filling pressures, sys-
tolic compression of large intramural coronary arteries, myo-
cardial bridging, reduced capillary density, and abnormally 
narrowed small intramural coronary arteries.106,107 Symp-
toms of myocardial ischemia in HCM are precipitated fre-
quently by exertion, which causes further imbalance of the 
myocardial oxygen demand and supply ratio.

Clinical Evaluation

Clinical History

Genotype-positive individuals with HCM may be asymp-
tomatic or experience symptoms ranging from mild dizzi-

ness and palpitations to sudden death. The most common 
presenting features are exertional dyspnea, angina pectoris, 
fatigue, and presyncope or syncope. Since a variety of patho-
physiologic mechanisms contribute to symptoms in HCM, 
including LV subaortic outflow obstruction, LV diastolic dys-
function, and myocardial ischemia (see previous section), the 
severity of symptoms generally does not correlate well with 
single factors such as the extent of LV hypertrophy or the 
magnitude of the LV outflow tract pressure gradient.106,107 In 
individuals with LV diastolic dysfunction, symptoms and 
signs of congestive cardiac failure such as paroxysmal noc-
turnal dyspnea, orthopnea, and peripheral edema may be 
precipitated by atrial tachyarrhythmias. Syncope and sudden 
death may result from ventricular arrhythmias.

The age of onset of symptoms differs between HCM 
disease genes. For example, individuals with β-MHC gene 
mutations generally present in the first two decades of life. 
In contrast, individuals with cMyBP-C gene mutations may 
be asymptomatic until the fifth or sixth decades (Fig. 
56.7).65,111 A detailed family history is an essential compo-
nent of the clinical history in HCM. Identification of young 
affected family members is particularly important in 
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FIGURE 56.6. In vivo left ventricular pressure-volume relations 
measured during transient reduction of cardiac preload in wild-type 
and α-MHC403/+ mutant mice. At 6 weeks (left), data for wild-type 
and α-MHC403/+ mice were similar. At 20 weeks (right), α-MHC403/+

mice showed a change in loop shape with systolic pressure elevation 
during ejection and a substantial increase in the end-systolic elas-
tance (dashed vertical line), consistent with an increase in systolic 
stiffness.
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families that have mutations with a malignant course charac-
terized by a high incidence of sudden death. In elderly 
individuals, although a positive family history for HCM may 
not be obtained, this diagnosis should be considered, particu-
larly if the symptoms and signs cannot be accounted for by 
the presence of other pathologic processes, such as coronary 
artery disease or hypertension. It should be noted also that 
in the elderly, HCM may coexist with other pathologies. The 
absence of a positive family history in an individual with 
symptoms and signs of HCM suggests the possibility of a 
sporadic gene mutation.

Physical Examination

Physical findings may be unremarkable in the absence of LV 
outflow tract obstruction. On examination of the precor-
dium, the LV apex may be forceful and is variably displaced. 
A double, or triple, apical impulse may be present with the 
addition of a palpable left-sided S4 or forceful late systolic LV 
contraction. With extensive LV hypertrophy, the jugular 
venous pulse may have a prominent a wave, due to reduced 
right ventricular compliance, and a bouncing carotid pulse 
may be present, analogous to the spike-and-dome pattern on 
arterial pressure tracings.

On auscultation, the first heart sound is generally normal. 
The second heart sound may have a narrow split or reversed 

splitting if LV contraction is prolonged by severe LV outflow 
obstruction. A loud fourth heart sound is often present and 
is due to augmented LV filling during left atrial systole when 
LV diastolic relaxation is prolonged. A systolic crescendo-
decrescendo ejection murmur caused by turbulent blood flow 
through the LV outflow tract may be audible between the left 
sternal border and the apex. This murmur can be distin-
guished from valvular aortic stenosis by its response to pro-
vocative maneuvers that increase or reduce the extent of LV 
outflow obstruction (see previous section). In addition to the 
systolic ejection murmur, a pansystolic, blowing murmur 
due to mitral regurgitation may also be audible at the apex, 
with radiation to the axilla.

Electrocardiography

Electrocardiographic abnormalities are present in the major-
ity of individuals with HCM and may occur in the absence 
of echocardiographic evidence of LV hypertrophy.112 An 
example of an abnormal electrocardiogram found in a young 
genotype-positive, phenotype-negative individual is shown 
in Figure 56.8. Voltage criteria for the presence of LV hyper-
trophy have been defined according to the height of the QRS 
complexes, particularly in the precordial leads.113 ST-segment 
and T-wave changes are commonly observed. Giant negative 
T waves in leads V4 to V6 are characteristically found with 
the apical pattern of LV hypertrophy observed predominantly 
in Japanese patients with HCM.114,115 A pseudoinfarction 
pattern with prominent Q waves may be present in the infe-
rior (II, III, aVF) and precordial (V2–V6) leads.116,117 The etiol-
ogy of these Q waves is uncertain since a close correspondence 
with ventricular septal hypertrophy has not been observed. 
Abnormal P-wave morphology may be present if the left 
atrium is dilated. Atrial tachyarrhythmias (atrial fibrilla-
tion, atrial flutter), and ventricular arrhythmias may also be 
found.
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FIGURE 56.7. Age-related penetrance of HCM caused by mutations 
in the genes for β-MHC, cardiac troponin T, and cardiac myosin 
binding protein C. Solid bars denote the percentage of phenotype-
positive individuals within the total population of genotype-
positive individuals. In HCM caused by β-MHC and cardiac troponin 
T gene mutations, the onset of left ventricular hypertrophy is 
observed in early adulthood. In contrast, in HCM caused by cardiac 
myosin binding protein C gene mutations, the onset of left ventricu-
lar hypertrophy may be delayed until late adulthood. Significant 
differences in the penetrance of HCM caused by β-MHC, cardiac 
troponin T, and cardiac myosin binding C gene mutations are indi-
cated as follows: † denote p<0.05, § p<0.005, and ¶ p<0.001.
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FIGURE 56.8. Twelve-lead electrocardiographic tracings from two 
individuals with HCM who were genotype-positive, phenotype-
negative (A) and genotype-positive, phenotype-positive (B). The ECG 
in (A) was recorded from a 17-year-old boy who was asymptomatic 
but had a positive family history of HCM. His echocardiogram was 
normal. This ECG shows inferolateral T wave inversion and voltage 
criteria for left ventricular hypertrophy. The ECG in (B) was recorded 
from a 32-year-old woman with symptoms and signs of HCM, 
including echocardiographic evidence of left ventricular hyper-
trophy. This ECG shows anterior and inferior Q waves, anterolateral 
T wave inversion, and voltage criteria for left ventricular 
hypertrophy.
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Chest X-Ray

The chest X-ray in HCM may be normal or may demonstrate 
an abnormal cardiac silhouette due to LV or left atrial enlarge-
ment. Infrequently, anterior ventricular septal hypertrophy 
may cause a bulge along the left heart border. Redistribution 
of pulmonary vascular markings and enlargement of the right 
ventricle and right atrium may be observed with secondary 
pulmonary hypertension or right ventricular hypertrophy.

Echocardiography

Transthoracic echocardiography is the primary diagnostic 
modality for evaluation of individuals with suspected HCM. 
Two-dimensional echocardiographic imaging provides 
assessment of left and right ventricular hypertrophy, ven-
tricular and atrial chamber size, and systolic contractile 
function. The presence of an LV outflow tract gradient and 
LV diastolic dysfunction can be identified by color-flow 

Doppler studies. Both two-dimensional echocardiographic 
imaging and color-flow Doppler are used to examine valvular 
morphology and function. Although HCM is primarily a 
myocardial disorder, structural abnormalities of the mitral 
valve and subvalvular apparatus may be present, including 
increased leaflet area, elongation and prolapse of leaflets, and 
anomalous papillary muscle insertion directly into the ante-
rior leaflet.118,119 Mitral regurgitation is a relatively frequent 
finding that results primarily from abnormal coaptation of 
the mitral valve leaflets.108,109 Transesophageal echocardiog-
raphy is indicated for (1) more precise delineation of mitral 
valve morphology and function, (2) exclusion of left atrial 
thrombus and spontaneous echo contrast in patients with 
atrial fibrillation or recent thromboembolic events, (3) intra-
operative monitoring during surgical myectomy-myotomy, 
and (4) technically inadequate transthoracic echocardio-
graphic images. Stress echocardiography may be useful to 
investigate individuals with symptoms suggestive of myo-
cardial ischemia120 (Fig. 56.9).

FIGURE 56.9. Two-dimensional echocardiographic images in the 
parasternal long-axis view from three individuals with HCM. (A) A 
20-year-old woman presented to the emergency room following a 
syncopal episode. A positive family history of HCM was elicited. 
On auscultation of the precordium, a systolic ejection murmur was 
audible. Echocardiography showed asymmetric hypertrophy of the 
interventricular septum, systolic anterior motion of the mitral valve 
and left atrial dilation. (B) An asymptomatic 35-year-old man was 
evaluated following the sudden death of his sister. Postmortem 
examination of the deceased sister’s heart had revealed histologic 
evidence of HCM. Echocardiography showed left ventricular dila-
tion and reduced fractional shortening, consistent with dilated car-

diomyopathy. (C) A 30-year-old man presented with presyncope 
after repeated episodes of standing from a squatting position. Echo-
cardiography showed marked hypertrophy of the proximal interven-
tricular septum, with systolic anterior motion of the mitral valve 
and left ventricular outflow tract obstruction (gradient = 90 mm Hg). 
Highly echogenic foci present in the septal myocardium caused a 
“ground-glass” appearance. An echogenic plaque at the site of ante-
rior mitral vale leaflet-septal contact was also noted. (D) Schematic 
of the cardiac chambers visualized by two-dimensional echocar-
diography in the parasternal long-axis view. AO, aorta; IVS, inter-
ventricular septum; LA, left atrium; LV, left ventricle; RV, right 
ventricle.
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Asymmetric septal hypertrophy has been considered the 
sine qua non of HCM, with a septal-to-posterior wall ratio 
≥1.3 : 1 regarded as diagnostic.121 Transthoracic echocardio-
graphic studies performed in large populations with HCM 
have demonstrated, however, that while LV hypertrophy in 
the vast majority of cases is asymmetric, a variety of patterns 
of LV hypertrophy, ranging from extensive and diffuse to 
mild and segmental, can be found.1,2,122–125 Such data indicate 
not only that traditional diagnostic criteria lack sensitivity 
and specificity but also that no single morphologic pattern 
can be considered pathognomonic for diagnosis of this 
disease.

Genotype-phenotype analyses have demonstrated that 
genetic heterogeneity contributes to phenotypic heterogene-
ity in HCM. For example, LV hypertrophy in β-MHC gene 
mutations may be moderate or severe, whereas LV hypertro-
phy in cardiac troponin T gene mutations is generally only 
mild.111,124,126 Cardiac troponin I and myosin light chain gene 
mutations cause unusual forms of LV hypertrophy localized 
to the LV apex or mid-ventricular cavity, respectively.15,19

Clinical evaluation of large families highlights the variable 
expressivity of HCM. Young genotype-positive individuals 
may have only mild thickening of LV wall segments, whereas 
older members of the same family may exhibit severe LV 
hypertrophy. In young individuals, the diagnosis of cardiac 
hypertrophy may be made more reliably by comparison of LV 
wall thickness measurements with unaffected siblings rather 
than with conventional HCM wall thickness criteria. Age-
related penetrance also varies with different HCM disease 
genes. For example, individuals with β-MHC gene mutations 
are likely to develop LV hypertrophy within the first or 
second decades of life. In contrast, individuals with cMyBP-C 
gene mutations may have normal echocardiograms until the 
fifth or sixth decades (Fig. 56.7).65,111 In any HCM pedigree, a 
small number of nonpenetrant genotype-positive individuals 
may be found who do not exhibit LV hypertrophy at any age. 
In individuals with a family history but unknown genotype, 
a positive echocardiogram can confirm HCM, but a negative 
echocardiogram does not necessarily exclude this diagnosis. 
Genotype-phenotype correlations in large numbers of 
affected individuals are required to accurately define pat-
terns of LV hypertrophy across the spectrum of HCM gene 
mutations. Genetic heterogeneity is unlikely to account 
fully for phenotypic heterogeneity in HCM. The role of addi-
tional genetic factors and environmental factors such as 
blood pressure, exercise, diet, and body mass need to be con-
sidered when assessing LV hypertrophy in individuals with 
HCM.

Electrophysiologic Studies

Individuals with HCM who experience syncopal episodes 
should be evaluated noninvasively with Holter monitoring 
to identify sustained or potentially lethal ventricular arrhyth-
mias.127–130 While other techniques may be appropriate for 
investigation of syncope, including signal averaged electro-
cardiography,131–134 heart rate variability determination,135,136

and assessment of blood pressure response to exercise, the 
use of provocative studies such as tilt table testing has great 
potential for precipitating hemodynamic compromise in 
patients with HCM. Histopathologic changes in HCM may 

cause variation in conduction properties with dispersion of 
conduction velocity throughout the myocardium. Assess-
ment of QT dispersion may be a useful component in risk 
assessment for ventricular arrhythmias.137 Invasive electro-
physiologic studies have been used to identify spontaneous 
and provocable arrhythmias in patients at high risk of sudden 
death, including those with a strong family history or 
syncope, or survivors of sudden death. The predictive value 
of inducible ventricular arrhythmias in HCM, however, has 
been found to be low.130,138–141

Other Investigations

Radionuclide scanning with tomographic imaging (single 
photon emission computed tomography, SPECT) or magnetic 
resonance imaging is useful for delineating the location and 
extent of LV hypertrophy if the technical quality of transtho-
racic echocardiographic images is inadequate.142–145 Stress 
thallium studies may be useful to identify reversible defects 
caused by myocardial ischemia.146–148 Myocardial blood flow 
and metabolism may also be assessed using positron emis-
sion tomography.149–153 Gated radionuclide ventriculography 
is an alternative to echocardiography for assessment of LV 
size and contractile function.154 Cardiac catheterization and 
angiography are generally reserved for assessment of myocar-
dial ischemia and for evaluation prior to surgical procedures 
such as myectomy and cardiac transplantation.

Genetic Studies

Genotype-phenotype correlations in large populations will 
provide important data for diagnostic and prognostic evalu-
ation in HCM. Genotyping may be particularly useful in 
cases where the clinical diagnosis is ambiguous, such as in 
individuals without a family history of disease, when LV 
hypertrophy is accompanied by atypical electrophysiologic 
manifestations (e.g., WPW syndrome or atrioventricular 
block), or when LV hypertrophy occurs in trained athletes or 
in individuals with hypertension.155 Currently, gene-based 
diagnosis is expensive and available in few centers [Harvard 
Partners Center for Genetics and Genomics, Laboratory of 
Molecular Medicine (www.hpcgg.orgLMM/tests)]. With con-
tinued evolution of technologies that enable low-cost rapid 
automated DNA sequencing, gene-based diagnosis of HCM 
should become the standard of care and transform molecular 
genetics research into clinical medicine.

The availability of genetic testing creates a number of 
psychosocial, ethical, and medicolegal issues. While a geno-
type-positive diagnosis may stimulate beneficial lifestyle 
changes and therapeutic interventions, it may also create 
patient anxiety about having a genetic disorder and may 
potentially lead to discrimination by employers and insur-
ance companies. Identification of genotype-positive, pheno-
type-negative individuals creates particular difficulties since 
the clinical significance of this diagnosis is uncertain. Many 
of these questions will be resolved over time as genetically 
oriented research studies provide a better understanding 
of the clinical implications of genetic diagnoses. From a 
community perspective, these genetic data will need to be 
viewed in the context of an appropriate ethical and legal 
framework.
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Natural History

The natural history of HCM is variable; while some individu-
als remain asymptomatic throughout life, others have pro-
gression of symptoms with or without development of heart 
failure. A significant number of individuals die suddenly, 
often without premonitory symptoms. Estimated mortality 
rates in HCM differ according to the population studied. In 
hospital-based referral centers in which a large proportion of 
cases have moderate or severe symptoms, annual mortality 
rates of 3% to 6% have been found.156–165 In contrast, studies 
performed in community clinics have emphasized the rela-
tively mild symptoms and good survival in unselected popu-
lations with annual mortality rates of 1% or less.166–170

Longitudinal echocardiographic studies have demon-
strated that LV remodeling may occur during the course of 
this disease. Progressive increases in LV wall thickness are 
observed predominantly in adolescents and young adults 
with HCM. In later adult life, LV wall thickness generally 
remains stable or decreases.171–175 It is notable that the major-
ity of studies that have examined the natural history of LV 
hypertrophy in HCM have been performed in patients whose 
genotype is unknown. We have observed progression of LV 
hypertrophy in selected subgroups of genotyped individuals 
over the age of 40 years, such as those with cMyBP-C muta-
tions65 or the Arg663His β-MHC mutation176 (Fig. 56.10). Left 
ventricle wall thinning in individuals with long-standing 
disease may result from myocyte loss and fibrosis. 
Approximately 10% to 20% of individuals with HCM 
may ultimately develop symptoms and signs of dilated 
cardiomyopathy.174,177 Disease progression in HCM may also 
include the onset of atrial fibrillation. The prevalence of 
atrial fibrillation in affected individuals has been estimated 
to be 10% to 16%.125,178 Some HCM gene mutations or mor-
phologic variants appear to have an increased propensity for 
atrial fibrillation. For example, we observed a high incidence 
of atrial fibrillation (47%) and proximal septal hypertrophy 
in a family with the Arg663His β-MHC mutation (Fig. 
56.10).176

Sudden death is the most devastating result of HCM and 
may occur in young asymptomatic individuals or in those 
with chronic heart failure. Ventricular tachyarrhythmias are 
the cause of sudden death in the majority of cases. A complex 
interaction of electrical and hemodynamic factors may 
trigger ventricular tachyarrhythmias in HCM, including 

reentrant depolarization pathways around foci of myofibril-
lar disarray and fibrosis, supraventricular tachyarrhythmias, 
LV outflow tract obstruction, LV diastolic dysfunction, myo-
cardial ischemia, and systemic arterial hypotension.106,179,180

Bradyarrhythmias related to sinus node and atrioventricular 
node conduction abnormalities may cause sudden death in 
some individuals.181–183 Given the complexity of mechanisms 
that may precipitate ventricular arrhythmias, it is not sur-
prising that few clinical parameters have been found to reli-
ably predict individuals at increased risk for sudden death. 
Most investigators agree that high-risk patients include sur-
vivors of a cardiac arrest with documented ventricular fibril-
lation and young patients (<30 years) with a strong family 
history of sudden death.106,107,126,162,184–188 For the large propor-
tion of individuals who do not fall into the high-risk cate-
gory, consideration of the risk associated with other clinical 
parameters is relevant. In various study populations, con-
flicting results have been found, however, for the positive 
predictive value of factors such as young age at diagnosis, 
history of syncope, severity of symptoms, LV outflow tract 
gradient, LV wall thickness, left atrial size, and atrial fibril-
lation.107,162,167,168,170 Although these clinical variables may not 
identify individuals at increased risk for sudden death, their 
high negative predictive value does enable identification of 
individuals at low risk for sudden death. Adult individuals 
with HCM can be categorized as low risk if they are asymp-
tomatic or have mild symptoms and also have none of the 
following: a family history of premature death due to HCM, 
nonsustained ventricular tachycardia on ambulatory moni-
toring, a marked LV outflow tract gradient, substantial LV 
hypertrophy (>20 mm), marked left atrial dilation, and an 
abnormal blood pressure response during exercise.180

Genotype determination may be the single most impor-
tant component of risk stratification in HCM. It is likely that 
the majority of individuals considered at high risk due to a 
strong family history of sudden death also have a high-risk 
HCM gene mutation. It has been demonstrated that prog-
nosis varies considerably between different HCM gene 
mutations. For example, some β-MHC mutations such as 
Arg403Gln and Arg453Cys are associated with a reduced life 
expectancy and high incidence of sudden death, whereas 
other β-MHC mutations, such as Val606Met, have a rela-
tively benign course.185 Reduced survival has been shown 
with cardiac troponin T mutations and some α-tropomyosin 
mutations (Ala63Val, Lys70Thr).126,189,190 Survival was reduced 

FIGURE 56.10. Two-dimensional echocardiographic images in the 
parasternal long-axis view demonstrating progressive left ventricu-
lar morphologic changes caused by the β-MHC Arg663His missense 
mutation. (A) Mild proximal septal thickening (maximal wall thick-

ness <1.3 cm). (B) Focal proximal septal hypertrophy. (C) Predomi-
nant proximal septal hypertrophy with additional midseptal 
hypertrophy.
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in one family with the Asp175Asn α-tropomyosin muta-
tion190 but was normal in three other families with the same 
mutation,191 suggesting that genetic susceptibility may be 
modified by other genetic or environmental factors.

The location of a HCM gene mutation in the sarcomere 
has been proposed as an important determinant of the degree 
of sarcomere dysfunction and the severity of clinical outcome. 
The HCM mutations that alter amino acid charge have been 
associated with poor outcomes.185 However, while mutations 
that do not alter amino acid charge usually have a benign 
clinical course, some mutations that do alter amino acid 
charge also have a good prognosis.192 Electrophysiologic 
studies in mouse models may provide important clues into 
the mechanisms and differential propensity for sudden death 
between HCM gene mutations.

Treatment

The overall strategy for treatment of individuals with HCM 
is shown in Figure 56.11. In general, the approach to treat-
ment varies according to the classification of a patient into 
one of four categories: (1) genotype-positive, phenotype-nega-
tive; (2) asymptomatic and mildly symptomatic; (3) obstruc-
tive or nonobstructive HCM with heart failure; and (4) high 
clinical or genetic risk for sudden death.

Genotype-Positive, Phenotype-Negative Individuals

Genetic testing has led to the identification of a subgroup of 
individuals who are genotype-positive for HCM gene muta-

tions but who have no clinical evidence of disease (pheno-
type-negative). Most of these individuals ultimately develop 
symptoms and signs of HCM. Young genotype-positive 
members of families in which a β-MHC mutation has been 
found should undergo longitudinal follow-up with serial 
echocardiograms throughout adolescence and early adult 
life. Genotype-positive members of families with known 
cMyBP-C mutations should have serial echocardiograms 
throughout life. At present, there are no data to suggest that 
pharmacologic treatment of genotype-positive, phenotype-
negative individuals will delay or prevent the onset of LV 
hypertrophy or complications such as sudden death. However, 
regular assessment of clinically silent arrhythmias is war-
ranted in individuals with mutations associated with a high 
incidence of sudden death. The clinical implications of 
genetic abnormalities in the small percentage of individuals 
who remain nonpenetrant are not known.

Asymptomatic and Mildly 
Symptomatic Individuals

Genetic testing has also led to the identification of a large 
number of genotype-positive, phenotype-positive individuals 
who are asymptomatic. Further, community-based studies 
have shown that a significant proportion of individuals with 
HCM have only mild symptoms.166–170 These observations 
suggest that asymptomatic and mildly symptomatic indi-
viduals comprise the majority of the total HCM popula-
tion.180 Pharmacologic therapy is indicated for relief of mild 
symptoms but is generally not required in asymptomatic 
individuals. One possible exception is the young asympto-
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FIGURE 56.11. Schematic of the four principal clinical presentations of HCM with corresponding treatment strategies.
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matic patient with massive LV hypertrophy or significant LV 
outflow tract gradient, in whom the onset of symptoms 
would appear inevitable.180 There is no clinical trial evidence 
that prophylactic treatment with β-adrenergic blocking drugs 
or Ca2+ antagonists will prevent progression of disease or 
improve prognosis in asymptomatic or mildly symptomatic 
individuals.180 It should be noted, however, that prospective 
trials of prophylactic therapy have not been performed, 
largely because of the small study populations and relatively 
infrequent clinical end points. Asymptomatic or mildly 
symptomatic individuals should be discouraged from com-
petitive athletic activities but may participate in recreational 
sport provided that risk factors for sudden death are absent 
(see previous section). Detailed guidelines for exercise rec-
ommendations in young patients with HCM have recently 
been formulated.193

Heart Failure in Obstructive and Nonobstructive 
Hypertrophic Cardiomyopathy

Drug Therapy

Pharmacologic therapy is indicated for relief of symptoms in 
patients with heart failure in both obstructive and nonob-
structive HCM. β-adrenergic blocking drugs are useful pre-
dominantly for symptoms of angina and dyspnea and may 
improve exercise performance. The beneficial effects of β-
adrenergic blockers are mediated principally by their nega-
tive chronotropic effect, with reduced heart rates resulting 
in prolongation of the LV diastolic filling time.194–196 The 
negative inotropic effect of these drugs also contributes to a 
reduction of myocardial oxygen demand and may prevent 
increases in severity of the LV outflow tract gradient, which 
may occur during exercise when sympathetic tone is 
increased.195–197

Ca2+ antagonist drugs are an alternative to β-adrenergic 
blocking drugs for treatment of symptoms in HCM. Patients 
who do not respond to β-adrenergic blockers may experience 
symptomatic improvement with Ca2+ antagonists. There is 
no evidence that the combined use of these two drug classes 
has synergistic effects. Verapamil has been the most widely 
used of the Ca2+ antagonist drugs. Verapamil improves symp-
toms by increasing LV relaxation and diastolic filling.198–204

The vasodilatory effects of verapamil improve myocardial 
blood flow but may also potentially exacerbate LV outflow 
tract gradients in patients with obstructive HCM and pre-
cipitate hypotension and pulmonary edema in patients with 
elevated pulmonary pressures. The negative inotropic effects 
of verapamil may decrease LV outflow tract gradients but 
may also contribute to the development of heart failure. 
Other adverse effects of verapamil include suppression of 
sinus node automaticity and inhibition of atrioventricular 
conduction. Nifedipine causes less depression of atrioven-
tricular conduction but has a more potent vasodilatory action 
and may be particularly harmful in patients with obstructive 
HCM.205 Diltiazem has been used less frequently in HCM 
but may improve LV diastolic function.206,207

Disopyramide is a class IA antiarrhythmic drug that 
blocks the fast sodium channel and prolongs action potential 
duration. Disopyramide may improve symptoms in obstruc-
tive HCM by exerting a negative inotropic effect.208 Dis-

advantages of disopyramide include anticholinergic side 
effects and prolongation of the QT interval, which increases 
the propensity for ventricular arrhythmias such as torsades 
de pointes. A reduction of hemodynamic benefits with pro-
longed use of disopyramide has also been observed.107

Patients with nonobstructive HCM who develop heart 
failure should be treated with standard therapeutic agents, 
including diuretics, angiotensin-converting enzyme inhibi-
tors, and digitalis. These drugs should be administered with 
caution in patients with severe LV diastolic dysfunction who 
require high filling pressures for adequate ventricular filling 
and in patients with obstructive HCM. Although obstructive 
HCM has been regarded as a contraindication for these drugs, 
some data suggest that diuretics may reduce symptoms 
of pulmonary congestion when combined with β-adrenergic 
blockers or Ca2+ antagonists.209 A subset of patients with 
long-standing HCM and dilated cardiomyopathy who have 
severe heart failure that is inadequately controlled by medical 
therapy may ultimately become candidates for cardiac 
transplantation.

Atrial Fibrillation

Prevention of atrial fibrillation is an ideal goal in manage-
ment of patients with HCM that may be difficult to achieve 
due to the persistence of risk factors for arrhythmia develop-
ment, particularly increased left atrial size. Both electrical 
and pharmacologic cardioversion may be used to restore 
sinus rhythm in patients with paroxysmal episodes of atrial 
fibrillation but the risk of recurrence is high. Amiodarone is 
currently considered to be the most effective antiarrhythmic 
agent for prevention of recurrence in paroxysmal atrial fibril-
lation.128,210–213 Because of the serious side effects of amioda-
rone, however, alternative drugs such as sotalol are often 
used in younger patients. Both β-adrenergic blockers and 
verapamil may be used for rate control in patients with 
chronic atrial fibrillation.106,107,210 In patients with rapid atrial 
fibrillation that is refractory to pharmacologic treatment, 
ablation of the atrioventricular node and insertion of a per-
manent pacemaker may be required. Aspirin therapy should 
be considered for all HCM patients with echocardiographic 
evidence of left atrial enlargement; for those with 
paroxysmal and chronic atrial fibrillation, anticoagulation 
with warfarin is recommended to reduce the risk of 
thromboembolism.

Surgical Procedures

Ventricular septal surgery has been the gold-standard therapy 
for more than 40 years in patients who have high LV outflow 
tract gradients (>50 mm Hg) and severe symptoms that are 
inadequately controlled by medical therapy.106,107 The proce-
dure has evolved from a septal myotomy without muscular 
resection, to a myectomy in which a wedge of muscle is 
removed from the hypertrophied basal septum.214–223 Intraop-
erative transesophageal echocardiography is helpful in plan-
ning the extent of resection, assessing the immediate result, 
and detecting complications.108 Septal myectomy is often 
combined with mitral valve repair and/or coronary artery 
bypass graft surgery. In experienced surgical centers, 
the operative mortality of myectomy is now less than 
2%.107,216,218,220,222,223 Operative mortality may be greater in 
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elderly patients and in those in whom combined procedures 
are performed.223,224 Septal myectomy has been shown in 
large patient series to improve symptoms and functional 
capacity in obstructive HCM. The hemodynamic benefits of 
septal myectomy are achieved by basal septal thinning, 
which reduces or abolishes the LV outflow tract gradient and 
systolic anterior motion of the mitral valve, with consequent 
reductions in LV pressures and mitral regurgitation, and 
increases in LV filling and myocardial perfusion.107,146,225–228

Symptomatic improvement persists for 5 years or more after 
surgery in approximately 70% of patients.215–223 Long-term 
survival after myectomy has been reported as 99%, 98%, and 
95%, at 1, 5, and 10 years, respectively, and does not differ 
from that expected in the general U.S. population.229,230

Nonsurgical Techniques for Reduction of Left 
Ventricle Outflow Tract Gradients

Not all patients with severely symptomatic obstructive HCM 
are suitable candidates for open-heart surgery, due to comor-
bidity or advanced age. Moreover, access to surgery may be 
a limiting factor, since expertise in these procedures is 
restricted to a relatively small number of specialized referral 
centers. These considerations, together with economic pres-
sures within the health care system, have contributed to 
growing interest in the development of alternative nonsurgi-
cal methods for LV outflow tract gradient reduction.

In the early 1990s, there was a wave of enthusiasm for 
dual-chamber pacing. With this procedure, gradient reduc-
tion putatively results from paradoxical motion of the inter-
ventricular septum, due to preexcitation of the right ventricle. 
Initial observations in nonrandomized, unblinded studies 
reported that dual-chamber pacing caused sub stantial reduc-
tions in both the LV outflow tract gradient and symp-
toms.231,232 Subsequent more stringent evaluation, including 
three randomized crossover studies, has found the effects of 
pacing to be less favorable.233–236 There are no data to suggest 
that pacing either alters the course of the disease or reduces 
the risk of sudden death. Dual-chamber pacing is not cur-
rently considered to be a first-line therapy, but may have a 
limited role in a subgroup of elderly patients.237

More recently, percutaneous alcohol septal ablation has 
been introduced as an alternative to myectomy in obstruc-
tive HCM.238 This is a catheter-based intervention in which 
1 to 3 mL of 96% to 98% alcohol is injected into a septal 
perforator branch of the left anterior descending coronary 
artery, to create a myocardial infarction in the proximal 
ventricular septum. Myocardial contrast echocardiography 
enhances the efficacy and safety of the procedure by identify-
ing the most appropriate target arteries.239,240 Acute gradient 
reduction may be observed, associated with septal stunning 
and altered LV ejection dynamics. Longer-term gradient 
reduction results from wall thinning and hypokinesis of the 
basal septum, which enlarges the LV outflow tract and 
improves mitral valve function. Alcohol septal ablation has 
been shown to have beneficial effects on symptoms and func-
tional capacity over follow-up periods ranging from 2 to 5 
years.241–248 This procedure is widely available, has less dis-
comfort and is less expensive than surgery, avoids cardiopul-
monary bypass, and requires relatively short hospital 

admissions. The procedure-related mortality rate is 1% to 2% 
in experienced centers, equivalent to that of surgery.245,247,248

Treatment failures can occur, and repeat ablations may be 
required. Because of the close proximity of the atrioventricu-
lar bundles, conduction-system abnormalities are common 
complications, with right bundle branch block and transient 
heart block in 60% to 100% of patients, and high-grade atrio-
ventricular block requiring permanent pacemaker implanta-
tion in 5% to 30% of patients.241–244,249–251 Less frequent but 
significant complications include anterior myocardial infarc-
tion, due to alcohol reflux into the left anterior descending 
coronary artery, coronary dissection, perforation, and throm-
bosis. Recently, considerable debate has been generated about 
the potential role of alcohol septal ablation as a primary 
treatment modality for obstructive HCM.230,237,252 Although 
the number of ablation procedures performed has been rapidly 
escalating, and by far exceeds the number of myectomies, no 
randomized trials comparing these techniques have been 
performed, and long-term follow-up data for septal ablation 
are lacking. Several recent case reports of monomorphic ven-
tricular tachycardia in patients who have undergone septal 
ablation have raised concerns that the alcohol-induced myo-
cardial infarction generates an arrhythmogenic substrate 
that might exacerbate a preexisting disease-related propen-
sity for malignant tachyarrhythmias.253–255

Prevention of Sudden Death

Patients with high clinical or genetic risk for sudden death 
due to ventricular arrhythmias may be treated with amio-
darone (100 to 300 mg per day) or an implantable cardio-
verter-defibrillator.237,256–263 Two large clinical trials, 
Antiarrhythmics versus Implantable Defibrillators (AVID)264

and multicenter automatic defibrillator implantation trial 
(MADIT),265 have shown survival advantages with the use 
of implantable cardioverter-defibrillators compared with 
antiarrhythmic drug therapy in selected populations of 
patients at high risk of life-threatening ventricular arrhyth-
mias. Neither of these studies specifically examined indi-
viduals with HCM. Patients enrolled in the AVID study 
were survivors of episodes of ventricular fibrillation or ven-
tricular tachycardia associated with hemodynamic compro-
mise. Those enrolled in MADIT had episodes of nonsustained 
ventricular tachycardia, low ejection fractions, and induc-
ible, nonsuppressible ventricular arrhythmias during elec-
trophysiologic testing. A multicenter study to evaluate the 
use of implantable cardioverter-defibrillator devices in 
patients with HCM is currently underway. Empiric use of 
antiarrhythmic drugs or implantable cardioverter-defibrilla-
tors in HCM must therefore reflect careful risk stratifica-
tion based on an individual’s symptoms, age, family history, 
and genotype. Anticipated event rates, availability, and cost 
will certainly influence these decisions. Although a small 
number of individuals who do not fall into the high-risk 
category may experience sudden death, it is difficult to iden-
tify these individuals on the basis of clinical parameters. 
Further, since the majority of individuals with HCM do not 
die suddenly, and given the side effects and expense of 
current therapies, prophylactic treatment to prevent sudden 
death in all genotype-positive individuals is not indicated.
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