
8. Soft Computing Models for Fault 
Diagnosis of Conductive Flow Systems 

Viorel Ariton 

This chapter focuses on the fault diagnosis of artefacts often met in industry, but not 
only, that execute various functions involving conductive flows of matter and 
energy, i.e., multifunctional conductive flow systems (MCFSs). The proposed 
MCFS abstraction is close to the human diagnostician way of conceiving entities 
and relations on physical, functional and behavioural structures. Diagnosis 
reasoning, performed by human diagnosticians, is intrinsically abductive reasoning. 
This chapter presents the abduction by plausibility and relevance in a connectionist 
approach. The case study on a hydraulic installation of a rolling mill plant gives 
examples on the knowledge elicitation process and on the diagnostic expert system 
building and running. 

8.1. Introduction 

Fault diagnosis of complex systems is often a difficult task, due to the incomplete, 
imprecise and uncertain knowledge on behaviours and interactions encountered in 
the real-life context. Diagnostic reasoning is abductive reasoning, thus it is different 
from the common (deductive) reasoning. The latter starts from causes and leads to 
effects, hence the “explanation” is based on a definite space of causes to a definite 
set of effects, while the first starts from effects to reveal causes. Hence, the 
“explanation” is based on a presumed space of causes with many-to-many links to a 
(reduced) space of effects. In real life, the diagnosis itself proceeds differently for 
similar target systems running in different contexts. On top of those difficulties, one 
may notice that computer applications for fault diagnosis face the modelling and the 
parameter identification burdens, both after a challenging knowledge elicitation 
effort on the target area. 

Consequently, fault diagnosis of complex systems often relies on human 
diagnosticians, who usually perform knowledge acquisition on faulty behaviours, 
later used to “recognize” faults from (some) instance effects. In a simple view, they 
use a mapping of faults to effects, for searching causes possibly linked to the 
instance effects, and sequentially refining the diagnostic based on knowledge in the 
area and from practice. 

The artificial intelligence community concerned with diagnosis obtains the 
mapping either by methodical experiments – exhausting the faults’ space and 
collecting the effects – or by means of some knowledge of human experts from 
practice. However, the computational models for fault diagnosis also require 
methods to reduce the many-to-many relations of the reverse mapping from effects 
to faults, which commonly are known as human diagnostician’s deep knowledge. 
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The diagnostic is then obtained: (1) using a matching procedure from actual effects 
to possible faults – as in the case-based diagnosis or in the neural/causal network-
based diagnosis, (2) using a transformed effects space regarding the difference from 
the expected and the actual behaviour labelled with faults – as in the model-based 
diagnosis, or (3) using an "intelligent" look up procedure performed through a 
combined effects space, according to human diagnostician knowledge on 
phenomena specific to the target system in normal and faulty running – as in 
knowledge-based fault diagnosis. 

Computational models of the above approaches have shortcomings at both 
phases above, most of them revealed when the target system runs in a real context: 

a) For the faults-to-effects mapping phase: cases (1) and (2) above 
involve experiments which are barely possible for (all) faults, hence 
no complete mapping is possible, while in case (3), the mapping 
involves additional structures on causal relations between faults and 
effects, coming from some explanations of phenomena taking place. 

b) For the diagnostic decision phase: in cases (1) and (2), the 
computational models are simpler but the diagnostic not entirely 
reliable, while in case (3) the backward chaining from effects to faults 
is applied in specific ways to the various running contexts. 

Knowledge handled in cases (1) and (2) is often identified as “shallow 
knowledge,” while that in case (3) is considered “deep knowledge.” In usual cases, 
target systems involve flow conduction; hence the effects propagate throughout the 
(entire) system and thus make the diagnosis much more difficult. In that case, the 
combinatorial growth of the faults-effects mapping – cases (1) or (2), and because 
the deep knowledge refers to the model of the entire system – case (3). However, 
for systems in real life, neither the complex mapping nor the (many) complex 
models are possible, and that’s why the human diagnostician’s role is crucial. It is 
worth noting that running contexts of real systems are of greatest importance, while 
identical systems may behave differently – due to age, environment, maintenance. 

The present chapter first states some considerations on the diagnosis as an 
abduction problem solving which exhibits an intrinsic connectionist nature: the 
many-to-many relations of the effects to causes may get forward (excitatory) links 
meant for activation of plausible causes, then relevant causes result from 
competition between the plausible ones. The artificial neural network (ANN) 
implementation of the connectionist model is enriched with specific architectural 
features (structures of neural sites) meant to solve all types of abduction problems 
met in the literature. 

The nodes of the connectionist model are manifestations, symptoms and 
faults. Human diagnosticians handle such concepts in a discrete and qualitative 
way. In order to obtain a sound representation of the concepts and their qualitative 
relations, the chapter develops the analysis on modelling means that lead to discrete 
knowledge pieces and their relations, as human diagnosticians handle, regarding 
normal and faulty behaviour of a target system. 

The chapter focuses on the class of conductive flow systems that perform 
more functions at a time; such systems are most encountered in technical and 
economical domains, and due to their multifunctional and flow conduction natures 
they are termed multifunctional conductive flow systems (MCFS). Sections 8.4 and 
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8.5 develop appropriate knowledge elicitation schemes, in a multi-modelling 
approach, to discriminate concepts and relations, as knowledge pieces involved in 
fault diagnosis. 

All concepts and relations take part in appropriate Computational 
Intelligence models which combine human diagnosticians’ deep and shallow 
knowledge on the target system behaviour, based on fuzzy logic and possibilistic 
modelling of incomplete and imprecise deep knowledge on manifestations, and 
based on neural network blocks for abductive problem solving of both fault 
diagnosis and next best test policy in refining the diagnostic. 

The neural networks embed the shallow knowledge as data sets from 
practice and experiments for the plausibility links between faults and 
manifestations. Deep knowledge helps finding the relevant causes (from the 
plausible ones), and it is embedded in the neural sites of the specific abduction 
problems on manifestations and faults in the target system. Also, it is embedded in 
the links between faults and their specific symptoms corresponding to the four 
“orthogonal transport anomalies” (first introduced in (Ariton, 2003)). Additionally, 
the deep knowledge on the physical structure of the target system is embedded as 
the projection structure of neural blocks, each corresponding to a Bond Graph 
junction of the flow conduction system (Ariton, 2001). 

Whilst deep and shallow knowledge are combined and embedded in the 
neural network, the training does not require exhaustive experiments on faults in the 
complex target system (which are barely possible in real life), and the diagnosis 
exploits the common view on the whole system as an interconnection of modules; 
to each module a neural network block is attached, thus easier to handle and train. 
The architectural features that embed the deep knowledge allow a better and 
comprehensive diagnostic, and also offer the opportunity to generate dedicated 
diagnosis applications for each concrete complex target system and its real-life 
running context. That opportunity is of most importance for the diagnosis task 
while two identical target systems may behave differently. While for the control 
task of a system it is natural to provide all homeostatic conditions to obtain the 
intended aim, the diagnosis task deals with the system as it is, in its real context and 
local conditions. 

8.2. Diagnostic Problem Solving by Abduction 

Abductive reasoning is a challenge for philosophy, science and practice. Abduction 
is sometimes creative while it puts effects before causes (Bylander et al., 1991; 
Schurz, 2002). Computer applications require effective computational models, 
commonly focusing on the connectionist nature of the abduction problems (Peng 
and Reggia, 1990; Ayeb et al., 1998). 

8.2.1. Abduction Problems in Diagnosis 

In the real world, fault diagnosis involves open spaces of manifestations and faults, 
while both are not completely known in real contexts. Unlike deductive reasoning , 
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which focuses a definite aim and may consider the targeted part isolated from the 
whole, abductive reasoning (e.g., in diagnosis) may not ignore causes (and effects) 
without corrupting the result (i.e., the diagnostic). For example, if the excessive 
heat of the air around a hydraulic installation is neglected, one may assert that 
abnormal running is due to a faulty component – which may be false; a similar case 
arises when ignoring the quality of the mineral oil flow. 

In fault diagnosis, the cause may represent one or more faults occurring at 
a moment, and the effects are subsequent deviations from the normal running that 
appear. A huge number of causes come from combinations of various faults and 
various external events, so the set of all possible causes is never taken into 
consideration (it is not realistic). On the other hand, some effects are observed and 
become manifestations, and some are not “visible” – due to the lack of information 
(e.g., no sensors). 

Both aspects presented in the previous paragraph are facts of the intrinsic 
knowledge incompleteness of the diagnosis, actually of abductive reasoning in 
general. So, diagnosis always deals with open spaces of causes and effects; 
moreover, it deals with imprecise and uncertain knowledge of human experts on the 
real behaviour of the target system. However, for feasibility reasons, both the space 
of causes and the space of effects should be closed spaces. In this respect, special 
classes of causes and effects should be introduced – e.g., the “normal” situation or 
“unknown” causes. 

Studies of Bylander et al. (1991) on abductive reasoning reveal four 
categories of abduction problems:  

a) independent abduction problems – no interaction exists 
between causes; 

b) monotonic abduction problems – an effect appears at 
cumulative causes; 

c) incompatibility abduction problems – pair of causes are 
mutually exclusive; 

d) cancellation abduction problems – pair of causes cancel 
some effects, otherwise explained separately by one of them. 

Ayeb et al. (1998) have a sound approach in this respect. They introduce a 
fifth category: 

e) open abduction problems – when observations consist of 
three sets: present, absent and unknown observations. 

The discrimination of the abduction problem type is specific to the 
particular behaviour of the target system and it is a matter of deep knowledge of the 
human diagnostician on causes and effects in the local context. For each type of 
abduction problem, Section 8.2.4.2 presents a suitable architectural feature, which 
may enter the neural network implementation for the abductive problem solving. 

8.2.2. Abductive Reasoning through Plausibility and 
Relevance

Direct causal links between effects and causes may represent plausibility criteria 
(Bylander et al., 1991). From the set of all plausible causes, only a subset represent 
actual causes, usually obtained through a parsimonious principle. Konolige (1992) 
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considers the minimum cardinality as a relevance criterion, and applies it to the set 
of plausible faults to obtain the diagnostic subset. 

In the presented approach the concept of relevance gets a specific 
representation, namely, it assumes some grouping of plausible causes – following 
specific points of view, then selecting the most relevant causes from a group – 
following competition or sorting/choosing procedures (Ariton and Ariton, 2000). In 
the connectionist implementations, plausibility links get direct representations as 
forward links between specific effects to specific causes As a concept, the 
“relevance” is not often discussed in the literature, so below a special attention is 
given to the subject. 

A relevance group is a set of causes that are hardly likely to occur the 
same time – e.g., the set of faults for a particular component in the target system; in 
other words, a faulty component may exhibit only a small number of faults at a time 
(usually, only one). The point of view from which causes may enter a relevance 
group is the relevance scope, and it reflects the human diagnostician’s deep 
knowledge on the faulty behaviour of the target system. The relevance criterion is 
the method used in selecting relevant cause(s). In order to perform selection, a 
quantitative quotient (e.g., “certainty” or “activation”) is provided to rank causes. 
Following the relevance criterion (usually “minimum cardinality”), the selection of 
“most relevant” causes proceeds, e.g., by competition inside the group – for the 
connectionist implementation, or by choosing the cause with greatest activation. 
Other relevance criteria may state specific order of causes or specific quantitative 
relations between activations. 

In the case of fault diagnosis, the minimum cardinality is usually applied 
as a relevance scope for the single fault diagnosis, disregarding it refers to a 
component or to the whole target system. However, the concept of relevance may 
be extended to the selected aspects met in real-life situations, i.e., to other 
“relevance features.” For example, in conductive flow systems, a group of faults 
may indicate “leakage” symptom, so they all form a relevance group; if some of 
such faults in the group are plausible, the most relevant will be the one exhibiting 
the maximum relevance feature (in that case “leakage”). 

The abduction problem solving proceeds by applying plausibility and 
relevance criteria to the sets of all effects and causes, as further described; the input 
is the set of instance effects and the output is the set of plausible and relevant causes 
– which form the diagnostic. In Sections 8.2.4 and 8.2.5, the plausibility and the 
relevance get connectionist models adequate to computational implementation. 

8.2.3. Connectionist Approach to Abduction 

Many-to-many causal relations between faults and manifestations get reversed 
when reasoning by abduction. However, no inverse exists for the complex relations 
when real problems are under concern – e.g. fault diagnosis of a real complex 
installation. In such a case, one fault evokes many manifestations and the same 
manifestation is evoked by many faults. Moreover, manifestations may enter 
conjunction grouping to one fault, whereas disjunction grouping for others. 



236   V Palade, CD Bocaniala and L Jain (Eds.)

8.2.3.1. Qualitative Plausibility and Quantitative Relevance  
It is worth noting two interesting characteristics of the above concepts: plausibility 
is qualitative and relevance is quantitative. So, in order to find:  

plausible causes, one should use some qualitative processing to 
select all causes complying with the observed current situation, 
e.g., asserting the faults related to the instance manifestations that 
appeared; 
relevant causes, one should use some quantitative processing to 
select only causes exhibiting a certain degree (e.g., greater than a 
given threshold value) from the set of plausible ones. 

The practical conclusions on issuing a connectionist model for abductive 
reasoning by plausibility and relevance are: 

the activation mechanisms involved in plausibility criteria should 
allow a “logical overload” of numbers toward the qualitative 
processing on causes; 
the competition mechanisms for relevance criteria should assess 
(numerical) degrees which enter the quantitative processing on 
relevance of causes. 

The logical overload is meant for affecting “quantities” (e.g., numbers) in 
order to become “qualities” (i.e., meanings) thus suited for plausibility criteria; the 
meaning is attached to each range of values, corresponding to the significance of 
that range taken from the deep knowledge of domain experts. The simplest logical 
overload attaches two complementary meanings for the two ranges of numerical 
values obtained after splitting the whole domain based on a border value (i.e., a 
threshold) with certain significance for the variable. 

That simplest logical overload is actually used in the neural network 
implementation of the plausibility: if the link strength to a fault-neuron, coming 
from a manifestation-neuron, is greater than 0.5 (the doubt threshold), then the link 
is “important” and gets that meaning. Therefore, it has to pass the gates into the 
fault-neuron, i.e., enter the input function (the stimuli sum). Otherwise, it is “not 
important” and hence the gate to the fault-neuron is blocked, i.e., the input stimulus 
does not enter the input function (actually, the input value is set to 0). Practical 
examples on how to use the logical overload in specific abduction problems in 
neural network implementation are presented in the next subsections. 

8.2.3.2. Parallel Plausibility and Sequential Relevance 
Relations between causes and effects (in this direction) correspond to the deductive 
explanations and indicate which causes determine which effects. The many-to-
many relations between effects and causes (in the reverse direction) show which 
effects may evoke which causes, but instance effects do no indicate instance causes 
(that really occurred), while no inverse of the direct relations exists. Therefore, in 
the general case, complex relations between effects and causes naturally lead to a 
connectionist model which, in an artificial neural network (ANN) implementation, 
will present excitatory links for the plausibility and competition links for relevance. 

In a general approach, abduction problem solving proceeds by multiple 
applications of the following functions (Ariton and Ariton, 2000): 



Computational Intelligence in Fault Diagnosis   237 

plausibility(P_CRITERIA, EFFECTS) – which originates the 
plausibility of each element from the set of CAUSES, based on 
the set of instance EFFECTS, and according to plausibility 
criteria P_CRITERIA.
relevance(R_CRITERIA, CAUSES) – which yields the subset of 
CAUSES selected from the set of plausible ones, observing 
R_CRITERIA specific to each relevance grouping resulted from 
the relevance scopes. 

Note that entities in CAUSES and EFFECTS sets exhibit values in [0,1] 
interval. The above functions apply to each entire set of entities: first, all instance 
EFFECTS contribute to activation of plausible causes (so they attain nonzero 
values), then the entire set of CAUSES enters the relevance competition (repeatedly) 
while the less plausible causes already have near-zero values, thus eliminated. That 
assures a “classical” connectionist implementation in the ANN approach. 

P_CRITERIA refer to deep knowledge of human experts (related to known 
causal relations between effects and causes) or they refer to shallow knowledge 
after the ANN train, following data collected from experiments on causes and 
effects. Plausibility may operate in parallel on EFFECTS to activate the related. 

R_CRITERIA refer solely to deep knowledge of human experts on the 
various cases where causes show specific relations between them, specific links to 
running contexts or particular behaviours. Relevance processing is repeatedly 
(sequentially) applied, until a final definite set of causes (i.e., the diagnostic) 
achieve the highest stationary activation. In single fault diagnosis, the cardinality 
accepted for the diagnostic set is 1, in multiple fault diagnosis cardinality is greater 
than 1. How sequential diagnosis proceeds is presented in Section 8.7.3.

8.2.4. Neural Models of Plausibility for the Abduction 
Problems

In the neural network model, plausibility refers to forward (excitatory) links 
between effects and causes. A cause (e.g., fault) becomes the output neuron Fi and 
an effect (e.g., manifestation) becomes an input neuron Mj. The activation of a 
cause is the result of cumulative action effects associated to it, and it may be 
expressed by the well-known neural activation function applied to inputs Mj:

Fi = f( M
| |

1

M
ij

j
w j + i) (1)

i.e., each manifestation from the set M (with |M| the cardinality) evokes, in a 
specific measure (i.e., weight) wji, the fault Fi, if the sum becomes greater than the 
threshold i.

However, human diagnosticians often take into account a manifestation 
linked to a fault in a simple, “logical manner” (Ariton and Palade, 2004): 
manifestation Mj is “valid” (as a witness) for a fault Fi only if its activation is 
greater than a threshold, specific to the given manifestation-to-fault link. In the 
simplest way, if any two neurons M and F have activations in [0, 1] and the weight 
on their link is w, the maximum contribution of M to F is w (when M=1) and it is 
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still “valid” when M>0.5 (when M is above the doubt value) – i.e., its contribution 
is greater than w/2.

The logical overload consists in attaching certain linguistic attributes to the 
generic input I of a cause neuron, e.g., exceeding the doubt level, w/2:

if I > w/2 then I = “valid” else I = “not valid” (2) 
This way, each link’s strength is logically overloaded, and it makes 

possible the logical aggregation of effects to (evoked) causes, as required by each 
type of abduction problem. 

8.2.4.1. Neural Sites and Specific Logical Aggregation 
The ANN computational model of abduction for plausibility of the logical 
aggregation of input-effects to cause-neurons is performed by means of dedicated 
“neural sites,” as specific architectural features that may embed deep knowledge in 
the connectionist model, beside the native shallow knowledge – which is embedded 
by training. The logical aggregations envisaged are (Ariton and Palade, 2004): 

i) disjunctive aggregation, performed by the “disjunctive site” 
through the default cumulative processing (that is already the 
input function of the “classical” neuron), i.e., all m inputs 
cumulate their activation Ij:

1

m
j

j
O I (3)

ii) conjunctive aggregation, performed by the “conjunction site,” 
whose output O obeys the rule given by Eq. 4. After the logical 
overload, the inputs I1, I2 are aggregated according to the truth 
table from Figure 8.1f: 

if I1 > w /2 AND I1 2 > w2/2 then O = I1 + I2  else O = 0 (4) 
iii) negation, performed by the “negation site”. The output O is 
obtained from  input I according to Eq. 5 and the truth table in 
Figure 8.1g:  

O = w - I (5)
Note that the logical aggregation upon links’ strengths modifies only the 

input value of the cause-neuron; it does not affect the usual processing inside the 
neurons in the original neural network (i.e., input or activation neuron functions). 
So, the training and the recall procedures do not change (e.g. for perceptron or 
counterpropagation neural networks). 

8.2.4.2. Structures of Sites and Neurons for Different Abduction Problems 
Each type of abduction problem in Section 8.2.1is solved through a 

specific structure of neural sites, involving forward links from effects to causes as 
follows:
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Figure 8.1. Various abduction problems solved by neural network features using logical 
overload of the links between neurons. 

a) For independent abduction problems – excitatory links apply 
directly from the effect Mj to the corresponding cause Fi (see 
Figure 8.1a). If there also exists a conjunction grouping of 
the effects to the cause, conjunction site(s) are used at the 
input of the cause-neuron. Note that, by default, the neuron 
implements a disjunctive grouping of inputs through its input 
(sum) function (Eqs. 1 and 3).  

b) For monotonic abduction problems – the causes Fi and Fl
both evoke the same effect Mj, hence they suffer conjunction 
with one another and with the common effect through 
conjunction sites, as shown in Figure 8.1b, and expressed by 
the rule: 

(6)Fi  Fl AND Mj, Fl  F AND Mj
c) For incompatibility abduction problems – the pair Fi and Fl

of causes are mutually exclusive (i.e., they are not both active 
at the same time), both evoking the same effect Mj. Each of 
them suffers conjunction with the negation of the other cause 
and with the common effect, as shown in Figure 8.1c, and 
expressed by the rule: 

(7)Fi  NOT Fl AND Mj, Fl NOT Fi AND Mj
d) For cancellation abduction problems – the pair of causes Fi

and Fl reduce the effect Mj when both occurred, although 
each of them evokes it separately. They suffer conjunctions 
as in Figure 8.1d, according to the following rule: 

(8)Fi  Fl AND NOT Mj,   Fl Fi AND NOT Mj
e) For open abduction problems – the difficulty is dealing with 

absent effects, so the cause Fi is activated if no effect Mj
exists (Figure 8.1e), according to the rule: 
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(9)Fi  NOT Mj
Links between cause-neurons in abduction problems of types b, c, d, have 

all weights between cause-neurons equal to 1 if they are symmetric (one to 
another), else they are set according to deep knowledge of the human expert. 

Plausibility criteria are now embedded in:  
weights of the forward links between effects and causes – shallow 
knowledge;
neural sites structures attached to cause-neurons (according to 
respective abduction problem) – deep knowledge;  
thresholds set for the site’s inputs – deep knowledge.  

The training procedure embeds the shallow knowledge by strengthening 
links between effects and causes as from the training patterns. At the recall phase, 
the sites trigger the inputs of the neurons just to obtain plausible causes; so, they 
only avoid activating less plausible causes, but do not modify the values of 
activations of the plausible ones – according to instance values of the (input) effects 
appearing. Even the structure of the neural network looks different, the original 
training procedure of the (two-layer) neural network does not change (no matter the 
type of the neural network used – e.g., perceptron, counterpropagation). 

8.2.5. Neural Models of Relevance and Layered 
Modularization

The neural model of the relevance is competition. Relevance assumes a numerical 
value attached to causes, and the relevant cause(s) have the highest values that also 
exceed a given threshold. The cardinality of the relevant set of causes is 1 if 
“winner takes all” competition applies, or greater (if a relaxed competition applies). 
So, the relevant causes observe the minimum cardinality condition. 

Relevance is a sequential processing: each relevance criterion is applied 
one after another in a given order, each criterion assuming the following steps: 

i) Consider plausible causes in the current relevance group whose 
values exceed the given threshold. 
ii) Start competition between causes inside the relevance group. 
iii) Select relevant cause(s) observing the given cardinality (1 for 
single fault diagnosis). 

Both pieces of information, the order of the relevance criteria applied and 
the causes belonging to each relevance group, are a matter of the human 
diagnostician’s deep knowledge on refining the diagnostic. The numerical values 
involved in competition and the selection of causes come from the plausibility 
processing of causes based on instance effects. 

Due to the fact that plausibility activates in various degrees the causes, 
competition always proceeds on the whole relevance group of cause (not only on 
the plausible ones); less plausible have lower (or zero) values and are easily 
eliminated, so the computational procedure is applied identically. 
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8.2.5.1. Relevance Scope  
Any cause should enter a relevance group, i.e. no cause is relevant by itself 

while it is either already known or permanent. A relevance group usually consists of 
causes that share the same characteristics (Ariton and Ariton, 2000). For example, 
faults occurring at a given component form a relevance group, faults exhibiting 
“leakage” symptom at a given module form a relevance group, etc. Note that one 
cause (e.g. fault) may take part in more relevance groups, due to its properties. 

The groups of causes are actually obtained by performing some 
modularisation on the entire set of causes observing relevance criteria that fall into 
one of the following categories: 

Scope on physical structure – concerning the physical units as 
locations for causes: all the faults at the module level form a 
relevance group, and all the faults at the component level form a 
relevance group; 
Scope on functional structure – concerning the specific running 
contexts (i.e., activities or process phases) in which causes are 
“visible”: all the faults whose effects appear only when the piston 
of a hydraulic cylinder is moving form a relevance group; 
Scope on generic effects – usually concerning the same symptom: 
all faults evoking “leakage” symptom form a relevance group, 
while those evoking “clogged” symptom form another relevance 
group.

The relevance criterion is usually the minimum cardinality on plausible 
causes, meaning that causes are unlikely to appear simultaneously. It is applied at 
the various unit levels (physical or functional). Other relevance criteria are: faults
more likely to occur (due to component’s age or state – as from human 
diagnostician’s experience), faults requiring further observations (by means of 
human operator tests), etc. In such cases, to each cause is attached a numerical 
value necessary in the processing presented above. 

8.2.5.2. Layered Modularisation of Causes 
A cause may enter various relevance groups of the same set of causes, in a layered
modularisation. Each layer refers to a scope – regarding the modularisation of the 
set of causes, for each relevance scope obtaining two (or more) “relevance groups.” 
For example, some layers refer to the physical structure: one layer contains groups 
of causes associated to modules and another one to components; other layers refer 
to generic symptoms associated to faults: those producing “leakage” and those 
producing “obstruction.” For each layer a specific modularisation occurs, 
corresponding to the scope it represents. 

Suppose that the layered modularisation of causes is performed according 
to n relevance scopes, so n-times partitioning of the same set of causes is obtained. 
Each layer L of relevance induces a specific modularisation of causes and has a 
specific weight WL in the economy of the diagnosis. A layer (and its scope) may be 
more relevant than another, provided weights are normalized, i.e.: 

1
1

n L

L
W (10) 
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The relevance criteria, scopes and layers, groups and weights of layers all 
come from the deep knowledge of human diagnosticians, and they are indicated 
during knowledge elicitation time. The competition that takes place over causes in a 
relevance group, is independent of the forward plausibility processing in the neural 
network structure, no matter what ANN implementation is chosen. So, the 
relevance may be added without altering the original neural network functioning to 
an appropriate feedforward ANN architecture. 

8.2.5.3. Relevance of the Faulty Situation Against the Normal Situation 
A component is the final location in fault isolation, corresponding to the set of all 
faults as possible causes of some faulty behaviour of that component. However, the 
space of faults should be completed with the “normal” situation. The neural 
network output layer will contain F0, F1,…, Fn-1 neurons indicating faults, and the 
Fn neuron indicating the normal situation. 

The Fn cause (and neuron) is of capital importance, while the NORMAL
situation enters the relevance competition along with the FAULTY situation. So, 
before fault isolation proceeds, the fault detection attests the FAULTY situation 
against the NORMAL one. The relevance group is the set of F0, F1,… Fn causes, and 
the relevance criterion (Eq. 11) asserts the FAULTY situation:  

if then FAULTY
1

0
)1-n,1,0,i(5.0 Fnn

n

i
FiFi (11) 

In other words, if any of the activated faults has a truth value greater than 
the “doubt value,” and the relative level of the NORMAL situation is greater than all 
current (activated) faults, then the FAULTY situation is credited. 

In conclusion, the connectionist model for abduction problem solving, 
using plausibility and relevance presented in this paper, is fully functional for all 
categories of abduction problems, as well as for disjunctive and conjunctive 
groupings of effects to a cause. 

The proposed neural network model for abduction is a two-layer feed-
forward neural structure, similar to perceptron or counterpropagation, that is 
completed with neural site structures for plausibility and relevance grouping / 
competition for relevance. The presented approach is more natural and simpler than 
the unified connectionist model for abduction presented by Ayeb et al. (1998). It 
also allows various “classic” ANN implementations, if appropriate feedforward and 
competition links are provided. 

8.3. Aspects of Human Knowledge Usage in Fault 
Diagnosis

Fault diagnosis deals with concepts as fault, fault mode, manifestation, symptom or 
anomaly. The diagnostic problem solving is commonly conceived in two stages: 
Fault Detection, then Isolation of the actual faults (Palade et al., 2002; Uppal et al.,
2002; Bocaniala et al., 2004; 2005). The literature in the field defines the above 
concepts slightly different from one researcher to another, depending on the 
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approach or the actual implementation or method proposed. Diagnosis (DX) 
approaches deal with Artificial Intelligence (AI) and Cognitive Sciences concepts 
(Cordier et al., 2000) and are closer to the human diagnostician way of acting. 

In real life, fault diagnosis faces three types of inconveniences with respect 
to the faulty behaviour of a target complex system (Davis, 1993): 

Incomplete knowledge – the set of all (single or multiple) faults, 
effects and relations between them is not completely known. 
Diagnosis relies on a small set of causal relations (deductive) and 
empirical associations between faults and causes, and on a vague 
idea on how to proceed in FDI. Some manifestations are not 
known, while the human operator may supply information from 
test points, if required. When propagated effects exist, they 
increase the uncertainty on the faulty behaviour (e.g., in 
conductive flow systems (Ariton, 2001)). 
Imprecise knowledge – there is perpetually a drift in any 
measured value of a variable, the human expert having only a 
clue on abnormal ranges of values for each variable.  
Uncertain knowledge – when they have occurred, manifestations 
may not be entirely “abnormal”; that is, faults and manifestations 
occur “with some degree,” they have truth values attached. 

Aiming the computational modelling, the present approach is pragmatic: it 
considers definite meanings for the concepts above, allowing the representation of 
knowledge incompleteness, imprecision and uncertainty, assuming it comes from 
human diagnosticians’ deep and shallow knowledge on faulty behaviour of a target 
real-world system. 

8.3.1. Knowledge Pieces Involved in Diagnosis  

Human diagnosticians’ deep knowledge refers to the structure of the system under 
diagnosis and to the expected normal behaviour, while shallow knowledge refers to 
faulty behaviour at module and/or component levels. The structure of the target 
system consists of modules and components, as units conceived by designers, and 
accepted by diagnosticians to master the system’s complexity. Modules and 
components are usually conceived as functional units. In the literature, the module 
is a structure of components, but the component does not have a clear meaning. It 
may suffer further decompositions (see Section 8.6.2.1), but nevertheless a 
component is conceived as the final location for faults or manifestations.  

In the following definitions, we make use of the term piece of knowledge,
stressing that the concept defined is obtained through an appropriate processing on 
the physical reality to extract (discrete) objects and logical meanings. A cognitive 
neutral numerical value Xk gets meanings (depending on the value range or 
particular situations) that are expressed by truth values X  [0,1], where Xk k = 1 
means that the concept is certain or complete. The concept may be a state 
(expressed by a noun) or a grade (expressed by an adjective or an adverb). 
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8.3.1.1. Component  
A component is “a piece of equipment accepted by the human diagnostician as 
being sufficient for fault isolation” (Ariton and Ariton, 2000). Of course, it is a 
convention how much “detailed” a component is, while the human diagnostician 
decides what unit exhibits “pointed” causes for abnormal behaviours. After all, it is 
a matter of troubleshooting: deciding the location of the cause is the first step in 
removing the faulty unit (for further removing the disorder). How “small” (or how 
“low”) the components are is a decision of the elicitation made upon the system 
under the diagnosis, when the fault isolation granularity is established. 

8.3.1.2. Disorder  
A disorder refers to nonconformities in the actual behaviour of the target system, 
against the expected one – which is designed and considered “normal.” In order to 
obtain a feasible diagnosis system, the space of causes has to be a closed space, so it 
includes: disorders taking place at components (e.g., damages or ill tuning), flow
(e.g., bad quality), environment (e.g., abnormal surrounding conditions) and human 
operation (technological discipline). Note that environment includes all neighbour 
systems: technical systems ambient atmosphere, etc., which may affect the target 
system’s running. 

8.3.1.3. Fault 
A fault is a simple piece of knowledge regarding a physical nonconformity located 
at a component. Fault is a human concept with intrinsic discrete and logical natures: 
it has a name, usually expressed as a proposition about the disorder, and a degree of 
uncertainty – usually expressed in terms of a truth value Fl [0,1]. If Fl  0.5, then it 
is above doubt that fault Fl occurred. From the human diagnostician point of view, 
the truth value is a measure of plausibility of a fault. The set F of all “known” faults 
should be decided at the elicitation time, each for a specific disorder or for a class of 
disorders, and reflecting the open space of effects induced by the incomplete 
knowledge. Open spaces should be closed by completing with generic “disorders” 
of the kind “not known” or “undecided,” also with locations of the kind “out of 
target system limit.” The fault mode refers to a specific disorder induced by a 
certain fault in a given process phase. 

8.3.1.4. Manifestation 
A manifestation is a simple piece of knowledge attesting to an abnormal value of an 
observed variable, during a certain running context of the target system. In the 
entire set M of manifestations, some may reach the diagnosis system by sensors 
(from continuous or binary variables), and others by human operator tests on 
observed variables in the process (from human senses – as adjectives, or from test 
points – as numbers). The manifestation’s truth value Mr [0,1] indicates how 
certain is the state or a grade exhibited, and it reflects our knowledge imprecision 
and uncertainty. 

8.3.1.5. Symptom 
A symptom is a complex piece of knowledge that refers to a certain behaviour 
coming from the deep knowledge on the target system and the domain. Symptoms 
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evoke classes of faults and induce some partition S on the entire set of faults F.
Some symptoms provoke disjunctive partitions (e.g., faults in the “leakage” 
class/symptom do not belong to the “clogged” class/symptom), others provoke non-
disjunctive partitions. A fault that evokes more than one nondisjunctive symptom 
cumulates its plausibility (it is more relevant). The primary and secondary effects, 
witnessed in conduction flow systems, are symptoms: primary effect is the one 
located at the faulty component, secondary effect is the one located at the nonfaulty 
component due to propagated deviations of variables values (deviations from the 
expected “normal” values). 

8.3.1.6. Process 
Process phase is a complex piece of knowledge that refers to a certain state of the 
process, with certain duration in the functioning of the target system. From the 
human diagnostician point of view, a process phase characterizes the context in 
which the diagnosis takes place. While in the real system’s running the process 
phase is “expected” to happen, its truth value P asserts the degree to which the 
context is really known, during the current slice of time in the process evolution. 
Process phases induce partitions on the set M of all manifestations and on the set S
of all symptoms.  

All the “evaluations” made by the (automated) diagnosis system to obtain 
truth values for manifestations, symptoms, process phases, and faults evoke some 
processing performed on observed variables’ values (Calado et. al., 2001). Note that 
the human diagnostician deals with “linguistic variables” when referring to 
manifestations and symptoms. By default, knowledge pieces are discrete and 
qualitative in nature, the latter reflecting knowledge imprecision or knowledge 
incompleteness regarding the human diagnostician view on the (faulty) behaviour 
of the target system. Therefore, any processing should comply with these aspects. 

8.3.2. Observed Variables 

Let us consider now a computerized diagnosis system that deals with manifestations 
and faults with graded values of truth as described above. If the observations made 
upon the target system’s behaviour are linguistic or binary variables, they already 
have a “logical meaning” – present/absent. The observations made upon the target 
system come to the diagnosis system from the human operator (thus meaningful) or 
from sensors, as numerical values, thus cognitivly neutral. To obtain a common 
denominator, they should undergo some processing to become manifestations, so 
they undergo some "intelligent encoding" indicated by Cherkassky and Lari-Najafi 
(1992) as being crucial in diagnosis. 

The preprocessing performed by the diagnosis system on the raw acquired 
values depends on the observed variable’s type:  

a) Binary variable from digital sensor – no processing required. By 
default, such a variable has two values, attached to a logical 
meaning (e.g., present/absent, open/shut). The manifestation 
results immediately, and Mr {0,1}.

b) Continuous variable from analogical sensor/device – processing 
required. To obtain some discrete piece of knowledge 
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(manifestation with some truth value Mr [0,1]) from primary 
data, the continuous signal supplied by the sensor is sampled and 
the series of values undergoes some processing according to the 
current process phase. 

c) Discrete variable from human operator tests – no processing 
required. For example, the linguistic variable “noisy” is by default 
a logical variable with two values; thus manifestation results 
immediately: Mr {0,1}. Note that variables like “not hot,” “hot,” 
“very hot” should be reduced to more manifestations of the same 
type Mr {0,1}. 

d) Continuous variable from human operator test performed in a 
test-point – processing required. The numerical pointwise value, 
entered by the human operator, should be evaluated if normal or 
not. Abnormal situation results as a (discrete) manifestation, 
according to the current process phase (e.g., fuzzification of 
point-wise numerical values, obtaining a fuzzy attribute with a 
graded value of truth Mr [0,1]). 

So, intelligent encoding depends on the type of observed variables. The 
specific processing brings them to a uniform representation. Knowledge 
incompleteness, imprecision and uncertainty, specific to human diagnostician 
qualitative way of thinking, come from the abstractions made on the real continuous 
running of the target system (Mosterman and Biswas, 2002) and from the 
complexity of real phenomena. These aspects of human knowledge are melted into 
discrete and logical representations of manifestations, both useful in the neural 
network approach of the diagnosis, further presented in this chapter. 

8.3.3. Semiqualitative Encoding of Manifestations 

Fuzzy logic deals with associating logical meanings to numbers. It copes with the 
qualitative way of thinking of human experts, and quantities become sets, or 
intervals with imprecise edges, but specific meanings. In the present approach, a 
manifestation is a fuzzy attribute of an observed continuous variable V during the 
process phase P, i.e., it is a fuzzy subset over its universe of discourse (V), as 
shown in Figure 8.2. 

8.3.3.1. Prototype Manifestations 
The attributes refer to the qualitative subdomains related to the abnormal values 
"too low" (lo) and "too high" (hi) in the current running context. Fuzzification is 
chosen as the "intelligent encoding" meant for manifestations. In Figure 8.2, the 
subdomains between landmarks Lm(no) - Lm(lo) and Lm(no) - Lm(hi), respectively, 
refer to the qualitative subdomains of Kuipers’s approach (Kuipers, 1994) on 
quantifying values of a variable, in qualitative physics. 

Pairwise neighbour subdomains form the fuzzy attributes “too low” and 
“too high” for the generic manifestations lo and hi corresponding to the given 
variable V and the given process phase P. Note that the fuzzy attribute “normal” 
(no) refers to the range of “expected values” for the observed variable, which 
indicates a normal behaviour; it is essential for obtaining a closed space of causes. 
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The overlapped intervals of the fuzzy attributes (see Figure 8.1) reflect the 
knowledge incompleteness and imprecision of the human diagnostician, which is 
linked to the specificity of the manifestation (Turksen, 1996). 

The attributes lo or hi – as triangular membership functions in the semi-
qualitative representation – are prototype manifestation set by the human 
diagnostician at knowledge elicitation on the system under the diagnosis. 

The effective landmarks and the fuzzy subsets for generic manifestations 
lo, no, hi are provided at elicitation time. The knowledge engineer uses deep 
knowledge from the domain expert to assign qualitative landmarks for each 
observed variable from sensors. In this case, the CAKE (Computer Aided 
Knowledge Elicitation) tool is useful for the human diagnostician (see Section 8.6).

The triangular membership functions of the generic manifestations fit well 
to the semiqualitative representation usually encountered by human diagnosticians 
(Kruse et al., 1994). Due to the linear and baricentric encoding, such representation 
offers some advantages for logical processing in a human-like way, also for fuzzy 
arithmetic with ranges when assessing propagated effects (Ariton, 2003). That 
simple semiqualitative representation best captures the human diagnostician’s 
knowledge on manifestations of any kind, when the system is faulty. 

8.3.3.2. Handling Uncertainty on Instance Manifestations 
The manifestations linked to a continuous variable (type b or d from the above 
classification) actually refer to the pointwise value v that enters the diagnosis 
system during a process phase P. After fuzzification, each attribute lo, no, hi gets a 
truth value. 

The instance manifestations obtained reflect the uncertainty of the 
situation occurring when for example both truth values hi(v)>0 and no(v)>0 appear 
(see Figure 8.2) – the last one reflecting the opinion on “normal” behaviour of the 
current situation. The preprocessing block of the diagnosis system should assert, for 
any variable instance, the appearing manifestations and their extent (the truth 
value). 

8.3.3.3.  Types of Manifestations 
The set of all instance manifestations MP for a given process phase P comprises: the 
instance manifestations for all sensor-observed continuous variables MC

P (truth 
values in [0,1]), the instance manifestations for all sensor-observed binary variables 
M P

B  (truth values in {0,1}) and the instance manifestations for all human operator-
observed variables M P (truth values in {0,1}). O

Taking into consideration all variables of any kind, and for all process 
phases, will lead to the set M of all manifestations as distinct knowledge pieces. It 
comprises the set MM of manifestations obtained by permanent measurements 
through sensors mounted in the process: 

MM = { MC
P MB

P (12)   | for all process phases P } 
and the set OM of manifestations obtained by human operator observations:  

OM = { MO
P  | for all process phases P } (13) 

Hence, the set M of all discrete manifestations entering the diagnosis system 
is: 

(14) M = MM OM
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and comprises all pieces of knowledge of the kind lo, no, hi for manifestations at 
continuous variables, or present / absent for binary variables. 

Overall, the cardinality of the set of all observed variables is lower than the 
cardinality of the set of manifestations M, since the sensor-observed binary 
variables may have two “pieces of knowledge” (i.e., one manifestation of type 
“present” and, afterwards, one of type “absent”), and the human operator-observed 
variables may have three “pieces of knowledge” (i.e., two manifestations lo, hi and 
one of type no – as “absent” or “normal”). Some “absent” manifestations are quite 
important in diagnosis (see below), as they require a specific type of abduction 
problems to be solved. 

Some continuous operator-observed variables may be “measurements on 
the fly,” i.e., they are not permanently observed by sensors, but supplied 
occasionally by the human operator when required, following a best next test 
procedure (de Kleer and Kurien, 2003). In this case, the diagnosis system should 
perform the fuzzification or other processing, after the operator supplies the 
required value. This is a usual approach to finding logical meanings for 
manifestations (with truth values), and the obtained unified and discrete 
representation will be used in the connectionist implementation for diagnosis 
described in the next sections. 

8.3.4. Intelligent Encoding of Instance Manifestations 

Depending on the source of the observation, the obtained manifestation requires 
more complex or simpler processing, for example when observation comes from 
analogical sensors or from binary sensors, respectively. In the latter case, values as 
close/shut are already discrete and have a meaning – thus no processing required. 

For an observed pointwise value v the truth value results from regular 
fuzzification (Kruse et al., 1994) – e.g., in Figure 8.2 the instance manifestations hi
and no get truth value hi(v) and no(v). The representation is semiqualitative while 
it exhibits qualitative attributes (i.e., lo, no, hi) and truth (numerical) values for 
each. However, human diagnosticians judge manifestations for the activity as a 
whole, hence the instance manifestation refers to the set of values (not the pointwise 
one) acquired during the current process phase P. Thus, straight fuzzification is not 
suited to encode manifestations (Dubois and Prade, 1998). An appropriate 
processing is further used. 

8.3.4.1. Instance Domain for an Observed Variable  
The sampling and the conversion of the V variable during P time period of the P
activity produce NP binary numbers, further denominated instance domain (see the 
solid line in Figure 8.3a). A pointwise (quantified) value vi appears P

i  times in the 
instance domain. If divided by NP, it becomes the frequency of vi during P, with a 
maximum P

m at value vm: P
m = P

i
max i  .The value vm is a meaningful value but it 

does not evoke a manifestation, while it does not refer to the entire set of values, 
hence a special encoding scheme is needed, which is further presented. 
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Figure 8.2. Semiqualitative representation of generic manifestations expected at a sensor-
observed variable V.

The frequency distribution P
V for all values is the collection: 

P
V  = { P

i  | i = 0 .. NP (15)  } 
and the normalized frequency distribution (to the maximum P

m ) – see Figure 8.3a 
– is:

P
V   = { P

i / P
m | i = 0 .. NP (16)  } 

8.3.4.2. Instance Membership Function for Series of Acquired Values
Instead of a pointwise value, the diagnosis system will use the normalized 
frequency distribution P

V  to assert manifestations for the variable V over the 
process phase P, as shown below. So, the instance domain (solid line in Figure 
8.3a) may be seen as a fuzzy set in the statistical approach (as from (Kruse et al. , 
1994)), and P

V is the actual instance membership function.

Figure 8.3. Possibility measure (a) and necessity measure (b) of the instance membership 
function upon the prototype manifestations for the continuous variable V, during the activity 

P
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The instance membership function P
V  is not like the probability 

distribution pV, while pV = P
i / P

i , thus it is obvious that  pV
P
V . On the other 

hand, sampling V during the period P is not a random process, hence the approach 
is not stochastic. Frequencies do not change the proportions between the values 
after normalization, so that frequency distribution is scalable, but the probability 
distribution is not. 

8.3.4.3. Instance Manifestation 
The instance membership function of the observed variable V will reveal instance 
manifestations that appeared during the actual activity P. Manifestation is an 
attribute a {lo, no, hi}, which results from the possibility and the necessity 
measures (Ayeb et al., 1998) of the instance membership function over the partition 
in Figure 8.3a: 

PossV(a) = supv a v
p , NecV(a) =1- PossV(a) = infv a (1- v

p (17) )
Inference of the instance manifestations proceeds as follows: 

i) Calculate the membership function P
V  of the V variable’s instance 

domain. 
ii) Calculate the set   P

V of possible manifestations:
   P
V = { a | a  {lo, no, hi} and Possa( P (18) V ) > 0.5} 
iii) Calculate the set  P

V  of necessary manifestations:
 P
V = { a | a  {lo, no, hi} and Neca( P (19) V ) > 0} 

iv) Assert which instance manifestation MP
V actually occurred, 

applying:
MP

V = { a | a  P
V

  P
V  and Neca( P

V ) is maximum from all in   P (20) V } 
In the example from Figure 8.3, the possibility measures are: Posslo( P

V ) = 
0, Possno( P

V ) = 0.75, Posshi( P
V ) = 0.55 and the necessity measures are: Neclo( P

V ) =  
0,  Necno( P

V ) =  0.45,  Nechi( P
V ) =  0.25, hence the instance manifestation is no

(see Figure 8.3b). 
At elicitation time, the set of all instance manifestations M P, for a given 

activity P, comprises: instance manifestations for sensor-observed continuous 
variables MC

P P (truth values in [0,1]), binary variables MB  (truth values in {0,1}), 
and human operator-observed variables M P (truth values in {0,1}). O

8.4. Concepts and Structures on Normal Running 

Deep and shallow knowledge, embedded in the connectionist model, comes from 
concepts that human diagnosticians deal with regarding the target system. However, 
diagnosis of real complex systems is a difficult task, while it involves a huge 
number of variables and events to handle, so computer-aided diagnosis is of great 
help.

The following section presents some principles on discriminating the 
concepts and their relations for the fault diagnosis following a human-like 
diagnosis, and using connectionist models for abduction. In that endeavor, means-
end modelling approach seems best suited for the analysis and representation of 
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physical and functional structures. The approach makes use of bond graph models, 
adapted to cope with human-like qualitative view on the faulty behaviour of 
conductive flow systems, and also to the modular way of thinking when isolating 
faults.

8.4.1. Means-End Abstractions of Physical and Functional 
Structures

Real systems are multifunctional systems, while they perform many functions at the 
same time. Functions refer to tasks performed by modules and components toward 
specific utilities envisaged by the artefact. Each module performs a sequence of 
activities, and all modules perform activities in parallel – each module one activity 
at a time, during the given slice of time in the whole installation running. As a term, 
“multifunctional” is introduced in (O’Brien, 1970) on complex systems’ safety, and 
it is used in fault diagnosis in (Okuda and Miyasaka, 1991; Shibata et al., 1991). 

Most encountered systems in technical or economical domains are 
conductive flow systems (CFSs) (Cellier, 1995) – i.e., they transport matter, energy 
and information as flows passing through pipe-like paths. Through the effects 
propagation, same effects may appear at many faults, located at faulty and non-
faulty units. In such cases, the human diagnostician deals with primary and 
secondary effects, i.e., effects located at the faulty component and effects spread to 
nonfaulty components, respectively. 

Means-end modelling approach is a view on artefacts from the utility 
perspective: the ends (concrete goals of the artefact) are those structuring the means 
(functional structures) supported by physical components. In (Larsson, 1992) a 
component performs a “flow function” (and a module a network of flow functions) 
– acting upon the flow. 

8.4.1.1.  Multifunctional Systems 
A multifunctional system (MFS) under the diagnosis is the 5-tuple C, G, S, T, H :

C is the set of all physical components, each component meant as the final 
location for fault isolation, each completing certain functions; 

G is the set of functions components may accomplish;  
S is the set of ends, each end characterized by performance of a certain 

utility that the system must accomplish; 
T is the set of time durations in accomplishing (each of all) ends; 
H is the set of modules, each module hi comprising a subset Ci of 

components and accomplishing a subset Si of ends. 
An elementary end sik is achieved during (and corresponds to) an activity – 

from the Discrete Event System abstraction of the hi module’s running. A module 
may accomplish more ends. For example, a hydraulic conveyor executes four 
activities corresponding to the four ends of the actuator (the hydraulic cylinder): 
still left, move left-to-right, still right, move right-to-left, each being a function of 
the actuator component. 

The set of modules H is a disjunctive partition upon the set S of ends, each 
module accomplishing a specific subset of ends Si but only one end sik at a time. In 
the example above, the module comprises components as pipes, control valve, 
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damper, hydraulic cylinder. The ends are the “move” or “stay still” services, and the 
durations in accomplishing those ends are either specified – e.g., the expected 
duration for each movement of the piston, or derived – e.g., the stay-still duration 
(between movements). The relations between cardinalities |S|=|T| and |S|>|H| hold; 
in other words, each end has a certain duration (in normal and abnormal situations) 
and a module exhibits at least two activities (idle/active) to a certain end. 

8.4.1.2.  Multifunctional Conductive Flow Systems  
Multifunctional conductive flow system (MCFS) is the 7-tuple C,G,S,T,U,H, :

C, G, S, T are as above; 
U is the set of flow types; a certain flow type ut is processed by 

components of a module toward a specific end by means of specific functions of 
components; 

H is as above, but restricted to the subset Ci of components that act upon 
the same flow type ut . 

 is the weak upstream relation taking place between components cij, and 
between modules hi along the flow paths in the conductive flow system. 

The (matter/energy) flow conduction is ruled by specific laws that are not 
captured in the definition above but will be discussed later (see Section 8.4.2) in the 
discrimination of primary from secondary effects at faults. 

Note that upstream relations of neighbour components depend on the 
activity; for example, the “hydraulic cylinder” has an upstream relation with a 
component when the piston moves left-to-right (filling its left chamber) and 
downstream relation with the same component when the piston moves right-to-left 
(filling its right chamber). 

In the proposed approach, MCFS appears as a multiple layered structure of 
conductive flow systems, each of them handling a certain type of flow and acting 
toward some definite ends on the same set of components. For example, the 
“mineral oil flow” in the hydraulic installation of a rolling mill plant is an auxiliary 
flow beside the “long steel plate flow” meant for the (main) technological end – 
plate extrusion. 

8.4.1.3.  Means-End Abstraction on Functions 
Each component cij fulfills a certain flow function during a certain activity, upon a 
certain type of flow ut, but it may fulfill simultaneously more flow functions, each 
upon different flow types “passing” through the component. For example, a control 
valve in a hydraulic system may complete a “barrier” flow function (when blocking 
the flow for “piston stay-still” end) or a “transport” flow function (when letting 
through flow for “piston move” end); on the other side, the control valve always 
exhibits a “transport” flow function for the electric current through the control coil 
of the valve. 

Each module hi H achieves a certain end by means of the functions gij
specific to the components in the set Ci of the given module. Other aspects of the 
flow functions follow: 

a) the component cij fulfills a unique “flow function” upon a certain 
flow type, during a certain activity of the module hi (according to 
Larsson (1992)); 
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b) the end sik of a module is accomplished by the set Ci of 
components by means of the “network” of “flow functions” 
(Larsson, 1992); 

c) the module is actually a functional unit, comprising only 
components that process the same ut flow type (in the presented 
approach).

8.4.1.4. Qualitative View on Flow Functions 
The detailed flow functions (transport, barrier, distribution, etc.) in (Larsson, 1992) 
may be reduced to three qualitative functions, sufficiently relevant for the diagnosis 
task, while it is somehow simpler and more qualitative than the control task. In 
(Opdahl and Sindre, 1994) three orthogonal operational facets of real-world systems 
are proposed, as in Table 8.1. 

Table 8.1. Functional orthogonal facets of real-world systems

Concept Process Flow Store 

Activity Transformation Transportation Preservation 

Aspect Matter Location Time 

The concepts refer to physical or chemical processing (see Process), the 
space location change (see Flow) and the time location change (see Store), i.e., time 
delay.

The activities associated with the three concepts suggest three primary 
flow functions, suited to the qualitative modelling of components’ faulty 
behaviours. For each concept in Table 8.1 the corresponding primary flow function 
is:

i) flow processing function (fpf) – like chemical or physical 
transformation of the piece of flux (to a certain utility); 
ii) flow transport function (ftf) – like space location change of the 
piece of flux  (by pipes, conveyors, etc.); 
iii) flow store function (fsf) – like time delay of the piece of flux, by 
accumulation of mass or energy in some storing or inertial 
components. 

A real component achieves several primary flow functions, but solely one 
during a given activity. Note that components that directly accomplish ends of the 
target system, fulfill processing (fpf) and store (fsf) primary flow functions; most 
components fulfill transport (ftf) primary flow function. Flow function’s 
misbehaviour is easily associated with some generic anomalies that may appear at 
faults (see Section 8.5.2).

8.4.2. Bond-Graph Modelling and MCFS’s Structures 

Conductive flow modelling of real systems observes Kirchkoff’s laws, no matter 
the type of flow (matter, energy or information). Bond graphs are appropriate and 
general modelling tools for conductive flow systems, with the great advantage of 
Kirchkoff's laws applied in a modular way, and not for the whole system as in the 
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classical way (Cellier, 1995; Mosterman et al., 1995). Moreover, bond-graph 
modelling offers general concepts useful for behavioural abstractions of the flow 
functions for every type of flow (see below). 

8.4.2.1. Modularisation by Bond Graph Junctions in the Target MCFS  
Bond graph modelling deals with flow power variables: the intensive (pressure like) 
and the extensive (flow-rate like) variables, called effort (e) and flow (f),
respectively (Cellier, 1995). 
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Figure 8.4. The bond graph 0-junction (a), and 1-junction (b). 

Components, along flow paths in CFS, form bond graph junctions: 
type 1 junction – that corresponds to a loop of interconnected 
components, 
type 0 junction – that corresponds to a node of interconnected 
components.  

Each junction’s common variables are: effort in 0-junction and flow in 1-
junction; the noncommon power variable is specific to each component and all 
enter a sum (e.g., the flow in the 0-junction), as in Figure 8.4a,b. 

In the present approach, the 1-junction corresponds to a given activity of a 
module, i.e., the 1-junction is the bond graph model of the activity, so it may play 
the role of the “module” – in the multifunctional abstraction (Ariton, 2003). The 1-
junction is already a network of flow functions – complying with the means-end 
point of view. 

The conclusions above are useful in knowledge elicitation of modules, 
during MCFS hierarchical decomposition. In this view, the 0-junction is the 
interconnection of modules, and the structure of the whole target system is made of 
0-junctions. 

8.4.2.2.  Primary Flow Functions and Bond-Graph Components  
The large generalization specific to the bond graph approach is synthetically 
illustrated in the tetrahedron of state in Figure 8.5 (Cellier, 1995). Variables on flow 
conduction may have specific meanings to specific domains: the effort e may 
correspond to force (in mechanics), to voltage (in electricity), to pressure (in 
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hydraulics), flow f may correspond to velocity, to current, to volume flow rate (in 
the respective domains). Other general concepts in bond graph modelling approach 
are: the generalized momentum p (momentum in mechanics, flux in electricity, 
etc.), and the generalized displacement q (distance, charge, etc.). 

The presented approach extensively uses the concepts of bond graph 
components:

power flow components: Resistance R, Capacitance C, Inductance 
I, corresponding to dissipative, storage and inertial elements, 
respectively;
power transfer components: transformer TR (effort-effort and 
flow-flow ratios) and gyrator GY (effort-flow and flow-effort 
ratios).

Figure 8.5. The tetrahedron of state and the bond graph components R, C, I.

Components of MCFSs have projections on bond-graph and means-end 
perspectives:

R component corresponds to transport function (ftf);
C and I components correspond to storing function (fsf);
TR and GY components correspond to processing function (fpf).

This result is useful in the faulty behaviour modelling (see Sections 8.5.1
and 8.5.2) and in the hierarchical decomposition of the target system toward 
components (see Section 8.6.2.1).

8.4.2.3. Upstream Relations between Modules and Components 
The bonds (half-arrows in Figure 8.4) indicate the flow but do not refer to the 
upstream/downstream relations between components. Those relations are important 
in locating the effects along flow paths (see Section 8.5.3.3).

In Figure 8.4 the indices j 1 n show the components’ upstream order 
between components ci1, ci2, ci3 hi (belonging to the same module) and direct 
neighbours (which input / output ports are directly coupled). Neighbour modules 
also exhibit upstream relations. 

The upstream relation is strong (<<) at 1-junction: ci1<< c << ci2 i3 when the 
order of two neighbours is strict, while they are output-input coupled and the flow 
strictly gets out from one component and gets in the neighbour one. 
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The upstream relation is weak ( ) at 0-junction: ci1 ci2 ci3 when two 
neighbour components’ ports are input-input or output-output coupled, so for both 
neighbour components the flow either gets out or gets in the coupled ports. 

The two bonds of indices 0 and n+1of the 1-junction indicate effort at the 
input and at the output of the series of components, and actually represent links to 
the upstream and downstream 0-junctions, respectively. 

8.5. Concepts and Structures on Faulty Running 

Elicitation defines knowledge pieces (some of them discriminated above) but also 
prepares corresponding data for further processing. The chapter introduces 
knowledge pieces related to faulty behaviour and their representation for the 
computational model. 

8.5.1. Generic Faulty Behaviour of CFS’s Components  

Following the above approach, the faulty behaviour of components of the target CFSs 
is conceived as human-like symptoms attached to various faults of the real 
components:  

Faults in R component affect the transport function (ftf);
manifestations refer to R parameter changes, and the symptoms 
refer to propagation of power deviations along the paths in the 
system (discussed in Section 8.5.2.2).
Faults in C and I components affect the storing function (fsf);
manifestations refer to changes in time delays in the process 
running. 
Faults in TR and GY components affect the processing function (fpf);
manifestations and symptoms are specific to each end of flow 
processing.

Faults may occur at any components but only R components are involved 
in power propagation along the system. Consequently, deviations of the power 
variables e and f propagate from the faulty component to other components, where 
they indirectly affect specific parameters – for example the delay for C and I, or the 
transferred effort and flow for TR and GY.

An important conclusion is drawn from the statements above: the 
anomalies of R bond-graph components are primary effects, and they provoke 
secondary effects by means of flow power variables deviations propagated 
throughout the flow path in the target CFS. Another important conclusion, from the 
point of view of diagnosis, is that the discrimination of primary effects from 
secondary effects leads to fault isolation. 

The TR and GY components correspond to actuators in the target system, 
and they decouple flows or modules. Hence, the two components are, usually, the 
final components in the network of flow functions, i.e., they are components at the 
border between two modules. For example, the carrier of a conveyor is not part of 
the module, while the hydraulic cylinder is a transformer from the effort of the 
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mineral oil towards displacement (of the carrier). Actually, the carrier and its load 
are part of another module, decoupled by the hydraulic cylinder (as a transformer). 
So, the b) item from the Section 8.4.1.3 is observed. 

8.5.2. Anomalies Related to Primary Flow Functions  

Anomaly is a piece of knowledge indicating a class of abnormal behaviours; it is 
another word for symptom, which is used in the present approach to restrict the 
meaning of the symptom to a deviation from the expected behaviour of one of the 
three primary flow functions defined above. The anomaly is located at the faulty 
unit, i.e., it is a “primary effect.” This way, the fault isolation procedure benefits 
from some additional information useful when the location of the fault is of 
concern. 

8.5.2.1. Anomalies and Primary Flow Functions 
Flow process anomaly, flow store anomaly and flow transport anomaly are 
disorders of respective flow functions, located at the faulty component or module:  

a) Process anomaly (AnoP) appears at the actuator components 
– bond-graph gyrator GY or transformer TR components. 
Process anomalies refer to abnormal values of performance 
parameters of the end envisaged. 

b) Store anomaly (AnoS) appears at storage or inertial 
components – bond-graph capacitance C and inductance I
components. The store anomaly refers to abnormal values of 
the time delay appearing at faults in storage or inertial 
elements. 

c) Transport anomaly (AnoT) appears at dissipative component, 
in the bond-graph view resistance R components. In fault 
diagnosis literature and practice “leakage” or “clogged pipe” 
are usual terms for such anomalies. 

8.5.2.2.  Transport Anomalies 
Ariton (2003) introduces four orthogonal transport anomalies that completely cover 
the faulty behaviour of a component involved in the flow transport, namely: 

d) Obstruction (Ob) – consists in change (increase) of the 
transport R parameter of a component, without flow path 
modification (e.g., clogged pipe). 

e) Tunnelling (Tu) – consists in change (decrease) of the 
transport R parameter of a component, without flow path 
modification (e.g., broken-through pipe). 

f) Leakage (Le) – consists in structure changing (output flow 
too low) of a flow transport component, involving flow path 
modification. 

g) Infiltration (In) – consists in structure changing (output flow 
too high) of a flow transport component, involving flow path 
modification. 
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Transport anomalies are orthogonal (see Figure 8.6): inside the pair and 
between pairs. In Figure 8.6 the axes’ names indicate the “main” power flow 
variable for the pair, the one mainly involved in the effect at the respective pair of 
transport anomalies. Note that the effort for Ob/Tu pair is meant at the input, and 
the flow for In/Le pair is meant at the output of the given flow transport unit 
(component or module), so the signs depicted in Figure 8.6 are specific to those 
situations.
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Figure 8.6. Orthogonal transport anomalies. 

Solely, one transport anomaly may appear at a time vis-à-vis a faulty 
component. 

The four transport anomalies are effective concepts in the qualitative 
modelling of faulty behaviour and in effects propagation. As later shown, transport 
anomalies are of seminal importance in the discrimination of primary effects from 
secondary ones, in detection and isolation of faults. 

Various components in real systems are involved in flow transport, i.e., 
they act as R bond-graph components and may exhibit transport anomalies at faults. 

The transport anomalies Ob/Tu are symptoms similar to events as “clogged 
paths” or broken-through paths, and In/Le are symptoms similar to flow exchange 
with the environment. The first pair observes the (expected) flow balance equations, 
while the second does not. Transport anomalies play a central role in fault detection, 
while they have the meaning of “primary effects” – i.e., effects located at the faulty 
component (or module). Asserting a transport anomaly means detecting a fault and 
also isolating the fault – while the transport anomaly location is asserted. 

Process anomalies AnoP and store anomalies AnoS may appear as 
secondary effects when induced by the flow power deviations propagated through 
components with flow transport functions, along the flow paths, while the 
deviations appeared at the location of a transport anomaly AnoT  that occurred as a 
primary effect.



Computational Intelligence in Fault Diagnosis   259 

8.5.3. Qualitative Deviations Induced by Transport 
Anomalies

The following study focuses on deviations of the effort e and the flow f of bond-
graph power variables at faulty and nonfaulty bond-graph R type components. 

8.5.3.1.  Qualitative Behaviour of R Components 
The qualitative relation between the power variables for a nonfaulty component is e
= M+ f, according to the general qualitative Ohm's law (Struss, 1997). The flow 
variables’ deviations from expected values at the input port comply: 

e = M+ (21) f
where M+ is a class of increasing monotonic functions (according to qualitative 
physics and notations from (Kuipers, 1994)). e and f refer to power variable 
finite deviations (due to some external causes of the nonfaulty component. The 
qualitative relation Eq. 21 also holds for the flow variables at the output port (note 
that no concern exists in the extent of the relation). 

8.5.3.2. Power Deviations at Faulty and Non-faulty R Components 
As presented in Section 8.5.2.2, the faulty flow transport components induce one of 
the four orthogonal symptoms (transport anomalies) shown in Table 8.2. 

The deviations of effort and flow variables from the expected (normal) 
values are specific to R bond-graph component for the given transport anomaly 
(Ob/Tu, In/Le). The deviations’ signs (i.e., the qualitative values) simply result from 
the affected parameters of R and of the main variable in the context of the transport 
anomaly. 

Table 8.2. Flow power variables’ deviations at input and output ports of R bond-graph 
components for each transport anomaly occurrence 
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As shown in the last column of Table 8.2, the qualitative relation between 
the deviations of flow variables at the input port is: 

e = M (22) f
where M  is a class of negative monotonic (decreasing) functions. It seems that the 
relation does not comply with the general Ohm’s law; note that Eq. 22 refers to 



260   V Palade, CD Bocaniala and L Jain (Eds.)

deviations from expected values, so it is not the Ohm’s law in question but 
variables’ deviations.  

Equations 21 and 22 are the basis of the qualitative modelling for the 
effects’ propagation along the flow paths in the conductive flow system. 

8.5.3.3. Signatures of Qualitative Deviations at Flow Transport Anomalies 
The transport flow function reflected by R bond-graph generic component is 
involved in the propagation of flow power and also in propagation of the deviations 
of the flow power variables when faults occur. The propagated flow power 
deviation reaches a neighbour nonfaulty component involved in the flow transport, 
and affects the effort (at input port) and the flow (at output port) values depending 
on the bond-graph junction they share.  

Table 8.3 presents the signatures of manifestations for the effort and flow 
variables corresponding to each transport anomaly and to each type of bond-graph 
junction. The signatures are patterns expressed in terms of qualitative deviations (lo
– “too low” and hi – “too high”) for the flow variables at a nonfaulty component 
sharing the same bond-graph junction with the faulty one. Note that both (faulty and 
nonfaulty) components are flow transport (R bond-graph) components; hence they 
are both involved in the flow power deviation’s propagation (from the AnoT
“cause” location). 

Table 8.3. Signatures of the transport anomalies as effort-flow manifestations at the 
input-output ports (respectively), in each type of bond-graph junction 

1-junction

shadowed item is AnoT

(the faulty component) 

0-junction 

fault downstream 

(of Kirchkoff’s 

node)

0-junction 

fault upstream  
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node) 

Transport 
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1 >> 2 3 << 2 1 >> 2 4 ≥≥ 2 2 << 1 3 ≤≤  1

Obstruction (Ob) hi-lo lo-lo hi-hi hi-lo lo-hi lo-lo

Tunneling (Tu) lo-hi hi-hi lo-lo lo-hi hi-lo hi-hi

Infiltration (In) hi-lo hi-hi hi-lo hi-lo hi-lo hi-hi

Leakage (Le) lo-hi lo-lo lo-lo lo-lo hi-hi lo-lo

≥≥

>>

3

1 2

4

>>

3

≤≤
1 2

4

 1>>2>>3

If the flow power deviation reaches the location of GY/TR bond-graph 
(actuator) component, or of C/I (store/inertial) bond-graph component, a secondary 
effect appears, expressed by the AnoP or AnoS anomalies. Those effects actually 
reflect the AnoT anomaly propagated as power flow deviations along the flow paths 
throughout the target system. 

Manifestations at nonfaulty components are expressed in terms of 
qualitative deviation of the effort – at the input port, and of the flow – at the output 
port, in pairs (hi-lo, lo-lo, etc.), and they result from the qualitative relations of the 
flow power variables at faulty (Eq. 22) and nonfaulty (Eq. 21) components (Ariton, 
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2003), in the corresponding behaviour contexts (the triplet: junction type, upstream 
relation, transport anomaly). 

The signatures with manifestations at the components upstream/ 
downstream from the faulty one are specific to the transport anomaly (AnoT) and 
the junction type; the only exceptions are Tunnelling and Infiltration in 0-junction 
(column 3 of the Table 8.3), which cases should be decided based on relations in 
neighbour 1-junction(s). Note that weak relations (  / ) are equivalent for the 
meant study of qualitative signatures. 

8.6. Knowledge Elicitation and the CAKE Tool 

Diagnosis performed by human experts involves deep knowledge and shallow 
knowledge on a real target system comprising many modules and components, 
many activities, many faults, manifestations and symptoms. 

It is difficult to manage the huge amount of information if no adequate 
instrument exists, i.e., a Computer Aided Knowledge Elicitation (CAKE) tool. Such 
a tool assists the human diagnostician in the knowledge acquisition phase and in 
managing the information on the concrete target system. Therefore, the knowledge 
acquisition is performed more easily and the computational model is easily adapted 
to specific situations on the place. The CAKE (software) tool takes the place of the 
knowledge engineer, who is the essential human expert in the design phase of a 
dedicated diagnosis system. So, human diagnosticians and human operators do not 
need a knowledge engineer to build their own diagnosis system (for the target 
system) but they simply put all the information into it guided by the software tool. 

8.6.1. Elicited Concepts with the Aim of Fault Diagnosis 

The concepts’ representation involves a combination of models presented above 
and concisely noted below, along with their role and use: 

a) Means-end modelling of hierarchical structures for the multifunctional 
aspect:

i. role – identifies deep knowledge on physical and functional 
structures (components and simplified functions, modules 
and ends); 

ii. use – define behavioural patterns at faults based on proposed 
primary flow functions. 

b) Discrete event modelling of the running context for the 
multifunctional aspect:  

i. role – identifies deep knowledge on activities toward ends of  
modules; 

ii. use – determines current activity of a module and its time 
limits.

c) Bond-graph modelling of components for the flow conduction aspect: 
i. role – identifies deep knowledge on flow conduction as 

bond-graph junctions and components; 
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ii. use –  associates functions to bond-graph components and 
generic anomalies observing effects propagation. 

d) Qualitative modelling of concepts and relations for the faulty 
behaviour: 

i. role – describes deep knowledge on faulty behaviour: faults 
(at component level), symptoms (as generic anomalies), 
observations and manifestations (with prototype and instance 
attributes);

ii. use – detects faults (by instance manifestations and 
symptoms) and hierarchically isolate faults (at module and 
then component levels) by recognizing cause-effects as from 
deep and shallow knowledge of human diagnosticians.  

The models follow the human expert’s common view on diagnosis: items a 
and b cover the discrete view on the structure and the behaviour in normal 
situations, while item d covers the discrete view on the behaviour in faulty 
situations. Item c. covers the continuous view on fault effects propagation by flow 
conduction. The paper proposes a qualitative view on faulty behaviour of 
components and a procedure to assert primary effects from the propagated 
(secondary) effects. 

The data on real running of the target system have a close representation to 
the human diagnostician’s view, through: 

e) Fuzzy logic – for the “intelligent encoding” of observations to 
manifestations: 

i. role – encodes “prototype manifestations” as 
meaningful intervals according to the deep 
knowledge of human diagnostician; 

ii. use – obtains “instance manifestations” from the 
actual values collected from sensors during 
installation running. 

The diagnosis follows modular and incremental procedures, carried out by: 
f) Inference engine – for fault detection and sequential diagnostic 

refinement: 
i. role – detects abnormal behaviour (symptoms) and 

sequentially performs diagnosis for temporal sliding 
windows and for newly observed variables; 

ii. use – locates a transport anomaly at module level, 
then starts the neural network recognition process 
for further fault isolation. 

g) Artificial Neural Networks – for recognition of the faults:  
i. role – embeds shallow knowledge from practice and 

experiments as links between manifestations and 
symptoms to faults; 

ii. use – isolates faults by recognizing patterns of 
manifestations and anomalies.  

The diagnostic is obtained by recognizing patterns of manifestations and 
symptoms associated with faults. Items e to g are computational models that 
emulate the human diagnostician’s way of acting, and directly embed human 
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concepts in their native form. The diagnosis proceeds incrementally, following the 
sequence of activities of the modules during the target system’s running and adding 
new observation meant to refine the diagnostic. 

The knowledge pieces for diagnosis involve a large amount of data that 
should enter the diagnosis expert system (Patton et al., 2000). Each concept 
addresses a set of specific information: 

module – name, ends, activities, specific set of components, up-
stream relations to neighbour modules, junctions and signatures 
for each  transport anomaly identification, nonspecific 
observations  (e.g., mud); 
activities – code, next activity, time limits; 
component – name, primary flow function and bond-graph 
component for each activity of the host module, set of specific 
faults, component and module located manifestations; 
fault – name, (deep knowledge) links from manifestations and 
anomalies of the flow function in the host component, abductive 
relations to causes from the target system or environment, 
(shallow knowledge) links from other manifestations in the host 
module; 
manifestation – name, source type (sensor or human operator 
observations), prototype attributes and ranges of values (specific 
to the activity of the host module), abductive relations to causes; 
anomaly – type (AnoP, AnoS, AnoT), host component or module, 
end parameters values for abnormal behaviour, etc. 

Knowledge elicitation will provide data for building the structures of ANN 
blocks (e.g., data on layers of neurons for manifestations and faults, for the 
abductive links between them, for training with patterns). Knowledge elicitation 
provides data for the inference engine of the diagnosis expert system: the series of 
activities for each module, order of 0-junction for which signatures of neighbour 
modules identify the transport anomaly, etc. 

The knowledge pieces enter the Knowledge Base for consistency checking 
and for storing concrete data in the appropriate representation. After elicitation, the 
training of ANN blocks follows, then the diagnosis expert may be generated as a 
dedicated software for the given target MCFS. 

All knowledge pieces, presented in previous sections, are specific 
knowledge structures that the CAKE tool deals with. The structures refer, for 
example, to the physical and functional units of the target system, to the systems 
interconnected with the targeted one, to all situations that may disturb or originate 
faulty situations. 

The feasibility condition, meant for the computational model of the fault 
diagnosis system, is to assure closed spaces for causes and effects. Abnormal 
behaviours are not only caused by faults at components but also by any other 
abnormal situation inside the target system or coming from outside. To cope with 
such cases, the concept of disorder is introduced. Disorder refers to any cause that 
will induce an abnormal situation: human operator mishandling (e.g., ill tuning, 
infringement of technological rules, etc.), ill state of matter or energy flows (e.g., 
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the quality), abnormal conditions in the environment (e.g., too hot or too cold), and 
negative influences from the neighbour systems. 

Fault diagnosis deals with various aspects of the target system, each of 
them identified as a subsystem: 

a) Physical Subsystem – refers to all physical units (e.g., modules and 
components) and hierarchical structures (e.g., the whole installation 
and the modules) as means for achieving the ends of the system. 
Regarding the diagnosis, they represent the locations for faults. 

b) Functional Subsystem – refers to all functional units (primary flow 
functions) and hierarchical structures (process phases and activities), 
which actually achieve the ends of the system. Regarding the 
diagnosis, they represent locations for the behavioural aspects of the 
target system. 

c) Behavioural Subsystem – refers to all concepts related to the abnormal 
running of the target system: observations, manifestations, symptoms 
and faults, along with their links. 

d) Operational Subsystem – refers to the human operator actions that 
may provoke an abnormal situation. 

e) Flow Subsystem(s) – all types of matter or energy flow that may 
induce abnormal situations (e.g., the “foaming oil” in a hydraulic 
installation).

f) Environment – refers to all systems out of the diagnosis contour (i.e. 
the target system): the ambient atmosphere, the mounting conditions, 
and the neighbour systems. 

All knowledge pieces become entities related to each other that should be 
indicated by the knowledge engineer and should enter the computational model for 
fault diagnosis, as further presented. The structures of knowledge pieces are further 
presented in the entity-relationship diagrams that follow. 

8.6.2. Elicitation Aspects on Normative and Faulty Models  

The normative model consists of physical and functional structures that support the 
ends’ achievement. They comprise entities specific to their corresponding 
subsystems, presented in the previous sections. 

The diagrams in Figures 8.7 and 8.8 are UML representations of entities 
relations elicited for the corresponding subsystems. Having in mind fault diagnosis, 
in each diagram will appear the two entities Disorder and Fault – the last inheriting 
the first one. The dashed ellipses indicate borders of the other subsystems. 

8.6.2.1. The Physical Subsystem  
The entities involved in the Physical Subsystem are Component (the entire set C),
Module (the entire set M), and Installation; all of them are locations of 
faults. However, there are disorders that may produce similar effects as faults, 
which are located in other systems (Flow, Operational or Neighbour systems).  

The discrimination of the physical units proceeds from the means-end 
view (as MFS) and from the bond-graph view (as CFS), following the hierarchy of 
physical/functional units. For each flow type ut, the knowledge engineer should 
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assert the end of the modules, then the primary flow functions of the comprised 
components along with the associated bond-graph generic component. So, 

Modules – result from ends (and activities) accomplished towards 
products / services achieved, and correspond to bond-graph 1-
junctions.
Components – result from primary flow functions completed in 
each activity, and correspond to certain bond-graph components. 

Fault isolation granularity is the extent of the decomposition of the 
physical structures into components, hence the cardinality of C. The fault isolation 
granularity reflects human diagnostician’s troubleshooting pragmatism regarding 
the sufficient location of disorders for their removal; it also reflects the 
incompleteness of human knowledge on physical structures and on the 
environment. Usually, a component may exhibit more faults, so C induces a 
disjunctive partitioning over F.

The discrimination of physical components – sufficient for fault isolation – 
follows the hierarchical structure of the target system, and proceeds to a combined 
decomposition observing the physical and the functional structures: 

i. from the entire Installation – which is also the whole 
Process,

ii. decomposition proceeds to Modules – each referring to a 
Subprocess with two or more Activities,

iii. then each Activity is decomposed in primary Flow Functions
– each being attached to a Component.

The relations between entities – with the corresponding multiplicity 
attached to each relation – are illustrated in Figure 8.7 and they represent: 

Association «loc» (located to) directs to the location of the 
Disorder;
Dependency «evo» (evokes) directs to the anomaly evoked by 
the Disorder;
Inheritance Fault from Disorder;
Composition of Component to Module, and to 
Installation.

The physical units (in the physical structures) present hierarchical relations 
and also upstream  (strong) and  (weak) relations, depending on the bond-
graph junction the physical units enter. Upstream and downstream relations appear 
in the diagrams representing the bond-graph junctions of the target system, for each 
combination of activities of the participating modules, and for the components 
inside the module. While specific, those diagrams are not shown here. 

8.6.2.2. The Functional Subsystem 
The functional structure is also a hierarchical structure: activities (of each module) 
comprise flow functions (of each component) and each flow function is linked to a 
specific faulty behaviour. All knowledge on physical and functional structures is 
deep knowledge, while it comes from human experts’ acquaintance with the domain 
and with the design issues of the target MCFS. 
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Figure 8.7. The UML diagram for entities and relations of the Physical Subsystem. 

The entities of the Functional Subsystem are: Process and 
Subprocess (as general concepts related to the running of the whole 
Installation and of each Module). Activity is defined in Section 8.4.1.1,
and – from the means-end point of view – corresponds to the network of flow 
functions for the components that leads to a certain (processing) end of the module. 
The Process phase is the current set of activities existing at a moment during 
the whole installation running. The Operational Mode indicates a state of the 
Component that leads to a primary flow function or to another, depending on the 
control action meant for the components (e.g., valve is open or shut). The fact that a 
Disorder depends on the Activity it appears, is represented by the 
constraint{and} upon the respective relations (note that {} stands for {and}, reduced 
because of the limited space). 

8.6.2.3. The Behavioural Subsystem 
The human diagnostician’s view on manifestations and symptoms concerns: 

i) deviations of the observed variables from the expected 
(“normal”) values – where observations may refer to ends, effort 
and flow variables, linguistic values from human operator; 
ii) deviations of functions that lead to abnormal ends – anomalies 
in the end’s accomplishment, in the flow store or flow transport; 
iii) propagation of the effects from the fault location – deviations 
of flow variables appear as primary effects (transport anomalies) 
and provoke secondary effects. 

Entities on the faulty behaviour come from the deep knowledge of human 
experts in the domain and on the target MCFS, as presented in Section 8.5.

The relation «evo» indicate that a Manifestation evokes a 
Disorder, while «rev» indicates that an Observation reveals a
Manifestation.
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The {and} constraints between respective dependencies and associations 
indicate that the Disorder is specific to the Anomaly and the Activity that 
appear. 

A causal relation that has an explanation represents deep knowledge. 
Relations that come from experiments or practice represent shallow knowledge that 
is embedded in the Artificial Neural Network (ANN) blocks. Shallow knowledge is 
embedded into the diagnosis expert system during the training procedures, based on 
known patterns acquired from practice (off line) or from experiments (on-line). 
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8.6.3. The CAKE Tool 

Knowledge elicitation and knowledge acquisition are assisted by the Computer 
Aided Knowledge Elicitation (CAKE) software tool, which actually replaces the 
knowledge engineer who is involved in the design and implementation of the 
diagnosis expert system (Ariton and Baciu, 2002). 

Knowledge elicitation proceeds by asking the operator about entities, 
values and relations, namely, on specific concepts of the subsystems in the target 
system. Knowledge elicitation activity consists of three phases: the top-down phase 
– which performs means-end discrimination of modules to components in the 
normative model, then the bottom-up phase – for collection of specific data on the 
faulty model, and finally the join phase – for establishing relations between all 
entities.

Figure 8.10. Screenshot for the CAKE screen for knowledge acquisition. 

The top-down phase scans the layered structure of flows in the target 
MCFS, considering each flow type and “asking” for: modules (with activities and 
junction types), components (with flow functions and bond-graph components), 
faults and observed variables along with manifestations attached. The functional 
structure results from the functions attached to each physical unit: for each module 
– ends and activities they accomplish, for each component – the appropriate flow 
functions and the corresponding bond-graph generic component for each activity. 

The bottom-up phase scans in the reversed order the physical and the 
functional structures, attaches faults to components, performs intelligent encoding 
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of manifestations, attaches manifestations to appropriate faults (from the shallow 
knowledge), and finally attaches anomalies to faults (from the deep knowledge). 

The join phase puts together the existing modules in the respective bond-
graph junctions (as from deep knowledge), attaches signatures to each junction, and 
indicates specific tasks for the inference engine (e.g., the order of bond-graph 
junctions to scan for transport anomalies). 

The knowledge acquisition in the three phases refers to all knowledge 
pieces and relations for the target MCFS. The information is stored in the CAKE 
tool’s Knowledge Base, which is specific to the target system. This way, data are 
prepared for the generation of a dedicated diagnosis application. Figure 8.10 shows 
a screenshot of the CAKE tool for MCFS building involved in the second phase. 

The result of the knowledge acquisition is the complete description of the 
target system as text and data stored in the knowledge base. Following the text 
description and the knowledge base, the CAKE tool generates the code for a 
dedicated diagnosis expert system. The “Fault Isolation” (neural) blocks are later 
trained with faults-manifestations and faults-symptoms patterns, based on 
previously collected data from practice and/or experiments. 

8.7. Fault Diagnosis System by Abduction  

As already shown, the human diagnostician combines deep and shallow knowledge 
on the target system, and then isolates faults following hierarchical decomposition 
and incremental procedures in refining the diagnostic (i.e., finally locating the 
fault). The deep knowledge is more compact and it rapidly reduces the searching 
space based on laws from the domain (“explanations”). However, deep knowledge 
captures only general causal links and hardly refers to the diversity of effects and 
causes in the real running. So, shallow knowledge comes to describe the detailed 
behaviour in the uncertain and incomplete context of the complex real system. 

8.7.1. Diagnosis Expert System’s Structure 

In Figure 8.11 is depicted the block structure of the Diagnosis Expert system and 
the place of the CAKE tool – which, actually, is not part of the diagnosis system. 
The diagnosis approach mainly focuses the knowledge regarding the faulty 
behaviour of the target MCFS, while knowledge regarding the normative model is 
only meant for the physical and the functional structures that will support the 
behavioural model in locating anomalies and faults. 

All knowledge enters the “Knowledge Base” block, which in the proposed 
approach is simply a data base, while the normative and the faulty models are sets 
of behavioural units with parameters and links between them. 

The “Knowledge Base” is the central block of the diagnosis expert system; 
data structures come from the “Knowledge elicitation” block (the CAKE tool 
included). 

The actual data (values) come from the “Target MCFS” through the “Data 
acquisition and pre-processing” block which performs scanning, sampling and 
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intelligent encoding of data from sensors and from human operators; data channels 
are depicted as  in Figure 8.11. 

The “Incremental diagnosis” block is the inference engine of the expert 
system; it controls the other blocks through control channels (depicted as simple 
arrows  in Figure 8.11). The inference engine’s tasks are presented in Section 
8.7.2.3.

The “Fault isolation” blocks are Artificial Neural Networks (ANN) 
dedicated and trained each for a given module faults recognition, based on patterns 
of manifestations and anomalies. The ANN blocks are connectionist models for 
abduction of faults from effects that embed deep knowledge on “abductive 
problems” of causes and effects (see (Ariton and Palade, 2004)), and also shallow 
knowledge on effects-to-causes pattern relations. 

The “Human operator interface” block interacts with the human operator 
by asking and providing operator observations to “Data acquisition and pre-
processing” block (arrow  in Figure 8.11) and displays the diagnostic. 

The “Knowledge elicitation and acquisition” block provides the 
knowledge (see  in Figure 8.11) for the “Knowledge Base” block, prototype 
manifestations for the “Data acquisition and pre-processing” block and faults-
manifestations patterns for the ANN blocks. The “Knowledge elicitation and 
acquisition” is the CAKE tool (see Section 8.6) and it is actually the subject of the 
present work. 
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Figure 8.11. Diagnosis expert system and the place of the CAKE tool. 
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8.7.2. Modular and Incremental Diagnosis 

Diagnosis proceeds by locating faults hierarchically, like the human diagnostician 
does: 

first discriminating the module with a transport anomaly, 
then recognizing fault(s) inside the module. 

The transport anomaly is detected using signatures of manifestations on 
effort and flow variables at each module’s input/outputs – see Table 8.3 – which 
leads to isolation of the faulty module. The existence of the transport anomaly is a 
confirmation of the faulty state and valuable information for further isolation of the 
concrete faults inside the module. 

At the module level, it is possible to proceed the same way, i.e., to locate 
the faulty component detecting it by signatures of power variables’ deviations. 
However, it is hardly the case that effort and flow are measured at every component 
in real installations. So, at the module level, fault isolation is performed by 
recognizing “pattern faults” from “pattern manifestations and symptoms,” based on 
a dedicated ANN block provided for the module. 

8.7.2.1. Parallel Processing for Modular Diagnosis 
Manifestations (i.e., lo, no, hi linguistic values at the observed variables) and 
symptoms (i.e., process, store and transport anomalies) are input neurons and the 
faults are the output neurons of the ANN. All concepts have the appropriate 
representations as presented above: discrete (i.e., linguistic) knowledge and logical 
meanings (i.e., truth values). This way, the abductive reasoning of the human 
diagnostician may be described by the connectionist model proposed in Section 
8.2.3.

The main advantage of the presented connectionist approach in diagnosis 
is the embedding of the human diagnostician’s shallow knowledge by ANN 
training, using manifestations-to-faults patterns as from the actual behaviour of each 
module in the target system. It is worth mentioning that it is unrealistic to use a 
unique ANN block for an entire real system, while it deals with enormous numbers 
of combined causes and training patterns. By using the modular approach 
presented, the combination of manifestations-to-faults patterns is drastically 
reduced, and the fact that the human expert’s shallow knowledge usually refers to 
the module level, even experiments on site or in laboratory conditions are 
conducted at the module level. 

8.7.2.2. Testing Policy as an Abduction Problem Solving 
The testing policy aims to indicate the best next test the result of which allows the 
optimal diagnostic refining, in other words the shortest path (as steps) to the 
diagnostic.

The “next best test problem” can be formulated as an abduction problem, 
and it can be solved in the same way as the diagnosis itself, i.e., as a connectionist 
implementation of plausibility and relevance of the next test to follow. Testing is 
performed stepwise, and takes part of the sequential diagnostic refinement. 
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The testing procedure requires human operator observations, but only a 
few are useful given the current situations (faults occurred, process phase, etc.), and 
given the entire set OM of human observed manifestations (see Section 8.3.3.3).

The current set of instance manifestations used at the training phase of the 
ANN block includes those observed by human senses (or portable measurement 
devices) and they should be provided as required at the time of diagnosis. In 
reverse, the embedded knowledge may be used to find out which is the plausible 
and relevant observation that the human operator should supply to advance the 
optimal diagnosis. 

In this way, the next best test is obtained as the solution of the abduction 
problem solving, using plausible and relevance criteria as follows: 

plausibility(P_CRITERIA, EFFECTS, CAUSES) – whose 
outcome is the set of operator-observed manifestations OM
(hence variables to be tested), based on the set of manifestations 
joined with the set of plausible faults obtained at the current step 
in the diagnosis. 
relevance(R_CRITERIA, OM) – whose outcome is the set of 
relevant operator observations out of the plausible ones, that 
satisfy R_CRITERIA.

The abduction problem is solved by means of a neural network 
implementation, and indicates the most plausible and relevant operator observation (if 
the competition is strict), or a set of observations (if the competition is relaxed), for 
which the human operator will supply data. 

8.7.2.3. Incremental Processing for the Diagnostic Refining 
The inference engine of the expert system with the same name, sequentially and 
repeatedly fulfills the following tasks:  

i) Start data acquisition from the Target MCFS by means of the  
“Data acquisition and pre-processing” block, which also performs 
the „intelligent encoding.” 
ii) Identify the activities of all modules, during the current process 
phase (note that a process phase lasts between any two transitions 
of activities for any of the modules entering the same 0-junction). 
iii) Detect faults – by identifying process and store anomalies. 
iv) Detect transport anomalies and the faulty module – by 
identifying signatures of manifestations of effort and flow 
variables from Table 8.3. 
v) Isolate fault(s) inside the faulty module(s), by means of 
manifestations and anomalies patterns, applied at the inputs of 
“Fault isolation block per module”; recognize fault using the 
dedicated ANN for the module. 
vi) Evaluate the truth value of the “faulty” state versus the 
“normal” state for the entire target system. 
vii) If “faulty” is greater than “normal” but no diagnostic exists 
(i.e., truth value of all activated faults is under a given threshold) 
ask human operator for additional observations and go to step i. 
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viii) If a diagnostic exists (“normal” and “unknown” included) 
and no further additional observations requested, display the 
diagnostic.

The inference engine cycle is standard but embedded knowledge and data 
are specific to the target system under the diagnosis. 

8.7.3. Aspects of the Sequential Diagnosis 
In the presented approach, sequential diagnosis involves three aspects: 
a) Abduction by plausibility and relevance proceeds stepwise: first, 

plausible causes are obtained through feed-forward activations 
according to instance manifestations; second, the relevant faults are 
discriminated from the relevance groups, each group as a specific 
modularisation of faults, one modularisation applied at a time. 

b) Process phases arise one after another, each process phase exhibiting 
specific plausibility criteria; consequently, the connectionist abduction 
is performed according to the (expected) current process phase. 

c) Additional observations required from and supplied by human 
operator get into the diagnosis system, until no test is required – i.e., 
until the diagnostic is obtained (even if it is “no fault” or “unknown 
fault”).

For aspects a and b above, an example of sequential diagnosis is presented 
in the previous section; item c refers to the next best test policy formulated as an 
abduction problem, and solved by plausibility and relevance implemented by neural 
networks. Note that “unknown fault” that occurs in the real running is finally 
decided by the human operator of the diagnosis system – when a faulty situation 
exists but no diagnostic provided. 

8.7.3.1. Diagnosis by Plausibility and Relevance Criteria Sequentially 
Applied
Let us consider the diagnosis performed for a process phase P. After applying the 
plausibility criteria P_CRITERIA upon the set of EFFECTS, the set F* of all 
plausible causes is deducted (i.e., the set comprising all causes with a positive 
activation). The “mass activation” of plausible faults is, by notation, Fi, as given 
in Eq. 23, where F* is the set of plausible causes. 

F
*

i i
F F

F Fi = (23) 
The sum is performed over the set F*of plausible causes but it actually is 

the same if performed over the entire set F of causes, while nonplausible causes 
exhibit zero activation. So, the computational procedure always deals with the 
entire set F of causes, hence simple implementation. 

Applying the relevance criteria R_CRITERIA upon the set of CAUSES will 
increase the activation of a plausible and relevant cause Fi

*, according to the layer’s 
weight WL (see Section 8.2.5.2). The increase will affect the numerical value of Fi

*,
according to the mass activation Fi of all faults and to the weight WL of the current 
modularisation layer: 
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i
i

i

F
FFi

* = WL
(24) 

In the proposed approach, the order of the relevance criteria applied is 
important, because the activation mass changes accordingly. The best order is the 
one of increasing weights WL, so the activation mass Fi is updated only once, 
before the current layer processing. Each layer induces a graded increase of 
respective cause(s) activation, the last layer of modularisation inducing the highest 
increase.

After applying all relevance criteria, the relevance of faulty situation is 
determined (see Section 8.2.5.3) and the diagnostic is issued as the most relevant 
causes resulted, including faults with activation over the doubt level. 

8.7.3.2. Testing Policy by Plausibility and Relevance Criteria Sequentially 
Applied

The next test is required after each diagnostic obtained. The diagnosis 
system “asks” the human operator to provide a certain variable value; he or she 
supplies the value, and so diagnosis based on plausibility and relevance restarts. 

The most plausible and relevant operator-observed variable(s), for the 
given situation, result as an abduction problem solving according to Section 8.2.3.
The next best observation (i.e., test) is indicated by the ANN block provided for 
each module, based on current faults and instance manifestations activated. 

Now, the activation of plausible fault Fi
* changes according to new 

manifestations provided and, additionally, the activation is affected by the weight WO

attached to the operator-observed variable provided at the current step: 

i
i

i

F
FFi

* = WO
(25) 

The human diagnostician sets up weights for the operator-observed 
manifestations according to the deep knowledge in the domain, provided WO = 1 
for the set of operator-observed manifestations in the relevance group. The human 
operator supplies the observed values (manifestations) in the reverse order of 
weights WO. That is, the values of the most important variables are provided first. 

In the economy of the diagnosis by next best test, the most important role 
is played by Eq. 11, which starts the next test procedure if the FAULTY situation 
prevails over the NORMAL one. It is possible to stop asking for new operator-
observed variables if a predefined faulty situation threshold is surpassed, e.g., 

1

0

n

n

i
i

Fn

F
(26) 

where  = 9 means that the faulty situation is 90% certain as the normal one. 
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8.7.4. Neural Network Architecture for Diagnosis and 
Testing

The neural network architecture for diagnosis using a testing policy comprises two 
neural networks, each dedicated to the abduction problem solving: one for the 
diagnosis – DNN (Diagnosis Neural Network), the other for indicating the next 
observations to be made – TNN (new Test Neural Network), as shown in Figure 
8.12. 

Both neural network blocks contain feed-forward links for plausibility, 
between the input and the output neurons; for DNN, between input neurons of the 
type OM (Operator-observed Manifestations), MM (permanent Monitored 
Manifestations), SY (SYmptoms detected) and output neurons F (Faults); for TNN, 
between F (Faults) and OM (Operator-required Manifestations – identical as set 
with the Operator-observed Manifestations set). Forward links are represented as 
arrows between input and output layers of neurons, and competition links are 
represented by horizontal arrows between the output neurons (F and OM,
respectively).
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Figure 8.12. Neural network architecture for fault diagnosis by abduction, with additional 
observations from human operator. 

The input of the DNN block consists of permanent observed 
manifestations MM and operator-observed manifestations OM – the last ones 
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passing through the network as long as they are triggered and supplied by the 
operator. Plausible faults at the output of the DNN block become inputs of the TNN 
block, along with the current manifestations MM, to produce most plausible and 
relevant observations to be tested by the human operator. The entire set of neuron 
outputs of the DNN block are passed to the input of the TNN block, while only 
plausible faults get activated and count for the abduction towards the next test 
indicated to the operator. 

Diagnosis proceeds stepwise. At each step, the observations become first 
manifestations by “intelligent encoding,” then most plausible and relevant faults 
result by abduction at the output of the DNN block, along with required operator-
observed variables indicated at the output of the TNN block. The set of most 
plausible and relevant faults at each step is a partial result with attached values of 
FAULTY and NORMAL situations, as from Eq. 14. The final diagnostic is obtained 
when the FAULTY situation surpasses a given threshold and no operator 
observations are required. Depending on the number of relevant faults resulting 
from competition, single or multiple fault diagnosis is in concern. 

The "closed world assumption" is satisfied if all situations that may appear 
during the diagnosis have a result; hence the “no fault” (NORMAL) as well as 
“unknown fault” (UNKNOWN) neurons appear in the output layer of the DNN 
neural network block. The processing for plausibility and relevance roughly 
corresponds to general phases in diagnostic reasoning: "hypotheses generation" and 
“hypotheses discrimination,” respectively. 

The neural network is the core of the diagnosis expert system, and it deposits 
the deep and shallow knowledge of the human diagnostician. The way the diagnosis 
proceeds also complies with the human diagnostician’s way of acting, i.e., it is 
performed sequentially, applying plausibility and relevance criteria step by step, 
until the final diagnostic is obtained. 

8.8. Case Study on a Hydraulic Installation in a 
Rolling Mill Plant 

The case study is performed on the simple hydraulic installation shown in Figure 
8.13. It comprises two hydraulic cylinders (for a carrier and a brake), two control 
valves, the mineral oil tank, the pump with a pressure valve, and two long pipes. To 
master the complexity of the installation under diagnosis, the installation was 
divided into modules: the Hydraulic supply (containing tank, pump and pressure 
valve) and two driving modules (containing control valve, cylinder, damper –
Drossel) – the Hydraulic brake and the Hydraulic conveyor. 

8.8.1. Knowledge Elicitation 

The information regarding the physical and the behavioural subsystems consists of 
knowledge pieces presented in Table 8.4. The whole set of disorders considered 
consists of: faults, the NORMAL situation, and the nonconformities at flow, human 
operator and neighbour systems.  
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For each component, the numbers of faults are: 2 at the tank, 4 at the 
pump, 3 at the pressure valve, 2 at the pipes, 3 2 at the control valves, 2 at the 
damper, 2 2 at the cylinders. 

There exist 6 disorders that refer to nonconformities: 2 for the mineral oil 
(i.e., “too many suspensions” and “foamy oil”), 1 at the environment (“too hot”), 3 
for operating errors (Olu “no oil in the tank” – see below, “carrier load too heavy,” 
“pump velocity ill tuned”). So, the disorders consist of 23+1 faults (NORMAL
added), and 6 nonconformities, i.e., |F| = 30. 

Line 4 in Table 8.4 shows the types of manifestations and the number of 
data according to the activities in line 2; for example, the number of the fuzzy 
attributes for the Supply module is (6 variables) (3 landmarks) (2 activities) = 36 
manifestations of type lo, no, hi.

The measured manifestations refer to |MM| = 48 pieces that are variables 
expressed as single neurons (for the binary variables), or triple neurons (for the 
continuous variables with lo, no, hi attributes), each neuron with a graded value of 
truth. The observed variables come from analogical sensors for 2 input/output flow-
rates, 3 input/output/damper pressures, 4 temperatures (control valves, pump and 
tank), from contacts for 4 operator commands (brake on/off, carrier on/off), for 5 
positions (of type left/right, open/shut) of the two pistons and of the pressure valve. 
The 4 durations of the pistons' movements (left/right – for the two cylinders) enter 
also as measured manifestations. 

In the set of the |OM| = 14 operator-observed variables, there are 5 of type 
"noise" (2 for the pump, 3 for the pressure and the control valves), 6 "oil leakage" 
(all except the damper) and also there are 3 anomalies outside the hydraulic system 
(brake/carrier mechanical blockage, no pump power). 
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Figure 8.13. Hydraulic installation under elicitation case study. 
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Running contexts of the target hydraulic installation refer to each discrete 
position or motion of the pistons in the two cylinders, as well as to the two states of 
the control valve. So, we find the activities for each of the three modules: 2 
activities for the supply module and 4 activities for each driving module. The total 
number of process phases is 2+4 4=18. Even for such a simple installation, the 
numbers of process phases is quite large, provided that for each of them the 
knowledge engineer should develop experiments to assess the specific 
manifestations and their links to faults, hence plausibility criteria and the DNN 
block training. Instead, each module’s specific behaviour was studied separately 
when faulty. The simulated faults and the manifestations that had appeared were 
collected for each separate module, concerning only the 2 activities of the supply 
module and the 4 activities of each driving module, respectively. 

Table 8.4. Inventory of the knowledge pieces involved in the fault diagnosis 

                   Module 

     Entity 

Hydraulic 

Supply 

Hydraulic 

Brake 

Hydraulic 

Conveyor 

1. Components 

pump, tank, 

pressure valve, 

pipes 

control valve, 

cylinder 

control valve, self, 

cylinder 

2. Activities / Faults 2 / 11 4 / 5 4 / 7 

3. Sensors  

(observed variables) 

Analogical 6, 

Digital 7 

Analogical 5, 

Digital 8 

Analogical 3, 

Digital 8 

4. Manifestations 

Fuzzy 6⋅3⋅2,

Binary 7⋅2
Fuzzy 5⋅3⋅4,

Binary 8⋅2
Fuzzy 3⋅3⋅4, 

Binary 8⋅2
5. AnoP, AnoS, AnoT 2, 1, 4 2, 2, 4 2, 2, 4 

A total number of 155 (fuzzy and binary) manifestations result, hence 888 
manifestations-to-faults and 255 anomalies-to-faults links get established. If faults 
and manifestations were considered for the entire installation (as in “classic” ANN-
based diagnosis – i.e., without modularisation), 32 combinations of activities result, 
hence (6 3+5 3+3 3) 32=1344 knowledge pieces for manifestations, which require 
30 1344=40320 manifestation-to-faults links, and 9600 anomalies-to-faults links. 

Using the modularisation in presented approach, just for the simple 
hydraulic installation, the data volume is (1344+40320)/(888+255)=36 times less 
for the modularised approach than using a unique ANN block for the entire 
installation. In the case of a more complex installation, the ratio is much bigger, and 
embedding deep knowledge in the links between faults and manifestations is quite 
impossible. While the knowledge acquisition is rather difficult even for the 
modularised scheme, the CAKE tool comes to assist the human diagnostician in 
managing the elicitation and the data volumes, also in yielding the data structures 
for a dedicated diagnosis system. 

8.8.2. Neural Blocks for Physical Modules 

The diagnosis was meant for three distinct process phases, namely, the one with the 
control valve open (for faults at the supply module) and those with moving pistons 
(for the two driving modules). No symptoms were considered on the installation 
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behaviour. The faults–to-manifestations patterns, used in the training of the DNN 
and TNN neural network blocks for each module, were partly acquired from human 
diagnostician practice, partly from experiments.  

Again, the modularisation represents an advantage in the implementation 
of the diagnosis system. So, instead of considering the process phases for the whole 
installation as the running contexts (which determine the specific faulty behaviour), 
it is now possible to consider only the activities of modules interconnected in the 
same bond-graph junction. Furthermore, the neural sites for the abduction problems 
were easier to build separately for each module. 

The structure of the neural network block for the supply module is 
depicted in Figure 8.14, where: 

Faults are: Pax (pump – axis broken), Pai (pump – clogged 
admission), Pne (pump – ill joints), Puz (pump – worn out), Tne
(tank – worn-out filter); 
Manifestations are: P1 (oil pressure at the tank outlet: “too low” 
lo, “too high” hi), D1 (oil flow rate at the tank outlet: “too low” 
lo, “too high” hi), T2 (oil temperature “high” in the tank); 
Manifestations requested from the human operator are: Z1
(whistling noise at pump), Z2 (jerky noise at pump), M1 (oil mud 
at pump), M2 (oil mud at tank); 
Nonconformities from flow and from human operator: Uim (dirty 
oil), Usp (foaming oil), Olu (tank empty), Otm (pump angular 
velocity ill tuned). 

As shown in Figure 8.14, there are two monotonic faults (Pne and Puz), 
two monotonic operator-observed variables (Z1 and Otm), and two conjunction 
sites (for Pax and Otm). The negation sites for operator-observed variables prevent 
further demand of the variables already requested and supplied. 

8.8.3. Plausibility and Relevance 

For each running context, the plausibility links between faults and manifestations 
were set up according to the human diagnostician’s deep knowledge, but also 
systematically linking all manifestations to faults in a module. 

The neural network model used for the DNN and TNN blocks is the 
perceptron; it supports the feed-forward plausibility criteria with modified structure, 
suited to abduction problem solving (see Figure 8.14). 

Plausibility criteria refer to different abduction problems implemented as 
neural sites and to trained faults-to-manifestations patterns from simulated 
experiments, on each target module, for fault, “normal” and “unknown” cases. 

Competition is added over the set of fault neurons regarding the following 
relevance grouping: 

1. faults at the same component (physical structure scope) – minimum 
cardinality criterion; 
2. faults which are obvious only in specific activities of the respective 
module (e.g., control valves “blocked parallel” and “blocked crossed” are 
obvious only when the piston is moving in the hydraulic cylinder); 
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3. faults in the module provoking leakage and those provoking clogged 
symptoms for mineral oil flow. 
For each functional module i, it corresponds to a neural network module 

with two blocks, DNNi and TNNi. Additional relevance criteria discriminate 
between the diagnostics at module level, in order to issue the diagnostic at the level 
of the whole installation. The relevance criteria at installation level are based on 
symptoms and on Eq. 11; the relevance criterion of minimum cardinality was 
considered. 

The training of the neural network block DNN1 (associated with module 1 
– the oil supply module presented above) is performed using the standard learning 
algorithm for the perceptron. The NORMAL situation for the entire supply module 
is trained using normal values  (see Figure 8.15): no for P1 and D1, and normal 
states of the other manifestations. The UNKNOWN situation is trained by means of 
patterns, randomly generated but consistent with those used for plausibility of faults 
and the normal situation. 

As it is difficult to gather all the necessary details for the NN structures for 
all modules, a CAKE (Computer Aided Knowledge Elicitation) instrument was 
build and used to describe and automatically generate the DNN and TNN structures 
at the module level. 

NORMAL 
Uim Usp Otm Z1 Z2 M1 M2

T2

Pax Pai Pne Puz Tne

lo no hi

D1 

Olu Uim Usp Otm Z1 Z2 M1 M2lo no hi

P1

DNN

1

TNN
1

Olu
UNKNOWN 

P1lo P1hi
D1hi

D1hi

Figure 8.14. The neural network structure for the first (oil supply) module for diagnosis. 

8.8.4. Sequential Diagnosis for the Supply Module 

Figure 8.16 illustrates the four steps in which the diagnosis regarding the supply 
module is performed, with respect to a fault that occurred in the pump, namely, Pai
(short name for the fault “oil tank pipe is clogged“). Each window shows a step 
during the diagnosis refinement, including the partial diagnostic and the operator-
observed variables required from the human operator. For the simulated fault – 
marked by x – the diagnostic is obtained in four steps, after eliminating other causes 
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– see in the third window Olu (short name for the non-conformity “oil tank 
empty”). 
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Figure 8.15. Training of the NORMAL situation for the oil supply module, in 32 epochs. 

The Y axis indicates the truth value of a specific item from the X axis, 
which shows discrete knowledge pieces from 0 to 50. 

The three sections of the X axis represent: the 31 disorders mentioned 
above, the 6 nonconformities (in the section “Non-cf”), and the 14 observations 
needed from the human operator. Faults’ truth values, as resulted from the 
diagnosis, are indicated as bars at the index position of each fault (0 to 30). 

The 6 nonconformities and the 14 operator-observed manifestations are 
also indicated as bars, but their meaning is now a demand to the human operator, 
i.e., a confirmation required for a possible nonconformity indicated as a bar, or a 
value required from the operator for the observed variable indicated as a bar, at its 
specific index on X axis. As a response, the human operator has to indicate if that 
environment nonconformity is present, or the current value for the operator-
observed variable, respectively. In the sections for nonconformities and for operator 
observations, the height of a bar indicates how stringent is the respective item, so 
the human operator may choose the highest one(s) for supplying the confirmation or 
the value. 

Additional observations required from the human operator in the current 
step appear in the Non-cf. section and in the Operator Observations section on the 
X axis. The window in each step shows the current diagnostic. Activated 
observations from the human operator decrease to 0 after the value is supplied. 

The diagnostic is strongly dependent on the coverage of faulty behaviours 
for each module with faults or classes of faults. The data on the behaviour of the 
hydraulic installation come from simulated experiments. The diagnosis system 
always produced a diagnostic in a finite number of steps, and the average accuracy 
of the diagnosis was 96%. Additional observations supplied by the human operator 
require some steps in the diagnostic refinement that hinders real-time diagnosis. 
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Figure 8.16. Sequential diagnosis in 4 steps for the fault Pai, with additional Operator 
Observations.

8.9. Conclusions 

Fault diagnosis of complex systems involves deep and shallow knowledge of 
human diagnosticians, since diagnosis in the reallife deals with incomplete, 
imprecise and uncertain knowledge on the behaviour of target systems. The aim of 
the chapter is to describe a diagnostic system that emulates the human 
diagnostician’s way of acting, in order to build dedicated diagnosis systems for 
concrete target systems. The automated fault diagnosis is based on computational 
intelligence models: fuzzy and possibilistic logic, artificial neural networks. 

The chapter focuses on the fault diagnosis of artefacts often met in 
industry (and not only), that executes more functions at the same time based on 
conductive flows of matter and energy, i.e., multifunctional conductive flow 
systems (MCFSs). The proposed MCFS abstraction is close to the human 
diagnostician’s way of conceiving entities and relations on physical, functional and 
behavioural structures. 

Diagnosis reasoning is intrinsically abductive reasoning. The chapter 
presents the abduction by plausibility and relevance, in a connectionist approach. 
Plausibility criteria become feed-forward links from manifestations to faults – as 
from the shallow knowledge acquired in practice or experiments. Relevance criteria 
become competition between the elements of various groups of causes (be they 
faults or other kind of disorders), put together according to the deep knowledge on 
physical, functional and behavioural structures of the target system. 

In order to solve all types of abduction problems (according to Bylander et
al., 1991), specific architectural features are added to the neural network. The 
features refer to plausibility criteria and affect the feed-forward links between 
manifestation and fault neurons, also between fault neurons. This way, the 
abduction problem solving is straightforward and easier implemented in various 
neural network types than other approaches (e.g., Ayeb et al., 1998). 
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Deep knowledge refers to physical and functional structures, as means for 
achieving the ends of the target system. Also, deep knowledge refers to the sets of 
faults, manifestations and symptoms along with some behavioural hints regarding 
primary and secondary effects useful for locating faults. Shallow knowledge refers 
to (unexplained) links of faults to manifestations or to symptoms, from the human 
diagnostician’s practice or experiments. 

The embedding of the deep and shallow knowledge requires appropriate 
representations of physical, functional and behavioural concepts, observing the 
discrete and qualitative nature of human knowledge. In this respect, means-end and 
qualitative modelling approaches are adapted to obtain a unified representation of 
various behavioural entities. The faults’ effects propagation is modelled using four 
orthogonal transport anomalies related to the bond-graph model of components and 
bond-graph junctions for modules for the entire target system. 

The concepts and relations involved in human-like diagnosis get 
appropriate representations by computational intelligence paradigms. All concepts 
and relations enter the connectionist models of the abduction problem solving, and 
their representation is also meant for the systematic knowledge acquisition on 
concrete target systems. All knowledge pieces involved in fault diagnosis enter 
appropriate elicitation models addressing human diagnosticians’ way of acting, and 
lead to structures useful for the computational model of the diagnosis system. 

The decision on the next best test, aiming the diagnostic refining, is also 
seen as an abduction problem, and it is solved based on plausibility and relevance 
criteria in the connectionist implementation. The diagnosis on the whole is 
performed as a sequential application of plausibility and relevance criteria, applied 
incrementally, and completed with new tests until the final diagnostic is found. 

Fault diagnosis of real systems involves a great amount of data. Therefore, 
knowledge acquisition, knowledge representation and data management tasks 
require appropriate tools to assist human diagnosticians in building the diagnosis 
system. The Computer Aided Knowledge Elicitation (CAKE) software tool assists 
the human diagnostician, or even the human operator, in the design and generation 
of the dedicated diagnosis system for the concrete target system envisaged. So, the 
CAKE tool replaces the knowledge engineer and the software designer. Moreover, 
specific knowledge on the concrete target system is embedded in the diagnostic 
expert system, exploiting the human diagnostician’s practice and knowledge on the 
running conditions of the target real system. 

The case study on a hydraulic installation of a rolling mill plant gives 
examples on the knowledge elicitation process and on the diagnostic expert system 
building and running. 
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