
8. Soft Computing Models for Fault
Diagnosis of Conductive Flow Systems

Viorel Ariton

This chapter focuses on the fault diagnosis of artefacts often met in industry, but not
only, that execute various functions involving conductive flows of matter and
energy, i.e., multifunctional conductive flow systems (MCFSs). The proposed
MCFS abstraction is close to the human diagnostician way of conceiving entities
and relations on physical, functional and behavioural structures. Diagnosis
reasoning, performed by human diagnosticians, is intrinsically abductive reasoning.
This chapter presents the abduction by plausibility and relevance in a connectionist
approach. The case study on a hydraulic installation of a rolling mill plant gives
examples on the knowledge elicitation process and on the diagnostic expert system
building and running.

8.1. Introduction

Fault diagnosis of complex systems is often a difficult task, due to the incomplete,
imprecise and uncertain knowledge on behaviours and interactions encountered in
the real-life context. Diagnostic reasoning is abductive reasoning, thus it is different
from the common (deductive) reasoning. The latter starts from causes and leads to
effects, hence the “explanation” is based on a definite space of causes to a definite
set of effects, while the first starts from effects to reveal causes. Hence, the
“explanation” is based on a presumed space of causes with many-to-many links to a
(reduced) space of effects. In real life, the diagnosis itself proceeds differently for
similar target systems running in different contexts. On top of those difficulties, one
may notice that computer applications for fault diagnosis face the modelling and the
parameter identification burdens, both after a challenging knowledge elicitation
effort on the target area.

Consequently, fault diagnosis of complex systems often relies on human
diagnosticians, who usually perform knowledge acquisition on faulty behaviours,
later used to “recognize” faults from (some) instance effects. In a simple view, they
use a mapping of faults to effects, for searching causes possibly linked to the
instance effects, and sequentially refining the diagnostic based on knowledge in the
area and from practice.

The artificial intelligence community concerned with diagnosis obtains the
mapping either by methodical experiments – exhausting the faults’ space and
collecting the effects – or by means of some knowledge of human experts from
practice. However, the computational models for fault diagnosis also require
methods to reduce the many-to-many relations of the reverse mapping from effects
to faults, which commonly are known as human diagnostician’s deep knowledge.

232 V Palade, CD Bocaniala and L Jain (Eds.)

The diagnostic is then obtained: (1) using a matching procedure from actual effects
to possible faults – as in the case-based diagnosis or in the neural/causal network-
based diagnosis, (2) using a transformed effects space regarding the difference from
the expected and the actual behaviour labelled with faults – as in the model-based
diagnosis, or (3) using an "intelligent" look up procedure performed through a
combined effects space, according to human diagnostician knowledge on
phenomena specific to the target system in normal and faulty running – as in
knowledge-based fault diagnosis.

Computational models of the above approaches have shortcomings at both
phases above, most of them revealed when the target system runs in a real context:

a) For the faults-to-effects mapping phase: cases (1) and (2) above
involve experiments which are barely possible for (all) faults, hence
no complete mapping is possible, while in case (3), the mapping
involves additional structures on causal relations between faults and
effects, coming from some explanations of phenomena taking place.

b) For the diagnostic decision phase: in cases (1) and (2), the
computational models are simpler but the diagnostic not entirely
reliable, while in case (3) the backward chaining from effects to faults
is applied in specific ways to the various running contexts.

Knowledge handled in cases (1) and (2) is often identified as “shallow
knowledge,” while that in case (3) is considered “deep knowledge.” In usual cases,
target systems involve flow conduction; hence the effects propagate throughout the
(entire) system and thus make the diagnosis much more difficult. In that case, the
combinatorial growth of the faults-effects mapping – cases (1) or (2), and because
the deep knowledge refers to the model of the entire system – case (3). However,
for systems in real life, neither the complex mapping nor the (many) complex
models are possible, and that’s why the human diagnostician’s role is crucial. It is
worth noting that running contexts of real systems are of greatest importance, while
identical systems may behave differently – due to age, environment, maintenance.

The present chapter first states some considerations on the diagnosis as an
abduction problem solving which exhibits an intrinsic connectionist nature: the
many-to-many relations of the effects to causes may get forward (excitatory) links
meant for activation of plausible causes, then relevant causes result from
competition between the plausible ones. The artificial neural network (ANN)
implementation of the connectionist model is enriched with specific architectural
features (structures of neural sites) meant to solve all types of abduction problems
met in the literature.

The nodes of the connectionist model are manifestations, symptoms and
faults. Human diagnosticians handle such concepts in a discrete and qualitative
way. In order to obtain a sound representation of the concepts and their qualitative
relations, the chapter develops the analysis on modelling means that lead to discrete
knowledge pieces and their relations, as human diagnosticians handle, regarding
normal and faulty behaviour of a target system.

The chapter focuses on the class of conductive flow systems that perform
more functions at a time; such systems are most encountered in technical and
economical domains, and due to their multifunctional and flow conduction natures
they are termed multifunctional conductive flow systems (MCFS). Sections 8.4 and

Computational Intelligence in Fault Diagnosis 233

8.5 develop appropriate knowledge elicitation schemes, in a multi-modelling
approach, to discriminate concepts and relations, as knowledge pieces involved in
fault diagnosis.

All concepts and relations take part in appropriate Computational
Intelligence models which combine human diagnosticians’ deep and shallow
knowledge on the target system behaviour, based on fuzzy logic and possibilistic
modelling of incomplete and imprecise deep knowledge on manifestations, and
based on neural network blocks for abductive problem solving of both fault
diagnosis and next best test policy in refining the diagnostic.

The neural networks embed the shallow knowledge as data sets from
practice and experiments for the plausibility links between faults and
manifestations. Deep knowledge helps finding the relevant causes (from the
plausible ones), and it is embedded in the neural sites of the specific abduction
problems on manifestations and faults in the target system. Also, it is embedded in
the links between faults and their specific symptoms corresponding to the four
“orthogonal transport anomalies” (first introduced in (Ariton, 2003)). Additionally,
the deep knowledge on the physical structure of the target system is embedded as
the projection structure of neural blocks, each corresponding to a Bond Graph
junction of the flow conduction system (Ariton, 2001).

Whilst deep and shallow knowledge are combined and embedded in the
neural network, the training does not require exhaustive experiments on faults in the
complex target system (which are barely possible in real life), and the diagnosis
exploits the common view on the whole system as an interconnection of modules;
to each module a neural network block is attached, thus easier to handle and train.
The architectural features that embed the deep knowledge allow a better and
comprehensive diagnostic, and also offer the opportunity to generate dedicated
diagnosis applications for each concrete complex target system and its real-life
running context. That opportunity is of most importance for the diagnosis task
while two identical target systems may behave differently. While for the control
task of a system it is natural to provide all homeostatic conditions to obtain the
intended aim, the diagnosis task deals with the system as it is, in its real context and
local conditions.

8.2. Diagnostic Problem Solving by Abduction

Abductive reasoning is a challenge for philosophy, science and practice. Abduction
is sometimes creative while it puts effects before causes (Bylander et al., 1991;
Schurz, 2002). Computer applications require effective computational models,
commonly focusing on the connectionist nature of the abduction problems (Peng
and Reggia, 1990; Ayeb et al., 1998).

8.2.1. Abduction Problems in Diagnosis

In the real world, fault diagnosis involves open spaces of manifestations and faults,
while both are not completely known in real contexts. Unlike deductive reasoning ,

234 V Palade, CD Bocaniala and L Jain (Eds.)

which focuses a definite aim and may consider the targeted part isolated from the
whole, abductive reasoning (e.g., in diagnosis) may not ignore causes (and effects)
without corrupting the result (i.e., the diagnostic). For example, if the excessive
heat of the air around a hydraulic installation is neglected, one may assert that
abnormal running is due to a faulty component – which may be false; a similar case
arises when ignoring the quality of the mineral oil flow.

In fault diagnosis, the cause may represent one or more faults occurring at
a moment, and the effects are subsequent deviations from the normal running that
appear. A huge number of causes come from combinations of various faults and
various external events, so the set of all possible causes is never taken into
consideration (it is not realistic). On the other hand, some effects are observed and
become manifestations, and some are not “visible” – due to the lack of information
(e.g., no sensors).

Both aspects presented in the previous paragraph are facts of the intrinsic
knowledge incompleteness of the diagnosis, actually of abductive reasoning in
general. So, diagnosis always deals with open spaces of causes and effects;
moreover, it deals with imprecise and uncertain knowledge of human experts on the
real behaviour of the target system. However, for feasibility reasons, both the space
of causes and the space of effects should be closed spaces. In this respect, special
classes of causes and effects should be introduced – e.g., the “normal” situation or
“unknown” causes.

Studies of Bylander et al. (1991) on abductive reasoning reveal four
categories of abduction problems:

a) independent abduction problems – no interaction exists
between causes;

b) monotonic abduction problems – an effect appears at
cumulative causes;

c) incompatibility abduction problems – pair of causes are
mutually exclusive;

d) cancellation abduction problems – pair of causes cancel
some effects, otherwise explained separately by one of them.

Ayeb et al. (1998) have a sound approach in this respect. They introduce a
fifth category:

e) open abduction problems – when observations consist of
three sets: present, absent and unknown observations.

The discrimination of the abduction problem type is specific to the
particular behaviour of the target system and it is a matter of deep knowledge of the
human diagnostician on causes and effects in the local context. For each type of
abduction problem, Section 8.2.4.2 presents a suitable architectural feature, which
may enter the neural network implementation for the abductive problem solving.

8.2.2. Abductive Reasoning through Plausibility and
Relevance

Direct causal links between effects and causes may represent plausibility criteria
(Bylander et al., 1991). From the set of all plausible causes, only a subset represent
actual causes, usually obtained through a parsimonious principle. Konolige (1992)

Computational Intelligence in Fault Diagnosis 235

considers the minimum cardinality as a relevance criterion, and applies it to the set
of plausible faults to obtain the diagnostic subset.

In the presented approach the concept of relevance gets a specific
representation, namely, it assumes some grouping of plausible causes – following
specific points of view, then selecting the most relevant causes from a group –
following competition or sorting/choosing procedures (Ariton and Ariton, 2000). In
the connectionist implementations, plausibility links get direct representations as
forward links between specific effects to specific causes As a concept, the
“relevance” is not often discussed in the literature, so below a special attention is
given to the subject.

A relevance group is a set of causes that are hardly likely to occur the
same time – e.g., the set of faults for a particular component in the target system; in
other words, a faulty component may exhibit only a small number of faults at a time
(usually, only one). The point of view from which causes may enter a relevance
group is the relevance scope, and it reflects the human diagnostician’s deep
knowledge on the faulty behaviour of the target system. The relevance criterion is
the method used in selecting relevant cause(s). In order to perform selection, a
quantitative quotient (e.g., “certainty” or “activation”) is provided to rank causes.
Following the relevance criterion (usually “minimum cardinality”), the selection of
“most relevant” causes proceeds, e.g., by competition inside the group – for the
connectionist implementation, or by choosing the cause with greatest activation.
Other relevance criteria may state specific order of causes or specific quantitative
relations between activations.

In the case of fault diagnosis, the minimum cardinality is usually applied
as a relevance scope for the single fault diagnosis, disregarding it refers to a
component or to the whole target system. However, the concept of relevance may
be extended to the selected aspects met in real-life situations, i.e., to other
“relevance features.” For example, in conductive flow systems, a group of faults
may indicate “leakage” symptom, so they all form a relevance group; if some of
such faults in the group are plausible, the most relevant will be the one exhibiting
the maximum relevance feature (in that case “leakage”).

The abduction problem solving proceeds by applying plausibility and
relevance criteria to the sets of all effects and causes, as further described; the input
is the set of instance effects and the output is the set of plausible and relevant causes
– which form the diagnostic. In Sections 8.2.4 and 8.2.5, the plausibility and the
relevance get connectionist models adequate to computational implementation.

8.2.3. Connectionist Approach to Abduction

Many-to-many causal relations between faults and manifestations get reversed
when reasoning by abduction. However, no inverse exists for the complex relations
when real problems are under concern – e.g. fault diagnosis of a real complex
installation. In such a case, one fault evokes many manifestations and the same
manifestation is evoked by many faults. Moreover, manifestations may enter
conjunction grouping to one fault, whereas disjunction grouping for others.

236 V Palade, CD Bocaniala and L Jain (Eds.)

8.2.3.1. Qualitative Plausibility and Quantitative Relevance
It is worth noting two interesting characteristics of the above concepts: plausibility
is qualitative and relevance is quantitative. So, in order to find:

plausible causes, one should use some qualitative processing to
select all causes complying with the observed current situation,
e.g., asserting the faults related to the instance manifestations that
appeared;
relevant causes, one should use some quantitative processing to
select only causes exhibiting a certain degree (e.g., greater than a
given threshold value) from the set of plausible ones.

The practical conclusions on issuing a connectionist model for abductive
reasoning by plausibility and relevance are:

the activation mechanisms involved in plausibility criteria should
allow a “logical overload” of numbers toward the qualitative
processing on causes;
the competition mechanisms for relevance criteria should assess
(numerical) degrees which enter the quantitative processing on
relevance of causes.

The logical overload is meant for affecting “quantities” (e.g., numbers) in
order to become “qualities” (i.e., meanings) thus suited for plausibility criteria; the
meaning is attached to each range of values, corresponding to the significance of
that range taken from the deep knowledge of domain experts. The simplest logical
overload attaches two complementary meanings for the two ranges of numerical
values obtained after splitting the whole domain based on a border value (i.e., a
threshold) with certain significance for the variable.

That simplest logical overload is actually used in the neural network
implementation of the plausibility: if the link strength to a fault-neuron, coming
from a manifestation-neuron, is greater than 0.5 (the doubt threshold), then the link
is “important” and gets that meaning. Therefore, it has to pass the gates into the
fault-neuron, i.e., enter the input function (the stimuli sum). Otherwise, it is “not
important” and hence the gate to the fault-neuron is blocked, i.e., the input stimulus
does not enter the input function (actually, the input value is set to 0). Practical
examples on how to use the logical overload in specific abduction problems in
neural network implementation are presented in the next subsections.

8.2.3.2. Parallel Plausibility and Sequential Relevance
Relations between causes and effects (in this direction) correspond to the deductive
explanations and indicate which causes determine which effects. The many-to-
many relations between effects and causes (in the reverse direction) show which
effects may evoke which causes, but instance effects do no indicate instance causes
(that really occurred), while no inverse of the direct relations exists. Therefore, in
the general case, complex relations between effects and causes naturally lead to a
connectionist model which, in an artificial neural network (ANN) implementation,
will present excitatory links for the plausibility and competition links for relevance.

In a general approach, abduction problem solving proceeds by multiple
applications of the following functions (Ariton and Ariton, 2000):

Computational Intelligence in Fault Diagnosis 237

plausibility(P_CRITERIA, EFFECTS) – which originates the
plausibility of each element from the set of CAUSES, based on
the set of instance EFFECTS, and according to plausibility
criteria P_CRITERIA.
relevance(R_CRITERIA, CAUSES) – which yields the subset of
CAUSES selected from the set of plausible ones, observing
R_CRITERIA specific to each relevance grouping resulted from
the relevance scopes.

Note that entities in CAUSES and EFFECTS sets exhibit values in [0,1]
interval. The above functions apply to each entire set of entities: first, all instance
EFFECTS contribute to activation of plausible causes (so they attain nonzero
values), then the entire set of CAUSES enters the relevance competition (repeatedly)
while the less plausible causes already have near-zero values, thus eliminated. That
assures a “classical” connectionist implementation in the ANN approach.

P_CRITERIA refer to deep knowledge of human experts (related to known
causal relations between effects and causes) or they refer to shallow knowledge
after the ANN train, following data collected from experiments on causes and
effects. Plausibility may operate in parallel on EFFECTS to activate the related.

R_CRITERIA refer solely to deep knowledge of human experts on the
various cases where causes show specific relations between them, specific links to
running contexts or particular behaviours. Relevance processing is repeatedly
(sequentially) applied, until a final definite set of causes (i.e., the diagnostic)
achieve the highest stationary activation. In single fault diagnosis, the cardinality
accepted for the diagnostic set is 1, in multiple fault diagnosis cardinality is greater
than 1. How sequential diagnosis proceeds is presented in Section 8.7.3.

8.2.4. Neural Models of Plausibility for the Abduction
Problems

In the neural network model, plausibility refers to forward (excitatory) links
between effects and causes. A cause (e.g., fault) becomes the output neuron Fi and
an effect (e.g., manifestation) becomes an input neuron Mj. The activation of a
cause is the result of cumulative action effects associated to it, and it may be
expressed by the well-known neural activation function applied to inputs Mj:

Fi = f(M
| |

1

M
ij

j
w j + i) (1)

i.e., each manifestation from the set M (with |M| the cardinality) evokes, in a
specific measure (i.e., weight) wji, the fault Fi, if the sum becomes greater than the
threshold i.

However, human diagnosticians often take into account a manifestation
linked to a fault in a simple, “logical manner” (Ariton and Palade, 2004):
manifestation Mj is “valid” (as a witness) for a fault Fi only if its activation is
greater than a threshold, specific to the given manifestation-to-fault link. In the
simplest way, if any two neurons M and F have activations in [0, 1] and the weight
on their link is w, the maximum contribution of M to F is w (when M=1) and it is

238 V Palade, CD Bocaniala and L Jain (Eds.)

still “valid” when M>0.5 (when M is above the doubt value) – i.e., its contribution
is greater than w/2.

The logical overload consists in attaching certain linguistic attributes to the
generic input I of a cause neuron, e.g., exceeding the doubt level, w/2:

if I > w/2 then I = “valid” else I = “not valid” (2)
This way, each link’s strength is logically overloaded, and it makes

possible the logical aggregation of effects to (evoked) causes, as required by each
type of abduction problem.

8.2.4.1. Neural Sites and Specific Logical Aggregation
The ANN computational model of abduction for plausibility of the logical
aggregation of input-effects to cause-neurons is performed by means of dedicated
“neural sites,” as specific architectural features that may embed deep knowledge in
the connectionist model, beside the native shallow knowledge – which is embedded
by training. The logical aggregations envisaged are (Ariton and Palade, 2004):

i) disjunctive aggregation, performed by the “disjunctive site”
through the default cumulative processing (that is already the
input function of the “classical” neuron), i.e., all m inputs
cumulate their activation Ij:

1

m
j

j
O I (3)

ii) conjunctive aggregation, performed by the “conjunction site,”
whose output O obeys the rule given by Eq. 4. After the logical
overload, the inputs I1, I2 are aggregated according to the truth
table from Figure 8.1f:

if I1 > w /2 AND I1 2 > w2/2 then O = I1 + I2 else O = 0 (4)
iii) negation, performed by the “negation site”. The output O is
obtained from input I according to Eq. 5 and the truth table in
Figure 8.1g:

O = w - I (5)
Note that the logical aggregation upon links’ strengths modifies only the

input value of the cause-neuron; it does not affect the usual processing inside the
neurons in the original neural network (i.e., input or activation neuron functions).
So, the training and the recall procedures do not change (e.g. for perceptron or
counterpropagation neural networks).

8.2.4.2. Structures of Sites and Neurons for Different Abduction Problems
Each type of abduction problem in Section 8.2.1is solved through a

specific structure of neural sites, involving forward links from effects to causes as
follows:

Computational Intelligence in Fault Diagnosis 239

Mj

Fi

wji

∧
I1

I2

O
Conjunctive site (∧) AND

O I1≤ w1/2 I1≤ w1/2

I2≤ w2 /2 0 0

I2> w2 /2 0 I1 + I2

Truth table for inputs I1, I2

a)

f)

¬

I

O
Negation site (¬) NOT

O I ≤ w/2 I > w/2

w-I w-I

Truth table for input I

g)

Fi Fl

Mj

Fi Fl

Mj

b) c)

w1 w2 w

Fl

Mj

absent

e)

Fi Fl

Mj

d)

wji wjl

wji wji
wjl wjl

wjl

1

1

1

Figure 8.1. Various abduction problems solved by neural network features using logical
overload of the links between neurons.

a) For independent abduction problems – excitatory links apply
directly from the effect Mj to the corresponding cause Fi (see
Figure 8.1a). If there also exists a conjunction grouping of
the effects to the cause, conjunction site(s) are used at the
input of the cause-neuron. Note that, by default, the neuron
implements a disjunctive grouping of inputs through its input
(sum) function (Eqs. 1 and 3).

b) For monotonic abduction problems – the causes Fi and Fl
both evoke the same effect Mj, hence they suffer conjunction
with one another and with the common effect through
conjunction sites, as shown in Figure 8.1b, and expressed by
the rule:

(6)Fi Fl AND Mj, Fl F AND Mj
c) For incompatibility abduction problems – the pair Fi and Fl

of causes are mutually exclusive (i.e., they are not both active
at the same time), both evoking the same effect Mj. Each of
them suffers conjunction with the negation of the other cause
and with the common effect, as shown in Figure 8.1c, and
expressed by the rule:

(7)Fi NOT Fl AND Mj, Fl NOT Fi AND Mj
d) For cancellation abduction problems – the pair of causes Fi

and Fl reduce the effect Mj when both occurred, although
each of them evokes it separately. They suffer conjunctions
as in Figure 8.1d, according to the following rule:

(8)Fi Fl AND NOT Mj, Fl Fi AND NOT Mj
e) For open abduction problems – the difficulty is dealing with

absent effects, so the cause Fi is activated if no effect Mj
exists (Figure 8.1e), according to the rule:

240 V Palade, CD Bocaniala and L Jain (Eds.)

(9)Fi NOT Mj
Links between cause-neurons in abduction problems of types b, c, d, have

all weights between cause-neurons equal to 1 if they are symmetric (one to
another), else they are set according to deep knowledge of the human expert.

Plausibility criteria are now embedded in:
weights of the forward links between effects and causes – shallow
knowledge;
neural sites structures attached to cause-neurons (according to
respective abduction problem) – deep knowledge;
thresholds set for the site’s inputs – deep knowledge.

The training procedure embeds the shallow knowledge by strengthening
links between effects and causes as from the training patterns. At the recall phase,
the sites trigger the inputs of the neurons just to obtain plausible causes; so, they
only avoid activating less plausible causes, but do not modify the values of
activations of the plausible ones – according to instance values of the (input) effects
appearing. Even the structure of the neural network looks different, the original
training procedure of the (two-layer) neural network does not change (no matter the
type of the neural network used – e.g., perceptron, counterpropagation).

8.2.5. Neural Models of Relevance and Layered
Modularization

The neural model of the relevance is competition. Relevance assumes a numerical
value attached to causes, and the relevant cause(s) have the highest values that also
exceed a given threshold. The cardinality of the relevant set of causes is 1 if
“winner takes all” competition applies, or greater (if a relaxed competition applies).
So, the relevant causes observe the minimum cardinality condition.

Relevance is a sequential processing: each relevance criterion is applied
one after another in a given order, each criterion assuming the following steps:

i) Consider plausible causes in the current relevance group whose
values exceed the given threshold.
ii) Start competition between causes inside the relevance group.
iii) Select relevant cause(s) observing the given cardinality (1 for
single fault diagnosis).

Both pieces of information, the order of the relevance criteria applied and
the causes belonging to each relevance group, are a matter of the human
diagnostician’s deep knowledge on refining the diagnostic. The numerical values
involved in competition and the selection of causes come from the plausibility
processing of causes based on instance effects.

Due to the fact that plausibility activates in various degrees the causes,
competition always proceeds on the whole relevance group of cause (not only on
the plausible ones); less plausible have lower (or zero) values and are easily
eliminated, so the computational procedure is applied identically.

Computational Intelligence in Fault Diagnosis 241

8.2.5.1. Relevance Scope
Any cause should enter a relevance group, i.e. no cause is relevant by itself

while it is either already known or permanent. A relevance group usually consists of
causes that share the same characteristics (Ariton and Ariton, 2000). For example,
faults occurring at a given component form a relevance group, faults exhibiting
“leakage” symptom at a given module form a relevance group, etc. Note that one
cause (e.g. fault) may take part in more relevance groups, due to its properties.

The groups of causes are actually obtained by performing some
modularisation on the entire set of causes observing relevance criteria that fall into
one of the following categories:

Scope on physical structure – concerning the physical units as
locations for causes: all the faults at the module level form a
relevance group, and all the faults at the component level form a
relevance group;
Scope on functional structure – concerning the specific running
contexts (i.e., activities or process phases) in which causes are
“visible”: all the faults whose effects appear only when the piston
of a hydraulic cylinder is moving form a relevance group;
Scope on generic effects – usually concerning the same symptom:
all faults evoking “leakage” symptom form a relevance group,
while those evoking “clogged” symptom form another relevance
group.

The relevance criterion is usually the minimum cardinality on plausible
causes, meaning that causes are unlikely to appear simultaneously. It is applied at
the various unit levels (physical or functional). Other relevance criteria are: faults
more likely to occur (due to component’s age or state – as from human
diagnostician’s experience), faults requiring further observations (by means of
human operator tests), etc. In such cases, to each cause is attached a numerical
value necessary in the processing presented above.

8.2.5.2. Layered Modularisation of Causes
A cause may enter various relevance groups of the same set of causes, in a layered
modularisation. Each layer refers to a scope – regarding the modularisation of the
set of causes, for each relevance scope obtaining two (or more) “relevance groups.”
For example, some layers refer to the physical structure: one layer contains groups
of causes associated to modules and another one to components; other layers refer
to generic symptoms associated to faults: those producing “leakage” and those
producing “obstruction.” For each layer a specific modularisation occurs,
corresponding to the scope it represents.

Suppose that the layered modularisation of causes is performed according
to n relevance scopes, so n-times partitioning of the same set of causes is obtained.
Each layer L of relevance induces a specific modularisation of causes and has a
specific weight WL in the economy of the diagnosis. A layer (and its scope) may be
more relevant than another, provided weights are normalized, i.e.:

1
1

n L

L
W (10)

242 V Palade, CD Bocaniala and L Jain (Eds.)

The relevance criteria, scopes and layers, groups and weights of layers all
come from the deep knowledge of human diagnosticians, and they are indicated
during knowledge elicitation time. The competition that takes place over causes in a
relevance group, is independent of the forward plausibility processing in the neural
network structure, no matter what ANN implementation is chosen. So, the
relevance may be added without altering the original neural network functioning to
an appropriate feedforward ANN architecture.

8.2.5.3. Relevance of the Faulty Situation Against the Normal Situation
A component is the final location in fault isolation, corresponding to the set of all
faults as possible causes of some faulty behaviour of that component. However, the
space of faults should be completed with the “normal” situation. The neural
network output layer will contain F0, F1,…, Fn-1 neurons indicating faults, and the
Fn neuron indicating the normal situation.

The Fn cause (and neuron) is of capital importance, while the NORMAL
situation enters the relevance competition along with the FAULTY situation. So,
before fault isolation proceeds, the fault detection attests the FAULTY situation
against the NORMAL one. The relevance group is the set of F0, F1,… Fn causes, and
the relevance criterion (Eq. 11) asserts the FAULTY situation:

if then FAULTY
1

0
)1-n,1,0,i(5.0 Fnn

n

i
FiFi (11)

In other words, if any of the activated faults has a truth value greater than
the “doubt value,” and the relative level of the NORMAL situation is greater than all
current (activated) faults, then the FAULTY situation is credited.

In conclusion, the connectionist model for abduction problem solving,
using plausibility and relevance presented in this paper, is fully functional for all
categories of abduction problems, as well as for disjunctive and conjunctive
groupings of effects to a cause.

The proposed neural network model for abduction is a two-layer feed-
forward neural structure, similar to perceptron or counterpropagation, that is
completed with neural site structures for plausibility and relevance grouping /
competition for relevance. The presented approach is more natural and simpler than
the unified connectionist model for abduction presented by Ayeb et al. (1998). It
also allows various “classic” ANN implementations, if appropriate feedforward and
competition links are provided.

8.3. Aspects of Human Knowledge Usage in Fault
Diagnosis

Fault diagnosis deals with concepts as fault, fault mode, manifestation, symptom or
anomaly. The diagnostic problem solving is commonly conceived in two stages:
Fault Detection, then Isolation of the actual faults (Palade et al., 2002; Uppal et al.,
2002; Bocaniala et al., 2004; 2005). The literature in the field defines the above
concepts slightly different from one researcher to another, depending on the

Computational Intelligence in Fault Diagnosis 243

approach or the actual implementation or method proposed. Diagnosis (DX)
approaches deal with Artificial Intelligence (AI) and Cognitive Sciences concepts
(Cordier et al., 2000) and are closer to the human diagnostician way of acting.

In real life, fault diagnosis faces three types of inconveniences with respect
to the faulty behaviour of a target complex system (Davis, 1993):

Incomplete knowledge – the set of all (single or multiple) faults,
effects and relations between them is not completely known.
Diagnosis relies on a small set of causal relations (deductive) and
empirical associations between faults and causes, and on a vague
idea on how to proceed in FDI. Some manifestations are not
known, while the human operator may supply information from
test points, if required. When propagated effects exist, they
increase the uncertainty on the faulty behaviour (e.g., in
conductive flow systems (Ariton, 2001)).
Imprecise knowledge – there is perpetually a drift in any
measured value of a variable, the human expert having only a
clue on abnormal ranges of values for each variable.
Uncertain knowledge – when they have occurred, manifestations
may not be entirely “abnormal”; that is, faults and manifestations
occur “with some degree,” they have truth values attached.

Aiming the computational modelling, the present approach is pragmatic: it
considers definite meanings for the concepts above, allowing the representation of
knowledge incompleteness, imprecision and uncertainty, assuming it comes from
human diagnosticians’ deep and shallow knowledge on faulty behaviour of a target
real-world system.

8.3.1. Knowledge Pieces Involved in Diagnosis

Human diagnosticians’ deep knowledge refers to the structure of the system under
diagnosis and to the expected normal behaviour, while shallow knowledge refers to
faulty behaviour at module and/or component levels. The structure of the target
system consists of modules and components, as units conceived by designers, and
accepted by diagnosticians to master the system’s complexity. Modules and
components are usually conceived as functional units. In the literature, the module
is a structure of components, but the component does not have a clear meaning. It
may suffer further decompositions (see Section 8.6.2.1), but nevertheless a
component is conceived as the final location for faults or manifestations.

In the following definitions, we make use of the term piece of knowledge,
stressing that the concept defined is obtained through an appropriate processing on
the physical reality to extract (discrete) objects and logical meanings. A cognitive
neutral numerical value Xk gets meanings (depending on the value range or
particular situations) that are expressed by truth values X [0,1], where Xk k = 1
means that the concept is certain or complete. The concept may be a state
(expressed by a noun) or a grade (expressed by an adjective or an adverb).

244 V Palade, CD Bocaniala and L Jain (Eds.)

8.3.1.1. Component
A component is “a piece of equipment accepted by the human diagnostician as
being sufficient for fault isolation” (Ariton and Ariton, 2000). Of course, it is a
convention how much “detailed” a component is, while the human diagnostician
decides what unit exhibits “pointed” causes for abnormal behaviours. After all, it is
a matter of troubleshooting: deciding the location of the cause is the first step in
removing the faulty unit (for further removing the disorder). How “small” (or how
“low”) the components are is a decision of the elicitation made upon the system
under the diagnosis, when the fault isolation granularity is established.

8.3.1.2. Disorder
A disorder refers to nonconformities in the actual behaviour of the target system,
against the expected one – which is designed and considered “normal.” In order to
obtain a feasible diagnosis system, the space of causes has to be a closed space, so it
includes: disorders taking place at components (e.g., damages or ill tuning), flow
(e.g., bad quality), environment (e.g., abnormal surrounding conditions) and human
operation (technological discipline). Note that environment includes all neighbour
systems: technical systems ambient atmosphere, etc., which may affect the target
system’s running.

8.3.1.3. Fault
A fault is a simple piece of knowledge regarding a physical nonconformity located
at a component. Fault is a human concept with intrinsic discrete and logical natures:
it has a name, usually expressed as a proposition about the disorder, and a degree of
uncertainty – usually expressed in terms of a truth value Fl [0,1]. If Fl 0.5, then it
is above doubt that fault Fl occurred. From the human diagnostician point of view,
the truth value is a measure of plausibility of a fault. The set F of all “known” faults
should be decided at the elicitation time, each for a specific disorder or for a class of
disorders, and reflecting the open space of effects induced by the incomplete
knowledge. Open spaces should be closed by completing with generic “disorders”
of the kind “not known” or “undecided,” also with locations of the kind “out of
target system limit.” The fault mode refers to a specific disorder induced by a
certain fault in a given process phase.

8.3.1.4. Manifestation
A manifestation is a simple piece of knowledge attesting to an abnormal value of an
observed variable, during a certain running context of the target system. In the
entire set M of manifestations, some may reach the diagnosis system by sensors
(from continuous or binary variables), and others by human operator tests on
observed variables in the process (from human senses – as adjectives, or from test
points – as numbers). The manifestation’s truth value Mr [0,1] indicates how
certain is the state or a grade exhibited, and it reflects our knowledge imprecision
and uncertainty.

8.3.1.5. Symptom
A symptom is a complex piece of knowledge that refers to a certain behaviour
coming from the deep knowledge on the target system and the domain. Symptoms

Computational Intelligence in Fault Diagnosis 245

evoke classes of faults and induce some partition S on the entire set of faults F.
Some symptoms provoke disjunctive partitions (e.g., faults in the “leakage”
class/symptom do not belong to the “clogged” class/symptom), others provoke non-
disjunctive partitions. A fault that evokes more than one nondisjunctive symptom
cumulates its plausibility (it is more relevant). The primary and secondary effects,
witnessed in conduction flow systems, are symptoms: primary effect is the one
located at the faulty component, secondary effect is the one located at the nonfaulty
component due to propagated deviations of variables values (deviations from the
expected “normal” values).

8.3.1.6. Process
Process phase is a complex piece of knowledge that refers to a certain state of the
process, with certain duration in the functioning of the target system. From the
human diagnostician point of view, a process phase characterizes the context in
which the diagnosis takes place. While in the real system’s running the process
phase is “expected” to happen, its truth value P asserts the degree to which the
context is really known, during the current slice of time in the process evolution.
Process phases induce partitions on the set M of all manifestations and on the set S
of all symptoms.

All the “evaluations” made by the (automated) diagnosis system to obtain
truth values for manifestations, symptoms, process phases, and faults evoke some
processing performed on observed variables’ values (Calado et. al., 2001). Note that
the human diagnostician deals with “linguistic variables” when referring to
manifestations and symptoms. By default, knowledge pieces are discrete and
qualitative in nature, the latter reflecting knowledge imprecision or knowledge
incompleteness regarding the human diagnostician view on the (faulty) behaviour
of the target system. Therefore, any processing should comply with these aspects.

8.3.2. Observed Variables

Let us consider now a computerized diagnosis system that deals with manifestations
and faults with graded values of truth as described above. If the observations made
upon the target system’s behaviour are linguistic or binary variables, they already
have a “logical meaning” – present/absent. The observations made upon the target
system come to the diagnosis system from the human operator (thus meaningful) or
from sensors, as numerical values, thus cognitivly neutral. To obtain a common
denominator, they should undergo some processing to become manifestations, so
they undergo some "intelligent encoding" indicated by Cherkassky and Lari-Najafi
(1992) as being crucial in diagnosis.

The preprocessing performed by the diagnosis system on the raw acquired
values depends on the observed variable’s type:

a) Binary variable from digital sensor – no processing required. By
default, such a variable has two values, attached to a logical
meaning (e.g., present/absent, open/shut). The manifestation
results immediately, and Mr {0,1}.

b) Continuous variable from analogical sensor/device – processing
required. To obtain some discrete piece of knowledge

246 V Palade, CD Bocaniala and L Jain (Eds.)

(manifestation with some truth value Mr [0,1]) from primary
data, the continuous signal supplied by the sensor is sampled and
the series of values undergoes some processing according to the
current process phase.

c) Discrete variable from human operator tests – no processing
required. For example, the linguistic variable “noisy” is by default
a logical variable with two values; thus manifestation results
immediately: Mr {0,1}. Note that variables like “not hot,” “hot,”
“very hot” should be reduced to more manifestations of the same
type Mr {0,1}.

d) Continuous variable from human operator test performed in a
test-point – processing required. The numerical pointwise value,
entered by the human operator, should be evaluated if normal or
not. Abnormal situation results as a (discrete) manifestation,
according to the current process phase (e.g., fuzzification of
point-wise numerical values, obtaining a fuzzy attribute with a
graded value of truth Mr [0,1]).

So, intelligent encoding depends on the type of observed variables. The
specific processing brings them to a uniform representation. Knowledge
incompleteness, imprecision and uncertainty, specific to human diagnostician
qualitative way of thinking, come from the abstractions made on the real continuous
running of the target system (Mosterman and Biswas, 2002) and from the
complexity of real phenomena. These aspects of human knowledge are melted into
discrete and logical representations of manifestations, both useful in the neural
network approach of the diagnosis, further presented in this chapter.

8.3.3. Semiqualitative Encoding of Manifestations

Fuzzy logic deals with associating logical meanings to numbers. It copes with the
qualitative way of thinking of human experts, and quantities become sets, or
intervals with imprecise edges, but specific meanings. In the present approach, a
manifestation is a fuzzy attribute of an observed continuous variable V during the
process phase P, i.e., it is a fuzzy subset over its universe of discourse (V), as
shown in Figure 8.2.

8.3.3.1. Prototype Manifestations
The attributes refer to the qualitative subdomains related to the abnormal values
"too low" (lo) and "too high" (hi) in the current running context. Fuzzification is
chosen as the "intelligent encoding" meant for manifestations. In Figure 8.2, the
subdomains between landmarks Lm(no) - Lm(lo) and Lm(no) - Lm(hi), respectively,
refer to the qualitative subdomains of Kuipers’s approach (Kuipers, 1994) on
quantifying values of a variable, in qualitative physics.

Pairwise neighbour subdomains form the fuzzy attributes “too low” and
“too high” for the generic manifestations lo and hi corresponding to the given
variable V and the given process phase P. Note that the fuzzy attribute “normal”
(no) refers to the range of “expected values” for the observed variable, which
indicates a normal behaviour; it is essential for obtaining a closed space of causes.

Computational Intelligence in Fault Diagnosis 247

The overlapped intervals of the fuzzy attributes (see Figure 8.1) reflect the
knowledge incompleteness and imprecision of the human diagnostician, which is
linked to the specificity of the manifestation (Turksen, 1996).

The attributes lo or hi – as triangular membership functions in the semi-
qualitative representation – are prototype manifestation set by the human
diagnostician at knowledge elicitation on the system under the diagnosis.

The effective landmarks and the fuzzy subsets for generic manifestations
lo, no, hi are provided at elicitation time. The knowledge engineer uses deep
knowledge from the domain expert to assign qualitative landmarks for each
observed variable from sensors. In this case, the CAKE (Computer Aided
Knowledge Elicitation) tool is useful for the human diagnostician (see Section 8.6).

The triangular membership functions of the generic manifestations fit well
to the semiqualitative representation usually encountered by human diagnosticians
(Kruse et al., 1994). Due to the linear and baricentric encoding, such representation
offers some advantages for logical processing in a human-like way, also for fuzzy
arithmetic with ranges when assessing propagated effects (Ariton, 2003). That
simple semiqualitative representation best captures the human diagnostician’s
knowledge on manifestations of any kind, when the system is faulty.

8.3.3.2. Handling Uncertainty on Instance Manifestations
The manifestations linked to a continuous variable (type b or d from the above
classification) actually refer to the pointwise value v that enters the diagnosis
system during a process phase P. After fuzzification, each attribute lo, no, hi gets a
truth value.

The instance manifestations obtained reflect the uncertainty of the
situation occurring when for example both truth values hi(v)>0 and no(v)>0 appear
(see Figure 8.2) – the last one reflecting the opinion on “normal” behaviour of the
current situation. The preprocessing block of the diagnosis system should assert, for
any variable instance, the appearing manifestations and their extent (the truth
value).

8.3.3.3. Types of Manifestations
The set of all instance manifestations MP for a given process phase P comprises: the
instance manifestations for all sensor-observed continuous variables MC

P (truth
values in [0,1]), the instance manifestations for all sensor-observed binary variables
M P

B (truth values in {0,1}) and the instance manifestations for all human operator-
observed variables M P (truth values in {0,1}). O

Taking into consideration all variables of any kind, and for all process
phases, will lead to the set M of all manifestations as distinct knowledge pieces. It
comprises the set MM of manifestations obtained by permanent measurements
through sensors mounted in the process:

MM = { MC
P MB

P (12) | for all process phases P }
and the set OM of manifestations obtained by human operator observations:

OM = { MO
P | for all process phases P } (13)

Hence, the set M of all discrete manifestations entering the diagnosis system
is:

(14) M = MM OM

248 V Palade, CD Bocaniala and L Jain (Eds.)

and comprises all pieces of knowledge of the kind lo, no, hi for manifestations at
continuous variables, or present / absent for binary variables.

Overall, the cardinality of the set of all observed variables is lower than the
cardinality of the set of manifestations M, since the sensor-observed binary
variables may have two “pieces of knowledge” (i.e., one manifestation of type
“present” and, afterwards, one of type “absent”), and the human operator-observed
variables may have three “pieces of knowledge” (i.e., two manifestations lo, hi and
one of type no – as “absent” or “normal”). Some “absent” manifestations are quite
important in diagnosis (see below), as they require a specific type of abduction
problems to be solved.

Some continuous operator-observed variables may be “measurements on
the fly,” i.e., they are not permanently observed by sensors, but supplied
occasionally by the human operator when required, following a best next test
procedure (de Kleer and Kurien, 2003). In this case, the diagnosis system should
perform the fuzzification or other processing, after the operator supplies the
required value. This is a usual approach to finding logical meanings for
manifestations (with truth values), and the obtained unified and discrete
representation will be used in the connectionist implementation for diagnosis
described in the next sections.

8.3.4. Intelligent Encoding of Instance Manifestations

Depending on the source of the observation, the obtained manifestation requires
more complex or simpler processing, for example when observation comes from
analogical sensors or from binary sensors, respectively. In the latter case, values as
close/shut are already discrete and have a meaning – thus no processing required.

For an observed pointwise value v the truth value results from regular
fuzzification (Kruse et al., 1994) – e.g., in Figure 8.2 the instance manifestations hi
and no get truth value hi(v) and no(v). The representation is semiqualitative while
it exhibits qualitative attributes (i.e., lo, no, hi) and truth (numerical) values for
each. However, human diagnosticians judge manifestations for the activity as a
whole, hence the instance manifestation refers to the set of values (not the pointwise
one) acquired during the current process phase P. Thus, straight fuzzification is not
suited to encode manifestations (Dubois and Prade, 1998). An appropriate
processing is further used.

8.3.4.1. Instance Domain for an Observed Variable
The sampling and the conversion of the V variable during P time period of the P
activity produce NP binary numbers, further denominated instance domain (see the
solid line in Figure 8.3a). A pointwise (quantified) value vi appears P

i times in the
instance domain. If divided by NP, it becomes the frequency of vi during P, with a
maximum P

m at value vm: P
m = P

i
max i .The value vm is a meaningful value but it

does not evoke a manifestation, while it does not refer to the entire set of values,
hence a special encoding scheme is needed, which is further presented.

Computational Intelligence in Fault Diagnosis 249

Figure 8.2. Semiqualitative representation of generic manifestations expected at a sensor-
observed variable V.

The frequency distribution P
V for all values is the collection:

P
V = { P

i | i = 0 .. NP (15) }
and the normalized frequency distribution (to the maximum P

m) – see Figure 8.3a
– is:

P
V = { P

i / P
m | i = 0 .. NP (16) }

8.3.4.2. Instance Membership Function for Series of Acquired Values
Instead of a pointwise value, the diagnosis system will use the normalized
frequency distribution P

V to assert manifestations for the variable V over the
process phase P, as shown below. So, the instance domain (solid line in Figure
8.3a) may be seen as a fuzzy set in the statistical approach (as from (Kruse et al. ,
1994)), and P

V is the actual instance membership function.

Figure 8.3. Possibility measure (a) and necessity measure (b) of the instance membership
function upon the prototype manifestations for the continuous variable V, during the activity

P

250 V Palade, CD Bocaniala and L Jain (Eds.)

The instance membership function P
V is not like the probability

distribution pV, while pV = P
i / P

i , thus it is obvious that pV
P
V . On the other

hand, sampling V during the period P is not a random process, hence the approach
is not stochastic. Frequencies do not change the proportions between the values
after normalization, so that frequency distribution is scalable, but the probability
distribution is not.

8.3.4.3. Instance Manifestation
The instance membership function of the observed variable V will reveal instance
manifestations that appeared during the actual activity P. Manifestation is an
attribute a {lo, no, hi}, which results from the possibility and the necessity
measures (Ayeb et al., 1998) of the instance membership function over the partition
in Figure 8.3a:

PossV(a) = supv a v
p , NecV(a) =1- PossV(a) = infv a (1- v

p (17))
Inference of the instance manifestations proceeds as follows:

i) Calculate the membership function P
V of the V variable’s instance

domain.
ii) Calculate the set P

V of possible manifestations:
 P
V = { a | a {lo, no, hi} and Possa(P (18) V) > 0.5}
iii) Calculate the set P

V of necessary manifestations:
 P
V = { a | a {lo, no, hi} and Neca(P (19) V) > 0}

iv) Assert which instance manifestation MP
V actually occurred,

applying:
MP

V = { a | a P
V

 P
V and Neca(P

V) is maximum from all in P (20) V }
In the example from Figure 8.3, the possibility measures are: Posslo(P

V) =
0, Possno(P

V) = 0.75, Posshi(P
V) = 0.55 and the necessity measures are: Neclo(P

V) =
0, Necno(P

V) = 0.45, Nechi(P
V) = 0.25, hence the instance manifestation is no

(see Figure 8.3b).
At elicitation time, the set of all instance manifestations M P, for a given

activity P, comprises: instance manifestations for sensor-observed continuous
variables MC

P P (truth values in [0,1]), binary variables MB (truth values in {0,1}),
and human operator-observed variables M P (truth values in {0,1}). O

8.4. Concepts and Structures on Normal Running

Deep and shallow knowledge, embedded in the connectionist model, comes from
concepts that human diagnosticians deal with regarding the target system. However,
diagnosis of real complex systems is a difficult task, while it involves a huge
number of variables and events to handle, so computer-aided diagnosis is of great
help.

The following section presents some principles on discriminating the
concepts and their relations for the fault diagnosis following a human-like
diagnosis, and using connectionist models for abduction. In that endeavor, means-
end modelling approach seems best suited for the analysis and representation of

Computational Intelligence in Fault Diagnosis 251

physical and functional structures. The approach makes use of bond graph models,
adapted to cope with human-like qualitative view on the faulty behaviour of
conductive flow systems, and also to the modular way of thinking when isolating
faults.

8.4.1. Means-End Abstractions of Physical and Functional
Structures

Real systems are multifunctional systems, while they perform many functions at the
same time. Functions refer to tasks performed by modules and components toward
specific utilities envisaged by the artefact. Each module performs a sequence of
activities, and all modules perform activities in parallel – each module one activity
at a time, during the given slice of time in the whole installation running. As a term,
“multifunctional” is introduced in (O’Brien, 1970) on complex systems’ safety, and
it is used in fault diagnosis in (Okuda and Miyasaka, 1991; Shibata et al., 1991).

Most encountered systems in technical or economical domains are
conductive flow systems (CFSs) (Cellier, 1995) – i.e., they transport matter, energy
and information as flows passing through pipe-like paths. Through the effects
propagation, same effects may appear at many faults, located at faulty and non-
faulty units. In such cases, the human diagnostician deals with primary and
secondary effects, i.e., effects located at the faulty component and effects spread to
nonfaulty components, respectively.

Means-end modelling approach is a view on artefacts from the utility
perspective: the ends (concrete goals of the artefact) are those structuring the means
(functional structures) supported by physical components. In (Larsson, 1992) a
component performs a “flow function” (and a module a network of flow functions)
– acting upon the flow.

8.4.1.1. Multifunctional Systems
A multifunctional system (MFS) under the diagnosis is the 5-tuple C, G, S, T, H :

C is the set of all physical components, each component meant as the final
location for fault isolation, each completing certain functions;

G is the set of functions components may accomplish;
S is the set of ends, each end characterized by performance of a certain

utility that the system must accomplish;
T is the set of time durations in accomplishing (each of all) ends;
H is the set of modules, each module hi comprising a subset Ci of

components and accomplishing a subset Si of ends.
An elementary end sik is achieved during (and corresponds to) an activity –

from the Discrete Event System abstraction of the hi module’s running. A module
may accomplish more ends. For example, a hydraulic conveyor executes four
activities corresponding to the four ends of the actuator (the hydraulic cylinder):
still left, move left-to-right, still right, move right-to-left, each being a function of
the actuator component.

The set of modules H is a disjunctive partition upon the set S of ends, each
module accomplishing a specific subset of ends Si but only one end sik at a time. In
the example above, the module comprises components as pipes, control valve,

252 V Palade, CD Bocaniala and L Jain (Eds.)

damper, hydraulic cylinder. The ends are the “move” or “stay still” services, and the
durations in accomplishing those ends are either specified – e.g., the expected
duration for each movement of the piston, or derived – e.g., the stay-still duration
(between movements). The relations between cardinalities |S|=|T| and |S|>|H| hold;
in other words, each end has a certain duration (in normal and abnormal situations)
and a module exhibits at least two activities (idle/active) to a certain end.

8.4.1.2. Multifunctional Conductive Flow Systems
Multifunctional conductive flow system (MCFS) is the 7-tuple C,G,S,T,U,H, :

C, G, S, T are as above;
U is the set of flow types; a certain flow type ut is processed by

components of a module toward a specific end by means of specific functions of
components;

H is as above, but restricted to the subset Ci of components that act upon
the same flow type ut .

 is the weak upstream relation taking place between components cij, and
between modules hi along the flow paths in the conductive flow system.

The (matter/energy) flow conduction is ruled by specific laws that are not
captured in the definition above but will be discussed later (see Section 8.4.2) in the
discrimination of primary from secondary effects at faults.

Note that upstream relations of neighbour components depend on the
activity; for example, the “hydraulic cylinder” has an upstream relation with a
component when the piston moves left-to-right (filling its left chamber) and
downstream relation with the same component when the piston moves right-to-left
(filling its right chamber).

In the proposed approach, MCFS appears as a multiple layered structure of
conductive flow systems, each of them handling a certain type of flow and acting
toward some definite ends on the same set of components. For example, the
“mineral oil flow” in the hydraulic installation of a rolling mill plant is an auxiliary
flow beside the “long steel plate flow” meant for the (main) technological end –
plate extrusion.

8.4.1.3. Means-End Abstraction on Functions
Each component cij fulfills a certain flow function during a certain activity, upon a
certain type of flow ut, but it may fulfill simultaneously more flow functions, each
upon different flow types “passing” through the component. For example, a control
valve in a hydraulic system may complete a “barrier” flow function (when blocking
the flow for “piston stay-still” end) or a “transport” flow function (when letting
through flow for “piston move” end); on the other side, the control valve always
exhibits a “transport” flow function for the electric current through the control coil
of the valve.

Each module hi H achieves a certain end by means of the functions gij
specific to the components in the set Ci of the given module. Other aspects of the
flow functions follow:

a) the component cij fulfills a unique “flow function” upon a certain
flow type, during a certain activity of the module hi (according to
Larsson (1992));

Computational Intelligence in Fault Diagnosis 253

b) the end sik of a module is accomplished by the set Ci of
components by means of the “network” of “flow functions”
(Larsson, 1992);

c) the module is actually a functional unit, comprising only
components that process the same ut flow type (in the presented
approach).

8.4.1.4. Qualitative View on Flow Functions
The detailed flow functions (transport, barrier, distribution, etc.) in (Larsson, 1992)
may be reduced to three qualitative functions, sufficiently relevant for the diagnosis
task, while it is somehow simpler and more qualitative than the control task. In
(Opdahl and Sindre, 1994) three orthogonal operational facets of real-world systems
are proposed, as in Table 8.1.

Table 8.1. Functional orthogonal facets of real-world systems

Concept Process Flow Store

Activity Transformation Transportation Preservation

Aspect Matter Location Time

The concepts refer to physical or chemical processing (see Process), the
space location change (see Flow) and the time location change (see Store), i.e., time
delay.

The activities associated with the three concepts suggest three primary
flow functions, suited to the qualitative modelling of components’ faulty
behaviours. For each concept in Table 8.1 the corresponding primary flow function
is:

i) flow processing function (fpf) – like chemical or physical
transformation of the piece of flux (to a certain utility);
ii) flow transport function (ftf) – like space location change of the
piece of flux (by pipes, conveyors, etc.);
iii) flow store function (fsf) – like time delay of the piece of flux, by
accumulation of mass or energy in some storing or inertial
components.

A real component achieves several primary flow functions, but solely one
during a given activity. Note that components that directly accomplish ends of the
target system, fulfill processing (fpf) and store (fsf) primary flow functions; most
components fulfill transport (ftf) primary flow function. Flow function’s
misbehaviour is easily associated with some generic anomalies that may appear at
faults (see Section 8.5.2).

8.4.2. Bond-Graph Modelling and MCFS’s Structures

Conductive flow modelling of real systems observes Kirchkoff’s laws, no matter
the type of flow (matter, energy or information). Bond graphs are appropriate and
general modelling tools for conductive flow systems, with the great advantage of
Kirchkoff's laws applied in a modular way, and not for the whole system as in the

254 V Palade, CD Bocaniala and L Jain (Eds.)

classical way (Cellier, 1995; Mosterman et al., 1995). Moreover, bond-graph
modelling offers general concepts useful for behavioural abstractions of the flow
functions for every type of flow (see below).

8.4.2.1. Modularisation by Bond Graph Junctions in the Target MCFS
Bond graph modelling deals with flow power variables: the intensive (pressure like)
and the extensive (flow-rate like) variables, called effort (e) and flow (f),
respectively (Cellier, 1995).

fn

fn-1

fi

f1

0

cn

cj

c1

e

e

e

e

e

f

f

f

f

f

1

cn

cj

c1

e1

e 0

e

en

e

f

0

..

1

j

21

=∑

===

=

n

j

f

eee

a) 0-junction

0

..

1

0

j

21

=∑

===
+

=

n

j

e

fff

b) 1-junction

Figure 8.4. The bond graph 0-junction (a), and 1-junction (b).

Components, along flow paths in CFS, form bond graph junctions:
type 1 junction – that corresponds to a loop of interconnected
components,
type 0 junction – that corresponds to a node of interconnected
components.

Each junction’s common variables are: effort in 0-junction and flow in 1-
junction; the noncommon power variable is specific to each component and all
enter a sum (e.g., the flow in the 0-junction), as in Figure 8.4a,b.

In the present approach, the 1-junction corresponds to a given activity of a
module, i.e., the 1-junction is the bond graph model of the activity, so it may play
the role of the “module” – in the multifunctional abstraction (Ariton, 2003). The 1-
junction is already a network of flow functions – complying with the means-end
point of view.

The conclusions above are useful in knowledge elicitation of modules,
during MCFS hierarchical decomposition. In this view, the 0-junction is the
interconnection of modules, and the structure of the whole target system is made of
0-junctions.

8.4.2.2. Primary Flow Functions and Bond-Graph Components
The large generalization specific to the bond graph approach is synthetically
illustrated in the tetrahedron of state in Figure 8.5 (Cellier, 1995). Variables on flow
conduction may have specific meanings to specific domains: the effort e may
correspond to force (in mechanics), to voltage (in electricity), to pressure (in

Computational Intelligence in Fault Diagnosis 255

hydraulics), flow f may correspond to velocity, to current, to volume flow rate (in
the respective domains). Other general concepts in bond graph modelling approach
are: the generalized momentum p (momentum in mechanics, flux in electricity,
etc.), and the generalized displacement q (distance, charge, etc.).

The presented approach extensively uses the concepts of bond graph
components:

power flow components: Resistance R, Capacitance C, Inductance
I, corresponding to dissipative, storage and inertial elements,
respectively;
power transfer components: transformer TR (effort-effort and
flow-flow ratios) and gyrator GY (effort-flow and flow-effort
ratios).

Figure 8.5. The tetrahedron of state and the bond graph components R, C, I.

Components of MCFSs have projections on bond-graph and means-end
perspectives:

R component corresponds to transport function (ftf);
C and I components correspond to storing function (fsf);
TR and GY components correspond to processing function (fpf).

This result is useful in the faulty behaviour modelling (see Sections 8.5.1
and 8.5.2) and in the hierarchical decomposition of the target system toward
components (see Section 8.6.2.1).

8.4.2.3. Upstream Relations between Modules and Components
The bonds (half-arrows in Figure 8.4) indicate the flow but do not refer to the
upstream/downstream relations between components. Those relations are important
in locating the effects along flow paths (see Section 8.5.3.3).

In Figure 8.4 the indices j 1 n show the components’ upstream order
between components ci1, ci2, ci3 hi (belonging to the same module) and direct
neighbours (which input / output ports are directly coupled). Neighbour modules
also exhibit upstream relations.

The upstream relation is strong (<<) at 1-junction: ci1<< c << ci2 i3 when the
order of two neighbours is strict, while they are output-input coupled and the flow
strictly gets out from one component and gets in the neighbour one.

256 V Palade, CD Bocaniala and L Jain (Eds.)

The upstream relation is weak () at 0-junction: ci1 ci2 ci3 when two
neighbour components’ ports are input-input or output-output coupled, so for both
neighbour components the flow either gets out or gets in the coupled ports.

The two bonds of indices 0 and n+1of the 1-junction indicate effort at the
input and at the output of the series of components, and actually represent links to
the upstream and downstream 0-junctions, respectively.

8.5. Concepts and Structures on Faulty Running

Elicitation defines knowledge pieces (some of them discriminated above) but also
prepares corresponding data for further processing. The chapter introduces
knowledge pieces related to faulty behaviour and their representation for the
computational model.

8.5.1. Generic Faulty Behaviour of CFS’s Components

Following the above approach, the faulty behaviour of components of the target CFSs
is conceived as human-like symptoms attached to various faults of the real
components:

Faults in R component affect the transport function (ftf);
manifestations refer to R parameter changes, and the symptoms
refer to propagation of power deviations along the paths in the
system (discussed in Section 8.5.2.2).
Faults in C and I components affect the storing function (fsf);
manifestations refer to changes in time delays in the process
running.
Faults in TR and GY components affect the processing function (fpf);
manifestations and symptoms are specific to each end of flow
processing.

Faults may occur at any components but only R components are involved
in power propagation along the system. Consequently, deviations of the power
variables e and f propagate from the faulty component to other components, where
they indirectly affect specific parameters – for example the delay for C and I, or the
transferred effort and flow for TR and GY.

An important conclusion is drawn from the statements above: the
anomalies of R bond-graph components are primary effects, and they provoke
secondary effects by means of flow power variables deviations propagated
throughout the flow path in the target CFS. Another important conclusion, from the
point of view of diagnosis, is that the discrimination of primary effects from
secondary effects leads to fault isolation.

The TR and GY components correspond to actuators in the target system,
and they decouple flows or modules. Hence, the two components are, usually, the
final components in the network of flow functions, i.e., they are components at the
border between two modules. For example, the carrier of a conveyor is not part of
the module, while the hydraulic cylinder is a transformer from the effort of the

Computational Intelligence in Fault Diagnosis 257

mineral oil towards displacement (of the carrier). Actually, the carrier and its load
are part of another module, decoupled by the hydraulic cylinder (as a transformer).
So, the b) item from the Section 8.4.1.3 is observed.

8.5.2. Anomalies Related to Primary Flow Functions

Anomaly is a piece of knowledge indicating a class of abnormal behaviours; it is
another word for symptom, which is used in the present approach to restrict the
meaning of the symptom to a deviation from the expected behaviour of one of the
three primary flow functions defined above. The anomaly is located at the faulty
unit, i.e., it is a “primary effect.” This way, the fault isolation procedure benefits
from some additional information useful when the location of the fault is of
concern.

8.5.2.1. Anomalies and Primary Flow Functions
Flow process anomaly, flow store anomaly and flow transport anomaly are
disorders of respective flow functions, located at the faulty component or module:

a) Process anomaly (AnoP) appears at the actuator components
– bond-graph gyrator GY or transformer TR components.
Process anomalies refer to abnormal values of performance
parameters of the end envisaged.

b) Store anomaly (AnoS) appears at storage or inertial
components – bond-graph capacitance C and inductance I
components. The store anomaly refers to abnormal values of
the time delay appearing at faults in storage or inertial
elements.

c) Transport anomaly (AnoT) appears at dissipative component,
in the bond-graph view resistance R components. In fault
diagnosis literature and practice “leakage” or “clogged pipe”
are usual terms for such anomalies.

8.5.2.2. Transport Anomalies
Ariton (2003) introduces four orthogonal transport anomalies that completely cover
the faulty behaviour of a component involved in the flow transport, namely:

d) Obstruction (Ob) – consists in change (increase) of the
transport R parameter of a component, without flow path
modification (e.g., clogged pipe).

e) Tunnelling (Tu) – consists in change (decrease) of the
transport R parameter of a component, without flow path
modification (e.g., broken-through pipe).

f) Leakage (Le) – consists in structure changing (output flow
too low) of a flow transport component, involving flow path
modification.

g) Infiltration (In) – consists in structure changing (output flow
too high) of a flow transport component, involving flow path
modification.

258 V Palade, CD Bocaniala and L Jain (Eds.)

Transport anomalies are orthogonal (see Figure 8.6): inside the pair and
between pairs. In Figure 8.6 the axes’ names indicate the “main” power flow
variable for the pair, the one mainly involved in the effect at the respective pair of
transport anomalies. Note that the effort for Ob/Tu pair is meant at the input, and
the flow for In/Le pair is meant at the output of the given flow transport unit
(component or module), so the signs depicted in Figure 8.6 are specific to those
situations.

effort

f
l
o

w

−

−

+

+

Obstruction Tunneling

Infiltration

Leakage

Figure 8.6. Orthogonal transport anomalies.

Solely, one transport anomaly may appear at a time vis-à-vis a faulty
component.

The four transport anomalies are effective concepts in the qualitative
modelling of faulty behaviour and in effects propagation. As later shown, transport
anomalies are of seminal importance in the discrimination of primary effects from
secondary ones, in detection and isolation of faults.

Various components in real systems are involved in flow transport, i.e.,
they act as R bond-graph components and may exhibit transport anomalies at faults.

The transport anomalies Ob/Tu are symptoms similar to events as “clogged
paths” or broken-through paths, and In/Le are symptoms similar to flow exchange
with the environment. The first pair observes the (expected) flow balance equations,
while the second does not. Transport anomalies play a central role in fault detection,
while they have the meaning of “primary effects” – i.e., effects located at the faulty
component (or module). Asserting a transport anomaly means detecting a fault and
also isolating the fault – while the transport anomaly location is asserted.

Process anomalies AnoP and store anomalies AnoS may appear as
secondary effects when induced by the flow power deviations propagated through
components with flow transport functions, along the flow paths, while the
deviations appeared at the location of a transport anomaly AnoT that occurred as a
primary effect.

Computational Intelligence in Fault Diagnosis 259

8.5.3. Qualitative Deviations Induced by Transport
Anomalies

The following study focuses on deviations of the effort e and the flow f of bond-
graph power variables at faulty and nonfaulty bond-graph R type components.

8.5.3.1. Qualitative Behaviour of R Components
The qualitative relation between the power variables for a nonfaulty component is e
= M+ f, according to the general qualitative Ohm's law (Struss, 1997). The flow
variables’ deviations from expected values at the input port comply:

e = M+ (21) f
where M+ is a class of increasing monotonic functions (according to qualitative
physics and notations from (Kuipers, 1994)). e and f refer to power variable
finite deviations (due to some external causes of the nonfaulty component. The
qualitative relation Eq. 21 also holds for the flow variables at the output port (note
that no concern exists in the extent of the relation).

8.5.3.2. Power Deviations at Faulty and Non-faulty R Components
As presented in Section 8.5.2.2, the faulty flow transport components induce one of
the four orthogonal symptoms (transport anomalies) shown in Table 8.2.

The deviations of effort and flow variables from the expected (normal)
values are specific to R bond-graph component for the given transport anomaly
(Ob/Tu, In/Le). The deviations’ signs (i.e., the qualitative values) simply result from
the affected parameters of R and of the main variable in the context of the transport
anomaly.

Table 8.2. Flow power variables’ deviations at input and output ports of R bond-graph
components for each transport anomaly occurrence

Transport

anomaly

 “Main”

variable

deviation for the

anomaly class

Effort deviation

at the input

(output) ports

Flow deviation

at the input

(output) ports

Qualitative

effort-flow

relations

Obstruction

(Ob)
e
in-out

> 0

∆e
(in)

> 0

(∆e
(out)

< 0)

∆f
(in)

< 0

(∆f
(out)

< 0)

M
−

(M
+

)

Tunneling

(Tu)
e
in-out

< 0

∆e
(in)

< 0

(∆e
(out)

> 0)

∆f
(in)

> 0

(∆f
(out)

> 0)

M
−

(M
+

)

Infiltration

(In)
f
out

> 0

∆e
(in)

> 0

(∆e
(out)

> 0)

∆f
(in)

< 0

(∆f
(out)

> 0)

M
−

(M
+

)

Leakage

(Le)
f
out

< 0

∆e
(in)

< 0

(∆e
(out)

< 0)

∆f
(in)

> 0

(∆f
(out)

< 0)

M
−

(M
+

)

As shown in the last column of Table 8.2, the qualitative relation between
the deviations of flow variables at the input port is:

e = M (22) f
where M is a class of negative monotonic (decreasing) functions. It seems that the
relation does not comply with the general Ohm’s law; note that Eq. 22 refers to

260 V Palade, CD Bocaniala and L Jain (Eds.)

deviations from expected values, so it is not the Ohm’s law in question but
variables’ deviations.

Equations 21 and 22 are the basis of the qualitative modelling for the
effects’ propagation along the flow paths in the conductive flow system.

8.5.3.3. Signatures of Qualitative Deviations at Flow Transport Anomalies
The transport flow function reflected by R bond-graph generic component is
involved in the propagation of flow power and also in propagation of the deviations
of the flow power variables when faults occur. The propagated flow power
deviation reaches a neighbour nonfaulty component involved in the flow transport,
and affects the effort (at input port) and the flow (at output port) values depending
on the bond-graph junction they share.

Table 8.3 presents the signatures of manifestations for the effort and flow
variables corresponding to each transport anomaly and to each type of bond-graph
junction. The signatures are patterns expressed in terms of qualitative deviations (lo
– “too low” and hi – “too high”) for the flow variables at a nonfaulty component
sharing the same bond-graph junction with the faulty one. Note that both (faulty and
nonfaulty) components are flow transport (R bond-graph) components; hence they
are both involved in the flow power deviation’s propagation (from the AnoT
“cause” location).

Table 8.3. Signatures of the transport anomalies as effort-flow manifestations at the
input-output ports (respectively), in each type of bond-graph junction

1-junction

shadowed item is AnoT

(the faulty component)

0-junction

fault downstream

(of Kirchkoff’s

node)

0-junction

fault upstream

(of Kirchkoff’s

node)

Transport

anomaly

(AnoT)

1 >> 2 3 << 2 1 >> 2 4 ≥≥ 2 2 << 1 3 ≤≤ 1

Obstruction (Ob) hi-lo lo-lo hi-hi hi-lo lo-hi lo-lo

Tunneling (Tu) lo-hi hi-hi lo-lo lo-hi hi-lo hi-hi

Infiltration (In) hi-lo hi-hi hi-lo hi-lo hi-lo hi-hi

Leakage (Le) lo-hi lo-lo lo-lo lo-lo hi-hi lo-lo

≥≥

>>

3

1 2

4

>>

3

≤≤
1 2

4

 1>>2>>3

If the flow power deviation reaches the location of GY/TR bond-graph
(actuator) component, or of C/I (store/inertial) bond-graph component, a secondary
effect appears, expressed by the AnoP or AnoS anomalies. Those effects actually
reflect the AnoT anomaly propagated as power flow deviations along the flow paths
throughout the target system.

Manifestations at nonfaulty components are expressed in terms of
qualitative deviation of the effort – at the input port, and of the flow – at the output
port, in pairs (hi-lo, lo-lo, etc.), and they result from the qualitative relations of the
flow power variables at faulty (Eq. 22) and nonfaulty (Eq. 21) components (Ariton,

Computational Intelligence in Fault Diagnosis 261

2003), in the corresponding behaviour contexts (the triplet: junction type, upstream
relation, transport anomaly).

The signatures with manifestations at the components upstream/
downstream from the faulty one are specific to the transport anomaly (AnoT) and
the junction type; the only exceptions are Tunnelling and Infiltration in 0-junction
(column 3 of the Table 8.3), which cases should be decided based on relations in
neighbour 1-junction(s). Note that weak relations (/) are equivalent for the
meant study of qualitative signatures.

8.6. Knowledge Elicitation and the CAKE Tool

Diagnosis performed by human experts involves deep knowledge and shallow
knowledge on a real target system comprising many modules and components,
many activities, many faults, manifestations and symptoms.

It is difficult to manage the huge amount of information if no adequate
instrument exists, i.e., a Computer Aided Knowledge Elicitation (CAKE) tool. Such
a tool assists the human diagnostician in the knowledge acquisition phase and in
managing the information on the concrete target system. Therefore, the knowledge
acquisition is performed more easily and the computational model is easily adapted
to specific situations on the place. The CAKE (software) tool takes the place of the
knowledge engineer, who is the essential human expert in the design phase of a
dedicated diagnosis system. So, human diagnosticians and human operators do not
need a knowledge engineer to build their own diagnosis system (for the target
system) but they simply put all the information into it guided by the software tool.

8.6.1. Elicited Concepts with the Aim of Fault Diagnosis

The concepts’ representation involves a combination of models presented above
and concisely noted below, along with their role and use:

a) Means-end modelling of hierarchical structures for the multifunctional
aspect:

i. role – identifies deep knowledge on physical and functional
structures (components and simplified functions, modules
and ends);

ii. use – define behavioural patterns at faults based on proposed
primary flow functions.

b) Discrete event modelling of the running context for the
multifunctional aspect:

i. role – identifies deep knowledge on activities toward ends of
modules;

ii. use – determines current activity of a module and its time
limits.

c) Bond-graph modelling of components for the flow conduction aspect:
i. role – identifies deep knowledge on flow conduction as

bond-graph junctions and components;

262 V Palade, CD Bocaniala and L Jain (Eds.)

ii. use – associates functions to bond-graph components and
generic anomalies observing effects propagation.

d) Qualitative modelling of concepts and relations for the faulty
behaviour:

i. role – describes deep knowledge on faulty behaviour: faults
(at component level), symptoms (as generic anomalies),
observations and manifestations (with prototype and instance
attributes);

ii. use – detects faults (by instance manifestations and
symptoms) and hierarchically isolate faults (at module and
then component levels) by recognizing cause-effects as from
deep and shallow knowledge of human diagnosticians.

The models follow the human expert’s common view on diagnosis: items a
and b cover the discrete view on the structure and the behaviour in normal
situations, while item d covers the discrete view on the behaviour in faulty
situations. Item c. covers the continuous view on fault effects propagation by flow
conduction. The paper proposes a qualitative view on faulty behaviour of
components and a procedure to assert primary effects from the propagated
(secondary) effects.

The data on real running of the target system have a close representation to
the human diagnostician’s view, through:

e) Fuzzy logic – for the “intelligent encoding” of observations to
manifestations:

i. role – encodes “prototype manifestations” as
meaningful intervals according to the deep
knowledge of human diagnostician;

ii. use – obtains “instance manifestations” from the
actual values collected from sensors during
installation running.

The diagnosis follows modular and incremental procedures, carried out by:
f) Inference engine – for fault detection and sequential diagnostic

refinement:
i. role – detects abnormal behaviour (symptoms) and

sequentially performs diagnosis for temporal sliding
windows and for newly observed variables;

ii. use – locates a transport anomaly at module level,
then starts the neural network recognition process
for further fault isolation.

g) Artificial Neural Networks – for recognition of the faults:
i. role – embeds shallow knowledge from practice and

experiments as links between manifestations and
symptoms to faults;

ii. use – isolates faults by recognizing patterns of
manifestations and anomalies.

The diagnostic is obtained by recognizing patterns of manifestations and
symptoms associated with faults. Items e to g are computational models that
emulate the human diagnostician’s way of acting, and directly embed human

Computational Intelligence in Fault Diagnosis 263

concepts in their native form. The diagnosis proceeds incrementally, following the
sequence of activities of the modules during the target system’s running and adding
new observation meant to refine the diagnostic.

The knowledge pieces for diagnosis involve a large amount of data that
should enter the diagnosis expert system (Patton et al., 2000). Each concept
addresses a set of specific information:

module – name, ends, activities, specific set of components, up-
stream relations to neighbour modules, junctions and signatures
for each transport anomaly identification, nonspecific
observations (e.g., mud);
activities – code, next activity, time limits;
component – name, primary flow function and bond-graph
component for each activity of the host module, set of specific
faults, component and module located manifestations;
fault – name, (deep knowledge) links from manifestations and
anomalies of the flow function in the host component, abductive
relations to causes from the target system or environment,
(shallow knowledge) links from other manifestations in the host
module;
manifestation – name, source type (sensor or human operator
observations), prototype attributes and ranges of values (specific
to the activity of the host module), abductive relations to causes;
anomaly – type (AnoP, AnoS, AnoT), host component or module,
end parameters values for abnormal behaviour, etc.

Knowledge elicitation will provide data for building the structures of ANN
blocks (e.g., data on layers of neurons for manifestations and faults, for the
abductive links between them, for training with patterns). Knowledge elicitation
provides data for the inference engine of the diagnosis expert system: the series of
activities for each module, order of 0-junction for which signatures of neighbour
modules identify the transport anomaly, etc.

The knowledge pieces enter the Knowledge Base for consistency checking
and for storing concrete data in the appropriate representation. After elicitation, the
training of ANN blocks follows, then the diagnosis expert may be generated as a
dedicated software for the given target MCFS.

All knowledge pieces, presented in previous sections, are specific
knowledge structures that the CAKE tool deals with. The structures refer, for
example, to the physical and functional units of the target system, to the systems
interconnected with the targeted one, to all situations that may disturb or originate
faulty situations.

The feasibility condition, meant for the computational model of the fault
diagnosis system, is to assure closed spaces for causes and effects. Abnormal
behaviours are not only caused by faults at components but also by any other
abnormal situation inside the target system or coming from outside. To cope with
such cases, the concept of disorder is introduced. Disorder refers to any cause that
will induce an abnormal situation: human operator mishandling (e.g., ill tuning,
infringement of technological rules, etc.), ill state of matter or energy flows (e.g.,

264 V Palade, CD Bocaniala and L Jain (Eds.)

the quality), abnormal conditions in the environment (e.g., too hot or too cold), and
negative influences from the neighbour systems.

Fault diagnosis deals with various aspects of the target system, each of
them identified as a subsystem:

a) Physical Subsystem – refers to all physical units (e.g., modules and
components) and hierarchical structures (e.g., the whole installation
and the modules) as means for achieving the ends of the system.
Regarding the diagnosis, they represent the locations for faults.

b) Functional Subsystem – refers to all functional units (primary flow
functions) and hierarchical structures (process phases and activities),
which actually achieve the ends of the system. Regarding the
diagnosis, they represent locations for the behavioural aspects of the
target system.

c) Behavioural Subsystem – refers to all concepts related to the abnormal
running of the target system: observations, manifestations, symptoms
and faults, along with their links.

d) Operational Subsystem – refers to the human operator actions that
may provoke an abnormal situation.

e) Flow Subsystem(s) – all types of matter or energy flow that may
induce abnormal situations (e.g., the “foaming oil” in a hydraulic
installation).

f) Environment – refers to all systems out of the diagnosis contour (i.e.
the target system): the ambient atmosphere, the mounting conditions,
and the neighbour systems.

All knowledge pieces become entities related to each other that should be
indicated by the knowledge engineer and should enter the computational model for
fault diagnosis, as further presented. The structures of knowledge pieces are further
presented in the entity-relationship diagrams that follow.

8.6.2. Elicitation Aspects on Normative and Faulty Models

The normative model consists of physical and functional structures that support the
ends’ achievement. They comprise entities specific to their corresponding
subsystems, presented in the previous sections.

The diagrams in Figures 8.7 and 8.8 are UML representations of entities
relations elicited for the corresponding subsystems. Having in mind fault diagnosis,
in each diagram will appear the two entities Disorder and Fault – the last inheriting
the first one. The dashed ellipses indicate borders of the other subsystems.

8.6.2.1. The Physical Subsystem
The entities involved in the Physical Subsystem are Component (the entire set C),
Module (the entire set M), and Installation; all of them are locations of
faults. However, there are disorders that may produce similar effects as faults,
which are located in other systems (Flow, Operational or Neighbour systems).

The discrimination of the physical units proceeds from the means-end
view (as MFS) and from the bond-graph view (as CFS), following the hierarchy of
physical/functional units. For each flow type ut, the knowledge engineer should

Computational Intelligence in Fault Diagnosis 265

assert the end of the modules, then the primary flow functions of the comprised
components along with the associated bond-graph generic component. So,

Modules – result from ends (and activities) accomplished towards
products / services achieved, and correspond to bond-graph 1-
junctions.
Components – result from primary flow functions completed in
each activity, and correspond to certain bond-graph components.

Fault isolation granularity is the extent of the decomposition of the
physical structures into components, hence the cardinality of C. The fault isolation
granularity reflects human diagnostician’s troubleshooting pragmatism regarding
the sufficient location of disorders for their removal; it also reflects the
incompleteness of human knowledge on physical structures and on the
environment. Usually, a component may exhibit more faults, so C induces a
disjunctive partitioning over F.

The discrimination of physical components – sufficient for fault isolation –
follows the hierarchical structure of the target system, and proceeds to a combined
decomposition observing the physical and the functional structures:

i. from the entire Installation – which is also the whole
Process,

ii. decomposition proceeds to Modules – each referring to a
Subprocess with two or more Activities,

iii. then each Activity is decomposed in primary Flow Functions
– each being attached to a Component.

The relations between entities – with the corresponding multiplicity
attached to each relation – are illustrated in Figure 8.7 and they represent:

Association «loc» (located to) directs to the location of the
Disorder;
Dependency «evo» (evokes) directs to the anomaly evoked by
the Disorder;
Inheritance Fault from Disorder;
Composition of Component to Module, and to
Installation.

The physical units (in the physical structures) present hierarchical relations
and also upstream (strong) and (weak) relations, depending on the bond-
graph junction the physical units enter. Upstream and downstream relations appear
in the diagrams representing the bond-graph junctions of the target system, for each
combination of activities of the participating modules, and for the components
inside the module. While specific, those diagrams are not shown here.

8.6.2.2. The Functional Subsystem
The functional structure is also a hierarchical structure: activities (of each module)
comprise flow functions (of each component) and each flow function is linked to a
specific faulty behaviour. All knowledge on physical and functional structures is
deep knowledge, while it comes from human experts’ acquaintance with the domain
and with the design issues of the target MCFS.

266 V Palade, CD Bocaniala and L Jain (Eds.)

Disorder

Process

Activity

Operator

Module

Component

Environment

Flow Type Flow Function

Installation*

«loc»«loc»

«
l
o
c
»

«
l
o
c
»

«loc» «loc»

*

*

*

*

*

1

1

1

1

2..*

2..*

*

1

1

Operational

Subsystem

Neighbour

Systems

Flow

Subsystem

Behavioral Subsystem

Functional Subsystem

Physical Subsystem

*

*

1

1

Fault

Transport
Anomaly

Process
Anomaly

*

*

«evo»

* *

11

«evo» «evo»

Store
Anomaly

*

*

*

Figure 8.7. The UML diagram for entities and relations of the Physical Subsystem.

The entities of the Functional Subsystem are: Process and
Subprocess (as general concepts related to the running of the whole
Installation and of each Module). Activity is defined in Section 8.4.1.1,
and – from the means-end point of view – corresponds to the network of flow
functions for the components that leads to a certain (processing) end of the module.
The Process phase is the current set of activities existing at a moment during
the whole installation running. The Operational Mode indicates a state of the
Component that leads to a primary flow function or to another, depending on the
control action meant for the components (e.g., valve is open or shut). The fact that a
Disorder depends on the Activity it appears, is represented by the
constraint{and} upon the respective relations (note that {} stands for {and}, reduced
because of the limited space).

8.6.2.3. The Behavioural Subsystem
The human diagnostician’s view on manifestations and symptoms concerns:

i) deviations of the observed variables from the expected
(“normal”) values – where observations may refer to ends, effort
and flow variables, linguistic values from human operator;
ii) deviations of functions that lead to abnormal ends – anomalies
in the end’s accomplishment, in the flow store or flow transport;
iii) propagation of the effects from the fault location – deviations
of flow variables appear as primary effects (transport anomalies)
and provoke secondary effects.

Entities on the faulty behaviour come from the deep knowledge of human
experts in the domain and on the target MCFS, as presented in Section 8.5.

The relation «evo» indicate that a Manifestation evokes a
Disorder, while «rev» indicates that an Observation reveals a
Manifestation.

Computational Intelligence in Fault Diagnosis 267

The {and} constraints between respective dependencies and associations
indicate that the Disorder is specific to the Anomaly and the Activity that
appear.

A causal relation that has an explanation represents deep knowledge.
Relations that come from experiments or practice represent shallow knowledge that
is embedded in the Artificial Neural Network (ANN) blocks. Shallow knowledge is
embedded into the diagnosis expert system during the training procedures, based on
known patterns acquired from practice (off line) or from experiments (on-line).

Installation

Module

Operator

Subprocess

Operational
Mode

Component

Process

«loc»

«
l
o
c
»

1

0..2 1

Operational

Subsystem

Neighbor

systems

Flow

Subsystem

Behavioral Subsystem

Physical Subsystem

Functional Subsystem

DisorderEnvironment

Flow Type

1

1

Fault

*

*

Process phase

Activity

Transport
Anomaly

Store
Anomaly

Process
Anomaly

*

*

*

*

* * *

*

*

{and}

{}

{}

«loc»

«evo»

«evo»

«evo»

1 1

*

fpf

ftf

fsf

* *

*

*

1

1

1

*

1

1

*

1

1

0..4 0..2

**

*

**

*

*

*

Figure 8.8. The UML diagram for entities and relations of the Functional Subsystem.

fpf

fsf

Observation

Store
Anomaly

Transport
Anomaly ftf

Process
Anomaly

«rev»

«
r
e
v
»

«rev»
*

1

0..2 1

12..3

1

Operational

Subsystem

Neighbor

systems

Flow

Subsystem

Physical

Functional Subsystem

Behavioral Subsystem

Disorder

Ob In ScTu

1

1

1

1

1

1

1

1

2..3
0..4

2..3

2..3
*

*Observation

Observation

Observation

*

*

*

Manifestation

«evo»

Fault

«rev»

*

*

*

1

*

1

Activity «
e
v
o
»

«
e
v
o
»

«
e
v
o
»

{and}

{and}

{and}

Figure 8.9. The UML diagram for entities and relations of the Behavioural Subsystem.

268 V Palade, CD Bocaniala and L Jain (Eds.)

8.6.3. The CAKE Tool

Knowledge elicitation and knowledge acquisition are assisted by the Computer
Aided Knowledge Elicitation (CAKE) software tool, which actually replaces the
knowledge engineer who is involved in the design and implementation of the
diagnosis expert system (Ariton and Baciu, 2002).

Knowledge elicitation proceeds by asking the operator about entities,
values and relations, namely, on specific concepts of the subsystems in the target
system. Knowledge elicitation activity consists of three phases: the top-down phase
– which performs means-end discrimination of modules to components in the
normative model, then the bottom-up phase – for collection of specific data on the
faulty model, and finally the join phase – for establishing relations between all
entities.

Figure 8.10. Screenshot for the CAKE screen for knowledge acquisition.

The top-down phase scans the layered structure of flows in the target
MCFS, considering each flow type and “asking” for: modules (with activities and
junction types), components (with flow functions and bond-graph components),
faults and observed variables along with manifestations attached. The functional
structure results from the functions attached to each physical unit: for each module
– ends and activities they accomplish, for each component – the appropriate flow
functions and the corresponding bond-graph generic component for each activity.

The bottom-up phase scans in the reversed order the physical and the
functional structures, attaches faults to components, performs intelligent encoding

Computational Intelligence in Fault Diagnosis 269

of manifestations, attaches manifestations to appropriate faults (from the shallow
knowledge), and finally attaches anomalies to faults (from the deep knowledge).

The join phase puts together the existing modules in the respective bond-
graph junctions (as from deep knowledge), attaches signatures to each junction, and
indicates specific tasks for the inference engine (e.g., the order of bond-graph
junctions to scan for transport anomalies).

The knowledge acquisition in the three phases refers to all knowledge
pieces and relations for the target MCFS. The information is stored in the CAKE
tool’s Knowledge Base, which is specific to the target system. This way, data are
prepared for the generation of a dedicated diagnosis application. Figure 8.10 shows
a screenshot of the CAKE tool for MCFS building involved in the second phase.

The result of the knowledge acquisition is the complete description of the
target system as text and data stored in the knowledge base. Following the text
description and the knowledge base, the CAKE tool generates the code for a
dedicated diagnosis expert system. The “Fault Isolation” (neural) blocks are later
trained with faults-manifestations and faults-symptoms patterns, based on
previously collected data from practice and/or experiments.

8.7. Fault Diagnosis System by Abduction

As already shown, the human diagnostician combines deep and shallow knowledge
on the target system, and then isolates faults following hierarchical decomposition
and incremental procedures in refining the diagnostic (i.e., finally locating the
fault). The deep knowledge is more compact and it rapidly reduces the searching
space based on laws from the domain (“explanations”). However, deep knowledge
captures only general causal links and hardly refers to the diversity of effects and
causes in the real running. So, shallow knowledge comes to describe the detailed
behaviour in the uncertain and incomplete context of the complex real system.

8.7.1. Diagnosis Expert System’s Structure

In Figure 8.11 is depicted the block structure of the Diagnosis Expert system and
the place of the CAKE tool – which, actually, is not part of the diagnosis system.
The diagnosis approach mainly focuses the knowledge regarding the faulty
behaviour of the target MCFS, while knowledge regarding the normative model is
only meant for the physical and the functional structures that will support the
behavioural model in locating anomalies and faults.

All knowledge enters the “Knowledge Base” block, which in the proposed
approach is simply a data base, while the normative and the faulty models are sets
of behavioural units with parameters and links between them.

The “Knowledge Base” is the central block of the diagnosis expert system;
data structures come from the “Knowledge elicitation” block (the CAKE tool
included).

The actual data (values) come from the “Target MCFS” through the “Data
acquisition and pre-processing” block which performs scanning, sampling and

270 V Palade, CD Bocaniala and L Jain (Eds.)

intelligent encoding of data from sensors and from human operators; data channels
are depicted as in Figure 8.11.

The “Incremental diagnosis” block is the inference engine of the expert
system; it controls the other blocks through control channels (depicted as simple
arrows in Figure 8.11). The inference engine’s tasks are presented in Section
8.7.2.3.

The “Fault isolation” blocks are Artificial Neural Networks (ANN)
dedicated and trained each for a given module faults recognition, based on patterns
of manifestations and anomalies. The ANN blocks are connectionist models for
abduction of faults from effects that embed deep knowledge on “abductive
problems” of causes and effects (see (Ariton and Palade, 2004)), and also shallow
knowledge on effects-to-causes pattern relations.

The “Human operator interface” block interacts with the human operator
by asking and providing operator observations to “Data acquisition and pre-
processing” block (arrow in Figure 8.11) and displays the diagnostic.

The “Knowledge elicitation and acquisition” block provides the
knowledge (see in Figure 8.11) for the “Knowledge Base” block, prototype
manifestations for the “Data acquisition and pre-processing” block and faults-
manifestations patterns for the ANN blocks. The “Knowledge elicitation and
acquisition” is the CAKE tool (see Section 8.6) and it is actually the subject of the
present work.

The

Target

MCFS

Data acquisition

and

pre-processing

Fault isolation

blocks

(per module)

Knowledge elicitation

and acquisition

CAKE tool

Knowledge

Base

Human operator

interface

Incremental

diagnosis inference

engine

Figure 8.11. Diagnosis expert system and the place of the CAKE tool.

Computational Intelligence in Fault Diagnosis 271

8.7.2. Modular and Incremental Diagnosis

Diagnosis proceeds by locating faults hierarchically, like the human diagnostician
does:

first discriminating the module with a transport anomaly,
then recognizing fault(s) inside the module.

The transport anomaly is detected using signatures of manifestations on
effort and flow variables at each module’s input/outputs – see Table 8.3 – which
leads to isolation of the faulty module. The existence of the transport anomaly is a
confirmation of the faulty state and valuable information for further isolation of the
concrete faults inside the module.

At the module level, it is possible to proceed the same way, i.e., to locate
the faulty component detecting it by signatures of power variables’ deviations.
However, it is hardly the case that effort and flow are measured at every component
in real installations. So, at the module level, fault isolation is performed by
recognizing “pattern faults” from “pattern manifestations and symptoms,” based on
a dedicated ANN block provided for the module.

8.7.2.1. Parallel Processing for Modular Diagnosis
Manifestations (i.e., lo, no, hi linguistic values at the observed variables) and
symptoms (i.e., process, store and transport anomalies) are input neurons and the
faults are the output neurons of the ANN. All concepts have the appropriate
representations as presented above: discrete (i.e., linguistic) knowledge and logical
meanings (i.e., truth values). This way, the abductive reasoning of the human
diagnostician may be described by the connectionist model proposed in Section
8.2.3.

The main advantage of the presented connectionist approach in diagnosis
is the embedding of the human diagnostician’s shallow knowledge by ANN
training, using manifestations-to-faults patterns as from the actual behaviour of each
module in the target system. It is worth mentioning that it is unrealistic to use a
unique ANN block for an entire real system, while it deals with enormous numbers
of combined causes and training patterns. By using the modular approach
presented, the combination of manifestations-to-faults patterns is drastically
reduced, and the fact that the human expert’s shallow knowledge usually refers to
the module level, even experiments on site or in laboratory conditions are
conducted at the module level.

8.7.2.2. Testing Policy as an Abduction Problem Solving
The testing policy aims to indicate the best next test the result of which allows the
optimal diagnostic refining, in other words the shortest path (as steps) to the
diagnostic.

The “next best test problem” can be formulated as an abduction problem,
and it can be solved in the same way as the diagnosis itself, i.e., as a connectionist
implementation of plausibility and relevance of the next test to follow. Testing is
performed stepwise, and takes part of the sequential diagnostic refinement.

272 V Palade, CD Bocaniala and L Jain (Eds.)

The testing procedure requires human operator observations, but only a
few are useful given the current situations (faults occurred, process phase, etc.), and
given the entire set OM of human observed manifestations (see Section 8.3.3.3).

The current set of instance manifestations used at the training phase of the
ANN block includes those observed by human senses (or portable measurement
devices) and they should be provided as required at the time of diagnosis. In
reverse, the embedded knowledge may be used to find out which is the plausible
and relevant observation that the human operator should supply to advance the
optimal diagnosis.

In this way, the next best test is obtained as the solution of the abduction
problem solving, using plausible and relevance criteria as follows:

plausibility(P_CRITERIA, EFFECTS, CAUSES) – whose
outcome is the set of operator-observed manifestations OM
(hence variables to be tested), based on the set of manifestations
joined with the set of plausible faults obtained at the current step
in the diagnosis.
relevance(R_CRITERIA, OM) – whose outcome is the set of
relevant operator observations out of the plausible ones, that
satisfy R_CRITERIA.

The abduction problem is solved by means of a neural network
implementation, and indicates the most plausible and relevant operator observation (if
the competition is strict), or a set of observations (if the competition is relaxed), for
which the human operator will supply data.

8.7.2.3. Incremental Processing for the Diagnostic Refining
The inference engine of the expert system with the same name, sequentially and
repeatedly fulfills the following tasks:

i) Start data acquisition from the Target MCFS by means of the
“Data acquisition and pre-processing” block, which also performs
the „intelligent encoding.”
ii) Identify the activities of all modules, during the current process
phase (note that a process phase lasts between any two transitions
of activities for any of the modules entering the same 0-junction).
iii) Detect faults – by identifying process and store anomalies.
iv) Detect transport anomalies and the faulty module – by
identifying signatures of manifestations of effort and flow
variables from Table 8.3.
v) Isolate fault(s) inside the faulty module(s), by means of
manifestations and anomalies patterns, applied at the inputs of
“Fault isolation block per module”; recognize fault using the
dedicated ANN for the module.
vi) Evaluate the truth value of the “faulty” state versus the
“normal” state for the entire target system.
vii) If “faulty” is greater than “normal” but no diagnostic exists
(i.e., truth value of all activated faults is under a given threshold)
ask human operator for additional observations and go to step i.

Computational Intelligence in Fault Diagnosis 273

viii) If a diagnostic exists (“normal” and “unknown” included)
and no further additional observations requested, display the
diagnostic.

The inference engine cycle is standard but embedded knowledge and data
are specific to the target system under the diagnosis.

8.7.3. Aspects of the Sequential Diagnosis
In the presented approach, sequential diagnosis involves three aspects:
a) Abduction by plausibility and relevance proceeds stepwise: first,

plausible causes are obtained through feed-forward activations
according to instance manifestations; second, the relevant faults are
discriminated from the relevance groups, each group as a specific
modularisation of faults, one modularisation applied at a time.

b) Process phases arise one after another, each process phase exhibiting
specific plausibility criteria; consequently, the connectionist abduction
is performed according to the (expected) current process phase.

c) Additional observations required from and supplied by human
operator get into the diagnosis system, until no test is required – i.e.,
until the diagnostic is obtained (even if it is “no fault” or “unknown
fault”).

For aspects a and b above, an example of sequential diagnosis is presented
in the previous section; item c refers to the next best test policy formulated as an
abduction problem, and solved by plausibility and relevance implemented by neural
networks. Note that “unknown fault” that occurs in the real running is finally
decided by the human operator of the diagnosis system – when a faulty situation
exists but no diagnostic provided.

8.7.3.1. Diagnosis by Plausibility and Relevance Criteria Sequentially
Applied
Let us consider the diagnosis performed for a process phase P. After applying the
plausibility criteria P_CRITERIA upon the set of EFFECTS, the set F* of all
plausible causes is deducted (i.e., the set comprising all causes with a positive
activation). The “mass activation” of plausible faults is, by notation, Fi, as given
in Eq. 23, where F* is the set of plausible causes.

F
*

i i
F F

F Fi = (23)
The sum is performed over the set F*of plausible causes but it actually is

the same if performed over the entire set F of causes, while nonplausible causes
exhibit zero activation. So, the computational procedure always deals with the
entire set F of causes, hence simple implementation.

Applying the relevance criteria R_CRITERIA upon the set of CAUSES will
increase the activation of a plausible and relevant cause Fi

*, according to the layer’s
weight WL (see Section 8.2.5.2). The increase will affect the numerical value of Fi

*,
according to the mass activation Fi of all faults and to the weight WL of the current
modularisation layer:

274 V Palade, CD Bocaniala and L Jain (Eds.)

i
i

i

F
FFi

* = WL
(24)

In the proposed approach, the order of the relevance criteria applied is
important, because the activation mass changes accordingly. The best order is the
one of increasing weights WL, so the activation mass Fi is updated only once,
before the current layer processing. Each layer induces a graded increase of
respective cause(s) activation, the last layer of modularisation inducing the highest
increase.

After applying all relevance criteria, the relevance of faulty situation is
determined (see Section 8.2.5.3) and the diagnostic is issued as the most relevant
causes resulted, including faults with activation over the doubt level.

8.7.3.2. Testing Policy by Plausibility and Relevance Criteria Sequentially
Applied

The next test is required after each diagnostic obtained. The diagnosis
system “asks” the human operator to provide a certain variable value; he or she
supplies the value, and so diagnosis based on plausibility and relevance restarts.

The most plausible and relevant operator-observed variable(s), for the
given situation, result as an abduction problem solving according to Section 8.2.3.
The next best observation (i.e., test) is indicated by the ANN block provided for
each module, based on current faults and instance manifestations activated.

Now, the activation of plausible fault Fi
* changes according to new

manifestations provided and, additionally, the activation is affected by the weight WO

attached to the operator-observed variable provided at the current step:

i
i

i

F
FFi

* = WO
(25)

The human diagnostician sets up weights for the operator-observed
manifestations according to the deep knowledge in the domain, provided WO = 1
for the set of operator-observed manifestations in the relevance group. The human
operator supplies the observed values (manifestations) in the reverse order of
weights WO. That is, the values of the most important variables are provided first.

In the economy of the diagnosis by next best test, the most important role
is played by Eq. 11, which starts the next test procedure if the FAULTY situation
prevails over the NORMAL one. It is possible to stop asking for new operator-
observed variables if a predefined faulty situation threshold is surpassed, e.g.,

1

0

n

n

i
i

Fn

F
(26)

where = 9 means that the faulty situation is 90% certain as the normal one.

Computational Intelligence in Fault Diagnosis 275

8.7.4. Neural Network Architecture for Diagnosis and
Testing

The neural network architecture for diagnosis using a testing policy comprises two
neural networks, each dedicated to the abduction problem solving: one for the
diagnosis – DNN (Diagnosis Neural Network), the other for indicating the next
observations to be made – TNN (new Test Neural Network), as shown in Figure
8.12.

Both neural network blocks contain feed-forward links for plausibility,
between the input and the output neurons; for DNN, between input neurons of the
type OM (Operator-observed Manifestations), MM (permanent Monitored
Manifestations), SY (SYmptoms detected) and output neurons F (Faults); for TNN,
between F (Faults) and OM (Operator-required Manifestations – identical as set
with the Operator-observed Manifestations set). Forward links are represented as
arrows between input and output layers of neurons, and competition links are
represented by horizontal arrows between the output neurons (F and OM,
respectively).

OV
k

W

MM

OV
1

OV

SY

OV

OPERATOR

requested observations

(additional manifestations)

W

SYOM MM

F
1

F
i

F
n

DNN

FAULTS

SENSOR

observed

manifestations

OPERATOR

observed

manifestations

TNN

Figure 8.12. Neural network architecture for fault diagnosis by abduction, with additional
observations from human operator.

The input of the DNN block consists of permanent observed
manifestations MM and operator-observed manifestations OM – the last ones

276 V Palade, CD Bocaniala and L Jain (Eds.)

passing through the network as long as they are triggered and supplied by the
operator. Plausible faults at the output of the DNN block become inputs of the TNN
block, along with the current manifestations MM, to produce most plausible and
relevant observations to be tested by the human operator. The entire set of neuron
outputs of the DNN block are passed to the input of the TNN block, while only
plausible faults get activated and count for the abduction towards the next test
indicated to the operator.

Diagnosis proceeds stepwise. At each step, the observations become first
manifestations by “intelligent encoding,” then most plausible and relevant faults
result by abduction at the output of the DNN block, along with required operator-
observed variables indicated at the output of the TNN block. The set of most
plausible and relevant faults at each step is a partial result with attached values of
FAULTY and NORMAL situations, as from Eq. 14. The final diagnostic is obtained
when the FAULTY situation surpasses a given threshold and no operator
observations are required. Depending on the number of relevant faults resulting
from competition, single or multiple fault diagnosis is in concern.

The "closed world assumption" is satisfied if all situations that may appear
during the diagnosis have a result; hence the “no fault” (NORMAL) as well as
“unknown fault” (UNKNOWN) neurons appear in the output layer of the DNN
neural network block. The processing for plausibility and relevance roughly
corresponds to general phases in diagnostic reasoning: "hypotheses generation" and
“hypotheses discrimination,” respectively.

The neural network is the core of the diagnosis expert system, and it deposits
the deep and shallow knowledge of the human diagnostician. The way the diagnosis
proceeds also complies with the human diagnostician’s way of acting, i.e., it is
performed sequentially, applying plausibility and relevance criteria step by step,
until the final diagnostic is obtained.

8.8. Case Study on a Hydraulic Installation in a
Rolling Mill Plant

The case study is performed on the simple hydraulic installation shown in Figure
8.13. It comprises two hydraulic cylinders (for a carrier and a brake), two control
valves, the mineral oil tank, the pump with a pressure valve, and two long pipes. To
master the complexity of the installation under diagnosis, the installation was
divided into modules: the Hydraulic supply (containing tank, pump and pressure
valve) and two driving modules (containing control valve, cylinder, damper –
Drossel) – the Hydraulic brake and the Hydraulic conveyor.

8.8.1. Knowledge Elicitation

The information regarding the physical and the behavioural subsystems consists of
knowledge pieces presented in Table 8.4. The whole set of disorders considered
consists of: faults, the NORMAL situation, and the nonconformities at flow, human
operator and neighbour systems.

Computational Intelligence in Fault Diagnosis 277

For each component, the numbers of faults are: 2 at the tank, 4 at the
pump, 3 at the pressure valve, 2 at the pipes, 3 2 at the control valves, 2 at the
damper, 2 2 at the cylinders.

There exist 6 disorders that refer to nonconformities: 2 for the mineral oil
(i.e., “too many suspensions” and “foamy oil”), 1 at the environment (“too hot”), 3
for operating errors (Olu “no oil in the tank” – see below, “carrier load too heavy,”
“pump velocity ill tuned”). So, the disorders consist of 23+1 faults (NORMAL
added), and 6 nonconformities, i.e., |F| = 30.

Line 4 in Table 8.4 shows the types of manifestations and the number of
data according to the activities in line 2; for example, the number of the fuzzy
attributes for the Supply module is (6 variables) (3 landmarks) (2 activities) = 36
manifestations of type lo, no, hi.

The measured manifestations refer to |MM| = 48 pieces that are variables
expressed as single neurons (for the binary variables), or triple neurons (for the
continuous variables with lo, no, hi attributes), each neuron with a graded value of
truth. The observed variables come from analogical sensors for 2 input/output flow-
rates, 3 input/output/damper pressures, 4 temperatures (control valves, pump and
tank), from contacts for 4 operator commands (brake on/off, carrier on/off), for 5
positions (of type left/right, open/shut) of the two pistons and of the pressure valve.
The 4 durations of the pistons' movements (left/right – for the two cylinders) enter
also as measured manifestations.

In the set of the |OM| = 14 operator-observed variables, there are 5 of type
"noise" (2 for the pump, 3 for the pressure and the control valves), 6 "oil leakage"
(all except the damper) and also there are 3 anomalies outside the hydraulic system
(brake/carrier mechanical blockage, no pump power).

F=20 F=200

66%

Drossel

Hydraulic Brake

Ctrl. Valve 1

Pressure Valve

Pump Oil Tank

Ctrl. Valve 2

Conveyor

J'0

J"0

J'1

J1"

J1'''

Figure 8.13. Hydraulic installation under elicitation case study.

278 V Palade, CD Bocaniala and L Jain (Eds.)

Running contexts of the target hydraulic installation refer to each discrete
position or motion of the pistons in the two cylinders, as well as to the two states of
the control valve. So, we find the activities for each of the three modules: 2
activities for the supply module and 4 activities for each driving module. The total
number of process phases is 2+4 4=18. Even for such a simple installation, the
numbers of process phases is quite large, provided that for each of them the
knowledge engineer should develop experiments to assess the specific
manifestations and their links to faults, hence plausibility criteria and the DNN
block training. Instead, each module’s specific behaviour was studied separately
when faulty. The simulated faults and the manifestations that had appeared were
collected for each separate module, concerning only the 2 activities of the supply
module and the 4 activities of each driving module, respectively.

Table 8.4. Inventory of the knowledge pieces involved in the fault diagnosis

 Module

 Entity

Hydraulic

Supply

Hydraulic

Brake

Hydraulic

Conveyor

1. Components

pump, tank,

pressure valve,

pipes

control valve,

cylinder

control valve, self,

cylinder

2. Activities / Faults 2 / 11 4 / 5 4 / 7

3. Sensors

(observed variables)

Analogical 6,

Digital 7

Analogical 5,

Digital 8

Analogical 3,

Digital 8

4. Manifestations

Fuzzy 6⋅3⋅2,

Binary 7⋅2
Fuzzy 5⋅3⋅4,

Binary 8⋅2
Fuzzy 3⋅3⋅4,

Binary 8⋅2
5. AnoP, AnoS, AnoT 2, 1, 4 2, 2, 4 2, 2, 4

A total number of 155 (fuzzy and binary) manifestations result, hence 888
manifestations-to-faults and 255 anomalies-to-faults links get established. If faults
and manifestations were considered for the entire installation (as in “classic” ANN-
based diagnosis – i.e., without modularisation), 32 combinations of activities result,
hence (6 3+5 3+3 3) 32=1344 knowledge pieces for manifestations, which require
30 1344=40320 manifestation-to-faults links, and 9600 anomalies-to-faults links.

Using the modularisation in presented approach, just for the simple
hydraulic installation, the data volume is (1344+40320)/(888+255)=36 times less
for the modularised approach than using a unique ANN block for the entire
installation. In the case of a more complex installation, the ratio is much bigger, and
embedding deep knowledge in the links between faults and manifestations is quite
impossible. While the knowledge acquisition is rather difficult even for the
modularised scheme, the CAKE tool comes to assist the human diagnostician in
managing the elicitation and the data volumes, also in yielding the data structures
for a dedicated diagnosis system.

8.8.2. Neural Blocks for Physical Modules

The diagnosis was meant for three distinct process phases, namely, the one with the
control valve open (for faults at the supply module) and those with moving pistons
(for the two driving modules). No symptoms were considered on the installation

Computational Intelligence in Fault Diagnosis 279

behaviour. The faults–to-manifestations patterns, used in the training of the DNN
and TNN neural network blocks for each module, were partly acquired from human
diagnostician practice, partly from experiments.

Again, the modularisation represents an advantage in the implementation
of the diagnosis system. So, instead of considering the process phases for the whole
installation as the running contexts (which determine the specific faulty behaviour),
it is now possible to consider only the activities of modules interconnected in the
same bond-graph junction. Furthermore, the neural sites for the abduction problems
were easier to build separately for each module.

The structure of the neural network block for the supply module is
depicted in Figure 8.14, where:

Faults are: Pax (pump – axis broken), Pai (pump – clogged
admission), Pne (pump – ill joints), Puz (pump – worn out), Tne
(tank – worn-out filter);
Manifestations are: P1 (oil pressure at the tank outlet: “too low”
lo, “too high” hi), D1 (oil flow rate at the tank outlet: “too low”
lo, “too high” hi), T2 (oil temperature “high” in the tank);
Manifestations requested from the human operator are: Z1
(whistling noise at pump), Z2 (jerky noise at pump), M1 (oil mud
at pump), M2 (oil mud at tank);
Nonconformities from flow and from human operator: Uim (dirty
oil), Usp (foaming oil), Olu (tank empty), Otm (pump angular
velocity ill tuned).

As shown in Figure 8.14, there are two monotonic faults (Pne and Puz),
two monotonic operator-observed variables (Z1 and Otm), and two conjunction
sites (for Pax and Otm). The negation sites for operator-observed variables prevent
further demand of the variables already requested and supplied.

8.8.3. Plausibility and Relevance

For each running context, the plausibility links between faults and manifestations
were set up according to the human diagnostician’s deep knowledge, but also
systematically linking all manifestations to faults in a module.

The neural network model used for the DNN and TNN blocks is the
perceptron; it supports the feed-forward plausibility criteria with modified structure,
suited to abduction problem solving (see Figure 8.14).

Plausibility criteria refer to different abduction problems implemented as
neural sites and to trained faults-to-manifestations patterns from simulated
experiments, on each target module, for fault, “normal” and “unknown” cases.

Competition is added over the set of fault neurons regarding the following
relevance grouping:

1. faults at the same component (physical structure scope) – minimum
cardinality criterion;
2. faults which are obvious only in specific activities of the respective
module (e.g., control valves “blocked parallel” and “blocked crossed” are
obvious only when the piston is moving in the hydraulic cylinder);

280 V Palade, CD Bocaniala and L Jain (Eds.)

3. faults in the module provoking leakage and those provoking clogged
symptoms for mineral oil flow.
For each functional module i, it corresponds to a neural network module

with two blocks, DNNi and TNNi. Additional relevance criteria discriminate
between the diagnostics at module level, in order to issue the diagnostic at the level
of the whole installation. The relevance criteria at installation level are based on
symptoms and on Eq. 11; the relevance criterion of minimum cardinality was
considered.

The training of the neural network block DNN1 (associated with module 1
– the oil supply module presented above) is performed using the standard learning
algorithm for the perceptron. The NORMAL situation for the entire supply module
is trained using normal values (see Figure 8.15): no for P1 and D1, and normal
states of the other manifestations. The UNKNOWN situation is trained by means of
patterns, randomly generated but consistent with those used for plausibility of faults
and the normal situation.

As it is difficult to gather all the necessary details for the NN structures for
all modules, a CAKE (Computer Aided Knowledge Elicitation) instrument was
build and used to describe and automatically generate the DNN and TNN structures
at the module level.

NORMAL
Uim Usp Otm Z1 Z2 M1 M2

T2

Pax Pai Pne Puz Tne

lo no hi

D1

Olu Uim Usp Otm Z1 Z2 M1 M2lo no hi

P1

DNN

1

TNN
1

Olu
UNKNOWN

P1lo P1hi
D1hi

D1hi

Figure 8.14. The neural network structure for the first (oil supply) module for diagnosis.

8.8.4. Sequential Diagnosis for the Supply Module

Figure 8.16 illustrates the four steps in which the diagnosis regarding the supply
module is performed, with respect to a fault that occurred in the pump, namely, Pai
(short name for the fault “oil tank pipe is clogged“). Each window shows a step
during the diagnosis refinement, including the partial diagnostic and the operator-
observed variables required from the human operator. For the simulated fault –
marked by x – the diagnostic is obtained in four steps, after eliminating other causes

Computational Intelligence in Fault Diagnosis 281

– see in the third window Olu (short name for the non-conformity “oil tank
empty”).

0 5 10 15 20 25 30
10

-20

Epochs

S
S

E

Sum Square Error for 32 Epochs

10
-15

10
-10

10
-5

10
0

10
+5

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hamming Distance to the target

Fault Index

H
D

Figure 8.15. Training of the NORMAL situation for the oil supply module, in 32 epochs.

The Y axis indicates the truth value of a specific item from the X axis,
which shows discrete knowledge pieces from 0 to 50.

The three sections of the X axis represent: the 31 disorders mentioned
above, the 6 nonconformities (in the section “Non-cf”), and the 14 observations
needed from the human operator. Faults’ truth values, as resulted from the
diagnosis, are indicated as bars at the index position of each fault (0 to 30).

The 6 nonconformities and the 14 operator-observed manifestations are
also indicated as bars, but their meaning is now a demand to the human operator,
i.e., a confirmation required for a possible nonconformity indicated as a bar, or a
value required from the operator for the observed variable indicated as a bar, at its
specific index on X axis. As a response, the human operator has to indicate if that
environment nonconformity is present, or the current value for the operator-
observed variable, respectively. In the sections for nonconformities and for operator
observations, the height of a bar indicates how stringent is the respective item, so
the human operator may choose the highest one(s) for supplying the confirmation or
the value.

Additional observations required from the human operator in the current
step appear in the Non-cf. section and in the Operator Observations section on the
X axis. The window in each step shows the current diagnostic. Activated
observations from the human operator decrease to 0 after the value is supplied.

The diagnostic is strongly dependent on the coverage of faulty behaviours
for each module with faults or classes of faults. The data on the behaviour of the
hydraulic installation come from simulated experiments. The diagnosis system
always produced a diagnostic in a finite number of steps, and the average accuracy
of the diagnosis was 96%. Additional observations supplied by the human operator
require some steps in the diagnostic refinement that hinders real-time diagnosis.

282 V Palade, CD Bocaniala and L Jain (Eds.)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

 Faults Non cf Operator Obs.

Step 4

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

Partial Diagnostic for the simulated Fault marked X

 Faults Non cf Operator Obs.

Step 2

Pai

Pai

Olu

Olu

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X < >

Partial Diagnostic for the simulated Fault marked X

 Faults Non cf Operator Obs.

A
ct

iv
at

io
n Step 1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X

 Faults Non cf Operator Obs.

A
ct

iv
at

io
n Step 3

Pai

Pai

Olu

Olu

Figure 8.16. Sequential diagnosis in 4 steps for the fault Pai, with additional Operator
Observations.

8.9. Conclusions

Fault diagnosis of complex systems involves deep and shallow knowledge of
human diagnosticians, since diagnosis in the reallife deals with incomplete,
imprecise and uncertain knowledge on the behaviour of target systems. The aim of
the chapter is to describe a diagnostic system that emulates the human
diagnostician’s way of acting, in order to build dedicated diagnosis systems for
concrete target systems. The automated fault diagnosis is based on computational
intelligence models: fuzzy and possibilistic logic, artificial neural networks.

The chapter focuses on the fault diagnosis of artefacts often met in
industry (and not only), that executes more functions at the same time based on
conductive flows of matter and energy, i.e., multifunctional conductive flow
systems (MCFSs). The proposed MCFS abstraction is close to the human
diagnostician’s way of conceiving entities and relations on physical, functional and
behavioural structures.

Diagnosis reasoning is intrinsically abductive reasoning. The chapter
presents the abduction by plausibility and relevance, in a connectionist approach.
Plausibility criteria become feed-forward links from manifestations to faults – as
from the shallow knowledge acquired in practice or experiments. Relevance criteria
become competition between the elements of various groups of causes (be they
faults or other kind of disorders), put together according to the deep knowledge on
physical, functional and behavioural structures of the target system.

In order to solve all types of abduction problems (according to Bylander et
al., 1991), specific architectural features are added to the neural network. The
features refer to plausibility criteria and affect the feed-forward links between
manifestation and fault neurons, also between fault neurons. This way, the
abduction problem solving is straightforward and easier implemented in various
neural network types than other approaches (e.g., Ayeb et al., 1998).

Computational Intelligence in Fault Diagnosis 283

Deep knowledge refers to physical and functional structures, as means for
achieving the ends of the target system. Also, deep knowledge refers to the sets of
faults, manifestations and symptoms along with some behavioural hints regarding
primary and secondary effects useful for locating faults. Shallow knowledge refers
to (unexplained) links of faults to manifestations or to symptoms, from the human
diagnostician’s practice or experiments.

The embedding of the deep and shallow knowledge requires appropriate
representations of physical, functional and behavioural concepts, observing the
discrete and qualitative nature of human knowledge. In this respect, means-end and
qualitative modelling approaches are adapted to obtain a unified representation of
various behavioural entities. The faults’ effects propagation is modelled using four
orthogonal transport anomalies related to the bond-graph model of components and
bond-graph junctions for modules for the entire target system.

The concepts and relations involved in human-like diagnosis get
appropriate representations by computational intelligence paradigms. All concepts
and relations enter the connectionist models of the abduction problem solving, and
their representation is also meant for the systematic knowledge acquisition on
concrete target systems. All knowledge pieces involved in fault diagnosis enter
appropriate elicitation models addressing human diagnosticians’ way of acting, and
lead to structures useful for the computational model of the diagnosis system.

The decision on the next best test, aiming the diagnostic refining, is also
seen as an abduction problem, and it is solved based on plausibility and relevance
criteria in the connectionist implementation. The diagnosis on the whole is
performed as a sequential application of plausibility and relevance criteria, applied
incrementally, and completed with new tests until the final diagnostic is found.

Fault diagnosis of real systems involves a great amount of data. Therefore,
knowledge acquisition, knowledge representation and data management tasks
require appropriate tools to assist human diagnosticians in building the diagnosis
system. The Computer Aided Knowledge Elicitation (CAKE) software tool assists
the human diagnostician, or even the human operator, in the design and generation
of the dedicated diagnosis system for the concrete target system envisaged. So, the
CAKE tool replaces the knowledge engineer and the software designer. Moreover,
specific knowledge on the concrete target system is embedded in the diagnostic
expert system, exploiting the human diagnostician’s practice and knowledge on the
running conditions of the target real system.

The case study on a hydraulic installation of a rolling mill plant gives
examples on the knowledge elicitation process and on the diagnostic expert system
building and running.

References

1. Ariton V, Ariton D (2000) A General Approach for Diagnostic Problems
Solving by Abduction. In: Proceedings of IFAC-SAFEPROCESS, Budapest,
Hungary, pp. 446-451
2. Ariton V (2001) Abstraction Levels for the Fault Isolation in Multifunctional
Conductive Flow Systems. In: Proceedings of the 9th IFAC/IFORS/IMACS/IFIP/

284 V Palade, CD Bocaniala and L Jain (Eds.)

Symposium on Large Scale Systems-Theory and Applications, Bucharest,
Romania, pp. 386-391
3. Ariton V, Baciu C (2002) Knowledge Elicitation and Case Tool for Fault
Diagnosis in Multifunctional Conductive Flow Systems. In: Proceedings of
SCI2002 - 6th World Multiconference on Systemics, Cybernetics and Informatics,
Orlando, Florida, USA, July 14-18, vol. XXII, pp. 345-350
4. Ariton V (2003) Deep and shallow knowledge in fault diagnosis. In: Palade V,
Howlett RJ, Lakhmi J (eds) Knowledge-Based Intelligent Information and
Engineering Systems, 7th International Conference, KES 2003, Oxford, UK,
September 3-5, Proceedings, Springer-Verlag, pp.748-755
5. Ariton V, Palade V (2004) Human-like fault diagnosis using a neural network
implementation of plausibility and relevance. Neural Computing & Applications
(Springer-Verlag) 14(2):149-165
6. Ayeb B, Wang S, Ge J (1998) A Unified Model for Abduction-Based Reasoning.
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans
28(4):408-424
7. Bocaniala CD, Sa da Costa J, Palade V (2004) A Novel Fuzzy Classification
Solution for Fault Diagnosis. International Journal of Fuzzy and Intelligent Systems
15(3-4):195-206
8. Bocaniala CD, Sa da Costa J, Palade V (2005) Fuzzy-based refinement of the
fault diagnosis task in industrial devices. International Journal of Intelligent
Manufacturing 16(6): 599-614
9. Bylander T, Allemang D, Tanner MC, Josephson JR (1991) The Computational
Complexity of Abduction. Artificial Intelligence 49:25-60
10. Cherkassky V, Lari-Najafi H (1992) Data Representation for Diagnostic Neural
Networks. IEEE Expert 7(5):43-53
11. Cellier FE (1995) Modelling from Physical Principles. In: Levine WS (ed) The
Control Handbook. CRC Press, Boca Raton, pp.98-108
12. Calado JMF, Korbicz J, Patan K, Patton RJ, Sa da Costa MG (2001) Soft
Computing Approaches to Fault Diagnosis for Dynamic Systems. European Journal
of Control 7(2-3):248-286
13. Cordier MO, Dague P, Dumas M, Lévy F, Motmain J, Staroswiecki M, Travé-
Massuyès L (2000) AI and Automatic Control Approaches of Model-Based
Diagnosis: Links and Underlying Hypotheses. In: Proceedings of IFAC-
SAFEPROCESS, Budapest, Hungary, pp. 274-279
14. Davis R (1993) Retrospective on "Diagnostic Reasoning Based on Structure
and Behaviour”. Artificial Intelligence 59:149-157
15. Dubois D, Prade H (1998) Possibility Theory: Qualitative and Quantitative
Aspects. In: Gabbay DM, Smets P (eds) Handbook of Defeasible Reasoning and
Uncertainty Management Systems, vol 1, pp. 120-159, Kluwer Academic
Publishers, New York
16. de Kleer J, Kurien J (2003) Fundamentals of Model-Based Diagnosis.
Proceedings of IFAC-SAFEPROCESS, Washington, USA, pp. 1-12
17. Konolige K (1992) Abduction Versus Closure in Causal Theories. Artificial
Intelligence 53:255-272
18. Kruse R, Gebhardt J, Klawon F (1994) Foundations of Fuzzy Systems. John
Wiley & Sons, New York

Computational Intelligence in Fault Diagnosis 285

19. Kuipers BJ (1994) Qualitative Reasoning: Modelling and Simulation with
Incomplete Knowledge. MIT Press, Cambridge, MA, USA
20. Larsson JE (1992) Knowledge-based methods for control systems. PhD Thesis,
Lund
21. Mosterman PJ, Biswas G (2002) A Hybrid Modelling and Simulation
Methodology for Dynamic Physical Systems. In: SIMULATION: Transactions of
the Society for Modeling and Simulation International, 78(1):5-17
22. Mosterman PJ, Kapadia R, Biswas G (1995) Using bond graphs for diagnosis
of dynamical physical systems. In: Proceedings of the Sixth International
Conference on Principles of Diagnosis, pp. 81-85
23. O'Brien T (1970) Reliability of Multifunction Structures. New York University
24. Okuda K, Miyasaka N (1991) Model based intelligent monitoring and real time
diagnosis. In: Isermann R (ed) Preprints of SAFEPROCESS '91
25. Opdahl AL, Sindre G (1994) A taxonomy for real-world modelling concepts.
Information Systems 19(3): 229-241
26. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of
an industrial gas turbine using neuro-fuzzy methods. In: Proceedings of the 15th
IFAC World Congress, 21–26 July, Barcelona, pp. 2477–2482
27. Patton RJ, Frank PM, Clark RN (2000) Issues of Fault Diagnosis for Dynamic
Systems. Springer-Verlag, London
28. Peng Y, Reggia J (1990) Abductive Inference Models for Diagnostic Problem
Solving. Springer-Verlag, London
29. Schurz G (2002) Models of Abductive Reasoning. TPD Preprints Annual 2002,
no.1, University of Düsseldorf, Germany
30. Shibata B, Tateno S, Tsuge Y, Matsuyama H (1991) Fault diagnosis of the
chemical process utilizing signed directed graph. In: Isermann R (ed) Preprints of
Fault Detection Supervision and Safety for Technical Processes - SAFEPROCESS
'91, pp.381-386
31. Struss P (1997) Model-based and qualitative reasoning: An introduction.
Annals of Mathematics and Artificial Intelligence 19: 355-381
32. Turksen IB (1996) Non-Specificity and Interval-Values Fuzzy Sets. Fuzzy Sets
and Systems 80:87-100
33. Uppal FJ, Patton RJ, Palade V (2002) Neuro-Fuzzy Based Fault Diagnosis
Applied to an Electro-Pneumatic Valve. In: Proceedings of the 15th IFAC World
Congress, 21–26 July, Barcelona, Spain, pp. 2483-2488

