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When searching for faults threatening a system, the human expert is sometimes
performing an amazingly accurate analysis of available information, frequently by
using only elementary statistics. Such reasoning is referred to as “fuzzy reasoning,”
in the sense that the expert is able to extract and analyse the essential information of
interest from a data set strongly affected by uncertainty. Automating the reasoning
mechanisms that represent the foundation of such an analysis is, in general, a
difficult attempt, but also a possible one, in some cases. The chapter introduces a
nonconventional method of fault diagnosis, based upon some statistical and fuzzy
concepts applied to vibrations, which intends to automate a part of human reasoning
when performing the detection and classification of defects.

5.1. Introduction

Nowadays, the classical fault tolerant design paradigm is enriched by new methods
and techniques (Wilsky, 1976; Reiter, 1987; Isermann, 1993; 1997). The trade-off
between costs involved by ignoring fault prevention and costs of hyper-safety of
systems is improved. The effort in designing satisfactory modules aptly to prevent
failures is decreased, due to important technological advances. In a complete
structure of fault detection and diagnosis, a module concerned with monitoring of
system symptoms and anticipation for possible failures is included. In general, the
symptoms are detected by using two kinds of methods: analytical and heuristic.

The analytical methods are involved with systems for which the
characteristic parameters are measurable (or quantifiable). These parameters are
determined by analysing either some signals or the system itself. For instance, the
basic parameters of monitored signals are: the amplitude, the variance, the auto-
correlation, the power spectral density, etc. Basically, the system analysis is
founded on an identification model, in general parametric (Soderstrém and Stoica,
1989). Various models are used, such as: (auto)regressive, state representation,
described by some parity equations, etc. The model parameters are deduced from
measured input-output data by system identification techniques. In both cases, a
quantitative expertise has to be performed. This consists mostly of comparisons
between the measured values and a set of tolerated values assigned to normal
behaviour of the system. The malfunction symptoms appear when the parameters
start to systematically provide values beyond tolerances. Moreover, a classification
of symptoms can be realized, depending on the difference between the measured
and tolerated values.
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Sometimes, the analytical approach is not sufficient or cannot be
performed (especially because the characteristic parameters are not quantifiable).
Moreover, the symptoms meaning is important for interpretation of associated
faults. Often, this relies on the qualitative assessment of a human operator as expert.
The expert experience plays an important role in symptoms investigation. For this
reason, one says that the detection of symptoms is performed by using heuristic
methods (from heuriskein (Greek) — to search, to investigate). The nonquantifiable
information observed from the system could be reflected for example by: colours,
smells, noise tones, etc. However, some quantifiable parameters, but with “fuzzy”
values, represented by linguistic terms like: “small,” “medium,” “large,” “about
null,” etc., belong to this category as well. The human operator integrates this
information in a quasi-empirical history of system functioning. Qualitative
comparisons are performed between the observed information and the information
specified by the history. The history includes not only information about the normal
functioning states, but also about the maintenance process, repairs, fault types, life-
time, fatigue, etc. The decision concerning the symptoms and faults is based on
operator’s skills, experience or flair and is affected by uncertainty. However, the
experience about the system can be improved through a learning mechanism.

Like in medicine, fault prevention remains a demanding task that requires
both self-anticipation from the system and intelligent approach from the user.
Usually, a self-anticipatory system transmits information about its behaviour
through some anticipating signals. For example, human or animal muscles have
different electrochemical activity just before they are damaged, due to high
intensity and long effort (von Tscharner, 2000). Another example is issued from
mechanical systems, for which the vibrations are anticipating signals (Angelo,
1987; Bedford and Drumheller, 1994; McConnell, 1995; Wowvk, 1995). Their
intimate structure changes some time before a failure occurs (Braun, 1986). But this
change is so fast and sometimes so difficult to distinguish that, without special
detection and decoding techniques, it could be ignored. These techniques focus on
the extraction of vibration main characteristics (features), in order to classify the
possible faults. In general, the strategy adopted within a fault detection method
starting from vibrations consists of the following stages: signal acquisition, signal
analysis (in order to extract features), features grouping, faults classification
(eventually adaptively, through a continuously learning mechanism), fault
identification (if present).

Vibration acquired from mechanical systems is interesting mainly for its
capacity to encode information about the defects or faults threatening them. Several
distinct efforts in detection of machinery defects can be noticed, but only in the last
few decades has vibration become crucial for automating this process. The earliest
method, which dates back to the first days of machinery (and which is still in use
today), is founded on a trained observer or listener referred to as (expert) analyst. A
person with a great deal of experience in working with a particular machine or
engine can detect flaws in operating machinery, by simply “watching” or
“listening” to it. Very often, the resulting diagnosis, based on empirical
observations and deductions, is amazingly accurate, but difficult to model. Other
subsequent attempts became more systematic and used some parameters, such as:
the lubricant temperature (which, unfortunately, provides too late a diagnosis, after
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the defects are already severe), the oil cleanness (which requires an exhaustive and
often inefficient analysis), the noise level of acoustic emission (which is often
enabled only by already fatigued elements), etc.

The most efficient methods in early detection of defects are using signal
processing (SP) techniques (Oppenheim and Schafer, 1985; Proakis and Manolakis,
1996). These methods differ from many typical SP applications where the noise
attenuation is a fundamental requirement. When using vibrations, exactly the noise
is the most concerned part in the analysis. This is due to the fact that not only the
natural oscillations of machinery could encode the defective behaviour, but also the
noise corrupting them. Moreover, the applications revealed that the signal-to-noise
ratio (SNR) is extremely small for vibrations encoding information about defects.
Therefore, the models of vibration used in fault detection and diagnosis (fdd) are, in
fact, models of their noisy parts, encoding all the information about defect types
and their severity degrees.

One of the most interesting applications in fdd is concerned with bearings,
due to their simple structure and large integration within mechanical systems
(Howard, 1994; FAG OEM and Handel AG, 1996; 1997). By inspecting the
spectrum of vibration acquired from bearings, some researchers believed that its
irregular shape is mainly due to the environmental noise and correlation between
different components. Hence, they introduced techniques to “remove” the white
noise and decorrelate the data, based on SP concepts such as: autocorrelation,
backstrum, or cepstrum, but the irregularities are only slightly smoothed and the
defect severity is difficult to derive. Perhaps the most popular method to extract
information about defects in bearings (and geared coupling) is the (spectral)
envelope analysis (EA). Some of these techniques (especially EA) are described in
(Stefanoiu and Ionescu, 2002). They are poorly modelling the humanlike diagnosis,
which probably requires nonconventional approaches. Actually, one can notice that
experienced analysts perform a kind of fault classification, by simply inspecting the
spectrum. Moreover, they are able to improve the accuracy of classification for
every new case they analyse. It is by far not completely known what kind of
reasoning lies behind their diagnosis, but one has assumed that the brain performs a
qualitative statistical assessment inputting some pattern recognition mechanisms
towards this goal. A very interesting approach combining statistics and pattern
recognition has been introduced in (Xi ef al., 2000). This is in fact an attempt of
automating human reasoning, which resulted in a quite efficient and simple fdd
algorithm, though with unavoidable limitations.

In this research, one started from the largely accepted idea that human
reasoning is also fuzzy. This means that a solution to a problem could be issued
even from unclear, vague or ambiguous information, i.e., from information strongly
affected by uncertainty. Usually, the analyst considers the solution the most
“plausible” one, according to the available data. When an fdd or/and classification
has to be performed from vibrations, the analyst’s experience is crucial for the
accuracy of subsequent analysis. Unfortunately, the analyst has to cope not only
with external perturbations affecting the data, but also with his/her own
subjectivism when performing such an analysis. Usually, this analysis is based on
some simple statistical assessments aiming to increase its objectivity. Therefore, the
reasoning hidden behind data analysis could be automated by performing a
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combination between spectral statistics and fuzzy clustering (in entropy sense (Klir
and Folger, 1988)), which should decrease both the subjectivism and the
perturbations influence. Moreover, comparisons between the tested vibration and a
standard (defect free) vibration could be performed, without specifying from the
beginning the number of classes and/or their meaning, which has to be discovered
later. In fact, this approach combines analytic and heuristic points of view, in order
to build a model of human reasoning when performing fdd.

The chapter is structured as follows. The fuzzy-statistical reasoning
method is presented in depth in the next section, which has two main parts: the first
one is devoted to vibration acquisition and preprocessing, whereas within the
second one, the fuzzy-statistical model is described. The resulting algorithm is
practically listed in Section 5.2 as well, simultaneously with the method description.
The simulation results and their interpretations are given in Section 5.3. The
graphical simulations are presented in the Appendix. Some concluding remarks
complete the chapter.

5.2. The Fuzzy-Statistical Reasoning Method

One (but probably not unique) way to overcome some fdd limitations when using
spectral or envelope analysis is to combine the spectral representation with statistics
and subsequently to use a fuzzy model aiming to minimize the diagnosis
uncertainty. This approach is described next.

5.2.1. Method Overview

When measuring vibrations of a mechanical system, several signals are combined
together within the resulting data, such as: natural oscillations, interference signals
(due to interactions between its different parts); defect encoding noise, indicating
that something is wrong with one or more of its parts and environmental noise. The
crude mechanical vibration is converted into an electrical vibration signal (V) by
means of a sensor connected to a transducer (which could induce slight distortions).
For example, in the case of a bearing, if data v are rich enough (few thousands of

rotations), the vibration spectrum |V| looks like that in Figure 5.1. Two cases could

be discussed here.
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Figure 5.1.  Overall vibration spectrum in case of defects.
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When the bearing is defect free, the spectral energy is mainly concentrated
inside the low-frequency band (LF) encoding information about oscillations and
their natural frequencies (derived from bearing geometry, depending on shaft
rotation speed). Few multiples of natural frequencies are replicated within the
spectrum, but their power has an exponential decay (due to damping). In the case of
defective bearing, the idea that the defect noise is basically generated by visible or
microscopic quasi-random shocks has been largely accepted today. Shocks are
modelled by trains of impulses and they put the sensor into resonance state.
Usually, sensor resonance appears at (very) high frequency, but, by convolution
with a train of impulses, it is replicated towards low frequency as well. In Figure
5.1, this is suggested by the energy concentration around some peaks located in
middle-frequency band (MF). Usually, a resonance peak is mixed with basic LF
spectrum as well, such that it could hardly be distinguished. The high-frequency
band (HF) rather encodes information about resonance corrupted by environmental
noises. The spectrum could change (even dramatically), depending on the applied
load, sensor locations, shaft speed, bearing mounting, etc.

The EA principle is easy to explain now: select one of the resonance
peaks, apply a bandpass filter on the vibration around the selected resonance, take
the envelope of the resulting signal and zoom the LF part of the spectral envelope.
If isolated, the defect appears now as distinctive peaks at locations depending again
on natural frequencies. The higher the peaks are, the more severe the defect.

But the analyst just looks at the spectrum and provides the diagnosis by
observing the changing parts relatively to the standard spectrum, though the latter
has no constant shape. This means he/she is focusing on some spectral subbands
that reveal significant shape and energy differences from the standard. Moreover,
the similar differences are grouped in classes and each class points to a certain
defect or combination of defects (with some confidence degree).

Therefore, when automating this kind of reasoning, the following
operations could be involved: define a set of statistical parameters (sp) that quantify
the information about shape and energy of a signal; split the spectrum into a number
of subbands; compare the tested and standard subbands in terms of sp; group the
results in similarity classes, by using a global fuzzy relation between them; select
the best fault class, according to an entropy-based criterion aiming to minimize the
information uncertainty. This constitutes the kernel of the method described
hereafter. The presentation covers two main parts. The first one is concerned with
vibration acquisition and preprocessing. The second one is devoted to the fuzzy-
statistical model.

5.2.2. Vibration Data Acquisition and Pre-processing

Let us denote the raw vibration data by v. In practice, v is a finite length, finite
bandwidth and discrete time signal encoding the information about defects that
could exist within the tested component. In this case, the signal is acquired from
bearings. The acquisition and preprocessing procedure encompasses several steps
that are described next.

Step 1: Set the acquisition parameters.
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The first parameter employed in data acquisition is the sampling rate, denoted by
v, . The selection of v, is extremely important for the next analysis. On the one

hand, v, should be large enough, in order to avoid aliasing (Oppenheim and
Schafer, 1985; Proakis and Manolakis, 1996). On the other hand, large v, values

involve expensive devices. Therefore, a suitable value should be selected, such that
the resulting signal encode most part of the desired information about defects and
the acquisition costs be affordable.

The sensor characteristic usually extends beyond 140-150 kHz. If defects
exist, the sensor resonance is replicated towards LF and MF bands within the
vibration spectrum (see Figure 5.1). At least 3 or 4 resonance peaks are located in
the 0-20 kHz band and at least 2 of them lie inside the 0—10 kHz subband. In fact,
the analyst focuses on this LF subband. Usually, the vibration spectrum extends
beyond the limit of 20 kHz, but the band of interest remains 0—10 kHz (the SNR
decreases rapidly beyond 10-12 kHz, because of HF noises that dominate the other
fast decaying vibration components). All these arguments lead to the following
trade-off in vibration acquisition:

a. Prefilter the sensor signal by using a low-pass analogic anti-
aliasing filter (Proakis and Manolakis, 1996) that removes the HF
components beyond 150 kHz;

b. Use the sigma-delta modulation technique (Proakis and
Manolakis, 1996), in order to restrict the signal in the range 0—12
kHz, to attenuate the quantization noise and to avoid aliasing (a
new low-pass analogic filter is applied in the end);

c. Sample the resulting analogic signal by setting a rate of at least
20-24 kHz (i.e., v, 220kHz), according to Shannon-Nyquist

Sampling Theorem (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996).
A standard sampling rate that has been employed for example in (Maness
and Boerhout, 2001) is v, =25.6 kHz, which yields accurate vibration spectra in

the range 0-12.8 kHz. Observe the powers of 2 hidden behind these values:
25600 =2*x100 and 12800 = 2" x100, which avoids some computational errors

due to division by multiples of 2.
Another parameter of interest is the vibration length, denoted by N .

Normally, this is set according to the main rotation frequency v, and sampling rate
v, . The vibration data should include a minimum number of complete rotations,

n, (usually, n, =2000). Then, obviously:
N = |_an§ /VVJ (1)
For example, if n, =2000, v, =50 Hz (3000 rpm) and v, =25.6 kHz,

the number of vibration data is: N =2'"x10° = 1,024,000 samples, which takes 40
s. Usually, N is also set as a power of 2 multiple and this is the reason, in Eq. 1,

v, is sometimes set with the same property. This setting is very useful in
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evaluation of spectrum, when using a fast fourier transform (FFT) algorithm
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996).

Usually, the apparatus performing the vibration acquisition (connected to
the sensor) could be tuned by only specifying these two parameters: v, and N or

the duration of acquisition. The corresponding operations necessary to store the data
in a memory are transparent for the user.

Step 2: Construct the raw vibration.
The sensor capacity of perception is determined by its bearing position. Different
data could be obtained for different locations on the same bearing. When the
bearing is under load, this variability is even more accentuated. This gives rise to
the problem of appropriate sensor location, which is uncertain. The uncertainty
could be attenuated if several sensors are located in different positions (instead of a
single one). Unfortunately, in this case, other problems occur. For example, the
acquired signals have to be mixed in a unique raw vibration, by synchronizing them
appropriately. Another problem is that the number of sensors could increase the
cost of acquisition solution. Sensors should be as light as possible, in order to
introduce insignificant distortions into the genuine vibration. But, the lighter the
sensor, the more expensive. Also, in general, sensors have slightly different
characteristics. The bigger the sensor number, the more difficult to denoise the data.
Hence, a suitable number of sensors should be employed, such that the acquired
signals be easy to synchronize and the cost of acquisition be affordable.

An interesting and efficient solution is introduced in (Maness and
Boerhout, 2001), as illustrated in Figure 5.2. Two sensors are employed to acquire

the horizontal and the vertical vibrations, denoted by v, and, v, respectively.
These are, in fact, two quadrature signals easy to synchronize, by considering them
the real and the imaginary part of raw vibration:

V=V, + )y, 2)

Figure 5.2.  Construction of raw vibration from two quadrature signals.

The resulting signal is complex valued, but its sensitivity to sensors
location is attenuated. In the absence of load, there are no significant differences
between quadrature signals in terms of magnitude. If a load is applied, these
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differences become important and should be accounted. In this case, Eq. 2 should
be replaced by:
v=av,+ jbv, (3)

where a>0 and b>0 are two constants selected such that av, and bv, have

approximately the same range of variation. For example, in the case of vertical load,
a could be set to 1 (no horizontal load), whereas 5 should be set inside (0,1)
interval, since the load amplifies the defect noise of vibration.

Step 3: Vibration segmentation and windowing.
The vibration data set {v[n]}nem is quite large. If the Fourier transform (FT)

were to be applied on this set, the evaluation could be very slow. Moreover, the
resulting spectrum is practically useless since the vibration signals are also non-
stationary (Cohen, 1995). In other words, the spectrum is time varying. This
involves the overall spectrum reflecting the intimate behaviour of vibration only on
average, whereas, on the contrary, the spectrum variations are important for
learning as much as possible about how the bearing runs. Therefore, the vibration
segmentation becomes a necessity. In this context, one operates with two concepts:
(vibration) frames and (vibration) segments.

A frame is a subset of successive samples that could not be further
segmented. Frames could or could not be overlapped. In this approach, the frames
are nonoverlapping, but the overlapping effect is hidden behind the concept of

segment. One can denote by v,, the m-th frame of vibration (where m € 0,M ) and
by N, <N the frame length (constant for all frames). Obviously, the number of
nonoverlapped frames is:

M+1=’—N/Nf-‘ 4)

where |_a-| is the smallest integer superior or equal to a € %. It is suitable that N,

be a divisor of N . For example, if N is a power of 2 multiple (as suggested within
the previous step), then N, could be 512, 1024, 2048, etc. For the model

constructed next, one requires that M >2 (i.e., at least 3 frames should be
available). The frame length should be selected not only according to N, but also
to the minimum resolution of frame spectrum (at least 400 rays for vibration in the
range 0-10 kHz). The statistical part of the model constructed later is sensitive to
N, since it determines the precision of corresponding sp.

A vibration segment includes three successive (nonoverlapping) frames:
the previous frame (v,,_, ), the current frame (v,,) and the next frame (v,,,,), for

mel,M—1. Thus, the vibration data could generate up to M —1 segments of
length 3N, each. Unlike frames, segments are overlapping (two of the three frames
in a segment are identical within the next segment), in order to prevent marginal

effects when filtering. Actually, the characteristic frame of a segment is the current
one, located in the middle. Its left and right neighbours are only playing the role of
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background signals, which avoids zero-padding and performs a smooth passage
from a frame to another, when filtering.

The samples of neighbour signals could or could not be as important as the
samples of current frame in a segment. This feature is controlled through
windowing. The windowing technique is very simple, in fact. Let w be a 3N, -

length window that slides along the vibration data with a step of N, samples. Then

the current segment is extracted from raw vibration by simply multiplying v and
w in a certain position (0, N,, 2N, .., (M =2)N,). The sliding effect is

suggested in Figure 5.3, where the window support is given by three successive
frames (a segment, in fact). The window symmetry axis should be centred on the
current frame middle point.

Several windows are usually employed in SP (Proakis and Manolakis,
1996). Some of them are weighting not only the neighbour frames but also some
samples of central frame (like the window in Figure 5.3). The most utilized
windows are the following nine, expressed next only for their N, -length support

neO,N,—1,with N, ,=>22.

Sliding
window

O3l

I
T
| | Vo Vin Vi

Segment support:
(m-1)N¢...(m+1)N;¢

Raw vibration support: 0...N-1

Figure 5.3. Windowing the raw vibration.

1. Rectangular (Oppenheim and Schafer, 1985; Proakis and Manolakis,
1996): win]=1.
2. Bartlett (or triangular) (Oppenheim and Schafer, 1985; Proakis and

ZH_M

Manolakis, 1996): win]=1-

N, -1
3. Blackman (Oppenheim and Schafer, 1985; Proakis and Manolakis,

2 4
1996): w{n] = 0.42—0.5c0s—" +0.8cos— "

w w

4. Chebyshev: recursive algorithm (see MATLAB function chebwin).
Besides the support length (NV,,), a second parameter is necessary: r,, >0,

which stands for the attenuation in decibels (dB) of the window spectrum
side lobe with respect to the main lobe. As r, increases, the window

aperture decreases, but below 70 dB, significant marginal errors are
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introduced. A good trade-off between the window aperture and its
marginal errors is obtained for 7, €[80,100] dB.
5. Hamming (Oppenheim and Schafer, 1985; Proakis and Manolakis,

2
1996): w[n]=0.54—0.46cosN”” .

w

6. Hanning (Oppenheim and Schafer, 1985; Proakis and Manolakis,
1 2nr

1996): win]=—|1-cos .

): win] 2( N J

w

7. Kaiser (Kaiser, 1974; Proakis and Manolakis, 1996):

2 2
sinh a\/[NW_lJ —(n—NW_lj
2 2
wln] =
sinh{aNW_l}
2

def X _ X
hyperbolic sine (sinhx = T) and the parameter o >0 is the

, where sinh stands for the

height in dB of the window spectrum side lobe. Sometimes (see MATLAB
function kaiser), « is replaced by another parameter, S, defined as

0.1102(c —8.7), a>50
follows: 5 _ 10.5842(c — 21)** + 0.07886(cx — 21), @ €[21,50]
0, a <21

As f increases, the window aperture decreases, but below f=6,

significant marginal errors are introduced. A good trade-off between the
window aperture and its marginal errors is obtained for £ =9 .

8. Lanczos (Proakis and Manolakis, 1996):

L
. 2n—N, +1
sin2z| ———%—
( 2(Nw_1) J
win] =
2n—N,_ +1
o 2w TR
( 2(N,, -1 j

window aperture. As L increases, the window aperture decreases, but
below the unit value ( L <1), significant marginal errors are introduced. A
good trade-off between the window aperture and its marginal errors is
obtained for L=1.

9. Tukey (Proakis and Manolakis, 1996):

, where the exponent L >0 controls the
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M’V—l NH7_1
1, n— <a
2 2
N -1
W[I’Z]Z _ w
1 n=(l+a)— N,-1 | N,-I_N,-I
—|1l+co§ —=—7||, «a <|n <
N, - 2 2 |7 2
(l+a) =

where the parameter o €(0,1) controls the percentage of rectangular
window centred inside. For the vibration segment, a good choice is
a =1/3, since the central frame takes only one third of the whole
segment.

R I Triangular (Bartlett) Black
T T -
|

1.5

r =90 dB|
w!

Figure 5.4.  Nine of the most utilized signal processing windows.

All windows above are symmetric, as shown in Figure 5.4, where, beside
the window shape, the parameter values are also depicted for Chebyshev, Kaiser,
Lanczos and Tukey windows. But not all windows of this collection have the same
performances when using them in SP applications. Their efficiency depends on the
specific criteria that have to be matched. Although some windows seem to have the
same shape, they are actually quite different. The differences are better emphasized
by their spectra, as drawn in Figure 5.5. The graphics are plotted by using the
spectral power expressed in dB and on all horizontal axes normalized frequencies
are represented. The main lobe lies in LF subband, whereas the side lobes extend to
MF and HF subbands. The main lobe is best emphasized for windows like
Blackman, Chebyshev or Kaiser. (For the last two, the main lobe height relative to
the first side lobe can be controlled.) One of the most employed criterions in
selection of the appropriate window is the attenuation performed by the side lobes.
Since the window multiplies the data, their corresponding FT are convoluted
(according to the Inverse Convolution Theorem (Oppenheim and Schafer, 1985;
Proakis and Manolakis, 1996)). Hence, the genuine data spectrum is distorted by
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the window spectrum. Ideally, the window spectrum is not distorting the genuine
one only if it is identical to the unit (or Dirac) impulse. In another words, only the
main lobe should be present (not the side lobes) and its aperture should be null in
spectral images below. But, as one can see from the windows’ spectra, none of them
verify this (ideal) property.

Rectangular Triangular (Bartlett) 50 Black 1
0 0 0
5--100 3-100 s
T, T, T,
=.200 I =-200 =.100
-300 -300 150
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
Chebyshev 50 Hamming 50 Hanning
0 0 0
o o o -50
S -50 S -50 =
Wi‘w -100
-100 100 150
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
Kaiser Lanczos 50 Tukey
40
20
= ° — 0 — 0
o m g o
S -50 20 2 50
-60
-100 -80 -100

0

Figure 5.5.
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Spectra of the nine signal processing windows above.

Thus, one can say that a “good” window (in terms of attenuation criterion)
should have a small aperture of the main lobe and a rapid attenuation over the side
lobes. In this way, a minimal distortion is introduced into the genuine data. But one
may easily guess that these two properties are opposite, as a direct consequence of
the Gabor-Heisenberg Uncertainty Principle (Cohen, 1995; Proakis and Manolakis,
1996). Actually, except the rectangular window, all the other windows are
performing a trade-off between the main lobe aperture and the side lobes
attenuation.

The rectangular window, which anyone is tempted to select for its
simplicity, is, in fact, the worst one in terms of side lobes attenuation, but probably
one of the best in terms of main lobe aperture. The triangular window improves in
some respect this trade-off, but not essentially. Among the other windows,
Blackman, Hanning and Kaiser prove very good performances. (the Hanning
window is actually employed in many filter design methods.)

But, for the purpose of our model, the Tukey window is very likely the
most appropriate. As one can see, its shape in the time domain (Figure 5.4) is very
well adapted to the manner in which the vibration segments are constructed: one
important central frame and two lateral auxiliary frames (that should gradually be
weighted). In frequency, a good trade-off between main lobe aperture and side
lobes attenuation is realized (see again Figure 5.5). Therefore, the vibration
segments are built by windowing the data with a Tukey window (for o =1/3).
Note that all the other eight windows have been tested by simulation, but none of
them could overtake the Tukey window in terms of final defect classifications
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properties. But, actually, the method presented here is not very sensitive to the
employed window, which constitutes an advantage.

Denote by s, (for mel,M—1) the current segment resulting after
windowing the data by w . Then the windowing effect could be described by:

Sm = [mel Vi vm+l] W (5)

Step 4: Digital filtering of vibration data.
The vibration segments s, are utilized next in a filtering procedure aiming to

remove the LF oscillatory part and, eventually, some HF noise. The filters are
digital. Unlike many approaches regarding vibrations filtering, here, one takes
benefits from the modern and powerful finite impulse response (FIR) filters design
procedures described, for example in (Proakis and Manolakis, 1996).

Two types of digital FIR filters could be employed: high-pass and band-
pass. The first one just removes most of the harmonic natural oscillations. The
second one could moreover remove the HF noise inherited by vibration data
especially from environmental sources. For these filters, some parameters should be
set, in order to perform the design: the filter length ( N},), the left cutoff frequency

(v, ) and the right cutoff frequency (v, , in case of high-pass filters).

re

The filter length should be large enough to yield good filters
characteristics, but it should not overtake the segment length. A suitable choice is

N, e {N Ny +1}, provided that the frame length is sufficiently large.

(According to FIR procedure design, in the case of high-pass filters, the length must
be odd. If N is even, then N) should be setto N,+1.)

The left cutoff frequency v,. has to be set such that the decaying natural

harmonics in raw vibration are strongly attenuated or removed. Thus, on the one

hand, v, 2V i, where the inferior limit v, ., is set to 7-10 times the

maximum natural frequency of oscillation. On the other hand, increasing the left
cutoff frequency beyond a limit of 2 kHz may result in a loss of information about
possible defects. Thus, v;, should be set in the range [v,, i, » 2000] [Hz].

Unlike within the EA method, here, the right cutoff frequency v,. should

ensure a sufficiently wide pass band, in order to extract all information encoding
defects. If the anti-aliasing analogic filters do not remove some HP noises, then v,

should be selected such that they are attenuated in subband [v v,/ 2]. Normally,

the width of this subband should not be larger than v, but this is not a

requirement. Sometimes, the right cutoff is imposed by a central symmetry
frequency, usually selected according to a resonance peak in vibration spectrum.

In Figure 5.6, the characteristics of two filters have been depicted: a high-
pass one (to the left) and a band-pass one (to the right). For both filters,
N, =2048, but the high-pass one must have an odd number of coefficients.
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Figure 5.6.  High-pass (left) and band-pass (right) filter characteristics.

The time domain characteristics (the impulse responses) are less
suggestive than the frequency domain characteristics (magnitude and phase of
frequency responses). “Good” filters should have an abrupt change at the cut-off
frequency, a strong attenuation in stop band(s), no ripples on the main lobe and
linear phase. In this figure, the left and right cutoff frequencies have been set to
V. =1932Hz and v,,=9876 Hz, whereas the sampling frequency is

v, =25.6 kHz. Actually, the band-pass filter was centred on 5.9 kHz. The

attenuation in stop bands is quite strong, thanks to the large filter lengths.
Segments are one by one filtered. If /4 is the impulse response of the
selected filter, then any filtered segment is simply obtained by convolution: s,, */% .

Since N, € {N Ny +1} , its length is 3N, as well. This involves s, *h could
also be split into three frames with same length (N, ):

Sm *h= [vh,m—l Vh,m vh,mH] (6)

The reason the filtered segment is split again into three frames in Eq. 6 is
very simple. The filter was not actually applied to all frames in s,, but to its main
frame, the central one. The lateral frames are only context signals that tell to the
filter there are nonnull signal values before and after the main frame. Since filters
are shift invariant linear systems (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996), the main frame in Eq. 6 is also the central one. Therefore, from
the filtered segment, only one frame is extracted for the next step: v, ,, . Note that,

in general, v, ,, is different from v, */ and it is closer to the real behaviour of

filtered vibration, due to the lateral frames. Also, the first and the last raw vibration
frames (v, and v,,) are only involved as context signals aiming to avoid marginal

errors. They are not furthermore transmitted.
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The resulting filtered frames could be considered as nonoverlapping, since
the main frame of the segment becomes the context (auxiliary) frame for the next

segment. There are M —1 filtered frames {vh’m - These are inputs for the

fuzzy-statistical model described next. Note that a set of standard (defect free)

vibration preprocessed data {vg’m }m is also provided by the same technique.

el,M-1

5.2.3. The Fuzzy-Statistical Model

The steps aiming to construct the fuzzy-statistical model are grouped into two
categories: construction of the spectral statistic information about the filtered
frames {vh’m} and utilization of this information in a fuzzy approach.

mel, M -1
Step 1: Spectrum evaluation and segmentation.

The spectrum of each frame v, (or v,o,’m) is evaluated by using one of the
powerful existing FFT algorithms (Oppenheim and Schafer, 1985; Proakis and
Manolakis, 1996). Denote by V,, ,, (respectively by thn) the spectrum of current

(filtered) frame (m e1,M —1), i.e., the magnitude of its FT. Since the spectrum is
symmetric for real valued data sequences, it follows that only the first N ,/2 rays

could be accounted, which corresponds to a bandwidth of v, /2.
The main difference between spectra encoding information about defects
V,.n and defect-free spectra th,, is that the former have a bigger variability

among frames, whereas the later vary within some minimum and maximum bounds,
close to each other. The variability could be expressed in various ways, but, for this
model, sp are employed to quantify the spectral behaviour.

By convention, let V,, stand for any of two spectra above (V,,, or

th,, ). The full frequency band of each spectrum Vh,*m is uniformly segmented next

into K >1 subbands, in order to evaluate a set of local sp. Such a frequency
segment (subband) should include between 5 and 10 rotations of main shaft, in
order to construct a consistent set of sp. Thus, the segment bandwidth should be set
between 5v,and 10v, (i.e., K should vary in the range [1/10,1/20]v,/v,). The

minimum bound yields a good frequency resolution (i.e., narrow subbands), but a
smaller sp accuracy than the maximum bound, where, however, the resolution is
worst. Obviously, the sp consistency (accuracy) depends on the number of
accounted data. In this case, the consistency depends on the number of rays
included in a segment, that is, on the segment bandwidth. The bigger the
bandwidth, the more consistent the sp, but the less focused on local spectral
variation. A good compromise is realized for 8v, :

K =[v,/16v,] (7)

The number of rays within each frequency subband (except possibly the
one located at the highest frequency) is:
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Ny =|v, 12k ] ®)
For example, N, =2048, v, =50 Hz (3000 rpm), and v, =25.6 kHz

lead to: K =32 subbands (of 400 Hz bandwidth each) and Ny =32 rays/sub-band,

according to Eqs. 7 and 8.

By convention, sub-bands are indexed from 0 to K —1.

Splitting the spectrum in a number of equally spaced subbands may not be
the best solution to focus on spectral power local variation. However, the trade-off
between frequency resolution (or K ) and sp accuracy (or Ny ) determines the

minimum bandwidth for carrying out the statistical analysis. Nonuniform
segmentations could be realized by compacting together two or more adjacent
subbands with minimum bandwidth. But the fdd method described here is
independent on the type of frequency segmentation. Therefore, for the sake of
simplicity, the segmentation is kept uniform hereafter.

To conclude this step, a final remark should be noted. Filtering the
vibration segments involves a separation of frequency stop subbands and pass
subbands. The statistical parameters might not be similarly employed for any of
these 2 subband types, because the information encoded inside the stop subbands is
probably extremely poor and noisy compared to the information inside the pass
subbands. Since the whole band was practically quantified by K values, separation
lines between stop and pass subbands have to be defined. Obviously, the cut-off
frequencies v,, and v,. belong to some subbands as follows:

v Vv,

Vie € [ch ’ch +1)21S< and Vie € (Krc _I’Krc]zK (9)
where
K. ZLZKVIC/VSJ and K,, :DKV,C/VS—| (10)

For example, if, like previously, v,,=1932Hz and v,.=9876 Hz,
whereas v, =25.6 kHz and K =32, then: K, =4 and K,  =25.

of1]2]3]4

Stop Pass sub-bands
sub-bands gl sub-bands |

Figure 5.7.  An example of frequency segmentation.

Normally, the transition subbands (i.e., including the cutoff frequencies)
should be pass type, in order to avoid removing useful side information. Therefore,
the stop subbands are: {0, 1, ..., K;, -1, K,,, ..., K—1}. Consequently, the pass

subbands are: { K|, , ..., K,. —1}. For the previous example, the stop and pass sub-
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bands are: {0, 1, 2, 3, 25, 26, ..., 31}, respectively {4, 5, ..., 23, 24}, as depicted in
Figure 5.7.

Step 2: Definition of sp and construction of relative statistical vectors.
Using statistics to extract information about defects from raw vibration is not a new
idea. Many analysts perform diagnosis with the help of some parameters such as the
root mean square (RMS) or the peak value evaluated either from vibration data or
their spectrum.

A quasi-complete statistical set of parameters includes the following 12

parameters: peak (to valley) (Av); average (Vv ); absolute average (H); energy
(E)); normalized energy (EN ); root mean square ( RMS,)); peak to average ratio
(PAR,); crest factor (CF,); impulse factor (IF,); shape factor ( SF,); clearance
Sactor (CLF,); Kurtosis (K ). Their definitions are listed in Eq. 11, for any N-

length data series, {v[n]}nem (such as vibrations or their spectra):

def ) o def [N _def g N .
Av = ELS’%:{V[”]}_”%{V[”]}} V= an:ov[n] > M = N;‘v[n]‘ ;
def N-1 def 1 N-1 def |1 N-I _
E =2 M sEY = %Z\v[n]\z P RMS, = =3 (n]=F
n=0 n=0 n=0
def 1 def Ay def Ay
PAR, = = ; CF, = ——; IF, = —;
M (el RMS, g (1)
LS G-
, — > Wn]l-v
def def def
FV = RAESV ; CLFV = AV N — Nl’l:()
v RMS!}

1 (NZI\/I ] JIT |
— v[n
N n=0

The first six parameters are concerned with energetic characteristics,
whereas the other six quantify different shape properties. Obviously, the number of
data, N, is a measure of sp accuracy. (The accuracy increases with N .)

Usually, the values of parameters defined in Eq. 11 are compared to
standard values corresponding to defect-free systems. Their biases could indicate
the desired information about defects (including estimations of severity degree).
Though the number of parameters to account for is large enough, no one is able to
extract all the necessary information about defects.

Once the frequency segmentation has been realized, some sp should be
evaluated within every subband. Note that the set of 12 sp above is redundant. For
example, in (Xi et al., 2000), one states that peak-to-valley is similar to RMS, to
energy and to absolute average; impulse factor is similar to shape factor; kurtosis is
similar to crest factor. These similarities are not realized in sense of similarity
measure from physics, but in terms of some features ad hoc defined in the context
of that research. Therefore, a safe approach is to take into consideration as much sp
as possible. An obvious remark is that, for nonnegative data (like spectral powers),
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the absolute average is identical to the average. Also, it is better to evaluate the
normalized energy instead of pure energy, especially in the case of nonuniform
frequency segmentation (when subbands have different numbers of rays and, thus,
their energy becomes noncomparable). Thus, only 10 sp are retained in this context.
They are denoted according to time and frequency segmentations performed so far:

peak (to valley) (AVh;n ); average (Vh,*m ); normalized energy (Eh]:/n* ); root mean
square (RMSZ’m ); peak to average ratio (PAR;’m ); crest factor ( CF, h*,m ); impulse
factor ( IF}: w)s Shape factor ( SFh*,m ); clearance factor ( CLF, h*’m ); kurtosis (K }:m ).

As usual, the * employed in notations points to any of 2 vibration data types:
acquired from the tested bearing (* vanishes) or from the standard (defect free)
bearing (* is replaced by 0).

Any of the sp above takes K values for every frame mel,M —1 (one
value for each subband). The number of rays per subband determines their

consistency, Ny . For example, RMS), ,, could be evaluated as follows:

def 1 Ng -1 2 -
RMS;’m[k] =\ z (Vh;n[kNK +n]—Vh’*m[k]j , Vke0,K-1 (12)
K n=0
where the local average is:
- def 1 N -1 .
V), lk] = ~ DV lkN +n], Vk €0,K -1 (13)
K n=0

A 10xK statistical matrix S, could be constructed for every spectral
frame V,", , by stacking the sp values in successive row vectors, as enumerated
above. Thus, for example, the RMS value in Eq. 13 is the element [4,k+1] of
matrix S, ., i.e., S, ,,[4.k+1]=RMS, ,[k], whereas the fourth row of the matrix
packs all RMS values among subbands. The generic element of matrix S;’m is
s; [i,j], where ie1,10, j=k+1el,K and mel,M 1.

’ When the tested bearing is defect-free (standard), the statistical values of
matrices s,?,m vary within some acceptable tolerances among frames. Thus, in this

case, the values of every sp are located inside a min-max domain, whose bounds
depend on the evaluation subband. More specifically, let P, * be the i-th sp in the

list above (for ie1,10). (For example, P, =V *, P," = RMS", etc.) Then its
value for the m-th frame and the k-th sub-band is P, “[m,k]. For the standard

vibration, P, °[e,k] could vary in the range E:’ minrE] P, max[k]] among frames, but

1

within the same subband (k). A natural manner to evaluate the min-max bounds is
to account for all frames:
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{pio[m’k]}, Vke0,K-1 (14)

M-1

M-1

This involves that two remarkable matrices could be constructed, by
gathering together all minimum or maximum values evaluated in Eq. 14:

s™fG, j1=P, ™0 1], S™[i, j]=P, "™ [j-1], Vie L0, ¥j e,k (15)

The same result is obtained if the min and max operators are applied

P,™"[k]= min {P,-O[m,k]}, P, ™™ [k]= max

elementwise on matrices {s,? m}

e practice, the min and max values are

max

furthermore corrected by multiplication with constants ¢™" <1 and ™ >1,

respectively, , in order to avoid diagnosing as defective the defect-free bearings. For
example, o™ =0.6 and o™ =1.1. The lower bound is, however, less important

than the upper bound and this is the reason the constant ™" is not 0.9 (the
symmetrical value of o™ =1.1), but 0.6. By convention, hereafter, one preserves

the same notations P, ™"[k] and P, ™™[k] for corrected bounds as well.
Defective bearings provide vibrations that exceed some or all the
(corrected) bounds in matrices defined by Eq. 15. The biases of sp P, outside the

standard range could indicate the desired information about defects, including
estimations of severity degree. Note that defects could be detected not only when
maximum bound is overtaken, but also if the minimum bound is undertaken. The
second effect is especially induced by lubrication defects, excessive wear or
multiple-point defects (when the phases of FT could lead to energy attenuation
inside some subbands). In order to quantify the severity degree of defects, the sp are
replaced by the relative statistical parameters (rsp), defined as explained next.

There are two types of assessments when performing the comparison
between sp and their bounds: by accounting for both min and max limits or by
considering only the max limit. Both limits should be accounted for pass subbands,
whereas only the max limit is sufficient for the stop bands. In the first case, for each

spP;, (ie I,TO) one defines a corresponding rsp R ; as follows:
P, [m,k]/P™ k], if P, [m,k]>P™ [k]
def .
R [mk]=—=11, if P, [m,k]e [P™ [k],P"™[k]|
7o | |

P™[k]/P, [m,k), if 0<P, [m,k]<P™[k]

Vmel,M-1, Vke0,K—-1
Similarly, in the second case, the definition of rsp can be expressed as:
df 1 |P, [m,k]/P™ k], if P, [m,k]>P"™ k]
R l-[m, k] = — s
1, if P, [m, k] <P™ k] 17)

(16)

Jio

Vmel,M-1, Vke0,K -1
The same philosophy was employed in both definitions of Eqs. 16 and 17:
if the maximum bound is exceeded, evaluate how many times the parameter
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overtakes the bound; if the minimum bound is exceeded, evaluate how many times
the bound overtakes the parameter; set by 1 the rsp when the parameter stays within
the tolerance limits.

Note that, independently of the sp type, the values of different rsp could
now be compared, thanks to their relative nature. Thus, for example, although RMS
(P, ) is not comparable with kurtosis (P}, ), the relative RMS (R,) has values
varying in a similar range to the relative kurtosis (R,, ). Therefore, the rsp values of
the same frame within the same subband could be packed in a 10-length column

vector R =R |, R ,, ..., R 10]T. The purpose of the 1/@ factor employed in
both definitions above is to normalize the vector R in the following sense:

IR im.kl|>1, Ymel,M -1, Vk €0,K -1 (18)
and "R [m,k]" =1 if the spectrum of the m -th frame behaves normally within the

k -th subband (as for the defect-free bearing). Starting with the next step, Euclidean
norms ||R [m, k]" are actually employed. For a more general approach, other norms
could be considered as well. For example, one can consider that not all sp have the

same weight and thus a weighting matrix Q € 7010 (eventually diagonal) has to
multiply left the rsp vector R . The norm of the resulting vector QR is in fact a
generalized Euclidean Q -norm.

Returning to Eqgs. 16 and 17, a special case remains to be considered: the
null parameter values, when both bounds have to be accounted. If one recalls the sp
definitions in Eq. 11, it is easy to see that not all parameters could be null, even
when the input data consists of a finite length null signal. This property is proven by
those parameters quantifying the signal shape, since a part of the shape information
is the signal length (denoted by N in Eq. 11). In fact, simple algebraic
manipulations lead to the following interesting limits when the signal v tends to the
null signal:

limAv:Q:O 5 lim 17:2:0 ; limM:QZO ;
v—>0 2 v—0 N v—0 N
limE =07 =0 ; I EN =0 ; lim RMS, = el
= 5 lm = 5 =0;
1m N N
. N (19)
lim PAR, = N ; lim CF,=—=~— ; limF, = ¥ .
v—=>0 y—0 24N -1 v—0 2

2 J—
11m SF, =N 11m CLF, = N ; limK w
2 7 50 N-1

Thus, the shape parameters are null if and only if the signal is empty.
Practically, in context of spectral frames, they are always nonnull. But the energetic
parameters could be null inside some subbands, if and only if all corresponding rays
are null. Usually, if in a pass subband all rays are null, either a severe defect is
announcing or there are some important errors within the available data. The second
hypothesis could be confirmed when the spectrum is null for many pass subbands.
But, if only few isolated pass subbands provide null data, then the first hypothesis is
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more plausible. In this case, the rsp should be set to a value equal to or more than
10P; ™ [k], for all subbands where P
become obvious in the next step.

. [m,k]=0. The reason for this setting will

An average set of norms {"R [i,k]"}iem is also evaluated for each sub-

band, after every m €1, M —1 processed frames:
— def 1 &
Rlvnkl = — > IR [:A]], vk 0K -1 20)
=

This entity is extremely useful for initialising the fuzzy model. In fact, one
can consider that the processing starts from a virtual frame that provides the
average information about rsp norms at any moment. Set the index of virtual frame

by m=0 and change notation ||R ||[m,k] by ||R [O,k]" . In the new notation, the

current number of frames was omitted, in order to unify all notations regarding the
rsp norms. But, hereafter, one can consider by convention that the set of rsp norms

{|R [i’k]"}ieﬁ always starts with the average of currently processed frames

{"R [i,k]"} — in the first position. This average could recursively be upgraded,

iel,m

from a frame to another, according to the equation below:
m|R |[m,k]+|R [m+1,k]|

, Vke0,K—-1 (21)
m+1

IR [[[m+1,41=

After processing the first frame, the average is identical to ||R [l,k]" , but

starting from the second processed frame, the average and the other rsp norms are,
in general, different. Therefore, within the next steps, one shall assume that the
average starts to be evaluated after at least two frames have been processed.

Step 3: Definition and construction of a statistical network.
Let |R [m,k]" B be the value of ||R [m,k]" expressed in dB (for

me0,M —1,i.e., including the average (Eq. 20). Then the severity degree of defect

could be expressed in terms of a grid, in dB as well. Usually, there are 4 severity
types: normal (when no defect seems to be detected), incipient, medium and severe.
The separation values between severity types could be set as follows: 1,

[2];5 ~ 6dB and [10]5 =20dB . Thus, if |R [m,k]| varies in the range [1,1.22), no
defect is present; for range [1.22,2), the defect is incipient; inside the range [2,10),
the defect is medium and if ||R [m,k]" is more than 10, the defect is severe. The grid

could refine the severity levels for every type as follows: 0, 1, [ﬁLB ~3,
2le~6. Bls. [4ls. - [Ols. [10]g=20 [dB] (L=12 levels). Let
A=[4] 10T € ilﬁ be the L-length vector of all severity levels expressed in dB and
set A; =o.
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All settings above aimed to build a map like the one depicted in Figure 5.8
and referred to as the statistical network (sn). Thus, for each subband, a box cell is

assigned to every severity degree. Each value ||R [m,k]" 4 s uniquely located

inside such a box, as suggested by the diamonds in figure. In this example, the
location of rsp norms of a frame is depicted. The maximum rsp norm is reached
inside subband #5, where an incipient-medium defect is announced. Its severity
degree is =5.89 dB (at least one sp is about 1.97 times out of standard min-max
range). Note that the box cells corresponding to severe defects are open, in the
sense that their height varies depending on maximum pointed severity degree (if
applicable). On the contrary, the other box cells have fixed heights (but differ from
one severity degree to another).

&
T

3
T

Severity degrees [dB]

o
T
<

o|ole ¢ ¢

10 15 20
Frequency sub-bands [indexes]

Figure 5.8. A statistical network example.

The sn provides in fact a statistical map of possible defects, simpler than
the spectrum image. And yet, it is difficult to perform a good fdd by only inspecting
this map. Therefore, a technique of grouping network cells in similarity classes
could make this task easier.

Step 4: Covering the statistical network with clusters.

The previous steps prepared the fuzzy model construction. Starting from this step, a
fuzzy approach is combined with statistics in order to provide defect classifications
expressed as partitions of sn above. This approach is based on concepts of fuzzy
relations and fuzzy entropy (Klir and Folger, 1988) and its kernel has already been
integrated into another (but very different) method concerned with identification of
main structures inside Multi-Agent Systems (Ulieru ef al., 2000).

In context of vibrations, the fuzzy model relies on the fact that every frame
encodes the same information about existing defects (if the frame length is large
enough to induce a good accuracy of sp). Consequently, the statistical maps
resulting from every frame reveal about the same correlation between those box
cells that actually encode the defect, whereas the remaining cells are less correlated.
More specifically, the rsp norms from different frames “fall” more often into the
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same boxes for those subbands that seem to be directly affected by the defect. One
can say that rsp norms occur more often inside box cells that apparently encode the
systematic spectrum biases caused by a specific defect.

Therefore, the basic idea is first to construct a similarity fuzzy relation
between box cells within sn and then to unpack the result as different classifications
comprising similarity classes. A similarity class is actually a group of box cells that
seem to point to the same fault or group of faults (with some confidence degree).

In construction of a fuzzy relation between box cells, the first action is to
specify how the sn could be covered by collections of box cells for every spectral
frame. Any collection of box cells is referred to in this context as a cluster. Denote

by B, the generic box-cell of sn, where /€0,L—1 is the severity level and

ke€0,K—1 is the frequency subband. A natural way to construct clusters is to
consider two types of sn covers as follows:
a. ahorizontal one, # , with L clusters, each of which includes

only constant severity level box cells: C; :{Bhk}kem

(le0,L-1);
b. a vertical one, ¢, with K clusters, each of which includes
only box cells corresponding to the same frequency subband:

Dy = 1B}y g (ke O.K-1).

Thus:
L-1 K-1
#=JC and =D, (22)
=0 k=0

Note that the covers in Eq. 22 are independent of frame index (they
preserve the same structure for all frames), since, at this stage, one focuses only on
the structural information about how the sn could be roughly organized. The
information about defects encoded by rsp norms will be accounted for in a future
stage.

An example of horizontal and vertical clusters is displayed in Figure 5.9.

Other structures of sn covering could be considered as well, for example,
the one consisting of cross-clusters obtained by taking the union between horizontal
and vertical clusters (also illustrated in Figure 5.9). But the main advantage of
coverings above is that they lead to one of the simplest fuzzy relation construction
algorithms.

The box cells that belong to the same cluster are in fact entities verifying
the same elementary crisp (binary) relation. Two crisp relations could thus be
stated: (a) two box cells are in the same relationship if they reveal the same severity
level; (b) two box cells are in the same relationship if they point to the same
frequency subband. The characteristic (index) functions describing these crisp
relations are KL x KL binary matrices, where the element (i, ) is unitary only if

the box cells i and j are in relation to each other (otherwise, the element (7, j) is

null). These matrices could be expressed only after linearization of sn indices. Thus,
the box cell B, located in plane by the indices (/,k) is equivalently located on a
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lineal by the index i, ; . There are two possibilities to derive the expression of index

i; ;. : by enumerating all columns or by enumerating all rows of sn. In this approach,

one selects to enumerate the sn rows, starting from bottom to top (see Figure 5.10).
Thus, the first group of box cells is associated with normal behaviour. The
incipient, medium and severe defect box cells follow (in this order).
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Figure 5.9. Horizontal and vertical clusters inside the statistical network.
: I]:]| Rowo | Row1i | --o | RowlL-1
Row 1

Row O

Figure 5.10. Linear enumeration of box cells in a statistical network.

The index i, is then: i, =IK+k, VIe0,L-1, Vke0,K-I.

Conversely: Z:|_i,7k/KJ and k=i, %K, Vi, €0,LK-1, where LaJ is the

integer part of a € t3and n%N is the rest of division between integers #» and N .

Since any of the two sn covers provided by a frame is a union of its
(disjoint) clusters, the associated global binary crisp relation is also a union of
elementary crisp relations. Hence, the global characteristic matrix is obtained by
summing together all corresponding elementary matrices. The specific form of the
selected covers leads to the global characteristic matrices given in Eq. 23.

As a toy example, set L =2 and K =3. The corresponding sn looks as in
Figure 5.11 and its covers are:

a. Horizontal: % ={Byy, By, By, } U {Bio»By1»Ba )
b. Vertical: & ={By, Big} U {Boy. Bii} 1Bz, Bio}
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Horizontal cover Vertical cover
UK><K OKxK OKxK IKxK ]K><K IK><K
Ock Ugx - O Lee Teix - 1
H = K.xK K.xK ) K.xK _ K.xK K.><K ) K.><K (23)
OKxK OKxK UK><K LxL IKxK IK><K IK><K LxL
blocks blocks

where Ugyrx, Ogyx and Ip, , are the KxK all unit, all zero and identity
matrices, respectively, expressed as:

UKxK:; T > Ok = .o .
11 -1 00 0
KxK KxK (24)
1 o -0
0 1 0
Tgig = S
00 - leK
L=2
el e vl
IR e e I
Figure 5.11. A toy statistical network.
Then Egs. 23 and 24 imply:
1 11 000 1 00
Ups=[1 1 1|5 Oy5=[0 0 0|5 I;5;={0 1 0
111 000 0 01
Horizontal cover Vertical cover
(1 1 1.0 0 0] 100 1 0 O]
111000 01001 0| (25
y_[Uss Osa] |1 1 100 0| o_[Isa Ls|_|0 0 1 001
Oy Uss| |00 01 1 1| |Ly Ll [1 00100
00 01 11 010010
000 1 1 1 00100 1]

The matrices in Eq. 23 (or Eq. 25) are actually binary maps of the two
crisp relations that every frame provides. The position of every unit value shows
which couple of box cells are in relation to each other. These relations are in fact
rough approximations of the following relation directly related to defects: two box
cells are in relation to each other if they point to the same fault. Of course, at this
time, we don’t know exactly which box cells verify this property and this is the
reason one operated with two approximations. Any horizontal or vertical cluster
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could include abnormal box cells pointing to the subband affected by a specific
defect or, respectively, to the severity degree proved by a specific defect. The
approximations are refined next by using the rsp norms, until specific defect classes
are obtained.

Step 5: Evaluating the occurrence degrees.

The covers constructed above do not partake in the fuzzy relation that one intends
to construct, but their clusters do. Recall that, unlike within crisp relations, two
entities are in a fuzzy relation to each other only if they belong to a crisp relation
with some membership degree (Klir and Folger, 1988). The membership values
express the uncertainty regarding the specific relationship between entities. Within
the crisp approach, this relationship is either certainly existing or certainly not
existing. There are no other possibilities. Within the fuzzy approach, two entities
could be in a relationship, but this assertion has a degree of uncertainty varying
from O (certainly not) to 1 (certainly yes).

The relationships between sn box cells should also be fuzzy, for two main
reasons. Firstly, the horizontal and vertical clusters could not be totally reliable
since, in general, they gather together boxes inside of which some rsp norms fall
and boxes that are untouched by these norms, even for long strings of vibration
data. These act in fact as different entities inside the sn. They were only roughly
gathered together, according to structural criteria of same severity level or
frequency subband, but without accounting for the information provided by the
vibration itself. Secondly, the structure of selected clusters (horizontal, vertical)
could not be certain, but only intuitively more plausible than another structure.
Fortunately, the final fuzzy relation is not that sensitive to the initial clustering of
box cells and refines these approximations.

The horizontal and vertical clusters encode no information about defects
unless they are put into correspondence with the rsp norms. In reality, after

processing m+1e1,M frames (including the virtual one naturally associated with
the average information about rsp norms — see Eq. 20), inside every box cell B, a

number of rsp norms could occur. Refer to this number as (occurrences) counter

and denote it by N,,[/,k]. Obviously, since for each subband k € 0,K —1 a unique
severity level 4; (/ €0,L—1)exists such that:

A <R Ima k] g < A (26)
it follows that:
0N, [Lk]<m+1, VmeO,M -1, VI€0,L-1, Vke0,K -1 27)

Null counter values are associated with those box cells for which no rsp
norms occurred so far. Furthermore, another obvious property holds:
L-1K-1
D N,[Lk]=K(m+1), Vme0,M -1 (28)
1=0 k=0
i.e., the total amount of counters equals the number of subbands touched by all
currently processed frames, including the virtual one.
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After processing a new frame, the counters are upgraded following a rule
given by Eq. 27:

VmeO,M-2
N, [LKk]+1,if 4, <|Rlm+1Lk]| . <A, .
m+l[1 k] m[ ] 1 H [m ]HdB 1+1 , VIEO,L—I (29)
N, [l,k], otherwise vk 0K 1

which means: increment by 1 only those counters corresponding to box cells where
the rsp norms occurred. However, this rule is not that simple. The virtual frame
gives the initial values of these counters and, thus, they could change depending on

the number of currently processed frames, m+lel,M. So, Eq. 29 must be

understood as a recursive recipe where the initial values are also dependent on the
current step of upgrading. Consequently, a counter could even be incremented by 2
and not by 1, or decreased by 1, when the average moves its position.

A consistent set of occurrence degrees is constructed and one-by-one
associated with the collection of sn box cells, by using counters. Denote by v,,[/,k]

the occurrence degree uniquely associated with box cell B, , after processing

m+le 1,_M frames (starting from the virtual one). Two possible definitions could
be used to set v,,[/,k], according to Eqs. 27 and 28:

def def
vl k] = M V,ll.k] = N [l K] (30)
m+1 K(m+1)
In both cases v,,[/,k] €[0,1], but for the first one:
L-1K-1
2vm_mmzzwm 31)
1=0 k=0
whereas for the second one:
L-1K-1
ZV [7.k]=— and DD vallkl= (32)
1=0 k=0

From a probablhstlc point of view, Egs. 31 and 32 show that only the
second definition in Eq. 30 could be associated to the occurrence frequency of rsp
norms inside box cells. But, in the context of fuzzy logic theory, requirements like
the last one in Eq. 32 are often not necessary (Klir and Folger, 1988). The only
requirement is to include the occurrence degree variation in range [0,1]. One of the
main drawbacks of the second definition is the rapid decay towards null values of
all occurrence degrees, due to product K(m+1). No occurrence degree could

increase. Even if a counter is upgraded, its value is only increased by maximum 2,
whereas the corresponding occurrence degree is decreased about K times. In
contrast, the first definition keeps the occurrence degrees more balanced and,
furthermore, the occurrence degrees could increase. The last remark is due to a very
simple algebraic property:

-1 +1 +2
£> " >n , Vnom>0, but—<n <n
m m+l m+1’ m m+l m+

Lif 0<n<m (33)
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Since the first definition provides occurrence degrees that are more
sensitive to counters upgrading than the second one, it will be selected for the next
steps. In fact, the occurrence degree is only raw information about rsp norms
distribution over the statistical map. More processing operations are necessary in
order to derive the uncertainty degrees associated with the elementary crisp
relations previously constructed.

An example of the two-dimension occurrence degrees distribution is
displayed in Figure 5.12. The distribution is improved after every new processed
frame.

0.03

\

\

- -
\

]

\

\
\

Occurrence degrees
° ° °
o =3 o Q
8 ¢ 2 8 8

5
0o Frequency sub-bands [indexes]

Figure 5.12. An occurrence distribution over the statistical network.

At this point, one can say that box cells supporting the biggest occurrence
degrees are very likely directly associated to the defect type. But it is not that
simple to build a group of such box-cells, based only on a set of occurrence degrees,
because the attempt is rather empirical and affected by uncertainty. A systematic
method to construct similarity classes by using statistical information is then
necessary. Also, as already mentioned, it is desirable that every class be associated
with some confidence degree.

The occurrence degrees are in fact values of some membership functions
that change the nature of clusters from crisp to fuzzy. More specifically, consider
the generic horizontal and vertical clusters, C;, and D, , respectively. Then their

associated membership functions are: g, ,(B;;)=v,[/,k] for any box cell
B, €C; and n,, (B, ;) =v,,[l,k] for any box cell B, € Dj .
Thus, (C, ,,um,,) and (Dk ,ﬂ,n,k) are now fuzzy sets. The new definitions

are superior to the former ones, since the rsp norms have been accounted. Now, if
the box cell B, that belongs to a crisp cluster C; has a null occurrence degree, it

cannot belong to the fuzzy cluster (C, , ,um’,). For simplicity, denote the values of
membership functions by u,, ,[k] and 7, ,[/], respectively (i.e., u,, and 7, ,

could also be treated as vectors from [0,1]% and [0,1]", respectively).
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Note that the membership functions change from a frame to another,
though the crisp clusters are independent of frames. Hence, the fuzzy clusters have
variable structure depending on the number of processed frames, which is closer to
the real behaviour of sn (variable) structure.

Step 6: Associating certainty degrees with elementary crisp relations.
A unique certainty degree should be associated with every cluster C; or B, . This

is a number that expresses, on the one hand, the certainty in considering the
corresponding cluster and, on the other hand, the degree of box cells affiliation with
the elementary fuzzy relation the cluster naturally generates. The membership
matrix of elementary fuzzy relation is simply derived by multiplication between the
cluster certainty degree and its characteristic matrix. This idea is developed next,
but, first, the certainty degrees have to be evaluated.

The evaluation of certainty degrees is based on the concepts of fuzzy and
uncertainty measures (Klir and Folger, 1988). Obviously, certainty is opposite to
uncertainty. An interesting fuzzy/uncertainty measure is the Shannon Fuzzy
Entropy (SFE). Its definition relies on the multidimensional Shannon function
below:

N
5(x) ==Y _[x,log, x, +(1-x,)log,(1-x,)], Vx =[x ... x,]" €[0,]]" (34)
n=1
The Shannon function originated from the concept of entropy, first utilized
in physics. Thus, if one restricts the sum in Eq. 34 to the first half, replaces “log, ”
by “In” (John Nepper’s natural logarithm) and sets xe [0,1]V as a discrete
N
probability density (i.e., verifying Zx,, =1), then the entropy is obtained:

n=1

N
H (x)=-) x,Inx, (35)
n=1

When N =1, the entropy from Eq. 35 is associated with the event for
which the probability was considered. The opposite event is described by the
opposite probability: 1—x. Hence, the second half of the sum in Eq. 34 becomes
the entropy of the opposite event. The Shannon function thus expresses the total
entropy of an entity, by accounting for not only its classical entropy, but also the
entropy of its opposite. Note that, in Eq. 34, no restriction (like the one verified by
probability densities) is imposed. The Shannon function is an instrument utilized in
many domains, but was defined in the context of information theory, as a concept
quantifying the information encoded or transported by an entity. Its unit is the bit.
This is the reason the natural logarithm was replaced by log, in the original

definition of entropy.

Several interesting properties of the Shannon function could be noted. For
this approach, the following two are of the most concern. Firstly, the function is
bounded and reaches several null minima, but only one maximum. No other minima
are possible, but the null ones are reached on the border of definition domain (the
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hypercube [0,1]"). Secondly, the maximum value is exactly the dimension of input

argument, i.e., N . It is reached for the middle point argument, the function being
symmetrical. For example, in Figure 5.13, the graphics of the only two Shannon
functions that could be viewed are drawn.

When the argument in Eq. 34 is provided by values of the membership
function describing a fuzzy set, the SFE is obtained. In this case, SFE has several
interpretations. As a general fuzzy measure, SFE quantifies how close to the crisp
state is the fuzzy set (or its fuzziness). The bigger the SFE value is, the less crisp the
set (i.e., the fuzzier). But SFE could also play the role of uncertainty measure.
Uncertainty has two major facets: vagueness and ambiguity (Klir and Folger, 1988;
Ulieru et al., 2000).

One di ion Sh i Two dimensions Shannon function
L e e e - T
| | | | _ — — " 'Max:S(0.545)=2 "~ _
I Max: S(05)=1 | 2 I sl
1--—-+--—= I~

Figure 5.13. One- and two-dimension Shannon functions

The SFE is a vagueness measure. The bigger the SFE value is, the more
vague the fuzzy set description, i.e., the more uncertain (or unreliable) the
information about that set. Thus, maximum entropy means maximum uncertainty
and fuzziness. The smaller the SFE values, the better.

Let us now get back into the context of previous steps. The certainty
degree of a cluster should be opposite to its entropy (uncertain (vague) clusters
should have small certainty degrees). Also, another property should be verified: the
bigger the occurrence degrees of its box cells, the smaller its entropy. Since SFE
has one maximum and several null minima (pointing to the lack of uncertainty), the
values of membership functions 4,,, and 7, , must be translated from [0,1] to

[0.5,1] by a simple affine transformation, before using them subsequently:

vl k] YolbAIHL (36)

(By convention, one preserves the same notation for the translated values.)

Denote by «,,, the certainty degree of horizontal cluster C;, after

processing m+1 frames (where /€0,L—1 and me0,M —1). Similarly, S,

m,l
stands for the certainty degree of vertical cluster D, , after processing m+1 frames
(where ke€0,K—-1 and me0,M—1). The values of «,;, and f,, are then

evaluated in three steps (by accounting for all previous remarks): compute the SFE
of fuzzy clusters (C, , ,um’,) and (Dk M, k); normalize the SFE by K and,
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respectively, by L ; subtract the result from 1. This is summarized in Eqs. 37 and
38.

The normalization applied in Eqgs. 37 and 38 is necessary because the
certainty degrees have to vary only in the range [0,1], as well. This restriction is
imposed by another meaning of a certainty degree, regarding the covers: any cluster
belongs to an sn fuzzy cover with some membership degree. Actually, the crisp
covers # and ¢ are transformed into fuzzy covers, by a similar mechanism
employed to transform crisp clusters into fuzzy clusters. Their membership
functions are the following: 4,(C))=a,,, for any cluster C,€# and

Nm(Dy) = By, for any cluster Dy €4 . Thus, (#, ,um) and (¢ ,77,,,) are now fuzzy

sets, but their elements are other fuzzy sets (the fuzzy clusters, in fact). Like for
fuzzy clusters, covers membership functions depend on the number of processed

frames (m+1) (where me 0,M —1).

_ s(:um,l)
Qpyy=l——7"—
? K
K-l 37
St == 3t k11025 f1y K1+ (1= Tk oy (1~ g1, [KD)]
k=0
s,
ﬂm,k =1- (Z‘ ’k)
(38)

L-1
SUi) == [ l111085 7 1 1+ (=17, [ og (1= 7, [11)]
1=0

Step 7: Constructing the o -sharp cuts of fuzzy relation.

Every fuzzy cluster generates, in association with its certainty degree, an
elementary fuzzy relation between the box cells it includes. The membership matrix
describing this relation is simply obtained by multiplication between the
characteristic matrix of crisp cluster and the corresponding certainty degree. More
specifically, if C;, and D, are the generic horizontal and vertical clusters (as
usual), then, after processing m+1 frames, their corresponding certainty degrees
are a,,, and S, , respectively. One can denote by H, and G the characteristic

matrices of C; and D, , respectively. Then, obviously:

Horizontal cluster Vertical cluster

Ok Oxx  Oxu . . .
: . : . IKXK 1K><K 1K><K
o ' Ik Tk Tk

H) =10k -+ Ugx - Ogux Gy = . . .. . (39)

: : . : [Ilng 11’2”( 11’;”( LxL

OKxK OKXK OKXK LxL blOCkS

blocks

where the block Uy, is located on the main diagonal in position (/,/) of matrix

H,, whereas the block /% . consists of one unit value on the main diagonal in

position (k,k) of matrix G, (all remaining values being null).
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The elementary fuzzy relations are described by the following membership
matrices: «,,;H, (horizontal) and f, ;G (vertical). The corresponding relations

are «-sharp cuts of fuzzy relation after processing m+1 frames (where

me0,M —1). (See the definition of « -sharp cut in (Ulieru ef al., 2000.) In fact,
this definition is similar to the definition of « -cut (Klir and Folger, 1988), but the
inequality sign was replaced by the equality one.)

For example, recall the toy sn in Figure 5.11. For that structure, two
horizontal and three vertical elementary fuzzy relations are available after every
processed frame:

1
1

Ao Oy %o 0 0 0 0 0 0 0
Ao Apo Ay 0 0 0 0 0 0 0
Ao Ao Opo 0 0 0 000 O 0 0
ayoHy=| = ' ' Ay Hy =
: 0 0 0 00 0 ™ 00 0 a, a, &,
0 0 000 00 0 a, a, a,
| 0 0 0 0] 100 0 a, a, o]
(Buo 0 0 B, 0 0] [0 0 00 0 O]
0 00 0 00 0 Bpy 00 B, O
0 00 0 00 0 0 00 0 0
PnoGo = Buo 0 0 B, 00 PmGi=lo 6 00 0 o (40)
0 00 0 00 0 By 00 B,y O
L0 00 0 0 0f 0 0 00 0 O]
[0 0 0 00 0]
00 0 00 O
00 By 00 B,,
Pn252=16 6 0" 0 0 o0
00 0 00 0
00 By 00 B,

Equation 40 reveals another interesting property: the box cells that are very
far from each other could not be in the same relation, even in the case of fuzzy
relations. This is the case, for example, of box cells located at different severity
levels and opposite subbands, such as B, and By, or B, and B, . Practically,

it is very unlikely that these box cells could associate together to reveal the same
defect. But this property could be cancelled for the global fuzzy relation providing
defect classifications, since such limitations are only intuitive.

Step 8: Constructing the fuzzy relation.

Two operations are applied in order to build the final fuzzy relation between sn box
cells: aggregation of the (elementary) « -sharp cuts and evaluation of the transitive
cover. The aggregation is simply performed through the max fuzzy union (Klir and
Folger, 1988):
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-1 K-1
R :|:Uam,lH1:|U|:Uﬂm,kaj| 41)
1=0

k=0
Thus, the membership matrix describing the crude fuzzy relation 2,, is

constructed by means of the elementwise max operator (‘“‘maxe ) applied on all
matrices corresponding to fuzzy relation of the right term in Eq. 41:

#,, = maxe { max e {am 1H1}> max_e {ﬂm,ka }} (42)

1€0,L-1 ’ ke0,K-1

Note that the same max operations like in Eq. 42 have been applied to
obtain the characteristic matrices in Eq. 23, but by using unit certainty grades (since
the relations were crisp). Obviously, the dimension of matrix 7%,, is KLx KL .

For the toy example above, the membership matrix 7, is:

max{am‘o,ﬁ’mo} A0 Ao Buno 0
Ao max am,O’IBm,l} Ao 0 B 0
w, - e Ao max{amyo,ﬁmyz} 0 0 Bz
Bno 0 0 max{am,l’ m‘U} A Ay
0 P 0 Ay max am.laﬁm,l} (22
0 0 ﬁm,z Ay [ max{am,laﬂm.z}

As one can see, some box cells are (co)related with various (un)certainty
degrees, but between some other box cells no relationship seems to exist. The null
values inside matrix 7%,, are always the same, independently of how many frames
are processed (because of the horizontal and vertical crisp clusters), whereas the
nonnull values vary from a frame to another (because of the occurrence degrees).
Denote the generic element of 7%#,, (i.e., the membership degree) by 7%,,[i, j]

(where i,j €1,KL).

The resulting matrix 7%, is symmetric and reflexive (since the elementary

matrices H, and G, verify these two properties). Thus &, is a proximity relation,

but it is not necessarily fuzzy transitive. (See (Klir and Folger, 1988) for
definitions.) Even though all elementary matrices H; and G, would describe

(crisp) equivalence relations (i.e., all of them would be transitive as well), it is
possible that @, is nontransitive. This means, in general, @, is not a similarity

(fuzzy) relation. However, the similarity is a very important property, because the
defect classes should also be (nonoverlapped) similarity classes. The direct
involvement of similarity property in the construction of defect classes is revealed
at the next step. Let us focus now on the transitivity property.

Actually, the transitivity property is the most difficult to insure in the case
of fuzzy relations, because it is expressed (for example) as follows, differently from
the crisp case (Klir and Folger, 1988; Ulieru et al., 2000):

M,,li, j1= max min{7,,[i,n],%,,[n, j1}, Vi,j €KL (43)
nel,KL

This is the max-min (fuzzy) transitivity. An equivalent matrix form of Eq.
43 can straightforwardly be derived:



158 V Palade, CD Bocaniala and L Jain (Eds.)

", > (%, M,) (44)
where “o” points to fuzzy multiplication (product) between matrices with
compatible dimensions (involving the composition of the corresponding fuzzy
relations). This multiplication is expressed starting from classical matrix
multiplication, where max operator is used instead of summation and min operator
is used instead of product. Also, “>e”in Eq. 44 means that the ordering relation
focuses on matrix elements and not globally, on matrices.

The lack of transitivity can be corrected by generating the transitive
closure of ,, which is defined as the smallest transitive fuzzy relation including

&, (according to fuzzy inclusion) (Klir and Folger, 1988). A simple procedure
allows us to compute this closure for any fuzzy relation 2 :
Step 1. Compute the following fuzzy relation: 2 = 2 (20 2).

Step2. If 2 # 2, replace 2 by 2, ie, @<« 2 and go to
Step 3. Otherwise, 2 =2 is the transitive closure of the initial
z.
It is not so difficult to prove that this procedure preserves the reflexivity
and symmetry of 2, (Ulieru et al., 2000), so that the transitive closure 2,

L, 1S @

similarity relation. Also, in terms of membership matrices, 7, is replaced by

%m, derived according to the procedure above (but with max instead of union

operator and with (max-min) fuzzy multiplication instead of composition operator).
The procedure is very efficient. The only limitation in terms of network
granularity is here the dimension of 7%,, (i.e., KLxKL), which could be very
large. But, nowadays, the existing computing performances could yield reasonable
running time for matrices with more than one million elements.
The main difference between 2,, and 2,, is that 2,, is defined by means

of a smaller number of membership degrees than &,,. In general, small grades

vanish. This is very suitable, since, probably, small membership degrees are mostly
due to various noises still affecting the vibration data, even after filtering. In other
words, by computing the transitive closure, the statistical data have been denoised.
Another difference between the two fuzzy relations is that box cells previously

unrelated (according to 2,,) could now be related (according to 2, ). This means
the nonnull values in 7%,, could overwrite the null ones. In general, inside the
matrix 7%, ,

rough assumption that some box cells could never be related to each other.

null values could seldom appear. This effect is correcting the initial

Step 9: Generating the defect classifications.
The values in 7,, are referred to as (fuzzy) confidence degrees. The number of

distinctive confidence degrees is P, < KL(KL+1)/2, for each me1,M —1 (due to
symmetry). They could decreasingly be sorted: 7,4 >7,,1>->7,,p _; (by using

natural new notations instead of 7%,[i,j]). For each confidence degree y,, ,
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(pe0,P,—1), a partition of statistical network is generated, by evaluating the

corresponding « -cut of fuzzy relation 2, (Klir and Folger, 1988). Every « -cut

plays the role of defect classification and is actually a partition of sn. Any class in
such a partition gathers the cells with similar statistical properties and, therefore, is
a similarity class. Obviously, all box cells with null occurrence degrees (see, for
example, some high severity box cells in Figure 5.8) are grouped in an inactive
cluster and do not actually partake in the classification. The inactive cluster is the
same for any classification, if the number of processed frames, m+1, is constant,
but its topology could change as m varies.

LetC,, = F

g }qEO,Qm‘p —, be the defect classification corresponding to

confidence degree 7, , (p€0,F,—1). Inside, there are Q,, , defect classes

generically denoted by F Usually, the classifications are listed in decreasing

m.p.q -
order of their confidence degrees. Moreover, it is well known that such an
arrangement reveals a holonic behaviour (Ulieru et al, 2000). That is, the
confidence is also a measure of classifications granularity: as confidence decreases,
a larger number of classes group more and more together. For maximum
confidence, every cell is also a class, which means maximum of granularity as well

(Q,0 equals the number of box cells with nonnull occurrence degrees). For

minimum confidence, all cells are grouped in a single class, the granularity being

also minimum (Q, p _ is

,=1). Thus the trend of finite string {Qm,p }pEO,Tm—l

decreasing when the confidence degree is decreasing. Only one classification shall
be selected from this collection, as described in the next step.

Some examples of defect classes together with their confidence degrees
are described in the section devoted to simulation results.

Step 10: Selecting the optimum classification.

Besides the confidence degree, the SFE of every class could also be evaluated.
Actually, like in case of covers # and & , every classification (an sn partition, in
fact) is a fuzzy set with fuzzy sets (the defect classes) as elements. The membership
functions associated with defect classifications are denoted by p,, , (where

mel,M-1 and pe0,P,-1). Thus, (Cm’p,pm’p) is a fuzzy set and the

membership function p,, , could be derived by means of a similar argument like in

Step 6. There is, however, an important difference here. The entropy of a fuzzy set
comprising fuzzy sets as elements should depend on the entropy of every element.
If all elements would have small/large entropy values, then the set should also have
small/large entropy. Consequently, the membership function p,, , has to reflect the

normalized entropy of each defect class:
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Pmp  C — [0,1]

m,p .
F m,p,q = pmap(F m,p,q )dif pm,p,q :%SN(F maPaQ) (45)

In Eq. 45, SN(F is the normalized entropy of defect class F

m,p,q) m,p,q

(where ¢ €0,0,, ,—1). To evaluate SN(F m, p,q), first identify all the box cells that

belong to F (together with their translated occurrence degrees — see Eq. 36),

m.p.q
then use the definition in Eq. 34 and finally divide the result by the number of box
cells. For example, consider that the following classification has been obtained

inside the toy sn in Figure 5.11: C,, , = {F where the defect classes are

mp.4J4e0,1°
F 0 = {Bo,o ,BLI} and F mpl = {30,1 By ,BLZ}. (The box cell By belongs to

the inactive cluster.) Then:

svF.,0)= —% [V [0,0]log, v, [0,0]+ (1 -V, [0,0])log, (1- v, [0,0]) 46
+v, [Ll]log, v, [1L1]+(1-v,[L1])log, (1-v, [L1])]; )

Sy (FW1 )= —% [v,[0.1]log, v, [01]+(1-v, [0,1])log, (1-v,,[0,1]) W

+v,[0.2]log, v,,[0.2]+(1-v,,[0.2])log, (1-v,[0.2]) )
+v, [1,2]log, v, [1,2]+ (1-v, [1,2])log, (1-v,, [1,2])]
The division by 2 in Eq. 45 is required because SFE is nonmonotonic

(recall Figure 5.13). The values of sN(F varying in the range [0,1] are now

m.p.q
restricted to the range [0,1/2], which involves the final entropy increases when the
(translated) occurrence degrees decrease.

After the membership function p,, , has been evaluated, the entropy of

classification C,, , is computed by using again the definition stated in Eq. 34:

O p—1
s(pm,p) == Z [pm,p,q 10g2 pm,p,q + (1 - pm,p,q)logZ (1 - pm,p,q)] (48)
q=0
Note that the normalization is meaningless in Eq. 48, since the entropy
also encodes information about the number of defect classes (clusters). Therefore,

in general, the entropy values {s( Pom. p)} prove a decreasing trend, since the

pe0, P, -1
number of defect classes (i.e., the maximum of entropy) decreases when the

confidence degree decreases. This involves the entropy values {S( Pom, p)}pGm

and the confidence degrees { Ym,p }peo,Tﬂ are opposite.

A “good” classification should have high confidence degree and low
entropy. This could be selected by means of a cost function that encodes the
opposite behaviour of entropy and confidence degree. In order to define such a
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function, it is first necessary to transform the entropy and the confidence degrees
into maps comparable to each other. Before this operation, the comparison between
them is impossible, because they vary in different ranges. The transformation is
affine:

Vinp = n;ﬁL,{y }
o1 dif m,p pe0,P. — m,p

Vm )2
max {;/mp} — min {)/mp
pe0,P, —1 ’ pe0,P, — ’

w S~ min {s(,,)}

(49)
/

50
1n§§]{$(pmm)}- HEQW{S(Pmm)} °Y

pe0.F, — pe0.F, —
Obviously, both normalized maps 7/,?11 , and SOI(pm, ) vary in the range [0,1] and,
moreover, they are reaching the extreme values 0 and 1.
Define the cost function S, as the geometric mean between the values of

the map defined by Eq. 49 and the opposite values of the map defined by Eq. 50,
over the classification indexes set:

S 0,P,-1 — [0.,1]
@ o 01
p — S,lpl= \/Vm,p[l_s (pm,p)]

In this context, S

m

(51

expresses the opposite entropy weighted by

m

confidence degrees. Other cost functions could also be employed in this aim (such
as the arithmetic mean or another algebraic combination between ;/,?1], , and

s Ol(pm’ »))- But, in any case, this function could only have a finite number of

maxima (or minima) that realize the trade-off between entropy and confidence
degree. In the case of cost function S,,, the best compromise is reached for its

global maximum. Thus, the best classification C %" =Cm is selected by solving

opt
»Pm

the following simple optimisation problem:
p' =argmaxS ,[p] (52)
pe0,P, —1

An example of how the optimum classification is selected by solving the
problem stated by Eqgs. 51 and 52 is displayed in Figure 5.14, where only 51 frames
have been processed (including the virtual one). The opposite variation between the
confidence degree and the (opposite) entropy, as well as the shape of their
geometric mean are clearly drawn. In this example, 32 classifications are available

and the optimum resulting index is p2' =14, which points to the 15th

classification as being the optimum one. Note that the 19th classification is a sub-
optimal one, though its entropy—confidence compromise is also maximum, but
locally (and close to the global maximum). The number of classes inside the
optimum classification is 82 (most of them being singletons). As one shall see in
the section devoted to simulation results, the optimum classification constitutes an
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image map about the specific fault(s) distorting the standard spectrum. Also, the
classification confidence is 5,4 =0.7 and its entropy is S(psq4) =81.06 . The
entropy is quite high (close to its maximum, 82), since the number of processed
frames is modest (only 51) and thus the occurrence degrees are inaccurate. As the

number of processed frames increases, the entropy goes down, farther from its
maximum.

?& Optimall index: 15' ; ;

09l - — — _#Fuzzy confidence: 0.700012_ _ _ _ | _ _ L]

i# Fuzzy entropy: 81.0832 | |

_ _ _# Optimal . cluster(s) entropy:0.650022, 7 _ __ _ _ _|
| | | K

o8 — — - X - - -l
7 -©- Confidence degrees
- Opposite entropy
5 — — — L - - - -~~~ & — — — — { -k Geometric mean

Normalized magnitudes
°
&

------

Classification index

Figure 5.14. Selecting the optimum defect classification.

The most difficult part of the fuzzy model is the classification map
interpretation (or analysis). This means that specific defects should be put into
direct correspondence with map topologies. The subsequent analysis is more
rigorous and simpler to perform than by inspecting the vibration spectrum, since a
part of analyst reasoning has already been automated. Accounting for all classes in
a map is sometimes sufficient to perform an accurate diagnosis. But, sometimes,
this attempt leads to a rather complicated analysis. Therefore, some specific class
(or a reduced number of classes) should be emphasized as representing the
defect(s). One option is to consider the biggest class as revealing all subbands
affected by the defect(s). A different option is to extract the minimum entropy class,
which, in general, is smaller than the biggest class and, therefore, more focused on
few subbands. These are very likely the most affected by defect(s). (Recall that
minimum entropy means maximum occurrence degree of rsp norms.) Other
representing classes could also be selected.

In order to complete the method, it is perhaps useful to show how an
optimum cluster (or group of clusters) could be selected inside the best

classification C,”* by using the normalized SFE as cost function. Thus, the index

of optimum defect class(es) is (are) evaluated by solving the following optimisation
problem:

opt __ :
gy’ = argmin Sy [F " ) (53)
q<0,0 opt -1 b
m, py

For the example in Figure 5.14, the minimum (normalized) entropy of the
optimum defect class inside the best classification is about 0.65. All the other
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classes have entropy values at least as large as this value. Therefore, the
corresponding cluster is representing in the best manner a specific defect.

But selecting an optimum defect class is less important than selecting the
optimum classification. As already mentioned, sometimes, the classification
configuration is itself a good image about defects, provided that its interpretation is
not too difficult to perform. A very desirable property of such an interpretation is to
reveal multiple defects by simple combinations of single defect maps. In general,
this property is difficult to achieve. But the interpretation principle could be the
same, independently of single or multiple-point defects generating the maps.

Note that, in this approach, the number of processed frames was
considered variable. Though the notations are more complicated (the index m is
omnipresent), one can clearly see how the concepts utilized inside are varying
depending on this variable. The main reason the method was presented in terms of
processed frames number is to show that its implementation could be performed by
following either an on-line or an off-line strategy. For the on-line implementation
the best classification should be provided after every processed frame (or group of
frames). Step 8 is the critical one, since the evaluation of transitive cover could be
time consuming when the product KL is too big (over 1500, with the actual
computing performances). In this case, the best solution is to perform the defect
classification only after several frames have been processed. This means the
strategy is quasi-off-line (or even off-line). In general, the number of processed
frames improves the method accuracy, since the estimation of occurrence degrees is
more and more precise.

5.3. Simulation Results and Discussion

The two algorithms previously described constitute the kernel of a simulator
designed to test the fuzzy-statistical reasoning method. The testing platform and the
simulation results are described next.

5.3.1. The Testing Platform

The vibration data are acquired from bearings through a platform designed on
purpose. Three main systems are connected, as illustrated by the pictures in Figure
5.15: a mechanical stand, a vibration data acquisition and pre-processing apparatus
and a personal computer (PC).
The mechanical stand consists of the following elements:
1. A three-phase electrical engine, Siemens type, with maximum rotation
speed of 2740 rot/min (about 45.67 Hz), working at 380 V and with a
power of 370 W.
2. A couple of bearings mounted into mechanical seats, appropriately
designed to fit to their geometry. The seats are easy to dismount in order to
change the bearings, when necessary. The bearing near the engine is a
standard high-quality one, without defects. The other bearing could also be
standard (identical to the first one, in order to acquire the standard
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vibration data) or a tested one, with possible defects (for raw vibration
acquisition). All bearings are provided by Romanian and German
industries. (See their geometry in Figure 5.16.).

3. A couple of metallic discs mounted between bearings, on the same
axis, which play a double role. On the one hand, they produce a load of
about 200 N applied in a radial-axial manner on bearings. This leads to a
contact angle of 40° inside the bearings. On the other hand, they are
creating an inertial momentum that rejects some external perturbations and
keeps the rotation speed constant.

4. An elastic coupling between engine axis and load axis, aiming to
attenuate the engine self-sustained vibrations or shaft wobbling that could
corrupt the data.

2740 rot/min
3ow

Vibration Data
Transfer

Figure 5.15. The bearings testing platform.

N A > # of balls: 13
L > contact angle: 40°

Figure 5.16. Geometrical characteristics of tested bearings.

The geometrical characteristics of tested bearings (illustrated in Figure
5.16) lead in fact to a very small variation of natural frequencies, depending on
contact angle. Thus, even the contact angle is not accurately set, and its influence
over the natural frequencies is not decisive. The biggest natural frequency is about
325 Hz.

The vibration is acquired by using two light accelerometers. The definition
in Eq. 2 is adopted to provide the complex valued vibration data, because both
sensors are far enough from the direction of applied load. A very powerful
apparatus has been employed to acquire vibration data: an LMS Roadrunner (LMS
International, 1999). Its capabilities extend far beyond the minimal ones required by
this method: accurate prefiltering of data, simultaneous acquisition on at least two
channels and selectable recording format. The Roadrunner integrates a
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microcomputer with a user-friendly interface that allows the user to work as
comfortably as with any PC. It is also endowed with at least four channels (their
number could be extended), compatible with a large number of sensors. The
maximum allowed sampling frequency is 100 kHz. In this application, the sampling
frequency has been set to v, = 25.6 kHz . Data are saved in ASCII format, with 22
digits of representation. From Roadrunner, data are transferred to a PC, via floppy
discs. The PC has the following main characteristics: 1 GHz (frequency), 256 Mb
RAM (memory), 40 Gb (hard disk capacity). They rate the PC at the average of
actual (public) technological level (years 2001, 2002). A laptop could also be
successfully employed to implement the method.

5.3.2. Initial Simulation Parameters

In the description of the platform above, the shaft rotation speed and the sampling
frequency were given: v, =45.67 Hz and v, =25600 Hz. Thus, a complete

rotation takes about 21.9 ms, encoded by 560 vibration data samples. The vibration
data length is set to N = 222 = 4194304 samples, which takes 163.84 s in 7482 full
rotations (see Eq. 1).

The vibration frame length is set to N, = 213 =8192 samples (320 ms,

~15 full rotations). The number of nonoverlapped frames is then 512 (see Eq. 4),
whereas every data segment includes three successive frames, as explained in the
previous section. The frame length involves a frequency resolution of 3.125 Hz.

The window selected to smooth the overlapping between segments is
Tuckey type, with 33.33% rectangular shape (see Figures 5.4 and 5.5). A high-pass
filter will be applied to windowed segments. The LF cutoff frequency is set 7 times
the largest natural frequency: v, =7x325=2275Hz.

The vibration spectrum is segmented into K =32 subbands. Every
subband includes 128 rays for a bandwidth of 400 Hz. This setting realizes a good
compromise between sp accuracy (each one is computed by using 128 spectral
values) and bandwidth. The severity levels are set as already explained (L =12
levels).

5.3.3. Comparative Discussion on Simulation Results

The experiments have been organized according to the following scenario:

1. Collect raw vibration data from four tested bearings: a standard
(defect free) one (labelled S720913, according to its geometry); one with
a chop on the inner race (I1720913); one with a spall on the outer race
(0720913); one with chops on both inner and outer races (M720913).

2. Apply EA to detect the severity degree of defects and to check if
multiple defects on bearing M720913 are visible or not. The following
settings are performed in this aim: consider vibration segments of more
than 1 s length; operate with 1/3-octave filters appropriately designed (as
described in (Barkov et al.,1995a,b)); take full rectified envelope; focus on
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the LF sub-band of envelope spectrum, for a bandwidth at least equal to 2
kHz.
3. Apply the fuzzy reasoning method.

A. Envelope analysis results

A standard horizontal vibration data segment of about 1.3 s (32,768 samples, 4
frames) and a zoom on the portion between 0.2 s and 0.25s are represented Figure
5.17a. The shape is almost harmonic, as expected. In Figure 5.17b, the
corresponding spectrum is represented in dB, with a resolution of 0.78125 Hz
(16,384 rays on half band 0-12.8 kHz). The energy of vibration is practically
concentrated in LF-MF subband 0-5 kHz. The sensor resonance is insignificant.
The peaks into the LF band are due to bearing natural frequencies. The envelope of
standard signal, as well as a similar zoom as before, is drawn in Figure 5.18a.
Signals appear very close to the white noise. Actually, the LF part of the envelope
spectrum in Figure 5.18b reveals a quasi-constant variation on all frequencies
around the spectral acceleration of 102.7 cm/s” (the spectrum average).

Vibration segment (defect free) Defect free vibration spectrum
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Figure 5.17. Standard vibration (a) and its spectrum (b) (bearing S720913).
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Figure 5.18. Standard envelope vibration (a) and its spectrum (b) (bearing S720913).

For the next three cases, the length of vibration data segments is identical
to the standard set above. The vibration segments are represented in Figures 5.19a,
5.20a and 5.21a, while their corresponding spectra are found in Figures 5.19b,
5.20b and 5.21b (see Appendix). The time variations appear to be more irregular
than previously. The harmonic behaviour is distorted by a noise encoding the defect
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type. The effect of modulation could be seen in the zoomed portions of these
signals, especially for the outer race defect. The sensors are forced to resonate and
this effect is replicated towards LF and MF bands in all spectra. A significant
resonance peak is located in band 6-10 kHz for all defective bearings, while it is
missing for standard bearing. Also, peaks are more emphasized within the LF
spectral zone for defective bearings than for standard.

The 1/3-octave filter (specific to EA) has been designed such that its
central frequency is located somewhere in the median spectral valley between 4 and
6 kHz. Actually, it is selected as the minimum point of the spectral median in
subband 4-6 kHz. This corresponds to the selection performed in (Barkov et
al.,1995a,b) where the central frequency is located in a subband corresponding to
the flattest zone of spectrum. In this specific case, the bandwidth is determined by
the resonance peak flanking the valley to the right (in subband 6-10 kHz). The
bandwidth is set as 3/2 times the difference between the location of this peak and
the central frequency. The filter length is set to 2048 coefficients, in order to
preserve high accuracy of filtering.

Figures 5.19, 5.20 and 5.21 are also concerned with the envelope signals
(c) and the corresponding (envelope) spectra (d). In the case of single-point defects
(Figures 5.19¢ and 5.20c), the abnormal behaviour is illustrated by the spectral
envelope prominent peaks located around the multiples of natural frequency
corresponding to the defective part: BPFI=325.061 Hz (Ball Pass Frequency on

the Inner race) or BPFO=268.606 Hz (Ball Pass Frequency on the QOuter race).

The peaks decay exponentially, such that starting from the 9th multiple, they are
practically sunk into the noisy part of spectrum. The severity degree is quite easy to
estimate from these graphics, if the height of the largest peak is compared to the
average standard envelope spectrum: about 3.5 (i.e., 10.88 dB) for inner race defect
and about 4.5 (i.e., 13.06 dB) for outer race defect. This rates the defects as medium
ones. Note, however, that the estimation could not be extremely accurate, since the
vibration segments lengths are small (only 1.3 s, i.e., about 59 full rotations). An
accurate estimation requires at least 100 rotations, but this increases the noisy part
in all spectra, such that spectral estimation techniques should be employed
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996), in order to provide
readable spectra.

Refer now to the multiple-point defect (Figure 5.21c). The envelope
spectrum is so noisy that, practically, it is impossible to isolate some characteristics
related to the defect type, though the spectrum in Figure 5.21b does not look very
different from the spectra in Figures 5.19b and 5.20b. The energy increase revealed
by the envelope spectrum is mainly due to the vibration signal itself (see Figure
5.21a), which has a larger energy level than in the case of single-point defects
(Figures 5.19a and 5.20a). But the general level of noise is also increased. The EA
failure in this case could have some plausible explanations. Besides the 1/3-octave
filter selection (note that EA is very sensitive to this filter), perhaps the vibration
model considered here cannot match the interpretation principle that worked well in
the case of single-point defects (i.e., associate the natural frequencies directly to
defect nature and location).

B. Fuzzy-statistical reasoning results
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The three vibration signals have been entered into two MATLAB programs
implementing the method described in the previous section. Thus, after collecting
all information about rsp norms occurrences in box cells of sn, three occurrence
degrees distributions have been obtained. For single point defects, there are two
main rsp norms concentrations: one for MF and one for HF zones, but the most rsp
norms seem to occur in the MF zone. On the contrary, for multiple defects, they
occur rather in the HF zone. Thus, a first criterion for discriminating between
single- and multiple-point defects is revealed.

After constructing the fuzzy model, a number of faults classifications
resulted, for each tested bearing: 30 for 1720913, 32 for 0720913 and 27 for
M720913. The selection of an optimum faults classification is automatically
performed (as described). The trade-off between the confidence degree (Eq. 49) and
the classification entropy (Eq. 50) is quantified by means of geometric mean
criterion (Eq. 51) that points to the optimal classification index. The variation of
confidence degree and entropy among classifications as well as the shape of the
geometric mean are illustrated in Figures 5.22, 5.25 and 5.28, for each bearing. The
optimum classification indexes are: #20 for I720913, #20 for 0720913 and #17
for M720913. The corresponding optimum classification maps are pictured in
Figure 5.23 (inner race defect), Figure 5.26 (outer race defect) and Figure 5.29
(multiple defects). For each classification, the representation is illustrated by using
the grey levels scale to the right. One recognizes the sn by looking at the grid of
each map. Thus, box cells that belong to the same class (cluster) have the same
colour. Moreover, inside every box, the index of class the box belongs to is written,
except the boxes that do not partake in the classification and belong to the inactive
cluster. Besides the numerical parameters describing the classification minimum
entropy (optimal) cluster, the average of rsp norms is represented as a curve passing
through the map. Obviously, clusters are more or less grouped around this curve for
all classifications.

As already mentioned, the most difficult part of the fuzzy model is the
interpretation (or analysis) of classification maps. This means specific defects
should be put into direct correspondence with map topologies. Such an analysis is
more rigorous and simpler to perform than by inspecting the vibration spectrum,
since a part of analyst reasoning has already been automated.

The shape of inactive cluster or of the rsp norms average could already
constitute an image of defect types. For the three optimum classifications described
above, the inactive clusters are all different, though their shapes are closer to each
other for single-point defects. But this effect is noticed in EA as well: Figures 5.19d
and 5.20d are not very different, since the values of the two corresponding natural
frequencies are close to each other (BPFI=325.061 Hz and BPFO=268.606 Hz).
The inactive cluster for multiple defects seems to be quite different, but the same
interpretation principle or rules as for single-point defects could be used. In the case
of EA, the interpretation rule that worked very well for single-point defects is
useless in the case of multiple-defect spectrum (Figure 5.21d).

Another entry yielding map interpretation is to focus not on the inactive
cluster, but rather on the active ones. Of course, one could consider all classes in a
map (optimal or suboptimal). But this involves a complicated analysis. Therefore,
some specific class (or a reduced number of classes) should be emphasized as
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representing the defect(s). An option is to consider the biggest class as revealing all
subbands affected by the defect(s). A different option is to extract the minimum
entropy class (optimal cluster), which, in general, is smaller than the biggest class
and, therefore, more focused on a few subbands. These are very likely the most
affected by defect(s). (Recall that minimum entropy means maximum occurrence
degree of rsp norms.) Other representing classes could also be selected.

The optimal detected clusters are the following:

a. for bearing I720913 (inner race defect): cluster #13,
with normalized entropy 0.516168, focusing on subband
5200-5600 Hz (MF);

b. for bearing 0720913 (outer race defect): cluster #20,
with normalized entropy 0.711234, focusing on subband
4800-5200 Hz (MF);

c. for bearing M720913 (inner and outer race defects):
cluster #27, with normalized entropy 0.709225, focusing
on subband 12.4-12.8 kHz (very HF).

That the optimal clusters #13 and #20 are located in adjacent box cells is
not coincidental, but is due to the fact that the corresponding natural frequencies
have values close to each other. The extreme HF subband pointed by the multiple
defects is somehow surprising. A better interpretation could be given by
considering other sub-optimal classifications (see the next discussion). But, in any
case, a good insight concerning the “full optimality” (optimal clusters into optimal
classifications) is the following: single-point defects are indicated by optimal
clusters around the LF or MF peaks of rsp norms average (and there is a correlation
between natural frequencies and focused subbands), while the optimal clusters of
multiple-point defects seem to be located around the HF peak of average. A more
refined frequency segmentation, with a larger number of subbands than here
(K =64) could probably help the user to make a sharper distinction between
focused subbands in the case of single-point defects. Practically, the EA results are
obtained by the fuzzy reasoning method as well. Concerning the multiple-point
defects, it is possible that a frequency interpretation in terms of natural frequencies
cannot be performed, but increasing K should lead to the same effect: the
distinction between different defects should be easier to achieve. Unfortunately, the
number of subbands (K ) can only be increased at the expense of running time,
especially due to the procedure evaluating the fuzzy transitive closure, which is the
most time-consuming part of the algorithm (exponential type).

The severity degree estimated here is located on the 4th level (between 6
and 9.54 dB) — the first medium severity one — for single-point defects and on the
5th level (between 9.54 and 12.04 dB) for multiple defects. The first location is
close to the severity degree estimated by EA for inner race defect (10.88 dB), but
quite different from the outer race defect estimated severity (13.06 dB). For
multiple defects, EA offers no severity degree estimation, but in this case the
location of multiple defects optimal cluster is closer to the outer race severity (13.06
dB). Both estimations here are below the estimations proposed by EA. Since the
severity degrees are conventionally set and in both methods the raw vibrations have
been affected by filtering, the comparison in terms of severity degree is probably
irrelevant. One could only note that, for the fuzzy-statistical method, the estimated
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severity degree for multiple defects seems to be plausible, because the general level
of vibration noise has been increased. This effect is proven by Figures 5.17a, 5.19a,
5.20a and 5.21a, where the amplitude of corresponding raw vibrations is about 3
cm/s? for standard and inner race defect, 2 cm/s” for outer race defect, but 5 cm/s*
for multiple defects.

In order to extract more insights concerning classification map
interpretation, several classifications should be depicted around the optimal ones.
Their confidence and granularity are decreasing with classification index (according
to the holonic phenomenon). In this context, some suboptimal classifications have
been represented in Figure 5.24 (inner race defect), Figure 5.27 (outer race defect)
and Figure 5.30 (multiple defects). They are selected according to the geometric
mean values of Figures 5.22, 5.25 and 5.28. Thus, the suboptimal classifications
have the best geometric mean values under the maximum one in every case.
Sometimes, this requirement is fulfilled by local maxima, as in the case of bearings
0720913 and M720913. One could notice how box cells are more and more
grouped together as the classification index increases.

An interesting observation could be noted with regard to all these maps:
the optimal cluster (indicated by the optimal classification) is also optimum (with
minimum entropy) for a large number of suboptimal classifications surrounding the
optimal one, in the case of single-point defects. Though its index is changing (due
to holonic phenomenon), its location is identical. The optimal cluster persistence
among faults classifications is another good insight about the single-point defect
nature, because, for multiple defects, the optimum cluster changes among
classifications. However, in the case of multiple defects, it seems that another
optimal cluster could also be considered, but extracted from suboptimal
configurations. This is in fact the cluster #11 in classification #16 (as well as in
classifications #13, #14, and #15, although not shown here). If one revisits Figure
5.27, one could notice that all these classifications, though suboptimal, prove a
good compromise between confidence and entropy (they are only slightly below the
optimal classification). Their unique optimum cluster focuses on the subband 7200-
7600 Hz (still on the HF peak), but points to a lower severity degree (on level 3-6
dB, incipient).

One can infer from this analysis that selecting the cluster detected as
optimal for the maximum number of classifications could be a good hint about the
defect nature. But a reliable diagnosis requires a whole set of inference rules (and
not isolated ones), in order to associate classification maps with specific defects and
their severity degrees. A good achievement is that, by fuzzy-statistical reasoning,
defects could be classified regardless of their nature as single- or multiple-point
ones.

5.4. Concluding Remarks

Although with some obvious limitations, the method presented above aims to
automate a part of human reasoning when detecting and classifying defects and to
improve the multiple defect diagnosis. The main advantage of this method is that
the defect classification maps could allow the user to perform a reliable detection
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and diagnosis of defects, independently of their nature. Another advantage is its
generality. On the one hand, the natural oscillation frequencies of the tested
component play only a secondary role. On the other hand, gears, belt transmissions,
or other vibration sources could replace bearings, provided that at least a good
description of possible defects is a priori known in each case. Note that prefiltering
is not mandatory: the fuzzy model could work with the whole raw vibration as well
as with prefiltered data. The method’s main drawbacks are the complexity (slightly
bigger than EA complexity) and the difficulties in finding appropriate
interpretations for classification maps.

Approaching the human reasoning in fault diagnosis is a demanding task.
Not only because human reasoning is a complex mechanism (far to be completely
understood nowadays), but also because such an attempt is mostly concerned with
the inexplicable part of reasoning.

5.5. Appendix. Graphical Simulation Results

Vibration segment for a defect located on inner race Vibration spectrum for a defect located on inner race
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Figure 5.19. Envelope analysis for bearing 1720913.
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Vibration segment for a defect located on outer race Vibration spectrum for a defect located on outer race
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Figure 5.20. Envelope analysis for bearing 0720913.

Vibration segment for defects located on inner and outer races. Spectrum for defects located on inner and outer races.
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Figure 5.21. Envelope analysis for bearing M720913.
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Figure 5.22.  Selecting the optimum defect classification for bearing 1720913.

Classification #20 inside the statistical network for bearing 1720913. Optimal.
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Figure 5.23. Optimum defect classification # 20 for bearing I720913.

Classification #19 inside the statistical network for bearing 1720913. Sub-optimal Classification #21 inside the statistical network for bearing 1720913. Sub-optimal.
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Figure 5.24. Suboptimal defect classifications #19 and #21 for bearing I720913.



174 'V Palade, CD Bocaniala and L Jain (Eds.)

The trade-off between confidence degree and opposite entropy

Geometric mean between confidence degree and opposite entropy

1 T T
|

s Optimal indbx: 20

|
T T T TR Fuzzy contil !
o8 — -\ L ___1___1 o8- — — —!_ _ _ ! _ _ rumyentoby:3s70s2 | _ !
- - | | ¥ Optimal clugter(s) entropy: 0.711234 |
@ [ — 3 [y N
07— 07—
3 3
2 3 | | | N |
Foe — — 4 — — —+ — — —|— - o —————— ===
5 = i | 5 T = |
E E | | |
05 — — — — —— - —— —f - — X - —— - — — & — — 05 — — — — — — Q| k- - — — —
° ° | [
2 2 I | |
o — — - — LAl 1TER L S04 — — — - oa— - —
= E | |
02~ — — 02 — f —j= == - - - 7=~
A | | |
01 A — - — = = = Oog 0 /- — - — — - — - — -~ —
| | | | |
L L | L L
0 5 10 25 30 0 5

Figure 5.25. Selecting the optimum defect classification for bearing 0720913.

Classification #20 inside the statistical network for bearing 0720913. Optimal.
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Figure 5.26. Optimum defect classification # 20 for bearing 0720913.

Classification #19 inside the statistical network for bearing 0720913, Sub-optimal.
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Figure 5.27. Suboptimal defect classifications #19 and #23 for bearing 0720913.
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Figure 5.28. Selecting the optimum defect classification for bearing M720913.

Classification #17 inside the statistical network for bearing M720913. Optimal.
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Figure 5.29. Optimum defect classification # 17 for bearing M720913.
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Figure 5.30. Suboptimal defect classifications #16 and #22 for bearing M720913.
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