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When searching for faults threatening a system, the human expert is sometimes 
performing an amazingly accurate analysis of available information, frequently by 
using only elementary statistics. Such reasoning is referred to as “fuzzy reasoning,” 
in the sense that the expert is able to extract and analyse the essential information of 
interest from a data set strongly affected by uncertainty. Automating the reasoning 
mechanisms that represent the foundation of such an analysis is, in general, a 
difficult attempt, but also a possible one, in some cases. The chapter introduces a 
nonconventional method of fault diagnosis, based upon some statistical and fuzzy 
concepts applied to vibrations, which intends to automate a part of human reasoning 
when performing the detection and classification of defects. 

5.1. Introduction 

Nowadays, the classical fault tolerant design paradigm is enriched by new methods 
and techniques (Wilsky, 1976; Reiter, 1987; Isermann, 1993; 1997). The trade-off 
between costs involved by ignoring fault prevention and costs of hyper-safety of 
systems is improved. The effort in designing satisfactory modules aptly to prevent 
failures is decreased, due to important technological advances. In a complete 
structure of fault detection and diagnosis, a module concerned with monitoring of 
system symptoms and anticipation for possible failures is included. In general, the 
symptoms are detected by using two kinds of methods: analytical and heuristic.

The analytical methods are involved with systems for which the 
characteristic parameters are measurable (or quantifiable). These parameters are 
determined by analysing either some signals or the system itself. For instance, the 
basic parameters of monitored signals are: the amplitude, the variance, the auto-
correlation, the power spectral density, etc. Basically, the system analysis is 
founded on an identification model, in general parametric (Söderström and Stoica, 
1989). Various models are used, such as: (auto)regressive, state representation, 
described by some parity equations, etc. The model parameters are deduced from 
measured input-output data by system identification techniques. In both cases, a 
quantitative expertise has to be performed. This consists mostly of comparisons 
between the measured values and a set of tolerated values assigned to normal 
behaviour of the system. The malfunction symptoms appear when the parameters 
start to systematically provide values beyond tolerances. Moreover, a classification 
of symptoms can be realized, depending on the difference between the measured 
and tolerated values.  
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Sometimes, the analytical approach is not sufficient or cannot be 
performed (especially because the characteristic parameters are not quantifiable). 
Moreover, the symptoms meaning is important for interpretation of associated 
faults. Often, this relies on the qualitative assessment of a human operator as expert. 
The expert experience plays an important role in symptoms investigation. For this 
reason, one says that the detection of symptoms is performed by using heuristic 
methods (from heuriskein (Greek) – to search, to investigate). The nonquantifiable 
information observed from the system could be reflected for example by: colours, 
smells, noise tones, etc. However, some quantifiable parameters, but with “fuzzy” 
values, represented by linguistic terms like: “small,” “medium,” “large,” “about 
null,” etc., belong to this category as well. The human operator integrates this 
information in a quasi-empirical history of system functioning. Qualitative 
comparisons are performed between the observed information and the information 
specified by the history. The history includes not only information about the normal 
functioning states, but also about the maintenance process, repairs, fault types, life-
time, fatigue, etc. The decision concerning the symptoms and faults is based on 
operator’s skills, experience or flair and is affected by uncertainty. However, the 
experience about the system can be improved through a learning mechanism. 

Like in medicine, fault prevention remains a demanding task that requires 
both self-anticipation from the system and intelligent approach from the user. 
Usually, a self-anticipatory system transmits information about its behaviour 
through some anticipating signals. For example, human or animal muscles have 
different electrochemical activity just before they are damaged, due to high 
intensity and long effort (von Tscharner, 2000). Another example is issued from 
mechanical systems, for which the vibrations are anticipating signals (Angelo, 
1987; Bedford and Drumheller, 1994; McConnell, 1995; Wowvk, 1995). Their 
intimate structure changes some time before a failure occurs (Braun, 1986). But this 
change is so fast and sometimes so difficult to distinguish that, without special 
detection and decoding techniques, it could be ignored. These techniques focus on 
the extraction of vibration main characteristics (features), in order to classify the 
possible faults. In general, the strategy adopted within a fault detection method 
starting from vibrations consists of the following stages: signal acquisition, signal 
analysis (in order to extract features), features grouping, faults classification 
(eventually adaptively, through a continuously learning mechanism), fault 
identification (if present). 

Vibration acquired from mechanical systems is interesting mainly for its 
capacity to encode information about the defects or faults threatening them. Several 
distinct efforts in detection of machinery defects can be noticed, but only in the last 
few decades has vibration become crucial for automating this process. The earliest 
method, which dates back to the first days of machinery (and which is still in use 
today), is founded on a trained observer or listener referred to as (expert) analyst. A 
person with a great deal of experience in working with a particular machine or 
engine can detect flaws in operating machinery, by simply “watching” or 
“listening” to it. Very often, the resulting diagnosis, based on empirical 
observations and deductions, is amazingly accurate, but difficult to model. Other 
subsequent attempts became more systematic and used some parameters, such as: 
the lubricant temperature (which, unfortunately, provides too late a diagnosis, after 
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the defects are already severe), the oil cleanness (which requires an exhaustive and 
often inefficient analysis), the noise level of acoustic emission (which is often 
enabled only by already fatigued elements), etc.  

The most efficient methods in early detection of defects are using signal 
processing (SP) techniques (Oppenheim and Schafer, 1985; Proakis and Manolakis, 
1996). These methods differ from many typical SP applications where the noise 
attenuation is a fundamental requirement. When using vibrations, exactly the noise 
is the most concerned part in the analysis. This is due to the fact that not only the 
natural oscillations of machinery could encode the defective behaviour, but also the 
noise corrupting them. Moreover, the applications revealed that the signal-to-noise 
ratio (SNR) is extremely small for vibrations encoding information about defects. 
Therefore, the models of vibration used in fault detection and diagnosis (fdd) are, in 
fact, models of their noisy parts, encoding all the information about defect types 
and their severity degrees.  

One of the most interesting applications in fdd is concerned with bearings, 
due to their simple structure and large integration within mechanical systems 
(Howard, 1994; FAG OEM and Handel AG, 1996; 1997). By inspecting the 
spectrum of vibration acquired from bearings, some researchers believed that its 
irregular shape is mainly due to the environmental noise and correlation between 
different components. Hence, they introduced techniques to “remove” the white 
noise and decorrelate the data, based on SP concepts such as: autocorrelation,
backstrum, or cepstrum, but the irregularities are only slightly smoothed and the 
defect severity is difficult to derive. Perhaps the most popular method to extract 
information about defects in bearings (and geared coupling) is the (spectral) 
envelope analysis (EA). Some of these techniques (especially EA) are described in 
(Stefanoiu and Ionescu, 2002). They are poorly modelling the humanlike diagnosis, 
which probably requires nonconventional approaches. Actually, one can notice that 
experienced analysts perform a kind of fault classification, by simply inspecting the 
spectrum. Moreover, they are able to improve the accuracy of classification for 
every new case they analyse. It is by far not completely known what kind of 
reasoning lies behind their diagnosis, but one has assumed that the brain performs a 
qualitative statistical assessment inputting some pattern recognition mechanisms 
towards this goal. A very interesting approach combining statistics and pattern 
recognition has been introduced in (Xi et al., 2000). This is in fact an attempt of 
automating human reasoning, which resulted in a quite efficient and simple fdd 
algorithm, though with unavoidable limitations.  

In this research, one started from the largely accepted idea that human 
reasoning is also fuzzy. This means that a solution to a problem could be issued 
even from unclear, vague or ambiguous information, i.e., from information strongly 
affected by uncertainty. Usually, the analyst considers the solution the most 
“plausible” one, according to the available data. When an fdd or/and classification 
has to be performed from vibrations, the analyst’s experience is crucial for the 
accuracy of subsequent analysis. Unfortunately, the analyst has to cope not only 
with external perturbations affecting the data, but also with his/her own 
subjectivism when performing such an analysis. Usually, this analysis is based on 
some simple statistical assessments aiming to increase its objectivity. Therefore, the 
reasoning hidden behind data analysis could be automated by performing a 
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combination between spectral statistics and fuzzy clustering (in entropy sense (Klir 
and Folger, 1988)), which should decrease both the subjectivism and the 
perturbations influence. Moreover, comparisons between the tested vibration and a 
standard (defect free) vibration could be performed, without specifying from the 
beginning the number of classes and/or their meaning, which has to be discovered 
later. In fact, this approach combines analytic and heuristic points of view, in order 
to build a model of human reasoning when performing fdd.  

The chapter is structured as follows. The fuzzy-statistical reasoning 
method is presented in depth in the next section, which has two main parts: the first 
one is devoted to vibration acquisition and preprocessing, whereas within the 
second one, the fuzzy-statistical model is described. The resulting algorithm is 
practically listed in Section 5.2 as well, simultaneously with the method description. 
The simulation results and their interpretations are given in Section 5.3. The 
graphical simulations are presented in the Appendix. Some concluding remarks 
complete the chapter. 

5.2. The Fuzzy-Statistical Reasoning Method 

One (but probably not unique) way to overcome some fdd limitations when using 
spectral or envelope analysis is to combine the spectral representation with statistics 
and subsequently to use a fuzzy model aiming to minimize the diagnosis 
uncertainty. This approach is described next. 

5.2.1. Method Overview 

When measuring vibrations of a mechanical system, several signals are combined 
together within the resulting data, such as: natural oscillations, interference signals 
(due to interactions between its different parts); defect encoding noise, indicating 
that something is wrong with one or more of its parts and environmental noise. The 
crude mechanical vibration is converted into an electrical vibration signal ( v ) by 
means of a sensor connected to a transducer (which could induce slight distortions). 
For example, in the case of a bearing, if data  are rich enough (few thousands of 
rotations), the vibration spectrum 

v
V  looks like that in Figure 5.1. Two cases could 

be discussed here. 
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Figure 5.1. Overall vibration spectrum in case of defects. 
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When the bearing is defect free, the spectral energy is mainly concentrated 
inside the low-frequency band (LF) encoding information about oscillations and 
their natural frequencies (derived from bearing geometry, depending on shaft 
rotation speed). Few multiples of natural frequencies are replicated within the 
spectrum, but their power has an exponential decay (due to damping). In the case of 
defective bearing, the idea that the defect noise is basically generated by visible or 
microscopic quasi-random shocks has been largely accepted today. Shocks are 
modelled by trains of impulses and they put the sensor into resonance state. 
Usually, sensor resonance appears at (very) high frequency, but, by convolution 
with a train of impulses, it is replicated towards low frequency as well. In Figure 
5.1, this is suggested by the energy concentration around some peaks located in 
middle-frequency band (MF). Usually, a resonance peak is mixed with basic LF 
spectrum as well, such that it could hardly be distinguished. The high-frequency
band (HF) rather encodes information about resonance corrupted by environmental 
noises. The spectrum could change (even dramatically), depending on the applied 
load, sensor locations, shaft speed, bearing mounting, etc.  

The EA principle is easy to explain now: select one of the resonance 
peaks, apply a bandpass filter on the vibration around the selected resonance, take 
the envelope of the resulting signal and zoom the LF part of the spectral envelope. 
If isolated, the defect appears now as distinctive peaks at locations depending again 
on natural frequencies. The higher the peaks are, the more severe the defect. 

But the analyst just looks at the spectrum and provides the diagnosis by 
observing the changing parts relatively to the standard spectrum, though the latter 
has no constant shape. This means he/she is focusing on some spectral subbands 
that reveal significant shape and energy differences from the standard. Moreover, 
the similar differences are grouped in classes and each class points to a certain 
defect or combination of defects (with some confidence degree). 

Therefore, when automating this kind of reasoning, the following 
operations could be involved: define a set of statistical parameters (sp) that quantify 
the information about shape and energy of a signal; split the spectrum into a number 
of subbands; compare the tested and standard subbands in terms of sp; group the 
results in similarity classes, by using a global fuzzy relation between them; select 
the best fault class, according to an entropy-based criterion aiming to minimize the 
information uncertainty. This constitutes the kernel of the method described 
hereafter. The presentation covers two main parts. The first one is concerned with 
vibration acquisition and preprocessing. The second one is devoted to the fuzzy-
statistical model. 

5.2.2. Vibration Data Acquisition and Pre-processing 

Let us denote the raw vibration data by v . In practice, v  is a finite length, finite 
bandwidth and discrete time signal encoding the information about defects that 
could exist within the tested component. In this case, the signal is acquired from 
bearings. The acquisition and preprocessing procedure encompasses several steps 
that are described next. 

Step 1: Set the acquisition parameters.  
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The first parameter employed in data acquisition is the sampling rate, denoted by 
s . The selection of s  is extremely important for the next analysis. On the one 

hand, s  should be large enough, in order to avoid aliasing (Oppenheim and 
Schafer, 1985; Proakis and Manolakis, 1996). On the other hand, large s  values 
involve expensive devices. Therefore, a suitable value should be selected, such that 
the resulting signal encode most part of the desired information about defects and 
the acquisition costs be affordable.  

The sensor characteristic usually extends beyond 140–150 kHz. If defects 
exist, the sensor resonance is replicated towards LF and MF bands within the 
vibration spectrum (see Figure 5.1). At least 3 or 4 resonance peaks are located in 
the  0–20 kHz band and at least 2 of them lie inside the 0–10 kHz subband. In fact, 
the analyst focuses on this LF subband. Usually, the vibration spectrum extends 
beyond the limit of 20 kHz, but the band of interest remains 0–10 kHz (the SNR 
decreases rapidly beyond 10–12 kHz, because of HF noises that dominate the other 
fast decaying vibration components). All these arguments lead to the following 
trade-off in vibration acquisition:  

a. Prefilter the sensor signal by using a low-pass analogic anti-
aliasing filter (Proakis and Manolakis, 1996) that removes the HF 
components beyond 150 kHz;  

b. Use the sigma-delta modulation technique (Proakis and 
Manolakis, 1996), in order to restrict the signal in the range 0–12 
kHz, to attenuate the quantization noise and to avoid aliasing (a 
new low-pass analogic filter is applied in the end);  

c. Sample the resulting analogic signal by setting a rate of at least 
20–24 kHz (i.e., kHz20s ), according to Shannon-Nyquist 
Sampling Theorem (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996). 

A standard sampling rate that has been employed for example in (Maness 
and Boerhout, 2001) is kHz6.25s , which yields accurate vibration spectra in 
the range 0–12.8 kHz. Observe the powers of 2 hidden behind these values: 

 and , which avoids some computational errors 
due to division by multiples of 2.  

100260025 8 100280012 7

Another parameter of interest is the vibration length, denoted by .
Normally, this is set according to the main rotation frequency 

N
r  and sampling rate 

s . The vibration data should include a minimum number of complete rotations, 
 (usually, ). Then, obviously: rn 2000rn

rsrnN / (1) 

For example, if 2000rn , Hz50r  (3000 rpm) and kHz6.25s ,

the number of vibration data is:  samples, which takes 40 
s. Usually,  is also set as a power of 2 multiple and this is the reason, in Eq. 1, 

000,024,1102 310N
N

s  is sometimes set with the same property. This setting is very useful in 
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evaluation of spectrum, when using a fast fourier transform (FFT) algorithm 
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996).  

Usually, the apparatus performing the vibration acquisition (connected to 
the sensor) could be tuned by only specifying these two parameters: s  and  or 
the duration of acquisition. The corresponding operations necessary to store the data 
in a memory are transparent for the user. 

N

Step 2: Construct the raw vibration. 
The sensor capacity of perception is determined by its bearing position. Different 
data could be obtained for different locations on the same bearing. When the 
bearing is under load, this variability is even more accentuated. This gives rise to 
the problem of appropriate sensor location, which is uncertain. The uncertainty 
could be attenuated if several sensors are located in different positions (instead of a 
single one). Unfortunately, in this case, other problems occur. For example, the 
acquired signals have to be mixed in a unique raw vibration, by synchronizing them 
appropriately. Another problem is that the number of sensors could increase the 
cost of acquisition solution. Sensors should be as light as possible, in order to 
introduce insignificant distortions into the genuine vibration. But, the lighter the 
sensor, the more expensive. Also, in general, sensors have slightly different 
characteristics. The bigger the sensor number, the more difficult to denoise the data. 
Hence, a suitable number of sensors should be employed, such that the acquired 
signals be easy to synchronize and the cost of acquisition be affordable.  

An interesting and efficient solution is introduced in (Maness and 
Boerhout, 2001), as illustrated in Figure 5.2. Two sensors are employed to acquire 
the horizontal and the vertical vibrations, denoted by  and, , respectively. 
These are, in fact, two quadrature signals easy to synchronize, by considering them 
the real and the imaginary part of raw vibration: 

xv yv

yx jvvv (2) 

v

v ≡ v + j v

v

Figure 5.2. Construction of raw vibration from two quadrature signals. 

The resulting signal is complex valued, but its sensitivity to sensors 
location is attenuated. In the absence of load, there are no significant differences 
between quadrature signals in terms of magnitude. If a load is applied, these 
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differences become important and should be accounted. In this case, Eq. 2 should 
be replaced by: 

yx jbvavv (3) 
where  and  are two constants selected such that  and  have 
approximately the same range of variation. For example, in the case of vertical load, 

 could be set to 1 (no horizontal load), whereas b  should be set inside (0,1) 
interval, since the load amplifies the defect noise of vibration.  

0a 0b xav ybv

a

Step 3: Vibration segmentation and windowing. 
1,0][ NnnvThe vibration data set  is quite large. If the Fourier transform (FT) 

were to be applied on this set, the evaluation could be very slow. Moreover, the 
resulting spectrum is practically useless since the vibration signals are also non-
stationary (Cohen, 1995). In other words, the spectrum is time varying. This 
involves the overall spectrum reflecting the intimate behaviour of vibration only on 
average, whereas, on the contrary, the spectrum variations are important for 
learning as much as possible about how the bearing runs. Therefore, the vibration 
segmentation becomes a necessity. In this context, one operates with two concepts: 
(vibration) frames and (vibration) segments.

A frame is a subset of successive samples that could not be further 
segmented. Frames could or could not be overlapped. In this approach, the frames 
are nonoverlapping, but the overlapping effect is hidden behind the concept of 
segment. One can denote by  the m-th frame of vibration (where Mm ,0mv ) and 
by  the frame length (constant for all frames). Obviously, the number of 
nonoverlapped frames is: 

NN f

fNNM /1 (4) 

where  is the smallest integer superior or equal to a a . It is suitable that 
be a divisor of . For example, if  is a power of 2 multiple (as suggested within 
the previous step), then  could be 512, 1024, 2048, etc. For the model 
constructed next, one requires that 

fN
N N

fN
2M  (i.e., at least 3 frames should be 

available). The frame length should be selected not only according to , but also 
to the minimum resolution of frame spectrum (at least 400 rays for vibration in the 
range 0–10 kHz). The statistical part of the model constructed later is sensitive to 

, since it determines the precision of corresponding sp.  

N

fN
A vibration segment includes three successive (nonoverlapping) frames: 

the previous frame ( ), the current frame ( ) and the next frame ( ), for 1mv mv 1mv

1,1 Mm 1M. Thus, the vibration data could generate up to  segments of 
length  each. Unlike frames, segments are overlapping (two of the three frames 
in a segment are identical within the next segment), in order to prevent marginal 
effects when filtering. Actually, the characteristic frame of a segment is the current 
one, located in the middle. Its left and right neighbours are only playing the role of 

fN3
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background signals, which avoids zero-padding and performs a smooth passage 
from a frame to another, when filtering.  

The samples of neighbour signals could or could not be as important as the 
samples of current frame in a segment. This feature is controlled through 
windowing. The windowing technique is very simple, in fact. Let  be a 

length window that slides along the vibration data with a step of  samples. Then 
the current segment is extracted from raw vibration by simply multiplying 

w fN3 -

fN
v  and 

 in a certain position (0, , , ..., ). The sliding effect is 
suggested in Figure 5.3, where the window support is given by three successive 
frames (a segment, in fact). The window symmetry axis should be centred on the 
current frame middle point.  

w fN fN2 fNM )2(

Several windows are usually employed in SP (Proakis and Manolakis, 
1996). Some of them are weighting not only the neighbour frames but also some 
samples of central frame (like the window in Figure 5.3). The most utilized 
windows are the following nine, expressed next only for their -length support wN

1,0 wNn , with .2wN

Raw vibration support: 0...N-1

Segment support:

(m-1)N ...(m+1)N

Sliding

window

v v v

Figure 5.3. Windowing the raw vibration. 

1. Rectangular (Oppenheim and Schafer, 1985; Proakis and Manolakis, 
1996): 1][nw .
2. Bartlett (or triangular) (Oppenheim and Schafer, 1985; Proakis and 

Manolakis, 1996): 
1
2

12
1][

w

w

N

Nn
nw .

3. Blackman (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

4cos8.0
1

2cos5.042.0][
ww N
n

N
nnw .

4. Chebyshev: recursive algorithm (see MATLAB function chebwin).
Besides the support length ( ), a second parameter is necessary: ,
which stands for the attenuation in decibels (dB) of the window spectrum 
side lobe with respect to the main lobe. As  increases, the window 
aperture decreases, but below 70 dB, significant marginal errors are 

wN 0wr

wr
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introduced. A good trade-off between the window aperture and its 
marginal errors is obtained for dB]100,80[wr .
5. Hamming (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

2cos46.054.0][
wN
nnw .

6. Hanning (Oppenheim and Schafer, 1985; Proakis and Manolakis, 

1996): 
1

2cos1
2
1][

wN
nnw .

7. Kaiser (Kaiser, 1974; Proakis and Manolakis, 1996): 

2
1sinh

2
1

2
1sinh

][

22

w

ww

N

NnN

nw , where sinh stands for the 

hyperbolic sine (
2
eesinh

xx
x

def
0) and the parameter  is the 

height in dB of the window spectrum side lobe. Sometimes (see MATLAB 
function kaiser),  is replaced by another parameter, , defined as 

follows:

21,0
]50,21[,)21(07886.0)21(5842.0

50,)7.8(1102.0
4.0

6As  increases, the window aperture decreases, but below ,
significant marginal errors are introduced. A good trade-off between the 
window aperture and its marginal errors is obtained for 9 .
8. Lanczos (Proakis and Manolakis, 1996): 

L

N
Nn
N

Nn

nw

w

w

w

w

)1(2
122

)1(2
122sin

][ , where the exponent  controls the 

window aperture. As 

0L

L  increases, the window aperture decreases, but 
below the unit value ( 1L ), significant marginal errors are introduced. A 
good trade-off between the window aperture and its marginal errors is 
obtained for 1L .
9. Tukey (Proakis and Manolakis, 1996): 
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2
1

2
1

2
1

,

2
1

)1(

2
1

)1(
cos1

2
1

2
1

2
1

,1

][
www

w

w

ww

NN
n

N
N

N
n

NN
n

nw

)1,0(where the parameter  controls the percentage of rectangular 
window centred inside. For the vibration segment, a good choice is 

3/1 , since the central frame takes only one third of the whole 
segment. 
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Figure 5.4. Nine of the most utilized signal processing windows. 

All windows above are symmetric, as shown in Figure 5.4, where, beside 
the window shape, the parameter values are also depicted for Chebyshev, Kaiser, 
Lanczos and Tukey windows. But not all windows of this collection have the same 
performances when using them in SP applications. Their efficiency depends on the 
specific criteria that have to be matched. Although some windows seem to have the 
same shape, they are actually quite different. The differences are better emphasized 
by their spectra, as drawn in Figure 5.5. The graphics are plotted by using the 
spectral power expressed in dB and on all horizontal axes normalized frequencies 
are represented. The main lobe lies in LF subband, whereas the side lobes extend to 
MF and HF subbands. The main lobe is best emphasized for windows like 
Blackman, Chebyshev or Kaiser. (For the last two, the main lobe height relative to 
the first side lobe can be controlled.) One of the most employed criterions in 
selection of the appropriate window is the attenuation performed by the side lobes. 
Since the window multiplies the data, their corresponding FT are convoluted 
(according to the Inverse Convolution Theorem (Oppenheim and Schafer, 1985; 
Proakis and Manolakis, 1996)). Hence, the genuine data spectrum is distorted by 
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the window spectrum. Ideally, the window spectrum is not distorting the genuine 
one only if it is identical to the unit (or Dirac) impulse. In another words, only the 
main lobe should be present (not the side lobes) and its aperture should be null in 
spectral images below. But, as one can see from the windows’ spectra, none of them 
verify this (ideal) property. 
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Figure 5.5. Spectra of the nine signal processing windows above. 

Thus, one can say that a “good” window (in terms of attenuation criterion) 
should have a small aperture of the main lobe and a rapid attenuation over the side 
lobes. In this way, a minimal distortion is introduced into the genuine data. But one 
may easily guess that these two properties are opposite, as a direct consequence of 
the Gabor-Heisenberg Uncertainty Principle (Cohen, 1995; Proakis and Manolakis, 
1996). Actually, except the rectangular window, all the other windows are 
performing a trade-off between the main lobe aperture and the side lobes 
attenuation.

The rectangular window, which anyone is tempted to select for its 
simplicity, is, in fact, the worst one in terms of side lobes attenuation, but probably 
one of the best in terms of main lobe aperture. The triangular window improves in 
some respect this trade-off, but not essentially. Among the other windows, 
Blackman, Hanning and Kaiser prove very good performances. (the Hanning 
window is actually employed in many filter design methods.) 

But, for the purpose of our model, the Tukey window is very likely the 
most appropriate. As one can see, its shape in the  time domain (Figure 5.4) is very 
well adapted to the manner in which the vibration segments are constructed: one 
important central frame and two lateral auxiliary frames (that should gradually be 
weighted). In frequency, a good trade-off between main lobe aperture and side 
lobes attenuation is realized (see again Figure 5.5). Therefore, the vibration 
segments are built by windowing the data with a Tukey window (for 3/1 ). 
Note that all the other eight windows have been tested by simulation, but none of 
them could overtake the Tukey window in terms of final defect classifications 
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properties. But, actually, the method presented here is not very sensitive to the 
employed window, which constitutes an advantage.  

1,1 MmDenote by  (for ms ) the current segment resulting after 
windowing the data by . Then the windowing effect could be described by: w

wvvvs mmmm ][ 11 (5) 

Step 4: Digital filtering of vibration data. 
The vibration segments  are utilized next in a filtering procedure aiming to 
remove the LF oscillatory part and, eventually, some HF noise. The filters are 
digital. Unlike many approaches regarding vibrations filtering, here, one takes 
benefits from the modern and powerful finite impulse response (FIR) filters design 
procedures described, for example in (Proakis and Manolakis, 1996).  

ms

Two types of digital FIR filters could be employed: high-pass and band-
pass. The first one just removes most of the harmonic natural oscillations. The 
second one could moreover remove the HF noise inherited by vibration data 
especially from environmental sources. For these filters, some parameters should be 
set, in order to perform the design: the filter length ( ), the left cutoff frequency 
(

hN

lc ) and the right cutoff frequency ( rc , in case of high-pass filters).  
The filter length should be large enough to yield good filters 

characteristics, but it should not overtake the segment length. A suitable choice is 
, provided that the frame length is sufficiently large. 

(According to FIR procedure design, in the case of high-pass filters, the length must 
be odd. If  is even, then  should be set to .)

1, ffh NNN

hNfN 1fN

The left cutoff frequency lc  has to be set such that the decaying natural 
harmonics in raw vibration are strongly attenuated or removed. Thus, on the one 
hand, , where the inferior limit min,lclc min,lc  is set to 7-10 times the 
maximum natural frequency of oscillation. On the other hand, increasing the left 
cutoff frequency beyond a limit of 2 kHz may result in a loss of information about 
possible defects. Thus, in  should be set in the range ]2000,[ min,lc  [Hz].  

Unlike within the EA method, here, the right cutoff frequency rc  should 
ensure a sufficiently wide pass band, in order to extract all information encoding 
defects. If the anti-aliasing analogic filters do not remove some HP noises, then rc

should be selected such that they are attenuated in subband 2/, src . Normally, 
the width of this subband should not be larger than lc , but this is not a 
requirement. Sometimes, the right cutoff is imposed by a central symmetry 
frequency, usually selected according to a resonance peak in vibration spectrum.  

In Figure 5.6, the characteristics of two filters have been depicted: a high-
pass one (to the left) and a band-pass one (to the right). For both filters, 

, but the high-pass one must have an odd number of coefficients. 2048fN
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Figure 5.6. High-pass (left) and band-pass (right) filter characteristics. 

The time domain characteristics (the impulse responses) are less 
suggestive than the frequency domain characteristics (magnitude and phase of 
frequency responses). “Good” filters should have an abrupt change at the cut-off 
frequency, a strong attenuation in stop band(s), no ripples on the main lobe and 
linear phase. In this figure, the left and right cutoff frequencies have been set to 

Hz1932lc  and Hz9876rc , whereas the sampling frequency is 
kHz6.25s . Actually, the band-pass filter was centred on 5.9 kHz. The 

attenuation in stop bands is quite strong, thanks to the large filter lengths.  
Segments are one by one filtered. If  is the impulse response of the 

selected filter, then any filtered segment is simply obtained by convolution: 
h

hsm .

Since , its length is  as well. This involves 1, ffh NNN hsmfN3  could 

also be split into three frames with same length ( ):fN

][ 1,,1, mhmhmhm vvvhs (6) 
The reason the filtered segment is split again into three frames in Eq. 6 is 

very simple. The filter was not actually applied to all frames in  but to its main 
frame, the central one. The lateral frames are only context signals that tell to the 
filter there are nonnull signal values before and after the main frame. Since filters 
are shift invariant linear systems (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996), the main frame in Eq. 6 is also the central one. Therefore, from 
the filtered segment, only one frame is extracted for the next step: . Note that, 
in general,  is different from 

ms

mhv ,

hvmmhv ,  and it is closer to the real behaviour of 
filtered vibration, due to the lateral frames. Also, the first and the last raw vibration 
frames (  and ) are only involved as context signals aiming to avoid marginal 
errors. They are not furthermore transmitted.  

0v Mv
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The resulting filtered frames could be considered as nonoverlapping, since 
the main frame of the segment becomes the context (auxiliary) frame for the next 
segment. There are 1,1, Mmmhv1M  filtered frames . These are inputs for the 

fuzzy-statistical model described next. Note that a set of standard (defect free) 
vibration preprocessed data 1,1

0
, Mmmhv  is also provided by the same technique. 

5.2.3. The Fuzzy-Statistical Model 

The steps aiming to construct the fuzzy-statistical model are grouped into two 
categories: construction of the spectral statistic information about the filtered 
frames 1,1, Mmmhv  and utilization of this information in a fuzzy approach. 

Step 1: Spectrum evaluation and segmentation.  
The spectrum of each frame  (or ) is evaluated by using one of the 
powerful existing FFT algorithms (Oppenheim and Schafer, 1985; Proakis and 
Manolakis, 1996). Denote by  (respectively by ) the spectrum of current 

(filtered) frame (

0
,mhvmhv ,

0
,mhVmh,V

1,1 Mm ), i.e., the magnitude of its FT. Since the spectrum is 
symmetric for real valued data sequences, it follows that only the first  rays 

could be accounted, which corresponds to a bandwidth of 

2/fN

2/s .
The main difference between spectra encoding information about defects 

 and defect-free spectra  is that the former have a bigger variability 
among frames, whereas the later vary within some minimum and maximum bounds, 
close to each other. The variability could be expressed in various ways, but, for this 
model, sp are employed to quantify the spectral behaviour.  

0
,mhVmh,V

By convention, let  stand for any of two spectra above (  or 

). The full frequency band of each spectrum  is uniformly segmented next 
into

mh,V mh,V
0
,mhV mh,V

1K  subbands, in order to evaluate a set of local sp. Such a frequency 
segment (subband) should include between 5 and 10 rotations of main shaft, in 
order to construct a consistent set of sp. Thus, the segment bandwidth should be set 
between Kr5 r10 rs /]20/1,10/1[and  (i.e.,  should vary in the range ). The 
minimum bound yields a good frequency resolution (i.e., narrow subbands), but a 
smaller sp accuracy than the maximum bound, where, however, the resolution is 
worst. Obviously, the sp consistency (accuracy) depends on the number of 
accounted data. In this case, the consistency depends on the number of rays 
included in a segment, that is, on the segment bandwidth. The bigger the 
bandwidth, the more consistent the sp, but the less focused on local spectral 
variation. A good compromise is realized for r8 :

rsK 16/ (7) 
The number of rays within each frequency subband (except possibly the 

one located at the highest frequency) is: 
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KNN fK 2/ (8) 

2048fN Hz50rFor example, ,  (3000 rpm), and kHz6.25s

lead to:  subbands (of 400 Hz bandwidth each) and 32K 32KN  rays/sub-band, 
according to Eqs. 7 and 8.  

1K .By convention, sub-bands are indexed from 0 to 
Splitting the spectrum in a number of equally spaced subbands may not be 

the best solution to focus on spectral power local variation. However, the trade-off 
between frequency resolution (or K ) and sp accuracy (or ) determines the 
minimum bandwidth for carrying out the statistical analysis. Nonuniform 
segmentations could be realized by compacting together two or more adjacent 
subbands with minimum bandwidth. But the fdd method described here is 
independent on the type of frequency segmentation. Therefore, for the sake of 
simplicity, the segmentation is kept uniform hereafter.  

KN

To conclude this step, a final remark should be noted. Filtering the 
vibration segments involves a separation of frequency stop subbands and pass 
subbands. The statistical parameters might not be similarly employed for any of 
these 2 subband types, because the information encoded inside the stop subbands is 
probably extremely poor and noisy compared to the information inside the pass 
subbands. Since the whole band was practically quantified by K  values, separation 
lines between stop and pass subbands have to be defined. Obviously, the cut-off 
frequencies lc  and rc  belong to some subbands as follows:  

K
KK s

lclclc 2
1,  and 

K
KK s

rcrcrc 2
,1 (9) 

where 

slclc KK /2  and srcrc KK /2 (10) 

For example, if, like previously, Hz1932lc  and Hz9876rc ,
whereas 32KkHz6.25s  and , then:  and 4lcK 25rcK .
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Pass sub-bands

ν

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 31 31

ν

Stop

sub-bands

0 ν /2
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Figure 5.7. An example of frequency segmentation. 

Normally, the transition subbands (i.e., including the cutoff frequencies) 
should be pass type, in order to avoid removing useful side information. Therefore, 
the stop subbands are: {0, 1, ..., 1K1lcK , , ..., rcK }. Consequently, the pass 
subbands are: { , ..., lcK 1rcK }. For the previous example, the stop and pass sub-
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bands are: {0, 1, 2, 3, 25, 26, ..., 31}, respectively {4, 5, ..., 23, 24}, as depicted in 
Figure 5.7. 

Step 2: Definition of sp and construction of relative statistical vectors.  
Using statistics to extract information about defects from raw vibration is not a new 
idea. Many analysts perform diagnosis with the help of some parameters such as the 
root mean square (RMS) or the peak value evaluated either from vibration data or 
their spectrum.  

A quasi-complete statistical set of parameters includes the following 12 
parameters: peak (to valley) ( v ); average ( v ); absolute average ( v ); energy

( ); normalized energy ( ); root mean square ( ); peak to average ratio
( ); crest factor ( ); impulse factor ( ); shape factor ( ); clearance 
factor ( ); Kurtosis ( ). Their definitions are listed in Eq. 11, for any N-
length data series, 

vE N
vE vRMS

vPAR vCF vIF vSF

vCLF vK

1,0][ Nnnv  (such as vibrations or their spectra): 

][min][max
2
1

1,01,0
nvnvv

NnNn

def 1

0
][1 N

n

def
nv

N
v

1

0
][1 N

n

def
nv

N
v; ; ;

1

0

2][1 N

n

def

v vnv
N

RMS
1

0

2][1 N

n

def
N

v nv
N

E
1

0

2][
N

n

def

v nvE ; ; ;

][max1
1,0

nv
v

PAR
Nn

def

v
v

def

v RMS
vCF

v
vIF

def

v; ; ; (11) 

4

1

0

4][1

v

N

n
def

v RMS

vnv
N

K21
][1 N

def

v

nv

vCLF
v

RMSSF v
def

v ; ;

0nN
The first six parameters are concerned with energetic characteristics, 

whereas the other six quantify different shape properties. Obviously, the number of 
data, , is a measure of sp accuracy. (The accuracy increases with .)  N N

Usually, the values of parameters defined in Eq. 11 are compared to 
standard values corresponding to defect-free systems. Their biases could indicate 
the desired information about defects (including estimations of severity degree). 
Though the number of parameters to account for is large enough, no one is able to 
extract all the necessary information about defects.  

Once the frequency segmentation has been realized, some sp should be 
evaluated within every subband. Note that the set of 12 sp above is redundant. For 
example, in (Xi et al., 2000), one states that peak-to-valley is similar to RMS, to 
energy and to absolute average; impulse factor is similar to shape factor; kurtosis is 
similar to crest factor. These similarities are not realized in sense of similarity 
measure from physics, but in terms of some features ad hoc defined in the context 
of that research. Therefore, a safe approach is to take into consideration as much sp 
as possible. An obvious remark is that, for nonnegative data (like spectral powers), 
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the absolute average is identical to the average. Also, it is better to evaluate the 
normalized energy instead of pure energy, especially in the case of nonuniform 
frequency segmentation (when subbands have different numbers of rays and, thus, 
their energy becomes noncomparable). Thus, only 10 sp are retained in this context. 
They are denoted according to time and frequency segmentations performed so far: 

peak (to valley) ( ); average ( mh,Vmh,V ); normalized energy ( ); root mean 

square ( ); peak to average ratio ( ); crest factor ( ); impulse 

factor ( ); shape factor ( ); clearance factor ( ); kurtosis ( ). 
As usual, the  employed in notations points to any of 2 vibration data types: 
acquired from the tested bearing (* vanishes) or from the standard (defect free) 
bearing (* is replaced by 0).  

,
,
N
mhE

mhRMS , mhPAR , mhCF ,

mhIF , mhSF , mhCLF , mh,K

1,1 MmK  values for every frame Any of the sp above takes  (one 
value for each subband). The number of rays per subband determines their 
consistency, . For example,  could be evaluated as follows: mhRMS ,KN

1

0

2

,,, ][][1][
KN

n
mhKmh

K

def

mh knkN
N

kRMS VV 1,0 Kk (12) ,

where the local average is: 
1

0
,, ][1][

KN

n
Kmh

K

def

mh nkN
N

k VV 1,0 Kk, (13) 

A  statistical matrix  could be constructed for every spectral 

frame , by stacking the sp values in successive row vectors, as enumerated 
above. Thus, for example, the RMS value in Eq. 13 is the element 

mh,SK10

mh,V
]1,4[ k  of 

matrix , i.e., , whereas the fourth row of the matrix 

packs all RMS values among subbands. The generic element of matrix  is 

, where 

][]1,4[ ,, kRMSk mhmhSmh,S

mh,S

],[, jimhS 10,1i 1,1 MmKkj ,11,  and .
When the tested bearing is defect-free (standard), the statistical values of 

matrices  vary within some acceptable tolerances among frames. Thus, in this 
case, the values of every sp are located inside a min-max domain, whose bounds 
depend on the evaluation subband. More specifically, let  be the i-th sp in the 

list above (for 

0
,mhS

iP

VP210,1i ). (For example, , , etc.) Then its 

value for the m-th frame and the k-th sub-band is . For the standard 

vibration,  could vary in the range 

RMS4P

],[ kmiP

][,][ maxmin kk ii PP],[0 kiP  among frames, but 
within the same subband (k). A natural manner to evaluate the min-max bounds is 
to account for all frames:  
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],[min][ 0

1,1

min kmk i
Mm

i PP ],[max][ 0

1,1

max kmk i
Mm

i PP 1,0 Kk, , (14) 

This involves that two remarkable matrices could be constructed, by 
gathering together all minimum or maximum values evaluated in Eq. 14:  

]1[],[ minmin jji iPS , ,]1[],[ maxmax jji iPS Kj ,110,1i , (15) 
The same result is obtained if the min and max operators are applied 

elementwise on matrices 1,1
0
, MmmhS . In practice, the min and max values are 

furthermore corrected by multiplication with constants  and ,
respectively, , in order to avoid diagnosing as defective the defect-free bearings. For 
example,  and . The lower bound is, however, less important 

than the upper bound and this is the reason the constant  is not 0.9 (the 

symmetrical value of ), but 0.6. By convention, hereafter, one preserves 

the same notations  and  for corrected bounds as well.  

1min 1max

6.0min 1.1max

min

1.1max

][min kiP ][max kiP
Defective bearings provide vibrations that exceed some or all the 

(corrected) bounds in matrices defined by Eq. 15. The biases of sp  outside the 
standard range could indicate the desired information about defects, including 
estimations of severity degree. Note that defects could be detected not only when 
maximum bound is overtaken, but also if the minimum bound is undertaken. The 
second effect is especially induced by lubrication defects, excessive wear or 
multiple-point defects (when the phases of FT could lead to energy attenuation 
inside some subbands). In order to quantify the severity degree of defects, the sp are 
replaced by the relative statistical parameters (rsp), defined as explained next.  

iP

There are two types of assessments when performing the comparison 
between sp and their bounds: by accounting for both min and max limits or by 
considering only the max limit. Both limits should be accounted for pass subbands, 
whereas only the max limit is sufficient for the stop bands. In the first case, for each 
sp  ( 10,1i ) one defines a corresponding rsp  as follows:iP iR

][],[0if],,[/][

][,][],[if,1

][],[if],[/],[

10
1],[

minmin

maxmin

maxmax

kkmkmk
kkkm

kkmkkm
km

iiii

iii

iiii
def

i

PPPP
PPP

PPPP
R ,

(16) 

1,0,1,1 KkMm
Similarly, in the second case, the definition of rsp can be expressed as:  

][],[if,1

][],[if],[/],[
10
1],[

max

maxmax

kkm
kkmkkm

km
ii

iiii
def

i PP
PPPP

R ,
(17) 

1,0,1,1 KkMm
The same philosophy was employed in both definitions of Eqs. 16 and  17: 

if the maximum bound is exceeded, evaluate how many times the parameter 
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overtakes the bound; if the minimum bound is exceeded, evaluate how many times 
the bound overtakes the parameter; set by 1 the rsp when the parameter stays within 
the tolerance limits.  

Note that, independently of the sp type, the values of different rsp could 
now be compared, thanks to their relative nature. Thus, for example, although RMS 
( ) is not comparable with kurtosis ( ), the relative RMS ( ) has values 
varying in a similar range to the relative kurtosis ( ). Therefore, the rsp values of 
the same frame within the same subband could be packed in a 10-length column 
vector . The purpose of the 

4P 10P 4R

10R

T],,,[ 1021 RRRR 10/1  factor employed in 

both definitions above is to normalize the vector R  in the following sense:  
1,1 Mm 1,0 Kk1],[ kmR (18) , ,

1],[ kmRand  if the spectrum of the m -th frame behaves normally within the 
-th subband (as for the defect-free bearing). Starting with the next step, Euclidean 

norms 
k

],[ kmR  are actually employed. For a more general approach, other norms 
could be considered as well. For example, one can consider that not all sp have the 
same weight and thus a weighting matrix 1010Q  (eventually diagonal) has to 
multiply left the rsp vector R . The norm of the resulting vector QR  is in fact a 
generalized Euclidean Q -norm.  

Returning to Eqs. 16 and 17, a special case remains to be considered: the 
null parameter values, when both bounds have to be accounted. If one recalls the sp 
definitions in Eq. 11, it is easy to see that not all parameters could be null, even 
when the input data consists of a finite length null signal. This property is proven by 
those parameters quantifying the signal shape, since a part of the shape information 
is the signal length (denoted by  in Eq. 11). In fact, simple algebraic 
manipulations lead to the following interesting limits when the signal 

N
v  tends to the 

null signal:  

0
2
0lim

0
v

v
00lim

0 N
v

v
00lim

0 N
v

v
 ;  ;  ; 

001lim
0 N

NRMSvv
00lim

2

0 N
N

vv
E ;  ; ;00lim 2

0 vv
E

(19) 

12
lim

0 N
NCFvv 2

lim
0

NIFvv
NPARvv 0

lim  ;  ;  ; 

1
33lim

2

0 N
NN

vv
K

2
lim

0

NCLFvv
1lim

0
NSFvv

 ;  ; 

Thus, the shape parameters are null if and only if the signal is empty. 
Practically, in context of spectral frames, they are always nonnull. But the energetic 
parameters could be null inside some subbands, if and only if all corresponding rays 
are null. Usually, if in a pass subband all rays are null, either a severe defect is 
announcing or there are some important errors within the available data. The second 
hypothesis could be confirmed when the spectrum is null for many pass subbands. 
But, if only few isolated pass subbands provide null data, then the first hypothesis is 
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more plausible. In this case, the rsp should be set to a value equal to or more than 
, for all subbands where . The reason for this setting will 

become obvious in the next step.  
][10 max kiP 0],[ kmiP

miki ,1],[RAn average set of norms  is also evaluated for each sub-

band, after every 1,1 Mm  processed frames:  
m

i

def
ki

m
km

1
],[1],[ RR 1,0 Kk, (20) 

This entity is extremely useful for initialising the fuzzy model. In fact, one 
can consider that the processing starts from a virtual frame that provides the 
average information about rsp norms at any moment. Set the index of virtual frame 
by  and change notation ],[ kmR0m ],0[ kR by . In the new notation, the 
current number of frames was omitted, in order to unify all notations regarding the 
rsp norms. But, hereafter, one can consider by convention that the set of rsp norms 

miki ,0],[R  always starts with the average of currently processed frames 

miki ,1],[R  in the first position. This average could recursively be upgraded, 

from a frame to another, according to the equation below:  

1
],1[],[

],1[
m

kmkmm
km

RR
R (21) 1,0 Kk,

],1[ kRAfter processing the first frame, the average is identical to , but 
starting from the second processed frame, the average and the other rsp norms are, 
in general, different. Therefore, within the next steps, one shall assume that the 
average starts to be evaluated after at least two frames have been processed. 

Step 3: Definition and construction of a statistical network.
],[ kmRLet  be the value of  expressed in dB (for dB],[ kmR

1,0 Mm , i.e., including the average (Eq. 20). Then the severity degree of defect 
could be expressed in terms of a grid, in dB as well. Usually, there are 4 severity 
types: normal (when no defect seems to be detected), incipient, medium and severe.
The separation values between severity types could be set as follows: 1,

 and dB62 dB dB2010 dB ],[ kmR. Thus, if  varies in the range [1,1.22), no 
defect is present; for range [1.22,2), the defect is incipient; inside the range [2,10), 
the defect is medium and if ],[ kmR  is more than 10, the defect is severe. The grid 

could refine the severity levels for every type as follows: 0, 1, 2 dB 3 ,

, , dB3 dB4 dB9 2010 dB62 dB 12L, ..., ,  [dB] (  levels). Let 
L

Lll 1,0
][  be the L-length vector of all severity levels expressed in dB and 

set L .
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All settings above aimed to build a map like the one depicted in Figure 5.8 
and referred to as the statistical network (sn). Thus, for each subband, a box cell is 
assigned to every severity degree. Each value dB],[ kmR  is uniquely located 
inside such a box, as suggested by the diamonds in figure. In this example, the 
location of rsp norms of a frame is depicted. The maximum rsp norm is reached 
inside subband #5, where an incipient-medium defect is announced. Its severity 
degree is 5.89 dB (at least one sp is about 1.97 times out of standard min-max 
range). Note that the box cells corresponding to severe defects are open, in the 
sense that their height varies depending on maximum pointed severity degree (if 
applicable). On the contrary, the other box cells have fixed heights (but differ from 
one severity degree to another). 
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Figure 5.8. A statistical network example. 

The sn provides in fact a statistical map of possible defects, simpler than 
the spectrum image. And yet, it is difficult to perform a good fdd by only inspecting 
this map. Therefore, a technique of grouping network cells in similarity classes 
could make this task easier.  

Step 4: Covering the statistical network with clusters. 
The previous steps prepared the fuzzy model construction. Starting from this step, a 
fuzzy approach is combined with statistics in order to provide defect classifications 
expressed as partitions of sn above. This approach is based on concepts of fuzzy
relations and fuzzy entropy (Klir and Folger, 1988) and its kernel has already been 
integrated into another (but very different) method concerned with identification of 
main structures inside Multi-Agent Systems (Ulieru et al., 2000). 

In context of vibrations, the fuzzy model relies on the fact that every frame 
encodes the same information about existing defects (if the frame length is large 
enough to induce a good accuracy of sp). Consequently, the statistical maps 
resulting from every frame reveal about the same correlation between those box 
cells that actually encode the defect, whereas the remaining cells are less correlated. 
More specifically, the rsp norms from different frames “fall” more often into the 



Computational Intelligence in Fault Diagnosis   147 

same boxes for those subbands that seem to be directly affected by the defect. One 
can say that rsp norms occur more often inside box cells that apparently encode the 
systematic spectrum biases caused by a specific defect.  

Therefore, the basic idea is first to construct a similarity fuzzy relation 
between box cells within sn and then to unpack the result as different classifications 
comprising similarity classes. A similarity class is actually a group of box cells that 
seem to point to the same fault or group of faults (with some confidence degree).  

In construction of a fuzzy relation between box cells, the first action is to 
specify how the sn could be covered by collections of box cells for every spectral 
frame. Any collection of box cells is referred to in this context as a cluster. Denote 
by  the generic box-cell of sn, where 1,0 LlklB ,  is the severity level and 

1,0 Kk  is the frequency subband. A natural way to construct clusters is to 
consider two types of sn covers as follows:  

a. a horizontal one, H , ith  w L  clusters, each of which includes 
only constant severity level box cells: 

1,0,kll BC
Kk

1,0 Ll( );
b. a vertical one, G , with K  clusters, each of which includes 

only box cells corresponding to the same frequency subband: 
1, K

,0, lklk BD  (
1L

0k

L

lCH
K

kDG

).

Thus:
1

 and 
0l 0k

Note that the covers in Eq. 22 are independent of frame index (they 
preserve the same structure for all frames), since, at this stage, one focuses only on 
the structural information about how the sn could be roughly organized. The 
information about defects encoded by rsp norms will be accounted for in a future 
stage.

1

(22) 

An example of horizontal and vertical clusters is displayed in Figure 5.9. 
Other structures of sn covering could be considered as well, for example, 

the one consisting of cross-clusters obtained by taking the union between horizontal 
and vertical clusters (also illustrated in Figure 5.9). But the main advantage of 
coverings above is that they lead to one of the simplest fuzzy relation construction 
algorithms.

The box cells that belong to the same cluster are in fact entities verifying 
the same elementary crisp (binary) relation. Two crisp relations could thus be 
stated: (a) two box cells are in the same relationship if they reveal the same severity 
level; (b) two box cells are in the same relationship if they point to the same 
frequency subband. The characteristic (index) functions describing these crisp 
relations are KLKL  binary matrices, where the element  is unitary only if 
the box cells i  and j  are in relation to each other (otherwise, the element ),( ji  is 
null). These matrices could be expressed only after linearization of sn indices. Thus, 
the box cell  located in plane by the indices  is equivalently located on a 

),( ji

),( kllB ,k
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lineal by the index . There are two possibilities to derive the expression of index 
: by enumerating all columns or by enumerating all rows of sn. In this approach, 

one selects to enumerate the sn rows, starting from bottom to top (see Figure 5.10). 
Thus, the first group of box cells is associated with normal behaviour. The 
incipient, medium and severe defect box cells follow (in this order).  
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Figure 5.9. Horizontal and vertical clusters inside the statistical network. 

Row 0 

…

Row 1 

Row L-1 

Row 0 Row 1 Row L-1 
…

Figure 5.10. Linear enumeration of box cells in a statistical network. 

1,0 Ll 1,0 KkThe index  is then: kli , klKi kl , , , .

Conversely: Kil kl /, 1,0, LKi kl aKik kl %, and , , where  is the 
integer part of a  and  is the rest of division between integers  and .nNn% N

Since any of the two sn covers provided by a frame is a union of its 
(disjoint) clusters, the associated global binary crisp relation is also a union of 
elementary crisp relations. Hence, the global characteristic matrix is obtained by 
summing together all corresponding elementary matrices. The specific form of the 
selected covers leads to the global characteristic matrices given in Eq. 23. 

2L 3KAs a toy example, set  and . The corresponding sn looks as in 
Figure 5.11 and its covers are:  

121110020100 ,,,, BBBBBBHa. Horizontal:

120211011000 ,,, BBBBBBGb. Vertical:
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Horizontal cover                              Vertical cover 

blocks
LLIII

III
III

G

KKKKKK

KKKKKK

KKKKKK

blocks
LLUOO

OUO
OOU

H

KKKKKK

KKKKKK

KKKKKK

(23) 

KKwhere ,  and  are the KKU KKO KKI  all unit, all zero and identity 
matrices, respectively, expressed as:  

KK

U KK

111

111
111

,

KK

O KK

000

000
000

(24) 

KK

I KK

100

010
001

B

B

B

B

B

B

L=2

K=3

Figure 5.11. A toy statistical network. 

Then Eqs. 23 and 24 imply:  

111
111
111

33U , ,
000
000
000

33O
100
010
001

33I

Horizontal cover                              Vertical cover 

100100
010010
001001
100100
010010
001001

3333

3333

II
II

G

111000
111000
111000
000111
000111
000111

3333

3333

UO
OU

H

(25) 

The matrices in Eq. 23 (or Eq. 25) are actually binary maps of the two 
crisp relations that every frame provides. The position of every unit value shows 
which couple of box cells are in relation to each other. These relations are in fact 
rough approximations of the following relation directly related to defects: two box 
cells are in relation to each other if they point to the same fault. Of course, at this 
time, we don’t know exactly which box cells verify this property and this is the 
reason one operated with two approximations. Any horizontal or vertical cluster 
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could include abnormal box cells pointing to the subband affected by a specific 
defect or, respectively, to the severity degree proved by a specific defect. The 
approximations are refined next by using the rsp norms, until specific defect classes 
are obtained.  

Step 5: Evaluating the occurrence degrees. 
The covers constructed above do not partake in the fuzzy relation that one intends 
to construct, but their clusters do. Recall that, unlike within crisp relations, two 
entities are in a fuzzy relation to each other only if they belong to a crisp relation 
with some membership degree (Klir and Folger, 1988). The membership values 
express the uncertainty regarding the specific relationship between entities. Within 
the crisp approach, this relationship is either certainly existing or certainly not 
existing. There are no other possibilities. Within the fuzzy approach, two entities 
could be in a relationship, but this assertion has a degree of uncertainty varying 
from 0 (certainly not) to 1 (certainly yes).  

The relationships between sn box cells should also be fuzzy, for two main 
reasons. Firstly, the horizontal and vertical clusters could not be totally reliable 
since, in general, they gather together boxes inside of which some rsp norms fall 
and boxes that are untouched by these norms, even for long strings of vibration 
data. These act in fact as different entities inside the sn. They were only roughly 
gathered together, according to structural criteria of same severity level or 
frequency subband, but without accounting for the information provided by the 
vibration itself. Secondly, the structure of selected clusters (horizontal, vertical) 
could not be certain, but only intuitively more plausible than another structure. 
Fortunately, the final fuzzy relation is not that sensitive to the initial clustering of 
box cells and refines these approximations.  

The horizontal and vertical clusters encode no information about defects 
unless they are put into correspondence with the rsp norms. In reality, after 
processing Mm ,11  frames (including the virtual one naturally associated with 
the average information about rsp norms – see Eq. 20), inside every box cell  a 
number of rsp norms could occur. Refer to this number as (occurrences) counter
and denote it by . Obviously, since for each subband 

klB ,

1,0 Kk],[ klNm  a unique 

severity level 1,0 Lll  ( )exists such that:

1dB],[ ll kmR (26) 
it follows that:  

1,0 Ll 1,0 Kk1,0 Mm (27) 1],[0 mklNm , , ,
Null counter values are associated with those box cells for which no rsp 

norms occurred so far. Furthermore, another obvious property holds:  

)1(],[
1

0

1

0
mKklN

L

l

K

k
m 1,0 Mm, (28) 

i.e., the total amount of counters equals the number of subbands touched by all 
currently processed frames, including the virtual one.  



Computational Intelligence in Fault Diagnosis   151 

After processing a new frame, the counters are upgraded following a rule 
given by Eq. 27:  

1,0

1,0

2,0

Kk

Ll

Mm

otherwise],,[

],1[if,1],[
],[ 1dB

1
klN

kmklN
klN

m

llm
m

R , (29) 

which means: increment by 1 only those counters corresponding to box cells where 
the rsp norms occurred. However, this rule is not that simple. The virtual frame 
gives the initial values of these counters and, thus, they could change depending on 
the number of currently processed frames, Mm ,11 . So, Eq. 29 must be 
understood as a recursive recipe where the initial values are also dependent on the 
current step of upgrading. Consequently, a counter could even be incremented by 2 
and not by 1, or decreased by 1, when the average moves its position.  

A consistent set of occurrence degrees is constructed and one-by-one 
associated with the collection of sn box cells, by using counters. Denote by ],[ klm

the occurrence degree uniquely associated with box cell , after processing klB ,

Mm ,11  frames (starting from the virtual one). Two possible definitions could 
be used to set ],[ klm , according to Eqs. 27 and 28:  

1
],[],[

m
klNkl m

def

m  or 
)1(
],[],[

mK
klNkl m

def

m (30) 

In both cases ]1,0[],[ klm , but for the first one:  

1],[
1

0

L

l
m kl  and Kkl

L

l

K

k
m

1

0

1

0
],[ (31) 

whereas for the second one:  

K
kl

L

l
m

1],[
1

0
 and 1],[

1

0

1

0

L

l

K

k
m kl (32) 

From a probabilistic point of view, Eqs. 31 and 32 show that only the 
second definition in Eq. 30 could be associated to the occurrence frequency of rsp 
norms inside box cells. But, in the context of fuzzy logic theory, requirements like 
the last one in Eq. 32 are often not necessary (Klir and Folger, 1988). The only 
requirement is to include the occurrence degree variation in range [0,1]. One of the 
main drawbacks of the second definition is the rapid decay towards null values of 
all occurrence degrees, due to product )1(mK . No occurrence degree could 
increase. Even if a counter is upgraded, its value is only increased by maximum 2, 
whereas the corresponding occurrence degree is decreased about K  times. In 
contrast, the first definition keeps the occurrence degrees more balanced and, 
furthermore, the occurrence degrees could increase. The last remark is due to a very 
simple algebraic property:  

1
1

1 m
n

m
n

m
n

1
2

1
1

m
n

m
n

m
n0,mn mn0, , but , if (33) 
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Since the first definition provides occurrence degrees that are more 
sensitive to counters upgrading than the second one, it will be selected for the next 
steps. In fact, the occurrence degree is only raw information about rsp norms 
distribution over the statistical map. More processing operations are necessary in 
order to derive the uncertainty degrees associated with the elementary crisp 
relations previously constructed.  

An example of the two-dimension occurrence degrees distribution is 
displayed in Figure 5.12. The distribution is improved after every new processed 
frame. 
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Figure 5.12. An occurrence distribution over the statistical network. 

At this point, one can say that box cells supporting the biggest occurrence 
degrees are very likely directly associated to the defect type. But it is not that 
simple to build a group of such box-cells, based only on a set of occurrence degrees, 
because the attempt is rather empirical and affected by uncertainty. A systematic 
method to construct similarity classes by using statistical information is then 
necessary. Also, as already mentioned, it is desirable that every class be associated 
with some confidence degree.  

The occurrence degrees are in fact values of some membership functions 
that change the nature of clusters from crisp to fuzzy. More specifically, consider 
the generic horizontal and vertical clusters,  and , respectively. Then their 
associated membership functions are: 

lC kD
],[)( ,, klB mkllm  for any box cell 

 and lkl CB , ],[)( ,, klB mklkm kkl DB , for any box cell .

lmlC ,, kmkD ,,Thus,  and  are now fuzzy sets. The new definitions 
are superior to the former ones, since the rsp norms have been accounted. Now, if 
the box cell  that belongs to a crisp cluster  has a null occurrence degree, it 
cannot belong to the fuzzy cluster 

lCklB ,

lmlC ,, . For simplicity, denote the values of 
membership functions by ][, klm  and ][, lkm , respectively (i.e.,  and lm, km,

could also be treated as vectors from nd , respectively).  K]1,0[  a L]1,0[
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Note that the membership functions change from a frame to another, 
though the crisp clusters are independent of frames. Hence, the fuzzy clusters have 
variable structure depending on the number of processed frames, which is closer to 
the real behaviour of sn (variable) structure. 

Step 6: Associating certainty degrees with elementary crisp relations.  
A unique certainty degree should be associated with every cluster  or . This 
is a number that expresses, on the one hand, the certainty in considering the 
corresponding cluster and, on the other hand, the degree of box cells affiliation with 
the elementary fuzzy relation the cluster naturally generates. The membership 
matrix of elementary fuzzy relation is simply derived by multiplication between the 
cluster certainty degree and its characteristic matrix. This idea is developed next, 
but, first, the certainty degrees have to be evaluated.  

lC kB

The evaluation of certainty degrees is based on the concepts of fuzzy and 
uncertainty measures (Klir and Folger, 1988). Obviously, certainty is opposite to 
uncertainty. An interesting fuzzy/uncertainty measure is the Shannon Fuzzy 
Entropy (SFE). Its definition relies on the multidimensional Shannon function
below:  

N

n
nnnn xxxxx

1
22 )1(log)1(log)(S , NT

nxxx ]1,0[]...[ 1 (34) 

The Shannon function originated from the concept of entropy, first utilized 
in physics. Thus, if one restricts the sum in Eq. 34 to the first half, replaces “ ”

by “ ” (John Nepper’s natural logarithm) and sets  as a discrete 

probability density (i.e., verifying ), then the entropy is obtained:  

2log
Nx ]1,0[ln

1
1

N

n
nx

N

n
nn xxx

1
ln)(H (35) 

1NWhen , the entropy from Eq. 35 is associated with the event for 
which the probability was considered. The opposite event is described by the 
opposite probability: x1 . Hence, the second half of the sum in Eq. 34 becomes 
the entropy of the opposite event. The Shannon function thus expresses the total 
entropy of an entity, by accounting for not only its classical entropy, but also the 
entropy of its opposite. Note that, in Eq. 34, no restriction (like the one verified by 
probability densities) is imposed. The Shannon function is an instrument utilized in 
many domains, but was defined in the context of information theory, as a concept 
quantifying the information encoded or transported by an entity. Its unit is the bit. 
This is the reason the natural logarithm was replaced by  in the original 
definition of entropy.  

2log

Several interesting properties of the Shannon function could be noted. For 
this approach, the following two are of the most concern. Firstly, the function is 
bounded and reaches several null minima, but only one maximum. No other minima 
are possible, but the null ones are reached on the border of definition domain (the 
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hypercube ). Secondly, the maximum value is exactly the dimension of input 
argument, i.e., . It is reached for the middle point argument, the function being 
symmetrical. For example, in Figure 5.13, the graphics of the only two Shannon 
functions that could be viewed are drawn.  

N]1,0[
N

When the argument in Eq. 34 is provided by values of the membership 
function describing a fuzzy set, the SFE is obtained. In this case, SFE has several 
interpretations. As a general fuzzy measure, SFE quantifies how close to the crisp 
state is the fuzzy set (or its fuzziness). The bigger the SFE value is, the less crisp the 
set (i.e., the fuzzier). But SFE could also play the role of uncertainty measure.
Uncertainty has two major facets: vagueness and ambiguity (Klir and Folger, 1988; 
Ulieru et al., 2000). 
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Figure 5.13. One- and two-dimension Shannon functions 

The SFE is a vagueness measure. The bigger the SFE value is, the more 
vague the fuzzy set description, i.e., the more uncertain (or unreliable) the 
information about that set. Thus, maximum entropy means maximum uncertainty 
and fuzziness. The smaller the SFE values, the better.  

Let us now get back into the context of previous steps. The certainty 
degree of a cluster should be opposite to its entropy (uncertain (vague) clusters 
should have small certainty degrees). Also, another property should be verified: the 
bigger the occurrence degrees of its box cells, the smaller its entropy. Since SFE 
has one maximum and several null minima (pointing to the lack of uncertainty), the 
values of membership functions  and lm, km,  must be translated from [0,1] to 
[0.5,1] by a simple affine transformation, before using them subsequently:  

2
1],[],[ klkl m

m (36) 

(By convention, one preserves the same notation for the translated values.) 
Denote by lm,  the certainty degree of horizontal cluster , after 

processing  frames (where 

lC

1,0 Mm1,0 Ll1m  and ). Similarly, lm,

stands for the certainty degree of vertical cluster , after processing 1mkD  frames 

(where 1,0 Kk 1,0 Mm and ). The values of  and lm, lm,  are then 
evaluated in three steps (by accounting for all previous remarks): compute the SFE 
of fuzzy clusters lmlC ,, kmkD ,, K and ; normalize the SFE by  and, 
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Lrespectively, by ; subtract the result from 1. This is summarized in Eqs. 37 and 
38. 

The normalization applied in Eqs. 37 and 38 is necessary because the 
certainty degrees have to vary only in the range [0,1], as well. This restriction is 
imposed by another meaning of a certainty degree, regarding the covers: any cluster 
belongs to an sn fuzzy cover with some membership degree. Actually, the crisp 
covers  and G  are transformed into fuzzy covers, by a similar mechanism 
employed to transform crisp clusters into fuzzy clusters. Their membership 
functions are the following: 

H

HlClmlm C ,)(  for any cluster  and 
 and m,G. Thus, m,HGkDkmkm D ,)(  for any cluster  are now fuzzy 

sets, but their elements are other fuzzy sets (the fuzzy clusters, in fact). Like for 
fuzzy clusters, covers membership functions depend on the number of processed 
frames ( ) (where 1,0 Mm1m ).
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Step 7: Constructing the -sharp cuts of fuzzy relation.  
Every fuzzy cluster generates, in association with its certainty degree, an 
elementary fuzzy relation between the box cells it includes. The membership matrix 
describing this relation is simply obtained by multiplication between the 
characteristic matrix of crisp cluster and the corresponding certainty degree. More 
specifically, if  and  are the generic horizontal and vertical clusters (as 
usual), then, after processing 

lC kD
1m  frames, their corresponding certainty degrees 

are lm,  and km, , respectively. One can denote by  and  the characteristic 
matrices of  and , respectively. Then, obviously:  

lH kG

lC kD
Horizontal cluster                                   Vertical cluster 

blocks
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k (39) 

where the block  is located on the main diagonal in position  of matrix 

, whereas the block  consists of one unit value on the main diagonal in 
position  of matrix  (all remaining values being null).  

KKU ),( ll
k

KKIlH
),( kk kG
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The elementary fuzzy relations are described by the following membership 
matrices: llm H, kkm G, (horizontal) and  (vertical). The corresponding relations 
are 1m-sharp cuts of fuzzy relation after processing  frames (where 

1,0 Mm ). (See the definition of -sharp cut in (Ulieru et al., 2000.) In fact, 
this definition is similar to the definition of -cut (Klir and Folger, 1988), but the 
inequality sign was replaced by the equality one.)  

For example, recall the toy sn in Figure 5.11. For that structure, two 
horizontal and three vertical elementary fuzzy relations are available after every 
processed frame: 

000000
000000
000000
000
000
000

0,0,0,

0,0,0,
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mmm

mmm

mmm

m H

1,1,1,

1,1,1,

1,1,1,
11,

000
000
000

000000
000000
000000

mmm

mmm

mmm
m H

000000
000000
0000
000000
000000
0000

0,0,

0,0,

00,
mm

mm

m G

000000
0000
000000
000000
0000
000000

1,1,

1,1,

11,

mm

mm

m G (40) 

2,2,

2,2,
22,

0000
000000
000000

0000
000000
000000

mm

mm
m G

Equation 40 reveals another interesting property: the box cells that are very 
far from each other could not be in the same relation, even in the case of fuzzy 
relations. This is the case, for example, of box cells located at different severity 
levels and opposite subbands, such as  and  or  and . Practically, 
it is very unlikely that these box cells could associate together to reveal the same 
defect. But this property could be cancelled for the global fuzzy relation providing 
defect classifications, since such limitations are only intuitive. 

0,0B 2,1B 0,1B 2,0B

Step 8: Constructing the fuzzy relation.  
Two operations are applied in order to build the final fuzzy relation between sn box 
cells: aggregation of the (elementary) -sharp cuts and evaluation of the transitive 
cover. The aggregation is simply performed through the max fuzzy union (Klir and 
Folger, 1988): 
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l
llmm GHR (41) 

Thus, the membership matrix describing the crude fuzzy relation  is 
constructed by means of the elementwise max operator (“

mR
max ”) applied on all 

matrices corresponding to fuzzy relation of the right term in Eq. 41:  

kkm
Kk

llm
Ll

m GH ,
1,0

,
1,0

max,maxmaxM (42) 

Note that the same max operations like in Eq. 42 have been applied to 
obtain the characteristic matrices in Eq. 23, but by using unit certainty grades (since 
the relations were crisp). Obviously, the dimension of matrix  is KLKL .mM

For the toy example above, the membership matrix  is:mM

2,1,1,1,2,

1,1,1,1,1,

1,1,0,1,0,

2,2,0,0,0,

1,0,1,0,0,

0,0,0,0,0,

,max00
,max00

,max00
00,max

00,max
00,max

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

mM

As one can see, some box cells are (co)related with various (un)certainty 
degrees, but between some other box cells no relationship seems to exist. The null 
values inside matrix  are always the same, independently of how many frames 
are processed (because of the horizontal and vertical crisp clusters), whereas the 
nonnull values vary from a frame to another (because of the occurrence degrees). 
Denote the generic element of  (i.e., the membership degree) by 

(where 

mM

],[ jimMmM

KLji ,1, ).
The resulting matrix  is symmetric and reflexive (since the elementary 

matrices  and  verify these two properties). Thus  is a proximity relation, 
but it is not necessarily fuzzy transitive. (See (Klir and Folger, 1988) for 
definitions.) Even though all elementary matrices  and  would describe 
(crisp) equivalence relations (i.e., all of them would be transitive as well), it is 
possible that m  is nontransitive. This means, in general, mR  is not a similarity
(fuzzy) relation. However, the similarity is a very important property, because the 
defect classes should also be (nonoverlapped) similarity classes. The direct 
involvement of similarity property in the construction of defect classes is revealed 
at the next step. Let us focus now on the transitivity property.  

mM

lH kG mR

lH kG

R

Actually, the transitivity property is the most difficult to insure in the case 
of fuzzy relations, because it is expressed (for example) as follows, differently from 
the crisp case (Klir and Folger, 1988; Ulieru et al., 2000): 

],[,],[minmax],[
,1

jnniji mm
KLn

m MMM KLji ,1,, (43) 

This is the max-min (fuzzy) transitivity. An equivalent matrix form of Eq. 
43 can straightforwardly be derived: 
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mmm MMM (44) 
where “ ” points to fuzzy multiplication (product) between matrices with 
compatible dimensions (involving the composition of the corresponding fuzzy 
relations). This multiplication is expressed starting from classical matrix 
multiplication, where max operator is used instead of summation and min operator 
is used instead of product. Also, “ ”in Eq. 44 means that the ordering relation 
focuses on matrix elements and not globally, on matrices.  

The lack of transitivity can be corrected by generating the transitive
closure of , which is defined as the smallest transitive fuzzy relation including 

 (according to fuzzy inclusion) (Klir and Folger, 1988). A simple procedure 
allows us to compute this closure for any fuzzy relation :

mR

mR
R

)( RRRRStep 1. Compute the following fuzzy relation: .
RR RR, replace  by , i.e., Step 2. If RR  and go to 

Step 3. Otherwise, RR  is the transitive closure of the initial 
.R

It is not so difficult to prove that this procedure preserves the reflexivity 
and symmetry of  (Ulieru et al., 2000), so that the transitive closure mRmR  is a 
similarity relation. Also, in terms of membership matrices,  is replaced by mM

mM , derived according to the procedure above (but with max instead of union 
operator and with (max-min) fuzzy multiplication instead of composition operator).  

The procedure is very efficient. The only limitation in terms of network 
granularity is here the dimension of  (i.e., KLKLmM ), which could be very 
large. But, nowadays, the existing computing performances could yield reasonable 
running time for matrices with more than one million elements.  

The main difference between  and  is that mR mRmR  is defined by means 
of a smaller number of membership degrees than . In general, small grades 
vanish. This is very suitable, since, probably, small membership degrees are mostly 
due to various noises still affecting the vibration data, even after filtering. In other 
words, by computing the transitive closure, the statistical data have been denoised.
Another difference between the two fuzzy relations is that box cells previously 
unrelated (according to ) could now be related (according to 

mR

mRmR ). This means 
the nonnull values in  could overwrite the null ones. In general, inside the 
matrix

mM

mM , null values could seldom appear. This effect is correcting the initial 
rough assumption that some box cells could never be related to each other.  

Step 9: Generating the defect classifications.  
The values in mM  are referred to as (fuzzy) confidence degrees. The number of 

distinctive confidence degrees is 1,1 Mm2/)1(KLKLPm , for each  (due to 
symmetry). They could decreasingly be sorted: 1,1,0, mPmmm  (by using 

natural new notations instead of ). For each confidence degree ],[ jimM pm,
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1,0 mPp( ), a partition of statistical network is generated, by evaluating the 
corresponding -cut of fuzzy relation  (Klir and Folger, 1988). Every mR -cut
plays the role of defect classification and is actually a partition of sn. Any class in 
such a partition gathers the cells with similar statistical properties and, therefore, is 
a similarity class. Obviously, all box cells with null occurrence degrees (see, for 
example, some high severity box cells in Figure 5.8) are grouped in an inactive
cluster and do not actually partake in the classification. The inactive cluster is the 
same for any classification, if the number of processed frames, 1m , is constant, 
but its topology could change as  varies.  m

1,0,,,
, pmQqqpmpm FCLet  be the defect classification corresponding to 

confidence degree  ( 1,0 mPppm, ). Inside, there are  defect classes 

generically denoted by . Usually, the classifications are listed in decreasing 
order of their confidence degrees. Moreover, it is well known that such an 
arrangement reveals a holonic behaviour (Ulieru et al., 2000). That is, the 
confidence is also a measure of classifications granularity: as confidence decreases, 
a larger number of classes group more and more together. For maximum 
confidence, every cell is also a class, which means maximum of granularity as well 
(  equals the number of box cells with nonnull occurrence degrees). For 
minimum confidence, all cells are grouped in a single class, the granularity being 

also minimum ( ). Thus the trend of finite string 

pmQ ,

qpm ,,F

0,mQ

1,0,
mPppmQ11, mPmQ  is 

decreasing when the confidence degree is decreasing. Only one classification shall 
be selected from this collection, as described in the next step.  

Some examples of defect classes together with their confidence degrees 
are described in the section devoted to simulation results. 

Step 10: Selecting the optimum classification.  
Besides the confidence degree, the SFE of every class could also be evaluated. 
Actually, like in case of covers  and G , every classification (an sn partition, in 
fact) is a fuzzy set with fuzzy sets (the defect classes) as elements. The membership 
functions associated with defect classifications are denoted by 

H

 (where pm,

1,1 Mm 1,0 mPp and ). Thus, pmpm ,, ,C  is a fuzzy set and the 

membership function  could be derived by means of a similar argument like in 
Step 6. There is, however, an important difference here. The entropy of a fuzzy set 
comprising fuzzy sets as elements should depend on the entropy of every element. 
If all elements would have small/large entropy values, then the set should also have 
small/large entropy. Consequently, the membership function 

pm,

pm,  has to reflect the 
normalized entropy of each defect class: 



160   V Palade, CD Bocaniala and L Jain (Eds.)

qpmNqpm

def
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qpmN ,,FSIn Eq. 45,  is the normalized entropy of defect class 

(where 

qpm ,,F

qpmN ,,FS1,0 , pmQq ). To evaluate , first identify all the box cells that 

belong to  (together with their translated occurrence degrees – see Eq. 36), 
then use the definition in Eq. 34 and finally divide the result by the number of box 
cells. For example, consider that the following classification has been obtained 
inside the toy sn in Figure 5.11: 

qpm ,,F

1,0,,, qqpmpm FC , where the defect classes are 

 and 1,10,00,, , BBpmF 2,12,01,01,, ,, BBBpmF . (The box cell  belongs to 
the inactive cluster.) Then:
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The division by 2 in Eq. 45 is required because SFE is nonmonotonic 
(recall Figure 5.13). The values of qpmN ,,FS  varying in the range [0,1] are now 
restricted to the range [0,1/2], which involves the final entropy increases when the 
(translated) occurrence degrees decrease.  

After the membership function pm,  has been evaluated, the entropy of 

classification  is computed by using again the definition stated in Eq. 34: pm,C
1

0
,,2,,,,2,,,

,

)1(log)1(log)(
pmQ

q
qpmqpmqpmqpmpmS (48) 

Note that the normalization is meaningless in Eq. 48, since the entropy 
also encodes information about the number of defect classes (clusters). Therefore, 
in general, the entropy values 

1,0, )(
mPppmS  prove a decreasing trend, since the 

number of defect classes (i.e., the maximum of entropy) decreases when the 
confidence degree decreases. This involves the entropy values 

1,0, )(
mPppmS

and the confidence degrees 
1,0,

mPppm  are opposite.  

A “good” classification should have high confidence degree and low 
entropy. This could be selected by means of a cost function that encodes the 
opposite behaviour of entropy and confidence degree. In order to define such a 
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function, it is first necessary to transform the entropy and the confidence degrees 
into maps comparable to each other. Before this operation, the comparison between 
them is impossible, because they vary in different ranges. The transformation is 
affine:
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Obviously, both normalized maps  and  vary in the range [0,1] and, 
moreover, they are reaching the extreme values 0 and 1.  

)( ,
01

pmS01
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Define the cost function  as the geometric mean between the values of  
the map defined by Eq. 49 and the opposite values of the map defined by Eq. 50, 
over the classification indexes set: 
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In this context,  expresses the opposite entropy weighted by 
confidence degrees. Other cost functions could also be employed in this aim (such 
as the arithmetic mean or another algebraic combination between  and 

). But, in any case, this function could only have a finite number of 
maxima (or minima) that realize the trade-off between entropy and confidence 
degree. In the case of cost function , the best compromise is reached for its 

global maximum. Thus, the best classification  is selected by solving 

the following simple optimisation problem: 
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An example of how the optimum classification is selected by solving the 
problem stated by Eqs. 51 and 52 is displayed in Figure 5.14, where only 51 frames 
have been processed (including the virtual one). The opposite variation between the 
confidence degree and the (opposite) entropy, as well as the shape of their 
geometric mean are clearly drawn. In this example, 32 classifications are available 
and the optimum resulting index is , which points to the 15th 
classification as being the optimum one. Note that the 19th classification is a sub-
optimal one, though its entropy–confidence compromise is also maximum, but 
locally (and close to the global maximum). The number of classes inside the 
optimum classification is 82 (most of them being singletons). As one shall see in 
the section devoted to simulation results, the optimum classification constitutes an 

14opt
mp
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image map about the specific fault(s) distorting the standard spectrum. Also, the 
classification confidence is  and its entropy is . The 
entropy is quite high (close to its maximum, 82), since the number of processed 
frames is modest (only 51) and thus the occurrence degrees are inaccurate. As the 
number of processed frames increases, the entropy goes down, farther from its 
maximum. 

7.014,50 81.06)( 14,50S
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Figure 5.14. Selecting the optimum defect classification. 

The most difficult part of the fuzzy model is the classification map 
interpretation (or analysis). This means that specific defects should be put into 
direct correspondence with map topologies. The subsequent analysis is more 
rigorous and simpler to perform than by inspecting the vibration spectrum, since a 
part of analyst reasoning has already been automated. Accounting for all classes in 
a map is sometimes sufficient to perform an accurate diagnosis. But, sometimes, 
this attempt leads to a rather complicated analysis. Therefore, some specific class 
(or a reduced number of classes) should be emphasized as representing the 
defect(s). One option is to consider the biggest class as revealing all subbands 
affected by the defect(s). A different option is to extract the minimum entropy class, 
which, in general, is smaller than the biggest class and, therefore, more focused on 
few subbands. These are very likely the most affected by defect(s). (Recall that 
minimum entropy means maximum occurrence degree of rsp norms.) Other 
representing classes could also be selected.  

In order to complete the method, it is perhaps useful to show how an 
optimum cluster (or group of clusters) could be selected inside the best 
classification  by using the normalized SFE as cost function. Thus, the index 
of optimum defect class(es) is (are) evaluated by solving the following optimisation 
problem: 

opt
mC

qpmN
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opt
m opt

m
opt
mpm

q
,,

1,0
,

minarg FS (53) 

For the example in Figure 5.14, the minimum (normalized) entropy of the 
optimum defect class inside the best classification is about 0.65. All the other 
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classes have entropy values at least as large as this value. Therefore, the 
corresponding cluster is representing in the best manner a specific defect.  

But selecting an optimum defect class is less important than selecting the 
optimum classification. As already mentioned, sometimes, the classification 
configuration is itself a good image about defects, provided that its interpretation is 
not too difficult to perform. A very desirable property of such an interpretation is to 
reveal multiple defects by simple combinations of single defect maps. In general, 
this property is difficult to achieve. But the interpretation principle could be the 
same, independently of single or multiple-point defects generating the maps.  

Note that, in this approach, the number of processed frames was 
considered variable. Though the notations are more complicated (the index  is 
omnipresent), one can clearly see how the concepts utilized inside are varying 
depending on this variable. The main reason the method was presented in terms of 
processed frames number is to show that its implementation could be performed by 
following either an on-line or an off-line strategy. For the on-line implementation 
the best classification should be provided after every processed frame (or group of 
frames). Step 8 is the critical one, since the evaluation of transitive cover could be 
time consuming when the product 

m

KL  is too big (over 1500, with the actual 
computing performances). In this case, the best solution is to perform the defect 
classification only after several frames have been processed. This means the 
strategy is quasi-off-line (or even off-line). In general, the number of processed 
frames improves the method accuracy, since the estimation of occurrence degrees is 
more and more precise. 

5.3. Simulation Results and Discussion 

The two algorithms previously described constitute the kernel of a simulator 
designed to test the fuzzy-statistical reasoning method. The testing platform and the 
simulation results are described next. 

5.3.1. The Testing Platform 

The vibration data are acquired from bearings through a platform designed on 
purpose. Three main systems are connected, as illustrated by the pictures in Figure 
5.15: a mechanical stand, a vibration data acquisition and pre-processing apparatus 
and a personal computer (PC).  

The mechanical stand consists of the following elements: 
1. A three-phase electrical engine, Siemens type, with maximum rotation 
speed of 2740 rot/min (about 45.67 Hz), working at 380 V and with a 
power of 370 W.  
2. A couple of bearings mounted into mechanical seats, appropriately 
designed to fit to their geometry. The seats are easy to dismount in order to 
change the bearings, when necessary. The bearing near the engine is a 
standard high-quality one, without defects. The other bearing could also be 
standard (identical to the first one, in order to acquire the standard 
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vibration data) or a tested one, with possible defects (for raw vibration 
acquisition). All bearings are provided by Romanian and German 
industries. (See their geometry in Figure 5.16.). 
3. A couple of metallic discs mounted between bearings, on the same 
axis, which play a double role. On the one hand, they produce a load of 
about 200 N applied in a radial-axial manner on bearings. This leads to a 
contact angle of 40° inside the bearings. On the other hand, they are 
creating an inertial momentum that rejects some external perturbations and 
keeps the rotation speed constant. 
4. An elastic coupling between engine axis and load axis, aiming to 
attenuate the engine self-sustained vibrations or shaft wobbling that could 
corrupt the data. 

Figure 5.15. The bearings testing platform. 
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�# of balls: 13

�contact angle: 40° 

Figure 5.16. Geometrical characteristics of tested bearings. 

The geometrical characteristics of tested bearings (illustrated in Figure 
5.16) lead in fact to a very small variation of natural frequencies, depending on 
contact angle. Thus, even the contact angle is not accurately set, and its influence 
over the natural frequencies is not decisive. The biggest natural frequency is about 
325 Hz. 

The vibration is acquired by using two light accelerometers. The definition 
in Eq. 2 is adopted to provide the complex valued vibration data, because both 
sensors are far enough from the direction of applied load. A very powerful 
apparatus has been employed to acquire vibration data: an LMS Roadrunner (LMS 
International, 1999). Its capabilities extend far beyond the minimal ones required by 
this method: accurate prefiltering of data, simultaneous acquisition on at least two 
channels and selectable recording format. The Roadrunner integrates a 
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microcomputer with a user-friendly interface that allows the user to work as 
comfortably as with any PC. It is also endowed with at least four channels (their 
number could be extended), compatible with a large number of sensors. The 
maximum allowed sampling frequency is 100 kHz. In this application, the sampling 
frequency has been set to kHz6.25s . Data are saved in ASCII format, with 22 
digits of representation. From Roadrunner, data are transferred to a PC, via floppy 
discs. The PC has the following main characteristics: 1 GHz (frequency), 256 Mb 
RAM (memory), 40 Gb (hard disk capacity). They rate the PC at the average of 
actual (public) technological level (years 2001, 2002). A laptop could also be 
successfully employed to implement the method. 

5.3.2. Initial Simulation Parameters 

In the description of the platform above, the shaft rotation speed and the sampling 
frequency were given: Hz67.45r  and Hz60025s . Thus, a complete 
rotation takes about 21.9 ms, encoded by 560 vibration data samples. The vibration 
data length is set to samples, which takes 163.84 s in 7482 full 
rotations (see Eq. 1).  

304,194,4222N

The vibration frame length is set to  samples (320 ms, 
~15 full rotations). The number of nonoverlapped frames is then 512 (see Eq. 4), 
whereas every data segment includes three successive frames, as explained in the 
previous section. The frame length involves a frequency resolution of 3.125 Hz.  

8192213
fN

The window selected to smooth the overlapping between segments is 
Tuckey type, with 33.33% rectangular shape (see Figures 5.4 and 5.5). A high-pass 
filter will be applied to windowed segments. The LF cutoff frequency is set 7 times 
the largest natural frequency: Hz22753257lc .

32KThe vibration spectrum is segmented into  subbands. Every 
subband includes 128 rays for a bandwidth of 400 Hz. This setting realizes a good 
compromise between sp accuracy (each one is computed by using 128 spectral 
values) and bandwidth. The severity levels are set as already explained ( 12L
levels).

5.3.3. Comparative Discussion on Simulation Results 

The experiments have been organized according to the following scenario:  
1. Collect raw vibration data from four tested bearings: a standard 
(defect free) one (labelled S720913, according to its geometry); one with 
a chop on the inner race (I720913); one with a spall on the outer race 
(O720913); one with chops on both inner and outer races (M720913).  
2. Apply EA to detect the severity degree of defects and to check if 
multiple defects on bearing M720913 are visible or not. The following 
settings are performed in this aim: consider vibration segments of more 
than 1 s length; operate with 1/3-octave filters appropriately designed (as 
described in (Barkov et al.,1995a,b)); take full rectified envelope; focus on 



166   V Palade, CD Bocaniala and L Jain (Eds.)

the LF sub-band of envelope spectrum, for a bandwidth at least equal to 2 
kHz.  
3. Apply the fuzzy reasoning method.  

A. Envelope analysis results 
A standard horizontal vibration data segment of about 1.3 s (32,768 samples, 4 
frames) and a zoom on the portion between 0.2 s and 0.25s are represented Figure 
5.17a. The shape is almost harmonic, as expected. In Figure 5.17b, the 
corresponding spectrum is represented in dB, with a resolution of 0.78125 Hz 
(16,384 rays on half band 0-12.8 kHz). The energy of vibration is practically 
concentrated in LF-MF subband 0-5 kHz. The sensor resonance is insignificant. 
The peaks into the LF band are due to bearing natural frequencies. The envelope of 
standard signal, as well as a similar zoom as before, is drawn in Figure 5.18a. 
Signals appear very close to the white noise. Actually, the LF part of the envelope 
spectrum in Figure 5.18b reveals a quasi-constant variation on all frequencies 
around the spectral acceleration of 102.7 cm/s2 (the spectrum average). 
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Figure 5.17. Standard vibration (a) and its spectrum (b) (bearing S720913).
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Figure 5.18. Standard envelope vibration (a) and its spectrum (b) (bearing S720913).

For the next three cases, the length of vibration data segments is identical 
to the standard set above. The vibration segments are represented in Figures 5.19a, 
5.20a and 5.21a, while their corresponding spectra are found in Figures 5.19b, 
5.20b and 5.21b (see Appendix). The time variations appear to be more irregular 
than previously. The harmonic behaviour is distorted by a noise encoding the defect 
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type. The effect of modulation could be seen in the zoomed portions of these 
signals, especially for the outer race defect. The sensors are forced to resonate and 
this effect is replicated towards LF and MF bands in all spectra. A significant 
resonance peak is located in band 6-10 kHz for all defective bearings, while it is 
missing for standard bearing. Also, peaks are more emphasized within the LF 
spectral zone for defective bearings than for standard.  

The 1/3-octave filter (specific to EA) has been designed such that its 
central frequency is located somewhere in the median spectral valley between 4 and 
6 kHz. Actually, it is selected as the minimum point of the spectral median in 
subband 4-6 kHz. This corresponds to the selection performed in (Barkov et
al.,1995a,b) where the central frequency is located in a subband corresponding to 
the flattest zone of spectrum. In this specific case, the bandwidth is determined by 
the resonance peak flanking the valley to the right (in subband 6-10 kHz). The 
bandwidth is set as 3/2 times the difference between the location of this peak and 
the central frequency. The filter length is set to 2048 coefficients, in order to 
preserve high accuracy of filtering.  

Figures 5.19, 5.20 and 5.21 are also concerned with the envelope signals 
(c) and the corresponding (envelope) spectra (d). In the case of single-point defects 
(Figures 5.19c and 5.20c), the abnormal behaviour is illustrated by the spectral 
envelope prominent peaks located around the multiples of natural frequency 
corresponding to the defective part: Hz061.325BPFI  (Ball Pass Frequency on 
the Inner race) or Hz606.268BPFO  (Ball Pass Frequency on the Outer race). 
The peaks decay exponentially, such that starting from the 9th multiple, they are 
practically sunk into the noisy part of spectrum. The severity degree is quite easy to 
estimate from these graphics, if the height of the largest peak is compared to the 
average standard envelope spectrum: about 3.5 (i.e., 10.88 dB) for inner race defect 
and about 4.5 (i.e., 13.06 dB) for outer race defect. This rates the defects as medium 
ones. Note, however, that the estimation could not be extremely accurate, since the 
vibration segments lengths are small (only 1.3 s, i.e., about 59 full rotations). An 
accurate estimation requires at least 100 rotations, but this increases the noisy part 
in all spectra, such that spectral estimation techniques should be employed 
(Oppenheim and Schafer, 1985; Proakis and Manolakis, 1996), in order to provide 
readable spectra.  

Refer now to the multiple-point defect (Figure 5.21c). The envelope 
spectrum is so noisy that, practically, it is impossible to isolate some characteristics 
related to the defect type, though the spectrum in Figure 5.21b does not look very 
different from the spectra in Figures 5.19b and 5.20b. The energy increase revealed 
by the envelope spectrum is mainly due to the vibration signal itself (see Figure 
5.21a), which has a larger energy level than in the case of single-point defects 
(Figures 5.19a and 5.20a). But the general level of noise is also increased. The EA 
failure in this case could have some plausible explanations. Besides the 1/3-octave 
filter selection (note that EA is very sensitive to this filter), perhaps the vibration 
model considered here cannot match the interpretation principle that worked well in 
the case of single-point defects (i.e., associate the natural frequencies directly to 
defect nature and location). 

B. Fuzzy-statistical reasoning results 
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The three vibration signals have been entered into two MATLAB programs 
implementing the method described in the previous section. Thus, after collecting 
all information about rsp norms occurrences in box cells of sn, three occurrence 
degrees distributions have been obtained. For single point defects, there are two 
main rsp norms concentrations: one for MF and one for HF zones, but the most rsp 
norms seem to occur in the MF zone. On the contrary, for multiple defects, they 
occur rather in the HF zone. Thus, a first criterion for discriminating between 
single- and multiple-point defects is revealed.  

After constructing the fuzzy model, a number of faults classifications 
resulted, for each tested bearing: 30 for I720913, 32 for O720913 and 27 for 
M720913. The selection of an optimum faults classification is automatically 
performed (as described). The trade-off between the confidence degree (Eq. 49) and 
the classification entropy (Eq. 50) is quantified by means of geometric mean 
criterion (Eq. 51) that points to the optimal classification index. The variation of 
confidence degree and entropy among classifications as well as the shape of the 
geometric mean are illustrated in Figures 5.22, 5.25 and 5.28, for each bearing. The 
optimum classification indexes are: #20 for I720913, #20 for O720913 and #17 
for M720913. The corresponding optimum classification maps are pictured in 
Figure 5.23 (inner race defect), Figure 5.26 (outer race defect) and Figure 5.29 
(multiple defects). For each classification, the representation is illustrated by using 
the grey levels scale to the right. One recognizes the sn by looking at the grid of 
each map. Thus, box cells that belong to the same class (cluster) have the same 
colour. Moreover, inside every box, the index of class the box belongs to is written, 
except the boxes that do not partake in the classification and belong to the inactive 
cluster. Besides the numerical parameters describing the classification minimum 
entropy (optimal) cluster, the average of rsp norms is represented as a curve passing 
through the map. Obviously, clusters are more or less grouped around this curve for 
all classifications.

As already mentioned, the most difficult part of the fuzzy model is the 
interpretation (or analysis) of classification maps. This means specific defects 
should be put into direct correspondence with map topologies. Such an analysis is 
more rigorous and simpler to perform than by inspecting the vibration spectrum, 
since a part of analyst reasoning has already been automated.  

The shape of inactive cluster or of the rsp norms average could already 
constitute an image of defect types. For the three optimum classifications described 
above, the inactive clusters are all different, though their shapes are closer to each 
other for single-point defects. But this effect is noticed in EA as well: Figures 5.19d 
and 5.20d are not very different, since the values of the two corresponding natural 
frequencies are close to each other (BPFI=325.061 Hz and BPFO=268.606 Hz). 
The inactive cluster for multiple defects seems to be quite different, but the same 
interpretation principle or rules as for single-point defects could be used. In the case 
of EA, the interpretation rule that worked very well for single-point defects is 
useless in the case of multiple-defect spectrum (Figure 5.21d).  

Another entry yielding map interpretation is to focus not on the inactive 
cluster, but rather on the active ones. Of course, one could consider all classes in a 
map (optimal or suboptimal). But this involves a complicated analysis. Therefore, 
some specific class (or a reduced number of classes) should be emphasized as 
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representing the defect(s). An option is to consider the biggest class as revealing all 
subbands affected by the defect(s). A different option is to extract the minimum 
entropy class (optimal cluster), which, in general, is smaller than the biggest class 
and, therefore, more focused on a few subbands. These are very likely the most 
affected by defect(s). (Recall that minimum entropy means maximum occurrence 
degree of rsp norms.) Other representing classes could also be selected.  

The optimal detected clusters are the following:  
a. for bearing I720913 (inner race defect): cluster #13, 

with normalized entropy 0.516168, focusing on subband 
5200-5600 Hz (MF);  

b. for bearing O720913 (outer race defect): cluster #20, 
with normalized entropy 0.711234, focusing on subband 
4800-5200 Hz (MF);  

c. for bearing M720913 (inner and outer race defects): 
cluster #27, with normalized entropy 0.709225, focusing 
on subband 12.4-12.8 kHz (very HF).  

That the optimal clusters #13 and #20 are located in adjacent box cells is 
not coincidental, but is due to the fact that the corresponding natural frequencies 
have values close to each other. The extreme HF subband pointed by the multiple 
defects is somehow surprising. A better interpretation could be given by 
considering other sub-optimal classifications (see the next discussion). But, in any 
case, a good insight concerning the “full optimality” (optimal clusters into optimal 
classifications) is the following: single-point defects are indicated by optimal 
clusters around the LF or MF peaks of rsp norms average (and there is a correlation 
between natural frequencies and focused subbands), while the optimal clusters of 
multiple-point defects seem to be located around the HF peak of average. A more 
refined frequency segmentation, with a larger number of subbands than here 
( ) could probably help the user to make a sharper distinction between 
focused subbands in the case of single-point defects. Practically, the EA results are 
obtained by the fuzzy reasoning method as well. Concerning the multiple-point 
defects, it is possible that a frequency interpretation in terms of natural frequencies 
cannot be performed, but increasing 

64K

K  should lead to the same effect: the 
distinction between different defects should be easier to achieve. Unfortunately, the 
number of subbands ( K ) can only be increased at the expense of running time, 
especially due to the procedure evaluating the fuzzy transitive closure, which is the 
most time-consuming part of the algorithm (exponential type).  

The severity degree estimated here is located on the 4th level (between 6 
and 9.54 dB) – the first medium severity one – for single-point defects and on the 
5th level (between 9.54 and 12.04 dB) for multiple defects. The first location is 
close to the severity degree estimated by EA for inner race defect (10.88 dB), but 
quite different from the outer race defect estimated severity (13.06 dB). For 
multiple defects, EA offers no severity degree estimation, but in this case the 
location of multiple defects optimal cluster is closer to the outer race severity (13.06 
dB). Both estimations here are below the estimations proposed by EA. Since the 
severity degrees are conventionally set and in both methods the raw vibrations have 
been affected by filtering, the comparison in terms of severity degree is probably 
irrelevant. One could only note that, for the fuzzy-statistical method, the estimated 
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severity degree for multiple defects seems to be plausible, because the general level 
of vibration noise has been increased. This effect is proven by Figures 5.17a, 5.19a, 
5.20a and 5.21a, where the amplitude of corresponding raw vibrations is about 3 
cm/s2 2 for standard and inner race defect, 2 cm/s for outer race defect, but 5 cm/s2

for multiple defects.  
In order to extract more insights concerning classification map 

interpretation, several classifications should be depicted around the optimal ones. 
Their confidence and granularity are decreasing with classification index (according 
to the holonic phenomenon). In this context, some suboptimal classifications have 
been represented in Figure 5.24 (inner race defect), Figure 5.27 (outer race defect) 
and Figure 5.30 (multiple defects). They are selected according to the geometric 
mean values of Figures 5.22, 5.25 and 5.28. Thus, the suboptimal classifications 
have the best geometric mean values under the maximum one in every case. 
Sometimes, this requirement is fulfilled by local maxima, as in the case of bearings 
O720913 and M720913. One could notice how box cells are more and more 
grouped together as the classification index increases.  

An interesting observation could be noted with regard to all these maps: 
the optimal cluster (indicated by the optimal classification) is also optimum (with 
minimum entropy) for a large number of suboptimal classifications surrounding the 
optimal one, in the case of single-point defects. Though its index is changing (due 
to holonic phenomenon), its location is identical. The optimal cluster persistence 
among faults classifications is another good insight about the single-point defect 
nature, because, for multiple defects, the optimum cluster changes among 
classifications. However, in the case of multiple defects, it seems that another 
optimal cluster could also be considered, but extracted from suboptimal 
configurations. This is in fact the cluster #11 in classification #16 (as well as in 
classifications #13, #14, and #15, although not shown here). If one revisits Figure 
5.27, one could notice that all these classifications, though suboptimal, prove a 
good compromise between confidence and entropy (they are only slightly below the 
optimal classification). Their unique optimum cluster focuses on the subband 7200-
7600 Hz (still on the HF peak), but points to a lower severity degree (on level 3-6 
dB, incipient).  

One can infer from this analysis that selecting the cluster detected as 
optimal for the maximum number of classifications could be a good hint about the 
defect nature. But a reliable diagnosis requires a whole set of inference rules (and 
not isolated ones), in order to associate classification maps with specific defects and 
their severity degrees. A good achievement is that, by fuzzy-statistical reasoning, 
defects could be classified regardless of their nature as single- or multiple-point 
ones. 

5.4. Concluding Remarks 

Although with some obvious limitations, the method presented above aims to 
automate a part of human reasoning when detecting and classifying defects and to 
improve the multiple defect diagnosis. The main advantage of this method is that 
the defect classification maps could allow the user to perform a reliable detection 
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and diagnosis of defects, independently of their nature. Another advantage is its 
generality. On the one hand, the natural oscillation frequencies of the tested 
component play only a secondary role. On the other hand, gears, belt transmissions, 
or other vibration sources could replace bearings, provided that at least a good 
description of possible defects is a priori known in each case. Note that prefiltering 
is not mandatory: the fuzzy model could work with the whole raw vibration as well 
as with prefiltered data. The method’s main drawbacks are the complexity (slightly 
bigger than EA complexity) and the difficulties in finding appropriate 
interpretations for classification maps.  

Approaching the human reasoning in fault diagnosis is a demanding task. 
Not only because human reasoning is a complex mechanism (far to be completely 
understood nowadays), but also because such an attempt is mostly concerned with 
the inexplicable part of reasoning. 

5.5. Appendix. Graphical Simulation Results 
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Figure 5.19. Envelope analysis for bearing I720913.
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Figure 5.20. Envelope analysis for bearing O720913.
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Figure 5.21. Envelope analysis for bearing M720913.
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Figure 5.22.  Selecting the optimum defect classification for bearing I720913.
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Figure 5.23. Optimum defect classification # 20 for bearing I720913.
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Figure 5.24. Suboptimal defect classifications #19 and #21 for bearing I720913.
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Figure 5.25. Selecting the optimum defect classification for bearing O720913. 
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Figure 5.26. Optimum defect classification # 20 for bearing O720913. 
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* Number of clusters: 21
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Figure 5.27. Suboptimal defect classifications #19 and #23 for bearing O720913. 
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Figure 5.28. Selecting the optimum defect classification for bearing M720913. 
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Classification #17 inside the statistical network for bearing M720913. Optimal.
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Figure 5.29. Optimum defect classification # 17 for bearing M720913. 
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Classification #16 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale
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Classification #16 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.785887       * Classification entropy: 52.3645

* Number of clusters: 53
* Optimum cluster: 11       * Entropy: 0.492732
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Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344       * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10       * Entropy: 0.767531
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Classification #22 inside the statistical network for bearing M720913. Sub-optimal.

= Average statistical parameters

Entropy scale

* Confidence degree: 0.704344       * Classification entropy: 14.8632

* Number of clusters: 15
* Optimum cluster: 10       * Entropy: 0.767531
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Figure 5.30. Suboptimal defect classifications #16 and #22 for bearing M720913. 



176   V Palade, CD Bocaniala and L Jain (Eds.)

References

1. Angelo M (1987) Vibration Monitoring of Machines. Bruel & Kjiaer Technical 
Review 1:1–36 
2. Barkov AV, Barkova NA, Mitchell JS (1995a) Condition Assessment and Life 
Prediction of Rolling Element Bearings – Part 1. Journal of Sound and Vibration 
6:10–17, June 1995 (http://www.inteltek.com/articles/sv95/part1/index.htm)
3. Barkov AV, Barkova NA, Mitchell JS (1995b) Condition Assessment and Life 
Prediction of Rolling Element Bearings – Part 2. Journal of Sound and Vibration 
9:27–31, September 1995 (http://www.inteltek.com/articles/sv95/part2/index.htm)
4. Bedford A, Drumheller DS (1994) Introduction to Elastic Wave Propagation. 
John Wiley & Sons, Chichester, UK 
5. Braun S (1986) Mechanical Signature Analysis. Academic Press, London, UK 
6. Cohen L (1995) Time-Frequency Analysis. Prentice Hall, New Jersey, USA 
7. FAG OEM & Handel AG (1996) Wälzlagerschäden – Schadenserkennung und 
Begutachtung gelaufener Wälzlager. Technical Report WL 82 102/2 DA 
8. FAG OEM & Handel AG (1997) Rolling Bearings – State-of-the-Art, 
Condition-Related Monitoring of Plants and Machines with Digital FAG Vibration 
Monitors. Technical Report WL 80-65 E 
9. Howard I (1994) A Review of Rolling Element Bearing Vibration: Detection, 
Diagnosis and Prognosis. Report of Defense Science and Technology Organization, 
Australia 
10. Isermann R (1993) Fault Diagnosis of Machines via Parameter Estimation and 
Knowledge Processing. Automatica 29(4):161-170 
11. Isermann R (1997) Knowledge-Based Structures for Fault Diagnosis and its 
Applications. In: Proceedings of the 4th IFAC Conference on System, Structure and 
Control, SSC’97, Bucharest, Romania, pp.15-32 
12. Kaiser JF (1974) Nonrecursive Digital Filter Design Using the I0–sinh Window 
Function. In: Proceedings of the IEEE Symposium on Circuits and Systems, pp.20-
23
13. Klir GJ, Folger TA (1988) Fuzzy sets, Uncertainty, and Information. Prentice 
Hall, New York, USA 
14. LMS International (1999) LMS Scalar Instruments Roadrunner. User Guide. 
LMS Scalar Instruments Printing House, Leuven, Belgium 
15. Maness PhL, Boerhout JI (2001) Vibration Data Processor and Processing 
Method. United States Patent No. US 6,275,781 B1 (http://www.uspto.gov/go/ptdl/)
16. McConnell KG (1995) Vibration Testing. Theory and Practice. John Wiley & 
Sons, New York, USA 
17. Oppenheim AV, Schafer R (1985) Digital Signal Processing. Prentice Hall, 
New York, USA 
18. Proakis JG, Manolakis DG (1996) Digital Signal Processing. Principles, 
Algorithms and Applications (third edition). Prentice Hall, Upper Saddle River, 
New Jersey, USA 
19. Reiter R (1987) A Theory of Diagnosis from First Principles. Artificial 
Intelligence 32: 57-95 
20. Söderström T, Stoica P (1989) System Identification. Prentice Hall, London, 
UK



Computational Intelligence in Fault Diagnosis   177 

21. Stefanoiu D, Ionescu F (2002) Mathematical Models of Defect Encoding 
Vibrations. A Tutorial. Journal of the American-Romanian Academy (ARA), 
Montréal, Canada, Vol. 2001-2002 
22. von Tscharner V (2000) Intensity Analysis in Time-Frequency Space of 
Modelled Surface Myoelectric Signals by Wavelets of Specified Resolution, 
preprint 
23. Ulieru M, Stefanoiu D, Norrie D (2000) Identifying Holonic Structures in 
Multi-Agent Systems by Fuzzy Modeling. In: Kusiak A & Wang J (eds) Art for 
Computational Intelligence in Manufacturing, CRC Press, Boca Raton, Florida, 
USA 
24. Willsky AS (1976) A Survey of Design Methods for Failure Detection 
Systems. Automatica 12:601-61 
25. Wowk V (1995) Machinery Vibration. Balancing. McGraw-Hill, Upper Saddle 
River, New York, USA 
26. Xi F, Sun Q, Krishnappa G (2000) Bearing Diagnostics Based on Pattern 
Recognition of Statistical Parameters. Journal of Vibration and Control 6:375–392 




