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This chapter describes a novel fuzzy classification methodology for fault diagnosis. 
There are three main directions of applying fuzzy classifiers to fault diagnosis: 
neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules, and 
classifiers based on collections of fuzzy subsets. The contributed fuzzy 
classification methodology described in this chapter follows the last direction. The 
main advantages of the developed fuzzy classifier are the high accuracy with which 
it delimits the areas corresponding to different system states, i.e., the normal state 
and the different faulty states, and the fine precision of discrimination inside 
overlapping areas. In addition, the classifier needs to tune only a small numbers of 
parameters, i.e., the number of parameters equals the number of system states 
considered. The methodology is validated by application with very good results to 
fault diagnosis of a control flow valve from an industrial device. 

4.1. Introduction 

The goal of fault diagnosis research is improving the security, efficiency, 
maintainability and reliability of industrial plants. There are two main types of 
systems that are addressed: safety-critical systems such as nuclear plants and 
aircraft, and lower safety-critical systems such as process and manufacturing plants. 
A fault diagnosis system is a monitoring system that is used to detect faults and 
diagnose their location and significance in a system (Chen and Patton, 1999). The 
diagnosis system performs mainly the following tasks: fault detection – to indicate 
if a fault occurred or not in the system, and fault isolation – to determine the 
location of the fault. 

According to Duda and Hart (1973), classification represents “the 
assignment of a physical object or event to one of several prespecified categories.” 
Fault diagnosis represents a suitable application field for classification methods, as 
its main purpose is to achieve an optimal mapping of the current state of the 
monitored systems into a prespecified set of system states. The set of system states 
includes the normal state and the faulty states (Ariton and Palade, 2005). A general 
framework for applying classification methods to fault diagnosis problems is given 
in (Leonhardt and Ayoubi, 1997). Fault diagnosis is described as “a sequential 
process involving two steps: the symptoms extraction and the actual diagnostic 
task.” The symptoms are extracted on the basis of the measurements provided by 
the actuators and sensors in the monitored system. The actual diagnostic task is to 
map the points in the symptoms space into the set of considered faults. For this 



106   V Palade, CD Bocaniala and L Jain (Eds.)

reason, the use of classification techniques represents a natural choice when 
designing a fault diagnosis system. 

There are three main ways for applying fuzzy classifiers to fault diagnosis 
that can be found in the literature. Fault diagnosis may be performed using 
collections of fuzzy rules (Frank, 1996; Koscielny et al., 1999). Let R={r1, r2,…,
r } be the set of residuals. Each residual rm i, i=1,…,m, is described by a number of 
fuzzy sets {ri1, ri2,…,ris}. The causal relationships between the residuals and faults 
are expressed by if-then rules having a form similar to 

ip jqIF (effect = r ) AND (effect = r )... THEN (cause is the k - th fault) (1) 
The output of the fuzzy classifier is the faulty vector F. The fuzzy 

inference process will assign to each component Fi, i=0, 1,…,n, where n is the 
number of faults – a value between 0 and 1 that indicates the degree with which the 
normal state (the corresponding component is F0) or the j-th fault affects the 
monitored system, j=1,…,m. If there is the premise that the system can be affected 
only by a fault at a time, then the faulty vector contains only one component larger 
than a preset threshold value, and whose corresponding faulty state represents the 
actual state of the monitored system. If multiple faults can affect the monitored 
system, then the components of the classifier output, which are larger than a preset 
threshold, indicate the faults that occurred in the system. The main advantage of 
using sets of fuzzy rules is that they make transparent the relationships between 
symptoms and faults via the use of linguistic terms. However, notice that if the 
number of fuzzy sets used is increasing, the number of linguistic terms used to label 
them also increases. It follows that the linguistic informational burden of the 
operator may increase too beyond reasonable limits. 

Combinations between fuzzy logic and neural networks, i.e., neuro-fuzzy 
systems, are used to create diagnosis systems robust to uncertainties and noise 
(Palade et al., 2002; Uppal et al., 2002). Calado et al. (2001) propose a hierarchical 
structure of several fuzzy-neural networks (FNN) for fault isolation purposes. The 
hierarchical structure has three levels. The first order differences for all available 
measurements are used as symptoms. The lower level consists of one FNN that 
receives as input the considered symptoms. The output of this FNN determines 
which of the FNNs on the medium level will be activated. That is, if the i-th 
component of the output has a value close to 1, then the i-th FNN on the medium 
level will be activated. The number of the FNNs on the medium level is equal to the 
number of faults considered. Each one of them is also fed with all symptoms 
considered. The upper level is used to perform an OR operation on the outputs of 
the activated FNNs on the medium level. The components of the outputs considered 
for the OR operation must have a value close to 1. The main advantage of the 
neuro-fuzzy systems is that the learning, adaptation and parallelism capabilities 
provided by neural networks may be used to tune the fuzzy rules parameters. The 
main drawback of the neuro-fuzzy classifiers, like the one presented before, is 
represented by a possible too large number of parameters to be tuned, i.e., fuzzy 
membership functions and neural network weights. 

A third direction is to represent the normal state and each faulty state of 
the system as a fuzzy subset of the symptoms space (Boudaoud and Masson, 2000). 
The quality of this last direction is given by its capabilities to learn the topological 
structure of the space. Boudaoud and Masson (2000) propose two main steps for the 
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design of such a pattern recognition diagnosis system: analysis and exploitation. 
The analysis phase is performed off-line and it transforms the available 
measurements, labelled with the corresponding operating state of the system, into a 
collection of fuzzy subsets standing for regions in the measurements space 
describing the operating states into the measurements space. The exploitation phase 
corresponds to the on-line diagnosis process using classification into the regions 
found before. 

The fuzzy subsets defining the normal state and the faulty states of the 
system represent hyperboxes B defined by a minimum point m and a maximum 
point M in the symptoms space (Boudaoud and Masson, 1996). Figure 4.1 shows a 
hyperbox in R3. This type of fuzzy subsets has been used with the fuzzy min-max 
clustering algorithm proposed by Simpson (1993). The maximal size of each 
hyperbox is tuned so that the misclassification rate is minimal. The particularities of 
the fuzzy subsets defined by hyperboxes, i.e., full membership inside hyperboxes 
and partial membership around hyperboxes boundaries, allow diagnosis to consist 
of three possible cases: (i) the system state is stationary, (ii) the system is in 
transition between two possible states, and (iii) the system is stabilizing in a new 
state. It is important to mention that the hyperboxes used during the diagnosis 
process are not allowed to overlap (Simpson, 1993). This does not mean that the 
areas in the symptoms space corresponding to different states do not overlap, but 
that the hyperboxes delimit the sub areas where points have full membership. 
Diagnosing the partial membership areas as transitions between two states 
compensates the loss of diagnosis information due to this approach. 

Notice that the dimension of each hyperbox depends on only three 
constraints: its minimum point, its maximum point, and a parameter that controls 
the decreasing rate of membership to B value when the distance between a test point 
u and B increases. Thus, the main advantage of the third direction compared to the 
previous two directions is the smaller number of parameters to be tuned, i.e., three 
times the number of system states considered, which leads to a smaller designing 
time for the classifier. However, the transparency of relationships between 
symptoms and faults given by the use of linguistic terms is lost. 

minimum point 

m

maximum point 

M

Figure 4.1. A hyperbox in R3 defined by minimum and maximum points. 
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The classification methodology described in this chapter follows the last 
direction mentioned. The methodology is described in detail in our previous papers 
(Bocaniala et al., 2004; 2005). The main property of this methodology is the large 
accuracy with which it learns the topological structure of the symptoms space. The 
fuzzy subsets built by the classifier approximate with a very small error the areas in 
the symptoms space corresponding to different system states. Its accuracy also 
manifests through handling with fine precision the discrimination inside 
overlapping areas. 

The fuzzy subsets defined by this methodology express better the 
topological properties of the symptoms space than hyperboxes used in (Boudaoud 
and Masson, 1996). Details are given further in the chapter. Also, similar to the 
methodology proposed in (Boudaoud and Masson, 1996), the methodology in this 
chapter also needs to tune only a small numbers of parameters, i.e., the number of 
parameters equals the number of system states considered. Details are given further 
in the chapter as well. 

The chapter is organized as follows. Section 4.2 presents the theoretical 
aspects of the described fuzzy classification methodology. The case study, 
DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/damadics1. 
htm), is concerned with fault diagnosis of a valve intended to supply water to a 
steam generator boiler. Section 4.3 provides a detailed analysis of the faults studied 
by the benchmark. Section 4.4 presents the detection and isolation of the valve 
faults using the contributed fuzzy classifier. Section 4.5 summarizes the original 
contributions of this chapter and mentions possible directions for future work. 

4.2. Theoretical Aspects of the Contributed Fuzzy 
Classification Methodology 

The fuzzy subsets used by the classification methodology described in this chapter 
are induced (built) on the basis of a point-to-set similarity measure between a point 
and a set of points in the measurements space (Baker, 1978). The point-to-set 
similarity is built at its turn on the basis of a point-to-point similarity measure 
between points in the measurements space. 

One of the particularities of the methodology is the fact that one may 
choose those point-to-point and point-to-set similarities that provide the best 
classification performance for the problem at hand. Thus, the methodology may be 
seen as a template that may be instantiated so that it fits the specific characteristics 
of the problem to solve. One may criticize this aspect as it implies searching by 
trials the most suitable similarity measures. However, hints on what measures 
should be used may be obtained by analysis of the measurements used. For 
instance, the trends in the available sensor measurements may reflect in the same 
way the effects of a fault on a system. Therefore, the use of a measure of similarity 
between the trends in the sensor signals over a time window may prove to be a good 
choice.

In order to facilitate the understanding of the theoretical concepts 
presented in the following, a simple problem shown in Figure 4.2 is used. The 
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figure shows the points corresponding to two categories characterized by two 
measurements. 
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Figure 4.2. The simple problem used to illustrate the theoretical aspects. 

4.2.1. Point-to-Point Similarity Measure Based on Distance 
Functions

The similarity between two points u and v, s(u,v), may be expressed using a 
complementary function, d(u,v), expressing dissimilarity. Baker (1978) expresses 
dissimilarity by using the distance function in Eq. 2. Notice that, in this case, the 
functions s and d are complementary with regard to unit value, s(u,v)=1-d(u,v). The 
 parameter plays the role of a threshold value for the similarity measure. For a data 

point u, all points v residing at a distance (u,v) smaller than  will bear some 
similarity with u. As for the points residing at distances larger than or equal to , the 
similarity s(u,v) is null. The contour plot of the point-to-point similarity function 
when Eq. 2 is used is shown in Figure 4.3. The distance measure used is the 
Euclidean measure. 

, / , for ,
,

1, otherwise
u v u v

h u v (2) 

4.2.2. Point-to-Point Similarity Measure Based on Pearson 
Correlation

The Pearson correlation (Weisstein, 1999) measures the similarity in the trends of 
two signals. Let us suppose that s and t represent the measurements of two signals 
over the same time window. The formula used to compute the correlation between 
the vectors s and t is given in Eq. 3. The terms zs and zt represent the z-scores of s
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and t, respectively. The z-score of a vector is obtained by first subtracting the mean 
value and then dividing by its standard deviation. The product between zs and zt is 
the dot product and n represents the length of the time window. 

( , ) 1 ( ) /p s t zs zt n (3) 
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Figure 4.3. The point-to-point similarity measure for =5 in Eq. 2.

The values of this correlation measure fall in [0,2] interval, where 0 stands 
for perfect correlation and 2 stands for perfect anticorrelation. Figure 4.4 shows two 
pairs of shapes corresponding to these two cases. There is a parallel between the 
terms “correlation”/“anticorrelation” and the terms “similarity”/“dissimilarity.” 
Indeed, the function p may play the same role as the dissimilarity function d in the 
previous subsection. In this case, the maximum value for d(s,t), which is equal to 
p(s,t), is 2. The functions s and d are complementary with regard to this value; thus, 
s(u,v)=2-d(u,v). 

4.2.3. Point-to-Set Similarity Measure 

The similarity measure between two data points may be extended to a similarity 
measure between a point and a set of points (Baker, 1978). In this chapter, if the 
point-to-point similarity is given by Eq. 2, the similarity between a given point u
and a set of points S is computed as the mean value of the point-to-point similarity 
values between u and each v in S (Eq. 4, where n denotes the number of elements in 
S). Notice that the value of r(u,S) stays inside [0,1] interval, as s(u,v) also stays 
inside [0,1] interval and the cardinal of S is n.

( , )
, v S

s u v
r u S

n
(4) 
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Figure 4.4. Perfect Pearson correlation (a) and perfect Pearson anticorrelation (b). 
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Figure 4.5. The contour plot of the point-to-set similarity for the first category ( =3).

The effect of using the  parameter is that only those data points from S,
whose distance to u is larger than , contribute to the point-to-set similarity value. 
The explanation is that only these points have a nonzero similarity with u. It follows 
that the similarity value between u and S is decided within the neighborhood 
defined by .

It has been observed in practice that, if different (dedicated)  parameters 
are used for different categories to express the point-to-point similarity (Eq. 2), the 
performance of the classifier increases substantially. Let us consider that the value 
of the  parameter is 3 for both categories in the problem. The contour plots of the 
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point-to-set similarity functions for the two categories are shown in Figures 4.5 and 
4.6 (left), respectively. The two plots are drawn for all the points in the Cartesian 
product [0,16]x[0,16]. If we decrease the value of  to 1.8 for the second category, 
the contour plot for this category matches more accurately the topology of the area 
occupied by points in the category (Figure 4.6, right). 
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Figure 4.6. The contour plot of the point-to-set similarity for the second category when 
=3 (left) and when =1.8 (right) 

Figure 4.7. The surfaces generated when the same  value is used (left) and when 
different  values are used (right) 

4.2.4. Fuzzy Subsets Induced by Single Point-to-Set 
Similarity Measures 

Let C={Ci}i=1,…,m be the set of all points in the measurements space, associated with 
the problem to solve, where Ci, i=1,…,m, represents the set of all points 
corresponding to the i-th considered category. The membership function of the 
fuzzy subset Fuzzi induced by Ci, computed on the basis of a given point-to-set 
similarity measure, is given in Eq. 5. The n value represents the cardinal of C, and 
the ni value represents the cardinal of Ci.
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( , )
( , )

i
i

r u Cu
r u C (5) 

If the values of the  parameters considered are the same: 3 for both 
categories, the obtained fuzzy subsets (surfaces) corresponding to the two 
categories are shown in Figure 4.7 (left). If different values for the  parameters are 
used: 3 for the first one and 1.8 for the second one, the surface corresponding to the 
second category shrinks to match better the topology of the area occupied by the 
points in that category (Figure 4.7, right). 

A point u presented at the input of the classifier is assigned to the category 
Cz whose corresponding degree of assignment z(u) is the largest (Eq. 6). In case of 
ties, the assignment to a category cannot be decided and the point is rejected. 

1,...,
-th category maxz i

i m
u z u u (6) 

4.2.5. Fuzzy Subsets Induced by Multiple Point-to-Set 
Similarity Measures 

The practice showed that there are problems for which classifiers designed by using 
only one point-to-set similarity measure does not provide satisfactory results 
(Bocaniala et al., 2004). When situations like these are met, the advantages brought 
by two or more similarity measures may be combined in order to improve the 
performance of the classifier (Bocaniala e. al., 2004), i.e., a hybrid approach is 
used. This aspect has also been noticed by Baker (1978). 

In the following, a few possible approaches, when trying to combine the 
use of two or more similarity measures, are suggested: 

similarity measures: the  parameter may be applied only to one 
of the similarity measures used; if more than one similarity 
measure is used, then there is a  parameter for each one of them. 
cluster affinity measures: there may be only one cluster affinity 
measure resulting from the combination of all similarities used; 
or, there may be one cluster affinity measure for each similarity 
used. 
fuzzy membership functions: the fuzzy membership functions 
represent combinations of cluster affinity measures if more than 
one such  measure exists. 

If the  parameter is applied to only one of the similarity measures used, 
then all other cluster affinity measures will be computed for the neighbourhood 
defined by this  parameter. 

In this chapter, a hybrid approach based on Euclidean distance and Pearson 
correlation is used. For details see the case study in Section 4.3. 

4.2.6. Designing and Testing the Classifier 

Let m be the number of the categories considered for the problem to be solved. The 
proposed methodology first groups the set of all available data C into clusters 
according to the category they belong to, Ci, i=1,…,m. In order to design and test 
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the classifier, each subgroup Ci is split in three representative and distinct subsets, 
Ci

ref, Ci
param, and Ci

test. On the basis of these subsets three sets unions, REF, PARAM
and TEST, are defined (Eq. 7). They are called the reference patterns set, the 
parameters tuning set, and the test set, respectively. A subset is considered 
representative for a given set if it covers that set in a satisfactory manner. In the 
following, the semantic for the expression satisfactory covering subset adopted in 
this thesis is explained. Then, the role of each one of the three unions is detailed. It 
is to be noticed that the union of subsets having the satisfactory covering property 
for a set represents also a satisfactory covering subset of that set. 

1

1

1

m ref
i

i
m param

i
i

m test
i

i

REF C

PARAM C

TEST C

(7) 

4.2.6.1. Satisfactory Covering Subsets 
For the work presented in this thesis, a satisfactory covering subset represents a 
subset of data that preserves (with a given order of magnitude) the distribution of 
the data associated with the problem. Selecting the elements that compose a 
satisfactory covering subset for a given data set can be costly. Therefore, it is more 
convenient to use selection methods that provide convenient approximations for 
satisfactory covering subsets. Such a method is proposed in the following. 

Let us consider a given finite data set A that contains r points in a 
multidimensional space. First, the maximum distance, max, between two elements 
is computed. During this computation a pair of elements, (a,b), with maximum 
distance between them is memorized. Then, one of the elements, let it be a, is 
considered as the centre of s hyperspheres, Si, i=1,...,s. The user must provide the s
value. Each one of the Si hyperspheres has a radius equal to 

, 1,...,i
maxr i i s

s
(8) 

The next step is to consider the partition induced by the next subsets, 
0 1

1

/

/  , 1,..., 1j j+ j

P a A a inside S

P a A a inside S - S j s
(9) 

The cardinal of the subset that approximates the satisfactory covering 
subset is set to a previous given percent t of elements from A. The distribution of 
elements from A in the partition elements P , …, Ps-10  is not equal. This distribution 
is taken into account when distributing the percent t among the partition members. 
Each partition member Pj, j=1, …, s-1, will be allocated a number of pj elements. 
The approximation subset is composed by randomly selecting pj elements from the 
Pj subset, j=1, …, s-1.
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4.2.6.2. Reference Patterns Set (REF) 
The point-to-set similarity measures are defined for the representative subsets Ci

ref,
i=1,…,m. Therefore, when using a single point-to-set similarity measure, the fuzzy 
membership functions are computed as 

),(
),(

Cur
Cur

u
ref
i

i (10) 

4.2.6.3. Parameters Tuning Set (PARAM) 
The shape of the membership functions i, associated to the fuzzy sets Fuzzi,
depends not only on the representative subset Ci

ref, but also on the value of the i

parameter, i=1,…,m. The algorithm for tuning the parameters i, i=1,…,m, of the 
classifier represents a search process in an m-dimensional space for the parameter 
vector ( 1, 2,..., m) that meets, for each category, the maximal correct 
classification criterion and the minimal misclassification criterion. In order to 
perform this search, different methodologies may be used, i.e. genetic algorithms 
(Bocaniala et al., 2003), hill-climbing (Bocaniala and Sa da Costa, 2004a) and 
particle swarm optimisation (PSO) (Bocaniala and Sa da Costa, 2004b). In practice, 
the PSO methodology proved to be the fastest. 

The search for optimal parameters when using genetic algorithms and hill-
climbing may be accelerated by using an optimised initial population (Sa da Costa 
et al., 2003). An optimised initial population can be obtained by performing an 
iterative search that starts with an individual whose parameters have very small 
values. Then, at each next step, the values of the parameters will be 
increased/decreased so that the fitness of the obtained individual, i.e., the classifier 
performance, increases. 

4.2.6.4. Testing Set (TEST) 
The performance of the classifier is measured according to its generalization 
capabilities when applied on the TEST set. It is to be noticed that the TEST set 
contains data that were not presented before at the input of the classifier and that is 
representative for the whole data set C. The practice showed that the performance 
of the classifier may improve if the testing is performed after adding the data in the 
PARAM set to the REF set. 

4.3. Detailed Analysis of Faults in the Case Study 

The DAMADICS benchmark (http://www.eng.hull.ac.uk/research/control/dama 
dics1.htm) is concerned with fault diagnosis of a valve intended to supply water to a 
steam generator boiler. The valve is used as part of the process at sugar factory 
Cukrownia Lublin S.A., Poland. It is made up of three parts: a valve body, a spring-
and-diaphragm pneumatic actuator and a positioner (Figure 4.8). The valve body is 
the equipment that sets the flow through the pipe system. The flow is proportional 
to the minimum flow area inside the valve (2), which, in turn, is proportional to the 
position of a rod (5). The spring-and-diaphragm actuator determines the position of 
this rod. The spring-and-diaphragm actuator is composed of a rod, which at one end 
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is connected to the valve body and the other end has a plate, which is placed inside 
a pneumatic chamber (8). The plate is connected to the walls of the chamber by a 
flexible diaphragm. This assembly is supported by a spring. The position of the rod 
is proportional to the pressure inside the chamber, which is determined by the 
positioner. The positioner is basically a control element. It receives three signals: a 
measurement of the position of the rod (x), a reference signal for the position of the 
rod (CV) and a pneumatic signal from a compressed air circuit in the plant. The 
positioner returns an airflow signal, which is determined by a classic feedback 
control loop of the rod position. The airflow signal changes the pressure inside the 
chamber.

There are several sensors included in the system that measure the variables 
that influence the system, namely, the upstream and downstream water pressures, 
the water temperature, the position of the rod (x) and the flow through the valve (F).
These measurements are intended for controlling the process but they can also be 
used for FDI purposes. This means that the implementation of this sort of system 
will not imply additional hardware. The first three measurements, as well as the 
control value (CV), may be seen as the inputs to the system whilst the latter two 
may be seen as its outputs. The two output values, the sensor for measuring the 
position of the rod (x) and the sensor for measuring the water flow through the 
valve (F), provide variables that contain information relative to the faulty 
behaviours. 

Figure 4.8. The valve studied by DAMADICS benchmark. 

The sensor measurements corresponding to some faults cannot be obtained 
directly from the real process as the occurrence of these faults may have disastrous 
consequences on the system. Therefore, the valve needed to be extensively 
modelled using the physical laws that govern its behaviour (Louro, 2003; Sa da 
Costa and Louro, 2003). The MATLAB/SIMULINK model obtained may be used 
to simulate any faulty behaviour. 

The faults in the benchmark have been simulated for 20 different values of 
fault strength, uniformly distributed between 5% and 100%, and different input 
values for the reference signal. The previous set of fault strengths represents a good 
approximation of all possible faulty situations involving the faults in the 
benchmark. All faults have been simulated two times for all their fault strengths. 
The simulation lasted for 70 seconds the first time and for 20 seconds the second 
time. The fault has been introduced at the 50th second the first time and at the 10th 
the second time. The data obtained during the first simulation have been used to 
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design the classifier, i.e., 50% for the REF set and 50% for the PARAM set. The 
data obtained during the second simulation have been used as the TEST set. For the 
second round of simulation a shorter time has been chosen, i.e., the fault is 
introduced in the system for only 10 seconds, as good fault diagnosis 
methodologies need to have very short time intervals for detection and isolation of 
abrupt faults. 

The input to the simulation is taken from real data collected at the plant. 
This method provides more realistic conditions for generating the behaviour of the 
system while undergoing a fault. It also makes the FDI task more difficult because 
the real data input causes the system to feature the same noise conditions as those in 
the real plant. 

The valve is affected by a total of 19 faults that may have abrupt and/or 
incipient behaviour (Table 4.1). In this chapter only the abrupt manifestation of the 
faults has been considered. The large majority of faults, 14 out of 19, manifest an 
abrupt behaviour. 

Table 4.1. The set of faults considered in DAMADICS benchmark 

Abrupt behavior Fault Description 

small medium big 

Incipient

behaviour 

F1 Valve clogging x x x  

F2 Valve plug or valve seat sedimentation   x x 

F3 Valve plug or valve seat erosion    x 

F4 Increase of valve or bushing friction    x 

F5 External leakage (leaky bushing, covers, 

terminals) 

   x 

F6 Internal leakage (valve tightness)    x 

F7 Medium evaporation or critical flow x x x  

F8 Twisted servo-motor’s piston rod x x x  

F9 Servomotor’s housing or terminals 

tightness

   x 

F10 Servomotor’s diaphragm perforation x x x  

F11 Servomotor’s spring fault   x x 

F12 Electro-pneumatic transducer fault x x x  

F13 Rod displacement sensor fault x x x x 

F14 Pressure sensor fault x x x  

F15 Positioner feedback fault   x  

F16 Positioner supply pressure drop x x x  

F17 Unexpected pressure change across the 

valve

  x x 

F18 Fully or partly opened bypass valve x x x x 

F19 Flow rate sensor fault x x x  

As mentioned in the introduction of this chapter, the sensor that measures 
the rod position (x) and the sensor that measures the flow (F) provide variables that 
contain information relative to the faults. The difference dP between the upstream 
pressure measurement (P1) and the downstream pressure measurement (P2) is also 
considered (besides x and F) as it permits to differentiate F17 from the other faults. 
For the rest of the faults, the previous difference always has negligible values (close 
to zero). 

The effects of three out of the 14 abrupt faults on these three sensor 
measurements are not distinguishable from the normal behaviour (N), {F8, F12,
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F14}. Therefore, in the following, these cases are not studied. They can be dealt 
with if further sensors are added to the system. There can be distinguished three 
groups of faults, {F2, F19}, {F7, F10}, and {F11, F15, F16}, for which exists a 
strong similarity between their effects on the measurements, i.e., large overlapping. 
There is also noncritical overlapping between the groups of faults {F1, F7} and 
{F13, F18}.

4.4. Results of Fault Diagnosis Using the Fuzzy 
Classifier

The previous section indicated the three sensor measurements, x, F and dP, that 
provide the best distinction among the faults. In order to provide the classifier with 
information on the dynamics of the system, the state of the system is described 
using the aggregate of these values over a time window of 5 time-steps. More 
precisely, the state of the system represents a point in a 15-dimensional space, (xt-4,
…, xt, F , …, Ft-4 t, dP , …, dPt-4 t), where t is the time instance when the system state 
is recorded. The classifier performs detection and isolation in one single step. If the 
classifier outputs the same fault label for two consecutive states then the system is 
diagnosed as being affected by that fault. 

The classifier employed in this chapter is built using a hybrid approach 
based on Euclidean distance and Pearson correlation. Pearson correlation allows the 
trends in the x and F signals to provide supplementary separation between different 
faults. As mentioned before, a point in a 15-dimensional space describes the system 
state, i.e. the record over 5 consecutive time-steps for dP, x and F values. Therefore, 
the point has associated two vectors that represent the trend for x and F signals over 
the 5 time-step window. Three point-to-set similarity measures are used, based on 
the three similarity measures induced by the Euclidean distance (rE), Pearson 
correlation for x (rP_x), and Pearson correlation for F (rP_F), respectively. The 
parameters are applied only to the point-to-point similarity measure based on the 
Euclidean distance. If the  parameters are applied only to one of the point-to-point 
similarity measures used, then all other point-to-set similarity measures will be 
computed for the neighbourhood defined by these  parameters. The point-to-set 
similarity measures corresponding to each of the two Pearson correlations are given 
by Eq. , where p  and p11 x F stand for the point-to-point similarities based on Pearson 
correlation for x and F, respectively. Finally, the fuzzy membership functions 
represent a combination of the three point-to-set similarity measures (Eq. 12). The 
terms ,  and  weight the contribution of each point-to-set similarity measure to 
the overall value. The search process for the optimal  parameters may be extended 
to also tune the values of these terms. 
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The process of fault detection and isolation will follow the next two steps. 
First, only one category per fault is considered, containing all the points associated 
with all possible fault strengths. Second, more than one category for one fault is 
considered. These categories are formed by allowing for single fault strengths or 
groups of fault strengths to form distinct categories (Bocaniala et al., 2004). The 
second step is taken in order to increase even more (if possible) the isolation 
capabilities of the classifier until distinguishing between different fault strengths. 

For the first step, one category per fault is considered and a classifier is 
built for this particular set of categories. The isolation matrix obtained is shown in 
Table 4.2. The normal state (N) is separable/well-classified from the faulty states in 
proportion of 99.60%. The comment “not visible” stands for situations when the 
effects of the corresponding fault strengths are not visible. Analysing the content of 
Table 4.2 the following facts may be deduced. The classifier correctly recognizes 
the five groups of overlapping faults mentioned in Section 4.3. Notice that the large 
overlapping between F11, F15 and F16 is almost completely solved. Notice also 
that in the case of faults F1, F10, F18 and F19, the effects of the small fault 
strengths are not distinguishable from the normal state. The previous analysis 
proves the high accuracy with which the classifier is able to delimit the areas 
corresponding to different categories, and the fine precision of discrimination inside 
overlapping areas. However, the content of Table 4.2 raises questions like the next 
one: if the classifier outputs the label F15, then is this fault in the system really F15
(and if it is which fault strength does it have), or is it fault strength 95% of F11, or 
is it fault strength 75% of F16? The second step of the process of detection and 
isolation investigates the answers to questions like the previous one, i.e., tries to 
improve the isolation. 

For the second step, more than one category per fault is considered. These 
categories are formed by allowing for single fault strengths or groups of fault 
strengths to a distinct category (Bocaniala et al., 2004). As will be seen, this 
refinement increases the isolation between different faults and between different 
fault strengths of the same fault. The effects of the refinement are studied 
considering the faults grouped according to the overlapping between them, i.e., 
{F1, F7}, {F2, F19}, {F7, F10}, {F11, F15, F16}, {F13, F18} and {F17}. For 
each group of faults the next analysis is performed. First, for each fault, the 
clustering into groups of fault strengths is found by considering the fault strengths 
as separate categories and building the corresponding classifier. For each fault, the 
identified groups of fault strengths represent the new set of categories per fault. 
Second, using the previous sets of categories per fault, another classifier is built in 
order to check the isolation properties. The result of these analyses is presented in 
Tables 4.3 to 4.7. The notation used is FiFSj, where i and j respectively stand for 
the fault label and fault strength (given as a number between 0 and 100). The 
labelling convention for the clusters formed by more than one fault strength is to 
use the label corresponding to the smallest fault strength in the group, i.e., the two 
clusters for F2 are labelled F2FS70 and respectively F2FS80. 
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Table 4.2. The isolation matrix for the case when only one category per fault is 
considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F1 [ - - - N - - ] [ - - - - F1 - - - - ] F7 

F2 [ - - - not considered in the benchmark - - - - ] F2 F2 F19 F2 F2 F19 F2 

F7 [ - - - - - - - - - F7 - - - - - - - - ] 

F10 [ - - - N - - ] F10 F10 (not 

visible) 

F10 F10 F10 F10 [ - F7 - ] 

F11 [ - - - not considered in the benchmark - - - - ] (not

visible)

F11 F11 F11 F15 F11 F11 

F13 F18 F18 F13 F18 [ - - - - - - F13 - - - - - - - ] 

F15 [ - - - not considered in the benchmark - - - - ] F15 F15 F15 (not 

visible) 

F15 F16 F15 

F16 [ - - - - - - N - - - - - ] F15 [ - F16 - ] 

F17 [ - - - not considered in the benchmark - - - - ] [ - - F17 - - ] 

F18 N [ - - F13 - ] [ - - - - - F18 - - - - - ] 

F19 N N [ F19 ] F2 [ - - - - - - - F19 - - - - ] 

Table 4.3. The isolation matrix for the group of faults {F1, F7} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F1 [ - - - N - - ] F1FS45 F1FS50 F1FS55 F1FS60 F1FS65 F1FS70 F1FS75 F1FS80 F1FS85 F1FS90 F1FS95 F7 

F7 [ - - - - - - - - - F7 - - - - - - - - ]

Table 4.4. The isolation matrix for the group of faults {F2, F19} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F2 [ - - - not considered in the 

benchmark 

- - - - - ] F19FS15 F2FS70 F19FS30 F2FS80 F2FS70 F19FS30 F2FS80

F19 N N [ - F19FS15 ] F19FS30 [ - - - F19FS35 - - ] F19FS80 [ - F19FS35 ] 

Table 4.5. The isolation matrix for the group of faults {F7, F10} in case when more than 
one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F7 [ - - - - - - - - - F7 - - - - - - - - ] 

F10 [ - - - N - - ] F10FS45 F10FS45 (not 

visible) 

F10FS45 F10FS45 F10FS70 F10FS70 [ - F7 - ] 

Table 4.6. The isolation matrix for the group of faults {F13, F18} in case when more 
than one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

F13 F13FS5 F18FS10 F13FS5 F18FS10 F13FS5 F13FS5 [ - - - - - - F13FS40 - - - - - ] 

F18 N F18FS10 F13FS5 [ - F18FS10 ] [ - - - - - F18FS40 - - - - - ] 

Table 4.7. The isolation matrix for the group of faults {F11, F15, F16} in case when 
more than one category per fault is considered 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 

F11 [ - - - not considered in the 

benchmark 

- - - - ] (not 

visible) 

F11 F11 F11 F11 F11 F11 

F15 [ - - - not considered in the 

benchmark 

- - - - ] F15FS70 F15FS75 F15FS80 (not 

visible) 

F15FS70 F15FS80 F15FS70

F16 [ - - - - - - N - - - - - ] F15FS75 [ - F16FS85 - ] 

Notice that the isolation results have improved radically. For instance, the 
medium and large fault strengths of F19, 40-100%, are separated from the small 
ones, 5-35%; while misclassification of F19 with F2 occurs only for the small 
strengths of F19. The overlapping between faults F13 and F18 occurs now only 
between small fault strengths, i.e., between 5% and 30% for F13 and 10% and 35% 
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for F18. The medium and large strengths of both faults are now perfectly separated 
from each other. 

4.5. Conclusions 

This chapter presented a novel fuzzy classification methodology applied to fault 
diagnosis. There are three main directions of applying fuzzy classifiers to fault 
diagnosis: neuro-fuzzy classifiers, classifiers based on collections of fuzzy rules, 
and classifiers based on collections of fuzzy subsets. The fuzzy classification 
methodology described in this chapter follows the last direction. The main property 
of this methodology is the large accuracy with which it learns the topological 
structure of the symptoms space. The fuzzy subsets built by the classifier 
approximate with a very small error the areas in the symptoms space corresponding 
to different categories. Its accuracy also manifests through handling with fine 
precision the discrimination inside overlapping areas. 

The technique of building fuzzy subsets used with the contributed 
methodology is based on the work of Baker (1978). The original contributions are 
(i) the use of different (dedicated)  parameters for different categories to express 
the point-to-point similarity in order to increase the performance of the classifier, 
(ii) developing the idea acknowledged by Baker (1978) that the use of fuzzy subsets 
induced by multiple point-to-set similarity measures may increase the performance 
of the classifier, (iii) for the case study, the use of a 5 time-step time window that 
allows information on the system dynamics to be used with the classifier, and (iv) 
also for the case study, the improvement in the isolation capability by allowing 
single fault strengths or groups of fault strengths to form distinct categories used 
with the classifier. 

Future research on the fuzzy classification methodology needs to 
concentrate on obtaining a computational complexity of both design and test phase 
that is small enough to make the classifier suitable for application to fault diagnosis 
of real systems. The computational complexity of the design phase has already been 
significantly reduced by using the particle swarm optimisation technique (Bocaniala 
and Sa da Costa, 2004a; 2004b). Also, it has been observed in practice that the 
classifier generalises reasonably well even for small dimensions of the REF and 
PARAM sets (Bocaniala, 2003). Or, the computational complexity of both the 
design and test phase depends heavily on the sizes of these two sets. This leads to 
the conclusion that a technique might be found so that the sizes of these two sets 
drop substantially and so that the performance of the classifier stays at least the 
same. An answer might be found by studying the kernel methods (Shawe-Taylor 
and Cristianni, 2004). 
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