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Engine-related costs contribute a large fraction of the direct operating costs (DOCs) 
of an aircraft, because the propulsion system requires a significant part of the 
overall maintenance effort. Thus, to ensure competitive advantage in the aero-
engine market, health monitoring systems with gas path diagnostics capability are 
highly desirable. 

In this chapter, an application of fuzzy logic technology to gas path 
diagnostics for aero-engines performance analysis is presented and the setup 
procedure for a modern civil turbofan is described, as an example. The objective is 
to estimate the changes in engine component performance due to the engine 
degradation over time from the knowledge of only a few measurable parameters, 
inevitably affected by noise. This is a novel process that achieves effective 
diagnosis by means of a rule-based pattern-recognition methodology founded on 
fuzzy algebra, developed to provide an alternative technology versus conventional 
estimation algorithms. 

The inherent capability of fuzzy logic to deal with gas path diagnostics 
difficulties, thanks to the use of fuzzy set theory and its rule-based nature, is 
highlighted. First, the problem of noisy measurements is treated at a fuzzy-set level. 
Second, at the system level the definition of fuzzy rules is used to map input sets of 
measurements into output faulty classes of performance parameters in a constrained 
search space; this enables a problem reduction aimed at overcoming the fact that the 
analytical formulation is undetermined. 

The process quantifies the performance parameters’ deteriorations through 
a nonlinear approach, even in the presence of noisy measurements that typically 
complicate the diagnostic assessment. The diagnostics model’s setup as well as its 
outcome can be attained in a relatively short time, making this technique suitable 
for on-board use.  The accuracy of the technique relative to simulated turbofan data 
is tested and its advantages and limitations are discussed. 

2.1. Introduction 

The performance of an aero-engine deteriorates over time as a consequence of its 
components’ degradation. The identification of the exact component(s) responsible 
for the performance loss facilitates the choice of the recovery action to be 
undertaken. An engine gas-path diagnostic process calculates changes in the 
magnitude of the component performance parameters (e.g., efficiency and flow 
capacity) given a set of measurements (e.g., temperatures, pressures, shaft speed 
and fuel flow) through the engine. However, accurate assessment is complicated by 
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(i) only having relatively few measurements available and  (ii) errors in the 
measurements. 

A recent update of gas-path diagnostics (GPD) methodologies is reported 
in the Von Karman Institute lecture series 2003-01 on gas-turbine condition 
monitoring and fault diagnosis edited by Mathioudakis and Sieverding (2003). 
Many pertinent tools have been devised during the last three decades and a critical 
review of the most used techniques and their applications is provided in (Marinai et 
al., 2004), highlighting similarities, differences and limitations. 

This chapter presents a new gas path diagnostics method. The novelty of 
this technique lies in the use of fuzzy logic to provide secure isolation and 
quantification of gas path component faults. Fuzzy logic is introduced because of its 
inherent capability of dealing with GPD problems due to its rule-based nature and 
its fuzzy approach. The rule-based architecture is used to perform pattern 
recognition of measurement fault signatures, while the fuzzy approach is 
advantageous in dealing with the uncertainties that typically affect the GPD 
problem, namely, the measurement errors and the undetermined mathematical 
formulation. These features created a research opportunity; and an application of 
the method to a modern three-shaft turbofan engine and its encouraging results will 
show, in this chapter, that the promises of fuzzy logic were not burnt out. A 
software was devised – see (Marinai, 2004). First, its SFI (single fault isolation) 
capability was proved – see section 2.5. Then a partial MFI (multiple fault 
isolation) capability, with up to 2 gas path components considerably faulty 
simultaneously, was tested – see section 2.6.

2.1.1. A Guide through the Chapter 

Section 2.2 is aimed at guiding the reader through the fuzzy logic process step by 
step from an introduction to the theory to the application to gas-path diagnostics. 
Section 2.3 introduces the three-spool turbofan configuration involved in the 
development of the diagnostics methodology and the instrumentation set used. 
Section 2.4 is then dedicated to the development of the fuzzy diagnostics system for 
a three-spool engine and to the sensitivity studies carried out for a pertinent setup of 
the methodology. The graphical user interface (GUI) devised for this purpose is 
introduced as well. The accuracy of the SFI capability of the system in the presence 
of noisy measurements and a method used to enhance such a capability is discussed 
in section 2.5. This section also describes an additional feature of the system whose 
rules can be tuned over a global deterioration baseline to enhance the SFI role in 
GPD. A fuzzy diagnostics system able to perform partial MFI and its accuracy are 
discussed in section 2.6. A second GUI was devised to make use of the fuzzy 
diagnostics model to compute the diagnoses and plot the results; this is described in 
section 2.7. The conclusions are presented in section 2.8.
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2.2. Fuzzy Logic Systems 

2.2.1. Background 

Fuzzy logic is a new rule-based approach, founded on the formulation of a novel 
algebra, typically used in the analysis of complex systems and to enable decision-
making processes (Zadeh, 1969). 

Fuzzy engineering is the specific research area investigated aimed at 
modelling engineering processes with fuzzy systems. These are able to provide 
appropriate approximations of various phenomena if enough rules are defined. The 
quality of the approximation is strictly related to the quality of the rules. This is not 
a standard view of fuzzy systems but it is the view taken in this chapter according to 
the definition of fuzzy engineering given by (Kosko, 1997). A different view is that 
fuzzy logic is a linguistic theory that models human reasoning with vague rules of 
thumb and common sense. This holds without any doubt in many applications. 
Fuzzy systems, as described in the next section, rely on the formulation of fuzzy 
algebra. This is a generalization of the abstract set theory, based on new definitions 
concerning fuzzy sets and logical operators (Zadeh, 1969). 

Fuzzy logic is used in this research to provide the capability of 
approximating the relationships between the N-dimensional input space of the gas-
path measurements and the P-dimensional output space of the performance 
parameters by using a number of fuzzy rules. The rules in turn depend on fuzzy sets 
able to deal with uncertain or vague estimations of the process variables. 

Fuzzy logic is all about the relative importance of precision. It is a 
convenient way to map inputs into outputs (Zadeh, 1969) and the primary 
mechanism for doing this is a list of if-then statements called fuzzy rules. All the 
rules are evaluated in parallel and the order of the rules is unimportant. To set up a 
system that interprets rules, we first have to define all the elements of a fuzzy 
system (i.e., fuzzy sets, membership functions, logical operators and architecture of 
the rules) and then the elements of the inference process, namely, the algorithms for 
implication, aggregation and defuzzification phases. The fuzzy inference process 
interprets the values in the input vector and, based on a set of fuzzy rules, assigns 
values to the output vector. 

2.2.2. Fuzzy Algebra: Basic Elements of a Fuzzy System 
Architecture

Engineering science typically deals with uncertain variables and approximations to 
a fixed number of decimal places that depend on the accuracy capability but also on 
the necessity and costs of being accurate. When a decision has to be made based on 
uncertain values of a set of variables, a binary logic based on either-or laws can 
become a limitation. 

A fuzzy system based on multivalue logic can help in modelling a process 
when a mathematical model of how the system’s outputs depend on the inputs is not 
available or is not accurate, or when it is necessary to deal with the uncertainty 
present in the inputs. Besides, a fuzzy model is beneficial in order to introduce 
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different sources of information in the decision-making process (data fusion) and 
when it is advantageous to include expert knowledge or statistical inputs. 

Fuzzy logic systems rely on the formulation of a novel abstract set theory 
and algebra: a generalization of the set theory, based on fuzzy sets as well as logical 
operators, will be considered below. The four main elements of a fuzzy logic 
inference process are listed in Figure 2.1 and discussed in the following sections. 

 FUZZY 

 ALGEBRA 

 1. Fuzzy sets 

 2. Membership Functions 

 3. Fuzzy operators 

4. if-then rules 

FUZZY 

LOGIC 

Inference 

Figure 2.1. Fuzzy algebra and fuzzy logic inference. 

It will be proved that fuzzy set theory, introduced by Zadeh in 1965, is a 
generalization of abstract set theory. In other words, the former always includes the 
latter as a special case; definition theorems, and proofs of fuzzy set theory always 
hold for non-fuzzy sets. Because of this generalization, fuzzy set theory has a wider 
scope of applicability than traditional set theory in solving engineering problems 
that involve high degrees of uncertainty and, to some degree, subjective evaluation 
(Kandel, 1986). 

2.2.2.1. Fuzzy Sets 
The basic concept behind fuzzy algebra and fuzzy logic systems is the definition of 
fuzzy sets. A fuzzy set does not have distinctly delineated boundaries and contains 
elements with a partial degree of membership. 

In standard algebra a traditional set includes elements with a Boolean or 
two-value logic. This means that an element belongs or does not belong to the set. 
The degree of membership of an element can be only 0 or 1, or 0 or 100%. If we 
consider the example in Figure 2.2, the numbers A=51, B=60 and D=69 are 
elements of the set S, while the number D=71 is not. 

A= 51 

B=60 

C=69 

D=71 

S

Figure 2.2. Standard set. 

This concept is graphically described in Figure 2.3. The numbers included 
in the range between 50 and 70 belong to the set of cool air temperature. 
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On the other hand, a fuzzy set admits elements with a partial degree of 
membership according to a defined membership function (MF). In the example 
shown in Figure 2.3 and 2.4, the membership function is triangular; therefore the 
degree of membership decreases as we approach the margins of the set. 

In Figure 2.4 the two overlapping fuzzy sets of cool and right air 
temperature are considered. A value of temperature such as 68 degrees has distinct 
values of degree of membership to the two sets and consequently activates the two 
MFs with two different degrees of activation. 
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Figure 2.3. Diagrams of a standard set (left) and a fuzzy set (right). 
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Figure 2.4. Two overlapping fuzzy sets. 

Going from the graphical representation to the analytical form, let X
denote the space of objects. Then a fuzzy set A in X is a set of ordered pairs 

(1) A = {x, (x)}, x XA
where (x) is the degree of membership of x in A and the function A A is called the 
membership function (MF). Usually, A(x) is a number in the interval [0,1], with the 
grades 1 and 0 representing, respectively, full membership and non-membership in 
a fuzzy set. It maps each element of the input space X to a membership value. The 
input space is sometimes referred to as the universe of discourse. The membership 
function itself can be an arbitrary curve whose shape is defined as a function that 
suits the problem from the point of view of simplicity, convenience, speed, and 
efficiency.

Summarizing, the following concepts have been introduced so far: 
Fuzzy set 
Degree of membership 
Membership function (MF) 
Degree of activation (d.o.a.) 
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The next subsection will consider the logical operators, the third element 
of the fuzzy inference process – see Figure 2.1.

2.2.2.2. Logical Operators 
Fuzzy logic is a generalization of standard Boolean logic. This means that the 
logical operations, as defined in this section, will hold in standard algebra as well. 
As far as the logical operators AND, OR, and NOT are concerned, Figure 2.5 shows 
the truth tables according to traditional logic. 

Figure 2.5. Standard logical operations. 

.a

.b

Figure 2.6. Two-valued and multi-valued logic. 

Figure 2.6.a shows a graphical representation of the logical operators in a 
two-value logic. Many methods are available in the literature for their 
implementation in a multi-valued logic or fuzzy logic. In this work the following 
algorithms are considered: 

AND using minimum or product (a b)
OR using maximum or algebraic sum (a+b-a b)
NOT using the complement 

An example of fuzzy operators using the first options in the list above is 
shown in Figure 2.6, where we replace A AND B, where A and B are limited to the 
range (0,1), by using the function min(A,B). Using the same reasoning, we can 
replace the OR operation with the max function, so that A OR B becomes equivalent 
to max(A,B). Finally, the operation NOT A becomes equivalent to the operation (1 – 
A). Once the logical operators are defined, any construction using AND, OR, and 
NOT applied to fuzzy sets can be resolved. 

It can be proved that these definitions still hold in traditional algebra, 
considering Figure 2.7. As an example, considering the AND operator in the table 
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we can see that: min(0,0)=0, min(0,1)=0, min(1,0)=0 and min(1,1)=1. Similarly, we 
can reason for the second options in the list of possible algorithms provided above 
(e.g., change min with product to implement the AND operator). 

Figure 2.7. Example of logical operators, fuzzy algebra. 

In fuzzy algebra AND, OR, and NOT are known as the fuzzy intersection 
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement 
(NOT), but as said before their definitions are by no means unique. 

2.2.2.3. Fuzzy Rules 
Fuzzy rules play a key role in the fuzzy inference process – see Figure 2.1. Fuzzy 
systems are universal approximators if enough rules are stated. Fuzzy sets and fuzzy 
operators that constitute the fuzzy algebra are the elements of if-then rule 
statements. A single fuzzy if-then rule assumes the form “if z is in the fuzzy set A
then x is in the fuzzy set B”. The if-part of the rule “z is in A” is called the 
antecedent, while the then-part of the rule “x is in B” is called the consequent. 

If A1 then B1 

If A2 then B2 

If Am then Bm 

Z � A 

B1’

B2’

Bm’

Σ

w1

   w2 

wm

B Defuzzifier

X=F(Z) 

Figure 2.8. Additive fuzzy system architecture. 

With reference to Figure 2.8, an N-dimensional input space (in 
performance diagnostics, the measurements) is mapped into a P-dimensional output 
space (performance parameters) by means of m rules. Each input vector partially 
activates all the rules in parallel, the rule can be associated with different rule-
weights wi, and eventually a defuzzifier calculates the outcome solution based on 
the activation of the MFs. It can be proved that an additive fuzzy system computes a 
conditional expectation E(X|Z) and therefore an optimal nonlinear estimation 
(Kosko, 1997). 
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Interpreting an if-then rule involves the following phases: (i) evaluating 
the antecedent (which involves the fuzzification of the input and applying any 
necessary fuzzy operators) and (ii) applying that result to the consequent (known as 
implication). In the case of two-valued or binary logic, when the if-part of the rule 
is true, the then-part is true. In a multi-valued logic the antecedent is a fuzzy 
statement, so if the antecedent is true to some degree of activation, then the 
consequent is also true to that same degree.  

Therefore, interpreting one if-then rule is a three-part process: 
Fuzzify inputs: resolve all fuzzy statements in the antecedent to a 
degree of membership between 0 and 1.  
Apply fuzzy operator to multiple part antecedents: If there are 
multiple parts to the antecedent, apply fuzzy logic operators and 
resolve the antecedent to a single number between 0 and 1. This is 
the degree of support for the rule.  
Apply implication method: Use the degree of support for the 
entire rule to shape the output fuzzy set. The consequent of a 
fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set 
is represented by a membership function that is chosen to indicate 
the qualities of the consequent. If the antecedent is only partially 
true (i.e., is assigned a value less than 1), then the output fuzzy set 
is truncated according to the implication method. 

In general, one rule by itself does not do much good. What is needed are a 
number of rules that can play off one another. The output of each rule is a fuzzy set. 
The output fuzzy sets for each rule are then aggregated into a single output fuzzy 
set. Finally, the resulting set is defuzzified, or resolved to a single number (Zadeh, 
1969). 

2.2.3. Fuzzy Inference Systems 

Fuzzy engineering can be implemented according to a three-step procedure aimed at 
defining the system architecture. The first step is the identification of the input and 
output variables Z and X. In a diagnostics system the input variables are the 
elements of the set of measurements and the outputs are the performance 
parameters representative for the health of the engine. The second step is aimed at 
selecting the right membership functions for these variables. The third step relates 
the output sets to the input sets through fuzzy rules. The way in which the rules are 
stated depends on the learning algorithm. Rules in this work are generated running a 
whole-engine steady-state simulation code (engine model). The choice of the right 
learning algorithm has a big impact on the accuracy of the fuzzy system. 

Once the system architecture is defined, fuzzy inference is the process that 
computes the outcome provided an input to the system. There are two main types of 
inference methods known in the literature as Mamdani and Sugeno. A Mamdani-
type inference is based on the fact that fuzzy sets are defined for inputs and outputs. 
Therefore, after the aggregation process there is a fuzzy set for each output variable 
that needs to be defuzzified. 
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On the other hand, a Sugeno-type system is based on the definition of the 
output MFs as single spikes rather than distributed fuzzy sets. The single spike is 
also known as singleton output membership function and can be considered as a 
pre-defuzzified fuzzy set. This improves the efficiency of the process simplifying 
the computation. The outcome is just the weighted average of a few data points. 
The GPD method developed in this work uses the Mamdani inference strategy. 

A typical fuzzy logic system (Figure 2.9) involves fuzzification, rules 
evaluation and defuzzification phases: 

A fuzzifier turns numeric values (input measurements) into 
degree of activation of input MFs. 
An inference engine accumulates the effects of each rule on the 
output MFs; it includes logical operations, implication and 
aggregation phases. 
A defuzzifier calculates the outcome based on the activation of 
the output MFs. 

Output

Fuzzification 

FUZZY 

LOGIC 

Inference

Process 

Defuzzification 

Input

Rules 

(IF/THEN)

Figure 2.9. Configuration of a rule-based fuzzy logic system. 

2.2.4. Comments on Fuzzy Rules for a Diagnostics System 

Among the various gas path diagnostics methods, a distinction can be made 
(Volponi, 2003) between techniques more suitable for estimating gradual 
deteriorations and techniques for estimating rapid deteriorations, i.e., where 
deteriorations represent the faults occurred. We referred to such methods as MFI 
(multiple-fault isolation) and SFI (single-fault isolation), respectively. The former 
implies that all the engine components (whose shifts in performance we are 
estimating) deteriorate slowly whereas the latter implies a rapid trend shift probably 
due to a single entity (or perhaps two) going awry. AI-based methods such as fuzzy 
logic systems are more suitable for SFI problems, because they are based on an 
approximation of all the possible solutions for the limited number of combinations 
used to train the system. The extension to all possible combinations (even in a 
limited search-space) is theoretically possible, but extremely burdensome from a 
computational point of view. In this work, a fuzzy logic diagnostics system was 
firstly set up to secure an effective SFI capability – see sections 2.4 and 2.5. Then a 
partial MFI capability was tested considering up to four health parameters (two 
components) simultaneously deteriorated – see section 2.6.

The number of necessary fuzzy rules grows exponentially with the number 
of system variables. Any attempt to reduce the number of rules is inevitably 
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associated with less precise approximation capability. In general, we must trade 
some accuracy for ease of computation.  

In this work, a diagnostic system for the three-shaft turbofan was 
developed – see section 2.4. The six gas path components investigated are: FAN, 
intermediate pressure compressor (IPC), high pressure compressor (HPC), high 
pressure turbine (HPT), intermediate pressure turbine (IPT) and low pressure 
turbine (LPT) – see second column of Table 2.1. When these six components are 
considered for GPD, the number of possible combinations C of components 
degraded can be calculated as: 

!
!( )!

nC
k n k (2) 

that gives the number of combinations of n=6 components taken k at a time. 
According to Eq. (2, all the possible combinations are listed in Table 2.1.

Table 2.1. Combinations C of six gas path components taken k at a time 
    k 
C

1 at a 
time

2 at a time 3 at a time 4 at a time 5  at  a time 6 at a 
time

1 FAN FAN - IPC FAN - IPC - HPC FAN - IPC - HPC- HPT FAN - IPC - HPC- HPT-IPT 
2 IPC FAN - HPC FAN - IPC - HPT FAN - IPC - HPC- IPT FAN - IPC - HPC- HPT-LPT 
3 HPC FAN - HPT FAN - IPC - IPT FAN - IPC - HPC - LPT FAN - IPC - HPC- IPT-LPT 
4 HPT FAN - IPT FAN - IPC - LPT FAN - IPC - HPT- IPT FAN - IPC - HPT- IPT-LPT 
5 IPT FAN - LPT FAN - HPC- HPT FAN - IPC - HPT - LPT FAN - HPC – HPT- IPT-LPT 
6 LPT IPC - HPC FAN - HPC - IPT FAN - IPC - IPT - LPT  IPC - HPC- HPT-IPT-LPT 

FAN-
IPC- 
HPC- 
HPT- 
IPT- 
LPT

7  IPC - HPT FAN - HPC - LPT FAN - HPC - HPT - IPT  
8  IPC - IPT FAN - HPT - IPT FAN - HPC - HPT- LPT  
9  IPC - LPT FAN - HPT - LPT FAN - HPC - IPT - LPT  
10  HPC - HPT FAN - IPT - LPT FAN - HPT - IPT - LPT  
11  HPC - IPT IPC - HPC - HPT IPC - HPC- HPT - IPT  
12  HPC - LPT IPC - HPC- IPT IPC - HPC - HPT - LPT  
13  HPT - IPT IPC - HPC - LPT IPC - HPC- IPT - LPT  
14  HPT - LPT IPC - HPT- IPT IPC - HPT - IPT - LPT  
15  IPT - LPT IPC - HPT - LPT HPC - HPT - IPT - LPT  
16   IPC - IPT - LPT  
17   HPC - HPT - IPT  
18   HPC - HPT - LPT  
19   HPC - IPT - LPT  
20    

Considering that the number of parameters representative of the health of 
each component is always 2, 2k is the number of parameters deteriorated 
simultaneously in each rule (each run of the engine model) when we simulate k
degraded components at a time. 

For example, if two degraded components at a time are simulated, four 
parameters are changed in the generation of each rule. 

On the other hand, the equation 
2g kN f f (3) 

computes the number of permutations of f (=3 in the example of Table 2.2) fault 
levels (e.g., 0, 1, 2% change in performance parameters) taken g=2k (=4 in Table 
2.2) at a time with repletion. The parameter g=2k represents the number of 
parameters changed at a time. In the case of Table 2.2 the number of permutations 
with repetitions are N=f2k 4=3 =81. As we have six components, we have C=15
combinations of 2 components (and 4 parameters) taken at a time: the final number 
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of rules to generate in this example would be the product TotalCombinations = CN
= 15·81 = 1215. 

Table 2.2. Example of 4 deteriorated parameters at a time 

ηi Γi ηj Γj

0
1
2
0
1
2
..

0
0
0
1
1
1
..

0
0
0
0
0
0
.. 

0
0
0
0
0
0
..

Summarizing, the number of TotalCombinations for a three-spool engine 
with six gas path components, and so the number of rules to generate, is given by: 

2 6!
!(6 )!

kTotalCombinations C N f
k k (4) 

where k is the number of degraded components simulated at a time, and f is the 
number of fault levels, as performance parameters percentage changes from the 
clean engine. 

Given six components and two health parameters per component, we have 
12 performance parameters (  and  of the components). We define the search 
space as the 12-dimensional space of the ranges of variability of the 12 parameters 
in percentage changes from the clean value. The solution of the diagnostic problem 
will be looked for within the constrained search space. 

The learning algorithm devised in this work builds the fuzzy-logic-based 
diagnostic system with a number of rules equal to TotalCombinations as defined 
above, noting that there is no justification to omit some combinations if the purpose 
is to approximate the dependency between measurements and performance 
parameters when the latter vary in a given search space. Nevertheless, the values of 
the f fault levels can either be chosen as uniformly distributed in the ranges of the 
search space or not. This work is dedicated to the study of a fuzzy system with 
uniformly distributed fuzzy rules, so the density of the fuzzy rules is left unchanged 
through a given search space, though it is varied from system to system to trade 
accuracy towards computational burden as discussed before. 

2.2.4.1. Fuzzy Systems and Neural Networks 
A last comment can be made about the strong analogy that exists between fuzzy 
systems and neural networks. Neural networks, as fuzzy systems, can approximate a 
function or process that represents a relation of cause and effect and can act as 
universal approximators. A neural network, instead of stating rules, trains its 
synapses. The numerical synaptic values change when input data make the neurons 
fire. This makes a net able to learn to recognise patterns and therefore to map inputs 
into outputs. The major difference is that, in the case of a neural network, a user has 
no way to know what the net has learnt or forgotten during the learning process. 
When the network is trained with new information there is an inevitable tendency to 
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forget the old ones. On the other hand, fuzzy rules are modular and the user can 
always put them in or take them out at will. 

Figure 2.10. Three-shaft turbofan engine configuration. 

Table 2.3. Measurement set 

1 N2 : IP Shaft Speed 
2 N3 : HP Shaft Speed 
3 FF : Fuel Flow 
4 P13 : FAN tip exit Total Pressure 
5 P25 : HPC entry Total Pressure 
6 P3 : HPC exit Total Pressure 
7 T25 : HPC entry Total Temperature 
8 T3 : HPC exit Total Temperature 
9 T45 : IPT exit Total Temperature 

10 T5 : LPT exit Total Temperature 

2.3. A Three-Spool Engine Configuration and Its 
Instrumentation

The engine involved with the development of the technique described in this 
chapter is a three-shaft turbofan and its configuration is shown in Figure 2.10
highlighting the typical sensor locations. The set of measurements available for the 
diagnostics process within this project is listed in Table 2.3 using the measurements 
listed in Table 2.4 as power setting and environmental parameters. Sensor noise is 
assumed to follow a normal distribution whose standard deviation in terms of 
percentage deviation from the nominal value can be used as a parameter 
representative of the noise level. Accurate values of standard deviations are 
provided by the sensor manufacturers but, for the scope of this project, the sensor 
noise standard deviations listed in Table 2.5 are considered sufficiently accurate and 
realistic. The performance simulations are undertaken mainly using Turbomatch, a 
steady-state performance simulation code developed at Cranfield University. The 
simulations are carried out at a condition of 10000 m of altitude, 0.85 Mach and 
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0.8% PCN1 (which identifies the percentage of accomplishing the design point 
condition by low-pressure shaft speed N1). 

Table 2.4. Power setting and environmental parameters 

1 N1 : LP Shaft Speed 
2 M : Mach Number 
3 Z : Altitude

Table 2.5. Sensor noise standard deviations in % of the measured value 

SENSOR TYPE STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

2.4. A Fuzzy-Logic-Based Diagnostics System for 
a Three-Spool Engine 

2.4.1. Objectives and Scope 

Considering the advantages of fuzzy logic as illustrated in Section 2.2, and 
according to a thorough literature study reported in (Marinai, 2004; Marinai et al.,
2004), the research objectives were precisely to develop a procedure that is: 

Based on a nonlinear model. 
Designed specifically for SFI and/or MFI. 
Capable of detecting with reasonable accuracy significant 
changes in performance. 
Able to provide a “concentration” capability on the actual fault. 
Competent to make a worthwhile diagnosis using only few 
measurements (N>M).
Able to deal with random noise in the measurements. 
Light in computational requirements. 
Fast in undertaking diagnosis for on-wing applications. 
Able to be adapted to similar systems in a reasonably short time: 
exempt from training and tuning uncertainties, difficulties and 
dependences for setting-up parameters. 
Free from a lack of comprehensibility due to “black-box” 
behaviour. 

The scope of this section is to illustrate an application of the devised 
method to a three-spool engine. The most important parameters in the process are 
identified and optimised through a sensitivity study. Then, the accuracy of the 
methodology in this specific application is assessed with simulated case studies in 
section 2.5. Section 2.6 extends the applicability of the method to the MFI problem. 
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2.4.2. The Methodology and Identification of the Key 
Parameters

Gas path analysis is formulated here as a problem of recognition of deteriorated 
measurements patterns by using a rule-based method that has its foundation in 
fuzzy algebra (Marinai et al., 2003a, 2003b). 

The inherent capability of fuzzy systems, previously pointed out in section 
2.1, to deal with GPD problems is exploited here in two ways. Firstly, we take into 
account the uncertainty in the measurements that affects the fault pattern 
characterization, at a set level. Secondly, at a system level, the learning algorithm 
devised in this project states fuzzy rules to map input sets of measurements into 
output sets of performance parameters, in a constrained search space. This enables 
diagnoses even though the formulation of the diagnostics problem is analytically 
undetermined. 

The diagnostic process, as shown in Figure 2.11, is designed to assess 
performance parameters percentage changes from a clean engine condition (12 
outputs) given the knowledge of the measurement changes (10 inputs) calculated as 
percentage deviations with respect to a baseline determined by means of an engine 
model run at a specific power setting and environmental conditions. The fuzzy 
system F=R10 R12 uses m rules to map the vector of input delta measurements z to 
a vector of output delta performance parameters x=F(z). The analysis is undertaken 
at the operating condition characterised by the following parameters: N1=0.8%, 
Mach= 0.85, Altitude=10000 m. 

Figure 2.11. Layout of the fuzzy logic diagnostic system. 

Diagnostics is made through a Mandami-type fuzzy inference process. The 
ranges of variability of the outputs –  and  for the six components – define the 
search space, where the solution is sought.  A sensible choice of these ranges for a 
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real-life application would be between -5% and 0 for all the efficiency deltas and 
for the flow capacity deltas of the compressors, while they can cover positive values 
for the turbine flow capacity deltas going for example between -5% and +3%. The 
range of variability of each input variable is evaluated according to the sought 
output ranges through the engine model. 

2.4.2.1. Fault Levels Combinations and If-Then Rules 
The learning algorithm proposed in this work states if-then rules that are generated 
running the engine model and therefore are strictly related to the aero-thermal 
equations. The use of data obtained from the engine model to generate the rules 
preserves the linearity of the problem. 

The rules have the general form IF condition-1 AND condition-2 …THEN 
statement. The if-part of the rule refers to the fault signature in the measurements, 
represented through input MFs, evaluated by running the engine model at a defined 
deteriorated condition within the search space. The statement in the then-part of the 
rule refers to this condition characterised with output MFs. 

The procedure to state fuzzy rules starts with the definition of the search 
space for the performance parameters. According to section 2.2.4 the search space 
includes all the combination of changes in efficiency and flow capacities of the 6 
components that the system is meant to deal with. The parameters that characterise 
the search space are: (i) the number of components that are considered deteriorated 
simultaneously (1 at a time for SFI), (ii) the maximum and minimum values of the 
ranges of variability of the performance parameters, and (iii) the increment value 
that divides each range in a finite number of constant variations (fault levels). For 
the purpose of illustrating the methodology, we consider the following search 
space:

Number of components simultaneously deteriorated = 1 (SFI) 
Maximum variation in compressors’ efficiencies = 0% 
Minimum variation in compressors’ efficiencies = -3% 
Maximum variation in compressors’ flow capacities = 0% 
Minimum variation in compressors’ flow capacities = -3% 
Maximum variation in turbines’ efficiencies = 0% 
Minimum variation in turbines’ efficiencies = -3% 
Maximum variation in turbines’ flow capacities = 1% 
Minimum variation in turbines’ flow capacities = -3% 
Increment Value= 0.5% 

The features of this search space are the followings: 
It defines the 12-dimensional space of the ranges of variability of 
the 12 parameters in % changes from the clean value. 
It takes into account positive variation of turbines’ flow capacity. 
We consider C=6 combinations of one gas path component 
deteriorated at a time – see section 2.2.4.
The increment value in the search space is 0.5%. This means that 
the engine model is run for all the combinations of variations of 
the performance parameters within the ranges defined above, 
obtained going from the minima to the maximum in 0.5% steps. 
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For example, going from 0 to 3% of FAN efficiency the 
following 7 conditions of deterioration are generated: 0, -0.5, -1, -
1.5, -2, -2.5, -3%. 
We note that with 0.5% steps, all the ranges are divided in 7 
combinations except for the turbine flow capacity ranges, which 
are divided into 9 fault levels.  
The number of if-then statements generated is equal to 331. 

The solution of the diagnostic problem will be looked for within the 
constrained search space, so we define a number of fuzzy rules equal to the if-then 
statements generated running the engine model. Note that the use of a constant 
increment value implies that the values of the f fault levels are chosen uniformly 
distributed in the ranges. 

2.4.2.2. Input and Output Membership Functions 
Fuzzy sets are defined for the inputs and the outputs. Each of the input ranges is 
spanned with a number Mi of MFs where the index i=1,…,n identifies the i-th 
measurement. These MFs centred, for each measurement, in the outcome of the 
engine model run for all the combinations identified in the search space, or in the 
mean value of a cluster of values grouped according to the procedure. On the other 
hand, the deviations in performance parameters of the table are always associated 
with an MF. Similarly, Nj MFs for j=1,…,p are designed for the i-th performance 
parameter centred in fault level values specified in the search space.  

Two types of MFs were considered: triangular, or Gaussian according to 
equation (5), where m is the midpoint of the function and RMS= . The two types of 
MFs are shown in Figure 2.12.

2
0.5

( )
x m

MF x e (5) 

The optimal type of output MFs is not known a priori and therefore a 
sensitivity study (section 2.4.5) was undertaken to identifying the choice that 
contributes to an optimal accuracy of the diagnostics system. An example of seven 
Gaussian MFs spanning the range for FAN  is shown in Figure 2.13.

On the other hand, a preliminary comment can be made here regarding the 
input MFs. The degree to which the measurement value z belongs to a given MF, in 
fuzzy algebra, was named a(z). Alternatively, a(z) can be interpreted as the 
probability that the measurement is the midpoint of the MF given that the 
measurement value is z. Therefore, we can view the input fuzzy set as a random set 
of two-point conditional probability densities, where the set degree a() = 
degree(z A) becomes the local conditional probability prob{Z=A Z=z}. In this 
sense we can use Gaussian MFs for the input measurements with values of RMS 
equal to realistic values of sensor noise RMSs. In the opinion of the authors, this 
choice is an effective and consistent way of designing measurement MFs oriented 
to tackle the measurement uncertainty problem. However, at this level of the 
investigation, the possibility of using triangular MFs, generally considered very 
effective in designing highly dimensional fuzzy systems, is left also for the input 
variables. This leaves open the opportunity to compare the two input MF types – 
see section 2.4.5 –  to identify the best system layout.  
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Figure 2.12. Triangular membership function (left) and Gaussian membership function 
(right).

Figure 2.13. Example of 7 Gaussian MFs in a fixed performance parameter range for the 
output FAN .

2.4.2.3. Fuzzy Rules Generation 
Each rule is composed of two parts: (i) the if-part that contains the fault signature in 
the measurements represented with MFs linked with the AND operator, and (ii) the 
then-part that contains the MFs of the output performance parameters that 
characterise the fault condition. Table 2.6 and Table 2.7 contain an example of data 
necessary to set up a rule generated by running the engine model. The use of data 
obtained from the engine model to generate the rules preserves the linearity of the 
problem. A rule states in terms of MFs, what in terms of numerical values can be 
read as follows: if the pattern in the measurements shows the deviations from a 
baseline listed in Table 2.6, then the combination of deterioration levels is in Table 
2.7.
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Table 2.6. Example of % changes in measurements from the baseline  

∆N2 ∆N3 ∆FF ∆P13 ∆P25 ∆P3 ∆P5 ∆T25 ∆T3 ∆T45
0.460 -0.008 -0.949 -0.907 -1.117 -1.115 -0.804 0.169 0.111 0.182 

Table 2.7. Example of % deltas in performance parameters from the clean engine  

∆ηFAN ∆ΓFAN ∆ηIPC ∆ΓIPC ∆ηHPC ∆ΓHPC ∆ηHPT ∆ΓHPT ∆ηIPT ∆ΓIPT ∆ηLPT ∆ΓLPT

-2 -1.5 0 0 0 0 0 0 0 0 0 0 

In general, a rule will be formulated according to Table 2.8 and Table 2.9
created from Table 2.6 and Table 2.7. Table 2.8 shows the formulation of the if-part 
of the rule where the mfi is the MF of the i-th input that is either centred in the i-th 
value of Table 2.6 or centred in the mean value of a cluster of values defined as 
follows. The algorithm that generates the input MFs for a number m of rules starts 
with the choice of K, the maximum number of input MFs (based on the experience). 
Then, for the i-th input measurement, the values of deviations (outcomes of the 
engine model for a number m of rules) are sorted and if two values are overlapped 
one of them is discharged. Then, the values are counted; if their number is less or 
equal than K (the maximum number of MFs required) one MF is centred in each of 
these values that at the most are m (number of rules). Otherwise, the difference 
between each value and its consequent value, in the sorted list, is computed. The 
smallest value of difference between two measurement deviations is identified and 
these two values are substituted with their average value. An MF is then centred in 
this average value. This is repeated until the number of values that are centres of the 
input MFs is equal to K. In the tables, the symbol + represents the AND operator. 
Accordingly, Table 2.9 contains the then-part of the rule with the output MFs that 
identify the deteriorated condition. 

Table 2.8. If-part of the fuzzy rule  

If-part – ∆ measurements MFs 
mf1 + mf2 + mf3 + mf4 + mf5 + mf6 + mf7 + mf8 + mf9 + mf10 

Table 2.9. Then-part of the fuzzy rule  

Then-part – ∆ performance parameters MFs 
mf1 , mf2 , mf3 , mf4 , mf5 , mf6 , mf7 , mf8 , mf9 , mf10 , mf11 , mf12 

2.4.2.4. Fuzzy Inference: Functional and System Parameters 
Fuzzy inference is the process used to perform pattern recognition and therefore to 
compute mapping between input values and output values. 

The inference process consists of feeding an input set of % changes of the 
10 measurements that are taken along the gas path (or simulated with the engine 
model to generate a test case) into the fuzzy logic system that calculates the output 
performance parameters % changes. The fuzzy inference process includes the 
following five phases: (i) fuzzification of the input variables, (ii) application of the 
AND fuzzy operator in the if-part of the rule, (iii) implication from the if-part to the 
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then-part of each rule, (iv) aggregation of the then-parts across the rules, and (v) 
defuzzification.

The following parameters are referred to as functional parameters and can 
be combined in several ways in designing a fuzzy system: 

AND operator, implemented as: product, minimum. 
Implication method, implemented as: product, minimum. 
Aggregation method, implemented as: summation, maximum 
Defuzzification method, implemented as: centroid, centre of 
maximum. 

The functional parameters were identified as those parameters that 
characterise the functionality of the inference process. A first sensitivity study is 
described in section 2.4.5 to identify the combination of parameters most suitable to 
design a fuzzy-logic-based diagnostic system. There is no reason to think that when 
the type of engine diagnosed changes this optimal combination of functional 
parameters should vary. So, the outcome of this first investigation is the choice of 
the fuzzy functional parameters for a generic diagnostics system. 

On the other hand, we define the following system parameters:
Number, type, width of the input MFs. To take into account 
sensor noise the value of amplitude (s or ) for the i-th 
measurement can be expressed as a multiple of its sensor noise 
RMSi (a·RMSi).
Number, type, width of the output MFs. The number of output 
MFs is always a result of the search space definition. For each of 
the 12 performance parameters (involved in this application), for 
a given range of variability, this number depends on the 
increment value (as defined in section 2.4.2.1) once the search 
space is defined. This number corresponds to the number f of 
fault levels that the range is divided into. 

Summarizing, for the application described in this chapter, with fixed 
inputs and outputs, the system parameters to be optimised are six: number, type and 
width of the input MFs, type and width of output MFs and increment value in the 
search space. 

A second sensitivity study will be carried out in section 2.4.5 aimed at 
identifying the best values to set up a system for the three-spool engine considered 
in this work. When implementing a new diagnostic system, a new sensitivity study 
may be required to identify their optimal values. Nevertheless, the logic and the 
procedure to choose the parameters remains suitable and the parameters chosen in 
this work can be used as first attempt values. 

2.4.3. Automated Procedure 

The procedure to generate fuzzy rules was automated via the graphical user 
interface (GUI) shown in Figure 2.14. This GUI constitutes the first of two 
windows of the diagnostics module based on fuzzy logic described in (Marinai, 
2004). This first GUI is aimed at setting up fuzzy logic diagnostics models for a 
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given engine. A second interface is aimed at operating the diagnostics models 
created to estimate the possible faults – see section 2.7.

Figure 2.14. Fuzzy diagnostic model setup GUI. 

The first GUI of the diagnostics module, as shown in Figure 2.14, is able 
to setup a diagnostics model given an engine model (Turbomatch), an operating 
condition and a search space. 

In the GUI the main elements that must be specified are: 
In the engine model setup frame of the GUI: engine model used, 
operating condition, selection of the measurement set (number 
and type). 
In the search space definition frame of the GUI: the ranges of 
variability of the performance parameters, the number of 
components simultaneously degraded and the increment value in 
the ranges. 
In the system parameters definition frame of the GUI: number, 
type and width of the input MFs, type and width of output MFs. 
(Note that the increment value is defined with the search space.) 



Computational Intelligence in Fault Diagnosis   57 

In the functional parameters definition frame of the GUI: AND 
operator, implication, aggregation, and defuzzification algorithms 
among the techniques listed in section 2.4.2.4.

Once these selections are made, a fuzzy logic inference system (FIS) is 
generated and saved. An additional frame of the GUI was designed to test FISs by 
simulating test data with implanted faults as well as measurement noise.  

An ulterior feature of this interface is its capability of generating a 
diagnostics FIS able to diagnose component faults in the presence of systematic 
errors in the measurements (bias) while identifying the faulty sensor as well. A 
checkbox in the search space definition frame of the GUI enables the input of an 
ulterior system parameter called sigma NOT. This feature is discussed in detail in 
(Marinai, 2004) but not described in this chapter. 

2.4.4. Sensitivity Study: Strategy 

2.4.4.1. Reasons for the Study. Anticipation of the Results 
Section 2.4.5 will present a sensitivity study aimed at identifying our choice of 
optimal combination of system and functional parameters for an optimal 
approximation capability of the diagnostics system. The approximation capability is 
defined as the ability of the method to model and approximate the functional 
relationship between sets of inputs (fault signature in the measurements) and the 
right sets of outputs (variations in the performance parameters), without 
considering, for the moment, the additional complication of measurement errors. 
Subsequently, in section 2.5, noise is added to the test cases and our optimal 
selection of the system parameters is modified accordingly, to achieve an enhanced 
accuracy of the diagnosis. 

The sensitivity study (to evaluate the method’s approximation capability) 
includes two sets of tests aimed at carrying out: (i) optimization of the functional 
parameters, and (ii) optimization of the system parameters. For the benefit of the 
reader, we anticipate here the results that are justified throughout the next 
subsection. Our choice of optimal functional parameters is the following: 

AND operator, implemented as: product. 
Implication method, implemented as: product. 
Aggregation method, implemented as: summation. 
Defuzzification method, implemented as: centroid (centre of 
maximum as second best). 

These features identify a fuzzy logic system commonly known as SAM 
(standard additive model). 

On the other hand, the optimal selection of system parameters is: 
Gaussian MFs for input and output. 
Maximum N of MFs fixed to 500. It was found that the more 
input MFs are defined the better, in fact this value is greater than 
the number of input MFs that correspond to the combinations in 
the search space identified for an SFI capability. Nevertheless, in 
the case of a system with MFI capability, in the opinion of the 
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authors, a sensible value (e.g., 500) must be given to limit the 
computational burden. 
Width of MFs equal to 0.15 for the input MFs and equal to 0.5 for 
the output MFs. Note that the optimal value of the input MFs 
width to achieve an effective approximation capability is different 
from the case in which noise is added. In the presence of noise the 
optimal value for each measurement is different and corresponds 
to the values of the sensors’ noise RMSs assuming that noise is 
normally distributed, as discussed in section 2.5.
The number of output MFs is identified by the choice of the 
increment value in the search space. A smaller increment value is 
associated with a higher number of rules. Even though it is 
proved that this is advantageous for the accuracy of the system, it 
considerably reduces the speed of the calculation. 

2.4.4.2. Description of the Case Studies 
Test cases were generated, implanting 1771 combinations, deteriorating the six 
components independently (two parameters at a time) in the ranges of variability 
defined for the examined search space (see section 2.4.2.1) with an increment value 
of 0.2. 

Table 2.10. Combinations of functional parameters 

case AND Implication  Aggregation Defuzzification 

1 Product  Product  Summation  Centroid

2 Minimum Product  Summation  Centroid 

3 Product  Minimum  Summation  Centroid 

4 Minimum Minimum Summation  Centroid 

5 Product  Product  Maximum  Centroid 

6 Minimum Product  Maximum Centroid 

7 Product  Minimum  Maximum Centroid 

8 Minimum Minimum Maximum Centroid 

9 Product  Product  Summation  C.O.M

10 Minimum Product  Summation  C.O.M 

11 Product  Minimum  Summation  C.O.M 

12 Minimum Minimum Summation  C.O.M 

13 Product  Product  Maximum  C.O.M 

14 Minimum Product  Maximum C.O.M 

15 Product  Minimum  Maximum C.O.M 

16 Minimum Minimum Maximum C.O.M 

In the sensitivity study reported in section 2.4.5, a first series of 16 tests 
were performed to identify the optimal functional parameters. The test cases were 
used to assess the approximation capability of 16 different systems whose layouts 
were designed according to the combinations of functional parameters listed in 
Table 2.10. For these 16 systems, the system parameters were fixed to the following 
first-guess values: Gaussian MFs in input and output, maximum N of MFs fixed to 
500, width of input MFs equal to 0.25, width of output MFs equal to 0.5, increment 
value of the search space equal to 0.5%. 
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Once a best choice of functional parameters was found, it was kept 
unchanged in the subsequent tests: the second group of tests was undertaken using 
the same 1771 test cases to evaluate the optimal system parameters among the 
following possible selections. 

Input MFs type= Gaussian, Triangular. 
Input MFs width= 0.1, 0.15, 0.25, 0.5. 
Output MFs type= Gaussian, Triangular. 
Output MFs width= 0.25, 0.5, 1%. 
Increment value= 0.25, 0.5, 1%.  
Input MFs number= 50, 100, 500. 

The strategy used to carry out these tests follows: starting from the first-
guess values of system parameters used in the first series of tests (Gaussian MFs in 
input and output, maximum N of MFs fixed to 500, width of input MFs equal to 
0.25, width of output MFs equal to 0.5, increment value of the search space equal to 
0.5%), the changes listed in Table 2.11 were made in sequence. For each change in 
system parameters, the system so generated was tested. The change was carried 
forward to the successive test only if it outperformed the results from the previous 
system. 

Table 2.11. List of system parameters changes for the sensitivity study 

N. Change to system parameters 

1 Input MFs type changed to triangular (from Gaussian) 

2 Output MFs changed to triangular 

3 Input MFs width increased to 0.5 (from 0.25) 

4 Input MFs width reduced to 0.15

5 Input MFs width reduced to 0.1  

6 Output MFs width reduced to 0.25 (from 0.5) 

7 Output MFs width increased to 1  

8 Increment value increased to 1 % (from 0.5%) 

9 Increment value reduced to 0.25 % 

10 Input MFs number reduced to 100 

2.4.4.3. Three Methods to Estimate the System Accuracy 
This section introduces three methods that were used to assess the performance 
parameters’ estimation error and therefore the capability of a given diagnostics 
system to meet the requirements, as discussed below. 

For each input set of 10 measurement deviations, the diagnostics process 
computes 12 deviations in performance parameters. The difference between the 
implanted deviation in each performance parameter and the corresponding 
calculated one is computed according to the following equation: 

Delta = Implanted – Calculated (6)
Method 1. This method computes, for each test case, the max Delta

(maximum value of Delta ) calculated for the 12 parameters estimated. Then it 
assigns to this value different levels of severity according to its amount. Three 
severity ranges were considered: 

Low severity (LS): max Delta < 0.5% 
Medium severity (MS): 0.5%<max Delta < 1% 
High severity (HS): max Delta > 1% 
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Therefore for the 1771 test cases created, for each system assessed is 
calculated: number and % of MS cases and number and % of HS cases (the number 
and % of LS cases can be obviously deduced).   

This method is aimed at evaluating local errors of the system in estimating 
the performance parameters, pointing out when in each test case the maximum error 
overcomes fixed thresholds.  

Method 2. This technique is used only to assess SFI capability when a 
fault is implanted in only one component at a time (two parameters simultaneously 
faulty). The 1771 test cases are divided into six groups characterised by a different 
faulty component, the number of components being six. This method considers, in 
each group, only the two parameters affected by deterioration and computes the 
Deltas for them only. For each parameter in which deterioration is implanted this 
method computes: 

 = the mean value of the Deltas across the group of test cases 
relative to the same component deteriorated. 
 = the standard deviation of those Deltas. 

Cl95%+ =  + 1.96 , the corresponding 95% upper confidence 
limit. 
Cl95%– =  – 1.96 , the corresponding 95% upper confidence 
limit. 

This approach computes a local error because it considers only the 
parameters where the deterioration is implanted. It undertakes for these parameters 
a statistical analysis of the results and therefore it can be used to provide an 
expected accuracy of the system on them. 

Method 3. This method computes, for each test case, the RMS of the 
Deltas for the N=12 parameters estimated for each calculation, according to the 
equation  

2( )
N

i
i i

Delta
RMS

N
(7) 

The average value, mean(RMS)=RMS, of the RMSs calculated for all test 
cases (1771 in the sensitivity study) is identified as a global parameter to estimate 
the accuracy of the diagnosis. This method is particularly useful to highlight a 
smearing tendency (see section 2.2.3) or else the propensity of some of the 
diagnostics methods to distribute the faults over many engine components even 
when only a limited number of components are affected by faults. 

The three methods are employed in this work in the following cases: 
Methods 1 and 3 are used in the sensitivity study reported in the 
next section (2.4.5) to provide a quick way of estimating a global 
accuracy of each system assessed. 
Methods 1, 2 and 3 are then used in section 2.5 to investigate in 
detail (local and global errors) the approximation capability of the 
fuzzy diagnostics system and successively its accuracy, in the 
presence of noisy measurements, for the diagnostics system with 
the chosen layout. 
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Methods 1 and 3 are used in section 2.6 to assess the partial MFI 
capability of the system. 

2.4.5. Sensitivity Study: Results 

2.4.5.1. Choice of the Functional Parameters 
This section is dedicated to reporting the results of the first part of the sensitivity 
study to identify the best choice of functional parameters. The 16 different layouts 
listed in Table 2.10 (section 2.4.4.2) were investigated and the results are 
summarized in Table 2.12, the number of cases in the two tables being the same. 
The table contains the results from two techniques to assess the diagnostics system 
accuracy: Methods 1 and 3 as defined in section 2.4.4.3. In the table, for each 
system, the results from Method 1 are the number (N) and the percentage (%) of the 
cases with medium severity (MS) and high severity (HS) errors. Besides, Method 3 
provides the average value of the RMS error, for the 1771 test cases.  

Table 2.12. Results from Methods 1 and 3 to assist the best choice of functional 
parameters

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 27 //  0.0152 0 // 0 0.048 

2 79 //  0.0446 2 // 0.0011 0.065 

3 35 //  0.0198 0 // 0 0.084

4 96 //  0.0542 3 // 0.0017 0.097 

5 43 //  0.0243 1 // 0.0005 0.058 

6 48 //  0.0271 2 // 0.0011 0.060 

7 57 //  0.0322 1 // 0.0005 0.068 

8 106 //  0.0599 2 // 0.0011 0.079 

9 31 //  0.0175 8 // 0.0045 0.046 

10 103 //  0.0582 20 // 0.0113 0.055 

11 80 //  0.0452 0 // 0 0.065

12 134 //  0.0757 6 // 0.0034 0.095 

13 51 //  0.0288 7 // 0.004 0.074 

14 49 //  0.027 8 // 0.0045 0.075 

15 50 //  0.028 7 // 0.004 0.076 

16 51 //  0.0288 10 // 0.0056 0.075 

The outcome of this analysis highlighted two optimal combinations of 
functional parameters that show a minimum number of MS and HS cases and a 
minimum average value of RMS. These best layouts are for the cases 1 and 9 that 
correspond respectively to the following layout: 

Best choice: AND=Product, Implication=Product, Aggregation= 
Summation, Defuzzification=Centroid. 
Second best choice: AND=Product, Implication=Product, 
Aggregation=Summation, Defuzzification=Centre of Maximum. 



62   V Palade, CD Bocaniala and L Jain (Eds.)

Case 1 was selected as best choice because it showed: minimum number of 
MS and zero HS cases. As far as the RMS is concerned, case 1 does not outperform 
case 9 that is considered to be the second best selection. Nevertheless the difference 
in RMS for the two systems is negligible. It is worthwhile noticing that the small 
value of RMS for case 9 indicates a strong concentration capability on the actual 
fault. 

2.4.5.2. Choice of the System Parameters 
The procedure to identify the most suitable combination of system parameters was 
presented in section 2.4.4.2. It consists of a sequence of 10 modifications to the 
first-guess values. After each change in system parameter, the layout was tested 
with the 1771 test cases introduced in section 2.4.4.2 and the change was kept in the 
successive layout only if it outperformed the results from the previous system. 

Table 2.13. Results from Methods 1 and 3 to assist the best choice of system parameters 

Method 1 Method 3 

case
MS cases (N. // %) HS cases (N. // %) RMS

Set up time 

Keep (K) / 

Reject  (R) 

the change 

1 339 //  0.1914 310 // 0.175 0.282 1 min, 12 sec R

2 29 //  0.016 0 // 0 0.049  unchanged R

3 305 // 0.1722 24 // 0.0136 0.112 unchanged R

4 26 //  0.0147 0 // 0 0.045 unchanged K

5 41 //  0.0232 4 // 0.0023 0.064 unchanged R

6 26 //  0.0147 2 // 0.0011 0.048 unchanged R

7 58 // 0.0327 2 // 0.0011 0.237 unchanged R

8 334 // 0.1942 44 // 0.0248 0.129 23 sec R

9 10 // 0.0056 0 // 0 0.117 4 min, 8 sec R

10 28 // 0.0158 2 // 0.0011 0.055 1 min, 12 sec R

This procedure was applied starting from the best choice of layout 
identified in section 2.4.5.1. The outcome of this sensitivity study is summarized in 
Table 2.13. The table case number corresponds to the layout change number of 
Table 2.11. Table 2.13 presents the results from Methods 1 and 3 (see section 
2.4.4.3) and the setup time or else the time to generate a new fuzzy logic inference 
system, with the new layout, for the search space under investigation. In the last 
column of the table is reported whether the layout with the change outperforms or 
not the previous one. 

The following change was introduced in the system parameters: 
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Input MFs width reduced to 0.15 (case 4), because it reduces the 
number of MS cases and the RMS.

It is worthwhile noticing that the changes associated with case 9 
(increment value reduced to 0.25%) were not introduced. The reasons are that even 
though the corresponding number of MS cases appreciably drops, the RMS
increases indicating a higher tendency to smear the fault in the 12 parameters. 
Moreover, the setup time increases significantly. It is an ambition of this work to 
extend the SFI capability of the system to an MFI capability; therefore concerns 
about the setup time are vital to enable this additional feature in a reasonable time. 
In fact, the number of rules that needs to be generated increases dramatically in 
implementing a system able to identify more than two components simultaneously 
faulty, and so does the setup time accordingly. 

Similarly, this procedure was applied starting from the second best layout 
identified in section 2.4.5.1 to complete the identification of a second optimal 
layout. The outcome of this second sensitivity study is summarized in Table 2.14.
The table case number corresponds to the layout change number of Table 2.11. The 
following two changes were introduced in the system parameters: 

Input MFs width reduced to 0.15 (case 4). 
Output MFs width increased to 1 (case 7). 

Table 2.14. Results from Methods 1 and 2 to assist the best choice of system parameters 
for the second optimal selection of the functional parameters  

case

Keep (K) / 

Reject  (R) 

the change

1 R

2 R

3 R

4 K

5 R

6 R

7 K

8 R

9 R

10 R

2.5. SFI Accuracy and Tuning 

This section is dedicated to a thorough analysis of the SFI accuracy of the fuzzy-
logic-based diagnostic system in the following cases: 

To approximate and model the functional relationship between 
sets of inputs (fault signature in the measurements) and sets of 
outputs (variations in the performance parameters), without the 
additional complication of measurements errors. The best layout 
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identified in section 2.4.5.2 is studied in more detail in section 
2.5.1.
To diagnose a fault in one component (SFI) in the presence of 
noise in the measurements. The accuracy of the system is tested, 
and how this accuracy can be enhanced changing the input MFs 
amplitude according to realistic values of sensor noise RMSs is 
shown in section 2.5.2.
To diagnose considerable changes in the two health parameters of 
one component with respect to a previously assessed deteriorated 
condition. A way of tuning the diagnostics system capable of SFI 
to estimate such changes and the method’s accuracy are reported 
in section 2.5.3.

2.5.1. Approximation Capability: Accuracy 

In section 2.4.5.2 an optimal layout for a fuzzy diagnostics system was identified 
via a sensitivity study. The system has the following features: 

Functional parameters: AND=Product, Implication=Product, 
Aggregation=Summation, Defuzzification=Centroid. 
System parameters: Gaussian MFs in input and output, Maximum 
N of MFs fixed to 500, width of input MFs equal to 0.15, width of 
output MFs equal to 0.5, increment value of the search space 
equal to 0.5% (this identifies indirectly the output MFs number – 
see section 2.4.2.4)

This section presents a more in-depth study of the accuracy of the devised 
diagnostics process by means of two techniques, introduced in section 2.4.4.3, to 
assess the system estimation error: Methods 1 and 3. This section is entirely 
dedicated to the analysis of system’s capability of approximating and modelling the 
functional relationship between inputs and outputs without considering 
measurement errors.

2.5.1.1. Accuracy Results: Method 2 
Figure 2.15 presents Deltas between implanted and calculated performance 
parameter deteriorations for the 1771 cases. 

For each case, efficiency and flow capacity changes were implanted 
simultaneously for one component: starting from the FAN, on the left of the 
diagram, to the LPT on the right. Therefore, for each test case shown on the x axis, 
two values are plotted on the y axis: the corresponding Deltas (errors) in estimating 
the efficiency and the flow capacity of the component simulated as faulty (the name 
of the component appears on the top of the diagram for each group of test cases). 
For each component, a statistical analysis of the result was carried out according to 
Method 2 and summarized in Table 2.15.
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Figure 2.15. SFI capability of the diagnostics system. Results for 1771 test cases. 

Table 2.15. Statistics of the diagnostics results, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.009 -0.003 -0.007 -0.007 -0.009 0.001 0.006 -0.026 -0.040 0.014 -0.032 0.017
σ 0.231 0.136 0.091 0.075 0.089 0.065 0.127 0.131 0.175 0.123 0.165 0.184
CI95%+ 0.444 0.264 0.173 0.141 0.166 0.129 0.256 0.230 0.302 0.255 0.292 0.377
CI95% - -0.461 -0.269 -0.186 -0.154 -0.184 -0.127 -0.243 -0.282 -0.382 -0.227 -0.355 -0.344

For each component degraded, the table reports, for each health parameter: 
the mean value ( ) of the errors between the calculated and the implanted 
performance parameter changes, over the test cases relative to that specific 
component, the standard deviation ( ) of such an error, and the derived 95% 
confidence intervals (CI95%). For each parameter it can be concluded that, with 95% 
confidence, the error is contained between CI + and CI –.95% 95%

2.5.1.2. Accuracy Results: Method 3 
A second performance parameters’ estimation error is introduced by computing, for 
each test case, the RMS of the Deltas for the 12 parameters at each calculation, 
according to the procedure previously described in Method 3.  This analysis reveals 
that the fuzzy logic system has a good accuracy on the parameters not affected by 
the implanted faults, or else it has a good “concentration” capability on the actual 
fault. The average value of the RMS error, for the 1771 test cases, was 0.045, which 
is a considerably low value. 

2.5.1.3. Computational Time Required 
One of the most favourable aspects of using fuzzy logic to implement a system 
capable of SFI, is its speed: once an automated setup procedure is designed (see 
GUI section 2.4.3) such a system is quick and easy to setup and equally fast when 
operated to diagnose a fault. The computational time obviously depends on the 
computer used but sensible figures for a current average computational capability 
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are listed in Table 2.16. The table reports the setup time and the diagnostics time 
relating them respectively to the number of rules to setup and the number of test 
cases to diagnose. These represent the elements on which the computational time 
has a stronger dependency. The diagnostics time for a single calculation is on the 
order of 0.1 second, as seen in the table. 

Table 2.16. Computational time with current computational capability 

Processing Time Dependency 

Setup time 1 min, 12 sec 331 rules 

Diagnostic Time 2 min, 50 sec 

(0.1 sec/case) 

1771 test cases 

2.5.2. Diagnostics Capability in the Presence of Noisy 
Measurements: Accuracy 

The sensitivity study illustrated in section 2.4.5 provided us with two best choices 
of layout for a fuzzy diagnostics system that required approximating and modelling 
the input–output functional relationship as defined in section 2.4.2. This section 
studies how these two systems perform when they are demanded to diagnose a fault 
given a set of measurements affected by noise. Moreover a way to enhance the 
accuracy changing the input MFs amplitude according to sensor noise RMSs is 
discussed. The systems have the following features: 

System 1 (best choice): 
Functional parameters: AND=Product, Implication= 
Product, Aggregation=Summation, Defuzzification= 
Centroid. 
System parameters: Gaussian MFs in input and output, 
maximum N of MFs fixed to 500, width of input MFs 
equal to 0.15, width of output MFs equal to 0.5, 
increment value of the search space equal to 0.5% (this 
identifies indirectly the output MFs number – see section 
2.4.2.4).

System 2 (second best choice): 
Functional parameters: AND=Product, Implication= 
Product, Aggregation=Summation, Defuzzification= 
Centre of Maximum. 
System parameters: Gaussian MFs in input and output, 
maximum N of MFs fixed to 500, width of input MFs 
equal to 0.15, width of output MFs equal to 1, increment 
value of the search space equal to 0.5%. 

As far as the functional parameters are concerned, System 1 belongs to the 
category of SAM systems. On the other hand, System 2 is a quasi-SAM system: the 
main difference lies in the defuzzification algorithm, implemented as center of 
maximum (COM) function. The 1771 test cases were modified adding to the i-th 
element of the measurement set a random number that represents a realistic noise 
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level according to the type of sensor required. The random number is generated as 
follows. Table 2.17 lists, for different types of sensors, realistic values of sensor 
noise standard deviations SDTVi as a percentage of the measured value, the noise 
being assumed to follow a Gaussian distribution.  For each measurement of the 
1771 test cases, a random number is generated from a normal distribution with 
mean zero, and standard deviation SDTVi , according to the value in the table. This 
random number represents the % deviation the corresponding measurement must be 
varied to simulate the noise. 

Table 2.17. Sensor noise standard deviations in % of the measured value 

Sensor type STDV
i

Temperature 0.4%
Pressure 0.25%
Fuel Flow 0.5%
Shaft Speed 0.05%

Once the random component is added to the measurements of the 1771 test 
cases to simulate the presence of noise, they are used to test Systems 1 and 2. 

Figure 2.16 represents the Deltas between implanted and calculated 
performance parameter deteriorations for the 1771 cases. 

Table 2.18. Statistics of the diagnostics results for System 1, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.08 -0.03 -0.04 -0.05 -0.14 -0.09 -0.12 0.02 -0.08 0.04 -0.04 -0.01
σ 0.64 0.30 0.39 0.35 0.58 0.34 0.41 0.37 0.41 0.30 0.33 0.29
CI95%+ 1.16 0.56 0.72 0.64 1.01 0.57 0.68 0.75 0.73 0.62 0.61 0.56
CI95% - -1.33 -0.62 -0.81 -0.74 -1.28 -0.75 -0.92 -0.70 -0.89 -0.54 -0.70 -0.58

The test cases are divided into six groups characterised by a different 
faulty component. Figure 2.16 considers, in each group, only the two parameters 
affected by deterioration and shows the Deltas only for them. Moreover, for each 
parameter in which deterioration is implanted, Table 2.18 reports the statistical 
results according to Method 2. It can be seen in Figure 2.16 how the values of 
Deltas are much higher compared to the case without noise. This can also be  
observed in Table 2.18 where high values of are reported. The RMS increased as 
well up to 0.147 (Method 3) and the results showed 483 cases (27%) with MS 
errors and 105 cases (5.9%) with HS errors (Method 1) – see Table 2.19.

Table 2.19. Summary of accuracy results for System 1 via Methods 1 and 3 over 1771 
cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 483 //  0.27 105 // 0.059 0.147 
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Table 2.20. Statistics of the diagnostics results for System 1 with enhanced capability of 
dealing with noisy data, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.07 -0.02 -0.03 -0.02 -0.12 -0.03 -0.09 0.02 -0.07 0.04 -0.02 -0.01
σ 0.42 0.24 0.26 0.17 0.40 0.17 0.25 0.31 0.24 0.20 0.26 0.20
CI95%+ 0.75 0.46 0.48 0.30 0.67 0.29 0.41 0.64 0.40 0.44 0.49 0.39
CI95% - -0.89 -0.49 -0.54 -0.35 -0.90 -0.36 -0.58 -0.59 -0.55 -0.36 -0.53 -0.40
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Figure 2.16. SFI capability of System 1. Results for 1771 test cases. 

To improve the system accuracy that is dramatically affected when noisy 
data are analysed, the input MFs amplitudes were modified. It was proved to be 
advantageous to differentiate them: different values of amplitude were used for 
different input. The most suitable choice was found to be to use as input MFs 
amplitude for the different measurement types exactly the values of sensor noise 
standard deviation listed in Table 2.17.

The improved results obtained with System 1 with enhanced capability of 
dealing with noisy data are shown in Figure 2.17. The deltas are considerably more 
localised within 0.5 %, and considering that this is also the order of magnitude of 
the noise introduced in some of the measurements, it is in the opinion of the authors 
a positive outcome. The improvement can also be appreciated in Table 2.20,
noticing the considerable reduction of the values of . The RMS obtained with the 
enhanced system was reduced to 0.08 (Method 3) and the results showed 201 cases 
(11%) with MS errors and 33 cases (1.8%) with HS errors (Method 1) – see Table 
2.21.
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Figure 2.17. SFI capability of System 1 with enhanced capability of dealing with noisy 
data. Results for 1771 test cases. 

Table 2.21. Summary of accuracy results for enhanced System 1 via Methods 1 and 3 over 
1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 //  0.11 33 // 0.018 0.08

Due to the fact that Systems 1 and 2, as defined at the beginning of this 
section, provided similar type of outcomes, it was considered here worthwhile to 
also study the behaviour of System 2 in the presence of noise in the measurements. 
In the same way that System 1 was adapted to deal with noisy data, also for System 
2 it was necessary to change the amplitudes of the input MFs according to the noise 
level implanted. Figure 2.18 shows the results obtained with the enhanced System 
2. The outcome as expected is similar to the one previously reported for the 
enhanced System 1. The values of  detailed in Table 2.22 (Method 2) are 
comparable in magnitude to the values of Table 2.20 for the enhanced System 1 
even though slightly worse. The RMS obtained with the enhanced System 2 
calculated for the 1771 cases was equal to 0.09 (Method 3) but the results showed 
183 cases (10%) with MS errors and 30 cases (1.6%) with HS errors outperforming 
the enhanced System 1 when evaluating the system accuracy with Method 1 – see 
Table 2.23.

Table 2.22. Statistics of the diagnostics results for System 2 with enhanced capability of 
dealing with noisy data, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.06 -0.02 -0.03 -0.02 -0.10 -0.04 -0.08 0.02 -0.08 0.04 -0.02 0.00
σ 0.44 0.25 0.28 0.17 0.43 0.17 0.27 0.32 0.26 0.21 0.27 0.21
CI95%+ 0.81 0.47 0.51 0.31 0.74 0.31 0.44 0.65 0.43 0.45 0.51 0.40
CI95% - -0.92 -0.51 -0.58 -0.35 -0.95 -0.38 -0.61 -0.60 -0.58 -0.37 -0.56 -0.41
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Table 2.23. Summary of accuracy results for enhanced System 2 via Methods 1 and 3 over 
1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 183 //  0.10 30 // 0.016 0.09
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Figure 2.18. SFI capability of System 2 with enhanced capability of dealing with noisy 
data. Results for 1771 test cases. 

2.5.2.1. Remarks 
It may be concluded that in this section an important milestone in this project was 
proved. Two fuzzy system layouts were identified as capable of performing SFI 
capability in the presence of noisy measurements and their accuracy was evaluated 
with the three different methods introduced in section 2.4.4.3. The enhanced 
System 1 outperformed the enhanced System 2 in the accuracy tests provided by 
Methods 2 and 3, but underperformed when the accuracy was estimated with 
Method 1. 

2.5.3. Tuning Capability to Enhance the SFI Role in GPD 

An SFI system is used to evaluate considerable changes in only two performance 
parameters of one component. The application of an SFI approach in a real-life case 
becomes useful under the assumption that only one component can be faulty. This 
assumption becomes more realistic if the changes are estimated in a short space of 
time, or else the diagnosis is made to assess only changes in the performance 
parameters from a very recent known condition. In fact, if on the contrary the time 
scale increases, it is more likely that two or more gas path components are 
degraded.  
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These considerations create a new opportunity of using SFI systems 
coupled with MFI systems (e.g., linear estimation methods). MFI approaches are 
limited when estimating considerable changes (i.e., > 1%) but are advantageous 
when calculating small deteriorations that inevitably affect all the parameters 
simultaneously over the engine operating time. The procedure represented in Figure
2.19 is an attempt at suggesting how this coupling could be implemented. The 
procedure described relies on the idea that SFI and MFI systems compute a solution 
in parallel for every flight mission of the engine. The two systems at flight n
calculate deltas in measurements from a baseline not of a clean engine but of the 
global deterioration level estimated at flight n-1. Therefore the two systems do not 
calculate the absolute changes in performance parameters, with respect to a clean 
engine, but the relative changes with respect to the deteriorated condition evaluated 
at the previous flight. The relative changes computed at flight n are then added to 
the global deterioration level to obtain the absolute changes with respect to the 
clean condition. 

 

 SFI  MFI 

∆ Measurements (t) 

(baseline condition estimated at the 

time t- ∆ respect to the Global 

deterioration level ) 

check 

1) If SFI outcome is <0.5% changes 

in all the components ignore SFI 

outcome.

2) If SFI outcome is >0.5% add it to 

the global deterioration levels 

Global 

deterioration 

level 

Figure 2.19. MFI and SFI coupling. 

Let us assume that at flight number one the engine is clean and no 
deterioration is detected. At a given point in time (flight n) the MFI system detects 
small deteriorations in all performance parameters, no considerable changes (<0.5) 
are detected by the SFI and therefore it is ignored. At flight n+1 instead something 
happens and one component gets severely damaged. The SFI estimates changes > 
0.5% (in a real application the value 0.5% should be replaced with a more correct 
value obtained in validating the suggested procedure), therefore the SFI outcome is 
used to update the global deterioration level instead of the MFI result. 

In the light of this proposed framework, in this work an automated 
procedure (see GUI from section 2.4.3) was devised to tune the rules of the fuzzy 
diagnostics system on top of a known deterioration level for all the 12 performance 
parameters (baseline). This baseline is assumed to be calculated at the previous 
flight with an MFI method and represents the global deterioration level in Figure 
2.19.  Let us assume, for example, that the values listed in Table 2.24 represent the 
baseline of deterioration. The SFI is now required to assess whether there are 
considerable changes from this already existing level of deterioration. 

The results shown in Figure 2.20 were obtained using the enhanced 
System 1 as defined in the previous section that was tuned to the baseline of Table
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2.24. A new set of 1771 test cases were generated with fault implanted in the ranges 
defined by the search space identified in section 2.4.2.1 but superimposed on the 
global deteriorations of Table 2.24; the measurements calculated running the engine 
model were disturbed adding a random component according to the same procedure 
described in the previous section. It is important to observe that these results cannot 
precisely (i.e., case by case) be compared to the results from the previous set of test 
cases because, having added a random component, the two sets could have slightly 
different severity of noise level. But a comparison can be made looking at the 
statistical figures. Table 2.25 presents analogous results to Table 2.22 (Method 2). 
The RMS obtained with the tuned diagnostics system calculated for the 1771 cases 
was equal to 0.089 (Method 3) and the results showed 172 cases (9%) with MS 
errors and 22 cases (1.2%) with HS errors (Method 1) – see Table 2.26.

2.6. A Fuzzy Diagnostics System with Partial MFI 
Capability 

In section 2.5.3, it was discussed how an SFI system can be used in a real-life 
application to evaluate considerable changes in only two performance parameters, 
under the assumption that only one component can become significantly faulty in 
the considered time interval. It was recognised that this assumption becomes more 
realistic if the diagnosis is made to assess only changes from a very recent known 
condition. In fact, if on the contrary the time scale increases, it is more likely that 
two or more gas path components are degraded. With the intention of making the 
procedure summarized in Figure 2.19 more robust, in this section a fuzzy 
diagnostics system with partial MFI capability was devised, to substitute the SFI 
process in the coupling procedure (Figure 2.19).  

Table 2.24. Global deterioration level, baseline 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-0.5   -0.4   -0.2   -0.5   -0.3   -0.2   -0.3   0.5   -0.4   0.3   -0.6   0.5 

Table 2.25. Statistics of the diagnostics results for tuned enhanced System 1, Method 2 

ηFAN  ΓFAN ηIPC ΓIPC ηHPC ΓHPC ηHPT ΓHPT ηIPT ΓIPT ηLPT ΓLPT 

µ -0.07 -0.02 -0.03 -0.02 -0.07 -0.01 -0.09 0.00 -0.06 0.02 -0.04 -0.02
σ 0.36 0.22 0.28 0.18 0.32 0.16 0.27 0.30 0.20 0.19 0.23 0.19
CI95%+ 0.64 0.40 0.52 0.32 0.56 0.30 0.44 0.58 0.34 0.39 0.41 0.35
CI95% - -0.78 -0.45 -0.58 -0.37 -0.70 -0.32 -0.62 -0.58 -0.46 -0.34 -0.50 -0.38
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Figure 2.20. SFI capability of the tuned enhanced System 1. Results for 1771 test cases. 

Table 2.26. Summary of accuracy results for tuned enhanced System 1 via Methods 1 and 
3 over 1771 cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 172 //  0.09 22 // 0.012 0.089

The process with partial MFI capability is in principle similar to the SFI 
systems described so far. It is able to quantify considerable deviation in 
performance parameters and it uses the nonlinear approach based on fuzzy logic. 
Moreover it is able to quantify changes in more than two parameters 
simultaneously: in this work the system was tested with up to two components 
degraded at a time, four parameters simultaneously deteriorated. In the context of 
section 2.5.3, this allows relaxing the previously stated assumption requiring that no 
more than two components can become considerably degraded in one mission.  

2.6.1. System Layout 

A fuzzy diagnostics system with partial MFI capability was devised in this work for 
a three-shaft turbofan engine. The inputs and outputs of the diagnostic process are 
the same shown in Figure 2.11 (section 2.4.2). The system is designed to assess 
performance parameters percentage changes from a clean engine condition (12 
outputs) given the knowledge of the measurement changes (10 inputs) calculated as 
percentage deviations with respect to a baseline determined by means of an engine 
model run at the specific power setting and environmental conditions (defined in 
section 2.4.2).

This section describes a system able to quantify considerable changes in up 
to two components degraded simultaneously (four performance parameters) 
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according to the considerations made in section 2.2.4 – see Table 2.1. The search 
space was defined as follows: 

Maximum variation in compressors’ efficiencies = –1% 
Minimum variation in compressors’ efficiencies = –3% 
Maximum variation in compressors’ flow capacities = –1% 
Minimum variation in compressors’ flow capacities = –3% 
Maximum variation in turbines’ efficiencies = –1% 
Minimum variation in turbines’ efficiencies = –3% 
Maximum variation in turbines’ flow capacities = –1% 
Minimum variation in turbines’ flow capacities = –3% 

Besides, the following additional parameters were fixed: 
Number of components simultaneously deteriorated = 2 
Step of increment = 0.5% 
Number of rules = 19440 

To limit the number of rules and therefore the complexity of the system no 
rules were stated to provide the input–output functional relationship corresponding 
to fault levels between 0% and –1%. Note that even though the ranges in the search 
space are defined between –1% and –3%, the 0% fault levels are always included in 
the search space. Therefore, the above definition of search space only excludes the -
0.5% fault level compared to the search space defined in section 2.4.2. This choice 
slightly affects the accuracy at low deterioration levels (around 0.5%) but it was 
recognised that a higher accuracy is required when assessing higher changes in the 
performance parameters (e.g., 3%). Besides, in this work a strong commitment was 
devoted to meeting the requirement of devising a fast system for on-wing 
applications, and therefore a reduction in the number of rules (excluding the –0.5% 
fault level) was driven by time-related concerns. 

2.6.2. Partial MFI Capability: Results 

2.6.2.1. Test Cases 
A series of 1201 test cases resulting from the combinations of three fault levels (0, -
1.2, -2.7) taken 4 at a time (4 parameters deteriorated at a time) was generated. A 
random component was added to the measurements of the test cases to simulate the 
presence of noise, according to the procedure described in section 2.5.2.

2.6.2.2. Results: Accuracy and Computational Time 
Method 1 and 3 introduced in section 2.4.4.3 were used here to assess the system 
accuracy in performing partial MFI capability. The RMS obtained considering only 
the 12 outputs relative to the performance parameters, for the 1201 cases, was equal 
to 0.1123 (Method 3) and the results showed 201 cases (16.7%) with MS errors and 
70 cases (5.8%) with HS errors (Method 1) – see Table 2.27.

A typical result, in addition to the 1201 cases, is presented in Table 2.28
and Table 2.29. Table 2.28 lists the implanted faults in the FAN and HPC. The 12 
outputs of the diagnostics system are shown in Table 2.29. A remarkable 
concentration capability of the fuzzy diagnostics system can be noted. 
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As far as the computational time is concerned, Table 2.30 reports the setup 
time and diagnostics time together with the number of rules stated and the number 
of test cases diagnosed, representing the elements on which the computational time 
has a stronger dependency. A system with partial MFI capability requires a 
considerably increased number of rules (19440 in this example) that inevitably 
affects the computational time. The diagnostics time for a single calculation is 
approximately 12 seconds, about 100 times the time required by the corresponding 
system with SFI. 

Table 2.27. Summary of accuracy results for System 1 via Methods 1 and 3 over 1201 
cases 

Method 1 Method 3 

case

MS cases (N. // %) HS cases (N. // %) RMS

1 201 // 0.1674 70 // 0.0583 0.1123

Table 2.28. Implanted deterioration (partial MFI) 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.8 -2.2 0 0 -2.3 -2.7 0 0 0 0 0 0 

Table 2.29. Estimated deterioration (partial MFI), typical result 

∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ ∆η ∆ Γ
-1.51 -2.43 -0.01 0.00 -2.38  -2.54 0.00 0.02 0.00 -0.00 0.01 0.03 

Table 2.30. Computational time with current computational capability 

Processing Time Dependency 

Set-up time 18 min, 35 sec  19440 rules 

Diagnostics Time  240 min

(12 sec/case) 

1201 test cases 

2.7. Operating the Diagnostics Model through the 
GUI

The diagnostics software developed within this work is constituted by two GUIs. 
The first one, presented in Figure 2.14 of section 2.4.3, was devised to 
automatically set up a fuzzy diagnostics model. Figure 2.21 shows the second 
graphical user interface that operates the fuzzy diagnostic model previously set-up 
and assesses the changes in the 12 performance parameters. Once the engine and its 
simulation model are selected, the readings from the engine can be input and the 
diagnosis made by means of the diagnostic system previously generated and saved. 
Alternatively, a fault can be implanted simulating the corresponding measurements 
deviations using the engine model. These are used to test a new generated fuzzy 
diagnostics system with simulated data. This interface can be used to operate 
models either with or without capability of dealing with biases (Marinai, 2004), as 
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mentioned in section 2.4.3, but this is not covered in this chapter. The results can be 
eventually plotted. 

Figure 2.21. GUI that operates the fuzzy diagnostic models. 

2.8. Conclusions 

Fuzzy logic is introduced in this work because of its inherent capability of dealing 
with GPD problems due to its rule-based nature and its fuzzy approach. This 
created a research opportunity, and a novel diagnostics procedure was devised; an 
application of the method to a three-shaft turbofan engine and its promising results 
were discussed in this chapter.  

In the light of the technical requirements identified for advanced gas path 
diagnostics (see section 2.4.1), it can be concluded that fuzzy logic showed 
significant advantages and inherent features well suited to GPD problems, as 
discussed below. 

Volponi (2003) pointed out the necessity to develop different 
algorithms to address the problem of estimating gradual and rapid 
deteriorations, namely, MFI (multiple fault isolation), generally 
based on linear approaches, and SFI (single fault isolation) 
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methods necessarily based on nonlinear approaches, respectively. 
The fuzzy diagnostics system described above was proved to 
preserve the nonlinearity present in the aero-thermal relationships 
between the performance parameters and the gas path 
measurements.  
Fuzzy diagnostics, as conceived in this chapter, in order to be 
effective, relies on the statement of an exhaustive number of rules 
defined within a performance parameters search space. This 
becomes cumbersome when the number of parameters that are 
considered simultaneously and that are changing increases (tests 
were performed with one gas path component degraded at a time 
– SFI, and with up to two components and so four performance 
parameters deteriorated at a time – partial MFI).  
Fuzzy diagnostics system with SFI or partial MFI capability can 
operate coupled with a linear MFI algorithm as long as a global 
deterioration level is updated every flight. The rules must be 
tuned over the calculated global deterioration level estimated at 
the previous flight; this is enabled by the significantly rapid set-
up phase devised for the fuzzy diagnostics system presented 
above.
Fuzzy diagnostics systems do not show a tendency to smear the 
results over all the performance parameters (that for example 
affects Kalman filter-based diagnostics methods), demonstrating 
on the contrary good concentration capability. 
Fuzzy diagnostics systems do not require completely observable 
systems with the same number of inputs and outputs. (A system 
Z=h(X) is said to be completely observable if every state X
(vector) can be determined from the observation of Z (vector) – 
Marinai, 2004.) 
A considerable enhancement of the diagnostics accuracy in the 
presence of noisy data can be obtained choosing the input 
measurement MFs amplitudes according to the different values of 
sensor noise standard deviations available for different sensors. 
Marinai (2004) formulates a statistical interpretation of the fuzzy 
systems. An analogous fuzzy diagnostics system was described in 
Marinai (2004) that was able to diagnose component faults in the 
presence of systematic errors in the measurements (bias) while 
identifying the faulty sensor as well. This result was achieved by 
means of a procedure that introduces the NOT operator in the 
statement of the rules. 
As far as the computational time is concerned, fuzzy diagnostics 
systems show: 

Considerably fast setup phase (e.g., approximately 1 minute 
for an SFI system), especially when compared with the very 
long training period required by a neural network with 
comparable diagnostics features. This enables the setup of a 
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new system for a new operating condition or over a 
calculated deterioration baseline in a short period of time. 
Fast diagnostics time suitable for on-line applications. 

The computational time depends on the number of rules stated 
and, therefore, on the number of parameters simultaneously 
deteriorated at a time. 
Fuzzy logic diagnostics models are advantageous when different 
sources of information (e.g., oil analysis, oil debris analysis, 
vibration analysis, expert knowledge, statistical inputs, etc.) need 
to be combined in the decision-making process (data fusion). 
Such a feature can also be used to combine results computed with 
different GPD techniques gaining in accuracy and reliability of 
the results. Once the diagnosis is performed, a prognostics 
algorithm (Marinai et al., 2003b) can be introduced to assess and 
predict into the future health condition of the engine or one of its 
components for a fixed time horizon or predict the time to failure. 
The modular nature of the fuzzy rules stated to devise a 
diagnostics system enables the user with a high level of system 
comprehensibility. 
The adaptation of a fuzzy diagnostics system to different gas 
turbines is expected to be simple according to the procedures 
described above. However, a sensitivity study to optimise the 
fuzzy system parameters is strongly advisable. 
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